

ibm.com/redbooks

Linux on IBM
zSeries and S/390:
ISP/ASP Solutions

Michael MacIsaac, Peter Chu
Vic Cross, Chris Curtis

Ivo Gomilšek, Rob van der Heij
Liz Holland, Barton Robinson

Martin Söllig, Simon Williams

Create and maintain hundreds of virtual
Linux images

Running on the mainframe

Managed by z/VM

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Linux on IBM ̂zSeries and S/390: ISP/ASP
Solutions

December 2001

International Technical Support Organization

SG24-6299-00

© Copyright International Business Machines Corporation 2001. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (December 2001)

This edition applies to z/VM 4.2 (ESP) and many different Linux distributions, but largely an internal
development version of SuSE Linux Enterprise Server was used.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. HYJ Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Take Note! Before using this information and the product it supports, be sure to read the
general information in “Special notices” on page 455.

Contents

Preface . xiii
The team that wrote this redbook. xiv
Special notice . xvii
IBM trademarks . xviii
Comments welcome. xviii

Part 1. Theoretical considerations . 1

Chapter 1. Introduction . 3
1.1 What this redbook is . 4
1.2 What this redbook is not . 4
1.3 zSeries and S/390 architecture overview . 4

1.3.1 Modes of running Linux. 5
1.3.2 Processor architecture . 8
1.3.3 Memory architecture . 10
1.3.4 I/O architecture . 11
1.3.5 Network architecture . 13
1.3.6 Disk architecture . 14
1.3.7 Models. 15

1.4 Solution applicability. 15
1.4.1 Better matches . 15
1.4.2 More difficult matches . 16

1.5 z/VM and why you want it . 16
1.6 Skills and resources required . 17

1.6.1 Planning and installation . 17
1.6.2 Linux image deployment . 18
1.6.3 Maintenance . 18

Chapter 2. Sizing . 19
2.1 The nature of sizing . 20

2.1.1 Sizing vs. capacity planning . 20
2.2 Relative system capacity . 21

2.2.1 Benchmarks . 22
2.2.2 The bottom line . 25

2.3 Utilization . 26
2.3.1 White space - unused capacity . 27

2.4 Example sizing - analysis of company XYZ . 33
2.5 Concluding remarks . 38

2.5.1 Total Cost of Ownership (TCO). 39
© Copyright IBM Corp. 2001 iii

2.5.2 Some trade-offs. 42
2.5.3 Final reminder . 42

Chapter 3. Virtual server architecture . 45
3.1 Why an architecture is required . 46

3.1.1 Components of the virtual server architecture 46
3.2 Disk topology . 46

3.2.1 The DASD driver . 47
3.2.2 Linux instances with dedicated disk . 47
3.2.3 Linux sharing data. 49
3.2.4 Sharing disk in memory. 53
3.2.5 Minidisk caching . 53
3.2.6 Limitations of sharing disk. 54

3.3 Memory topology . 55
3.3.1 Linux ‘jiffies’ . 55
3.3.2 Large guest memory . 56
3.3.3 Linux swap to VM virtual disk . 58
3.3.4 Linux swap files in memory . 59
3.3.5 “Hybrid” swap method . 61
3.3.6 Sharing Linux memory . 63

3.4 Network topology . 64
3.4.1 Network devices for Linux . 64
3.4.2 Network structure . 65
3.4.3 General network considerations . 70

3.5 Workload tuning . 70

Chapter 4. Networking a penguin colony . 73
4.1 Network devices . 74

4.1.1 Open Systems Adapter (OSA) . 74
4.1.2 Channel-to-channel (CTC) . 74
4.1.3 Inter-User Communications Vehicle (IUCV) 75
4.1.4 Other devices . 75
4.1.5 HiperSockets . 76

4.2 Resilient IP addressing. 77
4.2.1 DNS manipulation . 77
4.2.2 Connection balancing . 79
4.2.3 Virtual IP addressing . 79

4.3 Packet filtering and Network Address Translation 81
4.3.1 What is packet filtering . 81
4.3.2 What you can do with Linux packet filtering 82
4.3.3 Planning for packet filtering implementations 82
4.3.4 How packets travel through a gateway . 87
4.3.5 Network Address Translation (NAT) . 88
iv Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

4.4 General network considerations . 89
4.4.1 How penguin herding is different. 90
4.4.2 Dynamic routing . 91
4.4.3 Using the OSA with Linux . 95

4.5 Other issues . 102
4.5.1 CTC/IUCV device restrictions . 102
4.5.2 VM TCP/IP restriction . 104

Chapter 5. Security architecture . 105
5.1 Sharing isolation and reconfiguration of resources 106

5.1.1 Running Linux in native mode. 106
5.1.2 Running Linux in LPAR mode . 106
5.1.3 Running Linux under VM. 110

5.2 Linux security . 116
5.2.1 What kind of protection do you need. 117
5.2.2 Additional security documentation . 120

5.3 Cryptography on z/Series . 120

Chapter 6. Migration planning . 123
6.1 Where to start . 124
6.2 What to look for . 124

6.2.1 Small scope. 124
6.3 Total cost comparison framework . 125

6.3.1 Staffing . 125
6.3.2 Hardware. 126
6.3.3 Occupancy . 126
6.3.4 Other factors . 126

Chapter 7. Backup and restore . 127
7.1 Backup methodologies . 128

7.1.1 Disaster recovery . 128
7.1.2 Logical backup . 128
7.1.3 Backup types. 128
7.1.4 Complex application backup . 129
7.1.5 In-service backup . 129

7.2 Hardware possibilities . 130
7.2.1 FlashCopy . 130
7.2.2 Point-to-Point Remote Copy (PPRC) . 131
7.2.3 IBM 3480/3490 tapes . 133

7.3 Software tools . 135
7.3.1 Software RAID . 135
7.3.2 Network block device . 137
7.3.3 VM DASD Dump Restore (DDR) . 138
7.3.4 Amanda . 138
 Contents v

7.3.5 Tivoli Storage Manager (TSM) . 139
7.4 High availability choices with zSeries . 139

7.4.1 Loss of a DASD control unit . 142
7.4.2 Loss of a S/390 or zSeries server . 144

Chapter 8. Performance analysis . 147
8.1 Performance considerations . 148
8.2 Why measure performance . 148

