
ibm.com/redbooks

e-Marketplace Pattern
Using WebSphere Commerce
Suite, Marketplace Edition
Patterns for e-business Series

Bill Moore
Mitch Fielding

Charles Wilson
Ara Avanesian

Pieter Viljoen

Understanding the e-Marketplace
Pattern

Guidelines for building an
e-Marketplace solution

Implementation
examples

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

e-Marketplace Pattern Using WebSphere
Commerce Suite, Marketplace Edition
Patterns for e-business Series

November 2000

SG24-6158-00

International Technical Support Organization

© Copyright International Business Machines Corporation 2000. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (November 2000)

This edition applies to Version 4.1 of WebSphere Commerce Suite, Marketplace Edition for AIX for use
with the AIX operating system.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 678
P.O. Box 12195
Research Triangle Park, NC 27709-2195

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in
Appendix B, “Special notices” on page 467.

Take Note!

This book is based on a pre-GA version of a product and may not apply when the product becomes
generally available. We recommend that you consult the product documentation or follow-on versions
of this redbook for more current information.

Note

Contents

Preface . xiii
The team that wrote this redbook. xiii
Comments welcome. xvi

Part 1. Business-to-Business patterns: e-Marketplace topology 1

Chapter 1. Introduction to the e-Marketplace Pattern 3
1.1 Introduction to Patterns . 3
1.2 Introduction to e-Marketplaces . 4

1.2.1 Why e-Marketplaces? . 6
1.2.2 Challenges and inhibitors . 7
1.2.3 Critical success factors. 7
1.2.4 e-Marketplace solutions: designing for success 8
1.2.5 Critical success factors of e-Marketplace participants. 9
1.2.6 Characteristics of an effective e-Marketplace platform 9
1.2.7 The future of e-Marketplaces . 11
1.2.8 WebSphere Commerce Suite, Marketplace Edition for AIX 12

1.3 Introduction to Business-to-Business e-Marketplace Pattern 14
1.4 How to use patterns . 17
1.5 Patterns Web site . 18
1.6 Patterns and Application Framework for e-business 18
1.7 Structure of this book . 19

Chapter 2. e-Marketplace application topology 21
2.1 The Business-to-Business e-Marketplace Pattern 21
2.2 Subsets of the e-Marketplace topology. 26
2.3 Subset 1: Web Integrated e-Marketplace . 26
2.4 Subset 2: e-Marketplace With automated supplier integration 27
2.5 Subset 3: Fully integrated marketplace. 28

Chapter 3. e-Marketplace runtime topology . 31
3.1 Overview . 31
3.2 Node types in the e-Marketplace . 32

3.2.1 Commerce server . 32
3.2.2 Web server redirector . 33
3.2.3 B2B gateway . 33
3.2.4 Database server . 34
3.2.5 Purchaser. 34
3.2.6 Integration server . 34
3.2.7 Notification server. 35
3.2.8 Workflow server . 35
© Copyright IBM Corp. 2000 iii

3.2.9 Mail server . 35
3.2.10 Public key infrastructure (PKI) . 36
3.2.11 Domain name service (DNS) . 36
3.2.12 Protocol firewall and domain firewall . 36
3.2.13 Search engine . 36
3.2.14 Delivery gateway . 36
3.2.15 Personalization. 36
3.2.16 Content management and aggregated catalog 37

3.3 Core runtime topologies . 37
3.3.1 Emerging basic runtime topolog . 37
3.3.2 Emerging basic variation . 38
3.3.3 Advanced Runtime Topology . 39

3.4 e-Marketplace runtime topology subsets . 40
3.4.1 Subset 1 - Web integrated e-Marketplace 40
3.4.2 Subset 2 - e-Marketplace with supplier integration 42
3.4.3 Subset 3- e-Marketplace with full integration 43

Chapter 4. e-Marketplace product mapping . 45
4.1 AIX product mapping . 45

4.1.1 Detailed product mapping - AIX platform 46

Part 2. Business-to-Business patterns: e-Marketplace guidelines 49

Chapter 5. Performance guidelines . 51
5.1 Hardware performance . 51

5.1.1 CPU . 51
5.1.2 Memory . 52
5.1.3 Network card . 52
5.1.4 I/O . 52

5.2 Network performance . 53
5.2.1 Protocol . 53
5.2.2 Fixed frame size . 53
5.2.3 Duplexing . 54
5.2.4 Hop count . 54
5.2.5 Bandwidth utilization and errors . 54
5.2.6 Retries or pipelining . 55
5.2.7 Network card buffers . 55

5.3 Security . 55
5.3.1 Secure Socket Layer or Secure Hypertext Transfer Protocol . . . 55
5.3.2 Encryption . 56
5.3.3 Authentication . 57

5.4 Operating system . 57
5.4.1 Memory . 57
iv e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

5.4.2 TCP/IP stack . 57
5.4.3 Web server . 59
5.4.4 Process handling . 60
5.4.5 Logging . 61
5.4.6 SSI . 61
5.4.7 CGI-BIN . 62
5.4.8 Caching . 62
5.4.9 Web server stay alive . 64

5.5 Application server. 64
5.5.1 Selecting a JVM . 65
5.5.2 Threads . 65
5.5.3 Caching . 65

5.6 Java Virtual Machine . 66
5.6.1 Just -In-Time compiler . 66
5.6.2 Adaptive compiler . 66
5.6.3 Static compiler . 67

5.7 Database . 67
5.7.1 Indexes . 67
5.7.2 Standard Query Language (SQL) . 67

5.8 References on performance . 68

Chapter 6. Technology options . 69
6.1 Web clients . 69

6.1.1 Web client overview . 69
6.1.2 Web browser . 71
6.1.3 Markup languages . 71
6.1.4 JavaScript . 73
6.1.5 Java applets . 74
6.1.6 C++ CGI . 76

6.2 WebSphere Application Server . 77
6.2.1 XML . 78
6.2.2 JavaServer Pages (JSP) . 79
6.2.3 Java Servlets . 79
6.2.4 JavaBeans . 80
6.2.5 Enterprise JavaBeans (EJB) . 80
6.2.6 Additional enterprise Java APIs . 82

6.3 WebSphere Commerce Suite technology . 82
6.3.1 Commands, tasks and overrideable functions. 83
6.3.2 Database . 84
6.3.3 Net.Data . 84
6.3.4 WebSphere Application Server integration - Marketplace Edition 84
6.3.5 Connectors . 85

6.4 Where to find more information . 87
v

Chapter 7. Application design guidelines . 89
7.1 High-level feature summary of the Marketplace Edition 89

7.1.1 Features . 89
7.1.2 Modifications to WCS 4.1 . 90
7.1.3 Processes . 90
7.1.4 Players . 90

7.2 Understanding the Marketplace Edition technologies 91
7.2.1 Servlets . 91
7.2.2 JavaServer Pages . 92
7.2.3 JavaBeans . 93
7.2.4 Net.Data . 94

7.3 General application design guidelines . 94
7.4 Application elements . 96

7.4.1 Clients . 96
7.4.2 WebSphere Commerce Suite . 97

7.5 Application Structure . 99
7.5.1 Web application . 99
7.5.2 e-Marketplace server . 101

7.6 Marketplace Edition application logic . 102
7.6.1 Interaction controllers . 103
7.6.2 JavaServer Pages . 104
7.6.3 Commands . 105
7.6.4 Command factory . 106
7.6.5 DataBeans . 106
7.6.6 DataBean manager. 107
7.6.7 Net.Data . 107
7.6.8 C++ programming model . 108
7.6.9 External systems . 111
7.6.10 Putting it together . 112

7.7 Session management . 114
7.7.1 Cookies and URL rewriting . 114
7.7.2 Session persistence and clustering. 115

7.8 Application performance . 117
7.8.1 JSP caching . 117
7.8.2 Integrated buyers and suppliers . 117

7.9 Security . 117
7.9.1 Authentication . 118
7.9.2 User registry . 119
7.9.3 Command access . 119
7.9.4 Integrity . 120
7.9.5 Cross referencing . 121
vi e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Chapter 8. Application development guidelines. 123
8.1 The application development project road map 123

8.1.1 Project plan . 123
8.1.2 Business requirements . 123
8.1.3 Application requirements . 123
8.1.4 Use cases model . 123
8.1.5 Conceptual diagram . 125
8.1.6 Class diagram . 125
8.1.7 Code review questionnaire . 127
8.1.8 Detailed test plan . 127
8.1.9 Deployment plan . 128
8.1.10 Maintenance plan . 128
8.1.11 The application development project road map reports 128

8.2 Development tool set . 129
8.3 Source control . 130
8.4 Testing . 130

Chapter 9. System management guidelines . 133
9.1 General systems management guidelines . 133
9.2 Product-specific systems management guidelines 134

9.2.1 WebSphere Application Server Administrative Console 135
9.2.2 Site Analyzer . 148
9.2.3 WebSphere Commerce Suite, Marketplace Edition for AIX 150
9.2.4 SecureWay LDAP. 156
9.2.5 Web server management . 168
9.2.6 DB2 UDB management . 171

9.3 Security guidelines . 175
9.3.1 Physical systems security . 175
9.3.2 Operating systems security . 176
9.3.3 Network security . 177
9.3.4 Web application security. 178
9.3.5 WebSphere security model and policy 181
9.3.6 HTTP single sign-on (SSO) . 183

9.4 Backup and recovery guidelines . 183
9.4.1 Using Tivoli Storage Manager (TSM) . 184
9.4.2 Application backup and recovery . 188
9.4.3 Guidelines for backup and recovery . 191

Part 3. Business-to-Business Patterns: e-Marketplace example 193

Chapter 10. Marketplace Edition overview . 195
10.1 Marketplace Edition objectives . 195
10.2 The Marketplace Edition players. 196
vii

10.3 The Marketplace Edition trading process . 197
10.4 MarketPlace subsystems . 198

10.4.1 Catalog subsystem . 198
10.4.2 Membership subsystem . 199
10.4.3 Negotiation subsystem . 200
10.4.4 Pricing contracts subsystem . 203
10.4.5 Additional infrastructure . 206

10.5 Marketplace Edition programming model . 209
10.6 Example application . 211

Chapter 11. Example - runtime environment 213
11.1 Hardware implementation . 216

11.1.1 Minimum hardware requirements for implementation 216
11.2 Hardware recommendations . 217
11.3 Prerequisite software . 218
11.4 Web server configuration . 218
11.5 WebSphere Commerce Suite configuration 219
11.6 JDK implementation . 219

Chapter 12. Example - development environment 221
12.1 Development environment overview . 221
12.2 Development platforms. 222
12.3 Development tools . 222

12.3.1 WebSphere Commerce Studio . 223
12.3.2 Page Designer . 224
12.3.3 HotMedia . 224
12.3.4 VisualAge for Java . 224
12.3.5 Catalog and shopping tools . 224
12.3.6 Catalog Architect . 225
12.3.7 Database tools . 225
12.3.8 Changes between WCS 4.1 and Marketplace Edition 225
12.3.9 C++ compiler . 226
12.3.10 Development tool interactions. 226

12.4 Roles . 228
12.5 Importing the sample site into WebSphere Studio 229

12.5.1 Importing files using the Import Wizard 229
12.5.2 Making changes . 233
12.5.3 Configuring the publish operation . 237
12.5.4 Publishing the modified files . 238
12.5.5 Verifying the results . 239

Chapter 13. Example - membership and access control 241
13.1 Membership . 241

13.1.1 Participants overview . 242
viii e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

13.1.2 Registration basics . 243
13.1.3 Pre-registered administrative members 245
13.1.4 Registering new users . 245
13.1.5 Registering new organizations . 249

13.2 Access control . 250
13.2.1 Users and user groups . 250
13.2.2 Resource groups . 251
13.2.3 Roles . 251
13.2.4 Actions . 253
13.2.5 Access policy overview. 254
13.2.6 Access policy resource groupings. 256
13.2.7 Manual access policy walkthrough . 257
13.2.8 Administering access policies graphically 259
13.2.9 Administering groups . 260
13.2.10 Assigning roles . 261

13.3 Customizing the membership and access control subsystem 264
13.3.1 Policy manager. 264
13.3.2 Interaction controllers . 265
13.3.3 Commands . 265
13.3.4 Database tables . 266

13.4 Authentication . 267
13.5 LDAP . 267

Chapter 14. Example - catalog subsystem . 269
14.1 Catalog subsystem high level-overview . 269

14.1.1 Catalog views . 272
14.1.2 Catalog search . 276

14.2 Catalog subsystem low-level design . 277
14.2.1 Design principles . 277
14.2.2 Usage models . 279
14.2.3 Code level components . 281

14.3 Examples of catalog creation and maintenance 308
14.3.1 Creation and maintenance of the data dictionary 309
14.3.2 Creation and maintenance of category hierarchy 315
14.3.3 Populating the catalog . 323

14.4 Supplier interaction: offering creation and maintenance 327
14.4.1 Create a fixed price offering . 329

14.5 Buyer interaction: examples of catalog based buying 333
14.5.1 Process of catalog-based buying . 335

14.6 Interaction with other subsystems. 339

Chapter 15. Example - pricing and contract subsystem 341
15.1 Contracts . 341
ix

15.1.1 Contract high-level overview. 342
15.1.2 Contract low-level design . 342
15.1.3 Example: supplier interaction . 354
15.1.4 Example: buyer interaction . 361
15.1.5 Interaction with other components and subsystems 365

Chapter 16. Example - negotiation subsystem 367
16.1 RFQs . 367

16.1.1 High-level overview . 368
16.1.2 Low-level design. 368
16.1.3 Example: buyer interaction . 400
16.1.4 Example: supplier interaction . 413
16.1.5 Interaction with other components and subsystems 415

16.2 Auctions . 418
16.3 Exchanges . 419

16.3.1 High-level overview . 420
16.3.2 Low-level design. 422
16.3.3 e-Marketplace administrator interaction 435
16.3.4 Supplier interaction. 437
16.3.5 Buyer interaction . 438
16.3.6 Interaction with other components and subsystems 439

Chapter 17. Example - additional e-Marketplace infrastructure 441
17.1 Hub business subsystems . 441
17.2 e-Marketplace reports . 442
17.3 Organization reports . 443
17.4 Member reports . 443
17.5 XML download ability . 444
17.6 Offline reports . 445

17.6.1 Configure offline reports . 445
17.7 Order subsystem . 445

17.7.1 High-level overview . 445
17.7.2 Low-level overview . 446

17.8 Approvals subsystem . 447
17.8.1 High-level overview . 447
17.8.2 Low-level design. 450

17.9 Flex flow high-level overview . 451
17.9.1 Level one: commands. 452
17.9.2 Level two: commerce functions. 453
17.9.3 Level three: market/business processes 453

17.10 Flex flow low-level overview . 453
17.10.1 State machine . 453
x e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Appendix A. Marketplace Edition installation guide 455
A.1 Prerequisites . 455
A.2 Test WebSphere Commerce Suite demomall. 456
A.3 Stop Processes. 456
A.4 Backups . 457
A.5 Stop the remaining processes . 458
A.6 Install the Marketplace Edition software . 459
A.7 Modify the LDAP schema . 460
A.8 Prepare LDAP server . 460
A.9 Check and update WCS configuration files . 461
A.10 Prepare the Marketplace Edition database schema 462
A.11 Create LDAP test data . 462
A.12 Create test data for the Marketplace Edition database. 462
A.13 Install the Eureka search tool . 463
A.14 Copy jndi.jar . 463
A.15 Define Servlets in WebSphere . 463
A.16 Configure aliases in IBM HTTP server . 464
A.17 Load default access policies . 464
A.18 Start all the Marketplace Edition components. 465

Appendix B. Special notices . 467

Appendix C. Related publications . 471
C.1 IBM Redbooks . 471
C.2 IBM Redbooks collections . 472
C.3 Other resources . 472
C.4 Referenced Web sites . 473

How to get IBM Redbooks . 475
IBM Redbooks fax order form . 476

Abbreviations and acronyms . 477

Index . 479

IBM Redbooks review . 487
xi

xii e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Preface

The Patterns for e-business are a group of proven, reusable assets that can
help speed the process of developing applications. The pattern discussed in
this book, Business-to-Business e-Marketplace Pattern, is an emerging
pattern that allows the development of e-Marketplace hub applications that
bring multiple buyers and sellers together in a way that provides efficient
electronic trading of goods and services. This pattern is a composition of
existing patterns, including the User-to-Online Buying pattern, the
User-to-Business pattern and the User-to-User pattern.

This redbook discusses subsets of the application topologies for the
Business-to-Business e-Marketplace Pattern. These subsets are used to
describe different parts of the full marketplace topology, and they represent
increasing levels of complexity, functionality, and integration in the topology,
ranging from a simple e-Marketplace to a fully integrated e-Marketplace.

Part 1 of the redbook describes the nature of e-Marketplaces and guides you
through the process of choosing an application and runtime topology to
deliver the desired market functionality. It then provides you with possible
product mappings for implementation of the chosen runtime.

Part 2 of the redbook provides a set of guidelines for building your
e-Marketplace application. These guidelines include discussion of
performance, technology options, application design, application
development, systems management, and security.

Part 3 of the redbook describes, using the standard sample application, the
functions available in WebSphere Commerce Suite, Marketplace Edition for
AIX. At the time this redbook was written we were using a pre-release version
of Marketplace Edition so our working example is not complete. We have
taken the approach of first describing our understanding of the facilities that
will be available in the released version of WebSphere Commerce Suite,
Marketplace Edition for AIX, and then giving some detail of the features we
were able to implement and test.

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Raleigh Center.

Bill Moore is a WebSphere Specialist at the International Technical Support
Organization, Raleigh Center. He writes extensively and teaches IBM classes
© Copyright IBM Corp. 2000 xiii

on WebSphere and related topics. Before joining the ITSO, Bill was a Senior
Aim Consultant at the IBM Transarc lab in Sydney, Australia. He has 16 years
of application development experience on a wide range of computing
platforms and using many different coding languages. He holds a Master of
Arts degree in English from the University of Waikato, in Hamilton, New
Zealand. His current areas of expertise include the VisualAge family of
application development tools, object-oriented programming and design, and
e-business application development.

Mitch Fielding is an e-Business Specialist at Solution 6, an IBM Business
Partner based in Sydney, Australia. He has 10 years’ experience in software
development and consulting in private and government industry sectors - two
years of which have been in the e-Business arena using WebSphere-based
technologies. He has previously written on servlet and JSP programming
using VisualAge and WebSphere Studio.

Charles Wilson is an e-Business IT/Architect in IBM USA. He has 15 years
of experience in software development and consulting in the private sector
and with the US government. He has been designing and building Internet
and Intranet sites for five years and specializes in e-Business, Java, Linux,
and high-performance computing. He holds a degree in Computer Science
from Texas Central College.

Ara Avanesian is an Advisory I/T Professional in IBM Canada. He has five
years of experience in application development and system design in finance,
retail and government industry sectors. As part of IBM Canada e-Business
Services and Consulting he specializes in WebSphere-based technologies.
He holds a degree in Computer Science from York University.

Pieter Viljoen is a Technical Sales Specialist for the western region in the
United States. He has 11 years of experience in technical support, sales,
marketing and solutions development in the field. His areas of expertise
include technical solutions development, programming and system analysis
and design.
xiv e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Figure 1. The authors

Thanks to the following people for their invaluable contributions to this
project:

Margaret Ticknor
John Ganci
Linda Robinson
International Technical Support Organization, Raleigh Center

Vibby Gottemukkala
Richard Goodwin
Scott Smith
Charles Shan
xv

Peter Becker
IBM Dynasty Project

Comments welcome

Your comments are important to us!

We want our Redbooks to be as helpful as possible. Please send us your
comments about this or other Redbooks in one of the following ways:

• Fax the evaluation form found in “IBM Redbooks review” on page 487 to
the fax number shown on the form.

• Use the online evaluation form found at ibm.com/redbooks

• Send your comments in an Internet note to redbook@us.ibm.com
xvi e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Part 1. Business-to-Business patterns: e-Marketplace topology
© Copyright IBM Corp. 2000 1

2 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Chapter 1. Introduction to the e-Marketplace Pattern

In this chapter we provide some introductory information about patterns and
e-Marketplaces. We first describe patterns and their origins, then we provide
a definition for an e-Marketplace as well as some general information about
the challenges, success factors, and the key areas that are important when
planning an e-Marketplace.

Later on in this chapter we provide a high-level definition of the Patterns for
e-business and our proposed Business-to-Business e-Marketplace Pattern.
We provide some guidelines on how to use Patterns for e-business and where
to get more information.

At the end of this chapter we will briefly cover IBM’s Application Framework
for e-business and state the outline of this redbook.

1.1 Introduction to Patterns

A pattern is a structured and formal approach for describing a reusable
solution to a reoccurring problem. Patterns should be concise and specific but
not inflexible. A successful pattern not only is reused in addressing the same
reoccurring problem, but is flexible enough to be customized to meet a
slightly different but relevant challenge. Patterns are typically a collection of
documented best practices and lessons learnt from having to tackle similar
problems.

The concept of using well-defined patterns has originated in the building
architecture and construction industry. A Pattern Language: Towns,
Buildings, Construction by Christopher Alexander et al, published in 1977,
has been largely credited with introduction of the concept of patterns.

Deployment of pattern type standards has contributed to the rapid
advancements in the computer hardware industry. This success and the need
for reusability and rapid software development gave rise to object-oriented
software, design pattern and component-based development.

The idea of design patterns has gained acceptance by software designers
and developers because it enables an efficiency in both the communication
and implementation of software design, based upon a common vocabulary
and reference.

Buschman et al, the author of Pattern-Oriented Software Architecture - A
System of Patterns, identified patterns for system architecture at a higher
© Copyright IBM Corp. 2000 3

level than the original design patterns. Their patterns are related to the
macro-design of system components such as operating systems or network
stacks.

Information technology architects, encouraged by the success of design
patterns, and facing challenges in systematic and repeatable description of
systems, have also explored the idea of architectural patterns.

The Enterprise Solution Structure (ESS) work (see “Enterprise Solutions
Structure” in IBM Systems Journal, Volume 38, No. 1, 1999 at
http://www.research.ibm.com/journal/sj38-1.html) looked at patterns for
complete end-to-end system architectures. ESS is now part of the IBM Global
Services methodology.

1.2 Introduction to e-Marketplaces

In the past few years the computer industry has been going through a
revolution, one that started slowly but since has accelerated and has forever
changed the industry. In its early years the e-business revolution introduced
the concept of sharing of information through open media, so that anyone
with access to Internet had an enormous amount of information available to
them instantaneously. Even though this stage had very little to do with
“business”, nonetheless it paved the way for what was to come. The next
phase of the e-business revolution was led by companies who seized the
power of the Internet to conduct business-to-consumer (B2C) transactions
and enabled themselves to drive up their market share through using this
alternative channel. The current phase of the e-business revolution promises
to surpass the B2C phase in all aspects. This phase is driven by the
enterprises who have the vision and the desire to conduct
business-to-business (B2B) transactions over the Internet. Among many
other benefits, these enterprises look to B2B solutions to improve
communications and provide a fast and error-free method of transacting with
one another to address their procurement and supply chain processes.
e-Marketplaces are the vehicles that provide the desired B2B functionality.

An e-Marketplace is an electronic gathering place that brings multiple buyers
and sellers together. An e-Marketplace provides to its members a unified view
of sets of goods and services and enables its members to transact using
many different mechanisms available in the e-Marketplace.

The e-Marketplace is created and maintained by a “market maker” who brings
the suppliers and vendors together. The market maker assumes the
4 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

responsibility of e-Marketplace administration and performs maintenance
tasks to ensure the e-Marketplace is open for business.

Typically there are two distinctive sides to any e-Marketplace: the buy side
and the sell side.

• The buy side represents businesses that use the e-Marketplace for their
buying needs, such as spot purchasing and/or addressing their
enterprise-wide procurement needs.

• The sell side, as the name suggests includes businesses who leverage
the e-Marketplace to sell their products via the transaction mechanisms
offered in the e-Marketplace.

At the highest level e-Marketplaces can be categorized in two groups:

• Horizontal e-Marketplaces: This variation of an e-Marketplace is typically
an offering of goods and services at reduced prices. This variation mainly
addresses the spot purchasing needs of different types of businesses, and
its main value proposition is the delivery of goods and services at reduced
prices.

• Vertical e-Marketplaces: This variation of an e-Marketplace provides value
by efficiently managing interactions between buyers and sellers in a
specific industry. The vertical e-Marketplaces are typically very industry
specific and deal with a set of specialized goods or services. This variation
mainly addresses the supply chain processes of businesses.

In any e-Marketplace there are four main transaction mechanisms. They are:

• Standard price offerings: Standard price offerings are predetermined
prices for a given set of goods or services. This transaction model is in
some ways similar to the typical B2C catalog pricing system. In
e-Marketplaces Standard price offerings are further broken down to two
sub-models. They are:

- Fixed price: Fixed price offerings as the name suggests are offerings
that have a fixed price associated for a particular set of goods or
services.

- Contract: Contracts are results of offline negotiations between buying
and selling organizations. Contracts typically are entered into the
system with special pricing, expiration rules, and termination rules.
Contracts can also be generated as result of a Requess For Quote
(RFQ) process.

• Auctions: Auctions are used in e-Marketplaces to allow rapid inventory
turnover, while providing goods and services to the buyers at a reduced
Chapter 1. Introduction to the e-Marketplace Pattern 5

price. Several different styles of auctions, such as Open cry, Sealed bid
and Dutch auctions are available

• Requests For Quote (RFQs): Buyers can create RFQs in the
e-Marketplace if the product they are interested in does not exist in the
e-Marketplace, or if they would like to solicit the selling organizations for a
better price for an existing product. Selling organizations view the RFQs in
the e-Marketplace and provide their response for the ones they are
interested in. The buying organization that initiated the RFQ reviews the
responses and selects a possible winner. The winning RFQs can be used
to create a fixed price order or to establish a contract. Due to the opposite
behavior of RFQs compared to auctions, RFQs are sometimes referred to
as reverse auctions.

• Exchanges: Exchanges utilize sets of predefined rules to fulfill the buying
and selling needs of the e-Marketplace members. Exchanges match bid
offers with ask offers based on the e-Marketplace rules and inform the
parties involved of the potential match. The general idea is very similar to
the procedures in stock market exchanges. Exchanges are the most
complicated mechanism of conducting transactions in an e-Marketplace.

The success of an e-Marketplace depends on many factors, one of which is
the ease of performing a transaction. In order to provide an easy and quick
method of accessing products and offerings available, the e-Marketplace
uses an aggregated catalog. Buyers interact with an aggregated catalog to
view the products with real-time pricing, descriptions, and comparisons
between different vendors. The general idea is to consolidate products from
multiple vendors with all possible existing transaction mechanisms in a single
catalog and allow the buyers to be more efficient in purchasing goods and
services.

1.2.1 Why e-Marketplaces?
A market maker’s primary purpose is to bring together a highly targeted
audience of corporate buyers and sellers to solve specific industry problems
imbedded in the trading process. Market makers provide solutions that go
beyond the first wave of B2B e-commerce to provide dynamic, open
e-Marketplaces that can enter the supply chain of vertical and horizontal
industries, introducing new efficient ways of buying and selling.

By simply resolving inefficiencies, market makers act as catalysts to
compress process time, decrease costs, and improve business processes, in
ways previously unimaginable. By adding value beyond efficiency, market
makers can truly revolutionize the way trading partners do business.
6 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Providing a comprehensive range of services surrounding trade, market
makers offer a strong value proposition, improve customer retention and
expand their own potential revenue. Some of the value market makers may
provide to an e-Marketplace include:

• Industry expertise and content

• Catalog aggregation

• Transaction negotiation and facilitation

• Logistics

• Community services (chat, discussion)

• Procurement workflow

• Financial settlement or financing

• Quality assurance and rating services

• Business intelligence

• Customer service

1.2.2 Challenges and inhibitors
The competition in e-Marketplaces is increasingly fierce as market makers
attempt to gain dominance and critical mass. The biggest obstacle for new
e-Marketplaces is the ability to bring in enough buyers and sellers to achieve
liquidity and create a truly effective dynamic e-Marketplace. The top
challenges facing market makers today include:

• Attracting critical mass

• Creating brand recognition

• Building a sound infrastructure

• Getting to market quickly

• Keeping costs down

• Integrating business processes

• Keeping up with rapidly changing services

• Surviving competition and the network effect

• Achieving long-term viability

1.2.3 Critical success factors
Market makers are facing some daunting challenges. These challenges
translate to a set of critical objectives they must meet in order to succeed.
Chapter 1. Introduction to the e-Marketplace Pattern 7

Some of the primary keys to gaining critical mass and generating revenue
include:

• Time to market and liquidity

The market will reward first movers in the race for critical mass of buyers
and sellers. Because there are only so many buyers and sellers in a
particular industry, markets that already have members tend to attract
more members. A key measure of success of an e-Marketplace is the
value of the transactions flowing through it.

• Low cost of ownership and operations

To be profitable yet still offer low-cost, full-featured solutions, the
e-Marketplace should be easy to operate and maintain. Ideally, the
underlying infrastructure will help accomplish this through tools,
automation and built-in functionality.

• Cutting-edge functionality

A successful e-Marketplace will have to go beyond simply aggregating
content and facilitating transactions. These functions are necessary but
not sufficient to realize the true potential of e-Marketplaces. Market
makers need innovative capabilities to become and remain competitive.

• Flexibility

Market makers will have to tune e-Marketplaces to deliver the value
proposition that is appropriate for the unique dynamics of the industry they
serve. As requirements evolve and opportunities arise, market makers
should be able to adapt the e-Marketplace accordingly.

• Ability to add value

The market is moving quickly, and e-Marketplace services are rapidly
becoming commodities. What is considered valuable today may be merely
meeting the minimum tomorrow. An effective e-Marketplace platform will
enable market makers to quickly design and develop new value-added
services.

• Secure, scalable, reliable solutions

All businesses engaging in e-commerce need secure, scalable, reliable
solutions, but these traits are even more crucial for an e-Marketplace
facilitating trade for entire industries. An e-Marketplace platform should
possess a mission-critical, bulletproof infrastructure.

1.2.4 e-Marketplace solutions: designing for success
First-moving market makers who focus on market capitalization over
long-term viability and the creation of value will risk failure. Success depends
8 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

on the market-maker’s ability to attract and retain multiple
participants—buyers, sellers and supply chain partners. The requirements
and critical success factors of these participants should drive the design and
implementation of an e-Marketplace. Poorly designed or executed
e-Marketplaces will attract few participants. In a vicious cycle, e-Marketplaces
with fewer members provide less value and therefore fail to attract and retain
new members. A sound, forward-thinking market design will gain critical mass
and motivate others to participate.

1.2.5 Critical success factors of e-Marketplace participants
Besides gaining access to a critical mass of buyers and a multitude of sellers,
some of the key factors for attracting e-Marketplace participants and
maintaining their participation include:

• Low cost of operations and ease of participant setup and enablement

• Role-based access control and approval flows

• Catalog content management

• Aggregated catalog, with organization-unique views

• Searchable, filterable content

• Variety of trading mechanisms (for example, auction, reverse auction,
contracts)

• Support for buying and selling at desired terms and conditions

• Tracking and reporting of buying and selling activity

1.2.6 Characteristics of an effective e-Marketplace platform
Most early-adopting market makers built their own e-Marketplace
infrastructures. They found that the e-Marketplace solutions of most
third-party vendors lacked functionality or could not be configured to meet
industry needs. Now, time-to-market pressures, along with the breadth and
depth of function required for an e-Marketplace to be successful, make
proprietary solutions ineffective and unwieldy. Market makers should choose
an e-Marketplace platform carefully to avoid getting locked into limited and
limiting technology, which will be costly to replace later.

Most packaged e-Marketplace software focuses only on one or two key
aspects of B2B trade, such as community, procurement, or auctions.
e-Marketplaces built on software platforms that support the capabilities ofonly
one or two of these types of solutions cannot deliver the total value
proposition of a trading hub. A true e-Marketplace must provide
comprehensive trading capability comparable to that of all of the above
Chapter 1. Introduction to the e-Marketplace Pattern 9

examples combined. The strength of the design of an e-Marketplace, as well
as the platform underlying it, will be a significant factor of its success.
e-Marketplaces built on the most innovative and robust platforms will be the
ultimate winners. Some critical characteristics of an effective e-Marketplace
platform include:

• Quick to market

One of the market-maker’s most critical success factors is speed to
market. An e-Marketplace solution should be quick and easy to implement,
providing robust out-of-the-box functionality and pre configured options.

• Highly flexible

In addition to being “pre baked” enough to get to market quickly, a platform
must also be highly customizable and configurable. Different industries
have unique market requirements; market makers have preferred business
models; and e-Marketplaces will be adapted and extended over time to
create additional value.

• Unified content

e-Marketplaces should provide a single point of access to heterogeneous
data sources, transparently aggregating catalog content into a single,
unified view. They should also provide mechanisms for effectively
searching, filtering and mining content.

• Dynamic trade mechanisms

Businesses have a variety of wants and needs for negotiating trade. They
look for a single e-Marketplace that can fulfill all of these requirements.

• First-wave B-to-B solutions supported only fixed pricing

True e-Marketplace solutions must support dynamic pricing and
negotiation through various real-time mechanisms, such as contracts,
auction, requests for quote and exchange.

• Open, standards-based architecture

To avoid locking customers into limiting, proprietary solutions, a platform
should be based on industry-accepted standards. This will better enable
market makers to extend the system, and achieve integration and
interoperation with other systems.

• Ease of integration

To provide a truly end-to-end solution, market makers must be prepared to
enable the integration of the diverse data, applications and processes of
their members. Market makers unable to manage the back-end integration
10 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

among buyers and sellers will fall short of their promises of huge
efficiencies.

• Built for success

A market-making solution should presuppose the success of the
e-Marketplace. Gaining critical mass will require scalability; achieving high
liquidity will require robust, high-performance transaction capability;
rapidly increasing scope will require advanced functionality and
adaptability.

1.2.7 The future of e-Marketplaces
Industry analysts and market makers expect explosive growth, migration to
next generation solutions, and a major shift from transaction fees to
value-added services.

The focus of e-Marketplaces will move from gaining critical mass to deploying
increasingly complex functionality to attract members and drive revenue.

The winners will be second-generation e-Marketplace industry leaders whose
sites will integrate multiple transaction mechanisms and a range of
value-added services.

New challenges facing market makers include:

• Increased competition

• Service offerings are rapidly beoming commodities

• Lack of virgin markets

• Technical sophistication of competitive e-Marketplaces

• Market consolidation: finite trading means only two-to-three
e-Marketplaces in each industry

To address the trends and meet these challenges, an e-Marketplace platform
must embody the following characteristics:

• More robust out-of-the-box functionality

Solutions should support such features as: dynamic and flexible contract
capability, collaborative procurement to refine projections, automated
replenishment for better inventory management and real-time progress
tracking along the entire supply chain.

• Pervasiveness
Chapter 1. Introduction to the e-Marketplace Pattern 11

An e-Marketplace should provide access to data, applications and
people—anytime, anywhere—through a variety of devices, such as phone,
pager, fax and e-mail.

• Decision support

As trading transcends price, decisions are based on real-time analysis of
criteria, such as availability, delivery time, quality, financing, and
insurance. Decisions are also driven by data, forecasts, and analyses
housed in ERP and supply chain systems, as well as in the e-Marketplace
itself. That intelligence is the true value of aggregation.

• Ease of integration

e-Marketplaces will continue to find new ways to help buyers and sellers
cut costs, tying them even more closely to the business processes they
support. Businesses and business systems will need to communicate and
collaborate with each other more directly and more efficiently for an
e-Marketplace to be truly dynamic and efficient. e-Marketplace platforms
that cannot facilitate this cost effectively will not meet the needs of market
makers.

• More flexibility

The market model and design must be easily changeable to react to new
opportunities and requirements before competitors do.

• Interoperability

Customer requirements and expectations may outpace the built-in
function of a single e-Marketplace; and horizontal e-Marketplaces may be
able to provide value to vertical ones. For these reasons, e-Marketplaces
should be able to connect and communicate with one another, creating
true networked markets.

1.2.8 WebSphere Commerce Suite, Marketplace Edition for AIX
In Part 3, “Business-to-Business Patterns: e-Marketplace example” on page
193 of this redbook we will build and analyze examples of e-Marketplaces
using WebSphere Commerce Suite, Marketplace Edition for AIX. The goal of
this product is to meet the needs and critical success factors of Net market
makers. WebSphere Commerce Suite, Marketplace Edition for AIX is a
comprehensive e-Marketplace platform based on distributed architecture and
patented, best-of-breed IBM technologies and components. It provides the
infrastructure and tools that market makers need to establish
high-performance, full function, scalable e-Marketplaces on the Internet,
efficiently and effectively.
12 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Unlike most e-commerce solutions that focus on either buy-side or sell-side
requirements, and deliver only pieces and parts of an e-Marketplace strategy,
WebSphere Commerce Suite, Marketplace Edition for AIX is a complete,
end-to-end solution that addresses the entire value chain. And meets the
diverse needs of buyers and sellers as well as the needs of the market
makers who facilitate them.

The comprehensive functional scope and out-of-the-box capability of this
product greatly reduces the time and technical effort required to build and
launch a custom e-Marketplace. Adherence to open standards, a modular
architecture and a high degree of configurability and customizability also
ensure fast time to market for new features and value-added services to meet
the dynamic needs of growing e-Marketplaces. The solution combines ease
and speed of development with adaptability and versatility.

• The five Cs

WebSphere Commerce Suite, Marketplace Edition for AIX was designed
to support the five critical aspects of B2B e-Marketplaces: the content the
e-Marketplace provides, the commerce engine that powers the
e-Marketplace, the coordination of trade activity, the community it fosters
and the connectivity that facilitates a seamless web of information and
transactions. A market-maker should consider including the right mix of
the five Cs, which may vary according to the industry the e-Marketplace
serves. WebSphere Commerce Suite, Marketplace Edition for AIX
provides key capabilities in each of these five areas:

- Content.

Aggregated, normalized and standardized catalog information; search
and filter of content; member profiles; reports of trade activity.

- Commerce.

Dynamic pricing, transaction, payment, global trade.

- Coordination.

Approval flow, negotiation: exchange, auction, reverse auction
(RFP/RFQ), dynamic contracts, order tracking.

- Community.

Chat, discussion, shared workspace, e-mail.

- Connectivity.

Integration with back-end systems, trading partner systems, other
e-Marketplaces.
Chapter 1. Introduction to the e-Marketplace Pattern 13

1.3 Introduction to Business-to-Business e-Marketplace Pattern

The Business-to-Business e-Marketplace Pattern is an emerging pattern that
is a subset of Patterns for e-business, so it is appropriate to first look at the
Patterns for e-business before discussing the Business-to-Business
e-Marketplace Pattern.

The Patterns for e-business aim to communicate in a highly accessible
fashion the business pattern, systems architecture (application and runtime
topologies), product mappings, and guidelines required for different classes
of applications. The following figure depicts these aspects.

Figure 2. Patterns for e-business

The patterns are cataloged according to the following business context
scheme:
14 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

• User-to-Business pattern describes user interactions, internal or external
to the enterprise, with the enterprise transactions or data. This pattern
covers all non-commerce interactions between users and businesses.

• User-to-Online Buying pattern addresses the commerce transactions of
goods and services between the user and a business through tools such
as catalogs shopping carts, electronic wallet etc.

• Business-to-Business pattern addresses the interaction of parties who do
not belong to the same company. This pattern is sub-categorized into:

- Business-to-Business Integration pattern addresses the interaction of
business processes between organizations.

- Business-to-Business e-Marketplace Pattern describes the interaction
between multiple buyers and sellers.

• User-to-Data pattern describes the approach to using tools to extract
useful information from large volumes of data.

• User-to-User addresses the interaction between users via use of email,
shared documents etc.

• Application Integration describes the linking of applications within a
business.

Based on the definition of an e-Marketplace, provided in the previous section,
and the definitions of the Patterns for e-business, it becomes apparent that
the Business-to-Business e-Marketplace Pattern is a pattern composed of
building blocks from several Patterns for e-business. The following diagram
depicts the Business-to-Business e-Marketplace Pattern using Patterns for
e-business as building blocks.
Chapter 1. Introduction to the e-Marketplace Pattern 15

Figure 3. Business-to-Business e-Marketplace Pattern

The User-to-Online Buying pattern facilitates the interaction between the
buyer and the e-Marketplace. Activities such as purchasing from an
aggregated catalog, participating in auctions or exchanges are performed
using this pattern. This pattern is also used for creating Requests For
Quotation (RFQs) by the buyers who are looking for either one-time
purchases or trying to establish long-erm contracts with suppliers.

The User-to-Business pattern facilitates the non-commerce sell side
functions such as updating the catalog, checking orders, checking RFQs, and
accessing orders.

The User-to-User pattern facilitates the workflow approval process of an
e-Marketplace.
16 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Batch-Data-Import does not correspond to one of the high-level business
patterns. It is a batch data exchange that facilitates bulk transfer of
information, as opposed to an automated data exchange.

The Business-to-Business Integration pattern is used on both the buy and sell
side of the e-Marketplace pattern. On the buy side, the pattern defines the
interaction between the buyer’s procurement system and commerce functions
of the e-Marketplace. On the sell side, this pattern defines the interaction
between the supplier’s commerce system and the commerce functions of the
e-Marketplace.

The Application Integration pattern facilitates the integration of supporting
systems and the business processes of the e-Marketplace owner and its
internal network.

1.4 How to use patterns

The Patterns for e-business are particularly focused upon addressing
common business application problems and providing answers to frequent
architecture, design, and implementation questions.

You can use the Patterns for e-business in a number of ways according to
your needs:

• As a starting point for an end-to-end system architecture.

• As a detailed example and prescriptive approach, following the product
mappings and guidance provided.

• As a way to design more complex, multi-channel systems, when several
patterns are used together.

As with the design patterns and ESS work, we anticipate that architects and
designers will want to combine these patterns to compose solutions to more
complex system architectures. As the other Patterns for e-business are
published, we will identify the appropriate integration points for such
composition.

We recommend that you use the Patterns for e-business together with an
appropriate development methodology that considers the full set of
requirements that are to be understood and implemented, whether these
requirements concern the function of the solution or its operational
characteristics such as availability, scalability, or performance. For more
information on application design see Chapter 7, “Application design
guidelines” on page 89.
Chapter 1. Introduction to the e-Marketplace Pattern 17

1.5 Patterns Web site

The Patterns for e-business are published on the IBM Developer Works Web
site, and can be located at
http://www.ibm.com/software/developer/web/patterns.. This interactive
patterns site acts as a guide to aid you in the selection of the pattern and
topologies most relevant to your needs. While you can navigate via shortcuts
to the information you most need, the site is structured to enable you to “drill
down” into the material as you:

1. Select a business pattern.

2. Select an application topology.

3. Review runtime topologies.

4. Review product mappings.

5. Review guidelines.

At the time of writing this redbook, the Web site has material for the
User-to-Business, User-to-Online Buying and Business-to-Business
Integration patterns, with material for the other Patterns for e-business in the
process of being developed.

1.6 Patterns and Application Framework for e-business

The advent of e-business, with the requirement for interoperability that it
brings, has been a major catalyst for the more rapid adoption of standards by
the industry.

IBM’s Application Framework for e-business establishes:

• A recommended approach for building systems, embodied in the Patterns
for e-business.

• Innovative technology delivered in a rich product portfolio.

• Cross-platform standards, including Java and XML.

The Framework, with the standards it proscribes for e-business systems and
their components, can be applied to:

• Custom application code

• Application packages

• Software products
18 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

The Patterns for e-business are an integral part of the IBM Application
Framework for e-business. The Patterns make it easy to apply the
technologies, standards, and products of the Application Framework to
provide an e-business solution.

Figure 4 shows a pictorial summary of the major technology standards
included in the Application Framework, with an indication of the areas where
they are important.

Figure 4. Technology standards and the Application Framework for e-business

Framework white papers are an important source of information for the
guidance material included in the Patterns for e-business. The Application
Framework site at: http://www.ibm.com/software/ebusiness includes a library
section with this series of white papers.

1.7 Structure of this book

Chapter 2, “e-Marketplace application topology” on page 21, introduces
application topology for the Business-to-Business e-Marketplace Pattern.
With very accessible notation, the application topology captures the essential
“shape” of the application solution.

Chapter 3, “e-Marketplace runtime topology” on page 31, discusses the
runtime topologies for each application topology.
Chapter 1. Introduction to the e-Marketplace Pattern 19

Chapter 4, “e-Marketplace product mapping” on page 45, provides sample
product mappings to populate the logical runtime topology. The focus remains
on the operational aspects of the solution.

Chapter 5, “Performance guidelines” on page 51, introduces performance
guidelines by considering the components of a Business-to-Business
e-Marketplace Pattern solution that are particularly relevant to performance.

Chapter 6, “Technology options” on page 69, discusses the technology
options available to implement a Web application and provides advice on the
appropriate usage.

Chapter 7, “Application design guidelines” on page 89, introduces
consideration of the functional components of the application within the
context of the runtime topologies.

Chapter 8, “Application development guidelines” on page 123, provides
guidelines for application development, considering the roles, processes and
tools that are required.

Chapter 9, “System management guidelines” on page 133, looks at the asset
management, security, and availability aspects of an e-business application.

Part 3, “Business-to-Business Patterns: e-Marketplace example” on page 193
provides details of an example e-Marketplace application implemented using
WebSphere Commerce Suite, Marketplace Edition.
20 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Chapter 2. e-Marketplace application topology

An e-Marketplace is a hub that brings multiple buyers together with multiple
sellers. Marketplaces provide value to their members by providing a unified
view of the set of goods and services traded in the market and by providing a
variety of mechanisms to facilitate trade in such products.

Implementing a successful e-Marketplace requires that you identify an
appropriate application topology so that all the requirements of buyers and
sellers can be properly met.

An application topology is made up of a set of logical nodes that describe how
users, applications and data work together. An application topology is a
high-level view of the principal layout of the application; it does not show
middleware, files and databases, nor does it describe application design.

An emerging e-business pattern such as the Business-to-Business
e-Marketplace Pattern, can be implemented using different application
topologies. In this chapter we describe some possible topologies and the
considerations for using them. The aim is to help you choose the topology
that best fits the requirements for users, applications, and data.

2.1 The Business-to-Business e-Marketplace Pattern

Just as an e-Marketplace is built up from e-commerce, user service and
application integration building blocks, the Business-to-Business
e-Marketplace Pattern is composed of a combination of business patterns
corresponding to these building blocks. Figure 5 on page 22 relates the
principal functional areas of an e-Marketplace with the patterns that will be
combined in this mixed pattern.
© Copyright IBM Corp. 2000 21

Figure 5. e-Marketplace major functions

Application topologies from the business patterns 1 through 3, and 5 in this
diagram represent sub-topologies of the composite e-Marketplace
application topology. Number 4 is an application topology introduced in this
pattern. It is these specific application topologies that are combined to form
the e-Marketplace application topology. All of these topologies are described
using the diagram conventions shown in Figure 6 on page 23.

Buyers Sellers

2. User-to-Business Pattern

Web
Browser

3. User-to-User Pattern
4. Batch Data Import

Supplier
Commerce

System

e-Marketplace

Enterprise Application Integration Pattern

Enterprise
Applications

5. Business-to-Business Integration
Pattern

1. User-to-Online Buying Pattern

3. User-to-User Pattern

Web
Browser

5. Business-to-Business Integration
Pattern

orders
bids/offers,
RFP/RFQ

orders
bids/offers,
RFP/RFQ

Buy-Side
Procurement

System
22 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Figure 6. Diagram conventions for application topologies

Sub-topology 1 is a standard User-to-Online Buying pattern. It embodies the
commerce interaction done by a purchaser in the e-Marketplace. A
marketplace contains interactions, such as RPQ/RFP and exchange trading
(which are addressed in supporting sections of this business pattern), that go
beyond what is typically encountered in a customer-to-business online buying
scenario. App 1 in Figure 7 on page 24 handles the matching and selling
functions of the marketplace.

Sub-topology 2 is a User-to-Business pattern that addresses non-purchasing
interactions with the marketplace, such as a supplier checking order statistics
and providing catalog updates. App 2 in Figure 7 on page 24 is a content
creation application or an application to provide supporting services, such as
performing RFP/RFQ processing or accessing purchase orders.

Sub-topology 3 is a User-to-User pattern. Such a pattern comes into play in
approval workflow, in which an approver must sign off on a purchase before it
is submitted to the supplier. App 3 as shown in Figure 7 on page 24 is a
workflow application for implementing such flows.

An application node which
contains new or modified
code for this project.

An application node which
contains existing code with
no need for modification
for this project or which
cannot be changed.

A set of applications whose
characteristics are unspecified.
Only the means with which to
interact with them is specified.

R/W
Data

Work in Progress
Cached Committed Data
Staged Data
(Data Replication Flow)

R/O
Data
Chapter 2. e-Marketplace application topology 23

Figure 7. e-Marketplace applications

The next two sub-topologies specify the program-to-program interactions
between a supplier and the marketplace or an automated purchaser and the
marketplace. Sub-topology 4 does not correspond to one of the high-level
business patterns. It is a batch data exchange, such as the programmatic
import of potentially sophisticated catalog information into the aggregate
catalog of the e-Marketplace. This is a bulk transfer of information, as
opposed to an automated data exchange following a managed
Business-to-Business protocol, which falls under the Business-to-Business
Integration class of integration (sub-topology 5). "App 4" in this topology is an
application in the marketplace, that provides aggregation and publishing of
the catalog. It is not necessarily the same as the application that manages
the catalog. "App 6" is a catalog content application provided by a supplier. It
provides content creation and extraction, potentially driven by business rules,
and the transmission of this content to the marketplace.

App 1Pres
sync1. User-to-Online Buying

Pattern

App 2Pres
sync2. User-to-Business

Pattern

Pres

sync

3. User-to-User
Pattern

Pres async

sync

App 3
24 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Figure 8. e-Marketplace applications

Sub-topology 5 is the Internet/nanaged topology from the
Business-to-Business Integration business pattern. It defines the interaction
between the e-Marketplace and the supplier's commerce system, as well as
that between a buyer's procurement system and the commerce functions of
the e-Marketplace where this interaction is governed by a well defined and
executable contract. The App 1 in this topology is the App 1 in sub-topology 1
above. When the commerce functions of the Marketplace integrate with
automated buyer or supplier systems, this pattern is applied. Other
applications in the marketplace may also need to interact with partner
applications. Such an application is App 5.

In addition, the following patterns, the first two of which are currently under
development, are related to this application topology and will be referenced:

• Enterprise Application Integration - for the integration of supporting
systems and business processes within the market maker's internal
network.

5. Business-to-Business
Integration Pattern

App 64. Batch data import
sync/
async App 6

Decomp
Rules

Gateway
App

App2

App1

async
mutually
agreed
msgs

Partner sync/
async

sync/
async

adapter (msg
to API)

Buyer or Supplier e-Marketplace
Chapter 2. e-Marketplace application topology 25

• User-to-User - for sophisticated community support beyond the approval
flow used in a purchasing transaction. Community support includes user
collaboration facilities, such as discussion forums, that augment the core
commerce functions of the marketplace.

• User-to-Data - for support of business intelligence by the marketplace and
suppliers.

2.2 Subsets of the e-Marketplace topology

An e-Marketplace involves many types of interactions with buyers and sellers.
Some of these can be user-driven and others can be carried out
programmatically. The degree of programmatic integration of buyers and
sellers into the e-Marketplace is a feature that can be used to classify subsets
of the full topology defined above. These subsets can represent a phased
approach to implementing the e-Marketplace or as means to address specific
requirements for B2B commerce.

2.3 Subset 1: Web Integrated e-Marketplace

In this first class of e-Marketplaces, we have an implementation in which all
buyer and seller tasks are performed by using a Web browser to log onto the
marketplace site and interactively conduct business. The activities supported
by such an implementation would include:

• Registration of organizations and users for both buyers and suppliers

• Catalog maintenance

• Product selection by buyers

• Negotiation without automated inventory checking

• Creating and submitting purchase orders

• Notification of sellers of activity via e-mail

• Sellers obtaining purchase orders via browser sessions

• Sellers updating the status of an order in the marketplace

• Buyer reviews of status of purchase orders (could include confirmations,
building or shipping schedules, delivery schedules and package
identifications)

• All of the above may include approval processes

• Excludes payment processes
26 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Such commerce capability corresponds to an initial or first phase
implementation of an e-Marketplace. It is a good basis upon which to add
automated integration with buyers and sellers. Referring to our initial picture
of an e-Marketplace, Subset 1 would look like Figure 9.

Figure 9. Application Topology - Subset 1

It is built from sub topologies 1 through 3 and is fundamentally built around
the User-to-Online Buying pattern.

2.4 Subset 2: e-Marketplace With automated supplier integration

The second class builds on the first by adding programmatic integration with
suppliers. This is a business to business integration capability added to the
Web-based features of Subset 1. Essentially speeding the supplier
processes, it augments Subset 1 with the following:

• Automatic response to RFQ (in cases where this is possible)

• Real time inventory check/availability to promise

• Automatic order transmission

• Automatic order status changes

• Automatic catalog maintenance (Distributed catalog)

• Excludes payment processes

e-Marketplace

Buyers Sellers

2. User-to-Business Pattern

Web
Browser

3. User-to-User Pattern
4. Batch Data Import

1. User-to-Online Buying Pattern

3. User-to-User Pattern

Web
Browser
Chapter 2. e-Marketplace application topology 27

This subset fills in more of the e-Marketplace picture as shown in Figure 10

Figure 10. Application Topology - Subset 2

Subset 2 is built from sub-topologies 1 through 5. It essentially adds B2B
process integration to the user to online buying basis of the previous subset.
This can be a second evolution of the e-Marketplace. In the first subset,
buyers and suppliers had no application development or middleware
requirements to join the e-Marketplace. They simply needed Web browser
access to the Internet. Subset 2 suppliers who wish to participate in an
automated fashion in the e-Marketplace must support a B2B protocol with
application development and additional middleware.

2.5 Subset 3: Fully integrated marketplace

Here, the automated access to the e-Marketplace is provided to both buyers
and sellers. This allows procurement systems to interact directly with the
e-Marketplace. This puts and application development and middleware
requirement on buyers who want to take advantage of this automated buying
feature. The list of additional capability provided by this subset is shown
below.

• Automatic RFQ placement

• Notification of buyer of responses to RFQ

e-Marketplace

Buyers Sellers

2. User-to-Business Pattern

Web
Browser

3. User-to-User Pattern
4. Batch Data Import

1. User-to-Online Buying Pattern

3. User-to-User Pattern

Web
Browser

Supplier
Commerce

System

5. Business-to-Business Integration
Pattern

orders
bids/offers,
RFP/RFQ
28 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

• Automatic order placement

• Automatic registration of new buyers to the e-Marketplace

• Excludes payment processes

This gives us almost all of the full e-Marketplace picture as shown in Figure
11 on page 29

Figure 11. Application topology - subset 3

2.5.0.1 Full e-Marketplace
To complete the picture of an e-Marketplace, the marketplace provider must
add to subset 3 the support of payment processes and the integration of the
its internal businesses with the commerce functions provided to the
marketplace members. This implies the addition of Enterprise Application
Integration patterns. More sophisticated supplementary services for
e-Marketplace members can also be provided by applying User-to-User
patterns to support online community features.

Buyers Sellers

2. User-to-Business Pattern

Web
Browser

3. User-to-User Pattern
4. Batch Data Import

Supplier
Commerce

System

e-Marketplace

Buy-Side
Procurement

System

5. Business-to-Business Integration
Pattern

1. User-to-Online Buying Pattern

3. User-to-User Pattern

Web
Browser

5. Business-to-Business Integration
Pattern

orders
bids/offers,
RFP/RFQ

orders
bids/offers,
RFP/RFQ
Chapter 2. e-Marketplace application topology 29

30 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Chapter 3. e-Marketplace runtime topology

In an e-Marketplace, the available runtime topologies depends largely on the
integration requirements of the e-Marketplace participants identified by the
application topology. For example, a relatively advanced e-Marketplace may
provide for automated real-time integration and delivery of product and
catalog data from each of the suppliers in the e-Marketplace. This data would
then be aggregated into the hub’s catalog ready for buyers to purchase those
products immediately in the e-Marketplace.

In this chapter, we discuss the runtime topologies and subsets of these
topologies which relate to the application topologies presented in Chapter 2,
“e-Marketplace application topology” on page 21. The topologies presented
begin with a simple, Web-integrated e-Marketplace and extend to a
completely integrated e-Marketplace comprising automated integration of
both buyers and sellers.

While this chapter mentions, at a high level, some of the B2B integration
requirements within an e-Marketplace, it does not provide the low-level
details of the runtime topologies to support this integration.

We recommend that you read and understand the application topologies
discussed in Chapter 2, “e-Marketplace application topology” on page 21
prior to reading this chapter.

3.1 Overview

e-Marketplace runtime topologies often combine the infrastructures of both
the e-commerce and integration architectures. Because an e-Marketplace
has potential interactions with multiple buyers and sellers, we must consider
runtime topologies that address the integration requirements of these
participants - even if full integration of buyers and suppliers is not scheduled
to be implemented immediately.

The runtime topologies relating to Marketplace Edition implementations are
presented as subsets 1,2 and 3, where each subset reflects additional
enhancements to the basic runtime topology presented in 3.3.1, “Emerging
basic runtime topolog” on page 37. Each of these subsets relate to particular
application topologies discussed in Chapter 2, “e-Marketplace application
topology” on page 21. Accordingly, it is useful to consider topology subsets 2
and 3 as evolutionary, as both of these can be phased in as successors to the
previous topologies as we introduce integrated buyers and suppliers.
© Copyright IBM Corp. 2000 31

Each subset is depicted using nodes, representing the core areas of
functionality. Some of these nodes may be new to you and others may be
familiar. For a description of the functionality at each of these nodes, you
should refer to 3.2, “Node types in the e-Marketplace” on page 32.

3.2 Node types in the e-Marketplace

In this section, we discuss the attributes of the nodes presented in our
runtime topologies. Some of the nodes discussed in this section represent
new areas of functionality specific to an e-Marketplace environment and as a
result they may be unfamiliar to you. You may also be surprised to find how
many nodes are actually involved in a typical e-Marketplace, particularly as
we introduce automated buyer and supplier integration. While it may appear
daunting at first, some of the functionality of these nodes can often be
implemented under the same application servers as the online-buying
application. Also, each node does not necessarily mean a separate physical
piece of hardware and the combining of numerous nodes into a single
hardware device is common.

3.2.1 Commerce server
The Commerce server node combines the functions of the Web server and
the application logic of the online buying front-end. Commonly, the
components and interactions on this node are:

• Online buying application

• Transactional Web server

• Connections to database server nodes

• Connections to back-end order processing systems

3.2.1.1 Online buying application
The online buying application provides the functionality for online purchasing
of products and services. Typically this involves shoppers accessing a site,
browsing the product catalog, adding items to their interest list and submitting
and paying for the order. Becoming increasingly common are buying
metaphors based on negotiations such as RFQ and Exchange.

3.2.1.2 Transactional Web server
The transaction Web server (TWS) serves the public and user-specific
information to the user’s Web browser. The TWS function provides robust
services allowing users to communicate with shared applications and data
repositories such as accessing hypermedia documents and interacting with
32 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

applications offered by the site. In an e-Marketplace, the TWS Web server is
provided by the e-Marketplace and would typically reside on the
e-Marketplace premises within its enterprise network. The transactional Web
server incorporates the functions of the Web server and the application
server.

Typically, data contained on the TWS node is data that is user-bound via a
Web browser such as:

• HTML/JSP

• Application programs such as Java applets

3.2.2 Web server redirector
To allow the Web server and the application server to exist as separate
entities, we use a Web server and a redirector. The redirector provides a
gateway function between the Web server and the application server and
ensures that HTTP requests for servlets or JSPs are forwarded on to the
application server.

Typically, the Web server and the redirector sit within the demilitarized zone
(DMZ) and the application server resides behind the domain firewall in the
enterprise network where it gets the benefit of greater security. Traditionally,
static Web content is served by the Web server directly from the DMZ where
security is less important.

3.2.3 B2B gateway
The B2B gateway manages the interactions between the trading partners
within the e-Marketplace based on an executable contract. An example of an
executable contract is a Trading Partner Agreement (TPA) - an extensible
markup language (XML) document that defines the general ground rules for
such functions as pricing quotations, orders, and acceptances. Its also
describes the format for the communications that will be used and provides
specifics on actions, security and error handling.

When referring to the actions within a TPA, the trading partner is required to
implement service interfaces corresponding to these actions. The service
interfaces are started by an executable version of the TPA and is executed
under the application server. Some service implementations may also require
message brokering services in order to interact with enterprise applications.
This can be provided by the Business Protocol Manager or delegated to a
dedicated message brokering server.
Chapter 3. e-Marketplace runtime topology 33

For more information about standards in B2B interactions, you can visit the
Organization for the Advancement of Structured Information Standards
(OASIS) at:

http://www.oasis-open.org

3.2.4 Database server
The database server node represents the data repository for the transactions
conducted within the e-Marketplace and relates to the specific business
transactions conducted by the user. For example, the data repository may store
the order and delivery information for an online order or serve up the banking
transaction history for an online banking customer.

It is important to note that the mode of database access is perhaps the most
important factor determining the performance of this Web application, in all
but the simplest cases. One approach is to collapse the database accesses
into a single call or very few calls. This can be achieved via coding and
invoking Java stored procedure calls on the database.

3.2.5 Purchaser
In the e-Marketplace, the purchaser node represents a personal computer
that supports a commercial Web browser. It will become increasingly common
for this node to also be a pervasive computing device capable of displaying
content delivered by the e-Marketplace.

The level of browser is expected to support secure sockets layer (SSL) and
some level of dynamic hypertext markup language (DHTML). Most online
buying applications will send a “cookie” to the browser on this node in order to
maintain the shopping session. The cookie contains the session id which is
used to reestablish the conversation between each of the user’s interactions
with the online buying program.

3.2.6 Integration server
The primary role of the integration server is to coordinate the activities for
application integration between the application server and the back-end
systems by brokering, transmitting and reformatting messages. Typically, the
following functions are performed by the integration server:

• Translate the protocols from the front-end systems to protocols
understood by the back-end systems.

• Decompose message constructs from the front-end systems to requests
for transactions or data from the back-end system.
34 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

• Recompose the replies from the back-end systems.

• Provide the management for the units of work required of a number of
back-end transactions as a result of a request from the fron- end system.

The primary purpose of the integration server is to relieve front-end systems
from the complexities associated with interacting with multiple enterprise
applications spanning potentially multiple physical locations. Typically, the
front-end server issues a single message to the integration server which
deconstructs the message and commences the necessary interactions,
transactions and data retrieval. A second purpose for the integration server is
to provide additional security between the front-end and the back-end
systems. The integration server resides behind the domain firewall and as
such, the front-end system does not require any knowledge regarding the
addressing of the data repositories. It is common that servers located inside
the DMZ do not have direct access to the systems and data repositories
required in the transaction but rather to send a message to the integration
server to handle these requirements.

3.2.7 Notification server
The notification server provides notification messages which can relate to the
current state of a process or when a particular condition is reached in the
system. It may provide user-oriented messages such as e-mail containing a
completed purchase order or system-oriented message, which may send
notification messages to another system.

3.2.8 Workflow server
The function of the workflow server node is to manage the flow of operations
for users and applications within the e-Marketplace. The scope of workflow
management is categorized into the groups Macro and Micro.

• Macro

At the macro level, the workflow server manages functions at a broad level
such as governing a complete business process.

• Micro

At the micro level, the workflow server manages lower-level tasks such
things as the flow of user interaction associated with an online product
purchase.

3.2.9 Mail server
Commonly, e-Marketplace users are sent notifications via e-mail. The mail
server on this node is a POP3-compliant application.
Chapter 3. e-Marketplace runtime topology 35

3.2.10 Public key infrastructure (PKI)
PKI is a collection of standards-based technologies and commercial services
to support the secure interaction of two unrelated entities (for example, a
public user and a corporation) over the Internet. In the context of the
topologies defined in this redbook, PKI supports the authentication of the
server to the browser client, using the SSL protocol.

3.2.11 Domain name service (DNS)
The DNS node assists in determining the physical network address
associated with the symbolic address (URL) of the requested information.
The DNS is that of the Internet service provider, although DNS is also
implemented on the accessed site.

3.2.12 Protocol firewall and domain firewall
Firewalls provide services that can be used to control access from a
less-trusted network to a more-trusted network. Traditional implementations
of firewall services include:

• Screening routers (the protocol firewall in this design)

• Application gateways (the domain firewall)

The two firewall nodes provide increasing levels of protection at the expense
of increasing computing resource requirements. The protocol firewall is
typically implemented as an IP router, while the domain firewall is a dedicated
server node.

3.2.13 Search engine
The search engine services user requests to search the catalog of the
e-Marketplace.

3.2.14 Delivery gateway
A trading partner's application portal on the Internet is represented by the
delivery gateway. It runs under a Web application server and provides an
authentication and communications protocol conversion point. In this
topology, it runs inside the demilitarized zone, where it acts as a security and
routing gateway to the enterprise network.

3.2.15 Personalization
The personalization functions define the roles, organizations and individual
players in the e-Marketplace. These roles imply actions that can be
36 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

performed and data that can be seen. An example of personalization is the
definition of different views of the catalog for different members.

3.2.16 Content management and aggregated catalog
This node represents the functionality supporting the creation of the data that
resides on the database server and commerce server nodes. This data
includes catalog information describing items offered by suppliers. The
content manager includes methods for allowing multiple suppliers to provide
this catalog data. It also represents the function to manage and stage that
data into production on the servers. The functionality of this node is quite
broad, and might be thought of as encompassing an entire subsystem.

The timely synchronization of several Web servers is sometimes achieved by
using a Shared File System as the content storage, capitalizing on the
replication capability of this technology.

3.3 Core runtime topologies

In this section, we present the basic high-level runtime topologies that are
predominant in many existing commerce implementations. These topologies
are becoming known as “proven” runtime topologies because they have
existed for some time and are implemented in many production sites. These
proven topologies represent the core runtime topologies generally considered
at the core of an e-Marketplace. It is important to note that the additional
subsets presented in this chapter all inherit from this foundation and extend it
appropriately.

3.3.1 Emerging basic runtime topolog
This runtime topology and its associated variation is still an emerging pattern,
although it is based on a proven User-to-Online Buying runtime topology. It
is being reverified as more implementations are completed and cataloged.

This basic runtime topology as shown in Figure 12 is commonly implemented
as the foundation for e-Commerce sites and is usually extended in line with
the load and functionality requirements of the site.

In this topology, the Web server and the application server are combined to
form the commerce server node residing within the demilitarized zone (DMZ).
This is separated by a protocol firewall to the outside world and a domain
firewall to protect the directory services and primary data repository. Most of
the application logic is executed on the commerce server node under the
application server and served to the client via the Web server.
Chapter 3. e-Marketplace runtime topology 37

Figure 12. Proven basic runtime topology

While this runtime topology is simple to implement, it has a number of
inherent limitations such as:

• Limited availability and failover capability.

• No support for horizontal scalability, as there is only one application
server.

• Limited vertical scalability options. However, additional processing power
and memory can assist in this area.

• Security for the application server applications is limited to that provided
by the protocol firewall. While this is often acceptable for static HTML
content residing on the Web server, it is generally inappropriate for
securing critical applications.

• The number of simultaneous connections to the Web server is restricted to
its capacity.

3.3.2 Emerging basic variation
This variation on the basic runtime topology shown in Figure 13 increases the
number of simultaneous client connections by adding to the number of
application and Web servers available within the commerce server node. A
load balancer is also introduced to distribute incoming requests to the most
appropriate (determined by a particular algorithm) Web/application server.
The benefits of this approach are increased failover capabilities in addition to
the ability to scale horizontally by adding Web and application servers as
required.

User

Domain
Name Server

Public Key
Infrastructure

Protocol

Firewall

Database

Directory
Services &
Security

Internet

Domain
Firewall

Web Server

App Server

Commerce
Server

App Server

Web Server
38 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Figure 13. Proven basic variation runtime topology

While this topology improves the availability and performance offered by the
the previous topology, it still has a number of potential problems. The primary
issue lies in the lack of separation between the Web server and the
application server. A common resolution to this is to place the application
server behind the domain firewall, where it benefits from the extra security
provided by the firewall. You should also be aware that there are limitations to
the performance gains achieved through the addition of Web/application
servers and it is largely dependent on the extent of the workloads on
back-end resources and other subsystems.

3.3.3 Advanced Runtime Topology
The topology and variations described above may prove constraining for
e-Marketplaces that are very large or very sophisticated. For those
e-Marketplaces, some of the nodes in the topology must be split into multiple
nodes with expanded roles and new nodes will need to be introduced. In
addition, some of the processing that is shown above in the DMZ should be
moved behind the domain firewall. The e-Marketplace characteristics that
might drive the need for an advanced runtime topology include a combination
of the following:

• Very large user and supplier membership and high usage levels

• Integrated supply change services

• Advanced site management

• Virtual procurement capability

• Multilevel authorization schemes

User

Domain
Name Server

Public Key
Infrastructure

Protocol

Firewall
Database

Directory
Services &

Security

Internet
Load

Balancer

Shared File
System

Domain
Firewall

Web Server

App Server

Commerce
Server

App Server

Web Server
Chapter 3. e-Marketplace runtime topology 39

Work is underway to document this advanced runtime topology. For more
details you should visit the patterns Web site at:
http://www.ibm.com/software/developer/web/patterns

3.4 e-Marketplace runtime topology subsets

This section discusses three enhancements to the basic proven runtime
topology discussed in the previous section but includes additional nodes
specific to the e-Marketplaces. You will notice that these topologies do not
implement the “proven variation” runtime topology; however, this could be
implemented if required. Starting with a simple, Web-integrated
e-Marketplace in subset 1, we progress to a fully integrated e-Marketplace in
subset 3 that features real-time automated integration of both buyers and
suppliers.

3.4.1 Subset 1 - Web integrated e-Marketplace
The Web integrated e-Marketplace provides the simplest runtime topology for
an e-Marketplace implementation. This topology provides for the integration
of suppliers and buyers via a Web interface only. For suppliers, this topology
means manual data exchange with the e-Marketplace using XML scripts or
HTML data entry. The obvious benefit of this model is that suppliers can
participate in the e-Marketplace without the need to undertake any
application development or employ middleware services.

The buying process
In this subset, the process for buying from the online catalog is described
below:

1. The buyer logs into the commerce server via the main entry page. If the
user is registered with the e-Marketplace, a user profile will be gathered
based on information contained in the database server. In the Marketplace
Edition, this profile will contain the user’s role.

2. The personalization engine in the Marketplace Edition presents the buyer
with a personalized view of the catalog and other services offered in the
e-Marketplace.

3. The buyer proceeds to interact with the site through the static and dynamic
pages provided by the site.

4. Items of interest to the buyer are added to the buyer’s shopping cart. The
database server persists this information in addition to persisting data
required to manage the session state. A cookie is delivered to the buyer’s
browser allowing the commerce server to track the interactions with the
site and to reestablish the connections to the shopping cart. Other options
40 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

are available to the buyer with regard to product pricing. For example, the
commerce server can provide other negotiation mechanisms, such as
RFQ, auctions, or exchange.

5. When the buyer purchases the shopping cart items, a purchase order is
generated and stored by the commerce server which is subsequently
made available to the appropriate suppliers.

The supplier process
1. Like the buyer, the supplier logs into the commerce server but is identified

as a supplier via the supplier role.

1. The supplier can retrieve the purchase orders generated by the buyer via a
Web interface by interacting with the commerce server. They could also
respond to RFPs/RFQs at this point.

2. The supplier is also able to provide its catalog data for the e-Marketplace
by interacting with the Content Management/Aggregated Catalog node.
This may be via an interactive Web-based session or via a mass import of
product data in XML format.

In this runtime topology, user authentication and security is provided by the
directory and security services node. Additionally, encrypted transmissions
are used to protect sensitive data such as the transmittal of credit card
numbers.

Figure 14 depicts this runtime topology.

Figure 14. Web integrated e-Marketplace

N o tif ic a t io n
S e rv e r

C o n te n t
M a n a g e m e n t
a g g . c a ta lo g

D a ta b a s e
S e rv e r

W o rk f lo w
M a n a g e r

C o m m e rc e
a n d W e b

A p p . S e rv e r

S e a rc h
E n g in e

P e rs o n a liza tio n

P u b lic K e y
In fra s tru c tu re

M a i l S e rv e r

D o m a in N a m e
S e rv e r

P u rc h a s e r

S u p p lie r
U s e r

P
ro

to
co

lF
ire

w
al

l

D
om

ai
n

F
ire

w
al

l

D ire c to ry a n d
S e c u r ity
S e rv ic e s

S u p p lie r o r
B u y-S id e

In te rn e t

D e m il i ta r iz e d
Z o n e (D M Z)

e -M a rk e tp la c e

E x is tin g
A p p lic a t io n s

a n d D a ta

In te rn a l
N e tw o rk
Chapter 3. e-Marketplace runtime topology 41

3.4.2 Subset 2 - e-Marketplace with supplier integration
The next evolution of the e-Marketplace introduces the supplier as an
integrated node. By doing this, we also to introduce the Delivery Gateway
node and the B2B gateway node.

These additional nodes provide automated integration of data between the
supplier and the e-Marketplace. Generally, data fed back and forth between
the e-Marketplace and the supplier is in an industry standard form such as
XML documents.

Supplier integration is a key aspect of the e-Marketplace and provides, for
example, the ability for suppliers to automatically update product data into the
e-Marketplace as it become available.

In addition, it allow suppliers to:

• Receive RFPs, RFQs, and purchase orders automatically by the
commerce server

• Provide real time inventory information to the e-Marketplace such as the
quantity and availability of stocks

• Automatically receive order data and order status changes

• Integrate their business process with the e-Marketplace via the B2B
gateway node and the associated delivery gateway node residing within
the DMZ.

