

ibm.com/redbooks

DB2 OLAP Server
Theory and Practices

Corinne Baragoin
Jorge Bercianos

Janez Komel
Gary Robinson
Richard Sawa

Erik Schuinder

Matrix management and storage
structures in depth

Advanced OLAP design
practices

Practical implementation
experiences

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

DB2 OLAP Server
Theory and Practices

April 2001

SG24-6138-00

International Technical Support Organization

© Copyright International Business Machines Corporation 2001. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (April 2001)

This edition applies to IBM DB2 OLAP Server Version 7, Release 1, on every platform on which it is
available.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. QXXE Building 80-E2
650 Harry Road
San Jose, California 95120-6099

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in
Appendix G, “Special notices” on page 241.

Take Note!

Contents

Figures . vii

Tables. .ix

Preface .xi
How this book was written . xii
The team that wrote this redbook. xii
Comments welcome. xv

Chapter 1. Introducing OLAP. 1
1.1 Best practice begins with good theory . 1
1.2 The role of theory in OLAP practice . 3

1.2.1 Decision support theory . 3
1.2.2 Fundamental computer science principles 4
1.2.3 Model management and system dynamics 4

1.3 Position dependence versus position independence. 5
1.4 A different data model at a very fundamental level 6
1.5 The issue of data redundancy . 9
1.6 DB2 OLAP multidimensional databases are matrices 10
1.7 The data block and index explained . 12

1.7.1 Block creation explored . 13
1.7.2 Matrix explosion . 14
1.7.3 The data block and index revisited . 17

1.8 Other multidimensional design guidelines. 17
1.8.1 Avoid inter-dimensional irrelevance . 17
1.8.2 Combine dimensions where possible . 19

1.9 Summary . 20

Chapter 2. OLAP model development checklist 21
2.1 Introduction . 21
2.2 The OLAP checklist . 22

Chapter 3. Project management for OLAP . 29
3.1 Importance of project management for OLAP 29
3.2 OLAP project issues . 30

3.2.1 OLAP database . 30
3.2.2 OLAP end-user application . 31
3.2.3 OLAP project team structure. 31

3.3 Implementing an OLAP project . 32
3.3.1 Project assessment and feasibility . 32
3.3.2 Choosing an environment . 32
© Copyright IBM Corp. 2001 iii

3.3.3 Planning and analysis (requirements and design) 33
3.4 Acceptance testing . 36

Chapter 4. Tuning, good design practices, and useful tips 39
4.1 Prototyping an outline. 39

4.1.1 Training and team building . 39
4.1.2 High level modeling . 40

4.2 Database tuning introduction . 43
4.3 Basic matrix database concepts . 43

4.3.1 The concept of sparseness: dimension tags 45
4.4 Tuning the outline. 49

4.4.1 Dimensionality and business logic . 49
4.4.2 Considerations on use of member tags. 52
4.4.3 Considerations on consolidation types . 58
4.4.4 Sparse/dense methodology . 60

4.5 Considerations on database calculation . 66
4.5.1 Use the SET NOTICE command. 67
4.5.2 Dynamic calculations reviewed . 67
4.5.3 Focusing calculations . 70

4.6 Performance tuning: the buffers . 73
4.6.1 Guidelines for configuring DB2 OLAP caches 74
4.6.2 The calculator cache . 75

4.7 Data compression . 77
4.7.1 RLE compression and array declaration 78

4.8 Using SET MSG ONLY. 80
4.8.1 How is SET MSG ONLY used?. 80
4.8.2 What does SET MSG ONLY do? . 80
4.8.3 SET MSG ONLY application log example using Sample::Basic . 81
4.8.4 What can you do with SET MSG ONLY? 82
4.8.5 What you need to know about SET MSG ONLY 83

4.9 Intelligent calculation . 84
4.10 Miscellaneous issues . 86

4.10.1 Partitioning tips and strategies . 86
4.10.2 The application log . 89
4.10.3 Data load optimization . 91
4.10.4 Building a security model . 93

4.11 Final comment . 96

Chapter 5. Interviews and experiences . 97
5.1 Introduction . 97
5.2 Interview results . 98

5.2.1 Steve Beier’s interview . 99
5.2.2 George Trudel’s interview. 107
iv DB2 OLAP Server - Theory and Practices

5.2.3 Mark Rich’s interview . 117
5.2.4 Joe Scovell’s and Jacques Chenot’s interviews 127
5.2.5 Anonymous person’s interview . 137
5.2.6 Rich Semetulskis’ and Alan Farkas’ interview 144
5.2.7 Aster Hupkes’ interview . 146

Appendix A. OLAP datamart design approaches 155
A.1 What is a datamart? . 155
A.2 Designing the datamart. 157

A.2.1 Determining the granularity. 157
A.3 Deciding the dimensionality . 161

A.3.1 Product and geography type dimensions . 163
A.3.2 Browser type dimensions . 164
A.3.3 Customer bank account number dimensions 166

A.4 Understanding attributes and base dimensions 167
A.5 Tackling the data load. 168

A.5.1 Optimizing regular dimension tables. 168
A.5.2 Optimizing time dimensions . 169

A.6 Conclusion . 170

Appendix B. Integration Server implementation guidelines 171
B.1 Overview . 171

B.1.1 OLAP model . 174
B.1.2 OLAP models and metaoutlines . 174

B.2 Decision: the initial IS implementation . 174
B.2.1 No existing data warehouse or datamart or star schema 175
B.2.2 Existing data warehouse or datamart or star schema 175

B.3 From the very beginning: developing the star schema 176
B.3.1 The dimensional model. 176

B.4 IS installation and environment configuration . 184
B.4.1 IS environment configuration recommendations 185

B.5 The IS model. 187
B.5.1 Building the IS model . 187

B.6 IS metaoutline . 193
B.6.1 Building the IS metaoutline . 193
B.6.2 Loading data . 195
B.6.3 IS drill-through functionality . 196

Appendix C. Case study: example of end-to-end approach 199
C.1 Context and business scenario. 199
C.2 Proposed approach . 200

C.2.1 Building a relational datamart . 202
C.2.2 Using Intelligent Miner for Data for designing OLAP dimensions. . 204
C.2.3 Using OIS to build OLAP databases . 207
 v

C.2.4 Using Analyzer as a reporting tool . 211
C.3 Summary . 216

Appendix D. Considerations for getting the best OLAP delivery. . . . 217
D.1 What properties are needed in an OLAP reporting tool? 217
D.2 What about DB2 OLAP Server Analyzer? . 218

D.2.1 Interactive and analytical capabilities . 219
D.2.2 Deployment capability . 220
D.2.3 API toolkit . 223
D.2.4 Leveraging DB2 OLAP . 225

Appendix E. Web log incorporation . 227
E.1 Web site analysis suite . 227
E.2 Overview of Web log files . 227
E.3 Web logs as source data . 228

E.3.1 Web log fields . 228
E.3.2 Visitor and session Identification . 229
E.3.3 Sessionization methods . 229

E.4 Cookies . 230
E.4.1 Session cookies . 230

E.5 Additional issues . 231
E.6 Practical example . 232

E.6.1 Sample Web log entry . 232
E.6.2 Two sample OLAP models . 234

E.7 Conclusion: Integration . 236

Appendix F. OLAP model development short checklist 237

Appendix G. Special notices . 241

Appendix H. Related publications . 245
H.1 IBM Redbooks . 245
H.2 IBM Redbooks collections . 245
H.3 Other resources . 246
H.4 Referenced Web sites . 246

How to get IBM Redbooks . 247
IBM Redbooks fax order form . 248

Glossary . 249

Index . 255

IBM Redbooks review . 263
vi DB2 OLAP Server - Theory and Practices

Figures

1. Number of intersection points — example . 11
2. Dense dimensions form the block . 12
3. Sparse dimensions form the index. 14
4. Dimension without any hierarchy . 15
5. Dimension with embedded hierarchy. 16
6. Irrelevant sparse dimension. 18
7. Combining dimensions. 19
8. Relational versus multidimensional . 42
9. What is an array?. 44
10. Referencing contents . 45
11. Multidimensional databases are inherently sparse structures 46
12. Index and block creation . 47
13. How the matrix is built . 48
14. Adding a dimension in the outline . 51
15. Member considerations: the block . 52
16. Member considerations: Label Only . 53
17. Member considerations: dynamic calculation . 54
18. Two types of blocks? When will it end?! . 55
19. Outline fragment . 55
20. Example of natural consolidation with unary operators 59
21. Example of natural consolidation with formulae. 59
22. Example of sparse members with formulae. 59
23. Observations and method . 61
24. Outline example with dynamic dependencies . 68
25. CALC DIM versus CAL ALL. 69
26. Focusing calculations using FIX,ENDFIX . 71
27. Fixing on sparse dimensions . 71
28. Fixing on dense dimensions . 72
29. Data, OS caches and data on disk . 74
30. Outline fragment . 76
31. Bitmap compression . 77
32. RLE compression. 78
33. RLE compression Implications (1) . 79
34. RLE compression implications (2) . 79
35. Partitioning on Market and Scenario . 87
36. Outline example: partitioning on History . 88
37. Load file with the first two 2 columns tagged sparse 92
38. Load file sorted across sparse dimensions . 93
39. Pricing histogram example. 162
40. Browser type dimensions. 165
© Copyright IBM Corp. 2001 vii

41. Product Dimension outline . 169
42. Integration Server to DB2 OLAP flow illustration 172
43. IS components . 173
44. Fact table sample. 177
45. Alternate Fact table sample . 178
46. Snowflake example . 183
47. Creating date hierarchies. 189
48. Time dimension altered . 190
49. Selecting dynamic time . 191
50. Building ragged hierarchies . 192
51. Resulting ragged dimension . 193
52. Defining the MEASURES dimension . 194
53. Products involved in case study. 201
54. Case study hardware and software configuration 202
55. Star schema in datamart . 203
56. Clustering visualization for the case study. 206
57. Segment example . 207
58. OLAP model from case study . 208
59. OLAP metaoutline — workload detail . 210
60. OLAP metaoutline — CIC Customer with attribute dimensions. 211
61. Performances per customer and per severity for 2000 year 212
62. Drill-through capabilities. 213
63. View on RESOLUTION virtual cube . 215
64. Create links between views . 216
65. Populating Web cubes . 233
66. Outline for the sample model . 234
67. Outline for the additional model . 235
viii DB2 OLAP Server - Theory and Practices

Tables

1. Hyperion and IBM: versions and releases . xi
2. One-dimensional matrix . 7
3. Two-dimensional matrix . 7
4. Computing subtotals . 7
5. Naming rows and columns. 8
6. Adding formulae. 8
7. Forecasting model . 8
8. Using relative and absolute addresses . 9
9. Project checklist . 22
10. Project team roles . 31
11. Test plan item example . 37
12. Analytic grid . 41
13. Recording application logs information . 91
14. Interviews. 98
15. Granularity example. 158
16. Extra-cube granularity example . 159
17. Product table . 161
18. Product dimensions and ragged hierarchies . 163
19. Browser version table . 166
20. Browser platform . 166
21. Sample dimension table with hierarchies. 180
22. Dimension table with alternate hierarchies . 181
23. Dimension table with ragged hierarchies . 182
24. Create a time dimension table . 188
25. Log entry . 232
26. Sample OLAP model . 234
27. Sample additional OLAP model . 235
28. Project shortlist . 237
© Copyright IBM Corp. 2001 ix

x DB2 OLAP Server - Theory and Practices

Preface

This IBM Redbook explores useful design procedures and shares significant
implementation experiences for DB2 OLAP server and Essbase. The
non-exhaustive list of procedures spans from design tips to successful tuning.
The implementation and deployment experiences are described through
customer and partner interviews.

This redbook focuses on IBM DB2 OLAP Server Version 7 — with the
multidimensional storage option — and Hyperion Essbase OLAP Server
Version 6.0. We use the term DB2 OLAP throughout the book to refer to both
products.

Table 1 below lists the version and releases of IBM DB2 OLAP Server and
Hyperion Essbase OLAP Server.

Table 1. Hyperion and IBM: versions and releases

In 02/1998, IBM delivered its new analytical software: DB2 OLAP Server V1.0
based on Arbor Essbase V5.0 on Windows NT,OS/2, AIX platforms. In its first
release, DB2 OLAP provided only relational storage on DB2 Universal
Database and no multidimensional storage. In 10/1998, version V1.0.1 was
extended to new UNIX platforms including SUN SOLARIS and HP/UX.

In 09/1999 IBM delivered DB2 OLAP Server V1.1, which provides both
relational and multidimensional storage and was based on Essbase V5.0.2.
Version 1.1 has been available on the OS/390 platform since 02/2000 and on
the AS/400 platform since 06/2000.

IBM has delivered DB2 OLAP V7.1 based on Essbase Server Version 6.0 on
the UNIX and Intel platforms since 06/2000; on AS/400 since 12/2000; and
has announced it on the OS/390 platform in 11/2000.

In 12/2000, IBM introduced DB2 OLAP Server Analyzer. This is based on
Hyperion Analyzer Version 7.1 (called Analyzer throughout this redbook), an
easy-to-use OLAP client for Windows and the Web.

Hyperion IBM

Essbase Server V5.0 DB2 OLAP Server V1.0

Essbase Server V5.0.2 DB2 OLAP Server V1.1

Essbase Server V6.0 DB2 OLAP Server V7.1
© Copyright IBM Corp. 2001 xi

Designers and technical people with an understanding of DB2 OLAP
fundamentals will benefit from reading this redbook to design and implement
future DB2 OLAP solutions.

How this book was written

This redbook was originally conceived as a “best practices” book for DB2
OLAP. An exhaustive knowledge of best practices in any discipline rarely
rests within the grasp of one or two people so this book represents the
contribution of many individuals. It really is the result of a collaboration of the
highest order.

Some of the contributors are anonymous. They are an extremely important
group of people whose work in OLAP principles and practices was ground
breaking. Their practices are today so foundational that it is often overlooked
that these were ever “developed” in the first place. But it simply remains
beyond our ability to present these people individually. There are, however,
four groups of identifiable contributors (IBM, Hyperion Solutions, Business
Partners and DB2 OLAP Clients) that deserve mention.

The team that wrote this redbook

From IBM there was the DB2 OLAP redbook residency team working at the
International Technical Support Organization San Jose Center. Its task was to
manage this redbook project, research and test many of the recommended
practices, and finally produce the document you have before you today.

From Hyperion Solutions there were people who assisted in every aspect of
this project with perhaps the exception of final document preparation and
delivery.

Business Partners of both IBM and Hyperion Solutions made contributions as
well. A considerable portion of this text was prepared and submitted by such
individuals.

Finally, in the form of IBM conducted interviews, OLAP clients made
contributions by being willing to divulge practices and procedures that
currently reflect their own DB2 OLAP production environments.

Some of the individuals contributed by:

 • Writing sections of the text: Corinne Baragoin, Gary Robinson, William
Sterling, Richard Sawa, Cheryl A. McCormick, Paul Turner, Debra
McRae, William Hodges, Bob Wallace, and Dave Nolby.
xii DB2 OLAP Server - Theory and Practices

 • Performing research or answering interviews and providing contents to be
incorporated within these pages: Daniel DeKimpe, Christopher Dzekian,
Jim Burnham, Steward Teed, Sujata Shah, Leah Wheelan, Rich
Semetulskis, Alan Farkas, George Trudel, Joe Scovell, Jacques
Chenot, Mark Rich, Steve Beier, and Aster Hupkes.

 • Researching, documenting, and testing: Jorge Bercianos, Janez Komel,
and Erik Schuinder.

As a result, you will not find a single voice speaking in the pages that follow.
Hopefully this unbalanced style will be more than compensated for by
substance and content.

The IBM team:

Corinne Baragoin is a Business Intelligence specialist at the International
Technical Support Organization, San Jose Center. Before joining the ITSO,
she worked as Technical Presales Support in IBM France and has been
working on data warehouse environments since 1996.

Jorge Bercianos is a Data Mining specialist in IBM Uruguay. He has been
involved in data mining and OLAP integrations for the last two years.

Janez Komel is a Software Technical Sales Manager in IBM Slovenia. He has
12 years of experience in database management and data warehouse
implementation.

Gary Robinson is a Senior Software Engineer with IBM Corporation, based
at Silicon Valley Lab in the USA. Gary has over 12 years experience in
Business Intelligence and Decision Support. He is a member of the DB2
OLAP Server development team, working with customers and partners
deploying DB2 OLAP Server.

Erik Schuinder is an IT specialist on Business Intelligence in IBM Global
Services in The Netherlands. He has been involved as OLAP
designer/consultant for implementing OLAP solutions on large data
warehouses.

William Sterling is a worldwide DB2 OLAP technical specialist in IBM.

Daniel DeKimpe is a Software Advisory Engineer in IBM Silicon Valley Lab.

The Hyperion Solutions team:
 xiii

Richard Sawa is the Hyperion Solutions Channel Sales Technology Manager
for IBM and ShowCase. He has 11 years of experience in relational and
multidimensional database technologies and specializes in Essbase
database tuning and optimization.

Cheryl A. McCormick is a Senior Principal Consultant in the Data Integration
Integration Services group.

Paul Turner is a Senior Technical Manager in Essbase Business
Development.

Debra McRae is a Regional Practice Manager in the eCRM Services group.

Christopher Dzekian is a Director of Business Development and Product
Management in the Hyperion Analysis Tools division.

Jim Burnham is a Principal Software Engineer in the Information Technology
Services group.

Steward Teed is a Senior Development Manager in the Information
Technology Services group.

Sujata Shah is a Senior Product Assurance Engineer in the Customer
Product Assurance Lab Essbase Technologies.

The Business Partners team:

William Hodges is a partner at Tech-OLAP, Inc., an OLAP consulting firm
with offices in Montreal, QC, Canada and Stamford, CT, U.S.A. and a
professor of MIS on leave from the University of Quebec at Montreal.

Bob Wallace and Dave Nolby are working in LumenSoft Corporation, in St.
Paul, Minnesota which is dedicated to delivering value added OLAP solutions
through Consulting Services, Product Development and Training. Bob, a
certified OLAP professional, has 9 years of experience implementing
Business Intelligence solutions and is currently working with the Product
Development Department. Dave has over 10 years of Business Intelligence
experience and is a certified OLAP professional and trainer.

Leah Wheelan is the President of Beacon Analytics, Inc., a consulting firm
that specializes in OLAP implementation.

Rich Semetulskis and Alan Farkas are working in ThinkFast Consulting.
Alan Farkas, a Senior OLAP Consultant, has over six years of Essbase
experience and has been providing OLAP solutions to clients since 1988.
xiv DB2 OLAP Server - Theory and Practices

Customers and Customer representatives through IBM Global Services:

George Trudel is Director of Information Services at Scrip Pharmacy
Solutions and he has 25 years of business and technology experience. He
started working with multi-dimensional databases in 1990 and was the first
business user to beta test DB2OLAP. Scrip Pharmacy Solutions summarizes
prescription transaction data as part of its knowledge delivery to its
customers.

Joe Scovell and Jacques Chenot at DST Systems Inc., of Kansas City, a
Transfer Agent in the Mutual Fund Industry. Joe Scovell is a Client Services
Manager. He has 13 years experience working with many diverse Mutual
Fund clients. His area of expertise centers around providing clients value
added services that enable them to intelligently mine their data.

Mark Rich has been a financial and business analyst for 16 years in IBM. In
1994 he was the technical lead for IBM's World Wide Consolidation Accounting
project, implementation of Hyperion Enterprise. In 1998 he was brought on board
to lead IBM's World Wide Planning System, currently based on IBM DB2 OLAP
on IBM RS6000 technology.

Steve Beier is working as a Senior IT specialist at IBM Global Services. He
currently works for IBM Storage Division on an enterprise information system
and his primary responsibilities include project architecture, technical lead
and "renaissance" support.

Aster Hupkes is working as an IT specialist in the Business Intelligence team
of IBM Global Services in the Netherlands. She has over two years
experience in designing and implementing OLAP solutions at several
customers in the Netherlands.

Comments welcome

Your comments are important to us!

We want our Redbooks to be as helpful as possible. Please send us your
comments about this or other Redbooks in one of the following ways:

 • Fax the evaluation form found in “IBM Redbooks review” on page 263 to
the fax number shown on the form.

 • Use the online evaluation form found at ibm.com/redbooks

 • Send your comments in an Internet note to redbook@us.ibm.com
 xv

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xvi DB2 OLAP Server - Theory and Practices

Chapter 1. Introducing OLAP

In this chapter we will attempt to communicate to you the importance of
recognizing the distinct place in an information systems infrastructure that an
On-Line Analytical Processing (OLAP) server can occupy. Our discussion
transitions quickly to a description of the DB2 OLAP array storage structures
and how they are the means by which database designers come to practical
terms with the realities of (sparse) matrix management. Finally we end by
suggesting strategies that will assist designers to refine their skills at
managing the data explosion that can occur when implementing a DB2 OLAP
array. We believe that these three topics are intimately related.

1.1 Best practice begins with good theory

This is essentially a practices book for OLAP implementers. A book on
recommended practices of any kind, it seems, should not require a lengthy
explanation or argument in favor of the corresponding technology. Rather, it
should concentrate on providing the reader with guidelines as to how to best
use the technology, how to avoid misinterpreting its functionality, how to
prioritize implementation goals to get a high cost/benefit ratio, and so on. In
other words, the author(s) should be able to assume that the reader has had
the opportunity to witness beneficial results or, better yet, has sufficient
understanding of the underlying fundamental principles to be able to visualize
the raw power of this technology.

Yet, there is enough evidence within the IT profession to conclude that OLAP
is still a poorly understood IT solution. When it is implemented, this is often
done because it happens to be available, it is new, it seems to work and/or it
is sufficiently easy to apply in some form or fashion. Rarely is it implemented
because of a deep understanding that it is in fact the most appropriate
solution.

There is also sufficient evidence in the commercial world to conclude that
OLAP has many definitions. OLAP has reached such a status as a buzzword,
term or label that it is desirable and effective to use it and to that end it is
whatever its proponent decides it should be. Here is a case in point: OLAP is
a very good technology for the execution of financial data consolidations,
better and easier to use for such a purpose than SQL, for example. But a tool
or product that performs consolidations is not, therefore, an OLAP tool or
product, no matter how efficiently and elegantly it performs those
consolidations.
© Copyright IBM Corp. 2001 1

Why is this so? Simply because OLAP is, and is expected to be, many other
things as well. In fact, consolidations are among the very minimum that an
OLAP tool ought to be able to do and are, for the most part, a feature taken
for granted. An OLAP specialist asked to implement consolidations using an
OLAP product would hardly consider the work interesting unless it involved
other more significant challenges.

It is for reasons of this nature that we have concluded that a practices book
on OLAP must begin by establishing in a clear and concise way the
technology’s raison d’etre. It appears that a deeper understanding of the
principles that originated the technology is required to help implementers
make better use of it. To some people, OLAP looks too much like a “gimmicky
technology”, an optional end-user’s tool, and not enough like a necessary
component of a serious, reliable, robust, efficient, effective, widely focused
organizational information systems infrastructure. DB2 OLAP is not an
end-user tool; it is a matrix-oriented application server. In fact, it might even
be considered the only OLAP server worthy of the name on the market. What
it can do, no other type of data server can do, and customers need to
understand this. It may be too much to say that every company should have
one, but this is not an outrageous exaggeration. There are many very valid
reasons why a company or an individual should not own the best technology
available.

OLAP’s role in an organization’s IT infrastructure

As indicated by the words used to construct its acronym (“on-line,” “analytic”
and processing”), OLAP’s role in an organization is to provide easy
interactive access to analytic resources for the purpose of supporting a
management or decision-making role. Historically, decision support theory
has recognized two types of analytic resources: data (static information) and
models (dynamic information) (Steven Alter “Decision Support Systems:
Current Practice and Continuing Challenges”, Addison-Wesley (1999)).
OLAP, fits the definition perfectly: it is an information server that responds to
queries about raw and derived data. Raw data is data loaded into its
database; derived data may be, for example, a summary of that data, a
forecast derived from the same or calculated independently, a what-if
scenario, and so forth, any of them computed by formulae or programs
resident within the same data store (not by external programs). In summary,
OLAP is a technology that combines better than others access and
computational ease.

It so happens that in an overwhelming majority of cases organizing data as a
matrix or collection of matrices best fulfills this role. Consequently OLAP, a
term which in itself does not imply any specific data structures, has become
2 DB2 OLAP Server - Theory and Practices

synonymous with “multidimensional database” and produced two major
challenges:

1. Managing matrix size and sparsity

2. Modeling business environment (or other) behaviors as matrix-oriented
formulae and scripts.

These two challenges imply a third:

3. Developing the ability to mentally visualize multidimensional data
arrangements and data computations.

1.2 The role of theory in OLAP practice

Theory (the explanation of relevant facts and relationships embedded in a
phenomenon) can certainly help us to most successfully face these
challenges. On the one hand, no OLAP theory has to date been formally or
completely proposed. Yet, a handful of vary basic principles is sufficient to
begin to recognize OLAP’s potential as a critical component in any
organizational informational infrastructure. This is all we really need. They
are simple but powerful; they should not be ignored.

First, as already suggested in the above paragraphs, OLAP is supported by
decision support theory. Secondly, as will be later explained, it is an
application of fundamental computer science principles related to the
combination of algorithms and data structures to produce computational
power. Thirdly, also later discussed, it is a most suitable environment for the
implementation of business models that apply system dynamic principles, the
only discipline, according to some experts (for example, Peter Senge in his
book “The Fifth Discipline: The Art and Practice of the Learming
Organization”, Currency/Doubleday (1991)), that can actually help us to deal
with complex business environments.

1.2.1 Decision support theory
The art of building decision support systems is the art of building
computer-based solutions to undefined problems. The secret to building
these solutions is to apply a multi-layered development approach whereby
generic functionalities are embedded in the lower layers and can be
purchased so that an end solution can be constructed and modified rapidly
just by adding the upper layers. Decision theory identifies three generic
functionalities: data management, model management and interface
management (as mentioned by Ralph Sprague and Eric Carlson in “Building
Effective Decision Support Systems”, Prentice-Hall, Inc. (1982)). A
Chapter 1. Introducing OLAP 3

development environment that provides these three functionalities is known
in the decision support literature as a DSS generator. DB2 OLAP is a DSS
generator.

1.2.2 Fundamental computer science principles
OLAP’s credibility as a fundamentally different and more appropriate
database technology was unfortunately tainted by the way its theory was
initially presented to the public by Codd, who has written “Providing OLAP to
User-Analysts: An IT Mandate”. This book can be found on www.essbase.com).
And this theory was not even complete, nor was it a real theory, but rather,
just a list of requirements. Other authors have attempted to be more thorough
(for example, Erik Thomsen who has written “OLAP Solutions: Building
Multidimensional Information System”, John Wiley & Sons, Inc. (1997)).
However, the bottom line is that we still do not have a theory and possibly
never will, at least not at the level of abstraction that Erik Thomsen suggests
it should be developed.

But if we recognize OLAP not only as a data server (as is a RDBMS) but also
as a modeling tool, an application development environment, a prototyping
environment, then its theory should not be constructed along the same lines
of reasoning as the relational database model. For example, if we look
elsewhere, in the classic computer science literature we find that DB2 OLAP
needs not to be justified by set theory (as did Codd with respect to relational
databases) or the significance of missing values (as does Erik Thomsen) but
more simply by the principle that computer performance is based on the
interaction of two components: data structures and algorithms.

Probably the most emphatic statement in this regard is Niklaus Wirth’s book
titled: “Algorithms + Data Structures = Programs”, Prentice Hall,Inc. (1976).
In this book, the author lists three fundamental data structures: the record,
the matrix and the bitmap. DB2 OLAP is a perfect example of an effort to
apply the best available data structure to the problem at hand. It can store
data both as records and as matrices, it uses matrix-oriented algorithms to
perform simple computations as well as to build complex models and it uses
bitmaps to speed up access to the data used and/or generated by these
models.

1.2.3 Model management and system dynamics
It would be difficult to imagine the explosive evolution of computing from the
late 70’s until today if we eliminated the electronic spreadsheet from the
computing scene. Many have attributed the success of the personal computer
to Visi-Calc and then Lotus 1-2-3, which made visible and accessible to the
4 DB2 OLAP Server - Theory and Practices

masses a computer’s ability to perform a series of computations in order to
obtain numerical results. Today, most spreadsheet users know that not only
can we program a spreadsheet to compute a profit, but we can also request
that the spreadsheet estimate the revenue necessary to produce a desired
profit, all from formulae that were not designed to compute revenue. We call
this “goal seeking.”

The point to be made here is we can perform goal seeking and thus turn
premises into conclusions, because a collection of formulae is a model of an
aspect of reality that can be manipulated in order to better understand that
reality, just as a miniature airplane can be used to test the aerodynamic
characteristics of a real airplane.In order to be effectively used, models need
easy access, easy manipulation, easy development, and easy storage. DB2
OLAP provides all of these features.

1.3 Position dependence versus position independence

One of the contributors to the theoretical elegance of the relational database
model is the fact that position in a “relation” (a table) is irrelevant. Where a
record appears in a table and where a field appears within a record has no
bearing on what a query against the table will produce in terms of results.
Position independence is one of the features that helped relational database
technology replace older technologies (hierarchical databases such as IMS,
and CODASYL databases), in spite of the obvious performance advantages
of the older technologies, which used pointers, and to this extent, they were
position-dependent. Position independence makes a database more flexible
and a better choice for ad-hoc querying.

In the early years of programming, one would occasionally compare and
evaluate programming languages by asking the question: “Does the language
include arrays?” and the question: “What is the maximum number of
dimensions allowed in these arrays?” APL, an early computer language,
included matrix operations as defined in linear algebra. For example, the
linear algebra expression A=B*C, where A, B, C are matrices, implies a
multi-term operation of the type Aij = somme Bi*Cj, in other words, data
structures and native computational algorithms well beyond what standard
computer languages can perform “out of the box”.

But computer users whose problems were not suited for or required data
representation in the form of a matrix, or computer users who could not begin
to conceptualize their computational problems as matrices, could not have
taken advantage of APL, no matter how sophisticated APL is as a
Chapter 1. Introducing OLAP 5

6

programming language and even more so was, comparatively, in the early
years of computing.

Not all computational problems require, lend themselves to, or can benefit
from, a matrix-oriented treatment. Those that do, on the other hand, still face
the problem of managing data storage efficiently. Matrices are by their very
nature space allocators. They are analogous to beehive-type mailbox
ensembles where, once labeled, a box will reserve, in other words eliminate
the flexible use of, a physical space, whether its beneficiary ever receives
mail or not. People who have mailboxes of this kind at their office can locate
their mail very quickly simply by going directly to their mailbox. These same
people would have a slightly more difficult time locating their mail before it is
placed in the boxes, even if all the envelopes are properly addressed and
even if the envelopes have been sorted in alphabetical order and neatly
stacked inside a general-purpose box. But this general-purpose box would by
its nature occupy less space than the beehive mailboxes.

Thus, what in one situation is boasted as an advantage in another could be
suffered as a disadvantage. Finding data in a table can be burdensome and
time consuming even when indexes are available. Finding data in a matrix
when its basic coordinates are known is very simple. You jump directly to the
corresponding cell address. It may be said that matrices are to tables what
RAM is to tapes. In RAM, as in matrices, when you know what you are
looking for, you know where exactly it may be found.

1.4 A different data model at a very fundamental level

There is a very fundamental difference between matrices and tables:
relational tables (RDBMS) model the world as a collection of interrelated
entities that happen to have attributes. The attribute cannot exist independent
of its entity. Some attributes may become the entity identifiers but this is not
required. In conclusion, tables (and RDBMS) are entity-oriented.

On the other hand, matrices are data-oriented. In the specific case of OLAP
they are numeric-data-oriented. When we store a number in memory using a
programming language we use variables. For example, to place the number
546 in memory we can state VAR1=546. To store four numbers in memory we
can use four variables or we can use a one-dimensional matrix (see Table 2):
VAR(1)=546, VAR(2)=765, VAR(3)=762 and VAR(4)=951.
 DB2 OLAP Server - Theory and Practices

Table 2. One-dimensional matrix

We can store the same four numbers in a two-dimensional matrix (see
Table 3): VAR(1,1)=546, VAR(1,2)=765, VAR(2,1)=762 and VAR(2,2)=951.
And we can use a spreadsheet the same way (a spreadsheet is a matrix).

Table 3. Two-dimensional matrix

How or why would we select one or the other arrangement? We would select
the arrangement based on the advantages that position would grant us in
each case.

For example, the second arrangement would allow us to easily compute
various subtotals as in Table 4.

Table 4. Computing subtotals

Therefore: position becomes useful in terms of the operations it facilitates.
More than this, if we change the row and column labels (see Table 5), position
may be used to recognize, acknowledge, document the actual meaning of
these numbers.

A B C D

1 546 765 762 951

2

3

A B C D

1 546 765

2 762 951

A B C D

1 546 765 1311

2 762 951 1713

3 1308 1716 3024
Chapter 1. Introducing OLAP 7

Table 5. Naming rows and columns

We purposely did not write “give meaning.” The data, if it came from a real life
situation, already had its meaning, we just had not yet recognized it. This is
an important point. OLAP does not add dimensionality to data, it recognizes it
and brings it to the fore. In this sense, OLAP is one of at least two different
ways available to represent dimensionality, another one being the star
schema design proposed by Ralph Kimball in “The Data Warehouse Toolkit “,
John Wiley&Sons, Inc. (1996).

Having given meaningful names to columns and rows, formulae can now be
expressed as, for example, Chairs = Tables * 4, indicating that each table
comes with four chairs (see Table 6).

Table 6. Adding formulae

And if the above is a forecast rather than a report of actual sales, and if sales
in Boston are typically one half of the sales in New York, then we can build a
Forecasting Model where stating one number (the number of tables we
expect to sell in New York) will give us the sales for tables and chairs in both
New York and Boston (see Table 7).

Table 7. Forecasting model

In summary, the formulae contained in the above mini-model are:

Chairs = Tables * 4;

Tables Chairs Both products

New York 546 765 1311

Boston 762 951 1713

Both Cities 1308 1716 3024

Tables Chairs Both products

New York 546 2184 2730

Boston 762 3048 3810

Both Cities 1308 5232 6540

Tables Chairs Both products

New York 546 2184 2730

Boston 273 1092 1365

Both Cities 819 3276 4095
8 DB2 OLAP Server - Theory and Practices

Boston = New York * 0.5;
Both Cities = New York + Boston;
Both Products = Tables + Chairs;

Notice that contrary to the way formulae are stored in spreadsheets, in DB2
OLAP they are stored once only and applied wherever they apply. Notice also
that the above model has only one datum. The rest of the numbers are all
derived data. (And if we were to add products and cities and establish similar
logical relationships we could end up with a model that computes sales for all
the products in all the cities based on one number! The purpose of the
example, though, is to show the advantages of applying and extending a
well-known programming paradigm: the spreadsheet).

Position can be further exploited through the use of relative and absolute
addresses as in Table 8.

Table 8. Using relative and absolute addresses

In Table 8, the bold numbers are calculated by formulae generated by
entering the formula =$A2*$B1 into cell B2 and then copying this formula into
cells B2:F5. We only had to write the formula once and the computer was
able to make the necessary adjustments to correctly apply different versions
of the same formula to other cells. Without getting into the details of how it is
done we can already point out that DB2 OLAP, exploits position similarly with
the added feature that cell formulae do not have to be restated for every cell.
They are adjusted dynamically as they are computed, and only one generic
version of the formula is actually stored. And the dynamic adjustment is not
limited to a two-dimensional space but can be extended to as many
dimensions as may be present in the DB2 OLAP database.

1.5 The issue of data redundancy

One of the difficulties to overcome when proposing the implementation of an
OLAP solution is to justify the duplication of data storage mechanisms as well
as of that of the data contained therein. The data warehousing movement is

A B C D E F

1 1 2 3 4 5

2 1 1 2 3 4 5

3 2 2 4 6 8 10

4 3 3 6 9 12 15

5 4 4 8 12 16 20
Chapter 1. Introducing OLAP 9

evidence of the improvements in data availability that can be obtained from
restating data in a different format. And Inmon (who has written “Building the
Data Warehouse”, John Wiley&Sons, Inc. (1996)) points out very clearly that
there is no redundancy in data warehouse and datamart contents because it
is restated data, data at a different level of detail than their sources.

1.6 DB2 OLAP multidimensional databases are matrices

The notion that DB2 OLAP storage structures implement data storage as a
matrix (or array) is perhaps the most important concept for a DB2 OLAP
developer to learn.

Understanding matrix management eventually will include an understanding
of the corollary concept of sparseness. That is, as more dimensions are
added to the matrix, proportionally fewer intersection points (or cells) across
the matrix actually contain values.

Consider the business example of a two dimensional array having three
members of a Measures dimension called sales, cost of sales, and profit
(sales minus cost of sales), recorded daily across Time (the second
dimension) for one year. It is usually intuitive that as time progresses (that is
every day) we are able to measure sales and the cost of sales and generate
our profit. This model would have 1,095 intersection points (365 days by 3
measures — see Figure 1). The description that Day and Measures are
densely populated with respect to each other is quite readily comprehended.
For a given day, if you have a sales number, you probably also have cost of
sales information, and you can therefore compute the profit measure. Unless
there is extreme season fluctuation, sales information exists for most days,
and thus the matrix is likely to be “densely” populated for Measures across
Time.
10 DB2 OLAP Server - Theory and Practices

Figure 1. Number of intersection points — example

The notion of sparseness enters the discussion as we add more dimensions.
For example, consider adding the dimensions of Customer (numbering
100,000) and Product (numbering 50) to this model. It is generally easy to
conceive that there will be numerous intersections across these dimensions
that will not contain data. All customers purchase not all products every day
of the year.

The number of intersection points has increased as the Cartesian product of
all members from each dimension. Our model has just increased from 1095
cells to 5,475,000,000 (365*3*50*100,000) cells.

Transactional relational databases handle data sparseness by only storing
data as the result of a sales event. They would record actual sales. The
Structured Query Language (SQL) can then be used to interrogate and
analyze the data to answer questions like which products have the fewest
sales across time. This answer is derived programmatically. Relational
databases generally do not have tables that store the fact that (many)
products were not purchased by (many) customers. An array does.

By declaration, a matrix would house an intersection point for every possible
combination of sales and cost of sales across time for every product and

Measures

Sales Cost of sales Profit

day1
day2
day3
day4
day5...

day365

1,095 cells

Time

3 Measures * 365 days = 1,095 intersections
Chapter 1. Introducing OLAP 11

every customer. Most of these cells do not contain data. The answer to which
products have the fewest sales across time is contained in the database and
is revealed simply by retrieving the intersection points in question, and
examining their contents.

It is apparently easy to understand the concept of sparseness. Unfortunately
it is apparently not as easy to conclude that the DB2 OLAP storage structures
are the central design mechanism that can be used to minimize the impact of
sparseness. The two storage structures of the data block and the index were
indeed developed by the designers of Essbase to contend with the reality of
sparseness.

1.7 The data block and index explained

Consider the following array declaration containing 21,370,660,375,680
intersection points:

DIM (172, 21, 27, 32, 209, 32765)

The creators of Arbor Essbase enabled dimensions to be tagged or defined
as either dense or sparse. When a dimension is tagged as dense, it becomes
part of the storage structure called the data block (see Figure 2).

Figure 2. Dense dimensions form the block

Every data block that is created in the database has an identical structure. In
this example, it contains precisely 172 * 21 * 27 = 97,524 cells, or intersection
points. All data blocks are stored on disk within the ESS*.PAG files.

Tagging some dimensions dense creates the block

DIM(172, 21, 27, 32, 209, 32765)
12 DB2 OLAP Server - Theory and Practices

Addressing, or locating, blocks of data is provided by means sparse member
combinations. These combinations become part of the storage structure
called the index and are stored on disk with the ESS*.IND files. By enabling
these two definitions of array dimensions, the creators of Arbor Essbase
enabled the matrix to be modular.

The data block is a fixed format data structure the existence of which is driven
by data-relevant sparse member combinations in the index. By data-relevant
we mean that only where business data actually exists across sparse
member combinations will a data block be generated. So, for example, if we
do not sell any Sun tanning oil in January in the Arctic, we do not reserve any
space in our array for those intersection coordinates. One of the differences
between the DB2 OLAP storage structures and relational ones is that a
relational index is optional. In DB2 OLAP the index is not. Deleting an index
for a relational table has no effect on the table data. Deleting the index from a
DB2 OLAP database corrupts the database.

The small subcomponents of the array (the data block and its index address)
are quite readily moved between disk and working memory. These structures
mesh very well with the general user requirement of only being interested in
sub-sets of information from the array at any one point in time.

1.7.1 Block creation explored
The above database above contains 6 dimensions with the following DB2
OLAP configuration:

 • dense dimension #1 containing 172 members
 • dense dimension #2 containing 21 members
 • dense dimension #3 containing 27 members
 • sparse dimension #1 containing 32 members
 • sparse dimension #2 containing 209 members
 • sparse dimension #3 containing 32,765 members

Which data blocks are actually created depends upon unique sparse
combinations that contain data (see Figure 3).
Chapter 1. Introducing OLAP 13

Figure 3. Sparse dimensions form the index

In this example, a block with address (12, 200, 1897) has been generated
because and only because a business event has occurred at that intersection
point. We could convert or interpret the above snapshot Figure 3 to
something like:

colas (member 12 of sparse dimension #1) were sold in
New York (member 200 of sparse dimension #2) by
A&P (Customer 1897 of sparse dimension #3).

In its most simple form, DB2 OLAP lets organizations represent their
business elements as members of an array, and store numeric values at
intersection points within the array.

1.7.2 Matrix explosion
The three defining characteristics of a DB2 OLAP array are:

1. The number of dimensions

2. The number of members within each dimension

3. The hierarchical relationship of the members within each dimension

Data explosion can occur across each characteristic individually and
concurrently having a combined (that is Cartesian) impact.

For example, if we increase sparse dimension #1 to include 5000 members,
the number of potential intersection points increases from
21,370,660,375,680 to 3,339,165,683,700,000! In similar fashion, adding a
completely new dimension will explode the number of potential intersection

Tagging some dimensions dense creates the block

Unique combinations
of the sparse dimensions
form the index

DIM(172, 21, 27, 32, 209, 32765)

(12,200,1897)
14 DB2 OLAP Server - Theory and Practices

points and we can do both at once; adding more members to one dimension
while adding a completely new dimension. The discussion that follows
simulates a DB2 OLAP implementation and uses sparse dimensions as
examples and assumes some familiarity with basic DB2 OLAP concept.

Consider, for example, the differences between DIM (172, 21, 27, 32, 209,
32765) and DIM (172, 21, 27, 5000, 209, 32765, 450.)

The first rule of design in OLAP modeling is to minimize the number of
dimensions in a database design.

While minimizing dimensionality is our first guiding principle, there is a
dynamic tension between it and the reporting needs of the enterprise. The
point is that the possibility of block explosion needs to be bounded in such a
way as to produce intersections that are actually used for business analysis.

The third way a matrix can explode is not as apparent as the first two. It is the
effect of increasing the complexity of intra-dimensional hierarchical
relationships. In array DIM (172, 21, 27, 5000, 209, 32765, 450) we will take
the new sparse dimension #4 (with 450 members) as our case study.

Keeping in mind the other sparse dimensions, let us assume that the
dimension is entirely flat and does not contain any hierarchical relationship
between members except at the parent of all members. The dimension would
look graphically something like Figure 4.

Figure 4. Dimension without any hierarchy

The dimension would have a total of 449 members aggregating to the sole
parent, giving us 450 members in total. Consider the implications in terms of
Chapter 1. Introducing OLAP 15

data point creation between the dimension in Figure 4 and the dimension in
Figure 5.

Figure 5. Dimension with embedded hierarchy

In this declaration we have hierarchies that groups of members are organized
along, and this has important storage implications for our database.

If we have business transactions for member EP_11 but do not have any
business transactions along EP_12 in the flat sparse dimension #4, no EP_12
blocks are created. The impact of the sparseness of the data has been
effectively handled (eliminated) by the design.

However, when we introduce hierarchy to the dimension, we are declaring the
existence of upper data points when data exists only for one descendant. In
the hierarchical version of SparseDim#4 a transaction at EP_11 will generate
data at SubCat 1, Category 1, at the SparseDim#4 parent member, and data
block creation will result as a Cartesian product across each member of every
other sparse dimension for which data exists! This effect has enormous
cross-dimensional implications.

The point here is not that flat dimensions are good, and hierarchical ones are
bad. On the contrary, hierarchies accurately reflect the reality of many
business organizations and a matrix is extremely efficient at modeling these
relationships. The point is rather that hierarchies add complexity to the array
and are a component that contributes to data explosion in multidimensional
databases. Their impact must be well understood.
16 DB2 OLAP Server - Theory and Practices

1.7.3 The data block and index revisited
The data block reserves one cell for every intersection point (the Cartesian
product) for all of the members from each dimension that is tagged dense.
Sparse member combinations that contain data drive data block creation. So,
if we were to implement a database design that tagged as dense the
dimensions of Time, Measures and Products (assuming that, after all, we do
sell all of our products every day), only those customers that actually make
purchases will cause a data block to be created.

Thinking a little more deeply about the above implementation should reveal
that because the data block contains products, and every customer does not
purchase every product (even during the course of the entire year), our block
will contain mostly empty cells. By removing the Product dimension from the
block (that is tagging Product as a sparse dimension) reduces our block size.
Now the real combinations of specific customers who in fact purchase
specific products will create data blocks.

The new database design has eliminated from the storage structure
intersection points that do not contain data. We have, in essence,
implemented a design that creates the fewest data blocks that have the
highest data density. It is this empirical relationship or ratio between data
block contents (the block density) and the number of blocks created that can
be used to detect optimal database configurations.

1.8 Other multidimensional design guidelines

There are a small number of design guidelines that follow from the previous
discussion of sparse matrix handling in DB2 OLAP Server. These guidelines
were originally articulated in the original Hyperion Solutions’ OLAP
Fundamentals course, and we are expanding on them considerably here,
hopefully providing a compelling theoretical context.

1.8.1 Avoid inter-dimensional irrelevance
An irrelevant dimension is a dimension where the majority of intersections of
its members have no business meaning in combination with the majority of
members of other dimensions. Consider the example where a Profit and Loss
database contains the expense metric of employee salaries. The option to
include the employee master file as a dimension in the model presents itself
as a way to derive the total salary expense metric. Indeed, the ability to
produce detailed employee analytic within this model is seductive. However,
the impact of doing this is profound. It forces the creation of intersections
Chapter 1. Introducing OLAP 17

where the vast majority of contains no relevant business data (for example,
rent expense by employee is a near meaningless metric.)

It might be tempting to think that if these irrelevant dimensions are tagged as
sparse, then the effect of data explosion will be effectively offset by the
database configuration. But this is not true, and their presence will still drive
intersection creation in the OLAP model.

Examine again the characteristics of the dimension SparseDim#4 in Figure 5
on page 16 and consider this dimension in combination with another sparse
dimension as configured in Figure 6:

Figure 6. Irrelevant sparse dimension

Let us assume that Intersection point EP_11 only has business meaning
across the members from the otherwise irrelevant dimension. Every member
from the irrelevant dimension (that are members A, B, C, etc.) will be loaded
in combination with EP_11. The effect within the DB2 OLAP storage structure
will be to generate a storage point for upper members across both of these
dimensions. For example, an intersection point at SubCat 1->A will be
generated by this array. This data point contains absolutely no business value
but clearly has hardware and software infrastructure overhead.

Inter-dimensional irrelevance leads to inefficiencies in production causing
unnecessary data block creation. These useless blocks need to be indexed
and calculated and serve ultimately only to reduce analytic efficiencies both
within batch processing and for user at query time. The presence of
inter-dimensional irrelevance is usually accompanied by the existence of
18 DB2 OLAP Server - Theory and Practices

measures that make sense in terms of some but not all dimensions in the
model. In the final analysis, inter-dimensional irrelevance infers the existence
of more than one model.

1.8.2 Combine dimensions where possible
The method for determining when to combine dimensions is to investigate
dimensions combinations to locate where one-to-one correspondence exists
between members of different dimensions. One to many relationships are
modeled using separate dimensions. One-to-one correlations between
dimensions require a single dimension be implemented.

Consider the 2 database outlines in Figure 7.

Figure 7. Combining dimensions

The outline on the left in Figure 7 has its one-to-one members arranged
hierarchically. The outline on the right arranges the hierarchies as
independent dimensions.
Chapter 1. Introducing OLAP 19

The total number of intersection points generated by left outline is 1,232. The
total number of intersection points generated by the right outline is 15,120!

Data point explosion occurs because the array schema will generate
intersection points containing absolutely no business value (for example, the
intersection Products->Psubcat2.) These irrelevant intersections do have
significant storage structure overhead. So, simply by combining dimensions
(it2) we implement a more efficient model.

1.9 Summary

In this chapter we presented an overview of the major components of the DB2
OLAP multidimensional storage structures. The chapter began by discussing
the inherent importance of the matrix-oriented application server as a viable
information systems database. It concluded by suggesting very general rules
that can be used in the practical task of modeling business processes for
implementation on a multidimensional database management system
(MDDBMS).

Implementing a business model using DB2 OLAP Server is not a science and
can only be called an art to the extent any human endeavor can be performed
in more or less artful fashion. Success of design is directly related, though it
is not too much an exaggeration to say exclusively related, to the depth of the
designer’s understanding of the DB2 OLAP storage structures, though this is
not more true of an MDDBMS than of an RDBMS.

Every component of the database implementation owes the degree of its
efficiency to how it impacts the data blocks and index entries. Even the
efficient use of the 120+ functions of DB2 OLAP, which are not discussed
within this text, is determined by how they are implemented in respect of
these structures.