8.2.1 Cost of running applications . 149
8.2.2 Controlling costs . 149
8.2.3 Controlling the impact of one application on another 150

8.3 Measurement tools . 150
8.3.1 Measurement tool used. 151
8.3.2 Screen display. 152

8.4 Measurement data sources . 153
8.5 Local vs. global performance tuning . 154

8.5.1 Local environment . 155
8.5.2 Global environment . 155

8.6 Linux operational choice. 155
8.7 The CP scheduler. 156

8.7.1 Queue definitions . 156
8.7.2 Global controls . 157
8.7.3 Local controls . 158

8.8 Processor subsystem . 159
8.9 Storage subsystem. 160

8.9.1 Storage options . 161
8.10 DASD subsystem . 161

8.10.1 VM Diagnose I/O . 163
8.10.2 DASD MDC measurement . 166
8.10.3 High connect time analysis . 167
8.10.4 DASD write analysis . 170
8.10.5 DASD/cache . 171

8.11 Network performance . 172
8.11.1 Network errors. 173

8.12 Server resources . 174
8.12.1 Resources by application . 174
8.12.2 Resources by server . 174
8.12.3 Resources by accounting . 175

8.13 Alerts . 175
8.13.1 Defining and modifying alerts . 176

8.14 Service Level Agreements . 177
8.14.1 Availability alerts . 178
8.14.2 Cost of measuring availability . 178
vi Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

8.14.3 Availability reporting . 178
8.14.4 Measuring service . 179

8.15 Measurement function installation . 179
8.15.1 ESALPS installation . 179
8.15.2 NETSNMP installation. 179

8.16 Measurement methodology . 180
8.16.1 Measuring Linux applications . 180
8.16.2 Measuring Linux server requirements. 180
8.16.3 Measuring VM Virtual Machine . 182

8.17 Tuning guidelines . 182
8.17.1 Paging and spooling (one extent per Real Device Block) 182
8.17.2 Enterprise Storage Server (ESS) . 182
8.17.3 Virtual machine sizes . 183
8.17.4 DASD format . 183
8.17.5 MDC: fair share considerations (NOMDCFS) 183
8.17.6 Swap: RAMdisk vs. virtual disk . 184
8.17.7 Timer tick kernel changes . 185
8.17.8 Kernel storage sharing . 185

Part 2. Practical considerations . 187

Chapter 9. VM configuration . 189
9.1 General VM configuration issues . 190

9.1.1 Allocate sufficient paging space . 190
9.2 Things to do for new Linux images . 190

9.2.1 Create a central registry . 190
9.2.2 Create the user ID in the CP directory . 191
9.2.3 Allocate the minidisks . 191
9.2.4 Define the IP configuration . 191
9.2.5 Install and configure the Linux system . 191
9.2.6 Register the user ID with automation processes. 192
9.2.7 Register the user ID so backups can be made 192

9.3 Using VM TCP/IP as the virtual router . 192
9.3.1 Dynamic definitions and the PROFILE TCPIP file 193
9.3.2 Creating the device and link . 194
9.3.3 Defining the home address for the interface 195
9.3.4 Defining the routing information . 196
9.3.5 Starting the connection . 197
9.3.6 Putting all the pieces together . 198
9.3.7 Define and couple the CTC devices . 201

9.4 Using DirMaint to create Linux virtual machines 202
9.4.1 Why to avoid GET and REPLACE . 202
9.4.2 Keeping the user directory manageable . 203
 Contents vii

9.4.3 Rotating allocation. 205
9.4.4 Implement exit for minidisk copy . 206

9.5 Using an alternate boot volume . 206

Chapter 10. Cloning Linux images . 209
10.1 Overview . 210
10.2 Installing Linux images the easy way . 210

10.2.1 Providing fast access to the install medium 211
10.3 Building a quick start disk . 212
10.4 Copying disks instead of doing a full install 213

10.4.1 Copying disks for cloning images . 214
10.4.2 Determine the point to copy the disks . 215
10.4.3 Locating the files to be customized for each cloned image. 215
10.4.4 Reducing the number of changes required 220
10.4.5 When to apply the configuration changes 221

10.5 Sharing code among images . 221
10.6 Breeding a colony of penguins . 223

10.6.1 Images used in the cloning process . 223
10.6.2 Create a patch file for cloning . 223

10.7 Linux IPL from NSS . 228
10.7.1 Using an NSS with just the kernel . 228
10.7.2 Using an NSS as a starter system . 230
10.7.3 Picking up IPL parameters . 230

Chapter 11. Network infrastructure design. 235
11.1 Virtual IP addressing . 236

11.1.1 Sample configuration . 236
11.1.2 Compiling dummy.o . 236
11.1.3 Configuring dummy0 . 238
11.1.4 Using virtual IP addressing in penguin colonies 240

11.2 Packet filtering and NAT with IPTables. 243
11.2.1 What you need to run packet filtering . 244
11.2.2 Network configuration for a packet filtering implementation 244
11.2.3 How to permanently enable IP forwarding 251
11.2.4 The first IP Tables rules . 253
11.2.5 Checking your filter . 255
11.2.6 Using IP Tables. 256
11.2.7 How to create a rule . 257
11.2.8 Using the inversion ! option. 260
11.2.9 Making the rules permanent . 260
11.2.10 Sample packet filtering configuration for ISP/ASP 261
11.2.11 Using IPTables for NAT . 263
11.2.12 Examples for using NAT in the enterprise and ISP/ASP. 265
viii Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

11.2.13 Additional information . 268

Chapter 12. Backup using Amanda . 269
12.1 About Amanda . 270

12.1.1 How Amanda works . 270
12.2 Using Amanda in a penguin colony. 272

12.2.1 Planning for Amanda. 272
12.2.2 Configuring Amanda . 272
12.2.3 Backing up with Amanda. 278
12.2.4 Restoring. 285
12.2.5 Reporting. 285
12.2.6 Disaster recovery using Amanda . 291

12.3 Backup and recovery scenarios . 292
12.3.1 Single file or directory restoration with Amanda 292

Chapter 13. System monitoring . 297
13.1 Why measure resource consumption . 298
13.2 Charge back method . 298