Figure 15 shows the runtime topology for the integration of suppliers:
42 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Figure 15. e-Marketplace runtime topology with supplier integration

3.4.3 Subset 3- e-Marketplace with full integration
The third runtime topology builds on the previous two topologies and
introduces the buyer as an integrated node with the e-Marketplace. The buyer
node allows for buyer-side procurement systems to integrate with the
e-Marketplace for interactions such as:

• Automatic order placement

• Automatic RFQ placement and notification of response

• Automatic buyer registration with the e-Marketplace

Again, the integration with the buyer’s system is based on XML documents
issued between the commerce server and the buyer’s procurement system.

This runtime topology is unaltered from subset 2, with the exception of the
addition of the buyer node as shown in Figure 16.

N o t if ic a t ion
S e rv e r

C o n te n t
M a n a g e m e nt
a g g . c a ta lo g

D a ta b a s e
S e rv e r

W o rk flow
M a n a g e r

C o m m e rc e
a nd W e b

A pp . S e rv e r

S e a rc h
E n g ine

P e rs o na liza tio n

Pu b lic K e y
In fra s tru c tu re

M a i l S e rv e r

D o m a in N a m e
Se rv e r

P u rch a se r

S u p p lie r
U s e r

P
ro

to
co

lF
ire

w
al

l

D
om

ai
n

F
ire

w
al

l

D e liv e r y
G a te w a y

S u p p lie r
In te rn a l
N e tw o rk

B 2 B
G a te w a y

D ire c to ry a n d
S e c urity
S e rv ic e s

S u p p lie r o r
B u y-S id e

In te rn e t

D e m ilita r ize d
Z o n e (D M Z)

e -M a rk e tp la c e

E x is t in g
A p p lic a tio n s

a n d D a ta
Chapter 3. e-Marketplace runtime topology 43

.

Figure 16. Buyer and supplier integration - a complete e-Marketplace

Notification
Server

Content
Management
agg. catalog

Database
Server

Workflow
Manager

Commerce
and Web

App. Server

Search
Engine

Personalization

Public Key
Infrastructure

Mail Server

Domain Name
Server

Purchaser

Supplier
User

P
ro

to
co

lF
ire

w
al

l

D
om

ai
n

F
ire

w
al

l

Delivery
Gateway

Buyer
Internal
Network

Supplier
Internal
Network

B2B
Gateway

Directory and
Security
Services

Supplier or
Buy-Side

Internet

Demilitarized
Zone (DMZ)

e-Marketplace

Existing
Applications

and Data
44 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Chapter 4. e-Marketplace product mapping

The product mapping provides the product and version specific to the logical
node. The strength of the IBM WebSphere Application Server family of
products for e-business is that the e-business solution, design skills and tools
can be used on one platform and easily migrated to other platforms.

The platform chosen should fit into the customer's environment and ensure
quality of service, such as scalability and reliability to ensure the solution can
grow with the e-business.

The product mapping identifies the platform, software product name, and
version. The IBM Application Framework for e-business provides support for
many platforms, including IBM AIX, IBM OS/400, IBM OS/390, Sun Solaris,
HP-UX, Linux, and Windows NT/2000.

The framework provides the flexibility to allow you to develop and test the
application on your runtime platform and easily deploy the application on the
customer’s platform of choice.

When this redbook was written we had only the AIX version of the
WebSphere Commerce Suite, Marketplace Edition available, so we have
listed product mappings only for the AIX platform.

Note that these levels of code could change from the limited availability
stage, as we have installed it, to the final release stage upon general
availability.

4.1 AIX product mapping

Figure 17 on page 46 provides an example product mapping for the logical
runtime topology using AIX-based nodes for a Web-integrated e-Marketplace.
Figure 17 on page 46 illustrates the hardware and software components
typically used in a WebSphere Commerce Suite, Marketplace Edition for AIX
implementation of an e-Marketplace.

It is common for a company to have a mixture of platforms within the whole
integrated e-business solution. The requirement for integration with a
mixed platform environment makes the Application Framework for
e-business a very appealing choice with its support for many platforms.

Note
© Copyright IBM Corp. 2000 45

Figure 17. AIX product mapping

4.1.1 Detailed product mapping - AIX platform
The section provides detailed tables for the major logical nodes within the
runtime topology mapping the nodes to specific software product names and
versions for the AIX platform. Please note that because the
Business-to-Business e-Marketplace Pattern is an emerging pattern and that
when we wrote this book WebSphere Commerce Suite, Marketplace Edition
was not yet released, these product mappings are our best indication of how
we expect an e-Marketplace will be implemented, but we have not been able

Notification
Server

AIX
WCS - eMP

Content
Management
agg. catalog

Database
Server

Workflow
Manager

Commerce
and Web

App. Server

Search
Engine

Personalization

Existing
Applications

and Data

Public Key
Infrastructure

Mail Server

Domain Name
Server

Purchaser

Supplier
User

P
ro

to
co

lF
ire

w
al

l

D
om

ai
n

F
ire

w
al

l

AIX 4.2.1
SecureWay
Firewall 3.2

AIX WAS 3.0
WCS -
eMP

MQ Client

AIX
MQWF

Domino 5.03

AIX
DB2 UDB

Large RS6000 or
SP2

HACMP high
availability disk

e.g.,
OS/390

CICS or IMS
DB2

ERP applications
MQSeries

Delivery
Gateway

AIX
WS B2B
Integrator

Buyer
Internal
Network

Supplier
Internal
Network

B2B
Gateway

AIX
WS B2B
Integrator

AIX
WCS-eMP

Directory and
Security
Services

AIX
SecureWay
Directory 2.1

Lotus Go
Webserver 4.6.2.5

DB2 UDB 5.2

Supplier or
Buy-Side

Internet

Demilitarized
Zone (DMZ)

e-Marketplace
46 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

to test or implement all these nodes, so it is likely that these product
mappings will change over time.

Table 1. Commerce server node - AIX platform

Table 2. Database server node - AIX platform

Table 3. Firewall nodes - AIX platform

Table 4. Business protocol manager node - AIX platform

Table 5. Directory and security service node - AIX platform

Product name Version

AIX operating system 4.3.3

IBM JDK 1.1.8

IBM JDK 1.1.8 PTF 6 / 7

IBM HTTP Server (Apache) 1.3.6.2

IBM DB2 UDB Universal Database Extended Edition - client 6.1.0.6

IBM WebSphere Application Server Advanced Edition 3.0.2.1

IBM WebSphere Commerce Suite, Marketplace Edition for AIX V 4.1

Product name Version

AIX operating system 4.3.3

IBM DB2 UDB Universal Database Extended Edition - client 6.1.0.6

Product name Version

AIX operating system 4.3.3

IBM SecureWay Firewall 4.1

Product name Version

AIX operating system 4.3.3

BPF in WebSphere B2B Integrator 3.0

Product name Version

AIX operating system 4.3.3

IBM SecureWay Directory 3.1.1.2
Chapter 4. e-Marketplace product mapping 47

Table 6. Notification server node

Table 7. Workflow manager node

Product Name Version

IBM WebSphere Commerce Suite, Marketplace Edition for AIX V4.1

Product Name Version

MQSeries Workflow 3.2.2
48 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Part 2. Business-to-Business patterns: e-Marketplace guidelines
© Copyright IBM Corp. 2000 49

50 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Chapter 5. Performance guidelines

In this chapter we cover a wide range of topics dealing with performance.
Good performance starts at the network hardware layer and goes up all the
way through to the application layer. We provide some guidelines on
performance and will discuss some general topics that should be considered
when trouble-shooting or tuning performance in an e-Marketplace application.
An e-business infrastructure consists of many layers and we discuss these
layers starting at the hardware layer, then the network layer, the operating
system layer, and the different software layers like the Web sever and the
application. We discuss some specific topics in each one of the layers. This
chapter is not about how to tune your applications or infrastructure for
performance, as that would be too large a subject for this book. Instead we
have created a list of different areas that you should consider when looking at
performance in a typical e-Marketplace.There are two ways to improve
performance in your e-Marketplace application; one is to keep adding
hardware until there is no more space for it, or you can tune your current
hardware, network and software to provide optimal performance. We strongly
believe that the best way to improve performance is by tuning your hardware,
network, and software. There are times when adding new and faster
hardware is the only way to get better performance out of your applications,
but there are also times when a lot of time and money can be saved if proper
sizing of the hardware is done up front.

5.1 Hardware performance

Sizing your hardware is one of the most important issues in performance
tuning. You can get better performance by adding more hardware or by tuning
your current hardware. When considering hardware performance you have to
look at all of the pieces of the hardware, including the CPU, memory, network
card, and I/O ports.

5.1.1 CPU
While there are several things that can cause a lot of CPU utilization, one of
the more crucial is server-side includes (SSI). Server-side includes cause a
lot of CPU utilization when SSI is activated on the Web server the Web server
has to parse every single html files for the SSI directed. SSIs should be used
sparingly; if you have to use a lot of SSIs then you should consider upgrading
your CPU to provide better performance for your applications. URL suffix
processing will also cause a lot of CPU utilization. URL suffix processing is
when a URL does not exactly match the templates on the PASS directive. For
example, if the URL is /index.html and your file name is actually
© Copyright IBM Corp. 2000 51

/index.sambo, the IBM HTTP Web Server will have to do suffix processing
and find and return the file index.sambo. The file will eventually be returned,
but the IBM HTTP Server will use a lot of CPU cycles to process this type of
request.

5.1.2 Memory
One thing that can cause an e-Marketplace application to perform poorly is
memory starvation. Most of the time adding more memory to a server will
make certain applications perform better, but before you spend money on
adding memory to your Web server or application server you need to monitor
your applications to find out which application is using the most memory and
why. There are several things that can cause a lot of memory utilization,
including server-side includes, and poor use of threads. When monitoring
your application make sure that it is not using any extra threads for any
reason, since unused threads can affect the memory and CPU utilization.

5.1.3 Network card
The network card is another piece of the hardware layer that needs to be
looked at with a microscope to make sure it’s being used properly. Monitoring
of the network card can tell you a lot of things about your Web server or
application server and your network. If the network card is constantly being
used at 55% to 100% utilization for long periods of time this can cause your
application response to slow down. If a network card is constantly being used
at 55% to 100% utilization there will be a lot of packets lost and a lot of retries
for sending packets because of packet loss. Packets being lost will cause the
memory and CPU utilization to increase. If you are using a 10/100 network
card make sure your server is running on a network segment that is capable
of handle 100 mega bits; if it isn’t, tconsider moving your server or rewiring
that segment for 100 mega bits access. If your network segment is already at
100 mega bits then you might consider moving to FDDI ,which will give you
more throughput and up to 1 giga bit of throughput.

5.1.4 I/O
I/O is an area that should be considered when looking at all the different
bottlenecks in your e-Marketplace. I/O takes a lot of memory and CPU cycles.
I/O is the input and output of reading and writing files to and from the memory
and to and from mass storage devices such as hard drives. To speed up I/O
add more memory to your system, or upgrade your CPU, or use a faster RAID
controller. If you are not using a RAID controller, consider SCSI hardware and
a fast SCSI RAID controller. This will help you protect your data and reduce
I/O.
52 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

5.2 Network performance

Now let’s discuss how to measure network performance. Sometimes it is very
hard to figure out where the latency is in your Internet or intranet. Several
tools that can help you to determine where the latency is: traceroute is
common on most UNIX platforms and tracert can be used on the Windows NT
platform. Both of these tools will show you the number off hops, and
milliseconds, and the size of the packet was that was used to get to your
destination.

Ping can also be used to find latency. It sends ICMP messages, which routers
will use to handle the TCP segments of your packet. You will not be able to
see some routes with ping because some routers can be configured to ignore
all ICMP traffic. Another tool that can be helpful is netstat, which provides a
lot of information about your current connections and routing tables, including
interface statistics, masquerade connections, netlink messages, and
multicast memberships. For more information on netstat, refer to the man
pages in most versions of UNIX. Most of the information that is available in
netstat for UNIX is also available in netstat for Windows NT.

In the next sections we will discuss the network protocol, frame size,
duplexing, hop count, bandwidth utilization, retries or pipelining and network
card buffers. All of these different things can be tuned within your network.

5.2.1 Protocol
Open protocols such as TCP/IP and HTTP, are usually very easy on system
resources. Most companies that are building Internets and intranets are using
open protocols that can be implemented on multiple platforms and their API’s
and source code are freely available. Multiple layers should be considered
when tuning protocols. A good example of this is that HTTP running on top of
TCP, which also runs on IP, which also runs on Ethernet. If you tune one
protocol you will also have to tune all of them if you want to gain any
performance improvements.

5.2.2 Fixed frame size
A frame is data that is transmitted between two network points as a unit,
complete with addressing and necessary protocol information. Frames are
usually transmitted serially bit by bit and contain a header field and a trailer
field that "frames" the data. Some frames, called control frames contain no
data. The size of frame that is sent between two points on a network can
cause the network bandwidth to be used up, and as a result your server will
have to keep trying to resend its frames until they are completely sent. With
Chapter 5. Performance guidelines 53

fixed frame sizes your server will always send exactly the same amount of
data in each frame so there isn’t a large frame that will use all of your
bandwidth.

5.2.3 Duplexing
Duplexing means that both ends of the network link can send and receive
signals at the same time. Half-duplexing is a way of bidirectional
communication between two points, but the signals can only flow in one
direction at a time. Simplexing means that communication can only flow in
one direction and never flow in the opposite direction. Most networks are set
up using full duplexing so that communication on the network flows in both
directions at the same time. Full duplexing will greatly enhance your network
performance.

5.2.4 Hop count
A hop is a trip that a data packet or a frame takes from one router to another,
or to an intermediate point in another network. The larger the number of hops
from the request point ,the longer the request will take. This is also true for an
HTTP request. If your Web server is 15 hops from the Internet then every
time an HTML page is from your Web server, the user will have to wait for all
30 hops until the request is received: 15 hops to the Web server and 15 hops
back to the user. A good rule is to have your Web server no more than two
hops from your Internet connection. But because the closer you are to the
Internet the more likely you are to have security problems you need to
balance security and performance.

5.2.5 Bandwidth utilization and errors
When your company first set an Internet connection to an Internet service
provider (ISP), the size of connection to the Internet may have been
adequate, but as time passed, your company may be relying more and more
on its Internet connections to do business within the company and outside of
the company. Periodically the utilization of your company’s Internet
connection should be evaluated for its total utilization. If your connection to
your ISP is 55% or and you are using Ethernet, your network may have a lot
of collisions. If your network is spending more time resending the packets that
collided than actually sending a packet and completing each round trip, then
your ISP connection needs to be upgraded.
54 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

5.2.5.1 55% rule
The 55% rule is a good rule to remember when considering whether or not to
upgrade your Internet connection. To determine how much of the bandwidth
is being used between your company and your ISP, use a sniffer of the LAN
segment that runs from your ISP to your entry point or gateway into your
company, or ask your ISP for an utilization report on your connection.

5.2.6 Retries or pipelining
Retries or pipelining is the number of packets that your server sends before
returning an acknowledgment saying that a connection cannot be made. The
larger the number of retries, the more network traffic that will be generated
before an error message is sent to your server. Most operating system IP
stacks have a way of controlling the number of tries before an
acknowledgment is sent. This number should be set low to reduce network
traffic that is caused by error acknowledgment.

5.2.7 Network card buffers
Ethernet cards have buffers, as do serial cards, but Ethernet card buffers are
usually considerably larger since they process more information. An 8-bit
Ethernet card will have an 8 KB buffer and a 16 bit Ethernet card will have a
16 KB buffer. Yyour Ethernet card is 8 or 16 bit your Ethernet card will
process either 8 or 16 KB of data. At 10 Mbps, an Ethernet card will fill an 8
KB buffer every 6.6 milliseconds and at 100 Mbps a Ethernet card will fill a 16
KB buffer every 1.3 milliseconds. If your network card is working really hard
to handle user requests, consider upgrading your network card and the
network segment where your server is.

5.3 Security

Balancing security and performance can be very complicated. Too much
security in the wrong part of your network will place an extremely heavy load
on your network, resulting in very slow response times. Some types of
security will cause a lot of resource overhead and other types of security
have very low resource utilization.

5.3.1 Secure Socket Layer or Secure Hypertext Transfer Protocol

Secure Socket Layer (SSL) is a program layer created by Netscape for
adding security to the message transmissions of a network. In SSL, the
programming for keeping messages confidential is contained in a program
layer between an application and the Internet’s TCP/IP layers. The sockets
method is used to pass data between a client and a server program in a
Chapter 5. Performance guidelines 55

network or between program layers in the same computer. SSL uses the
public-and-private key encryption system, and also includes the use of a
digital certificate. It is an integral part of all Web browsers. SSL adds another
layer to your network protocol which means that it has to be tuned with all the
other protocol layers to get better performance out of network protocols.

Secure Hypertext Transfer Protocol (HTTPS) is a protocol developed by
Netscape and built into most browsers for encrypting and decrypting page
requests as well as the pages that are returned by the Web server. HTTPS
uses SSL as a sublayer under its regular HTTP application layer. HTTPS
uses port 443 instead of HTTP port 80 in its interactions with the lower layer,
TCP/IP. SSL uses a 40-bit key encryption algorithm, which is considered to
be adequate encryption for doing commerce exchange over the Internet. Both
SSL and HTTPS use a 40-bit key encryption algorithm to encrypt requests,
which will add anywhere from a 20% percent to 40 percent overhead to a
server’s CPU utilization.

5.3.2 Encryption
Encryption refers to the conversion of data into encrypted text or ciphered
text, decrypting is the process of converting encrypted data back into its
original form.

To decrypt data you will need a key to recover the contents of an encrypted
signal. The key uses an algorithm that decrypts the work that the encryption
algorithm does.

Computers can be used to "break" the cipher. The more complex the
encryption algorithm is, the more difficult it is to break the encryption.

Encryption/decryption is a good idea when carrying out any kind of sensitive
transaction, such as a credit-card purchase online. The stronger the cipher,
the harder it is for unauthorized people to break the encryption.

The use of encryption is a strain on system resources and can cause
performance to degrade severely, depending on how many encrypted
requests your server has to process. To balance security and performance,
only encrypt the transactions that need to be encrypted and not all
transactions. If your application needs full encryption for all transactions that
are accessing your data, consider moving to a platform that can handle the
encryption or consider using hardware encryption. Hardware encryption is
usually a specialized expansion board added to your server to do the
encryption without putting any strain on the CPU or memory of your system.
56 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

5.3.3 Authentication
Authentication is the process of determining whether a user or a process is, in
fact, who or what it declares to be. Private and public computer networks
commonly use logons and passwords for authentication. Knowledge of the
password is assumed to guarantee that the user is authentic. Each user
registers initially, using an assigned or self-declared password. On each
subsequent use, the user must know and use the previously declared
password. The use of digital certificates issued and verified by a Certificate
Authority (CA) as part of a Public Key Infrastructure is becoming the standard
way to perform authentication on the Internet.

5.4 Operating system

The operating system is one of the most important areas when talking about
performance, because it controls all of the hardware. If the operating system
is not tuned properly then no matter how fast your hardware is you will not get
any performance gains.

5.4.1 Memory
Most servers run many different applications, each one requiring memory. In
most operating systems you can set the priority of execution for applications,
which means that they each get the memory required.

5.4.2 TCP/IP stack
Transmission Control Protocol/Internet Protocol (TCP/IP) is the basic
communications language or protocol of the Internet. It can also be used as a
communications protocol in private networks, called intranets, and in
extranets. Every system that accesses the Internet directly must have a copy
of TCP/IP.

TCP/IP is a two-layered program. The higher layer, the Transmission Control
Protocol, manages the assembling of a message or file into smaller packets
that are transmitted over the Internet and received by a TCP layer that
reassembles the packets into the original message. The lower layer, the
Internet Protocol, handles the address part of each packet so that it gets to
the right destination. Each gateway computer on the network checks this
address to see where to forward the message. Even if some packets from the
same message are routed differently from others, they will be reassembled at
the destination. TCP/IP uses the client/server model of communication in
which a computer user (a client) requests and is provided a service (such as
sending a Web page) by another computer (a server) in the network. TCP/IP
Chapter 5. Performance guidelines 57

communication is primarily point-to-point, meaning each communication is
from one point (or host computer) in the network to another point or host
computer. TCP/IP and the higher-level applications that use it are collectively
said to be "stateless" because each client request is considered a new
request unrelated to any previous one (unlike ordinary phone conversations
that require a dedicated connection for the call duration). Being stateless
frees network paths so that everyone can use them continuously. (Note that
the TCP layer itself is not stateless as far as any one message is concerned.
Its connection remains in place until all packets in a message have been
received.)

Many Internet users are familiar with the even higher layer application
protocols that use TCP/IP to get to the Internet. These include the World
Wide Web's Hypertext Transfer Protocol (HTTP), the File Transfer Protocol
(FTP), Telnet which lets you log on to remote computers, and the Simple Mail
Transfer Protocol (SMTP). These and other protocols are often packaged
together with TCP/IP as a "suite."

Personal computer users usually get to the Internet through the Serial Line
Internet Protocol (SLIP) or the Point-to-Point Protocol (PPP). These protocols
encapsulate the IP packets so that they can be sent over a dial-up phone
connection to an access provider's modem.

Protocols related to TCP/IP include the User Datagram Protocol (UDP), which
is used instead of TCP for special purposes. Other protocols are used by
network host computers for exchanging router information. These include the
Internet Control Message Protocol (ICMP), the Interior Gateway Protocol
(IGP), the Exterior Gateway Protocol (EGP), and the Border Gateway
Protocol (BGP).

Parameters that impact the different protocol layers are as follows:

• The no parameters are the initial network options that affect TCP, UDP
and IP and are independent to the adapter type.

• The MTU, or maximum transmission unit, is the largest possible packet
size that can be sent on a specific physical medium (Ethernet, token-ring,
SP switch, and so on).

• The adapter queues specify the number of packets that can be queued on
a specific adapter while it is sending or receiving data. These are specific
to an adapter even if there are other adapters of the same type. For a
review of the TCP/IP layer model and to clarify the interrelationships, let’s
break this down further, step by step:
58 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

1. An application performs a write request. Data is copied from the
application’s working buffer to the socket send buffer.

2. The socket layer passes the data to TCP or UDP.

3. For remote networks, if the data is larger than the maximum segment size
(MSS), TCP breaks the data into fragments that comply with the MSS.

4. For local networks, if the data is larger than the MTU, TCP breaks the data
into fragments that comply with the MTU.

5. UDP leaves the fragmentation to the IP layer.

6. The interface layer makes sure that no packet exceeds the MTU.

7. The packets are then placed on the adapter output queue, and transmitted
to the receiving system.

8. The receiving host places the incoming packets on the adapter’s receive
queue. They are then passed up to the IP layer.

9. The IP layer then determines if any fragmentation has taken place due to
the MTU. If so, it puts the fragments back to their original form and passes
the packets to TCP or UDP.

10.TCP reassembles the original segments and puts them on the socket
receive buffer in kernel memory or UDP passes the data on to the socket
receive buffer in kernel memory.

11.The application’s read request causes the appropriate data to be copied
from the socket receive buffer to the buffer in the application’s working
area.

There are many parameters that can affect your network performance. At the
device driver layer the transmit queue size is marked by the parameters
xmt_que_size. The receive queue size is marked by rec_que_size. At the
interface layer is the enforcement of the MTU or segment size as it pertains to
what type of network media is being used: Ethernet, token-ring, or others. At
the transport layer, performance parameters are set by tcp/udp
send/recvspace. The socket layer, between the transport and application
layers, has the parameter sb_max, which determines the maximum amount
of memory or mbuf space that can be used by TCP or UDP for socket buffers
for each socket. Lastly, the parameters listed above all impact system
memory.

5.4.3 Web server
A Web server is a program that, using the client/server model and the World
Wide Web's Hypertext Transfer Protocol (HTTP), serves the files that send
Web pages to Web users (whose computers contain HTTP clients that
Chapter 5. Performance guidelines 59

forward their requests). Every computer on the Internet that contains a Web
site must have a Web server program (or else the site files must be sent to a
computer that has a Web server program). The most popular Web servers are
Apache, a Web server for both 32-bit Windows and UNIX-based operating
systems; Microsoft's Internet Information Server (IIS), which comes with the
Windows NT server; and Netscape's FastTrack and Enterprise servers. Other
Web servers include Novell's Web Server for users of its NetWare operating
system and the IBM family of Lotus Domino servers. IBM also provides an
Apache based server, IBM HTTP Server powered by Apache (IHS). Web
servers often come as part of a larger package of Internet- and
intranet-related programs for serving e-mail, downloading requests for FTP
files, and building and publishing Web pages. Considerations in choosing a
Web server include how well it works with the operating system and other
servers, its ability to handle server-side programming, and publishing, search
engine, and site building tools that may come with it.

5.4.4 Process handling
This category is primarily related to the HTTPD processes.

MaxClients is the limit on the total number of simultaneous HTTP requests
that IHS can serve. Since IHS uses one child server process for each HTTP
request, this is the limit of the number of child server processes that are able
to run simultaneously. The default value is 150 and maximum value is 2048.
The value of this directive can significantly impact your application
performance, particularly if it is too high. The optimum value depends on your
application. In general:

• Use a lower MaxClients value for a simple, CPU-intensive application.

• Use a higher MaxClients value for a more complex, database-intensive
application with longer wait times.

For example, exceptional performance on simple servlets such as
“HelloWorld” and “Snoop” have been achieved using values as low as 25. A
good approach to tuning this parameter is to start with a setting of 50 and
capture the performance under normal load. Repeat your test with settings of
40 and 60. Use this data to refine your tuning. Use small increments and
decrements rather than large ones. During these tests, be sure to watch the
server CPU utilization. Do not increase the MaxClients setting if the CPU
utilization reaches 100% busy and doing so causes server response time to
exceed your response time criteria.

StartServers is the number of child server processes that are created when
IHS is started. The default value is 5.
60 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

MaxSpareServers specifies the largest number of idle HTTPD child
processes that are not handling any requests.

MinSpareServers specifies the lowest number of idle HTTPD child processes
that are not handling any requests.

If there are fewer active processes than MinSpareServers, then the parent
process creates new child processes at a maximum rate of 1 per second. If
there are more active processes than MaxSpareServers, then the parent
process kills off the excess child processes.

The default value of MaxSpareServers is 10 and MinSpareServers is 5.

These directives can also impact your application performance. For optimum
performance runs, keep the MaxClients, the StartServers and the
MaxSpareServers directives equal so that CPU is not expended creating and
destroying HTTPD child server processes.

MaxRequestsPerChild restricts the number of requests handled by each child
HTTPD process. Once this value is reached, the child process terminates.
This parameter limits the lifetime of an HTTPD client process to prevent it
from using too much memory resource in case of memory leaks. The number
specified can be fairly high if stable operation is expected. The default value
is 10000.

ListenBacklog is the maximum length of the queue of pending connections
from the clients. Generally no tuning is needed or desired. However on some
systems it is desirable to increase this when under a TCP SYN flood attack.
The default value is 511.

5.4.5 Logging
Web server logs, in particular the access log, record important information
about the use of the Web server. However, these logs can become very large
and should be pruned and/or archived regularly. Logging can have a
surprisingly large impact on response time and throughput. For this reason,
you will often find that vendors turn logging off for benchmarking purposes.

5.4.6 SSI
Server-side includes (SSI) allow you to insert information into CGI programs
and HTML documents that the server sends to the client. When server-side
include processing is enabled, the Web server will parse each byte of every
HTML file and CGI program searching for the existence of an SSI directive
and, if found, process it. This is a great feature for processing dynamic
Chapter 5. Performance guidelines 61

content, but it requires a large amount of CPU processing. SSI processing
can be controlled by the use of the imbeds directive. If you do not use SSIs,
set imbeds off in the /etc/httpd.conf file.

5.4.7 CGI-BIN
The IBM Application Framework for e-business defines the infrastructure for
developing e-business solutions. This includes the relationship between the
Web server and server-side Java elements. The analysis of the performance
characteristics of this environment provides some useful guidelines for
e-business solution designers, including:

1. Any of the techniques used to connect a Web server to application logic
(CGI, in-process API, Java Servlets, etc.) should be insignificant when
compared to the time required to execute the application logic.

2. Most existing Web applications have been implemented using CGI.
Analysis indicates that Java Servlets provide four to ten times better
throughput compared to CGI.

3. Java Servlets generally run faster if they are instantiated and preloaded in
servlet.properties. Servlet invocation by class name rather than instance
name is slower.

5.4.8 Caching
Integration of Web application servers with back-end systems also raises
several performance issues, including:

1. Pre-allocating and caching resource managers:

Some of the cost associated with accessing resource managers from
middle-tier objects involves establishing connections to those resource
managers. By pre-allocating and reusing connections, it is possible to
greatly reduce the overhead of defining new ones.

2. Caching facilities local to the middle tier:

Caching state information accessed from back-end systems into the
middle-tier environment can promote good performance. This is
achievable through pre-fetch and look-aside algorithms that ensure that
the back-end will only be accessed as often as is absolutely necessary.
Note that it is common, especially when integrating with existing legacy
information systems, to access back-end state information required by
one object and, in the process, to encounter state information needed by
one or more other, related objects. Caching this information as it becomes
available may significantly improve overall system performance. Finally, a
smart caching mechanism can ensure that updates are only made to a
62 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

back-end system when the underlying state information of a given object
has actually changed.

3. Optimistic locking mechanisms:

In some cases, applications place large numbers of unnecessary locks on
resource managers. These locks may be unnecessary if no attempts to
use the resource concurrently actually occur. In these situations it would
be better to place no locks on the resource managers, and instead check
for conflicting usage as part of transactional commit.

Specifically, you should consider locking all affected resources only once:
at the end of a given unit of work. Then compare the relevant resource
manager values at that time with the values obtained when the unit of
work began. In the absence of intervening changes, the current unit of
work can be committed. Otherwise, it can be rolled back with an exception
returned to the client. In either case, you may be able to reduce overall
locking overhead and improve total system throughput and performance.
Note that this “optimistic” locking strategy is inappropriate for some types
of applications and domains. When updates to the same resource occur
on a frequent basis, traditional (or “pessimistic”) locking mechanisms
should be used. It’s also worth mentioning that multiple resources should
typically be accessed by multiple applications in the same sequence to
reduce potential “deadlock” situations.

4. Implementation “pushdown”:

Object-based solutions that must coexist with legacy systems should
complement (versus compete with) these systems. For example, a query
invoked on a virtual collection of objects whose state maps to a relational
database manager should first be translated into native SQL statements.
These SQL statements, processed using the optimization technology
provided by the database manager, can then return a result set whose
values implicitly identify candidate objects satisfying the query. In this way,
a minimal amount of processing is required in “object space”, leaving the
bulk of the work to be handled instead by resource managers that have
been perfecting high performance solutions over the course of many
years. As a final point that is specific to our query example, it’s notable
that an object-based implementation of query should also be able to return
multiple elements back from a single method call, and that the query result
set should be demand-driven (meaning that objects should only be
activated on the server if a client actually requests them).
Chapter 5. Performance guidelines 63

5.4.9 Web server stay alive
These directives deal with the persistent connection feature of the HTTP V1.1
specification. With HTTP V1.0, each HTTP session establishes a new TCP
connection. If your home page has a lot of images, you will need to establish
TCP connections many times to send all data for one page. The persistent
connection feature is designed to avoid this behavior. After one session is
finished, the connection still remains and the next request can re-use the
connection. If IHS gets an HTTP/1.1 request, IHS can re-use the connection
until it receives the connection close request. The directives to understand
are:

• KeepAlive - Whether or not to allow persistent connections (more than one
request per connection). Set to "off" to deactivate. The default is on.

• KeepAliveTimeout - Number of seconds to wait for the next request. The
default value is 15. To avoid waiting too long for the next request, you can
specify the number of seconds to wait. Once the request has been
received, the Timeout directive will apply.

• MaxKeepAliveRequests - The maximum number of requests to allow
during a persistent connection. Set to 0 to allow an unlimited number.

• Timeout - Sets the number of seconds the IHS waits for these three
events:

- Time taken to receive a GET request.

- Time taken between receipt of TCP packets on a POST or PUT
request.

- Time taken between acknowledgments on transmissions of TCP
packets in responses. The default value is 300.

5.5 Application server

For an application server in WebSphere V3 there are a number of settings
that have an impact on performance. In addition to the settings for the
application server itself there are also a number of settings for the various
components of an application server; servlet engine, Web application, and
the EJB container, that can affect performance. The following parameters are
set using the WebSphere Application Server Administrative Console:

• Java Virtual Machine (JVM)

• Threads

These parameters will be discussed in detail in the following sections.
64 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

5.5.1 Selecting a JVM
High-performance JVMs are critical for good performance. Here are some
considerations when evaluating JVMs:

1. Java compiler and virtual machine technology changes rapidly. Today a
JIT version of a compiler may provide the best performance for your
solution; Tomorrow it may be a static compiler, and next week there may
be a new technique.

2. A JVM should be certified for portability by a recognized certification
authority such as JavaSoft.

3. JVMs that have been optimized for a specific operating system tend to
perform better than other JVMs.

4. Systems with symmetric multiprocessors (SMP) tend to perform better
because of the thread support in Java. Use JVMs that effectively support
SMP systems.

5. Evaluate the trade-off between the stability of the current release of a JVM
and the performance enhancements available in the newest beta release
and/or production version.

Generally speaking, the selection of a JVM should be of little concern to you.
The performance of applications can often be better improved by improving
the runtime characteristics of the algorithms used. However, there are
circumstances, such as computationally intensive programs, where an
improvement in the performance of the underlying JVM will add to the
solution’s overall performance.

5.5.2 Threads
Each application server has its own thread pool from which it uses threads to
process remote method invocations. This pool size varies throughout the
servers lifetime. Threads are created when needed and destroyed when there
are too many idle threads. Each application server has a setting for thread
pool size. Consider increasing the thread pool size if analysis shows that the
maximum number of threads in the pool are frequently in use.

5.5.3 Caching
The addition of memory to a system almost always improves performance.
This is because physical I/O is a relatively expensive operation in terms of
latency. It makes intuitive sense that by, dedicating memory in a Web server
to store frequently accessed HTML pages and images, you will improve
performance. As a rule of thumb, your Web server should have enough RAM
to accommodate all network buffers, frequently used applications, images
Chapter 5. Performance guidelines 65

and HTML, including those mounted via DFS. This is especially important for
dynamically generated pages that can be reused. For the Web server there
are several places you can cache your static items to help improve
performance:

• Use a network router such as the IBM 2216 Nways Multiaccess
Connector.

• Use a Web proxy cache such as the one found in WebSphere
Performance Pack.

5.6 Java Virtual Machine

Java is an interpreted language. Java source code must first be compiled into
portable bytecodes that can then be interpreted in the Java Virtual
Machine(JVM) on the local system. Naturally, when looking for performance
improvements for your Java applications, the quality of the JVM is the place to
start. For example, all JVMs implement an advanced feature called Garbage
Collection (GC) to boost the programming productivity and to avoid the
common pitfalls of traditional programming languages: memory leaks.
However, GC can slow down the Java program execution because most GCs
utilize a “stop and copy” technology. In ongoing research, GCs have been
developed that do not exhibit any of the problems described above. These
GCs run incrementally and take many characteristics of the Java language
into account.

5.6.1 Just -In-Time compiler
A Just-In-Time (JIT) compiler converts bytecodes into native code on-the-fly
with some optimization, and it should run much faster than just a Java Virtual
Machine (JVM). A JIT works well for computationally intensive programs that
execute the same segment of instructions repeatedly. But it does not yield
significant improvement for programs that are I/O intensive or cause a lot of
garbage collection. This is because the program code takes up such a small
amount of time and thus any optimization would become negligible. In
addition, JITs are limited in the extent of optimization they can do because
their compile is a runtime cost. Also, since JIT compilers normally do not have
the “global view” of the executed code, the code they generate is of poorer
quality than the code generated by static compilers.

5.6.2 Adaptive compiler
Adaptive compilers try to overcome the weaknesses of JIT compilers with
adaptive optimization techniques. The idea is to intelligently select, compile
and optimize frequently used and/or resource-intensive portions of the code,
66 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

so-called “spots.” Once these spots have been determined, optimization
techniques known from traditional compilers are applied to compile a highly
optimized version of the code. The compiled code is then stored in a cache,
ready to be executed when the spot is executed again. Note that as with a JIT,
results of compilation are not kept between runs/users.

5.6.3 Static compiler
A static compiler compiles Java source code into the underlying machine’s
native code that is then executed without interpretation. This approach is
similar to traditional program development where the code in written,
compiled and, if necessary, debugged. Static compilation can also be applied
to the bytecode generated by some Java compilers. This approach is
applicable when the original Java source code is not available. Static
compilation of Java bytecodes is possible because this code is the same
across Java implementations and builds the basis for the portability of the
Java language. However, it is important to note that the portability of the Java
application will not be affected by static compilation.

5.7 Database

Does your application requirement call for a database? If your Web site is
going to access a database exclusively, plan your database around your Web
site.

5.7.1 Indexes
When you build your indexes, build them so that you correlate with data that
will be searched for. Otherwise a lot of extra cycles and disk storage will be
wasted.

5.7.2 Standard Query Language (SQL)
SQL can cause a lot of over head such as CPU utilization and memory
utilization. There are some good best practices for SQL.

1. Cache the most used data if possible.

2. Control how many update queries are performed.

3. Precompile as much of SQL as possible. This will greatly reduce the
execution time of your SQL.

4. Use stored procedures where possible.

5. Limit table locking and data locking.
Chapter 5. Performance guidelines 67

6. Debug all of your SQL before it goes to production. Make the SQL worked
properly before it is moved into production. A bad SQL statement can
crash your system.

7. Do not give everyone access to run all SQL statements: give only the user
group that needs the data the rights to query its own data.

5.8 References on performance

• Web Performance Tuning by Patrick Killelea, published by O’Reilly

• WebSphere V3 Performance Tuning Guide, SG24-5657-00.
68 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Chapter 6. Technology options

This chapter provides guidelines on the technology options that should be
considered when developing e-Marketplace applications, using WebSphere
Commerce Suite, Marketplace Edition for AIX.

The IBM offerings for developing commerce sites include various products
that are fully explained on the e-business Web pages. Full technical
documentation, references and whitepapers are obtainable from:

http://www.ibm.com/software/webservers/commerce/

This chapter builds Patterns for e-business: User-to-Online Buying Pattern
using WebSphere Commerce Suite V4.1, SG24-6156-00 which is
prerequisite reading.Chapter 6 of that redbook fully describes all of the
prerequisite technology options. We will only concentrate on the additonal
software needed to complete the e-Marketplace offering.

The e-Marketplace runtime topology is a combined e-commerce and
application integration infrastructure. It includes browser connections to
buyers and sellers, and B2B application integration with suppliers and sellers.

6.1 Web clients

This section is organized as follows:

• Web client overview
• Web browser
• Markup languages
• Client-side scripts
• Java applets

6.1.1 Web client overview
There are two types of Web clients:

• Application client

Application clients are primarily large Java applets or Java applications.
These clients provide rich graphical user interfaces compared to HTML
clients. They may communicate with the Web application server over a
number of protocols including HTTP, IIOP, MQ, etc. Application clients
communicate with the Web application server primarily to receive data
rather than pre-formatted HTML pages. All of the user interface
processing is performed on the client side. In addition, under this model,
© Copyright IBM Corp. 2000 69

some parts of the business logic can also be processed on the client-side.
These kind of client applications are not covered in this book.

• Web browser client

A Web browser client is an application client that uses a Web browser
such as Netscape Navigator or Microsoft Internet Explorer. Web browser
clients use the HTTP protocol to communicate with the Web application
server to display HTML. In addition, they are capable of processing
client-side JavaScript for enhancing navigation to perform simple input
validation and to handle simple errors.

The Application Framework recommends “thin clients” with little or no
application logic. Applications are managed on the server and downloaded to
the requesting clients. The client portions of the applications should be
implemented in HTML, dynamic HTML (DHTML), XML, and Java applets as
seen in Figure 18 on page 70.

Figure 18. Web client technology model

Browser/Web Top

Java VM

Applets
and

JavaBeans

Protocols - HTTP, IIOP, ...

Network Infrastructure

Native Apps
Shrink
Wrapped
Custom

CREDIT CARD

1234 5678 90121234 5678 9012
VA LID FR OM GOOD THR U

XX/XX/XX XX/XX/XX
PAUL FISCHER

XX/XX/XX XX/XX/XX

PAUL FISCHER

Pervasive

NC

Managed PC

PC

TCP/IP, WAP ...

HTML, DHTML, XML, WML
70 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

6.1.2 Web browser
A Web browser is a fundamental component of the Web client. For PC-based
clients, the browser typically incorporates support for HTML, DHTML,
JavaScript and Java. Some browsers are beginning to add support for XML
as well. Under user control, there is a whole range of additional technologies
that can be configured as “plug-ins”, such as RealPlayer from RealNetworks
or Macromedia Flash.

As an application designer you must consider the level of technology you can
assume will be available in the user’s browser. You can add logic to your
application to enable slight modifications based upon the browser level. Also,
when adding features that require a plug-in, you need to consider what
portion of your intended user community will have that capability.

For an e-business application that is to be accessed by the broadest set of
users with varying browser capabilities, the client is often written in HTML
with no other technologies. On an exception basis, limited use of other
technologies, such as using JavaScript for simple edit checks, can then be
considered based on the value to the user and the policy of the organization
for whom the project is being developed.

6.1.3 Markup languages
In this section we discuss the most important markup language used in the
development of Web applications.

6.1.3.1 HTML
HTML is a document markup language with support for hyperlinks, that is
rendered by the browser. It includes tags for simple form controls. Many
e-business applications are assembled strictly using HTML. This has the
advantage that the client-side Web application can be a simple HTML
browser, enabling a less capable client to execute an e-business application.

The HTML specification defines user interface (UI) elements for text with
various fonts and colors, lists, tables, images, and forms (text fields, buttons,
checkboxes, and radio buttons). These elements are adequate to display the
user interface for most applications. The disadvantage, however, is that these
elements have a generic look and feel, and they lack customization. As a
result, some e-business application developers augment HTML with other
user interface technologies to enhance the visual experience, subject to
maintaining access by the intended user base and compliance with company
policy on Web client technologies.
Chapter 6. Technology options 71

Almost all browsers support HTML V3.2, which is often the lowest common
denominator for building the clientside of an application.

6.1.3.2 Dynamic HTML
DHTML allows a high degree of flexibility in designing and displaying a user
interface. In particular, DHTML includes cascading style sheets (CSS) that
enable different fonts, margins, and line spacing for various parts of the
display to be created. These elements can be accurately positioned using
absolute coordinates.

Another advantage of DHTML is that it increases the level of functionality of
an HTML page through a document object model and event model. The
document object enables scripting languages such as JavaScript to control
parts of the HTML page. For example, text and images can be moved about
the screen, and hidden or shown, under the command of a script. Also,
scripting can be used to change the color or image of a link when the mouse
is moved over it, or to validate a text input field of a form without having to
send it to the server.

Unfortunately there are several disadvantages with using DHTML. The
greatest of these is that two different implementations (Netscape and
Microsoft) exist and are found only on the more recent browser versions. A
small, basic set of functionality is common to both, but differences appear in
most areas. The significant difference is that Microsoft allows the content of
the HTML page to be modified by using either JScript or VBScript, while
Netscape allows the content to be manipulated (moved, hidden, shown) only
using JavaScript.

Due to the browser incompatibility issues, DHTML is not recommended in
environments where mixed levels and brands of browsers are present.

6.1.3.3 XML, XSL
Extensible Markup Language (XML) allows you to specify your own markup
language with tags specified in a Document Type Definition (DTD). Actual
content streams are then produced that use this markup. The content
streams can be transformed to other content streams by using (XSL
eXtensible Stylesheet Language).

XML is a framework for defining document markup languages and is
predicted to become the primary approach to document exchange over the
Internet. In simple terms, a document markup language is a set of elements
(frequently called tags) that have one or more of the following functions:

• Describe the structure of the document
72 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

• Describe the content of the document

• Control how the document is presented to the user

XML and Hypertext Markup Language (HTML) are derived from the more
complex Standard Generalized Markup Language (SGML). SGML's
complexity and high cost of implementation spurred the interest in developing
alternatives.

HTML is the most widely used markup language for Web documents. As the
popularity of HTML increases, the limitations of the language have become
more apparent. The limitations of HTML include:

• Restricting the user to a relatively small set of tags.

• HTML authors cannot create their own HTML tags. Commercially available
Web browsers have no knowledge of tags that are not part of the HTML
standards.

• Control presentation is contained in the same file as the tags that describe
the document content.

• Although HTML 4 and Cascading Style Sheets enable HTML authors to
separate content from presentation, HTML 4 remains weak in its ability to
describe the content of a document.

XML overcomes many of the limitations of HTML and other markup
languages, while providing capabilities that are not a part of the earlier
languages. In the XML document, the tag names convey the meaning of the
data they contain. The structure of the document is easily discerned and
follows a pattern. In contrast, the HTML tag names reveal little about the
meaning of their content and the structure is not particularly useful for
manipulating the document and exchanging it between applications.

XSL is a language for expressing style sheets and provides two major
functions with XML:

• Language for transforming XML documents

• XML vocabulary for specifying formatting semantics

An XSL style sheet specifies the presentation of a class of XML documents
by describing how an instance of the class is transformed into an XML
document that uses the formatting vocabulary.

6.1.4 JavaScript
JavaScript is a cross-platform object-oriented scripting language. JavaScript
is a great utility language for Web applications because of the browser and
Chapter 6. Technology options 73

document objects that the language supports. Client-side JavaScript provides
the capability to interact with HTML forms. You can use JavaScript to validate
user input on the client and help improve the performance of your Web
application by reducing the number of requests that flow over the network to
the server.

ECMA, a European standards body, has published a standard (ECMA-262)
which is based on JavaScript (from Netscape) and JScript (from Microsoft)
called ECMAScript. The ECMAScript standard defines a core set of objects
for scripting in Web browsers. JavaScript and JScript implement a superset of
ECMAScript. You can find the ECMAScript Language Specification at

http://www.ecma.ch/stand/ECMA-262.htm.

To address various client-side requirements, Netscape and Microsoft have
extended their implementations of JavaScript in Version 1.2 by adding new
browser objects. Due to Netscape and Microsoft extensions beyond the
standard JavaScript 1.2, the extensions must detect the browser being used
and select the correct statements to run.

The use of JavaScript on the server side of a Web application is not
recommended, given the alternatives available with Java. Where your design
indicates the value of using JavaScript, for example for simple edit checking,
use JavaScript 1.1, which contains the core elements of the ECMAScript
standard.

6.1.5 Java applets
Java applets provide the most flexible user interface (UI) technology that can
be run in a Web browser. Java provide a rich set of UI elements in
comparison to the equivalent HTML UI elements. In addition, Java’s rich
programming language provides an infinite set of UI elements than can be
built and used. There are many libraries available that offer common UI
elements, such as tables, scrolling text, spreadsheets, editors, graphs,
charts, etc.

A Java applet is a program written in Java that is downloaded from the Web
server and run on the Web browser. The applet to be run is specified in the
HTML page using an APPLET tag:

<APPLET CODEBASE="/mydir" CODE="myapplet.class" width=400 height=100>

<PARAM NAME="myParameter" VALUE="myValue">
</APPLET>
74 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

In this example, a Java applet called myapplet will run. Parameters provide
an effective way to send data to an applet with the use of the PARAM tag. The
applet has access to the parameter data and can easily use it as input to the
display logic.

Java applets can also request a new HTML page from the Web application
server. This provides an equivalent function to the HTML FORM submit
function. The advantage of loading a new HTML page with an applet is that it
can do the obvious (a button being clicked) or the unique (the editing of a cell
in a spreadsheet), unlike HTML forms.

Java applets seldom consist of just one class file. Large applets may
reference hundreds of class files. Making a request for each of these class
files individually can tax any server and also tax the network capacity. To
address this issue, Java provides a means to package the class files into a
JAR or CAB file. This reduces the number of load requests from hundreds to
just one. Netscape and HotJava support JAR files simply by adding an
ARCHIVE="myjarfile.jar" variable within the APPLET tag. Internet Explorer uses
CAB files specified as an applet parameter within the APPLET tag. In both
cases, executing an applet contained within a JAR or CAB file provides faster
load times than individual class files. While Netscape and Internet Explorer
use different APPLET tags to identify the packaged class files, a single HTML
page containing both tags can be created to support both browsers. Each
browser simply ignores the other's tag.

A disadvantage of using Java applets for UI generation is that this requires a
version of Java that is supported by the Web browser. Often, the Java Virtual
Machine (JVM) contained within the browser lags behind the most current
and capable versions of the Java Developers Kit (JDK), which presents a
dilemma. Do I force my user community to use a specific version of a
browser, or do I use an older version of the Java technology that is supported
within the Web browsers for the client-side application?

Another disadvantage of Java applets is that any classes such as widgets
and business logic that are not included as part of the Java support in the
browser must be loaded from the Web server as they are needed. If these
additional classes are large, the initialization of the applet may take from

The leading browsers from Netscape and Microsoft support variant levels
of JDK 1.1 and each have different security models for signed applets.

Note
Chapter 6. Technology options 75

seconds to minutes, depending upon the speed of the connection to the
Internet.

Due to the shortcomings discussed, the use of Java applets is not
recommended in environments where mixed levels and brands of browsers
are present. Small applets may be used in rare cases where HTML UI
elements are insufficient to express the semantics of the client-side Web
application user interface. If it is absolutely necessary to use an applet, care
should be taken to include UI elements that are core Java classes whenever
possible.

6.1.6 C++ CGI
CGI scripts can be written in interpretive languages such as Perl, TCL, REXX
and UNIX shell scripts. Alternatively, CGI can be written in C++, as is the
case in WebSphere Commerce Suite. When the CGI request arrives at the
Web server, it forks off a new process to run the script and sets up the
environment variables for this process. Included in the variables are any form
input as well as information about the requestor such as the browser or its
level. Any response from the CGI script is processed by the Web server
according to its content. Typically the response will be an HTML stream that
will then be sent back to the client and appear in the client’s browser window.

The sequence of events for a CGI script are as follows:

1. A client at a browser clicks a link that contains the /bin-cgi/ phrase
(positioned immediately after the host name portion of the URL).

2. The Web server intercepts the request and looks in its CGI-BIN directory
for the script named in the URL portion following the /cgi-bin/ keyword.

3. A process is forked off to run the interpreter that will process the script.

4. The process is passed a set of environment variables that include both
system information and any parameters that were attached to the name of
the cgi-bin script command name.

5. The script is interpreted (runs) and in the process of executing, usually will
generate an HTML stream mixed with data to return to the client. The
HTML stream is constructed on the fly per the design and function of the
script.

6. The process terminates and resources are freed.

7. The client sees the resulting HTML stream as yet another Web page or
item on a Web page. Page counters are a typical small CGI script item.
76 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

6.2 WebSphere Application Server

This section is focused on Java server-side programming for the Web
application server. The Application Framework for e-business recommends
the technology model seen in Figure 19 on page 77, for a Web application
server.

Figure 19. Web application programming environment

While there have been many other models for a Web application server, the
Framework has had great industry support. For more details on the Java APIs
discussed in this section, see Java Enterprise in a Nutshell.

Before we look at the technologies and APIs available in the Web application
programming environment, we need to review the operational components on
this node. The selection of the Web/HTTP server and the Java Virtual
Machine (JVM) are critical to the application in areas such as robustness,
performance and availability.

Native Platform
Services

Web Application Server

Java VM

Dynamic
Content
Services

Enterprise Java
Libraries

e-business Applications

Enterprise JavaBeans

Java Servlets

Java Server Pages

Protocols - HTTP, IIOP, ...

Network Infrastructure

Existing
Data &

Applications

NSF

IMS

CICS

RDB

Persistent Store

File
RDB

Connectors
Chapter 6. Technology options 77

In Chapter 7, “Application design guidelines” on page 89, we discuss the
Model-View-Controller (MVC) design structure for user interfaces. In
summary, the MVC for the Web application programming model states the
following:

• Model

The model is represented to the view and interaction controller by using a
set of JavaBean components.

• View

The view is generally best implemented using JavaServer Pages.

• Controller

The interaction controller, which is primarily concerned with processing
the HTTP request and invoking the correct business or UI logic, often
lends itself to an implementation as a servlet.

6.2.1 XML
XML and XSL style sheets can be used on the serverside to encode content
streams and parse them for different clients, thus enabling you to develop
applications for both a range of PC browsers and for the emerging pervasive
devices. The content is in XML format and an XML parser is used to
transform the XML to output streams presented within XSL style sheets. This
general capability is known as transcoding and is not limited to XML-based
technology.

The appropriate design decision here is how much control over the content
transformation you need in your application. You will want to consider when it
is appropriate to use this dynamic content generation and when there are
advantages to having servlets or JSPs specific to certain device types.

XML is also used as a means to specify the content of messages between
servers, whether the two servers are within an enterprise or represent a
business-to-business connection. The critical factor here is the agreement
between parties on the message schema, which is specified in an XML DTD
document.

An XML parser is used to extract specific content from the message stream.
Your design will need to consider whether to use an event-based approach,
for which the SAX API is appropriate, or to navigate the tree structure of the
document using the DOM API. For more information visit:

http://www.sun.com/xml/
78 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

6.2.2 JavaServer Pages (JSP)
JavaServer Pages were designed to simplify the process of creating pages by
separating Web presentation from Web content. In the page construction
logic of a Web application, the response sent to the client is often a
combination of template data and dynamically generated data. In this
situation, it is much easier to work with JSP technology than to do everything
with servlets.

The chief advantage JSPs have over Java Servlets is that they are closer to
the presentation medium. A JavaServer Page (JSP) is an HTML page. JSPs
can contain all the HTML tags that Web authors are familiar with. A JSP may
contain fragments of Java code which encapsulate the logic that generates
the content for the page. These code fragments may call out to JavaBeans to
access reusable components and back-end data. JavaServer Pages are
compiled into servlets before being executed on the Web application server.
JavaServer Pages are the recommended choice for implementing the “View”
for the Web browser client. For those cases where the code required is large
percentage of the page content, and the HTML minimal, writing a Java
Servlet is a better choice, for readability and maintenance reasons.

The current level of the JSP API is 1.1. To learn more about JSPs visit:

http://java.sun.com/products/jsp/

6.2.3 Java Servlets
Java Servlets provide a replacement for CGI-based techniques in Web
application programming. Servlets provide a component-based,
platform-independent method for building Web-based applications, without
the performance limitations of CGI program. They interact with the servlet
engine, running on the Web application server, through HTTP requests and
responses, which are encapsulated as objects in the servlet.

One of the attractions of using servlets is that the API is a very accessible for
a Java programmer to master. Servlets are a core technology in the Web
application programming model. They are the recommended choice for
implementing the “Interaction Controller” classes that handle HTTP requests
received from the Web client.

The current level of the servlet API is 2.2. To learn more about Java Servlets
visit:

http://java.sun.com/products/servlet/
Chapter 6. Technology options 79

6.2.4 JavaBeans
JavaBeans component architecture enables developers to create reusable
software components that can then be assembled together using visual
application builder tools, such as, IBM's VisualAge for Java or IBM
WebSphere Studio. JavaBeans also known as “Beans” may be visual or
non-visual.

Recommended uses of Beans with JSPs and servlets:

• As the client interface to the “model layer”. An “interaction controller”
servlet will use this JavaBean interface.

• As the client interface to other resources. In some cases this may be
generated for you by a tool.

• As a component that incorporates a number of property-value pairs for
use by other components or classes. For example, the JavaServer Pages
specification includes a set of tags for accessing JavaBean properties.

The current level of the JavaBeans API is 1.01. To learn more about
JavaBeans visit:

http://java.sun.com/products/beans/

6.2.5 Enterprise JavaBeans (EJB)
Enterprise JavaBeans (EJB) are distinguished from JavaBeans in that they
are designed to be installed on a server, and accessed remotely by a client.
The EJB framework provides a standard for server-side components with
transactional characteristics.

The EJB framework specifies the responsibilities of the EJB developer and
the EJB container provider. The intent is that the “plumbing” required to
implement transactions or database access can be implemented by the EJB
container. The EJB developer specifies the required transactional and
security characteristics of an EJB in a deployment descriptor (this is
sometimes referred to as declarative programming). In a separate step, the
EJB is then deployed to the EJB container provided by the application server
vendor of choice.

There are two types of Enterprise JavaBeans:

1. Session

2. Entity

Session bean characteristics:
80 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

• Executes on behalf of a single client

• Can be transactional.

• Can update data in an underlying database.

• Is relatively short lived.

• Is destroyed when the EJB server is stopped. The client has to establish a
new session bean to continue computation.

• Does not represent persistent data that should be stored in a database.

• Provides a scalable runtime environment to execute a large number of
session beans concurrently.

Entity bean characteristics:

• Represents data in a database.

• Can be transactional.

• Shared access from multiple users.

• Can be long lived (lives as long as the data in the database).

• Survives restarts of the EJB server. A restart is transparent to the client.

• Provides a scalable runtime environment for a large number of
concurrently active entity objects.

Typically an entity bean is used for information that has to survive system
restarts, while in session beans, the data is transient and does not survive
when the client's browser is closed. For example, a shopping cart containing
information that may be discarded uses a session bean, and an invoice
issued after the purchase of the items is an entity bean.

An important design choice when implementing entity beans is whether to
use Bean Managed Persistence (BMP), in which case you must code the
JDBC logic, or Container Managed Persistence (CMP), where the database
access logic is handled by the EJB container.

The business logic of a Web application often accesses data in a database.
EJB entity beans provide a convenient way to wrap the relational database
layer in an object layer, hiding the complexity of database access. A single
business task may involve accessing several tables in a database. Modeling
rows in those tables with entity beans makes it easier for your application
logic to manipulate the data.

The current level of the Enterprise JavaBean API is 1.1. The most significant
changes from EJB 1.0 are the use of XML-based deployment descriptors and
Chapter 6. Technology options 81

the need for vendors to implement entity bean support to claim EJB
compliance. To learn more about Enterprise JavaBeans visit:

http://java.sun.com/products/ejb/

6.2.6 Additional enterprise Java APIs
In developing a server-side application, you may also need to be familiar with
the following enterprise Java class libraries:

• Java Naming and Directory Interface (JNDI)

This package provides a common API to a directory service. Service
provider implementations include those for LDAP directories, RMI and
CORBA object registries. Sample uses of JNDI include:

- Accessing a user profile from an LDAP directory

- 4.1 in their other applications.

- Locating and accessing an EJB Home

• Remote Method Invocation (RMI)

RMI and RMI over IIOP are part of the EJB specification as the access
method for clients accessing EJB services. RMI can also be used to
implement limited function Java servers.

• Java Message Service (JMS)

The JMS API enables a Java programmer to access message-oriented
middleware such as MQSeries. Such messaging middleware is a popular
choice for accessing existing enterprise systems.

• Java Transaction API (JTA)

This Java API is for working with transaction services, based on the XA
standard. With the availability of EJB servers, you are less likely to use
this API directly.

6.3 WebSphere Commerce Suite technology

To build and run an e-Marketplace site, you need software that provides a
secure, scalable, and dependable environment that you can trust.
WebSphere Commerce Suite, Marketplace Edition for AIX is based upon
WebSphere Commerce Suite software that powers some of the busiest, most
successful e-commerce sites available online. The WebSphere Commerce
Suite, Marketplace Edition for AIX is packaged with the following
award-winning software to provide a complete end-to-end solution:
82 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

• IBM DB2 Universal Database provides a scalable, reliable database to
store your data.

• IBM HTTP Server provides a powerful Web server and is based on the
popular Apache Web server.

• IBM WebSphere Application Server for servlets and JSP technology.

• IBM SecureWay Directory is a robust directory server.

In the following sections we briefly discuss the technology of Marketplace
Edition and describe where it differs from that of WebSphere Commerce
Suite. More details of the Marketplace Edition technology can be found in
Chapter 7, “Application design guidelines” on page 89.

6.3.1 Commands, tasks and overrideable functions
Marketplace Edition reuses the C++ based architecture of WebSphere
Commerce Suite where it provides the necessary functionality. An example is
in the orders infrastructure. New functionality in Marketplace Edition is
implemented in a Java framework which is discussed in 7.6, “Marketplace
Edition application logic” on page 102.

Commands perform a specific business process, such as adding an item to
the shopping cart, processing an order, updating a shopper’s address book,
or displaying a specific product page. A command represents a static piece of
business process that delegates the implementation of specific pieces of
business logic to tasks. This separation between commands and tasks allows
different implementations of the same command to be performed depending
upon merchant parameters.

While commands and overridable functions are actual pieces of code, a task
is not. A task is a contract between a command and an overridable function,
or between two overridable functions. These rules dictate the following:

• The work that the caller expects the overridable function to perform

• The parameters that the caller passes to the overridable function

• The parameters and other results that the caller expects the overridable
function to return

WebSphere Commerce Suite defines three types of tasks: view tasks,
process tasks and exception tasks.

Overridable functions provide extension points with which you can customize
the way the server functions. Overridable functions are written in C++ and are
Chapter 6. Technology options 83

implemented as platform-specific CGIs for the WebSphere Commerce Suite
runtime platform, such as Windows NT, AIX, Solaris, OS/400, and OS/390

For more information on commands, tasks and overrideble functions see
Patterns for e-business: User-to-Online Buying Pattern using WebSphere
Commerce Suite V4.1, SG24-6156-00 and also the online manual that comes
with WebSphere Commerce Suite 4.1, which is called Commands, Tasks,
Overridable Functions

6.3.2 Database
The WebSphere Commerce Suite, Marketplace Edition is implemented using
a relational database. The database contains all the information that is used
by the Marketplace Edition system, including information about individual
organizations, members, items, and prices, etc.

The Marketplace Edition database consists of a collection of tables which
reuse and extend the tables existing in WebSphere Commerce Suite.

6.3.3 Net.Data
WebSphere Commerce Suite used Net.Data to build dynamic pages by
executing macros that retrieved data from the Commerce Suite database.

Net.Data is an interpretive programming language that is used to facilitate
interaction between users and the database. In the WebSphere Commerce
Suite system, a Net.Data macro is a file that retrieves data from the
WebSphere Commerce Suite database and displays it as a formatted Web
page. Typically, it contains functions that execute SQL queries, HTML tags
(which can also contain JavaScript code), and Net.Data statements. The SQL
statements search for and retrieve information from the WebSphere
Commerce Suite database, the HTML defines the layout of the search results,
and the Net.Data statements control the flow of the output.

6.3.4 WebSphere Application Server integration - Marketplace Edition
WebSphere Commerce Suite, Marketplace Edition provides support for
JavaServer Pages, Java Servlets, and JavaBeans using the WebSphere
Application Server. Marketplace Edition does not employ EJBs in the current
implementation.

6.3.4.1 JavaServer Pages in the Marketplace Edition
The Marketplace Edition uses JavaServer Pages (JSPs) extensively to build
dynamic displays. WebSphere Application Server provides the runtime
support for JSPs. When a customer requests a JSP page, a JSP-enabled
84 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

engine (in this case, the WebSphere Application Server) interprets the JSP
tags and scriptlets, creates the content in the form of an HTML page, and
returns it to the browser.

Using JavaServer Pages to create dynamic HTML pages allows you to
separate the task of coding data retrieval from the task of creating the display
format. For example a Java programmer can develop Java beans to retrieve
data from the database, while a media specialist can design the look and feel
of the page.

6.3.4.2 Java Servlets in the Marketplace Edition
In the past, server-side requests were often handled by CGI (Common
Gateway Interface) programs. Servlets provide advantages over CGI
programs in that they can run with less overhead, are more portable and are
easier to maintain. Marketplace Edition makes extensive use of servlets.

The servlet engine is the function of the Web application server that manages
servlets. It manages the creation and destruction of servlets, specifying which
servlets should be automatically loaded into memory at startup and which
should be loaded upon initial request.

6.3.4.3 JavaBeans in Marketplace Edition
The Marketplace Edition makes extensive use of Java beans for both
commands and data. Command beans include model, view and error beans.
Data beans are used to provide formatted data for display in JSPs. We
describe the use of beans in Marketplace Edition in more detail in Chapter 7,
“Application design guidelines” on page 89 and in 10.5, “Marketplace Edition
programming model” on page 209.

6.3.5 Connectors
e-business connectors are gateway products that enable you to access
enterprise and legacy applications and data from your Web application.
Connector products provide Java interfaces for accessing database, data
communications, messaging and distributed file system services.

IBM provides a significant set of e-business connectors with tool support, for
CICS, Encina, IMS, MQSeries, DB2, SAP and Domino. IBM connectors are
based on the Common Connector Framework (CCF). For resources on
System/390, IBM is delivering native connectors based on CCF.

The command bean model allows you to code to the specific connector
interface(s) of your choice while hiding the connector logic from the rest of the
Web application.
Chapter 6. Technology options 85

6.3.5.1 JDBC and SQLJ
The business logic in a Web application will access information in a database
for a database-centric scenario. JDBC is a Java API for
database-independent connectivity. It provides a straightforward way to map
SQL types to Java types. With JDBC you can connect to your relational
databases and create and execute dynamic SQL statements in Java.

JDBC drivers are RDBMS specific, provided by the DBMS vendor, but
implement the standard set of interfaces defined in the JDBC API. Given
common schemas between two databases, an application can be switched
between one and the other by changing the JDBC driver name and URL. A
common practice is to place the JDBC driver name and URL information in a
property or configuration file.

There are four types of JDBC drivers from which you can choose, based on
the characteristics of your application:

• Type 1: JDBC-ODBC bridge drivers. This type of driver, packaged with the
JDK, requires an ODBC driver and was introduced to enable database
access for Java developers in the absence of any other type of driver.

• Type 2: Native API Partly Java drivers. This type of driver uses the client
API of the DBMS and requires the binaries for the database client
software. This type of driver offers performance advantages but
introduces native calls from the JVM.

• Type 3: Net-protocol All Java drivers. A generic network protocol is used
with this type of driver. Portability is a major advantage of this type of
driver, but it has the limitation that it requires intermediate middleware to
convert the Net-protocol to the DBMS protocol.

• Type 4: Native-protocol All Java drivers. This type of driver is portable and
uses the protocol of the DBMS. Type 3 and 4 drivers are well suited for
applets that access a database server on an intranet, since they only
require Java code to be downloaded.

An important technique used to enhance the scalability of Web applications is
connection pooling, which may be provided by the application server. When
application logic in a user session needs access to a database resource,
rather than establishing and later dropping a new database connection, the
code requests a connection from an established pool, returning it to the pool
when no longer required.

SQLJ provides a simplified syntax for JDBC that allows you to write SQL-like
statements directly in your Java source code. The SQLJ preprocessor
generates static SQL providing better performance than dynamic SQL. SQLJ
86 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

will also generate iterator Java classes. These iterators allow you to navigate
query results using a very simple “get next” protocol.

As your design takes shape, based on its desired performance and
sophistication you may see the need to investigate SQLJ or enterprise Java
beans. The most recent level of the JDBC specification is 2.0, but many
JDBC drivers you use will still implement 1.0.

6.4 Where to find more information

For more information on topics discussed in this chapter see:

• WebSphere Studio and VisualAge for Java Servlet and JSP Programming,
SG24-5755-00

• Flanagan, David, JavaScript: The Definitive Guide, Third Edition, O'Reilly
& Associates, Inc., 1998

• Maruyama, Hiroshi, Kent Tamura and Naohiko Uramoto, XML and Java:
Developing Web Applications, Addison-Wesley 1999

• Flanagan, David, Jim Farley, William Crawford and Kris Magnusson, Java
Enterprise in a Nutshell, O’Reilly & Associates, Inc., 1999

• For information on the IBM Application Framework for e-business:
http://www.ibm.com/software/ebusiness/

• For information about the ECMAScript language specification:
http://www.ecma.ch/stand/ECMA-262.htm/

• To learn more about Java technology;

see http://www.javasoft.com/products/

• To learn more about the IBM Application Framework for e-business, see
IBM Application Framework for e-business: Understanding Technology
Choices white paper found at
http://www.ibm.com/software/ebusiness/buildapps/understand.html/

• To learn more about XML visit: http://www.ibm.com/developer/xml or
http://www.sun.com/xml/.
Chapter 6. Technology options 87

88 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Chapter 7. Application design guidelines

Applications running in the Marketplace Edition are Java-based applications
that run under the WebSphere Application Server. Accordingly, many of the
considerations involved in the design of these applications are similar to
those for conventional e-commerce sites developed with WebSphere
Commerce Suite 41.

In this chapter, we present these considerations in the context of the
components, technologies and techniques available to you within the
Marketplace Edition application environment. Beginning with an introduction
to the features and core technologies offered in the Marketplace Edition, we
progress to discussing the core components of the Marketplace Edition
environment by looking at both the application elements it contains as well as
the general structure of an e-Marketplace application. Following this, we look
more closely at the technical details of how some of these technologies work
and interact with the other components inside the e-Marketplace. Finally, we
cover a number of topics including session management, security, and
performance to assist you in identifying potential areas of weakness in your
application design.

7.1 High-level feature summary of the Marketplace Edition

It is important that you have an understanding of the components and
features available in the Marketplace Edition in order to design the best
possible application for your problem domain.

While this is covered thoroughly in Chapter 10, “Marketplace Edition
overview” on page 195, some of the primary components and features in
Marketplace Edition are presented in this section as they may have an impact
on how you approach the design your applications.

7.1.1 Features
At a high level, the components available in the Marketplace Edition span the
areas of:

• Ordering

• Membership and registration

• Access control

• Catalog and catalog aggregation

• Approval flow
© Copyright IBM Corp. 2000 89

• Negotiation subsystem - exchange, RFQ and auction

• Pricing and contracts

• Reporting

• Management of the hub business

As you can see, there is a great variety of application components offered in
the Marketplace Edition product. The result of this is that your applications
and customizations are likely to be far more complex than traditional online
buying applications.

7.1.2 Modifications to WCS 4.1
While the basis of the Marketplace Edition is WebSphere Commerce Suite
4.1, there are a number of significant enhancements to this foundation.

Some of the areas of change are:

• Database schema

• Aggregate catalog (comprising of data from multiple supplier catalogs)

• C++ programming model

• The addition of user roles

• Approval flows

7.1.3 Processes
Modifications have been made to the traditional process of online buying. No
longer are we limited to simply adding an item to our shopping cart. We now
have new buying metaphors such as RFQ and Exchange in addition to the
Auction facility. We also have changes to how pricing is determined - base
prices, contractual prices agreed via RFQ or bids via the auction system.

In addition to this, we have to think about the integration of suppliers and
buyers. We can choose to integrate these entities via Web clients or via more
sophisticated methods such as real-time integration using message broking
technologies.

7.1.4 Players
The players that we have in a typical e-Marketplace are significantly different
from a conventional, e-commerce implementation. We are no longer limited to
the simple many-to-one buyer and supplier model typical of e-commerce
sites.
90 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

More specifically, we now have:

• Multiple buyers

• Multiple suppliers

• Multiple administrators - both at the hub level and organization level

• Integration to buyer and supplier systems involving users and roles in each
of these organizational entities

This is discussed in more detail in Chapter 10, “Marketplace Edition
overview” on page 195 which provides use-case scenarios for each player in
the Marketplace.

7.2 Understanding the Marketplace Edition technologies

The technologies on which your Marketplace Edition application is based are
described briefly in this section. Primarily, development is centred on Java
through the use of JSPs, servlets and JavaBeans. However, this can be
augmented where necessary through the use of C++ and Net.Data.

7.2.1 Servlets
Servlets are Java server-side components that provide the request/reply
mechanism between a client and the server over protocols such as HTTP.
Servlets run within the Java Virtual Machine (JVM) of the application server
and are typically responsible for executing the business logic required for a
particular client request.

Figure 20 shows a high level view of a typical client-to-servlet interaction.

Some of the information provided in this section is based on information
contained in the Servlet and JSP Programming with IBM WebSphere and
VisualAge for Java, SG24-5755. We recommend that you read this to gain
a thorough understanding of servlets, JavaBeans, JavaServer Pages, the
WebSphere Application Server, and the VisualAge for Java programming
environment.

Note
Chapter 7. Application design guidelines 91

Figure 20. High-level flow of a servlet

Servlets are based on a Servlet API that is found in the following two Java
packages:

• javax.servlet

• javax.servlet.http

These packages differ in that javax.servlet is a protocol-independent version
of the Servlet API where javax.servlet.http works specifically with the HTTP
protocol.

The Marketplace Edition makes heavy use of servlets to provide the core
functionality for controlling interactions between the client and the server for
commonly performed tasks within the e-Marketplace. You can also develop
your own servlets to perform custom functionality.

7.2.2 JavaServer Pages
JavaServer Pages (JSPs) provide the ability to visually create static and
dynamic-content Web pages using tools similar to HTML page editors. JSPs
are, Java server-side technology and are responsible for generating and
formatting the output that is sent to the client-side browser.

Creating a JSP page is very similar to creating an HTML page with the
exception of additional tags supporting the embedding of dynamic content. In
a JSP, dynamic content is commonly displayed to the user by embedding the
properties of JavaBean objects inside the JSP. Dynamic content may also be
generated as a result of script-language elements that can also be embedded
with the JSP.

How JSPs work
The first time a request is made by the client to display a JSP page, the JSP
engine residing on the application server parses the contents of the JSP page
and creates a servlet source code file based on its contents. The servlet is
then compiled by the Java compiler resulting in a compiled class file. The

Request

Response

ResourcesClient Application
Server

Servlets
92 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

class file is then instantiated and made available to service requests and
provide responses to the output stream. The servlet remains in service until
its is explicitly stopped, either individually or by stopping the application
server.

Figure 21 shows the lifecycle of a JSP for the first time invocation.

Figure 21. JSP lifecycle for the first invocation

Because a JSP is compiled into a servlet, subsequent requests for the JSP
simply invoke the normal request and response mechanisms as per standard
servlets.