As readers page through the various sections outlining practices and theory,
they are asked to keep this observation in mind to see if it does not, for them
also, become a self-evident truth.
20 DB2 OLAP Server - Theory and Practices

Chapter 2. OLAP model development checklist

This chapter presents an OLAP model development checklist. The original
intention of this chapter was to provide a comprehensive outline of steps
required to implement a DB2 OLAP model.

2.1 Introduction

What you will find below is a distillation of an OLAP design methodology that
has been developed and polished over at least 1/2 decade by experienced
DB2 OLAP Server and Hyperion Essbase Server practitioners - primarily
William Sterling. The outline can really be considered comprehensive from
the perspective of database creation and design. In itself, this outline is a
significant contribution to DB2 OLAP implementation practices.

This chapter does not include any significant discussion of topics presented.
Most topics are attended by no commentary at all. This has been done on
purpose. Wherever possible we include references to contents and practices
contained elsewhere in this redbook. In Table 9, we have provided readers
with an outline they can use as an OLAP checklist for quick reference. Further
discussion at this point would only serve to obscure the main points that the
brevity of an outline conveys almost at a glance.

In referencing contents and practices we have provided an OLAP cookbook of
sorts. Readers are able to refer to relevant sections to learn what to do, what
order to do it in, sometimes how to do it and whenever possible why the
practice is done. In the eyes of the authors, it would not be considered at all a
bad strategy to read this section only after digesting the rest of the contents
contained in the other chapters and appendices.

We suggest that you photocopy the checklist below and use it as a project
checklist. The last column is left blank to let you validate the project
progression step-by-step. An abstract of this checklist is also provided in
Appendix F, “OLAP model development short checklist” on page 237.
© Copyright IBM Corp. 2001 21

2.2 The OLAP checklist

Table 9 provides an OLAP checklist to be used as a project checklist to help
readers to develop OLAP models.

Table 9. Project checklist

Activity Reference? Check?

1. Plan for OLAP

a. Recognize an OLAP opportunity.

 • OLAP is aggregated analytic.
Chapter 1., “Introducing
OLAP” on page 1

 • We should not cube the warehouse
Appendix A., “OLAP
datamart design
approaches” on page 155

b. Evaluate the OLAP opportunity.
Chapter 3., “Project
management for OLAP” on
page 29

 • Define subject matter databases

 • Technical people have to understand the
business matter and the business issues that
the OLAP application will solve

2. Begin high level modeling of the OLAP
database structure

a. Look at current and desired reporting
requirements

 • Evaluate the dimensions required

 • Do it for each report by asking the following
questions: “Who, What, When, Where, How”

4.1, “Prototyping an outline”
on page 39
22 DB2 OLAP Server - Theory and Practices

 • From this, begin sketching dimensions

 - Avoid designing on paper

 - Use the application Manager as a Rapid
Application Design tool (RAD)

 - Create the OLAP outlines in the
development stage to be able to save it, to
display it to users and to modify it quickly

 - Check that the model has the right scope

 • Combine dimensions 2 by 2 and
check if the analysis of dimension
A by dimension B makes sense

4.1, “Prototyping an outline”
on page 39

b. Do modeling development in a group

 • Use Application Manager as a Rapid
Application Design tool

4.1, “Prototyping an outline”
on page 39

 • Project the outline on screen for very fast
progress

4.1, “Prototyping an outline”
on page 39

c. Evaluate the data using SQL to know data
volumes involved and to check the relevance of
data

4.1.2.3, “Use SQL wherever
possible” on page 42

 • If data is relational, use SQL

 - To scope dimension hierarchies: do a
“select count distinct” across each dimension”

 - To check the cardinality of the fact table or
the table that will be the source for the
measures dimension

 • If data is not relational, make it so

 - Perhaps using desktop database software

 • Check for nulls in data used for building
dimensions

d. Estimate development software hardware
required

Activity Reference? Check?
Chapter 2. OLAP model development checklist 23

 • Prefer a dedicated platform for development,
similar to production if possible

3.3.2, “Choosing an
environment” on page 32
and 5.2, “Interview results”
on page 98

 • The main configuration issues concern
mainly memory and disk space

4.6, “Performance tuning:
the buffers” on page 73
and 4.8.4.1, “Estimating
database sizing” on page 83

3. Build a prototype for size testing

a. Build the dimensions

 • Type in the dimension names manually, using
directly Application Manager

 • Check if partitioning is required 4.10.1, “Partitioning tips and
strategies” on page 86

 • Set preliminary dense/sparse

 - Use Application Manager
Database/Settings dialog box suggestion
for sparse/dense as a first cut

4.3.1, “The concept of
sparseness: dimension tags”
on page 45

 • Always use esscmd.exe scripts to build large
dimensions

b. Let the outline do the work

 • Use Member Tags

 - Use Label only.

 - Use Dynamic Calc.

 - Put Formulae in data blocks

4.4.2, “Considerations on
use of member tags” on
page 52
and 4.5, “Considerations on
database calculation” on
page 66

c. Load test data

 • Sort the data by sparse dimensions
4.10.3, “Data load
optimization” on page 91

Activity Reference? Check?
24 DB2 OLAP Server - Theory and Practices

 • If SQL sources, make transformations in
SQL.

 - Prepare upstream the data by doing
transformations in SQL rather than the
rules file

 - SQL is self-documenting - rules files are not

5.2, “Interview results” on
page 98

d. Calculating and tuning

 • Calculating

 - Move the formulae into the outline and do a
CALC ALL.

 - Configure your database so that it does a
two pass calculation in one pass.

 - FIX and IF to focus calculations.

 - Use Intelligent calculation.

4.5, “Considerations on
database calculation” on
page 66
and 4.5.3, “Focusing
calculations” on page 70
and 4.9, “Intelligent
calculation” on page 84

 • Tuning

 - Use compression

 - Set up caches

4.7, “Data compression” on
page 77
and 4.6, “Performance
tuning: the buffers” on
page 73

e. Test sizing, calculation performance and query
as you go

 • Evaluate the model

 - Check the model for size

Use the SET MSGS ONLY method

Use the sparse/dense methodology

 - Evaluate the model for calculation time

Use the SET MSGS ONLY method

Use the sparse/dense methodology

4.8, “Using SET MSG ONLY”
on page 80
and 4.4.4, “Sparse/dense
methodology” on page 60

Activity Reference? Check?
Chapter 2. OLAP model development checklist 25

 • Evaluate the query response time

 - Check the application log for the
spreadsheet retrieval factor

 - Verification by users and acceptance by
users

 - Adjust sparse/dense dimensions to
accommodate user data requests

4.10.2, “The application log”
on page 89

f. Refine dense/sparse to optimize the outline

 • Use the sparse/dense methodology

 • Use the configuration Wizard

4.4.4, “Sparse/dense
methodology” on page 60

g. Adjust dimensions and members based on
prototype size testing

4. Build and load the final model

a. User acceptance testing: the data

 • Use a spreadsheet tool

 - It is important to ensure that the OLAP
database satisfies the goals of the user
requirements. Do the calculations give
them the information they need? Are they
satisfied with consolidation times? Does the
database work for them?

3.4, “Acceptance testing” on
page 36

b. User acceptance testing: the access user tool

 • Writing reports

 - Create standard user interface if required

 - If you plan to provide predefined reports to
users, design the reports layout and run the
reports using the final end-user tool

c. Building and setting up a security model 4.10.4, “Building a security
model” on page 93

 • Check the security model with users

d. Train users

Activity Reference? Check?
26 DB2 OLAP Server - Theory and Practices

 • Users should feel comfortable in accessing
data with the reporting tool chosen

5. Migrate to production

a. Setting up system administration

 • Develop and write the production procedures:

 - To maintain the outline

 - To refresh/update the data

 - To validate the data

 - To backup and restore the OLAP database

 - To maintain the software level and set up
the patches

 - To trap errors

5.2, “Interview results” on
page 98

Activity Reference? Check?
Chapter 2. OLAP model development checklist 27

28 DB2 OLAP Server - Theory and Practices

Chapter 3. Project management for OLAP

This chapter highlights the project management issues for OLAP solutions. It
is based on Bob Wallace and Dave Nolby’s experience who both are working
as OLAP specialists for LumenSoft Corporation, dedicated to delivering value
added OLAP solutions through consulting services, product development and
training. LumenSoft's services division delivers superior project management,
OLAP solutions and a full complement of custom OLAP courseware.

3.1 Importance of project management for OLAP

The key to any successful OLAP implementation is good project management
discipline. By exercising proven and tried project management
methodologies, your OLAP implementation can enjoy on-time and on-budget
results that meet the most challenging business requirements.

A rigorous project management practice is essential to the success of any IT
project, and OLAP implementations are no different. OLAP implementations
are typically more closely tied to and driven by the business side than
traditional systems development projects.

More often than not, this means that there must be a great deal of
collaboration between business side staff and technical staff. Technical staff
involved in the development of an OLAP project often find themselves
spending a great deal of time interacting with business side staff extracting
complicated business rules and nuances. This type of interaction is quite
different than traditional systems development and certainly requires a unique
skill set, one with sound business and technical experience.

In fact, the deep and inherent link between business and technical staff that is
usually required to implement an OLAP solution often means that sound
project management techniques take a very pronounced role in ensuring
successful completion of the project. This means that there must be a
conscious and significant effort applied to traditional project management
practices such as requirements gathering, system design, change control,
implementation and ultimately project acceptance.

If we look at a traditional technology project, we can agree that the same
common project stages exist. These basic stages may resemble the
following:

1. Initiation Phase
2. Construction Phase
© Copyright IBM Corp. 2001 29

3. Implementation Phase

Each of these stages has an objective and purpose, and a good project
manager will plan and schedule the completion of each of these stages,
knowing that their careful execution will increase his chances of success, and
simplify the undertaking.

An OLAP implementation does not differ significantly from these traditional
stages, an experienced project manager may be able to “squeak-by” without
properly understanding OLAP implementation techniques. However, to
improve a given project manager’s ability for success and to help minimize
unnecessary risk to the project, several factors should be incorporated into
the traditional project plan. But before we discuss these factors, let’s first
overview the components for developing a complete OLAP system.

In the following sections, we will discuss these topics:

 • OLAP project issues
 • Key points to implement an OLAP solution
 • User acceptance issues

3.2 OLAP project issues

There are two primary concerns when conducting an OLAP project; these are
the design and development of the OLAP database, and the design and
development of the end-user application.

3.2.1 OLAP database
The life-cycle for developing a successful OLAP database is cyclical in
nature. Many of the tasks, with experience, evolve into more of an art than a
science.

Since the OLAP database is the foundation from which all other project
activities are based upon, it can easily be described as the most important,
and the most difficult, activity of the project. Listed below are the major areas
of the OLAP database development process:

1. Modeling of the OLAP database structure
2. Outline construction and the applying of attributes
3. Formulae and calculation construction
4. Data loading and verification
5. Optimization of database performance
30 DB2 OLAP Server - Theory and Practices

3.2.2 OLAP end-user application
Because the OLAP database is esteemed as the most important activity of
the project, the end-user application may be trivialized in its importance to the
over-all OLAP implementation. This is unfortunately too often the case. As a
result, many well-intentioned and well-designed OLAP databases fail
miserably because they do not meet the expectations and demands of the
end-user community.

The entire OLAP implementation can be likened to a fine automobile. The
OLAP database is the engine, and the body with all of its accessories is the
end-user application. Just as with the automobile, the database (engine) is
the most important component of the auto that helps it perform its designed
task. But the engine cannot accomplish anything alone — it requires carefully
designed and implemented components that work together with the engine to
accomplish a given task.The driver (end-user) will be able to accomplish their
task with relative ease and efficiency if the components are well designed.

The considerations and implementations of a successful end-user application
are too numerous and varied to effectively discuss in this chapter. You may
find some additional information regarding end-user development topics in
the sections below.

3.2.3 OLAP project team structure
In that OLAP implementations are highly user driven, it is important that roles
be identified. These generally include the following roles and responsibilities
described in Table 10.

Table 10. Project team roles

Team title Roles and responsibilities

Project Sponsor Sign-off responsibility for project deliverable, change requests
and final acceptance. Project support of goals and objectives.

User Representative Will provide system functionality and requirement information.

Project Manager Responsible for support of project team and direction of project
initiatives.

Team Leader Responsible for resource and schedule management. Will
guide and direct project activities at the task level.

Contractor Will aid in the project initiatives. Will assist in direction and
development of these activities.
Chapter 3. Project management for OLAP 31

3.3 Implementing an OLAP project

Planning for an OLAP project involves project assessment and feasibility
studies, choosing an environment, planning and analysis, and sponsorship.

3.3.1 Project assessment and feasibility
Certainly every project manager would like to ascertain feasibility before
beginning a project. Can the project succeed, or is it destined for failure? If it
can succeed, can it be completed in a reasonable amount of time and
expense?

Assessing an OLAP project abides by standard management practices and
principles that help assess practicality and worth for the understood needs.
The difficult part is to complete an accurate and credible assessment. A
common mistake in many OLAP implementations is to over analyze through
forums, discussions, surveys, and reports. The result is inaccurate or unclear
results, divided team members, and frustrated management all at the
expense of time and money.

A recommended plan for conducting a successful and effective assessment is
to get OLAP and Project Management experience and to start with a Proof of
Concept (POC) project or prototype.

Proof of Concept: A vital element is to identify a small, manageable portion of
the business that will provide adequate context so the business side can
easily extrapolate the concept to the larger picture. In many cases, the
multidimensional concept is so far removed from these people, that the
biggest hurdle is often achieving a basic understanding of what can be
accomplished. Multidimensional solutions are frequently so much more
powerful and flexible than traditional reporting and analysis systems, that it
can be a challenge to get the business side to fully grasp the possibilities.
One typical outcome of a successful proof of concept is the “jaw on the table”
effect when the true power of the solution finally sinks in.

3.3.2 Choosing an environment
The DB2 OLAP environment can vary widely, depending on factors such as
company standards relating to hardware and operating systems and the
actual system requirements of the DB2 OLAP project.
32 DB2 OLAP Server - Theory and Practices

Ideally, a DB2 OLAP environment will contain at least two and possibly three
tiers of servers: development, test, and production. It is not advisable to
operate with only one server for both development and production. Operating
in a single server environment can not only hamper the developer’s efforts, it
also introduces risk to any production applications running on the server.

Environment decisions also depend on whether or not a DB2 OLAP server
already exists. In either case, care should be taken to follow recommended
sizing techniques for both disk and memory requirements (see “OLAP
Database Administrator’s Guide”). In a situation with an existing server, a
complete impact assessment must be done taking into account the current
applications on the server. Questions such as the following must be asked:

 • What are the approximate disk space requirements?
 • What are the approximate memory requirements?
 • How many users will potentially be added to the system?
 • Will there be a need for additional ports?

Situations that require the purchase of a new server take a slightly different
approach. Obviously, consideration must be given to any corporate standards
in place regarding operating system and hardware. Aside from that, the
process of assessing potential disk and memory requirements must proceed
as in the previous case. Additionally, care should be taken to predict future
growth of the system. Is there expected growth in the number of applications
loaded on the server or the amount of data loaded into existing applications?
A recognition of the growth factor therefore frequently leads to purchasing a
server with more capacity than the immediate application requires or at a
minimum one that will reasonably support hardware upgrades in the future to
accommodate expected growth.

3.3.3 Planning and analysis (requirements and design)
In this section we will consider the planning and analysis phases of a project.

3.3.3.1 Guiding requirements for the project
The requirements phase is a critical component of the system development
cycle that will ultimately determine the success and business side
acceptance of the project. The goal of requirements gathering is to
thoroughly define what the ultimate system users must have to satisfy their
business needs. This means that defining not only what will be in the project,
but also what will not be in the project. An outcome of a successful
requirements gathering phase is that all parties involved will have realistic
expectations of what the system will ultimately deliver. Some common OLAP
development requirements may be:
Chapter 3. Project management for OLAP 33

 • How many end users must have 24x7 access to the system?

 • Will users have the ability to directly update data on the system? This
leads to additional security requirements and possible client application
requirements.

 • Will some users be restricted as to what they may view? This again leads
to security requirements.

 • Is the definition of the cube relatively static or does it change frequently?
That is, do the business requirements dictate frequent additions, deletions
or movements of members in one or more of the dimensions in the
definition of the cube? This leads to ongoing maintenance requirements
that must be considered.

 • Do the business requirements indicate that one or more dimensions in the
cube will be defined with many members and with many levels? This may
require that partitioning options be investigated.

 • Are the business reasons for the project basically retrieval and analysis of
information or is there also a process that is being implemented (such as
budgeting). If a process is being implemented, the use of VBA applications
or other client tools to control the process (as automated running of calc
scripts, controlled input screens, and so forth) should be investigated.

 • Is the reporting from the project completely ad-hoc or are there some fixed
reporting format requirements? If fixed report formats are being used, VBA
applications or other client tools should be investigated to control
consistency.

Some keys to success also include formalizing the requirements gathering
approach rather than loosely gathering ideas, ensuring that all key system
users are represented and iteratively refining and verifying the requirements
during the stages of design and development.

3.3.3.2 Model the OLAP database (outline)
This is the step where detailed user requirements for structuring the OLAP
database are developed to satisfy the reporting and analysis requirements.

Modeling involves the creation of a prototype outline that models the
dimensionality of the user requirements. This outline should be kept to as few
dimensions and members as possible but must adequately reflect the
dimensionality and the depth within the dimensions being communicated by
the user.
34 DB2 OLAP Server - Theory and Practices

Next the database will be populated with test data. Once test data is
available, use a client access tool such as the spreadsheet add-in and work
with the user to ensure that the model will provide the reporting and analysis
information required.

Cycle through these steps with the user until a satisfactory model is obtained.

3.3.3.3 Develop the OLAP database (outline)
This step is where the actual outline structure for the database cube is
developed.

The outline will be based on the structure defined from the modeling above
but will include actual members with the necessary attributes and formulae.
Some members may be entered manually and others can be loaded from files
of information available from other systems.

If dimension members are being created from files from other systems,
dimension building load rules will be created at this stage.

3.3.3.4 Calculate strategy
If a full consolidation calculation of the data is all that is required, no calc
scripts have to be developed, as the default calc performs this function.
However, if computational requirements exist that are not satisfied by the
formulae in the outline or consolidation requirements exist which are best
satisfied by not calculating the full database, calc scripts must be developed.

In such instances it is recommended that scripts embrace modular concepts
rather than building large complex monolithic scripts even though this may
result in multiple calc scripts. There are situations in process implementations
where rather than creating a series of conditional calc scripts, an API
application can be written to simplify the process by dynamically generating a
script, sending it to the server and executing the script.

3.3.3.5 Data loading
Data can be loaded directly into the database via the spreadsheet add-in or
from files of data being sent from other systems.

If data is being loaded from files of data being sent from other systems, the
file structures for the data interface must be defined and the data load rules
will be developed during this step.

If data is directly entered through the spreadsheet add-in, no load rules are
required. However, to ensure integrity, increased security requirements may
be required.
Chapter 3. Project management for OLAP 35

3.3.3.6 Reporting
Ad-hoc analysis and reporting can now be accomplished through the use of
the spreadsheet add-in or other client reporting applications. Generally users
should acquire training in the use of the spreadsheet add-in to become
proficient in this tool.

If common report format sets are to be defined and used, VBA applications or
other client tools should be investigated to facilitate consistency and
useability.

Tools like Analyzer are also available to create presentation level information
from the base (see D.2, “What about DB2 OLAP Server Analyzer?” on
page 218).

3.3.3.7 Client applications
In situations where consistency, control and ease of use are a goal, the
creation of VBA applications, API applications or other client applications
should be considered. This is even more important if the project is developed
to manage a process.

3.3.3.8 Performance
Performance tuning is an empirical process that usually is best addressed
after a representative set of data has been loaded and used. This cyclical
procedure that involves the tuning of cache settings, the use of calculation
scripts that selectively calculate sections of the base, the use of dynamic
calculation member storage setting, and so forth.

3.4 Acceptance testing

The newly developed OLAP application must be accepted by the user
community prior to deployment. This involves validation of the data,
verification of the application design and acceptance of the client reporting
tool.

Acceptance testing is an important part of the project’s quality assurance
cycle, and should be driven by a formal test plan that covers quality
assurance of the data, the application and the client tool. The test plan should
be developed and executed by representative members of the OLAP
development team and the business users.
36 DB2 OLAP Server - Theory and Practices

Any test plan should be well thought out and cover a wide range of the data
and functionality provided by the application. This comes down to developing
a list of actions that can be taken within the application, noting the expected
result and having the tester record the actual result. For example, a new
reporting system built on the Analyzer platform may provide a portfolio of ten
financial reports to end users. A test plan item may be as simple as noted in
Table 11.

Table 11. Test plan item example

Special consideration should be given to data validation, which often
becomes part of the regular cube building cycle. Both input and derived data
should be validated. If the OLAP application is replacing or augmenting
existing reports, then validation can be as simple as building the same
reports from the OLAP application and comparing the two. If reports are not
available, then a tool or program will be required which extracts data from the
source systems and independently calculates aggregates for comparison. If
the extraction, calculation and comparisons can be automated, then this step
can easily be implemented as part of the batch process which builds the
cubes, resulting in quality assurance as an ongoing part of the OLAP
process.

Step Action Expected result Actual result Pass
/fail

14 Execute
Financial
Summary
Report

System generates and
displays Financial
Summary Report with
accurate numbers that
balance to provided
control numbers

Report generated
successfully;
all financial data
matched control
data

P

Chapter 3. Project management for OLAP 37

38 DB2 OLAP Server - Theory and Practices

Chapter 4. Tuning, good design practices, and useful tips

This chapter is a collection of tuning techniques, design practices, and useful
tips. It is not intended to be an exhaustive chronological presentation of DB2
OLAP application development practices for new developers. The tips and
techniques described here are augmented by many database parameters
(like database isolation level, aggregate missing values.) Please refer to the
use of these parameters as described in DB2 OLAP documentation and the
System Administration course offered by IBM and Hyperion Solutions.

Although the current chapter is not structured for reading from beginning to
end, it can be. In doing so, new developers will become acquainted with its
contents and this familiarity will enable them more effectively to refer back to
the details and methodologies contained as issues arise for them in the
development process. The ability to use this chapter as a sort of cookbook
reference is enhanced by reading it page by page. It is also hoped that
experienced developers will also derive benefit from reading the contents
contained below.

4.1 Prototyping an outline

Prototyping is an excellent next step once the decision has been made to
implement a DB2 OLAP solution. The chief objective is to arrive at an
accurate picture of the analytic and infrastructure requirements early.

When prototyping an outline, the most important steps to address are:

 • Training and team building
 • High level modeling

4.1.1 Training and team building
The OLAP team should be a complementary blending of technical information
systems and business personnel. To exclude either side from this process is
to court disaster, and really, the first step in prototyping after selecting team
members is to invest in DB2 OLAP training for both groups.

Technical personnel will devote time investigating the software and hardware
infrastructure requirements of DB2 OLAP. They will be keenly aware of
client-server and Web architectures as well as issues of sparse matrix
management as they pertain to DB2 OLAP Server storage structures. The
training process will enable them to become aware of issues for modeling
business processes in a DB2 OLAP outline.
© Copyright IBM Corp. 2001 39

The essential role of business personnel will be to define the end-user
analytic and reporting requirements and ensure that the specific business
logic of the application being developed is appropriately reflected in the DB2
OLAP outline. Perhaps the latter is their most important function.

It is extremely important for business personnel to have devoted time
investigating the technical issues of embedding business logic within a DB2
OLAP outline. The training process will enable them to become aware of the
software and hardware infrastructure issues for modeling a business process
in DB2 OLAP.

Ultimately the two groupings of individuals on the OLAP development team
will acquire skill sets that complement and complete one another. The classic
DB2 OLAP training class is composed of Information Systems professionals
and the business professionals that they support.

4.1.2 High level modeling
One way to begin high-level OLAP modeling is to assemble the above team
to work through a more or less complete listing of reporting and analytic
requirements. By systematically de-constructing current sample reports, the
team will be able quickly to develop a list of reporting attributes each of which
could eventually be reflected as an OLAP dimension and its hierarchy. All of
the generic OLAP rules of thumb mentioned in Chapter 1, “Introducing OLAP”
on page 1, should be adhered to, for example, by looking for one-to-one
correlations between dimensions, minimizing the number of dimensions, and
so forth.

4.1.2.1 Create a report and analytic grid
Generate a list of example report templates that itemizes all of the
dimensions and business metrics.

The example grids shown in Table 12 illustrate the results.

First, notice that Reason Closed, Status and Assigned_To originally identified
as important dimensionality do not appear on any reports. They can be
eliminated. Second, observe that the Process Analysis dimension never
appears on the same report the Product and Received_Via dimensions. From
this chart we can conclude that one 8 dimensional and one 9 dimensional
model will produce all reporting requirements. We have averted the desire to
deliver analytics using a single 13 dimensional model by eliminating unused
dimensions and clustering used dimensions in two more efficient
configurations.
40 DB2 OLAP Server - Theory and Practices

Table 12. Analytic grid

By examining the dimension combinations, you can much more easily
determine how many DB2 OLAP database models will need to be developed
to deliver the analytic requirements. Such a grid will be useful when
determining whether a database scale strategy (like partitioning) might be
necessary.

4.1.2.2 Design as a team: Use the Application Manager as a RAD
Use the Application Manager Outliner as a rapid application development
(RAD) tool in design sessions. Do not design on paper, since this leads to
headings and categories and metaoutlines that are not OLAP outlines, and
defers thinking about the actual data. The net result of using the Outliner is
that you will have created DB2 OLAP prototype outlines in this early part of
the development cycle.

Project the outline in progress from a desktop computer onto a viewing
screen for all to see. Use the spreadsheet add-in to demonstrate OLAP
functionality (pivot, drill-down,...) of the outline as you build it. You don’t need
to load data to the model to do this. Witnessing the pivot and drill functionality
via the spreadsheet add-in can streamline the design decision-making
process.

USER REPORTS

1 2 3 4 5 6 7 8 9 10

L
IS

T
 O

F
 D

IM
E

N
S

IO
N

S

Case Type x x x x x x

Call Center x x x x x x x

Time x x x x x x

Time of Day x

Product x x x x

Customer x x x x x x

Severity x x x x x x x x

Reason Closed

Received Via x x x

Status

Assigned to

Process Analysis x x x x
Chapter 4. Tuning, good design practices, and useful tips 41

4.1.2.3 Use SQL wherever possible
It is extremely useful to be able to access a relational database that contains
data relevant to the dimensionality being discussed during the design
session. Data elements of a relational database become part of the metadata
in a multidimensional database as illustrated by Figure 8.

It is not a co-incidence that the star schema is the most effective relational model
schema to support OLAP functionality. A star schema is precisely a relational
attempt to reflect the multidimensional characteristics of data.

Figure 8. Relational versus multidimensional

Having access to source data in a relational database means that as each
dimension is brought forward for consideration, the development team can
quickly generate SQL queries that will give an indication of dimension
membership and hierarchies. You can learn how clean the source data is by
looking for duplicate entries, null values and so forth. Moreover, by retrieving
counts of members, the team can even begin to discover generic but useful
information about the potential size of OLAP models. Expectation
management begins in this process.

If resources permit, consider converting the source data that will be used to
perform the first database builds to a relational database, specifically build a
relational star schema.

One of the most significant benefit will be the practical ability to investigate
detail-level data drill-through. Having access to the source data in detail will
also give you the ability to rebuild and transform source data efficiently as
new and unexpected requirements arise.
42 DB2 OLAP Server - Theory and Practices

In the final analysis, being in full control of source data significantly truncates
the OLAP development process. An important bonus is that the development
team can see first-hand the benefits of an architecture that relates OLAP
multidimensional databases to a relational star schema datamart.

4.2 Database tuning introduction

There are four major areas to concentrate on when performance tuning a
DB2 OLAP database:

1. How to handle the characteristics of the dimensionality and embed
business logic

2. How to implement Member Tags

3. How to handle outline/database consolidation and business formulae

4. How to determine optimal dense/sparse settings

All of these revolve around the single most important DB2 OLAP construct:
the database outline.

In a DB2 OLAP environment the database outline is the database schema.
The storage characteristics of the outline are no less important to a
multidimensional model than are the storage characteristics of the schema to
a relational one. A relational schema tuned for OLTP or query processing will
pay very different attention to the schema design and the associated storage
structures to achieve the desired performance characteristics. A discussion of
the foundation of tuning the outline will always include a discussion of the
foundation concepts of the DB2 OLAP storage structures.

4.3 Basic matrix database concepts

The distinction between relational and multidimensional storage structures is
relevant only to the extent that it helps demonstrate what DB2 OLAP storage
structures are (see Figure 9):

1. Values in relational tables can be understood to become part of the
metadata structure of multidimensional databases.

2. Matrix data stores eliminate the need for a data manipulation language
(like SQL) for data retrieval. Access to data is provided directly through
cell addresses.

3. In its most simple form, DB2 OLAP lets organizations represent their
business elements as members of an array, and store numeric values at
intersection points within the array.
Chapter 4. Tuning, good design practices, and useful tips 43

Figure 9. What is an array?

Programmers are familiar with the concept of an array as a reserved area of
working memory that is used to temporarily store information. Part of the
beauty of programmatically storing data in an array resides in the fact that
when there is a requirement to retrieve data, the contents are directly
accessed.

Declaring a three (3) dimensional array such as array(10,15,3) in Figure 9
would result in the creation of 450 intersection points as the cross-product, or
Cartesian product, of all members from each dimension, in this case 10*15*3.
Even within the context of this trivial example we can discuss the concept of
sparseness.

Let this array store sales of our 10 products sold by 15 salespeople across 3
time periods. Because not every sales person sells every product in every
period, there are cells that will never contain values. A normalized relational
data store would only store the values from transactions of sales actually
made. A matrix reserves space for every possible value, whether it makes
sense to do so or not.

The referencing of contents in an array (see Figure 10) is achieved simply by
supplying the appropriate coordinates of intersection points — that is, by
supplying the cell address. Data retrieval of DB2 OLAP values is nothing
other than the supplying of cell addresses to the DB2 OLAP Server.

a rray (1 0 , 1 5 , 3)

T h e a rra y (1 0 ,1 5 , 3)
p ro d u c e s a 3 d im -
e n s io n a l a r ra y w ith
4 5 0 (1 0 * 1 5 * 3) c e lls ,
a n d so o n …
44 DB2 OLAP Server - Theory and Practices

Figure 10. Referencing contents

On a deeper level, however, DB2 OLAP enables users to reflect complex
business rules (calculation scripts and formulae) even down to the level of an
individual intersection point within a given multidimensional view of an
organization. This permits real and complex business models to be computer
developed and tested.

4.3.1 The concept of sparseness: dimension tags
The overall size of any array or matrix is the Cartesian product of all of the
members across all dimensions. The next picture illustrates that even for a
rather small multi-dimensional database, the number of possible intersection
points can be daunting. It is self-evident to those experienced using
multidimensional databases that most intersections will not contain data. This
reflects the fact of the inherent sparseness of all business datasets (see
Figure 11).

To address the co ntents
of any cell in an array, supply
the cell address (A 1,B1,C 1)
in th is exam pleA

C

B

Chapter 4. Tuning, good design practices, and useful tips 45

Figure 11. Multidimensional databases are inherently sparse structures

However, an array generates an intersection point for every member from
each dimension across every member of every other dimension, regardless
of whether that intersection is reflected in business reality.

Recall that relational storage systems were designed to store only data
generated by the business. For example, the idea of storing the fact that no
picnic baskets were sold in the Yukon in January is absurd to a relational
database schema design. In a multidimensional structure, the intersection of
“picnic baskets with the Yukon with January” exists by declaration. In the final
analysis the DB2 OLAP storage structures were specifically designed to
enable designers to deal effectively with this inherent sparseness, and the
inherent sparseness of DB2 OLAP arrays is managed by tagging dimensions
as Sparse or Dense.

Dense dimensions comprise the data block. In general it is accurate to say
that dense dimensions are implemented to reflect the density of the data set
(in the data block) and sparse dimensions are implemented to eliminate the
sparseness of the data set:

A data block is created only where sparse member combinations
contain data as illustrated in figure 12.

Matrix Size = (172 * 21 * 27 * 32 * 209 * 32765) intersections

21,370,660,375,680 intersection points!

Dimension Members
==================================

Measures
Time

Mat
Structure

Product

Organizations

172
21
27

32

209

32765

 • Tag dimensions either sparse or dense
 • This creates unique DB2 OLAP storage structures (BLOCK and INDEX)

Reflect density within the block
Reflect sparseness within the index

Dense/sparse settings
46 DB2 OLAP Server - Theory and Practices

But it must be understood that the block storage structure will, in all
probability, retain some of the database sparseness (being defined by the
Cartesian product of all stored members from each dense dimension.) That
is, there will be empty cells within the data block. This is another way of
saying that it is not possible to eliminate all sparseness from a DB2 OLAP
database. The objective is thus to minimize the impact of sparseness.

Figure 12. Index and block creation

The minimization of sparseness is achieved by paying attention to the fact
that in a DB2 OLAP environment, business relevant sparse member
combinations drive data block creation. If a sparse combination does not
exist, which means business data does not exist, a block is not generated.

The inherent sparseness of the matrix is dealt with by appropriately tagging
dimensions. That is, dimensions that have the fewest intersection points with
respect to each other are tagged as sparse. When sparse tags are correctly
applied, the majority of the intersection points are eliminated from the array.
This is how very large business models can be implemented using DB2
OLAP.

Tagging some
dimensions dense
creates the block

DIM (172, 21, 27, 32, 209, 32765)

Unique combinations
of the sparse dimensions
form the index

(12, 200, 1897)

Dense

Sparse
Chapter 4. Tuning, good design practices, and useful tips 47

However, a sparse dimension that has been tagged as dense causes the
proliferation of empty and perhaps meaningless cells within the database.
There are times when no business activity is a meaningful business event,
and analysts need to know about them. For example the fact that we had no
sales of bathing suits in May might have tremendous importance to a Miami
based clothing retailer.

Conversely, when the dense nature of a data set cannot be contained within
the block structure, that is a dense dimension has been tagged sparse, then
this results in an explosion of the number of data blocks that the configuration
generates.

Multidimensional databases have a fixed number of dimensions. Thus the
matrix can be implemented using one of a number of different database
configurations (sparse/dense settings). Dense dimensions that form the data
block structure are stored on disk within the ess*.pag file(s). Dimensions that
are tagged as sparse form the index structure and are stored on disk within
the ess*.ind file(s), see Figure 13. Index entries are pointers to data blocks
and contain components of the (array) address to cells, and data blocks are
correctly conceived of as where data is actually stored.

Figure 13. How the matrix is built

Goal of the database designer :

The goal of the database designer is twofold:

1. Create as few blocks as possible.
2. Create blocks that are as densely populated as possible.

I n d ex an d Block M o d u lar ize t h e M at r ix !

Dim Me mb ers Type St ructur e Disk
====== ====== == ====== ====== == ====== ====== == ====== ======
Measur es 1 72 DENSE Bl ock
Time 21 DENSE Bl ock
Mat 27 SPARSE In dex
Str 32 SPARSE In dex
Prod 2 09 SPARSE In dex
ORG 327 65 SPARSE In dex

� B lo ck siz e : (2 1 * 17 2) 3 6 1 2 ce l ls * 8 b yt es/ cell = 2 8 ,8 9 6 b y t e s
(~ 2 8 .2 k)

� Com p u ter n ow ab le to m o ve sect io n s (b lo ck an d in d ex p ag es) o f t h e
m at r ix in an d o ut o f m em o ry w it h e f f icien cy

es s*.pag

es s*.ind
48 DB2 OLAP Server - Theory and Practices

To repeat, dense dimensions are implemented to reflect the density of the
data set and sparse dimensions are implemented to reflect, or reduce the
effect of, the sparseness of the data set. We write reduce because it is not
realistic to expect to be able to eliminate sparseness from a DB2 OLAP
matrix. Also recall that if the dense nature of a data set is not contained within
the block (a dense dimension is tagged sparse) then an explosion of the
overall number of blocks that the configuration generates will result.
Conversely, largely empty data blocks indicate that sparseness has not been
effectively eliminated from the data set.

4.4 Tuning the outline

Tuning the outline involves the following:

 • Dimensionality and business logic
 • Member tags
 • Consolidation types
 • Sparse/dense methodology

4.4.1 Dimensionality and business logic
The objective of every database schema is to reflect the business logic of the
specific analytic problem at hand. Whereas it is a task beyond the scope of
this redbook to discuss solutions to business-specific algorithms, certain
generic notions can be brought to light to design the outline:

 • DB2 OLAP values are persistent values

a. How many dimensions?

b. How large are the dimensions (total members)?

c. How deep are the dimensions?

 • How a model performs will reflect the interrelationship between the last 3
bullets.

4.4.1.1 Generic data storage considerations
DB2 OLAP optimizes run-time performance by making (the vast majority of)
data set values persistent. This has obvious batch calculation and disk
storage implications. To help defray the cost of I/O, the objective of the
database designer is to implement the database configuration that generates
the least number of blocks that has the highest density.
Chapter 4. Tuning, good design practices, and useful tips 49

4.4.1.2 Generic outline considerations
The main considerations are:

1. How many dimensions? Implementers are limited by the total number of
dimensions that can be modeled as well as by the hardware configuration
on which the model is being developed. Look for ability to change a
dimension from a regular dimension to an attribute dimension. This greatly
decreases size and calculation times since the attribute dimension is done
on the fly, but is mostly effective on smaller database models.

2. How large are they? The total number of members ultimately determines
the sparseness of the data set.

3. How deep are they? Database performance characteristics will also vary
according to the depth of the hierarchies of the dimensions.

Designers must be able to identify and adjust database configurations
according to the demands of the specific (practical) database being
developed. Sparse/dense settings must be altered to accommodate specific
client requirements, for example, to support member calculation or query
retrieval requirements. Database configurations will be optimal not
necessarily according to the best sparse/dense configuration but according to
requirements specific to the model at hand. Databases that are incrementally
updated across time almost by definition preclude the possibility of tagging
the time dimension dense, even though it properly adheres to the density of
the dataset.

4.4.1.3 When to add a dimension
The idea of intentionally adding a dimension to a database appears
counter-intuitive at first reading. It really needn’t be. In a certain sense, it is
simply a variation of the basic design technique that suggests splitting
dimensions when you find repeating labels.

For example, it is suggested that when you encounter metrics like Actual
Sales, Budget Sales, Forecast Sales an so forth, it is best to add a separate
Scenario dimension containing 3 members: Actual, Budget and Forecast.
Now because of the nature of multi-dimensional data set these 3 Scenario
members intersect with every member from the metrics dimension, and this
will occur across all members of all other dimensions. The addition of the
Scenario as a dimension enables users to perform all of the wonderful magic
that accrues to OLAP databases – slicing and dicing, drilling, pivoting and so
forth. Let’s take the example to another level.

Consider the requirement to see all of your current database metrics in
relation to the identical metric of the prior period. This could mean creating a
50 DB2 OLAP Server - Theory and Practices

new metric for each existing metric to store the variance. For example the
variance between Current Sales and Prior Sales. This effectively doubles the
size of the Measures dimension.

On the other hand, Figure 14 shows the inclusion of the Priors dimension.

Figure 14. Adding a dimension in the outline

Note the member tags for this dimension. The dimension name (Priors) is
tagged Label Only. There is a single member called Data that is the point to
which all of the data is loaded to for this dimension. Then there are 2
dynamically calculated members below Data: Prior Month and Prior Qtr. Each
dynamic member uses a version of the @PRIOR() function. Because these
members have been added to another dimension, they intersect with every
other metric within the Measures dimension. This is the multidimensional
paradigm in action.

Pay close attention to the configuration. We have added to this database a
dimension that has a storage magnitude of 1. If we tag this as a dense
dimension, we are multiplying the current block size by a factor of 1. In other
words, the block size remains the same!

We have increased the complexity of our outline, true. We have also
increased the size of the logical block, and this could have an impact on
performance. But we have added a dimension that adds nothing to the
storage structures but almost breathes new life into the functionality of the
model. Indeed, adding more dynamic members to the Priors dimension can
be done effortlessly and almost with impunity.
Chapter 4. Tuning, good design practices, and useful tips 51

4.4.2 Considerations on use of member tags

The use of member tags is reduced here to the good practice principle of
storing data only when there is a necessity of doing so. For example, DB2
OLAP Dynamic Calc members are designed to return values only when
requested by the client. They can reflect data density by demand. That is, a
value is dynamically calculated at run-time because the user expects a value
to be returned.

4.4.2.1 Label Only and Dynamic Calc tags
In the case where all data values in the matrix are pre-calculated, the only
optimization tip would be the intelligent use of Label Only tags. Label Only
tags reflect the business requirement to store values that make sense within
the business paradigm. The label only tag reflects the business requirement
to have members which function only as “headings” or “grouping” members.
Their value is in providing a placeholder for grouping like members together,
not in their quantitative value. “Scenario” for example, is a parent that holds
all the planning members in the same group.

The block detailed in Figure 15 contains 6*4*3=72 cells.

Figure 15. Member considerations: the block

 • Store data only when necessary.
 • Use tags to reduce block size:

Label Only
Dynamic Calc members

Member considerations

d a ta b lo c k s iz e : 7 2 c e lls

A c tu a l
B u d g e t

F o r ec a s t
V a ria n c e

S c en a rio
% V a ria n c e

Q tr1M a rJ an F e b

m a rk e t in g

c o g s

s a le s

a ll s to re d m e m b e rs (n o la b e l o n ly a n d n o d y n a m ic
c a lc m e m b e rs)
52 DB2 OLAP Server - Theory and Practices

Effective use of the Label Only on the Scenario member in Figure 16 reduced
the block size by 12/72 cells in the above example. The net result is a
potential reduction in overall database size of16,7%. Because of data
compression, the net reduction in overall database size will probably not be
equal to 16.7%.

A 16.7% reduction of block size is not inconsiderable but use of Label Only is
limited to navigational members in the outline. Using dynamically calculated
members, on the other hand, can greatly increase the database designer’s
ability to reduce database size (stored values).

Figure 16. Member considerations: Label Only

Implementing dynamically calculated members in the sample data block on
all parent members and members with a formula radically alters the storage
requirements of the matrix. The block design in Figure 17 results in a data
block that is 62.5% smaller than the original block and 56.5% smaller than the
block size achieved by using Label Only !

data block size: 60 cells now

Actual
Budget
Forecast

Qtr1MarJan Feb

marketing

cogs

sales

Effect of using LABEL ONLY

Variance
%Variance
Chapter 4. Tuning, good design practices, and useful tips 53

Figure 17. Member considerations: dynamic calculation

4.4.2.2 Physical and logical blocks
Implementers must learn think about the size of the block as being different
under different circumstances. The physical block on Figure 18 is the block
that has been optimized for storage. It is represented by the Block size in
bytes statistic in Application Manager and the Actual block size in cells
reported by GETDBSTATS. If the database is properly configured, the
physical block is the block that DB2 OLAP retrieves during batch calculation.

The Logical Block in Figure 18 is the block that is fully expanded somewhere
in working memory (Not the DB2 OLAP caches) and includes storage space in
RAM for all dynamically calculated cells. Remember, DB2 OLAP only
calculates dynamic values that are requested. But it must reserve space
somewhere else in working memory other than the caches for those values.
However, you should be aware that, during batch calculations, the DB2 OLAP
calculator might (inadvertently and inappropriately) have need to dynamically
utilize the space in the data cache to fully expand data blocks.

d a ta b lo c k s iz e : 2 7 c e lls n o w

A c tu a l
B u d g e t
F o re c a s t

M a rJ a n F e b

m a r k e tin g

c o g s

s a le s

P a r e n t a n d fo rm u la m e m b e rs m a d e d y n a m ic c a lc
a n d p la c e h o ld e r m e m b e r s m a d e la b e l o n ly
54 DB2 OLAP Server - Theory and Practices

Figure 18. Two types of blocks? When will it end?!

Dynamic calculations are involved in batch calculations when, for example, a
stored member value is dependent upon dynamically calculated ones.

Consider the outline fragment in Figure 19. Notice that the member $Gross
Sales is a stored member and its value depends upon the dynamically
calculated $Sales member. An outline of this configuration will cause the
calculator to fully expand the data block to its logical size within the data
cache during a batch calculation.

This results in an under-sizing of the data cache.

Figure 19. Outline fragment

The administrator may have configured the data cache to hold 100 physical
data blocks for batch calculation, but because the calculator is fully
expanding blocks in the data cache at runtime to perform these dynamic
calculations, there might only be room for 2 or 3! This will needlessly protract
the batch calculation process.

logical data block
(all stored cells + dynamic calcs + dts +
reporting and retrieval block overhead)

physical data block
(all stored cells + storage and batch calc
block overhead)
Chapter 4. Tuning, good design practices, and useful tips 55

4.4.2.3 A word of caution
The data block is the fundamental data storage structure in DB2 OLAP and
database configurations are ultimately constrained by block sizes. This is not
less true in version 7 and later release than in earlier releases. That is, in
Hyperion Essbase OLAP Server versions prior to release 5.

4.4.2.4 What block size is best?
There are well-tuned and responsive production databases with data block
sizes ranging from a few hundred bytes to 1 megabyte. But in the final
analysis, the optimal block size is the one that provides the best performance.
And like it or not, database implementers alone understand sufficiently all of
the criteria by which to determine that database performance is within
acceptable limits.

One indication that the optimal size has been isolated might be that the
fastest batch calculation time has been achieved. We believe that the
database configuration that generates the fewest most dense data blocks will
correlate highly with the fastest calculation time. We will provide a
methodology for efficiently determining this configuration in the text that
follows. Database designers need to be all be aware, however, that other
(procedural) issues at times may take precedence over the sparse/dense
configuration when tuning.

Some databases will have block configurations that are optimized according
to user query requirements, or specific complex calculation requirements, or
both. Database tuning and optimization may or may not be more art than
science, but our conviction is strong that a good understanding of the nature
of the DB2 OLAP storage structures is fundamental to database tuning.

Optimal block sizes, then, are model specific. So the best practice is not to
provide to developers a mythical block size range objective, but rather a
method for quickly being able to isolate the optimal block sizes for specific
databases at hand.
56 DB2 OLAP Server - Theory and Practices

4.4.2.5 Dynamic Calc tagging conventions for optimization
It is possible to consider implementing a wider variety of database (block)
configurations because of the implementation of dynamically calculated
members. The ability to suspend the calculation of certain members from the
batch calculation by using dynamic members enables the designer potentially
to incorporate more data set density within the data block.

Be aware that there still exists the practical limit of the block size that is
compounded by DB2 OLAP having to dynamically produce data values. In the
final analysis the optimal database design will efficiently coordinate the
relation that exists between:

1. Block size

2. Number and nature of dynamic retrievals

3. Hardware configuration

 • Incorporate more data density within data block using dynamic members

 • Rationale

Dynamic members reduce the block size

Creates opportunity to incorporate other dimensions into the block
structure

Number of different block configurations increases

Block configurations are still constrained by overall block size!

Dynamic member practices
Chapter 4. Tuning, good design practices, and useful tips 57

4.4.3 Considerations on consolidation types
We can conceive of at least three general types of DB2 OLAP database
consolidation types. Each will have its own performance characteristics within
the context of DB2 OLAP storage structures.

1. Optimal configuration

 • Unary operators reflect all business logic

 • Database is calculated in outline order according to the default calculation
algorithm

 • Block creation and consolidation is regular and predictable

2. Nearly-optimal configuration

 • Formulae on dense members reflect some business logic

 • Cross-dimensional references resolved within the block performed as they
appear in outline

 • Database is calculated in outline order according to the default calculation
algorithm

 • Block creation and consolidation is regular and predictable

3. Sub-optimal configuration

 • Formulae on sparse members

 • Contain cross-block references to sparse members

 • Block creation is not regular and predictable

An optimal consolidation takes full advantage of the programming logic
implemented by DB2 OLAP engineers. All business logic is reflected by the
(unary) hierarchical relationships in the outline. Block creation is regular and
predictable and can easily be coordinated with DB2 OLAP buffers for optimal
hardware utilization. CALC ALL initiates the consolidation and the internal
algorithms built into the calculator engine efficiently generate data values.

 • Natural consolidations:

 - Without formulae

 - With dense member formulae

 • Special case consolidations

 - Outlines that require fixing or sparse member formulae

Three consolidation types
58 DB2 OLAP Server - Theory and Practices

Figure 20 shows an example of natural consolidation with unary operators.

Figure 20. Example of natural consolidation with unary operators

A nearly-optimal consolidation reflects more complex scenarios where
business logic cannot be imbedded in the unary hierarchies and business
formulae are required. All formulae are able to be resolved within the data
block. So the main difference the optimal and nearly-optimal consolidation
resides in the additional overhead to process member formulae. Because all
formulae are intra-block formulae (do not involve multiple blocks), block
creation is still regular, predictable and efficient.

Figure 21 shows an example of natural consolidation with formulae.

Figure 21. Example of natural consolidation with formulae

Sub-optimal configurations involve the FIX statement or inter-block
calculations, or both. The formulae that initiate sparse cross-dimensional
references can be contained within the outline or within a calculation script
but performance is directly related to the number and degree of sparse
member references.

Figure 22 shows an example of formulae used for the sparse dimension
Assigned to.

Figure 22. Example of sparse members with formulae
Chapter 4. Tuning, good design practices, and useful tips 59

Attempt to ensure natural consolidation by bringing all formulae into the
outline, placing all formulae within the data block and resolving
cross-dimensional references within the block. Designers should take
advantage of DB2 OLAP storage structures by implementing a natural
(default calculation) database consolidation whenever possible.

4.4.4 Sparse/dense methodology
The twofold goal of the database designer (to make the fewest most dense
data blocks) suggests that there is a relation between the density of the data
block and the number of blocks generated. Indeed, within any DB2 OLAP
database the relation between the density of the data block and the number
of blocks created can be expressed mathematically as:

(data set density) = (block density)/(number of blocks) or

Dd = Bd/Nb

The twofold objective of the developer is not to create the fewest number of
blocks, neither is it to create the densest blocks, but rather to create the
fewest number of blocks with the greatest density. Using the data set density
ratio that reflects this relationship we simplify the task of determining optimal
sparse /dense settings to finding the highest ratio.