13.2.1 Service Provider accounting and billing . 298
13.2.2 Enterprise accounting and billing . 299

13.3 What can we measure . 299
13.4 CPU time accounting . 299

13.4.1 VM accounting . 300
13.4.2 Setting up virtual machines for accounting 300
13.4.3 Virtual machine resource usage - record type 01 302
13.4.4 Processing accounting records . 303
13.4.5 Linux process accounting . 303

13.5 Disk space utilization . 304
13.6 Network bandwidth usage . 305

13.6.1 An introduction to SNMP. 306
13.6.2 SNMP installation . 306
13.6.3 SNMP configuration . 307
13.6.4 Network bandwidth monitoring . 309
13.6.5 MRTG . 309
13.6.6 MRTG installation and customization . 309
13.6.7 MRTG reporting . 312
13.6.8 MRTG reporting for Virtual CTC or IUCV devices. 314
13.6.9 Monitoring multiple Linux guests . 316
13.6.10 Total bandwidth reporting . 318

13.7 Availability monitoring. 322
13.7.1 NetSaint . 323
13.7.2 Installing NetSaint . 324
13.7.3 Configuring the Web interface. 325
 Contents ix

13.7.4 User authorization . 327
13.7.5 Configuring NetSaint . 329
13.7.6 Starting and stopping NetSaint . 333
13.7.7 Using NetSaint . 333

13.8 Summary . 337

Chapter 14. Web application servers. 339
14.1 WebSphere issues . 340

14.1.1 Java Virtual Machine (JVM) . 340
14.1.2 Objects . 340

14.2 Options for running WebSphere . 341
14.2.1 WebSphere Application Server for zSeries and S/390 Linux 341
14.2.2 WebSphere Application Server for z/OS. 342
14.2.3 Separate servers. 342

14.3 Planning for WebSphere Application Server 342
14.4 Test environments . 343

Chapter 15. Integrating and replacing Microsoft servers 345
15.1 Using Samba as a domain controller . 345

15.1.1 Setting up a Samba PDC . 346
15.1.2 Creating a machine trust account . 348

15.2 Using Samba in Windows domains. 349
15.2.1 Recompiling the latest Samba package . 350
15.2.2 Joining the Active Directory. 352
15.2.3 Setting up Winbind . 354
15.2.4 Setting up /etc/nsswitch.conf. 355
15.2.5 Setting up the PAM authentication . 356

15.3 Replacing Microsoft Exchange Server . 359
15.3.1 The Bynari Insight Server . 361
15.3.2 The Cyrus IMAP server . 361

15.4 Using AFS in an enterprise environment . 362
15.4.1 What is AFS . 362
15.4.2 Building OpenAFS. 363
15.4.3 Installing OpenAFS . 363
15.4.4 Installing client functionality. 372
15.4.5 Completing the installation of the first AFS server 377
15.4.6 Installing clients on other servers . 382
15.4.7 \Installing Windows 2000 OpenAFS Client 386

Chapter 16. z/VM 4.2 Linux features . 393
16.1 System Administration Facility . 394

16.1.1 Who should use the System Administration Facility 394
16.1.2 Initializing the System Administration Facility 395
16.1.3 Using VMADMIN . 398
x Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

16.1.4 Creating the initial Linux guest . 399
16.2 VM LAN support . 401

16.2.1 Creating a VM LAN . 403
16.2.2 Using the VM LAN with Linux guests . 404

Chapter 17. Roadmap . 407
17.1 Ability to reconfigure CTC and IUCV . 408
17.2 SOURCEVIPA equivalence for Linux . 409
17.3 DCSS-mapped block devices . 410

17.3.1 Sharing between processes . 410
17.3.2 Sharing between images. 411
17.3.3 Using shared segments . 411

17.4 Shadowed disk support . 413
17.5 File system access tool for systems management 414

17.5.1 Possible use for the utility . 414
17.5.2 Design outline . 415
17.5.3 Detailed design . 416
17.5.4 Additional points for the implementation . 416

17.6 Synergy with CMS Pipelines. 417
17.7 Make DirMaint the registration vehicle . 418

Appendix A. Linux Community Development System 421
Components of the system . 422

Linux on a mainframe for free . 422
Community: the global response. 422
Development: what is being tried . 424
System: what it is being run on . 424

Technical implementation of the LCDS . 424
Hardware specifications . 424
Network . 425
Staff and processes . 427
Evolution and lessons learned . 431

Summary . 435

Appendix B. Using the hcp command. 437

Appendix C. Using the Linux 2.4 kernel . 441
Steps to upgrade SuSE 7.0 to Linux-2.4.5 kernel 443
Using the device file system . 447

Related publications . 451
IBM Redbooks . 451

Other resources . 451
Referenced Web sites . 451
 Contents xi

How to get IBM Redbooks . 453
IBM Redbooks collections. 453

Special notices . 455

Index . 457
xii Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Preface

Now in IBM, we are committed to embracing Linux across everything
that we do. Linux runs on our Intel servers, on our Power-based
servers, on our iSeries. It runs on our mainframes, on our OEM
technology, on our storage servers.

Linux, as we know, is the only operating system of which you can safely
say: It will run on architectures that have not yet been invented.

- Dr. Irving Wladawsky-Berger

This IBM Redbook describes how Linux can be combined with z/VM on
IBM ^ zSeries and S/390 hardware - the mainframe. This combination of
hardware and operating systems enables Internet Service Providers (ISPs) and
Application Service providers (ASPs) to more efficiently provide services. (We
assume a broad definition of ASP, to include production enterprise solutions as
simple as file serving.)

When a new resource is required in a world of discrete servers, you can either
add the workload to an existing server, or add another server to handle the
workload. The less costly approach of adding the workload to an existing server
often proves to be infeasible because the server lacks adequate capacity—or
perhaps because you want to keep only one application on an existing server. As
a result, frequently a new server is installed and a server farm thus begins to
grow in an enterprise.

S/390 and zSeries hardware, microcode and software (especially PR/SM and
z/VM) allow physical resources to be made virtual among Linux systems. This
allows many hundreds of Linux systems to exist on a single server. Running
multiple Linux images as guests of VM/ESA or z/VM is a smart choice. Consider
the following benefits VM offers a Linux guest environment:

� Physical resources can be shared among multiple Linux images running on
the same VM system. These resources include CPU cycles, memory, storage
devices, and network adapters.