Most of your application customizations in Marketplace Edition will use JSPs
at the presentation layer. WebSphere Commerce Suite, Marketplace Edition
for AIX supports both the JSP .91 specification and the JSP 1.0 specification.

7.2.3 JavaBeans
JavaBeans are platform-independent reusable software components that you
develop to encapsulate the functionality performed in your applications.
JavaBeans are based on Sun Microsystem’s JavaBean specification which
defines the fundamental architecture that all JavaBeans conform to. Sun’s
definition states that these beans “can be manipulated visually in a builder
tool”.

JavaBeans support the following features:

• Properties

• Methods

• Events

Request

Result

Java

Source

Web Server

JSP

Parser

JSP

Servlet

Java

Compiler

Web Page

HTML

JSP

Source

Web
Browser
Chapter 7. Application design guidelines 93

• Introspection

• Persistence

Properties are attributes of the bean that have set and get methods that can
be called from other components. Events define a framework for one
component to notify another when something noteworthy happens. The
JavaBeans specification defines a set of conventions for defining properties,
methods, and events. Using this convention, builder tools can analyze the
bean to allow for visual manipulation. In addition, beans should implement the
persistence mechanism allowing the customized JavaBeans state to be
stored and retrieved when necessary. JavaBeans can be either visual or
non-visual; however, they should all allow manipulation by visual builder tools.
This is usually done by using Java introspection techniques.

Further details on the JavaBeans Specification can be found at:

http://java.sun.com/beans/index.htm

7.2.4 Net.Data
WebSphere Commerce Suite uses Net.Data macros to retrieve database
data and format that data into an HTML-formatted Web page. Net.Data
macros contain functions that execute SQL queries, HTML tags (which can
also contain JavaScript code), and Net.Data statements. SQL queries define
the information retrieved from the WebSphere Commerce Suite database, the
HTML defines the layout of this information, and the Net.Data statements
control the flow of the output.

A Net.Data macro usually contains the sections:

• Define

• Function Definition

• HTML Input

• HTML Report

7.3 General application design guidelines

When developing any Web-based applications the architect must consider a
core set of design criteria. These are covered briefly below.

• Client

Design of the application is determined by the type of application required
on the client, applets or HTML pages, for example. Web applications in
94 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Marketplace Edition are based on thin-client technology employing JSPs
to display content to the client, servlets to control the interactions and
JavaBeans to perform the business processes and encapsulate the
required data.

• Member integration

Member integration involves the application design elements associated
with interactions with e-Marketplace members such as suppliers and
buyers. Our applications much consider the implications of integrating
these members, potentially in real time, using message broking and
message transport technologies. Alternatively, your design may simply
involve Web client batch updates for this integration.

• Look and feel

Our marketplace must be designed with the appropriate look and feel in
line with the products and services offered. The technologies used in the
look and feel should not place a heavy load on the browser client.

• Content management

Content management technology is important in e-Marketplace sites that
also offer value-add portal facilities. Often, in addition to products, an
e-Marketplace provides up-to-the-minute broadcasts on industry events,
technologies and movements. Content management software provides
these information feeds and should be a consideration in your design,
even if its implementation is not an immediate deliverable.

• Statelessness

The state of interactions between the client and the server in a Web
application is stateless by default. We must consider techniques to
maintain user information across interactions, such as the use of cookies
and URL rewriting.

• Application speed and performance

Users should not have to wait excessive times for their requests to be
processed. Web application designers should consider the overhead
associated with database requests, servlet processing and real-time
integration the e-Marketplace members’ systems.

• Security

Security planning involves selecting the correct security model for the
solution. Consider user authentication, protocol encryption services,
DMZs and firewalls and application level security, such as command
security, which is discussed in 7.9.3, “Command access” on page 119.
Chapter 7. Application design guidelines 95

7.4 Application elements

Application design in the Marketplace Edition implements many of the
attributes associated with the Web Application Programming Model, which is
promoted as part of the IBM Application Framework for e-business.

This primary attributes that have driven the development of this framework
are:

• Ease and speed of development and deployment

Applications is this framework are component-based server-side Java
applications providing rapid development time, separation of development
tasks and ease of deployment.

• Independence of client device

By developing applications using a thin-client architecture, we open our
options with regard to the devices we wish to support. Content can be
easily rendered to support new types of client devices, using the IBM
transcoding technology for example.

• Portability

Java is a standards-based, open development platform that allows us to
migrate our applications to other Java-supporting server environments
with minimal effort.

• Extend existing core assets

We must have the ability to interface to and leverage existing enterprise
systems and business processes.

In support of all of these concepts, WebSphere Commerce Suite,
Marketplace Edition for AIX offers a complete environment of components,
which are described in this section.

7.4.1 Clients
Clients are responsible for accepting user input, sending that input to the
server and subsequently accepting and rendering the response from the
server into a format suitable to the user. There are two type of clients, HTML
clients and application clients.

• HTML clients

HTML clients represent the thin client browser-based applications
developed in a Marketplace Edition application. The responsibilities of the
client are to render the browser content, submit requests to the server,
and receive responses from the server over HTTP.
96 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

• Application clients

Application clients are Java-based applications that also communicate
with the server. However, the applications typically provide the UI to render
the application content as opposed to the server-side UI generated for
HTML clients. Application clients offer a greater variety of protocols in
addition to HTTP with which to communicate with the server, IIOP for
example. Application clients are considered “fat clients”, since they often
contain business-rule logic that is executed on the client side.

• Which one is better?

HTML clients are generally the most popular presentation layer used to
provide the UI and interaction metaphor for the user. This is primarily due
to the following advantages that it offers over application clients:

- It is browser independent and therefore platform independent. Nearly
all browsers can display the HTML produced by the server, allowing for
clients to operate on multiple platforms such as Linux or Macintosh.

- Download time for a page is minimal. With an application client, the
application is often slow to download and adds an additional burden on
the client requiring the correct Java runtime environment for it to
operate under.

- All of the logic to generate the content is serverside and is therefore
easy to maintain, modify and redeploy if required. Server-side logic
adds the benefit of additional security provided at the server.

7.4.2 WebSphere Commerce Suite
The WebSphere Commerce Suite represents the grouping of a number of
important components for the operating environment. It is comprised of a
number of sub-components described below.

• Web server

The Web server and application server work together to receive and
respond to HTTP requests and responses from the client. The Web server
handles the work for static HTML pages. However, it passes any request
for a dynamic page (JSP for example) to the application server. The
majority of pages in a Marketplace Edition application are dynamically
generated pages.

• Application Server

The application server represents the heart of the Marketplace Edition. It
is responsible for coordinating the tasks required to generate a response
document to the client including:
Chapter 7. Application design guidelines 97

- Responding to requests for dynamic data.

- Controlling the business logic that must be executed based on the
information contained in the request.

- Coordinating the interaction with the appropriate back-end systems if
required.

- Generating the response document for delivery back to the client.

• e-Marketplace server

For the purposes of providing a logical grouping, the e-Marketplace server
represents the components which provide the e-Business services within
the e-Marketplace. It encompasses the following sub-components:

- Marketplace engine and business logic

This represents the business logic and services available within
Marketplace Edition. It represents the boundary for the procedures and
processes conducted in the e-Marketplace applications such as the
ordering process, RFP/RFQ, auctions, pricing and contracts, and so
on. The e-Marketplace server represents the “engine room” of an
e-Marketplace application.

- Page construction services

These services generate the dynamic pages displayed to the client
utilizing Java Servlets, JSPs and JavaBeans.

- Connectors

Connectors provide the Java programmer with interfaces to other
systems and data repositories using application-specific protocols.
Many connectors are available including connectors for SAP, MQ
Series, JDBC, CICS, IMS, Encina and Domino.

- Application messaging services

This component provides the functionality for intercommunication
between applications using message delivery services such as those
provided by MQ Series.

- Business process integration and workflow services

This extends on the application message services by providing a
complete message broking, routing and transaction services.

The functions of the e-Marketplace server may be split over multiple physical
boxes.

• Commerce database
98 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

This is the master repository for data pertaining to the e-Marketplace. It
includes buyer shopper and supplier definitions, the aggregate product
catalog, shipping, tax and a host of other e-Marketplace-related data.

• Application services

Marketplace Edition provides a number of inherent application services
such as:

- Session Management

This refers to the application server’s ability to manage the state of
each user’s interaction with the server using the HttpSession API.

- User tracking

User-specific data can be automatically persisted and retrieved through
the WebSphere Application Server’s UserProfile API. This feature does
not require the programmer to manually code the persistence logic.

- Security and authentication

The WebSphere Application Server provides the security features
required of e-Business sites such as authentication, authorization, data
integrity, protocol encryption and non-repudiation mechanisms (some
e-commerce transactions represent agreements that cannot be
repudiated). Technologies such as SSL and LDAP are employed in
these areas.

- Systems management

Complete support for systems management is provided allowing the
site to scale and perform strongly through mechanisms such as load
balancing and failover. The Marketplace Edition offers a host of
services in this area, which are covered in Chapter 9, “System
management guidelines” on page 133.

7.5 Application Structure

The application structure within a Marketplace Edition site is composed of two
application areas - the Web application and the Marketplace server
processes.

7.5.1 Web application
The applications that you develop in the Marketplace Edition typically
implement the Model-View-Controller design pattern. This design pattern is
inherent in Marketplace Edition as the JavaBeans, servlets and model beans
which you use in your application are provided as part of the environment.
Chapter 7. Application design guidelines 99

The exception to this is if you add your own servlets and JavaBeans which
perform logic outside of the functionality provided by Marketplace Edition.

7.5.1.1 Model-View-Controller design pattern
The Model-View-Controller design pattern refers to the responsibilities and
calling sequence of the Java components used to process a request from the
client and return a response document to the client. This pattern is a common
pattern used in many Web applications and provides a decoupled approach
to separating the functional components. Decoupling of the components in
this way allows the development of each component to be performed
independently of each other. It also allows for changes to the Web application
to occur in a modular way, minimizing the effect on the system.

The responsibilities of these components are as follows:

• The model component provides the business logic of the application via
model beans and data beans. These beans interact with the necessary
data repositories and business rules.

• The view provides the page display capabilities and is represented by the
JSPs within the application.

• The controller provides the decoupling of the interactions between the
model and the view. It does not require knowledge of the view component.
Controllers are servlets that are responsible for coordinating the
appropriate model beans to perform the business logic for the request.

The MVC design pattern is illustrated as logical Java components in Figure
22.
100 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Figure 22. Marketplace Edition Java programming model

7.5.2 e-Marketplace server
The e-Marketplace server represents a conceptual grouping of the processes
performed by the Marketplace Edition, such as commencing an auction at a
specified time or the processing of an order. The e-Marketplace server runs
within the WebSphere Application Server.

Figure 23 shows the relationship between the e-Marketplace server, the
application server, external data repositories and integrated buyers/suppliers.
For non-integrated buyers and suppliers, a Web interface would exist at the
client browser level.

Client
(Browser)

View

Controller

Model

Interaction Controllers
(Servlets)

Commands (Interfaces &
Implementations)

Persistent Objects &
Lists

JSPs

A
cc

es
s

C
on

tr
ol

B
ea

ns

Database
Chapter 7. Application design guidelines 101

Figure 23. Relationship between the Marketplace server and the application server

Requests for services to the back-end systems, database and integration
layers are made through the application server.

7.6 Marketplace Edition application logic

When customizing a Marketplace Edition application, you will build most of it
by utilizing the Java-based application development components offered by
the Marketplace Edition programming environment. Now that you have an
understanding of primary components of the Marketplace Edition, we will now
take a more specific look at the application development technologies
available to assist us in building an application.

The applications you develop in the Marketplace Edition will usually utilize the
following development components:

• Interaction controllers

• JSPs

• Commands

• Command factory

• Data beans

• Data bean manager

• Net.Data

• C++ programming model

• External systems

Client
Browser

Application
Server

Marketplace
Server

Web
Server

Database

Backend
Systems

Integrated
Suppliers/Buyers
102 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

7.6.1 Interaction controllers
Interaction controllers (ICs) provide the entry point for commonly performed
tasks in your Marketplace Edition application. ICs are Java Servlets that
operate under, and are accessed from, the WebSphere Application Server.

Java Servlets are protocol and platform independent server-side Java
components. They implement a simple request and response framework for
communication between the client and the server. The Java Servlet API is
used to develop your servlets and offers a set of Java classes that define a
standard interface between Web clients and the Web application server. The
Servlet API is composed of the following two packages:

• javax.servlet

• javax.servlet.http

An example of a commonly used interaction controller in the Marketplace
Edition is the CategoryDisplay controller. If you are familiar with the ICs
available in WCS 4.1, you may recall coding URLs such as:

http://server/webapp/commerce/CategoryDisplay?merchantid=1&cgrfnbr=10

There are many predefined ICs provided by the Marketplace Edition which
allow you to easily perform common tasks such as this. You can also write
your own ICs to perform any additional processing specific to your
application.

Most Java classes for ICs in Marketplace Edition are derived from a special
class called EMPIController. This class provides:

• IC level access-control

• Sub-classes implement authorizedPerform()

• Convenience functions to get parameters and provide session
management functions.

In addition, all IC invocations are routed through the EMPBaseServlet. By
deriving from this class, Marketplace Edition ICs have many core
housekeeping tasks performed for them each time a request is made. Some
of the tasks performed by the EMPBaseServlet are logging of user
information, creating URL parameter lists for passed parameters and
extracting user authentication information. The result of this derivation means
that each IC is relieved of having to duplicate this functionality since it is
performed automatically through subclassing.
Chapter 7. Application design guidelines 103

Once EMPBaseServlet has completed its processing and passed control
through to the derived IC, the IC typically performs the following steps:

1. A request is made to the command factory to obtain the relevant
command.

2. The command is configured with data specific to the command usually by
calling the command’s setter methods.

3. The execute() method of the command is called. This executes the
business logic associated with the command.

4. Once the business logic has executed, the IC makes getter requests to the
command to obtain any data made available by the execute() method.

5. Often, the IC will then provide a redirection to a JSP page. However, this is
not always the case and it may perform other tasks, such as initiate further
commands or send e-mail.

7.6.2 JavaServer Pages
As described earlier in this chapter, JSPs represent the presentation layer or
view component of the Model-View-Controller design pattern. Typically, JSPs
in the Marketplace Edition implement the view or presentation logic and use
various ViewBeans as the basis of the content displayed. Usually, the JSP
page does not have any knowledge of the data contained within it and knows
simply how to render that data in a suitable format for the user.

When designing your application, it is important to remember that the IBM
Application Framework for e-business promotes the thin-client design
metaphor, which means that business logic is never contained within the
presentation layer of your Web applications, but rather resides on the server.
There are a number of benefits of this design technique:

• It allows for separation of development tasks. For example, JSP (GUI)
developers do not require a knowledge of the business logic or processes.

• It ensures that the business logic is server-based for easy maintenance.

• It encourages reuse of the server-side components.

• There are no distribution issues such as client JVM versions or browser
versions, since the client is simply a formatter of data.

Typically, JSP pages are displayed as a result of redirection by an interaction
controller: however, they may also be called directly via URL. This can be
seen more clearly in Figure 27 on page 113.
104 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

In the Marketplace Edition, you are no longer faced with the dilemma of
having to decide whether to use Net.Data or JSPs. All presentation-level
development is performed using JSPs.

7.6.3 Commands
Commands contain the business logic required for a particular request. This
logic represents a base unit of business logic and may involve database
access, sending an e-mail notification or communicating to enterprise
applications via a transport such as MQ Series. An example of some
Marketplace Edition commands are GetPrice and AddToCart. As part of
satisfying the request, commands often call other commands.

Commands in Marketplace Edition inherit from one of the following
superclasses:

• ModelCommand

ModelCommands are used to perform general business logic such as
querying and retrieving data from a database.

• ViewCommand

ViewCommands are used for commands that redirect to a JSP page and
they always contain the getPage() method. Both the CategoryDisplay and
ProductDisplay commands are derived from this class.

• ErrorCommand

ErrorCommands are used to return error conditions.

All commands in Marketplace Edition must implement two methods:

isReadyToCallExecute()

performExecute()

The life-cycle of a typical command is as follows:

1. The IC calls EMPCommandFactory.createCommand() to obtain a handle
to the appropriate command object.

2. The setter methods of the command object are called.

3. The execute() method of the command is called.

This calls the EMPCommandTarget which eventually calls the
isReadyToCallExecute() and then the performExecute() methods on the
command implementation.

4. The getter methods are called to extract the data obtained by the
command.
Chapter 7. Application design guidelines 105

When structuring commands you should, as a general rule, implement the
IC/command sequence for any requests involving a write to a database. For
other read-only tasks, you can typically access the bean directly such as
accessing the static beans CategoryBean or PriceBean from within a JSP.

7.6.4 Command factory
The command factory is responsible for two core interactions with the
interaction controller:

1. To facilitate looking up and returning the appropriate command object for a
request made to it by an interaction controller. The command factory is
aware of the available commands.

2. To govern and enforce the security policies associated with each
command object. Because each command has authorization information
associated with it via the Marketplace Edition administration interface, the
command factory permits or denies access to the command based on this
information.

7.6.5 DataBeans
DataBeans contain formatted data that can be easily displayed in a JSP
page. Typically, DataBeans are instantiated and populated via a user request
for data.

DataBean objects are derived from the abstract parent class DataBean,
which governs the mandatory methods required to be implemented for all
derived DataBean classes. A useful feature of DataBeans is their meta-data
properties which describe the bean’s contents and structure.

DataBeans are classified into one of two groups:

• StaticDataBeans

The StaticDataBean is implemented when the returned data is always
“known” or is static. An example of a StaticBean is the CategoryBean
which is guaranteed to always returns the same data - name, description,
thumbnail image and so on.

• DynamicDataBeans

The DynamicDataBean is used where the returned data can yield variable
results such as extracting the attributes of completely unrelated product
types such as a piano and a Palm Pilot. The DynamicDataBean provides a
unified interface to explain the data it contains.
106 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

7.6.6 DataBean manager
The DataBean manager is responsible for selecting the appropriate command
to populate a request for a particular DataBean. Once it has identified the
command, it executes the command that subsequently instantiates and
populates the DataBean.

7.6.7 Net.Data
While not guaranteed to be the case for subsequent WCS releases, the use
of Net.Data macros in the WebSphere is still a prominent part of the order
subsystem in Marketplace Edition. However, there is now support for
interacting with the order subsystem through the Java-based methods
described previously.

Net.Data or JSPs?
Should you chose JSPs or Net.Data macros for implementation of your
presentation logic? As a general rule in the Marketplace Edition, you should
use the Java-based programming model where possible. For example, any
new pages that you design for catalog navigation, product display, or custom
functionality added to the site should be developed using JSPs, interaction
controller, and JavaBeans. This provides the most compatibility for
subsequent releases of WebSphere Commerce Suite products. However, the
default pages presented in the order process are created via Net.Data
macros, so to modify the presentation or functionality of these pages, you will
have to modify the existing Net.Data macros (files with a .d2w extension).

Some additional considerations regarding the use of Net.Data versus JSPs
are well summarized in User-to-Online Buying Pattern using WebSphere
Commerce Suite V4.1, SG24-6156. The considerations raised in this book
are:

• At this time JSPs might be slower than Net.Data macros, but there is a
patch, that enables JSP caching with the WebSphere Commerce Suite.
Once the page is cached, upon first usage, any further request will be
served faster.

• Net.Data macros are based on a scripting language and interpreted by a
CGI application. Net.Data generated pages are cached by the WebSphere
Commerce Suite.

• JSPs are Java-based pages, parsed by the server and compiled into
servlets. This approach accesses the latest technology of server-side
programming. Future releases of the WebSphere Commerce Suite will
fully implement Java Servlets and JSPs for all pages supported by
Net.Data.
Chapter 7. Application design guidelines 107

• A designer tool for Net.Data macros does not ship with the WebSphere
Commerce Studio.

• The WebSphere Commerce Studio provides a WYSIWYG designer for
JSP generation.

• With JSP pages you can use pure Java code. With this capability you can
access the Java-based application server and do further developments on
your system.

• Net.Data does not allow you to access the Java-based application server.
You have to develop your own C++ modules.

7.6.8 C++ programming model
The C++ programming model has been available since early Net.Commerce
days, and remains a major component of the Marketplace Edition. Essentially,
the C++ programming model gives us the ability to further customize the
default functionality provided with the Marketplace Edition. By developing our
own commands and overridable functions, we can override this default
behavior with our own logic.

In general, the process observed by Marketplace Edition is:

COMMAND calls a TASK which calls an OVERRIDABLE FUNCTION

These three components are described below:

• Commands

Typically, commands interact with tasks in the sense that they delegate
well-defined elements of business logic to a particular task which in turn
maps to a particular overridable function. However, commands are not
only limited to this construct and may call other commands.

• Overridable functions (OFs)

OFs represent C++ classes that allow us to write customized business
logic for a given task. OFs are invoked by the overridable function
manager.

An example of an OF is presented in Figure 24. This example is for WCS
4.1 and illustrates how to provide a discount for shopping orders that
exceed a particular amount. It is implemented for the
GET_ORD_PROD_TOT task.
108 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Chapter 7. Application design guidelines 109

Figure 24. Example overridable function

virtual bool Process(const HttpRequest& Req, HttpResponse& Res,
NC_Environment& Env)
{
const doubleDISCOUNT_PERCENTAGE = 10.0;
const doubleDISCOUNT_TOLERANCE = 200.0;

String SqlStatement;
Row SqlRow;
int sql_code = 0;
double order_prod_total = 0.0;
double disc_order_prod_total= 0.0;
bool bRc = false;

// Explicitly passed in for the GET_ORD_PROD_TOT process task
static const StringWithOwnership _ORDER_REF_NUM("ORDER_REF_NUM");
static const StringWithOwnership _CURRENCY("CURRENCY");
static const StringWithOwnership _PRODUCT_PRICE("PRODUCT_PRICE");

Figure 25. Example overridable function

• Tasks

Unlike commands and overridable functions, tasks are not actual pieces of
code but rather a specification for the communication between a command

// Get the Order Ref number from the Environment
const String& OrderRefNum = (const String&) *Env.Seek(_ORDER_REF_NUM);

// Select just the product total for each product in the order
SqlStatement.Clean();
SqlStatement << " SELECT oyprtot"

<< " FROM orderpay"
<< " WHERE oyornbr=" << OrderRefNum;

SQL S1(*DataBaseManager::GetCurrentDataBase(), SqlStatement.nnc_str());
if (S1.getNextRow(SqlRow) == ERR_DB_NO_ERROR)// should only be one row
{

// Get the total value of the order
SqlRow.getCol(1).getVal(order_prod_total);

}
else
{

sql_code = S1.getSQLrc();
error << indent << "ERROR Code " << sql_code << endl;
return(false);

}

// Compute the discount if the order is over the appropriate amt
if (order_prod_total >= DISCOUNT_TOLERANCE)
{

disc_order_prod_total = order_prod_total - (order_prod_total *
(DISCOUNT_PERCENTAGE / 100));
}

// Update the PRODUCT_PRICE explicit output parameter
String& ProductPrice = (String&) *Misc::CheckEnvironmentVariable(Env,
_PRODUCT_PRICE);

ProductPrice = disc_order_prod_total;
return(true);
}

110 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

and an overridable function. They define the inputs and output that a
command and overridable function must adhere to.

Using the system administration console, administrators can map different
overridable functions (instances of business logic) to a particular task for a
given organization within the e-Marketplace. Essentially, one command is
mapped to one or more tasks which can execute different business logic
depending on the organization.

Figure 26 demonstrates how these components work together in the
execution environment.

Figure 26. Interaction between command and overridable functions

Many modifications have been made to the C++ programming model to
support the Marketplace Edition. These modifications are quite low-level and
beyond the scope of discussion in this chapter.

The reference Commands, Tasks, Overridable Functions and Database
Tables, provided as part of the WebSphere Commerce Suite, Marketplace
Edition for AIX software is an excellent resource for understanding these
concepts more thoroughly.

7.6.9 External systems
A critical element in our Marketplace Edition application is integration. This
integration will often occur between:

• The e-Marketplace and the e-Marketplace back-office systems

URL

(HttpRequest,

HttpResonse)

Command
Business

Objects

Overridable

Functions

(OFs)Net.Data

Macro

Command

Manager

OF

Manager

T1

T2

Data
Chapter 7. Application design guidelines 111

• The disparate members of our e-Marketplace - the systems of buyers and
suppliers for example.

Integration becomes critical as we introduce the integrated runtime topologies
such as subset 2 and subset 3 discussed in Chapter 3, “e-Marketplace
runtime topology” on page 31. When considering these integration points, we
need to answer questions such as:

• Should we attempt real-time interfaces or batch mode operations, or
implement via a Web client interface?

• What is the speed of access to these systems?

• Are there connectors available to these systems or do we have to develop
them?

• What is the transport mechanism and is message delivery guaranteed?

• Should we use a simple point-to-point connection or a publish and
subscribe message broking metaphor?

• Is there the need to transform messages between these systems?

• What is our approach to the integrity of the “unit of work” where the tasks
in the unit could be distributed over various systems and locations?

These issues highlight just a few of the complexities when dealing with
external systems.

7.6.10 Putting it together
The diagram presented in Figure 27 shows the high-level relationships
between the Java application components described in the previous sections.
112 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Figure 27. Application components within Marketplace Edition

The entry point into the runtime system is either a WebSphere Commerce
Suite command URL, which invokes an interaction controller, or an explicit
JavaServer Page (JSP) request. This gives the Web site creator the ability to
use an interaction controller (IC) where appropriate or just wire JSP pages
together when an IC is not needed. As mentioned previously, an interaction
controller/command pair should always be used for requests that write to a
database and also for some well defined read-only interactions such as
CategoryDisplay or ProductDisplay where the JSP to display contains
dynamic data.

If a URL request is made that calls an interaction controller, the
EMPBaseServlet (called Base Servlet in the figure) is available to do some
necessary setup that all ICs need. The interaction controller will then use the
command manager to look up and instantiate the appropriate command, set it
up, and run it. In the case of a call to an explicit JSP page, every JavaBean on
the page needs a way be filled with the data it represents. This is done by
calling the BeanManager, from which you request to have the bean activated.
The BeanManager can be thought of as a generic internal interaction
controller that uses the command manager to map requests for bean data to
the commands that know how to fill them.

Base
Servlet

Presentation LayerPresentation Layer Mapping LayerMapping Layer Business LayerBusiness Layer

Command
Registry

Interaction
Controller

JSP
<bean>

Command
Factory

DataBean
Manager

Command Database

command
request

JSP
request

get com
m

and

activate bean

Bank

...

execute

execute

ge
tc

om
m

an
d

di
sp

at
ch
Chapter 7. Application design guidelines 113

7.7 Session management

We can define a session as a series of requests originating from the same
user, and the same browser. Because HTTP is a stateless protocol by design,
various techniques have been developed to maintain the application state
across multiple HTTP requests originating from the same user.

The two primary methods are:

• Cookies

• URL rewriting

The WebSphere Application Server implements the HttpSession API that
shields the programmer from the complexities of implementing these
techniques. Also, the WebSphere Administrator has various configuration
options for session management. These configuration options can influence
the application behavior, performance, and failover capabilities and as such,
should be given due consideration in the design of your applications.

7.7.1 Cookies and URL rewriting
The WebSphere Application Server can be configured to use cookies, URL
rewriting, or both to maintain sessions across multiple HTTP requests. With
both mechanisms WebSphere creates a session ID to identify a session
uniquely. With cookies, this session ID is sent back to the browser as a field
inside the cookie. With URL rewriting, the session ID is appended to the URL
and sent back to the browser. During subsequent requests the browser sends
the session ID back to the server as part of the cookie or the URL. The server
is responsible for retrieving this session ID from the HTTP request and using
it to obtain the proper HttpSession for this user.

Early in the high-level design phase it is important to decide whether your
application should be developed to support cookies, URL rewriting, or both.
Such a decision should be made based on the demographics of the end users
of the system. Some users configure their browsers to not accept cookies. If
you suspect this may be the case, consider supporting the URL rewriting
option. For the majority of applications we recommend using only cookies.
The WebSphere Application Server administration console provides a simple
way to configure your applications to support either or both of these session
management techniques. However, in order to maintain a session state using
URL rewriting, the underlying servlets and JSPs must be coded so that every
URL you send back to the browser is encoded with the session ID. This can
be achieved by using the following techniques:

• Encode all URLs in servlets and JSPs
114 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

This can be done using the HttpServletResponse.encodeURL(String url)

method. This method appends the session ID to the URL that is passed as
an input parameter. For example, if you have a servlet that does not
support URL rewriting and has the following code:

out.println(“ Example Link <a>”);

Then, in order to support URL rewriting, replace all such references to
URL links as shown below:

out.println(“<a href=\””);
out.println(response.encodeURL(“exampleLink.html”);
out.println(“\”> Example Link <a>”);

• Use HttpServletResponse.encodeRedirectURL(String url) to encode all
redirects.

• Do not include links to parts of your Web applications in plain HTML files.

In essence, to maintain a session state using URL rewriting, every page that
the user requests during the session must be converted to JSPs or servlets.
And all links inside such servlets and JSPs must be encoded using
encodeURL(). These requirements are necessary for URL rewriting to
maintain a session state, since all HTTP requests made by the user must
have the session ID appended to the requesting URL. From this discussion, it
is clear that the decision to support URL rewriting impacts the code
development significantly. This decision also has certain performance
implications, since all display pages, including static pages, have to be
converted to JSPs or servlets. This adds unnecessary runtime processing.
This also means that all static pages that could have been hosted by an
information Web server now need to be moved to the Web application server
node since all pages have to be converted to JSPs or servlets. Therefore it is
important to decide early in the high-level design whether you plan to support
URL rewriting.

7.7.2 Session persistence and clustering
Web application availability and performance can be increased by adding
duplicate Web application server nodes to the runtime topology. This is
achieved by using a load balancer to distribute Web requests across multiple
Web application servers. In such a scenario, if one Web application server
fails, the load balancer would recognize this event and forward all the
subsequent requests to the remaining Web application servers, which
increases the overall availability of Web applications. Performance should be
improved by distributing the load across multiple machines.
Chapter 7. Application design guidelines 115

The above scenario can be extended to provide failover support. This is
achieved by enabling WebSphere Application Server session persistence and
session clustering. When session persistence is enabled, the WebSphere
Application Server stores all session data in a JDBC-compliant relational
database such as DB2 or Oracle. This is achieved by inserting the session
data (name-value pair) into the database as a result of an
HttpSession.putValue() method and retrieving the same from the database as
a result of HttpSession.getValue() method.

The session persistence is automatically managed by the WebSphere
Application Server. Application programmers need not write any special code
for this session persistence to occur. However all objects that are being
inserted into the session pool must implement the serializable interface.
Session clustering is a mechanism where more than one instance of the
application servers share a common session pool. Essentially, a cluster is the
binding of two or more application servers that reside on separate nodes.
This allows servlets to execute on any one of these nodes and have access to
session data that was created by another node. The WebSphere Application
Server exploits its session persistence feature to implement session
clustering. Therefore, in order to enable session clustering, session
persistence must be turned on. Under this configuration, multiple application
server nodes would share the common session database. This allows for
session data created by one application server node to be accessed by
another application server node during subsequent interactions. All changes
to session data are committed to a common session database upon the
completion of servlet execution. The session data is still accessible
regardless of the failure of an individual node. This provides for complete
failover support.

In designing systems that exploit session persistence and clustering features,
we provide the following guidelines:

• Session persistence is implemented using a generalized persistence
mechanism in order to allow for various types of information to persist in
the session pool. Storing large amounts of data in such a generalized
session pool could result in performance degradation. Hence the session
pool must be used only to store data that is essential during subsequent
transactions.

• All objects that must be propagated across the cluster along with the
session and must be serializable. We recommend implementing the
serializable interface for all objects that you anticipate being stored in the
session pool. This allows for an easy transition of your applications to a
clustered environment.
116 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Further details on session management issues can be found at:

http://www.ibm.com/software/webservers/appserv/doc/v30/se/web/doc/begin_he

re/index.html

7.8 Application performance

While most performance gains are obtained at the infrastructure level, some
areas for performance improvement can be made at the application level and
should be considered when you are designing applications. One area of
concern to Net.Commerce programmers is how caching is implemented when
building a site with JSP pages.

7.8.1 JSP caching
In Net.Commerce and optionally in the WebSphere Commerce Suite 4.1 (if
using Net.Data rather than JSP), there were a number of options available to
the site administrator regarding caching of HTML pages. This provided for
significant performance increase in page load times because a typical user
request for catalog data has usually be requested previously and therefore
resides in the cache. .

When writing applications with the Marketplace Edition, they will usually be
developed using the Java programming model - JSPs, servlets and
JavaBeans. However, the result of this is that page content is dynamically
generated for each response document issued from the server to the client.
This means that the same product page output requested potentially millions
of time by users must be regenerated each time a request is made for it.

7.8.2 Integrated buyers and suppliers
The integration of buyers and suppliers is an important aspect of an
e-Marketplace and one that you should consider in your application design.
The design decisions in this area could have a large impact on the site
performance, particularly if the e-Marketplace implements real-time
integration of these systems.

This book does not deal with the integration of buyers and sellers.

7.9 Security

An important aspect to a successful e-commerce site is security. Your
customers will be concerned with the security of their personal information as
it is transmitted across the Internet and as it is used throughout your order
Chapter 7. Application design guidelines 117

processing environment. In addition, you should be concerned with securing
your information assets and systems.

The WebSphere Commerce Suite provides features to help you implement
your security strategy. The security topics discussed briefly in the following
sections include:

• Authentication

• User registry

• Access control

The WebSphere Commerce Suite supports client certificate logon as a
security mechanism, protecting both the Web site and customer. During the
configuration of the WebSphere Commerce Suite, you can specify either
basic authentication (a user ID and password) or X.509 certificate
authentication, which is an electronic certificate arranged through an external
certificate authority to handle electronic authentication of X.509 certificates.

The security concept depends on the business and the security directives of
the company.

7.9.1 Authentication
In order to conduct business online, two (or more) parties typically interact.
The concept of authentication is the ability for these parties to trust the
identity of the other (in other words, each party is who they say they are). The
WebSphere Commerce Suite provides the following two modes of
authentication:

• Basic

If you select to use the basic mode of authentication (the default mode),
users have a logon ID and password registered in the WebSphere
Commerce Suite server user registry.

• X.509

The Marketplace Edition supports client certificate logon as a security
mechanism, protecting both the site and the customer. The X.509
certificate supplements basic authentication for customers entering a site.

A customer holding this certificate can access a secured WebSphere
Commerce Server site, which has been enabled for client certificate
authentication.

Before you can begin using X.509 certificates, you must arrange for a trust
relationship with external certificate authorities to handle electronic
118 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

authentication of X.509 certificates. Certificates are provided by certificate
authorities, which can be found on the Web.

7.9.2 User registry
To interact with your site, users may need to register with the site. Unlike the
WebSphere Commerce Suite, the Marketplace Edition enforces the use of
Lightweight Directory Access Protocol (LDAP) in user registration and
subsequent authentications to the e-Marketplace.

Lightweight Directory Access Protocol (LDAP)
LDAP is a client/server protocol for accessing a directory service. It was
initially used as a front-end to X.509, but can also be used with stand-alone
and other kinds of directory servers. LDAP can be used as a centralized
information repository to support information sharing among various clients.
LDAP provides a standard way to authenticate users and manage
information. This allows you to create a solution in which a user can register.

LDAP is implemented within the Marketplace Edition by using the IBM
SecureWay Directory product.

7.9.3 Command access
Access to commands in Marketplace Edition is governed by the
Administration interface. For commands, you need to consider who is
permitted to execute the command - all buyers, buyers with particular
geographic or demographic constraints, or administrators. In the first case,
you can forgo access control altogether. In the other two cases, your
command must implement access control properly.

All commands issued through a URL can contain the optional parameter
merchant_rn. If this parameter is specified, its value is the merchant reference
number. The behavior for this optional parameter is one of the following:

• The WebSphere Commerce Suite separates commands into two different
categories: commands that require resources specific to a merchant (for
example, the CategoryDisplay command) and commands that do not
depend on any merchant resources (for example, the AddressForm

command). The command security form within the WebSphere Commerce
Suite allows administrators to specify SSL enablement for a command and
user authentication; however, due to the internal distinction of WebSphere
Commerce Suite commands, a command such as CategoryDisplay would
produce the correct merchant-specific command security behavior,
whereas a command such as AddressForm would give the mall level
command security behavior. To ensure that the merchant-specific
Chapter 7. Application design guidelines 119

command security behavior is always applied, include the merchant_rn

parameter and value.

• If a command such as ProductDisplay has its command security set
such that authentication is required, then if the command is executed via a
non-authenticated mode, the user is directed to the merchant-specific
LOGON_ERR exception task page or the mall level LOGON_ERR
exception task page. To direct users to the merchant-specific
LOGON_ERR page, include the merchant_rnparameter and value. You can
set up the merchant-specific LOGON_ERR task page by using the task
management form within the WebSphere Commerce Suite Administrator.

The Web is an open environment. Users can observe URLs that are issued
and play with them. They can modify them to try to confuse the system,
change the values for some parameters, re-issue the same command multiple
times, or issue a given command in a different context. Finally, always
remember that only trivial systems can be made absolutely safe, and
although we have documented some issues, there are potentially many
others that we are unaware of at this time. By having a solution that is well
designed however, you could be in a position where you could respond
quickly to a security exposure, and implement a fix rapidly.

In summary, here are some known issues that you can guard against:

• Your command must have integrity

• Cross reference its parameters

• Have proper access control defined for it

• Guard against common attacks

7.9.4 Integrity
Integrity means that your command needs to be executable - regardless of
the state of the system. Although most of the time your command will be
designed to work in concert with others, being on the Web means that anyone
could issue a URL for your command at any time. Always make sure that your
environment is in the proper state, or that you can bring the system back into
a proper state, before continuing. For instance, the OrderDisplay command
will always recompute and lock the order completely before allowing a view to
display it. You could execute this command at any time during the shopping
process, and the result would always be correct. The OrderProcess command
can only be called if the order has been properly locked first, and if it is called
in any other condition, an error is returned.
120 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

You should also be prepared for the repeat scenario in which the same
command is called more than once in a row: it is always possible for a user to
use the Back button, and re-issue the same command a second, third or
fourth time. Be sure to well define the semantics of such an action. For
instance, calling OrderProcess a second time causes an error, whereas calling
OrderItemAdd a second time simply adds the product again to the order.

7.9.5 Cross referencing
Cross referencing means that all the data you receive should be checked
against each other. For instance, your command could receive a product
number, and a merchant number, and assume that the product mentioned
belongs to the merchant passed. Do not assume; make sure. When you look
up the product from the database, simply use the merchant ID to further
constrain the query. If the two parameters do not agree, then you have a
system error and you can simply return false. In this case either the calling
page was not coded properly, or someone is playing around with the site,
which means that it is OK to return the system error page.

For another example, consider a ticketing system where particular events are
modeled using categories. When a user requests tickets, you might have a
situation where your back-end system expects the tickets to all belong to the
same event (that is, you cannot order tickets for multiple events at the same
time). In this case, you have to cross reference the products you receive to
make sure they belong to the same event. Never think that the set of pages
put together to access your site is the only way that a user can call your
commands.
Chapter 7. Application design guidelines 121

122 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Chapter 8. Application development guidelines

In this chapter we discuss proven guidelines for managing a successful
Internet application development project.The application development project
road map is a set of work products that will help in the documenting of the
application design and help in the management of the application
development.

8.1 The application development project road map

The application development project road map provides a structured way to
run a successful development project. It will not work for every type of
application development, but we found that it works well on developing
complex e-business and Internet solutions.

The project road map is a set of working documents that answer questions
about the actual Internet applications to be created. These documents will
help you in gathering requirements, designing the applications that adhere to
the customer’s requirements, tracking the development of the source code,
and tracking the testing and deployment of a new Internet application.

8.1.1 Project plan
The project plan should list all the applications that will be developed, with a
start date and end date for each application.

8.1.2 Business requirements
The business requirements are typically gathered from the customer,
including an assessment of the risks that are involved in doing an Internet
development effort.

8.1.3 Application requirements
The application requirements are based on the business requirements and
customer interviews and meetings.

8.1.4 Use cases model
The use case model describes the functional requirements of the system that
is being developed. Use case diagrams use graphical symbols and text to
specify how users in specific roles will use the system. They do not describe
how the system works or its internal structure and logic. A sample use case
diagram is shown in Figure 28
© Copyright IBM Corp. 2000 123

Figure 28. Use case diagram

A use case diagram includes:

• Actors (name, description, status, subclass, superclass and
associations).

• Use cases (number, subject area, business event, name, overview,
preconditions, description, associations, inputs, outputs traceable
to, usability index, and notes).

• Communication associated between actors.

• Relationships between use cases.

• Outcome of processes and error messaging.

• Use case scenarios (number, termination outcome, description, and
notes).

• Problem domain concept definitions.

• System decision table and decision map.

• Event table and map.

• System sequence diagram.

Hub Level Online Reports

Org Admin

Hub Admin

Organization Level Online Reports

Hub Level Offline Report

Save as XML
124 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

A use case diagram establishes the boundaries of the proposed software
system and fully states the capabilities to be delivered to the user. Together
with the business requirements and the application requirements it fully
documents the functionality of the application to be delivered.

8.1.5 Conceptual diagram
A conceptual diagram shows how each part of the application will interact
with each other. Typically an application architect will use a modelling tool
that uses UML (Unified Modelling Language) to produce this document.
Figure 29 shows an example conceptual diagram.

Figure 29. Conceptual diagram

8.1.6 Class diagram
A class diagram interprets business, user and system requirements and
develops an overall model of what is expected of the software. A good class
diagram will achieve the following goals:

• Determine the system boundaries in the context of the objects that make
up the system.

• Help in allocating the workload between the objects and the applications.

• Create a starting point for adding new layers to an existing system, or
adding new layers to the current application design.

• Help the overall verification of the analysis and design of the system.

• Enhance the quality of the design of the system by making the system
more manageable.

Web Page with Submit
Button

Submit
Button

1. Submit Data
2. Get Information from Database
3. Store Information in Object
4. Add Information to Database

1

Database

Application
Server

2

3

4

Chapter 8. Application development guidelines 125

• Improve the understanding of the design and system intent by the
development team and key customer personnel.

• Allow the actual system construction to be done both iteratively and
incrementally.

The class diagram is a structural representation of the software objects, and
the relationships between them, that are used to develop a system. Class
diagrams should include detailed descriptions of each of the components. If
the tool that you are using does not embed the description for each object in
your diagram, these descriptions should be documented elsewhere. The
class descriptions should include the number of instances for each class, the
average size of an instance, and the association volumetrics.The design used
for the conceptual view in the class diagram should remain technology
neutral. It contains all the classes found in the problem domain. The class
diagram is part of the logical design phase or “the how to” phase of the
application design. Factors such as concurrency and distribution,
coordination and sharing, transactions and persistence, user interface
capability, and system interfaces such as communication are also taken into
account when developing the class diagram. An example class diagram is
shown in Figure 30 on page 127.
126 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Figure 30. Class Diagram

8.1.7 Code review questionnaire
Code review questionnaires provide questions that you ask the application
developer to verify that the application was developed in accordance with the
customer’s requirements and adheres to the development standards.

8.1.8 Detailed test plan
The application test plan is used to organize application testing after the
initial development is complete. A good application test plan will have test
cases for each of the components of the application. Most of the time the
application developer and application architect will provide input to help
create the test plan.
Chapter 8. Application development guidelines 127

8.1.9 Deployment plan
The deployment plan provides a detailed schedule of events, expected
project duration, persons responsible, and event dependencies required to
ensure a successful cutover to the new system. The plan should minimize the
impact of the deployment on your team, production system, and overall
business routines. A good deployment plan anticipates most of the issues
you will face during deployment, where you will be vulnerable to the smallest
unforeseen glitch. The time you spend trying to obviate such problems is time
well spent and will be appreciated when the deployment team is in the midst
of the installation.

8.1.10 Maintenance plan
The maintenance plan outlines who will be responsible after the new
application have been developed, tested and deployed. This plan will show
who will be adding fixes and patches to the new application after it has been
deployed, and gives the users a point of contact to submit fixes and bug
reports.

8.1.11 The application development project road map reports
These reports help the project manager and the application architect manage
and report the status of the development effort to the customer.An example of
an application development project road map report is shown in Figure 31
128 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Figure 31. Sample application development road map report

The report shows the titles of the applications that will be developed, the
priority order in which the applications should be developed, the percentage
completed of each of the working documents, and an area for comments to
note any challenges that the development team is facing that could hold up
the development effort.

8.2 Development tool set

A good set of development tools can help the developer quickly write,
compile, and debug code. WebSphere Studio is a good tool when developing
Web pages and JavaServer Pages (JSP). When developing Java
applications for the e-Marketplace, VisualAge for Java is a good choice for a
Java IDE (Integrated Development Environment). VisualAge for Java provides
a project browser, object browsers, and an integrated debugger.

#

A
p

p
li

ca
ti

o
n

N
am

e

P
ri

o
ri

ty

1.
B

u
si

n
es

s
R

eq
.

2.
A

p
p

.R
eq

3.
U

se
C

as
e

4.
C

o
n

p
et

u
al

D
ia

g
.

5.
C

la
ss

D
ia

g
.

6.
C

o
d

e
D

ev
.

C
o

m
m

en
ts

D
ev

el
o

p
er

1 User
Registration

H DONE 20% 0% 0% 0% 0% will
be
late

2 Group
Registration

H DONE 30% 10% 0% 0% 0%

3 Buy Product M DONE 50% 20% 0% 0% 0%

4 Auction
Product

L DONE 10% 0% 0% 0% 0%

5 Offering M DONE 35% 0% 0% 0% 0%

6 Customer
Polls

H DONE 10% 0% 0% 0% 0%
Chapter 8. Application development guidelines 129

8.3 Source control

When a development project has more that one developer it is a good
practice to use a source control tool, which provides a way to version the
application code and a way for several developers to merge their code
together. Source control tools will also provide a centralized place for all
development code, which makes backups and deployment easier. Some
good source control tools are PVCS, Rational Clear Case, and the VisualAge
for Java Repository.

8.4 Testing

Testing is one of the most important parts of the development process. The
testing methods described here are produced in a separate process, possibly
by different team members in parallel with, or after, the coding phase. There
are five kinds of tests that we will discuss:

• Integration testing verifies proper execution of application components
and does not require that the application under test interface with other
applications. Communication between modules within the subsystems is
tested in a controlled and isolated environment within the project.

• Usability testing ensures that the final product is usable in a practical,
day-to-day fashion. Whereas functional testing looks for accuracy of the
product, this type of test looks for simplicity and user-friendliness of the
product.

• System tests verify proper execution of the entire application including
interfaces to other applications. Both functional and structural types of
tests are performed to verify that the system is functionally and
operationally sound.

• Stress testing processes of a large number of transactions through the
system in a defined period of time in order to measure the performance
characteristics of the system under peak load conditions. Stress factors
may apply to different aspects of the system such as input transactions,
report lines, internal tables, communications, computer processing
capacity, throughput, disk space, I/O and so on. Stress testing should not
begin until the system functions are fully tested and stable. The need for
stress testing must be identified in the design phase and should
commence as soon as operationally stable system units are available.

• Performance testing ascertains whether the system meets the desired
level of performance in a production environment. Performance
considerations may relate to response times, turn-around times
130 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

(through-put), technical design issues, and so on. Performance testing
can be conducted using a production system, a simulated environment, or
a prototype. Attention to performance issues (for example, response time
or availability) begins during the design phase. At that time, the
performance criteria should be established. Performance models may be
constructed at that time if warranted by the nature of the project. Actual
performance measurement should begin as soon as working programs
(not necessarily defect-free programs) are ready.
Chapter 8. Application development guidelines 131

132 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Chapter 9. System management guidelines

In this chapter we focus on the activities involved in systems management
and security. This chapter is organized as follows:

• General systems management guidelines

• Product specific systems management guidelines

• Security guidelines

• Backup and recovery guidelines

9.1 General systems management guidelines

Once the application development, testing and user acceptance of your
e-Marketplace application is complete, you will have to deploy and manage
the application in a production environment, which will require early planning.

We have categorized a set of post-implementation activities that have to be
performed on a routine basis as a part of system management. The system
management activities usually involve:

• Application management

• Performance monitoring

• Availability management

• Security management

• Disaster recovery

• Operating system and network administration

• Asset management

• Software distribution

• Problem reporting

• Change management

Each of these activities requires highly specific skills and professional
experience to perform them competently. Besides the skills factor, you will
also have to decide on a set of tools to perform the system management
activities.

Beyond the technical challenge that systems management poses, there is
also the added pressure from management. In many situations, you will be
bound by service level agreements (SLAs), which typically cover system
© Copyright IBM Corp. 2000 133

availability hours, system utilization and problem resolution response time.
These measurements will be collected, tabulated and reviewed on a regular
basis by management to ensure accountability and a well-maintained system.
Thus, you will also require reporting tools to facilitate the SLA review.

We recommend that you start planning early. Incorporate system
management requirements in the early phases of your design, since what you
design will affect how you eventually manage it. Conversely, the tools
available to manage your system also affect your application design.

In this redbook we consider the key system management activities related to
example in the WebSphere Commerce Suite, Marketplace Edition for AIX,
such as:

• Application management

• Performance management

• Availability management

• Security management

• Disaster recovery

9.2 Product-specific systems management guidelines

An e-Marketplace application created using WebSphere Commerce Suite,
Marketplace Edition for AIX is a combination of HTML pages, JSPs, servlets,
and JavaBeans. These resources will be deployed and managed in the
WebSphere Application Server and the WebSphere Commerce Suite,
Marketplace Edition for AIX environment. There are also other components in
an e-Marketplace application, such as the Web server, the DB2 UDB
databases and LDAP directory. You would also need to create reports for your
e-Marketplace site activities.

Software products needed for creating and maintaining an e-Marketplace are
covered in detail in Chapter 10, “Marketplace Edition overview” on page 195.
In this chapter we will provide some guidelines on system management tasks
for these products, including:

• WebSphere Application Server

• Site Analyzer

• WebSphere Commerce Suite, Marketplace Edition for AIX

• Secure Way Directory

• IBM HTTP Server
134 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

• IBM DB2 UDB

9.2.1 WebSphere Application Server Administrative Console
As mentioned earlier the WebSphere Commerce Suite, Marketplace Edition
for AIX contains components such as servlets, JSPs, JavaBeans and HTML
pages. These components are considered Web resources to the
e-Marketplace Web application. Web resources that make up a Web
application require a Web application server environment to be deployed,
configured and executed. The WebSphere Application Server provides this
environment. For optimum availability and performance these Web resources
need to be managed and maintained by the WebSphere Application Server.

The WebSphere Administrative Console is used to manage, deploy and
configure the Web resources. In our discussion, we will refer to some
WebSphere specific terms shown in Table 8.

Table 8. Description of WebSphere terms

The WebSphere Application Server uses core underlying services such as
the servlet engine, EJB engines, security application and cluster models
residing in the application server. These services manage the Web resources
and applications that are hosted by the WebSphere Application Server.
Depending on application requirements, you may be managing a single
stand-alone application server or multiple application servers that support
failover capabilities.

Using the WebSphere administrative model, you can manage, combine,
secure, and distribute servlets, enterprise beans, JSP files, and Web pages.

9.2.1.1 Administrative Console and terminology
The WebSphere Application Server provides administrators with a single
system view of applications and resources through the WebSphere

WebSphere Terms Description

Web resources Refers to servlets, JSPs, JavaBeans and
HTML pages.

Web application Application consisting of Web resources.

Enterprise application Application consisting of Web applications
and EJBs.

Application server A JVM runtime service that handles user
requests from enterprise and Web
applications.
Chapter 9. System management guidelines 135

Administrative Console. Resources can be administered locally or remotely
by the administrator using the WebSphere Administrative Console.

Figure 32 displays the WebSphere Administrative Console.

Figure 32. WebSphere Administrative Console

The WebSphere Administrative Console enables administrators to access the
administrative server on each node in the administrative domain and provides
a view of the domain's topology. It supplies task wizards for managing and
combining resources in the topology. The Administrative Console provides
three views to facilitate the administrative functions. You can use the tabs in
the navigation area to access each view. The three views are

• Tasks: This view provides access to all the administrative tasks, in three
major categories:
136 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

- Configuration tasks: This allows you to perform initial configuration of
anew application server.

- Performance tasks: You can use the Resource Analyzer to monitor the
performance of your resources.

- Security tasks: Under this task you are able to configure security for
your application.

• Types: This view displays a hierarchy or tree view of the potential
resources that can exist on a physical machine in the administrative
domain. You can see all the configurable items and how many of each kind
already exists. You can see the default properties of each type of resource
and you can see the relationships among objects in the administrative
domain.

• Topology: The topology view displays all managed nodes in the
administrative domain, and for each node, a hierarchy of existing
resources associated with that node.

In the WebSphere administrative model, there are several terms that are
used frequently:

• Node

A physical machine that contains Web resources is called a node.

• Administrative Server

All the Web resources of a node is administered by an administrative
server.

• Administrative Repository

All data for a given node and its administrative data is stored in an
administrative repository, typically a DB2 database. The person installing
IBM WebSphere Application Server specifies which administrative
repository a given administrative server will use.

• Administrative Domain

If more than one node is administered by an administrative server,
typically all node information is stored in one administrative repository,
allowing the nodes to know about existence of other nodes so that if
desired, nodes would distribute applications among themselves. This type
of arrangement is called an administrative domain.

• Topology

A topology is the collection of all the nodes and their resources in an
administrative domain.
Chapter 9. System management guidelines 137

• Administrative Resources

The resources on a node, such as servlet class files and enterprise bean
JAR files, are represented as administrative resources in the
administrative domain. An administrative resource, such as a servlet,
holds configuration information about a "real" resource, such as a servlet
file installed on a node. It provides a way to start, stop, and otherwise
manage the real resource, perhaps remotely.

• Containment Hierarchy

The topology of the administrative domain arranges the nodes and the
resources within each node in a hierarchical structure referred to as the
containment hierarchy.

9.2.1.2 Relationships among administered resources
The containment hierarchy represents a parent child view of resources within
a node and the nodes within an administrative domain. The concept of
containment hierarchy is relatively simple: in order to have a child a parent
must exist. A very close analogy is a directory/file structure. A directory must
exist in order to place a file in it.

In the WebSphere Application Server administrative domain context, some
specific rules exist. For example, in WebSphere Application Server, an
application server resource contains a servlet engine and one or more EJB
containers.

The servlet engine contains one or more Web applications, each of which
contains one or more servlets. The EJB container contains enterprise beans.

We cannot add a servlet to the administrative domain unless a Web
application exists in which to place the servlet. Similarly, an application server
and servlet engine must exist to support the Web application containing the
servlet.

We will discuss the containment hierarchy for all resources in 9.2.1.4,
“Resources you can administer” on page 140.

It is a feature of the containment hierarchy that an application server can
contain only one servlet engine.

Note
138 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

9.2.1.3 Administrative tasks
This section discusses the general administrative tasks that can be carried
out using the IBM WebSphere Application Server including:

• Performing daily administrative operations

Day-to-day administration involves:

- Ensuring that resources are available (running).

- Starting and stopping servers and servlets as necessary.

- Making incremental adjustments to the configurations of resources in
the administrative domain.

Modifications can be small, such as granting permissions to access a new
application, reinstalling an enterprise bean after changing its JAR file, or
changing the frequency with which servers are queried to determine their
state.

Large-scale modifications can include introducing new resources into the
domain or redefining the mix of resources in an application.

• Configuring applications and their components

When a servlet, enterprise bean, Java Server Pages (JSP) file, and Web
page that work together to perform a particular business logic function,
this combination of Java and Web components is called an enterprise
application. The WebSphere Application Server provides administrative
support for defining and managing enterprise applications and their
components. After configuring an application, you can use the
administrative facilities to start and stop the application as a logical unit.
For example, when you start an application, all of the application's
components (servlets, enterprise beans, and so on) start, too. You do not
need to start each component of the application separately.

• Controlling access to applications (security)

After configuring applications, you will likely want to limit access to them.
For example, the public should not be permitted to use an application that
accesses a database containing sensitive company information. The IBM
WebSphere Application Server lets you establish and enforce
authentication, authorization, and delegation policies to control access to
your applications.

• Analyzing usage statistics and performance

Resource analysis tools can be used to review current and historical
information about resources in the domain. You can monitor performance
and load statistics for servlets, enterprise beans, sessions, database
connection pools, and server resources.
Chapter 9. System management guidelines 139

• Optimizing performance

Resources in an administrative domain can be cloned to improve
performance or availability. For example, application servers can be
cloned to form a server group (a collection of identical instances of
application server processes).

Cloning application servers improves the throughput of client remote
method invocations by distributing the load among the members of the
group. It also improves availability and can prevent a single point of
failure.

You can also use cloning to simplify configuration tasks. For example, you
can configure a resource, test the configuration, and then duplicate the
resource for use on other nodes in the domain.

• Troubleshooting

You can:

- Monitor transactions, forcing outcomes when necessary

- Analyze resources such as servlets and enterprise beans

- Trace and debug applications

- View traces, logs, and messages

9.2.1.4 Resources you can administer
This section provides an overview of the administrative resources you can
use the WebSphere Administrative Console to manage.

Some administrative resources represent Java component files on your
system, such as servlets and enterprise bean JAR files. Other administrative
resources provide support for managing, combining, distributing, and
securing these components -- resources such as Session Managers, and
servlet redirectors.

Although the administrative domain is comprised of resources, the
WebSphere Administrative Console provides task wizards. You can take a
task-oriented approach or an resource-oriented approach, or both.

The administrative resources found in the administrative domain's
containment hierarchy include:

• Nodes

Use nodes to specify machines to which you can distribute servers,
servlets, enterprise beans, applications, and other resources for workload
management.
140 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Nodes are physical machines in an administrative domain. Each node
must contain an administrative server. In this way, a node also represents
the administrative server process on the node. For example, the
administrative console can show that the node resource is in the "running"
state. That indicates not only that the physical machine is running, but that
the administrative server on the machine is also running. The
administrative server must be running in order for the node to be active
and operational in the administrative domain.

In the containment hierarchy, nodes contain application servers, generic
servers, servlet redirectors, and the children of these resources.

Nodes are contained by the administrative domains to which they belong.

• Servlets

Use servlets to manage servlet files individually and include them in
applications.

A servlet is a Java program that uses the Java Servlet Application
Programming Interface (API) and associated classes and methods.
Servlets extend a Web server's capabilities by providing request and
response services to clients.

In the containment hierarchy, servlets do not contain any other resources.

Servlets are contained by Web applications. In fact, a servlet must be part
of a Web application, even if the Web application is comprised of the
single servlet.

• Web applications

Use Web applications to put together a combination of one or more
servlets and Web resources (JSP files, Web pages, and Web paths for
servlets).

A Web application is a group of servlets, and perhaps JSP and HTML files,
that share the same servlet context and can be managed as a unit.

In the containment hierarchy, Web applications contain servlets. Note, that
Web applications can "contain" Web resources, but Web resources are
located under virtual hosts in the containment hierarchy.

Web applications are contained by servlet engines.

• Servlet engine

Use servlet engines to extend your Web server's capability to handle
requests for servlets and the applications and Web applications that
contain them.
Chapter 9. System management guidelines 141

A servlet engine is a program that runs within an application server,
processing requests for servlets, Java Server Pages (JSP) files, and other
types of server-side include coding. The servlet engine creates instances
of servlets, initializes them, acts as a request dispatcher, and maintains
servlet contexts for use by applications.

Servlet engines contain Web applications.

Servlet engines are contained by application servers.

• Application servers

Use application servers to extend your Web server's capabilities to handle
requests for enterprise beans, servlets, Web applications, and the
applications that contain them.

An application server consists of a Java Virtual Machine (JVM)
configuration and an Enterprise JavaBean server process for hosting
Enterprise JavaBeans and applications comprised of enterprise beans
and other resources.

The "application server" should not be confused with the “IBM WebSphere
Application Server" product. The product can include one or more
application server processes for each machine on which it is installed.

In the containment hierarchy, application servers contain EJB containers
and Enterprise JavaBeans.They can also contain servlet engines (one per
application server) and their children.

Application servers are contained by nodes. Multiple application servers
can exist on the same node.

• Enterprise Beans

Use Enterprise JavaBeans to configure Enterprise JavaBean JAR files you
want to manage individually or as part of applications.

An Enterprise JavaBean represents a deployed Enterprise JavaBean. An
Enterprise JavaBean is a Java component that can be combined with
other Enterprise JavaBeans and Java components to create a distributed,
client/server application. There are two types of Enterprise JavaBeans. An
entity bean encapsulates permanent data, which is stored in a data source
(database), and provides associated methods to manipulate the data. A
session bean encapsulates ephemeral (nonpermanent) data and business
logic associated with a client session.

In the containment hierarchy, Enterprise JavaBeans do not contain other
resources.

Enterprise JavaBeans are contained by EJB containers.
142 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

• EJB containers

Use EJB containers to configure container support for Enterprise
JavaBeans.

An EJB container is a runtime resource used to contain and host
Enterprise JavaBeans. Properties on the container are used to fine tune
the runtime to the requirements of the enterprise beans.

In the containment hierarchy, EJB containers contain Enterprise JavaBean
resources.

EJB containers are contained by application servers.

• Enterprise applications

Use enterprise applications to put together a combination of one or more
Enterprise JavaBeans, servlets, JSP files, and Web pages.

An enterprise application is a collection of Enterprise JavaBeans and
servlets that represent a user application.

In the containment hierarchy, applications do not contain other resources.
This might seem counter-intuitive because applications are comprised of
other resources in the administrative domain, such as servlets and
Enterprise JavaBeans. The resources comprising an application reside in
different areas of the containment hierarchy. For example, the servlets
reside in a Web application under a servlet engine, and the Enterprise
JavaBeans reside in a container under an application server.

Applications are contained only by the administrative domain, indicating
that applications are not associated with particular nodes in the domain.

• Data sources

Use data sources to configure and pool database connections, saving
administration time.

A data source resource represents the logical name of a JDBC-enabled
database used by entity beans to store persistent data. Data sources
shield the Enterprise JavaBean developer from the underlying physical
location of the database. A data source is associated with a driver
resource; a driver can have many data sources associated with it.
Applications use data sources by looking them up in the Java Naming and
Directory Interface (JNDI) name space.

In the containment hierarchy, data sources do not contain other resources.

Data sources are contained only by the administrative domain, indicating
that data sources are not associated with particular nodes.

• JDBC drivers
Chapter 9. System management guidelines 143

Use JDBC drivers to specify the location of the Java code for your
database's JDBC driver.

A JDBC (Java Database Connectivity) driver resource represents the
installation of a database JDBC driver on a node.

In the containment hierarchy, JDBC drivers do not contain other
resources.

JDBC drivers are contained only by the administrative domain, indicating
that JDBC drivers are not associated with particular nodes.

• Models

Use models to copy administrative resources and optionally distribute the
"clones" (copies) to remote machines.

A model is an active template for creating clones of a server or other
resource. Cloning can improve performance and availability by distributing
the load among nearly identical copies of an administrative resource. The
model and clones can be administered efficiently because changing the
model settings automatically propagates the same changes to the clones.

In the containment hierarchy, models do not contain any resources.

Models are contained only by the administrative domain because models
are not associated with particular nodes.

• Servlet redirectors

Use servlet redirectors to route servlet requests to nodes remote to the
Web server.

A servlet redirector is a process that uses Remote Method Invocation
(RMI) over the Internet Inter-ORB Protocol (IIOP) to distribute servlet
requests to servlets on machines remote to the Web server.

In the containment hierarchy, servlet redirectors do not contain any other
resources.

Servlet redirectors are contained by nodes.

• Virtual hosts

Use virtual hosting to isolate applications. You can make a physical host
(node) seem to be multiple hosts, each hosting its own content separately
from the others.

A virtual host is a servlet host that maintains a list of one or more Web
applications to which it routes HTTP requests that the servlet engine
passes to it. The virtual host also maintains a list of Multipurpose Internet
Mail Extensions (MIME) types that it can process.
144 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

In the containment hierarchy, virtual hosts contain Web resources (see
below).

Virtual hosts are contained only by the administrative domain, indicating
that virtual hosts are not associated with particular nodes.

• Web resources

Use Web resources to define served paths for servlets, JSP files, and Web
pages.

A Web resource is a path representing a point of content on the Web,
including text, video or sound clips, images, or programs. The most
common Web resource is a Web page address -- a Uniform Resource
Locator (URL), although a Web resource can represent a "served path" of
a servlet or JavaServer Pages (JSP) file.

In the containment hierarchy, Web resources do not contain any other
resources.

Web resources are contained by virtual hosts. They can be associated
with applications and Web applications on various nodes.

• Session managers

Use session managers to relate user requests into logical sessions that
support interactive, personalized Web site visits.

A session manager is a process that stores state information about
servlets. The session manager tracks and ties together multiple servlets
into a session cluster so that data can be shared among applications

In the containment hierarchy, session managers do not contain any other
resources.

Session managers are contained by servlet engines. Each servlet engine
can have one session manager.

• User profiles

User profiles maintain information about visitors to your Web sites, such
as name, e-mail address, and preferences.

User profiles do not contain any other resources.

User profiles are contained by servlet engines. Each servlet engine can
have one user profile resource, which manages user profiles for all
servlets in that servlet engine.

• Generic servers

Use generic servers to manage non-WebSphere processes within your
WebSphere administrative domain.
Chapter 9. System management guidelines 145

A "generic" server is a managed process, meaning a process that is
invoked and monitored by the administration infrastructure. For example,
you can add CORBA servers, RMI servers, and C++ servers to the
administrative domain so that you can start and stop them in unison with
the applications they support.

In the containment hierarchy, generic servers do not contain other
resources.

Generic servers are contained by nodes.

9.2.1.5 Configuring default values
The previous section discussed the many types of resources you can
configure in an administrative domain. This section discusses a few important
points about configuring resources.

• Each resource has custom and default properties.

• Some configuration changes do not take effect immediately, and can be
performed in batches.

• Most properties are not required.

The IBM WebSphere Application Server Version 3 installation program
provides a "default administrative configuration" option that populates the
administrative domain with administrative resources such as a default
application server. The option is part of the custom installation.

In the containment hierarchy, most administrative resources have a required
parent. The default configuration provides many of these parents (containers)
that support your servlets and enterprise beans. For example, in the
administrative domain:

1. A servlet must be contained by a Web application.

2. A Web application must be contained by a servlet engine.

3. A servlet engine must be contained by an application server.

4. An application server must be contained by a node.

Without the default configuration, you would need to configure application
server, servlet engine, and Web application resources before configuring a
single servlet.

With the default configuration, you can immediately configure your servlet.
You can specify that it will be contained by the default application server,
servlet engine, and Web application, at least until you are ready to configure
your own versions of these prerequisite resources.
146 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

The default configuration includes an application server (default server),
container (default container), application (default app), and so on. These
resources can be found in the Topology tree on the Topology tab.

If you find that the default configuration was not installed, see the Getting
Started book for a discussion of your options for acquiring the default
configuration.

If you are inexperienced with the Version 3 administrative model, it is highly
recommended that you install and use the default administrative configuration
in your development environment, and in your production environment if it
suits your needs.

9.2.1.6 How centralized administration works
This section discusses how the configurations you specify are kept in the
administrative repository for centralized administration.

WebSphere Application Server provides centralized administration of
application servers, servlets, and other resources. An administrative server
tracks a domain's contents and activities by maintaining an administrative
repository. The repository is the database of information about an
administrative domain and can be shared by several administrative servers
on multiple nodes in the domain.

Each resource in the WebSphere administrative domain corresponds to an
object in the repository. For example, when you create an application, a
corresponding application object is created in the repository. In this way, the
administrative repository contents mirror the contents of the administrative
domain.

The repository contains descriptive information about the resources that are
configured to run on each node in the domain. For example, the repository
contains the names of application servers, the node each server is running
on, the enterprise beans installed in each server, and each server's current
state (running, for example).

The repository allows you to administer the domain from any machine. All
information is stored in a central location. Each administrative server has a
central view of configuration information about all resources in the domain.
When you modify a resource's configuration, the changes are seen by all
administrative servers.

The resources in a WebSphere administrative domain are represented in the
administrative repository as entity beans with container-managed persistence
Chapter 9. System management guidelines 147

(CMP). The persistent data associated with a resource (for example, the
name, current state, and working directory of an application server) is stored
in the administrative repository.

Administration occurs through method calls to resource beans in the
administrative server. A graphical administrative client (the WebSphere
Administrative Console) makes requests on your behalf to an administrative
server to access or modify a resource in the domain. An administrative server
also communicates with other, remote administrative servers to delegate
tasks and to respond to requests.

In the administrative server, session beans invoke methods on the resource
beans. For example, you can start, stop, ping, and modify application servers
in the WebSphere Administrative Console, which in turn invokes methods on
the resource beans for the application servers.

To learn more about this topics please read the WebSphere Application
Server Administrative Console online help.

9.2.2 Site Analyzer
IBM WebSphere Application Server Site Analyzer Version 3.0.2 is not one of
the core components of the e-Marketplace applications but it is an excellent
tool that provides analysis features and customizable reporting options that
help you improve your Web site content and performance (content analysis),
as well as better understand how a site is used by its visitors (usage
analysis). Using Site Analyzer, you can quickly and easily report on
everything from aggregate page sizes and broken links to site visit
information and errors.

You can customize how your data is viewed by tapping into a set of
predefined report elements or building custom reports that collect information
specific to a site. Site Analyzer stores information in a built-in database,
providing scalability and letting you create trend reports that show Web site
content and usage growth, and change over time.

9.2.2.1 Site Analyzer configuration
Site Analyzer uses a client/server configuration. The server portion performs
content and usage analysis and the client portion displays results of these
analyses.
148 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

The client, server, and database portions can be installed on one machine
(Personal Configuration) or on multiple machines (Workgroup Configuration).
In the Workgroup Configuration, one machine is the server, and one or more
other machines are the clients. For more information about IBM WebSphere
Application Server Site Analyzer please refer to the IBM WebSphere
Application Server online documentation.

9.2.2.2 Starting Site Analyzer
If you are using the DB2 Database provided with Site Analyzer, when you get
to the Database panel of the wizard that opens when you first start the Site
Analyzer server, enter jdbc:db2:sadata for the local database URL or
dbc:db2://fully_qualified_host_name/sadata for the remote database URL
(where fully_qualified_host_name is the hostname of your server).

If you are using a previously installed copy of IBM DB2 UDB (local or remote),
you must set up your system so DB2 will work with Site Analyzer before
starting the Site Analyzer server.

Starting the Site Analyzer server
If you are using a DB2 database not installed by Site Analyzer, make sure you
have modified the wssas script to refer to the correct DB2 instance. In order for
a remote Site Analyzer client to access the Site Analyzer server, you must
start the DB2’s db2jstrt application on the DB2 machine. This application
uses a port number as on optional parameter. Here are the steps to start the
Site Analyzer on AIX:

1. Enter su - <iname>

where iname is the db2 name specified during installation, db2inst1 by
default.

2. Enter ../sqllib/db2profile

3. Enter db2jstrt [port]

where port is any open port on the machine.

4. Enter exit

5. Enter cd /usr/WebSphere/SiteAnalizer

If you plan to perform usage analysis, you need access to your HTTP
server's log files. In addition, you might need to reconfigure the HTTP
server logs in order for Site Analyzer to process them correctly.

Note
Chapter 9. System management guidelines 149

6. Enter ./wssas

The first time you start the server a wizard for configuring Site Analyzer
opens. To change the settings for the server at a later date, you can use the
Preferences panel. On AIX the Preferences panel starts automatically when
you start the server. (Enter wssas at a command line prompt.)

Starting the Site Analyzer client
To start the client on Windows 95, 98, or NT:

1. Click the Start menu.

2. Select Programs.

3. Select IBM WebSphere.

4. Click on Site Analyzer 3.0.

As with the Site Analyzer server, the first time you start the client the startup
wizard walks you through setting general preferences.

Reporting
Generating reports is one of the main functions of the Site Analyzer. There
are a number of steps that are required to be taken before a report can be
generated and viewed. Details of report creation and generation is beyond
the scope of this book.

For more information please refer to the Site Analyzer online documentation
or visit:

Http://www-4.ibm.com/software/webservers/siteanalyzer/doc/help/sacontents.
html

9.2.3 WebSphere Commerce Suite, Marketplace Edition for AIX
The WebSphere Commerce Suite, Marketplace Edition for AIX provides a rich
set of commands, interaction controllers, JSPs and beans to create an
e-Marketplace. After an e-Marketplace is created,maintenance and
management of the site becomes a critical activity. As with WebSphere
Commerce Suite 4.1 the WebSphere Commerce Suite, Marketplace Edition
for AIX creates an instance that controls the configuration characteristics of

To avoid the configuration panel on AIX or Solaris, enter wssas -noconfig at
a command-line prompt. This starts the Site Analyzer server.

Tip
150 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

the e-Marketplace. Management and configuration of this instance is
achieved through the WebSphere Commerce Suite Marketplace Edition’s
Configuration Manager. On AIX the configuration manager can be started by
taking the following steps:

1. Enter cd /usr/lpp/CommerceSuite/server/bin

2. Enter ./start_config

The WebSphere Commerce Suite, Marketplace Edition for AIX also provides
a Web based interface, known as “ncadmin” to manage the characteristics of
your e-Marketplace site.

The following sections cover both these configuration and management
interfaces.

9.2.3.1 Configuration Manager
The Configuration Manager tool has a Java-based graphical interface that
lets you modify the way the WebSphere Commerce Suite, Marketplace
Edition for AIX is configured, without dealing with the intricacies of
syntax-sensitive configuration files. Configuration Manager also makes it
easy to control many of the administration tasks associated with the
WebSphere Commerce Suite, Marketplace Edition for AIX.