It should be evident that the ratios themselves are trivial numbers. A block
density of 1% for a model that generates 35 million blocks yields a data set
density metric of very small proportions indeed. These ratios are not relevant
between databases. They only have relevance to the same values derived for
the same database using the same source data over different sparse/dense
configurations!

Any given database instance has a fixed set of intersection points that
contain data, and there is also a fixed set of ratios between block density and
number of blocks for any database instance (By database instance is meant a
populated database at a single point in time).

 • Reflect data density in the block, data sparseness in the index

Create as few of the most dense blocks possible

 • There is a relation (data set density Dd) between block density (Bd) and
number of blocks (Nb) that can be expressed as the following ratio:

Dd = Bd/Nb

 Reminder
60 DB2 OLAP Server - Theory and Practices

As the block density metric goes up, the overall ratio goes up; as the number
of blocks metric goes down, the overall ratio goes up. The highest ratio
reflects the optimal relation between density and number of blocks across all
database configurations for the same database instance. Or, if you prefer, the
highest ratio points to the configuration that generates the least number of
most dense data blocks. (See Figure 23.)

Figure 23. Observations and method

Combining concepts from the previous discussion, we can detail a sparse /
dense methodology. The method assumes first and foremost that the
database outline already had been designed to accurately reflects business
logic.

Working through various block configurations:

1. Place all formulae within the outline.

2. Set all upper members / formulae within the data block Dynamic Calc
Non-Store.

3. Load data to different sparse/dense configurations to create table of
values for Bd/Nb.

B d

N b

C o n s t a n t

C o n s t a n t
Chapter 4. Tuning, good design practices, and useful tips 61

4.4.4.1 The method in detail
DB2 OLAP developers have been implementing a version of this
methodology all along. That is, they have repeatedly tested different
configurations and, by measuring the calculation time, were able to determine
an optimal configuration. Or perhaps not. Designers generally seek the
configuration that meets the batch-processing window. There may, in fact, be
more than one database configuration that enables the database to be
calculated within the batch window. On the other hand, the methodology will
reveal what the optimal database configuration is even if designer does not
implement this configuration.

Note: A configuration utility has been developed that is freely available for
download at the following Web sites:

www.essbase.com
www.ibm.com
www.olapunderground.com

The unfortunate pre-condition to determining the optimal configuration in this
manner is that it is very time consuming has generally been predicated on the
exclusive use of a (development) server.

A developer who wants to test for the most efficient model will run
performance tests in a controlled environment. They want to eliminate as
much resource contention as possible in order confidently to determine which
configuration results in the calculation time. This not only usually means that
for the duration of the test calculation in progress other server activity is
restricted, but also can result in test iterations that are tremendously time
consuming.

Once outline design has resolved issues of business logic and
dimensionality

Reflect data density in the block, data sparseness in the index

 • Combine guiding principles to create a dense/sparse methodology

 - Place formulae in outline

 - Tag members in block dynamic

 - Reflect density in block, sparseness in index

 - Seek high ratio Bd/Nb

Dense/Sparse settings
62 DB2 OLAP Server - Theory and Practices

Each database configuration tested has to run at least as long as the shortest
(or best to-date) test calculation time. Database configuration testing can be
extremely resource intensive and time consuming. This explains why a
developer will be satisfied with the first and not necessarily the most optimal
configuration that fits within the batch processing window.

In order to truncate this process, a methodology was developed to produce
an indicator of optimal database configuration in the shortest amount of time.

Set dense members with children or formula to Dynamic Calc
Tag these members Dynamic Calc Non-Store. The Dynamic Calc and Store
tag does not help to reduce the storage requirements of the data block and is
really reserved for sparse member tagging.

All DB2 OLAP databases are constrained by the size of the data block. We
can see no reason to preclude the possibility that a data set exists whose
dense dimensions define a data block that is simply too large to be
implemented. The ratio that is computed relates the data to their storage
structures. Block size is a hardware (and software) restriction and though
critical to database configuration, does not pertain to the matrix itself.

By parsing the array into the two array components (sparse and dense), the
creator of Arbor Essbase really did invent an ingenious way to modularize the
matrix and enable huge arrays to be implemented on relatively small
computer hardware. The design objective really can be thought of as
determining which block size functions best to minimize I/O.

However, by looking for a specific block size based on assumptions of optimal
size may end up missing something more than the point. The method
computes the ratio over a set (subset) of possible database configurations.
The end result is a table of values that can be easily represented graphically.

This graph (or table of values) accurately describes the dense/sparse
characteristics of the model (array) and metaphorically describes the
performance characteristics of a given database. In complex models, which
configuration is finally selected will be determined by a consideration of all
factors, block size, process and calculation requirements being perhaps the
three most important ones.

By computing the ratio rather more freely we hope to let database designers
learn something more about their data. Hopefully this information will have
heuristic value. So, rather than imposing block size limits, we decided to
enable the method to be used to determine the relative significance of almost
any configuration.
Chapter 4. Tuning, good design practices, and useful tips 63

The current version of the methodology physically instantiates database
configurations, and thus lives within the world of available RAM. As a result, it
will not be possible to test data block configurations whose memory
requirements exceeds the maximum block size that DB2 OLAP is able to
access on any given machine. The ability to determine block size without
actually creating the data block will eventually free the method from this
restriction, though the practical reasons for not doing so (large dimensions
are inherently sparse) probably do not warrant the functionality.

The methodology for setting Dynamic Calc Non-Store members in the block
has become the de facto standard for block design. Setting all possible
members to dynamic reduces the block size. This can have dramatic impact
on the batch calculation time. However, possibly the most significant benefit
from this use of dynamic members is that it enables designers to incorporate
dimensions within the block that would not otherwise be able to be
incorporated because of block size limitations. In the final analysis, this
method enables more data density to be incorporated within the data block.

Load real and completely representative data to the database
The accuracy of the method is critically dependent upon being able to load
real production data across a full range of the database dimensions. We need
to have all cells populated across the dense dimensions to be confident that
the average block density that DB2 OLAP reports is representative. Similarly,
we need all points populated across the sparse dimensions to be confident
that total block creation is also represented. Because we iterate through a
range of configurations, we really need to have completely representative
data.

Note, however, that we can fudge within certain limits. If (and only if) it is
known that a dimension will be either sparse or dense and not tested for its
opposite, then the data need not be representative.

Consider a block that has 12 months, and 4 quarters. If it is known for certain
that time will be tagged dense, then loading data to only a subset of members
(or 1 member) across time will have the same impact on block density across
all tested configurations. So, if time will always be part of the block, loading
only one month will yield reliable metrics for block density across all other test
configurations. On the other hand, if data is only loaded to one month and
time is tagged sparse, then the number of generated data blocks would be
greatly underestimated and skew results
64 DB2 OLAP Server - Theory and Practices

Retrieve average block density metric from database statistics
The computation of average block density reported by database information
statistics is as follows: the total number of blocks is divided into 100 equal
parts. Each 100th block is sampled for density and the average density is
computed from these 100 blocks.

For the purpose of minimizing the time to compute the ratio we are assuming
that the average block density at data load time will be representative of the
block density of the fully calculated model. We are assuming this for a
specific database instance. That is, we make this assumption based on the
requirement that the same data set is loaded into the same outline across
possible sparse/dense configurations for that outline.

Retrieve from database statistics the number of blocks generated
For the purpose of minimizing the time to generate the ratio we are assuming
that the number of data blocks created at data load time will be
representative of the total number of blocks of the fully calculated model. We
are assuming this for a specific database instance. That is, we make this
assumption based on the requirement that the same data set is loaded into
the same outline across possible sparse/dense configurations for that outline.

We do not want to convey the notion that every database application created
in DB2 OLAP will conform to these assumptions. There is an error rate that
has not, as yet, been determined for this methodology. We do want to
suggest, however, that the vast majority of models will conform. This is what
testing has revealed to-date.

The average block density at data load time is representative of overall
block density after calculation in relation to the other sparse-dense
configurations

Block density assumption

The number of blocks generate at data load time is representative of the
overall number of blocks that would be generated after calculation in
relation to the other sparse-dense configurations

Block count assumption
Chapter 4. Tuning, good design practices, and useful tips 65

4.4.4.2 Non-optimal implementations?
The metric described above really is an indicator of how data is displaced
across the array within a given model data. The fact that it also can be used
as an indicator of the performance characteristics of the database is not
coincidental. A design that eliminates the most amount of sparseness from
the schema results in a design that has the smallest amount of disk storage
requirements. And from this point of view, this is the configuration that
involves the least amount of I/O.

There is no question in our minds that optimal array configurations will not
always be implemented. Some of these are discussed in brief detail as
follows.

Dense restructures and incremental dataloads
There are processes that require incremental data loading. The classic
example is best illustrated by considering incremental data loads that occur
across time. For example, it is likely conceivable that whereas the method
reports that the time dimension should be considered part of the dense
dimensions, the developer will implement a design tagging time as sparse to
support the incremental loading of data across time.

Indeed, dimensions that undergo regular member insertions are strong
candidates for the sparse tag even though they may be part of the density of
the data set. If the refresh process does not enable a complete re-load and
re-calculation of the database, then member additions to dense dimensions
would require a full dense restructure. The designer would seriously want to
consider setting such dimensions sparse to avoid having to undergo dense
restructures on a regular basis.

Overall block size
It is not inconceivable that the method will point to a configuration that would
necessitate implementing a block size that is simply not supportable on the
hardware infrastructure being used. In fact, this was precisely the case for
Hyperion Essbase OLAP Server versions prior to the release of Dynamic
Calc members in version 5.

4.5 Considerations on database calculation

In this section we discuss the main considerations when calculating the DB2
OLAP database:

1. Using the Set NOTICE command
2. Using dynamic calculations
3. Focusing calculations
66 DB2 OLAP Server - Theory and Practices

4.5.1 Use the SET NOTICE command
Use the SET NOTICE command when running a development or test
environment calculation. It gives a way to compare performance when
making a change to a script or database setting without having to wait for the
entire calculation to run. By keeping track of the time that the calculation
takes to reach the same notification point, you will be able to infer whether
the change has succeeded in shortening or lengthening the calculation
process. For information on using the SET NOTICE command please refer to
the DB2 OLAP documentation.

4.5.2 Dynamic calculations reviewed
In this section we discuss various considerations involving dynamic
calculations (Dynamic Calc).

4.5.2.1 Dynamic Calc on dense dimensions
It has become standard practice to tag every member within the data block
Dynamic Calc Non-Store. This includes all members with a formula as well as
any members with children. This practice ensures that you are only storing
those values that you have to.

However, sometimes because of the complexity of Dynamic Calc member
cross-references, the ultimate Dynamic Calc value does not get correctly
resolved. If you are not getting the correct results in these cases, remove the
Dynamic Calc member name from the formula and actually hard code the
reference in the member formula itself.

Ignoring the erroneous logic, consider the example of the highlighted
example members in Figure 24.

 • Dynamic Calc

 - Upper level dense members
 - Dense members with formula

 • Dynamic Calc (and Store) and sparse members

 - Sparse member with small fan-out (<7)
 - Remember cross-products (cartesian) effects of tagging multiple

members of multiple (sparse)dimensions dynamic

 • Exercice caution!

Dynamic Calc review
Chapter 4. Tuning, good design practices, and useful tips 67

Figure 24. Outline example with dynamic dependencies

Each dynamic member in the formula on DynamicDependenciesExample1
has been fully resolved in the formula on DynamicDependenciesExample2.
Compare the concise formula (Profit*(Margin%”Total Expenses”))/”Margin %)
to the explicit formula
(((Sales+COGS)-Marketing+Payroll+Misc))*(Sales+COGS)/(Marketing+Payroll+Mi
sc))/(Margin%Sales). Though not as concise, the explicit references will
certainly resolve the value correctly.

CALC DIM and AGG versus CALC ALL
Databases that implement the Dynamic Calc Non-Store strategy for the data
block might also benefit from the following. To recap the methodology, all
upper members and members with formulae are tagged as dynamic.

Issuing a CALC DIM (AllSparseDimensionsList) or AGG
(AllSparseDimensionsList) command as opposed to the CALC ALL command
should be a more efficient method of generating upper data blocks. The
CALC DIM (AllSparseDimensionsList) command will ignore the dense
dimensions and simply populate the database with all data blocks.
Alternatively AGG (AllSparseDimensionsList) will produce the same result but
will ignore having to check sparse member formulae. Theoretically AGG
should be the most efficient means of producing upper blocks.

Consider that member calculations are only performed on level-0 data and
the degree of performance boost will be directly related to the number of
level-0 versus upper data blocks (Figure 25).
68 DB2 OLAP Server - Theory and Practices

Figure 25. CALC DIM versus CAL ALL

Review the application log entries for two different methods of calculating the
same database. The following entry occurred as a result of a CALC ALL:

Total Block Created: [0.0000e+000] Blocks
Sparse Calculations: [1.9700e+002] Writes and [8.2900e+002] Reads
Dense Calculations: [1.7700e+002] Writes and [1.7700e+002] Reads
Sparse Calculations: [3.3096e+004] Cells
Dense Calculations: [0.0000e+000] Cells

Now compare this to the application log entry for an AGG of the same
database:

Total Block Created: [1.9700e+002] Blocks
Sparse Calculations: [1.9700e+002] Writes and [6.3200e+002] Reads
Dense Calculations: [0.0000e+000] Writes and [0.0000e+000] Reads
Sparse Calculations: [3.3096e+004] Cells
Dense Calculations: [0.0000e+000] Cells

By virtue of the implementation of Dynamic Calc tags, the numeric results of
the AGG are identical to the CALC ALL. However (and still by virtue of the
implementation of Dynamic Calc tags) the calculation time was ~17% faster
for the AGG! The application log excerpt highlighted above appears to reflect
that the AGG had smaller overhead than did the CALC ALL.

All upper values/formulae in block tagged dynamic
no need to aggregate dense dimensions
efficacy will be model dependant

Syntax : CALC DIM (sparse dimension list);

Level-0 data loaded

OLAP database

CALC DIM (sparse dimensions)

CALC DIM >= CAL ALL ???
Chapter 4. Tuning, good design practices, and useful tips 69

4.5.2.2 Dynamic Calc on sparse dimensions
You can consider using Dynamic Calc tags on upper level sparse dimension
members that have only a few children. You will only substantially reduce
your calc times and database size if you use these on the upper levels.
Beware of using too many. For example, if you tag the top of three sparse
dimensions Dynamic Calc and each had 10 children, then to retrieve the
grand total of the database, the server has to retrieve 10x10x10 = 1000
blocks and add them up. It can greatly slow retrieval times. You can tag such
members as Dynamic Calc and Store with the effect of defraying the cost of
subsequent retrievals of the same member.

As a final word, in an array a dimension is a dimension, and a member is a
member. In DB2 OLAP on the other hand, dimensions are not all the same.
They are tagged either sparse or dense. Dynamic calculations are optimally
configured when they reflect this DB2 OLAP reality.

4.5.3 Focusing calculations
Often it is a database requirement that only a subset of the database be
calculated at one time. Focusing calculations is achieved by three means –
the FIX command, IF logical construct or the use of the cross-dimensional
operator.

The main recommendations should be to isolate specific sections of
database to increase calculation efficiency:

 • FIX ... ENDFIX: focus on block subsets

 • IF...ELSE...ELSEIF...ENDIF: fine tunes logic

 • CROSS DIM OPERATOR: granularity to cell level

4.5.3.1 FIX and IF
FIXing a calculation can cause only a subset of the database to be affected
by a calculation script (see Figure 26).
70 DB2 OLAP Server - Theory and Practices

Figure 26. Focusing calculations using FIX,ENDFIX

FIX is best employed as a means of isolating data blocks from the index.
FIXING on sparse members (as Figure 27 illustrates) enables the calculator
to isolate which blocks need will be required for processing by making a
(single) pass through the index.

Figure 27. Fixing on sparse dimensions

FIX(mbrList)

commands;

ENDFIX

East

South

North

West

Ja
n

Feb M
ar Ju
n

FIX (Europe)

Budget
Actual

Isolates a portion of the database
Syntax :

FIX(sparselist)

comm ands

ENDFIX

sparselist

Fix on subset: sparse
Chapter 4. Tuning, good design practices, and useful tips 71

Fixing on only a dense dimension (as Figure 28 illustrates) does not subset
the database because every block in the database contains the requisite
members. Sometimes the activity of fixing only on a dense member is a
necessary calculation requirement.

Figure 28. Fixing on dense dimensions

The logical IF…ELSE… construct can also be used to isolate members for
calculation. It should be used only when it is not possible to FIX on data. That
is, use IF in scenarios only where you would have to otherwise use multiple
FIX statements (which would cause multiple passes across the index.)

The calculation objective in an array database is no different than in a
relational one, we want to make as few passes over the storage structures as
possible. So, in the final analysis, whichever method proves the most
effective for data retrieval during calculation is the one that should be
employed.

4.5.3.2 Focusing calculations summary
Use FIX whenever possible:

 • FIX to focus on a subset within database
 • IF to resolve logic where FIX cannot be used

 - You can FIX in the block
 - You can IF on a subset of blocks

Assuming that Time is Dense
and Region is Sparse,
consider:

FIX(January)

IF (Boston)

commands;

ENDIF

ENDFIX

Adense fix can touch every block !
72 DB2 OLAP Server - Theory and Practices

 • Use combinations of FIX and IF to most efficiently isolate data for
calculation

4.5.3.3 Special case calculation requirements
There are database scenarios that preclude implementing Dynamic Calc
Non-Store within the data block as outlined above. In models where the
complexity of data calculation (where dependencies between metrics)
preclude the ability to make all formulae Dynamic Calc Non-Store, the rules
regarding the default calculation order should be followed to ensure optimal
database calculation. These rules are made explicit in the OLAP Database
Administrator’s Guide under the section titled Defining the Calculation Order.

General calculation script notions are:

 • Dense calculations before sparse calculations

 - Generally outdated- all upper values are dynamic but when necessary
populate cells with values that aggregate

 • Two-pass calculations

 - Dynamic calculation

 - Ensure single pass when not dynamic

4.6 Performance tuning: the buffers

The overall performance of the DB2 OLAP server is related to a number of
different factors. A DB2 OLAP database administrator does not have to be an
operating system guru in order to optimally configure DB2 OLAP buffers. It
should, however, be kept in mind that operating systems have their own
memory requirements and DB2 OLAP buffers must be set within these limits.

 • Overall performance related to memory

 - DB2 OLAP buffer requirements

 • multiple applications
 • multiple databases
 • logical block

 - Operating System memory requirements

 • virtual memory

Buffer management: basics
Chapter 4. Tuning, good design practices, and useful tips 73

How to allocate resources in a multi-application environment where total
resource requirements exceed total resource availability is not easy. Perhaps
under-resourced DB2 OLAP environments defy tuning but at the very least
they demonstrate the need to manage expectations as much as the need to
manage memory.

4.6.1 Guidelines for configuring DB2 OLAP caches
There is no replacement for a systematic and scientific determining of the
size of the DB2 OLAP buffers. What follows are some guidelines that will
assist in developing an overall strategy for their configuration.

4.6.1.1 The index, data and physical (file system) caches
The data cache is a repository of expanded physical block data pages in RAM
and the physical (file system) cache is a repository of compressed physical
data block pages in RAM. The index cache is a repository of index address
pages in RAM. The DB2 OLAP Storage Manager (or Kernel) manages the
index and data caches by providing addressing to data blocks for server
functional layers such as the calculator and the reporting module (See
Figure 29).

Figure 29. Data, OS caches and data on disk

Data blocks in the DB2 OLAP data cache are not compressed, whereas those
blocks in the physical data cache (or OS file system cache) are. As a result of
the lack of data block compression in the data cache, increasing data cache
buffer will eventually increase likelihood of resolving data fetch from disk
because it reduces the total number of blocks that can be held in memory.

R A M

U nco m p ressed
blo cks in

d ata cach e

D IS K

C om p ressed b lo cks
on d is k

C o m pressed
blo cks in
da ta file

cache

I/O I/O

R A M
74 DB2 OLAP Server - Theory and Practices

In other words, the data cache optimizes at relatively low values. To reflect
this reality, favor the physical data cache (or OS file system cache) over the
data cache.

Every block fetch involves accessing the appropriate index page. Index
entries (112 bytes each in Version 7.1) are generally much smaller than data
blocks. Each index page contains multiple block addresses. Taking a similar
approach to the index cache as we did with the data caches above, we
suggest that the index cache be favored over the physical data cache (or OS
file system cache) because proportionally more block addresses than blocks
can be fit on a memory page.

It is a balancing act to co-ordinate memory allocations between these three
caches. It is not rocket science. Rather the science involved to systematically
determine these settings is more like that we learned in our first year of high
school: keep all variables but one constant and observe the effect.

4.6.1.2 Batch versus production settings
Buffer memory requirements can be different during the batch calculation
than during user query time. For example, a ‘natural’ or optimal batch
calculation which regularly and predictably populates a database with data
blocks will require much less memory across all three buffers than the same
database would after calculation when 500 users are randomly requesting
data blocks through ad hoc analysis. In the former case, the hit ratio on index
cache can be expected to be very close to 100%, in the latter it will not be
anywhere near that number.

4.6.2 The calculator cache
The calculator cache is not a repository of data in RAM. It is rather a roadmap
that the calculator engine uses to keep track of block creation and
consolidation (Please refer to documentation regarding the configuration of the
calculator cache in the OLAP Database Administrator’s Guide).

DB2 OLAP documentation reports that achieving multiple bitmaps is
desirable and correlates highly with decreased calculation times.

However, the search mechanism through the calculator cache is sequential
and not indexed. Although in general achieving a multiple bitmap
representation within this cache is desired, there are certain instances where
the sparseness of the anchor dimension is so great that searching through
the calculator cache is of higher overhead to the system than making a call to
the kernel.
Chapter 4. Tuning, good design practices, and useful tips 75

4.6.2.1 Single bitmap over multiple bitmaps
In such instances it is recommended good practice to alter the declaration of
sparse dimensions (that is to alter their order) in the outline to achieve a
single bitmap representation across multiple sparse dimensions as a test to
see if the batch calculation time is decreased as a result.

Consider the outline fragment in Figure 30. Measures, Page_ID and Date are
the dense dimensions.

Figure 30. Outline fragment

The following log fragment indicates that DB2 OLAP established a single
bitmap anchor on the last 4 sparse dimensions (EntryPageCategory,
Merchant, Category and Vtype):

Maximum Number of Lock Blocks: [100] Blocks
Completion Notice Messages: [Disabled]
Calculations On Updated Blocks Only: [Enabled]
Clear Update Status After Full Calculations: [Enabled]
Calculator Cache With Single Bitmap For: [EntryPageCategory]

The idea here being that making a call to the OLAP Server kernel (across the
4 dimension anchor dimension) would be more efficient than searching
sequentially through a large and very sparsely populated multiple bitmap calc
cache image.
76 DB2 OLAP Server - Theory and Practices

4.7 Data compression

The data compression type can increase overall system performance.
Smaller compressed data blocks are more efficiently moved between disk
and memory than larger ones are. Choice of which compression algorithm to
use is co-related with block density. DB2 OLAP documentation suggests that
when the average block density is around or below 2-3% Run Length
Encoding (RLE) compression will be more effective than the default bitmap
compression. Smaller blocks on disk would mean that more blocks are read
per disk read, and that more compressed blocks can be retained in RAM.

Data compression type can be set for each database. In general, bitmap
compression reserves one bit for every cell in the data block and RLE
compression maps repeating block values. Figure 31 and Figure 32 provide
some of the details regarding how each algorithm would compress the same
data block. The point, however, is that the most effective data compression
co-relates with increased I/O performance.

Figure 31. Bitmap compression

B it m a p Co m p r e ss io n

J

C O G S

Q 1

F

S a le s

M

T im e (4)
A c c o u n ts (2)
S c e n a r io (2)

8

B u d

A c t

7

0

1

2

4

3

5

6

7

8

1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0

O n e b it p e r c e l l b i tm a p :

E ig h t b y te s p e r c e l l (o r
n u m b e r) :

8 , 7 , 0

2 b y te s + 2 4 b y te s

7 2 b y te s o f b l o c k
o v e r h e a d

+ 7 2 b y te s = 9 8 b y te s

C o m p r e s s e d b lo c k s iz e :
Chapter 4. Tuning, good design practices, and useful tips 77

Figure 32. RLE compression

4.7.1 RLE compression and array declaration
Figure 33 and Figure 34 attempt to demonstrate graphically how the order of
dense dimensions in the array might affect RLE compression. In the next
diagram you can visualize why every individual row has to be mapped by the
algorithm. Each row is identically mapped by the value (X) and #Missing
across subsequent months.

RLE Co m p r essio n

J

Q 1

F

M

T im e (4)
A c c o u n ts (2)
S c e n a rio (2)

C O G SS a le s

8

B u d

A ct

7

5

1

2

4

3

5

6

7

8
0

0

0

0

8 ,# M I,7 , 0 , 0 , 0 , 0 , 5 ,# M I, # M I, # M I, # M I, # M I,
M I,# M I, # M I

C o m p re s s e s to 1 0 ce lls :
8 , # M I , 7 , th re e c e lls , 5 , th re e c e l ls

E ig h t b y te s p e r c e ll

7 2 b y te s o f b lo c k o v e rh e a d

C o m p re s s e d b lo c k s iz e :
8 0 b y te s + 7 2 b y te s = 1 5 2 b y te s

S p a rse d a ta b lo c k s a re fille d w ith # M iss in g a n d
R L E c o m p ress io n is m o re e ffe c tiv e th a n b itm a p
c o m p re ss in g b lo c k s w ith re p e a tin g v a lu e s .
78 DB2 OLAP Server - Theory and Practices

Figure 33. RLE compression Implications (1)

Note that altering the order of the dense dimensions creates an opportunity to
capitalize on the nature of RLE compression. In the next declaration only the
first row of cells needs to be mapped and all subsequent rows can be
compressed to a RLE single statement: Beginning address, ending address
and #Missing.

Figure 34. RLE compression implications (2)

RLE Com pression I m p lica t ions?
J F M A M J J A S O N D

1

2

3

4

5

6

7

8

9

1 0

1 1

1 2

X

X

X

X

X

X

X

X

X

X

X

x

M iss ing

M ea su res

T im e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

j X

f

m

a

m

j

j

a

s

o

n

d

Time

Measures
RLE Compression Implications?

#
M
i
s
s
i
n
g

Chapter 4. Tuning, good design practices, and useful tips 79

In the final analysis, the compression algorithm that achieves the most
compression should be utilized. How the dense dimensions are declared in
the outline will potentially contribute to the effectiveness of RLE compression.

4.8 Using SET MSG ONLY

SET MSG ONLY is a completely undocumented and unsupported command
that has grown to have a number of very significant uses within the consulting
community that including a discussion of it here is almost mandatory.

4.8.1 How is SET MSG ONLY used?
Level-0 data is loaded to a completely empty database. Then a calculation of
the database is initiated using the following script:

SET MSG ONLY;
CALC ALL;

Note that this command will generate a syntax error if embedded within a calc
script. This is normal and can be completely ignored.

Also please pay attention to the fact that its use involves a representative
data load at level-0. Reliable statistics reported after a SET MSG ONLY
calculation are predicated on using data that is essentially identical to
production data in terms of the number of data blocks that the data load
generates. Read on to see why.

4.8.2 What does SET MSG ONLY do?
This command, when specified in a calculation script or as part of the
database default calc, will initiate a false-calculation of the database. By
false-calculation is meant the following: the DB2 OLAP Server engine will
perform a calculation run through the database keeping track of the
calculation process in terms of I/O (block creation and updates.) This
information will be reported in the application log in similar fashion to that set
by SET MSG SUMMARY, and from it you can deduce approximate number of
data blocks that the database would have created as if you had actually
calculated it.

SET MSG ONLY reports upper block creation based on the nature of the data
that was loaded. So if you only load some data, or fabricated data, you will
only generate some or fabricated upper blocks, or both! To be reliable and
accurate, you need to load real data across all of the dimensions in the
model.
80 DB2 OLAP Server - Theory and Practices

Thus, SET MSG ONLY will enable you to get a very accurate estimation of
the total number of blocks that a particular database (configuration) will
generate in a very short amount of time compared to a real calculation. We
write estimation because the algorithm will not take into consideration
member formulae (or by calc scripts) at all. If the model has formulae that
create data blocks, then SET MSG ONLY will not report these, so the
effective use of SET MSG ONLY on such models is limited by this factor.

4.8.3 SET MSG ONLY application log example using Sample::Basic
The following database statistics were registered in ESSCMD using the
GETDBSTATS command:

Number of dimensions : 11
Declared Block Size : 12000
Actual Block Size : 168
Declared Maximum Blocks : 594
Actual Maximum Blocks : 513
Number of Non Missing Leaf Blocks : 177
Number of Non Missing Non Leaf Blocks : 0
Number of Total Blocks : 177
Index Type : B+ TREE
Average Block Density : 92.57143
Average Sparse Density : 34.50292
Block Compression Ratio : 0.9464407

Notice that the database has undergone a level-0 data load and has only 177
blocks.

A CALC ALL command was issued for this database preceded by a SET
MSG SUMMARY statement. Here are the same statistics after a full
calculation of the database:

Number of dimensions : 11
Declared Block Size : 12000
Actual Block Size : 168
Declared Maximum Blocks : 594
Actual Maximum Blocks : 513
Number of Non Missing Leaf Blocks : 177
Number of Non Missing Non Leaf Blocks : 197
Number of Total Blocks : 374
Index Type : B+ TREE
Average Block Density : 92.85714
Average Sparse Density : 72.90448
Block Compression Ratio : 0.9491525
Chapter 4. Tuning, good design practices, and useful tips 81

The resulting application SET MSG SUMMARY log entry shows the results of
the calculation:

Total Block Created: [1.9700e+002] Blocks
Sparse Calculations: [1.9700e+002] Writes and [6.3200e+002] Reads
Dense Calculations: [1.7700e+002] Writes and [1.7700e+002] Reads
Sparse Calculations: [3.3096e+004] Cells
Dense Calculations: [0.0000e+000] Cells

Notice that the Total Block Created: [1.9700e+002] Blocks is precisely the
number of blocks reported in the database statistics as the Number of Non
Missing Non Leaf Blocks as 197. Compare this log extract with that generated
by a false-calculation (SET MSG ONLY) of the same database with the same
data loaded. The database was reset and reloaded with level-0 data prior to
running the calc script:

Total Potential blocks: [3.7400e+002] Blocks
Sparse Calculations: [1.9700e+002] Writes and [0.0000e+000] Reads
Dense Calculations: [1.7700e+002] Writes and [0.0000e+000] Reads
Sparse Calculations: [0.0000e+000] Cells
Dense Calculations: [0.0000e+000] Cells

It is important to note that the Total Potential blocks statistic in the application
log is not the same as the Declared Maximum Blocks statistic returned by the
GETDBSTATS command. Declared Maximum Blocks returns the total
number of potential blocks as a result of taking the cross product of all sparse
members of all sparse dimensions.

Notice the differences in output. The first line of the false-calculation log entry
reads ‘Total Potential Blocks’ (374) and the real calculation log entry reads
‘Total Blocks Created’ (197.) Of significance is the fact that the number of
Sparse Calculations: Writes + Dense Calculation: Writes (374) from this
false-calculation is exactly equivalent to the total number of blocks generated
by the real calculation (374.) Similarly, the Total Potential blocks metric is also
identical to the actual number of data blocks generated by the database
calculation (374.)

4.8.4 What can you do with SET MSG ONLY?
If you can generate a reliable statistic regarding the total number of blocks
that a model will create without having to create them, you can do two really
terrific things! In fact, initial development of the sparse/dense methodology
and utility used the SET MSG ONLY calc to generate the total block count
metric.
82 DB2 OLAP Server - Theory and Practices

4.8.4.1 Estimating database sizing
Record the following statistics directly after a level-0 data load to your
database: total number of blocks and database size (combined ess*.pag and
ess*.ind files in bytes.) then divide the (total number of bytes) by the (number
of loaded blocks) to get an estimate of the average number of bytes per
compressed block on disk. Multiplying that figure by the total number of
blocks gives you a very good approximation of the total size of you
compressed database in bytes!

4.8.4.2 Estimating database sizing with limited data
By taking a sparse slice of the database (loading production data to the data
across all sparse combinations) you can run a false-calculation to derive an
approximation for total block-count. This is useful when access to your dense
information is limited (because of data being time related and future
information isn’t available.)

Even with limited access to dense data, you can then generate a dense slice
of your data by choosing a narrow set of sparse combinations (for example all
data for 1 customer) and populating the database with all dense data for that
sparse combination. We do this to ensure that the average block density is a
more accurate estimation of real block density. From this you generate a
much more accurate average block density and your average bytes per block
will be more reflective of a production environment. Now you can create
another accurate estimation of total database size.

You will have to factor in the fact that in version 7.1 the .pag files are
extended in 8 megabyte increments. Additionally if you select to use the
sparse/dense slice method, it will be necessary to factor in both the data
block header and index entry overhead.

4.8.4.3 Estimating batch calculation time
Assuming that you now have a very good approximation of the total size of
you database (from Database Sizing above) you can divide that number by
the DB2 OLAP throughput metric of your system to generate an estimation of
the total time to calculate the model. Note that we are assuming here that
batch calculation throughput is linear. Empirical observations repeatedly
show that as calculations approach their completion, throughput on the DB2
OLAP Server diminishes. This is especially evident when calculating very
large databases containing many tens of millions of blocks

4.8.5 What you need to know about SET MSG ONLY
The SET MSG ONLY algorithm ideally works in conjunction with the
calculator cache. So, if your database configuration achieves multiple
Chapter 4. Tuning, good design practices, and useful tips 83

bitmaps, the entire process will occur in RAM and will be very, very fast.
However, if multiple bitmaps are not achieved during the false-calculation
then the algorithm will keep track of block creation by writing completely
empty data blocks out to disk.

This process is much slower than when multiple bitmaps are achieved,
though still much faster than a real calculation. But this means that you will
see both ess*.pag and ess*.ind files grow during (what has been described to
as) a false-calculation! Do not despair. Ensure that you have the database
compression set to RLE (remember, these are empty blocks – filled with
#Missing, as it were) and the total disk space occupied will rapidly diminish as
will the time the false-calculation takes to complete.

4.9 Intelligent calculation

In the scenario of periodic database updates, it remains a very good practice
to make use of the intelligent calculation feature of the calculator engine.

Intelligent calculation takes advantage of the fact that dirty data blocks (that
means data blocks that have been updated and need to be re-calculated) are
tracked as part of the index structure. Periodic updates to the database can
rely on the fact that the calculator engine will be able to isolate only those
data blocks impacted by the update needs to be recalculated. Thus the
calculator can intelligently select dirty data blocks to refresh.

Make note, however, that the use effectiveness of intelligent calculation is
model dependent. Databases where periodic updates have an impact across
the majority of upper blocks that already exist will not benefit from the use of
intelligent calculation for very long. Keep in mind that existing upper data
block are updated and a block update is twice as expensive, in terms of I/O,
as data block creation.

Intelligent Calc needs to be managed. (For detailed information on intelligent
calculation, see the OLAP Database Administrator's Guide.) It is not always
intuitive or self-evident which blocks have been made dirty as a result of
update activity. Additionally, the behavior of intelligent calc is different when
used in conjunction with CALC ALL versus CALC DIM or AGG.

You can determine in advance of an actual calculation approximately how
many data blocks will be impacted by additions to the database by using the
undocumented SET MSG ONLY command.

The following is an log excerpt from a slightly modified version of the
SAMPLE::BASIC database. New data blocks were created when the
84 DB2 OLAP Server - Theory and Practices

database was updated from a spreadsheet. The update creates 2 new data
blocks and updates 10 upper blocks. The database prior to the lock and send
was set clean using a calc script that contained the SET
CLEARUPDATESTATUS ONLY command in combination with a CALC ALL
command. A false-calculation was initiated using the following script:

SET MSG ONLY;
CALC ALL;

Here is what the OLAP Server recorded in the application log:

Total Potential blocks: [1.2000e+001] Blocks
Sparse Calculations: [1.0000e+001] Writes and [0.0000e+000] Reads
Dense Calculations: [2.0000e+000] Writes and [0.0000e+000] Reads
Sparse Calculations: [0.0000e+000] Cells
Dense Calculations: [0.0000e+000] Cells

Notice that the Total Potential Blocks figure is precisely the sum of Sparse
Calculations…Writes and Dense Calculations…Writes. A full calculation
(CALC ALL) of this database would result in a total of 12 blocks being
updated or created. This is the sum of 10 upper blocks being created/updated
plus the 2 blocks that were created from the lock and send being updated
during the calculation.

From this example we can deduce that a CALC DIM or AGG of the sparse
dimensions of this database would update/create 10 data blocks (i.e. Sparse
Calculations: [1.0000e+001] Writes.) In this way you can relate the
significance (total number of impacted data blocks) of a periodic update to the
database. What you unfortunately cannot infer from this information is the
number of new blocks that will be created versus the number of existing
upper blocks that will be updated.

Actually performing the calculation results in the following log entry:

Total Block Created: [4.0000e+000] Blocks
Sparse Calculations: [1.0000e+001] Writes and [3.7000e+001] Reads
Dense Calculations: [2.0000e+000] Writes and [2.0000e+000] Reads
Sparse Calculations: [1.6800e+003] Cells
Dense Calculations: [0.0000e+000] Cells

The first line relates the number of blocks that were created (=4.) By
subtracting this number from SET MSG ONLY, Total Potential Blocks figure
(=12-4) you can determine (approximately) how many data blocks are
updated (=8) as a result of the database incremental update and calculation.
When the number of updated blocks approaches 50% of existing data blocks
you can expect Intelligent Calculation to take at least as long as a complete
level-0 data load and recalculation to the (empty) database. This is so
Chapter 4. Tuning, good design practices, and useful tips 85

because data block updates are twice as expensive in terms of I/O as data
block creation, it would take the same amount of time to update 50 blocks as
it would to create 100).

4.10 Miscellaneous issues

This section covers some additional implementation design issues not
previously discussed:

 • Partitioning tips and strategies
 • The application log
 • Data load optimization

4.10.1 Partitioning tips and strategies
Database partitioning can be a most effective strategy to help scale very
large OLAP models. In general, you partition to isolate into separate
databases those parts of the large model that have different
calculation/processing requirements. These different parts could be
differentiated by how often calculation takes place, or how complex the
calculation is, or even whether a part of the model is set read-write versus
read-only. Thus partitioning will prevent your entire database from calculating
at the lowest common denominator.

Not only does partitioning portion database size, it enables the spanning of
database calculation requirements in parallel across multiple CPUs. In the
final analysis, the success of a partitioning strategy resides chiefly in the
architecture of the partition definitions. This is another way of saying that you
must consider the database configuration carefully when implementing
partitions.

4.10.1.1 Partition across a non-additive dimension
The main challenge that partitioning can be used to resolve is that of overall
database size, or database scaling. When choosing a dimension to partition
across, it is always recommended that a sparse dimension be chosen.
However, if there are values that will then exist across the partition definition,
the solution begs the question once again. Let us explore this in detail.
86 DB2 OLAP Server - Theory and Practices

Figure 35. Partitioning on Market and Scenario

Two dimensions are being presented as partitioning strategies: Market and
Scenario (See Figure 35).

If I chose Market, I would create four source databases, one for each of my
Regions (East, West, North, South) and implement a transparent partition on
Market at a target database. I will have 4 small databases to update and
calculate and I can now achieve this in parallel across multiple CPUs. The
dilemma then exists how to generate data for total Market, which values exist
only across the partition definition as the sum of East, West, and so on?

These values have to be generated. Recall that the number of blocks
potentially involved during retrieval is potentially the Cartesian product of
data blocks across all sparse dimensions from the source databases. Thus it
is not always feasible, as might be suggested above, simply to make the
Market member Dynamic in the target partition because of the potential I/O
that would be generated on the server. This is usually the case in large
databases (the reader is asked to imagine that Sample::Basic is a large
database!)

If we consider partitioning across the Scenario dimension, a much better
picture emerges. The concept of Total Scenario does not make any business
sense. Hence there are no values that need to be generated across this
partition definition. The source database infrastructure can now be configured
to seamlessly and effortlessly feed data to the target.
Chapter 4. Tuning, good design practices, and useful tips 87

4.10.1.2 Partitioning on a dense dimension
If we consider more closely the previous hypothetical example, we will realize
that the Scenario dimension properly adheres to the dense nature of the
dataset. So the partitioning strategy overrides our database sparse/dense
optimized configuration and we tag the Scenario dimension as sparse to
accommodate. But, what happens when we (apparently) absolutely have to
partition across a dense dimension?

Consider the situation where a model is periodically updated across time and
where tagging time as sparse explodes the number of data blocks to
forbidding proportions. This makes it impossible to update the database
periodically and calculate it in time for user interaction. The dilemma can be
resolved by the following strategy.

Consider the outline in Figure 36.

Figure 36. Outline example: partitioning on History

The History dimension has been inserted as a sparse dimension whose
parent member is tagged dynamic (or Dynamic Calc and Store.) Now we can
create two source databases each with identical dimensionality. The idea to
add a dimension to enhance other dimensions is a clever idea and another
example of such a technique is discussed in Section 4.4.1.3, “When to add a
dimension” on page 50.

The partition definition is created across the History dimension. Periodic data
is loaded to the Current member for the database. Values for total History are
dynamically derived at query time. Procedurally the data from the Current
database needs eventually to be moved to the larger History database prior
to the next periodic update.

This strategy effectively eliminates the need to tag the time dimension sparse
and enables the periodic updates to be available to users in a timely fashion.
Moreover and just as significant is the fact that this strategy effectively
88 DB2 OLAP Server - Theory and Practices

increases the batch window for moving the data from the Current to the
History cube to be just shy of the time in between periodic updates. If this
were a weekly refresh model, the administrator would have almost seven
days to move the last update of the Current database to the History database.

Consider a variation of this strategy where the periodic refreshes to the
Current database occur on an hourly basis. Well, a Current model could be
created the upper values of which are all dynamic! A transparent partition
between it and the History database would make these values available. This
would enable very nearly real-time data analysis for users. In order to keep
the performance characteristics of the partitioning strategy optimal, the data
from the Current model would need to be ported to the History model almost
certainly on a nightly basis.

Dynamics on sparse members?
The above hypothetical example breaks the rule of setting dynamic members
established above as best practice. It sets dynamic member(s) across a
partition for crying out loud!

Well, this observation begs the recollection of the statement also made earlier
that ‘database implementers alone understand sufficiently all of the criteria by
which to determine that database performance is within acceptable limits.’
Whether the strategies described above will work as a practical partitioning
implementation will depend upon a weighing of the differences between the
overhead of batch processing periodic updates across databases where time
has been tagged sparse, and that of performing dynamic calculations across
a database partition at runtime.

The rules for tuning and optimization are not cut and dry, they really are
conformed to the demands of the particular environment and user community
that they are in service of.

4.10.2 The application log
It does bear repeating the importance of regularly reviewing the application
log. For example, the event log records how the DB2 OLAP server is
responding to user requests (through extraction or spreadsheet retrieval
factor entries.) Comparing the retrieval performance characteristics of the
spreadsheet add-in to those generated by a different query tool can quickly
help to pinpoint trouble spots.

Many events that often go unnoticed are recorded in the application event
log. Database performance problems can be isolated in an instant as a result
of reviewing activity recorded there. Consider these examples:
Chapter 4. Tuning, good design practices, and useful tips 89

[Fri Jan 05 14:54:28 2001]Local/Sample///Info(1012710)
Essbase needs to retrieve [1066] Essbase Kernel blocks in order to
calculate the top dynamically-calculated block.

This log entry tells me that, as a result of Dynamic Calc member tags on
sparse members, the server will need to create 1066 blocks in order to
compute the top block of the cube. From this I can infer the amount of block
creation I/O that might be generated by users at retrieval time and I might
want to adjust these tags accordingly.

A different log entry indicates that I have set dynamic calculations on every
dimension, and that I have a Dynamic Calc and Store tag on a dense
member:

[Fri Jan 05 14:59:31 2001]Local/Sample/Basicx/me/Info(1007125)
The number of Dynamic Calc Non-Store Members = [8 5 2 19 25]

[Fri Jan 05 14:59:31 2001]Local/Sample/Basicx/me/Info(1007126)
The number of Dynamic Calc Store Members = [0 1 0 0 0]

Whereas the former piece of information may be a design decision, the latter
is very bad, and needs immediate correction. Dynamic Calc and Store tags
on data block members do not reduce block size, but do force DB2 OLAP
Server to update every block in the database that is retrieved when that
particular member is requested.

Unless this is a tag made in error, the use of Dynamic Calc and Store tag
usually reflects flawed logic. The flawed logic reasons that member should be
tagged this way to make the value persistent after first retrieval because the
metric is so popular with analysts. This has the undesired effect of increasing
radically the number data block updates and results in a fragmented
database.

4.10.2.1 Recording application logs events
A cube that is currently performing well may develop performance problems
in the future as the outline is modified and the amount of data grows. If a cube
starts performing poorly it is useful to know when the performance became
worse and what changes were made just prior to this. Keeping a record of
changes made to the outline as well as the time required to perform key tasks
will help diagnose performance problems. The application log lists the actual
time that was required to perform each operation. Since application logs
become large and tend to be pruned regularly, you should save the elapsed
times for tasks in a different file. A log file might contain the following
information:
90 DB2 OLAP Server - Theory and Practices

[Tue Jun 27 18:39:04 2000]Local/sales/Main/admin/Info(1003024)
Data Load Elapsed Time : [335.141] seconds

[Wed Jun 28 01:14:22 2000]Local/sales/Main/admin/Info(1012550)
Total Calc Elapsed Time : [3718.276] seconds

Table 13 is an example of the type of information that could be recorded. This
table will make it clear if and when performance degrades. If there is a large
increase in the time required for an operation that does not necessarily mean
there is a problem. Perhaps a change was done that requires a lot of
processing. For example, adding members to a dense dimension requires all
blocks to be rebuilt. If there is a slow degradation in performance this may be
due to the increasing size of the cube. It might be necessary to check the
cache hit ratios to ensure the cube hasn't outgrown the cache settings.

Table 13. Recording application logs information

4.10.3 Data load optimization
There is only one method to increase data load performance, sort the input
data by sparse dimensions. Why this works is because by sorting the data
across the sparse dimensions ensures that each data block that is being
created as a result of the data load will be visited only a single time.

Consider the implications of a dataload file of the following random order
characteristics shown in Figure 37.

Date Time Action Elapsed Time

2000-06-27 18:32 Building dimension 45.469

2000-06-27 18:39 Load 335.141

2000-06-27 18:45 Calc 3718.276

2000-06-30 14:00 Added members to
Products dimension

2000-07-02 18:12 Building dimension 48.123

2000-07-02 18:29 Load 337.532

2000-07-02 18:35 Calc 3723.533
Chapter 4. Tuning, good design practices, and useful tips 91

Figure 37. Load file with the first two 2 columns tagged sparse

The load file in Figure 37 is for the Sample::Basic database which has the
first two columns (Market and Product) tagged sparse. The first data block
that is created as a result of loading this data to an empty database is New
York->Old Fashioned. Notice that this is also the address of the last (visible)
record. Because the New York->Old Fashioned data block will already have
been created during the load process, the OLAP Server will have to fetch
from disk the existing block and update it. This results in two undesirable
events. First, an update block is occurring during the data load in addition to
the create block. For that data block, I/O has been trebled! Also, because
DSB2 OLAP Server never does an update-in-place of data blocks, the
database is being fragmented.

Now consider the implications of loading this same data file that has been
sorted across the sparse dimensions as in Figure 38.

New York Old
Fashioned

Actual Sales 61 61 63 66 69 72 77 78 68 69 61 66

Florida Diet Cream Budget Sales 80 80 80 80 80 80 80 50 50 20 30 40

Florida Grape Actual Sales 80 80 81 85 89 105 110 114 87 94 70 75
Florida Grape Budget Sales 80 80 80 90 90 110 110 120 90 100 70 70

Florida Strawberry Budget Sales 80 120 130 130 140 150 150 160 130 120 80 80

Massachusetts Grape Actual Sales 80 80 79 75 71 60 57 55 72 66 88 82

Massachusetts Grape Budget Sales 80 80 80 80 70 60 60 50 70 70 90 80

Massachusetts Strawberry Actual Sales 80 56 53 53 49 44 44 41 50 53 80 73

Massachusetts Strawberry Budget Sales 80 60 50 50 50 40 40 40 50 50 80 70

Florida Strawberry Actual Sales 81 115 121 121 130 144 144 154 126 118 78 85

Florida Dark Cream Budget Sales 90 90 90 90 100 100 100 100 110 60 80 100

Massachusetts Dark Cream Budget Sales 100 100 100 90 90 80 80 80 70 60 90 70

Florida Diet Cream Actual Sales 110 110 112 103 110 110 115 69 76 51 52 56

Florida Vanilla Cream Budget Sales 110 120 120 110 130 130 140 170 140 90 110 120

Florida Dark Cream Actual Sales 120 118 120 127 130 133 133 140 149 126 121 145

Massachusetts Old
Fashioned

Budget Sales 120 120 120 110 110 100 100 100 90 100 110 90

Massachusetts Old
Fashioned

Actual Sales 126 128 125 117 114 111 111 105 98 116 120 99

Massachusetts Dark Cream Actual Sales 130 132 129 121 118 115 115 109 102 120 124 103

New York Old
Fashioned

Actual Sales 134 189 198 198 210 230 230 245 199 187 123 133
92 DB2 OLAP Server - Theory and Practices

Figure 38. Load file sorted across sparse dimensions

Notice that now every sparse combination is loaded successively to the
database meaning that each data block is touched only one time. This
completely eliminates data block updates and database fragmentation!