� Consolidating servers by running many Linux images on a single S/390 or
zSeries offers savings in space, power consumption and administrative
staffing.

� The virtual machine environment is flexible and adaptable. New Linux images
can be added to a VM system quickly and easily without requiring dedicated
resources. This also allows for a flexible test environment.
© Copyright IBM Corp. 2001 xiii

� The Linux images are able to take advantage of the hardware’s reliability,
availability and serviceability (RAS) features.

� VM allows high-speed communication among the Linux images, as much of
the networking infrastructure can be virtual and thus performed in memory.

� VM’s minidisk cache and virtual disks allow data-in-memory performance
boosts.

� VM offers a rich debug environment that can be particularly valuable for
diagnosing problems among the Linux images.

� VM's heritage of support for scheduling, automation, performance monitoring
and reporting, accounting information and virtual machine management is
available for Linux virtual machines as well.

� An effective way to grow the Linux workload capacity is either to add more
Linux guests to a VM system (horizontal growth) or to simply raise the
resources available to a Linux virtual machine (vertical growth).

This redbook is divided into two parts. The first part consists of theoretical
discussions about installing and managing z/VM and Linux for zSeries and S/390
systems. The second part contains explicit examples of the work we did during
the residency to create this redbook.

In our approach, we metaphorically refer to a collection of Linux servers running
under VM as a “penguin colony”. Like a colony of penguins, our virtual servers
are individuals with their own attributes, sharing resources with neighbors. Some
perform better than others, some provide services to other members of the
colony, and some try to consume more resources than others. Penguins will be
born, live, and (sometimes) die—in our environment, all of these events must be
managed.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Poughkeepsie
Center.

Michael MacIsaac is a team leader for S/390 redbooks and workshops at the
ITSO Poughkeepsie Center. He writes about and teaches classes on Linux for
S/390 and zSeries. Michael has worked at IBM for 14 years, mainly as a UNIX
programmer. He has led teams that have written Redbooks on OS/390 UNIX,
S/390 file and print serving, and Linux.
xiv Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Peter Chu is an IBM zSeries Techline Specialist in California. He holds a degree
in Computer Science from George Mason University. His areas of expertise
include Capacity Planning for the zSeries and Linux.

Vic Cross is Linux for S/390 and zSeries Team Leader in the Professional
Services division of Independent Systems Integrators, an IBM Large Systems
Business Partner in Australia. He has 15 years of experience in general
computing, six of which was spent working on S/390. He holds a Bachelor of
Computing Science degree from Queensland University of Technology. His areas
of expertise include networking and Linux.

Chris Curtis is a Senior Consultant with Satel Corporation, an IBM Business
Partner in Salt Lake City, Utah, specializing in security consulting and providing
managed security services. He has 12 years of experience in software and
systems engineering on platforms of all sizes, from embedded through
mainframe. He holds a degree in Computer Science from Westminster College.
His areas of expertise include high-availability systems, databases, and
advanced software architectures.

Ivo Gomilšek is an IT Specialist for Storage Area Networks, Storage and Linux
in IBM Global Services - Slovenia for the CEE region. His areas of expertise
include Storage Area Networks (SAN), Storage, IBM eServers xSeries servers,
network operating systems (Linux, MS Windows, OS/2), and Lotus Domino
servers. He is an IBM ^ Certified Specialist in xSeries, a Red Hat
Certified Engineer, and an OS/2 Warp Certified Engineer. Ivo was a member of
the team that wrote the IBM Redbook Designing an IBM Storage Area Network,
SG24-5758, and contributed to various eServer xSeries and Linux Integration
Guides. He also provides Level 2 support for SAN, IBM eServer xSeries,and high
availability solutions for IBM eServer xSeries and Linux. Ivo has been employed
at IBM for four years.

Rob van der Heij is a VM Systems Programmer with IBM Global Services in The
Netherlands. He has 20 years of experience with VM Systems Programming and
has been working with Linux for S/390 since late 1999. His area of expertise
focuses on VM, including running a large number of Linux images on a single
S/390.

Liz Holland is a Consulting IT Specialist at the Dallas Global e-business Solution
Center and is a member of the IT Specialist Certification Board. She specializes
in e-business on S/390 and zSeries, supporting OS/390 WebSphere, Linux,
Domino, and UNIX System Services. Her technical papers include a Redpaper
on Domino performance on S/390, revisions to the VIF Users Guide, and
Redbooks on Component Broker. She began working for IBM in 1980 fixing
Selectric typewriters, and began supporting MVS/XA as a PSR in 1983.
 Preface xv

Barton Robinson is president of Velocity Software, Inc. He started working with
VM in 1975, specializing in performance starting in 1983. His previous
publication experience includes the VM/HPO Tuning Guide published by IBM,
and the VM/ESA Tuning Guide published by Velocity Software. He is the author
and developer of ESAMAP and ESATCP.

Martin Söllig is an IT Specialist with Enterprise System Sales in Germany. He
has 11 years of experience working in the S/390 field. He holds a degree in
Mathematics from the University of Hamburg. His areas of expertise include
S/390 and zSeries hardware, and major SW products on OS/390 and z/OS, with
a special focus on the “new applications” on this hardware since 1999.

Simon Williams is a Senior I/T Specialist with IBM Australia. He has been
working on Mainframe Systems since 1988. He specializes in System/390 and
zSeries “new technologies” such as Linux, UNIX System Services and
WebSphere. His technical publications include an ITSO Redbook on migrating to
Domino/390 Release 5, and a Redpaper on how to install Linux for zSeries and
S/390 guests under VM.

The team. Standing: Vic Cross, Michael MacIsaac, Ivo Gomilsek, Martin Soellig,
Barton Robinson; kneeling: Peter Chu, Rob van der Heij, Chris Curtis, Simon
Williams (Liz Holland was not available for the photograph).