Use this tool to perform the following tasks:

• Create a new Commerce Suite instance

• Stop and start a Commerce Suite instance

• Delete a Commerce Suite instance

• Change the configuration settings for a Commerce Suite instance

When you are creating a new instance or changing the configuration of an
existing instance, the Configuration Manager displays a set of panels with
input fields for all the applicable parameters.

Figure 33 on page 152 shows the Configuration Manager’s instance
configuration main window with tabs to configuration panels.
Chapter 9. System management guidelines 151

Figure 33. Instance configuration window

In here we will discuss the configuration panels.

• Database

In this tab you specify all your database related information, such as
database name, database management system type, instance owner ID, a
user logon ID and a password, etc.

• Payment

Although you can configure your commerce instance to handle payments,
in reality in an e-Marketplace almost all payments are handled via
invoicing systems. If you have the requirement to enable payment please
refer to WebSphere Commerce Suite documentation for installation and
configuration.

• LDAP
152 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

In this tab you would specify your LDAP information. LDAP is a mandatory
component of a e-Marketplace application please refer to the installation
information in Appendix A, “Marketplace Edition installation guide” on
page 455 for the steps you need to take to enable LDAP correctly.

• Rule server

This tab allows you to enable Rule server. In an e-Marketplace instance
the Rule server is not configured and used.

• Rule services

This tab allows you to configure the rule services. In an e-Marketplace
instance there are no rule services configured and used.

• Web server

In this tab you specify information pertaining to your Web server.

• Instance Data

In this tab you specify your e-Marketplace application’s instance root path,
configuration file path, log file path and cache file path.

• Caching

In this tab you specify the type of caching used or if there is no caching.
We recommend that during your development phase you turn caching off
so that changes made to your categories and/or products would be
displayed without having to clear the cache files.

• Commerce Suite Server

In this tab you specify the name of your e-Marketplace instance, your
WebSphere data source and desired authentication mode.

For more information on these functions please refer to the WebSphere
Commerce Suite, Marketplace Edition for AIX online documentation.

The configuration parameters entered through the configuration manager are
stored in number of configuration files, they are httpd.conf, ncommerce.conf
scheduler.conf and srvrctrl.conf.

At the time this section was written, there were some configuration
parameters needed to be manually entered in the above-mentioned files.
These parameters are described in Appendix A, “Marketplace Edition
installation guide” on page 455. We recommend you refer to your WebSphere
Commerce Suite, Marketplace Edition for AIX product documentation for the
most recent information.
Chapter 9. System management guidelines 153

9.2.3.2 NCADMIN management
The WebSphere Commerce Suite, Marketplace Edition for AIX’s
Administrator allows you to create and maintain the characteristics of your
e-Marketplace site through a Web based interface. Unlike the Administrator in
WebSphere Commerce Suite 4.1, the Administrator in WebSphere
Commerce Suite, Marketplace Edition for AIX only provides Site Manager
functionality since the concepts of stores and Store Managers no longer
apply.

Site manager
The Commerce Suite Site Manager, referred to as the Site Manager, is a
collection of online forms that you use to manage some high-level functions
for e-Marketplace site. The person who manages these functions is called the
e-Marketplace administrator. Figure 34 on page 155 displays the Site
Manager window of the WebSphere Commerce Suite, Marketplace Edition for
AIX.
154 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Figure 34. Site Manger

Using the Site Manager the you can do the following:

• Access Policies: This form lists all access policies loaded in LDAP. You
may create new access policies or modify existing ones.

• Organization Admin: This form allows you to perform organization
management tasks, such as creating and editing groups or editing the
organization information.

• Org Approval: This form allows you to approve organizations that would
like to join the e-Marketplace.

• User Administration: This form allows you to manage user profiles.

• Attribute Dictionary: This form allows you to create and manage the
e-Marketplace data dictionary.
Chapter 9. System management guidelines 155

• Product Categories: This form allows you to create and manage
categories for the e-Marketplace site.

• Product Information: These forms allow you to create and manage product
descriptions for the e-Marketplace catalog.

• Advanced Auctioning: These forms allow you to define and manage
auction types and rules that apply to them.

• Exchanges: These forms allow you to create and manage trading posts
and the matching rules that apply to them. You can also create exchange
offerings using these forms.

• Interaction controllers: This form allows you to manage subsystem
interaction controllers registered in the e-Marketplace.

• Market Commands: This form allows you to manage the Java-based
commands registered in the e-Marketplace.

• Refresh Registry: This action refreshes the registries.

• Access Control: These forms provide an interface to manage
administrators of the e-Marketplace or the member organization.

• Access Groups: These forms provide access control to e-Marketplace and
organization administrative groups.

• Command Security: This form allows you to manage the command
security by providing SSL encryption and authentication.

• Messaging System: These forms allow you to set up the messaging
systems to communicate with members in the e-Marketplace.

• Order Delivery: These forms allow you to manage the order delivery
methods available in the e-Marketplace.

• Shipping Providers: This form allows you to manage shipping companies
who provide services to the e-Marketplace.

• Task Management: These forms allow you to define how tasks function
within the e-Marketplace. These only govern the legacy NC commands.

9.2.4 SecureWay LDAP
IBM SecureWay Lightweight Directory Access Protocol (LDAP) is used in
WebSphere Commerce Suite, Marketplace Edition for AIX to manage user
authentication and enforce access control. The majority of user information of
e-Marketplace members are stored in the WebSphere Commerce Suite,
Marketplace Edition for AIX instance database. LDAP also contains entries
about the e-Marketplace members. User information stored in LDAP is used
to perform user authentication during the logon. During installation of
156 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

WebSphere Commerce Suite, Marketplace Edition for AIX, LDAP is populated
with access control policy entries to govern user access to e-Marketplace
Command, Interaction Controller and other objects. These entries are used to
validate authorization for command execution requests by users. There are
two interfaces available to manage LDAP. A Web-based interface allows
LDAP server management and a Java-based application is used to manage
the LDAP directory.

9.2.4.1 LDAP Server Management Tool
The management of the LDAP server is handled through a Web-based
interface. This interface can be accessed by requesting the appropriate URL
provided to you during installation of LDAP. In a typical installation the URL is
http://yourhostname/ldap. In order to access the LDAP Server interface you
must log on at the above-mentioned URL.

Figure 35 on page 158 shows the main LDAP server page.
Chapter 9. System management guidelines 157

Figure 35. LDAP server main window

Through this interface you can perform the following actions:

• Using the Server tab you can:

- Modify the LDAP server properties

- Configure the LDAP Server SSL properties

- Cchange master/replica configuration of the LDAP server

- View the LDAP Server status

- View the LDAP server connection information

- Start and stop the LDAP server

• Using the Suffixes tab you can:
158 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

- List, add and delete suffixes.

• Using the Replica tab you can:

- List, add, delete and edit replicas.

• Using the Database tab you can:

- View and change some database properties

- Back up the LDAP database

- Import data into LDAP database

- Perform database reorganization to improve performance

- Perform database configuration tasks

• Using the Directory/Access control tab you can:

- Browse the directory tree

- Work with Distinguished Names (DN)

- Perform access control operations

• Using the Access Groups tab you can:

- Create, modify and list access groups

• Using the Access Roles tab you can:

- Create, modify and list access roles

• Using the Error Logs you can view the log entries.

• Using Logoff you can exit from the LDAP server Web-based interface.

For more information on management of LDAP server please refer to the
LDAP online documentation.

9.2.4.2 LDAP Directory Management Tool
The IBM SecureWay Directory Management Tool (DMT) provides a graphical
user interface that enables you to manage information stored in directory
servers. Use the tool to:

1. Connect to one or more directory servers via SSL or non-SSL connections

2. Display server properties and rebind to the server

3. List, add, edit, and delete schema attributes and object classes

4. List, add, edit, and delete directory entries

5. Modify directory entry ACLs

6. Search the directory tree
Chapter 9. System management guidelines 159

Figure 36 on page 160 shows the LDAP DMT.

Figure 36. LDAP Directory Management Tool

In the remainder of this section we will provide detailed step-by-step direction
on how to perform certain tasks that an LDAP directory administrator may
need to perform.

Connect to Servers

• Log on to a server

If a directory user’s DN and password are not provided in the DMT
configuration file, the tool connects as an anonymous user once it is
started. Although an anonymous user can browse the directory tree and
schema to perform directory updates, in most instances you need to log
on as a directory user. To modify the directory server schema you must log
on as the server administrator. To log on as a different user:

- Click Server -> Rebind.

- Provide the user’s DN and password
160 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

- Press Enter.

The Directory Management Tool uses a configuration file located in
/usr/ldap/etc/dmt.conf which is read when you start the Directory
Management Tool, this file should look similar to this:

#browser=

server1.url=ldap://localhost:389

#server1.security.bindDN=

#server1.security.password=

#server1.security.ssl.keyclass=

#server1.security.ssl.keyclass.password=

In this file you can specify the LDAP server’s URL and port, user DN and
password and keyclass file name and password for SSL connections.

• Connect to an additional server

If a local host is provided in the URL of the configuration file, DMT will
connect to the LDAP directory server on the local machine where DMT is
running. To add a connection to another directory server:

Click the Add server button.

Provide the server name, port, user DN and password.

Press Enter.

You can choose to connect to the server via SSL by first selecting Use
SSL and then providing the keyclass file name and password.

• Show Server Properties

You can view the server properties by clicking on Server->Properties.
The current bind DN, subschema entry, supported LDAP protocol
versions, and the naming contexts that the server holds are displayed. For
more information see the DSE documentation on your root server.

We strongly recommend, for security reasons, that you do not provide
DN user name and password in the dmt.conf file.

Note

Do not specify the URL prefix (for example: ldap://) in the server name.

Note
Chapter 9. System management guidelines 161

Work with Schema

• Browse Directory Schema

The IBM SecureWay Version 3.1.1 Directory provides dynamically
extensible schema support. A system administrator can define new
attributes and object classes to enhance the default schema. The directory
schema can be browsed and updated with DMT. You must log on as a
directory administrator to update the schema. See the Admin GUI helps
for information on schema.

To browse the directory schema:

- Click Schema -> Browse schema

- Click the + sign to display the following selections:

• attributetypes
To view all defined attributes, or alternatively click on Schema ->
Attributes -> View attributes.

• objectclasses
To view all defined object classes, or alternatively click on Schema
-> Object classes -> View object classes

• syntaxes
To view all supported syntaxes.

• matchingRules
To view all supported matching rules.

• Add an object class

To add an object class:

- Click Schema -> Object classes -> Add object class.

- Provide the object class name, description, and a unique string of
object identifier (the OID).

- Select the superior object class from which to inherit attributes.

- Determine the object class type. (The default is structural.)

- Click the Required attributes tab and then select the MUST have
attributes from the attribute list in the left window. Click Add to move
the selection to the right window. You can also select the attributes in
the right window and then click Remove to deselect them. Click on OK.

- Click the Optional attributes tab and then select the MAY have
attributes.

- Click OK.
162 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

• Edit an object class

This operation is similar to Add An Object Class except that a pull-down
menu is provided for the selection of the object class to be edited. To edit
an existing object class:

- Click Schema -> Object classes -> Edit object classes.

- Select an object class to be edited from the pull-down menu.

- Provide the description.

- Click the Required attributes tab and select the MUST have
attributes. Click OK.

- Click the Optional attributes tab and then select the MAY have
attributes.

- Click OK.

• Delete object classes

To delete one or more object classes:

- Click Schema -> Object classes -> Delete object classes.

- Select the object class or classes to be deleted.

- Click Delete.

- Click OK to confirm the deletion.

• Add an attribute

To add an attribute:

- Click Schema -> Attributes -> Add attributes.

- Provide an attribute name, description, and an OID.

- Select a syntax for this attribute from the list.

- Determine whether this is a multi-valued attribute.

- Select the matching rules used.

- Click OK.

• Edit an attribute

Advanced users can click on the IBM extensions tab to change the DB2
table name, the DB2 column name, the security class, and the indexing.

Note
Chapter 9. System management guidelines 163

This operation is similar to Add An Attribute except that a pull-down menu
is provided for the selection of the attribute to be edited. To edit an existing
attribute:

- Click Schema -> Attributes -> Edit attributes.

- Select an attribute from the list.

- Make necessary changes to the entries in the General tab.

- Click OK.

• Delete attributes

To delete one or more object classes:

- Click Schema -> Attributes -> Delete attributes.

- Select the attribute or attributes to be deleted.

- Click Delete.

- Click OK to confirm the deletion.

Work with directory tree

• Browse directory tree

You can browse the directory tree by using the Browse tree option.

When you browse the directory tree the directory contents are displayed
according to the directory hierarchies. To open part of the tree, expand the
entries. The entries that are in the next level down are displayed. To
browse the directory tree:

- Click Tree -> Browse tree.

- To expand the tree one level, click a + sign.

The tool bar at the top of the window allows for an operation on a selected
entry in the tree to be initiated. The operations include: Add entry, Edit,
Delete, Search, Expand, ACL settings, and Edit RDN. Use Edit to view
an entry. When an entry (a node in the tree) is selected click the Expand
button to expand the entire subtree below the entry.

Double-click an entry to edit it.

• Search directory tree

Advanced users can click the IBM Extensions tab to change the DB2
table name, the DB2 column name, the security class, and the indexing.

Note
164 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

To allow convenient access to entries of special object classes such as
user and group, DMT provides a simple search option in addition to a full
search option. While the full search option allows you to provide complete
specifications of all parameters to a directory search operation, the simple
search requires only a minimal input for searching through a set of entries
that belong to a selected object class.

To perform a Simple search:

- Click Tree -> Search tree -> Simple search.

- Select the type of entry to search.

- Determine the filter for the search result.

- Click OK.

To perform a Full search:

- Click Tree -> Search tree -> Full search.

- Input the search constraint:

• Search base DN (the default is all suffixes)

• Scope (the default is subtree)

• Size limit (the default is unlimited)

• Time limit (the default is unlimited)

• Alias dereferencing (the default is no)

• Referral chasing (the default is yes)

- Click the Search filter tab on the top of the display.

- Input the search filter. If necessary, use the AND or OR connectors.

- Click the Search return set tab.

- Select the attributes to be returned or the full entry.

- Click OK.

Work with directory entries

• Add a new entry

To add an entry to the directory tree:

- Click Entries -> Add entry. You can also add an entry if you click on
Browse tree, select the parent entry, and then click Add on the toolbar.

- Provide the parent DN and the Relative Distinguished Name (RDN) for
the new entry. The RDN must be entered as an attribute=value pair.
Chapter 9. System management guidelines 165

- Choose the object type (object class) from the list or other for more
options. If other is selected you can specify either a structural object
class or an auxiliary object class or both.

- Click OK.

- Another window displays the attributes associated with the selected
object class. Highlighted fields are required fields. Enter the attribute
values for the entry. Use the Edit icon to add multiple values.

When the action is initiated from the tree browsing window, the parent
entry can be selected from the directory tree and the parent DN is entered
automatically.

• Edit an entry (or view an entry)

To view an entry:

- Click Entries -> Edit entry. You can also select an entry if you click
Browse tree and then double-click on the entry.

- Provide the entry DN to edit or view.

- Click OK.

- Another window displays the attributes associated with the selected
object class. Highlighted fields are required fields. Enter the attribute
values for the entry. Use the Edit icon to add multiple values.

Like Add an entry, this operation can be launched from the browsing tree
window. The entry can be edited from the tree by double-clicking it.

• Delete an entry

To delete an entry from the directory tree:

- Click Entries -> Delete entry, or from the browsing window click the
entry to be deleted.

The flyover that appears when the cursor is positioned over the attribute
name, or the text field describes the syntax of that attribute.

Note

The flyover that appears when the cursor is positioned over the attribute
name, or the text field describes the syntax of that attribute.

Note
166 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

- Click Delete.

- Click OK to confirm the deletion.

• Edit an entry RDN

To edit an entry RDN:

- Click Entries -> Edit entry RDN. You can also select an entry if you
click Browse tree and then click the entry.

- Enter the current DN and provide the new RDN for the entry. (You can
change the new RDN; the current DN is not editable.)

- Click OK.

• ACL settings

To modify the ACL for an entry:

- Click Entries- > ACLs. Enter the DN and then click OK. You can also
select the entry if you click Browse tree and then click the ACL button
on the top of the window.

- On the ACLs tab:

• Either edit the existing list or create a new subject ACL list for a new
subject.

• Determine whether descendent entries are to inherit the ACL lists.

• Mark the Remove check boxes for those subject ACL list, that are
to be removed.

• Mark/Unmark the check boxes for the rights to add/remove.

• Mark/Unmark the check boxes for the rights to
read/write/search/compare the attributes of three security classes.

• To add a new subject ACL list, enter the subject DN, select the
subject type, and then click ADD. A new list is added and ready for
changes.

- Click the Owners tab.

• Determine whether descendent entries are to inherit the owner list.

• Mark the Remove check boxes to remove owners.

• To add a new owner, enter the owner DN, select the owner type,
and then click ADD.

- Click Change.

See the IBM SecureWay documentation for additional information about
ACLs.
Chapter 9. System management guidelines 167

Troubleshooting

The following error might occur the first time you edit a suffix or add an
entry to a suffix, for example:

An error occurred getting attributes for entry c=us: noSuchObject.

This means that the suffix contains no data.

To add data to a suffix:

- In the navigation menu click Entries > Add entry.

- Leave the Parent DN blank and specify the suffix as the entry (for
example c=us).

- Select the object type (for example Country) and click OK.

- Fill in the desired attribute values and click Create.

You should now be able to edit the suffix as well as add entries.

You can find the bind DN in either of two ways from the menu area:

- You can locate it on the Rebind to Server panel. Click Server ->
Rebind to display the panel. The rebind DN will be displayed in the
User DN field. (If the bind DN is anonymous, the Anonymous radio
button is checked.)

- Click Server -> Properties. In the table, under Server attributes, find
the BIND DN property.

9.2.5 Web server management
The primary function of a Web server is to provide a mechanism to receive
client requests, direct these requests to an application server and present the
application server response back to the client.

Depending on your choice of Web server, you may need to take into
consideration different administrative and management issues that are
specific to that Web server. Detailed coverage of all available Web servers,
and administration and management tasks, is beyond the scope of this book.
In this section we will provide some guidelines on the IBM HTTP Server.

9.2.5.1 IBM Administration Server
By leading you through complex configurations, the Administration Server
greatly simplifies the once-manual task of configuring IBM HTTP Server.
Once you select a server to configure, the Administration Server prompts you
for configuration values, which are written to a configuration file when you
click Submit.
168 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

In order to access the IBM Administration Server on AIX you must first start
the IBM Administration Server. While you are logged on as root issue the
following commands:

cd /usr/HTTPServer/bin
./adminctl start

This will start the IBM Administration Server. Tto access the administration
server, open a browser and go to your IBM HTTP Server page by providing
your local host URL, such as http://rs600035.itso.ral.ibm.com/ and from the
main page select Configure Server. At this stage you will be prompted for
the administration user ID and password. This user ID and password were
created during installation of the IBM HTTP Server.

The Administration Server is a browser-based application and requires one of
the following browsers:

• Microsoft Internet Explorer 5.0 or later.

• Netscape Navigator 4.08 or later.

• Netscape Communicator 4.51 or later.

We highly recommend a screen resolution of 1024 x 768 with small (12 pt or
less) fonts; significant deviation from these recommendations may cause
behavior and/or layout problems. Do not override document font settings.
Usability of the forms is best when the browser window is maximized. (Note:
In Netscape Navigator, page layout may be disrupted if the browser window is
resized. To correct the problem, simply reload the page or re-select the task.)

We recommend that after you gain access to the Administration Server, you
spend some time reviewing the conventions and key points specified under
the Getting Started folder. You can access this information by selecting
Getting Started from the navigation panel at the left side of your browser
window.

Tasks in the navigation panel
The navigation panel on the left side of your browser provides you with
number of configurable and administrative options. The follwing is a high
level definition of what each option does:

• Basic Settings: In this folder, specify settings that affect the general
operation of the server. The first three pages, Core Settings, Advanced
Properties, and Server Options, control core features of the server.

• Configuration Structure: When you configure the target server using the
Administration Server, you apply settings to a subset of the server's
resources, which we refer to as a scope. The Scope field at the top of
Chapter 9. System management guidelines 169

each page represents the subset of resources that are affected by the
settings on that page. For example, to grant access to a particular
directory, you might specify that directory in the Scope field on the
Individual Access page.

• Indexing: The server can display a list of files available in a directory.
Enable this function (called Fancy Indexing) by using the pages in this
folder. You can control how the display is formatted and whether icons are
used for different file types.

• Authentication Files: Here you manage users and groups. Instead of
manually creating user authentication files and group authentication files
in a text editor, you can create and edit those files here. After you have
created these authentication files, use them to grant access to particular
resources, under the Access Permissions folder. A user authentication file
specified for a given scope contains the user IDs and passwords for all
persons that can be granted permission to access that scope. Access can
be granted to everyone in the user authentication file, or a subset of those
users. The users listed in a user authentication file can be assembled into
named groups defined in a group authentication file. Within a given scope,
a group authentication file must only contain group members listed in the
user authentication file for that scope. If access permission is granted to
all in the user authentication file, then granting access to certain groups
has no effect. Related tasks:

- From the Individual Access page, grant access to specific resources for
users in a user authentication file.

- From the Group Access page, grant access to specific resources for
groups in a group authentication file.

• Access Permissions: In this folder, you can allow and deny access to a set
of resources in the server based on various factors about the client. Some
of the pages in this folder refer to user authentication and group
authentication files. To change the contents of these authentication files,
go to the Authentication Files folder. After you have set up the
authentication files, use them to grant access to particular resources here.

• Security: In this folder, you can specify settings related to secure
connections. The name of your keyfile, the cipher specifications to use,
and the type of client authentication in use are examples of settings you
control in this folder.

• Logs: The server maintains log files to help you monitor the requests that
it fulfills and the errors it encounters. Use the settings on the pages in this
folder to adjust what information the server logs.
170 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

• Mappings: The tasks in this folder enable you to control how the server
responds to requests after the requests have been sent by the client
machine. You can adjust the messages that a client receives if there is a
problem fulfilling the request; you can change the address where the
server looks for a file in the server's file system; you can allow for address
changes based on the user name of the client request; and you can
redirect requests to different URLs.

• Scripts: Tasks in this folder enable the server's CGI scripts and server-side
includes (SSIs) to inherit environment variables from the shell that invoked
the server process. These settings are especially useful for migrating
scripts from a CERN Web server to the IBM HTTP Server.

• Performance: Use the pages in this folder to tune factors that affect the
server's performance. On the Server Settings page, many of the fields
refer to core server functions. To use the Fast Response Cache
Accelerator, specify settings on the Set Cache page. To enable the IBM
HTTP Server to be monitored through SNMP, fill in the fields on the SNMP
page.

• MIME: You can specify that the server handle resources differently, based
on the MIME types of the resources. The MIME type of a document relates
to its content and is returned to the browser or used in content-negotiation
within the server. A handler can be set for a document. The handler
determines how the document is processed within the server.

• View Configuration: For those who prefer to edit the configuration file
directly, we have provided a text editor you can use without leaving the
Administration Server. You can edit any scope in the scope hierarchy, and
create scopes that will be reflected in the Administration Server pages. All
server directives (settings) supported by Administration Server can be set
and viewed in both the individual task pages or the Edit Configuration
page. You can also use the Edit Configuration page to manually edit
directives that are not supported in the Administration Server pages.

For details on these tasks, please refer to the online documentation available
at the IBM Administration Server page.

9.2.6 DB2 UDB management
DB2 UDB is the main data repository for the WebSphere Commerce Suite,
Marketplace Edition for AIX. Information is constantly written and read from
the DB2 UDB database as the e-Marketplace members interact with the
e-Marketplace site and perform their daily activities. Having a well-tuned and
managed database has a profound effect on the overall performance of the
e-Marketplace application.
Chapter 9. System management guidelines 171

DB2 UDB provides a set of administration tools that can assist you in
managing the DB2 server(s). Yyou can administer database servers locally or
from remote clients. These tools provide a graphical user interface for
administration.

9.2.6.1 Administration tools
The tools for administering DB2 are part of the Administration Client, a
selectable component with each of the DB2 Universal Database products.
The Administration Client is also available on a set of CD-ROMs that include
the Administration Clients for all the operating systems on which DB2 is
available.

They allow you to install and use the Administration Client on any
workstation. It does not matter whether your database servers are local or
remote, or what operating system the database servers are running on. The
tools enable you to perform the same functions from a graphical user
interface as you could from the command line processor. These functions
include the entering of DB2 commands, SQL statements, or system
commands. With the tools, however, you do not have to remember complex
statements or commands and you get additional assistance.

The following tools are available from the Control Center toolbar:

• The Control Center. The Control Center is the main DB2 graphical tool for
administering your database. From the Control Center, you get a clear
overview of all the systems and database objects that are cataloged
locally.

• The Satellite Administration Center. The Satellite Administration Center
allows you to administer DB2 satellite servers.

• The Command Center. The Command Center enables you to issue DB2
database commands, SQL statements, and operating system commands,
recall previous commands, and scroll through access plans for SQL
queries.

• The Script Center. The Script Center allows you to create, run, and
schedule operating system level commands and DB2 command scripts.

• The Alert Center. The Alert Center notifies you when thresholds that you
have set have been exceeded or when a node in a multinode environment
is no longer responding.

• The Journal. The Journal allows you to view the status of jobs and to view
the recovery history log and messages log.
172 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

• The Information Center. The Information Center gives you quick access
to the information in the DB2 product manuals and sample programs and
provides access to other sources of DB2 information on the Web.

• The License Center. The License Center displays the status of your
license as well as allows you to configure your system for proper license
monitoring.

For some functions that you can perform with the GUI tools, you are given the
option of using a SmartGuide. SmartGuides are invoked from the pop-up
menus in the Control Center. They provide a greater level of help by
prompting you step-by-step on how to fill in the information necessary for the
task you are doing and even making calculations and recommendations
based on information you supply. SmartGuides are very useful if you are a
new database administrator or someone who only administers a database
occasionally.

In DB2 Universal Database, the following SmartGuides exist:

• Backup Database. This asks you basic questions about the data in the
database, the availability of the database, and recoverability
requirements. It then suggests a backup plan, creates the job script, and
schedules it. To invoke the Backup Database SmartGuide, select the icon
representing the database you want to back up, click mouse button 2, and
select Backup -> Database using SmartGuide.

• Create Database. This SmartGuide allows you to create a database,
assign storage, and select basic performance options. To invoke the
Create Database SmartGuide, select the Databases icon in the Object
Tree pane, click mouse button 2, and select Create -> Database using
SmartGuide.

• Create Table. This SmartGuide helps you to design columns using
predefined column templates, create a primary key for the table, and
assign the table to one or more table spaces. To invoke the SmartGuide,
select the Tables icon, click mouse button 2, and select Create -> Table
using SmartGuide.

• Create Table space. This SmartGuide lets you create a new table space
and set basic storage performance options. To invoke it, select the Table
Space icon, click mouse button 2, and select Create -> Table space
using SmartGuide.

• Index SmartGuide. Use the Index SmartGuide to determine which indexes
to create or drop for a given set of SQL statements. The recommendations
are based on the workload that you specify. To invoke the Index
Chapter 9. System management guidelines 173

SmartGuide, select the Indexes folder, click mouse button 2, and select
Create -> Index using SmartGuide.

• Performance Configuration. This SmartGuide helps you tune databases
by requesting information about the database, its data, and the purpose of
the system. It then recommends new configuration parameters for the
database and instance and automatically applies them if you wish. To
invoke this SmartGuide, select the icon for a database, click mouse button
2, and select Configure using SmartGuide.

• Restore Database. This SmartGuide walks you through the process of
recovering a database. To invoke the SmartGuide, select the icon for a
database, click mouse button 2, and select Restore -> Database using
SmartGuide.

• Configure Multisite Update SmartGuide. This SmartGuide lets you
configure databases to enable applications to update multiple sites
simultaneously when it is important that the data at all the sites must be
consistent. To invoke this SmartGuide, select an instance, click mouse
button 2, and select Multisite Update -> Configure using SmartGuide.

Besides the graphical tools that you can invoke from the Control Center
toolbar, there are some additional GUI tools that are not invoked directly from
the Control Center toolbar.

• Performance Monitor. Performance Monitor is a tool to monitor DB2
objects such as instances, databases, tables, table spaces, and
connections. You use this tool to detect performance problems and tune
databases for optimum performance. The Performance Monitor is invoked
as a selection on the pop-up menus in the Control Center.

• Event Monitor. Event monitor is a tool that lets you analyze resource
usage by recording the state of the database at the time specific events
occur. An Event Monitor is created by typing db2emcrt from a DB2
command line.

• Event Analyzer. Event Analyzer is a tool that allows you to analyze the
data collected by the Event Monitor. An Event Analyzer is invoked by
typing db2evmon from a DB2 command line.

• Visual explain function. The visual explain function lets you view the
access plan for SQL statements as a graph so that you can tune your SQL
queries for better performance. Prior to Version 6, you used the Visual
Explain tool to view the access plans. In Version 6, visual explain is no
longer a separate tool; however, the function is available on pop-up menus
from various database objects in the Control Center, and also from the
Command Center.
174 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

In addition to these tools, another useful tool for database administration that
is not part of the Control Center is the Client Configuration Assistant. The
Client Configuration Assistant is a SmartGuide with the primary function of
setting up communications from remote clients to servers.

All these tools are described in greater detail in the online Administration
Guide documentation.

9.3 Security guidelines

Once your application is running in production mode, you can expect a lot of
user access to the system. If we lived in a perfect world where all users were
law abiding, then we would not have to worry about security. Unfortunately,
this is not the case and your system will constantly face security threats, both
external and internal.

The site you have developed is only one component of the total system
configuration. The security strength of your system is only as strong as its
weakest link. Thus, it is necessary to ensure that the other components in the
system are configured securely.

With this in mind, end-to-end security will consist of physical, operating
system, network and application security. SeeTable 9 for an end-to-end
security component list.

Table 9. End-to-end security components

9.3.1 Physical systems security
Physical systems security is the foundation of the end-to-end security
building blocks. Access to the hardware has to be controlled and monitored
proactively. Anyone gaining unauthorized physical access to your servers
could halt your server, steal valuable information from your storage, plant
viruses, install harmful software, etc. All of these activities are disruptive to
your operations and will cause damage to your system.

Security Type Description

Physical Control access to the hardware
equipment hosting your application.

OS Security at the operating system level.

Network Secure connectivity flow between
external, DMZ and internal networks.

Application Configure WebSphere security.
Chapter 9. System management guidelines 175

If the hardware is not secured properly it will void the other security measures
you take.

9.3.2 Operating systems security
After securing your physical systems, you will have to work on securing the
operating system. As the OS grows richer in function and features, new bugs
are discovered or are waiting to be exploited (for example, a bug that allows
a user with non-privileged access to perform privileged operations.)

At the operating system level, we recommend the following practices for
administering your system:

1. Keep yourself updated on new security glitches.

Unfortunately, there are public Web sites that provide detailed information
about newly discovered glitches. Fortunately, there is also a wealth of
public information available that provides temporary or permanent
remedies for these glitches. As an administrator, you need to be warned
quickly about these loopholes and to take immediate actions to rectify the
problem. As a service to their customers, most OS vendors provide
updated information related to security hacks. A good source of
information is the CERT Web site (http://www.cert.org). You can
subscribe to their mailing lists to receive regular updates and news flashes
by e-mail.

2. Access privileged accounts.

Your OS security policy will have to consider who has access to the
privileged accounts. You will have to determine the roles and level of
responsibility each person has. For example, you may want to separate
the role of an OS administrator from the application administrator.

3. Enforce good password policies.

Many security hacks are the result of simple passwords. You will have to
enforce good password policies and practices for all accounts in your
system, whether they are privileged or non-privileged. Besides having this
policy, educate your users on their role in the overall system security.
Another policy that you could implement, at the OS level, is forcing the
passwords to expire or force them to change after some predefined
period. Also you should not allow reuse of passwords.

4. Enable logging and auditing.

Remember to turn on OS system logging and auditing. In the event of a
system break-in, hopefully you will have some trails to start off your
investigation.
176 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

9.3.3 Network security
Once you have the physical hardware and the operating system secured, you
need to turn your attention to security between interconnected systems.

Network security is the act of protecting resources residing in your internal
network and demilitarized zone (DMZ) from the external network. You want to
restrict and prevent unauthorized user access to your internal systems. At the
same time, you do not want to make it difficult for legitimate users to access
your systems.

The key technologies available to achieve this network protection include
firewalls, intrusion detection monitors, anti-virus detection and the way you
implement them. The SecureWay suite of products provide you with a
comprehensive security solution that will meet most requirements.
Information about SecureWay products can be found at

http://www.ibm.com/software/secureway/

9.3.3.1 WebSphere in a firewall environment
How do you restrict and control network access? You can use firewalls in
between two networks. When properly configured, the firewall acts as a
check point and will force all traffic of a specific protocol to and from the
Internet to flow through it. By doing so, it can then scan the traffic and
determine whether to allow or disallow the packets based on a set of rules.

When designing your firewalls take the following into consideration:

1. Make sure that there is no direct communication channel between the
applications on the intranet and the external Internet. In our example, all
external user requests and application responses flow through the Web
server residing in the DMZ. If necessary, WebSphere Commerce Server
will forward the request to the DB2 UDB in the internal network.

2. Keep it short and simple. Reuse pre-configured rules that exist. Define
new rules if necessary. Always remember to include a rule that excludes
everything else.

3. You should not allow information pertaining to the internal network to
reach the Internet. For example, you would not want the IP addresses of
your internal systems to be made available to external users. Hiding this
information will reduce the risks of external security hacks, you can use
Network Address Translation to accomplish that.

4. At a minimum, you will need a firewall between the external network and
your DMZ, and a firewall between the DMZ and the intranet. Introducing a
Chapter 9. System management guidelines 177

DMZ configuration creates an additional security barrier, which a network
infiltrator would have to overcome.

9.3.3.2 Internet and intranet security considerations
The intranet environment may be a LAN-based departmental network or
could span geographic regions via a WAN-based Virtual Private Network
(VPN). With this distinction in mind, we can see that the WAN-based intranet
environment has similar characteristics to the Internet based systems. The
physical network used in the VPN network is usually outside your
management control. Thus, you should continue to focus on network security.

For a LAN-based intranet that is segmented along departmental domains,
you could still implement a firewall between the various departments. A good
example would be to separate the production network environment from the
development network environment.

9.3.4 Web application security
The user requests will flow through your firewall to your application. The final
security checkpoint would be application security, which will decide who can
invoke specific application function.

WebSphere provides an integrated security model to configure security for
your Web resources. This can be centrally configured through the
WebSphere Application Server Administrative Console.

When you implement this DMZ configuration, it is possible to implement
two or three firewalls in the same physical machine with two or three
network adapter cards. This is usually only done for cost saving purposes
and is not a preferred solution.

To implement a recommended topology such as the one shown in Figure
14 on page 43, you would typically place the WebSphere Commerce
Server in a DMZ. This will separate the Web Application from your
corporate data stored in your DB2 UDB which resides within your internal
network behind a domain firewall implemented on a separate physical
machine.

*** Note***
178 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Let us begin by describing the various WebSphere security components
listed in the Table 10.

Table 10. WebSphere security components

9.3.4.1 Security plug-in
When Web clients try to access Web resources deployed by the WebSphere
Application Server, the security plug-in component will be invoked. The
security plug-in will then send the client requests to the security collaborator
for security decisions. This security plug-in is installed and configured with
the Web server during software installation.

The following table lists the respective Web servers that WebSphere
Application Server currently supports.

Table 11. Supported WebSphere Web servers

9.3.4.2 Security collaborator
The security collaborator is attached to the WebSphere Application Server. It
makes security decisions on remote method calls on servlets or EJBs by
performing:

• Authorization checks
• Pre- and post-security trace logging
• Delegation policy enforcement

9.3.4.3 Security server
The security server is found in the security application. The security
application resides in every WebSphere Administration Server. It provides the
means to configure security policies for both Web resources and EJBs. In a

Security Component Location

Security plug-in Supported Web server

Security collaborator WebSphere Application Server

Security server Security application

AIX SOLARIS NT

Apache Server V1.3.6 X X X

Netscape Enterprise Server V3.51 and V3.61 X X X

Lotus Domino Application Server R5 X X X

Domino Go Webserver R4.6.2.5 and R4.6.2.6 X X X

IBM HTTP Server V1.3.6 X X X
Chapter 9. System management guidelines 179

particular WebSphere Application Server domain, there is a shared repository
on the database server (DB2, Ooracle), which contains all the security
configuration and policy information. Any WebSphere Application Server in
the same WebSphere domain can access this shared repository.

Both the security plug-in and security collaborator will call the security server
for authentication/authorization services. It provides:

• Centralized control over security policies (permissions, delegation)
• Central security services (authentication, authorization)

The security server is a trusted third party for security policy and control. Web
servers and WebSphere Application Servers call on the security server to
provide authentication, authorization and delegation services.

9.3.4.4 Secure the WebSphere Commerce Suite system
Additionally you can take the following recommendations to secure the
WebSphere Commerce Suite system:

1. Protect configuration files.
Configuration files contain the host name, database name, encrypted
password, and merchant key. If the Web server allows access to WebSphere
Commerce Suite configuration files, they can be visible through Web
browsers and become a security hazard. This information is so sensitive that
WebSphere Commerce Suite provides a method to encrypt it. Please refer to
IBM HTTP Server configuration manual for information on how to accomplish
that.

2. Disable samples and documentation.
To increase the security of your production site, remove any databases
used for testing or educational purposes.

3. Specify security level for commands.
Security levels define whether SSL security and login authentication are
required to run a particular Commerce Suite command. Access control
policies stored in LDAP are also used to secure command execution
authorization. Use your Web-based interface (ncadmin) to manage
Command security and Marketplace Commands. The command security
level can only be changed by the e-Marketplace administrator. Choose the
appropriate option below:

- Assign security levels for commands.

- Change the security assignment.

- Remove the security assignment.
180 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

9.3.5 WebSphere security model and policy
We have described the key infrastructure components in WebSphere
security. Next, we would like to describe the WebSphere security model and
policy. Understanding this allows you to make informed decisions in
configuring and managing WebSphere security. For example, you can decide
which of the authentication methods are supported given a particular user
registry.

Specifically, we will describe the authentication, authorization and delegation
models and policies within WebSphere.

9.3.5.1 Authentication
Authentication is the process of proving a user is who he says he is. In
WebSphere, authentication between a user and the WebSphere Application
Server can be specified in terms of:

• User registry

This is where the user and group information will be stored.

• Authentication mechanism

After the user has provided the required data, the authentication
mechanism will validate it against an associated user registry. Two types
of authentication mechanisms are supported:

- Lightweight Third Party Authentication (LTPA)

- Native operating system

• Challenge mechanism

The challenge mechanism specifies how a server will challenge and
retrieve authentication data from the user. It can be of the form:

a. None - Security runtime does not challenge user for authentication
data.

b. Basic - A user is challenged for ID and password.

c. Certificate - Mutual authentication over SSL.

d. Custom - The ability to specify a custom HTML page to retrieve a
user’s ID and password.
Chapter 9. System management guidelines 181

In Table 12, we illustrate the relationship between the user registry and the
authentication mechanism. If user ID and password are supplied, then
authentication is delegated to a user registry. If digital certificates are used,
then the certificate credentials are mapped to an associated user registry
entry.

Table 12. Mapping between authentication mechanism and user registry

UNIX Windows NT LDAP

Native OS
(user ID, password)

The supplied
password is
encrypted using
the OS’s crypt
facility. This is then
compared against
the system’s
password
repository.

Authentication is
delegated to the
NT Security
Access Manager
via systems call.

N/A

LTPA
(user ID, password)

N/A N/A An LDAP bind is
performed using
the DN
(Distinguished
Name) and the
password.

LTPA
(digital certificate)

N/A N/A Based on the trust
in the Web server,
certificated are
validated through
successful
establishment of a
mutual SSL
connection. A
credential
mapping is then
performed based
on the information
contained in the
certificate.

The components of the authentication are dependent on one another. For
example, the authentication mechanism is defined based on the user
registry and this choice drives the challenge mechanism.

Note
182 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

9.3.6 HTTP single sign-on (SSO)
When you enable HTTP single sign-on, user authentication credentials are
preserved across multiple applications in the same domain, for example:

• Cooperating but disparate Web servers

• Cooperating applications like the IBM On Demand Server and Windows
NT suites.

With SSO, your application will then avoid repeated requests of user security
credentials. However, if your application wants to use the SSO feature, then it
must use an LTPA registry (LDAP for example).

9.4 Backup and recovery guidelines

Backup may seem a mundane and repetitive task you perform routinely, but it
is absolutely necessary. Its importance to you is never emphasized enough
and typically you will only realize it during a disaster. Imagine losing valuable
transactional data due to a hard disk failure and you do not have a backup.

We suggest you consider the following factors when considering a backup
solution:

1. Data to backup

You should consider the solution’s support for the various data you need
to backup. The data includes operating systems, application data,
transaction logs, configuration files, application databases, and
WebSphere Application Server repository databases.

2. Available backup window time

In most situations, there is a limited window of time to complete the
backup. Thus, you will have to consider the performance of the backup
solution. Consider the performance of the solution as a whole, not the
individual pieces.

3. Required system recovery time

Not only should the backup be fast, but the recovery process should be
equally fast. Consider how the backup solution is able to provide fast
recovery.

4. Support for enterprise backup

The solution should be scalable to perform backup of new systems that
you may install, as a result of growth and upgrades. You may also want to
use the backup solution for other existing applications.
Chapter 9. System management guidelines 183

5. Integration with system management tools

It is very useful if the backup solution can be integrated with existing
system management tools and thus provides a central administration
capability.

6. Support for emerging technology

The software should be able to support emerging storage area network
(SAN) based storage solutions. As your information needs grow, these
storage solutions will provide large-capacity and high-performance data
access.

9.4.1 Using Tivoli Storage Manager (TSM)
Based on the above factors in selecting a comprehensive backup solution, we
recommend the IBM Tivoli Storage Manager (TSM). It is an integrated
storage management solution that will meet the needs of any company, from
small Internet startups to large enterprises. TSM provides the following
features:

• Full support of client platforms

• High performance backup and recovery process

• Wide support for IBM and non-IBM tape/optical technology

• Scalable solution to meet growing storage demands

• Support for SAN-based solution

• Integrated with the Tivoli suite of systems management products

Let’s begin by looking at how you can configure a Tivoli Storage Manager
solution. We recommend that each and every system in your configuration be
backed up. The frequency of backup will vary, depending on the type of
information and the frequency of changes.

Figure 37 shows the recommended Tivoli components for deployment in the
internal network nodes.
184 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Figure 37. TSM server and client setup in the internal network

Referring to Figure 37, let’s assume you install one TSM server in the
scenario. This server should be located in the internal network with no
external Internet access to it.

Once the TSM server setup is completed successfully, install TSM clients at
every system that you would like to back up. For example, we have installed
TSM clients at the directory server, Commerce Server and the shared file
system server. Test the connectivity between the TSM clients and the TSM
server by doing a user-initiated backup.

For the servers in the DMZ (see Figure 38 on page 186), you can also install
a TSM client. To facilitate communication between the TSM client in the DMZ
and the TSM server in the intranet, you will have to open up one port in the
firewall. This port can be preconfigured in both the TSM client and server.
Chapter 9. System management guidelines 185

Figure 38. TSM server and client setup in the DMZ and internal network

If this additional firewall port is a security issue in your environment, then
there are two viable options to consider:

1. Install Tivoli Data Protection for Workgroups (TDPfW) for Windows NT
systems.

TDPfW provides a stand-alone disaster recovery for Windows NT
machines. It can back up entire Windows NT machines or volumes, and if
a disaster occurs, TDPfW can restore the complete machine, including the
boot volume, disk partitions, security, operating systems, and user files
from a locally attached SCSI tape drive.

This is very useful for small LAN environments (for example, the DMZ
shown in Figure 39) where you have to manage only a few servers.
However, this product currently is supported on Windows NT only.
186 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Figure 39. TSM server in the internal network with TDPfW in DMZ

2. Installing a TSM server in your DMZ

To facilitate a more automated solution, you could install another TSM
server in the DMZ. Keep in mind, that as more servers are added to the
DMZ, the overhead involved in administering each TDPfW server
increases.
Chapter 9. System management guidelines 187

Figure 40. One TSM server in the DMZ and each internal network

9.4.2 Application backup and recovery
We have discussed general architecture for developing a backup solution. In
this section, we will highlight product-specific areas to look out for.

9.4.2.1 Operating system
In a total system recovery scenario, the operating system (OS) will be the first
software to be reinstalled. You should refer to your OS instruction manual for
re-install steps. Our checklist below highlights practical tips for OS backup
management:

• Do you have and know where the OS media is located?
• Do you have new updates to the OS?
• Do you have an OS backup after initial system setup?
• Do you do regular OS backup?
• Do you do ad-hoc OS backup before major installation and after major

configuration changes?

9.4.2.2 WebSphere database
When you install and configure the WebSphere Application Server,
WebSphere Commerce Suite, SecureWay Directory and WebSphere Site
188 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Analyzer, you will notice that they use DB2 as their database. In this section,
we will only briefly illustrate how a DB2 backup can be performed. For a
comprehensive review of DB2 backup and recovery, please refer to the DB2
administrative guides and references.

In DB2, you can perform either an online or offline backup. When you do an
offline backup, the database needs to be shut down. The command for an
offline backup is:

db2> backup db <instance name> offline=yes

If shutting down the database is not an option, then you will have to perform
an online database backup:

db2> backup db <instance name> online=yes

When performing an online database backup, you will have to take into
consideration how the database logs will be managed, as they need to be
used in a recovery process. Losing the logs will complicate the recovery
process. When you use TSM, you will enjoy an automated database log
backup solution. This can be achieved by:

• Configuring the DB2 user exit program to utilize TSM.

• Turning on the user exit and log retain parameters in DB2 database
manager.

9.4.2.3 LDAP database backup
With the IBM SecureWay Directory, you can back up the LDAP database from
the GUI interface, the command line, or via native DB2 commands.

Using the GUI (see Figure 41 on page 190):

1. Click Database in the Navigation frame.

2. Click Backup in the Working with back-end database in the work area.

3. Type the fully qualified name of the file to be created in the text entry field.
This file will be in LDIF format.

4. Click the Backup database button to start backing up the database.
Chapter 9. System management guidelines 189

Figure 41. LDAP database backup GUI

Using the command line, the db2ldif tool can be used to dump entries from a
directory to a text file in LDIF format. The syntax is:

db2ldif -o <output file> [-s <subtree>]
190 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

9.4.3 Guidelines for backup and recovery
Independent of your backup software choice, there are some guidelines you
can follow:

1. Monitor the backup process.

Ensure that the backup process is successful. If the backup process fails,
understand why it fails and take necessary actions to remedy. For
example, is the backup failing due to dirty drives or faulty media? Perhaps,
there is a problem with the hardware? Could it also be a loss of
connectivity between your backup server and the client machines?

2. Properly manage the backup media.

After taking a backup of the system, ensure you have a proper and
systematic tracking system for your backup media. In the event of a
disaster, can you can easily identify and retrieve these backup media for
recovery?

3. Test your backup.

Do not assume that if the backup process is successful, you have a valid
backup. Test your backup! This will give you additional confidence that
your backup can really help you recover from a disaster.

4. Document, test and maintain a recovery plan.

No matter what size your system configuration may be, always have a
documented recovery plan. This will prove useful during a disaster
situation. The plan should describe step-by-step the process you will take
to recover. Test the plan to ensure that it works! For the document to be
useful at all times, you will have to maintain and update it when
configuration changes occur.

LDIF format does not honor any ACL settings and all data is available in
readable text.

To use the DB2 database backup, see 9.4.2.2, “WebSphere database” on
page 188.

Note
Chapter 9. System management guidelines 191

192 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Part 3. Business-to-Business Patterns: e-Marketplace example
© Copyright IBM Corp. 2000 193

194 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Chapter 10. Marketplace Edition overview

The aims of this section are to provide you with a high-level understanding of
the WebSphere Commerce Suite, Marketplace Edition architecture and
design. We describe the objectives that the Marketplace Edition is designed
to meet and discuss the architecture of the system and it components. More
detailed information about the components of the Marketplace Edition can be
found in the subsequent chapters of Part 3, “Business-to-Business Patterns:
e-Marketplace example” on page 193.

We describe the objectives behind the design and development of the
Marketplace Edition, provide an overview of the system architecture, and
discuss the main sub-systems that make up the full Marketplace Edition.

10.1 Marketplace Edition objectives

WebSphere Commerce Suite, Marketplace Edition for AIX is based on
WebSphere Commerce Suite 4.1. However, some significant modifications
have been made to support the functions required of a B2B e-Marketplace
trading hub. In making these modifications the goal of the Marketplace Edition
is to create a hub that enables B2B commerce among multiple buyers and
suppliers. The Marketplace Edition achieves this by providing an unified view
of the products and services traded within the e-Marketplace and by providing
a variety of mechanisms to facilitate trade of these products.

At the heart of the Marketplace Edition is an aggregated catalog that provides
different views of the products available for trade.

The Marketplace Edition will allow organizations which are market members
to define roles and simple approval workflows based on these roles, in order
to control and customize their interaction with the e-Marketplace.

Price determination within the e-Marketplace will allow:

• Sellers to offer goods at a fixed price

• Sellers to hold an auction for goods within the catalog

• Buyers to submit a Request for Quote (RFQ)

• Sellers to respond to a RFQ

• Sellers to use an exchange mechanism to post available products,
quantities and asked prices
© Copyright IBM Corp. 2000 195

• Buyers to use an exchange mechanism to post desired products,
quantities and bid prices

• The hub to match exchange positions of buyers and sellers

Marketplace Edition will also offer reports for the hub operators and for
buyers and sellers.

10.2 The Marketplace Edition players

Figure 42 on page 196 shows the various players involved in an
e-Marketplace and it is the objective of WebSphere Commerce Suite,
Marketplace Edition for AIX to provide facilities for all these various roles.

Figure 42. WebSphere Commerce Suite, Marketplace Edition - players

The players associated with the Marketplace Edition can be grouped into two
categories:

• Administrators

There are two types of administrator within Marketplace Edition. The first
type is the Hub Administrator who is analogous to the Site Administrator in
WebSphere Commerce Suite 4.1 and administers tasks such as roles,
catalog taxonomies, induction of new organizations joining the hub and
other day-to-day administration functions.

The second type of administrator is the Organization Administrator who is
primarily responsible for the administration of organizational members and
their roles.

• Members

SellersBuyers

Hub

Members

Organizations

Administrators
196 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Members are the buyers and suppliers associated with organizations
registered with the e-Marketplace.

10.3 The Marketplace Edition trading process

The trading process implemented in the Marketplace Edition extends the
online buying options available in the WebSphere Commerce Suite 4.1, which
currently offers a shopping cart mechanism and support for auctioning. In
Marketplace Edition, we can now purchase products through additional
methods of RFQ and exchange. Also, the price we pay for a product can be
determined by a contracted price which may be arrived at as the result of an
RFQ.

Figure 43 on page 197 provides a high-level summary of how buyers and
sellers can interact with Marketplace Edition.

Figure 43. Overview of buying and selling in Marketplace Edition

When a buyer selects a product from the catalog, it can be purchased
through the conventional shopping cart mechanism or it can be purchased via
negotiation. The result of the negotiation process is an order or if an RFQ is
performed, the result is a new contracted price for future orders.

For order management, Marketplace Edition uses the base order
management capabilities of WebSphere Commerce Suite 4.1. For the
conventional shopping cart ordering, the existing order system is used. The
auction, RFQ and exchange systems interface to the existing WCS order
system. When an order is placed, the supplier(s) are notified via e-mail. The
supplier(s) can then look at the order or download it in XML format. Once the
supplier has accepted the order, notification is sent to the buyer.

Auction

Seller

Seller

Buyer

Orders

or

e-mail

Product
Catalog

Exchange

Shopping
Cart

Fixed
Price

RFQ

Pricing
Contracts

XML PO

Contracted
Price
Chapter 10. Marketplace Edition overview 197

10.4 MarketPlace subsystems

The architecture of the WebSphere Commerce Suite, Marketplace Edition for
AIX is made up of a number of subsystems and infrastructure components. It
is based on and uses the WebSphere Commerce Suite. Figure 44 shows the
main subsystems that are part of the Marketplace Edition.

Figure 44. Marketplace Edition subsystems

10.4.1 Catalog subsystem
The goal of the Marketplace Edition design for catalogs is to provide a unified
view of the products traded in the e-Marketplace to both buyers and sellers.
The catalog must capture both supply and demand positions expressed by
the sellers and buyers in the e-Marketplace. To this end we must logically
separate the notion of things (that is the description of products) and their
trading positions as expressed by the various parties in the e-Marketplace.
198 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

The WebSphere Commerce Suite 4.1 catalog is the basis for the Marketplace
Edition catalog. The WebSphere Commerce Suite catalog is comprised of
database tables for categorizing and describing products as well as import
and maintenance processes. Structurally, the Dynasty catalog is largely
similar to the WCS catalog. The catalog usage and maintenance processes
are quite different due to the B2B nature of the product.

The Marketplace Edition catalog subsystem provides the following features:

• Unified view of the products traded in the marketplace

• Flexible product categories

• Buyer and supplier specific views

• Buyer administration approval of catalog content

• Centralized catalog for different negotiation methods allows multiple
methods of trading simultaneously

• Pricing by WebSphere Commerce Suite mechanism, negotiation, or
contracts

• Data loading by:

- Mass import via XML

- Marketplace Edition aware version of Catalog Architect

- Spreadsheet import

- Web browser

• Logging of catalog events

Chapter 14, “Example - catalog subsystem” on page 269 provides a fuller
discussion of the catalog subsystem in the Marketplace Edition and provides
examples how the subsystem works in practice.

10.4.2 Membership subsystem
This feature provides functionality for B2B membership and captures the
information required by the rest of the Marketplace Edition subsystems
including:

• Organizational structures of a member

• Roles

• Authentication

• Contact details

• Address
Chapter 10. Marketplace Edition overview 199

• Commerce preferences

The facilities provided by the membership and registration subsystem as
implemented in WebSphere Commerce Suite, Marketplace Edition for AIX
include:

• Aassociates people with organizations and record organizational
hierarchy

• Defines roles and attributes for members and organizations

• Provides additional information about members and organizations
required at registration

• Market administrators are the site admin

• Organization administrators are store admin

• Logs membership events.

Chapter 13, “Example - membership and access control” on page 241
provides a fuller discussion of the membership subsystem in the Marketplace
Edition and examples of how the subsystem works in practice.

10.4.3 Negotiation subsystem
The negotiation subsystem consists of the following:

• Auctions - which is based on the WebSphere Commerce Suite V4.1
Auction system with minor accommodations for the Marketplace Edition
table extensions

• RFQ - which is a totally new system with no equivalent in the WebSphere
Commerce Suite

• Exchanges - which extends the buying and selling process to provide such
features as Orderbook, TradingPost and Matching Components

All of the above events will be logged to be able to provide a complete audit
trail of any and all negotiation processes. This is necessary for dispute
resolutions.

The supported negotiations are:

1. Auctions

This is the WebSphere Commerce Suite 4.1 functionality that provides
auction interactions, bid control, pricing, closing rules and policy variation.
Tools available to buyers are:

- Auction gallery
200 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

- Proxy bid

- E-mail, bulletin board notification

Tools available to sellers are:

- Auction setup

- E-mail, bulletin board notification

2. RFQ

The RFQ process allows both buyer and seller organizations to develop a
request for either the sale or the purchase of goods. The Marketplace
Edition will then match the buyer request to a seller opportunity or a seller
opportunity to a buyer request.

If a buyer is searching a catalogue for goods or items and they cannot find
the exact item or the price that they wish to pay, then they initiate a
process known as a Request for Quote (RFQ). The RFQ can be launched
publicly or to selected bidders who can respond to the buyer in order to
fulfill the request. In composing the details of the RFQ, the buyer can elect
to allow certain fields within the description of the object to be able to be
modified such that interested sellers can make changes to the offer with
which they respond. E-mail will be generated to targeted sellers, alerting
them to the fact that a new RFQ is available for them to quote on.

Buying organizations will be able to evaluate the responses and select
winning sellers. The RFQs can be used to negotiate a long-term contract,
in which the prices, quantities, and dates agreed to between the selected
sellers and unique buying organization can be recorded and enforced in
subsequent purchases.

Items generated for the RFQ are added to the RFQ Interest List, these
items can be added from an existing catalog or they can be generated
from scratch if no such cataloged item currently exists.

The buyer may either specify the RFQ to be open to all e-Marketplace
members or may target the RFQ to a specified list of recipients.

Recipients can view a list of RFQs targeted to them, select a particular
RFQ to view, and if desired, create a response to the RFQ. Recipients can
also download the RFQ in XML format.

The buyer closes the RFQ, evaluates responses, and selects a set of
winners. When the winners are selected, the buyer has two choices:

- Immediately issue orders for the item(s) (one for each seller chosen)

- Establish a contract with the seller(s) based upon the RFQ response

The RFQ process will allow the buyers to:
Chapter 10. Marketplace Edition overview 201

- Create RFQs

- Using catalog product descriptions

- Using newly created product descriptions

- Target RFQs

- Publish RFQs

- View responses and select winners

- Copy RFQ

- Modify close or retract RFQ

- Search and view RFQs and responses on predefined attributes

- Create an order or contract from winning responses

The RFQ process will allow the suppliers to:

- Search and view the RFQs targeted to the supplier, or RFQs that are
public

- Create responses

- Submit response

- Modify and retract responses

- Search and view responses and results of responses

3. Exchange/matching

Many business transactions entail the procurement of a product or service
available from multiple sources. Quite often, the buyer’s purchasing
decision is made on the basis of which supplier can provide the product at
an acceptable price within a specified time frame. The exchange
negotiation model provides buyers and sellers with the functionality to
transact business by matching a buyer’s price and delivery requirements
with the available offerings for that product.

The buyer’s bids and seller’s offers are placed in an order book, which is
accessible to all authorized hub members. Once the bid or offer is placed,
the matching of bids and offers is done by a predefined matching
procedure. When the matching procedure finds a matched buyer-seller
pair, both parties are notified and the order is processed by the
Marketplace Edition order processing system. In summary, the exchange
model provides buyers and sellers with a dynamic pricing environment
inherent in a bid and offer process where:

- Buyers and sellers to express their bid/ask positions against the same
product type
202 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

- An order book used to persistently capture bid/ask positions

- A matching component is used to match bids and offers ("clearing") in
real-time, both continuously and periodically

Chapter 16, “Example - negotiation subsystem” on page 367 provides a fuller
discussion of the negotiation subsystem in the Marketplace Edition and
examples of how the subsystem works in practice.

10.4.4 Pricing contracts subsystem
The goal of the Marketplace Edition design for contracts is to provide a
mechanism to store agreed upon prices between sellers and buyers. Such
agreements may arise from other interactions in the e-Marketplace, such as
negotiations or RFQ. The contract facilities provided by the Marketplace
Edition include:

• Right to buy contracts

• Obligation to buy contracts

• Price or discount for all purchases or for specific items

• Manually created or created from the RFQ process

• Queried by catalog based buying

• Notified by order management

• Logging of contract events

Figure 45 on page 204 show how these contract facilities interact with the
other parts of the Marketplace Edition.
Chapter 10. Marketplace Edition overview 203

Figure 45. Interaction of the contract process with other parts of an e-Marketplace

The buyer and the seller negotiate a price or a discount on the published
price for a particular product. One instance of this is through the RFQ
process. This new price now applies when the buyer orders that product. The
pricing in the Marketplace Edition must pick up this price.

The following details are included in the contract:

• Seller

• Buyer

• Product

• Price

• Buyer organization, seller organization

• Creator and co-creator

• Min. monetary amount: obligation to buy contracts

• Max monetary amount: right to buy contracts

• BeginTime: The date and time at which the contract begins
204 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

• End time: The date and time at which the contract terminates (if not
terminated earlier).

• Coverage: All purchases (“applicable to all products”) or specific items
(“special pricing condition”). If you select special pricing condition in
Coverage, click Manage Item to add items from Current Contract Items.

• Currency

• Attachment

• Turnaround time:

• Products or categories

• Contract price

• Minimum volume or quantity: The buyer is required to place orders whose
quantities add up to at least the minimum quantity. If the MiniQuantity
value is not specified, there is no minimum quantity order requirement.

• Maximum volume or quantity: The seller is required to accept the agreed
price until the buyer's orders have quantities summing to the MaxQuantity
value. If the MaxQuantity value is not specified, there is no maximum
quantity order limitation.

The administrators of the e-Marketplace can list contracts including current
quantity ordered against the contract and the remaining obligation. Any
combination of a buyer, a seller, and any number of products can be
specified.

The buyers can list contracts for the requesting buyer including current
quantity ordered against the contract and the remaining obligation. A seller
and/or any number of products can be specified.

The sellers can list contracts for the requesting seller including current
quantity ordered against the contract and the remaining obligation. A buyer
and/or any number of products can be specified.The seller can terminate a
contract if no EndTime and no MaxQuantity values are specified.

A contract can be terminated in one of the following ways:

• If an end time is specified, the contract ceases when the end time is
reached.

• If no EndTime and MaxQuantity values are specified, the seller may
explicitly cancel at any time.

• The e-Marketplace administrator can cancel at any time.
Chapter 10. Marketplace Edition overview 205

• An agreement between both the buyer and the seller can cancel the
contract.

• If MaxQuantity is specified, the contract ends if, at any time, the sum of
the quantities of orders placed by the buyer under the contract reach the
MaxQuantity.

Note: If both an EndTime and a MaxQuantity are specified, then the contract
is terminated when either one of the two is reached.

Upon the contract termination (which can occur by either cancellation or
time/quantity expiration), both the buyer and seller need to be notified by the
notification means specified in their user profile.

Chapter 15, “Example - pricing and contract subsystem” on page 341 gives
more details of the way contracts are implemented in WebSphere Commerce
Suite, Marketplace Edition for AIX.

10.4.5 Additional infrastructure
This section deals with the extra facilities proved by the Marketplace Edition
to support the infrastructure of its e-Marketplace.

10.4.5.1 Hub business
The hub business facility is more or less equivalent to the financial side of the
Marketplace Edition. Reports are obtained and processed through this
subsystem.

At the core of any e-Marketplace is the ability of all the hub participants to
obtain current information on activity within the hub. The role of the user
wishing to generate a report determines the reports the user can access.

Hub-level reports dealing with revenue and membership will be available in
XML format to facilitate access both on and off-line. Organization-level
reports providing summary listings and statistics for the catalog, membership,
RFQ, exchange and contract subsystems will also be available.

For more details of the features provided by the hub business facilityplease
see Chapter 17, “Example - additional e-Marketplace infrastructure” on page
441.

10.4.5.2 Reports
Each subsystem has defined a limited set of available reports that can be
generated on demand.
206 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Member organization reports can be generated for catalog statistics, RFQs,
exchange, and contracts.

Further details of the reports produced by Marketplace Edition is in Chapter
17, “Example - additional e-Marketplace infrastructure” on page 441.

10.4.5.3 Orders
As the name suggests, the orders subsystem manages the order process
including:

• Managing the orders table

• Notifying sellers of pending purchase orders(PO)

• Allowing sellers to download an XML version of the PO

• Updating an order when a seller receives a PO and notifying the buyer

• Managing rejected POs

An order is placed by a member of the e-Marketplace and in the Marketplace
Edition implementation of orders it can be associated with only one seller
organization. An order consists of a number of linei tems which may be
created from contract, fixed price, RFQ, auction, or exchange offerings.

Chapter 17, “Example - additional e-Marketplace infrastructure” on page 441
discuss the order facilities of Marketplace Edition in more detail.

10.4.5.4 Access control
The access control infrastructure provides the Marketplace Edition with the
ability to:

• Define user groups

• Specify user attributes that define implicit user groups

• Define product groups

• Sselect attributes that define implicit product groups

• Ddefine access policies that map user groups to other groups.

The Marketplace Edition provides a number of standard roles and associated
access policies to manage default access to the e-Marketplace. An access
policy in its simplest form is a relationship of a group of users with a
command, a group of resources and a role relative to the resources. A
command is also known as an action and it may be a basic function such as
view, modify, create, or delete, a market level function such as quote, buy, or
requestQuote.
Chapter 10. Marketplace Edition overview 207

These roles include:

• Administrator

Hub level access to all tables and commands

• Organization Administrator

Able to access tables and commands for her own organization as allowed
by the administrator

• Buyer

Access allowed to own tables and the buyer commands allowed by the
organization

• Supplier

Access allowed to own tables and the seller commands allowed by the
organization

• Broker

Access allowed to exchange tables and exchange commands

The Marketplace Edition provides tools to allow definition and maintenance of
roles and access control policies.

Chapter 13, “Example - membership and access control” on page 241 gives
more information about the access control facilities of WebSphere Commerce
Suite, Marketplace Edition for AIX.

10.4.5.5 Approval flow
The Marketplace Edition implements a single-level approval flow facility so
that selected commands in the e-Marketplace can be subjected to an
approval process. This allows administrators to specify which action require
approval and to chose who the approvers should be. The Marketplace Edition
approval facility will notify approvers that an action is waiting for their
approval. Multiple approvals are not currently implemented by the
Marketplace Edition.

Approvers may accept or reject the pending approval. If they accept the
command awaiting approval will be executed. If the approver rejects the
action the command will not be executed. E-mail is sent to notify interested
parties whether the command was accepted or rejected.

Chapter 17, “Example - additional e-Marketplace infrastructure” on page 441
provides more details on the approval flow facilities provided by the
WebSphere Commerce Suite, Marketplace Edition for AIX.
208 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

10.5 Marketplace Edition programming model

The WebSphere Commerce Suite, Marketplace Edition for AIX is built on a
base of the WebSphere Commerce Suite 4.1 so it still uses the legacy C++
environment from the WebSphere Commerce Suite, but new Marketplace
Edition functionality is implemented in a Java programming model, as this is
the strategic direction for WebSphere Commerce Suite products.

Figure 46 shows a high level view of the architecture of the WebSphere
Commerce Suite, Marketplace Edition. Auctions, catalog buying and order
management are sourced from the legacy C++ model code with few changes,
whereas new Java code is utilized for contracts, exchanges, RFQ and
reporting. Catalog, catalog buying, and auctions also have some Java code in
order to provide new functionality or to interact with the C++ facilities.

Figure 46. WebSphere Commerce Suite, Marketplace Edition for AIX system architecture

The Marketplace Edition Java programming model has as its base
components:

• Interaction controllers

Interaction controllers control interaction with a specific client type. Since
the current implementation of Marketplace Edition is designed for
browser-based clients all current interaction controllers are Java
Servlets.The job of interaction controllers is to receive client requests and

Auctions
Catalog

Catalog Buying
Contracts
Exchange

RFQ
Reporting

Membership
Access Control

Approals

WebSphere
SecureWay

(LDAP)

Auctions
Catalog Buying

Order Mgmt

WCS/MPE
(Java)

WCS/MPE
(C++)

System Architecture

Database
Chapter 10. Marketplace Edition overview 209

process any parameters from the client. The interaction controllers do not
themselves process the request, as this is delegated to the correct
command or commands. Once the request processing is complete the
interaction controller passes result beans back to the client. In the current
implementation of the Marketplace Edition, the result beans are part of a
JSP user interface client

• Commands

Commands are a unit of business logic such as GetPrice or
AddToCart.They have an interface and an implementation.Commands are
created by a factory that instantiates an implementation of the interface.
The command interface provides setter methods to pass data to the
command, and execute method to initiate the command action and setter
methods to retrieve result from the command.

• Persistent objects

Persistent objects represent an encapsulation of a row in a table and allow
the management of persistent data by mapping beans to tables.

Figure 47 on page 211 shows a view of the Marketplace Edition Java
programming model.
210 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Figure 47. Java programming model

More details about the Java programming model used in the Marketplace
Edition can be found in Chapter 7, “Application design guidelines” on page
89.

10.6 Example application

In the example chapters in the remainder of Part 3, “Business-to-Business
Patterns: e-Marketplace example” on page 193 we illustrate the
implementation of the Marketplace Edition using the standard example
application that was shipped with the pre-release code used in writing this
redbook. This example application illustrates the features and functions
available to an e-Marketplace that uses the WebSphere Commerce Suite,
Marketplace Edition.

It uses a fictional example of an e-Marketplace centered around a worldwide
shipbuilding marketplace. In Appendix A, “Marketplace Edition installation
guide” on page 455 ,we give instructions for installing this example
application.

Client
(Browser)

Interaction Controllers
(Servlets)

Commands (Interfaces &
Implementations)

Persistent Objects &
Lists

JSPs

A
cc

es
s

C
on

tr
ol

B
ea

ns

Database

Java Programming Model Components
Chapter 10. Marketplace Edition overview 211

212 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Chapter 11. Example - runtime environment

This chapter discusses the configuration we used in the implementation and
testing of the WebSphere Commerce Suite, Marketplace Edition for this
redbook.Because the WebSphere Commerce Suite, Marketplace Edition was
still being developed when we were developing this redbook, we were not
able to implement the Marketplace Edition on more that one system.
Therefore for our testing we installed the IBM HTTP Web server, DB2, LDAP
WebSphere Commerce Suite, Marketplace Edition, WebSphere Application
Server, Advanced Edition, Net.Data and WebSphere Commerce Suite all on
one system. This is not the preferred way of implementing a production
system. There are several ways that a system can be implemented that will
work in a production environment. The following lists several ways of doing a
production implementation:

1. Everything on one system except the data

This would be a good implementation if the system had very low traffic or if
the system was going to be used only for a select number of consumers.
The reason why this system would not be used in a high value
e-Marketplace is because the e-Marketplace could very well become to
much for the system to handle and cause the system to be come unstable.
Also in a double system configuration there is no redundancy, so if there
was a system failure your users would not be able to access your
e-Marketplace.

Figure 48 shows a schematic of this double system implementation.
© Copyright IBM Corp. 2000 213

Figure 48. Double system implementation

2. Separate Web server and database server.

This triple system implementation is more robust than the first one. In this
implementation you would separate the Web server from the application
server and keep the database on a separate machine. This would allow for
more processing to be handled on the application server, and the data
processing would be handled completely by a more robust database
server. Figure 49 shows how this can be implemented.
214 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Figure 49. Triple system implementation

3. Build a farm out of each system\

The last implementation would be a completely robust and load-balanced
implementation. This can be implemented by building a Web server farm
for the Web servers, building an application server farm for the application
servers, and building a database farm for the database servers. This is by
far the most robust implementation and the most reliable implementation.
One thing to keep in mind is before you implement the WebSphere
Commerce Suite, Marketplace Edition for AIX, make sure that you size all
of the systems for the traffic that will be using the application. Figure 50 on
page 216 shows the farm implementation.
Chapter 11. Example - runtime environment 215

Figure 50. Farm implementation

11.1 Hardware implementation

The hardware configuration that we used in the writing of this redbook was an
IBM RS6000 7043-150D 375 MHZ 604e with 196 MB of SDRAM, but this was
solely for our testing purposes and is not recommended for production
implementations.

11.1.1 Minimum hardware requirements for implementation
The minimum hardware requirements for implementation are based on the
minimum hardware requirements for the WebSphere Commerce Suite. A
dedicated RISC System/6000 or an IBM Power System Series family of
machines (RS/6000 Model C20 or higher) is recommended with the following:

• A 167 MHz processor

• A minimum of 128 MB (256 of random access memory (RAM)
recommended

• A minimum of 900 MB of free disk space

• A CD-ROM drive
216 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

• A Graphics capable monitor.

To access the Commerce Suite Administrator, a workstation capable of
running Windows NT, Windows 98, or Windows 95, with a graphics-capable
monitor with at least 256 colors, and a mouse or other pointing device, is
needed.

A local area network (LAN) adapter that is supported by the TCP/IP protocol
would also be needed.

11.2 Hardware recommendations

The following is the recommended hardware for the different production
options:

• 1-tier system (database and Web Server on the same machine)

For the Web and database server:

- 4-way F50 (166 MHz PowerPC 604e

- 2 GD RAM

- 1 drive for the operating system and the applications

- 1 drive for paging

- 8 drives for the database

- 1 drive for the database logs

- 1 drive for the Web Server and the Commerce Suite logs.

• 2 - tier system (single Web server connected to remote database)

For the Web Server:

- 4-way F40 (233 MHz PowerPC 604e

- 512 MB RAM

- 1 drive for the operating system and the applications

- 1 drive for the paging

- 1 drive for the Web server and for the Commerce Suite Logs.

For the database server:

- 4-way F50 (166 MHz PowerPC 604e)

- 2 GD RAM

- 1 drive for the operating system and the applications

- 1 drive for the paging
Chapter 11. Example - runtime environment 217

- 8 drives for the database

- 1 drive for the database logs

• 3 - tier system (multiple, load balanced Web servers connected to a
remote database server)

For each Web server:

- n times 2-way F40 (233 MHz PowerPC 604e)

- 512 MB RAM

- 1 drive for the operating system and applications

- 1 drive for paging

- 1 drive for the Web Server and for the Commerce Suite log.

For the database server:

- 4 -way F50 (166 MHz PowerPC 604e)

- 2 GB RAM

- 1 drive for the operating system and the applications

- 1 drive for the paging

- 8 drives for the database

- 1 drive for the database logs.

11.3 Prerequisite software

Ensure that you have AIX 4.3.2 or 4.3.3 on your WebSphere Commerce
Suite, Marketplace Edition for AIX machine. The following fixpacks must be
implemented:

• Apply PTF U453695 for CSet++ miscellaneous runtime fixes.

• Ensure that the C runtime xlC.rte is at least at Version 3.6.4.1.