4.10.4 Building a security model
IBM DB2 OLAP provides a comprehensive, multi-layered security system that
administrators can use to control access to applications, databases and
related objects.

A successful implementation can be measured in many ways including:

 • Does the system fulfill the basic business requirements?
 • Does the system grant appropriate access to the appropriate individuals?
 • Is the system seamless and unobtrusive to the end user?
 • Is the system maintainable?
 • Is the security system portable in a multiple server environment?

The initial implementation of a security system or model is only a starting
point. Throughout the life of a system, considerations relating to
maintenance, automation and continued integrity take on much greater
importance. Further still, a properly designed security system can be
leveraged beyond its basic intent to help drive client application development
in a secure and seamless manner.

Florida Cola Actual Sales 210 200 210 222 235 278 286 286 249 205 197 202
Florida Cola Budget Sales 190 190 190 210 220 260 270 270 230 170 170 190
Florida Dark Cream Actual Sales 120 118 120 127 130 133 133 140 149 126 121 145
Florida Dark Cream Budget Sales 900 90 90 90 100 100 100 100 110 60 80 100
Florida Diet Cola Actual Sales 200 206 214 267 273 282 336 277 230 218 245 262
Florida Diet Cola Budget Sales 190 190 200 250 250 260 310 260 210 180 220 230
Florida Diet Cream Actual Sales 110 110 112 103 110 110 115 69 76 51 52 56
Florida Diet Cream Budget Sales 80 80 80 80 80 80 80 50 50 20 30 40
Florida Grape Actual Sales 80 80 81 85 89 105 110 114 87 94 70 75
Florida Grape Budget Sales 80 80 80 90 90 110 110 120 90 100 70 70
Florida Strawberry Actual Sales 81 115 121 121 130 144 144 154 126 118 78 85
Florida Strawberry Budget Sales 80 120 130 130 140 150 150 160 130 120 80 80
Florida VanillaCream Actual Sales 150 154 155 151 170 177 189 226 182 174 164 177
Florida VanillaCream Budget Sales 110 120 120 110 130 130 140 170 140 90 110 120
Massachusetts Dark Cream Actual Sales 130 132 129 121 118 115 115 109 102 120 124 103
Massachusetts Dark Cream Budget Sales 100 100 100 90 90 80 80 80 70 60 90 70
Massachusetts Grape Actual Sales 80 80 79 75 71 60 57 55 72 66 88 82
Massachusetts Grape Budget Sales 80 80 80 80 70 60 60 50 70 70 90 80
Massachusetts Strawberry Actual Sales 80 56 53 53 49 44 44 41 50 53 80 73
Massachusetts Strawberry Budget Sales 80 60 50 50 50 40 40 40 50 50 80 70
Massachusetts Old

Fashioned
Actual Sales 126 128 125 117 114 111 111 105 98 116 120 99

Massachusetts Old
Fashioned

Budget Sales 120 120 120 110 110 100 100 100 90 100 110 90

New York Old
Fashioned

Actual Sales 134 189 198 198 210 230 230 245 199 187 123 133

New York Old
Fashioned

Actual Sales 61 61 63 66 69 72 77 78 68 69 61 66
Chapter 4. Tuning, good design practices, and useful tips 93

The security model definition phase should not only seek to define objective
access requirements, but can also take into account future custom
application development. All security components can be accessed using the
DB2 OLAP API within client applications developed in Visual Basic, C++ or
Microsoft Excel. This means that custom applications can be developed that
interpret and follow the defined security components, allowing the developer
to tailor the contents of a client application to each individual user. This
depends on the focus of the custom application, but may include things such
as generating custom reports based on members as specified in a user’s
security filter profile.

4.10.4.1 Maintaining the security system
Security model definition and implementation are only part of the process of
managing the security system. Security system maintenance is something
that must be considered carefully to ensure that the original intent of the
security model is sustained and that the maintenance of the individual
security items does not become a burdensome and time consuming task.

All security items can obviously be managed in a manual fashion. This often
is the typical course of action and may certainly be a viable option if the
overall security system is relatively small. However, if an installation contains
hundreds of users, dozens of applications and databases and requires many
complex filters, the maintenance may become unmanageable. Additionally,
manual maintenance of security items may likely introduce human error into
the equation. Users may accidentally be granted the wrong access, or
terminated employees may be left on the system.

The API is a viable alternative for developing maintenance applications that
reduce the overall maintenance effort as well as increase the accuracy and
integrity of the maintenance process.

The following are two examples that depict ideal situations for security
maintenance automation using the API.

Keeping DB2 OLAP user list current
In this example, the system administrator implements an automated system
to keep the list of DB2 OLAP system users current. We assume that the
administrator has access to a master list of user IDs from the local area
network.
94 DB2 OLAP Server - Theory and Practices

Accessing central corporate resources such as the local area network user
list will help the administrator keep current with such events as employee
terminations, new hires or promotions to other departments. Terminated
employees are automatically removed from the DB2 OLAP security system in
accordance with the valid user profile list on the company’s local area
network system. It is not important what central corporate system or resource
is used to validate the list of user profiles on the DB2 OLAP system. What
matters is that the API can be used to accurately merge DB2 OLAP user
profiles with other systems containing user profiles.

One important pre-condition is that the DB2 OLAP security model is
developed with the same naming conventions as the master system that is
being used for a comparison or that a mapping mechanism between the two
lists be developed. Ideally the administrator would create user profiles in DB2
OLAP with the same user names as in the master system. This helps with
automation in relation to keeping the DB2 OLAP user list current as well as
simplifying the process for the end user who will not have to remember a
separate user name for DB2 OLAP. To elevate the integrity of the security
system, a verification log file would be generated to inform the administrator
of deleted users.

Automating filter generation example
It is possible to leverage other systems within a corporation to automatically
generate and maintain filters. For example, a security model that requires
specified filter read or write access to a particular market requires both an
initial setup as well as continued maintenance as employees change
positions, leave the company or start new. We assume the requirement that
employees in question are allowed to only view data within their particular
market.

This information would be maintained in another corporate system, perhaps a
DB2 table or some other department table. An API application would be
developed to automate the process of reading the relationship between
employee and market and implement this relationship using security filters
within DB2 OLAP. The process can include creating the original filter
assigned to user ids, as well as maintaining filters to respond to security
events as they arise in the organization. This may include such actions as
removing a filter when an employee no longer has the authority to view a
market or changing a filter’s contents to reflect an employee’s reassignment
to a different market. The ability to add and delete filters as well as change
existing filter content is all provided through the API.
Chapter 4. Tuning, good design practices, and useful tips 95

4.10.4.2 Managing security in multiple server environments
Multiple server environments are commonplace in the DB2 OLAP realm.
Currently, the Application Manager does not administer or migrate security
information across servers. This can be a significant problem with an
extensive security system in place. Consider for example a multiple server
installation having both a test server and a production server and the
challenge of how to replicate the production server security system from the
test server?

The automation of this requirement is accomplished utilizing the DB2 OLAP
API. The API offers complete access to all DB2 OLAP security system
components. User and group profiles as well as filter details can all be read
and subsequently written. An API driven process can be written to read any
and all security components from the production server and written to the test
server.

4.11 Final comment

This chapter discussed at some length the concept of the data block and
index storage structures. Every other section and sub-section in the chapter
is only properly conceived when understood in the context of these storage
structures. Only after the notion of the data block and index structures are
well understood can effective database tuning be performed.
96 DB2 OLAP Server - Theory and Practices

Chapter 5. Interviews and experiences

Most of the expertise and valuable knowledge on DB2 OLAP server belongs
to people who implement DB2 OLAP server.

Our best implementers are customers and partners who are instrumental in
figuring out the best way to design OLAP databases to satisfy user
requirements and to put in production OLAP databases facing exploitation
constraints.

When implementing OLAP applications, multiple manners often exist. To
reflect practicality and multiplicity of knowledge, we address implementation
and deployment of OLAP applications through different interviews we carried
out by customers and partners.

5.1 Introduction

We asked our various customers and partner organizations to highlight their
best practices on designing, implementing and deploying OLAP applications.
This chapter details our findings.

The following interview questions are cross-referenced to the different
individual interviews presented as a whole.

These interviews are based on the same frame and consist of the following
questions:

 • Describe your environment.

 • What design approaches and design options did you experiment?

 • What client tools do you use?

 • What are the administrative processes you use?

 • How do you manage the operations?
© Copyright IBM Corp. 2001 97

Each interview focuses mostly on a specific area, as shown in Table 14.

Table 14. Interviews

5.2 Interview results

In this section we describe the results of our interviews.
E

nv
ir

o
n

m
en

t

D
es

ig
n

C
lie

n
t

to
o

l

A
d

m
in

is
tr

at
io

n

O
p

er
at

io
n

Steve Beier’s interview x x x x

George Trudel’s interview x x x x

Mark Rich’s interview x x x

Joe Scovell’s and Jacques Chenot’s
interviews

x x x x x

Anonymous person’s interview x x x

Rich Semetulskis’ and Alan Farkas’
interview

x x

Aster Hupkes’ interview x
98 DB2 OLAP Server - Theory and Practices

5.2.1 Steve Beier’s interview
Steve Beier (SB) is senior IT specialist and he has been working with IBM
Global Services for 5 years. He currently works for IBM Storage Division on
an enterprise information system. They utilize DB2 UDB, Essbase, DB2
OLAP, Visual Warehouse, AIX and some “home-grown” tools to build and
maintain the project. His primary responsibilities include project architecture,
technical lead and “renaissance” support.

5.2.1.1 Environment
1. Describe your OLAP environment.

SB: “Our OLAP systems are all AIX running on RS/6000s. We chose AIX
because of its flexibility, scalability, availability and manageability. All the
applications we need, including DB2 for our data warehouse, run on AIX.
Our choice for production would always be UNIX.

Our production systems run on 2 RS/6000s. We run DB2 and DB2 OLAP
on an S7A with 16G of RAM and 12 262 MHz processors with 8 MB of L2
cache. The extra level 2 cache is an important consideration. DB2 OLAP
runs on the other production system, an S80 with 32G of RAM and 6
450 MHz processors. This is a very powerful machine, which we plan to
upgrade to 12 processors in the future. The extra memory in this system
allows us to tune the OLAP Server caches for best calculation
performance. We try to allocate enough memory to the index caches to get
an index cache hit rate of 1, which means we have the whole index cache
in memory, which reduces I/O. We also tune the calculator cache using the
algorithm described in the DBA guide. We allocate enough memory to
allow the calculator to use multiple bitmaps, and we verify this by running
the calculation with SET MSG SUMMARY. The latest model we tuned in
this way went from a 4 hour calculation time to 40 minutes”.

2. What about development and test?

SB: “Alongside our production system we also run development systems
and test systems. Ideally the development systems would match our
production servers, but to keep costs down, we cascade old production
servers to development, and old development servers to test. Getting the
right hardware in place for OLAP is critical. Our production servers were
under-powered for some time, which made our jobs very difficult.
Obviously you don’t want development and production to get in the way of
each other. To do their jobs right, our customers need uninterrupted
access to the production server, and our developers need an environment
they control. We decided to include test servers so we can also test new
versions of the product, run Beta code and try out new ideas without
getting in the way of development or our users”.
Chapter 5. Interviews and experiences 99

3. Where does your source data come from?

SB: “A lot of our data now comes from SAP, but we also source data from
other DB2 systems and from flat files. Until recently we also had to extract
from VM. All this data goes through a sophisticated and highly automated
Extract Transform and Load (ETL) process to get it into our DB2 Data
Warehouse on the S7A. These processes are run using Visual
Warehouse1 and a custom system we developed ourselves. We then load
directly from the warehouse into our OLAP cubes, using the SQL
interface. All data transformation is done by DB2 before loading. We use
very simple load rules, each rules file loads from a ‘load view’ in the Data
Warehouse. This greatly improves maintenance and reuse because we
know exactly where the data is from, and exactly what it looks like. The
data definition language (DDL) for creating the ‘load views’ is stored and
managed, so we can recreate the views very quickly. The SQL statements
that select from the ‘load view’ always include an ORDER BY clause
based on the sparse dimensions of the model. This loads the data block
by block, reducing I/O and improving performance”.

4. What storage devices do you use, and how do you use them?

SB: “We use SCSI devices for the operating system, and SSA devices for
OLAP storage. We found RAID-1 mirroring is most effective and performs
best for us. We allocate each set of page and index files to their own I/O
channel”.

5. How many OLAP cubes are you supporting?

SB: “We currently have 120 cubes in production. These range from a few
MB to 8 GB in size, depending upon the users requirements.”

6. What applications are the cubes supporting?

SB: “We have a diverse range of applications covering supply and
demand management, finance, planning and forecasting. A lot of our
users are using lock and send to update models and run scenarios.”

7. How many users do you support?

SB: “We have a total of 250 users. Our average server load is about 20
concurrent users. At peak times the server will be handling 50 concurrent
users”.

8. What is the makeup of your team?

SB: “We have 20 people in total managing the entire data warehouse and
the OLAP applications. Some of the critical skills are database
administration, Essbase and DB2 OLAP Server specialists, support and

1 Visual Warehouse is an IBM ETML tool now included in DB2 UDB V7 in its Data Warehouse Center function and its DB2
Warehouse Manager feature
100 DB2 OLAP Server - Theory and Practices

helpdesk staff. A major part of our ongoing job is managing the nightly
extract, warehouse load and OLAP build process. Two people are
responsible for managing and monitoring this process every night. We
have a number of programmers skilled in Java, ‘C’ and SQL who work on
a variety of custom programs including the warehouse management
processes and OLAP utilities. We also have several sophisticated power
users that help with the design process.”

5.2.1.2 Design
1. Where do your OLAP requirements come from?

SB: “Our business users drive the requirements. Our job is to meet their
requirements, and to work with them to balance the requirements against
the available resources.”

2. When developing a new OLAP model what techniques do you use?

SB: “Planning and project management are very important. OLAP can be
implemented very quickly when the requirements are understood and the
project is well managed. The implementation can go so quickly that you
start to think you don’t need planning and project management, but we
have learned not to ignore these aspects of application development. Our
power users are central to the design process. They understand the
technology very well, so they usually take a first cut at the requirements
using Application Manager to put together a sample outline. We work with
them to refine the outline and determine the input data requirements. We
build a prototype, and go through a number of iterations working closely
with the users as we develop the cube. It’s important to have power users
who understand the business in detail, and the technology in some depth.
It’s also important that your OLAP specialists understand the technology in
detail, and have some understanding of the business. Having your OLAP
specialists and power users working well together makes a big difference.”

3. How do you validate your cubes?

SB: “When a new cube goes into production, verification is part of the
users responsibility prior to sign off. When cubes are in production we
extract from the source system using SQL, and from the cubes using the
APIs and automatically validate as much as possible. Some manual
automation is also carried out using SQL programs and the spreadsheet.
We validate every night as part of our batch process.”

4. What tuning steps do you go through as you develop an application?

SB: “As we refine the prototype and move toward production we carry out
load and calculation performance tests. We carry out final tuning when the
cube goes into production, but there are design defaults and standards
Chapter 5. Interviews and experiences 101

that we always use. These include: careful attention to data storage
settings for dense and sparse dimensions, using the ‘hourglass’ outline
layout, getting a block size between 20K and 60K, full dynamic calculation
for dense members, and use of a calculation script that excludes dense
dimensions from the calculation. We do not have formal checklists for
tuning, but this is something I think we should do. We often adjust the
model based on the user requirements. For example, we might remove
some dynamic calculations in areas of the cube that get heavy use. We
sometimes move formulae out of the outline and into a calculation script
so we can get better control of calculation order. We have many cubes
where we have had to make Time a sparse dimension because we have to
clear and load time slices through the cube.”

5.2.1.3 Client tools
1. What client tools do you use?

SB: “We use the spreadsheet add-in for interactive analysis, but we also
run reports and charts that we capture as bitmaps and publish through
Lotus Notes. The reports and charts are generated automatically using our
own programs driving the spreadsheet program. We are looking at Web
delivery in the near future, probably using Alphablocks.”

2. Who designs the reports that you deliver to your clients?

SB: “Users request reports and changes to existing reports through our
control system. Our team is responsible for generating the reports and
making the changes.”

5.2.1.4 Administration
1. How do you manage outline updates?

SB: “We incrementally build our dimensions from the data warehouse
using load rules against load views. New members are added in a bucket
that is part of the dimension. Our users are then responsible for moving
the new members to the right place within the hierarchies.”

2. How do you manage load updates

SB: “We carry out both complete cube rebuilds and incremental data
loads. Cubes that are small, where the overhead is low, we clear the data
and completely reload. For our larger cubes, and those where our users
have entered data using lock and send, we use incremental loads. Some
cubes provide a rolling time window, to manage these we have custom
programs that are parameterized so we can drive them to clear the
appropriate slice and load the new data into that part of the cube.”
102 DB2 OLAP Server - Theory and Practices

3. How do you manage database fragmentation?

SB: “We find it best to run a level 0 export, then reload and carry out a full
calculation. We have tried dense restructuring, but we find it’s more
efficient to export, run a simple default data load and calculation.

4. Do you use Application Partitioning?

SB: “Yes, we have a number of applications that are partitioned. The best
use we have found for partitioning is for high availability systems. We can
load and calculate partitions in the background, and then use replication to
refresh the main cube. We also use transparent partitions. We have not
found a requirement for linked partitions yet. We do not use outline
synchronization.”

5. How do you manage security?

SB: “We have one person who is responsible for all aspects of security. As
you can imagine, security is taken very seriously within IBM, so this is an
important job, and you need the right person doing it. We have a custom
support system written using Lotus Notes that our users access in order to
request an ID, access to a database, or a change in security filters. This
system routes the request to the user’s manager for sign off, and then to
our security coordinator to be implemented. The system also helps us
conduct audits and keep user IDs and authorities under control. We use all
the available functions of the OLAP security system, and this is an area
where we would really like the product to offer more such as improved
granularity in the administration and management roles, password
expiration rules, auditing and statistics. We are also using LumenSoft
ServerManager to help with a number of security related activities that
would otherwise be very time consuming and error prone manual
processes.”

5.2.1.5 Operations
1. What steps to put a new application into production?

SB: “We move the cube from the development system to the production
system and test it in this environment. We then integrate the new
application into the automation processes and test these. When we have
the new application integrated, tuned and building as expected, we go
through thorough end-to-end testing with the users. This includes
validation of the input figures and calculations. When everything is right,
we get sign off from the users”.

2. How do you manage backups?

SB: “There are several strategies that can be adopted.
Chapter 5. Interviews and experiences 103

The first is to use the product’s ‘Begin Archive’ and ‘End Archive’ functions
to take a ‘warm’ backup. These commands put an application into read
only mode so the databases cannot be changed. Users can continue to
query the cubes, but it’s safe to make a backup. This is the ideal solution,
but we have found that the ‘Begin Archive’ command starts the
application, even if it wasn’t in use. ‘End Archive’ doesn’t stop previously
idle applications, so an automated process using these commands results
in every application running, which uses up all our server resources. We
could make the automatic process stop the applications, but if it’s an
application that a user is busy with, and we stop it, then we have lost any
advantages that this warm backup facility might offer.

The second strategy is to take ‘cold’ backups by stopping the server,
taking the backup and starting the server when the backup is finished. We
cannot use this approach because we have users around the world, so
there’s no window of time when we can bring the server down for long
enough to reliably complete a backup.

The final strategy, the one we use, is an automated process that unloads
an application and takes a backup. We plan the unload and backup for
times when we know the application is not in use. We run the risk that in
extraordinary cases, a user may be using the application that we take
off-line, but so far this hasn’t been a problem. We can backup each
application as efficiently as possible with minimal impact on users.

We use IBM’s ADSM backup application to backup the entire install
directory and the application data. We take incremental backups based on
changes, so we minimize the amount of time required, and we can always
recover anything from a single file right the way through to a complete
OLAP system. Our backups run every day as part of our batch process.
We can usually recover from problems with 4 hours. Ideally, we would like
to simply backup outlines and level 0 data, but there are many other files
that need managing, and there are often relationships between files in an
application and other files in the system such as the CFG and SEC files. It
quickly becomes impossible to recovery a complete application with such
a simple strategy”

3. What’s your strategy for applying fixpacks or patches?

SB: “Ideally, we would like to be able to choose to apply service once a
quarter, when it best fits our schedule, but we haven’t been able to
achieve this yet. We find we are forced to apply service quite frequently in
order to get fixes we require. If possible, we do not apply the latest service
level, we prefer to wait 2 months so we know it’s stable, but we often need
a fix so we have less choice than we would like. Because of the frequency
with which we apply service, we do not have time for a test cycle, so we
104 DB2 OLAP Server - Theory and Practices

install service directly onto our production server. We are looking at a
product from Scapa technology that will allow us to automatically run
sophisticated simulations of query workloads against the server so we can
quickly check out the server and make sure we haven’t introduced
functional or performance problems.”

a. What’s your strategy for applying new releases?

SB: “We are involved in as many Beta programs as we have time for,
and we start looking at the new features and functions of a release as
soon as it is available, but we will not put it into production for 6
months.

We will put the new release on our test server and start by building our
most important cubes. We then sample some of our other cubes, those
that are interesting in some way, either because of the features they
use, or because of their size. We look at a number of characteristics of
the new release including load and calculation performance, storage
requirements, and automation. We also plan to use Scapa to drive
query workloads. Our users help with validation. We also test the entire
end-to-end automation process using the new release. When the test
and validation cycle is complete, we usually manage to upgrade the
production server and refresh all cubes in one weekend.

b. How do you manage upgrades to client tools?

SB: “We put the new tools on IBM’s corporate install site ISSI and send
e-mail notification to our users telling them that an upgrade is available.
When we apply service, the upgrade is optional, when we upgrade to a
new version, all users must upgrade their client code. The users
download and install the code using ISSI.”

4. What makes up your batch process?

SB: “Our goal each week is to have a complete week without problems.
When the systems are stable and have been running for some time we do
achieve this. Obviously the more changes that are being made, the less
stable the entire process is. We recently made some major updates to our
data sources, and at the moment we are still working toward a 100%
week. We hold regular team meetings to review problems, brainstorm
solutions and track progress. These meetings are managed by some of
our users, so they are involved in the overall process. They appreciate the
issues we are facing, we get a better understanding of the impact of the
problems and we can work together to resolve them.”
Chapter 5. Interviews and experiences 105

5. How do you monitor the batch process?

SB: “The automation programs that drive our batch processes are central
to the way we manage the whole system. The programs send e-mail
notifications of success or failure. We are fortunate that part of our team is
based in Argentina, which is 5 hours ahead of us, so they get a head start
on any problems.”

6. When do you validate the cubes during the batch process?

SB: “Validation is built into our batch process. We don’t consider the
process complete unless the validation is complete.

7. What batch window are you working with today?

SB: “We have approximately 8 hours each night to carry out the Data
Warehouse load and build all our cubes. The batch process is
approximately 20% to 30% ETML (Extract, Transform, Modify, Load) and
Warehouse load, and 70% to 80% OLAP load and calculations. We do as
much as we can in parallel, but dependencies and resources limit this to a
degree.”

5.2.1.6 Conclusion
1. What do you consider to be the world class things you are doing?

SB: “The things we do well include our end-to-ends automation, which is
very sophisticated, our user and security management infrastructure
based on Lotus Notes and the implementation of standards in our data
structures and outlines.”

2. What is the most important change you will make to improve your OLAP
installation?

SB: “Improving performance and reliability are top of our list.”
106 DB2 OLAP Server - Theory and Practices

5.2.2 George Trudel’s interview
George Trudel (GT) is Director of Information Services at Scrip Pharmacy
Solutions. He started working with multi-dimensional databases in 1990 and
was the first business user to Beta test DB2OLAP. Scrip Pharmacy Solutions
summarizes prescription transaction data as part of its knowledge delivery to
its customers.

5.2.2.1 Environment
1. Describe your OLAP environment.

GT: “Our current production environment on the server side is a DEC
Alpha 4100 with 2G of memory and a 1.3 terabyte EMC symmetric storage
box.I believe that 3 years ago the DEC Alpha was considered to be one or
the top end servers. Performance was one of the key factors to choose a
platform because of the overall anticipated size of the cubes. Today, there
are no particular advantages to running in that environment and we are
actively replacing the DEC Alpha with RS/6000 servers running on
AIX.One of the key reasons for the change, is the fact that DEC Alpha is
no longer supporting Windows NT and, as a result, Hyperion is no longer
going to support its products on DEC Alpha. Since we knew we had to
move, we went out and scouted around for the same type of platform
performance. The RS/6000 came out on top for performance driven
reasons.We run just one production server for all OLAP cubes. Currently
this single production server runs four 500 megahertz processors. At
anytime we have maybe ten to fifteen models available out of a pool of
forty.”

2. What about development and test?

GT: “We have a development environment which we run on a Windows NT
server, 450 MHz, 25 G hard drive, 256M RAM. One of the issues that we
have with this server is that it cannot replicate our large production
models. So we may do some model development on the test server, but
normally we load data into non-production databases on our production
box. We do some of the testing on the development box, and some on the
production machine”

3. Where does your source data come from?

GT: “Well, our source data actually comes from two different places.
Primarily we run Pharmacy prescription processing systems. As a
Pharmacy Claims Processor, we run a proprietary package on an AS400.
Typically, on a daily basis we take the day’s activity and download it into a
relational database. Then we execute SQL programs that summarize the
data and provide us with input files for our cubes. The relational output
text files are loaded into the cubes. This process is a result of the
Chapter 5. Interviews and experiences 107

evolution of the OLAP warehouse. We were originally getting source files
from the AS400. We replaced that process with the source files from the
Data Warehouse, and we haven’t had a business case to move beyond
that, into something like Integration Server”.

4. What storage devices do you use, and how do you use them?

GT: “We have an EMC Symmetrics 1.3 TB (terabyte) storage array.
Physically this array contains 96 18 GB (gigabyte) drives.

We have logically segmented those drives into multiple volumes. In
support of OLAP, we have three volumes, one is about 500 GB, and two
300 GB. We don’t use RAID or mirroring on that particular box.

5. How are you exploiting the multiple processors on the server?

GT: “We run multiple calculations and database loads in parallel. We have
business applications that are drilling into the production databases and at
any point in time we can have anywhere from 10 to 15 models being
actively used.”

6. How many cubes are you supporting?

GT: “We recently went through a regeneration process. The original
thought process from our CIO, was to build a single large database, that
incorporated all the dimensionality and everything that he ever wanted to
see. Our production environment has evolved from that vision based on
the sheer size of databases which caused us to segment information.
Currently our models are broken up by regions. We split them out initially
into three regions and further by time. Our current infrastructure contains
six months of data in models for three different regions. The average
database size is approximately 18 GB. Previously, database were over
30 GB.

We have up to seven dimensions that we do not fully use due to the sheer
size of the model. As a result of a business analysis, we remove a
dimension for manufacturers since it really wasn’t being used. When
necessary, we can build a specific manufacturer model to meet the unique
needs for that information because it is different from the way we look at
the main OLAP core data. By pulling that dimension out of the production
models, we able to reduce the overall size requirement by about 60% of
our space utilization. We realized significant savings, which allows us to
do some other things. That’s on the normal reporting and analysis part of
our responsibility.

We also do ratings, for potential clients. We have a format that we send
out that identifies the dimensionality and the measures that we use to
construct rating models. The potential clients can fill out any portion of
108 DB2 OLAP Server - Theory and Practices

these templates. We run these files through our relational back end
process, which generates all of the source information that we need for
the cube. We use programming routines that automatically build these
cubes. We can turn them around in a day to support the analyses
performed by our ratings folks. Typically, the potential customer will
provide us with some information about medication costs. We’ll take that
and run it through our models and do some comparisons with what we
already know. This establishes a base for the rating process.”

7. What applications are the cubes supporting?

GT: “While we actually run the full mix of planning, budgeting, query and
forecasting, primarily we provide, summarized information about the
prescription process for our carrier-account-groups. The client dimension
contains about 40,000 groups nationally.

We summarize our medications across almost 200 different available
measures that includes counts, dollars, and percentages relative to the
prescriptions for members. We don’t track member level detail in the cube.
We summarize at the physician level. We are tracking 100,000 physicians
for 40,000 groups, for over 15,000 medications.”

8. How many users do you support?

GT: “I would say that total number of users is 50, but 30 are active. One
reason for this is because we do a lot of reporting for our clients. We have
10 clients who subscribe to our on-line service. However, we also produce
about 1000 executive summaries each quarter for our customers.
Additionally, we provide many of our customers with detailed files from the
AS400 and from the relational database.

The executive summaries go though in an automated batch process that
was recently implemented by Applied OLAP. They provide a front end for
Essbase. This automated batch process is anticipated to save us about
$30,000 in the first year. This is a considerable operational savings for us”.

9. What is the makeup of the team?

GT: “On the relational side, we have a developer and a DBA. The DBA
actually splits between Oracle and the AS400. We have an 2 person
OLAP team. I’m responsible for the overall management and OLAP
design, while the Essbase developer manages all the maintenance and
support processes along with some development such as ratings.”

5.2.2.2 Design
1. Where do your OLAP requirements come from?

GT: “We look at business first.”
Chapter 5. Interviews and experiences 109

2. When developing a new OLAP model what techniques do you use?

GT: “The first thing that we do in designing a new model is to sit down with
the business users. I will conduct a facilitated session that is going to try to
establish the business rules that will then in turn define the dimensionality.

Typically we take a look at the measures and then determine the values of
the measure. Then this measure is defined in terms of its business views
and its dimensionality. Then we’ll get into a discussion on how dimensions
interact, to see if there are any opportunities like the example I talked
about before with the manufacturing dimension. In that analysis, we also
found that manufacturers are linked specifically to low level drug numbers,
so they can become attributes, which is another way of utilizing special
features within the technology. We are trying to develop business
ownership as we go through the analytical process. Once we’ve
completed these analytical tasks, it’s a very straightforward process to
generate sample files and use the Application Manager to build the
dimensionality, load the model and provide the first proof of concept within
a very short period of time. Since all the source data can either be put into
some form of relational data or some form of text data, we have the
expertise and know how to leverage the use of Essbase rules to take
these source files and create models out of it very quickly

Because we understood the business requirements and the
dimensionality, we generate prototypes very quickly. We put theses
prototypes in the hands of the business users and let them start using it.

3. How do you go from prototype to production model?

GT: “There are two aspects of production that we take into account before
releasing new models. First, we validate the accuracy of the information.
We have extensive routines to ensure that our OLAP data matches other
claims and financial data, so that our presentation to our customers is
consistent and correct. The second aspect is administrative. We estimate
files sizes and support resource requirements. Given our experience, our
estimates are accurate.”

4. How do you validate your cubes?

GT: “We do some automatic validation. We have balancing routines that
start right at the AS/400 and go all the way down and finish up with VBA
routines that go in and do daily and monthly validation. We balance to the
penny across all dimensions before the cubes are release. This process is
very stable. We don’t run into very many problems at all”
110 DB2 OLAP Server - Theory and Practices

5. What tuning steps do you go through as you develop an application?

GT: “Well, we do go through sparse/dense and block size, we set up for
the index and data caches. We always make sure that the caches are
configured appropriately for our server, so that we get the maximum
benefit on calculations. Typically I follow the time honored DB2 OLAP
construction for block size, that seems to work pretty well. One
consideration in dealing with response time is the use of dynamic
calculations. For example, we had a dynamic calculation that was taking a
very long time because it was focused across subsections of each
dimension. While there’s the time and space savings on the one side,
there are response time issues on the other side when you go to retrieve
it. We have a trade off depending on the application

One of the widely-accepted rules that we apply is to make all calculations
within the dense blocks dynamic. Further, don’t make any sparse
dimension members dynamic.

We also put formulae in the outline, which is more efficient than putting
them into calc scripts.”

6. Have you formalized any of this knowledge, in terms of standards and
checklists or is it experienced based?

GT: “I developed a knowledge base, on our intranet. I write up
explanations of everything I know and everything that I learn. We are
building up the knowledge base, with related documents and information.”

7. How do you move on in a new model using the full dimensions?

GT: “We have separate extracts for dimension builds and data loads. We
do that in two different processes because the input source files for our
monthly update total about 700 MB. Trying to run through 700 MB, to pick
out and update the dimensionality is a very time consuming task. Instead s
we built SQL routines that query the relational database to find new
monthly entries that are put into a formatted input file. We use this file as
part of the monthly process to update the hierarchies before we load the
data. We are dealing with a much smaller hierarchy file, which is much
more efficient.

We make the relational database do as much of the data transformation
work so as to keep our load rules very simple.”

5.2.2.3 Client tools
1. What client tools do you use?

GT: “We have done some VB/Essbase development with Applied OLAP.
This is another one of our evolutionary processes that come out of these
Chapter 5. Interviews and experiences 111

applications. We were generating reports for small group executive
summaries and physician report cards. These are either a summary by
client or by physician of the drugs that they’ve dispensed over a certain
period of time, and on the physician report card, a comparison between
that doctor and all the other doctors within that specialty field. These
reports were being run off FoxPro.

One of the goals for the Warehouse Team was to move out of that
structure. Consequently, about a year and a half ago, we started looking at
a way to quickly develop an internal process. We put an application
together using the spreadsheet toolkit and VBA macros. It took a couple of
weeks to complete. However, it was costly to maintain and support
because of the need for developers to hand-hold it, so we initiated another
project to evolve it. At the same time, we were looking to see how we
could get Excel-like functionality on the Web, including access to our
cubes.

We found Applied OLAP could provide everything we needed. We started
a project with them last March. In September, we started production
delivery. The entire process was streamlined. Now, we have a front end
tool that lets our users maintain the report specifications in an MS Access
database. From there we generate the XML sheets, that run against the
Applied OLAP custom reporting applications to produces the thousands of
reports that we distribute. Our account managers enter account
information about new clients, that automatically flow through the process.
Production Control regenerates the XML to automatically update the
retrieval list and then all the requests are automatically run in batch. To
give our customers flexibility, we can print the reports, email them, or store
them on a client-specific bulletin board. The electronic delivery consists of
an Excel workbook. They can go into the workbook for additional
functionality without having to re-key information from a printout.

Actually, customers have also a direct on-line access. We had contracted
with Painted Word, in 1998. They constructed a Web-based, Java
application that allowed external customers to come in and use an Excel
look alike. It has limited Excel functionality, providing a spreadsheet grid.
Once they navigate to a low enough level within the OLAP cube, they can
pick a measure and drill down into the relational detail that generated the
cube. With this application, we were quite a way ahead of the curve for
this three years ago.”

2. Who designs the reports that you deliver to your clients?

GT: “Internal pharmacists and account managers designed the original
reports. One of the ways we add value is to involve our clinical staff. They
perform analysis, taking a look at the different views from a pharmacy or
112 DB2 OLAP Server - Theory and Practices

clinical perspective. In addition, we provide financial and claims
processing reports. Some of these are standard outputs from our claims
processing system, but generally the business users design the reports
based on requests from the customers.”

5.2.2.4 Administration
1. How do you manage security?

GT: “I don’t think it’s trivial. Our issue is providing our clients with
Web-based access through front end applications. We have to restrict
their access within the OLAP cube.

For example, some of our clients are third party administrators. They may
have multiple accounts, who are competitors. We had to create a security
scheme through our Web interface, that limits their ability to see other
data. The issue within the OLAP Server is that if you go to an account and
zoom out and go back to carrier and zoom in, you will see all accounts.
Our solution within the Web interface was to introduce a relational table
that handles security within the applications, limiting the database view by
customer.

Our OLAP security system is not integrated with other systems, but we are
looking forward to the promised land of single sign-on.”

5.2.2.5 Operations
1. What steps to put a new application into production?

GT: “Within our application development process, we can deploy new
applications within two weeks, and often, within one week. But, there are a
lot of other issues that go into the project life cycle. Let’s say we’ve gone
through a two to three week development cycle.

Most of the development is handled by our OLAP team. We are primarily
responsible for the production side of the warehouse. We sit down and
conduct a run-through. We will check it out first. Then, we have a couple of
our business users look at it. We also update the automated balancing
routines to verify the numbers, and check that the dollar amounts are what
they should be. Usually, the only discernible way the users have of
knowing that it’s gone from prototype to production is that all of the data is
there. We send out regular communications on the status of models and
our production environment.”

2. How do you manage backups?

GT: “We use Veritas cartridge based tape backups. The backup process
runs every weekend. Sometimes we overlap with the production run
because some of our calculations take a long time. If a specific cube is
Chapter 5. Interviews and experiences 113

calculating and is therefore active, it will not be backed up. We run that
backup separately. This usually happens as we perform prior month
updates in the first week of the month. We are conservative with our batch
calculations at the moment, because of I/O issues we have with our
current server.

Our systems testing on the AIX platform have been successful in running
multiple calculations for large databases. In our current production
environment, we run the big calculations sequentially and then run the
smaller ones in parallel. If a model resides on a single logical drive we can
calculate it in conjunction with a model that spans drives. Running multiple
calculations or multiple models on spanned drives don’t work well with our
Alpha server.”

3. Do you have any disaster recovery plans?

GT: “We have offsite storage. We take periodic snapshots that are moved
off site. The economics don’t work for full disaster recovery, but we should
be able to get back into production in a couple of weeks if the worst
happened.”

4. What’s your strategy for applying fixpacks or patches?

GT: “Well, when forced to update, we do, but when we find a stable level
that is working for us, we stay there. We run quite a way behind the latest
patch level, when a certain level of software is working in production.
There have to be some pretty dramatic enhancements for us to go through
the effort of upgrading. We are converting at our current level, but will
upgrade to the latest version and latest patch once the AIX production is
stable.

Unless there is some urgent call for function that we don’t have, we will not
update until we see there is a real need.”

5. What’s your strategy for applying new releases?

GT: “We always take a look at the new releases, and we usually find
significant new function that makes the upgrade cost worthwhile. But, we
do not rush out and upgrade. We wait for real requirements that demand
some new function.”

6. How do you manage upgrades to client tools?

GT: “Upgrading means delivering the Application Manager, delivering the
spreadsheet client, and whatever else we have integrated in our front end
applications and making sure that it all works, so for a small organization,
it is a significant effort. We have lists of users and applications that
support this process.”
114 DB2 OLAP Server - Theory and Practices

7. What makes up your batch process?

GT: “We have a two tier system, monthly and daily.

We have segmented the detailed monthly models by region. Most of our
internal processing doesn’t require the same level of detail, so we built
another model that contains all of the regions, all the clients, but doesn’t
have as much detail in other dimensions so that we can begin to do the
monthly reporting. This database is usually ready on the second of the
new month. Many times it’s available on the first of the month. In addition,
we have daily models that get consolidated into the monthly cubes.

On the last day of the month, the daily processes run. Then the relational
database runs a series of routines so that by mid morning on the first, we
have all of the hierarchy files and data files delivered. We can then start
our update process. Often, by mid afternoon we have delivered the
internal model for review of monthly data.

We are not getting a lot of pressure to update more frequently; between
what we do in the monthly models and the daily models we are meeting
demand. Any time that someone wants to go in and see if current month
trend looks good compared to the previous month, they can do that with
the daily models. Each day, claims that are processed through our system
until midnight are moved into the relational database overnight. The cube
source files are then formatted and delivered to us in the morning. We
load them during the day and our calculations run the next night.”

8. How do you automate the OLAP operations?

GT: “The processing of the relational data, the extraction of the flat files,
dimension builds, data loads are using automated software routines that
get the data from the AS400, load it into the Data Warehouse and then
deliver the flat files for the OLAP cubes. We have several files
summarized different ways by the Data Warehouse. We have members,
and within the member population are people who have prescriptions. We
roll those up based on the number of people who use certain drugs, the
number of people who utilize a certain place of service, for instance an
ambulatory service, a long-term facility or a mail order facility. Then we
also roll up by physician, so we can see which doctors are prescribing
which drugs. That’s another set of information, much smaller files, but it’s
another way that we have been able to incorporate another level of data
into the OLAP model, another level of summary. We have update
processes for the outline changes, that are largely manual. We have a
product from Painted Word called Clockwork, an OLAP batch loader which
runs the data loads and calculations. Within Clockwork, we have an
automated start time for the nightly calculations.”
Chapter 5. Interviews and experiences 115

5.2.2.6 Conclusion
1. What do you consider to be the world class things you are doing?

GT: “First of all, the ability to bring in a number of diverse data sources
and turn around and produce OLAP cubes that our internal folks can look
at. Our Web interface, which gives customers the ability to get into the
cubes and analyze the data using either a Java based user interface, with
the drill into the relational database, or using our Excel based Web
application. This gets us the point where the client only needs a browser
to be able to get at the data that they need.

On the operational side, we make it work every month. It’s a complex
production environment with large data volumes, but it’s there, it’s up, and
we’ve had very few problems with down time. Our operational staff have
realized that availability is very important. We are running in the high
90%’s.”

2. What is the most important change you will make to improve your OLAP
installation?

GT: “We are going to provide the level of performance to the client that
they are demanding in the Web world.”
116 DB2 OLAP Server - Theory and Practices

5.2.3 Mark Rich’s interview
Mark Rich (MR) has been working as a financial and business analyst for 16
years in IBM. In 1998, he was brought on board to lead IBM's World Wide
Planning System, currently based on IBM DB2 OLAP on IBM RS6000
technology (APEX project).

5.2.3.1 Environment
1. Describe your OLAP environment.

MR: “We run AIX on SP2.

AIX gives us scalability. On the RS/6000 platform we can keep adding
processors, memory and disks, and the operating system supports
high-end systems very well. Of course that is limited by the particular
system that you have, which is where the SP2 cluster comes in.

Being an IBM system, we have to follow very strict security guidelines and
NT especially will not come close to being able to give us the security that
we need, AIX has the support we need.

Then we cluster the RS/6000 nodes into an SP2. With the SP2 we were
able to take multiple nodes, machines that were being maintained around
the world, and bring them into a single complex. This allows us to offer
24X7 support, with staff that control and manage the entire SP2 complex.

We have a workstation that is capable of operating all the software, all
security updates, all operating systems through a single point of entry
within the SP2.”

2. How are you exploiting the multiple processors?

MR: “The SP2 itself is broken out into clusters of several RS/6000s for
manageability. With this configuration we are able to run 24 X 7 X 365 for
read capability, and unless we have problems, every one of our models is
available for update just under 24 hours every day. We have a very small
window, 10 or 15 minutes, when update isn’t supported. This is dictated by
the size of our cubes. We have to disengage one of the three mirrors to
take a backup. Once a mirror is completely disengaged, we only have two
mirrors, but we are writable again.”

3. What do the nodes look like today, are they high-end nodes?

MR: “The system has been in place about three years. The main cluster
uses 604E nodes with 2-4G of memory with 215G of storage for OLAP
cubes, which we triple mirror. We are building a brand new cluster using
the latest technology with 375 or 400 MHz processors, which go up to 24
CPUs and up to 32G of memory and 400G of writable DASD per physical
node.”
Chapter 5. Interviews and experiences 117

4. How do you decide what runs on each node?

MR: “We have a total of 28 nodes. Of these, 4 nodes are for backups,
using HACMP capability. We have 2 nodes for development, which
includes system integration testing by us and the development team and
operations when we get new code. The other nodes are split onto 4
different production clusters, which are split out by IBM business group —
a node for the Software Group, a node for the Server Group, and a node
for the PC company. Then we have nodes for the geographies; for
example, EMEA has 2 nodes. And for the corporate CHQ models we have
3 nodes.

We carry out benchmarks to decide how we further allocate the nodes
based on how much RAM is used for particular models, how much CPU or
how many CPUs, and how many different functions you have running
within the cube itself.

So we balance across line of business and then further balance based on
resource requirements, but we haven’t been able to balance as much as
we want on resources. The ideal would result in 2 or 3 SP2s as opposed to
what we have right now.

5. What about development and test?

MR: “We now have 2 nodes in the SP2 complex, which we use for a
variety of development and testing activities. Ideally we should not be
developing within the production complex so we also have cascaded
machines from older system. These are not managed within the SP2
complex but are used by the development teams, and we do most of our
development there, building new models, and testing new function Beta
programs”.

6. Where does your source data come from?

MR: “The input data is measurements, matched with accounting data,
which come from a Data Warehouse, but our models are largely for
planning and budgeting so most of the data is created in the models by the
analysts.”

7. How many cubes are you supporting?

MR: “We have 490 cubes.

The smallest cubes are in the 200 M to 300 M range. These are small and
easy to work with. The largest cube right now is about 70 GB. We brought
that down drastically from over 100 GB.”
118 DB2 OLAP Server - Theory and Practices

a. Presumably bringing down the number of cubes will make the whole
thing more manageable?

MR: “Yes. As many CPUs as we have in the SP2, our biggest problem
is still performance. If we reduce the number of cubes we can make
better use of the available resources.

8. What applications are the cubes supporting?

MR: “Every one of our cubes is financial. They are used for measurement
reporting, the majority for IBM Financial Planning.

One of our major tasks next year is to understand why we have so many
cubes. We think we have a large number of models that are very similar
that can be merged across divisions. We hope we can use Application
Partitioning to have source cubes with four or five dimensions and have
four or five cubes connected together through the exact same four or five
dimensions and then have an additional dimension, which is unique.

We want to align common cubes and hopefully reduce the number to
something like 200.

9. How many users are you supporting?

MR: “We put a limit on each node as to how many people can connect. On
10 of our nodes we have a limit of 100 concurrent users. On another 10
nodes the limit is from 100 to 175 concurrent users. We have one node
that goes up to 250 concurrent users. We are not limiting users per model,
we are limiting per node.

Our user population is 6000, worldwide. Within the cluster we can support
1675 concurrent users.”

10.What is the makeup of your team?

MR: “Our development staff is currently about 10 people. The core
development team is gradually getting smaller as our base of power users
increases. Some of the satellite areas like Software Group and Global
Services have their development staff of 2 or 3 people each. They do
development for their own models and only come to us when there is an
issue.

Of our 10 developers, we have 2 people that have very little OLAP
knowledge. They are developing tools around the product. They
understand the APIs and programming, but they do not build models.

We have 4 people working on system maintenance and support, 2 that I
mentioned before for OLAP API development, 1 for associated
development, and 3 really good OLAP modeling people.
Chapter 5. Interviews and experiences 119

So we have a strong core team, but there are also model designers and
strong model developers distributed across the various business units.”

a. Is the data warehouse your responsibility as well?

MR: “The data warehouse is another groups responsibility, but once it’s
in our models, it’s our responsibility.”

b. How’s your relationship with the warehousing group, does it work well?

MR: “It works well, but the reality is, as with any group, they have
totally different priorities than we do. They work with us to help us work
efficiently with the data, but the priorities differ.”

5.2.3.2 Design
1. Where do your OLAP requirements come from?

MR: “A lot of the OLAP requirements are coming in from the business
users, from the line of business itself. Presumably my team is often
involved with people from the line of business who are new to OLAP who
want 27 dimensions and the nth level of detail. The toughest thing to deal
with is getting the person to think multi-dimensionally, even the power
users and the developers now, when they start thinking about a model like
an end user would, it gets very tricky to understand what the dimensions
are. Once we have found the right set of dimensions, it’s pretty easy.”

a. Do you rely on your power users, your developers and designers to get
the dimensionality right?

MR: “A good starting point is an existing model. Then they come in
with an additional request for information that they want added at a
certain point within the model. That’s how the requests usually start.”

2. When developing a new OLAP model what techniques do you use?

MR: “A good starting point is an existing model. Then power users come
in with an additional request for information that they want added at a
certain point within the model. That’s how the requests usually start.”

We like to give them an understanding of what we are trying to convey to
them and vice versa. What we spend most of the time on is what it will like
in the Lotus spreadsheet and how they’ll pull their information.”

a. So you very quickly build a prototype of the spreadsheet and let them
see it in Lotus 1-2-3?

MR: “Yes. From there we quickly build a prototype outline and let them
start slicing and dicing.”
120 DB2 OLAP Server - Theory and Practices

b. So if I want a new model, we work together and come up with a design
that we think is reasonable. Do you then go through any sort of
estimating process, or do you just go ahead and build the cube?

MR: “Unfortunately we have not found a way to get good estimates.
We use the standards that Hyperion has given us over time and the
knowledge that we have evolved through development and we just take
it from there.”

c. When you are going through this first model build, what are the things
at the top of your list in terms of technical settings. Are you most
worried about block size then sparse/dense, how detailed does that list
get?

MR: “We worry about identifying the dimensions. Then we take a look
at how this would change and how often and factor that into our choice
of dense and sparse. We usually don’t have too much flexibility. We
have some models with block size over 300K.”

d. Do you use dynamic calculation?

MR: “We do, but we will only do dynamic within the block. We know
you can also use dynamic calculation on sparse dimensions, but it
impacts retrieval performance. The power users work with the end
users to get the balance right and keep retrieval times acceptable to
the individual end users.”

e. Do you have this sort of thing formalized in a checklist?

MR: “Unfortunately we have very little that is formalized. When a
model is done, we don’t review it to make sure it’s efficient for the
group. Whoever worked on the model is responsible for it. We really
don’t have anything in writing, other than what has been distributed
from communications with the vendors and through technical meetings.

f. So you are relying on the body of knowledge that your people have
built up?

MR: “Yes. We still feel that building a cube is more of an art than it is a
science, and we haven’t been able to formalize very much.

g. When a new model has been through the design process do you do
anything to test query response time or is that down to the users?

MR: “We do accept this task when it’s given to us, but our job is more
about managing the production side. We just make sure that we can
deliver the model, the rest is up to the power users. Remember that we
have 490 models in production, and the models change. The power
users have database administrator authority and there is a supervisor
for each node. They modify the cube over time, we don’t go back and
Chapter 5. Interviews and experiences 121

review them on a regular basis. Once we have developed the models
and put them into production, we don’t go back to them.”

3. How do you go from prototype to production model? On average how long
does it take you to develop and deploy a new model and get it into
production?

MR: “With a new model that is based on an existing outline, say 75%
reuse, we can do something as fast as a week. We prefer to take more
time, but 4 weeks is probably the maximum.”