Thanks to the following people for their contributions to this project:
xvi Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Terry Barthel, Roy Costa, Al Schwab, Bill White
International Technical Support Organization, Poughkeepsie Center

Bob Haimowitz
International Technical Support Organization, Raleigh Center

John Eilert, Joe Temple
IBM Poughkeepsie

Alan Altmark, Romney White
IBM Endicott

Michael Kershaw
Marist University

Erich Amrehn
IBM Germany

Special notice
This publication is intended to help S/390 systems programmers and system
administrators to install and manage z/VM and Linux for zSeries and S/390
systems. The information in this publication is not intended as the specification of
any programming interfaces that are provided by Linux for zSeries and S/390.
See the PUBLICATIONS section of the IBM Programming Announcement for
Linux for zSeries and S/390 for more information about what publications are
considered to be product documentation.
 Preface xvii

IBM trademarks
The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

Comments welcome
Your comments are important to us!

We want our IBM Redbooks to be as helpful as possible. Send us your
comments about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to the address on page ii.

e (logo)®
IBM ®
AFS®
AIX®
DB2®
DFS™
DirMaint™
e (logo)®
ECKD™
Enterprise Storage Server™
ESCON®
FICON™
FlashCopy™
GDPS™
iSeries™
Multiprise®
MVS™
MVS/XA™
‘‘OS/2®
OS/390®
Parallel Sysplex®
Perform™
PowerPC®

Redbooks™
Redbooks Logo
PR/SM™
pSeries™
RACF®
RAMAC®
RS/6000®
S/370™
S/390®
SP™
SP2®
System/390®
VM/ESA®
WebSphere®
xSeries™
z/Architecture™
z/OS™
z/VM™
zSeries™
Lotus®
Lotus Notes®
Notes®
Domino™
xviii Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

Part 1 Theoretical
considerations

In this part of the book, we discuss the theory behind installing and managing
z/VM and Linux for zSeries and S/390 systems. For explicit examples of the work
we did during this residency, see Part 2, “Practical considerations” on page 187.

Part 1
© Copyright IBM Corp. 2001 1

2 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Chapter 1. Introduction

Then anyone who leaves behind him a written manual, and likewise
anyone who receives it, in the belief that such writing will be clear and
certain, must be exceedingly simple-minded.

- Plato

The introduction of Linux for the S/390 architecture has brought enterprise-level
scalability and reliability to the successful Linux software platform. One area
where Linux for IBM ^ zSeries and S/390 has shown particular promise
is in the Internet Service Provider (ISP) and Application Service Provider (ASP)
market. These providers tend to run many identical servers, creating huge server
farms with rack after rack of Web and application servers. In this competitive
market, the cost of maintaining and supporting a large number of servers can
have a substantial impact on the company’s bottom line. In some geographic
areas, floor space is at a premium as well. In this environment, the advantages of
the S/390 are significant.

However, deploying an S/390 in an ISP/ASP setting is not a simple undertaking.
Consolidating many Linux servers onto one set of hardware has unique
implications for managing the individual “machines” for optimum performance.

This chapter discusses the high-level issues involved in deploying Linux for
zSeries and S/390 in the ISP/ASP setting, and offers guidelines for determining
the suitability of Linux for zSeries and S/390 for a particular environment.

1

© Copyright IBM Corp. 2001 3

1.1 What this redbook is
The goal of this redbook is to address some of the issues involved in managing
large numbers of Linux instances on the zSeries and S/390 architecture. We
include information that will be useful to ISP/ASP users who are new to zSeries
and S/390, as well as to current zSeries and S/390 customers who are interested
in consolidating many servers onto their existing hardware.

1.2 What this redbook is not
A growing body of other documentation already exists on Linux for zSeries and
S/390, and we do not duplicate that information here; we do not cover how to
install, configure and use Linux for zSeries and S/390, nor do we address
specifics of the various available Linux distributions for S/390. These issues are
covered in depth in the following IBM Redbooks:

� Linux for IBM ^ zSeries and S/390: Distributions, SG24-6264

http://www.ibm.com/redbooks/abstracts/sg246264.html

� Linux for S/390, SG24-4987

http://www.ibm.com/redbooks/abstracts/sg244987.html

1.3 zSeries and S/390 architecture overview
The IBM ^ zSeries is based on the z/Architecture, which is a new, 64-bit
superset of the ESA/390 architecture. (This architecture is covered in detail in
IBM ^ zSeries 900 Technical Guide, SG24-5975.) The zSeries
architecture is fundamentally different from other common systems in the
ISP/ASP environment, and these differences have a profound influence on
planning and implementing Linux for zSeries and S/390.

In our redbook, we highlight the ways in which the zSeries differs from Intel and
traditional UNIX servers, and the impact of those differences on the Linux for
zSeries and S/390 solution for ISPs and ASPs.

This section will also serve as a brief introduction to the architecture for readers
new to zSeries. While it is not a complete guide to all the available options and
features of the zSeries architecture, it provides a quick tour through the most
important aspects that a reader familiar with existing UNIX and Intel servers
would need to understand.
4 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

http://www.ibm.com/redbooks/abstracts/sg246264.html
http://www.ibm.com/redbooks/abstracts/sg244987.html

1.3.1 Modes of running Linux
Linux is supported on the S/390 G5 and G6 models and the z900 series. It will
run G4 and older systems, but as these systems lack IEEE floating-point support,
performance will be strongly affected. The following discussion briefly outlines
the modes in which Linux can be run, which are illustrated in Figure 1-1 on
page 5.

Figure 1-1 Linux for zSeries and S/390 operation modes

Native mode
The first option is to run Linux natively on a S/390 or zSeries server, as illustrated
in Figure 1-2 on page 6. This indicates that only one Linux system can be run at
a time, with full access to the entire system. This option has no software
prerequisites other than the Linux operating system itself, and a single
application that has large requirements for memory, I/O access and/or processor
power can profit from the full resources of a standalone S/390 or zSeries system.

On the other hand, since there is no other operating system available for the
communication between Linux and the hardware, the only possible access to the
system prior to booting the Linux operating system is through a hardware
console, and debugging can also be done in only this way.