• Netscape Communicator 4.61 (a copy is provided on the WebSphere
Commerce Suite CD, in the \Netscape directory)

11.4 Web server configuration

Theminimum requirement for the IBM HTTP Server that is based on Apache
HTTP Server is a system that is running AIX 4.2.1 with xlc.rte 3.1.4.8 or
higher.
218 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

11.5 WebSphere Commerce Suite configuration

Chapter 1 in the IBM WebSphere Commerce Suite Pro Edition for AIX v 4.1
Installation Guide provides a list of prerequisite hardware and guidelines on
recommended hardware for production systems.

11.6 JDK implementation

The IBM JDK1.1.8 is required for the WebSphere Commerce Suite and for the
WebSphere Commerce Suite, Marketplace Edition for AIX.
Chapter 11. Example - runtime environment 219

220 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Chapter 12. Example - development environment

While no development tasks were conducted in the production of this
Redbook, this chapter provides details on the major development tools that
would be utilized in a typical Marketplace Edition development environment.

Essentially, the tool set is similar to that provided by the WebSphere
Commerce Suite 4.1. Because the majority of software development under
the Marketplace Edition is centered on Java-based technologies, IBM
provides an extremely solid foundation for this development using VisualAge
for Java and the WebSphere Commerce Studio.

In addition to covering the major development tools used to develop
Marketplace Edition sites, we also provide instruction on how to import the
sample e-Marketplace, “Worldwide Shipping Marketplace” into WebSphere
Commerce Studio so that you can work with, modify and subsequently
redeploy elements of the application for your own educational purposes. THis
process is valuable if you want to gain a better understanding of the structure
and elements of a Marketplace Edition application.

12.1 Development environment overview

The development environment required to build, deploy and maintain a
Marketplace Edition site is very similar to that used in WebSphere Commerce
Suite 4.1 development projects.

In WCS 4.1, a typical development environment included tools which could be
classified as follows:

• General development tools

- WebSphere Studio

- Page Designer and HotMedia

- VisualAge for Java

- Platform specific C++ compiler

- Text editors for Net.Data macros

• Product and shopping related tools

- Product Advisor

- Shopping Metaphor Builder

- Catalog Architect
© Copyright IBM Corp. 2000 221

Most of these tools can still be utilized in the Marketplace Edition
environment.

12.2 Development platforms

As with most Internet developments, many of the components of applications
developed for the WebSphere Commerce Suite, Marketplace Edition for AIX
can be developed from a variety of platforms including Windows, AIX and
Linux (as well as others, such as OS/2). This is due to the cross-platform
capabilities of many of the IBM WebSphere development tools, which is
making the choice of development platform truly open.

Typically development is conducted from the following environments:

• Windows

Most of your Marketplace Edition development can be done from a
Windows-based workstation using the WebSphere Commerce Studio tool
set and VisualAge for Java. You can then deploy the Java code, HTML and
JSP resources to the target platform using WebSphere Studio, which
provides both file system-based publishing and FTP-based publishing
services.

• AIX

For compilation of any C++ code, you can use the AIX-based C/C++ tool
sets such as C Set++ for AIX to compile and link libraries such as those
created for overridable functions.

• Linux

IBM is committed to porting developer tools for Linux and already provides
Linux versions of DB2, VisualAge for Java, HomePage Builder,
WebSphere Application Server, and IBM HTTP Server. You may choose to
use Linux for a development of application components using any one of
these tools.

What is important is that you are not bound to any single development
platform and are free to exploit the features of the platform most suited to you.

12.3 Development tools

This section provides a high-level view of the tools available to assist in the
development and deployment of your Marketplace Edition solutions. Although
some of the components operate only under Windows NT, such as
WebSphere Commerce Studio, many of them support other development
222 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

platforms. Becoming more prevalent in the developer community is
development from the Linux platform and, as described in the previous
section, it is a platform supported strongly by many IBM products.

There are a number of good references for WebSphere Studio and VisualAge
for Java development, including Servlet and JSP Programming with IBM
WebSphere Studio and VisualAge for Java, SG24-5755.

A number of HTML and PDF format documents are also provided in WCS 4.1
and we expect that full documentation of the Marketplace Edition tools will be
provided upon product launch.

12.3.1 WebSphere Commerce Studio
The WebSphere Commerce Studio provides a workbench from which you can
manage, edit and deploy many of the assets in your e-Marketplace.

Typically, you use the Commerce Studio to manage:

• JSPs and Java code used in your site.

• Graphics files and HTML files to be deployed to your site.

• Macro files (Net.Data .D2w files).

• Any other scripting or media files that form part of your production or
staging sites.

The Commerce Studio provides many features for both the single developer
and team development including:

• Full integration to VisualAge for Java using the Toolset API.

• Support for a shared project directory supporting team development.

• Additional development tools such as WebSphere Page Designer and
HotMedia.

• A number of wizards to assist in JavaBean creation, SQL statement
generation and automated creation of JSP pages based on these SQL
statements.

• Full support for publishing the assets of the site via file system copy or
FTP copy. The developer can configure publishing servers and target
folders to fully control the publishing of site assets to staging or production
servers.

Refer to 12.5, “Importing the sample site into WebSphere Studio” on page
229 to learn how we used WebSphere Studio 3.02 to import, inspect and
modify files used in the Marketplace Edition sample application.
Chapter 12. Example - development environment 223

12.3.2 Page Designer
WebSphere Page Designer is a fully-featured HTML and JSP page designer
used to create static and dynamic content for the Web site. Page Designer
has full support for JavaBeans and supports JSP Versions 0.91 and 1.0 (this
setting is configured from the WebSphere Studio).

12.3.3 HotMedia
The HotMedia software is included in the WebSphere Studio to assist
designers in creating multimedia components for use in their e-Marketplaces.
It is based on Java applet technology and does not require a browser plug-in
to display components delivered to the user’s browser. Some of its features
include the ability to create:

• Graphics that rotate, pan and zoom.

• Streaming audio and video.

• Various transitional effects for graphic files.

12.3.4 VisualAge for Java
VisualAge for Java is the IBM Java development environment and is
considered to be one of the best available. VisualAge provides a fully featured
development, debugging and test environment in which to develop your own
interaction controllers, command beans, data beans and view beans to create
your e-Marketplace applications.

One feature of VisualAge for Java that is very useful in developing Java code
in the WebSphere environment is the WebSphere Test Environment (WTE).
In the WTE, VisualAge creates an environment that simulates a production
WebSphere server, allowing you to test your code as if you had published it to
a WebSphere server. The primary benefit of using this environment is that
you can use the VisualAge for Java Integrated Debugger to debug your
applications locally on your development machine.

While not tested, it is possible to configure the WTE to debug your
Marketplace Edition applications.

12.3.5 Catalog and shopping tools
As expected, you can use the HTML tools provided in the Marketplace Edition
Administration Console to manage the information stored in the aggregated
catalog of the e-Marketplace. These browser-based tools are hosted by the
hub and offer supplier-side organizations the ability to update their own
products, which will subsequently be displayed in the aggregate catalog. Also
224 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

available is the ability for each organization to provide the product and
catalog data in XML formatted scripts.

Accordingly, it is advisable to have a good XML editor to assist you in creating
and debugging these scripts.

12.3.6 Catalog Architect
Catalog Architect was available in WCS 4.1 and offers us the ability to modify
catalog and product data from a fully featured GUI environment. This product
has been revised for the Marketplace Edition to support the modifications
made in areas such as the database schema.

12.3.7 Database tools
If your e-Marketplace requires you to extend the default Marketplace Edition
database schema, you may require GUI tools to assist you. If you using DB2
for AIX, the Control Center and Command Center tools provide assistance in
this area. You may also require tuning and capacity planning tools in addition
to these base tools.

12.3.8 Changes between WCS 4.1 and Marketplace Edition
While most tools used in development of WCS 4.1 projects will work under
the Marketplace Edition, there are a number of tools available for use under
WCS 4.1 that are either not supported by he Marketplace Edition or must be
modified to support it. In addition, the Marketplace Edition provides a number
of new capabilities.

• Product Advisor

This will no longer be supported under the Marketplace Edition.

• Store creator wizard

At the time of writing, there was no evidence that a similar tool will be
available to generate a base-level e-Marketplace.

• Catalog Architect

A revised version of Catalog Architect will be available that will support
catalog administration by the hub administrator and also by organizations
(to a limited extent).

• Microsoft Excel spreadsheet

New support has been added to import catalog data from a Microsoft
Excel spreadsheet.
Chapter 12. Example - development environment 225

12.3.9 C++ compiler
As in WCS 4.1, you may be required to develop some C++ code if you are
implementing logic at the command, task and overridable function layers.
Because this code is machine-specific, development must be conducted on
the target platform, in this case AIX 4.3.3.

The tools that can be used to develop and compile AIX libraries are:

• C Set++ for AIX Version 3.1.4.

• IBM C and C++ compilers Version 3.6.4.

For more information on customization using the C++ programming model
refer to the online documentation provided with the Marketplace Edition or the
existing WCS 4.1 documentation:

WebSphere Commerce Suite, Pro Edition Customization Version 4.1.

12.3.10 Development tool interactions
Figure 51 shows the interactions and relationships between the various
development tools used in a Marketplace Edition development project.
226 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Figure 51. Interactions between common development tools

As a developer, you will need to become familiar with the location of files
used by the Marketplace Edition. The base directory where Marketplace
Edition files reside is:

/usr/lpp/CommerceSuite

From this directory a number of subdirectories exist where the core files used
by the Marketplace Edition reside, and where modified and new files will be
published to from the WebSphere Studio. The core directories are shown in
Table 13; however, there are many other directories that may be the target
directory for files in your Studio projects.

Table 13. Significant directories for a publish operation from WebSphere Studio

File types Directory

Java code /classes/com/ibm/commerce/emp/<DIR>

HTML/JSP /html/en_US/emp/<DIR>
Chapter 12. Example - development environment 227

12.4 Roles

The typical, but not exhaustive, list of roles commonly used in the
development of e-Marketplaces is shown in Table 14.

Table 14. Typical roles seen in large-scale e-Marketplace development

Images /html/en_US/emp/standard/Images
/usr/lpp/CommerceSuite/html/en_US/base

(Note: there are directories other than these)

Access Policies /emp_schema/singlebyte/accesscontrol

Role Name Description

Page Designer/Site Flow Uses WebSphere Studio and Page
Designer to build static HTML pages and
dynamic JSP pages.

Content Contributors A role grouping that provides additional
services such as graphic design, content
writing, and initial setup of the Marketplace
base catalog.

WebMaster/Marketplace Administrator Provides administrative services for the
site such as implementing Site Analyzer
and Performance Pack in addition to other
site administration tasks.

Site Analyst Reviews data from Site Analyzer and the
MPE reporting subsystem to gain
understanding of usage patterns with the
aim of identifying areas of improvement.

Analyst Gathers user requirements, prepares use
cases and supplies the business rules on
which the e-Marketplace will be founded.
Also analyzes the requirements of
suppliers and buyers participating in the
e-Marketplace.

Programmer Uses WebSphere Studio, VisualAge for
Java and C++ tools to develop the
business logic for the site.

File types Directory
228 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

12.5 Importing the sample site into WebSphere Studio

This section describes how to import the Marketplace Edition sample site
“Worldwide Shipbuilding Marketplace” into WebSphere Studio. We have
provided this example so that you can work with the example JSP pages and
other files to gain further insight into Marketplace Edition application
structure.

To perform the import, you must have WebSphere Studio 3.02 or WebSphere
Commerce Studio installed on your computer and we assume that you have a
running installation of the WebSphere Commerce Suite, Marketplace Edition
for AIX with the example e-Marketplace installed and operational.

12.5.1 Importing files using the Import Wizard
The following steps describe how to import the files into WebSphere Studio:

1. Start the WebSphere Studio workbench and select the Create a new
project option button.

2. In the New Project dialog, enter a name for the project such as
ShippingExample. Ensure the default template is set to <none>.

3. Select the top-level node in the tree. Select File->Import to start the
Import Wizard.

Site Assembler Uses WebSphere Studio to deploy the site
to staging and production environments.
Uses Site Analyzer to verify linkages and
locate structure problems.

Integration Specialist Responsible for the analysis and
implementation of the integration of buyers
and suppliers. Implements message
transport services such as those provided
by MQ Series.

Infrastructure Specialist Responsible for the hardware, clustering,
failover, performance and security of the
e-Marketplace.

Architect Ensures the successful coupling of the
pieces in the solution, from infrastructure
to applications.

Role Name Description
Chapter 12. Example - development environment 229

4. Type the base URL of the site to be imported. The URL in our environment
is:

http://august.itso.ral.ibm.com/emp/standard/DynastySiteHome.html

Click Next.

5. Ensure that the following options are selected:

Follow folders & sub-folders recursively (requires FTP access)

Server scripts and other files used to generate the pages being
served to the browser (requires FTP access)

Click Next.

6. Because we’re importing files via FTP, enter the FTP port and account
information as shown in Figure 52. Also, make other selections
appropriate to your environment such as Use Firewall Sequence. Click
the Help button for more information on these options.

In the Document Root field enter:

/usr/lpp/CommerceSuite/html/en_US

Ensure that Do not limit depth is deselected. Click Next.

Figure 52. Import Wizard - specifying FTP and document root options
230 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

7. In this window, deselect the Prompt before importing already existing
files option if you have existing files (perhaps from a previous import
attempt) and do not want to be notified of this. Click Next.

8. In the Summary step of the Wizard, review the options you have selected
and click Finish. If you want a report to be generated by the import
process, select Generate Import Report. Click Finish to commence the
import process.

In some circumstances, the WebSphere Studio import may time out
before your FTP connection is made to the AIX FTP service. You can
remedy this by modifying the time out and retry values used in Studio by
editing the Windows NT registry entries:

HKEY_CURRENT_USER\Software\IBM\WebSphere Studio\3.0\Settings
"InternetTimeout"=<value>
"InternetRetry"=<value>

These entries are DWORD values. The InternetTimeout key is in
milliseconds so to set the time out to 32 seconds, specify 32000
(decimal) in this field. This is shown in Figure 53.

Special Note
Chapter 12. Example - development environment 231

Figure 53. Registry settings to fix time out issues.

When the import is complete, your Studio workbench should resemble the
one shown in Figure 54.
232 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Figure 54. Studio workbench following import of the ”Worldwide Shipping Marketplace”

Now that you have the required files imported into WebSphere Studio, you
can look at some of them by loading, for example, a JSP file into
WebSphere Page Designer. The next section provides details on how to
do this.

12.5.2 Making changes
You can modify and inspect some of the files you have imported by using the
tools provided in the WebSphere Studio. Because the Marketplace Edition is
founded on the WebSphere Application Server Version 3.x, you must ensure
that the WebSphere Studio is configured appropriately.

To verify your current Application Server and JSP version support:

1. Select the Studio project node (the top-level node in the tree pane).

2. Select Edit->Properties to display the dialog shown in Figure 55.
Chapter 12. Example - development environment 233

Figure 55. Advanced tab of the Project Properties dialog

3. Ensure that the Application Server Version is set to 3.0 and the JSP
Version is set to 1.0. Without these settings, you will receive errors when
attempting to load JSP pages into WebSphere Page Designer.

4. Click OK.

12.5.2.1 HTML and JSP pages
The majority of the imported files are HTML and JSP pages. These can be
edited using WebSphere Page Designer, which was installed on your system
when you installed WebSphere Studio.

To launch a file into WebSphere Page Designer:

1. Locate the file that you want to view such as category.jsp in the Catalog
folder of the tree pane.

2. Double-click the file to open it in WebSphere Page Designer.
234 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

In this example, we will add a table cell to the Product Descriptions table. This
table already displays properties of the Product bean, namely
getShortDesciption() and getLongDescription1().

3. Right-click the right most column of the table and select Specify and Add
Cell from the menu.

4. In the Add Row/Column dialog, select Column and After and enter 1 in
the number text box. Click OK to add the column.

5. Straddle the top level heading to span all 3 cells by selecting the top row of
the table and selecting Table->Join Selected Cells.

6. Switch to the HTML Source view by selecting the tab at the bottom of the
main window.

7. In this simple example, we’ll simply add the product reference number to
the new cell. Click HTML Source.

8. Locate the code block shown in Figure 56 and make the modification
shown in bold to include the product reference number inside the new
<TD> tag created as a result of the new cell creation.
Chapter 12. Example - development environment 235

Figure 56. Making a simple modification to category.jsp.

9. Switch back to Normal view. Notice the {J} that now appears in the cell.

10.Save the file. Your page should look like the one shown in Figure 57.

...
<TABLE BORDER=1 CELLPADDING="4" CELLSPACING="1" BGCOLOR="#E7F6FF">

<TR>
<TH colspan="3" class="TABLEHDR">Product Descriptions
</TH>
</TR>
<% for (int i=0; i<prodlistSize ; i++)
{
product= products[i];
String desc = product.getLongDescription1();
if (desc != null) {
if(desc.length() > 20)
desc = desc.substring(0,20) + "...";
}else{
desc = product.getShortDescription();
}

%>

<TR>
<TD>
<a href="<%= productIC +"prrfnbr=" + product.getProductR
eferenceNumber() %>"><%= product.getShortDescription() %>
</TD>
<TD>
<%= desc + " " %>
</TD>
<TD><%= product.getProductReferenceNumber() %></TD>
</TR>
<%
}
%>
<!-- End of for loop -->
</TABLE>
...
236 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Figure 57. Modified category.jsp

11.Return to the WebSphere Studio workbench.

12.Right-click the edited file (category.jsp) and select Check-in from the
menu. The file is now ready for publishing.

Java code
The Marketplace Edition ships with .class files so the Java source code is not
available for you to view. However, if you develop your own servlets and
JavaBeans for use in the e-Marketplace environment, you can include these
into your Studio project enabling you to edit and deploy them to the server.

12.5.3 Configuring the publish operation
Having made a change to a file, you will want to publish it back to the site.
This is done directly from WebSphere Studio by setting up a publishing server
and by specifying one or more publishing targets.

12.5.3.1 Inserting a new server node
You must specify the server that you want to publish files to and also set the
Publishing Stage before you can define publishing targets.

1. Select View->Publishing.

2. Select Project->Publishing Stage->Test

3. Delete the existing node named localhost.
Chapter 12. Example - development environment 237

4. Highlight the Test node and right-click to bring up the menu.

5. Select Insert->Server to display the Insert Server dialog.

6. Enter the server name such as august.itso.ral.ibm.com. Click OK.

7. Right-click the new server node to display it’s context menu. Click
Properties. In this dialog, we need to change the publishing type to use
FTP and not File system publish.

8. Click the FTP option button and enter the FTP user name and password
for your server.

9. Click Define Publishing Targets to modify the location that we can to
publish the files to. In this case:

/usr/lpp/CommerceSuite/html/en_US

Click OK to close the Publishing Targets dialog.

Click OK to close the server’s Properties dialog.

12.5.4 Publishing the modified files
Now that the publishing server is configured, we simply need to select the file
we want to publish and publish it.

1. In the Publishing pane, select the category.jsp file and right-click to
display the file’s context menu.

2. Select Publish this File.

3. Ensure that Relative to document root is selected. Click OK.

4. Accept any warning about broken child links.Click OK.

We had a problem in our initial publish operation where Studio
automatically updated some links in category.jsp to include the full URL
to the resource. This caused the resulting page links to be incorrect
when the page was displayed. To remedy this situation we manually
corrected the URL in Page Designer and republished the file. Also, you
may want to deselect the Use Parser option in the file’s Properties
dialog to prevent Studio from interrogating links in some files known to
cause problems in your publishing operations.

Special Note
238 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

12.5.5 Verifying the results
You can view the modified page by navigating the product catalog to a
subcategory that contains products. You should see the reference number
displayed in the right-most cell of the Product Descriptions table as shown in
Figure 58.

Figure 58. Modified category.jsp deployed to the example Marketplace Edition site
Chapter 12. Example - development environment 239

240 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Chapter 13. Example - membership and access control

The features offered by the Marketplace Edition for membership and access
control builds on the concepts of shopper and merchant provided by WCS
4.1.

In an e-Marketplace, we now have more complex membership and access
control facilities. The Marketplace Edition introduces the membership entities
of users, organizations and markets and the concept of user roles. For each
of these entities, we also have access control mechanisms that provide
security for the various resources offered within the e-Marketplace ,such as
products, directory entries, commands and interaction controllers. In addition
to securing resources, we also have the ability to control the actions that
members can perform on these resources through the use of access policies.

This chapter provides an explanation of these key areas of functionality by
explaining the features and design of the membership and access control
subsystem. We also provide examples of how to administer each of these
features using the Marketplace Edition Administration Console.

13.1 Membership

In the context of e-Marketplaces, membership includes the functions of
registration, account maintenance, administration and directory services. The
information stored by the membership subsystem is required by virtually all
other processes within the e-Marketplace and spans the areas of:

• Contacts and addresses

• Commerce preferences

• Organizational structures

• Roles

• Authentication

• Groups

The e-Marketplace uses this information continually in all market-related
functions, such as identifying roles in the buying process, providing
notifications to suppliers, and integrating into organizational systems, such as
ERP systems or procurement portals.

One of the primary goals of the membership subsystem is to provide a model
that enables the appropriate security and authorization procedures to be
© Copyright IBM Corp. 2000 241

applied to processes, resources and actions. One assurance that the
e-Marketplace must give to its participants is the assurance that participants
can perform only those tasks they are authorized to.

13.1.1 Participants overview
Non-administrative users in the e-Marketplace can be categorized into the
groups of buyer and seller, where each participant is usually part of a larger
organizational entity registered with the e-Marketplace. All participants in the
e-Marketplace are users - the lowest common denominator of the
membership subsystem, irrespective of other explicit or implicit user
groupings such as grouping by specific user attributes. This is evidenced by
the fact that the Marketplace Edition accepts login only by users - not by an
organization.

An example of e-Marketplace participants is shown in Figure 59. We can
observe that this e-Marketplace has three organizations registered in it and
each of these organizations has a number of members.

Figure 59. Example e-Marketplace featuring organizations and members

You may be are familiar with the terminology used in WCS 4.1, which
categorizes users as shoppers or merchants. For compatibility, Marketplace
Edition provides mappings for people to shoppers and organizations/markets
to merchants. This mapping is shown in Figure 60.

IBM

Electronics
Marketplace

NEC

Motorola

J. SmithJ. Smith

F.
Baker

J. Doe

K.
Smith

K.
Smith

P. Lee

J.
Jones

K.
Homes

K.
Baker
242 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Figure 60. Mapping Marketplace Edition terminology to WCS 4.1

Organizations in the e-Marketplace are comprised of users.

13.1.2 Registration basics
The registration process allows new participants, both users and
organizations, to join the e-Marketplace and it is during this process that
basic participant information is collected. The actual processes performed for
registration can differ depending on the type of functions and services offered
by the e-Marketplace. For example, some e-Marketplaces may enforce very
stringent registration processes where user-roles are assigned and certain
credit checks are performed. Others may offer simple self-registration pages
or offer guest access to the e-Marketplace.

The layout of pages associated with the registration process is shown in
Figure 61.

Organization

Market

Person

Merchant

Shopper
Chapter 13. Example - membership and access control 243

Figure 61. Logical page layout for registration processes

These differing registration requirements highlight three common registration
processes:

• Self

The self-provisioning registration process allows new members to supply
the initial account information and to maintain this information themselves.
The system is responsible for ensuring that the user ID or organization ID
is unique.

• Administrator

The administrator-provisioning registration process calls on the hub
administrator to add new participants to the e-Marketplace and the
Organization Administrator to add new users for their organization.

• Guest registration

Another type of registration that some sites may implement is guest
registration. This allows users who are not registered with the
e-Marketplace to enter and use the e-Marketplace. These users usually
have reduced access privileges and are usually required to register with
the system prior to making a purchase.

• Registration approval
244 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

In any of the above cases, the new registration may require approval
before the new participant is admitted to the e-Marketplace. The approval
process may involve a human decision or an automated process such as a
credit check against a credit subsystem. The Marketplace Edition supports
a single-level approval process for registration of new users and
organizations.

13.1.3 Pre-registered administrative members
Following installation, the Marketplace Edition has two accounts, mrkadmin
and empadmin. The mrkadmin account is a member of the default Market
Organization, which is created at installation time and is used to represent
the hub business. The empadmin account is the general hub administration
account.

The default attributes of the two accounts are shown in Table 15. Notice the
minor difference in the roles for each.

Table 15. Default hub administration account

13.1.4 Registering new users
In this section we describe how to add new users using the Marketplace
Edition Administration Console. In this example, the user is added using the
Administrator-provisioning registration process described in 13.1.2,
“Registration basics” on page 243 and we are logged in to the Marketplace
Edition with the empadmin user ID.

You can navigate to the User Administration pages by starting the
Administration Console with a URL such as:

http://rs600035.itso.ral.ibm.com/emp/standard/DynastySiteHome.html

By selecting the Administration link in the Navigation pane, additional links
will be displayed, one of them being User Administration. Selecting this link
displays the GUI for managing users and allows you to:

Organization Name Account Name Password
(default)

Roles
(default)

Market Organization mrkadmin commerce orgAdministrator
marketAdministrator
approver

None empadmin commerce orgAdministrator
hubAdministrator
approver
Chapter 13. Example - membership and access control 245

• Display users by organization

• Search for users and organizations

• Display user information

• Edit user information

• Assign locations and groups to the user

• Register new users

Before you add a new user, you must know the organization code of the
organization in which the new user will be registered. You should obtain this
information by selecting the Organization Administration link on the
Navigation pane.

To obtain the organization code:

• Click the Go button at the top of the page to display all organizations or
enter some text in the Organization field to restrict the search operation to
some known organizations.

• Click the desired organization from the Organization list.

• The organization code is displayed in the Organization View pane. This is
the code that we will require when registering new users.

This Organization View is depicted in Figure 62.
246 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Figure 62. Obtaining the organization code

Now that we have the organization code, we can commence adding the new
user by clicking the User Administration link in the Navigation pane and
clicking the Register button to display the default registration page.

The initial part of the user registration process is straightforward and captures
the usual information about the user. Note that some of the fields are
mandatory - indicated by bold typeface.

To register a new user:

• Enter a unique login ID and default password for the user.

• Enter values for the remaining fields.

• In the Organization Membership Code field, enter the organization code
you obtained previously.

• Click the Submit Registration link to complete the registration.

You should verify that the user was correctly created by selecting the User
Administration link and typing the surname of the user in the Last Name
Chapter 13. Example - membership and access control 247

Search field. The user should be displayed within the User pane as shown in
Figure 63.

Figure 63. Verifying the new user registration

When the user is registered, you can enter further information about the user
from the User Edit page.

Select Administration->User Administration from the Navigation pane.

1. Select the organization and user that you wish to edit.

2. From the User View page, click User Edit.

3. Enter the additional information for this user.
248 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

13.1.5 Registering new organizations
The process of registering organizations is similar to the “new user”
registration process. In this example, the registration is being performed by
the hub administrator.

Select Administration->Organization Administration or
Administration->User Administration from the Navigation pane.

• Click the Register button.

• Locate the link in the text at the top of the page that reads:

If your organization is not already registered, click here to request a

new organization registration.

This will display the New Organization Registration page where you will
register the organization and define an organization administrator for the
organization.

• Enter the company name and specify a unique login ID and password.

• Specify the other mandatory and optional information on the form.

• Click the Submit Registration button.

• Verify that the new organization was successfully created by selecting
Administration->Organization Administration and locating the new
organization.

This process has defined a new organization within the e-Marketplace and
configured an administration account for the organization. This administration
account will be used by the organization administrator to add new users for
the organization rather than relying on the hub administrator to perform that
task.

In the self-provisioning registration process where organizations can register
themselves with the e-Marketplace, the hub administrator must approve the
new organization before it can become an active participant.

At this point, the user should be assigned a role based on their intended
interactions with the marketplace. This process is discussed in 13.2.10,
“Assigning roles” on page 261.

Note
Chapter 13. Example - membership and access control 249

The approvals subsystem is discussed in more detail in Chapter 17,
“Example - additional e-Marketplace infrastructure” on page 441.

13.2 Access control

Having defined organizations and users within our e-Marketplace, we can
start to consider the access control mechanisms that should be granted for
the e-Marketplace members. The primary objective of access control is to
govern the actions that users can perform on particular resources. In the
Marketplace Edition, this is achieved using access policies that enforce
boundaries for the functions that a particular user can perform.

Access control policies in Marketplace Edition control access using a
combination of the definitions for:

• Users

• Roles

• Groups

• Actions

This section begins with a discussion of some of these areas before looking
at how access policies are implemented.

13.2.1 Users and user groups
Marketplace Edition allows you to group users for access control purposes.
Groups always have an owner who can be an individual or an organization.
Groups can be explicit or implicit. Explicit groups are created by explicitly
adding users to a group. Implicit groups are created by providing group
attributes, where users whose profile matches the specified attributes are
implicitly made members of the group. This is described in more detail in
13.2.9, “Administering groups” on page 260.

An example of this is to group all those users in a particular department
(assuming that department was captured in the user profile) because it is
likely that the access policies for members of the same department will be
identical. By grouping users, access policies can be applied to the entire
group reducing the number of policies that need to be created and managed
by the administrator.
250 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

13.2.2 Resource groups
Resource groups are identical to user groups but provide implicit and explicit
grouping of the resources such as command and interaction controllers. The
predefined resource groupings in Marketplace Edition are shown in Table 17
on page 256.

13.2.3 Roles
Roles are named groupings of defined actions that can be performed on
particular resources. There are a number of basic actions such as view,
modify, create, and delete in addition to market-related actions such as quote,
buy and requestQuote. Table 16 shows a matrix of actions and roles
applicable to the pricing contracts subsystem in Marketplace Edition.

Table 16. Roles and associated privileges for the pricing contracts subsystem

User roles
The access control model implemented in the Marketplace Edition has its
roots in traditional role-based models but implements a slightly modified
terminology. In a pure role-based model, roles represent a function within an
organization. Users are assigned roles which inherently grant them the
privileges and rights associated with that role as shown in Figure 64, but not
necessarily all of the actions that the user can perform.

Role View Create Verify Search Report Approve

Buyer � �

contractAdmin. � � � �

orgAdministrator � � �

hubAdministrator � � �

Approver � � �
Chapter 13. Example - membership and access control 251

Figure 64. Traditional role-based model for user privileges

However, in e-Marketplaces, it is necessary to further define the term “role” to
include the possible actions that a user can perform in the context of a
particular resource. Marketplace Edition provides this functionality using the
concept of Access Policies. Refer to 13.2.5, “Access policy overview” on page
254 for further information.

Resource roles
Similar to user roles, we can assign roles, or a set of roles, to a resource or
group of resources. Each resource may have a user or a group of users that
fulfill each role defined for the resource. For example the role of recipient
might apply to a document resource, or the role of supplier might exist for a
product within the aggregated catalog. Figure 65 shows this relationship.

User 1

Role 1

User 2

User 3 Role 1

Privileges
Group 1

Privileges
Group 2
252 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Figure 65. Relationship of resources, roles and users

By assigning roles to resources, we can subsequently govern the actions that
can be performed on them.

13.2.4 Actions
Actions represent the actual activities that can be performed on a particular
resource in the e-Marketplace. Some actions that may apply to a document
resource for example might be “Read” and “Update”. We can also apply
actions such as “Buy” or “Send request” to applications in the e-Marketplace
which may subsequently kick off additional processes that refer to the target
of the action - a product in the case of the “Buy” action. By introducing
actions, we effectively control what the user is able to do with a given
resource, as shown in Figure 66.
Chapter 13. Example - membership and access control 253

Figure 66. Relationships between resources, actions, roles and users

13.2.5 Access policy overview
Access policies are rules that combine the elements of resources, actions,
roles and users together for the purpose of granting user-access to a
resource. A textual representation of access policies are:

All users in United States can view all categories

or

User John Smith can buy from category ABC

The access control mechanisms in the Marketplace Edition also support
delegation - the granting of authority for a user to act on behalf of another
user. This feature is often required, for example, in organizational hierarchies
where a manager is required to act on behalf of one of their team members.
Alternatively, the manager might hand this responsibility to another
subordinate team member. To cater for this situation, the Marketplace Edition
provides the "Act For" action to delegate responsibility to another member.

An example of an access policy used during the creation of this redbook is
shown in Figure 67. This policy allows all users access to all resources. You
might consider using an access policy such as if you are new to Marketplace
Edition and simply want to familiarize yourself with the product without access
restrictions. In the WebSphere Commerce Suite, Marketplace Edition for AIX,
this access policy and all others reside in the directory:
254 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

/usr/lpp/CommerceSuite/emp_schema/singlebyte/accesscontrol

Figure 67. freeAccessPolicy.xml

The important elements of this XML script are described below:

• UserGroup

The UserGroup segment defines the implicit or explicit grouping of our
e-Marketplace users to whom this access policy will apply. For example, in
the model depicted in Figure 66 on page 254, our user grouping could be
based on the common role of creator, to which four users have been
assigned.

In the freeAccessPolicy.xml, the user group specified is “anyone”, which is
one of the pre-defined implicit user groups offered by Marketplace Edition.
Also note the ownerMID=1 attribute/value pair which specifies the policy
owner - in this case the value 1 is the Administration Organization (the
e-Marketplace owner). This attribute will appear in all segments
throughout the file.

• ResourceCategory

The ResourceCategory segment defines the resources that will be made
accessible by the policy and defines the actions that are valid on each
resource. In the freeAccessPolicy.xml file, the ResourceCategory name is

<?xml version="1.0" ?>

<Policies>
<!-- user groups -->
<UserGroup Name="anyone" ownerMID="1" >

<Filter>(objectclass=person)</Filter>
</UserGroup>

<!-- resource categories/resource groups -->
<ResourceCategory Name ="java.lang.Object" ownerMID="1" >

<Action>*</Action>
</ResourceCategory>
<ResourceGroup Name="Object" ownerMID="1" >

<Member Name="java.lang.Object" />
</ResourceGroup>

<!-- ACPolicy section -->
<ACPolicy Name="anyoneCanPerformAnyActionOnAnything" ownerMID="1"

UserGroup="anyone" Action="*" ResourceGroup="Object" />

</Policies>
Chapter 13. Example - membership and access control 255

java.lang.Object and the actions allowed on this resource are * (all
actions). By specifying the root level object of java.lang.Object from which
all other commands and interaction controllers are derived, we
automatically have access to all Java objects inherited from this object.

• ResourceGroup

The ResourceGroup segment specifies the objects that you want to allow
the UserGroup to perform an action on. In freeAccessPolicy.xml, the group
Object has been identified and the Member Name tag set to
java.lang.Object.

• ACPolicy

The final segment, ACPolicy is responsible for naming the access policy
and references the other definitions specified in the previous segments in
the file. As is appropriate, the freeAccessPolicy.xml is given an
appropriate name representing its functionality -
“anyoneCanPerformAnyActionOnAnything”.

13.2.6 Access policy resource groupings
There are a number of common predefined resources groupings provided by
default. When creating new access policies for an e-Marketplace, you can
specify these groupings in addition to any other objects (such as commands
or interaction controllers) that you wish to grant access to.

Table 17. Predefined resource groupings

Resource
group

Actions
(Commands)

Resource
relative roles

User UserLoginDisplay
UserLogin
UserRegistrationDisplay
UserRegister
UserDisplay
UserEditDisplay
UserUpdate
UserPasswordReset
UserOrganizationAdministratorSetReset
UserHubAdministratorSetReset
UserDelete
UserAddRole
UserRemoveRole
UserSearchDisplay
UserSearch
UserResultsList

owner
256 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

13.2.7 Manual access policy walkthrough
In this section, we will walk through the creation of an example access policy.

Figure 68 shows an example of the real-world access policy
defaultAcessPolicy.xml, which allows the role of contractAdministrator access
to specific contract commands.

1. For this example to work, the role of contractAdministrator must exist in
the ldapinit.ldif file located in the directory:

/usr/lpp/CommerceSuite/emp_schema/singlebyte/membership

Organization OrganizationRegistrationDisplay
OrganizationRegister
OrganizationDisplay
OrganizationEditDisplay
OrganizationUpdate
OrganizationSearchDisplay
OrganizationSearch
OrganizationResultsDisplay
OrganizationReport

owner

User Group GroupList
GroupDisplay
GroupEditDisplay
GroupCreate
GroupAddMembers
GroupRemoveMembers
GroupAddCondition
GroupRemoveConditions
GroupDelete

owner
member

Location LocationList
LocationDisplay
LocationEditDisplay
LocationCreate
LocationUpdate
LocationDelete

owner

AccessPolicy AccessPolicyList
AccessPolicyDisplay
AccessPolicyEditDisplay
AccessPolicyCreate
AccessPolicyUpdate
AccessPolicyDelete

owner

Resource
group

Actions
(Commands)

Resource
relative roles
Chapter 13. Example - membership and access control 257

Figure 68. The role of contractAdministrator defined in ldapinit.ldif

2. Add a new implicit UserGroup to defaultAccessPolicy.xml:

<UserGroup Name="contractAdministrators" ownerMID="1" >
<Filter>(empRole=contractAdmin)</Filter>

</UserGroup>

3. There should be a ResourceCategory entries in defaultAccessPolicy.xml
for all commands that deal with contracts. This tells us the actions that
apply to each resource. For example:

<ResourceCategory
Name="com.ibm.commerce.emp.contract.icontrollerc.ContractSubmit"
ownerMID="1" >
<Action>Execute</Action>
</ResourceCategory>

...
dn: mid=1,dc=emph,dc=ibm,dc=com
mid: 1
objectclass: Member
objectclass: organization
objectclass: top
objectclass: eMerchant
objectclass: eMarketplace
objectclass: Policies
o: Administration Organization
preferredCurrency: USD
empRole: orgAdministrator
empRole: hubAdministrator
empRole: marketAdministrator
empRole: contractAdministrator
empRole: approver
empRole: guest
empRole: buyer
empRole: supplier
aclsource: default
ownersource: default
aclpropagate: TRUE
ownerpropagate: TRUE
entryowner: access-id:CN=ROOT
aclentry: group:CN=ANYBODY:normal:rsc
...
258 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

<ResourceCategory
Name="com.ibm.commerce.emp.contract.icontrollerc.ContractVerify"
ownerMID="1" >
<Action>Execute</Action>
</ResourceCategory>

4. Create a ResourceGroup of contract commands that includes all the
commands that you want only contractAdministrators to execute as
follows:

<ResourceGroup Name="contractCommands" ownerMID="1" >
<Member
Name="com.ibm.commerce.emp.contract.icontrollerc.ContractSubmit" />
<Member
Name="com.ibm.commerce.emp.contract.icontrollerc.ContractVerify" />
</ResourceGroup>

5. Create the access policy to allow contractAdministrators to execute
contractCommands. These entries appear toward the end of the
defaultAccessPolicy.xml file in a section denoted by the comment <!--
START ACPolicy Section -->:

<ACPolicy Name="contractExecute" ownerMID="1"
UserGroup="contractAdministrators" Action="Execute"
ResourceGroup="contractCommands" />

13.2.8 Administering access policies graphically
Now that you are familiar with the segments of the XML formatted access
policy files, you can better understand the administration process
implemented in the Administration Console. Generally, we recommend that
you use the console for administration of your access policies.

To administer access policies, select Administration->Policies from the
Navigation pane.

Creating a new policy
1. Click the Create Policy button. You may need to scroll the form to see this

button.

2. In the Policy Creation window (no title given at the time of writing), enter
the information on which the new policy will be based.

3. Click Save when complete.

Edit an existing policy
1. Click the link for the policy you want to edit to display the Policy Edit

window.
Chapter 13. Example - membership and access control 259

2. Modify the policy attributes (refer to 13.2.5, “Access policy overview” on
page 254 for information regarding the fields).

3. Click Save when complete.

13.2.9 Administering groups
Administering groups is performed by selecting Administration->Groups
from the Navigation pane to display the Groups List page. From here you can
view existing groups (and subsequently edit or remove them) and create new
groups.

Log into the Marketplace Edition using an Organization Administration
account. Select Administration->Groups from the Navigation pane.

Creating a new group
1. Click the Create Group button.

2. Type a group name such as AcmeUsersByPostalCode. In this example, we
have three users who all share the same postal code so we’ll create an
implicit grouping based on this attribute.

3. Click Create New Group to display the Group Edit screen. From here you
can explicitly add members or implicitly add members by specifying the
common member attributes by which the group will be implicitly created.

4. Scroll to the Attribute list box as shown in Figure 69. Select the
postalCode attribute and then the equals operator. In the value field, type
the postal code by which the grouping will be made - in our example, some
of our users share the postal code of 27513. Click the Add to Attribute
List button.

Figure 69. Creating an implicit user group by attribute

5. The new attribute will be added to the Attribute List list box.

6. Click Save Attributes.
260 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

7. Return to the Groups List page by selecting Administration->Groups from
the Navigation pane. The new group should be displayed in the Groups list
as shown in Figure 70.

Figure 70. The Groups List

8. To view the group members, highlight the entry and click View Group.

Edit an existing group
1. From the Groups List page, select the group and click the View Group

button.

1. Click Group Edit to display the edit page for the group.

2. Make the modifications such as adding and removing members or defining
new implicit attributes.

3. Click Save Attributes.

Removing a group
1. From the Groups List page, select the group and click the View Group

button.

2. Click Group Edit to display the edit page for the group.

3. Click Delete Group.

13.2.10 Assigning roles
The administration console for assigning user roles is reached by selecting
the User Edit button from within the User View pane. Toward the end of the
User Edit screen is the User Roles section where you can assign roles to the
Chapter 13. Example - membership and access control 261

selected user. When a user is initially created, they have no pre-assigned
roles. It is up to the administrator to assign the roles appropriate for each
user. The Marketplace Edition provides the user roles shown in Table 18.

Table 18. Base roles in Marketplace Edition

Most non-administrative users will be associated with either the buy-side
(shopper) or a sell-side (supplier). The Marketplace Edition gives us two
predefined roles to encapsulate base privileges for these types of users. The
user privileges associated with these commands can be tracked back to
defaultAccessPolicy.xml where there are the appropriate resource groupings
for both buyers and suppliers. One such resource grouping is
buyerCommands grouping shown, in part, below:

Role Name Description

hubAdministrator Administrator of the entire e-Marketplace.

orgAdministrator Each organization in the e-Marketplace
has an organization administrator who can
administrate organization-level tasks.

contractAdministrator Contract administrators

approver The approver role allows privileges to
approve the actions of other users

guest Guest roles allows users restricted access
to the e-Marketplace.

buyer Makes the member a buy-side
e-Marketplace participant.

supplier Makes the member a sell-side
e-Marketplace participant.
262 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Figure 71. buyerCommands resource group

This resource group is made available via the access policy name
“buyerExecuteBuyerCmds” defined as follows:

<ACPolicy Name="buyerExecuteBuyerCmds" ownerMID="1"
UserGroup="buyer"
Action="Execute"
ResourceGroup="buyerCommands" />

Figure 72 shows the section of the Edit User screen used to assign roles.

<ResourceGroup Name="buyerCommands" ownerMID="1">
<!-- contracts buyer commands -->
<Member
Name="com.ibm.commerce.emp.contract.commands.ContractGetCategoryContractCmd"/>
<!-- rfq buyer commands -->
<Member
Name="com.ibm.commerce.emp.rfq.request.commands.interfaces.CreateRFQCmd"/>
<Member
Name="com.ibm.commerce.emp.rfq.request.commands.interfaces.ModifyRFQCmd"/>
<Member
Name="com.ibm.commerce.emp.rfq.request.commands.interfaces.PublishRFQCmd"/>
<Member
Name="com.ibm.commerce.emp.rfq.request.commands.interfaces.ActivateRFQCmd"/>
...
</ResourceGroup>
Chapter 13. Example - membership and access control 263

Figure 72. Assigning roles to users

To assign a role to a user:

1. In the User Edit screen, scroll to the bottom of the page.

2. Select the role from the list of available roles, such as buyer.

3. Click Add Role.

13.3 Customizing the membership and access control subsystem

There are a number of Java commands and interaction controllers centered
on the membership and access control subsystem that can be used to
customize the behavior of your Marketplace Edition applications. Interaction
controllers such as UserSearch, UserAddRole and OrganizationRegister can
be called from your own applications so you are not restricted to the default
interfaces provided by the Marketplace Edition. This section provides some
further details of the elements used in customizing applications around the
membership and access control subsystem.

13.3.1 Policy manager
When customizing a Marketplace Edition site, you will often need to
determine if a particular user/resource/action combination is permissible in
the current context. This is performed via the policy manager which is
responsible for managing the access policies held by the site.
264 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

The functions of the policy manager are accessed via a Java API. One
important method in the policy manager API is the isAllowed() method which
has the signature:

isAllowed(user, action, resource)

This is a simple but powerful method that returns true if the user is allowed to
perform the action on the specified resource. The process performed by the
policy manager is as follows:

1. To determine access to a resource, the policy manager looks up the
resource's owner using its getOwnerDn() method.

2. It retrieves the policies of the owner using the PPPolicyFactory.

3. For each policy returned by the factory, the policy manager invokes the
policy.isAllowed() method.

The policy known to the PPPoliciesFactory is loaded from the LDAP server as
an XML document and subsequently parsed. Based on the parsed data, the
appropriate Java object is created and initialized and added to a hash table
for quick retrieval on subsequent calls to the factory.

13.3.2 Interaction controllers
Generally the Marketplace Edition provides interaction controllers for every
command in the membership and access control subsystem. In some
circumstances, more that one IC will service a single command - where each
IC redirects to a different JSP page depending on the access privileges of the
user. With this design, the content displayed to the user can be controlled by
the access control subsystem.

13.3.3 Commands
Table 19 shows the commands available in the context of the membership
and access control subsystem.

Table 19. Commands applicable to the membership and access control subsystem

Membership/Access Control Commands

UserLoginDisplay UserDelete

UserLogin UserAddRole

UserRegistrationDisplay UserRemoveRole

UserRegister UserSearchDisplay

UserDisplay UserSearch
Chapter 13. Example - membership and access control 265

13.3.4 Database tables
The database tables related to membership and access control are shown in
Table 20:

Table 20. Database tables related to membership and access control

UserEditDisplay UserResultsList

UserUpdate OrganizationRegistrationDisplay

UserPasswordReset OrganizationRegister

UserOrganizationAdministratorSetReset OrganizationDisplay

UserHubAdministratorSetReset OrganizationEditDisplay

OrganizationUpdate LocationList

OrganizationSearchDisplay LocationDisplay

OrganizationSearch LocationEditDisplay

OrganizationResultsDisplay LocationCreate

OrganizationReport LocationUpdate

GroupList LocationDelete

GroupDisplay AccessPolicyList

GroupEditDisplay AccessPolicyDisplay

GroupCreate AccessPolicyEditDisplay

GroupAddMembers AccessPolicyCreate

GroupRemoveMembers AccessPolicyUpdate

GroupAddCondition AccessPolicyDelete

GroupRemoveConditions

GroupDelete

Database Tables Description

MERCHANT
SUBORGREL

Organizations (represented by MERCHANT) can
contain other (sub)-organizations. The relationship is
expressed by SUBORGREL. NOTE: The model does
not prevent a sub-organization from being a child of
multiple organizations.

Membership/Access Control Commands
266 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

13.4 Authentication

The WebSphere Commerce Suite, Marketplace Edition for AIX supports the
authentication mechanisms supported by WCS 4.1. Registered users who
require access to resources other than those allowed using the guest
account, must be authenticated before they can access restricted resources.
The authentication mechanisms implemented depend on the requirements of
the e-Marketplace and offer a number of trade-offs in security and ease of
use.

The Marketplace Edition provides the usual support for certificates and PKI in
addition to mandatory support for LDAP for user authentication.

13.5 LDAP

The membership subsystem is designed around standards-based directory
services supporting the LDAP protocol. Because the majority of user
information is relatively static and rarely changes, a directory service is very

ORGATRVAL
MEMBERSHIPATR

Organizations can have an arbitrary set of attributes
(ORGATRVAL). Attributes may be defined to be
inheritable which allows members of an organization
to carry the same attributes or override them. The
attributes are defined in MEMBERSHIPATR.

SHOPPER
ORGMEMBER

Individual members (represented by SHOPPER)
belong to organizations (expressed by
ORGMEMBER). NOTE: The model does not prevent
a member from belonging to multiple organizations.

MEMBERATRVAL
MEMBERSHIPATR

Members can have an arbitrary set of attribute
values (MEMBERATRVAL). These attributes may
have been inherited from the organization they
belong to or may be specific to the member. The
attributes used in MEMBERATRVAL are defined in
MEMBERSHIPATR.

ACC_GROUP The market (and individual organizations) may
define roles for members (represented by
ACC_GROUP). A role essentially defines the set of
actions that a member can perform.

ACC_USRGRP An organizational member may be associated with
one or more roles (ACC_USRGRP).

Database Tables Description
Chapter 13. Example - membership and access control 267

appropriate for persisting this data. It also provides a standard and simple
way to retrieve the data using JNDI classes. By default, the directory services
in the Marketplace Edition are provided by IBM Secureway Directory.

LDAP Directory entries
In this directory, the attributes of the members and organizations are
represented by directory entries, which are made up of a name and a number
of attributes. One of the most important attributes in each entry is the object
class, which enforces the type of data which can and must be stored at the
entry.

Member schema
The directory schema in Marketplace Edition is comprised of object classes
and attribute definitions as described above. A number of standard object
classes have been defined by standards bodies and include the
inetOrgPerson for definition of people and organization and
organizationalUnit for definition of organizations. The Marketplace Edition
supports these base definitions and, in the case of the inetOrgPerson
definition, extends it to the IBM standard - ePerson.
268 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Chapter 14. Example - catalog subsystem

The main objective in any e-Marketplace is to complete a commerce
transaction in a timely and accurate fashion. In the WebSphere Commerce
Suite, Marketplace Edition for AIX, this objective is fulfilled by the use of the
aggregated catalog. The catalog allows the buyers to have a complete view of
all the products being traded in the e-Marketplace regardless of the selling
organization or the transaction mechanism that supports the offering. The
catalog enables the buyers to easily and efficiently initiate the purchasing
process. The WebSphere Commerce Suite, Marketplace Edition for AIX
catalog also enables the suppliers to inform potential buyers of new products
and provide information on existing products in an easy-to-use manner.

In this chapter we will cover the following topics:

1. Catalog subsystem high-level overview

2. Catalog subsystem low-level design

3. Examples of catalog creation and maintenance

4. Supplier interaction: examples of offering creation and maintenance

5. Buyer interaction: examples of catalog based buying

6. Interaction with other subsystems

In this chapter we use several graphics to provide visual representation for
some of the topics we are covering. In this redbook we use the “Worldwide
Shipbuilding Marketplace” example provided with the default installation of
the WebSphere Commerce Suite, Marketplace Edition for AIX.

14.1 Catalog subsystem high level-overview

The catalog subsystem is one of the key components of the WebSphere
Commerce Suite, Marketplace Edition for AIX. In this section we provide a
high-level overview of the catalog subsystem including some of the unique
new features.

Typically any e-Marketplace has three groups that interact with the catalog
subsystem: the e-Marketplace administrators, buyers and suppliers. The
e-Marketplace administrator creates and maintains the e-Marketplace catalog
subsystem. This topic is covered in detail in 14.3.2, “Creation and
maintenance of category hierarchy” on page 315. Buyers use the catalog to
view the products and offerings and perform transactions. The interaction
between buyers and the catalog subsystem is covered in detail in 14.5,
© Copyright IBM Corp. 2000 269

“Buyer interaction: examples of catalog based buying” on page 333. Suppliers
interact with the catalog to create new offerings or manage existing offerings.
The interaction between suppliers and the catalog subsystem is covered in
detail in 14.4, “Supplier interaction: offering creation and maintenance” on
page 327.

The catalog subsystem contains several components that are created by the
e-Marketplace administrator to facilitate the task of creating and managing
the e-Marketplace catalog. We will start describing how these components
work together to facilitate creation of a full catalog.

1. One of the components that an e-Marketplace catalog subsystem requires
is a data dictionary. A data dictionary defines all the data types, attribute
definitions, units of measurement, and operators that are appropriate for
the products being offered in the e-Marketplace. Figure 73 depicts the
data dictionary and the logical relationship model.

Figure 73. Logical model view of the data dictionary of the catalog subsystem

2. The next component in an e-Marketplace is the catalog hierarchy. The
e-Marketplace administrator groups products with similar description
together. This grouping can represent a category or a subcategory under
a more general category. The e-Marketplace administrator arranges these
categories in a category hierarchy that is logically appropriate for the type

D a ta D ic tion a ry

A ttrib ute
D efin ition s D a ta T y p es O p erato rsU n its

A ttrib u te
In stan ce s

A ttrib u te
V alue s

P D s
O ffe rin g s

1

1

1 1

1

1

1

1

1 N1 N
270 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

of e-Marketplace being created. A catalog hierarchy has three main levels.
They are:

- Root category: This is the top-most category: all other categories are
attached to this. Every catalog must have a root category.

- Categories: This is the grouping of all objects in the e-Marketplace that
have similar properties. These categories are used to organize the
products and the offerings in the e-Marketplace.

- Product Description Templates: These are generic descriptions of
families of products. Usually they are at the leaf level and they contain
attributes and values that are commonly used by the e-Marketplace
members to create offering for these products. This method of
populating the e-Marketplace catalog imposes a level of consistency
between all offerings regardless of the supplier and allows an efficient
way of maintaining the e-Marketplace catalog.

- Offerings: When an association is made between a trading mechanism
and a product description template, an offering has been created. The
offerings are placed in the catalog and are made available to buyers.

A product description can be placed at any level. For ease of use, usually
all product descriptions are placed at the leaf level of the category
hierarchy.

3. The next component of the catalog subsystem is the product taxonomy.
The e-Marketplace administrator creates the product taxonomy; by this we
mean that product offerings are allowed to be systematically created and
arranged in categories according to established criteria. When a supplier
creates an offering from a product description, the offering is placed in the
proper place in the catalog according to the product taxonomy.
Chapter 14. Example - catalog subsystem 271

Figure 74. Product taxonomy

The e-Marketplace administrator creates product description templates,
which include a set of attributes for a specific product and the product
placement in the category hierarchy. Suppliers access the catalog and use
the product templates created by the e-Marketplace administrator to create
an offering. Suppliers can attach new attributes to the offering from the
e-Marketplace data dictionary.

14.1.1 Catalog views
The catalog subsystem presents three views of the catalog:

1. Category browse

2. Manage offerings

3. My catalog

Product Taxonomy

Category
Hierarchy

Product
Description

Product
Description

Product
Description

Product
Description

Product
Descriptions

Attribute

Attribute

Attribute

OfferingsOfferingsOfferingsOfferingsOfferings Attribute

Trading
Mechanisms

Trading
Mechanisms

Trading
Mechanisms

Trading
Mechanisms

Defined by the
marketplace (typically)

Defined by market
members (typically)
272 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Figure 75. Catalog browse view

• Catalog browse: This view is typically used by buyers to browse the
catalog hierarchy and find the products that they are interested in. Figure
75 shows the subcategories of the catalog browse view. Figure 76 on page
274 shows the product description window of the catalog browse view
where buyers can select a specific product by clicking the product
description link to see the offering available for that specific product.
Chapter 14. Example - catalog subsystem 273

Figure 76. Catalog browse product description view
274 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Figure 77. Manage offerings view

• Manage offerings: This view is used by suppliers to manage their
offerings. Suppliers can navigate through the catalog to get to the desired
product description window and create an offering for that product. Figure
77 shows the product description level of the manage offerings catalog
view and the actions that a supplier can take to create offerings and
manage their catalog.
Chapter 14. Example - catalog subsystem 275

Figure 78. My catalog view

• My catalog: This view is used by both buyers and suppliers to view the
offerings that they have in the e-Marketplace. Figure 78 on page 276
shows the offerings that the currently logged-on user has in the
e-Marketplace.

14.1.2 Catalog search
In both Figure 76 on page 274 and Figure 77 on page 275 you can see that
the catalog subsystem provides built-in search facilities. The e-Marketplace
catalog subsystem provides two search methods:

• Text search: Also referred to as a keyword search, is a pre-defined search
of certain attributes. Text search is available from both the catalog browse
and manage offerings views. Search Term, Search Options and Offering
Type are the three fields that accept parameters to perform the search.

- Search term:

• To search for a phrase enclose the group of words in double quotes.
for example "Drive Train Materials".
276 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

• To search for words that must all appear, place a + in front of the
words that must appear, for example +Drive +Train +Material.

• To search for one or more words, simply type the words in the field,
for example Drive Train Material

• To exclude a word in your search result place a - sign in front of the
word, for example -Train

- Search options:

• To search on a product name, select Name.

• To search on a product description select Description.

- Offering Type: This will limit the search to the selected trading
mechanism. The options are:

• All

• Exchange

• Product Standard Price

• Request For Quote

• Product Description

• Auction

• Attribute-based parametric search: This type of search mechanism allows
searching by using values of the product attributes. This search is
available from the product description windows of the catalog browse view
where product attributes are available. At the time of writing, this
component of the code was not ready and no testing was performed for
attribute-based parametric search.

14.2 Catalog subsystem low-level design

In this section we look at the low-level design of the catalog subsystem. This
section is useful for developers who will be using the WebSphere Commerce
Suite, Marketplace Edition for AIX. In this section we will list the new
components of the catalog subsystem and give a brief explanation on their
functionality. We do not intend to discuss these components in detail as they
are outside the scope of this redbook. For detailed information, we
recommend the on line documentation and the JavaDocs that are provided by
WebSphere Commerce Suite, Marketplace Edition for AIX.

14.2.1 Design principles
Figure 79 describes the conceptual view of the catalog.
Chapter 14. Example - catalog subsystem 277

Figure 79. Catalog subsystem Conceptual View

Categories are created and maintained by the e-Marketplace administrator.

Product descriptions define the products in the e-Marketplace by specifying
their attributes and their constraints. Offerings are tradeable entities in the
catalog that have a trading mechanism and an owner associated with them.
Offerings are always entered in the catalog as children of product
descriptions and inherit their attribute definitions and constraints. In cases
where members do not find a product description and have to create an
offering, the attributes of the offering are abstracted into a product description
and the offering is made a child of the newly created product description.

The catalog sub-system supports the navigation and searching of the
categories, product descriptions, and offerings. Details of subsystem-specific
data such as trading positions with respect to a particular offering (for
example all bids for an auction offering) are maintained by the subsystem
supporting the offering's trading mechanism.
278 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

The interaction from the catalog to the subsystems is through
subsystem-specific interaction controllers ,which are registered in a
subsystem interaction controller registry.

The interaction from the subsystems to the catalog (typically, to add product
descriptions or offerings) to the catalog is through commands.

14.2.2 Usage models
The catalog subsystem has three distinct usage models. The first model
describes the displaying of the catalog content and navigation through
subcategories of the catalog. The second model describes the creation and
management of the catalog content and the third model describes the
creation of offerings.

14.2.2.1 Displaying catalog content
For any given category that the user is in, the following are displayed:

• Any subcategories in that category

• Any product descriptions in that category

For any given product description that the user selects, the display includes:

• The detailed view of the product description

• A listing of all the offerings that are children of the product description

When using the catalog browse view, the catalog subsystem includes any
subcategory or product description listed for the current parent category. At
the product description level, the catalog subsystem includes all the offerings
available for that product description from all trading subsystems that may
have an offering.

When using the manage offering view, the catalog subsystem includes any
actions, in the form of interaction controllers, that each trading subsystem
may have registered at the category level, such as creating an offering. The
same behavior is maintained when a product description is displayed, that is
the catalog subsystem includes any trading system actions registered at the
product description level. When an offering is listed/displayed, the catalog
subsystem includes any actions that each trading subsystem may have
registered for the offering level such as viewing the offering positions,
creating a bid, and so forth.

When using the My Catalog view, the catalog subsystem includes all offerings
that belong to the currently logged on user. Managing interaction controllers
at this view allow the user to work with their offerings.
Chapter 14. Example - catalog subsystem 279

All display of categories, product descriptions, and offerings, regardless of
the catalog view option used, are subject to access control restrictions put in
place by their respective owners.

14.2.2.2 Creating catalog content
Creation of categories and the category hierarchies is the responsibility of the
e-Marketplace administrator. These tasks are performed against the catalog
subsystem. Furthermore, the creation of product descriptions and their
relationships to the category hierarchy is also through the catalog subsystem.
The e-Marketplace Administrator may use one or many of the following
interfaces to perform the creation of the catalog content:

• An HTML interface similar to the existing WebSphere Commerce Suite 4.1
administrator interface (ncadmin).

• Through a tool such as Catalog Architect, which generates a defined XML
output that is imported into the catalog.

• Through a file interaction controller that allows upload of XML or
spreadsheet files with pre-defined schemas into the catalog

14.2.2.3 Creating offerings
Creation of offerings and modifying offering attributes is the domain of the
individual trading subsystems based on the type of offering being created.
The catalog subsystem is responsible for providing commands, objects, and
beans that allow the trading subsystems to manage catalog-specific data for
an offering.

An offering can be created either from an existing product description or from
scratch.

Create offering from an existing product description
When creating an offering from existing product description, the trading
subsystem interaction controller that receives the request instantiates an
offering bean and passes it to ProductDescriptionBeanCmd. This command
retrieves the product description information into the offering bean and
passes the populated bean to the appropriate JSP to displays a form for the
user to complete. Through this form, the user enters offering-specific
information, new attributes and modifies existing attributes of the product
description. The form is then passed to an offering-specific interaction
controller, which sets the new parameters into the offering or its attribute
beans. It then invokes ManageOffering and ManageOfferingAttributes
commands to create the offering. If the trading subsystem creating the
offering requires setting member access control for the offering then the
280 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

ManageProdMemRel command is invoked to establish the required access
control constraints.

Create offering from scratch
When creating an offering from scratch, the trading subsystem interaction
controller that receives the request instantiates an offering bean and passes it
to the appropriate JSP to display a form for the user to complete. Through this
form, the user enters product information, which will be used to create the
product description and offering-specific information. The form is then passed
to an offering-specific interaction controller to set the new parameters into the
offering or its attribute beans. It then invokes the
CreateOfferingFromProductDescription command to create the new parent
product description and then the offering under this product description. If the
trading subsystem creating the new product description needs to add the
product description to the category hierarchy of the catalog then the
ManageCategoryProductRel command must be invoked. If the trading
subsystem creating the offering needs to set member access control for the
offering, then the ManageProdMemRel command is invoked to establish the
required access control constraints.

Create a compound offering
If the trading subsystem has already added the child offering in the catalog,
then the create compound offering will use the CreateOfferingFromProduct,
as in the case above, and creates the relationship between the compound
offering and the child offerings using the ManageOfferingRel command.

If the subsystem has not yet added the child offering to the catalog, it creates
an instance of the CompoundOffering bean, sets its attributes and adds the
child offering to the object, using the ManageCompoundOffering command to
create the compound offering, the child offerings and the relationship
between them. If the trading subsystem creating the new product description
needs to add the product description to the category hierarchy of the catalog,
then the ManageCategoryProductRel command must be invoked.

14.2.3 Code level components
As mentioned earlier the catalog subsystem is made up of several
components. These components are largely built using Java technology. The
design pattern for the catalog subsystem follows the Model-View-Controller
(MVC) design pattern. In this pattern, users initiate interaction controllers
through HTTP requests. Interaction controllers initiate commands that
execute business logic and eventually create view pages as a response to the
user request. For more information on the Model-View-Controller design
Chapter 14. Example - catalog subsystem 281

pattern, please see Design Patterns: Elements of Reusable Object-Oriented
Software, by E. Gamma, R. Helm, R. Johnson, J. Vlissides.

In the next few sections we discuss the following catalog subsystem
components:

• Interaction controllers

• Commands

• JSPs

• Objects

• Database tables

14.2.3.1 Interaction controllers
The catalog subsystem interaction controllers parse the input
parameters and forward requests to the WebSphere Commerce Suite,
Marketplace Edition for AIX command manager. The interaction controllers
also execute commands that are passed back by the command factory.

The following lists the catalog subsystem interaction controllers for
WebSphere Commerce Suite, Marketplace Edition for AIX.

• com.ibm.commerce.emp.catalog.icontrollers.CategoryDisplay

Initiates the retrieval of a category, its child categories and related product
descriptions.

• com.ibm.commerce.emp.catalog.icontrollers.ProductDisplay

Initiates the retrieval of a product description, its attributes and the child
offerings for the product description.

• com.ibm.commerce.emp.catalog.icontrollers.CatalogReport

Initiates the retrieval of the statistics and report information for a given
offering for an organization.

• com.ibm.commerce.emp.catalog.icontrollers.CatalogSearchIC

Initiates the search commands to searches for products and attributes that
match the input search parameter.

• com.ibm.commerce.emp.catalog.icontrollers.CreateSPOffering

Interacts with standard price offerings commands to manage these
offerings. Create, update or delete commands are invoked, based on input
parameter for the selected offering.

• com.ibm.commerce.emp.catalog.icontrollers.CreateSPOfferingForm
282 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Alters the standard price offering bean of a given session and creates the
fixed price offering form page.

• com.ibm.commerce.emp.catalog.icontrollers.EurikaService

Initiates the commands for attribute base parametric search.

• com.ibm.commerce.emp.catalog.icontrollers.ManageCatalogIC

Initiates the retrieval and display of all the offerings that a logged-on
member owns.

• com.ibm.commerce.emp.catalog.icontrollers.ManageCategory

Initiates the retrieval of a category, its child categories and related product
descriptions. This interaction controller is used by other subsystems that
require catalog management functions.

• com.ibm.commerce.emp.catalog.icontrollers.ManageProduct

Initiates the retrieval of a product description, the attributes in the product
description and the child offerings of the product description. It provides
various offering management links.

• com.ibm.commerce.emp.catalog.icontrollers.ManageAccessIC

Manages the access control entries for a given product.

More information on catalog subsystem interaction controllers is available in
the online documentation of WebSphere Commerce Suite, Marketplace
Edition for AIX and com.ibm.commerce.emp.catalog.icontrollers JavaDoc.

14.2.3.2 Commands
Commands are the component of the catalog subsystem that carry out the
execution of the business logic and ultimately address the requests of the
users. Commands interact with almost all other components of the catalog
subsystem from interaction controllers to JSPs and beans.

The following are the commands in the catalog subsystem of the WebSphere
Commerce Suite, Marketplace Edition for AIX.

• CatalogReportCmd

Gets an instance of the BCatalogReportList bean that contains a list of
BCatalogReport beans. The BCatalogReportList bean stores all the
offering for a particular organization and has methods for displaying the
content.

• CategoryBeanCmd

Creates the category bean from the persistent Category object.
Chapter 14. Example - catalog subsystem 283

• ChildCatalogListBeanCmd

Retrieves all the immediate categories under a given category.

• CreateOfferingFromProduct

Creates an offering in the catalog as a child of the identified product
description and inherits the attributes of that product description.

• ExtProductAttributeListBeanCmd

Gets an extended product attribute list bean for a given product
description/offering and attribute name.

• GetBaseSpecialPrice

Retrieves the price of an offering for an organization that has an special
price arrangement.

• GetBaseUnitPrice

Retrieves the base price information for a given offering.

• GetCategoryDisplayTemplate

Identifies the appropriate template for displaying its sub-categories, and
product descriptions.

• GetCompoundOffering

Retrieves a compound offering, its attributes and any child offerings,
related to the compound offering.

• GetParentCompoundOfferings

Gets a given offering's parent offering in case of a compound offering such
as a bundle.

• GetProdMemRelList

Retrieve the set of member relationships with respect to a product
description or offering.

• GetProductDisplayTemplate

Identifies the appropriate template for a product description and its
offerings.

• ManageCategory

Provides management methods to add, update and delete for category
objects.

• ManageCategoryProductRel

Manages the relationship of a product description with a category by
allowing add and delete functionality.
284 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

• ManageCategoryRelation

Manages therelationship between the categories in the catalog.

• ManageCompoundOffering

Manages a compound offering object by allowing add, modify and delete
functionality. A compound offering object holds parental relationships with
one or more simple offerings (for example bundle, package, etc).

• ManageOffering

Manages an offering object by allowing modifies and deletes in the
catalog.

• ManageOfferingRelation

Manages relationships between a parent offering and one or more child
offerings.

• ManageProdDescAttributes/ManageOfferingAttributes

Creates, modifies or deletes offering attributes. Combinations of actions
are not allowed per command invocation. The modify operation performs a
full overwrite of the selected attributes. All operations are subject to the
constraints specified by the attribute definition of the product template if
the offering is a child of a product template.

• ManageProdMemRel

Manages the relationship between a product description or an offering and
members.

• ManageProductDescription

Manages a product description entry in the catalog by allowing add,
modify and delete operations on the product description.

• ManageStandardOfferingPrice

Manages the price of a standard price offering. Performs add, update and
delete on the PriceBean objects based on the input operation type.

• OfferingBeanCmd

Gets the offering bean from the persistent offering object.

• OfferingListBeanCmd

Gets all offerings, as beans, that match a variety of conditions such as
belonging to a product, being of a certain type or belonging to a certain
member.

• PriceBeanCmd
Chapter 14. Example - catalog subsystem 285

Creates an instance of the PriceBean bean from the persistent price
object.

• ProductDescriptionBeanCmd

Creates the product bean from the persistent product object.

• ProductDescriptionListBeanCmd

Gets all the product descriptions, as beans, that match a variety of
conditions, such as belonging to a category or to a certain member.

• SPOfferingBeanCmd

Retrieves a standard price offering along with its price information.

• StandardPriceApprovableCmd

• CreateStandardPriceOffering

Creates a standard price offering along with the attributes’ price
information and access control entries.

• DeleteStandardPriceOffering

Deletes (marked delete) a standard price offering along with the attributes’
price information and access control entries.

• UpdateStandardPriceOffering

Updates a standard price offering along with the attributes’ price
information and access control entries.

More information on catalog subsystem commands is available in the online
documentation of WebSphere Commerce Suite, Marketplace Edition for AIX
and com.ibm.commerce.emp.catalog.commands.interfaces and
com.ibm.commerce.emp.catalog.commands JavaDocs.

14.2.3.3 JSPs
JavaServer Pages (JSP) is server-side Java code that facilitates creation and
display of dynamic content on Web pages. JSP technology separates the
creation of dynamic content from the static HTML content. This feature allows
Web page designers to modify the design and the static content of Web
pages without having to worry about the dynamic content. All they have to do
is just place the dynamic content on the page they are designing. For more
information on JSPs and the latest specifications please visit:

http://java.sun.com/products/jsp/

The catalog subsystem contains the following JSPs. It is important to note
that not all JSPs render a Web page. Some are used to interact with
286 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

JavaBeans and extract and pass information to other components of the
catalog subsystem.

• AccessControl

This JSP interacts with the prodmemberSelect JSP to establish product
and member relationship.

• CategoryBrowserFrames

This JSP creates the frames required to perform category navigation and
browsing.

• CreateSPOfferingForm

Displays the form for creation of a standard price offering for a given
product.

• CreateSPOfferingFormFrame

Creates the frames required to display the CreateSPOfferingForm and the
associated action buttons for the form.

• GetCategory

Interacts with BCategory bean to extract child category information. If a
category reference number is provided, then the subcategories for that
category are extracted. However, if no category reference number is
provided ,all child categories for the root category are extracted.

• NewAttribute

This JSP displays the form to create a new attribute for a product or
offering.

• ProductMemRel

Displays the form that allows user assignment to a specific product when
creating a standard offering with restricted access.

• catalog_search

This JSP displays the catalog search interface available when navigating
through the categories of the e-Marketplace catalog. Figure 75 on page
273 shows the catalog search interface at the top of the page.

• category

When using the catalog browse view ,the category JSP displays the list of
product descriptions if there are no more subcategories (see Figure 76 on
page 274).

• categoryTOC
Chapter 14. Example - catalog subsystem 287

When using the catalog browse view, the categoryTOC JSP displays the
subcategories in the next lower level (see Figure 75 on page 273).

• managecategory

This JSP acts similar to category JSP with the difference that
managecategory is used when the manage offering view of the catalog is
being accessed.

• managecategoryTOC

This JSP acts similar to categoryTOC JSP with the difference that
managecategoryTOC is used when the manage offering view of the
catalog is being accessed.

• manageproduct

This JSP displays the detailed product description when navigating the
catalog using the manage offering view. New offerings can be created
from this window.

• report

This JSP creates a summary of statistics of various types of offerings
stored in the catalog for a given organization. This JSP is called when the
user selects Reports > Organization from the navigation frame and then
selects Catalog report from the list of reports to run.

• reportmember

This JSP is called when the Group By Member button is clicked from the
window generated by the report JSP.

• marketReport

This JSP creates a report of all the offerings by all the members of the
e-Marketplace. This report is generated for the users with hub
administrator role only.

• mycatalog

This JSP displays the my catalog view (See Figure 78 on page 276).

• offeringSearchResults

This JSP displays the result of a search performed based on a specific
offering type.

• productDescription

This JSP displays the detailed product description when navigating the
catalog using the catalog browse view.

• productreport
288 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

This JSP displays the list of products under a given category, or a
message stating that there are no products for the given category.

• refresh

This JSP is displayed when the register information is updated.

• deleteproduct

This JSP displays a page indicating that a product has been marked
deleted.

• prodmemberSelect

This JSP interacts with AccessControl JSP to establish a product and
member relationship.

For more information on JSPs please see the online documentation.

14.2.3.4 Objects
The WebSphere Commerce Suite, Marketplace Edition for AIX uses two
types of objects to accomplish the object-oriented implementation and enable
reusability of components. They are:

• Beans

• Persistent Beans

Beans:
Beans are used to instantiate reusable components for commands or are
used for interaction with JSPs.

• AccessControlClause

This bean instantiates an access control clause object and has one
method to get the product access clause information.

• BAttributeDefinition

This bean, with its fields and methods, instantiates and manipulates an
attribute definition object.

• BCatalogReport

This bean instantiates a catalog report object. It provides set and get
methods to manipulate offerings and organization information.

• BCatalogReportList

This bean along with its fields and methods instantiates and manipulates a
catalog report list containing catalog report objects for an organization.