4. How do you validate your cubes?

MR: “For the models that we load data into, we validate the input data.
For the pure planning models the input is from the analysts, and the power
users are responsible for validating these models. Before any planning
scenario or planning cycle can be closed it has to be validated. This is
down to the planners, analysts and power users. Then the IBM financial
community verifies the data within the model.” We don’t have any
validation process, because it is managed by the analysts and the
financial community within IBM.”

5.2.3.3 Client tools
1. What client tools do you use?

MR: “All of our users are running Lotus 1-2-3 with the spreadsheet add-in.
We are also doing some work with Alphablocks and their new
Spreadsheet Box. Moving to the Web is obviously very interesting, and the
ability to assemble Web pages that shows multiple cubes and other data
sources within a single page.”

2. Do you publish reports from your data?

MR: “We do not have an EIS type interface to our systems. Our user
community is made up of financial analysts and planners rather than
executives.”

5.2.3.4 Administration
1. How do you manage load updates?

MR: “Some of the cubes we work on are a rolling twelve month time
period and we may have a major change over at the end of the year where
we have to reset everything and start again. The good news is, other than
20 models or so, we have very little involvement from the development
side, the supervisors manage the changeover process. In many cases, the
best way to set up for the new period is to make a copy of the current
model. This automatically copies all the latest changes. The latest inputs
from the analysts, the latest security filters and so on. Then they can
122 DB2 OLAP Server - Theory and Practices

update the model and make it ready for the new financial period. With so
many large models, this really puts our resources under pressure. We
audit model use, and storage use and try to be as resource efficient as
possible. During the switch we are under a lot of pressure because users
want to run two sets of models for a while.

2. How do you manage security?

MR: “With over 6000 users, security is a real issue for us. For example,
when we open a new financial year we have to create many new models,
and each of these should have the same complex security model as the
previous year, including all the filters and rules that developed throughout
the year. We have to move the whole thing from model to model. The
power users and supervisors spend a lot of time on security and
administration, which includes security.

We are working on an internal system that should help. Each user will be
uniquely identified within IBM, and we will maintain security for these IDs
across the cubes, the report pool on the Web, for Application Manager
functions and the spreadsheet add-in. They will have one password to
manage for all access.”

a. So you are moving towards a single sign on?

MR: “Yes, that’s what we want to do.“

b. Building filters, adding people to groups removing people when they
leave, all this security administration is done by the power users who
own each of the nodes, is that right?

MR: “Yes”

c. Do you have any integration of this security system with other security
systems?

MR: “Yes. The CHQ system is integrated with the Data Warehouse for
financial accounting data, so people request access through the center
that manages access to all of IBM’s accounting data worldwide. This is
a highly secure system. Access to other models we can do ourselves,
but through the proper channels.”

d. Are the actual updates to the OLAP security system automated?

MR: “No, unfortunately it’s a manual process for us.”
Chapter 5. Interviews and experiences 123

5.2.3.5 Operations
1. How do you manage backups?

MR: “We use triple mirroring, and we take one mirror off line to do a
backup. We use ADSM. It runs on one node, so each cluster has its own
ADSM setup. The backups run as part of the batch process, nightly, but
because we have clusters that support different geographies around the
world we backup according to geography. The backup for Asia Pacific runs
through our lunchtime, the European backup runs around 7PM.”

We use the Begin Archive function to put the model in read only mode,
then we take the mirror off-line, run the archive, put the mirror back on-line
and issue the End Archive command.

a. How granular is the back up, do you just backup the data?

MR: “We backup everything that is written to disk other than the
operating system. The system is We can override this too, for example
we have some history models which don’t change. We can take a one
time backup for these, and that’s pretty much it.”

b. Do you take incremental backups?

MR: “No, we need to be able to recover very quickly even if we lose an
entire node, so we have a complete backup that we could even reload
to another node within the SP2 complex. If we lose a disk, we have
triple mirroring. If we lost several disks at the same time in several
places, we would have to go to the tape backup, but we haven’t had
that issue yet. With HACMP, if we lose the node because of a hardware
failure then HACMP is ready to take over.”

c. So, if you loose a whole node, how quickly could you get the models
back?

MR: “If we loose the whole node and we didn’t lose the DASD, your
model could be back up and you wouldn’t even know it. HACMP would
simply take over. But, if we lost the DASD or if you have a database
corruption and you have to reload that cube from tape it may take up to
3 or 4 hours for the very large models, 20 to 30 minutes for small
model, tape speed is the limitation.”

2. Do you have any disaster recovery plans in place for OLAP?

MR: “We did investigate it, but it’s not cost effective at this point in time.”
124 DB2 OLAP Server - Theory and Practices

3. What’s your strategy for applying fixpacks or patches?

MR: “My ideal would be an upgrade every six months and no more. We
haven’t applied service for over six months now, and we probably won’t
until the next release. Six months ago we were upgrading every single
patch because of fixes that we really needed. We get to the point where
we understand the limitations of the current level and what we need to
work around, and we stay there if possible. We aren’t exploiting some
major pieces of functionality because of this, for example, we have tried to
use Application Partitioning, but we found problems with it. The problems
were fixed in a later patch, but by then we had a stable system which we
didn’t want to put at risk. We look at major releases very early, including
running the Beta releases. We have to decide if there’s enough new
functionality to justify the upgrade including the system integration test
cycle, which can take up to 2 months, and then updates for all the
production nodes and 6000 users. If we decide the upgrade makes sense,
then we go through the process of testing until we find a level that we can
stabilize on. Ideally, we would have a new release in production in 3
months, but we have not managed this yet. Finding the right combination
of functionality and stability has taken up to 8 months for us. “

4. What tools do you use to run your systems?

MR: “It’s literally down to code we have developed around AIX facilities
for scheduling and managing processes. We use Tivoli, and ADSM, and
customer code to tie it all together.”

5. How do you monitor the batch process?

MR: “We have 24x7 operational support, so there is always someone
available who will receive a message if things start to go wrong. I get
notified if the backup fails or aborts for the corporate models. I get daily
status reports that let me know how everything is running, and what
needed attention.”

a. You said your goal was to be 24x7x365, what do you think you are
actually achieving?

MR: “For read capability, we’re there now. Other than problems, we are
actually there.”

b. How often are you losing time because of problems?

MR: “I would say probably say we take a hit once a month. Sometimes
it’s more because of particular software issues or design issues, for
example when we tried to use Application Partitioning for one set of
models we had to recycle a node every day for 8 days until we worked
out a particular problem.”
Chapter 5. Interviews and experiences 125

5.2.3.6 Conclusion
1. What do you consider to be the world class things you are doing?

MR: “Everything that we do with the SP2. The whole operation in my
opinion is state of the art but it took us time to get there, and we had to
build a lot of skills along the way. We are also a great example of OLAP
large-scale enterprise OLAP for planning, forecasting and budgeting. Our
models are not for reporting, they are for analysis, planning and
forecasting for one of the largest corporations in the world. We have 6000
users, that’s not 6000 people looking at reports, it’s 6000 users who are
updating the data and running scenarios.”

2. What is the most important change you will make to improve your OLAP
installation?

MR: “We will be deploying a new release of the OLAP Server, and we will
be updating our hardware. We would also like to deploy Integration
Server. It would help a lot with model building from our Data Warehouse.”
126 DB2 OLAP Server - Theory and Practices

5.2.4 Joe Scovell’s and Jacques Chenot’s interviews
Joe Scovell and Jacques Chenot (JS&JC) are working at DST Systems Inc.,
of Kansas City, a Transfer Agent in the Mutual Fund Industry. Joe Scovell is a
Client Services Manager. He has 13 years experience working with many
diverse Mutual Fund clients. His area of expertise centers around providing
clients value-added services that enable them to intelligently mine their data.

5.2.4.1 Environment
1. Describe your OLAP environment.

JS&JC: “We are running Windows NT on our two servers. They are both 4
way 400 MHz Pentium. Each has over 1 GB of RAM.

One is used for production and the other one is a test environment.

We chose NT because that’s where most of our expertise and knowledge
is, so yes, we are comfortable operating in that environment. As we move
forward, all the software that we use is scalable to UNIX and AIX, so there
could be a possibility of migration to a larger platform.”

2. What about development and test?

JS&JC: “We do most of our development on the test server. We do have
another machine that can function as an OLAP server from time to time, if
we just want to play around with something.”

3. Where does your source data come from?

JS&JC: “We have a very strong data warehousing environment. We can
source from our mainframe based systems, and from our Data Warehouse
on DB2 Universal Database on NT, which is also available to our users for
ad-hoc query and reporting.

a. Are you pulling this data directly from the SQL interface or do you
snapshot through files?

JS&JC: “We can do both as required.

We prefer to use the SQL interface. We haven’t noticed any particular
advantages or disadvantages either way, the SQL interface is just a
more integrated way to source the data.”

b. How much work do you do in the data warehouse to get the data just
right for OLAP? Are you building special tables, special views that you
load from?

JS&JC: “No, we are able to do most of our conversions in the SQL.”

4. What storage devices do you use, and how do you use them?
Chapter 5. Interviews and experiences 127

JS&JC: “The primary drives are RAID 1 and the data and index drives are
RAID 5. They both have over 100 GB of DASD.”

5. How do you optimize server resources allocation?

JS&JC: “Our users have good response times, so we concentrate on
allocating the server resources during load and calculation. We have
learned how to make best use of the available CPUs and memory by load
balancing across all the jobs that need to run.

We have scripted all of our load and calculations, and as part of the
scripting we distribute the available memory according to the requirements
of each cube. This is done dynamically before each set of loads and
calculations start. The scripts set the caches for optimum calculation
performance then we reset the caches to the level required to support
queries, when the set of calculation is complete. We make sure that we
don’t over commit memory by running the right cubes together in a set. A
set may run up to 4 concurrent calculations if there’s enough memory to
go round.

a. So at some point you’ll be running 4 concurrent calculations, and at
other points one or two, depending on how much memory they require?

JS&JC: “Yes.

b. So the maximum concurrence is dictated by the number of CPUs
available, and your scripts are dynamically allocating memory to the
OLAP Server caches based on the operation that’s in progress?

JS&JC: “That’s correct.

6. How many cubes are you supporting?

JS&JC: “We have 27 cubes on the production server, 21 cubes on our test
server. They currently range anywhere from just a few MB up to 4 GB.

7. What applications are the cubes supporting?

JS&JC: “All our cubes are used for financial analysis.”

8. How many users are you supporting?

JS&JC: “We have about 85 users in total, and maybe 10 to 15 logon at
any one time. And we see that growing very much.”

a. What’s your strategy for supporting more customers, and more users?
Will you be adding more NT servers?

JS&JC: “We are in the process of evaluating our OLAP architecture to
get the best performance. Whether or not we continue to use NT
servers or larger UNIX server will be determined in the analysis.”
128 DB2 OLAP Server - Theory and Practices

b. What’s going to be the key thing that drives you to add another server,
is it going to be calculation time, the number of users, or the physical
partitioning that you get because you can serve one customer from one
server and another customer from another server. What’s going into
that decision process?

JS&JC: “A combination of all of those.

5.2.4.2 Design
1. Where do your OLAP requirements come from? What’s the planning

process that you go through when you are introducing a new OLAP cube?

JS&JC: “Basically it’s dictated by our clients. By the requirements that
they have, their Business Intelligence needs.”

a. Do the business users understand OLAP?

JS&JC: “Yes, they do.”

b. So you’ve got a trained business community and they bring you the
requirements?

JS&JC: “Yes.”

c. Do you go out looking for new opportunities or do find the business
community keeps you busy enough?

JS&JC: “A little bit of both. We talk to our business users and we tell
them the availability of the information we have and we listen to their
needs and from those needs we decide what the new opportunities
are.”

d. Business users who aren’t aware of the technology sometimes think
they need every available dimension, all at the lowest level of detail, all
in one cube. Do you get those sorts of requests and if you do, how do
you deal with that?

JS&JC: “We know what the capability of the warehouse is. We fully
explain the functionality and the response time they will receive the
larger their cubes get. We have guidelines that we use to decide how
large the cubes can be and how much granularity we can provide.”

e. So there’s an education process, and you mentioned guidelines. Can
you tell me something about those?

JS&JC: “Well, most of our clients take the cube that we have
developed, to meet the marketing and financial needs that they might
have. They make modifications to meet their specific needs and we
limit the dimensions between 7 to 10 depending on the model. We don’t
Chapter 5. Interviews and experiences 129

differ very often from that, so the guidelines are the basic cubes that
we’ve built.”

f. So in effect you’ve built templates that the clients can then modify
within certain bounds.

JS&JC: “Yes.”

2. When developing a new OLAP model, one that you don’t have a template
for, what techniques do you use?

JS&JC: “We have things like sizing spreadsheets that we’ve created
where we can input the number of stored members, and based on the
formulae we get an estimate of DASD space.”

a. What about finding the right dimensions?

JS&JC: “We are very familiar with our data and the business areas, so
we will create an initial outline and then work from there to try and
achieve a good block size and good density.

b. Do you use design on paper or do you use Application Manager?

JS&JC: “We quickly get into Application Manager and use it as an
iterative design tool.”

c. How long does it usually take to develop the initial outline?

JS&JC: “The initial outline development is probably the shortest part of
the process. It’s satisfying the client’s real requirement that takes time.
We go through a period of quickly adjusting the outline. At the same
time the client is becoming familiar with the OLAP environment and
what it’s going to actually do. Once the clients see data in a cube and
see how they can manipulate the data that’s when they really start
thinking. They may decide that the current design is not really what
they had in mind, scratch the whole thing, start over, and that’s OK.
They might want to add a couple of existing dimensions, something
new, a new measure, and so on. Depending on the application, it can
take two to four months to develop it and put it into production. By the
end, the clients are usually pretty satisfied with the end result. We
haven’t had to pull a cube out of production to modify it.”

d. So you are using the technology as quickly as possible rather than
doing abstract design, you’re using the technology to work through the
design.

JS&JC: “Yes that seems to work best. Give them something that they
can see and use, rather than working on an abstract design.”

e. When you’re building dimensions, particularly for a new model, do you
build directly from your warehouse environment?
130 DB2 OLAP Server - Theory and Practices

JS&JC: “Yes, we build dimensions from our warehouse environment,
then make changes and add hierarchies to meet the needs of each
client. For example, each client probably has a different way of doing
portfolio classifications. These may not be in the warehouse or our
internal systems, but as long as we can load the data at a lower level
that’s fine.”

3. What tuning steps do you go through as you develop an application?

JS&JC: “Beyond sparse dense and block size, use of dynamic calculation
is very important. Making parents in dense dimensions dynamic, and
formulae dynamic, has helped tremendously. We concentrate on
calculation times because we want our batch process to be as small as
possible. We haven’t found an increase in the query response time with
dynamic calculation.”

a. Do you have a checklist written down anywhere or do you go through a
mental list with things like block size, outline order, dynamic
calculation?

JS&JC: “We do have a checklist in that we follow an outline that we’ve
already created though we don’t design an exact copy, it’s very similar.
All the dimensions are tagged the way you think they would ultimately
perform, so we do have a kind of template.”

b. Do you put the templates through a review process to make sure they
are good?

JS&JC: “Yes, we incorporate all the design techniques that we have
found.”

c. How did you arrive at the set of design techniques?

JS&JC: “We did a lot of experimentation and testing.

d. Any particular tips, techniques that you always put into practice around
data load?

JS&JC: “We follow the recommended hourglass outline design and
then we use ORDER BY in the SQL to get the data in the right order.

e. There has been some debate about the best way to handle formulae,
using calculation scripts or outline formulae. Some say put everything
in the outline, some say put everything in a calculation script, what
have you found?

JS&JC: “We do use some formulae but it’s been limited because we
use substitution variables, and since you can’t incorporate those into a
formula we can’t use them.”

f. What are the substitution variables used for?
Chapter 5. Interviews and experiences 131

JS&JC: “Mostly for the months because we’ve got a lot of time series
base analysis going on.“

4. How do you go from prototype to production model? On average how long
does it take you to develop and deploy a new model and get it into
production?

JS&JC: “We do carry out frequent tests before the cube goes into
production. We watch the cache hit ratios and check that we have enough
memory allocated to them. We like to keep our index cache around 100%.

During the last month of the development cycle, the clients have access to
the cube to run queries and do testing with us. So, once they feel it’s OK,
we push it into production.”

5. How do you validate your cubes?

JS&JC: “We go through a formal process in putting cubes into production,
which includes data validation. We check back against existing reports
that run against the source systems on the mainframe. We work with the
client validating how the fields are calculated and where the data came
from and we develop a validation process that uses a set of reports
generated from the mainframe system that we validate against every time
we build the cube.”

5.2.4.3 Client tools
1. What client tools do you use?

JS&JC: “Some use the Excel spreadsheet add-in, others use Cognos
Powerplay or Business Objects. So we’ve got a range of client tools.”

a. How do the users choose one or the other or do they tend to use a
mixture?

JS&JC: “We find that our customers will tend to use the tool that they
already had. One of the advantages of DB2 OLAP is the open
architecture that has a wide range of client tools, allowing our
customers to use what they prefer.”

2. Who designs the reports that your clients run?

JS&JC: “The clients design their own reports and a lot of the spreadsheet
use is ad-hoc.”

3. Do you publish reports from your data?

JS&JC: “No, our clients want the ad-hoc capability that an OLAP Server
provides.”
132 DB2 OLAP Server - Theory and Practices

5.2.4.4 Administration
1. How do you manage the outline updates?

JS&JC: “Just new members are added to each dimension from time to
time and when those new members come in the dimension build take care
of the positioning of them automatically.”

2. How do you manage load updates?

JS&JC: “We are updating our cubes either by completely rebuilding them
or by using incremental loads and calculations. We do both depending on
the size of the cube. If it’s small we do a quick rebuild, if it’s large we do an
incremental build.

a. Have you found any advantages or disadvantages to either method?

JS&JC: “The smaller cubes lend themselves to a complete rebuild
more so than incremental and that seems really to reduce the
fragmentation.”

b. How often do you refresh the cubes?

JS&JC: “We do monthly updates.

c. How much history have you got in the cubes?

JS&JC: “Everything from one month to two years.

3. How do you manage security?

JS&JC: “We don’t spend a lot of time making changes and updates to
security. When our clients want to add a user, they’ll notify us through
email and we set up the new ID. Security is straightforward and my staff is
responsible for looking after the security based on requests from the user
community.”

a. Do you integrate the OLAP security system with any other systems?

JS&JC: “No.”

5.2.4.5 Operations
1. How do you manage backups?

JS&JC: “We use ADSM to backup our page and index files and the
application directories. We also use export. We’ll export level 0 data to text
files, we’ll back those up.”

a. How often do the backups run?

JS&JC: “Once a week. Every Sunday, unless there have been a lot of
changes on a particular database, then we’ll take a backup as often as
we need to.
Chapter 5. Interviews and experiences 133

b. Are the weekly backups part of the batch process for building the whole
cube?

JS&JC: “No, it’s an independent process.

c. You mentioned either backing up page and index files or doing a level
zero export and then the application directory for load rules and things
like that. What about other parts of the system, things like configuration
files and security files, are they included?

JS&JC: “Those are included.”

d. Do you take incremental backups?

JS&JC: “We usually do full backups.”

e. So with a full backup if you needed to recover you’d just restore that
particular application?

JS&JC: “That’s right.”

2. Do you have any disaster recovery plans?

JS&JC: “Yes, we have. One of the reasons we do full backups is in case
there is a disaster that would prevent us from accessing the server or
something along those lines. We could use the full backup to restore to
another server.”

a. Do you have the tapes stored in two places or do you have offsite
storage for the tapes?

JS&JC: “Offsite storage.”

b. If the absolute worst happened, an earthquake or something and you
whole data center went down, do you have any plans in that area or
not?

JS&JC: “Yes, DST has very comprehensive contingency plans for
every aspect of our business including this area.”

3. What’s your strategy for applying fixpacks or patches?

JS&JC: “We load fixpacks onto one of the stand-alone machines that I
mentioned earlier. If they test out OK, then we update the test server and
go through some more testing to identify any bugs that may have
interfered with our applications. Once we feel confident with the fixpacks,
we put them on our production server.”

a. What’s your strategy with regard to frequency of service. Do you look at
every fixpack?

JS&JC: “Stability is what really drives our need. If it’s something in the
readme file that addresses an issue that we have then sure we’ll
134 DB2 OLAP Server - Theory and Practices

download it and install it. But if it’s for some functionality that we just
don’t utilize, then we don’t bother.”

b. What’s your ideal update frequency?

JS&JC: “We like the fact that fixpack are available frequently, so we
can decide which ones suit our needs.

c. How often do you put a fixpack into production?

JS&JC: “The test server is running the latest release and it has the
latest fixpack. We found we had to apply this fixpack quickly because of
a problem with the SQL Interface. The production is server is still
running the previous release, and we are about 3 fixpacks behind the
latest available level. We have never had to apply every fixpack.”

4. What batch window are you working with today?

JS&JC: “Each month, it’s completed within 24 hours. We can’t start the
batch process until the files are available, but we haven’t had problem at
all, with meeting our deadlines.”

a. So your OLAP batch window is defined on one side by the availability
of the data from the data warehouse. What defines the other side?

JS&JC: “We have a service level agreement with our clients that the
warehouse including the cubes will be available three calendar days
after month end processing is completed.”

5. How do you monitor the batch process?

JS&JC: “Between our developers someone is always monitoring the
process.”

a. Are you using any automation to detect failures?

JS&JC: “At this point it’s down to the team monitoring the process.”

b. How do you know if everything finished OK?

JS&JC: “The trigger is each calculation ending. When that happens we
run report scripts against the cubes and ship the report files to a
different platform where they are compared against reports that are
generated directly against the source system on the mainframe. If the
values don’t equal each other we know something isn’t right, and we
can research the reason.”

c. So you’re not just checking the things finished, you’re also checking the
accuracy of what you built?

JS&JC: “Yes, our clients require that. We work with the users to
identify the important types of reports they will run, and we build
validation reports to match.”
Chapter 5. Interviews and experiences 135

d. Have you ever missed the batch window?

JS&JC: “No.”

e. Is their anything in particular reason why you manage to meet the
requirements so often?

JS&JC: “Our business analysts spend a lot of time with the clients to
understand their requirements, so the production applications are quite
stable. We do a lot of testing and validation, and our developers are
constantly trying different techniques to improve things and reduce the
processing time.”

5.2.4.6 Conclusion
1. What do you consider to be the world class things you are doing?

JS&JC: “First of all, our accuracy. We spend a lot of time on the validation
process and we have been able to validate our data to the penny against
the mainframe source systems. That really gives the client a good feeling
about our product and its accuracy. Next would be the skills that we have
developed in working with our clients to understand their business
requirements and supply information that is valuable. “

a. “What is it that enables you to do that?

JS&JC: “We have a lot of experience understanding the business, the
data and the technology. DST has a lot of experience in this.

b. Any other best practices?

JS&JC: “On the technical side, our template based development
process is very strong, and we manage server resources very
efficiently.”

2. What is the most important change you will make to improve your OLAP
installation?

JS&JC: “From a technical standpoint we want to incorporate some of the
functionality provided in the latest release, for example Attribute
dimensions. We also want to use OLAP Integration Server to give our
clients some additional functionality that will take this product one step
further. We are also looking at delivering the information through the Web
— we would really like to see more seamless access to relational and
multidimensional data delivery through the Web.”
136 DB2 OLAP Server - Theory and Practices

5.2.5 Anonymous person’s interview
Anonymous (AA) is working in a large manufacturing company in USA.

5.2.5.1 Environment
1. Describe your environment

AA: “We use Windows NT server, Windows clients, Excel/VBA interface,
FTP for formatted workbooks, InTouch automation server, Essbase 502
patch11. We have chosen Windows NT server and Windows clients for
lower cost and available internal support.

Each OLAP server has 2 GB of memory, 4 processors and over 60 GB of
disks. We are using Compaq Proliant 6500 6/200 processors: it was the
optimal NT server configuration when purchased.”

2. What about development and test

AA: “We have 1 system for production, 1 for test and 1 for backup. Each
system has 2 GB of memory.

Separate production and test systems allows testing of new
versions/patches, database changes, outline changes. Backup server
provides redundancy for production server.”

3. What storage devices do you use and how do you use them?

AA: “Mirroring (EMC) provides redundant disk storage for production
server. This provides the ability to quickly switch from production to
backup server. “

4. How do you optimize your server resources?

AA: “For memory usage, we determine database block size, cache
settings, Essbase configuration thread settings. For disks, allocations are
based on estimated database sizes.The index and page file estimates/size
determine the amount to allocate.For processors, resource usage is
esteemed during loads and calculations).

Database design determines resources use. Design alternatives are
reviewed for impact on resource usage.”

5. How are you exploiting the multiple processors?

AA: “They are used to the extent that Essbase takes advantage of the
multiple processors, that is calculations, retrieves, and so forth.”

6. How many OLAP cubes are you supporting?

AA: “We manage 7 production cubes and all cubes are contained on one
production server.The page file sizes varies in range from 200 M to 2 G.”

7. What applications are the cubes supporting?
Chapter 5. Interviews and experiences 137

AA: “Actual General Ledger results reporting and Rolling Budget
forecasts.Each business unit queries only their own data.”

8. How many users do you support?

AA: “In average we support 70 users and our maximum is 150.

9. What is the makeup of your team on OLAP system administration?

AA: “4 people are working on OLAP system administration that means on
customer security administration, on outline changes on test/testing, on
migration from test to production.”

5.2.5.2 Design
1. Where do your OLAP requirements come from?

AA: “Customer reporting requirements are identified and then appropriate
tools/methods (ex. OLAP) are selected”

2. When developing a new OLAP model, what techniques do you use?

AA: “We use standard customer requirements analysis. Data analysis is
very important. We perform extensive prototyping/design alternatives.”

a. How do you recognize an OLAP opportunity?

AA: “Customer requirements identify OLAP reporting characteristics
(pivots/drilldowns/rollups). We control number of dimensions and
granularity using data analysis. We identify required
dimensions/members and then we perform feasibility/optimization/cost
analysis.

We also determine if partitioned cubes/SQL drill-through will provide
sufficient reporting detail.”

b. What tools and techniques do you use for high level modeling?

AA: “We use data/affinity analysis and also cases. We identify data
requirements and views. We are also considering existing reports.

c. How much design work do you do on paper or with the OLAP Server?

AA: “We use paper for initial requirements/high level modeling and
OLAP for more detailed prototyping/feasibility analysis”

d. How quickly do you aim to develop an initial outline?

AA: “We are able to get an initial outline very shortly after high level
data requirements are identified.”

e. What steps do you go through to get the source data in place?

AA: “We manually collect from existing files/spreadsheets, we extract
from operational sources.”
138 DB2 OLAP Server - Theory and Practices

f. How do estimate cube size and resource requirements?

AA: “We did the following:

 • Determine block size
 • Determine/test cache sizes
 • Determine OS thread count
 • Determine index and page sizes/estimate growth
 • Estimate load/calc usage

g. What are the most important configuration steps at this point - block
size, dense/sparse...

AA: “The most important steps are:

 • Review block size to determine if optimal
 • Test data load times and review data input order
 • Review calc time for entire cube and sub cubes. Review use of

dynamic calculations and label only members
 • Review retrieval time for stored, dynamic, and parent members.

h. What tips/techniques do you employ at this stage - dynamic
calculation, label only, outline order...

AA: “We follow the guidelines:

 • Store only what is required (dynamic calculations/ label only/ UDAs)
 • Test retrieval times for dynamic calculations
 • Outline order for dynamic calculations.

i. How do you build full dimensions?

AA: “We build full dimensions manually or by extracting from SQL or
sequential files.”

j. How do you source data?

AA: “We use worksheets or extract programs. It is important to identify
data sources early and to verify data source contents/accuracy.”

k. What tips/techniques do you employ for data load? - ordering,
transformation using SQL

AA: “We perform sample export to determine optimal data load order,
we reduce size of data file to reduce load time and we use outline order

l. Do you use calculation scripts or outline formulae?

AA: “Dynamic outline formulae were extensively used to reduce batch
calculation times and storage requirements. The formulae were
balanced with retrieval times. There are no calculation scripts other
than to clear/move data.”
Chapter 5. Interviews and experiences 139

m. How do you test query response time?

AA: “We load representative data files, we test dynamic calculations
and we test all dimension level combinations/zooms/pivots with Excel
client and report scripts. We use set of Excel worksheets and report
scripts to compare between different implementation alternatives.”

3. How do you go from prototype to production model?

AA: “We test on Essbase server dedicated to test. We do an initial
production testing and we deploy to customers before next Accounting
monthly closing cycle.”

4. What tuning steps do you go through tips/techniques do you employ for
tuning?

AA: “We do the following:

 - Review cache settings, there is no set method to determine which
settings will be optimal, and we test with different settings

 - Review retrieval buffer
 - Review block size
 - Test use of dynamic calculations and review impact on retrieves and

data loads/calcs. Review impact of outline on calc order.
 - Test dynamic calculation retrieves
 - Review default calc times
 - Review all retrieves
 - Perform full data load test
 - Reduce unnecessary rollups, use label only
 - Only store what is required. Use dynamic calculations
 - Use partitions to reduce cube calc times

5. How do you go from prototype to production model?

AA: “We do the following:

 - Load all dimension members to verify outline
 - Create full production data load files to verify data sources and

contents
 - Review all security filters
 - Extensive customer testing of prototype
 - Create new app/db and copy outline and data files to production and

we create security groups/filters

5.2.5.3 Client tools
1. What client tools do you use?

AA: “We use Excel addin, Visual Basic utilities for security and LRO
administration. We pick these tools because they are part of standard
140 DB2 OLAP Server - Theory and Practices

Essbase package. Visual Basic API is provided. The most important
features of the client tools we use are ease of use and no additional cost.
Customers use Excel addin. IT uses Visual Basic.”

2. Who designs and builds reports?

AA: “Corporate customers build formatted reports. Worldwide customers
create ad-hoc reports.”

3. How do you publish reports?

AA: “Reports are stored on Windows NT server and available for FTP
access in application.”

5.2.5.4 Administration
1. How do you manage the outline updates?

AA: “The outlines change at minimum of once per month. We do manual
and automated dimension builds. We use automated build with SQL and
host extract dimension build files. We test change impact on database
performance and we verify reporting accuracy.

2. How do you manage load updates?

AA: “Cubes are rebuilt if they are fragmented. Restructuring may lose
LROs; then after the outline changes, we restructure all data if there are
LROs to preserve. If not, we clear upper blocks and we restructure level 0
data. Incremental data is loaded after each facility closes their books.

3. Do you manage a rolling time period? How? What issues do you face?

AA: “There is a dimension that identifies which budget submission period.”

4. Do you use Application Partitioning and how?

AA: “Previously, we had used partitioning. An error in Essbase caused
occasional excessive replication times. We replaced with report scripts to
replicate. You must keep all partition definitions in synchronization.”

5. How do you manage security?

AA: “When new business units or new customers are identified, Essbase
groups, userids, and filters are added. Filters are changed each month to
allow cube updates to current month/submission data. DB2 tables provide
backup and logging for security changes.
Chapter 5. Interviews and experiences 141

5.2.5.5 Operations
1. How do you manage backups for OLAP?

AA: “EMC is used to provide mirror for all production Essbase directories
(system and application). EMC mirror is split and cubes are
validated/exported on backup server and copied to be backed up. Mirror is
re-established after backups. We use EMC for mirroring and InTouch for
job scheduling. Backups are run daily. We recover by restoring backup
directories and reloading source data for ssaudit log files.”

2. Do you have any disaster recovery plans?

AA: “Backups are stored at secure site and will be restored as part of
overall LAN recovery.”

3. What’s your strategy for applying fixpacks or patches?

AA: “LAN support group apply OLAP fixpacks 1-2 times per year.
Upgrades are scheduled at same times each year. All versions/patches
are tested on test server. All Essbase software is tested (utilities,
Application Manager, API). The upgrade process follows:

a. New patch is applied to test server
b. Test scripts are updated
c. Any conversions are performed
d. All Essbase software is tested
e. Upgrade to production scheduled w/customers
f. Upgrade installed on prod server
g. Run Installation verification scripts

4. What batch window are you working with today?

AA: “There is a 6-day window that all facility data must be loaded and
calculated. There is a 2-hour window after the last facility data is loaded that
consolidated analysis/reports must be completed. Production Essbase must
be available 7/24 and to minimize downtime for backups.

a. What defines the batch window?

AA: “Corp Accounting reporting requirements.”

b. What processes do you run during a typical batch process, and how
long do they take?

AA: “The processes we launch in a typical batch process are:

1. Facility data clear, load, and calcs. 10 minutes
2. Calculate all data for all General Ledger data cubes. 20 minutes
142 DB2 OLAP Server - Theory and Practices

5. How do you manage errors in the batch process?

AA: “We use InTouch automation software emails notification (also ability
to page). Error files are corrected, re-loaded and calculated.

6. How do you automate the batch process?

AA: “We still use InTouch automation software. Host jobs create InTouch
job and data load files. InTouch notifies if there are any errors.”

7. What makes up your batch process?

AA: “Applications are always available other than the few minutes for the
backup process. We miss the batch window less than 1%. We
implemented additional monitoring/logging of data loads to notify when
InTouch or Essbase.
Chapter 5. Interviews and experiences 143

5.2.6 Rich Semetulskis’ and Alan Farkas’ interview
Rich Semetulskis and Alan Farkas (RS&AF) are working at Thinkfast
Consulting, a business partner. Rich Semetulskis is a Senior Project Manager
and has over 15 years in implementing reporting and analytical solutions
using multi-dimensional and relational technology.ThinkFast Consulting, Inc.
is a full-service provider of enterprise-wide business intelligence services
designed to provide customers with access to information for strategic and
tactical decision making.

5.2.6.1 Environment
1. Describe your OLAP environment.

RS&AF: “We used OLAP systems running on SUN SOLARIS with four
processors, 1 GB of memory and 30 GB of disks and on NT with two
500 MHz processors, 2 GB of memory and 30 GB of disks. We will
recommend UNIX platform for production.”

2. What about development and test?

RS&AF: “We recommend to have a dedicated platform for test and
production, with the same operating system to facilitate the migration
process from development to production.“

3. Where does your source data come from?

RS&AF: “Our source data actually comes from SQL (we used ORACLE
V7 and DB2 V5.2 data sources and we commonly use SQL interface with
load rules files. For any new OLAP database development, when we have
multiple different sources in input, we try to store data in a relational
repository and to build a star schema model, cleaning and transforming
data using SQL scripts.

If we compare the loading time between flat files and SQL interface,
loading from flat files is quicker, but we prefer sourcing the data in a
relational repository to avoid the time needed to create flat files and the
file transfer”.

4. How many cubes are you supporting?

RS&AF: “We have 3 applications by production server with a total of 15
cubes between 10 to12 GB.”

5. What applications are the cubes supporting?

RS&AF: “We have different kinds of applications from marketing and
analysis of parts inventory to financial, budgeting, manufacturing
applications.”
144 DB2 OLAP Server - Theory and Practices

We think that the capability to manage attributes will open and will expand
sales and customers analysis.”

6. How many users do you support?

RS&AF: “We have 1000 potential and 300 concurrent users defined. The
average number of users connected at the same time is 25”.

5.2.6.2 Design
1. How do you validate your cubes?

RS&AF: “We are using logs to check if all data have been loaded and we
compared the results with the star schema model input at the detail level.
We have also automated some validation reports for the total and detail
levels.”

2. What tuning steps do you go through as you develop an application?

RS&AF: “We take care on dense and sparse dimensions, getting a block
size less than 64K, ordering dimensions.”

3. How do you move on in a new model using the full dimensions?

RS&AF: “When using multiple data sources, we always try to define a
relational staging area and from it to design a star schema model that will
fit the cube.”

5.2.6.3 Operations
1. How do you manage backups?

RS&AF: “We shut down the DB2 OLAP for backup. We are used to
creating daily backups, 5 nights per week. And we take care to back up
the security file to be sure not to get any data corruption.

2. What batch window are you working with today?

RS&AF: “We have approximately 6 hours each night for the batch window
workload.”

5.2.6.4 Conclusion
1. What do you consider to be the world class things to do?

RS&AF: “The key success for OLAP is to understand what are the
reconciliation requirements to insure the integrity of the data for end-users
and to build a strong project management methodology.”
Chapter 5. Interviews and experiences 145

5.2.7 Aster Hupkes’ interview
Aster Hupkes (AH) is working as an IT specialist in the Business Intelligence
team of IBM Global Services in the Netherlands. She has over two years
experience in designing and implementing OLAP solutions at several
customers in the Netherlands and has primarily worked with DB2 OLAP
Server / Hyperion Essbase.

5.2.7.1 Environment
1. Describe your OLAP environment.

AH: “We do most implementations on AIX platforms because of the
flexibility and scalability in larger, professional data warehouse
environments. We have also done an implementation on AS/400, so far
never on Windows NT except for prototyping. Usually the data warehouse,
either DB2 or Oracle, is running on the same AIX server. However, we
have also done a project where the data warehouse was located on
OS/390 and the OLAP cubes on AIX.

We always use SQL interface to populate the cubes. We have used either
DB2 or Oracle as RDBMS. At different customers we have seen different
environments:

 - Both the database and DB2 OLAP are on the same machine UNIX or
AS/400

 - The data warehouse was located at a OS/390 MVS system, while DB2
OLAP was on a RS/6000.

2. What about development and test?

AH: “At different customers we have seen different scenario’s to separate
development, test and production. Of course the most ideal situation is to
have separate servers. However, because of higher license cost this is not
always feasible. Scenario’s are:

 - Four different servers and DB2 OLAP installations for development,
test, acceptance, and production.

 - One server with a logical separation in the name of the application:
prefix D-, T-, A- and P- for development, test, acceptance and
production applications.

 - A mix between the above: two servers: one for production and another
for development, test and if applicable acceptance. The separation on
the development/test server is then done by prefixes in the application
name. For example this would result in an application Sample on the
production server and applications D-Sample, T-Sample and A-Sample
on the development/test server.
146 DB2 OLAP Server - Theory and Practices

In an ideal situation, test servers should have the same configuration as
the production server, but in practice they are usually smaller, both in
processor power and in disk space.”

3. Where does your source data come from?

AH: “Because we always use DB2 OLAP as part of a larger three-tier
Business Intelligence reference architecture, our input source for DB2
OLAP cubes is either the central data warehouse or a relational datamart.
Our input for dimension and data load is thus always a relational
database, either DB2 or Oracle, and is loaded with SQL interface. Flat file
input is only used when we are prototyping a cube as part of the design
phase. We never build DB2OLAP cubes directly from the source systems.

The input for the data warehouse comes from the different operational
systems within a company but also external data that is purchased by the
customer can be input for the data warehouse.”

4. What storage devices do you use?

AH: “We use SSA storage. The amount of storage space varies between
50 Gigabyte to 10 Terabyte for the whole data warehouse including OLAP
cubes. The OLAP data and the index files are spread over multiple disks.
Mirroring is usually activated.”

5. How are you exploiting multiple processors on the server?

AH: “We always define only one database per application because this
allows us to calculate multiple databases in parallel.”

6. How many OLAP cubes are you supporting?

AH: “This differs per customer, but is usually between 5 and 10 at each
customer. They vary in size from a few MB to 40 GB.”

7. What applications are the cubes supporting?

AH: “The cubes we have built support a whole range of applications like
Sales, Finance, Inventory, Purchasing and Planning. Most cubes are used
for analysis and reporting and users have only read access to these
cubes. Only a few cubes are used for planning and allow users to write
data back into the cube.”

8. How many users do you support?

AH: “The number of users differs per customer and currently varies
between 5 and 30 users that are interactively analyzing the cubes. Many
more users use the reports created on the OLAP cubes.”

9. What is the make-up of the team?
Chapter 5. Interviews and experiences 147

AH: “The DB2 OLAP developer is part of a larger data warehouse team
that contains between 3 and 20 persons. Other roles include DBA, ETL
developer, project manager and so forth.”

5.2.7.2 Design
1. Where do your OLAP requirements come from?

AH: “The requirements originate mostly from business analysts and
sometimes from management. We experience that business analysts
usually want everything in the cube, including all available details. Our role
is to translate these requirements to good cube models that are not too
large.”

2. When developing a new OLAP model, what techniques do you use?

AH: “We use a multidimensional modelling technique to gather user
requirements because it easily visualizes the OLAP model to the users.
We find this technique extremely useful because it is both very simple for
business analysts to understand and can also very easily be translated to
the technical design by IT people. We actually draw the initial cube models
together with the users in one or a series of design workshop.

During a design workshop you can sometimes determine to make several
cubes because some measures are irrelevant across some of the
dimensions. We also have many discussions about the level of detail in
the cube. For example if people say the need data on a day-level, you can
challenge that by asking if they actually need to know what the sales were
on a particular day one year ago or if they just want a daily update of the
monthly figures in order to track the Month-To-Date figures for the current
month.

After the first design workshop, we make a prototype and load some
dummy data in it. This prototype is input for the next design workshop to
validate the requirements. We found that prototyping and letting the users
navigate through the prototype is a very powerful way to validate and
improve your design.

We have built cubes varying from 6 to 12 dimensions. With the attribute
dimension functionality we could remodel some of the old cubes and
transform real dimensions to attribute dimensions. Unfortunately we
experienced that using attribute dimensions in large cubes (1,5 Gb,
100.000 base members) can severely impact your performance on the top
level of the cube. On the detail level, however the performance is fine.
Although there is room for improvement, we are very enthusiastic about
the extra possibilities that attribute dimensions offer.
148 DB2 OLAP Server - Theory and Practices

We have developed sizing spreadsheets to estimate the cube sizes based
on the calculation rules in the administrator guides. However, this sizing is
just a rough indication because the largest determining factors for the
size, the density are sparsity, are unknown at this point.”

3. How do you go from prototype to production model?

AH: “The prototype is the basis for our build process, but we basically start
over again. The prototype is used to validate requirements and is largely
manually defined in the outline. The dimensions in the production model
will be generated from dimension tables in the data warehouse.

Below are some build guidelines:

 - If possible we avoid having multiple database within one application.
Since you only have one ESSSVR process per application, a database
that hangs causes problems for the whole application.

 - There are multiple places in rules files where you can do things like
adding prefixes and decodes / substitution of variables: in the SQL
window, in the field properties field using the prefixes option, and by
creating a new field (field - create using text) and joining that with the
other field. To keep the rules files understandable, always do this at
one place, preferably the SQL window because this is most flexible, for
example:

Select 'P_' || PRO_COD, DECODE(PRO_GRP,null,'Other',PRO_GRP)

 - If calculation times are large, consider using incremental updates. It is
not always possible to do an incremental load, for example, if the
history changes. Also when the calculation times are small (less than
one hour) and/or only run once every month in the weekend, it is not
time-efficient to spend a lot of time developing an incremental load
scenario.

 - Set time dimension sparse when using incremental update.

 - Set measures dimension dense if you have many formulae. Set the
formulae in the measures dimension on dynamic calc.

 - Try to define all formulae (for instance ratios) in one place, either in the
outline or if necessary in a calc script. Calc scripts are only used if the
calculations require a specific calculation order, which cannot be
achieved in the outline. For example for allocating general cost over
departments based on the revenue % of that department.”

4. How do you validate your cubes?

AH: “We find that the best way to validate a design is to use prototyping.
After the first modelling workshop we usually build a very simple
Chapter 5. Interviews and experiences 149

prototype. This prototype is kept very simple because all dimensions and
measures are manually defined in the outline and so is the data. It is
however key that the prototype contains all elements of the model: all
dimensions and at least one member on each aggregation level in each
dimension, including alternative hierarchies and attribute dimensions. This
usually takes about half a day, and at the beginning of the next workshop
we let users navigate through this model to validate the cube design.

After the cubes are built, the developer performs a technical test. This is
usually done by comparing the cube results with the output of SQL queries
or existing reports. The developer is also responsible for performance
testing and tuning. After that testing the cube is the responsibility of end
users.

5. What tuning steps do you go through when you develop an application?

AH: “The amount of tuning we do largely depends on the size of the cube
and whether or not there are any performance issues. In the case of a
database of a few Mb, which is calculated within minutes, it does not make
sense to spend a lot of time tuning. Tuning is always a trade-off between
shorter calculation times and performance, between smaller cubes and
user functionality. It is thus not solely a technical issue, but it also involves
the users.

Tuning steps we do include:

 - Experimenting with dense and sparse settings when a representative
portion of the data is loaded, and choosing the optimal configuration
based on block size, density, sparsity and load and calculation times. In
version 5 we always had the tendency to keep the block size as small
as possible (it should be between 8 and 64 K, we usually chose close
to 8 K).

 - Optimizing the order of the outline (first dense dimensions from large to
small, then sparse dimensions from small to large) and sorting the
dataload according to this outline order

 - Use ‘dynamic calc’ or ‘label only’ if possible. We mostly use dynamic
calc on dense dimensions, but we have also sometimes used it on
sparse dimensions without too much retrieval performance impact.

 - Calculating the required cache sizes for index, data and calculator
cache

 - Developing incremental load scenarios. We found that using
incremental load scenario’s work best the time dimension is sparse.

 - We sometimes use calc scripts to be able to influence the calculation
order and use FIX statements instead of IF statements where possible.
150 DB2 OLAP Server - Theory and Practices

We have formalized this knowledge in a DB2OLAP guidelines document
available within our team.”

5.2.7.3 Client tools
1. What client tools do you use?

AH: “At most customers we make a distinction between analysis tools and
reporting tools. With analysis tools, users can quickly and interactively
navigate through a cube. Reporting tools can be used to build standard
and more complex reports on OLAP cubes and distribute these to the
users. The reason for this distinction is that the possibilities for scheduling,
distribution and printing as well as all the layout options are more
sophisticated in reporting tools than in analysis tools like Executive Viewer
or the spreadsheet add-ins.

Our preferred analysis tool is Executive Viewer from Temtec because we
this is the most powerful, easy to use and intuitive OLAP Viewer we know.
Some customers do use the spreadsheet add-in, but we are not very
enthusiastic about the user-friendliness of the add-in.”

2. Who designs the reports that you deliver to your customers?

AH: “In most projects, delivering reporting is an end-user responsibility.
We deliver one or more OLAP cubes to the end users and the users are
responsible to do analysis or reporting on it. We find that most users can
easily use the cubes and build simple reports. If they have more complex
reporting requirements, like report generation based on scripts,
scheduling and so forth, we can assist the users or build the report for
them.”

5.2.7.4 Administration
1. How do you manage outline updates?

AH: “Dimensions are maintained in relational tables and are loaded in the
outline using dimension build rules files. The only dimensions that are
sometimes manually defined and maintained in the outline are the
measures dimension (including all formulae) and the scenario dimension.

The outline changes before each data load because a data load is always
preceded by the execution of the dimension build rules files. The
dimensions are loaded from dimension tables in the data warehouse. If
some hierarchies are not maintained in one of the source systems, users
are responsible for maintaining the hierarchies in relational dimension
tables in the data warehouse.”

2. How do you manage data load updates?
Chapter 5. Interviews and experiences 151

AH: “For small cubes we always do a full reload, for larger cubes it is
worth investigating whether an incremental load scenario is possible. This
is however not always possible, for instance if historic values are allowed
to change. Incremental loads can be very fast if the time dimension is set
sparse.

Some cubes have a rolling time frame which is implemented by adding a
where clause in both the data load and time dimension rules files
specifying to load members and data based on the system date. The old
time periods fall off if the old time members are deleted with the dimension
build.”

3. How do you manage database fragmentation?

AH: “We try to prevent it when loading the data, but we never do an export
and reload.”

4. Do you use application partitioning?

AH: “We’re not using partitioning very often yet, but we do see some
positive aspects. Replicated partitioning can easily be used between test
and production application. We planned to use linked partitioning between
small, quick, high-level cubes and huge, slower detail cubes. The reason
is that in these detail cubes we use attribute dimensions and they have a
very, very low query response time on the highest level of the cube.
Unfortunately we discovered that partitioning is not possible over attribute
dimensions.”

5. How do you manage security?

AH: “As a rule, we always define security on group level, even if there is
only one person in that group. Security is never defined on user level.
Naming conventions are also important and we try to comply with the
customer’s standards as much as possible. Usually this means using the
LAN or MAIL user names. Defining security is the responsibility of a single
group.

We sometimes use filter definitions to hide part of the cubes for some
users or to allow users to write in specific parts of the database. This is
very powerful, but a problem we found is that filter definitions are not
easily copied from one server to the other. Some front-end tools can use
the DB2 OLAP security, others need separate security.”

5.2.7.5 Operations
1. What steps do you use to put a new application into production?

AH: “If there are different servers, we FTP the outline, rules files and calc
scripts to the production server. If there is one server, we copy the
152 DB2 OLAP Server - Theory and Practices

database. Also the batch jobs are copied and scheduling of the batch jobs
is completed.”

2. How do you manage backups?

AH: “I have managed backups in two ways:

 - Using the BEGINARCHIVE and ENDARCHIVE commands

 - Shutting down the Essbase server, make a full backup of all files and
restart the server.

Backups are usually done at night, so it is feasible to stop the server,
make a back-up and restart the server. This is the least complex scenario.

In the backup strategy it is possible to distinguish two things:

 - OLAP definitions like outline, rules files and calc scripts. These cube
definitions should be backup regularly and are usually part of the daily
backup.

 - OLAP data; the index and page files. In many cases it is not required to
backup the OLAP data because the relational data warehouse from
which the cubes are loaded are backed up. In case of a disaster, all
cubes can be loaded from the data warehouse within one day, and this
scenario is usually sufficient. However, most administrators find it
easier to just backup everything.

Backups are usually done every day. There have been many discussions
about different backup requirements per application, but system
administrator usually end up making a backup of all application every day
because this strategy is the easiest to implement.”

3. Do you have any disaster recovery plans?

AH: “At some customers disaster recovery procedures are very strict and
are also tested. However, most customers just take backups and don’t test
the disaster procedures.”