Linux + Apps CMS CMSCMS

CMS Linux + Apps CMS CMS

Linux + Apps CMS CMSCMS

CMS OS/390 +
Apps CMS CMS

Linux + Apps CMS

CMS VSE/ESA+
Apps

Linux + Apps CMS

CMS Linux + Apps CMS CMS

VM/ESA or z/VM

Linux

Applications

Only
limited by
available
system

resources

...
Up
to
15
...Li

nu
x

+
A

pp
s

Li
nu

x
+

A
pp

s
Li

nu
x

+
A

pp
s

O
S

/3
90

+
A

pp
s

V
M

/E
S

A
+

A
pp

s
V

S
E

/E
S

A
+

A
pp

s

1. Native Processor

2. Logical Partitions 3. VM Guests
 Chapter 1. Introduction 5

Usually this choice will only be considered for testing purposes on small S/390
systems such as the P/390 or R/390. Because this solution does not exploit the
abilities of the hardware and VM to share the resources of the server between
several operating systems, it is of no importance for server consolidation in an
ISP or ASP environment.

Figure 1-2 Linux for zSeries and S/390 in native mode

Running Linux in a Logical Partition
An S/390 or zSeries server can be divided into up to 15 logical partitions
(LPARs), as shown in Figure 1-3 on page 7. These partitions each have their own
allocation of memory, and either dedicated or shared processors, as well as
dedicated and/or shared channels for I/O operations. The LPARs can operate
independently of each other, since the Processor Resource/System Manager
(PR/SM) microcode guarantees that operations in one LPAR are not allowed to
interfere with operations in another LPAR.

Like running Linux on native hardware, no additional software is required.
Additionally, the advantages of virtualization of the S/390 hardware, provided by
the PR/SM microcode, can be exploited, which offers a flexibility superior to that
of a static hardware solution.

CP

xx GB Memory

Processors

I/O
OSAOSAOSA ESCON

ESCDIntranet

Adminnet

Internet

Linux + Applications

CP CP CP CP CP CP CP CP

ESCON ESCON ESCON ESCON ESCON ESCON
6 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Figure 1-3 Linux for zSeries and S/390 in LPAR mode

Due to the limitation that only 15 LPARs can be defined on a S/390 or zSeries
server, and that all definitions, management and debugging of these LPARs have
to be done from the hardware console, this choice is also of limited suitability for
server consolidation in an ISP or ASP environment. This scenario is mostly used
for Linux systems for test or development purposes, when no additional
maintenance of VM is wanted.

Running Linux as a VM guest
Linux can also run as a guest operating system in a VM Virtual Machine, which is
illustrated in Figure 1-4 on page 8. The VM operating system provides an
environment that allows you to create and manage hundreds to thousands of VM
guests, in which multiple Linux images can be operated on a single S/390 or
zSeries platform. Additionally a repertoire of approved VM tools and utilities is
available.

x GB y GB z GB Memory

Processors

LPARs

I/O
OSAOSAOSA ESCON

ESCDIntranet

Adminnet

Internet

Linux
+ Applications

Linux

Firewall

Linux
+ Applications

IFLIFLIFLIFLIFLCPCPCPCP

HiperSockets HiperSockets

ESCON ESCON ESCON ESCON ESCON ESCON
 Chapter 1. Introduction 7

Depending on the hardware platform, there are two versions of VM available:
31-bit addressing VM/ESA, which runs on 9672 or 2064 zSeries processors; or
64-bit addressing z/VM for 2064 zSeries processors, which can also run on 9672
processors in 31-bit mode.

Figure 1-4 Linux for zSeries and S/390 as a VM guest

So if hundreds of virtual Linux systems have to be set up, monitored, managed,
tuned and operated, using VM/ESA or z/VM is the only feasible solution.
However, a certain operating knowledge of VM is required.

Normally an ISP or ASP is faced with the problem of running multiple servers
with the same operating system and similar applications. These can be isolated
systems or multitier applications with a database server on a central host system.

1.3.2 Processor architecture
The core of the zSeries architecture is the Multi-Chip Module (MCM). The MCM
is an extremely dense package that contains either 12 or 20 Processor Units
(PUs), depending on model.

CP CP CP CP

x GB y GB z GB Memory

Processors

LPARs

I/O
OSAOSAOSA ESCON

ESCDIntranet

Adminnet

Internet

z/VM or VM/ESAz/OS or OS/390 Linux
TCP/IP

FirewallLi
nu

x_
1

Li
nu

x_
2

Li
nu

x_
3

Li
nu

x_
n

VCTC / IUCV

HiperSockets HiperSockets

IFL IFL IFL IFL IFL

Guest LAN

ESCON ESCON ESCON ESCON ESCON ESCON
8 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Each PU can be configured to perform one of several functions, including:

� Central Processor (CP)
� Integrated Facility for Linux (IFL)
� System Assist Processor (SAP)
� Integrated Coupling Facility (ICF)

A PU assigned as a CP can be used to run any supported operating system:
OS/390, z/OS, Linux, VM/ESA, z/VM, and others. By contrast, an IFL may only
be used to run Linux, VIF and z/VM version 4.

SAPs are processors dedicated to performing I/O processing, offloading that task
from the primary processors (CPs or IFLs), and are discussed in 1.3.4, “I/O
architecture” on page 11.

The ICF is part of the Parallel Sysplex architecture, which is not currently
applicable to Linux.

The associated configuration rules and options are complex, but the basic
guidelines are:

� At least one PU must always be assigned as a CP.
� At least one PU must be unassigned (spare).
� 12-PU models have 2 SAPs standard, 20-PU models have 3 SAPs standard.

Thus, for a 12-PU model, there is a maximum of 9 CPs or 1 CP and 8 IFLs; for a
20-PU model, the maximum is 16 CPs or 1 CP and 15 IFLs.

Note: All processors assigned to an LPAR must be either CPs or IFLs; that is,
you cannot mix them (therefore any Linux system with IFLs will have at least two
LPARs - one for the minimum required CP, plus another for the IFLs).

Each PU is actually a dual processor, where both processors execute the same
code at the same time. If the results do not match, the PU can signal that it is
experiencing errors and remove itself from the active processor pool. When this
occurs, one of the spare PUs will automatically be brought into service to replace
the failed PU. This processor sparing is completely transparent to the application.