• BCategory
Chapter 14. Example - catalog subsystem 289

This bean instantiates a category object and through its member methods
provides set and get functions to the child categories, child products and
other subsystem interaction controllers.

• BCategoryProductRel

This bean instantiates a category product relation object and through its
member methods provides set and get functions to interact with the
category reference number, product reference number and the sequence
number.

• BCategoryRelation

This bean instantiates a category relation object and through its member
methods provides set and get functions to interact with the child and
parent category, the category sequencing and the category reference
numbers.

• BChildCategoryList

This bean instantiates a child category lList object. It has only one method
to get a list of child categories.

• BCompoundOffering

This bean instantiate a compound offering object and provides methods to
manipulate the object by setting and getting child offerings and their
relation type information.

• BExtAttribute

This bean instantiates an object to extend attributes in the catalog
subsystem. Through its member set and get methods, attribute
information such as attribute name, attribute options, attribute type, etc.
are manipulated.

• BExtAttributeValue

This bean instantiates an object to extend attribute values in the catalog
subsystem. This bean and the BExtAttribute bean work in conjunction with
each other.

• BExtProdAttributeValue

This bean instantiates an object to extend attribute values associated with
a specific product description.

• BExtProductAttribute

This bean instantiates an object to extend attributes for a given product
description. This bean provides set and get methods to manipulate the
product reference number of the product description to which an attribute
is being extended.
290 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

• BExtProductAttributeList

This bean instantiates an object to contain a list of extended product
attributes.

• BFormFieldDeterminerBean

This bean instantiates an object that works with forms and fields in
different sections of the application. Through the methods of this bean,
field types are determined.

• BMarketReport

This bean instantiates a market report object, it works with the
BCategoryReportList bean to manipulate organizational report at the
marketplace level.

• BOffering

This bean instantiates an offering object, to manipulate offering
information such as the offering type etc.

• BOfferingList

This bean instantiates a list of offerings.

• BOfferingRelation

This bean instantiates an offering relation object. Through its set and get
methods this objects manipulates the offering relation information such as
parent reference number, child reference number, relationship type etc.

• BProductAccessControlEntry

This bean along with BProductAccessControlEntryList instantiate objects
to manage the access control entries for products in the catalog
subsystem based on the users role, organization they belong to and the
type of action.

• BProductAccessControlEntryList

This bean instantiates a list object to contain all access control entry
objects created by the BProductAccessControlEntry bean.

• BProductDescription

This bean instantiates a product description object. Through its set and
get methods this bean provides a large number of functions to manipulate
the product description information.

• BProductDescriptionList

This bean instantiates a list object to contain all product descriptions
objects within a given category.
Chapter 14. Example - catalog subsystem 291

• BStandardPriceOffering

This bean instantiates an object to facilitate manipulation of standard price
offerings.

• BStandardPriceOfferingList

This bean instantiates a list object to contain all standard price offerings.

• BSubsystemIC

This bean instantiates an object to facilitate manipulation of subsystem
interaction controllers ‘registry entries.

• CatalogConstants

This bean instantiates an object to initialize the constant parameters of the
catalog subsystem. These constant type parameters are used throughout
the catalog subsystem.

• ProductFormFieldAdapter

This bean instantiates an object that controls the product description form
fields based on the datatype of the fields.

• SPHelper

This bean operates as a helper object to the standard price offering object
to get form beans for access control and price information.

• SPOfferingConstants

This bean instantiates an object to initialize constant parameters for the
standard price offerings.

For detailed information on these beans please see the online documentation
and the JavaDoc on com.ibm.commerce.emp.catalog.beans.

Persistent Beans:
Persistent beans are used to instantiate reusable components that interact
with database tables.

• CategoryProductRel

The persistent object representing an entry in the CGPREL table.

• CategoryRegistery

A registry object that serves as a cache for category.

• CategoryRelationRegistry

A registry object that serves as a cache for category relations.

• EMPPrice
292 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

The persistent object representing an entry in the PRODPRCS table.

• ExtProdAttributeValue

The persistent object representing an entry in the EXTPRODATR table.

• ExtProdAttributeValueList

A persistent list object that deals with a set of ExtProdAttributeValue
objects.

• ExtProductAttribute

The persistent object representing an entry in the EXTPRODATR table.

• Offering

The persistent object representing an offering entry in the PRODUCT
table.

• OfferingRelation

The persistent object representing an entry in the PRODUCTREL table.

• ProductAccessControlMgr

The persistent object representing an entry in the PRODMEMREL table.

• ProductDescription

The persistent object representing product description entry in the
PRODUCT table.

• SubsystemIC

The persistent object representing an entry in the SUBSYSICREG table.

• SubsystemICRegistery

A registry object that serves as cache for the subsystem interaction
controllers.

For detailed information on these beans please see the online documentation
and the JavaDoc on com.ibm.commerce.emp.catalog.db.

Dictionary Objects:
These objects represent the data dictionary system component of the
WebSphere Commerce Suite, Marketplace Edition for AIX.

• AttributeDefinition

A persistent object representing an entry in the ATTRIBUTEDEF table.

• AttributeDefinitionRegistry

A registry object that serves as a cache for attribute definitions.
Chapter 14. Example - catalog subsystem 293

• BOperator

This bean instantiates an operator object. Through its set and get methods
it manipulates the object properties such as operator reference number,
operator creator etc.

• BUnit

This bean instantiates a unit object. Through its set and get methods it
manipulates the object properties such as unit reference number, unit
scope, unit description etc.

• DataDictionary

This bean instantiates a DataDictionary object. This object mostly through
its get methods extracts operator and unit information, their relationship,
and their relationship with attribute definitions in the data dictionary.

• DataDictionaryConstants

This bean instantiates an object to initialize the constant parameters of the
data dictionary.

• GetDataDictionary

This command retrieves all the data dictionary information.

• ManageAttributeDefinition

This command manages attribute definitions in the data dictionary.

• OperatorMgr

The persistent object representing an entry in the OPERATORS table.

• OperatorRegistry

A registry object that serves as a cache for operators.

• UnitsMgr

The persistent object representing an entry in the UNITS table.

• UnitsRegistry

A registry object that serves as a cache for units.

For more information on the data dictionary please refer to the online
documentation or the JavaDoc on com.ibm.commerce.emp.dictionary.

14.2.3.5 Database Tables
In this section we are including the modifications and additions to the
WebSphere Commerce Suite 4.1 database schema with respect to the
catalog subsystem. Some new tables have been added and some existing
294 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

tables have been modified to facilitate the storage data required for the
e-Marketplace catalog subsystem.

Figure 80 depicts the relationship model of the catalog subsystem.

Figure 80. Catalog subsystem database tables ER diagram

Catalog tables
This section lists and describes the tables that are used by the catalog
subsystem.
Chapter 14. Example - catalog subsystem 295

PRODUCT: The PRODUCT table schema has two modifications compared to
the WebSphere Commerce Suite 4.1 PRODUCT table. Table 21 shows these
changes.

Table 21. PRODUCT table

EXTPRODATR (New): The extended product attributes table contains the set
of attributes that define products and offerings. The WebSphere Commerce
Suite 4.1 product attribute structure is limited. Table 22 presents significant
extensions to the product attributes. The WebSphere Commerce Suite,

Column Name Data Type Description

PRMENBR integer The organization that owns this entry

PRPUB small int Should this product be displayed to the
public?
0 - No
1 - Yes
2 - Marked for deletion
3 - Targeted (open only to a select set of
members) -- set defined in PRODMEMLIST
4 - Draft status (content may not be ready yet)

PRSPECIAL CHAR(4) Special information about the product:
S - on sale
A - Auction offering
R - Reverse auction offering (single line item)
RB - Reverse auction offering (bundle of line
items). Points to a set of offerings with
PRSPECIAL=R
X - Exchange offering
D - Product description -- serves as a
template for offerings
SP - Standard price -- also governs contracts
(if any)
296 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Marketplace Edition for AIX catalog will NOT make use of the PRODATR
table.

Table 22. EXTPRODATR table

Column Name Data Type Description

EAREFNUM bigint not null The primary key

EAPRRFNBR int not null The product/offering to which this attribute
belongs. Foreign key to
PRODUCT.PRRFNBR.

EANAME varchar (128) Name of the attribute (redundant info -- from
ATTRIBUTEDEF).

EAADREFNUM integer not null Reference to the attribute definition. Foreign
key ATTRIBUTEDEF.ADREFNUM.

EAUSAGE small int not null The usage of this attribute:
0: Non-changeable
1: Default value (changeable/negotiable)
2: No value provided (for example certain
product template attributes) -- used to
associate an attribute with an entity

EAMANDATORY small int not null 1: mandatory attribute
0: optional attribute (default)

EAVALTYPE small int not null Indicates whether the attribute is
single-valued, a range, or an enumeration:
1: Single-valued (Default)
2: Range
3: Enumeration

EAUNIT varchar(32) The units for the attribute value (for example
MHz, lb, GB). Values from UNITS.UNIT.

EASEQNUM integer Order in which this field is presented.
Unique for a set of attributes belonging to
same trading instance (for example RFQ,
auction).

EAFIELD1 varchar(254) Ccustomization field.
Chapter 14. Example - catalog subsystem 297

EXTATRVALUE (New): Contains values for the attributes associated with
products.

Table 23. EXTATRVALUE table

ATTROPTS (New): This table contains options specified for attributes in the
ATTRVAL table. Options may include allowed operators, units or even values.

Column Name Data Type Description

EVREFNUM bigint not null The reference number. Primary key.

EVEAREFNUM bigint not null The attribute to which this value belongs.
Foreign key to EXTPRODATR.EAREFNUM.

EVOPERATOR varchar(32) not
null

This specifies the relationship of the attribute
to the attribute value (for example >, <, =).
Values from OPERATORS.OPERATOR.

EVVALUE varchar(254) Value of the attribute
For FILE/URL data type, this contains the text
to displayed that can be clicked to access the
file. If null, the file URL is displayed as the text.

EVATTACH bigint The file attachment for this attribute (if any).
Foreign key reference to ATTACHMENT
table.

EVSEQNUM integer Sequences the values belonging to a single
attribute.

EVFIELD1 varchar(254) Customization field.
298 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

This information is especially useful for specifying templates such as RFQ
templates. Table 24 shows the ATTROPTS structure.

Table 24. ATTROPTS table

PRODMEMREL (New): This table captures the relationship between
products and members. The purpose of this table is to enforce access control
for individual products, for example: who is allowed to modify a product or
view a product.PRODMEMREL table

Column Name Data Type Description

AOATREFNUM bigint not null Foreign key to ATTRVAL.ATREFNUM.

AOOBJTYPE char(1) not null Enumeration to distinguish between
Operators, Units, and Values:
O: Operators
U: Units
V: Values

AOVALUE char (254) Value corresponding to this particular option.
For example,
>, <, Kg, lb, 100, etc: Actual value depends on
AOOBJTYPE.

AODEFAULT small int Indicates if the specified option is default
option for that attribute 1: YES, 0: NO

Column Name Data Type Description

PMPRFNBR integer
(not null)

The product reference number to which this
entry belongs. Foreign key to
PRODUCT.PRRFNBR.

PMENTRYTYPE small int
(not null)

Indicates whether the entry points to an
individual member, a user-defined group, an
organization, or to the entire membership
(public). This flag serves as a switch on which
of the following three columns (if any) is to be
used for this entry. At most one of the three
columns should be non-null (all three can be
null when the entry is public).
1: Member
2: Organization
3: Group

PMMEMBERID integer The ID of the member who has a role to play
for this product. Refers to
SHOPPER.SHRFNBR.
Chapter 14. Example - catalog subsystem 299

PRODUCTREL (New): This table manages relationships between product
descriptions and/or offerings. Relationships are characterized by their type
(for example bundles, packages, etc) and their direction (bi-directional vs
uni-directional). This concept is from the WebSphere Commerce Suite 4.1.
However, the tables defined in the WebSphere Commerce Suite are not used
to support these relationships because they are very general purpose and

PMORGID integer The ID of the organization that has a role to
play for this product. Refers to
MERCHANT.MERFNBR.

PMGROUPID integer The ID of the group that has a role to play for
this product. Refers to
MEMGROUP.MGREFNUM.

PMROLE char(4) The role that this entry plays with respect to
this product:
A: Approver
C: Creator
D: Delegatee
T: Targeted receiver
S: Self-service receiver (found a broadcast
RFQ through browse/search and expressed
interest)
Other flags TBD

PMROLECREATO
R

integer Who created the member's role: could be the
same as PMMEMBERID if members added
themselves. Refers to
SHOPPER.SHRFNBR.

PMADDACTION char(4) The action that created this entry.
C: Create
D: Delegate
T: Copy from template
Other flags TBD

PMCREATETIME TIMESTAMP Time at which the entry was created.
300 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

there is large implementation and maintenance overhead associated with
using them for an e-Marketplace catalog subsystem implementation.

Table 25. PRODUCTREL table

SUBSYSICREG (New): This table acts as a registry for the interaction
controllers that are provided by each subsystem that needs to be integrated
into the catalog. The catalog subsystem uses entries in the registry when

Column Name Data Type Description

PLPARENTRN integer not null The parent product/offering of this
relationship. The semantics of being a parent
are important only in uni-directional
relationships (Foreign key to
PRODUCT.PRRFNBR).

PLCHILDRN integer not null The child product/offering of this relationship.
The semantics of being a child are important
only in uni-directional relationships (Foreign
key to PRODUCT.PRRFNBR).

PLRELTYPE integer not null The relationship type:
0: Bundle
1: Package
Others as required

PLDIRECTION integer not null 0: Uni-directional relationship (DEFAULT)
1: Bi-directional relationship

PLMEMRN integer not null The member who created/owns this
relationship.

PLFIELD1 varchar(128) Customization field.

PLFIELD2 varchar(128) Customization field.
Chapter 14. Example - catalog subsystem 301

displaying product descriptions and offerings to users so that the correct
subsystem is invoked.

Table 26. SUBSYSICREG table

Column Name Data Type Description

SRREFNUM int not null The primary key.

SRCLIENTSYS char (4) not null The subsystem that can be the client for this
entry:
P: Product catalog
B: Business subsystem
S: Shop-cart

SRSYSTEM char (4) not null The subsystem to which this IC applies:
A: Auctions
R: RFQ
C: Contract
X: Exchange
302 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Interest list tables:
The interest list tables are used to implement the different types of interest
lists (or carts) that will be available for users of the WebSphere Commerce
Suite, Marketplace Edition for AIX. Two existing WebSphere Commerce Suite
4.1 tables (IILIST and SHOPPINGS) are used as is.

ILISTTYPE (New): This table adds type information to interest lists and is
complementary to IILIST. Also, one of the merchant extension fields in

SRSCOPE char(4) not null Where to use this IC:
C: Category
P: Product description
O: Offering
When the IC is applicable at multiple levels,
there will be multiple entries for that IC (one
for each level). This makes querying for the
applicable list easier.

SRURL varchar(254) not
null

The URL of the IC

SRHTTPS integer not null Indicates whether the URL to subsystem IC
should use HTTP or HTTPS:
0: http (default value)
1: https

SRURLPARAM varchar(254) Parameters and values that the subsystems
may want associated with the IC URL. This
will be of the form
param1=value1¶m2=value2¶m3=v
alue3

SRDESC varchar(254) A description of the IC.

SRTITLE varchar(32) A string to display along with the URL.

SRIMAGE varchar(254) An image file URL that maybe used to display
the URL.

SRSEQNUM small int The display sequence number

SRFIELD1 integer Customization field.

SRFIELD2 varchar (254) Customization field.
Chapter 14. Example - catalog subsystem 303

SHOPPINGS will be used for the WebSphere Commerce Suite, Marketplace
Edition for AIX purposes.

Table 27. ILISTTYPE table

Data Dictionary tables:
This section lists and describes the tables that are used to create and
maintain the data dictionary of the catalog subsystem.

ATTRIBUTEDEF (New): This table defines the set of attributes used in the
e-Marketplace. It serves as a dictionary for the e-Marketplace and
organizations in it. Having a well-defined attribute dictionary allows the
e-Marketplace to offer a wide variety of attribute-based services such as
search, access control, and decision support. All objects that have
attribute-value pairs will use the dictionary. The only exception is the product

Column Name Data Type Description

ITLISTRN int not null Foreign key to IILIST.LIST_RN

ITTYPE char (1) not null The type of the list (the subsystem that will
eventually be responsible for the contents):
C: Contract
R: RFQ
S: Standard Price

ITSTATUS char (1) not null The status of the list:
A: Active
D: Marked for deletion
S: Submitted?

ITEXTRN varchar(128) An extended reference number that a
subsystem might want to associate with the
list.

ITFIELD1 varchar(128) Customization field.
304 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

attributes because there is a lot of existing functionality in WebSphere
Commerce Suite that depends on its current structure.

Table 28. ATTRIBUTEDEF table

Column Name Data Type Description

ADREFNUM Integer
(not null)

The ID assigned to this particular attribute.
Primary key.

ADORGID integer The organization that defined the attribute.
Foreign key reference to
MERCHANT.MERFNBR.

ADCREATOR integer The user who defined the attribute. Foreign
key reference to SHOPPER.SHRFNBR.

ADNAME varchar (128) Name of the attribute.

ADDATATYPE integer The datatype ID of the attribute (data type
definition in DATATYPES table).

ADDEFAULTUNIT integer The default units for this attribute definition.
Reference to UNITS.UNREFNUM.

ADVISIBILITY small int Whether the attribute is visible only within the
organization that defined it or across the
market:
0: Org wants it to be private
1: Org wants it to be public to the market (
pending approval to be a market public
attribute)
2: market has approved it to be public

ADPUBLISH integer not null Indicates whether the attribute definition is
ready to be used. This will also be used to
determine whether the attribute definition can
be modified.
0: Not yet published
1: Published

ADFIELD1 varchar(32) Customization field.
Chapter 14. Example - catalog subsystem 305

UNITS (New): This table contains the domain of units for the e-Marketplace.

Table 29. UNITS table

Column Name Data Type Description

UNREFNUM integer not null Reference number, primary key.

UNIT varchar(32) This field can have such values as “MHz”,
“lb.”, “oz.”,....

UNDESC varchar(254) The display/description string for the units
(subject to translation).

UNCREATOR integer Member who created the units. Default is
market admin ID.

UNSCOPE integer Visibility of the unit -- a value from merchant.
When market ID is used the type is visible to
the market. Default value.

UNFIELD1 varchar(32) Customization field.
306 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

OPERATORS (New): This table contains the domain of operators for the
e-Marketplace. Note: Not all elements of the schema may be currently used
in the WebSphere Commerce Suite, Marketplace Edition for AIX.

Table 30. OPERATORS table

Column Name Data Type Description

OPREFNUM integer not null Reference number, primary key.

OPERATOR varchar(32) not
null

This field can have such values as “<”, “<=”,
“>”, “>=”,

OPERATOR2 varchar(32) This is similar to the OPERATOR field, for
compound operators (for example RANGE).

OPDESC varchar(254) The display string for the operator (subject to
translation).
For example: Between (for a range); Set;
Equals, Greater Than;
(UNIQUE)

OPTYPE integer not null The operator type:
1: Simple operator (allows a single value)
2: Compound operator (Range -- continuous)
3: Compound operator (Set)
4: Compound operator (Range w/ increment)
All the compound operators allow multiple
values.
Additional types can be defined in the future.

OPAPPLYTO integer not null 1: Applicable only to numeric data types
2: Applicable only to non-numeric data types
3: Applicable to both numeric and
non-numeric

OPCREATOR integer Member who created the operator. Default
market admin ID.

OPSCOPE integer Visibility of the type -- a value from merchant.
When market ID is used the type is visible to
the market. Default value.

OPFIELD1 varchar(32) Customization field.
Chapter 14. Example - catalog subsystem 307

ATTACHMENT (New): This table contains control information regarding files
that have been provided as attachments (currently only for RFQs and their
responses/bids).

Table 31. ATTACHMENT Table

14.3 Examples of catalog creation and maintenance

In this section we cover some examples of catalog subsystem-related
creation and maintenance tasks that can be performed by the e-Marketplace
administrator. These tasks are some of the very early activities an
e-Marketplace administrator should engage in to establish the e-Marketplace
catalog.

There are several methods to create and maintain an e-Marketplace catalog,
such as using XML imports, Excel Spreadsheet, the e-Marketplace version of
Catalog Architect ,or using the Web-based administrative tool also known as
ncadmin. In this section we concentrate on the administration through the

Column Name Data Type Description

ACREFNUM bigint (not null) File reference number, primary key

ACPATH char(254) (not
null)

File path (bidrfn/userid/[bid/product]/product
reference number/

ACIPADDR char(16) IP address from where file was uploaded

ACTYPE char(32) File type

ACNAME char(64) Name of the file (without the path)

ACSIZE integer File size

ACMEMBER integer (not null) Member who uploaded the file
Foreign key reference to
SHOPPER.SHRFNBR

ACVRSCMT char(254) Virus scan comments

ACUPDATE timestamp Date of file update

ACCRDATE timestamp Date of file upload

ACICON char(254) GIF image for the file type

ACFIELD1 integer Merchant customization field

ACFIELD2 varchar(254) Merchant customization field

ACFIELD3 integer Mmerchant customization field
308 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Web interface of the ncadmin. The basic concept of working with the
Web-based administrative tool of WebSphere Commerce Suite, Marketplace
Edition for AIX is similar to that of WebSphere Commerce Suite 4.1, with the
notable difference of exclusion of store administrative functions, since the
concept of stores does not apply to an e-Marketplace.

We will cover creation and maintains tasks for: data dictionary, catalog
hierarchy, and catalog content.

For the remainder of this section we will use the default example, “Worldwide
Shipbuilding Marketplace” shipped with the WebSphere Commerce Suite,
Marketplace Edition for AIX, to demonstrate the creation and maintenance
operations.

We will be adding a new subcategory to the main Ship Building Material
called Communication Equipment. Then we will set up two further
subcategories under Communication Equipment called Radios and
EPIRB”(Emergency Positioning Indicating Radio Beacon). Finally we will list
some product descriptions for each of these subcategories. Since we are
creating a communications section for our e-Marketplace, we need to add
new attributes to the data dictionary. We will add Frequency and Coverage
stating the frequency range in MHz and distance covered in Km.

14.3.1 Creation and maintenance of the data dictionary
We mentioned earlier in this chapter the concept of the WebSphere
Commerce Suite, Marketplace Edition for AIX data dictionary. In this section
we explain how you would create new attributes and manage existing
attributes in the data dictionary using the Web-based administrative tool. It is
important to understand that you can only manage attributes that are not yet
published to the e-Marketplace and therefore are still in the Draft state. This is
simply because if an attribute is published to the e-Marketplace then there is
a chance that a product description or an offering is using that attribute, so
changing the attribute will create transactional errors.

14.3.1.1 Creating a new attribute definition
To add a new attribute to the data dictionary perform the following steps:

1. Log on to the Web-based administrative tool. Use “ncadmin” to log on.

All the operations in the Web-based administrative tool are performed with
the “ncadmin” logon ID

*** Note ***
Chapter 14. Example - catalog subsystem 309

2. Click on Site Manager tab.

3. Select Attribute Dictionary.

4. Fill in the form.

5. Click Create.

6. If a message stating successful creation of an attribute is displayed, then
you are done. Otherwise review and correct any errors.

7. You can also use the Search button to verify that your entry has been
successfully created.

8. After creation, you must click Refresh Registry from the Site Manager
menu to update registry entries.

We will now provide a series of graphics to demonstrate the above-mentioned
process and the effects of it. First we create the Frequency attribute and
publish it, so that we can see it as part of the available attributes in the
e-Marketplace.

Figure 81 on page 311 shows the list of attributes before creation of the
Frequency attribute. For ease of demonstration we have selected the Create
Fix price offering window to demonstrate the list of attributes.
310 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Figure 81. Attribute list before creating frequency

Figure 82 on page 312 shows the Define Attributes page of the Web-based
administration tool where we have input the information for the Frequency
attribute. Information from this page is stored in Table 28 on page 305. Refer
to the column definitions of this table for a better understanding of what each
of the options in the window represent.
Chapter 14. Example - catalog subsystem 311

Figure 82. Create data dictionary attribute

Figure 83 on page 313 shows the same window as Figure 81 on page 311 but
now we see that the Frequency attribute has been added to the list of
attributes.
312 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Figure 83. Attribute list after creating frequency

14.3.1.2 Modifying attribute definition
To modify an attribute definition in the data dictionary that is still in Draft state
perform the following:

1. Log on to the Web-based administrative tool. Use “ncadmin” to log on.

2. Click the Site Manager tab.

3. Select Attribute Dictionary.

4. Click the Search button and select the attribute you wish to modify.

5. Make the changes and click on Update button.

6. If a message stating successful update is displayed, then you are done.
Otherwise review your entries and correct any errors.

7. You can also use the Search button again to retrieve the attribute and
verify that your changes have been successfully recorded.
Chapter 14. Example - catalog subsystem 313

8. If you modified the entry and decided to publish the attribute make sure
you click Refresh Registry from the Site Manager menu to update
registry entries.

To avoid unnecessary duplication we will not show the initial steps of creating
the Coverage attribute. That process is identical to the process of creating the
Frequency attribute, except that we selected not to publish the attribute to the
data dictionary by setting the Publish field value to No.

Figure 84 shows the Coverage attribute that we created and verifies that it is
in Draft state. Note that we have selected m (Meters) for the Default Unit,
which is incorrect. By following the steps mentioned above we will change the
Default Unit to Km (Kilometers) and change the Publish valueto Yes.

Figure 84. Coverage attribute in draft state

Figure 85 on page 315 shows the modifications to the Coverage attribute. At
this stage we have not yet updated the record, which is why the attribute
listing at the lower part of the window still shows Draft status for this attribute.
314 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

After clicking the Update button and receiving a confirmation of a successful
update, the status will change to Posted.

Figure 85. Coverage attribute modification window

14.3.2 Creation and maintenance of category hierarchy
Using the Web-based administrative tool you can add a new parent category,
remove a parent category, manage parent categories, add and delete a
product category or move a category. These functions are similar to those in
the WebSphere Commerce Suite 4.1. In this section we will provide
step-by-step directions for all these operations and use screen captures to
show adding a new product category to the catalog.
Chapter 14. Example - catalog subsystem 315

14.3.2.1 Add a Parent Category
You can use this operation to assign a product description to a parent
category or add the product description to more than one parent category if
you wish to. The following steps allow you to perform this operation.

1. Log on to the Web-based administrative tool. Uuse “ncadmin” to log on.

2. Click on Site Manager tab.

3. Select Product Information.

4. From the Product Description Information page, click the Search button
and select the Product Description you wish to work with.

5. Click the Parent Categories link under the Product Information link. This
will display the Manage Parent Categories window.

6. Click Select Parent... button and from the next window navigate the
catalog hierarchy and select the new parent category reference number.

7. Return to the Manage Parent Categories window and type in the category
reference number in the input field next to the Add button.

8. Click the Add button.

9. When this operation completes successfully the new parent category
name and reference number will appear in drop-down lists of both
Add/Remove Parent and Define Presentation Order section.

10.Verify that your change has been successfully recorded.

11.Click Refresh Registry from the Site Manager menu to update registry
entries to reflect your changes to the e-Marketplace catalog.

14.3.2.2 Remove a Parent Category
You can use this operation to remove a product description from a parent
category. The following steps allow you to perform this operation.

1. Logon to the Web-based administrative tool. Use “ncadmin” to log on.

2. Click the Site Manager tab.

3. Select Product Information

4. From the Product Description Information page, click the Search button
and select the Product Description you wish to work with.

5. Click the Parent Categories link under the Product Information link. This
will display the Manage Parent Categories window.

6. From the drop-down list of the Add/Remove Parent section select a parent
category and click the Remove button.
316 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

7. When this operation completes successfully, the selected parent category
name and reference number will no longer appear in drop-down lists of
either the Add/Remove Parent or Define Presentation Order section.

8. Verify that your change has been successfully recorded.

9. Click Refresh Registry from the Site Manager menu to update registry
entries to reflect your changes to the e-Marketplace catalog.

14.3.2.3 Manage Parent Categories
You can use this operation to modify a product description’s parent category
information. The following steps allow you to perform this operation.

1. Log on to the Web-based administrative tool. Use ncadmin to log on.

2. Click the Site Manager tab.

3. Select Product Information.

4. From the Product Description Information page click the Search button
and select the Product Description you wish to work with.

5. Click the Parent Categories link under the Product Information link. This
will display the Manage Parent Categories”window.

6. Here you can modify the parent category information.

7. Click the Update Form button to store your changes in the database.

8. Verify that your change has been successfully ecorded.

9. Click Refresh Registry from the Site Manager” menu to update registry
entries to reflect your changes to the e-Marketplace catalog.

14.3.2.4 Add a Product Category
You can use this operation to create a new category in your category
hierarchy. The following steps allow you to perform this operation.

1. Log on to the Web-based administrative tool. Use ncadmin to log on.

2. Click the Site Manager tab.

3. Select Product Categories

4. In the Product Categories page navigate through the catalog hierarchy
and find the category under which you wish to create a new category. Note
the new category will be placed under the category which is highlighted in
red.

5. Click the Add button. The Add New Category form will be displayed.

6. Fill in the information on this form and click Save.
Chapter 14. Example - catalog subsystem 317

7. You will be returned to the Product Categories page with your newly
created category showing up under the category that you had selected
earlier.

8. Click Refresh Registry from the Site Manager menu to update registry
entries to reflect your changes to the e-Marketplace catalog.

If you wish to add subcategories to your newly created category repeat these
steps again.

We will demonstrate creation of the Communication Equipment category here
as an example. We will also create all subcategories we mentioned at the
beginning of this section. However, we will not include screen captures since
they all follow the same steps.

Figure 86. e-Marketplace category structure.

Figure 86 shows the category structure before addition of the Communication
Equipment category.

We would like to add this category under the Ship Building Materials
category. Figure 87 shows the category structure, we have selected the Ship
318 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Building Materials category. On this window you would click the Add button to
create the new category.

Figure 87. Product categories window

Figure 88 on page 320 shows the Add New Category window. We have
provided the Name, Category Identifier and a Short Description for the new
category, if you wish you can provide more information. When you click the
Save button the new category will be created.
Chapter 14. Example - catalog subsystem 319

Figure 88. Add new category

Figure 89 on page 321 shows the newly created Communication Equipment
under the Ship Building Materials category.
320 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Figure 89. New category structure

Figure 90 on page 322 shows the e-Marketplace category structure after
adding Communication Equipment.
Chapter 14. Example - catalog subsystem 321

Figure 90. e-Marketplace category structure after creation of Communication Equipment
category

14.3.2.5 Delete a product category
You can use this operation to delete a category in your category hierarchy.
The following steps allow you to perform this operation.

1. Log on to the Web-based administrative tool. Use ncadmin to log on..

2. Click the Site Manager tab.

3. Select Product Categories.

4. In the Product Categories page navigate through the catalog hierarchy
and find the category which you wish to delete.

5. Click the Delete button.

6. After deletion is performed you will be returned to the Product Categories
page. The category you had selected for deletion will no longer appear in
the category structure.
322 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

7. Click Refresh Registry from the Site Manager menu to update registry
entries to reflect your changes to the e-Marketplace catalog.

14.3.2.6 Move a Product Category
You can use this operation to move a category in your category hierarchy. The
following steps allow you to perform this operation.

1. Log on to the Web-based administrative tool. Use ncadmin to log on..

2. Click the Site Manager tab.

3. Select Product Categories.

4. In the Product Categories page navigate through the catalog hierarchy
and find the category which you wish to move.

5. Click the Mark button. The selected category name will start to flash.

6. Select the destination for the category. The selected destination category
will be highlighted.

7. Click Move.

8. Click the triangle to the left of the destination category to verify the
modified hierarchy.

9. Click Refresh Registry from the Site Manager menu to update registry
entries to reflect your changes to the e-Marketplace catalog.

14.3.3 Populating the catalog
In this section we will describe the steps required to set up product
descriptions in the catalog hierarchy. Product descriptions provide the catalog
taxonomy as we described it earlier in this chapter. By creating product
descriptions in a specific subcategory of the catalog we provide a method to
create product offerings that are arranged in the predefined subcategory and
have a set of established base attributes. This allows consistency in the
catalog both for users and administrators.

Product descriptions can be modified and managed through the Web-based
administrative tool. In this section we cover the creation of a new product
description and adding attributes to that product description. We will not detail
the managing of product descriptions as they largely follow the same steps
and use the same windows as creating a new product description.

14.3.3.1 Create a product description.
You can create new product descriptions in your category hierarchy so that
different organizations can create offerings. The following steps allow you to
perform this operation.
Chapter 14. Example - catalog subsystem 323

1. Log on to the Web-based administrative tool. Use ncadmin to log on.

2. Click the Site Manager tab.

3. Select Product Information.

4. In the Product Description Information page click Select Parent. From the
Product Categories window navigate through the catalog hierarchy and
find the category to which you wish to add the product description to.
Make a note of the Category Reference number.

5. Return to the Product description Information page and place the
Category Reference number into the Parent Reference Number field.

6. Select whether you wish to publish the product description or not.

7. Provide information for the remaining fields in this form.

8. Click the Create button to create the product description in the database.

Next you need to add attributes to the product description:

1. Sselect Product Information.

2. Click Search.

3. Select the product description you just created.

4. Click the Attributes link under the Product Information.

5. In the Create/Remove Attribute”section select an attribute you wish to add
to the Product description and click Create. Repeat this step for all the
different attributes you wish to assign to the product description.

6. In the Define Attribute section, select one of the attributes just added to
the product description.

7. Provide all the information you wish to assign to this attribute.

8. Click the Update button.

9. Click Refresh Registry from the Site Manager menu to update registry
entries to reflect your changes to the e-Marketplace catalog.

You can use this same process to update product description information to
manage attributes of a product description, etc. For more details on product
description management, please see the online documentation.

We will now provide some window captures to better demonstrate the
above-mentioned process.

Figure 91 shows the window in the Web based administrative tool that allows
creation of product description.
324 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Figure 91. Create product description

Figure 92 on page 326 shows the window where attributes are assigned and
managed for a given product description.
Chapter 14. Example - catalog subsystem 325

Figure 92. Add attributes

Figure 93 on page 327 shows the new product description in the
e-Marketplace catalog.
326 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Figure 93. New product description in the e-Marketplace catalog

14.4 Supplier interaction: offering creation and maintenance

Organization members with supplier authority can interact with the catalog
subsystem to perform a number of activities. The following list states some of
the activities a typical supplier performs:

• Create and manage offerings

• Review and respond to RFQs

• Create and manage auctions

• Participate in exchanges

• Create and manage contracts

• Check orders from buyers

• Generate reports
Chapter 14. Example - catalog subsystem 327

The Figure 94 describes the supplier or seller use cases in the
e-Marketplace.

Figure 94. Supplier use case diagram

In this section we will cover the creation of a fixed price offering by a supplier
in the e-Marketplace. Other supplier activities mentioned in the above list are
covered as separate items in different chapters of this book. Chapter 15,
“Example - pricing and contract subsystem” on page 341 describes contracts,
Chapter 16, “Example - negotiation subsystem” on page 367 describes
RFQs, auctions and exchanges and Chapter 17, “Example - additional
e-Marketplace infrastructure” on page 441 describes orders and reports in
detail.

Use Case: Seller Selling

Login

Select

Product
Update

Purchase
Orders
waiting

Catalog
Browsing

Orders

Product in
Auction

RFQ in
progress

Product in
eXchange

eXchangeAuction RFQ

Start

Add or
Update

Select
Winner Respond Bid

Receive
POs
328 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

14.4.1 Create a fixed price offering
In order to perform this task an organization must be registered and approved
in the e-Marketplace. Also a supplier must be created and assigned the
appropriate role. These topics are covered in detail in Chapter 13, “Example -
membership and access control” on page 241.

We will describe the steps to create a fixed price offering. Later on we will
create an offering for the DeskTop Radio product description we created in
the e-Marketplace catalog earlier to give you a visual presentation of
windows.

Typically the following takes place when creating a fixed price offering.

1. Supplier logs on to the e-Marketplace.

2. Supplier navigates through the catalog hierarchy using Manage Offerings
view.

- Supplier finds the product description for which a fixed price offering is
to be created.

- From the product description window, the supplier selects Create
Fixed price offering.

- Supplier completes the form, determines if new attributes need to be
added to the product offering and if the offering is targeted to a certain
organization or it is a public offering.

- After completion of the form the supplier selects Save offering to
complete the fix price offering creation process.

The following few pages provide a visual representation of above mentioned
procedure.

After successful logon, the authorized supplier would click the Manage
Catalog link to navigate to the product description window.
Chapter 14. Example - catalog subsystem 329

Figure 95. Actions available on DeskTop Radio product description

Figure 95 shows the DeskTop Radio product description entry we created
earlier. Note that the Category Hierarchy describes our position in the
e-Marketplace catalog. Under the Actions column we see all the actions that
can be performed on the this product description. We will select the link
Create Fixed price offering.

While in the Fixed price offering creation window, you can see that the
product description attributes that were assigned during the creation of the
product description earlier are displayed here as the standard attributes.
From this window you must add inventory and price information and you must
select if the offering is restricted to certain organizations or if it is a public
offering. You also have some optional fields to add information specific to
your product. You can add more attributes and assign values to them. We will
add the Deliver Date option with the value of Immediate to indicate that the
product is available and ready to be shipped to buyers immediately.
330 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Figure 96. Adding a new attribute

Figure 96 shows the New Attribute Definition window.

Figure 97 on page 332 and Figure 98 on page 332 together show all the fields
in the create fixed price offering window. Next we click the Save Offering
button to create the offering in the e-Marketplace catalog.
Chapter 14. Example - catalog subsystem 331

Figure 97. Create offering: top portion of window

Figure 98. Create offering: bottom portion of the window
332 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

After the offering has been created if the supplier clicks on the My Catalog
view link all the offerings that have been created by that supplier will be
displayed. Since this is the first offering created by this supplier, Figure 99
shows only one entry. The supplier can work with the offering using the action
links provided in this view of the catalog.

Figure 99. My catalog view

14.5 Buyer interaction: examples of catalog based buying

Organization members with buyer authority can interact with the catalog
subsystem to perform a number of activities. The following list states some of
the activities a typical buyer performs:

• Catalog-based buying

• Create and review RFQs

• Bid on auctions items

• Participate in exchanges

• Work with contracts

• Check orders and order status

• Generate reports
Chapter 14. Example - catalog subsystem 333

From the list above, we will only look at catalog-based buying process in this
section. The other buyer activities are covered in different chapters of this
book. Chapter 15, “Example - pricing and contract subsystem” on page 341
describes contract, Chapter 16, “Example - negotiation subsystem” on page
367 describes RFQs, auctions, and exchanges, and Chapter 17, “Example -
additional e-Marketplace infrastructure” on page 441 describes orders and
reports in detail.

Figure 100. Buyer use cases

Figure 100 shows the buyer use cases. It describes the actions and paths a
buyer can take in an e-Marketplace. One of the key activities of a buyer is to
purchase products for their organization. Purchasing of products can be
performed in many different ways, either via catalog-based buying or through
auctions, exchanges or RFQs.

Use Case: Buyer Buying

Login

Price?

Shop

Start

Catalog
Browsing

Contracts

Order?

Place
Order

eXchange

RFQ

Fixed or
ContractAuctionRFQ

Product
Found?

Yes

Yes

No

No
334 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Catalog-based buying is referred to the process of a buyer navigating through
the catalog hierarchy, or performing various searches, to find products they
need and then initiate the buying process. The main difference between
catalog-based buying and buying through auctions and exchanges is that,
catalog-based buying uses a shopping cart, whereas auctions and
exchanges do not. RFQs also do not use the shopping cart directly but
indirectly they can lead into creation of a contract offering, which is part of
catalog-based buying and uses the shopping cart.

Catalog-based buying can be categorized into two types:

• Buying from a contract offering

• Buying from a fixed price offering

Both offerings are listed under standard price offerings in the product
description window. The actual process of buying, either from a contract or a
fixed price offering, is the same. The only difference is that when the standard
price offering details are displayed (by clicking the Prices link from the
product description window) the buyer has the choice of selecting a contract
offering or the fixed price offering.

We have already described how a supplier can create a fixed price offering.
Let’s briefly look at what needs to take place before a buyer can purchase
from a contract offering. A supplier and a buyer can enter into negotiations to
establish a contract agreement. Contracts can also be created as a result of
an RFQ process. Through either method, when an agreement is reached
between the two parties a contract is entered into the e-Marketplace and
approved by both parties. The contracts are against a specific product
description and therefore an entry is created against the targeted product
description. After this process has been completed a buyer can purchase
from the contract offering.

We will now take you through the steps of performing catalog-based buying,
specifically the buying process through a fixed price offering, since we do not
yet have a contract offering created in the e-Marketplace catalog.

14.5.1 Process of catalog-based buying
We will first provide a step-by-step approach to buying from the
e-Marketplace catalog, then provide some screen captures to visually
represent the process.

1. Buyer logs on to the e-Marketplace.

2. Buyer uses the Catalog Browse view to navigate and find the appropriate
product.
Chapter 14. Example - catalog subsystem 335

3. In the product description details window, buyer views the standard price
offerings to see if an offering is available.

4. Buyer clicks Prices and is presented with a form containing offering
details and input fields for quantity required etc.

5. Buyer completes the above form and clicks Place Order.

6. A view of the shopping cart with all items in it are displayed.

7. The buyer selects the items for ordering and clicks Submit Order.

8. When the order submission is complete the buyer receives an Order
Confirmation report.

Now let’s follow these steps and buy five DeskTop Radios.

Figure 101 displays the DeskTop Radio product description and shows that
under standard price offerings there is an offering available.

Figure 101. Product offering window

The buyer clicks on the Prices link to view the details of the offering and
select the quantity of the product and add the item to our shopping cart. It is
336 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

at this step that the buyer can select a contract offering if one is available.
Figure 102 shows this window.

Figure 102. Detailed product information

Figure 103 on page 338 shows our catalog-based cart and the item that we
have selected to purchase. The catalog based cart can contain multiple items
from several different selling organizations, but an order can contain items for
a unique selling organization for processing reasons. From this window we
click Place Order to prepare an order.
Chapter 14. Example - catalog subsystem 337

Figure 103. Place order

Figure 103 on page 338 shows the window from where we can Submit Order
and complete the catalog-based buying process.

Figure 104 on page 339 shows the order confirmation information.
338 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Figure 104. Order confirmation window

14.6 Interaction with other subsystems

The catalog subsystem interacts with almost all the other subsystems
available in the e-Marketplace. These interactions take place using function
calls between subsystems and objects shared by all subsystems in the
database.

We will describe, on a functional level, how the WebSphere Commerce Suite,
Marketplace Edition for AIX subsystems interacts with the catalog subsystem.
The following subsystems are identified in the WebSphere Commerce Suite,
Marketplace Edition for AIX:

• Pricing and Contract

The catalog subsystem interacts with the pricing and contract subsystem
to establish and manage fixed price and contract offerings.

• Negotiation

The catalog subsystem interacts with the negotiation subsystem to
facilitate creation of auctions, RFQs and exchanges.
Chapter 14. Example - catalog subsystem 339

• Membership and Registration

The catalog subsystem has no direct interaction with the membership and
registration subsystem.

• Access Control

The catalog subsystem interacts with access control subsystem to validate
access authority of uses to perform catalog-specific operations.

• Approval Flow

The catalog subsystem interacts with the approval flow subsystem to
establish an approval process for organizations requiring such processes
for their members. An example of such an approval process would be the
need to approve offerings created by the suppliers.

• Orders

The catalog subsystem interacts with the order subsystem to provide a
mechanism for buyers and suppliers to view orders submitted by their
organization or other participating organizations.

• Hub Business

The catalog subsystem does not interact with the hub business
administrative operations.

• Report

The catalog subsystem does not have a direct interaction with the report
subsystem. However ,the report subsystem uses information that the
catalog subsystem stores in the database to prepare the predefined
e-Marketplace reports.
340 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Chapter 15. Example - pricing and contract subsystem

In the previous chapter we covered the catalog subsystem and provided you
with information and examples of how to create and manage the
e-Marketplace catalog. We covered the supplier and buyer interaction with
the catalog subsystem and provided examples of how to create and manage
fixed price offerings or how to buy from an existing fixed price offering using
the catalog-based buying process. We also noted that other than catalog
based buying there are other methods through which transactions take place
in an e-Marketplace. Methods such as:

• Contracts

• Auctions

• RFQs

• Exchanges

Auctions, RFQs and exchanges are considered part of the negotiation
subsystem. We will cover them in Chapter 16, “Example - negotiation
subsystem” on page 367.

Contracts are part of the pricing contract subsystem. In this chapter we will
provide information and examples of how contracts work.

15.1 Contracts

A contract is a mutual agreement between a buying and a selling organization
in the e-Marketplace. When a contract agreement is reached and entered into
the system, the contract offering becomes part of standard price offerings.
Buyers from the participating organization can use catalog-based buying to
make purchases against the contract. For details on catalog-based buying
please see Chapter 14, “Example - catalog subsystem” on page 269.

In this section we will cover the following topics:

• Contract high-level overview.

• Contract low-level design.

• Example: supplier interaction

• Example: buyer interaction

• Contract interaction with other subsystems
Chapter 15. Example - pricing and contract subsystem 341

In this chapter we use several screen captures to provide visual
representation for some of the topics we are covering. We use the “Worldwide
Shipbuilding Marketplace” example provided with the default installation of
the WebSphere Commerce Suite, Marketplace Edition for AIX.

15.1.1 Contract high-level overview
In the current implementation of the WebSphere Commerce Suite,
Marketplace Edition for AIX the contract subsystem is limited to pricing
contracts. This means contracts can only be established to extend a special
price or a discount to a participating organization.

Contracts provide value to both selling organizations and buying
organizations. The buying organization benefits from having a special price or
discount for a product that they need to obtain. They also benefit from having
secured a fixed quantity of a certain product. The selling organization benefits
from contract agreements by knowing that the buying organization has an
obligation to buy a fixed minimum number of products or spend a fixed
minimum amount. In other words, they have secured sales for a predefined
quantity and amount.

15.1.2 Contract low-level design
In this section we look at the low-level design of the contract subsystem. We
list the code level components of the contract subsystem and give a brief
explanation of their functionality. A detailed discussion of these components
is outside the scope of this redbook. For details, we recommend the online
documentation and the JavaDocs specified for each component.

15.1.2.1 Design principles
The contract subsystem is designed to provide the components necessary for
the process of creating contracts. The contract subsystem is built based on
the Java programming model of WebSphere Commerce Suite, Marketplace
Edition for AIX, discussed in 10.5, “Marketplace Edition programming model”
on page 209.

We explain the interaction controllers, commands, JSPs, objects and the
database tables of the contract subsystem later in this chapter.

To successfully create a contract in the e-Marketplace, a contract must go
through a predefined process and change several states before becoming an
active contract. Figure 105 shows the process and state of a contract from
submission to creation. On a high level the process of creating a contract is a
two stage process. In the first stage, the creator initiates the process by filling
342 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

out a new contract creation form and submitting it. In the second stage an
authorized person from the participating organization reviews the submission
and agrees to the terms and conditions. When the agreement in the second
stage is recorded in the system the contract creation lifecycle is complete.
When a successful contract creation process is complete, no modifications
can be made to the details of a contract. However, with mutual agreement a
contract can be terminated by the market administrator.

Figure 105. Contract state machine

In the WebSphere Commerce Suite, Marketplace Edition for AIX
implementation of an e-Marketplace, contracts can be initiated by either a
buyer or a seller. Buyers are allowed to initiate the creation of a contract from
a winning RFQ. Suppliers can initiate the creation of a contract for products
or categories where a fixed price offering already exists.

When a contract is entered in the system, the WebSphere Commerce Suite,
Marketplace Edition for AIX uses some of the fields from the CONTRACT and
CONTITEM tables to provide the buyers an up-to-date view of the contract in
terms of monetary and quantity obligations and rights. Obligations are the
minimum monetary amount or quantity of products that a buyer is committed
to buy against a given contract. Rights are maximum monetary amount or
quantity of products that a buyer is allowed to buy against a given contract.

Start

Submission
approved

<Creator, submit>

Terminated

<(Market Admin, terminate>

{to:(Seller,Buyer),
Created}

{ to: (Buyer,Seller),
Terminated}

Contract State Machine

Submission
rejected

Accepted
by

Co-creator

Verification

Rejected
by

Co-creator

Verification
approved

Verification
rejected

Draft
submitted

<Approver,approve>

<Approver,reject>

{ to: (Co-creator), Verify}

<Co-creator,accept>
<Co-creator,reject>

<Approver,approve>
<Approver,reject>

Roles,Approval,Verification
Chapter 15. Example - pricing and contract subsystem 343

The WebSphere Commerce Suite, Marketplace Edition for AIX also
determines if a contract is still valid or if it is expired. A contract is considered
expired when any one of the following conditions occur:

• End time is reached (requires that an end time was entered).

• Maximum monetary volume is reached.

• Maximum quantity is reached.

No transactions are allowed against an expired contract.

15.1.2.2 Use cases
The contract subsystem is used in two ways:

• To create new contracts

• To be updated by catalog-based buying.

Create new contracts
Buyers and sellers with Contract Administrator authority can create contracts
in the e-Marketplace. In order to create a contract offering for a product
description, a fix price offering must exist for the product. The reason for this
is that if, for example, the supplier wishes to extend a discount for a given
product, then a fixed price must exist in order to calculate the discounted
price.

In here we explain the process of creating a contract begins when the
contract subsystem interaction controller ContractPrepare receives a request
to create a new contract and instantiates the ContractBean and passes it to
the ContractPrepareCmd. This command uses the createcontractfirststep
JSP to obtain information for the other participating organization and
populates the bean. Then contract and item-specific information are
populated in the ContractBean through use of the ContractCreate interaction
controller, the ContractCreateCmd command and the contractdetail and
contractitems JSPs. When all the information required is captured, a contract
entry is created in the e-Marketplace system with a status of Submission
Approved through the ContractSubmit interaction controller and the
ContractSubmitCmd command.

At this point the contract administrator of the second participating
organization begins the process of verification and approval. A request is
made to the ContractVerify interaction controller. This interaction controller
uses the ContractSearchCmd command and the searchContract JSP to
prompt the user to perform a search of all the contracts that need to be
verified. The result are displayed through VerifyContractList JSP, which
allows the invocation of the ContractVerifyCmd command to accept the
344 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

contract. When a contract is accepted the status changes from Submission
Approved to Verification Approved.

A contract can also be created by a buyer from a winning RFQ. If the buyer
chooses to submit a winning quote to be converted to a contract, a call is
placed to the CreateContractFromRfqCmd. This command calls the
ContractCreate interaction controller and passes information from the RFQ to
populate the ContractBean. The rest of the process is similar to the one
mentioned above.

Catalog-based buying
Catalog-based buying uses the contract subsystem and its information to
perform the following tasks:

• Determine and use contract price or discount.

• Track the monetary volume and product quantity numbers when an order
is placed or rejected.

The ContractGetProductContractCmd and ContractUndoTrackingCmd
commands are used for this purpose.

15.1.2.3 Code Level Components
Interaction controllers
The contract subsystem interaction controllers parse the input
parameters and forward requests to the WebSphere Commerce Suite,
Marketplace Edition for AIX command manager. The interaction controllers
also execute commands that are passed back by the command factory.

The following lists the contract subsystem interaction controllers for
WebSphere Commerce Suite, Marketplace Edition for AIX:

• ContractCreate

Used by a contract administrator to create a draft contract.

• ContractSubmit

Used by a contract administrator to submit a drafted contract.

• ContractList

Used by authorized users to generate a list of contracts.

• ContractView

Used by authorized users to view the details of a specific contract.

• ContractVerify
Chapter 15. Example - pricing and contract subsystem 345

Used by a contract administrator to accept or reject a contract drafted by
the counterparty

• ContractTerminate

Used by the hub administrator to terminate a contract representing two
parties.

• ContractUndoTrack

Undo operation of tracking the contract; used by the order subsystem.

• ContractSubmit

Used by contract administrator to submit a request for contract creation.

• ContractPrepare

List all organizations in Hub for contract creation.

• ContractGetCategoryContract

Called by the catalog to show the contracts on a specific category.

• ContractGetProductContract

Called by catalog-based buying to select a contract for purchasing.

• ContractReport

Used by authorized users to view a contract report.

• ContractSearch

Used by authorized users to search contracts.

More information on contract subsystem interaction controllers is available in
the online documentation of WebSphere Commerce Suite, Marketplace
Edition for AIX and com.ibm.commerce.emp.contract.icontrollers JavaDoc.

Commands
Commands are the component of the contract subsystem that carry out the
execution of the business logic and ultimately address the requests of the
users. Commands interact with almost all other components of the contract
subsystem, from interaction controllers to JSPs and beans.

The following are the commands in the contract subsystem of the WebSphere
Commerce Suite, Marketplace Edition for AIX:

• ContractSubmitCmd

Create a draft contract for a user’s own organization’s approval.

• ContractVerifyCmd

Accept or reject a draft contract.
346 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

• ContractCreateCmd

Display a creation form for a user to input contract terms and conditions.

• ContractUndoTrackCmd

Recover the contract if the order based on the contract is cancelled.

• ContractPrepareCmd

List organizations to select a counterparty.

• ContractGetCategoryContractCmd

Get all contracts on a specific category.

• ContractGetProductContractCmd

List all contracts applicable to a specific product.

• ContractListCmd

List all contracts based on organization and user.

• ContractSearchCmd

Display a search form.

• ContractOrgReportCmd

Generate a report for a specific organization.

• ContractProdReportCmd

Generate a report for a specific product or category.

• ContractDetailReportCmd

Generate a report for a specific counterparty and product.

• ContractTerminateCmd

Terminate a contract.

• ContractViewCmd

Display the detaiedl information of a contract.

More information on contract subsystem commands is available in the online
documentation of the WebSphere Commerce Suite, Marketplace Edition for
AIX and com.ibm.commerce.emp.contract.commands.interfaces and
com.ibm.commerce.emp.contract.commands JavaDocs.

JSP pages
A JavaServer Page (JSP) is server-side Java code that facilitates the creation
and display of dynamic content onto Web pages. JSP technology separates
the creation of dynamic content from static HTML content. This feature allows
Chapter 15. Example - pricing and contract subsystem 347

the Web page designers to modify the design and the static content of Web
pages without having to worry about the dynamic content. All they have to do
is place the dynamic content on the page they are designing. For more
information on JSPs and the latest specifications, please visit
thehttp://java.sun.com/products/jsp/ Web site.

The contract subsystem contains the following JSPs. It is important to note
that not all JSPs render a Web page. Some are used to interact with
JavaBeans and extract and pass information to other components of the
contract subsystem.

• createcontractfirststep

Displays the page to select another party.

• contractdetails

Displays the contract creation form.

• confirmcontract

Displays drafted contract to be confirmed.

• submitcontractsuccess

Displays a success message to the user if submission is successful.

• createcontractdiscard

Displays a message to confirm discarding a contract.

• contractitems

Displays the add items to contract page.

• category

Displays a child category list to be selected and added to contract items.

• category2

Displays a product list to be selected and added to contract items.

• categoryTOC

Displays a table of contents of a catalog for adding contract items.

• ListContract

Lists all the contracts that a user is authorized to view.

• ViewContract

Displays the details of a contract selected by a user.

• VerifyContractList

Lists the contracts to be verified by a user and allows verification.
348 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

• VerifyContractSuccess

A status message to show a user that the contract verification was
successful.

• TerminateContract

Displays a form for the user to identify the contract that needs to be
terminated.

• TerminatedOver

Displays a status message to verify operation success.

• reportContract

Displays a form to select a type of report to be generated.

• reportperiod

Displays a form to provide a time period for a report.

• searchContract

Display a form to input search conditions for contracts.

• error

Displays an error message in case of a failure.

For more information on JSPs please see the online documentation.

Objects
The WebSphere Commerce Suite, Marketplace Edition for AIX uses the
following beans:

• ContractBean

Contains the properties of a contract.

• ContractDisplayBean

Contains the displaying properties of a contract.

• ContractItemBean

Contains the properties of a specified contract item.

• ContractItemDisplayBean

Contains the displaying properties of a specified contract item.

• ContractListBean

Contains the properties of a list of contracts.

• InputErrorBean
Chapter 15. Example - pricing and contract subsystem 349

Contains the error messages.

For detailed information on these beans please see the online documentation
and the JavaDoc on com.ibm.commerce.emp.ccontract.db and the
com.ibm.commerce.emp.contract.beans.

Figure 106 on page 350 depicts the class diagrams and interfaces of the
contract subsystem.

Figure 106. Class diagram and interfaces of the contract subsystem

Database tables
In this section we are including the additions to the WebSphere Commerce
Suite 4.1 database schema with respect to the contract subsystem.
350 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

CONTRACT (New): This table stores information about each contract.

Table 32. CONTRACT

Column Name Data Type Description

cntrefn integer not null Contract reference number. This is the
primary key.

cntbuyrefn integer not null Buying Organization Reference
Number. This is a foreign key that
references the MERFNBR column in
the MERCHANT table.

cntsellrefn integer not null Selling Organization Reference
Number. This is a foreign key
references the MERFNBR column in
the MERCHANT table.

cntstatus char(4) not null Contract Status:
DRFT - Editable draft.
SBMT - Submitted for approval.
SAPP - Submission approved.
SRJT - Submission rejected.
VRFA - Accepted by verification.
VRFR - Rejected by verification.
VAPP - Verification approved.
VRJT - Verification rejected.
TMNT - Terminated .

cntdiscount num(3,2) A percent discount that applies to all
purchases under the contract. This is
set to 1 (that is 100%) if no discount
applies.

cntcoverage char(4) not null What purchases the contract covers:
ALL - All purchases between the buyer
and the seller.

The discount is specified in by the
cntdiscount field.
SPEC - Specific products or
categories specified in the cntitem
table.

cntbegintim timestamp not null Time at which the contract is scheduled
to start.

cntendtim timestamp Time at which the contract is scheduled
to end.

cntcrttim timestamp Date created.
Chapter 15. Example - pricing and contract subsystem 351

cntcurrstr char(3) not null Currency for monetary value.

cntminval num (15,2) The buyer is required to make
purchases at the contracted price(s)
until the sum of the monetary amounts
are at least this value. NULL if none is
required.

cntmaxval num (15,2) The seller is required to accept the
agreed price(s) until the order’s
monetary values sum to this amount.
NULL if none is required.

cntpenadesc char(254) Specifies penalties for failure to
perform.

cntdetailfile char(254) File name and path of file specifying
additional contract details.

cntcreator integer Contract creator.

cntcountercreator integer Contract creator of counterparty.

cntbuysign integer Contract signee of buying organization.

cntsellsign integer Contract signee of selling organization.

cntcrtmethod char(4) The method used for creating the
contract specifications. Initially, MAN
(Manual creation) and RFQ (Request
for Quote) will be supported.

cntcrtkey integer Foreign key link to the creating
processes ID. For instance, for an
RFQ, this field is the ID of the RFQ
from which the contract was created.

cntsumval num(15,2) not null Sum of the monetary value of a
purchase placed under contract. This
is updated upon order submission.

cntfield1 num(15,2) Merchant customization field.

cntfield2 integer Merchant customization field.

cntfield3 varchar(254) Merchant customization field.

cntfield4 varchar(254) Merchant customization field.

cntversdesc char(254) For future use. A version description for
the contract.
352 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

CNTITEM (New): This table stores contract item (product) information about
each contract.

Table 33. CNTITEM

Column Name Data Type Description

cicntrefn integer not null Contract reference number. This is a
foreign key that references the
CNTREFN column in the CONTRACT
table.

citype char(1) not null Type of contract item:
P = product
C = category

ciprrefn integer Product reference number. This is a
foreign key that references the
PRRFNBR column in the PRODUCT
table. This field is NULL when the item
is a category.

cicgrfnbr integer Product reference number. This is a
foreign key that references the
CGRFNBR column in the CATEGORY
table. This field is NULL when the item
is a product.

cipricetype CHAR(5) not null Type of contracted price, either DISC
for discount or PRICE for a fixed price.

ciprice num(15,2) Contract price.

cicurrstr char(3) Currency for category monetary value
if citype is category, or currency of
product price if citype is product.

cisumquant num(15,2) not null The number of items that have been
bought. This is only used for contract
items that refer to a product.

ciminquant num(15,2) The buyer is required to make
purchases whose quantities sum to at
least this value. NULL if none required.
This is only used for contract items that
refer to a product.
Chapter 15. Example - pricing and contract subsystem 353

15.1.3 Example: supplier interaction
A supplier’s interaction to the contract subsystem is limited to starting the
process of contract creation. In this section we first describe the steps
involved in this process and then through an example and screen captures
we demonstrate the process.

In order to create a contract, a supplier must have a Contract Administrator
role, and a fixed price offering must exist for the product the supplier intends
to create a contract offering for. If the above conditions are met then a
supplier can create a contract by following these steps:

1. Supplier logs on o the e-Marketplace.

2. Supplier clicks Contracts in the Navigation pane and then clicks New
Contract.

cimaxquant num(15,2) The seller is required to accept the
agreed price until the buyer’s orders
have quantities summing to is value.
NULL if no requirement. This is only
used for contract items that refer to a
product.

cisumval num(15,2) not null Sum of the monetary value of a
purchase placed under contract for the
category. This is updated upon order
submission. This is only used for
contract items that refer to a category.

ciminval num (15,2) The buyer is required to make
purchases at the contracted price(s)
until the sum of the monetary amounts
are at least this value. NULL if none is
required. This is only used for contract
items that refer to a category.

cimaxval num (15,2) The seller is required to accept the
agreed price(s) until the orders’
monetary values sum to this amount.
NULL if none is required. This is only
used for contract items that refer to a
category.

cifield1 num(15,2) Merchant customization field.

cifield2 integer Merchant customization field.

cifield3 varchar(254) Merchant customization field.
354 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

3. From the next window the supplier selects the trading partner and their
role in this contract and clicks the Create a New Contract button.

4. The supplier fills in all the relevant information In the Edit Contract (New)
form and clicks Manage Item.

5. The list of items currently in the contract is displayed. This is an empty
window the first time a contract is created.

6. Supplier clicks Add Items from Interest List.

7. The Contract Interest List is displayed. If the desired items are in the list
the supplier can select and add them to the contract. If the item desired is
not on the list, supplier can click Browse Catalog to navigate and find the
product.

8. When the desired product is selected, the supplier clicks the Add Items to
Contract button.

9. Supplier is returned to the list of current items in the contract. The supplier
specifies the detail product pricing or discount as well as product quantity
or value obligations and rights. When the form is complete the supplier
clicks the Save and Back button.

10.Supplier is returned to the Edit Contract (New) form. When all the entries
are made the supplier clicks Submit to complete the process.

11.A successful completion window is displayed and a contract reference
number is provided to the supplier.

In order to complete the creation of the contract ,the buying organization must
verify and accept the submitted contract. We will cover this in the 15.1.4,
“Example: buyer interaction” on page 361.

Before we proceed to the next example let’s look at some of the
contract-specific fields presented to the supplier during the contract creation
process.

• Buying Organization is the name of the organization with which a
supplier organization is creating the contract with.

• Seller Organization is the name of the supplier organization.

• Creator is the name of the creator of the contract.

• Co-creator is the email id of the person in the counterparty organization.
This is the person who needs to agree to the terms and conditions of the
contract.
Chapter 15. Example - pricing and contract subsystem 355

• Buying Signee and Selling Signee are the members from both
organizations who need to approve the contract. They may be the same
as thecreator and co-creator.

• Begin Time and End Time establishes a time period during which the
contract is valid.

• Minimum Monetary Volume is the obligation, in monetary volume, made
by the buyer towards the entire contract. This value is not a
product-specific value. It is the overall obligation value, and can cover
many products that are included in the contract.

• Maximum Monetary Volume is the right given to the buying organization
to buy up to the maximum monetary volume amount. This value is not a
product-specific value. It is the overall maximum value, and can cover
many products that are included in the contract.

• Coverage identifies if the contract is for a specific product or for all
products.

• Discount applies only if the coverage is set to all products.

On the item-specific level the following fields contain key information:

• Minimum Item Quantity/Value is the obligation, in number of items or
value, made by the buyer towards a specific product in the contract.

• Maximum Item Quantity/Value is the right given to the buying
organization to buy up to the maximum quantity or value of the specific
product.

• Contract Price or Discount specifies the special price or discount being
offered for the specific product.

In the following few pages we will create a new contract for “Light Duty
Propellers”. In this example the “Maritime Ship Building Co.” plays the
supplier role and extends a contract to the buying “Pacific Coast Ship
Builders” organization. A fixed price offering for $1500.00 exists and the
agreed contract value is $1250.00.

Figure 107 on page 357 shows the window where the participating buying
organization is selected.
356 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Figure 107. Participating organization

Figure 108 on page 358 shows the new contract window. We have filled in the
required fields. From this window we click Manage Item to add a product item
to the contract. The next window is an empty since there are currently no
items added to the contract. From this window we select Add Items from
Interest List. The contract interest list is shown in Figure 109 on page 358,
and from it we select the Light Duty Propeller and click Add Items to
Contract.
Chapter 15. Example - pricing and contract subsystem 357

Figure 108. Edit contract

Figure 109. Contract interest list
358 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Figure 110 on page 359 shows the item we just added to the contract. In this
window we provide item-specific information for the contract. When
completed we click Save and Back to return to the Edit Contract window. At
this stage the contract is ready for submission. We click Submit to complete
the supplier-side process. Figure 111 on page 360 and Figure 112 on page
361 together show the confirmation and details of the contract we just
created.

Figure 110. Contract current items
Chapter 15. Example - pricing and contract subsystem 359

Figure 111. Confirmation window: top portion
360 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Figure 112. Contract confirm: bottom portion

15.1.4 Example: buyer interaction
Buyers can interact with the contract subsystem either by working with
contracts requiring verification or by using a winning RFQ to create a new
contract. In this section we cover the process of verifying and accepting a
contract. The creation of a contract from an RFQ is covered in 16.1, “RFQs”
on page 367. We will also show how a contract purchase can be made
against a contract.

Here are the steps a buyer with the Contract Administrator role takes to verify
submitted contracts:

1. Buyer logs onto the e-Marketplace.

2. Buyer clicks Contracts in the navigation frame and then clicks
Verification.

3. From the Verification window the buyer clicks the Search button to see all
the contracts that require verification.

4. From the list, the buyer selects the contract and clicks Accept.

5. When accepted, a confirmation window is displayed.
Chapter 15. Example - pricing and contract subsystem 361

A contract can be rejected through the same process. When the list of all
contracts requiring verification is displayed the buyer has the option of
rejecting the contract submission.

Figure 113 shows the list of contracts that require verification. Figure 114 on
page 363 and Figure 115 on page 364 show the verified contract after terms
and conditions of the contract have been accepted by the buyer.

Figure 113. Contract list
362 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Figure 114. Confirmation window: top portion
Chapter 15. Example - pricing and contract subsystem 363

Figure 115. Confirmation window: bottom portion

Now that the contract is accepted and signed by both parties, the buyer can
use catalog-based buying to make purchases against the contract. Please
refer to 14.5, “Buyer interaction: examples of catalog based buying” on page
333 for the details of catalog based buying. In Figure 116 on page 365 you
can see that a contract offering is now available to the buyer as a result of
actions we took in this section. When a buyer makes purchases against this
contract, the obligation and rights are updated to reflect the current values.
364 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Figure 116. Catalog-based buying using a contract offering

15.1.5 Interaction with other components and subsystems
The contract subsystem interacts with the other subsystems using function
calls between subsystems and objects shared by all subsystems in the
database.

The following interactions exist between the contract and other subsystems:

• Catalog:

The contract subsystem interacts with the catalog subsystem to provide
contract-specific information to the catalog subsystem and to retrieve
product category information from the catalog subsystem.

• Access Control

The contract subsystem interacts with the access control subsystem to
validate user access and execute authority.

• Approval Flow

The contract subsystem interacts with the approval flow subsystem to
establish an approval process.
Chapter 15. Example - pricing and contract subsystem 365

Figure 117 on page 366 is a pictorial representation of the interaction
between the contract subsystem and other e-Marketplace subsystems.

Figure 117. Subsystem interaction

Catalog
subsystem

RFQ
subsyst em

Approval
subsystem

Contract
Subsystem

Catalog based
buying

Access Control
s ubsystem

Notification
Mechanism

8: CreateContract(URL)

4: RequestApproval

2: SelectProductOrCategoryItem
5: GetProductCategoryList

6: GetCategoryContracts

1: IsAllowed
3: ListCreatorsOfOrg

10: Nortify

9: UndoTrackContract
7: GetProductContracts
366 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Chapter 16. Example - negotiation subsystem

In the previous chapters we covered the catalog subsystem and pricing and
contract subsystems and provided you with information and examples of how
to create and manage the e-Marketplace catalog and contracts. We noted
that as well as catalog-based buying, including contracts, there are other
methods through which transactions take place in an e-Marketplace. These
methods include:

• Auctions

• RFQs

• Exchanges

Auctions, RFQs, and exchanges are considered part of the negotiation
subsystem in the WebSphere Commerce Suite, Marketplace Edition. In this
chapter we provide information and examples of how each of these buying
methods work.

It is important to note that RFQs and exchanges are new components and
there is no equivalent of them in the WebSphere Commerce Suite 4.1.
Auctions are a carry-over from WebSphere Commerce Suite 4.1 with very
little change. When discussing auctions we will only provide information on
the modifications to the auctions component of the WebSphere Commerce
Suite 4.1.

In this chapter we provide you with details for RFQs, auctions, and exchanges
about the following:

• High-level overview

• Low-level design

• Supplier interaction

• Buyer interaction

• Interaction with other components and subsystems

16.1 RFQs

A Request For Quotation (RFQ) is the process where a buying organization
solicits offers from selling organizations to obtain a suitable price for a given
product or set of products.Typically the buyers who issue the RFQs validate
the responses from the suppliers and select the best offer, which is most
often the lowest price offer. In fact the RFQ process is the exact opposite of
© Copyright IBM Corp. 2000 367

an auction process, where buyers bid and the highest bid is selected as a
winner. Due to this similarity, RFQs are sometimes referred to as reverse
auctions.

In the WebSphere Commerce Suite, Marketplace Edition for AIX, RFQs are
part of the negotiation subsystem.

16.1.1 High-level overview
An RFQ is always created by the buying organization members. RFQs can be
created for existing product descriptions in the e-Marketplace, to obtain a
better price, or for products that are not part of the e-Marketplace catalog, to
create an alternate method of buying in the e-Marketplace. In either case, the
buying organization issues an RFQ either to a fixed set of organizations or to
all organizations in the e-Marketplace. The supplier organizations review the
RFQs and decide if they wish to participate. If a supplier organization decides
to participate, a response is created and submitted. As long as an RFQ is still
active, suppliers can modify or retract the responses they have submitted.
When an RFQ closes, the buyer reviews and evaluates responses and
selects one or more winners. After evaluation is complete,the suppliers can
view the result of the evaluation.

A winning RFQ can be used to create and place orders or it can be used to
create a contract offering.

16.1.2 Low-level design
In this section we focus on the low-level design of the RFQs. This is
particularly useful to developers who will be using the WebSphere Commerce
Suite, Marketplace Edition for AIX. We will cover the design principles, use
cases, state diagrams and code-level components of the RFQs. We do not
intend to discuss the code-level components in detail, since that is outside
the scope of this redbook. For detailed information, we recommend the online
documentation and the JavaDocs where appropriate.

16.1.2.1 Design principles
The RFQ component of the negotiation subsystem is built using the existing
WebSphere Commerce Suite 4.1 technology, mainly the auctions component,
and some new components created in the WebSphere Commerce Suite,
Marketplace Edition for AIX, Java Programming Model.

We provide information about the interaction controllers, commands, JSPs,
objects and database tables that make up the RFQ component.
368 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Just like contracts, RFQs need to go through several states before resulting in
a winning RFQ. The procedure is a three-stage process. In the first stage, the
buyer creates and publishes an RFQ to targeted organizations. In the current
WebSphere Commerce Suite, Marketplace Edition for AIX implementation of
RFQs there could only be one version of a given RFQ. Upcoming releases of
the WebSphere Commerce Suite, Marketplace Edition for AIX may include
versioning for RFQs. In the second stage, suppliers from targeted
organizations prepare and submit responses. Versioning is allowed for
responses. The final stage encompasses the buyer closing the RFQ and
selecting a winner or winners.

When winning responses are created in the e-Marketplace, buyers can
proceed to place orders or create contracts from those winning responses.

Throughout this process the states of the RFQ and responses change
constantly. This state transition is managed by the flex flow state machine.
Flex flow is explained in details in chapter Chapter 17, “Example - additional
e-Marketplace infrastructure” on page 441

Figure 118 on page 370 displays the state transition diagram of an RFQ with
respect to buyer interaction.
Chapter 16. Example - negotiation subsystem 369

Figure 118. RFQ state transition (buyer side)

Figure 119 on page 371 displays the state transition diagram of responses
with respect to the state of the RFQ and the supplier interaction.

In Preparation

Future

Active

Closed

Evaluation In Progress

Modify RFQ(Buyer)

Create RFQ(Buyer)

RFQ complete Retracted

Retract RFQ(Buyer)

Activate RFQ(Buyer | System)

Retract RFQ(Buyer)

Start Evaluation(Buyer)

Retract RFQ(Buyer)

Evaluate Responses(Evaluator)

Select Results(Buyer)

Publish RFQ(Buyer)

Retract RFQ(Buyer)

Close RFQ(Buyer | System)
370 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Figure 119. RFQ state transition (supplier side)

A scheduler mechanism is built into the WebSphere Commerce Suite,
Marketplace Edition for AIX to determine if an RFQ should still be active or if
it should be closed. This is determined based on the conditions provided at

In Preparation

No Response

Active Response

ResponseInEval

Response Lose

R1, J1

R4, J4

R2,J2

Modify Response(Seller)

Create Response (Seller)

ResponseWin

Win Response(Buyer)
Lose Response(Buyer)

Order Generated

Contract Generated

Close RFQ(System)

Submit Response(Seller)

Modif y Response(Seller)

ChangeResponseVersion(Seller)

Create Order(Buyer)

CreateContract(Buyer)

Close RFQ(Sy stem)
Chapter 16. Example - negotiation subsystem 371

the time of creation. Four possible closing conditions exist for RFQs. They
are:

• Closed at a fixed time

• Closed if a specified number of bids are received

• Closed at a fixed time or closed if specified number of bids are received

• Closed at a fixed time and closed if specified number of bids are received

The scheduler can be automatically close an RFQ if anyone of the above
conditions are met. An authorized user can also manually close the RFQ
before the closing condition is satisfied.