4. What is your strategy for applying fixpacks or patches?

AH: “In practice, we apply a fixpack if we need it because it fixes an
existing problem or contains new functionality we absolutely need. If there
is no immediate reason, we keep the environment stable and do not apply
the fixpack.

 If there are separate test and production server, we have to opportunity to
install the patch on the test server first and on the production server a few
weeks later if it has proven to work.”
Chapter 5. Interviews and experiences 153

5. What is your strategy for applying new releases?

AH: “We install the new releases if we really need it because of the new
functionality. The attribute dimensions of version 7 were a great new
functionality, so we installed that with most customers quickly. We did
have some problems with the migration of existing cubes; the calculation
times of some cubes grew larger in the new version and SQL interface
didn’t work properly. This last problem was solved by the first fixpack.”

6. How do you manage upgrades from client tools?

AH: “This depends on the customer. Sometimes the software is just
installed at each user’s PC, when needed. This is only feasible if there are
a maximum of 10 to 20 users and makes client tool updates very labour
intensive. In other cases, the front-end tool is part of a standard client
platform definition that is rolled out to the entire company.

We are more and more moving to web-based front-end tools and one of
the reasons is the manageability. When a new version of the web
front-end is released, only the server software needs to be updated. When
users connect, the server automatically detects whether the users need a
new plug-in or not.”

7. How do you automate the OLAP operations?

AH: “All OLAP operations are automated using ESSCMD batch scripts.
The scheduling of these OLAP processes is usually dependent on the
successful completion of other processes: usually the load from the
source system in the data warehouse and /or the load of the relational
datamart. We find it easiest to use one single scheduling mechanism for
scheduling all data warehouse operations. That can be an existing
scheduling tool, UNIX scripts, PostSession commands in Powermart or
OPC on OS/390”.

8. How do you monitor the batch process?

AH: “Each morning the administrator checks whether the data warehouse
processes completed successfully.”

9. What batch window are you working with?

AH: “The batch window is usually from 12:00 AM to 7:00 AM and the
weekend, but in that time also the central data warehouse has to be
populated from the source systems.”
154 DB2 OLAP Server - Theory and Practices

Appendix A. OLAP datamart design approaches

This appendix, written by Paul Turner from Hyperion, presents a number of
design approaches that allow rapid interpretation of multiple requirements
and data sources to provide a fast track to building a functional datamart. It
assumes a basic familiarity with relational and multidimensional databases.
Knowledge of data warehousing concepts may also be beneficial.

A.1 What is a datamart?

Datamarts are typically application-specific databases designed to address
particular question spaces, not to be data repositories. A datamart is the
business rule-specific data provider to the visualization tool, so effective
datamart design is heavily dependent on how users need the data to be
presented. This differs from most relational schemas, which generally act as
source systems and are designed for redundancy and performance.

Even a star/snowflake/constellation schema is not automatically a datamart.
These structures are more commonly used to create data warehouses, which
are application-neutral (that means not designed to address a defined
question space), instead providing a standardized repository for massive
amounts of enterprise data.

This is an important distinction. A data warehouse contains highly granular
relational data pulled from many systems and centralized as a standard
representation of enterprise data, whereas a datamart is targeted at a certain
set of users who need to answer or investigate a specific set of questions
applicable to their business function.

Datamarts are often built from a data warehouse. This offers a single,
application-neutral, granular view of the world, with data presented to users
via a series of datamarts that add functionally specific rules, consolidations,
time grains and additional functions (such as budgeting) that do not make
sense for the warehouse to support.

To further clarify this definition, a datamart can be thought of as a targeted
database that allows:

 • Rapid ad hoc analysis of data and its aggregation levels.

The data present in a datamart is generally less granular than the
warehouse. In this sense, it can be thought of as a complex aggregate
summary table. For example, a datamart may consider sales data at its
most granular by city or perhaps by store. This contrasts with a data
© Copyright IBM Corp. 2001 155

warehouse, which may be concerned not just with the store, but with sales
data for each salesperson and /or point-of-sales terminal.

The coarser granularity of the data in a datamart is one of the reasons
queries remain so consistent and rapid. For example, if 10,000
transactions occur on February 1 and five occur on February 2, creating a
sales summary from the relational transaction system will take
significantly longer on February 1, since the query time grows with the
data. This contrasts with a datamart where the time grain is by day, which
contains a single number for each day and provides consistent query time
regardless of the number of individual transactions.

The addition of functionally specific analytics means that multiple
datamarts can be spun out of the warehouse. One mart may be targeted
at Sales, another at Marketing, and another at Finance. Each will
essentially be working with the same data from the warehouse, but looking
at it in different ways. This allows users to:

 - See data with different dimensionality. For example, the Sales datamart
could contain data broken down by salesperson, while Marketing may
instead be interested in seeing the data broken down by campaign.

 - See different metrics derived from the data. Complex analytics can be
layered on top of the source data that would be extremely
time-consuming if derived in the warehouse. For example, a simple
percent of total calculation in a datamart can be extremely challenging
in the warehouse, where it would require aggregating an entire
dimension (which may be millions of records because of the highly
granular nature of the warehouse).

 - Write-back to the data and perform what-if analysis. For example, the
Finance department may wish to test various budget scenarios against
the data set. This type of analysis generally does not require the fine
grain data present in the warehouse. In fact, such large volumes of
detailed information would hinder their what-if calculations. Other
requirements, such as storing iterative persistent budgeting results and
calculating actual variance are also inefficient to perform with a
fine-grain data warehouse.

 • Storing historical data beyond the range of that in the warehouse.

In some cases, the warehouse may be of such size that it is not feasible to
store a large amount of historical data. Web logs, for example, with their
fine granularity and high activity, prohibit lengthy historical storage. In
such cases, a mart may be more appropriate for off-loading prior years’
data in a summarized, less granular, more manageable form.
156 DB2 OLAP Server - Theory and Practices

All of these key datamart requirements — instantaneous ad hoc analysis of
aggregated data, function-specific analytics and access to historical data are
much easier to deliver with an optimized multidimensional database than with
a relational database designed for transaction processing.

A.2 Designing the datamart

Datamart design is contingent upon a number of factors:

 • Reporting requirements (how users want to slice and dice the information)

 • Calculation/derived data requirements

 • Size of the cube

 • Meaningfulness of dimensions

 • Granularity of the cube (the most coarse grain of each dimension)

 • Dimensional cohesiveness of the data (how many measures are relevant
across all of the introduced dimensions)

All of these factors are interlinked. For example, even though a certain
dimension may be necessary for a given calculation, it may explode the size
of the cube and introduce a meaningless dimension in the process.
Therefore, the challenge in datamart design is balancing these requirements.

A.2.1 Determining the granularity

The granularity of the datamart is tightly linked to the size of the resultant
cube. Generally, most systems have a series of identifiable finest grains in
the fact table (other than time). For example, it could be case number for call
center systems, transaction number for sales systems, and cookie or user ID
for Web logs.

Datamart designers must consider two types of granularity: intra-cube and
extra-cube.

A.2.1.1 Intra-cube granularity
Intra-cube granularity determines the level of detail for dimensional
drill-down. The finer the grain, the less summarization is applied to leaf-level
dimension members.
Appendix A. OLAP datamart design approaches 157

Table 15 shows a number of examples.

Table 15. Granularity example

Users often have a tendency to make their datamarts too granular. Bear in
mind that the data in the cube is exactly what users will be navigating, often in
a highly stylized user interface. In many cases, more granular data simply
creates more cumbersome analysis without adding any real value.

For example, consider the granularity of time within a Web traffic analysis
application. Given the fine granularity of the source data, it may be tempting
to set the periodicity of time within the datamart as high as every five minutes.
But consider the value of this data over the life span of the datamart. Will
users really care about what happened at 11:05:15 on February 5th, 1998?
Generally, the answer is no.

In most cases, the grain of a particular dimension is mandated by the
reporting or calculation requirements. Consider the following basic time
reporting requirements: day, week, month, quarter, and year. The problem is
that weeks don’t naturally roll up into months; “Week 5,”for example, can
traverse January and February. A natural way of addressing this is to load the
day grain and have it roll up into months (which, in turn, roll up into quarters
and years), and also to define an alternate hierarchy with the day grain rolling
up into weeks.

Another method is to use the data loading process to summarize the data at
different grains. This can be done in two ways:

 • If time may be represented in two dimensions, then the datamart can have
a Year dimension that contains years, quarters, and months, as well as a
weeks-of-year dimension that contains a flat list of weeks 1 through 52.
When loading the data, simply create a two-dimensional reference of
month by week. This yields a number of interesting query possibilities,
such as: “Show me how the first 5 weeks of each year compare”. This
method works best when members are only shown where data exists for a
query (that is, “Suppress Missing”), so that drilling into weeks when
looking at January, for example, will only show weeks 1-4.

Fine grain Intermediate grain Coarse grain

Time Seconds as distinct
time interval

Hours Days or months

Product Product SKU Product name Product category

Geography House address: 35
Laurel Drive

Zip code City
158 DB2 OLAP Server - Theory and Practices

 • If it is necessary to have months and weeks in the same dimension, then
format the time key as months (this is simple to do with SQL) and load the
data into the month members. Then use a second data load to format the
time key as weeks and load the data into this time slot. The disadvantage
is that this doubles the time required to load the datamart from the
warehouse, which may not be feasible.

A.2.1.2 Extra-cube granularity
Extra-cube granularity is determined by what is omitted. For example,
Finance may be interested in seeing the Table 16 sales data, but not broken
out by individual salesperson. Meanwhile, Sales will obviously want to see the
figures for each salesperson.

Table 16. Extra-cube granularity example

Finance cube: Time X Accounts X Manufacturer

Sales cube: Time X Accounts X Manufacturer X Salesperson

As more dimensions are included, the datamart becomes more granular.
More importantly, this new grain (in this case, Salesperson) allows a new
series of complex calculations that could not be derived without it. Consider
the calculation, “average number of manufacturers covered by a
salesperson.”Since Paul covers three, Carole covers two, and Jim covers
one, the answer is ((3+2+1)/3 =2). This information is lost when looking at the
Finance cube, which presents the summarized level, “total sales by
manufacturer.”

But what if Finance wants to see the metric “average number of
manufacturers covered by a salesperson” in their datamart? Forgetting for
the moment features such as Partitioning and @XREF, how can Finance
calculate this metric without including the Salesperson dimension?

Dough Inc Oats Corp. Wheat Int’l

Paul Turner 423 542 245

Carole Turner 123 145

Jim Turner 124

Total sales by manufacturer 546 542 514
Appendix A. OLAP datamart design approaches 159

Note: If the Salesperson dimension is included, one way of accomplishing
this with DB2 OLAP/Essbase is to introduce a stored formula
–SALESCOUNT. If the sales for the Salesperson are <>#Missing, then
SALESCOUNT is set to 1;otherwise, it is left at #Missing. This gives the 3,2,1
that is required. To calculate the average, divide the total by the number of
salespeople. (This can be preloaded or counted using the count function
available in DB2 OLAP 7.1 or Hyperion Essbase 6.0 or later.)

This demonstrates a key challenge for datamart designers. A dimension may
be necessary for some calculations, even though it is not necessary for
reporting, and including it may massively increase the size of the datamart.
Consider another example related to Web traffic. One common metric is
distinct users, as in: “How many distinct users bought my SuperWidget?” or
“How many distinct users saw my home page?”.

In this case, a unique cookie identifier (“web302ca_941227897_157097”, for
example) determines a user. An e-commerce site may have millions of
distinct users, each with a different cookie. Drilling into a cookie dimension
would yield millions of system-generated keys such as the one above — data
useless for reporting purposes. But a useful calculation, such as counting the
number of distinct cookies for users viewing a certain Web page, may only be
possible if the cookie dimension is included.

One solution to this dilemma, although not a particularly elegant one, is to
preprocess the data at load time since the relational database knows all
about cookies. But this becomes expensive from a data load perspective.
For example, consider counting distinct users for various products and
categories. If the distinct user count for SuperWidgetA is 1, and it is also 1 for
SuperWidgetB, the distinct user count for the parent Widgets could either be
1 or 2, depending on whether the counts for SuperWidgetA and
SuperWidgetB represent the same user. In other words, the distinct user
count is not additive across any of the dimensions; each level must be
precomputed in SQL, making the load extremely expensive.

Another method is to take a hybrid approach, supporting the distinct user
analysis only through relational queries and offering graphical linkage
between the datamart and the data warehouse.

Tools such as Analyzer allow this kind of link through their relational
connectivity.
160 DB2 OLAP Server - Theory and Practices

A.3 Deciding the dimensionality

Faced with a star or constellation schema, how can a datamart designer
quickly determine the dimensionality to build a meaningful, manageable
OLAP datamart? All dimension tables could be dimensions in the datamart,
and the columns within each dimension table could be dimensions,
hierarchies, attributes, or data. The first step is, rather typically, to establish
user requirements. But these must constantly be related back to the
requirements and structure of the warehouse.

There are a number of other guidelines for rapidly defining the base
dimensions of the mart. Consider the information in Table 17:

Table 17. Product table

There are a number of ways to model this data, depending on the users’
requirements. All shaded columns could be dimensions, or some of them
could be hierarchies, some measures, and others attributes (discussed later).

For example, product name and product type could be modeled as separate
dimensions. Looking at Widgets for all products would give the total Widget
sales, and drilling down into the product names dimension would give just
those products where data exists (if product names is in the rows) — in this
case, SuperWidgetX and SuperWidgetY. But this would create an incredibly
sparse relationship, since a product can only have one type. Obviously, in this
case, it makes more sense to model the two as a single dimension and
hierarchy, with product name rolling up into product type.

Now consider product price. It could easily be a measure loaded into the
OLAP database for calculations. (Because it is a one dimensional measure
relating only to product names, it would most likely be loaded at the upper
level for other dimensions.) But product price could also be a dimension, with
the column reformatted in SQL when it is loaded so 5 becomes “0–5,” 7
becomes “6–10,”and so on. This allows users to plot pricing histograms such
as the one shown in Figure 39 and to answer questions such as “tell me the

Product
ID

Product
Code

Product
Name

Product
Type

Size Product
Price

Product
Intro
Date

1234 ABX-1294 SuperWidgetX Widget 8lbs 5 1/1/99

5678 ABY-1349 SuperWidgetY Widget 10lbs 7 5/1/99

9012 XYZ-4567 DongleA Dongle 10lbs 5 8/1/99

3456 WXW-6543 DongleB Dongle 8lbs 7 10/1/99
Appendix A. OLAP datamart design approaches 161

percentage contribution to total product sales of products priced between 1
and 5 dollars.”

Figure 39. Pricing histogram example

Because data is represented at the lowest grain (product names) in the
product table, another option would be to make the price simply a numeric
attribute of the product. This would allow queries such as “show me total,
average, minimum, and maximum sales of products between 1 and 12
dollars.”

The product size column presents another choice. It could be an alternate
hierarchy in the product dimension, allowing users to see total sales by
product type or by product size. But this would not allow users to create a
cross-tab — for instance, reporting total sales of all eight-pound dongles. If
this is a problem, then size could be an attribute of product. Alternatively, if
the attribute query is too slow because it is a dynamic calculation and many
products weigh eight pounds, then it could be a stored case dimension. If
users aren’t interested in individual products at all, but just in their sizes and
types then it would be more efficient to summarize data into the size and type
dimensions.

As the possibilities above illustrate, there are many options for building a
datamart from data warehouse tables. A dimension table can encapsulate
any combination of dimensions, hierarchies, measures, and — by joins with
other dimension tables — further hierarchies. It all depends on how the
schema has been designed and how the datamart is to be used. It is often
easier to determine what not to include, as shown in the following examples
with different kinds of dimension tables.

$1-5 $6-7
Pricing (Dimension)

0

10

20

30

40

50

60

70

S
al

es
(M

ea
su

re
s

Widget
Dongle
162 DB2 OLAP Server - Theory and Practices

A.3.1 Product and geography type dimensions

A product dimension typically has a number of attributes, which translate
easily into hierarchies. These hierarchies are easily defined by questions
such as: “Does a given product type always belong in a single product
category?”. If the answer is yes, then assume that product type can roll up
into product category. If the answer is no, then create an alternate hierarchy
or a dimension.

A product dimension could contain enormous amounts of information.
Datamart designers must intelligently select the dimensions and hierarchies
they need, and should consider drilling through to detail using DB2 OLAP
Integration Server/Hyperion Integration Server or Hyperion Analyzer virtual
cubes, or enabling a “cubes-on-the-fly” approach where different hierarchies
and columns may be selected on demand.

Product dimensions may also contain ragged hierarchies like in Table 18.

Table 18. Product dimensions and ragged hierarchies

One way to approach this is to simply have the member names as the IDs,
and use parent-child build in the dimension prep editor. The product name
becomes an alias. This allows a rapid build without a self-join operation.

In the case of uniqueness (for example, plastics appears in a different
hierarchy, but is really plastics in a different context), simply use the product
ID as a suffix to the product name, creating members like “Widgets (4)” in the
outline. There are a number of common workarounds to the uniqueness
issue, although some cannot be accomplished without using a different
format of the table above (for example, in generational format rather than
parent-child format). Here are some of these workarounds:

 • When tackling uniqueness across dimensions, use the dimension name
itself as the differentiator. Consider an application where there is a
salesperson dimension and a user name dimension. Both may include the
member Paul Turner. Assuming that Paul Turner will not occur more than

Parent Product ID Product ID Product Name

null 1 Plastics

1 2 Dongles

1 3 Widgets

3 4 SuperWidgetX

2 5 DongleA
Appendix A. OLAP datamart design approaches 163

once inside either dimension, simply use the dimension name as a suffix
— that means Paul Turner (username), Paul Turner (salesperson). This
method of differentiation can also aid users in navigation, since it clarifies
which dimension they are looking at and reduces confusion.

 • When tackling uniqueness within a dimension, the best approach depends
on where the uniqueness occurs. If duplication occurs at different
hierarchy levels, consider using a suffix containing the name of the parent
— that means SuperWidgetX (Widgets), DongleA (Dongles). If the
duplication occurs in the same hierarchy — that means siblings use the
same name — then use the primary key of the member in its dimension
table to guarantee uniqueness, for example, SuperWidgetX(5).

Another potential issue of ragged hierarchies is inconsistent semantic
selection of members. If a category contains no products — for example, a
brand new category called “Gadgets”— it creates a selection inconsistency in
the OLAP outline. Both Gadgets and SuperWidgetX (for example) will be at
leaf level, or level 0 in OLAP outline hierarchy, even though one is a category
and the other is a product. One way of addressing this issue is with user
defined attributes (UDAs), which allow users to assign the attribute
“ProductType=Category” and “ProductType=Product” to the members
through the addition of a column in the dimension table.

This enables UDA queries on these attributes, rather than level or
generational queries, which are inadequate for this type of tree.

A.3.2 Browser type dimensions

Though unique to Web analysis environments, a browser-type dimension
illustrates some of the issues faced when modeling data. Web browser type is
essentially a string containing information such as browser name, version
number and operating system, encoded in an abbreviated, delimited format.

Some datamart designers simply insert this string directly into the dimension
table and leave the decoding of it to the user interface. This basically creates
a two-row dimension table, with one row containing the primary key (linked to
the fact table) and the other containing the browser-type string. Consider how
much richer this information could be with a more effective datamart design,
as shown in Figure 40.
164 DB2 OLAP Server - Theory and Practices

Figure 40. Browser type dimensions

This demonstrates one of the key limitations of many data warehouses:
People don’t know the kind of analysis that they can do, could do, and may
need to do, so they don’t design it into their warehouse. They do the data
modeling and represent the data in a multidimensional schema, but they don’t
extract the information from what they are logging and they don’t enrich the
data with attributes. In general, the richer in attributes a data model is (in
relational-speak, this means the more individual columns in a dimension table
that are spent describing the member), the more useful and valuable the
OLAP cube will be.

In the example in Figure 40, “IE 4.02” may have been found in the log.
Preprocessing it in the log could add the attributes “IE 4.x” and “Internet
Explorer”. If the operating system (that means Sun Solaris 2.7) is also logged,
preprocessing can include the attributes “Sun OS” and “UNIX”. This enables
two additional dimension tables, Table 19 and Table 20, on Browser Version
and Browser Platform.

Database: Web

Information Explorer (+)

Netscape (+)

IE 4.x (+)
IE 3.0 (+)

Netscape 4.x (+)

Browser

IE 4.02 (+)
IE 4.01 (+)

Operating
System

Microsoft Operating Systems (+)

UNIX (+)

Windows 95 (+)
Windows NT (+)

AIX (+)
Sun Solaris (+)

HP-UX (+)
Appendix A. OLAP datamart design approaches 165

Table 19. Browser version table

Table 20. Browser platform

This illustrates how some warehouse designs can significantly enrich
analysis. In many cases it’s easier to address the underlying inadequacies of
the data model than to force DB2 OLAP to work with less than optimal data.

A.3.3 Customer bank account number dimensions

Analyzing data that is inherently highly granular — such as individual
customer bank account numbers — is a relational task. For this kind of
requirement, consider a relational hybrid solution. Tools such as Analyzer are
ideal for this, since they can report against both multidimensional and
relational databases, mapping to a logical star schema presented as just
another multidimensional data source. Linking the views together allows
users to drill to detail while remaining blissfully unaware of underlying data
source providers.

Browser Version
Key

Browser Version Browser Release Browser Class

1 IE 4.02 IE 4.X Internet Explorer

2 IE 4.01 IE 4.X Internet Explorer

3 Netscape 4.1 Netscape 4.x Netscape

4 Netscape 4.5 Netscape 4.x Netscape

Browser Platform Key Operating System
Version

Operating System Class

1 Windows NT Microsoft

2 Windows 95 Microsoft

3 Solaris UNIX
166 DB2 OLAP Server - Theory and Practices

A.4 Understanding attributes and base dimensions

In some cases, including the most granular dimension in the datamart allows
everything else (apart from measures) to be an attribute of that dimension.
Consider a call center application where the finest grain of the database is
case number. The database description could be as follows:

CaseNumber (base dimension, consisting of millions of case numbers)
Analyst (attribute of case number)
Location (attribute of case number)
Product (attribute of case number)
Category (attribute of case number)
Time (attribute of case number)

Of course, this would create an enormous and meaningless reporting
dimension (case number) and agonizingly slow retrievals, because
calculations such as “Show all the cases opened in England” would be
dynamic. But it illustrates the point that an attribute can only be introduced
when it is an attribute of the grain that the dimension understands. If related,
everything can be an attribute of the extra-cube or intra-cube grain. If this
grain is not included, the attribute must be a base dimension.

If the dimension “CaseNumber” is not included (because it is a large and
meaningless series of system generated keys), then the other items must
become base dimensions. Of course, these base dimensions, such as
Product, can have their own attributes. But these are attributes of product,
while Product is essentially an attribute of the excluded Case Number.

Attributes should be weighed against the retrieval time required to calculate.
Just because something can be modeled using an attribute dimension
doesn’t mean it should be modeled that way. For example, if there are 10,000
products and 5,000 of them have the attribute “expensive,” it might not be a
good idea to create an attribute dimension called “Cost Attribute,” since
summarizing that attribute at query time would require DB2 OLAP to run
through 5,000 blocks. If each block is 20K, that’s 100,000K of data for just
one combination of the other sparse dimensions. In this case, a precalculated
base dimension would probably make more sense.
Appendix A. OLAP datamart design approaches 167

A.5 Tackling the data load

Loading data from a data warehouse can be a time-consuming task. The
main reason for this is normalization (the process by which redundant data is
removed from a table by breaking it into multiple tables and using keys to
represent those records), which is an inherent part of most warehouses. In
general, the more normalized the warehouse, the slower the data load
because more joins are necessary to extract the mappings between the
dimensions and the data.

Since fact tables comprise the vast majority of a data warehouse footprint
normalizing dimension tables is unnecessary. It saves a small percentage of
total space, but greatly increases data extraction time.

A.5.1 Optimizing regular dimension tables

One way of optimizing loads from relational databases into OLAP cubes often
decreasing the dataload time, is simply not making joins unless they are
required. Make sure that dimensions in the OLAP outline are represented in
the fact table, and that for each foreign key there is a corresponding member
in the OLAP outline. In other words, the grain of each OLAP cube dimension
should be the same as the grain of the dimension in the fact table.

Consider Table 17 on page 161:

Product code (and its alias, product name) is the finest grain of this
dimension table, since each product ID relates to an individual product. Each
fact row in the fact table will relate to an individual product defined in the
product dimension table.

Normally, loading data would require joining product with the fact table by
using the product ID, and then associating the product code or product name
(which will be level 0 member names in DB2 OLAP) with the facts. However,
this approach is not suitable for very large warehouses with lengthy fact
tables. It will result in agonizingly long data load times while the RDBMS
spins, trying to join the tables, and perhaps the RDBMS will bomb out after
hitting a query limiter or running out of temporary space.
168 DB2 OLAP Server - Theory and Practices

Instead, consider embedding the primary keys from the dimension tables into
alias tables within the OLAP database. Scanning the dimension table would
build as shown in Figure 41, with no joins required.

Figure 41. Product Dimension outline

Note the aliases for each product. These can be stored in one of the alias
tables and hidden from the user, as they are essentially useless for reporting.
But, since DB2 OLAP now knows that 1234 is really SuperWidgetX (along
with every other product ID/product name relationship), the dataload process
no longer must join the fact table with the product table and will execute much
more quickly.

A.5.2 Optimizing time dimensions

If the key in the fact table used to represent time is a date/time format field,
there is no need to join it with a time table in the schema, even if there are
granularity differences between the fact table and the time dimension in
OLAP database. Simply reformat the time key to the matching grain at load
time. For example, if the OLAP database dimension goes down to the level of
month, just transform the key into a month value during the load, even though
the key also contains the day, hour, and minute information.

Database:
Basic

Widget (+)

Dongle (+)

SuperWidgetY (+)
SuperWidgetX (+)

DongleB (+)
DongleA (+)

Products
Appendix A. OLAP datamart design approaches 169

A.6 Conclusion

One of the keys to successful datamart design and implementation is
designing the data warehouse with consideration to the datamarts it will feed.
If the warehouse is designed with only the goals of normalization and
representation in mind, without rich and easily extractable data and
metadata, datamart design will be unnecessarily difficult. It is, therefore,
imperative that the design of the warehouse address the reporting and
analysis requirements of end users. Otherwise, your data warehouse will be
little more than a data jailhouse, locking important information away from the
users who need it.
170 DB2 OLAP Server - Theory and Practices

Appendix B. Integration Server implementation guidelines

This appendix presents guidelines and recommendations when implementing
Hyperion Integration Server from Hyperion or IBM DB2 OLAP Integration
Server from IBM to build DB2 OLAP cubes from relational sources. We will
use the term Integration Server (IS) to refer to both products.

This appendix has been prepared by Cheryl A. McCormick who is a Senior
Principal Consultant in the Data Integration Services group of Hyperion
Solutions. Cheryl specializes in designing and implementing datamarts / data
warehouses using a hybrid of both relational and OLAP multidimensional
databases.

B.1 Overview

Integration Server provides the critical link between your relational star
schema and the powerful DB2 OLAP Server.

The Integration Server product family provides a way to transfer the relevant
data in your relational star schema to a multidimensional database quickly
(see Figure 42). The Integration Server product family provides graphical
tools to help you to:

 • Create a logical OLAP model from tables, views, and columns in your
relational database. The OLAP model you create is a logical star schema
consisting of a fact table surrounded by related dimension tables.

 • Use the OLAP model to create a metaoutline, an outline template,
containing the structure and rules required to generate a DB2 OLAP
outline.

 • Use the metaoutline to create and populate a DB2 OLAP multidimensional
database.
© Copyright IBM Corp. 2001 171

Figure 42. Integration Server to DB2 OLAP flow illustration

Integration Server consists of two major components: the desktop and the
server (see Figure 43).

DB2 OLAP
database

Integration Server desktop

OLAP M odel

Relationa l da ta Source

O LAP M etaoutline
M arket

M arket Region

M easures

Profit

Ra tio s
172 DB2 OLAP Server - Theory and Practices

Figure 43. IS components

Workflow for using IS

To create a DB2 OLAP database from a relational data source:

1. Build an OLAP model that is based on the tables in the relational data
source. IS stores the OLAP model and the information necessary to
retrieve the relevant tables in OLAP Metadata Catalog.

2. Create a metaoutline from the OLAP model. IS stores the metaoutline in
the OLAP Metadata Catalog.

3. Load members and data into the DB2 OLAP database.

4. Update the DB2 OLAP database with new members and data.

Integration Server

Integration Server desktop

OLAP Model OLAP Metaoutline

Desktop

DB2 OLAP
Server

DB2 OLAP
database

OLAP Command
Interface

TCP/IP

ODBC

ODBC
Relational
data
Source

Market

Market Region

Measures

Profit

Ratios

OLAP
Metadata
Catalog

Server

TCP/IP

TCP/IP
Appendix B. Integration Server implementation guidelines 173

B.1.1 OLAP model

An OLAP model contains a star schema. OLAP models are based on the idea
that values in a relational database can be categorized as either facts or
dimensions of facts. Facts are the numeric, variable values in the database,
such as sales figures and numbers of units sold. Associated with facts are
related data values that provide additional information, such as store
locations and product IDs of units sold. An OLAP model contains a fact table,
one or more dimension tables, and one or more dimension branches. An
OLAP model may contain time and accounts dimensions.

Unlike other integration products, IS creates an OLAP model that is a logical
model, not a physical star schema. The OLAP model is a logical
representation of the data values that you select from the tables in the
relational database and that you want to report in DB2 OLAP.

B.1.2 OLAP models and metaoutlines

Use an OLAP model to create one or more metaoutlines. A metaoutline
contains the basic structure required to build a DB2 OLAP outline and to load
data into DB2 OLAP. You can use one OLAP model as the basis for another
OLAP model by saving the original OLAP model under a different name and
editing it as needed to meet reporting requirements. You can create any
number of OLAP models for use in building metaoutlines. However, each
metaoutline is based on one, specific OLAP model.

OLAP models have the following features:

 • They are reusable. You can use the same OLAP model as the basis for
multiple metaoutlines.

 • They provide a layer of abstraction that insulates the DB2 OLAP database
outline from changes in the relational database.

 • They enable you to create hierarchies to structure and summarize data
from a relational database. You can use the hierarchies in multiple
metaoutlines.

B.2 Decision: the initial IS implementation

Working with IS for the first time, either your own implementation or the first
implementation for a client, you should follow a very specific path: work
backwards from the DB2 OLAP cube! Specifically, the general tasks should
include these:
174 DB2 OLAP Server - Theory and Practices

 • Define the DB2 OLAP requirements that means to define the dimensions,
hierarchies, attribute dimensions, aliases, UDAs and so forth.

 • Define and test formulae and calc scripts.

 • Define end-user drill-through requirements.

 • Review the star schema / DB2 OLAP / IS environment and determine the
most effective configuration.

 • Install IS Desktop and IS server.

 • Using the defined DB2 OLAP outline, develop a star schema design that
supports the DB2 OLAP dimensionality and drill-through reporting
requirements.

 • Develop an indexing strategy for the star schemas.

 • If process automation is a requirement, develop / test / deploy the OLAP
Command Line Interface commands.

Each of these steps should be reviewed in conjunction with those steps
contained in the IS manuals.

B.2.1 No existing data warehouse or datamart or star schema

In most IS implementations, DB2 OLAP consultants handle the DB2 OLAP
implementation: consultants define the requirements, write and test the calc
scripts and formulae, and define any ESSCMDS that are needed. Once the
outline has been defined, or at least 75% of the outline has been defined and
tested, the Integration Server consultants can begin the IS implementation.
This approach of defining the DB2 OLAP cube prior to the IS implementation
is very successful in cases where a data warehouse, datamart, or star
schemas are not already in place.

B.2.2 Existing data warehouse or datamart or star schema

When a data warehouse, datamart, or star schemas are already in place, the
initial steps should include a review of the existing star schemas and a
comparison of the star schemas to the DB2 OLAP outline (dimensionality).
If an existing star schema contains the dimensionality required by DB2 OLAP
and the granularity of the FACT table is also consistent with the DB2 OLAP
requirements, initial development efforts should focus on using the existing
star schemas. In addition to the dimensionality and granularity requirements,
you must also determine if the indexing strategy of the star schema will
support the required performance.
Appendix B. Integration Server implementation guidelines 175

In summary:

1. Determine if the star schema contains the dimensionality required by DB2
OLAP.

2. Determine if the granularity in the FACT table data meets DB2 OLAP
requirements.

3. Determine of the indexing strategy of the star schema will meet the IS
performance requirements.

B.3 From the very beginning: developing the star schema

In the environment without a data warehouse, datamart, or star schema, a
star schema needs to be developed to support IS and DB2 OLAP. The star
schema will reside in one of the IS support relational databases and
connectivity established either via native ODBC drivers or MERANT ODBC
drivers provided with IS.

B.3.1 The dimensional model

Another name for the star schema is a dimensional model. While entity
relational models are very symmetrical, the dimensional model is asymmetric.
There is one large dominant table in the center of the schema, surrounded by
smaller attendant tables. This center table is called the FACT table and
contains the numeric data; the smaller tables are dimension tables and
contain the metadata.

B.3.1.1 Designing the FACT Table
The fact table contains the values that are later aggregated and reported by
DB2 OLAP. All measures values that you want reported in DB2 OLAP are
referenced through the fact table and through the accounts dimension, which
can be an exact copy of the FACT table, generally in one of two formats:

1. Each dimension is represented by a column and each DB2 OLAP
MEASURE is also represented by a column. Each row contains a valid
member for each dimension and numeric values under each MEASURE.

2. Each dimension, including the ACCOUNTS dimension is represented by a
column. A column labeled ‘DATA’ contains the numeric data values for
each DB2 OLAP dimension intersection point.

Method #1 is used when the number of MEASURES is limited. When creating
a star schema for a financial application, the ACCOUNTS dimension typically
has a large number of members. For this reason, Method #2 is typically used
for financial applications.
176 DB2 OLAP Server - Theory and Practices

The Standard FACT Table [Method #1]
As stated above, the standard FACT table will contain a column for each
dimension plus columns for each ACCOUNT member or MEASURE. The
datatype for each MEASURE must be a numeric datatype. If any other
datatype is used, IS will not recognize that column as a MEASURE.

In the TBC sample database, the FACT table is created using Method #1.
Figure 44 is sample of the FACT table as shown in a dimension model.

Figure 44. Fact table sample

STATEID, PRODUCTID, SCENARIOID and SUPPLIERID represent a
dimension is the DB2 OLAP outline.

SALES, COGS, MARKETING, PAYROLL, MISC, OPENNINGINVENTORY
and ADDITIONS represent the MEASURES in the ACCOUNT dimension.

In the example, STATEID, PRODUCTID, SCENARIOID and SUPPLIERID are
all foreign keys. The use of foreign keys in the FACT table is standard data
warehouse practice.

Each dimension table will contain a ‘Primary Key’. One of the characteristics
of a primary key is that it is unique. Each FACT table Dimension code should
be a foreign key to the dimension table’s primary key. For example, the
PRODUCTID in the dimension table is the PRODUCT dimension primary key
[it is a unique value which is also a DB2 OLAP requirement]. The
PRODUCTID in the FACT table is the foreign key. This means that the
PRODUCTID must exist in the PRODUCT dimension before it can be loaded
into the FACT table. This primary / foreign key relationship will also keep the
Appendix B. Integration Server implementation guidelines 177

DB2 OLAP metadata and data in synchronization. For more information
regarding the use of foreign keys, please refer to data warehouse
documentation.

The Alternate FACT Table [Method #2]
When building a dimensional model for a financial application, Method #2 is
typically the preferred method. Financial applications generally use the chart
of accounts as the ACCOUNT dimension. Chart of accounts can contain
thousands of accounts. Even building DB2 OLAP at a higher level of detail
[that is not at the lowest account level of the chart of accounts], may create
two to three thousand base accounts. Putting each of these base level
accounts in a column would create an extremely large table, making
maintenance difficult. Method #2 uses a separate column for the ACCOUNT
dimension and one for the actual numeric data. This is illustrated in
Figure 45.

Figure 45. Alternate Fact table sample

The ACCOUNT table contains the ACCOUNT metadata, including the
ACCOUNTs hierarchy structure. The DATA column contains the actual
numeric data related to each of the dimension columns.

Granularity of the FACT Table
IS loads data directly from the FACT table based on the default or the ‘Build
to here’ criteria defined in the IS metaoutline. FACT tables are generally very
large: millions and millions of records are standard. The main consideration
when determining the granularity of your FACT table should be whether you
have a limited time window in which DB2 OLAP must be loaded and
calculated. If there is a limited time window, an aggregate FACT table
strategy can be employed.

Using this strategy, review each DB2 OLAP dimension and determine the
most effective aggregation placement. For example, the original FACT table
granularity is at the invoice line level of detail and the DB2 OLAP cube is
summarized by Product and Month. By creating an aggregate FACT table,
178 DB2 OLAP Server - Theory and Practices

summarizing at the TIME = Month and PRODUCT = By Product [not the
invoice line item], will dramatically reduce the number of rows in the
Aggregate FACT table. Using the original FACT table, IS would actually SUM
to the DB2 OLAP data requirement level. Using the aggregate FACT table, IS
would not have to sum the data, which would reduce the SQL retrieval time.
The end result is that the data load would happen faster.

FACT table datatypes
All MEASURES in the FACT table, whether using Method#1 or Method#2,
must be numeric datatypes. For Method #1, each column identified as a
MEAURE must be a numeric datatype. The columns identifying the
dimensions must be the same datatype as their associated Primary Keys.

For Method #2, the ‘DATA’ column must be a numeric datatype. As stated
above, the columns identifying the dimensions must be the same datatype as
their associated primary keys.

B.3.1.2 Designing the dimension tables
Dimension tables contain the metadata. Efficiently designed dimension tables
make a tremendous difference in the performance of IS metadata loads and
data loads. As stated previously, each dimension table must contain a
primary key. This unique key also represents the DB2 OLAP leaf-level
member. This is not to say that you couldn’t build a DB2 OLAP cube at a
higher level using the ‘Build to here’ function in the IS metaoutline.
Considering the DB2 OLAP ‘uniqueness’ requirement, using the primary key
is a nice fit.

Along with the DB2 OLAP leaf-level member, a column should also be
defined for the associated ‘ALIAS’ and ‘User Defined Attribute (UDA)’. The
first three columns, therefore, define the DB2 OLAP leaf-level member. When
designing the dimension table, keep DB2 OLAP requirements in mind. For
example, DB2 OLAP limits the field size of member names and aliases to 79
characters. This limitation should be included in the dimension table design.

Dimension table: hierarchies
IS supports various table layouts to build DB2 OLAP hierarchies. One table
layout is preferred. This format is a hybrid generation build. Basically stated,
the primary key remains as the first column (+ the associated alias and UDA,
if applicable). The next group of columns represent a ‘generation build’, with
GEN01 being the highest parent, GEN02 the second highest parent(s) and so
forth. We have to continue building the generations in columns to the right,
and not to include the leaf-level member [the primary key] in any of the
generation columns.
Appendix B. Integration Server implementation guidelines 179

A sample of this dimension table layout is shown in Table 21.

Table 21. Sample dimension table with hierarchies

PRODUCT_CODE is the primary key. GEN_01 is the highest parent of the
primary hierarchy. GEN_02 is the second highest parent of the hierarchy. If
aliases and UDAs are required for the parent levels then add the necessary
columns to the right of the associated generation columns.

Dimension table: alternate hierarchies
Alternate hierarchies are a very powerful DB2 OLAP function. The preferred
method for handling alternate hierarchies is to build the alternate hierarchy
structure in columns to the right of the primary hierarchy. Not all leaf-level
members, or primary keys of the dimension table, are members in alternate
hierarchies. For those members, the alternate hierarchy columns should be
left ‘NULL’.

PRODUCT_
CODE

PRODUCT_ALIAS GEN_01 GEN_02

100_10 COLA COLA VS NONCOLA COLAS

100_20 DIET COLA COLA VS NONCOLA COLAS

100_30 CAFFEINE FREE COLA COLA VS NONCOLA COLAS

200_10 ROOT BEER COLA VS NONCOLA NON-COLAS

200_20 DIET ROOT BEER COLA VS NONCOLA NON-COLAS

200_30 VANILLA CREAM COLA VS NONCOLA NON-COLAS

200_40 DIET VANILLA CREAM COLA VS NONCOLA NON-COLAS

400_10 GRAPE COLA VS NONCOLA FRUIT SODA

400_20 DIET GRAPE COLA VS NONCOLA FRUIT SODA

400_30 ORANGE COLA VS NONCOLA FRUIT SODA

400_40 DIET ORANGE COLA VS NONCOLA FRUIT SODA
180 DB2 OLAP Server - Theory and Practices

A sample of a dimension with a primary hierarchy and an alternate hierarchy
is shown in Table 22.

Table 22. Dimension table with alternate hierarchies

Dimension Table: ragged hierarchies
One of the most difficult hierarchies to build is the ragged hierarchy. A ragged
hierarchy is a hierarchy in which there are an unequal number of levels in the
hierarchy. One parent may have two (2) levels prior to the leaf-level member;
another parent may have five (5) levels prior to the leaf-level member.

To build the dimension table for a dimension with ragged hierarchies, use the
same method outlined above. With GEN_01 as the top level parent, each
column to the right contains the next parent. When the leaf-level member is
the ‘next’ member in the hierarchy, enter a ‘NULL’ value. Therefore, in the
example Table 22, the first parent would have values in Gen_01, and GEN_02

PRODUCT_
CODE

PRODUCT_
ALIAS

GEN_01 GEN_02 ALT_GEN
_01

ALT_GEN
_02

100_10 COLA COLA VS
NONCOLA

COLAS REGULAR
VS DIET

REGULAR

100_20 DIET COLA COLA VS
NONCOLA

COLAS REGULAR
VS DIET

DIET

100_30 CAFFEINE
FREE COLA

COLA VS
NONCOLA

COLAS REGULAR
VS DIET

REGULAR

200_10 ROOT BEER COLA VS
NONCOLA

NON-COLAS REGULAR
VS DIET

REGULAR

200_20 DIET ROOT
BEER

COLA VS
NONCOLA

NON-COLAS REGULAR
VS DIET

DIET

200_30 VANILLA
CREAM

COLA VS
NONCOLA

NON-COLAS REGULAR
VS DIET

REGULAR

200_40 DIET
VANILLA
CREAM

COLA VS
NONCOLA

NON-COLAS REGULAR
VS DIET

DIET

400_10 GRAPE COLA VS
NONCOLA

FRUIT SODA REGULAR
VS DIET

REGULAR

400_20 DIET GRAPE COLA VS
NONCOLA

FRUIT SODA REGULAR
VS DIET

DIET

400_30 ORANGE COLA VS
NONCOLA

FRUIT SODA REGULAR
VS DIET

REGULAR

400_40 DIET
ORANGE

COLA VS
NONCOLA

FRUIT SODA REGULAR
VS DIET

DIET
Appendix B. Integration Server implementation guidelines 181

and NULL values in the GEN_03 through GEN_05. The second parent would
have values in GEN_01 through GEN_05. The leaf-level values do not appear
under any of the GEN_XX columns.

A sample dimension with a ragged primary hierarchy is shown in Table 23.

Table 23. Dimension table with ragged hierarchies

The snowflake question
Questions regarding the use of a ‘snowflake’ structure instead of a standard
star schema always come up when discussing dimension hierarchies. A
snowflake structure contains branches from one or more dimension tables.
For example, the PRODUCT dimension could have an alternate hierarchy for
‘FAMILY’. The hierarchical information for the alternate hierarchy would be
stored in a separate table. The FAMILY table would be a branch from the
PRODUCT dimension table.

PRODUCT_
CODE

PRODUCT_
ALIAS

GEN_01 GEN_02 GEN_03 GEN_04 GEN_05

100_10 COLA COLA VS
NONCOLA

COLAS NULL NULL NULL

100_20 DIET COLA COLA VS
NONCOLA

COLAS NULL NULL NULL

100_30 CAFFEINE
FREE COLA

COLA VS
NONCOLA

COLAS NULL NULL NULL

200_10 ROOT BEER COLA VS
NONCOLA

NON-COLAS NULL NULL NULL

200_20 DIET ROOT
BEER

COLA VS
NONCOLA

NON-COLAS NULL NULL NULL

200_30 VANILLA
CREAM

COLA VS
NONCOLA

NON-COLAS NULL NULL NULL

200_40 DIET
VANILLA
CREAM

COLA VS
NONCOLA

NON-COLAS NULL NULL NULL

400_10 GRAPE COLA VS
NONCOLA

FRUIT SODA GRAPE
FAMILY

GRAPE
REGULAR

SAMPLE 1

400_20 DIET GRAPE COLA VS
NONCOLA

FRUIT SODA GRAPE
FAMILY

GRAPE
DIET

SAMPLE 2

400_30 ORANGE COLA VS
NONCOLA

FRUIT SODA ORANGE
FAMILY

ORANGE
REGULAR

SAMPLE 3

400_40 DIET
ORANGE

COLA VS
NONCOLA

FRUIT SODA ORANGE
FAMILY

ORANGE
DIET

SAMPLE 4
182 DB2 OLAP Server - Theory and Practices

A sample of a snowflake dimension is shown in Figure 46.

Figure 46. Snowflake example

A non-snowflaked star schema would only contain a single PRODUCT
dimension table with primary and alternate hierarchies defined in the single
table.

We advise against ‘snowflaking’ because of the additional SQL time required
to run the queries. Snowflaking schemas require additional SQL time to
consider the multiple joins between the dimension tables and the snowflaked
tables. Performance time is one of the key considerations in the IS and DB2
OLAP engagement.

B.3.1.3 Star schema indexing strategy
While each star schema is different, there is a basic indexing strategy that
can be employed during the preliminary phases of the IS implementation.
Keep in mind that indexes are expensive in relation to the space the indexes
require. It is not unusual for the indexes to take up as much space as the
data.

The indexing strategy can make or break the IS implementation.

The establishment of the primary and foreign keys identifies these keys as
unique indexes.

For a preliminary indexing strategy, you should index each column that is
contained in the SELECT statement generated by IS. You should make sure
that you review both the metadata SQL statement and the data load SQL
statement to identify possible index candidates. In addition, if drill-through
reports are also in use, review the SQL statements generated by the
drill-through reports and index appropriately.
Appendix B. Integration Server implementation guidelines 183

B.3.1.4 Surrogate keys
Surrogate keys are not required by IS but they are just plain ‘Good data
warehousing’ and should be implemented in all star schemas. What is the
definition of a surrogate key? Per Ralph Kimball:

“In a data warehouse, a surrogate key is a necessary generalization of the
natural production key and is one of the basic elements of data warehouse
design. Every join between dimension tables and fact tables in a data
warehouse environment should be based on surrogate keys, not natural
keys.”

Basically it means replacing your natural keys with a unique sequentially
assigned integer. There are many reasons for using surrogate keys but the
most important to IS is the improved query performance time.

For additional information regarding the use of surrogate keys please see any
of the data warehousing books by Ralph Kimball or search the
DBMSMag.com Web site for articles regarding the use and deployment of
surrogate keys.

B.4 IS installation and environment configuration

The DB2 OLAP / IS / Star schema environment can vary greatly depending
on the client environment. Answering the following questions can help you
determine the most advantageous environment for DB2 OLAP and IS.

1. Obtain the following server specifications:

a. Server RAM
b. Number of processors on the server
c. Amount of hard drive space
d. Is this a dedicated server or are other applications also using this

server?

 - Identify the applications that share the server and usage percentage.

2. How many DB2 OLAP applications are running on this server?

3. For the DB2 OLAP cubes on this server, how often are they updated? How
often are calc scripts being run? How long do the calculations take to
complete?

4. Is IS being used to generate and load IS cubes?

5. How often is the star schema being updated? How long does it take to
populate or update the star schema?
184 DB2 OLAP Server - Theory and Practices

6. Has the client Network performance been tested? Are there known
problems with the network?

Answering these questions for each of the servers available for this project
will help determine the optimal DB2 OLAP / IS / Star schema configuration.
Also keep in mind the following information:

1. When DB2 OLAP runs a calculation, one processor is in use. A second
calculation will take a second processor. On a dual processor server, two
DB2 OLAP calculation can already have created a queue (the Operating
System requires some processor time as well).

2. When IS is running either a meta data load or a data load, a processor is
in use.

3. When the RDBMS is running the IS-generated SQL, a processor is in use.

4. When IS generates a DB2 OLAP cube, a metadata build, the SQL is run
and all of the result set is stored prior to being loaded into DB2 OLAP. The
IS server handles the DB2 OLAP validation rules prior to loading the
metadata into DB2 OLAP.

5. When IS loads data into DB2 OLAP, the SQL is generated and data is
loaded into DB2 OLAP in 100 record increments. The 100 record
increment can be modified.

B.4.1 IS environment configuration recommendations

Based on the above information, the following recommendations should be
considered:

1. DB2 OLAP / IS / Star schema can all reside on the same server if the
following conditions apply:

a. The server specifications include a quad processor, 2 GB of RAM and a
maximum amount of hard-drive space.

b. There are a maximum of two DB2 OLAP cubes on the server. The DB2
OLAP cubes are updated and calculated monthly.

c. The Star Schema is updated incrementally in a reasonable time frame.

In this scenario, there should be limited queuing because of the number of
available processors and RAM. The process may look like this:

 - The Star schema is updated (it uses one processor + required RAM).

 - IS loads the metadata and data into DB2 OLAP (after the star schema
is updated, it uses one processor + required RAM).
Appendix B. Integration Server implementation guidelines 185

 - DB2 OLAP calculates the cube (it uses one processor + required
RAM).

Loading two DB2 OLAP cubes would obviously take twice the number of
resources. In this case, we still would not anticipate queuing or
performance issues.