An important element of the MCM and PU design is the massive bandwidth
available to each processor. The MCM has a total of 24 GB/sec of bandwidth,
resulting in an available bandwidth to each processor of 1.5 GB/sec. This is an
order of magnitude, or more, greater than traditional enterprise-class UNIX
servers. This is significant because the traditional UNIX approach is to try and
minimize I/O operations; using the same approach on the z900 architecture will
not make maximum use of its capabilities.
 Chapter 1. Introduction 9

Another important factor to note is that, using the MCM packaging, each z900
machine comes delivered with all 12 or 20 PUs already physically installed. The
number of CPs and IFLs purchased are enabled by IBM upon installation. An
advantage of this arrangement is that additional processors can be “added” by
IBM as needed without taking the system down, up to the maximum allowed for
that model type. (Upgrading from 9 total CPs+IFLs to 10 would require changing
to the 20-PU MCM, which requires that the system be powered down.) This
feature is referred to as Capacity Upgrade on Demand (CUoD).

1.3.3 Memory architecture

Main memory
The z900 architecture supports memory configurations from 5 to 32 GB for the
12-PU models, and 10 to 64 GB for the 20-PU models. The 12-PU MCM has two
memory buses and is configured with two memory cards; the 20-PU MCM has
four buses and four cards.

Note: The 20-PU models have twice the memory bandwidth of the 12-PU
models, regardless of how many active CPs and IFLs are configured.

The physical memory cards have 4, 8, or 16 GB of memory built in, but it is
enabled in steps of 1, 2, and 4 GB, respectively. This allows a CUoD capability for
memory, up to the maximum available on the installed memory cards. However,
CUoD for memory is disruptive and requires a full Power-on Reset (POR).

Processor cache
z900 MCM has both L1 and L2 cache internally integrated. Each PU has 256 KB
of L1 cache (128 KB instruction/128 KB data), which is similar to many other
processor designs. However, the L2 cache design of the S/390 and zSeries is
fundamentally different from typical UNIX server and Linux/Intel server designs.
Though the L2 cache is invisible to the user and largely invisible to the operating
system, the zSeries cache architecture is perhaps the most critical component of
the system for you to understand in planning for, and managing, performance.

Note: In the zSeries and S/390 environment, the term “storage” usually refers
to memory, as in central storage or main storage. In the UNIX and Intel
environment, a direct access storage device (DASD), or disk drive, is
considered to be storage.

It is usually clear from the context which definition is intended, but without
being aware of the difference, it can be rather confusing.
10 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

The typical UNIX or Intel server has a private L2 cache for each processor.
Processors do not share L2 cache contents, and the caches themselves are
fairly narrow but deep. For example, the xSeries 380 has up to 2 MB of L2 cache
per processor, and each processor in the pSeries 680 has up to 16 MB of private
L2 cache.

These architectures do very well when the “working set” (which is the code the
processor tends to keep executing over a period of time) fits into this cache, and
when the workload is easily partitioned into parallel tasks that can be assigned to
a particular processor consistently. The TPC-C benchmark is an example of a
workload that is well-suited to this type of architecture.

However, in general these servers have relatively limited memory bandwidth, so
that the more frequently cache misses occur and data must be retrieved from
main memory, the less the deep, private cache helps. In particular, when the
system is heavily loaded and tasks must compete for processor time, each task’s
working set must be loaded into the private cache each time that task moves to a
different processor. It is for this reason that most SMP UNIX servers are typically
sized to run at utilization levels of approximately 40 to 50%.

By contrast, the zSeries has two 16 MB L2 caches which are shared by 6 and 10
PUs each (in the 12-PU and 20-PU models, respectively). These caches are also
highly connected to each other and contain a great deal of interconnect logic, in
addition to the cache memory itself. With this shared cache, tasks can be moved
from processor to processor as needed to manage load without necessarily
incurring a cache miss.

In addition, when cache misses do occur, the significantly larger memory
bandwidth available minimizes the cost of retrieving data from main memory.
Thus the zSeries cache design tends to favor applications that do not have
cache-friendly working sets and behavior. The shared cache design also
explains why zSeries servers are typically run at much higher utilization than
UNIX servers; loads of 80 or 90% are not uncommon.

The MCM, memory cards, Cryptographic Element (CE) chips, Distributed
Converter Assemblies (DCAs) (processor cage power supplies), and External
Time Reference/Oscillator (ETR/OSC) cards are installed in the Central
Processor Complex (CPC) cage.

1.3.4 I/O architecture
Because the options and configurations available for I/O on the z900 are quite
complex, a comprehensive description of them is beyond the scope of this
redbook. However, we touch upon the subject briefly in this section, since I/O on
the z900 is fundamentally different from typical UNIX or Intel server I/O.
 Chapter 1. Introduction 11

Channels and subchannels
The basic building block of I/O connectivity on the z900 is the channel.
Conceptually a channel can be viewed as a path from the processor (MCM) to a
physical device. Indeed, for external devices (DASD, for example) a channel
eventually translates to a physical cable or fiber.

A subchannel, by comparison, can be viewed as a logical connection from a
specific process to some I/O resource. For example, a specific network interface
in a process is connected to a subchannel. Many subchannels are carried over a
single real channel.

System Assist Processors (SAPs)
SAPs are PUs configured to run specialized microcode, and they manage I/O
operations on behalf of a CP or IFL. The SAP selects the appropriate channel to
use for the I/O operation, and is also responsible for scheduling and balancing to
optimize access to devices.

From the CP’s perspective, the I/O request is handed off to the SAP, and the SAP
informs the CP when the data transfer to or from main storage has been
performed and the I/O operation is complete. The entire process is transparent to
the programs running on the CP (e.g. the Linux guests), but it means that the CP
is freed from dealing with the details of I/O.