16.1.2.2 Use cases
The RFQ component of the negotiation subsystem is used by the
e-Marketplace members in one of the following ways:

1. Create an RFQ and select winners

The buyer selects a list of products in the catalog, and calls the CreateRFQ

command. The RFQ is edited and products and attributes are added or
deleted by using the ModifyRFQ command. Next target organizations are
added to the RFQ. Every member in this target list is given access
permissions using the access control interfaces to the products in the
RFQ, The target list is maintained using access control to the RFQ, and
products under it. The buyer publishes the RFQ using the PublishRFQ

command. Once the RFQ is published sellers can view the RFQ. Either
the scheduler, or the buyer calls the ActivateRFQ command to activate the
RFQ. Sellers can copy the RFQ into a draft response object and create
responses to the RFQs.

Either the scheduler or the buyer issues the CloseRFQ command to close
the RFQ. At this stage no more responses are accepted. When an RFQ
closes, all responses are converted from In Preparation to No Response.
By doing this all the responses that were not submitted are invalidated.

The buyer starts the evaluation by calling the StartEvaluation command.
All responses are viewed and an evaluation record is created using the
EvaluateResponses command. Once the buyer is satisfied with the
evaluations, the buyer issues the SelectResults command to complete the
evaluation. This command looks into the BIDEVAL table and selects the
bids for which there is at least one product that the response is identified
as a winner, and issues the WinResponse command to the Response. For all
other responses, a LoseResponse command is issued. At this stage results
are final. The buyers can now go to the winning responses, and place
372 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

orders or start a process to create a contract. Creation of an order or a
contract is the final state of an RFQ.

2. Create responses

The sellers can view the RFQs that their organization is authorized to
participate in and are in future, active, closed, evaluation in progress or
completed states. The seller selects an RFQ and responds to it by
executing the CreateResponse command. The CreateResponse command
creates a response by copying all of the RFQ into a response object and
associating it to the seller and the RFQ. Using the ModifyResponse

command, the seller will then respond to RFQ attributes, select products
and attributes to respond to. Once the seller is satisfied with the response,
the SubmitResponse command submits the response to the system.

3. Place an order

The buyers select a winning response and issue a CreateOrderFromRfqCmd

command to place an order.

4. Create a contract

The buyers select a winning response and issue a
CreateContractFromRfqCmd command to start the process of creating a
contract.

16.1.2.3 Code level components
Interaction controllers
The RFQ component interaction controllers parse the input parameters
and forward requests to the WebSphere Commerce Suite, Marketplace
Edition for AIX command manager. The interaction controllers also
execute commands that are passed back by the command factory.

The following lists the RFQ interaction controllers for WebSphere
Commerce Suite, Marketplace Edition for AIX:

• CreateRFQ

Used by buyers to create RFQs.

• ManageRFQ

Used by buyers to manage an RFQ (for example, change RFQ status, add
attributes, add offerings, etc.)

• ViewRFQ

Used by buyers to view RFQs.

• CreateResponse
Chapter 16. Example - negotiation subsystem 373

Used by suppliers to create responses.

• ManageResponse

Used by suppliers to manage responses (for example change response
status, etc)

• ViewResponse

Used by suppliers to view responses.

Commands
Commands are the components of the RFQ that carry out the execution of the
business logic and ultimately address the requests of the users. Commands
interact with almost all other components of the RFQ from interaction
controllers to JSPs and beans.

The following are the commands that exist in the RFQ component of the
negotiation subsystem of WebSphere Commerce Suite, Marketplace Edition
for AIX

• Buyer Commands

- CreateRFQCmd

Create an RFQ record in the AUCTINFO table using the inputs.

- ModifyRFQCmd

Change an RFQ record in the AUCTINFO table using the inputs.

- PublishRFQCmd

Change the status of an RFQ record from In-Preparation to Future.

- ActivateRFQCmd

Change the status of an RFQ record from Future to Active.

- CloseRFQCmd

Change the status of an RFQ record from Active to Closed.

- StartEvaluationRFQCmd

Change the status of a RFQ record from Closed to EvalInProgress.
This command will allow evaluators’ access to the response by adding
appropriate rows into the RUCMEMREL table for each response. The
list of evaluators is stored in AUCMEMREL table. In the current phase,
we will have the buyer as the evaluator also. So, at CreateRFQ , we will
add one more row in AUCMEMREL with the buyer as the evaluator
role, and at StartEvaluation, we will add a row for the buyer (as an
evaluator) for each of the responses.
374 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

- EvaluateResponsesCmd

Only to review the response.

- SelectResultsCmd

Change the status of an RFQ record from EvalInProgress to
ResultsSelected. Send e-mail notification to those responding to this
RFQ.

- RetractRFQCmd

Change the status of an RFQ record from In-Preparation, Future,
Active or Closed status to Retracted.

• Seller Commands

- CreateResponseCmd

Create a response row for an RFQ. Insert all the attributes and attribute
groups, and associate them with the response row that has just been
created.

- ModifyResponseCmd

Change a response row for this response. Change all the attributes and
attribute groups, and associate them with the specified response row.

- SumbitResponseCmd

Change the status of a response from In-Preparation to Active.

- RetractResponseCmd

Change the status of a response from current status to Retracted.

- ChangeResponseVersionCmd

Change the version of the response.

- CreateContractFromRfqCmd

Create a contract out of a winning response.

- CreateOrderFromRfqCmd

Create an order out of a winning response.

• Scheduler commands

- Execute ActivateRFQ

If an RFQ exists with an elapsed start time and current status of Future,
activate it.

- Execute CloseRFQ
Chapter 16. Example - negotiation subsystem 375

if an RFQ exists with an elapsed close time and current status of
Active, close it.

- ActivateRFQ

Update status of RFQ to active, send messages to targeted suppliers.

- CloseRFQ

Update status of RFQ to Closed.

• Message commands

- CloseRFQMessage

Issue a Closed RFQ message.

• Data Bean Commands

- RfqVersionBeanCmd

Get the RFQ version bean from the persistent RfqVersion object.

- RfqVersionListBeanCmd

Get a list of RFQ version beans.

- RfqVersionAttributeBeanCmd

Get an RFQ attribute bean for a given RFQ version.

- RfqVersionAttributeListBeanCmd

Get a list of RFQ attribute beans for a given RFQ version.

- ResponseVersionBeanCmd

Get the response version bean from the persistent ResponseVersion
object.

- ResponseVersionListBeanCmd

Get a list of response version beans.

- RespVersionAttrBeanCmd

Get a response attribute bean for a given response version.

- RespVersionAttrListBeanCmd

Get a list of response attribute beans for a given response version.

- RespVersionOfferingBeanCmd

Get a response offering bean from the persistent RespVersionOffering
object.

- RespVersionOfferingListBeanCmd

Get a list of response offering beans.
376 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

- RespVersionOfferingAttrBeanCmd

Get a response offering attribute bean for a given response offering.

- RespVersionOfferingAttrListBeanCmd

Get a list of response offering attribute beans for a given response
offering.

- OfferingEvaluationBeanCmd

Get a evaluation bean from the persistent OfferingEvaluation object.

- OfferingEvalListBeanCmd

Get a list of evaluation beans for a given response version.

JSPs
The following are the JavaServer Pages (JSPs) that the RFQ component of
the negotiation subsystem uses:

• reqListRFQ

This JSP displays the list of RFQs to a buyer.

• reqViewRFQ

This JSP displays the details of an RFQ to a buyer.

• reqViewResponse

This JSP displays the responses to an RFQ to a buyer.

• reqCreateRFQ

This JSP displays the RFQ creation form to a buyer.

• reqChangeStatus

This JSP displays changes in status of an RFQ.

• reqEvaluateResponse

This JSP displays the evaluation window to a buyer.

• reqModifyRFQ

This JSP displays the RFQ allowing the buyer to perform modifications.

• reqRFQComplete

This JSP displays the completion window of an RFQ.

• resListRFQ

This JSP displays all RFQs to an authorized supplier.

• resViewRFQ
Chapter 16. Example - negotiation subsystem 377

This JSP displays RFQ details to an authorized supplier.

• resCreateResponse

This JSP displays the RFQ response form to an authorized supplier.

• resListHistory

This JSP displays all RFQs that an authorized supplier has worked with.

• resResponseAttributes

This JSP displays the form to a supplier to respond to attributes of an
RFQ.

• resResponseProduct

This JSP displays the form to a supplier to respond to a product in an
RFQ.

• resViewResponse

This JSP displays the details of a response the supplier has created.

• resModifyResponse

This JSP displays the form to a supplier to modify a response.

• SearchResponse

This JSP displays the search form to a supplier to find RFQs in the
e-Marketplace.

For more detailed information about these JSPs, please refer to the online
documentation of the WebSphere Commerce Suite, Marketplace Edition
for AIX.

Objects
WebSphere Commerce Suite, Marketplace Edition for AIX uses the following
beans in the RFQ component of the negotiation subsystem:

• Beans:

- BRfqVersion

A specific version of RFQ; in the current release, only one version is
supported for an RFQ.

- BRfqVersionList

A list of RFQ versions.

- BRfqVersionAttributeValue

An instance of an RFQ attribute value.

- BRfqVersionAttribute
378 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

A combination of the attribute definition and one or more RFQ attribute
values.

- BRfqVersionAttributeList

A list of RFQ attributes.

- BResponseVersion

A specific version of response.

- BResponseVersionList

A list of response versions.

- BRespVersionAttrValue

An instance of a response attribute value.

- BRespVersionAttr

A combination of the attribute definition and one or more response
attribute values.

- BRespVersionAttrList

A list of response attributes.

- BRespVersionOffering

An offering with a response to a RFQ.

- BRespVersionOfferingList

A list of response offerings.

- BRespVersionOfferingAttrValue

An instance of a response offering attribute value.

- BRespVersionOfferingAttr

A combination of the attribute definition and one or more response
offering attribute values.

- BRespVersionOfferingAttrList

A list of response offering attributes.

- BOfferingEvaluation

An entry representing the evaluation to a response offering.

- BOfferingEvaluationList

A list of evaluations.

• Persistent Objects:

- RfqVersion
Chapter 16. Example - negotiation subsystem 379

The persistent object representing an RFQ version in the AUCTINFO
table.

- RfqVersionAttributeValue

The persistent object representing an RFQ attribute entry in the
AUCATTRVAL table.

- ResponseVersion

The persistent object representing a response version in the BIDTABLE
table.

- RespVersionAttrValue

The persistent object representing a response attribute entry in the
BIDATTRVAL table.

- RespVersionOffering

The persistent object representing a response offering entry in the
BIDPRODLIST table.

- RespVersionOfferingAttrValue

The persistent object representing a response offering attribute entry in
the BIDPRODATRVAL table.

- OfferingEvaluation

The persistent object representing a response evaluation entry in the
BIDEVAL table.

Database tables
In this section we include the modifications and additions to the WebSphere
Commerce Suite 4.1 database schemas with respect to the RFQs. Some new
tables have been added and some existing tables have been modified to
facilitate the storage data required for the e-Marketplace RFQs.

Figure 120 on page 381 depicts the relationship model of the RFQs
component of the Negotiation subsystem.
380 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Figure 120. RFQ entity relationship diagram

AUCTINFO: The AUCTINFO table contains header (control) information for
auctions and RFQs (reverse auctions). Every auction points to a product in
the catalog. In the case of RFQs, the product pointed to is the product bundle
that represents all the products in the RFQ. Several extensions to the existing

AUCTINFO BIDTABLE

ATTRIBUTEDICT

AUCTATTRVAL

PRODUCT

ATTACHMENT

BIDPRODLIST

AUCATTROPTS

EXTPRODATR

RFQ

CATALOG

BIDEVALBIDATTRVAL BIDPRODATTRVAL
Chapter 16. Example - negotiation subsystem 381

NC AUCTINFO table have been made in order to accommodate multiple
supplier auctions and RFQs.

Table 34. AUCTINFO

Column Name Data Type Description

AUREFNUM integer not null RFQ reference number. This is the primary
key.

AUBYRNUM char(128) Tracking number (provided by the member).
If RFQ is a template, then this field will contain
the template name.

AUTMPL char(128) The template used in the creation of this
RFQ.
This field is NULL if no templates are used.

AUCREATOR integer not null The creator of the RFQ. Foreign key
reference to SHRFNBR in SHOPPER (delete
rule = no action).

AUPRREFN integer not null Product Reference Number. This is a foreign
key that references the PRRFNBR column in
the PRODUCT table. In RA this points to a
bundle (or a package) which point s to the set
of products in the RFQ (delete rule =
cascade).

AUMERREFN integer not null Merchant Reference Number. Points to the
organization on whose behalf the RFQ is
created. This is a foreign key referencing the
MERFNBR column in the MERCHANT table.
(delete rule = cascade.)

AUDIRECTION char(4) not null Direction:
F - Forward (Current NC auctions)
R - Reverse (RFQ style)

AUTYPE char(4) not null RFQ Type:
O - Open Cry
SB - Sealed Bid
D - Dutch
For this release of RA, it must only be SB.
382 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

AUSTATUS char(4) not null RFQ Status:
We will use the prefix R for all reverse auction
statuses:
RIP - RA In Preparation
RIF - RA that will accept responses in the
future
RAC - Active: Bids can be submitted. State
reached at auction start time.
RCL - Closed: Bids can no longer be
submitted (or will be marked LATE)
RRE - Responses being evaluated
RAW - Awarded: Winners have been selected
RAR - Archived (to be used in later version)

RWI - Retracted/Withdrawn
RT - RFQ Template

AUQUANT num(15,2) not
null

Not applicable for RA (set to 0)

AUMINBID num(15,2) Not applicable for RA

AUCUR char(10) not null Currency in which the price is expressed.
There is currently no check for the validity of
the format .

AURULETYPE integer not null RFQ closing rules:
1 -RFQ closes at a fixed end time
2 -RFQ closes if a specified number of bids
are received
3 -RFQ closes based on logical OR of 1 and
2
4 -RFQ closes based on logical AND of 1 and
2

AUSTTIM timestamp Time at which the auction is scheduled to
start.

AUENDTIM timestamp Time at which the auction is scheduled to
end.

AUCURENDTIM timestamp Closing time of the RFQ. This field is filled
when the CloseRFQ command is executed.

AUDURATION timestamp If the RFQ is a template, then this will contain
the duration of the RFQ. So, the RFQs
created using this template will run for this
duration.
Chapter 16. Example - negotiation subsystem 383

AUMINNOBIDS integer Minimum number of bids needed for the RFQ
to close.

AUDEPOST num(15,2) Payment authorization required with each bid.
Bidder with winning bid would forfeit this
deposit if he/she does not complete the RFQ
contract or order.

AURULEMACRO char(254) not
null

Stores the macro/JSP file name for the RFQ
display.

AUPRDMACRO char(254) not
null

This field is not used by RA.

AUOPRDMACRO char(254) This field is not used by RA.

AUBDRULE integer Not applicable for RA.

AUDESC varchar (254) RFQ description.

AULONGDESC bigint Long description. It is stored as an HTML file.
Directed to the FILEREFNUM in
ATTACHMENTS table, but not a foreign key.

AUTERMS bigint Terms and conditions. It is stored as an HTML
file. Directed to the FILEREFNUM in
ATTACHMENTS table, but not a foreign key.
Specified bidders must accept terms before
being allowed to bid.

AUBESTBID char(36) Not applicable for RA .

AUSTARTPRICE num(15,2) Not applicable for RA.

AUCURQUANT num(15,2) Not applicable for RA.

AUCURPRICE num(15,2) Not applicable for RA.

AUUPDTIME timestamp Timestamp of the row creation. This contains
the timestamp of when the RFQ was created
or modified.

AUFLAGS char(32) C Current published version
N new version
O Old version.
P Version pending approval

AULASTUPD timestamp The time when the auction bookkeeping
activities, such as dispatch of notification
messages, computation of winning bids, and
end times, were last performed.
384 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

AUCATTRVAL: This table contains attribute values for RFQs. The attributes
defined here come from ATTRIBUTEDEF, the attribute definition table. The
attribute type definition is derived from the ATTRIBUTEDEF table.

Table 35. AUCTTRVAL

AUFIELD1 integer Customization field. Not used in base RA.

AUFIELD2 integer Customization field. Not used in base RA.

AUFIELD3 num(15,2) Customization field. Not used in base RA.

AUFIELD4 num(15,2) Customization field. Not used in base RA.

AUFIELD5 varchar(254) Customization field. Not used in base RA.

AUFIELD6 varchar(254) Customization field. Not used in base RA.

AUPRICING char(4) Not applicable for RA.

AUHIGHBID char(36) Not applicable for RA.

AUHISTORYNUM integer Contains the parent RFQ reference number. If
equal to the AUREFNUM, then this is the
parent record.

AUVERSIONNUM integer Currently not used in RA. It could be used in
the future versions. A version number for the
RFQ. Currently defaulted to 1.

AUVERSIONDES
C

char(254) In current release, this column is used as the
name of RFQ.

Column Name Data Type Description

ATREFNUM bigint not null Primary key. Automatically generated.

ATADREFNUM integer not null Reference to the attribute definition. Used as
a foreign key to
ATTRIBUTEDEF.ADREFNUM.

ATNAME varchar(128) Attribute name. This will always carry the
attribute name copied from the attribute
dictionary.

ATAUREFNUM integer not null Foreign key reference to
AUCTINFO.AUREFNUM.

ATUSAGE small int not null The usage of this attribute
0: Non-changeable
1: Default value (changeable/negotiable)
Chapter 16. Example - negotiation subsystem 385

ATMANDATORY small int not null 1: mandatory attribute
0: optional attribute

ATNUMVAL small int not null The number of values for this attribute
1: indicates it is a single-valued attribute
N (>1): It is a multi-valued attribute (N
indicates that number)

ATATTROPTS small int not null 0: No attribute options (default)
1: Attribute options exist for at least one of
ATUNIT, ATOPERATOR, ATVALUE

ATCONTEXT integer not null 1: RFQ
2: Reserved for auction, will be used later

ATUNIT varchar(32) UNITS of the data: Can be MHz, lb., Oz., Kgs,
in,.....
This list is created using the UNITS table. The
actual units are copied from the UNITS table
to this column.
if the value is “AUCATTROPTS”, use the
AUCATTROPTS table to find the options
available for this column.

ATOPERATOR varchar(32) not
null

Values described in OPERATORS table. The
actual OPERATORS are copied from the
operators table to this column.
if the value is “AUCATTROPTS”, use the
AUCATTROPTS table to find the options
available for this column.
This contains the relationship between the
current value in the row and the name of the
attribute. The restrictions posed by the type
value on the range of values for this field
should be controlled by the application logic
using the attributes table.
Possible values include:
<,<=,>,>= for type Range
= for type Fixed value or File
| for Boolean
C for Enumerated
The idea is that we will have one row for each
value of the attribute and they are all linked
with the same name, and each value is
appropriately related to that attribute name.
386 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

AUCATTROPTS (New): This table contains options specified for attributes in
the AUCATTRVAL table. Options could include what operators or units or

ATVALUE char(254) Value of the attribute.
For FILE, this contains the text tobe displayed
that can be clicked to access the file. If null,
the file URL is displayed as the text.
For ENUMERATED, this contains values
separated by a comma “,”
For URL it is assumed to have the HTTP:// or
FTP:// or other protocol identifier.
For DATE, TIME, DATETIME, it is assumed to
have the appropriate syntax.
The actual syntax of the data is currently not
performed in the RFQ process. It will be
added later.
If the value is AUCATTROPTS, use the
AUCATTROPTS table to find the options
available for this column.

ATATTACH bigint The file attachment for this attribute (if any).
Foreign key reference to ATTACHMENT
table.

ATSEQNUM integer Order in which this field is presented.
Unique for a set of attributes belonging to
same trading instance (for example RFQ,
Auction).

ATFIELD1 integer Customization field.

ATFIELD2 varchar (254) Customization field.
Chapter 16. Example - negotiation subsystem 387

even values are allowed. This information is especially useful for specifying
templates such as RFQ templates.

Table 36. AUCTTROPTS

BIDTABLE: The BIDTABLE contains information about all the bids created in
response to active RFQs.

Table 37. BIDTABLE

Column Name Data Type Description

AOATREFNUM bigint not null Foreign key to AUCATTRVAL.ATREFNUM.

AOOBJTYPE char(1) not null Enumeration to distinguish between
Operators, Units, and Values:
O: Operators
U: Units
V: Values

AOVALUE char (254) Value corresponding to this particular option,
for example:
For UNITS: MHz, Kgs,... copied from the
UNITS table
For OPERATORS: >,<,<=..., copied from the
OPERATORS table
For VALUES: Actual value options like 100,
20/12/2000 etc.

AODEFAULT small int Indicates if the specified option is default
option for that attribute 1: YES, 0: NO

Column Name Date Type Description

BDREFNUM char(36) not null Bid reference number. This is the primary key.

BDVERSION integer The version number (that is the number of
iterations that the bidder has gone through
changing a bid). Useful for displaying change
history.
In the current edition of RFQ this will default
to 1

BDAUCREF integer not null Auction/RFQ reference number. This is a
foreign key which references the AUREFNUM
column in the AUCTINFO table. (delete rule =
cascade)

BDSHRFN integer not null Sellers’ member number. This is a foreign key
which references the SHRFNBR column in
the shopper table. (delete rule = no action)
388 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

BDTYPE char (4) The type of bid:
F: Response to forward auction (current NC
bids)
R: Response to reverse auction (RFQ bids)

BDCUSTRATING integer Not applicable for RA.

BDSALESRFN integer Not applicable for RA.

BDORDERRFN integer Not applicable for RA.

BDQUANT num(15,2) not
null

Not applicable for RA.

BDVALUE num(15,2) not
null

Not applicable for RA.

BDTIME timestamp not
null

Time at which the bid was submitted.

BDCREATETIME timestamp Time at which the bid was created.

BDCHANGETIME timestamp Last time of status change.

BDSTATUS char(4) not null Bid status:

We will use the prefix R for all reverse auction
statuses:
RIP - Bid In Preparation/Future
RSU - Submitted (on time) -- available for
evaluation
REV - Bid being evaluated
RCH - Bid awaiting sellers approval of his/her
bid for new version of RFQ.
RWO - Bid won/awarded
RLO - Bid lost
ROR - Bid converted to order
RCO - Bid converted into a contract
RNP - No response to RFQ
RRW - RFQ retracted/withdrawn
RWI - Retracted/withdrawn

BDCHILD char(36) Bid reference number of an earlier version of
this bid (if any). Same as bdrefnum if this is
the first version.

BDPAYMTHD char(5) not null Not applicable for RA.

BDPAYDEVC char(64) not null Not applicable for RA.

BDDATEXP timestamp Not applicable for RA.
Chapter 16. Example - negotiation subsystem 389

BIDPRODLIST: This table lists the products is a bid.

Table 38. BIDPRODLIST

BDMAXAAMT num(15,2) The amount deposited for the current bid.

BDSARFN integer not null Not applicable for RA.

BDSMRFN integer Not applicable for RA.

BDWINOPT char(4) not null Not applicable for RA.

BDWINVALUE num(15,2) Not applicable for RA.

BDWINQTY num(15,2) Not applicable for RA.

BDEXPTIME timestamp For future use. This field will be used to store
the expiration date of the bid Currently this will
be defaulted to NULL

BDMESSAGE long varchar Response text for RA.

BDFLAGS char(32) C Current published version
N new version
O Old Version
P Version pending approval

BDOTHERNEG integer Not applicable for RA

BDFIELD1 integer Customization field. Not used in base RA.

BDFIELD2 num(15,2) Customization field. Not used in base RA.

BDFIELD3 varchar(254) Customization field. Not used in base RA.

Column Name Data Type Description

BPLBIDREFNUM char(36) not null Bid ID, Foreign key reference to
BIDTABLE.BDREFNUM (delete rule =
cascade)

BPLPRNBR integer not null Product reference number, references
PRRFNBR in product table (delete rule =
cascade)

BPLSEQNUM integer The order in which this field is presented
(similar to serial number). Unique for a bid.

BPLFIELD1 integer Customization field. Not used in base RA.

BPLFIELD2 integer Customization field. Not used in base RA.
390 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

BIDATTRVAL: This table contains attribute values for responses. The
attributes come from ATTRIBUTEDEF, the attribute definition table. The
attribute type definition is also derived from the ATTRIBUTEDEF table.

Table 39. BIDATTRVAL

Column Name Data Type Description

BRREFNUM bigint not null Primary key. Automatically generated.

BRBIDREFNUM char(36) not null Foreign key reference to
BIDTABLE.BDREFNUM.

BRRESTOATR bigint Attribute to which this is a response.
Foreign key reference to
AUCATTRVAL.ATREFNUM.

BRADREFNUM integer not null Reference to the attribute definition. Used as
a Foreign key to
ATTRIBUTEDEF.ADREFNUM.

BRNAME varchar(128) Attribute name. This will always carry the
attribute name copied from the attribute
dictionary.

BRUSAGE small int not null The usage of this attribute
0: Non-changeable
1: Default value (changeable/negotiable)

BRMANDATORY small int not null 1: mandatory attribute
0: optional attribute

BRNUMVAL small int not null The number of values for this attribute
1: Indicates it is a single-valued attribute
N (>1): It is a multi-valued attribute (N
indicates that number)

BRATTROPTS small int not null 0: No attribute options (default)
1: Attribute options exist for at least one of
BRUNIT, BROPERATOR, BRVALUE

BRCONTEXT integer not null 1: RFQ
2: Reserved for auction, will be used later

BRUNIT varchar(32) Units of the data: Can be MHz, lb., Oz., Kgs,
in,.....
This list is created using the UNITS table. The
actual units are copied from the UNITS table
to this column.
if the value is “AUCATTROPTS”, use the
AUCATTROPTS table to find the options
available for this column.
Chapter 16. Example - negotiation subsystem 391

BROPERATOR varchar(32) not
null

Values described in OPERATORS table. The
actual operators are copied from the
OPERATORS table to this column.
if the value is “AUCATTROPTS”, use the
AUCATTROPTS table to find the options
available for this column.
This contains the relationship between the
current value in the row and the name of the
attribute. The restrictions posed by the type
value on the range of values for this field
should be controlled by the application logic
using the attributes table.
Possible values include:
<,<=,>,>= for type Range
= for type Fixed value or File
| for Boolean
C for Enumerated
The idea is that we will have one row for each
value of the attribute and they are all linked
with the same name, and each value is
appropriately related to that attribute name.

BRVALUE char(254) Value of the attribute.
For FILE, this contains the text to be
displayed that can be clicked to access the
file. If null, the file URL is displayed as the text.
For ENUMERATED, this contains values
separated by a comma “,”
For URL it is assumed to have the HTTP:// or
FTPFILE:// or whatever protocol identifier.
For DATE, TIME, DATETIME, it is assumed to
have the appropriate syntax.
The actual syntax of the data is currently not
performed in the RFQ process. It will be
added later.
If the value is AUCATTROPTS, use the
AUCATTROPTS table to find the options
available for this column.
392 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

BIDPRODATRVAL: This table connects each product in a bid to a set of
attribute values. These attributes are currently used only by the RFQ process.

Table 40. BIDPRODATRVAL

BRATTACH bigint The file attachment for this attribute (if any).
Foreign key reference to ATTACHMENT
table.

BRSEQNUM integer The order in which this field is presented.
Unique for a set of attributes belonging to
same trading instance (for example RFQ,
auction).

BRFIELD1 integer Customization field.

BRFIELD2 varchar (254) Customization field.

Column Name Data Type Description

BPREFNUM bigint not null Primary key. Automatically generated.

BPBIDREFNUM char(36) not null Foreign key reference to
BIDTABLE.BDREFNUM.

BPPRODREFNU
M

integer not null Product Reference Number. This is a foreign
key that references the PRRFNBR column in
the PRODUCT table

BPRESPRODATR bigint Attribute of the offering to which this is a
response.
Foreign key reference to EXTPRODATR.
EAREFNUM.

BPADREFNUM integer not null Reference to the attribute definition. Used as
a foreign key to
ATTRIBUTEDEF.ADREFNUM.

BPNAME varchar(128) Attribute name. This will always carry the
attribute name copied from the attribute
dictionary.

BPUSAGE small int not null The usage of this attribute
0: Non-changeable
1: Default value (changeable/negotiable)

BPMANDATORY small int not null 1: mandatory attribute
0: optional attribute
Chapter 16. Example - negotiation subsystem 393

BPNUMVAL small int not null The number of values for this attribute
1: Indicates it is a single-valued attribute
N (>1): It is a multi-valued attribute (N
indicates that number)

BPATTROPTS small int not null 0: No attribute options (default)
1: Attribute options exist for at least one of
BPUNIT, BPOPERATOR, BPVALUE

BPCONTEXT integer not null 1: RFQ
2:Reserved for auction, will be used later

BPUNIT varchar(32) Units of the data: Can be MHz, lb., Oz., Kgs,
in,.....
This list is created using the UNITS table. The
actual units are copied from the UNITS table
to this column.
if the value is “AUCATTROPTS”, use the
AUCATTROPTS table to find the options
available for this column.

BPOPERATOR varchar(32) not
null

Values described in OPERATORS table. The
actual operators are copied from the
OPERATORS table to this column.
if the value is “AUCATTROPTS”, use the
AUCATTROPTS table to find the options
available for this column.
This contains the relationship between the
current value in the row and the name of the
attribute. The restrictions posed by the type
value on the range of values for this field
should be controlled by the application logic
using the attributes table.
Possible values includ:
<,<=,>,>= for type Range
= for type Fixed value or File
| for Boolean
C for Enumerated
The idea is that we will have one row for each
value of the attribute and they are all linked
with the same name, and each value is
appropriately related to that attribute name.
if the value is ATTROPTS, use the
ATTROPTS table to find the options available
for this column.
394 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

BIDEVAL: This table contains all the bid evaluations for the RFQ. In the
current RFQ process, the buyer will enter which of the products from which of
the sellers are accepted. For each product the buyer selects, there will be an
entry in this table. This table also allows the buyer to specify explicitly that
some products are not selected. If there is no entry for a response in this
table, then it is assumed to default to be not winning anything. When the
buyer completes all evaluations and executes the SelectResults command,
the SelectResults command finds what responses won at least one product

BPVALUE char(254) Value of the attribute.
For FILE, this contains the text to be
displayed that can be clicked to access the
file. If null, the file URL is displayed as the text.
For ENUMERATED, this contains values
separated by a comma “,”
For URL it is assumed to have the HTTP:// or
FTP:// or other protocol identifier.
For DATE, TIME, DATETIME, it is assumed to
have the appropriate syntax.
The actual syntax of the data is currently not
performed in the RFQ process. It will be
added later.
If the value is AUCATTROPTS, use the
AUCATTROPTS table to find the options
available for this column.

BPATTACH bigint The file attachment for this attribute (if any).
Foreign key reference to ATTACHMENT
table.

BPSEQNUM integer The order in which this field is presented.
Unique for a set of attributes belonging to
same trading instance (for example RFQ,
auction).

BPFIELD1 integer Customization field.

BPFIELD2 varchar (254) Customization field.
Chapter 16. Example - negotiation subsystem 395

that they have responded ta and sends them a WINRESPONSE message,
and sends a LOSERESPONSE message to everyone else.

Table 41. BIDEVAL

DISCUSSION: This table contains questions from sellers and responses from
buyers related to a specific RFQ. Entire discussion threads can be
constructed from this table by means of the DSPARENTID column. In the

Column Name Data Type Description

EVALRFN bigint not null Evaluation ID, primary key

EVUSERID integer Evaluator’s user ID. Foreign key. References
to SHRFNBR field in the SHOPPER table

EVRFQID integer not null RFQ id. Foreign Key. References aurefnum in
the AUCTINFO table

EVBIDID char(36) not null Rresponse ID. Foreign key. References
BDREFNUM in the RESPONSE table

EVPRDID integer Offering ID for which the supplier has
responded. If null, the response is for the
whole response, not a product. If not null, it
would refer to PRFNBR in the PRODUCT
table.

EVCOMNT long varchar Comments.

EVRANK integer Rranking number, a numeric value to denote
the evaluator’s preference.
In current edition of RFQ, 1 for product
accepted, and 0 for product not accepted .

EVDATE timestamp Timestamp when the evaluation was done.

EVFIELD1 integer Merchants’ customization field.

EVFIELD2 integer Merchants’ customization field.

EVFIELD3 integer Mmerchants’ customization field.
396 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

current version of RFQ, the macros created by the auctions for discussions
will be used without modifications.

Table 42. DISCUSSION

AUCMEMREL(New): This table captures the relationship between RFQs and
members. This purpose of this table is to enforce access control for individual

Column Name Date Type Description

dsmsgid integer not null Message ID. This is the primary key for the
table.

dsparentid integer not null Parent ID of the message.

dsstatus char(4) nut null Status of the message:
A - Active
D - Deleted

dssender integer not null Reference number of the shopper who
created the message. This is a foreign key
that references the SHRFNBR column in the
SHOPPER table.

dsdate timestamp not
null

Date and time message was sent.

dsadminres timestamp Date and time the administrator of the auction
responded.

dsadmresid integer The message ID of the administrator’s
response.

dsprfnbr integer Product reference number.

dsaurfnbr bigint Auction reference number.

dssubject varchar(254) Subject of the message.

dsmessage long varchar Content of the message.

dsadmact char(4) Action performed by the administrator on the
message.

dsview char(4) Message view:
P - Public
NULL - Private

dscust1 integer Merchant’s customization field 1.

dscust2 integer Merchant’s customization field 2.

dscust3 integer Merchant’s customization field 3.
Chapter 16. Example - negotiation subsystem 397

products. Examples: who is allowed to modify an RFQ, view / Respond to an
RFQ, approve an RFQ, etc.

Table 43. AUCMEMREL

Column Name Data Type Description

AMRFNBR bigint not null Primary key.

AMAURFNBR integer
(not null)

The product reference number. Primary key.
Foreign key to AUCTINFO.AUREFNUM.

AMENTRYTYPE small int
(not null)

Indicates whether the entry points to an
individual member, a user-defined group, an
organization, or to the entire membership
(public). This flag serves as a switch on which
of the following three columns (if any) is to be
used for this entry. At most one of the three
columns should be on-null (all three can be
null when the entry is Public / Un-restricted).
1: Member
2: Organization
3: Group
4: Public / Un-restricted

AMMEMBERID integer The ID of the member who has a role to play
for this product. Refers to
SHOPPER.SHRFNBR.

AMORGID integer The ID of the organization that has a role to
play for this product. Refers to
MERCHANT.MERFNBR.

AMGROUPID integer The ID of the group that has a role to play for
this product. Refers to
MEMGROUP.MGREFNUM.
398 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

BIDMEMREL (New): This table captures the relationship between responses
and members. The purpose of this table is to enforce access control for
individual products, for example who is allowed to modify an RFQ, view /
respond to an RFQ, approve an RFQ, etc.

Table 44. BIDMEMREL

AMROLE char(4) The role that this entry plays with respect to
this product:
A: Approver
C: Creator
E: Evaluator
T: Targeted receiver
S: Self-service receiver (found a broadcast
RFQ through browse/search and expressed
interest)

AMROLECREATO
R

integer Who created the member's role: could be the
same as AMMEMBERID if members added
themselves. Refers to SHOPPER.SHRFNBR

AMADDACTION char(4) The action that created this entry.
Currently, this is an enumeration.
C: Create
D: Delegate
T: Copy from template
Other flags TBD

AMCREATETIME TIMESTAMP Time at which the entry was created.

Column Name Data Type Description

BMRFNBR bigint not null Primary key.

BMBDRFNBR char(36)
(not null)

The response reference number. Primary
Key. Foreign key to BIDTABLE.BDREFNUM.

BMENTRYTYPE small int
(not null)

Indicates whether the entry points to an
individual member, a user-defined group, an
organization, or to the entire membership
(public). This flag serves as a switch on which
of the following three columns (if any) is to be
used for this entry. At most one of the three
columns should be on-null (all three can be
null when the entry is Public / Un-restricted).
1: Member
2: Organization
3: Group
4: Public / Un-restricted
Chapter 16. Example - negotiation subsystem 399

16.1.3 Example: buyer interaction
In this section we provide step-by-step directions for performing buyer-side
interaction with the RFQ component of the negotiation subsystem. We will
also use some window captures to illustrate our example.

The following are the buyer interactions with RFQs:

1. Create an RFQ

An authorized buyer can create an RFQ by following these steps:

a. The buyer logs on to the e-Marketplace.

b. The buyer uses Manage Oofferings to navigate through the catalog to
find the product for which an RFQ needs to be created. If the desired

BMMEMBERID integer The ID of the member who has a role to play
for this product. Refers to
SHOPPER.SHRFNBR.

BMORGID integer The ID of the organization that has a role to
play for this product. Refers to
MERCHANT.MERFNBR.

BMGROUPID integer The ID of the group that has a role to play for
this product. Refers to
MEMGROUP.MGREFNUM.

BMROLE char(4) The role that this entry plays with respect to
this product:
A: Approver
C: Creator
E:Evaluator
T: Targeted receiver

BMROLECREATO
R

integer Who created the member's role; could be the
same as AMMEMBERID if members added
themselves. Refers to
SHOPPER.SHRFNBR.

BMADDACTION char(4) The action that created this entry.
Currently, this is an enumeration.
C: Create
D: Delegate
T: Copy from template
Other flags TBD

BMCREATETIME TIMESTAMP Time at which the entry was created
400 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

product does not exist, an RFQ can be created from scratch by
selecting the RFQ Offerings subcategory.

c. The buyer selects the Create RFQ Offering link and is presented with
the RFQ Offering window. If an existing product description is used for
RFQ creation then the attributes of the product description are copied
into the RFQ Offering window. The buyer may add new attributes to the
RFQ using this window. When ready, the buyer clicks Done. This action
will navigate the buyer to the Compose RFQ window.

d. The buyer completes the Compose RFQ window by providing
information such as a name, a closing rule, and target list for the RFQ
and selects Submit.

e. A list of all RFQs that belong to the current buyer is displayed indicating
the status of each RFQ. The newly created RFQ at this time has an In
Preparation status. The buyer clicks Change Status. This action
navigates the buyer to the Change Status of RFQ window.

f. From this window the buyer may choose to Publish RFQ, Retract RFQ
or View Details. To continue creating an RFQ, the buyer clicks Publish
RFQ. The RFQ status changes to Future and a new button, Activate
RFQ, appears allowing the buyer to activate the RFQ.

At this stage the RFQ is active and suppliers can create responses for this
RFQ. We will cover the process of creating of a response in the next
section.

Here’s an example, illustrated with windows.

We need to solicit suppliers to provide us with a price for heavy duty
propellers. We navigate the Manage Offerings view of the catalog and
select Create RFQ Offering for the Heavy Duty Propellers. Figure 121 on
page 402 displays the attributes of the Heavy Duty Propeller product
description. We will add a Price and Quantity attribute since the product
description does not have one. We click Done in this window and go to the
Compose RFQ window. Figure 122 shows the Compose RFQ window.
Chapter 16. Example - negotiation subsystem 401

Figure 121. RFQ offering form

Figure 122. Compose RFQ
402 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

When we are satisfied with the content of our RFQ we select Submit.
Figure 123 shows the list of RFQs we have created and their status. We
select the newly created RFQ and click Change Status.

Figure 123. RFQ list

At the present time the RFQ has a status of In Preparation. We first select
Publish the RFQ which puts the RFQ in Future status and then we select
Activate RFQ. This puts the RFQ in Active status. Figure 124 shows the
state of the RFQ after the above process is complete. At this point we
have successfully created an RFQ in the e-Marketplace for the suppliers to
provide responses.
Chapter 16. Example - negotiation subsystem 403

Figure 124. RFQ status

2. Review responses and select winners

An authorized buyer can select winners for an RFQ by following these
steps:

a. The buyer logs on to the e-Marketplace.

b. The buyer uses the navigation frame to go to Request For Quote and
then the My RFQs (buyer) link.

c. The buyer searches and retrieves a list of RFQs.

d. The buyer selects an RFQ and clicks View Details. The buyer clicks
View Responses from the View RFQ Information window.

e. The buyer is presented with the Responses List window. The buyer can
select any response and view the details of it.

f. As mentioned earlier an RFQ can be closed either by a buyer or by the
scheduler. We will describe how a buyer performs this task.

g. The buyer navigates to the Request For Quote window and then the My
RFQs (buyer) link and from the list of RFQs selects the RFQ that needs
to be closed. The buyer clicks Change Status.
404 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

h. From the Change Status of RFQ window the buyer selects Close RFQ.
This action changes the status of the RFQ from Active to Closed.

i. The buyer clicks Start Evaluation to change the status of the RFQ
from Closed to Evaluation In Progress”. At this stage no responses are
accepted for this RFQ and the suppliers see the Being Evaluated status
for their responses.

j. The buyer goes to the RFQs for Evaluation link and from the list,
selects the RFQ which has a status of Being Evaluated. From the View
RFQ Information the buyer clicks Evaluate. This action displays a list of
all responses and allows the buyer to evaluate each response
individually.

k. The buyer clicks Evaluate for each response. Buyers can select either
Accept, Reject, Accept All or Reject All. The last two options apply to
the responses to RFQs with more than one product in them. The buyer
can accept responses to some products and not to others. The buyer
also can select multiple winners for an RFQ by accepting more than
one response.

l. To complete the process the buyer clicks Accept on one or more or the
responses.

m. Now the buyer needs to change the status of the RFQ to complete.

n. The buyer navigates to the Request For Quote and then My RFQs
(buyer) link and from the list of RFQs selects the RFQ that has just
been evaluated. The buyer clicks Change Status.

o. From the Change Status of RFQ window, the buyer clicks Select
Results. This action puts the RFQ into RFQ Complete state. This
action also changes the status of responses from Accepted to Won.

p. To verify the successful completion of this process, the buyer can
navigate to the Responses List window and ensure that the accepted
responses have a Won status.

This completes the process of selecting a winner. At this point the
buyers can proceed to place orders or start the creation of a contract.

We will now continue with our example we started earlier. We are assuming
that a supplier has placed a response to our RFQ. We follow the above
instruction to view and select a winning response. Figure 135 shows the
Responses List window prior to selecting a winner. We review the response
and decide that we don’t need any more responses and we want to close the
RFQ. Figure 126 shows the status of the RFQ after we have closed the RFQ.
Next we evaluate the response and select it as the winner.
Chapter 16. Example - negotiation subsystem 405

Figure 125. Response list prior to evaluation

Figure 126. RFQ status after issuing close RFQ
406 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Figure 127 shows the list of RFQ and which ones are in the process of
evaluation. We select our RFQ and click View Details.

Figure 127. List of RFQs for evaluation

Figure 128 shows all the responses we have received for our RFQ, in this
case only one. Note that if there were more than one responses each one
would have an Evaluate button at the far right. If there are multiple responses,
then from this window we can select each one and accept or reject them as
we desire. Figure 129 shows the response evaluation window, where we can
accept or reject all or parts of a response. .
Chapter 16. Example - negotiation subsystem 407

Figure 128. Responses to be evaluated

We click Evaluate which displays the response evaluation window as shown
in Figure 129. From this window we click Accept to accept this response.
408 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Figure 129. Response evaluation window

Now that we have accepted the response we need to change the status of the
RFQ to complete. We go to My RFQs (buyer) and select the RFQ and click
the Change Status. From the status window we complete the RFQ by
clicking Select Results. This will change the status of RFQ to Complete and
the status of the response to Won. Figure 130 shows the winning response to
our RFQ.
Chapter 16. Example - negotiation subsystem 409

Figure 130. Winning response

3. Place an order from an RFQ

To place an order from a winning response, the buyer takes the following
steps:

a. The buyer logs on to the e-Marketplace.

b. The buyer uses the navigation frame to go to the Request For Quote
window and then to the My RFQs (buyer) link.

c. The buyer searches and retrieve a list of RFQs.

d. The buyer selects a completed RFQ and clicks View Details.

e. The buyer clicks View Responses from the View RFQ Information
window.

f. The buyer is presented with the Responses List window containing the
winning responses.

g. The buyer selects a winning response and views its details. From the
Response Information window the buyer can either create an order or
create a contract.

h. The buyer clicks Create Order and is presented with the Create Order
for RFQ window. The buyer specifies the quantity and clicks Place
Order.

i. An order is placed and an order confirmation window is shown.
410 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Now we will use the winning response from our example to place an order.
Figure 130 shows the list of responses. We select the response and click
View Details. Figure 131 shows the response information.

Figure 131. Response details

We click Create Order and are presented with the window shown in Figure
132. We can modify the quantity and click Place Order to complete the
buying process. An order confirmation is provided at the end of the process.
Chapter 16. Example - negotiation subsystem 411

Figure 132. Order for an RFQ

4. Create a contract from an RFQ

To create a contract from a winning response, the buyer takes the
following steps:

a. The buyer logs on to the e-Marketplace.

b. The buyer uses the navigation frame to go to Request For Quote and
then to My RFQs (buyer) link.

c. The buyer searches and retrieves a list of RFQs.

d. The buyer selects an RFQ and clicks View Details.

e. The buyer clicks View Responses from the View RFQ Information
window.

f. The buyer is presented with the Responses List window containing the
winning responses.

g. The buyer selects a winning response and views the details of it. From
the Response Information window, the buyer can either create an order
or create a contract.

Note: When we wrote this redbook, the contract creation process had
not been implemented, so we are unable to test or describe this in
detail.
412 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

16.1.4 Example: supplier interaction
Supplier interaction with the RFQs is limited only to providing responses if
they see fit. Here we explain how a response is created and use an example
to visually demonstrate this process.

1. Create a Response

An authorized supplier can create a response to an RFQ by following
these steps:

a. The supplier logs on to the e-Marketplace.

b. From the Navigation frame, the supplier selects Request For Quote
and the My RFQs (Seller) link. This presents the supplier with the RFQ
search and list window. The supplier can search and obtain a list of all
available RFQs in the system.

c. The supplier selects an RFQ and clicks View Details.

d. From the View RFQ Information window, the supplier may choose to
download the RFQ file to prepare a response or click Create
Response to continue.

e. Create Response navigates the supplier to the Compose Response
window. The supplier provides a bid for the requested products and
clicks Done. This action navigates the supplier to the Response
Information window.

f. At this time the response has a status of In Preparation. From this
window the supplier can modify, retract or submit a response. To
continue, the supplier clicks Submit Response. This will activate the
response in the system.

The following is an example on how a supplier can respond to an RFQ.
We will list all RFQs and select the one created in the buyer interaction
example. Figure 133 on page 414 shows the list of all available RFQs in
Chapter 16. Example - negotiation subsystem 413

the system that our supplier is allowed to work with. We select the RFQ
and click View Details and then choose to prepare a response for it.

Figure 133. RFQ list for supplier

Figure 134 on page 414 shows the response we created. We then click Done
and then from the Response Information window we submit the response to
activate it in the system.

Figure 134. RFQ response
414 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Figure 135 on page 415 shows the final state of our response. The
buyer now can view this response and evaluate it when the RFQ is
closed. While the RFQ is still Active the supplier can modify this
response or retract it.

Figure 135. Response submit screen

16.1.5 Interaction with other components and subsystems
This section describes the interaction between the RFQ component of the
negotiation subsystem and other subsystems.

16.1.5.1 Access Control
The following table lists the access control rules for the various RFQ /
response commands.

Table 45. Access control rules

Command Business
role

Object Object Role

CreateRFQCmd Buyer

ModifyRFQCmd Buyer RFQ Creator

ChangeRFQVersionCmd Buyer RFQ Creator

CreateRFQTemplateCmd Buyer RFQ Creator
Chapter 16. Example - negotiation subsystem 415

PublishRFQCmd Buyer RFQ Creator

ActivateRFQCmd Buyer RFQ Creator

CloseRFQCmd Buyer RFQ Creator

StartEvaluationRFQCmd Buyer RFQ Creator

EvaluateResponsesCmd Evaluator /
Buyer

RFQ Evaluator

SelectResultsCmd Buyer RFQ Creator

RetractRFQCmd Buyer RFQ Creator

CreateResponseCmd Seller RFQ Targeted receiver /
Self-service receiver

ModifyResponseCmd Seller RFQ Targetted receiver /
Self-service receiver

Response Creator

SumbitResponseCmd Seller RFQ Targetted receiver /
Self-service receiver

Response Creator

RetractResponseCmd Seller RFQ Targetted receiver /
Self-service receiver

Response Creator

ChangeResponseVersion Seller RFQ Targetted receiver /
Self-service receiver

Response Creator

CreateContract Buyer RFQ Creator

Response Buyer

CreateOrder Buyer RFQ Creator

Response Buyer

View / list / Search RFQ ICs Buyer RFQ Creator / Approver /
Evaluator

View / list / Search RFQ ICs Seller RFQ Targetted receiver /
Self-service receiver
416 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

For ViewRFQ and ViewResponse, the access control should be determined
by the policy of each organization.

The roles used by access control in the RFQ subsystem should be the same
as the roles used by flex flow.

16.1.5.2 Approvals
The following commands require approval.

• PublishRFQ

• SubminResponse

• ChangeRFQVersionChangeResponseVersion

• SelectResults

The following interaction controllers or commands are needed to support the
approval process. The corresponding JSP pages will be provided.

• ViewRFQForApproval

• ViewResponseForApproval

We will use the RFQApprovalObjectHandle object to store the next state and
the original state of each command that needs approval, so we don’t need to
add intermediate states in the RFQ/Response state machines. An
intermediate state will be stored in the database tables. From this
intermediate state, no action will be allowed without approval.

16.1.5.3 Flex flow
The RFQ subsystem will rely on flex flow to complete the following tasks:

• Getting allowed actions from the current state and getting to the next state

• Sending messages between RFQ and the response state machines

The RFQ subsystem will not use flex flow to maintain the current state. The
current state will be maintained in the database tables.

View / list / Search
Response ICs

Buyer RFQ Creator / Approver /
Evaluator

Response Buyer / Evaluator

View / list / Search
Response ICs

Seller RFQ Targetted receiver /
Self-service receiver

Response Creator / Approver
Chapter 16. Example - negotiation subsystem 417

The RFQ subsystem will not use flex flow to implement access control. The
roles used by flex flow should be the same as the roles used by the access
control subsystem.

16.1.5.4 Catalog
The following interaction controllers will be registered for the interaction from
the catalog to the RFQ subsystem:

• ViewRFQ

• CreateRFQFromCart

The catalog subsystem is responsible for providing the following functions
that support the interaction from the RFQ subsystem to the catalog:

• Creating RFQ offerings/offering bundles and modifying offering attributes

• Creating RFQ from catalog and adding offerings from catalog to RFQ via
RFQCart

16.1.5.5 Order
The RFQ subsystem will use the order management subsystem to convert
win responses to orders. For each winning response, one order can be
created.

16.1.5.6 Contract
All data from winning responses that matches the attributes used in a
contract will be copied into the draft contract creating form. All fields can be
edited. Before the contract is created, new contract offerings will be created in
the catalog from RFQ offerings and response product attributes.

16.1.5.7 Legacy WCS
The RFQ subsystem has made some changes to the existing WCS 4.1 tables
AUCTINFO and BIDTABLE for sharing database schemas with the auctions
subsystem. The RFQ subsystem will use the existing MESSAGES and
DISCUSSION tables in the auctions subsystem to complete notification and
discussion functions.

16.2 Auctions

Auctions are an alternate method of performing transactions in an
e-Marketplace. In order to manage inventory or sell excess products
suppliers create auctions. Buyers in an e-Marketplace view and bid on
available auctions.
418 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

The auction component of the negotiation subsystem is a carryover from the
WebSphere Commerce Suite 4.1 (WCS 4.1) with very minor changes. The
changes are:

• Database changes

AUCTINFO table shown in Figure 34 on page 382 and BIDTABLE
shown in Figure 37 on page 388 have been modified to allow RFQs
(reverse auctions).

• Access control changes

The WCS 4.1 auctions code for createAuction and ModifyAuction has
been changed to add access control rows for each of the catalog items
(the auction offering) that are put in an auction. All auctions are public.
Since catalog viewing uses access control, a generic “open” access
control row has been added for every auction offering.

• Catalog

The creation of an auction now creates an auction offering in the
catalog. The inventory management of catalog has been modified so
that it is tied to the offering. The catalog view macros do not change
after an auction closes, since the auction is a product offering, and
therefore does not have a pre-auction view. A new offering view
command (AuctionOfferingView) is created, and all auction view
commands are routed through this command. The catalog will use this
command with appropriate actions such as action=ViewProductDetails,
action=ViewAuctionRules, action=ViewAllBids, action=CreateNewBid,
action=CreateNewOrderBid, action=ViewMyBids.

• Order processing

The current completeorder command creates entries in the order table,
and follows the catalog order processing of WCS 4.1. The auction
order processing will continue to work in the same fashion for the
WebSphere Commerce Suite, Marketplace Edition for AIX also.

• Approval workflow

CreateAuction and ModifyAuction are approvable commands in the
WebSphere Commerce Suite, Marketplace Edition for AIX.

16.3 Exchanges

The exchange subsystem represents another form of negotiation-based
purchasing available in the Marketplace Edition. Its basic functionality is to
provide a matching service that matches the products, quantities and
Chapter 16. Example - negotiation subsystem 419

maximum price requested by a buyer to products, inventories and actual
prices offered by a supplier.

This section explains many of the components and theory of the exchange
subsystem. We do not provide a working example due to the fact that, at the
time of writing, many of the exchange features were unavailable.

16.3.1 High-level overview
There are three primary components to the exchange subsystem:

• Trading

The trading component controls the entities interacting with the exchange
subsystem. It is responsible for such tasks as capturing and processing of
bid and offers, initiating the matching algorithms, searching and displaying
the orderbook, notifying participants of complete matches ,and submitting
completed matches.

• Orderbook

The orderbook component is responsible for persisting the bids and offers
placed by participants, and manages the submission of multiple bids for a
single resource and resource bundles. Basically, buyer’s bids and seller’s
offers are placed in the orderbook.

• Matching

The matching component provides the logic to match bids and offers via a
number of matching algorithms. It is also responsible for the dynamic
pricing model for the traded products, which can fluctuate based on
demand.

The interactions between these components is depicted in Figure 136. We
can see from this diagram that the interfaces to the buyer and the suppliers
are in a variety of formats, such as XML and HTML. These interactions can
be real-time or batch-mode operations.
420 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Figure 136. Interactions between the exchange components

When a trade occurs as a result of a successful match, the trade is processed
by the order subsystem.

The functionality provided by the exchange subsystem is founded on the
following observations on how trading occurs in e-Marketplaces:

• Liquidity

Liquidity refers to e-Marketplaces that are considered to be “liquid” or
dynamic. Examples of these type of e-Marketplaces are financial
exchanges, and commodity markets. In order to support these markets,
the exchange process must offer real-time matching in addition to
manually triggered or event triggered matching processes.

• Anonymity

Some e-Marketplaces require that bids and offers are submitted
anonymously to ensure fairness and equity among the trading
participants. This is beneficial, for example, to small businesses who want
to compete with larger organizations in the hub, but who don’t want to be
excluded because of their size.

• Industry-specific e-Marketplace

This type of e-Marketplace involves trading models centered on specific,
and vastly different, industry sectors. For example, the e-Marketplace
trading requirements for a financial e-Marketplace are notably different to
those required by a steel-trading e-Marketplace.

Buyer

Seller

Third-Party
Trader

eMP
Admin

Regulator

Application

Matching
Component

OrderBook
Component

Trading System

Buyer Seller

eXchange system

eMarketplace
Chapter 16. Example - negotiation subsystem 421

• Regulation

Often, stringent regulations must be adhered to in e-Marketplaces, such
as those centered on transportation or energy, for example. It is critical
that the matching process used in an e-Marketplace exchange enforce any
regulatory requirements.

The exchange subsystem in the Marketplace Edition has been implemented
with these observations in mind.

16.3.2 Low-level design
In this section, we discuss the attributes of the exchange subsystem design,
associated Java programming elements and database tables.

16.3.2.1 Matching component
The matching component relies on matching algorithms to match a buyer’s
bids to a seller’s offers. These matching algorithms can be classified into the
buyers-sellers relational groups shown in Table 46.

Table 46. Matching algorithm

The triggering of matching algorithms is configurable and may be based on
timed events, or positions (that isthe submission of a bid or ask), or by
manual intervention.

16.3.2.2 Price determination
Because of the need for a dynamic pricing model in the exchange, a number
of algorithms are used to “discover” the price for a particular product. The
final or discovered price for a product is commonly referred to as its clearing
price, a term you should be familiar with. This is required because in addition
to a fixed base-price, an exchange should offer dynamic pricing based on

Matching type Description

One to one Provides for a one-buyer to one-seller
trading model.

One to many Provides for many sellers to one-buyer
model where sellers wish only to be
matched with a single buyer.

Many to one Allows only one seller to be matched with
many buyers.

Many to many Provides for multiple buyers to be matched
with multiple sellers.
422 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

product supply and demand. The algorithm classifications are shown in Table
47.

Table 47. Pricing algorithms for specific trading models

Pricing algorithm classification Description

Continuous double action This pricing model is centered on the
highest-paying buyer being matched with the
lowest-cost supplier. The clearing price may be
set based on the lowest seller price, the highest
bid by the buyer or the median of these
numbers. For example, if the buyer bids $100,
and the seller base-price is $150, the clearing
price outcome accepted may be the $100 from
the buyer or the agreed median of $125. Once
this price is arrived at, the process reiterates -
the next lowest paying buyer is matched to the
next lowest cost supplier and so on.

Walrasian Tatonnement This pricing algorithm involves an iterative
process where bids are gathered and ranked
and the price is set based on demand. As more
bids are received, the price fluctuates. In this
model, the clearing price is arrived at when the
product demand is equal to supply (although
other price points can be arrived at).
For further reading on Leon Walras’ theories on
tatonnement processes and his other economic
theories and works, visit:
http://www.econ.jhu.edu/People/Fonseca/
walras/hardy.htm

Call market pricing Call market pricing is based on the private
submittal of bids and offers to the central
exchange. The clearing price is derived through
computation of the price points where demand
and supply meet based on predefined
objectives such as maximizing the number of
trades.

Profit-driven pricing Similar in theory to call market pricing; however,
the object is to maximize the profits of
suppliers.

Traditional auction In traditional auctions the demand and supply
are gathered centrally and the clearing prices
established. Auctions are a supplier-driven
exchange metaphor.
Chapter 16. Example - negotiation subsystem 423

Some of these pricing algorithms are based on complex theories that you do
not need to understand fully, however, you should aim to be familiar with the
basic principals of each.

16.3.2.3 Positions
Positions, also known as trading positions, represent an offer to buy or sell
products and are analogous to bids and asks, if you are more familiar with
that terminology. Consequently, a trading position contains some important
information, namely:

• Its creator.

• The product that is the target of the exchange.

• Additional attributes specified as name/value pairs.

The Marketplace Edition allows multiple positions of different types to be
active for a single product. This enables the product to be concurrently
offered to the e-Marketplace under auction, exchange, and fixed price.

Positions can be created by buyers and suppliers using a number of methods,
the most common being through browsing the product catalog and selecting a
product template to base the position on. This procedure is outlined in 16.3.4,
“Supplier interaction” on page 437 and 16.3.5, “Buyer interaction” on page
438. It is also possible to create more complex positions based on compound
(or bundled) product offerings. Figure 137 shows the relationships between a
trading position, its associated attributes and the attributes of the
e-Marketplace product.
424 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Figure 137. Relationships between a trading position and the product catalog

16.3.2.4 Trading posts
The term trading post refers to the actual processes of conducting the
matching logic in the exchange. There can be one or more trading posts
within the exchange, each configured with different matching algorithms.
However, each trading post only ever has one trading position associated with
it (this is brought about by the necessity to introduce complex locking
mechanisms if multiple trading posts were required to access a single
position).

The primary responsibilities of the trading post are:

• Submission of trading positions.

• Triggering and running the matching algorithms and collation of the
results.

• Computing the clearing price and publishing this information to the
exchange (to enable participants to see the current price in the case of a
dynamic pricing model).

• Persisting the matched results and parameters such as price and quantity.
This information is subsequently fed to the order subsystem.

• Notifying buyers of successful trades and issuing purchase orders.

Catalog

Product
Creator=hub

PRSPECIAL="T"

Product
Creator=trader
PRSPECIAL=X

+Parent

ExchangePosition
Creator=trader

side=buy

ExchangePositionAttribute
Name=b
Value=...ProductAttribute

Name=x
Value=...

ProductAttribute
Name=y
Value=... ProductAttribute

Name=x
Value=...

ProductAttribute
Name=y
Value=...

ProductAttribute
Name=z
Value=...

ExchangePositionAttribute
Name=a
Value=...
Chapter 16. Example - negotiation subsystem 425

In Figure 138, you will see that all other processes, other than the triggering
of the trading post process itself, originate from the trading post.

Figure 138. Trading post and associated exchange processes

Trading
Post

Search Queries
Positions (bids/asks)
Events
Timers

Repository
of Matching
Algorithms

Product
Catalog

OrderBook

Matching
Algorithm

Matched
Result Set

Market
Price

retrieve (bids/offers)

browse &
access

select run
notify
buyers &
sellers

Advertise
Price

updatecompute price

Create &
submit
POs

(1)

(2)
(3)

(4a) (4b)

(5)

(6)
(7)
426 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

16.3.2.5 Database tables
This section details the tables related to the exchange subsystem.

Table 48. TRADINGPOSITION

Column Type Comments

TradingPositionId Integer not null Primary key

TradingPost Integer Which trading post is to
handle this order. May be
null initially when order is
being created. Foreign key
references column
TradingPostid in table
TRADINGPOST.

CreatorId Integer not null Directory key of creator.
Foreign key references
column SHRFNBR of table
SHOPPER.

CreatorPositionId Integer not null Identification number for
order supplied by the
creator.

ParentPosition Integer The parent position from
which this position has
been derived. May be null if
this position was directly
submitted by a trader.
Foreign key references
column TradingPositionId
in table
TRADINGPOSITION.

RootPosition Integer This is a pointer to the
original position submitted
by the trader from which
this position is derived.
See note 1. Foreign key
references column
TradingPositionId in table
TRADINGPOSITION.

WhenCreated Timestamp

Description Varchar(254) Optional, provided by
creator.
Chapter 16. Example - negotiation subsystem 427

ProductId Integer Foreign key references
column PRRFNBR in table
PRODUCT. This is the item
that is the subject of this
position.

Status Smallint Enum: 0 - Inactive 1 -
Active Additional states
TBD

Side Smallint Enum: 0 - Buy 1 - Sell

StartTime Timestamp When order processing is
to start.

EndTime Timestamp When order processing is
to end.

Currency Char(3) Alphabetic currency codes
as per ISO 4217.

Price NUM(15,2)

Quantity NUM(15,5)

Units Integer Enum: TBD

Column Type Comments
428 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Table 49. TRADINPOSITIONATTRIBUTE

Table 50. MATCHRESULTS

Column Type Comments

TradingPositionId Integer not null Foreign key references
column TradingPositionId
of table
TRADINGPOSITION.

Name Varchar(254) not null

Value Varchar(254)

Type Varchar(254) TBD.

Constraint Varchar(254) TBD. Need a simple
constraint language.

Column Type Comments

MatchId Integer not null Primary key

BuyPosition Integer Foreign key references
column TradingPositionId
of table
TRADINGPOSITION.

SellPosition Integer Foreign key references
column TradingPositionId
of table
TRADINGPOSITION.

TradingPostId Integer Foreign key references
column TradingPostId of
table TRADINGPOST.

Price Num(15,2)

Quantity Num(15,5)

Description Varchar(254)

WhenMatched Timestamp

WhenFilled Timestamp
Chapter 16. Example - negotiation subsystem 429

Table 51. MATCHATTRIBUTE

Table 52. TRADINGPOST

Table 53. MATCHREPOSITORY

Column Type Comments

MatchId Integer not null Foreign key references
column MatchId of table
Match.

Name Varchar(254) not null

Value Varchar(254)

Type Varchar(254) TBD.

Column Type Comments

TradingPostId Integer not null Primary key

Owner Integer not null Foreign key references
column SHRFNBR in table
SHOPPER.

Name Varchar(254) not null Name of the TradingPost.

SecurityPolicy Varchar(254) TBD

State Integer Enum: 0 - inactive 1 - active

TradingPostActions Long Varchar Java class

TradingPostSecurity Long Varchar Java class

TradingPostStatistics Long Varchar Java class

TradingPostPositionManag
er

Long Varchar Java class

Attribute Name Type Description Length

MatchAlg Varchar (40) Name of the algorithm. 40

MatchPol Varchar (20) 1:1 or 1:M or M:1 or M:N 20

MatchAlgId Matching Algorithm ID Integer 11

MatchDLL Varchar (50) DLL or JAR file of the
matching algorithm

50

MatchObj Varchar (100) The objective of the
matching algorithm

100
430 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

16.3.2.6 Commands, data beans and packages
In this section, we provide you with lists of the commands, data beans and
packages related to the exchange subsystem.

Commands
AddToMatchReposCmd

ConfigureMatchingCmd

CreatePOFromMatchesCmd

MarketAdminMatchResReportCmd

MarketStatisticsBeanCmd

MatchedResultBeanCmd

MatchedResultReportCmd

MatchingRegistryBeanCmd

MatchPositionsCmd

OrgMatchResReportCmd

QueryMatchedResultCmd

ViewMarketStatisticsCmd

MatchConstr Varchar (1000) The list of constraints for
matching

100

MatchSTTime Time Start of the Matching
Period

MatchEndTime Time End of the Matching Period

MatchInterval Time How often the matching
algorithm should be done

MatchNumber Integer Minimum number of
buyers/sellers before the
matches can take place

11

AccessControl Integer Market ID or Group ID 11

Attribute Name Type Description Length
Chapter 16. Example - negotiation subsystem 431

ViewMatchedResultCmd

ViewMatchRepositoryCmd

ViewUserMatchedResultCmd

CancelExchangePositionCmd

CreateExchangeOfferingDetailsCmd

CreateExchangePositionAccessControlCmd

CreateExchangePositionCmd

DisplayAllExchangePositionsCmd

EditExchangeOfferingCmd

ExchangeOfferingCmd

GetAllExchangeOfferingsCmd

GetExchangeOfferingListCmd

GetExchangePositionCmd

GetTradedExchangeOfferingsCmd

UpdateExchangeOfferingDetailsCmd

UpdateExchangePositionCmd

ClearMarketCmd

CreateTradingPostCmd

GetAllTradingPostsCmd

GetTradingPostCmd

GetTradingPostFormCmd

StartTradingPostCmd

StopTradingPostCmd

SubmitExchangePositionCmd
432 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

UpdateTradingPostCmd

Data beans
MarketPriceBean

MarketStatBean

MarketStatisticsBean

MatchedResultBean

MatchedResultBeanBeanInfo

MatchedResultInfoBean

MatchingRegistryBean

UserBean

ExchangeOfferingBean

ExchangeOfferingDetailsBean

ExchangePositionAccessControlBean

ExchangePositionAttributeBean

ExchangePositionBean

TradingPostAccessControlBean

TradingPostBean

Java package names
com.ibm.commerce.exchange

com.ibm.commerce.exchange.orderbook

com.ibm.commerce.exchange.matching

com.ibm.commerce.exchange.matchresults

com.ibm.commerce.exchange.pricing

com.ibm.commerce.exchange.markets

com.ibm.commerce.exchange.tradingpost
Chapter 16. Example - negotiation subsystem 433

com.ibm.commerce.exchange.admin

com.ibm.commerce.exchange.util

com.ibm.commerce.exchange.misc

JSPs
DefaultAddNewAttribute.jsp

DefaultCancelExchangePosition.jsp

DefaultClearMarket.jsp

DefaultCreateExchangeOfferingForm.jsp

DefaultCreateExchangePosition.jsp

DefaultCreateExchangePositionForm.jsp

DefaultCreateTradingPostForm.jsp

DefaultDisplayAllExchangeOfferings.jsp

DefaultDisplayExchangeOfferingDetails.jsp

DefaultDisplayMyExchangeOfferingDetails.jsp

DefaultDisplayMyExchangeOfferings.jsp

DefaultDisplayMyExchangePositionDetails.jsp

DefaultDisplayMyExchangePositions.jsp

DefaultDisplayMyExchangePositionsFilter.jsp

DefaultDisplayMyTradingPostDetails.jsp

DefaultDisplayMyTradingPosts.jsp

DefaultDisplayOrderbookExchangePositionDetails.jsp

DefaultDisplayOrderbookExchangePositions.jsp

DefaultDisplayOrderbookExchangePositionsFilter.jsp

DefaultEditExchangeOfferingForm.jsp

DefaultEditExchangePositionForm.jsp
434 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

DefaultEditTradingPostForm.jsp

DefaultSubmitExchangePosition.jsp

DefaultUpdateExchangePosition.jsp

MyPositionDetails.jsp

adminReportForm.jsp

displayMatchReposDetails.jsp

editMatchReposDetails.jsp

marketAdminReport.jsp

marketstat.jsp

matchReposStatus.jsp

matchcmdok.jsp

matchedresultall.jsp

matchedresults.jsp

matchrepos.jsp

myReport.jsp

myReportForm.jsp

mymatchedresult.jsp

orgReport.jsp

orgReportForm.jsp

userReport.jsp

userReportForm.jsp

usermatchedresult.jsp

16.3.3 e-Marketplace administrator interaction
The e-Marketplace administrator is responsible for creating exchange offering
for products in the e-Marketplace. An offering must be created and assigned
Chapter 16. Example - negotiation subsystem 435

to a trading post. During creation of a trading post the type of matching
algorithm is selected. This algorithm controls the matching of positions
entered into the exchange system by buyers and sellers.

Creating a trading post is the first task an administrator must perform. The
following steps describe this process:

1. The e-Marketplace administrator logs on to NCADMIN.

2. The e-Marketplace administrator selects Exchange.

3. The e-Marketplace administrator selects Create Trading Post.

4. The e-Marketplace administrator completes the Create a Trading Post
window. Here, the e-Marketplace administrator decides on the initial state
of the trading post (Running or Stopped) and the algorithm which is used
for the matching process.

5. From the Create a Trading Post window the e-Marketplace administrator
clicks Create Trading Positions.

6. A confirmation window is displayed with the detailed information about the
newly created trading post.

If the initial status is set to Running, then at this time the trading post is
functional and ready to accept creating and assignment of exchange
offerings.

If the initial status is set to Stopped, the e-Marketplace administrator can
select the My Trading Posts link and from the list of trading posts select
Start.

The e-Marketplace administrator can create exchange offerings from either
the NCADMIN or from the e-Marketplace Web site. The following steps
describe this process in both cases:

1. From the Exchange link of the NCADMIN, the e-Marketplace administrator
selects Create Offering or from the e-Marketplace Web site the
e-Marketplace administrator selects Manage Offerings.

2. The e-Marketplace administrator navigates through the catalog and finds
the product description for which an exchange offering needs to be
created.

3. The e-Marketplace administrator clicks Create Exchange Offering.

4. The Create Exchange Offering window is displayed with the attributes of
the selected product description.
436 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

5. The e-Marketplace administrator can add new attributes to this offering
from the Attribute List section.

6. The e-Marketplace administrator selects a trading post, provides a
description for the offering and an initial price, and enables or disables the
automatic order processing from the Offering Details section.

7. The e-Marketplace administrator selects Public or Restricted access for
the offering and clicks Create Offering.

8. An Exchange Offering Details window is displayed showing the status and
the details of the offering.

At this point the offering is available to buyers and sellers to enter their
positions (bids and asks).

16.3.4 Supplier interaction
The typical supplier interactions with the exchange subsystem can be
summarized as follows:

1. The supplier registers in the e-Marketplace and provides the required
information, such as organization, authentication, contact, role, and
preferences.

2. The seller browses the product categories.

3. The seller places a product for sale.

4. The seller selects the product to be sold via an exchange.

5. The seller is directed to the exchange area of the site.

6. The seller can do one of the following:

- Browse the orderbook for the current market conditions for the product,
and place an offer on the new product to be sold by the seller.

- Browse the orderbook and place an offer on an existing product.

- Choose not to place an offer and exit the exchange.

7. Once the offer is placed, the seller can perform one of the following:

- Browse the product table.

- Browse the orderbook (for placing further offers).

- View the status of the offer (if matched or not).

- Remove the offer (if needed).

Suppliers also can interact directly by using the Exchange link. Four options
are available:
Chapter 16. Example - negotiation subsystem 437

1. My Positions: Lists the supplier’s positions, including information on the
position and its status. The supplier can view the details of each position.

2. Exchange Offerings: Lists all the exchange offerings in the e-Marketplace
that a supplier is allowed to participate in. The supplier can view details,
view active positions or create a position.

3. Market Statistics: Displays statistics information pertaining to a supplier.

4. Completed Trades: Displays a list of completed exchanges belonging to a
supplier.

16.3.5 Buyer interaction
The typical interactions that occur between a buyer and the exchange
subsystem can be summarized as follows:

1. The buyer registers in the e-Marketplace and provides all the necessary
organization, authentication, contact and preference information.

2. The buyer browses the product catalog.

3. The buyer selects a product and nominates to purchase it via the
exchange mechanism.

4. The buyer is then directed to the exchange area of the e-Marketplace.

5. The buyer can either:

- Browse the orderbook for that product to obtain current prices and
availability and then place a bid.