2. IS / Star Schema on one server and DB2 OLAP on a separate server if the
following conditions apply:

a. The server specifications include a dual processor, 2 GB of RAM and a
maximum amount of hard-drive space.

b. There are more than two DB2 OLAP cubes in production or two DB2
OLAP cubes that are updated more than on a monthly basis. The DB2
OLAP cubes should reside on a separate server.

c. The star schema is updated more than once a month for example
weekly updates.

In this scenario, there should be limited queuing because we split the
processes that require processor time and RAM. The process may look
like this:

 - The star schema is updated (it uses one processor + required RAM)
each week

 - IS loads the metadata and data into DB2 OLAP (after the star schema
is updated, it uses one processor + required RAM), again weekly.

 - DB2 OLAP calculates the cube (it uses (one processor + required
RAM) * number of DB2 OLAP cubes). Since DB2 OLAP is running on
another server, the number of processors and RAM required to run
multiple calculations does not effect IS or to update the star schema.

3. Consider having IS, star schema and DB2 OLAP all on separate servers if
the following conditions apply:

a. The servers are not dedicated servers. If this is the case, it is essential
that you ‘load balance’ your applications. You must understand the
other applications running on each server and balance their RAM and
processor requirements with the IS / DB2 OLAP and star schema
processor and RAM requirements.

b. IS loads the metadata and data to multiple DB2 OLAP cubes on a daily
basis.

c. End-user drill-through activity is high.

d. Multiple DB2 OLAP cubes are calculating daily.
186 DB2 OLAP Server - Theory and Practices

B.5 The IS model

From this point forward, this document will only point out good practices and
provide supplemental information to the IS documentation. The IS
documentation should be reviewed for the step-by-step methods of building
the IS model and IS metaoutline.

B.5.1 Building the IS model

When building the IS model, incorporate all dimensions defined in the star
schema into the IS model. Many times this could be fifteen or twenty (or
more) dimensions! By including all possible dimensions in the IS model, you
are guaranteeing the referential integrity of the DB2 OLAP outlines (this
assumes, of course, that the star schema has the required primary and
foreign key relationships defined!).

B.5.1.1 The TIME dimension
The first step in building the IS Model is to drag the FACT table to the center
of the right panel. When asked if you want to add a TIME dimension, the
answer should be ‘NO’.

Why? The FACT tables generally contain millions and millions of records. By
using the FACT table to build the TIME dimension, you would basically be
doing a “Select distinct” on the TIME column of the FACT table in order to
populate the TIME dimension. Instead, create a separate TIME dimension
table and join to the FACT table using the surrogate key. This step will greatly
influence performance.

Dynamic TIME Series
Creating hierarchies and employing Dynamic TIME Series functionality is
accomplished in the following steps:

1. Create a TIME Dimension table that contains a column for the surrogate
key to the FACT table and, using a DATETIME datatype, a column that
contains the month end (or any particular) date (see Table 24).
Appendix B. Integration Server implementation guidelines 187

Table 24. Create a time dimension table

2. Drag the TIME Dimension table onto the IS desktop and add the TIME
dimension. Join the TIME dimension to the FACT table. When “Creating a
New Dimension”, make sure you identify the TIME dimension as a ‘TIME’
Dimension Type.

3. Highlighting the TIME Dimension, select View /Properties / Tables.

4. In the Table Properties dialog box, select the ‘COLUMNS’ tab. Select the
DATETIME column and then select the Date-Hierarchy box on the right
side.

5. The Date-Hierarchy dialog box is retrieved as shown in Figure 47.

TIME_KEY TIME

1 1/31/2001

2 2/28/2001

3 3/31/2001

4 4/30/2001

5 5/31/2001

6 6/30/2001

7 7/31/2001

8 8/31/2001

9 9/30/2001

10 10/31/2001

11 11/30/2001

12 12/31/2001
188 DB2 OLAP Server - Theory and Practices

Figure 47. Creating date hierarchies

6. Select the TIME hierarchy that is appropriate.

7. After the Date-Hierarchy selection is made, the TIME Dimension is altered
to appear as in Figure 48, adding three extra columns to the TIME
dimension table: Month, Quarter, and Year.
Appendix B. Integration Server implementation guidelines 189

Figure 48. Time dimension altered

8. The following steps are made in the IS Metaoutline:

a. Highlighting the YEAR level in the TIME Hierarchy, go to the Member
Properties and select the DYNAMIC TIME box (see Figure 49).

b. Complete the previous step for the QTR level in the TIME hierarchy.
190 DB2 OLAP Server - Theory and Practices

Figure 49. Selecting dynamic time

B.5.1.2 The ACCOUNT dimension
If you are using Method #1to build the FACT table (MEASURES are reflected
as columns in the FACT Table), then you have to answer ‘YES’ when asked if
you want to build the ACCOUNT Dimension after adding the FACT table.

If you are using Method #2 to build the FACT table (MEASURES are reflected
in a single column in the FACT Table), then you have to answer ‘NO’ when
asked if you want to build the ACCOUNT dimension after adding the FACT
table. We need to identify the specific ACCOUNT column in the FACT table
for IS. Then, we drag it over the ACCOUNT dimension table and we identify
the dimension as a generic dimension:

You will have to identify the ACCOUNT dimension as an ‘Accounts’ type
dimension in the metabolite.

B.5.1.3 Generic dimension tables
When building generic dimension tables, you should have to consider
transformations and to build ragged hierarchies.
Appendix B. Integration Server implementation guidelines 191

Transformations
Consider the SQL performance cost of using the FIND and REPLACE
functionality available under the TRANSFORMATIONS tab. If the FIND and
REPLACE function is required for all possible DB2 OLAP cubes (for instance,
replacing an imbedded “with a single ‘), you should consider handling this in
the extract, transform and load stage or prior to loading the star schema.
Cleansing the data once on the way into the star schema is much more
efficient than transforming the data each and every time it is loading into DB2
OLAP using IS.

Building ragged hierarchies
With the recommended star schema format, building ragged hierarchies with
IS is simple! From the Edit hierarchy dialog box, you drag over each GEN_XX
column, top to bottom order (see Figure 50).

Figure 50. Building ragged hierarchies

The last generation should be the leaf-level member.

The <NULL> values contained in any of the GEN_xx columns will be ignored.
The resulting RAGGED_PRODUCT dimension generated in DB2 OLAP looks
like Figure 51.

Again, an efficiently build star schema dimension table makes the IS
implementation of difficult ragged hierarchies a simple process.
192 DB2 OLAP Server - Theory and Practices

Figure 51. Resulting ragged dimension

B.6 IS metaoutline

All of the dimensions from the star schema, and therefore the IS model are
available now to be included in the DB2 OLAP outline.

B.6.1 Building the IS metaoutline

When you create a new metaoutline, all the available dimensions appear on
the left side panel. In addition to the hierarchies established in the IS model,
the IS developer can also build hierarchies from scratch in IS metaoutline.
The hierarchies built in IS metaoutline are only available for that particular
metaoutline.
Appendix B. Integration Server implementation guidelines 193

B.6.1.1 The MEASURES dimension
If you’ve used Method #2 to define the MEASURES dimension, you’ll need to
make one modification to the metaoutline in order for IS to recognize the
MEASURES column.

To define the MEASURES column, highlight the metaoutline name and right
mouse click. Select Properties from the drop-down menu. Select the
Database Measures tab and then the ADD button (see Figure 52).

Figure 52. Defining the MEASURES dimension

Any numeric datatype will appear under the Database Properties list. Select
the column that contains the data for the MEASURES dimension. When
dragging over the ACCOUNT dimension, make sure you identify this
dimension as the ‘ACCOUNTS” dimension type.
194 DB2 OLAP Server - Theory and Practices

B.6.1.2 Generic dimensions
Rules regarding transformations, specifically the FIND and REPLACE
function, mentioned in B.5.1, “Building the IS model” on page 187 above
apply to the IS metaoutline also. Each and every time you use the
TRANSFORMATION functions, you are adding time to your metadata and
data load into DB2 OLAP.

Concatenation and substring
In both the IS model and IS metaoutline, concatenation and substring
functionality is available when viewing a table. Prefixing and suffixing is
available under the Transformation button.

If you find that a column by itself is meaningless and therefore requires a
concatenations or substring function to make sense, consider making this a
global change and handling this transformation during the extract, transform
and load (ETL) process. It’s much more efficient to handle this process once
during the star schema load then multiple times every time an DB2 OLAP
cube is built and loaded.

Filtering and building hierarchies
Filtering on specific column members make IS extremely flexible when
building hierarchies. Filters create a ‘where’ clause in the generated SQL.
You can filter on any column associated with the particular dimension. If using
a filter parameter allows you to build your hierarchy simply but the filter-able
data is not in your dimension table, consider adding a column to the
dimension in the star schema.

B.6.2 Loading data

Building the star schema and the hierarchies as detailed in the document will
result in improved data load performance. Here’s why: defining the primary
and foreign relationships (the referential integrity of the star schema) as the
IS model joins creates a very simple ‘WHERE’ clause in then SQL generated
for the data load. Other methods, particularly when there is no star schema
referential integrity, create very inefficient SQL scripts for the data loads
resulting in poor performance.

As a hint for the indexing strategy of the star schema, you should:

 • Review the SQL generated during the data load. It can be found in the
olapisvr.log, contained in the IS/ BIN subdirectory.

 • Verify that each of the ‘SELECT’ columns have been indexed, at a
minimum.
Appendix B. Integration Server implementation guidelines 195

 • Conduct benchmark testing to determine the cost (additional tablespace
required) of additional indexes is worth the benefit (how much faster is the
dataload with the new index?).

B.6.2.1 Granularity of the FACT table versus data load performance
IS will sum the MEASURES data during the data load process. For every
unique occurrence of the dimension string, the MEASURES are summed
together. For instance, if the FACT table is populated at the invoice line-level
detail and DB2 OLAP is loaded at a monthly level, IS will sum the FACT table
up to the month. If the data load performance time is unacceptable, consider
creating an ‘Aggregate FACT table‘. In DB2 this is called an Automatic
Summary Table (AST). By aggregating the FACT table during the star
schema build, you effectively reduce the total number of columns in the FACT
table and the SQL performance time required for the SUM function. You have
to keep the detail FACT table joined to the star schema for drill-through
purposes.

B.6.3 IS drill-through functionality

IS drill-through functionality is a major function of IS. One simple fact to
remember:

IS drill-through reports allow the end-user to drill-through to the detail
contained in the star schema.

Drill-through reports do not drill back to the source relational databases:
drill-through reports drill back to the star schema. Any and all tables that are
part of the star schema and the IS model are available for IS drill-through.

B.6.3.1 Drill-through report details
When creating a drill-through report in IS metaoutline, you define two things:

1. The DB2 OLAP intersection points which are the elements of the ‘WHERE’
clause

2. The columns or data to be returned which are the columns identified in the
SELECT statement.

The most important things to remember concerning the creation of
drill-through reports are:

1. When defining the DB2 OLAP intersection points, select the leaf-level
members from the FACT table rather than the leaf-level member from
each of the dimension tables. This should reduce the complexity of the
SQL script and therefore improve performance during retrieval.
196 DB2 OLAP Server - Theory and Practices

2. When defining the data columns to retrieve, select the columns from the
least number of tables. Again, by restricting the number of tables and
reducing the number of joins, you will improve performance time during
retrieval.

3. Any changes made to a drill-through report require you to rebuild the DB2
OLAP outline. The DB2 OLAP outline file (.otl) contains the information
necessary for drill-through. Changes to drill-through reports without
rebuilding the DB2 OLAP outline will result in the drill-through reports not
changing.

4. Consider modifying the star schema indexing strategy to incorporate
drill-through requirements.
Appendix B. Integration Server implementation guidelines 197

198 DB2 OLAP Server - Theory and Practices

Appendix C. Case study: example of end-to-end approach

To illustrate tools integration in an OLAP end-to-end approach, we
implemented a case study based on a system defects application.

C.1 Context and business scenario

A worldwide software company SoftCompany has numerous Customer
Interaction Centers (CICs) which receive defect cases on products from their
customers. The CICs are located throughout the world and share a common
transaction system to record details on customer requests. Customer
requests may be registered in the transaction system by the call receiver, via
the Web, or via an automated telephony application.

The company typically operates on a ‘call-back’ model where the first contact
with the customer is usually to gather information and to create a case record
in the transaction system. The call is then assigned to technical people with
the appropriate skills to look at the information provided and to begin a dialog
with the customer to answer his request. Once the customer request is
satisfied, the case record is marked closed.

The company wants to categorize and analyze:

 • The performance of its technical support people who answer a call:

 - Who solves the highest number of cases?
 - Who needs minimum days to resolve the case, on average?
 - How was the case solved?

 • The customer calls:

 - Who is calling the most often?
 - When are customers calling the most often?
 - With what kinds of requests?

 • The products impacted:

 - What products require the most technical support?
 - What products require the least technical support?

The OLAP solution must enable the company to find answers to all of these
questions, and to anticipate others using a more complex analysis.
© Copyright IBM Corp. 2001 199

C.2 Proposed approach

We loaded input data provided by SoftCompany in a relational staging area
on IBM DB2 Universal Database (DB2 UDB). We used DB2 UDB to easily
manipulate, clean, and transform data in order to load a relational datamart
(refer to “The Data Warehouse Toolkit” book from Ralph Kimball). The table
structure in a star schema is especially well suited for multidimensional
databases, and is the best way to prepare and structure relational data to be
loaded in a multidimensional database.

A star schema consists of a FACT table which holds key figures of the
business subject area and numerical measures. The FACT table relates
these measures to different dimension tables which contain the context
information for the recorded facts and holds the aggregation hierarchies to
enable drill-down operations.

To be very flexible regarding the number of OLAP databases to implement
and to be able to deal with different dimensionalities, we used IBM DB2 OLAP
Integration Server (OIS) to define a logical OLAP model on the star schema
datamart, prerequisite for OIS.

The OLAP model includes all the potential dimensions that we combined
using the OIS metaoutline to create different OLAP datamarts for different
testing purposes.

We used Intelligent Miner for Data for further knowledge about our input data
and to find the useful dimensions for our OLAP design.

We used Analyzer as a reporting and write-back tool. Analyzer virtual cube
functionality was selected over OIS drill-through reporting because it enables
multi-pass drilling within the relational database.

Figure 53 details the whole architecture, and Figure 54 details the hardware
and software configuration.
200 DB2 OLAP Server - Theory and Practices

Figure 53. Products involved in case study

Concerning the hardware and software architecture, we used a J50 server
from RS/6000 family with 1 GB memory and 4 PowerPC_604 200MHz
processors. We installed DB2 V7.1, DB2 OLAP Server V7.1, DB2 OLAP
Integration Server V7.1 and Intelligent Miner for Data V6.1. Source data is on
RS/6000 server as well. As an end-user tool, we used Hyperion Analyzer
Server V5.0.1 running on IBM PC 365 with Pentium Pro 200 MHz processor
and 256 MB memory. The hardware configuration is shown in Figure 54.

Source
Data

Staging

Dimensional
Datamart

Integration
Server

DB2 OLAP

IS Metadata

Intelligent
Miner

Analyzer
Appendix C. Case study: example of end-to-end approach 201

Figure 54. Case study hardware and software configuration

C.2.1 Building a relational datamart

To be able to clean and transform easily the input data, we imported source
data into DB2UDB on AIX in a relational staging area.

To prepare the input data for OLAP databases using RDBMS capabilities and
the strength of SQL, to best fit in the OLAP application, we built a star
schema model.

The relational datamart created on this star schema model contains 1 FACT
table and 14 dimension tables that you can see in Figure 55. The FACT table
contains 48420 rows. Only 0.07% of the cases have status New, and 4.3% of
them have status Open. All the other cases are closed.

Analyzer
V5.0.1

Web
Server

DB2 OLAP
Server V7.1

DB2 UDB V7.1

Intelligent Miner V6.1

Integration
Server V7.1

Web

PC 365/NT
Administration

Clients

PC 365/NT
Web Server

RS/6000 - J50 AIX
Data Server
202 DB2 OLAP Server - Theory and Practices

Figure 55. Star schema in datamart

We built this datamart with the knowledge of what should be dimensions and
measures in our OLAP application.

CIC_FACT_TABLE
case_key
severity_key
received_via_key
type_key
assigned_to_key
tod_key
product_key
customer_key
status_key
resolution_key
reason_closed_key
closed_by_key
time_created_key
time_closed_key
new_case_volume
open_case_volume
closed_case_volume
closed_onfirstcontact_volume
days_to_resolution
closed_by_others
case_subject
case_note
last_comment

SEVERITY
severity_key
severity_code
severity_alias
severity_beta_released_code
severity_beta_released_alias

RECEIVED_VIA
received_via_key
received_via_code
received_via_alias

TYPE
type_key
type_code
type_alias

TIME_OF_DAY
tod_key
tod_code
tod_alias
tod_busnonbus_code
tod_busnonbus_alias
tod_hrsgrp_code
tod_hrsgrp_alias
tod_timezone_code
tod_timezone_alias

ASSIGNED_TO
assigned_to_key
assigned_to_code
assigned_to_alias
region_code
region_alias
cost_center_code
cost_center_alias

TIME_CREATED
time_created_key
time_created_date
time_created_julian_date
time_created_month_code
time_created_month_alias
time_created_qtr
time_created_year

CLOSED_BY
closed_by_key
closed_by_code
closed_by_alias
region_code
region alias
cost_center_code
cost_center_alias

REASON_CLOSED
reason_closed_key
reason_closed_code
reason_closed_alias

RESOLUTION
resolution_key
resolution_code
resolution_alias

CUSTOMER
customer_key
customer_code
customer_alias
company_code
company_alias

STATUS
status_key
status_code
status_alias

TIME_CLOSED
time_closed_key
time_closed_date
time_closed_julian_date
time_closed_month_code
time_closed_month_alias
time_closed_qtr
time_closed_year

CASE
case_key
received_via_alias,
received_via_code
severity_alias,
severity_code
status_alias, status_code
type_alias, type_code

PRODUCTS
products_key
products_code
products_alias
product_line_code
product_line_alias
Appendix C. Case study: example of end-to-end approach 203

C.2.2 Using Intelligent Miner for Data for designing OLAP dimensions

Data mining is the process of discovering previously unknown and ultimately
comprehensible information from large stores of data.

Data mining is a complementary tool to DB2 OLAP when building and
developing new OLAP models:

1. To uncover the most meaningful dimensions
2. To incorporate new dimensions
3. To define the most useful members, hierarchies, and attributes

C.2.2.1 Find out the most meaningful dimensions
We used Intelligent Miner for data to uncover the most meaningful
dimensions. One of the most critical aspects in OLAP model design is the
definition of the limited set of dimensions to be included in a particular cube.
Including too many dimensions makes analysis difficult and affects
performance and storage. The final analysis would be more efficient if the
chosen dimensions are the most relevant, with high and predictive value.

In our call center case study we used bivariate statistics, neural networks,
and factors analysis, in order to determine the most meaningful attributes for
OLAP reports and to validate results from one technique with complementary
approaches.

By combining these approaches we found that the eight most relevant
attributes that should be included as dimensions for ‘days to resolution’ were:

 • Type
 • ClosedBy
 • Time_Created
 • AssignedTo
 • Severity
 • Closed_by
 • ReceivedVia
 • Days_to_resolution

In any case we should make sure there are no redundant attributes included
in these analysis. Sometimes, if we suspect the existence of possible
redundancies, it is worth while to perform specific correlation tests among
candidate fields, in order to eliminate superfluous information.
204 DB2 OLAP Server - Theory and Practices

C.2.2.2 Incorporate new dimensions
To incorporate new dimensions in our OLAP models, we can consider the
following data mining tasks:

 • Clustering
 • Classification
 • Prediction

In our case study we used clustering in order to find meaningful segments of
cases within our population. We uncovered eight different segments for the
set of cases, and observed their different profiles through Intelligent Miner
visualization. For instance, specific segments uncovered correspond to cases
where critical severity is much less than the average.

The results were incorporated as a new dimension in our OLAP outline in
order to consider these new segments in our analysis.

For our case study, cases belonging to the same segments, represents cases
that are similar in some way. Taking this into account, OLAP users now can
filter information by these segments, observe what are their characteristics,
and find out if one or more of them are interesting for further analysis. In
Figure 56 we observe the list of the eight segments, global result of neural
clustering.
Appendix C. Case study: example of end-to-end approach 205

Figure 56. Clustering visualization for the case study

In Figure 57 we can see statistics about one of the clusters discovered.
Cluster number 5 corresponds to 7.3% of our population of cases. We
observe that in this cluster, cases are solved on average in less time that in
the whole population.
206 DB2 OLAP Server - Theory and Practices

Figure 57. Segment example

C.2.3 Using OIS to build OLAP databases

In this section we discuss the use of OIS in building OLAP databases.

C.2.3.1 Defining a model
Of all available techniques for dimension building, using OIS is the most
sophisticated and flexible. A prerequisite is to be connected to a star schema
model datamart.

Figure 58 shows the CIC OLAP model we built from the case study.

We tried to do things as simply as possible. We used single tables, and we
avoided joining tables, as well as manipulating and transforming data (as with
SQL Interface), because this slows down the dimension building process.
Appendix C. Case study: example of end-to-end approach 207

We made sure the relational tables we were using as a source for dimension
build were as ready to use as possible. Note that if there is no suitable table
available, you can ask a database administrator to create one for you. If this
is not possible, your second best option is to use the OIS transformation
option.

As with using the SQL Interface to access source data stored in relational
tables, the connection with the RDBMS is not native, but through ODBC.

The advantage of using OIS for dimension build over SQL Interface is that it
enables you to reuse existing OLAP models and metaoutlines and therefore
avoiding the need to write and maintain many SQL statements.

Figure 58. OLAP model from case study

C.2.3.2 Defining multiple metaoutlines
In our case study, we have created multiple metaoutlines to generate OLAP
cubes based on the same OLAP model.

Here is what we did:
208 DB2 OLAP Server - Theory and Practices

 • For Technical Support management, to measure the performance of their
technical people, we used the outline provided by Intelligent Miner,
focusing on days_to_resolution, or the CIC Workload Detail metaoutline
shown in Figure 59.

 • For Sales people, before a customer visit, to check the statistics of all
open and closed cases for the customer, customer calls, and their
requests, we used the CIC Customer metaoutline shown in Figure 60.

We used the dimensions RECEIVED_VIA, SEVERITY, and STATUS as
attribute dimensions. Attribute dimensions need to have their base
dimension and for that purpose we included CASE dimension. Status,
severity, and type are attributes of every particular case, and therefore we
had to include CASE as a dimension.

We ordered the attribute dimensions Received via, Severity, Status in the
Metaoutline after the sparse dimensions and according to their association
with the base dimension Case.

To be able to get detailed information on the customer and find a way to
solve the case, we created 2 virtual cubes through Analyzer that we linked
(see C.2.4, “Using Analyzer as a reporting tool” on page 211).
Appendix C. Case study: example of end-to-end approach 209

Figure 59. OLAP metaoutline — workload detail
210 DB2 OLAP Server - Theory and Practices

Figure 60. OLAP metaoutline — CIC Customer with attribute dimensions

C.2.4 Using Analyzer as a reporting tool

To create ad-hoc reports and charts from DB2 OLAP Server, we used
Analyzer and we tested drill-through capabilities to access both relational and
multidimensional data.

With Analyzer we can use two drill-through capabilities to navigate in
relational data:

 • We can build a view to access data in CIC Customer OLAP database to
know the number of days of resolution and the number of closed cases by
product (see Figure 61).

From the results, we can access relational columns CASE_SUBJECT,
CASE_NOTE, LAST_COMMENT to get the details on the case subject
using OIS drill-through capability. To do so, when building a model in OIS,
we need to define a drill-through report.
OIS automatically generates the SQL, and reports are used via LRO
(Linked Reporting Objects) in Analyzer and spreadsheets. We are not able
to link multiple drill-through. For that reason, we included in the
CIC_fact_table 3 more columns to detail the reasons to close and solve
the case (CASE_SUBJECT, CASE_NOTE, LAST_COMMENT).
Appendix C. Case study: example of end-to-end approach 211

Figure 61. Performances per customer and per severity for 2000 year

We can use the virtual cubes capability directly provided by Analyzer.
A virtual cube is an SQL select statement that returns data to Analyzer,
enabling users to present relational data in multidimensional format. Before
defining a virtual cube, a view needs to be pre-defined to transform, join,
select, and aggregate the required data, making the SQL that defines the
virtual cube a simple select.
212 DB2 OLAP Server - Theory and Practices

Each virtual cube should operate directly against a single view. Performance
can be improved by instantiating the view as an Automatic Summary Table.
By linking views, users can jump between various relational and
multidimensional data sources transparently. When drilling to a virtual cube
View from another view (drill-linking), filters and page member selects are
passed over as constraints within dynamically generated SQL “where”
clauses. Only relevant records are retrieved.

Analyzer allows each individual view (report) to contain multiple links to other
views. A link can be defined per dimension and/or at the data cell intersection
level. For example, if we want to get the detailed information not only on the
case resolution, but also on the customer, we can link together the virtual
cubes and can drill-through to detail on multi pass (see Figure 62).

Figure 62. Drill-through capabilities

To build the virtual cubes :

1. Achieve the connectivity:

 - register the source relational datamart for ODBC as a system data
source

2. Create a model using Analyzer Administrator for the first virtual cube
(RESOLUTION)

C U S T O M E R

C u b e V ie w

S Q L S E L E C T

C IC _ F A C T
T A B L E

R E S O L U T IO N

O L A P

V ie w

V ie w S Q L S E L E C T

S Q L
S E L E C T

O L A P

IN T EGR A T IO N

S ER V ER

V IR T U A L

C U B E

V IRT U A L

C U B E
Appendix C. Case study: example of end-to-end approach 213

 - Click Relational from the toolbar and insert a new model. The Model
Name identified the virtual cube used in Analyser Client tool to create
the views. The BDE Alias Name identified the relational database

 - Type the SQL query.

 - If the SQL query needs to find out the description of keys in lookup
tables, first define the lookup tables and its SQL query and test them

(ex: select type_key,type_alias from type)

 - Define for each column selected in the SQL request if it will be a
dimension or a measure in the cube.

 • if we want to see items from the column as row or column headers
in the Analyzer view, then we define it as a dimension description.
Moreover if the column is a key column and we want its description,
we define a lookup table (and the SQL select to select both code
and description from the lookup table) and we select dimension
code instead of dimension description.

 • if we want to see items from the column in the data cells of the
Analyzer view, then we define it as a measure (For example,
RESOLUTION_ALIAS is defined as a measure.)

We need to define at least one column as a dimension and one column
as a measure.

3. Test the model.

 - Click on Test.

4. Synchronize the model.

 - This step adds the virtual cube in the database list in Analyzer
Administrator.

5. Manage access to virtual cube to users.

 - From Analyzer Administrator click on Manage from the toolbar and set
up user access in the same way as you would a normal OLAP
database.

6. Create a view for the virtual cube (see Figure 63).
214 DB2 OLAP Server - Theory and Practices

Figure 63. View on RESOLUTION virtual cube

7. We can also create another model using Analyzer Administrator for the
second virtual cube (CUSTOMER) and its associated view to get detailed
information on the customer LERENE, LERETI, LONOFE and so forth.

8. Create links from the OLAP cube to the virtual cube (See Figure 64) and
between virtual cubes.

9. When we click on the cell on the OLAP cube, automatically Analyzer jump
to the linked view that can be itself linked to another view and so forth.
Appendix C. Case study: example of end-to-end approach 215

Figure 64. Create links between views

Note: To limit the number of SQL requests and to be more performant, we
have to use Automated Summary Table.

C.3 Summary

With this case study, we have attempted to demonstrate a practical approach
to build OLAP databases, integrating multiple tools such as DB2 OLAP,
Intelligent Miner for Data, OIS, and Analyzer.
216 DB2 OLAP Server - Theory and Practices

Appendix D. Considerations for getting the best OLAP delivery

Reporting requirements have greatly evolved from the static predefined
reports of the past. Today, users are asking for:

 • More flexibility to be able to interact, navigate, and analyze data for their
own business needs, not just for reporting purposes

 • Easier access to information, to be able to focus on business issues

 • Faster decision-making capabilities

 • Wider deployment, catering to an extensive audience of users inside and
outside the enterprise

D.1 What properties are needed in an OLAP reporting tool?

When defining a checklist of properties, we need to be thinking about
planning for the best in OLAP delivery. The reporting tool should address the
following requirements:

1. Advanced reporting capabilities:

Interactive/analytical More than having a limited set of views available to
them, users should be able to manipulate views
and data to perform more analysis. They should be
able to define formulas based on data retrieved
and to format reports based on data criteria.

Usability An extremely important question to most
organizations is: How much work does it take to
create a view? Frequently, the users creating the
views are not programmers, but are analysts with
strong technical aptitude. If they must learn to
write Java or some other scripting language, then
the product may not be the best fit.

Write-back ability A tool that can modify the data on the server will
have write-back capabilities. Simulations require
write-back capability.

Buy versus build Do I want an “out-of-the-box” solution, easy to
implement, mostly point-and-click, or do I want to
devote one of my programmers to the tool, able to
use script and Java languages for more flexibility.
© Copyright IBM Corp. 2001 217

Multi-source Can the tool bind to several sources to produce a
view? What is the level of multi-source capacity
needed? Can the tool drill through from the OLAP
system to the transactional system? First, the
OLAP system must support this, then the front-end
must pass this capability through to the user.

2. Deployment capabilities:

Zero-install A zero-install client is one that resides completely
on the server.This type of tool is frequently a Web
enabled tool that requires no setup on the client
computer. It is less development intensive and is
therefore a good solution for many organizations.
Can the user perform all of the functionality
needed through the desktop browser? If so, then
this is a good tool for them.

Client types Windows/Java/HTML/Dynamic HTML. These are
rendering modes and client types. A rendering
mode is a means by which the data is presented.
Some tools allow you to create views that can be
rendered by several of these means. For example,
one tool allows you to create Java, HTML and
Dynamic HTML views depending on the level of
interactivity needed. Another tool has a Windows
client that you use to build all of your views and
can be used as the client, but also can publish the
views to the Web.

3. Cost issues:

No cost The last important factor to be aware of is the cost,
and what can be sacrificed if the tool meets all of
the above requirements, but does not fit budget.

D.2 What about DB2 OLAP Server Analyzer?

DB2 OLAP Server Analyzer (Analyzer in the following) is a new add-on
feature to DB2 OLAP Server V7.1 based on Hyperion Analyzer V5.0.

Analyzer was built from the ground up with multidimensional concepts in
mind, which is very different from traditional reporting tools designed from
earlier relational architectures. As a result, concepts such as hierarchies,
nesting dimensions on any axis of a report, and so on, are natural and
intuitive to the product interface.
218 DB2 OLAP Server - Theory and Practices

Analyzer’s main assets in the reporting tool arena are:

 • Its interactive and analytical abilities
 • The way it can be deployed to a wide range of users
 • Its extensibility using open, mainstream development tools like API toolkit
 • How it exploits and leverages the power of DB2 OLAP

D.2.1 Interactive and analytical capabilities

Analyzer provides end-users (according to their security profile) a
dynamically generated report containing one or multiple groups of views.
Each view is a report that is interactive, easy to create, and supports a strong
analytical feature set which allows the user to perform data analysis and
exploit the strengths of the DB2 OLAP Server database.

Analyzer supports several view types:

 • Spreadsheets: Tables or grid representations of the data.

 • Charts: Bar, Line, Cube, Area, and other charts that provide graphic
representations of the data.

 • Forms: A Form is a composite view which allows users to see multiple
Analyzer displays and other 3rd party content (Web pages, OLE objects
and so forth) on the screen at the same time. Additionally, graphical
components like list boxes, radio controls, and buttons (to internal and
external applications) allow the user to create easy to use applications,
which guide the user and motivate them to explore their data or launch
alternative reports. Forms, though sophisticated, require no coding to
create them. Forms can be created to provide an intuitive EIS (Executive
Information System) interface, which invites users to use the application.

 • Pinboards: A Pinboard can be any graphical object that helps you to
visualize your data. For example, a computer chip manufacturer uses
Analyzer to track Inventory. A picture of the chip is used as the Pinboard,
and specific areas of the chip appear in red when inventory is running low.

Users can interact directly on the report layout or use the Cube Navigator
interface to build a report.

User interactions include all kinds of activities required by analytics: ability to
combine and add dimensions; to drill (up, down, to bottom, to next) on charts,
spreadsheets, and pinboards; and to pivot data on spreadsheets. In addition,
they can add value to data by including calculations (a wide range of
calculation functions are available, including basic mathematics, min/max,
percentages, ranking, ad-hoc calculation) along with Analyzer’s traffic lighting
on displays (to compare members between them).
Appendix D. Considerations for getting the best OLAP delivery 219

The interactivity and live data retrieval allows users to spot problems or drill
to identify the details of a problem.

Analyzer retrieves on-line data from the DB2 OLAP Server in sub-second
response times. By drilling to lower levels of data, swapping to display data in
a variety of ways, users can spots trends and gain deeper business
intelligence. On-line data ensures that all users are using the same
“one-truth” of data.

Building views or forms can be done by the end-user. No programming or IT
department intervention is required. By empowering the end-user,
decision-making can be faster, as transferring the “report requirement” to
another department is time-consuming and often an interactive time-delayed
process. Users remain in an easy-to use-graphical environment.

Likewise, reports they create can be optionally shared to groups of users,
privately for themselves, or shared to the entire enterprise.

D.2.2 Deployment capability

Designed for widespread enterprise deployment, Analyzer adapts to meet the
needs of different types of users. It reaches all levels of the enterprise — from
the executive who desires an Executive Information System (EIS) and Key
Performance Indicator reports, to the power user who wishes to continue his
analysis in a spreadsheet.

The out-of-box experience of the packaged Windows, Java, and HTML client
makes this possible to easily install Analyzer.

D.2.2.1 Web strategy
Analyzer is enterprise deployable in part due to its Web strategy. In addition
to the Windows client, a robust Java client and thin HTML client are also
available.

Additionally, the ability to send report data to HTML for static distribution and
format customization is also appealing.

When exporting to HTML, several sample templates are included with the
product, so that it’s easy to deploy to HTML without a deep underlying
knowledge of its syntax. However, if Web masters wish to customize the
output, Analyzer templates use an open HTML strategy. Therefore, full
customization over the format, look-and-feel, and third party extensions (Java
applets, ActiveX controls, JDBC calls to IBM DB2 UDB or other relational
data stores) are all at the Web master’s disposal.
220 DB2 OLAP Server - Theory and Practices

A wide range of flexibility exist for the Analyzer content on your Web pages
including “cell harvesting”, allowing users to create rich formatted output
(sentences, script to automate notification of detected traffic light problems,
and so forth).

The Java client
In addition to the Windows client, a Java client is available for enterprise
deployment. This client doesn’t require installation of software and uses your
Web browser for its interface. As with the Windows client, the common
repository for easy and efficient report sharing and personalization is utilized.
The Java client is interactive and provides not only report interactivity, but
also standard report creation and data editing. Advanced report creation
(complex selections, for example) and Form creation is only available from
the Windows client.

The Java client supports view reading and standard report creation
capabilities. Spreadsheets, Charts, Pinboards, Forms are supported.
Additionally, Excel spreadsheet objects and Web pages can be easily
launched from the interface. Likewise, any links to applications from a Form is
supported if the operating system can locate the program.

As with the Windows client, displays are interactive and easy to use. Views
are also grouped and automatically updated to the Home Page.

Since views are stored in a common repository (like DB2 UDB), any new
reports you create or modify from the Java client are instantly available to
other Web or Window users. Saving a report makes it published to other
Window and Web users.

Dynamic HTML client
In addition to the Windows client and Java client, a thin dynamic HTML client
is available for enterprise deployment. This client doesn’t require installation
of software and uses your Web browser for its interface. As with the Windows
and Java clients, the common repository for easy and efficient report sharing
and personalization is utilized. The HTML client is interactive and provides
not only report interactivity but also data editing capabilities.

Only spreadsheet and charts are supported in this release. The formatting is
slightly different because of the need for speed. With the HTML client we are
trying remain ultra-thin and reduce network/Web traffic. If the user does have
a higher speed modem, they may elect to draw the additional formatting by
selecting the Toggle Style button bar.
Appendix D. Considerations for getting the best OLAP delivery 221

Displays are interactive and support drilling and display changes, pagination
and through the Information Panel additional dimension pivoting and moving.

By saving the view, it becomes available to the Windows and Java clients.

The HTML client also allows for data entry. Because the HTML client is based
on HTML templates, administrators can alter the look-and-feel of the
application to brand it to corporate standards, remove functionality (edit, for
example), as they require.

D.2.2.2 Publication and distribution of reports
When a view has been built, it becomes available to the Windows client, Java
client, and HTML client interfaces immediately and without administration,
being registered in the centralized Analyzer repository.

The ability to send the current view or information from the view to Excel, 123,
clipboard, text file or attach a view reference in email or Lotus Notes allows
users to distribute information to other applications.

When using Excel, Analyzer has a feature which allows users to save the
Excel workbook into the Analyzer Repository, for centralized secure sharing
and distribution.

Often, users want to read static information, or desire a rich formatting
display. By exporting an Analyzer view to HTML, both can be achieved.
Additionally, users can round-trip (hyperlink) back to the Java client or the
HTML client for live data and continued analysis whenever desired. By
round-tripping, users can gain advantages of static distribution (that means
no time to process when the client asks for the report) and yet still have
facilities to jump to a live interactive mode when additional analysis is
required.

D.2.2.3 Maintaining reports on the Web
Member selections in a dimension can be static (explicitly selecting East or
West), or dynamic (Children of Market dimension). By using dynamic
selections, as you add members to your DB2 OLAP Server (example,
introduction of new product lines or markets), the cost of maintaining your
Analyzer views is low, as no maintenance is required — the reports
automatically update themselves! This adds to a powerful enterprise
deployable strategy.
222 DB2 OLAP Server - Theory and Practices

D.2.3 API toolkit

In addition to the Web strategy, developers can extend Analyzer using the
Analyzer API toolkit, which enables rapid assembly of custom Web-based
business analysis applications using open, mainstream development tools.

This allows developers to customize the front-end interface, and to integrate
Analyzer views and technology in existing corporate Web strategies and
portals.

Some users may only want to customize one or two displays to meet their
individual requirements. For example, perhaps they need a specific data
entry screen instead of the out-of-box deployed Analyzer Edit Data dialog. Or
perhaps an individual chart type requires some specific customization (such
as a hyperbolic tree).

Other users may want to seamlessly integrate the Analyzer views,
infrastructure, and dialogs into their existing Web pages or portal
applications.

Let’s walk through a few customizations that are dependent upon your
knowledge of the Web and its accompanying technologies (such as Java
Script, plug-ins, and JDBC). The many possibilities are too numerous to
count or illustrate.

D.2.3.1 Basic grid component
Analyzer ships a series of components (grid, charts, common dialogs, and
function calls) that allow developers to assemble custom Web-based analysis
applications.

The developer may include the Analyzer Grid and reference an existing view
in the Analyzer Repository.

This page could have easily have been integrated into a Web page containing
other portal or Web page content.

Since the developer included the Analyzer Grid component, many grid
controls are inherited (Right-Mouse Menu, swapping, drill-down detection,
and so on), thus saving the developer many costly development hours. If the
developer wanted to customize the grid, a third-party grid control could have
been used instead.
Appendix D. Considerations for getting the best OLAP delivery 223

D.2.3.2 Chart component
Regarding charts, for example, the developer may have assembled the
Analyzer chart component and tied it through several function calls to a series
of HTML controls.

This illustrates the ability to add your own menu items to the Analyzer
Right-Mouse Menu system.

Developers can plug in their own third party controls for custom chart
requirements.

D.2.3.3 Multiple applets
Multiple applets can be embedded at the same time, on the same page, each
pointing at a different view, and may combined a third party content.

Analyzer provides an out-of-box Data Entry dialog. For instance, suppose
that the user wants a variation of this dialog and wants to include additional
business logic or a specific look-and-feel interface. Through the Analyzer API
Toolkit, this is possible.

Once a Web application is build (or any other Web page), the contents can be
placed on an Analyzer Form and redisplayed within the Windows client
interface seamlessly.

D.2.3.4 Relational drill-through via the API
Analyzer may be extended to reference relational data.

Analyzer Windows, Java, and HTML clients also include a robust relational
integration strategy. Analyzer Virtual Cubes provide a mechanism to display
relational data directly into the Analyzer displays. Analyzer also exploits the
DB2 OLAP Integration Server and its relational drill-through capabilities.

A Right-Mouse Menu may be added to invoke Java script, which runs an SQL
query to obtain the details of a customer (phone number, address) out of a
relational database.

D.2.3.5 Summary of examples
These samples demonstrate how developers can extend Analyzer using the
Analyzer API toolkit.

We have seen simple examples of customization and an additional
customization to access relational data or to merge data with third-party
content in a Portal type application.
224 DB2 OLAP Server - Theory and Practices

By using the Analyzer API Toolkit, components can be assembled or custom
created, all the while using the out-of-box infrastructure for view storage,
security, firewalls, and enterprise deployment to other developed front-ends
or the shipping of out-of-box Windows, Java, and HTML clients.

D.2.4 Leveraging DB2 OLAP

Analyzer was built from the ground up with multidimensional concepts in
mind, including the basic parent/child hierarchy relationships as well as the
advanced DB2 OLAP Server knowledge of Levels, Generations, Substitution
variables, Dynamic Time, and Attributes.

As a result concepts like hierarchies, nesting dimensions on any axis of a
report are natural to the product interface, making it easy and intuitive and of
high performance.

Using the server provides better performance and reduces network traffic for
any organization. For example, when Analyzer needs to build a High and Low
Products view, the server is performing the analysis to read through large
amounts of data and return only the top and bottom three records per quarter.
Analyzer retrieves data from the DB2 OLAP Server in sub-second response
times.

Analyzer leverages the power of Hyperion Essbase OLAP Server and DB2
OLAP Server, while also providing drill-through to relational data.

Analyzer supports two out-of-box methods for drilling through to relational
detail data:

 • Analyzer Virtual Cubes (in the Windows and JAVA clients).

 • DB2 OLAP Integration Server Drill-Through Reports. (Additionally, with the
Hyperion Analyzer API Toolkit, additional relational technology integration
and customization can be achieved. See D.2.3.4, “Relational drill-through
via the API” on page 224.)

Additionally, the DB2 OLAP Server security is applied to ensure that users
can only change data, which they are secured to edit. From our interface,
users can elect to run a particular calculation script to update the entire
model.
Appendix D. Considerations for getting the best OLAP delivery 225

226 DB2 OLAP Server - Theory and Practices

Appendix E. Web log incorporation

In the traditional business world, merchants can only track information that
they can capture. For information on potential customers this generally
assumes the form of customer surveys, market research, focus panels, and
product testing. To gather information on the customer, merchants have to
track and analyze data generated from sales records, customer comments,
help desk calls, customer feedback and product returns, and so on.

Today e-business presents us with a different situation. The Internet presents
for the first time in the history of commerce an environment where merchants
can track and analyze the movements and decisions of existing and potential
customers.

This appendix explains how to incorporate Web logs as sources for DB2
OLAP analysis to provide more valuable information.

E.1 Web site analysis suite

Web site analysis should be represented by a suite of business analysis
applications designed to help organizations understand, manage and
optimize the experience of visitors to their Web sites. By analyzing and
understanding visitor behavior, organizations can not only respond more
effectively to customer requests, they can become pro-active in soliciting
more business from existing customers as well as new business from new
customers. Web site analysis is thus an integral part of the organizations
customer relationship management (CRM) and data warehouse strategies.

Web logs provide information that can be used to identify a Web site visitor
(or customer), the activities of that visitor during a site visit (a session), and
as well provide information about how that visitor was referred to the site.
Such information is critical when attempting to analyze customer behavior
and the effectiveness of a corporate Web site.

E.2 Overview of Web log files

Before information about the Web site visitor can be used for reporting and
analysis, the raw data in the log files must be transformed into usable,
relevant information. This can be a daunting task because log files can be
very large and difficult to read.
© Copyright IBM Corp. 2001 227

 • Web log files capture every single visitor interaction and server response.
A busy site Web log can grow to an extremely large size very quickly. A
process must be defined in such a way as to identify and track visitor
activity. Identifying a unique visitor sounds easier than it is. Web log files
by themselves do not identify unique visitors. They must be interpreted in
order to retrieve this information. Implementing a method to identify
unique visitors that summarizes visitor activity into individual sessions is
key in Web site analysis.

 • Web logs do not maintain visitor sessions. The exchange of information
between a unique IP address (visitor actions) and the Web site is entered
into the Web log as it occurs within the clickstream. Moreover, a Web
server must be able to serve up multiple Web pages simultaneously
because of the requirement to respond to potentially thousands of
concurrent visitors.Because the log files can only record the clickstream
as it happens, each unique visitor’s actions are recorded scattered
throughout the Web log. A strategy must be devised to associate actions
and behaviors with each visitor.

E.3 Web logs as source data

In this section we discuss the use of Web logs as source data for DB2 OLAP.

E.3.1 Web log fields

To repeat, Web logs provide raw data items that have to be interpreted to
create an individual visit session. In order to provide effective data for
analysis the information that is captured in Web logs needs to be planned and
overtly defined by the organization. This functionality is of course provided by
the Web Server software. Once this clickstream data has been captured, it
can be converted from these raw data elements into information that can be
summarized to populate an OLAP model to provide a full suite of reports and
analytics.

Most Web server logs can be configured to contain, but are not limited to,
data items such as DATE, TIME, CLIENT IP ADDRESS, BYTES RECEIVED,
BYTES SENT, COOKIE, HTTP STATUS, METHOD, REFERRER, SERVER
NAME, TIME TAKEN, URI QUERY, URI STEM, VISITOR AGENT, and
VISITOR NAME. All of this data is potentially valuable in determining the
effectiveness of a Web site. Once Web log data is converted into actionable
data it can be used to determine, for example, successful user visits (those
that result in a sale), or to improve Web site efficiency.
228 DB2 OLAP Server - Theory and Practices

E.3.2 Visitor and session Identification

Since visitor actions contained in a Web log are not in a cohesive format, a
process called sessionization is used to derive meaningful information from
the log. The sessionization algorithm essentially filters the data to collect
accurate information about an individual visitor's session. The goal of the
sessionization algorithm is to bring together the unique attributes on which to
sessionize and summarize the data.

E.3.3 Sessionization methods

There are a variety of ways to identify the visitor. Some of the methods are
more accurate than others, and all methods are dependent on the type of
information captured in the Web log.

E.3.3.1 IP only sessionization
IP address only sessionization is the method of counting the number of
unique IP addresses. The method is unfortunately not very accurate because
many users can enter the same site through a single IP address. For
example, most corporate users come through either a single proxy server or a
set of proxy servers, which will all be recorded as the same IP address. AOL
users, for example, all exhibit a single IP address.

Dynamic IP address assignment (DHCP) can also assign a different IP
address to the same workstation over time. Using the IP address only
method, this new IP address would be interpreted as a new visitor. Currently,
IP address only based sessionization is not considered to be a reliable way of
calculating page views or visits, because it does not comply with any audit
rules.

E.3.3.2 IP with external referrals
An external referral is a Web site where a user clicked on a link or an
advertisement that referred them to another site. The IP Address with
external referrals method uses external referrals as the key indicator of
unique visits: if an IP address has an external referral then it is recorded as a
new visit. This method too is unreliable because it requires that all aliases of
a Web site address be recorded. For example, the site www.ibm.com has the
aliases of ibm.com, IBM.com, IBM.COM, 9.19.138.191, and so on. Moreover,
using the IP address with external referrals method, every page visit will be
interpreted as a unique visitor. This makes the method unacceptable for audit
rules.
Appendix E. Web log incorporation 229

E.3.3.3 IP with user agents and external referrals
User agents identify the operating system and Web Browser employed by the
user. In combination with the IP address and external referral, the user agent
can be used to better distinguish between visitors coming through the same
IP address. By including the agent in the identification process, visitors
coming from the same IP address can be identified as unique based on the
different agent.

This method is more accurate than the previous two, and the assumption
being made is that different visitors will be using different browsers or
different versions of browsers, and different computers. For example, if two
visitors come from 9.19.138.242, but one has a user agent of MSIE 3.0 and
the other has a user agent of MSIE 4.0, then it can be safely interpreted as
two separate visitors.

E.3.3.4 IP with user agents and cookies
Visitor cookies are another way to determine the identity of a visitor on a Web
site. A cookie is a persistent client-state HTTP identifier associated with a
user. The combination of IP address, user agent and cookie can be used to
identify a unique visitor with more accuracy than the previous methods.
However, there are several issues with cookies that are described below.

E.4 Cookies

Servers store cookies on the client side of the exchange between the Web
server and visitor. The servers can then use that information to record and
determine user preferences, remember passwords and login IDs, and gather
additional statistics about the user. There are two types of cookies that can
be issued, Session and Visitor cookies.

E.4.1 Session cookies

Session cookies are used for visitor identification. They are issued by the site
for each visit, and expire after 30 minutes of inactivity. They are arguably the
most accurate method for calculating the number of visitors.

Differences in the distribution of session cookies that Web sites employ affect
the outcome of the results. For example, a server can assign a session
cookie only after the first several pages are viewed. Using this method of
cookie distribution, both the pre-cookie page views and the post-cookie page
views will be counted as separate session. This will inflate the visit and visitor
count. Moreover the fact that visitors are now increasingly disabling (not
230 DB2 OLAP Server - Theory and Practices

accepting) cookies from within their browser invalidates the use of the
session cookie for visitor identification.

A strategy that increases the complexity of using Session cookies is the use
of a fallback method for when cookies are not available. Selecting one or
more of the different methods as the fallback method means that the statistics
and summarized information about sessions and visitors for the two methods
will (most likely) not be comparable. For example, reverting to IP-base
sessionization when cookies aren’t available produces different Web log
information than would be gathered if session cookies were present.

E.4.1.1 Visitor cookies
Visitor cookies are persistent cookies that are distributed to visitors and are
not deleted from the client when the session ends. Use of the visitor cookie
constitutes another method that can be used to calculate visits.

Many sites assign a visitor cookie only at a certain page. All Web log data
previous to that page must either be discarded or included in the analysis
separately in order for the statistics to be correct. For example, consider a
site that has registration but does not require visitors to register until a certain
point has been reached. This type of site has a portion of its pages that are
open to the public access. The rest of the site is private. In this scenario,
detailed analyses about registered user behavior based on site referrals
could not be performed.

Some algorithmic intelligence can be used to help solve this problem but
most of these types of sites are not designed so that the information about
newly registered users can be tied back to their unregistered information.
Additionally, visitor cookies can also be disabled and this will have the same
impact on accurate sessionization as the disabling of session cookies has.

E.5 Additional issues

There is more work that must be done once the method of how to identify and
bring together unique visitor information has been selected. Decisions
regarding which pages should be defined as pay-off pages (to determine
whether a visitor’s time on the Web site can be considered a successful visit),
which pages are viewable or non-viewable, what types of files are
downloadable, all need to be made in accordance with the type analysis to be
performed. The Web logs must be parsed, filtered and summarized to
generate both the metadata and numeric data appropriate to the define and
load the OLAP model for analysis.
Appendix E. Web log incorporation 231

E.6 Practical example

To perform analysis, such as which page is the most frequently requested,
where was the visitor referred from, or to see what the most requested
downloadable files were, you may need to construct several different OLAP
models. Of course, the number of models that need to be built will depend on
the types of analysis to be performed as well as design and scale issues that
pertain to DB2 OLAP implementations.

The first step is to identify the data elements necessary for analysis in the
Web log. Then parse, filter, summarize and store the data in a format
applicable to your analytic requirements.

E.6.1 Sample Web log entry

Consider the following sample log entry example:

206.24.101.81 - John 30/Sep/1999:17:53:41 -0400] "GET
/javaclasses/headline.txt HTTP/1.0" 200 1175
“http://www.hyperion.com/index/" "Mozilla/4.6 [en] (Win95; U)" GET
/javaclasses/headline.txt - "HTTP/1.0"

Some of the different parts (fields) of the log entry are described in Table 25.

Table 25. Log entry

Log field Example

Hostname or IP address of client 206.24.101.81. (In this case, the IP address
is shown because the Web server’s setting
for DNS lookups is not enabled. If DNS
lookups were enabled, the client’s hostname
would appear.)

RFC 931 information RFC 931 identity not implemented,
authentication server protocol

Username John (username entered by the client for
authentication)

Date/Time of request 30/Sep/1999:17:53:41 –0400 (-0400 is GMT
offset)

Full request GET /javaclasses/headline.txt HTTP/1.0

Status code 200

Bytes transferred 1175

HTTP referrer Http://www.hyperion.com/index/
232 DB2 OLAP Server - Theory and Practices

We can interpret these log fields to reflect the different dimensionality of the
Web log data. For example, the HTTP Referrer field would be used to
construct the Referrer dimension and the User Agent field would be used to
populate our Agent and Platform dimensions and so forth. Moreover, the
sessionization process must enable the calculation of useful metrics
pertaining to visitor behavior like number of pages visited, duration spent on
each page, total length of the session, and so on.

Combining and relating the dimensional information with the numeric
statistical we can create a logical and physical star schema representation of
Web log data (from differing perspectives.) The star schema can then be
used to populate multidimensional OLAP cubes as illustrated in Figure 65.

Figure 65. Populating Web cubes

User agent Mozilla/4.6 [en] (Win95; U)

Method GET

URI /javaclasses/headline.txt

Query string of URI - (in this case, nothing)

Protocol HTTP/1.0

Log field Example

Pages Cube

Dim ensions

Measures

Tim e

Pages

Referrer

Page Type

Browser

Attributes…

D ate Pages

Referrer

W eb
Pages
Facts

Page
Types

Brow sers/OS
Appendix E. Web log incorporation 233

E.6.2 Two sample OLAP models

An OLAP model constructed with the following characteristics would provide
answers to questions such as which pages are the most frequently visited,
where visitors are being referred from (and to which pages), what the most
requested files for download are, and so on (see Table 26).

Table 26. Sample OLAP model

The DB2 OLAP outline for this model could look like Figure 66.

Figure 66. Outline for the sample model

Dimension Constructed by Description

Date Manual build Daily time dimension

Measures Manual build Metrics to capture the number of
views

Referrer Dynamic build from Web
logs

Referring page

Pages Dynamic build from Web
logs

Capture all site pages. Need to
consider a hierarchical structure for
reporting and analysis needs.

Page type Manual build Used to tag pages with attributes
such as Download, Search Type,
Non-Content, Payoff.
234 DB2 OLAP Server - Theory and Practices

In addition to this first model, a second OLAP model (see Table 27) could
easily be generated by leveraging some of the dimensions from the original
and adding new dimensionality as required. This would also require
appropriately altering the star schema structure. The addition of a few new
dimensions prepares a model to analyze information such as Pages Not
Found errors or Internal Server errors (see Table 27).

Table 27. Sample additional OLAP model

The DB2 OLAP Outline for this second model could look like Figure 67.

Figure 67. Outline for the additional model

Dimension Constructed by Description

Date Reuse from pages Daily time dimension and attributes

Measures Manual build Metrics to capture the number of
requests

Status code Manual build Standard status code

Agent/
Platform

Dynamic build from Web
logs

Capture all user agent and
platforms used by visitors. Need to
consider a hierarchical structure for
reporting and analysis needs.

Pages Reuse from pages Capture all site pages. Need to
consider a hierarchical structure for
reporting and analysis needs
Appendix E. Web log incorporation 235

E.7 Conclusion: Integration

Analyzing Web log information as outlined above has obvious benefits, but
the focus remains mostly within this electronic domain. The most promising
and rewarding return would accrue to the ability to combine Web visitor
information with brick and mortar customer information.

To maximize the value of Web data to the corporation, the data we have
discussed so far should be considered a data mart which has analytical value
for the team running the Web site, and value to the corporation if it is
integrated with corporate business intelligence systems and data
warehouses.

This data should be considered as data from an additional channel, which
stands alongside existing brick and mortar channels. Integration can be
accomplished by extracting relevant data from the Web Analytics cubes or
data marts and integrating it with similar data from more traditional channels.
In this way, we move toward a single view of the customer that encompasses
all channels and is richer than the view from any single channel.

Although a corporate data warehouse is the ultimate integration point, it is not
necessarily the required starting point for integration efforts. What we must
avoid is isolating Web data or attempting to enrich our Web data to the point
where we are duplicating corporate data from other sources.
236 DB2 OLAP Server - Theory and Practices

Appendix F. OLAP model development short checklist

This appendix presents in Table 28 an abstract from the OLAP model
development checklist described in Chapter 2, “OLAP model development
checklist” on page 21.

Table 28. Project shortlist

Activity Comment? Check?

1. Plan for OLAP

a. Recognize an OLAP opportunity.

b. Evaluate the OLAP opportunity.

2. Begin high level modeling of the OLAP
database structure

a. Look at current and desired reporting
requirements

 • Evaluate the dimensions required

 • Do it for each report

 • From this, begin sketching dimensions

b. Do modeling development in a group

 • Use Application Manager as a Rapid
Application Design tool

 • Project the outline on screen for very fast
progress

c. Evaluate the data using SQL to know data
volumes involved and to check the relevance of
data

 • If data is relational, use SQL

 • If data is not relational, make it so

 • Check for nulls in data used for building
dimensions

d. Estimate development software hardware
required
© Copyright IBM Corp. 2001 237

3. Build a prototype for size testing

a. Build the dimensions

 • Type in the dimension names manually, using
directly Application Manager

 • Check if partitioning is required

 • Set preliminary dense/sparse

 • Always use esscmd.exe scripts to build large
dimensions

b. Let the outline do the work

 • Use Member Tags

 - Use Label only.

 - Use Dynamic Calc.

 - Put Formulae in data blocks

c. Load test data

 • Sort the data by sparse dimensions

 • If SQL sources, make transformations in SQL

d. Calculating and tuning

e. Test sizing, calculation performance and query
as you go

 • Evaluate the model

 - Check the model for size

 - Evaluate the model for calculation time

 • Evaluate the query response time

 - Check the application log for the
spreadsheet retrieval factor

 - Verification by users and acceptance by
users

 - Adjust sparse/dense dimensions to
accommodate user data requests

Activity Comment? Check?
238 DB2 OLAP Server - Theory and Practices

f. Refine dense/sparse to optimize the outline

 • Use the sparse/dense methodology

 • Use the configuration Wizard

g. Adjust dimensions and members based on
prototype size testing

4. Build and load the final model

a. User acceptance testing: the data

 • Use a spreadsheet tool

b. User acceptance testing: the access user tool

c. Building and setting up a security model

 • Check the security model with users

d. Train users

5. Migrate to production

 • Develop and write the production procedures:

 - To maintain the outline

 - To refresh/update the data

 - To validate the data

 - To backup and restore the OLAP database

 - To maintain the software level and set up
the patches

 - To trap errors

Activity Comment? Check?
Appendix F. OLAP model development short checklist 239

240 DB2 OLAP Server - Theory and Practices

Appendix G. Special notices

This publication is intended to help designers and technical people with an
understanding of DB2 OLAP fundamentals to design and implement future
DB2 OLAP solutions. The information in this publication is not intended as the
specification of any programming interfaces that are provided by IBM DB2
OLAP Server. See the PUBLICATIONS section of the IBM Programming
Announcement for IBM DB2 OLAP Server for more information about what
publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM's product, program, or service may be
used. Any functionally equivalent program that does not infringe any of IBM's
intellectual property rights may be used instead of the IBM product, program
or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY
10504-1785.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been
reviewed by IBM for accuracy in a specific situation, there is no guarantee
that the same or similar results will be obtained elsewhere. Customers
© Copyright IBM Corp. 2001 241

attempting to adapt these techniques to their own environments do so at their
own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of
these Web sites.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

Tivoli, Manage. Anything. Anywhere.,The Power To Manage., Anything.
Anywhere.,TME, NetView, Cross-Site, Tivoli Ready, Tivoli Certified, Planet
Tivoli, and Tivoli Enterprise are trademarks or registered trademarks of Tivoli
Systems Inc., an IBM company, in the United States, other countries, or both.
In Denmark, Tivoli is a trademark licensed from Kjøbenhavns Sommer - Tivoli
A/S.

C-bus is a trademark of Corollary, Inc. in the United States and/or other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United
States and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries
licensed exclusively through The Open Group.

e (logo)®
IBM ®
AT
DB2 OLAP Server
Intelligent Miner
DB2 OLAP Integration Server
DB2 Warehouse Manager

Redbooks
Redbooks Logo
AIX
DB2
DataJoiner
QMF
242 DB2 OLAP Server - Theory and Practices

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks
owned by SET Secure Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service
marks of others.
Appendix G. Special notices 243

244 DB2 OLAP Server - Theory and Practices

Appendix H. Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

H.1 IBM Redbooks

For information on ordering these publications see “How to get IBM
Redbooks” on page 247.

 • Data Modeling Techniques for Data Warehousing, SG24-2238

 • Business Intelligence Certification Guide, SG24-5747

 • Business Intelligence Architecture on S/390 Presentation Guide,
SG24-5641

 • Capacity Planning for Business Intelligence Applications: Approaches and
Methodologies, SG24-5689

 • Getting Started with DB2OLAP Server on OS/390 , SG24-5665

 • Intelligent Miner for Data: Enhance your Business Intelligence, SG24-5522

 • The Role of S/390 in Business Intelligence, SG24-5625

 • Building VLDB for BI Applications on OS/390: Case Study Experiences,
SG24-5609

 • Managing Multidimensional Data Marts with Visual Warehouse and DB2
OLAP Server, SG24-5270

H.2 IBM Redbooks collections

Redbooks are also available on the following CD-ROMs. Click the CD-ROMs
button at ibm.com/redbooks for information about all the CD-ROMs offered,
updates and formats.

CD-ROM Title Collection Kit
Number

IBM System/390 Redbooks Collection SK2T-2177
IBM Networking Redbooks Collection SK2T-6022
IBM Transaction Processing and Data Management Redbooks Collection SK2T-8038
IBM Lotus Redbooks Collection SK2T-8039
Tivoli Redbooks Collection SK2T-8044
IBM AS/400 Redbooks Collection SK2T-2849
IBM Netfinity Hardware and Software Redbooks Collection SK2T-8046
IBM RS/6000 Redbooks Collection SK2T-8043
IBM Application Development Redbooks Collection SK2T-8037
© Copyright IBM Corp. 2001 245

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

H.3 Other resources

These publications for DB2 OLAP Server are also relevant as further
information sources:

 • OLAP Database Administrator’s Guide, Volume I , SC27-0788

 • OLAP Database Administrator’s Guide, Volume II , SC27-0789

 • OLAP Quick Technical Reference , SC27-0790

 • OLAP SQL Interface Guide , SC27-0791

 • OLAP Integration Server Model User’s Guide , SC27-0783

 • OLAP Integration Server Metaoutline User’s Guide , SC27-0784

 • OLAP Integration Server Administration Guide , SC27-0787

 • OLAP Spreadsheet Add-In User’s Guide for Excel, SC27-0786

 • OLAP Spreadsheet Add-In User’s Guide for 1-2-3, SC27-0785

H.4 Referenced Web sites

These Web sites are also relevant as further information sources:

 • http://www-4.ibm.com/software/data/ IBM Database and Data
Management Home Page

 • http://www.ibm.com/software/download/ IBM free software download
Web site

 • http://www.ibm.com/software/ IBM software site

 • http://www.essbase.com/ Hyperion Essbase Web site

 • http://www.olapunderground.com/ Site dedicated to the distribution of
freeware Essbase information, applications, and code

IBM Enterprise Storage and Systems Management Solutions SK3T-3694

CD-ROM Title Collection Kit
Number
246 DB2 OLAP Server - Theory and Practices

How to get IBM Redbooks

This section explains how both customers and IBM employees can find out about IBM Redbooks,
redpieces, and CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

 • Redbooks Web Site ibm.com/redbooks

Search for, view, download, or order hardcopy/CD-ROM Redbooks from the Redbooks Web site.
Also read redpieces and download additional materials (code samples or diskette/CD-ROM images)
from this Redbooks site.

Redpieces are Redbooks in progress; not all Redbooks become redpieces and sometimes just a few
chapters will be published this way. The intent is to get the information out much quicker than the
formal publishing process allows.

 • E-mail Orders

Send orders by e-mail including information from the IBM Redbooks fax order form to:

 • Telephone Orders

 • Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at the Redbooks Web site.

In United States or Canada
Outside North America

e-mail address
pubscan@us.ibm.com
Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order”
section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may register for information on workshops, residencies, and Redbooks by accessing
the IBM Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button.
Look in the Materials repository for workshops, presentations, papers, and Web pages developed
and written by the ITSO technical professionals; click the Additional Materials button. Employees may
access MyNews at http://w3.ibm.com/ for redbook, residency, and workshop announcements.

IBM Intranet for Employees
© Copyright IBM Corp. 2001 247

mailto: pubscan@us.ibm.com
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://w3.itso.ibm.com/
http://w3.ibm.com/
http://www.redbooks.ibm.com/
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.redbooks.ibm.com/

IBM Redbooks fax order form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
248 DB2 OLAP Server - Theory and Practices

Glossary

A
API. Application Programming Interface. For
example, the Essbase API is a library of functions
that you can use in a custom C or Visual Basic
program to access the DB2 OLAP Server.

Application Manager. Administration tool pro-
vided in standard with IBM DB2 OLAP Server and
Essbase to build OLAP databases.

argument. A name/value pair passed to a web
server in association with the URL of a dynamic
resource. Different content may be served
based on different values within an individual
argument. Usually argument strings are sepa-
rated from the page resource by a question
mark and separated from each other with an
ampersand (&).A

array. A matrix structure related to a
multidimensional database.

B
browser. A software program running on a
computer that can request, load and display
documents available on the World Wide Web. In
our definition, it is assumed that a “human
being” is operating the browser manually and
viewing the page

C
cache. A component of memory. Each OLAP
database contains a data cache, an index and you
can configure a calculator cache.

calc or calculation. An equation within a data-
base outline, a calculation script, or a report script
that calculates a value for a particular member or
point in a report.
© Copyright IBM Corp. 2001
calc script or calculation script. A text file
that contains instructions to perform calculation
within an Essbase database.

cell. A single datapoint that occurs at the
intersection defined by selecting one member
from each dense dimension in a
multidimensional array.

click-thru. This term is typically used for
advertising purposes. It refers to the ratio of
impressions to clicks on a particular
advertisement or link. For example, a toothpaste
ad that is shown 100 times but only clicked once
has a 1% click-through.

cookie. Persistent client-state HTTP identifier
associated with a user.

cube. See OLAP database. In relational, the
cube is represented by a fact table.

D
data load. The process of populating an Essbase

database with data. Loading data establishes

actual values for the values of the cells defined in

the database outline for the database.

data load rules. A set of operations registered in

a rules file that the DB2 OLAP Server performs on

data as it is loaded from an external source file.

datamart. A subject-oriented, integrated,

time-variant collection of data to enable decision

making for a specific group of users.

data mining. The use of a computer applica-

tion to search for and discover new insights

about the business and significant relationships
 249

among the data.

data warehouse. A subject-oriented, inte-

grated, time-variant collection of data to enable

decision making across a disparate group of

users.

DBA or database administrator. . A person

responsible for administering a relational database.

dense. A multidimensional database is dense if
a relatively high percentage of the possible
combinations of its dimension members contain
data values.

dimension. A dimension is a structural data
category such as time, accounts, products. In an
outline, the dimensions represent the highest
consolidation level.

domain. The affiliation of a user’s network
location at the highest level including geographic
location - .edu, .com, .org, .de, .jpe.

Domain Name System (DNS). A protocol and
system used on the Internet to map IP addresses
to user-friendly names.

drill through. Or drill thru is a specific analytical
technique whereby the user can navigate from an
OLAP cube among data ranging in a relational
database and retrieve detailed data stored in a
data warehouse.

E

Entry page. The first page within a visit.

Esscmd. A command-line interface used to per-

form server operations interactively or through a

batch file.

Exit page. The last page within a visit.

F
fact table. A collection of facts consisting of mea-

sures and contest data.

FTP File Transfer Program.

H
hit. A hit is a browser request to the web server

for any item including graphics, pages, blank lines

or other resources. It may take many hits to bring up

a single web page as displayed in a web browser. A

hit is also any line in a log file. Hits are used to cal-

culate summary hit counts and total bytes trans-

ferred.

hostname. The name and affiliation that a partic-

ular IP address resolves to, such as Hyperion.com

or ibm.com.

HTTP status code. The status code associated

with a request indicating whether it was successful,

unsuccessful, or otherwise. For example if a

resource is missing, the browser will return a 404

error, which is one example of an HTTP status

code.

Hyperion sessionizer. An extensible, config-

urable process that manages the collection, pro-

cessing and aggregation of log files and other web

data for the Hyperion Web Site Analysis application.

I
IP address. A unique number called an IP

address identifies every computer on the Internet.

Each time you connect to the Internet your machine

is assigned an IP address. If you have a static IP

address you get the same number each time you

connect. If you have a dynamic IP address a num-
250 DB2 OLAP Server - Theory and Practices

ber is assigned from a pool of addresses main-

tained by your ISP (Internet Service Provider) on a

first-come basis. You can get a different IP address

each time you connect.

IP resolution. The process of transforming IP

addresses into user recognizable domain names.

This process is also known as reverse DNS. For

example 198.105.232.4 becomes Hyperion.com.

This method of identifying users can be time con-

suming and may result in incorrect assumptions

about user location.

IT. Information Technology represents the techni-

cal staff working on Information System in an enter-

prise.

M
measure. A numeric attribute of a fact represent-

ing the performance or behavior of its dimensions.

member. A discrete component within a
dimension. When embedded, members compose
the hierarchy in a dimension.

metaoutline. A metaoutline built using Hyperion
Integration Server or OLAP Integraton Server
contains the basic structure to build a DB2 OLAP
outline and to load data into a DB2 OLAP database.

model A model built using Hyperion Integration
Server or OLAP Integraton Server contains a star
schema and is based on relational datamarts.

O

OLAP. On-Line Analytical Processing is a
software technology that enables analysts and
executives to gain insight into data through fast
consistent, interactive access to a wide variety of
possible views of information that reflect the real
dimensionality of the enterprise as understood by
the user.

OLAP database. A multidimensional database or

cube. An OLAP database includes a database out-

line, data, associated optional calculation scripts,

optional report scripts, and data load rules.

OLAP Integration Server. Feature to model and

develop multiple outlines from a relational source.

outline. The multidimensional structure that

defines all elements of an OLAP database. It con-

tains definitions of dimensions and members,

dense or sparse dimension tags and attributes, cal-

culations, shared members, and alternations to the

basic roll-up structure of the database.

P

page resolution. A measure in seconds of the
amount of time a user spends on a single page.

page hits. A measure of all resources not
pre-filtered by the Hyperion Sessionizer. This
number includes both viewable and non-viewable
page counts.

page view. Page view is a single web page as
viewed through an Internet browser. Pages are
pre-defined in the Hyperion application as either
viewable or non-viewable. Only viewable pages
are counted as page views. Pre-defined page
views could include all resources ending in
HTML, ASP, JSP, to name a few. Page views are
also known as page impressions.

payoff. Payoff pages are pages tagged by a site
as important because they have revenue
implications if a user hits them. For example:
Edmunds.com can tag the Jeep Grand Cherokee
page as a payout page and attach an attribute of
dollars (.60) per page view. Hyperion Web Site
Analysis can then produce a report indicating
dollars for that section or that page. Similarly,
suppose the AHN Web site must pay Dr. Danoff
 251

anytime that somebody hits the page containing
Dr. Danoff ’s article. Hyperion Web Site Analysis
can tag the payoff page as a payout, and indicate
the dollars of cost for this page. Then when we
start looking at new versus repeat traffic for this
set of articles we could start figuring out whether
the articles are a good investment in terms of
attracting and/or retaining customers.-

Q

query string. String attached to the end of a

page request. For example: recipe.jsp?cui-

sine=Mexican&timeofday=morning.

R

RDBMS. A Relational DataBase Management

System to manage and control relational objects as

databases, tables, indexes.

referring page. References the previous page
to a particular page that a user is looking at.

referring site. Refers to any site where a user
clicked on a link or an advertisement to get to
your site. Also known as visitor origin. Example:
A user clicks on a link from yahoo.com that sends
them to Hyperion.com.

relational database. A database that can be

perceived as a set of tables and indexes and manip-

ulated in accordance with the relational model of

data, through the SQL language.

relational table. A 2 dimensions structure in a

relational database composed of columns and rows

and accessed through SQL.

report script. An ASCII file that contains Report

Writer commands that generate one or more pro-

duction reports. Report scripts can be run in batch

mode, using the ESSCMD command-line interface,

or through the Application Manager. The script is a

text file that contains data retrieval, formatting, and

output instructions.

RLE or Run Length Encoding. A compression
method used by Essbase engine.

S

search. An attribute of a page indicating its status
as something that is used in the search process.

search. query Search terms that the user has
submitted as a query.

sparse. A multidimensional dataset is sparse if
a relatively high percentage of the possible
combinations(intersections) of the members from
the dataset’s dimensions contains missing data.

spreadsheet_add-in. Software that merges

seamlessly with Microsoft Excel and Lotus 1-2-3.

The software library appears as a menu add-In to

the spreadsheet and provides such features as con-

nect, retrieve, zoom-in, and calculate.

star schema. The type of relational database

schema composed of a main fact table and a set of

dimension tables. The fact table holds the actual

data numeric values and the dimension tables hold

data about members and their relationships.

status code. Search terms that the user has
submitted as a query.The code returned by the web
server to the web log that defines whether the
request was successful, redirected, or resulted in
an error.
252 DB2 OLAP Server - Theory and Practices

Structured Query Language. (SQL) An
established set of statements used to manage
information stored in a relational database and
add, delete, update information in a table.

sub-domain. The affiliation of a user’s network
location at the provider level such as aol.com,
ibm.com, Microsoft.com. Using the process of
reverse IP lookup, a user’s IP address is resolved
into a subdomain.

U

Uniform Resource Identifier (URI). The
generic term for all types of names and addresses
that refer to objects on the web. A URL is one kind
of URI.

Uniform Resource Locator (URL). An address
to an object or other destination on the Internet.
Example: www.hyperion.com/solutions.

unique visitor. A measure that represents the
count of unique identifiers within a time period.
Usually measured per day, week and month. A
visitor that visits a site twice in one day will only be
counted once.The

user agent. The part of a web log, which
identifies the Operating System and browser
employed by the user.

user name. Registered user name of a user at a
particular site.

V

VBA or Visual Basic. Development program.

viewable. An attribute of a page indicating if it is a
page view or a page hit. Usually a viewable page is
defined as any resource that can contain an ad
banner. A frame or other navigation element would
not be identified as viewable.

visit. A visit is a series of requests (pages viewed)
by a user while at a single web site. A visit ends
when a specified period of time (default is 30
minutes) has passed without any additional
requests to the site. A visit is usually identified by
some unique combination of IP address, user agent
and/or cookies. A visit is also known as a session.

visit duration. A measure in seconds of the
amount of time a user spends within a single visit.

visit length. A measure in page views of the
amount of pages a user views within a single visit.

visit timeout. The length of time of inactivity
during which a visit is determined to have ended. A
default value of 30 minutes is normally used.
 253

254 DB2 OLAP Server - Theory and Practices

Index

A
ACCOUNT Dimension 191
Administration 102, 113, 122, 133, 141, 151
administrator 55, 73, 93, 94
aggregation

AGG 68, 84
aggregating 15
levels 155

AIX 99, 107, 117, 146
algorithm 3, 4, 49, 58, 77, 80, 83, 99, 229
allocate resources 74
Alphablocks 102
alternate hierarchy 162, 180, 182
analysis 32, 33, 34, 75

ad hoc analysis 155
analytic 2, 18, 40

grid 40
requirements 40

analytical 217
Analyzer 36, 160, 166, 200, 211, 218

API toolkit 223
anchor dimension 75
API 94
applets 224
application log 69, 80, 85, 89, 90
Application Manager 54, 96

Outliner 41
applications 100, 109, 119, 128, 137, 144, 147
Applied OLAP 111
architecture 43

client-server 39
Web 39

array 1, 5, 10, 11, 12, 13, 14, 43, 44, 45, 46, 48,
63, 66, 78

ESS.IND 13, 84
ESS.PAG 12, 48, 83, 84
structure 13

attributes 6, 30, 35, 40, 161, 165, 229
dimension 167, 175

Automatic Summary Table 196, 213
automation 103, 106, 135, 143, 175

automate the batch process 143
automate the OLAP operations 115, 154
calc script 34

availability 99
24 x 7 34, 117, 125
© Copyright IBM Corp. 2001
B
back 156
backups 103, 113, 124, 133, 142, 145, 153

ADSM 104, 124, 133
full backups 134

batch
calculation 54, 64, 75
estimating calculation time 83
process 89, 105, 115, 135, 142, 143
window 62, 63, 89, 106, 135, 142, 145, 154

batch process 154
benchmark testing 196
bitmap 4, 75

compression 77
multiple bitmap 76, 83, 99
single 76

block 12, 16, 46, 77
address 75
average density 65
creation 58, 75, 86
Declared Maximum Blocks statistic 82
density 17, 60, 64
dirty data blocks 84
expand data blocks 54
explosion 15, 49
fewest data blocks 17
logical block 51, 54
number of blocks 17, 65, 74, 81, 82, 87
optimal size 56
physical block 54, 74
size 53, 54, 56, 57, 63, 66, 102, 137
structure 48
Total Potential blocks statistic 82
upper block 68, 84
upper block creation 80
useless blocks 18

buffer 58, 73, 75
size 74

business 15, 17, 43, 217
event 14
logic 40, 43, 49, 58
model 3, 47
organization 16
personnel 40
requirement 52

buy versus build 217
255

C
cache 54, 55, 91, 99, 249

data cache 55, 74
OS file system cache 74
physical data cache 74
settings 36
under-sizing of the data cache 55

calculation 30, 67, 86, 157, 158, 185
batch 49
CALC ALL 58, 68, 69, 81, 84
CALC DIM 68, 84
consolidation 35
database default calc 80
default calculation algorithm 58
intelligent calculation 84, 85
order 102
requirements 63
script 34, 45, 59, 70, 80, 81, 102, 131, 175
single pass 73
time 62, 75
two-pass 73

calculator 54, 55, 71, 74
cache 75, 83, 99

Cartesian 11, 14, 16, 17, 45, 47, 87
case study 15
cell 10, 12, 17, 43, 44, 47, 48, 54, 64, 70

formulae 9
chart 219
checklist 21, 111, 121, 131
children 63, 70
choosing an environment 32
classification 205
client tools 97, 102, 111, 122, 132, 140, 151

upgrades 105, 114, 154
client types 218
combinations 13, 19, 46
Command Line Interface 175
Compaq Proliant 137
components 20, 30, 48, 225
compression 53, 74, 77

default bitmap 77
computer 4, 5, 9, 45
concatenation 195
concepts 43
configuration

nearly-optimal 58
optimal 58, 62
steps 139
sub-optimal 58

utility 62
consistency 36
consolidation 1, 2, 75

natural 60
optimal consolidation 58
types 49, 58

contention 62
cookbook 21, 39
cookie 157, 160, 230

session 230
visitor 231

cross-dimensional 16
operator 70
references 58, 60

cube
estimate cube size 139

cubes 100, 108, 118, 128, 137, 144, 147
customer relationship management 227

D
data

detail-level 42
data block 13, 17, 20, 71, 75, 84

updates 86, 93
data cache 74
data corruption 145
data definition language 100
data density 52
data explosion 16, 18
data load 30, 65, 91, 158, 168, 195

incremental 66, 102, 149
optimizing 168
performance 196
rules 35, 100, 102
updates 102, 122, 133, 141, 151

data manipulation language 43
data mining 204

bivariate statistics 204
clustering 205
factors analysis 204
neural networks 204
prediction 205
segments 205

data retrieval 43
data server 4
data storage 49
data structures 4, 5
data transformation 100
256 DB2 OLAP Server - Theory and Practices

data warehouse 10, 99, 155, 165, 175, 227
database

configuration 49, 56, 62, 63, 83, 86
develop 35
fragmentation 90, 92, 93, 103, 141, 152
multidimensional 42, 43, 48
optimal database configuration 17, 63
performance optimization 30
setting 67
size 83, 86
statistics 82
update 84, 85, 88, 90

datamart 10, 43, 155, 175
datatypes 179
DB2 OLAP Storage Manager 74
DEC Alpha 107
decision support 3

DSS 4
decision-making 2, 217, 220
dense

average block density 77, 83
data 83
dimension 49
highest data density 17
member 58, 90

deployment 97, 220
derived data 2, 9, 156
design 12, 15, 17, 21, 30, 33, 39, 66, 97, 101, 109,
120, 129, 138, 145, 148

session 42
designer 1, 46, 48, 50, 53, 56, 57, 60, 62, 63, 64,
66, 161
developer 10, 39, 56, 60, 62, 63, 66, 94, 99, 150,
223
development 21, 30, 62, 67, 99, 107, 118, 137,
144, 146

team 40, 42
diagnose 90
dimension

adding a dimension 15, 50
generic 195
generic dimension tables 191
inter-dimensional 18
intra-dimensional 15
membership 42
number of dimensions 15
sparse 15, 49, 86, 91
tables 171
tags 45

upper level sparse dimension 70
dimensionality 8, 49, 161, 175
dimensions 5, 9, 10, 13, 45, 161, 174, 175
disaster recovery 114, 124, 134, 142, 153
disk 33, 48, 49, 66, 74, 77, 84, 92
drill-down 157
drilling 50
drill-through 42, 138, 175, 196, 211, 224

drill-through reports 183
multi-pass drilling 200

dynamic
calculation 55, 67, 70, 102, 121
dynamic calc 36, 52, 57, 67, 90
dynamic calc and store 63, 88, 90
dynamic calc non-store 61, 63, 64, 67, 73
HTML Client 221
IP address assignment 229
members 51, 64, 89
retrieval 57
TIME Series 187
values 54

E
EIS 220
end-user 2, 30, 31, 40, 175, 196, 219
environment 33, 97, 99, 107, 117, 127, 137, 144,
146, 184
errors

manage errors 143
Essbase 12, 13, 63
ESSCMD 81, 175
external referral 229

F
fact table 157, 168, 169, 171, 178, 200
facts 174
false-calculation 80, 82, 83, 84, 85
filters

maintain 95
FIX command 59, 70, 71
fixpacks 104, 114, 125, 134, 142, 153

new releases 105, 114, 154
flat files 100
flexibility 99, 217
focusing calculations 70
foreign keys 183
formulae 2, 3, 5, 8, 9, 30, 35, 43, 45, 58, 59, 61,
68, 73, 81, 131, 175
 257

G
GETDBSTATS 54, 81
granularity 70, 178, 196

cube 157
extra-cube granularity 159
grain 158, 162, 167
granular relational data 155
intra-cube granularity 157

guidelines 1, 17, 74

H
hardware 33, 40, 63, 66, 201

configuration 57
utilization 58

hierarchies 16, 19, 42, 161, 174, 175, 179, 225
hierarchy

filtering 195
hierarchical relationship 15, 58

historical data 156
HTML client 220
HTTP identifier 230
hybrid generation build 179
Hyperion Integration Server 171

I
IBM DB2 OLAP Integration Server 171, 200
IF command 70
implementation 3, 9, 15, 17, 21, 29, 30, 31, 93

non-optimal 66
implementers 1, 2, 54, 56, 89, 97
IMS 5
index 12, 13, 17, 20, 71

cache 74
page 75
structure 48

indexing 183, 195, 197
strategy 175

infrastructure 2, 18, 39, 40, 87
integrity 35, 95
Intelligent Miner for Data 200, 204
interactive 2, 102, 217, 219
intersection points 13, 15, 17, 20, 43, 45, 60, 196
interviews 97
intra-block 59
IP address 228, 229, 230
irrelevance 17
IS 171, 174
IT 2, 29

J
Java Client 220, 221
joins 168, 197

K
kernel 75, 76

L
Label Only 51
large volumes 156
life-cycle 30
linking views 166, 213
log 165

excerpt 84
log files 228

LRO 211

M
maintenance 34, 95, 178
manageability 99
matrix 1, 2, 4, 6, 10, 11, 13, 16, 17, 20, 39, 43, 48,
52, 63

explosion 14
MDDBMS 20
MEASURES dimension 10, 17, 191, 194
member 14, 17, 45

movements 34
sparse 58, 71
stored member 47, 55
tags 43, 49, 51
upper members 61

memory 33, 44, 54, 73, 75, 77, 99, 117, 144
metadata 42, 43, 179, 183
metaoutline 41, 171, 174, 196, 200, 208
methodology 21, 29, 56, 61, 62, 63, 64
metrics 18, 50, 61, 64, 73, 156, 233
mirroring 100, 124
model 2, 5, 17, 19, 21, 34, 86, 101, 161, 208

dimensional model 40, 176
forecasting model 8
high level modeling 39, 40, 138
logical model 174
management 3, 4
modeling 16, 20, 30, 39
OLAP model 171, 174, 200, 234
production model 122
relational model 42
258 DB2 OLAP Server - Theory and Practices

monitor 106, 125, 135, 154
multi pass 213
multi-application environment 74
multidimensional 3, 10, 16, 17, 20, 43
multi-layered 3

N
normalization 44, 168

O
ODBC drivers 176
offsite storage 114, 134
OLAP Metadata Catalog 173
OLTP 43
on-line 2, 220
operating system 33, 73, 230
Operations 97, 103, 113, 142, 145, 152
optimization 52, 56, 89
order

default calculation order 73
organization 45
outline 30, 34, 35, 39, 40, 43, 55, 197

considerations 50
order 58
prototype 41
template 171
updates 102, 133, 141, 151

Outliner 41
out-of-box 220, 225

P
page 232, 234
parallel 87, 108
parameters 39
parent 15
partitioning 34, 41, 86, 103, 138, 141, 152
patches 104, 114, 125, 134, 142, 153
performance 30, 36, 43, 49, 51, 56, 59, 62, 66, 67,
77, 89, 90, 91, 99, 107, 148, 179, 184, 192, 196,
197, 225
pivoting 50
planning 32, 101
POC 32
pointers 48
portal 224
practice 1, 3, 21, 39, 52, 67, 76, 84, 89
practitioners 21

primary key 179
principle 3, 15, 52
processors 99, 107, 117, 137, 144, 184

multiple processors 108, 137, 147
nodes 117

production 18, 64, 80, 83, 99, 103, 110, 113, 127,
132, 137, 140
programmers 44
project 31

acceptance 29
activities 30
assessment 32
checklist 21
feasibility 32
formalizing the requirements 34
guiding requirements 33
issues 30
planning 33
practices 32
project management 29, 101
responsibilities 31
risk 30
sponsorship 32
stages 30
success 29
tasks 30

Proof of Concept 32
prototype 32, 34, 41, 101, 110, 149

prototyping 4, 39

Q
query 5, 75

query processing 43
response time 140

R
RAD 41
ragged hierarchies 164, 181, 191
RAID 1 100, 128
RAID 5 128
RAM 6, 54, 64, 74, 75, 84, 99, 107, 127, 184
rapid application development tool 41
ratio 17, 60, 61, 63, 65, 75, 91
RDBMS 4, 6, 20, 185
redundancy 10
reference 21
referential integrity 195
relational
 259

data source 173
database 4, 5, 11, 42, 160, 168
staging area 200

relationship 14, 15, 17, 19
relevant 21
report 211

build 219
design 102, 112, 132, 141, 151
distribution 222
drill-through 196
forms 219
maintaining reports 222
multi-source 218
pinboard 219
publication 222
publish reports 141
wide deployment 217

reporting 15, 34, 36, 40, 158, 219
requirements 33, 40, 50, 101, 109, 120, 129, 138,
148

reporting 157, 174
resources

allocation 128
server 137

restructuring 141
retrieval 34, 87, 89, 197, 220

retrieval time 167
RLE 77, 78, 80, 84
rolling time 141, 152
rows 8
RS/6000 99, 107, 201
Run Length Encoding 77

S
SAP 100
scalability 99
script 3, 35, 67
SCSI devices 100
security 34, 35, 93, 103, 113, 123, 133, 141, 152,
225

custom application development 94
filter profile 94
multiple server environment 93, 96
system maintenance 94
user profile list 95
verification log file 95

sessionization 229
sessions 228

SET CLEARUPDATESTATUS ONLY command
85
SET MSG ONLY command 80, 84, 85
SET MSG SUMMARY command 81, 99
SET NOTICE command 67
setting

dense and sparse 102
optimal dense/sparse setting 43
sparse /dense settings 60
sparse/dense settings 50

single sign on 123
size 42, 45, 53, 54, 83, 91, 108, 157

sizing techniques 33
spreadsheet 149

skill 40
slice

slice method 83
slicing and dicing 50

snowflake 182
software 40, 63, 201
SOLARIS 144
source data 42, 100, 107, 118, 127, 138, 139, 144,
147, 228
SP2 117
space allocators 6
sparse 1, 13, 14, 17, 85
sparse/dense methodology 49, 82
sparse/dense settings 48
sparseness 10, 11, 12, 16, 44, 45, 46, 47, 66, 75
sparsity 3
spreadsheet 5, 9, 41, 85, 89, 102, 219

add-in 35
SQL 1, 11, 42, 43, 192, 195
SQL interface 100, 127
SQL queries 42, 150
SQL statements 183
SSA 147
SSA devices 100
star schema 42, 166, 171, 174, 175, 182, 196,
200, 233
statistic 82
storage 5, 6, 9, 10, 12, 16, 17, 18, 20, 43, 47, 51,
53, 54, 56, 58, 60, 63, 66, 100, 102
storage devices 100, 108, 137, 147
stored member 55
strategy 41
structures 3, 10, 12, 17, 20, 43, 47, 51, 56, 58, 60,
63
substitution variables 131
260 DB2 OLAP Server - Theory and Practices

substring 195
suffixing 195
summarize the data 158
SUN 144
surrogate keys 184

T
table 5, 6, 13
tag 51, 63, 67, 70, 90
tagged 12, 17, 18, 48, 64, 88

dense 12
sparse 47

team 100, 109, 119, 138, 148
building 39
members 32, 39

technical
personnel 39
staff 29

technology 1, 4, 29
test 64, 99, 107, 118, 127, 137, 144, 146

data 35
environment 67

theory 1, 2, 3, 4
throughput 83
TIME 10, 17, 187

dimension 50, 66, 88, 89, 150
dimension optimizing 169

tips 39, 52, 139
training 36, 39, 40
transaction 11, 16, 156
transformation 191, 195
tuning 36, 39, 43, 56, 73, 89, 101, 111, 131, 140,
145, 150

U
UDAs 175
unary operators 58
uniqueness 164
updates 34, 89
useability 36, 217
users 33, 36, 100, 109, 119, 128, 138, 145

requirements 34, 161

V
validate 101, 106, 110, 122, 132, 145, 149
value 44
values 43, 49, 55, 58, 67, 174

null 42
numeric 14, 43
persistent 49
stored 53

variance 51
VBA 34, 36
verification 30
view 219
virtual cube 200, 212, 225
visit

session 228
visitor 230, 234

cookie 230
identification 230
session 228, 229

W
Web

analysis 164, 227
application 224
Browser 230
logs 157, 227, 228, 231
site 228

what-if 2, 156
Windows client 220
Windows NT server 137
write-back 156, 217

Z
zero-install 218
 261

262 DB2 OLAP Server - Theory and Practices

© Copyright IBM Corp. 2001 263

IBM Redbooks review

Your feedback is valued by the Redbook authors. In particular we are interested in situations where a
Redbook "made the difference" in a task or problem you encountered. Using one of the following
methods, please review the Redbook, addressing value, subject matter, structure, depth and
quality as appropriate.

 • Use the online Contact us review redbook form found at ibm.com/redbooks
 • Fax this form to: USA International Access Code + 1 845 432 8264
 • Send your comments in an Internet note to redbook@us.ibm.com

Document Number
Redbook Title

SG24-6138-00
DB2 OLAP Server Theory and Practices

Review

What other subjects would you
like to see IBM Redbooks
address?

Please rate your overall
satisfaction:

O Very Good O Good O Average O Poor

Please identify yourself as
belonging to one of the
following groups:

O Customer O Business Partner O Solution Developer
O IBM, Lotus or Tivoli Employee
O None of the above

Your email address:
The data you provide here may
be used to provide you with
information from IBM or our
business partners about our
products, services or activities.

O Please do not use the information collected here for future
marketing or promotional contacts or other communications beyond
the scope of this transaction.

Questions about IBM’s privacy
policy?

The following link explains how we protect your personal information.
ibm.com/privacy/yourprivacy/

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html
http://www.ibm.com/privacy/yourprivacy/
http://www.redbooks.ibm.com/
http://www.ibm.com/privacy/yourprivacy/

(0.5” spine)
0.475”<->0.875”

250 <-> 459 pages

DB2 OLAP Server Theory and Practices

®

SG24-6138-00 ISBN 0738419680

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

DB2 OLAP Server
Theory and Practices

Matrix management
and storage
structures in depth

Advanced OLAP
design practices

Practical
implementation
experiences

OLAP has evolved into a mainstream information technology
and it is a major component of Business Intelligence solutions
across all industries today.

The increasing demands for analyzing large amounts of data
and empowering a growing number of employees throughout
the enterprise to make informed business decisions are
pushing the limits of OLAP solutions. Although leading OLAP
products, such as DB2 OLAP Server, provide for high levels of
platform scalability, it is the design of the models that
ultimately determine how well the system is performing and
how easy it is to adjust them to fit new business
requirements.

This IBM Redbook will provide valuable insight into successful
design approaches for building OLAP solutions based on DB2
OLAP Server. It will help architects, data modelers, and
implementers of Business Intelligence solutions to
understand and avoid design and implementation issues.

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Contents
	Figures
	Tables
	Preface
	How this book was written
	The team that wrote this redbook
	Comments welcome

	Chapter 1. Introducing OLAP
	1.1 Best practice begins with good theory
	1.2 The role of theory in OLAP practice
	1.2.1 Decision support theory
	1.2.2 Fundamental computer science principles
	1.2.3 Model management and system dynamics

	1.3 Position dependence versus position independence
	1.4 A different data model at a very fundamental level
	1.5 The issue of data redundancy
	1.6 DB2 OLAP multidimensional databases are matrices
	1.7 The data block and index explained
	1.7.1 Block creation explored
	1.7.2 Matrix explosion
	1.7.3 The data block and index revisited

	1.8 Other multidimensional design guidelines
	1.8.1 Avoid inter-dimensional irrelevance
	1.8.2 Combine dimensions where possible

	1.9 Summary

	Chapter 2. OLAP model development checklist
	2.1 Introduction
	2.2 The OLAP checklist

	Chapter 3. Project management for OLAP
	3.1 Importance of project management for OLAP
	3.2 OLAP project issues
	3.2.1 OLAP database
	3.2.2 OLAP end-user application
	3.2.3 OLAP project team structure

	3.3 Implementing an OLAP project
	3.3.1 Project assessment and feasibility
	3.3.2 Choosing an environment
	3.3.3 Planning and analysis (requirements and design)

	3.4 Acceptance testing

	Chapter 4. Tuning, good design practices, and useful tips
	4.1 Prototyping an outline
	4.1.1 Training and team building
	4.1.2 High level modeling

	4.2 Database tuning introduction
	4.3 Basic matrix database concepts
	4.3.1 The concept of sparseness: dimension tags

	4.4 Tuning the outline
	4.4.1 Dimensionality and business logic
	4.4.2 Considerations on use of member tags
	4.4.3 Considerations on consolidation types
	4.4.4 Sparse/dense methodology

	4.5 Considerations on database calculation
	4.5.1 Use the SET NOTICE command
	4.5.2 Dynamic calculations reviewed
	4.5.3 Focusing calculations

	4.6 Performance tuning: the buffers
	4.6.1 Guidelines for configuring DB2 OLAP caches
	4.6.2 The calculator cache

	4.7 Data compression
	4.7.1 RLE compression and array declaration

	4.8 Using SET MSG ONLY
	4.8.1 How is SET MSG ONLY used?
	4.8.2 What does SET MSG ONLY do?
	4.8.3 SET MSG ONLY application log example using Sample::Basic
	4.8.4 What can you do with SET MSG ONLY?
	4.8.5 What you need to know about SET MSG ONLY

	4.9 Intelligent calculation
	4.10 Miscellaneous issues
	4.10.1 Partitioning tips and strategies
	4.10.2 The application log
	4.10.3 Data load optimization
	4.10.4 Building a security model

	4.11 Final comment

	Chapter 5. Interviews and experiences
	5.1 Introduction
	5.2 Interview results
	5.2.1 Steve Beier’s interview
	5.2.2 George Trudel’s interview
	5.2.3 Mark Rich’s interview
	5.2.4 Joe Scovell’s and Jacques Chenot’s interviews
	5.2.5 Anonymous person’s interview
	5.2.6 Rich Semetulskis’ and Alan Farkas’ interview
	5.2.7 Aster Hupkes’ interview

	Appendix A. OLAP datamart design approaches
	A.1 What is a datamart?
	A.2 Designing the datamart
	A.2.1 Determining the granularity

	A.3 Deciding the dimensionality
	A.3.1 Product and geography type dimensions
	A.3.2 Browser type dimensions
	A.3.3 Customer bank account number dimensions

	A.4 Understanding attributes and base dimensions
	A.5 Tackling the data load
	A.5.1 Optimizing regular dimension tables
	A.5.2 Optimizing time dimensions

	A.6 Conclusion

	Appendix B. Integration Server implementation guidelines
	B.1 Overview
	B.1.1 OLAP model
	B.1.2 OLAP models and metaoutlines

	B.2 Decision: the initial IS implementation
	B.2.1 No existing data warehouse or datamart or star schema
	B.2.2 Existing data warehouse or datamart or star schema

	B.3 From the very beginning: developing the star schema
	B.3.1 The dimensional model

	B.4 IS installation and environment configuration
	B.4.1 IS environment configuration recommendations

	B.5 The IS model
	B.5.1 Building the IS model

	B.6 IS metaoutline
	B.6.1 Building the IS metaoutline
	B.6.2 Loading data
	B.6.3 IS drill-through functionality

	Appendix C. Case study: example of end-to-end approach
	C.1 Context and business scenario
	C.2 Proposed approach
	C.2.1 Building a relational datamart
	C.2.2 Using Intelligent Miner for Data for designing OLAP dimensions
	C.2.3 Using OIS to build OLAP databases
	C.2.4 Using Analyzer as a reporting tool

	C.3 Summary

	Appendix D. Considerations for getting the best OLAP delivery
	D.1 What properties are needed in an OLAP reporting tool?
	D.2 What about DB2 OLAP Server Analyzer?
	D.2.1 Interactive and analytical capabilities
	D.2.2 Deployment capability
	D.2.3 API toolkit
	D.2.4 Leveraging DB2 OLAP

	Appendix E. Web log incorporation
	E.1 Web site analysis suite
	E.2 Overview of Web log files
	E.3 Web logs as source data
	E.3.1 Web log fields
	E.3.2 Visitor and session Identification
	E.3.3 Sessionization methods

	E.4 Cookies
	E.4.1 Session cookies

	E.5 Additional issues
	E.6 Practical example
	E.6.1 Sample Web log entry
	E.6.2 Two sample OLAP models

	E.7 Conclusion: Integration

	Appendix F. OLAP model development short checklist
	Appendix G. Special notices
	Appendix H. Related publications
	H.1 IBM Redbooks
	H.2 IBM Redbooks collections
	H.3 Other resources
	H.4 Referenced Web sites

	How to get IBM Redbooks
	IBM Redbooks fax order form

	Glossary
	Index
	IBM Redbooks review