- Place a bid (given the current average price of the product).

- Leave the exchange without participating in the exchange.

6. Once the bid is placed, the buyer can do one of the following:

- Browse the product catalog further.

- Observe the status of the bid.

- Browse the orderbook to place more bids.

- Remove submitted bids.

Buyers also can interact directly by using the Exchange link. Four options are
available:

1. My Positions: Lists the buyer’s positions, including information on the
position and its status. The buyer can view the details of each position.
438 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

2. Exchange Offerings: Lists all the exchange offerings in the e-Marketplace
that buyer is allowed to participate in. The buyer can view details, view
active positions or create a position.

3. Market Statistics: Displays statistics information pertaining to buyer.

4. Completed Trades: Displays a list of completed exchanges belonging to
buyer.

16.3.6 Interaction with other components and subsystems
The primary interactions with the other components of the exchange
subsystem are initiated from the trading post and are depicted in Figure 138
on page 426.

These interactions are summarized by the following process, which the
trading post performs as a result of receiving messages or timed events.

The trading post:

1. Selects a matching algorithm based on a matching policy (that is one to
many, many to one, many to many), matching objective (maximize trades)
and pricing policy (single or multiple clearing prices).

2. Retrieves the positions (bids and offers).

3. Matches bids and offers.

4. Computes match prices.

5. Stores the matched results as a list of buyer-sellers pairs.

6. Notifies buyers and sellers.

7. Updates the market statistics table and publishes prices.

8. Creates purchase orders for each buyer-seller pair.
Chapter 16. Example - negotiation subsystem 439

440 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Chapter 17. Example - additional e-Marketplace infrastructure

In this chapter we discuss additional infrastructure provided by the
Marketplace Edition to facilitate the operation of an e-Marketplace. We give
details of the hub business subsystem of the Marketplace Edition. The hub
business subsystem handles all of the reporting for the Marketplace Edition.
These reports can be customized by the Marketplace Edition administrator. At
the time of writing this redbook the customization of these reports had not
been added in to Marketplace Edition. We discuss each one of the reports
and what information they provide. We will also discuss the orders process,
the approval process and the flex flow system.

17.1 Hub business subsystems

Once a transaction such as an auction, RFQ, exchange or catalog buying is
completed, a purchase order (PO) will be created by the Marketplace Edition.
When a PO is generated (the order approval is assumed to be finished prior
to this.), a PO notification message will be sent to the supplier by e-mail. The
supplier can log on to the hub to view, accept or reject the PO. The
corresponding acknowledgments will be sent to the buyer when the supplier
views, accepts or rejects the PO. The system provides the ability to store POs
in XML format ,which allows buyers and suppliers to download the XML file of
PO. The purpose of this feature is to loosely integrate the back-end systems
of suppliers and buyers with the hub. The downloaded XML file could be
pumped into the organization’s back-end system for processing. For example,
a hub level report for the hub administrator and report for the organizations
buyer and supplier will be provided. This also includes a common entry UI for
reporting by the transaction type, such as auction, RFQ, exchange and
catalog buying. All the reports can be saved in XML file for further processing.

Furthermore, the system provides the supplier with the ability to download
RFQ request in XML format.

The hub business subsystem consists of:

• Hub revenue reporting.

• XML reports.

• Table for fee calculation.

• Log business events.

• Common UI provided for requesting reports.

• A set of available reports that can be generated on demand.
© Copyright IBM Corp. 2000 441

• WCS reporting function.

17.2 e-Marketplace reports

The e-Marketplace reports show supplier transactions, buyer transactions,
membership details, catalog and a summary of the complete exchange
trades. They are viewable by the hub administrator only and provide a record
of all trading activity in an e-Marketplace hub

• Marketplace supplier transaction report

The marketplace supplier transaction report shows all the supplier
transactions. Some of the information in this report is supplier name, the
currency used to purchase the product, the transaction type, the number
of orders that were placed and the cost of the product.

• Marketplace buyer transaction report

The marketplace buyer transaction report shows all the buyer
transactions. Included in this report is the buyer’s name, the currency used
for the purchase, the transaction type, the number of orders placed, and
the revenue from the transaction. Figure 139 is an example of a buyer
transaction report.

Figure 139. MarketPlace Buyer transaction report example

• Membership details
442 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

The membership detail report will show the details of all the members of
the e-Marketplace. At the time of this writing the membership detail report
was not available.

• Catalog reports

The catalog reports show all the details of all the items in the catalog.At
the time of this writing the Catalog Report was not available.

• Summary of complete exchange trade report

The exchange trade summary will provide a complete summary of all of
the exchanges that have taken place in the e-Marketplace. At the time of
this writing the exchange trade report was not available.

17.3 Organization reports

The organization reports are for certain organization in the e-Marketplace. It
focuses on transactions between the organization and specific or all trading
partners. These reports are viewable by hub and organization administrators
only and provide a record of an organization's trading activities and employee
e-Marketplace responsibilities.

There are two type of trading partner (TP) for an organization: seller-side TP
and buyer-side TP. Reports for these two types of TP are both available.

• Financial reports

Orders submitted to suppliers and orders received from buyers.

• RFQ transactions

• Auction transactions

• Exchange transactions

• Contract transactions

• Catalog reports

Summary statistics of offering types stored in the catalog

• Membership reports

Summary of members, including roles

17.4 Member reports

The member reports will give the details of all the members interactions with
the e-Marketplace such as the RFQs, the auctions and the exchanges that
each one of the members have performed.These reports provide a record of
Chapter 17. Example - additional e-Marketplace infrastructure 443

the activities of organization employees (users) responsible for carrying out
activities in the e-Marketplace.

• RFQ transaction reports: The RFQ transaction reports will show all of the
RFQ transactions that a member has performed in the e-Marketplace.

• Auction transaction reports: The auction transaction report will show all of
the auction transactions that have been executed and a detailed summary
of each.

• Exchange transaction reports: The exchange transaction report will show
all the details of all of the transaction that have take place within the
e-Marketplace.

17.5 XML download ability

For offline viewing of all reports the e-Marketplace provides the ability to
download the DTDs for the reports and the XML data of the report. This
provides the ability for integrating the data with any other business data. At
the bottom of the pages of the report, that provides this feature you will see
buttons allowing for XML or DTD download as shown in Figure 140.

Figure 140. Offline report download page
444 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

17.6 Offline reports

The e-Marketplace provides the ability to view report offline, this is
accomplished by providing a downloadable in XML format.

17.6.1 Configure offline reports
In order to be able to download the offline reports the user will have to select
the offline reporting period. When the user clicks the Save as XML button the
user will be prompted for a location to download the XML file to. The DTD
scheme can also be downloaded for each offline report. The user clicks the
Download DTD button, and is prompted for a location to download the DTD
for the report.

17.7 Order subsystem

The order subsystem in the Marketplace Edition is based on the WebSphere
Commerce Suite 4.1 as much as possible. Some of the areas that were
changed are as follows:

• Orders can be created by more than one system (the catalog). Orders can
also be issued from other sub systems including RFQ, contracts, and
exchange.

• Most of the new order functionality is written in Java.

• Orders can be submitted atomically, that is in one shot, and can be
collated into a finer grain of categorization.

• Orders in the Marketplace Edition do not have order aggregation.

17.7.1 High-level overview
In the WebSphere Commerce Suite the order subsystem has the ability to
review and update information related to inventory and pricing. The
WebSphere Commerce Suite, Marketplace Edition for AIX is largely written in
Java and WebSphere Commerce Suite is written in C++, so it was difficult to
integrate the C++ subsystem logic with the Java access logic. The decision
was made to allow a subsystem to choose between integrating into the order
system itself or use the order subsystem at arms length through an atomic
submission which cannot fail. In the first option, a subsystem might choose to
integrate with the orders subsystem in an easy way and benefit from a finer
grain of integration where more flexibility is allowed and less up-front work is
needed. With the second option, a subsystem might decide that it is simply
too hard to replicate logic in the C++ environment. The subsystem then has to
do some up-front work: verify all information, create an order and submit it on
Chapter 17. Example - additional e-Marketplace infrastructure 445

the spot. Therefore, a user never deals with an order in the pending state. An
order goes directly to a completed state after it is created. One very important
note to remember is that an order is keyed on the seller. This means that if a
buyer selects multiple items from various sources, and those items come from
various sellers as well, one order per seller will be created. More importantly,
the order subsystem does not do aggregation. Therefore, once placed, there
is no remembering that order 1 and 2 came out of the same submission.

17.7.2 Low-level overview
To allow for more flexibility for multiple subsystems, the Marketplace Edition
created a new technique to string together overridable functions (OF) in a
task. For instance if we want to check inventory for a particular item, a
contracted item has its inventory in the contract subsystem, and a regular
(fixed price) items has its inventory in the catalog subsystem. A quick solution
is to write an OF that determines the type of items and either executes logic
for a contract or composes the standard OF for catalog logic. OF composition
is a valid technique for the WebSphere Commerce Suite, but it is used
primarily for extensions where the logic of both OFs gets executed. Here, the
situation is different: the composer acts as a router, and then either executes
its business logic or executes another OF's business logic. This is not an
extensible proposition; if new types of items come to life, the base OF will
need to be changed, or a new OF that does the Route/Compose work will
have to be written, thus hard-wiring compositions of OFs. Second, composing
an OF, although not as expensive as composing a command, still represents
execution time and for an OF that gets called often, this can be an issue.

To solve this problem Marketplace Edition introduces a new technique to
allow for multiple mutually exclusive OFs to coexist under one task. The
Guarded Chain solution strings together a series of OFs through OF chaining.
When an OF is called, it checks for a guard in the environment. If the guard is
there, it simply returns true; otherwise, it figures out if the OF applies. If it
applies, it executes and sets a guard in the environment; otherwise, it simply
returns true. At the end of the chain, a special OF checks for the guard. If no
guard is present, the OF returns false indicating that no OF was suitable for
the request, thus failing the task. If a guard is found, the OF returns true and
the task is successful. This process is illustrated in Figure 141.
446 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Figure 141. Overridable function interaction diagram

17.8 Approvals subsystem

In this section we will discuss the approval process, which is used to protect
commands that participate in the Marketplace Edition. The approvals feature
ensures that the action embodied by the command is approved by the right
authority. The approval process implemented by the Marketplace Edition
provides for:

• One level of approval

• A single approver

• Notification by e-mail

• An API to external workflow engines

In order to provide this functionality the Marketplace Edition has approval
administration and configuration tools for:

• Initial mapping of approvable commands

• Registration of commands

• Aassignment of the approver

The approvals process uses this configuration information and provides tools
to allow:

• Submitters to query the status of commands they submitted for approval.

• Approvers to view, accept, and reject commands.

17.8.1 High-level overview
Before a command can be used with the approval system, it must be
registered as an approvable command. In this section we will give a general
overview of the approval process.

Fail Fail No guard found, failFail

Not appplicable
or guard present

Success,
add guard

Not appplicable
or guard present

Not appplicable
or guard present

Success,
add guard

Success,
add guard

Guard found, success

Task OF OF OF Guard
Chapter 17. Example - additional e-Marketplace infrastructure 447

All commands requiring approval are automatically replayed in the
Marketplace Edition with a standard flex flow state machine as shown in
Figure 143 on page 449. In Figure 143 on page 449 the submitRFQ
command request is queued, and a pseudo-command “preSubmitRFQ” is
executed. This results in the approvals flex flow state machine reaching an
intermediate state where it sends out a message <buyer, submitRFQ, RFQ>
to the approvals workflow daemon (corresponding to the message template
<user, command, businessobject>). The message router routes the message
to the approvals workflow daemon process AppWF. The approvals workflow
daemon interface process is Boolean. If the command for that business object
is approved, the AppWF process issues a message <approve> to the flex flow
approval state machine. This results in a transition to state 2. Here the
queued original command <buyer, submitRFQ> is valid and is executed. If the
request is not approved the <reject> message from the approvals workflow
results in the flex flow state machine reverting to the original state, and the
command is not executed. The approvals workflow process checks to see if
any approval process is registered for approval. If not, a default approval
process is kicked off and the following actions will be executed:

• Get approver: Look up approver for <user command> from the approvals
registration data. If this is not available, it looks up the parent of <user> in
the membership hierarchy.

• Send e-mail (or notification) to approver with a link page showing <user,
command,business object> with two buttons, approve and reject.

• Clicking the button results in this default approval process sending the
appropriate message to the approval flex flow.

If a workflow process is registered for <user, command> , then it is executed.
The only allowed workflow process is a proxy (or interaction controller) that
interfaces to a standard workflow engine and uses jFlow to communicate with
the workflow engine.
448 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Figure 142. Approval interaction diagram

Figure 143 shows the Approval Command Registration process.

Figure 143. Approval command registration

Figure 143 shows the flow of the approval process. After a command has
been submitted for protection, there are several things that can be done to
Chapter 17. Example - additional e-Marketplace infrastructure 449

this command: delete the command if it is no longer needed, update an
already active command, or search for commands that have already been
registered.

Figure 144 shows and example of the window used in the Marketplace Edition
to register a command for approval.

Figure 144. Command registration

17.8.2 Low-level design
The approval subsystem consists of the following interaction controllers:

• ApprovedCommandRegistration

This IC applies anUI to manage all commands for each subsystem. The
administrator can register a command that needs to be approved or
register a command that does not need to be approved. The IC will invoke
the GetApprovalCommandCmd command and the CommandList.jsp.

• ApproverSpecification

This IC applies an UI to manage the relationship between registered
commands and approvers for each organization. The organization
administrators could specify an approver for a specified user or specify
“null” approvers for a user, to indicate this user has no approval needs for
450 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

this command. Even the command is registered as needing approval. The
IC will invoke the GetApproved SpecificationCmd command and
ApproverSpecifyList.jsp.

• ApprovalProcessApprover

This IC is used to search and display all submissions which need to be
approved by users. It will invoke the GetSubmissionListCmd command
and AllSubmissionList.jsp.

• ApprovalProcessDetail

This IC is invoked when the user clicks the detail button or clicks the
submission in the submission list. The IC will call
PreDisplaySubmissionDetailCmd to get the string used to redirect to the
DisplayIC servlet. Each subsystem that will display detailed information
about the submission.

• ApprovalProcessApproveOrReject

This IC is invoked when the approver approves or rejects the submission.
The IC will invoke the ApproveOrRejectCmd to note the change of status.

• ApprovalProcessSubmitter

This IC is used to search and display all submissions of the user based on
that user’s search. It will invoke the GetSubmissionsListCmd and
AllSubmissionList.jsp.

• ApprovalProcessDeleteSubmission

This IC is used to delete submission for a submitter.

17.9 Flex flow high-level overview

Flex flow is a facility of the Marketplace Edition infrastructure that is used to
define and control business process flows within the e-Marketplace. The
flows specified can be configured at three levels:

• Business processes

- Flow between commerce functions

- Across platforms and trusted boundaries

- Both data and control flow

• Commerce flows

- Sets the flow of commands and provides a logical grouping of all
commerce activities

- Shares data and schemas with the business objects
Chapter 17. Example - additional e-Marketplace infrastructure 451

• Commands

- Used for controlling the flow of tasks and atomic transactions

Figure 145 shows an overview of flex flow and how it interacts with the
business process.The large middle circle represents tasks that are being
executed.

Figure 145. Overview of flex flow and business process

17.9.1 Level one: commands
The command in the flex flow controls the flow through a set of tasks. The
commands provide instantaneous completion, uninterruptable execution of
commands. Commands will also provide each participant with a single action
to be executed. As an example, a consumer submits an offer in a negotiation.
There will be tasks that will verify the purchase and credit limit, payment
documents, discounts by buyer, and inventory updates. Note that all tasks will
not be executed, but only the tasks that are dependent on the conditions that
a consumer has submitted, for example purchase amount, buyer loyalty, etc.

ConfidentialConfidential

T1 T2 T3 T4

Accept Offer Withdraw
Bid

Appraise

Register

Tasks

Settle

Business
Process

Business Flow

Commerce Function
Negotiate

Business Flow

Command
Place Bid

Auction Transactions
(Commerce Functions)
452 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

17.9.2 Level two: commerce functions
The commerce functions in the flex flow will provide logical grouping of
commands that are used for a single commerce activity or function.
Commerce flex flow functions will validate the sequence of commands. In the
the order process the commerce functions will validate partial or full order
commands. The commerce functions are controlled by the finite state
machine control. Some of the other features of the commerce functions are
the sharing of data schemas and business objects.

17.9.3 Level three: market/business processes
The market/business processes will provide the activation of all commerce
functions and will control the data or all control-driven activations. In the
market/business process, data and schemas or business objects are not
shared. An example of the market/business process is a seller selling an
antique. In this case the market/business process will control the registration
of the seller, the identify and notification of a potential buyer, the negotiation
and the settled sale.

17.10 Flex flow low-level overview

Flex flow uses a state machine that has two parts to control the state of each
of the commands that have been executed. In this section we discuss the
low-level details of the flex flow state machine. Flex flow has a state machine
for processing a command and another state machine for translation of the
commands. We discuss both of these state machines in detail and give
examples of how they are used in the e-Marketplace.

17.10.1 State machine
There are two major parts to the state machine. One state machine will
handle processing and the second state machine will handle the translation of
commands. The state machine processing includes code for controlling the
transitions within the state machine and code for accessing the DB2 tables
used for storing the states and transitions. The state controller keeps track of
a session which is persistent (that is, stored in DB2). A state controller can be
instructed to resume processing of a previous session. A two phase commit
mechanism for transition processing is being used. The process invoking the
state controller will be allowed to perform a transition in two steps: process
action followed by either a confirm or a rollback. The process action method
will check the validity of the requested transition, and if valid the process will
be marked as pending by the state machine while tracking what the next state
will be upon confirmation of completion. A confirm or rollback will move the
Chapter 17. Example - additional e-Marketplace infrastructure 453

machine out of the pending state with confirm completing the transition of the
state to the new state. A rollback will return the machine to the state it was
before the processAction. There is a method that will dynamically retrieve the
next available actions for a particular role in a particular session. This is
useful for inserting Web pages in the getAllowedTransition method. All state
controller actions are logged in a file specified in the state machine properties
file (sm.properties). The state machines translate three different formats. One
is for XML, the second is for the GUI creation tool, and the third one is for the
DB2 tables.
454 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Appendix A. Marketplace Edition installation guide

This appendix provides some details of the procedure we used to install
WebSphere Commerce Suite, Marketplace Edition and the standard sample
application. This is not a detailed instruction guide, and we recommend that
you carefully read the official Marketplace Edition installation documents.
Please also that we expect the installation procedure for the Marketplace
Edition to change significantly when the product is released.

A.1 Prerequisites

1. Ensure the WebSphere Commerce Suite is installed.

Marketplace Edition is based on WebSphere Commerce Suite V4.1, so
WCS should be installed and configured before installing MPE.At a bare
minimum we suggest you create and test an instance called MSER, but to
test WCS’s use of servlets and of LDAP it is a good idea to install the WCS
demomall sample and configure the instance to use LDAP.

2. Upgrade the Java development kit - at the time of writing IBM JDK 1.1.8
PTF 7 is required by the Marketplace Edition.

3. WebSphere Application Server, Advanced Edition should be upgraded -
currently V3.0.2.1 is required.

4. The demomall sample should be installed on WCS41.

5. DB2 extenders should be installed and configured.

6. IBM SecureWay Directory (LDAP) should be installed with its own
database LDAPDB2. Be sure that you can access the LDAP
administrator's screens using your browser.
© Copyright IBM Corp. 2000 455

A.2 Test WebSphere Commerce Suite demomall

To test the demomall on WebSphere Commerce Suite, do the following:

1. Register as a user. Search for some products and add them to the
shopping cart. Process the order and ensure you can get the order
number.

2. Click home. Move down the window and click IBM Computer Next
Generation. Then select click here to enter Thinkpads category. This is
equivalent to going to the following URL:

http://hostname/webapp/commerce/servlet/CategoryDisplay?merchant_rn=600
1&cgrfnbr=33

3. Try the following URL (Replace the http with https):
https://hostname/webapp/commerce/servlet/CategoryDisplay?merchant_rn=60

01&cgrfnbr=33

If you can complete the above three steps, WCS 4.1 is installed correctly, and
the system is ready for installing the Marketplace Edition (MPE).

A.3 Stop Processes

In the following steps use the root ID:

1. Stop WebSphere Application Server, Advanced Edition.

The ldapxcfg utility will modify the contents of the httpd.conf file used by the
IBM HTTP server if you ask it to configure a Web server for directory
administration.It adds configuration statements to the Web server file that
are needed before you can administer LDAP from a browser.The
WebSphere Commerce Suite configuration tool updates the same Web
server file when you create, modify or delete an instance. If ldapxcfg is used
after an instance has been configured by the WCS configuration tool, LDAP
config statements are written in the same block of statements as those from
WCS. This has the unfortunate consequence that when the WCS instance
is deleted the configuration settings for LDAP are also deleted. We
recommend that you either run ldapxcfg before creating a WCS instance or
that you edit httpd.conf and move the LDAP configuration settings out of the
WCS configuration block.

Important Note
456 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

WAS should always be stopped via the Administrative Console, since the
starting process created numerous Java processes that should also be
stopped.

If you do stop WAS via the command line, also use the following process
to stop all the Java processes:

Ps -ef | grep java
Kill -9 pid

Where pid is the process ID.

Repeat the above command for all the WebSphere related Java processes
running.

2. Stop your WCS instance - usually this will be MSER

Note: Do not stop the LDAP and the HTTP Server until you have done the
backups.

A.4 Backups

It is always a good idea to back up your work. We suggest that you create
and mount a separate backup disk system before you start and do all the
backups onto this disk.

Note: The only way the remove MPE currently is to start with a fresh copy of
WCS.

1. Back up the WebSphere Commerce Suite database

This is recommended if you will be doing multiple installs of the
Marketplace Edition. The current install scripts for MPE modify the WCS
database schema and then add test data to the tables. These scripts work
on any database that has a schema in the WCS format, but we found it
useful to back up the demomall database and use this as the starting point
for Marketplace Edition install The steps to back up demomall are:

a. Enter su - db2inst1

b. Enter db2 force applications all

c. Enter db2 backup database WAS to /backup

d. Enter db2 backup database demomall to /backup

2. Back up the IBM Secureway Directory server (LDAP)

This step is not essential and the Marketplace Edition install scripts will
clean up and refresh test data for the LDAP server, but you may consider
Appendix A. Marketplace Edition installation guide 457

this necessary if you have any of your own data in LDAP. The steps to
follow are:

- Launch a browser and go to the URL http://yourhostname/ldap .

- Log in and select the database folder.

- Select the backup link and enter /backup/export.ldif

3. Other software backups

Before continuing with the installation of Marketplace Edition you should
consider backing up WebSphere Commerce Suite 4.1 and related software.
This will be useful should you decide to remove the Marketplace Edition and
revert back to the base WebSphere Commerce Suite.

Make sure that you have ample disk space to continue, because large areas
of temporary disk space will be needed. The following instruction assume that
backups will be placed in the directory /backup:

a. To back up WebSphere Commerce Suite software:

1. Enter cd /usr/lpp

2. Enter tar -cvf /backup/CommerceSuite.tar CommerceSuite;

compress/backup/CommerceSuite.tar

b. To back up IBM HTTP server:

1. Enter cd /usr

2. Enter tar -cvf /backup/HTTPServer.tar HTTPServer; compress

/backup/HTTPServer.tar

c. To back up WebSphere Application Server, Advanced Edition:

1. Enter cd /usr

2. Enter tar -cvf /backup/WebSphere.tar WebSphere; compress

/backup/WebSphere.tar

d. To back up LDAP

1. Enter cd /usr

2. Enter tar -cvf /backup/ldap.tar ldap; compress /backup/ldap.tar

A.5 Stop the remaining processes

Once you have completed the backups, you can stop LDAP and the IBM
HTTP server. Instructions are as follows:

1. Stop LDAP
458 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Use the browser-based administration tool to stop the LDAP server:

a. Navigate to http://<hostname>/ldap

b. Log on as cn=root using the admin password defined when LDAP was
installed

c. Navigate to Server -> Startup/Shutdown

d. Submit the server shutdown form by clicking the Shutdown button

2. Stop the IBM HTTP server

a. Change to the IBM HTTP server directory - the default is:

cd /usr/HTTPServer/bin/

b. Enter ./apachectl stop to stop the Web server

A.6 Install the Marketplace Edition software

In the pre-release code we used when writing this redbook the Marketplace
Edition software was distributed as a jar file with a name such as
MPEmmddx.jar.

To install the Marketplace Edition software:

1. Copy the .jar file to /usr/lpp/CommerceSuite.

2. Run the scourBeforeJar Script

a. Enter cd /usr/lpp/CommerceSuite

b. Enter jar -xvf <your_MPEjar_filename>.jar scourBeforeJar.sh

c. Enter ./scourBeforeJar.sh

3. Extract software from the jar file

a. Enter cd /usr/lpp/CommerceSuite

b. Enter jar -xvf MPEmmddx.jar

If the extraction from the jar file crashes on .a files, just rm them one by
one (they're in memory) and run the extract again.

4. Extract software from the dynasty.jar:

a. Enter cd /usr/lpp/CommerceSuite/classes

b. Enter jar -xvf dynasty.jar

5. Extract software from the collections.jar

a. Enter cd /usr/lpp/CommerceSuite/classes

b. Enter jar -xvf collections.jar
Appendix A. Marketplace Edition installation guide 459

6. Run the scourAfterJar script

a. Enter cd /usr/lpp/CommerceSuite

b. Enter ./scourAfterJar.sh

A.7 Modify the LDAP schema

The Marketplace Edition uses a modified LDAP schema which needs to be
applied to the LDAP server. This is a once-only task that should be done in
preparation for the first time the Marketplace Edition is installed. A detailed
set of instructions are available in the file
/usr/lpp/CommerceSuite/emp_schema/singlebyte/membership/readme.txt.

The basic steps required are:

1. Stop the LDAP server

2. Copy the new schema file to the LDAP server

Enter cp /usr/lpp/CommerceSuite/LDAP/etc/V3.modifiedschema /usr/ldap/etc

3. Enter chown ldap:ldap /usr/ldap/etc/V3.modifiedschema

4. Start the LDAP server

A.8 Prepare LDAP server

1. Start the IBM HTTP server and the LDAP server.

2. Log on as the root user ID.

3. Optionally, remove existing LDAP test data.

Enter
/usr/lpp/CommerceSuite/emp_schema/singlebyte/membership/cleanLDAP.sh

cn=root ldap_pw

4. Start the Web-based LDAP administration tool. ln a Web browser enter the
URL:

http://<hostname>/ldap

5. Log on as the LDAP administrator.

6. Click Suffixes>List Suffixes and check if the suffix
dc=emph,dc=ibm,dc=com already exists.

7. To add the suffix if required, click Suffixes>Add Suffix, enter
dc=emph,dc=ibm,dc=com and click Add a new suffix.
460 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

A.9 Check and update WCS configuration files

Several WebSphere Commerce Suite configuration files must be updated
in order for the Marketplace Edition to run successfully. The files that
should be checked and updated are in the directory
/usr/lpp/CommerceSuite/instance/mser/config/.

1. ncommerce.conf

The entries required are:

USE_LDAP_REGISTRY 0
LDAP_VERSION 3
LDAP_HOST <hostname>
LDAP_PORT 389
LDAP_USE_SSL 0
LDAP_ADMIN_DN cn=root
LDAP_ADMIN_PW 6L01GL/4I0Y=
LDAP_SEARCH_ROOT mid=1,dc=emph,dc=ibm,dc=com
LDAP_DEFAULT_BASE mid=1,dc=emph,dc=ibm,dc=com
LDAP_OCS top person organizationalPerson inetOrgPerson
LDAP_TIMEOUT 0
LDAP_CHARSET

EMP_CONFIG_RESOURCE com.ibm.commerce.emp.Configuration
HUB_ORG_ID 1
CURRENCY_MERCHANTS 1, 1

TRACE_MASK SERVER
TRACE_MASK DB
TRACE_MASK CATALOG
TRACE_MASK EMPAPPROVAL
TRACE_MASK EMPBIZ
TRACE_MASK EMPCOMMON
TRACE_MASK EMPCONTRACTS
TRACE_MASK EMPEXCHANGE
TRACE_MASK EMPFLEXFLOW
TRACE_MASK EMPMEMBERSHIP
TRACE_MASK EMPRFQ
TRACE_MASK EMPAUCTIONS

ACCESS_DEFAULT_POLICIES
/usr/lpp/CommerceSuite/emp_schema/singlebyte/accesscontrol/defaultOrgan
izationPolicies.xml

2. scheduler.conf

The entries required are:
Appendix A. Marketplace Edition installation guide 461

HUB_ORG_ID 1
CURRENCY_MERCHANTS 1, 1
EMP_CONFIG_RESOURCE com.ibm.commerce.emp.Configuration

3. srvrctrl.conf

The entries required are:

HUB_ORG_ID 1

A.10 Prepare the Marketplace Edition database schema

To modify the schema of your WCS database to have the changes required
by the Marketplace Edition:

1. Log on as root user ID.

2. Set up required the Marketplace Edition environment variables; enter

. ./usr/lpp/CommerceSuite/emp_schema/singlebyte/mpesetenv.sh

3. Change to the database administrator ID; enter su - db2inst1

4. Enter cd /usr/lpp/CommerceSuite/emp_schema/singlebyte

5. Enter createSchema.sh demomall where demomall is the name of the WCS
database that you want to use with the Marketplace Edition

6. Enter createTestData.sh demomall to create test data in the modified
database.

A.11 Create LDAP test data

To install test data in the LDAP server:

1. Log on as root user ID

2. Enter cd /usr/lpp/CommerceSuite/emp_schema/singlebyte/membership

3. Enter ./ldapinit.sh cn=root ldap-pw where cn=root is the LDAP
administrator ID and ldap-pw is the administration password

A.12 Create test data for the Marketplace Edition database

This step is optional. It will create IBM test data in the Marketplace Edition
database tables. The examples in this redbook use the IBM-supplied test
data. To create the test data:

1. Change to the database administrator ID; enter su - db2inst1

2. Enter cd /usr/lpp/CommerceSuite/emp_schema/singlebyte
462 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

3. Enter createTestData.sh demomall

A.13 Install the Eureka search tool

To install the Marketplace Edition Eureka search tool:

1. Enter cd /usr/lpp/CommerceSuite

2. Enter cp -R eureka client

3. Enter cp -R pangea client

4. Enter cd /usr/lpp/CommerceSuite

5. Enter cp -R eureka classes

6. Enter cp -R pangea classes

7. Add the following alias in /usr/HTTPServer/conf/httpd.conf (if it does not
already exist):

Alias /client/ /usr/lpp/CommerceSuite/client/

A.14 Copy jndi.jar

Place a copy of the jndi.jar from the LDAP installation in the Marketplace
Edition directory structure:

Enter cp /usr/ldap/java/jndi.jar /usr/lpp/CommerceSuite/classes

A.15 Define Servlets in WebSphere

To define the Marketplace Edition servlets to WebSphere Application Server,
Advanced Edition:

1. Ensure that WAS is started:

a. Enter cd /usr/WebSphere/Appserver/bin

b. Enter ./startupServer.sh

c. WAS is started when the message WebSphere Administration server
open for e-business is written to the file
/usr/WebSphere/AppServer/logs/tracefile

2. Start the WebSphere Administrative console:

a. Enter cd /usr/WebSphere/Appserver/bin

b. Enter ./adminclient.sh &
Appendix A. Marketplace Edition installation guide 463

3. In the WebSphere console, select WCSServlets, go to the Advanced tab,
type /usr/lpp/CommerceSuite/html/en_US in the document root field and
click Apply.

4. Delete the base servlet; in the WAS Console, select BaseServlet (under
WCSServlets), right click and select Remove from the context menu. This
is for the first install only; if MPE is already installed delete
EMPBaseServlet.

5. In the console, select WebSphere Commerce Server and add the
following entries to the classpath:

a. /usr/lpp/db2_06_01/java/db2java.zip

b. /usr/lpp/db2_06_01/java/runtime.zip

6. In the WebSphere console, select default_host , select the Advanced tab,
and add two aliases:

a. fully qualified hostname

b. fully qualified hostname:443

7. Install all the MPE servlets at once:

a. Enter cd /usr/lpp/CommerceSuite/emp_schema/singlebyte/xml

b. Enter chmod 755 ZapAndLoadXML.sh

c. Enter ./ZapAndLoadXML.sh node where node is the name of your
WebSphere node (this is usually the name of the machine without the
domain name).

A.16 Configure aliases in IBM HTTP server

The Marketplace Edition requires aliases to be added to the IBM HTTP server
configuration so that the correct HTML file can be located. To configure the
IBM HTTP server:

1. Enter cd /usr/HTTPServer/conf

2. Edit the httpd.conf file and add the following aliases:

-Alias /standard /usr/lpp/CommerceSuite/html/en_US/emp/standard

-Alias /emp /usr/lpp/CommerceSuite/html/en_US/emp

A.17 Load default access policies

The Marketplace Edition provides a set of default access policies that you can
use with the sample site and also as a start point for customizing your own
policies. To load the default policies:
464 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

1. Log on as user ID root

2. Enter cd /usr/lpp/CommerceSuite/emp_schema/singlebyte/membership

3. Enter ./testinit.sh demomall cn=root ldap_pw

A.18 Start all the Marketplace Edition components

Once installation is complete you need to start all the Marketplace Edition
components to begin testing. The components to start are:

1. IBM HTTP server

2. The LDAP server

3. WCS instance MSER

4. The WebSphere application server called WebSphere Commerce server
Appendix A. Marketplace Edition installation guide 465

466 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Appendix B. Special notices

This publication is intended to help IT architects and IT specialists to design
and deploy e-Marketplace applications. The information in this publication is
not intended as the specification of any programming interfaces that are
provided by WebSphere Commerce Suite. See the PUBLICATIONS section of
the IBM Programming Announcements for IBM WebSphere Commerce Suite
V4.1 and WebSphere Commerce Suite, Marketplace Edition for more
information about what publications are considered to be product
documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM's product, program, or service may be
used. Any functionally equivalent program that does not infringe any of IBM's
intellectual property rights may be used instead of the IBM product, program
or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY
10504-1785.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been
reviewed by IBM for accuracy in a specific situation, there is no guarantee
© Copyright IBM Corp. 2000 467

that the same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environments do so at their
own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of
these Web sites.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

Tivoli, Manage. Anything. Anywhere.,The Power To Manage., Anything.
Anywhere.,TME, NetView, Cross-Site, Tivoli Ready, Tivoli Certified, Planet
Tivoli, and Tivoli Enterprise are trademarks or registered trademarks of Tivoli
Systems Inc., an IBM company, in the United States, other countries, or both.
In Denmark, Tivoli is a trademark licensed from Kjøbenhavns Sommer - Tivoli
A/S.

C-bus is a trademark of Corollary, Inc. in the United States and/or other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United
States and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

e (logo)®
IBM ®
RS/6000
SecureWay
System/390
WebSphere
XT
Lotus
eSuite

Redbooks
Redbooks Logo
S/390
SP
VisualAge
Wizard
400
Domino
468 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

UNIX is a registered trademark in the United States and other countries
licensed exclusively through The Open Group.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks
owned by SET Secure Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service
marks of others.
Appendix B. Special notices 469

470 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Appendix C. Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

C.1 IBM Redbooks

For information on ordering these publications see “How to get IBM
Redbooks” on page 475.

• Patterns for e-business: User-to-Online Buying Pattern using WebSphere
Commerce Suite V4.1, SG24-6156

• Servlet and JSP Programming with IBM WebSphere and VisualAge for
Java, SG24-5755-00

• Application Server Solution Guide, Enterprise Edition: Getting Started,
SG24-5320

• WebSphere V3 Performance Tuning Guide, SG24-5657

• WebSphere Scalability: WLM and Clustering Using WebSphere
Application Server Advanced Edition, SG24-6153

• IBM WebSphere and VisualAge for Java Database Integration with DB2,
Oracle, and SQL Server, SG24-5471

• IBM WebSphere Performance Pack: Load Balancing with IBM SecureWay
Network Dispatcher, SG24-5858

• Design and Implement Servlets, JSPs, and EJBs for IBM WebSphere
Application Server, SG24-5754

• A Secure Way to Protect Your Network: IBM SecureWay Firewall for AIX
V4.1, SG24-5855

• Understanding LDAP, SG24-4986

• WWW Programming: VisualAge for C++ and ST, SG24-4734

• Developing an e-business Application for the IBM WebSphere Application
Server, SG24-5423

• LDAP Implementation Cookbook, SG24-5110
© Copyright IBM Corp. 2000 471

C.2 IBM Redbooks collections

Redbooks are also available on the following CD-ROMs. Click the CD-ROMs
button at ibm.com/redbooks for information about all the CD-ROMs offered,
updates and formats.

C.3 Other resources

These publications are also relevant as further information sources:

• John Barry et al, Developing Object-oriented Software - An
Experienced-Based Approach, Prentice Hall, 1997, ISBN 0137372485

• E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns - Elements
of Reusable Object-Oriented Software, Addison-Wesley, 1995, ISBN
0201633612

• C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King,
S. Angel, A Pattern Language, Oxford University Press, 1977, ISBN
0195019199

• “Enterprise Solutions Structure” in IBM Systems Journal, Volume 38, No.
1, 1999, available at http://www.research.ibm.com/journal/sj38-1.html

• F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stahl,
Pattern-Oriented Software Architecture - A System of Patterns, Wiley,
1996, ISBN 0471958697

• Flanagan, David, Jim Farley, William Crawford and Kris Magnusson, Java
Enterprise in a Nutshell, O’Reilly & Associates, Inc. 1999, ISBN
1565924835

• L. Bass, P. Clements, R. Kazman, Software Architecture in Practice,
Addison Wesley, 1998, ISBN 0201199300

CD-ROM Title Collection Kit
Number

IBM System/390 Redbooks Collection SK2T-2177
IBM Networking Redbooks Collection SK2T-6022
IBM Transaction Processing and Data Management Redbooks Collection SK2T-8038
IBM Lotus Redbooks Collection SK2T-8039
Tivoli Redbooks Collection SK2T-8044
IBM AS/400 Redbooks Collection SK2T-2849
IBM Netfinity Hardware and Software Redbooks Collection SK2T-8046
IBM RS/6000 Redbooks Collection SK2T-8043
IBM Application Development Redbooks Collection SK2T-8037
IBM Enterprise Storage and Systems Management Solutions SK3T-3694
472 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.research.ibm.com/journal/sj38-1.html

• Booch, Grady, Object-Oriented Analysis and Design with Applications
(Addison-Wesley Object Technology Series), Addison-Wesley, 1994, ISBN
0805353402

• Jacobson, Ivar, Object-Oriented Software Engineering; A Use Case Driven
Approach, Addison-Wesley, 1992, ISBN 0201544350

• Rumbaugh, James et al, Object-Oriented Modeling and Design, Prentice
Hall, 1991, ISBN 0136298419

• Fowler, Martin, Kendall Scott (Contributor) and Ivar Jacobson, UML
Distilled; Applying the Standard Object Modeling Language,
Addison-Wesley, 1997, ISBN 0201325632

• Maggie Archibald and Mike Schlosser, Designing e-business Solutions for
Performance white paper, available at:
http://www.ibm.com/software/developer/library/patterns/performance.html

• The Java HotSpot Performance Engine Architecture white paper, available
at: http://java.sun.com/products/hotspot/whitepaper.html

• IBM Application Framework for e-business white papers available at:
http://www.ibm.com/software/ebusiness/

• Flanagan, David, JavaScript: The Definitive Guide, Third Edition, O'Reilly
& Associates, Inc., 1998, ISBN 1565923928

• Maruyama, Hiroshi, Kent Tamura and Naohiko Uramoto, XML and Java:
Developing Web Applications, Addison-Wesley, 1999, ISBN 0201485435

• Nagaratnam, Nataraj et al, Security Overview of IBM WebSphere
Standard/Advance 3.02, IBM white paper, available at:
http://www.ibm.com/software/webservers/appserv/whitepapers.html

• Shane Claussen and Mike Conner, Developing Dynamic Web Sites Using
the WebSphere Application Server, available at:

http://service2.boulder.ibm.com/devcon/news0399/artpage2.htm

C.4 Referenced Web sites

These Web sites are also relevant as further information sources:

• http://www.ibm.com/software/developer/web/patterns developerWorks:
Patterns for e-business

• http://www.ibm.com/software/ebusiness IBM Application Framework

• http://www.research.ibm.com/journal/sj38-1.html/ IBM Systems Journal
- Volume 38, No 1
Appendix C. Related publications 473

http://www.ibm.com/software/developer/library/patterns/performance.html
http://www.ibm.com/software/developer/library/patterns/performance.html
http://java.sun.com/products/hotspot/whitepaper.html
http://www.ibm.com/software/ebusiness/
http://www.ibm.com/software/webservers/appserv/whitepapers.html
http://service2.boulder.ibm.com/devcon/news0399/artpage2.htm

• http://www.ibm.com/software/webservers/commerce/ IBM Software
E-Commerce Overview

• http://java.sun.com/beans/index.htm Sun’s JavaBeans page

• http://www.ibm.com/software/webservers/appserv/doc/v30/se/web/doc/begin_

here/index.html IBM WebSphere Apllication Server V3 Documentation

• Http://www-4.ibm.com/software/webservers/siteanalyzer/doc/help/sacontent

s.html IBM WebSphere Site Analyzer Guide

• http://www.cert.org CERT Coordination Center

• http://java.sun.com/products/jsp/ Sun’s JavaServerPages technology
page

• http://www.econ.jhu.edu/People/Fonseca/walras/hardy.htm Leon Walras
and Walrasian Economics

• http://www.ibm.com/software/webservers/commerce/ IBM Software
E-Commerce overview

• http://www.sun.com/xml/ Sun XML Welcome page

• http://java.sun.com/products/servlet/ Sun Java Servlet Technology page

• http://java.sun.com/products/ejb/ Sun Enterprise JavaBeans Technology
page
474 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

How to get IBM Redbooks

This section explains how both customers and IBM employees can find out about IBM Redbooks,
redpieces, and CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

• Redbooks Web Site ibm.com/redbooks

Search for, view, download, or order hardcopy/CD-ROM Redbooks from the Redbooks Web site.
Also read redpieces and download additional materials (code samples or diskette/CD-ROM images)
from this Redbooks site.

Redpieces are Redbooks in progress; not all Redbooks become redpieces and sometimes just a few
chapters will be published this way. The intent is to get the information out much quicker than the
formal publishing process allows.

• E-mail Orders

Send orders by e-mail including information from the IBM Redbooks fax order form to:

• Telephone Orders

• Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at the Redbooks Web site.

In United States or Canada
Outside North America

e-mail address
pubscan@us.ibm.com
Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order”
section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may register for information on workshops, residencies, and Redbooks by accessing
the IBM Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button.
Look in the Materials repository for workshops, presentations, papers, and Web pages developed
and written by the ITSO technical professionals; click the Additional Materials button. Employees may
access MyNews at http://w3.ibm.com/ for redbook, residency, and workshop announcements.

IBM Intranet for Employees
© Copyright IBM Corp. 2000 475

mailto: pubscan@us.ibm.com
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://w3.itso.ibm.com/
http://w3.ibm.com/
http://www.redbooks.ibm.com/
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.redbooks.ibm.com/

IBM Redbooks fax order form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
476 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Abbreviations and acronyms

IBM International Business
Machines Corporation

ITSO International Technical
Support Organization

B2B Business to Business

B2C Business to Consumer

RFQ Request for Quote

RFP Request for Proposal

PKI Public Key
Infrastructure

DNS Domain Name Service

SSL Secure Sockets Layer

ESS Enterprise Solution
Structure

LDAP Lightweight Directory
Access Protocol

DMZ Demilitarized Zone

WAS WebSphere Application
Server

SLIP Serial Line Internet
Protocol

MTU Maximum transmission
protocol

EGP Exterior Gateway
Protocol

ICMP Internet Control
Message Protocol

PPP Point to Point Protocol

SMTP Simple Mail Transfer
Protocol

UDP User Datagram
Protocol

CPU Central Processing
Unit.

SSI Server-side include
© Copyright IBM Corp. 2000
HTTP Hyper Text Transfer
Protocol

API Application
Programming Interface

TCP Transmission Control
Protocol

IP Internet Protocol

ISP Internet Service
Provider

HTTPS Secure Hypertext
Transfer Protocol

TCP/IP Transmission Control
Protocol/Internet
Protocol

SMTP Simple Mail Transfer
Protocol

FTP File Transfer Protocol

IGP Interior Gateway
Protocol

BGP Border Gateway
Protocol

MSS Maximum Segment
Size

IC Interaction controller

MVC Model-View-Controller

OF Overrideable function

IDE Integrated
Development
Environment

UML Unified Modelling
Language

SLA Service Level
Agreement

TSM Tivoli Storage Manager

WTE WebSphere Test
Environment

QoS Quality of Service
477

HTTPS Secure Hypertext
Transfer Protocol

WCS WebSphere Commerce
Suite

PO Purchase Order

XML Extensible markup
language

XSL eXtensible stylesheet
language

DTD Document type
definition

SGML Standard generalized
markup language
478 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

Index

Numerics
55% rule 55

A
access control 89, 207, 241, 250

customizing 264
access groups 159
access policy 241, 254, 259

administration 259
create 259
edit 259
example 257

access roles 159
ACL 159
ACPolicy 256
actions 241, 251, 253
actors 124
adaptive compiler 66
additional infrastructure 206
administrative domain 137
administrative model 137
administrative repository 137, 147
administrative resources 138
administrative server 137
administrators 91, 269
aggregated catalog 195, 224, 269
AIX 222
anonymity 421
applets 74
Application clients 97
Application Framework for e-business 18, 62, 77,
96, 104
application requirements 123
application server 97, 142
application topology 21

Subset1 26
Subset2 27
Subset3 28

approval flow 23, 89, 208
approval process 447
approvals 417

auctions 419
command registration 447
interaction controllers 450
registration 245
© Copyright IBM Corp. 2000
RFQ 417
auctions 5, 90, 200, 418

approvals 419
pricing 423

authentication 57, 118, 139, 181, 267
authorization 139
automated supplier integration 27

B
B2B 4, 195
B2B gateway 33
B2C 4
backup 183

database 189
guidelines 191
LDAP 189
operating system 188

bandwidth 54
Bean Managed Persistence 81
BMP 81
business requirements 123
business-to-business 4
business-to-business integration 24
business-to-consumer 4
buy side 5
buyers 4, 26, 40, 90, 117, 197, 269

reports 442
buying process 40

C
C Set++ 226
C++ 91, 108, 209

compiler 226
caching 62, 117, 153
card buffers 55
catalog 89, 269

browse 273, 279
commands 283
content

catalog display 279
create 308
creating content 280
database tables 294
hierarchy 270
high level overview 269
interaction controllers 282
479

JSP 286
low level design 277
objects 289
population 323
search 276
subsystem 269
tools 224
views 272

Catalog Architect 225
catalog based buying 334
categories 271, 278

add category 317
add parent category 316
create 315
creation 280
delete product category 322
modify parent category 317
move product category 323
remove parent category 316

CCF 85
certificate 118, 181, 267
certificate authority 57
CGI 62, 76, 79, 85, 171
challenge mechanism 181
CICS 85
class diagram 125
clones 144
cloning 140
clustering 115
CMP 81
code review questionnaire 127
CommandBeans 105
commands 83, 105, 108, 210, 265

approval 449
catalog 283
categories 119
contracts 346
exchange 431
factory 106
flex flow 452
integrity 120
life-cycle 105
RFQ 374

commerce server 32
Common Connector Framework 85
compiler

adaptive 66
JIT 66
static 67

conceptual diagram 125
configuration 213
configuration manager 151
connection pooling 86
connectors 85, 98
Container Managed Persistence 81
containment hierarchy 141
content 10, 13
content management 9, 37, 95
contracts 5, 90, 203, 341

buying 361
commands 346
create 344, 354
database tables 350
high level overview 342
interaction controllers 345
low level design 342
objects 349
obligations 343
RFQ 412
rights 343

controller 78, 100
cookie 34, 40, 95, 114
create access policy 259
create groups 260
cross referencing 121
customizing

access control 264

D
data dictionary 270

attribute definition 309
create 309

data sources 143
database 67, 84

catalog tables 294
contracts tables 350
exchange tables 427
RFQ tables 380
tools 225

database server 34
DataBean 106
DB2 171

administration 172
decision support 12
decryption 56
defaultAcessPolicy.xml 257
delegation 139, 254
480 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

delete groups 261
delivery gateway 36
deployment 96
deployment descriptor 81
deployment plan 128
design pattern 99, 104
development 221

environment 221
tools 129, 221, 222

DHTML 72
digital certificates 57
directory entries 165
directory management tool 159, 161
directory schema 162, 268
directory tree 164
DMT 159
DMZ 39, 42, 95, 177, 185, 187
DNS 36
DOM 78
domain name service 36
double system implementation 213
DTD 72
duplexing 54
dynamic pricing 10

E
edit access policy 259
edit groups 261
EJB 80
EJB container 81, 143
e-Marketplace

administrator 154
challenges 7
horizontal 5
introduction 4
principle functions 21
purpose 6
server 101
vertical 5

e-Marketplace administrator 435
e-Marketplace Topology 26

Subset 1 26
Subset 2 27
Subset 3 28

empadmin 245
EMPBaseServlet 103, 113
encryption 56
Enterprise Application Integration 25

enterprise applications 143
Enterprise JavaBeans 80, 142, 143
entity bean 81, 143
Ethernet 54
exchange 6, 90, 200, 419

buyer interaction 438
commands 431
database tables 427
high level overview 420
JSP 434
low level design 422
matching 420, 422
orderbook 420
price algorithms 424
price determination 422
subsystem 420
trading 420
trading post 425

F
farm implementation 215
firewall 36, 95, 177
fixed price offering 5

buying 335
create 328

flex flow 441, 448, 451
business processes 451, 453
command flow 452
commands flow 452
commerce flows 451, 453
RFQ 369, 417
state machine 453

frame 53
freeAccessPolicy.xml 255
full e-Marketplace 29
fully integrated marketplace 28

G
gateway 33, 36, 42
generic servers 145
groups 250

administration 260
create 260
delete 261
edit 261

guest registration 244
481

H
hardware

minimum requirements 216
performance 51
recommendations 217
sizing 51

hop 54
Horizontal e-Marketplaces 5
HotMedia 223
HTML 71, 73, 76
HTML clients 96
HTTP 58, 59, 91
hub 21, 195
hub administrator 196, 244, 249
hub business 90, 206

susbsystem 441
Hypertext Transfer Protocol 58

I
I/O 52
IBM Administration Server 169
IBM HTTP Server

administration 169
IBM Tivoli Storage Manage 184
IIOP 82, 144
implicit UserGroup 258
instance 151
integration 10, 12, 25, 31, 34, 111

server 34
testing 130

interaction controllers 103, 113, 209, 265
approvals 450
catalog 282
contracts 345
RFQ 373

J
JAR files 75, 142
Java Message Service 82
Java programming model 209
Java Servlets 79, 85, 103
Java Transaction API 82
Java Virtual Machine 66

JVM 142
JavaBeans 80, 85, 91, 93

events 93
introspection 94
methods 93

persistence 94
properties 93

JavaScript 71, 73
JavaServer Pages 79, 84, 92, 104
JDBC 81, 86, 116, 143

drivers 144
JIT compiler 66
JMS 82
JNDI 82
JSP 79, 84, 91, 92, 104, 107, 113, 223

caching 117
catalog 286
contracts 347
editing 234
exchange 434
RFQ 377

JTA 82
JVM 64, 65, 66, 77, 91

L
LDAP 82, 119, 153, 156, 267

backup 189
Linux 222
liquidity 8, 421
load balancer 115
locking 63

M
macros 94, 107, 223
mail server 35
maintenance plan 128
manage offering 275, 279
market maker 4, 6
markets 241
markup language 71
matching 202, 422
members 197

reports 443
membership 89, 241

registration 89
subsystem 199

memory 52
merchant 241
MIME 144, 171
model 78, 100
models and cloning 144
Model-View-Controller 100, 281
mrkadmin 245
482 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

MVC 100, 281

N
ncadmin 154, 309
negotiation 90, 197, 367

subsystem 200
Net.Data 84, 91, 94, 105, 107
network card 52
nodes 32, 137, 140

B2B gateway 33
commerce server 32
content management 37
database server 34
delivery gateway 36
domain name service 36
firewall 36
integration server 34
mail server 35
notification server 35
personalization 36
public key infrastructure 36
purchaser 34
search engine 36
Web server redirector 33
workflow server 35

notification server 35

O
object classes 162
offering 271, 278

compound 281
contract 335, 341
create 280
create fixed price offering 329
exchange 435
manage 275

optimistic locking 63
orderbook 420

browse 437
orders 89, 207

management 197
overridable function 446
RFQ 410
subsystem 445

organization 241
administrator 196, 244
code 246
registration 249

reports 443
overridable function 83, 108, 446

guarded chain 446
orders 446

P
parent category 316
patterns

Business to Business e-Marketplace 15
Business-to-Business 15
design 3
for e-business 14
how to use 17
introduction 3
User-to-Business 15
User-to-Data 15
User-to-Online Buying 15
User-to-User 15
Web site 18

payments 152
performance 51, 117

and security 55
application server 64
caching 62
database 67
hardware 51
I/O 52
network card 52
TCP/IP 57
testing 130
Web server 60

persistence 94
persistent beans 292
persistent objects 210
personalization 36, 40
pervasive computing 34
pessimistic locking 63
pipelining 55
PKI 267
players 196
plug-ins 71
policy manager 264
positions 424
prerequisite software 218
prices

algorithms 424
auction 423
call market 423
483

clearing 422
continuous double action 423
profit driven 423
Walrasian tatonnement 423

pricing 90
contracts 5
fixed price offering 5
standard price offering 5
subsystem 203

pricing contracts subsystem 203
Product Advisor 225
product description 271, 278

create 323
templates 271

product taxonomy 271
programming model 209
project plan 123
project road map 123
public key infrastructure 36
publishing server 237
publishing targets 237
purchase orders 41, 207, 441
purchaser 34

R
RDN 165
registration 89, 243

approvals 245
organization 249

relative distinguished name 165
remote method invocation 82, 144
reports 128, 442

buyer transactions 442
member 443
organization 443
supplier transaction 442
XML download 444

repository 137, 147
request 92, 97
request for quote 6
resource groups 251
resource roles 252
ResourceCategory 255, 258
ResourceGroup 256, 259
resources 138, 241, 251

analysis 139
response 93, 97
Retries 55

RFQ 6, 90, 200, 367
approvals 417
buyer interaction 400
commands 374
contracts 412
create 372, 400
create response 413
database tables 380
entity relationship diagram 381
evaluate 405
flex flow 369, 417
high level overview 368
interaction controllers 373
JSP 377
low level design 368
objects 378
orders 410
responses 373, 404
state transition 369
supplier interaction 413

RMI 82, 144
roles 208, 251

assigning 261
root category 271
RS6000 216
rule server 153
runtime environment 213
runtime topology 31

basic 37
basic variation 38
full integration 43
Subset 1 40
Subset 2 42
Subset 3 43
supplier integration 42
Web integrated 40

S
SAX 78
scheduler 371
schema 162
search engine 36
security 55, 95, 99, 117, 175

network 177
operating system 176
physical systems 175
WebSphere components 179
WebSphere model and policy 181
484 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

security plug-in 179
sell side 5
sellers 4, 26

reports 442
serializable 116
server group 140
server-side includes 51, 61
server-side programming 77
service level agreement 133
servlet engines 141
servlet redirectors 144
servlets 62, 79, 85, 91, 141
session 114

bean 80
clustering 116
database 116
management 114
managers 145
persistence 116
pool 116

SGML 73
shopper 241
shopping cart 40, 90, 197
simplexing 54
single sign-on 183
site analyzer 148
site manager 154, 310
software

prerequisites 218
source control 130
SQL 67
SQLJ 86
SSL 34, 55, 159
standard price offering 5
state machine 453
static compiler 67
Store creator 225
stress testing 130
style sheets 73
subsystems 198

catalog 269
contracts 342
exchange 420
hub business 441
membership 199
negotiation 200, 367
orders 445
pricing contracts 203

success factors 7

suppliers 90, 117, 197, 269
process 41
reports 442

systems
management 133
testing 130

T
task 83, 110
TCP/IP 57
testing 130

integration 130
performance 130
plan 127
stress 130
systems 130
usability 130

thin-client 104
threads 65
topology 137
TPA 33
traceroute 53
trading partner 443
Trading Partner Agreement 33
trading positions 424
trading post 425

create 436
responsibilities 425

transcoding 96
triple system implementation 214
TSM 184

U
UDB 171

administration 172
UML 125
Unified Modelling Language 125
URL rewriting 95, 114
usability testing 130
use case

buyer 334
contracts 344
diagram 124
model 123
RFQ 372
seller 328

user 241, 242, 250
group 255
485

profiles 145
registration 245
registry 119, 181
roles 241, 251

UserGroup 256
User-to-Business 23
User-to-Data 26
User-to-Online Buying 23
User-to-User 23, 26

V
vertical e-Marketplaces 5
view 78, 100
virtual host 144
VisualAge for Java 221, 224

W
Web applications 139, 141
Web browser 34, 70, 71
Web client 69
Web integrated e-Marketplace 26, 40
Web resources 135, 145
Web server 60, 83, 97

configuration 218
logs 61
process handling 60
redirector 33
stay alive 64

WebSphere
administrative console 135

tasks 136
topology 137
types 137

WebSphere Commerce Studio 221, 223
WebSphere Page Designer 224

editing JSP 234
WebSphere Studio

configuring 233
FTP import 231
importing files 229
publishing 237

WebSphere Test Environment 224
Windows 222
workflow server 35
Worldwide Shipbuilding Marketplace 229, 269, 309

X
XML 41, 42, 72, 78, 81, 197, 259

download 444
XSL 72, 78
486 e-Marketplace Pattern using WebSphere Commerce Suite, Marketplace Edition

© Copyright IBM Corp. 2000 487

IBM Redbooks review

Your feedback is valued by the Redbook authors. In particular we are interested in situations where a
Redbook "made the difference" in a task or problem you encountered. Using one of the following
methods, please review the Redbook, addressing value, subject matter, structure, depth and
quality as appropriate.

• Use the online Contact us review redbook form found at ibm.com/redbooks
• Fax this form to: USA International Access Code + 1 845 432 8264
• Send your comments in an Internet note to redbook@us.ibm.com

Document Number
Redbook Title

SG24-6158-00
e-Marketplace Pattern Using WebSphere Commerce Suite,
Marketplace Edition Patterns for e-business Series

Review

What other subjects would you
like to see IBM Redbooks
address?

Please rate your overall
satisfaction:

O Very Good O Good O Average O Poor

Please identify yourself as
belonging to one of the
following groups:

O Customer O Business Partner O Solution Developer
O IBM, Lotus or Tivoli Employee
O None of the above

Your email address:
The data you provide here may
be used to provide you with
information from IBM or our
business partners about our
products, services or activities.

O Please do not use the information collected here for future
marketing or promotional contacts or other communications beyond
the scope of this transaction.

Questions about IBM’s privacy
policy?

The following link explains how we protect your personal information.
ibm.com/privacy/yourprivacy/

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html
http://www.ibm.com/privacy/yourprivacy/
http://www.redbooks.ibm.com/
http://www.ibm.com/privacy/yourprivacy/

(1.0” spine)
0.875”<->1.498”

460 <-> 788 pages

e-M
arketplace Pattern Using W

ebSphere Com
m

erce Suite,
M

arketplace Edition Patterns for e-business Series

®

SG24-6158-00 ISBN 0738417912

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

e-Marketplace Pattern
Using WebSphere Commerce
Suite, Marketplace Edition
Patterns for e-business Series

Understanding the
e-Marketplace
Pattern

Guidelines for
building an
e-Marketplace
solution

Implementation
examples

The Patterns for e-business are a group of proven, reusable
assets that can help speed the process of developing
applications. The pattern discussed in this book, the
Business-to-Business e-Marketplace Pattern, is an emerging
pattern that allows the development of e-Marketplace hub
applications which bring multiple buyers and sellers together
in a way that provides efficient electronic trading of goods and
services. Subsets of the application topologies for the
Business-to-Business e-Marketplace Pattern are used to
describe different parts of the full marketplace topology, and
they represent increasing levels of complexity, functionality
and integration in the topology, ranging from a simple
e-Marketplace to a fully integrated e-Marketplace.
Part 1 of the redbook describes the nature of e-Marketplaces
and guides you through the process of choosing an
application and runtime topology to deliver the desired market
functionality.
Part 2 of the redbook provides a set of guidelines for building
your e-Marketplace application. These guidelines include
discussion of performance, technology options, application
design, application development, systems management, and
security.
Part 3 of the redbook describes, using the standard sample
application, the functions available in the WebSphere
Commerce Suite, Marketplace Edition for AIX.

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Contents
	Preface
	The team that wrote this redbook
	Comments welcome

	Part 1. Business-to-Business patterns: e-Marketplace topology
	Chapter 1. Introduction to the e-Marketplace Pattern
	1.1 Introduction to Patterns
	1.2 Introduction to e-Marketplaces
	1.2.1 Why e-Marketplaces?
	1.2.2 Challenges and inhibitors
	1.2.3 Critical success factors
	1.2.4 e-Marketplace solutions: designing for success
	1.2.5 Critical success factors of e-Marketplace participants
	1.2.6 Characteristics of an effective e-Marketplace platform
	1.2.7 The future of e-Marketplaces
	1.2.8 WebSphere Commerce Suite, Marketplace Edition for AIX

	1.3 Introduction to Business-to-Business e-Marketplace Pattern
	1.4 How to use patterns
	1.5 Patterns Web site
	1.6 Patterns and Application Framework for e-business
	1.7 Structure of this book

	Chapter 2. e-Marketplace application topology
	2.1 The Business-to-Business e-Marketplace Pattern
	2.2 Subsets of the e-Marketplace topology
	2.3 Subset 1: Web Integrated e-Marketplace
	2.4 Subset 2: e-Marketplace With automated supplier integration
	2.5 Subset 3: Fully integrated marketplace

	Chapter 3. e-Marketplace runtime topology
	3.1 Overview
	3.2 Node types in the e-Marketplace
	3.2.1 Commerce server
	3.2.2 Web server redirector
	3.2.3 B2B gateway
	3.2.4 Database server
	3.2.5 Purchaser
	3.2.6 Integration server
	3.2.7 Notification server
	3.2.8 Workflow server
	3.2.9 Mail server
	3.2.10 Public key infrastructure (PKI)
	3.2.11 Domain name service (DNS)
	3.2.12 Protocol firewall and domain firewall
	3.2.13 Search engine
	3.2.14 Delivery gateway
	3.2.15 Personalization
	3.2.16 Content management and aggregated catalog

	3.3 Core runtime topologies
	3.3.1 Emerging basic runtime topolog
	3.3.2 Emerging basic variation
	3.3.3 Advanced Runtime Topology

	3.4 e-Marketplace runtime topology subsets
	3.4.1 Subset 1 - Web integrated e-Marketplace
	3.4.2 Subset 2 - e-Marketplace with supplier integration
	3.4.3 Subset 3- e-Marketplace with full integration

	Chapter 4. e-Marketplace product mapping
	4.1 AIX product mapping
	4.1.1 Detailed product mapping - AIX platform

	Part 2. Business-to-Business patterns: e-Marketplace guidelines
	Chapter 5. Performance guidelines
	5.1 Hardware performance
	5.1.1 CPU
	5.1.2 Memory
	5.1.3 Network card
	5.1.4 I/O

	5.2 Network performance
	5.2.1 Protocol
	5.2.2 Fixed frame size
	5.2.3 Duplexing
	5.2.4 Hop count
	5.2.5 Bandwidth utilization and errors
	5.2.6 Retries or pipelining
	5.2.7 Network card buffers

	5.3 Security
	5.3.1 Secure Socket Layer or Secure Hypertext Transfer Protocol
	5.3.2 Encryption
	5.3.3 Authentication

	5.4 Operating system
	5.4.1 Memory
	5.4.2 TCP/IP stack
	5.4.3 Web server
	5.4.4 Process handling
	5.4.5 Logging
	5.4.6 SSI
	5.4.7 CGI-BIN
	5.4.8 Caching
	5.4.9 Web server stay alive

	5.5 Application server
	5.5.1 Selecting a JVM
	5.5.2 Threads
	5.5.3 Caching

	5.6 Java Virtual Machine
	5.6.1 Just -In-Time compiler
	5.6.2 Adaptive compiler
	5.6.3 Static compiler

	5.7 Database
	5.7.1 Indexes
	5.7.2 Standard Query Language (SQL)

	5.8 References on performance

	Chapter 6. Technology options
	6.1 Web clients
	6.1.1 Web client overview
	6.1.2 Web browser
	6.1.3 Markup languages
	6.1.4 JavaScript
	6.1.5 Java applets
	6.1.6 C++ CGI

	6.2 WebSphere Application Server
	6.2.1 XML
	6.2.2 JavaServer Pages (JSP)
	6.2.3 Java Servlets
	6.2.4 JavaBeans
	6.2.5 Enterprise JavaBeans (EJB)
	6.2.6 Additional enterprise Java APIs

	6.3 WebSphere Commerce Suite technology
	6.3.1 Commands, tasks and overrideable functions
	6.3.2 Database
	6.3.3 Net.Data
	6.3.4 WebSphere Application Server integration - Marketplace Edition
	6.3.5 Connectors

	6.4 Where to find more information

	Chapter 7. Application design guidelines
	7.1 High-level feature summary of the Marketplace Edition
	7.1.1 Features
	7.1.2 Modifications to WCS 4.1
	7.1.3 Processes
	7.1.4 Players

	7.2 Understanding the Marketplace Edition technologies
	7.2.1 Servlets
	7.2.2 JavaServer Pages
	7.2.3 JavaBeans
	7.2.4 Net.Data

	7.3 General application design guidelines
	7.4 Application elements
	7.4.1 Clients
	7.4.2 WebSphere Commerce Suite

	7.5 Application Structure
	7.5.1 Web application
	7.5.2 e-Marketplace server

	7.6 Marketplace Edition application logic
	7.6.1 Interaction controllers
	7.6.2 JavaServer Pages
	7.6.3 Commands
	7.6.4 Command factory
	7.6.5 DataBeans
	7.6.6 DataBean manager
	7.6.7 Net.Data
	7.6.8 C++ programming model
	7.6.9 External systems
	7.6.10 Putting it together

	7.7 Session management
	7.7.1 Cookies and URL rewriting
	7.7.2 Session persistence and clustering

	7.8 Application performance
	7.8.1 JSP caching
	7.8.2 Integrated buyers and suppliers

	7.9 Security
	7.9.1 Authentication
	7.9.2 User registry
	7.9.3 Command access
	7.9.4 Integrity
	7.9.5 Cross referencing

	Chapter 8. Application development guidelines
	8.1 The application development project road map
	8.1.1 Project plan
	8.1.2 Business requirements
	8.1.3 Application requirements
	8.1.4 Use cases model
	8.1.5 Conceptual diagram
	8.1.6 Class diagram
	8.1.7 Code review questionnaire
	8.1.8 Detailed test plan
	8.1.9 Deployment plan
	8.1.10 Maintenance plan
	8.1.11 The application development project road map reports

	8.2 Development tool set
	8.3 Source control
	8.4 Testing

	Chapter 9. System management guidelines
	9.1 General systems management guidelines
	9.2 Product-specific systems management guidelines
	9.2.1 WebSphere Application Server Administrative Console
	9.2.2 Site Analyzer
	9.2.3 WebSphere Commerce Suite, Marketplace Edition for AIX
	9.2.4 SecureWay LDAP
	9.2.5 Web server management
	9.2.6 DB2 UDB management

	9.3 Security guidelines
	9.3.1 Physical systems security
	9.3.2 Operating systems security
	9.3.3 Network security
	9.3.4 Web application security
	9.3.5 WebSphere security model and policy
	9.3.6 HTTP single sign-on (SSO)

	9.4 Backup and recovery guidelines
	9.4.1 Using Tivoli Storage Manager (TSM)
	9.4.2 Application backup and recovery
	9.4.3 Guidelines for backup and recovery

	Part 3. Business-to-Business Patterns: e-Marketplace example
	Chapter 10. Marketplace Edition overview
	10.1 Marketplace Edition objectives
	10.2 The Marketplace Edition players
	10.3 The Marketplace Edition trading process
	10.4 MarketPlace subsystems
	10.4.1 Catalog subsystem
	10.4.2 Membership subsystem
	10.4.3 Negotiation subsystem
	10.4.4 Pricing contracts subsystem
	10.4.5 Additional infrastructure

	10.5 Marketplace Edition programming model
	10.6 Example application

	Chapter 11. Example - runtime environment
	11.1 Hardware implementation
	11.1.1 Minimum hardware requirements for implementation

	11.2 Hardware recommendations
	11.3 Prerequisite software
	11.4 Web server configuration
	11.5 WebSphere Commerce Suite configuration
	11.6 JDK implementation

	Chapter 12. Example - development environment
	12.1 Development environment overview
	12.2 Development platforms
	12.3 Development tools
	12.3.1 WebSphere Commerce Studio
	12.3.2 Page Designer
	12.3.3 HotMedia
	12.3.4 VisualAge for Java
	12.3.5 Catalog and shopping tools
	12.3.6 Catalog Architect
	12.3.7 Database tools
	12.3.8 Changes between WCS 4.1 and Marketplace Edition
	12.3.9 C++ compiler
	12.3.10 Development tool interactions

	12.4 Roles
	12.5 Importing the sample site into WebSphere Studio
	12.5.1 Importing files using the Import Wizard
	12.5.2 Making changes
	12.5.3 Configuring the publish operation
	12.5.4 Publishing the modified files
	12.5.5 Verifying the results

	Chapter 13. Example - membership and access control
	13.1 Membership
	13.1.1 Participants overview
	13.1.2 Registration basics
	13.1.3 Pre-registered administrative members
	13.1.4 Registering new users
	13.1.5 Registering new organizations

	13.2 Access control
	13.2.1 Users and user groups
	13.2.2 Resource groups
	13.2.3 Roles
	13.2.4 Actions
	13.2.5 Access policy overview
	13.2.6 Access policy resource groupings
	13.2.7 Manual access policy walkthrough
	13.2.8 Administering access policies graphically
	13.2.9 Administering groups
	13.2.10 Assigning roles

	13.3 Customizing the membership and access control subsystem
	13.3.1 Policy manager
	13.3.2 Interaction controllers
	13.3.3 Commands
	13.3.4 Database tables

	13.4 Authentication
	13.5 LDAP

	Chapter 14. Example - catalog subsystem
	14.1 Catalog subsystem high level-overview
	14.1.1 Catalog views
	14.1.2 Catalog search

	14.2 Catalog subsystem low-level design
	14.2.1 Design principles
	14.2.2 Usage models
	14.2.3 Code level components

	14.3 Examples of catalog creation and maintenance
	14.3.1 Creation and maintenance of the data dictionary
	14.3.2 Creation and maintenance of category hierarchy
	14.3.3 Populating the catalog

	14.4 Supplier interaction: offering creation and maintenance
	14.4.1 Create a fixed price offering

	14.5 Buyer interaction: examples of catalog based buying
	14.5.1 Process of catalog-based buying

	14.6 Interaction with other subsystems

	Chapter 15. Example - pricing and contract subsystem
	15.1 Contracts
	15.1.1 Contract high-level overview
	15.1.2 Contract low-level design
	15.1.3 Example: supplier interaction
	15.1.4 Example: buyer interaction
	15.1.5 Interaction with other components and subsystems

	Chapter 16. Example - negotiation subsystem
	16.1 RFQs
	16.1.1 High-level overview
	16.1.2 Low-level design
	16.1.3 Example: buyer interaction
	16.1.4 Example: supplier interaction
	16.1.5 Interaction with other components and subsystems

	16.2 Auctions
	16.3 Exchanges
	16.3.1 High-level overview
	16.3.2 Low-level design
	16.3.3 e-Marketplace administrator interaction
	16.3.4 Supplier interaction
	16.3.5 Buyer interaction
	16.3.6 Interaction with other components and subsystems

	Chapter 17. Example - additional e-Marketplace infrastructure
	17.1 Hub business subsystems
	17.2 e-Marketplace reports
	17.3 Organization reports
	17.4 Member reports
	17.5 XML download ability
	17.6 Offline reports
	17.6.1 Configure offline reports

	17.7 Order subsystem
	17.7.1 High-level overview
	17.7.2 Low-level overview

	17.8 Approvals subsystem
	17.8.1 High-level overview
	17.8.2 Low-level design

	17.9 Flex flow high-level overview
	17.9.1 Level one: commands
	17.9.2 Level two: commerce functions
	17.9.3 Level three: market/business processes

	17.10 Flex flow low-level overview
	17.10.1 State machine

	Appendix A. Marketplace Edition installation guide
	A.1 Prerequisites
	A.2 Test WebSphere Commerce Suite demomall
	A.3 Stop Processes
	A.4 Backups
	A.5 Stop the remaining processes
	A.6 Install the Marketplace Edition software
	A.7 Modify the LDAP schema
	A.8 Prepare LDAP server
	A.9 Check and update WCS configuration files
	A.10 Prepare the Marketplace Edition database schema
	A.11 Create LDAP test data
	A.12 Create test data for the Marketplace Edition database
	A.13 Install the Eureka search tool
	A.14 Copy jndi.jar
	A.15 Define Servlets in WebSphere
	A.16 Configure aliases in IBM HTTP server
	A.17 Load default access policies
	A.18 Start all the Marketplace Edition components

	Appendix B. Special notices
	Appendix C. Related publications
	C.1 IBM Redbooks
	C.2 IBM Redbooks collections
	C.3 Other resources
	C.4 Referenced Web sites

	How to get IBM Redbooks
	IBM Redbooks fax order form

	Abbreviations and acronyms
	Index
	IBM Redbooks review