Self-Timed Interfaces (STIs)
The zSeries and S/390 servers do not have a traditional bus architecture like Intel
servers and many UNIX servers. Rather, the MCM has 24 Self-Timed Interface
(STI) ports. Each STI on the zSeries has a maximum bandwidth of 1 GB/sec
full-duplex. An STI port can be connected via copper cable to an STI-Multiplexer
(STI-M) card in the z900 I/O cage. Each STI-M card creates an I/O domain of
four slots, with one secondary 333 MB/sec STI link per slot.1 Each slot can hold
one of the following I/O cards:

� ESCON-16 channel cards
� FICON channel cards
� OSA-Express (OSA-E) channel cards

– Gigabit Ethernet (GbE)
– Asynchronous Transfer Mode (ATM)
– Fast Ethernet (FENET)

� PCI-Cryptographic Coprocessor (PCI-CC) cards

1 The secondary STI link operates at 500 MB/sec for the InterSystem Channel-3 (ISC-3); this is used for Parallel Sysplex
operations and is not applicable to Linux.
12 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Note that there is also a Compatibility I/O Cage available, which uses cards
designed for the G5/G6 series of servers. In this case the Compatibility I/O Cage
is connected via an STI-H multiplexer card plugged into the CPC, providing 333
MB/sec ports. The Compatibility I/O Cage is necessary to use any of the
following cards:

� OSA-2
– Token Ring
– FDDI

� ESCON-4
� Parallel-4
� Parallel-3

ESCON and FICON
The Enterprise Systems CONnection (ESCON) channel is the current standard
interface for connecting external I/O devices to zSeries and S/390. It is a
20 MB/sec half-duplex serial bit transmission interface carried over fiber optic
cables.

ESCON ports are provided by ESCON-16 cards, which provide 15 active ports
plus one spare per card. The ESCON-16 cards are always installed in pairs, and
ports are activated in ordered blocks of four ports (e.g. if four ESCON ports are
ordered, then two ESCON-16 cards will be installed, each with two ports
enabled).

The FIber CONnection (FICON) was introduced on the G5/G6 S/390 and zSeries
servers to provide higher bandwidth and increased connectivity. FICON provides
a 100 MB/sec, full-duplex serial interface over fiber optic cables. In addition,
FICON allows multiple I/O operations to be outstanding at the same time to
different channel control units. Taken together, these new features allow one
FICON channel to provide the same I/O concurrency as up to eight ESCON
channels. FICON cards provide two FICON ports each.

1.3.5 Network architecture
zSeries and S/390 network connectivity is provided by the Open Systems
Adapter-2 (OSA-2) and OSA-Express (OSA-E) interfaces. These interfaces
provide full TCP/IP connectivity to a broad selection of industry-standard
networks. Several OSA-2 cards are supported by the zSeries; the newer network
interfaces are supported by the OSA-E cards.

OSA-2
OSA-2 cards are the previous generation of network interfaces, and are
supported as standard channel-attached devices.
 Chapter 1. Introduction 13

The OSA-2 family consists of the following cards:

� OSA-2 ENTR (Ethernet/Token Ring)2

� OSA-2 FENET (Fast Ethernet) - not supported on zSeries
� OSA-2 FDDI (Fiber Distributed Data Interface)
� OSA-2 ATM (Asynchronous Transfer Mode) - not supported on zSeries

For the Ethernet, Fast Ethernet, and ATM interfaces, there are new OSA-Express
features available that support these network types, in addition to some new
types.

OSA-Express
The OSA-Express cards are the new generation of network interface and are
supported on both the G5/G6 series S/390 (one port per card) and the zSeries
(two ports per card).

The OSA-Express features introduce a new operating mode, Queued Direct I/O
(QDIO). QDIO is a highly efficient data transfer mechanism that significantly
increases data throughput. It uses shared memory queues and an internal
signaling protocol to exchange data directly with the TCP/IP stack. The
OSA-Express features appear as channel types OSE for non-QDIO mode, and
OSD for QDIO mode. The following types of OSA-Express features are
supported:

� OSA-Express GbE (Gigabit Ethernet)
� OSA-Express FENET
� OSA-Express ATM3

1.3.6 Disk architecture
The zSeries and S/390 have many different options for connecting fixed-disk
storage (DASD). In general, they all appear as channel-attached devices using
ESCON or FICON ports, though some older systems may use the IBM bus and
tag parallel interface.

The current recommended storage device for the zSeries is the IBM Enterprise
Storage Server (ESS), also known as Shark.

2 The zSeries only supports Token Ring mode for OSA-2 ENTR.
3 It only supports QDIO mode in ATM LAN Emulation (LANE) mode.
14 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

ESS/Shark
The IBM Enterprise Storage Server (ESS) is a complete disk storage system that
provides up to 13.9 TB of managed storage to all major types of servers. The
ESS uses large caches and two 4-way SMP RISC processors to provide
extremely high performance. It can be integrated into Storage Area Network
(SAN) architecture. Multiple servers can be attached to the ESS using the
following types of interfaces:

� Fibre Channel
� ESCON
� FICON
� UltraSCSI

More information about the ESS is available at:

http://www.storage.ibm.com/hardsoft/products/ess/ess.htm

1.3.7 Models
The z900 family of systems is designated by a model number of the form
2064-101. The last two digits of the part number designate how many central
processors (CPs) are enabled on the machine; thus the 2064-101 has one CP
enabled; the 2064-116 (the largest model) has 16 CPs enabled. There are also
capacity models which have part numbers of the form 2064-1C1. These models
are intended to be ordered to support Capacity Backup, and are 20-PU models.
The -1C6 model, for example, has 6 CPs enabled.

1.4 Solution applicability
One of the side effects of consolidating many discrete server workloads onto one
zSeries server is that the applications interact and affect each other in ways that
they do not in a discrete environment. Accordingly, some workloads types are
more appropriate matches and are likely to be “good citizens” of our penguin
colony.

1.4.1 Better matches
Based on the characteristics of the z900 architecture previously described,
workloads that are excellent candidates for migration to Linux for zSeries and
S/390 are ones that exhibit some of the following characteristics:

� I/O-intensive operations (e.g. serving Web pages)
� Lightly-loaded servers
� Custom-tailored system images (that is, no “default installs”)
 Chapter 1. Introduction 15

http://www.storage.ibm.com/hardsoft/products/ess/ess.htm

1.4.2 More difficult matches
By the same token, some types of workloads are not well-behaved in the Linux
for zSeries and S/390 environment and thus are poor candidates:

� Compute-intensive operations (technical computing)
� Graphics (X-Window system, etc.)
� Heavily-loaded servers
� Tasks that check the system clock often (to see if configuration files have

changed, for example)

Floating-point calculations can be especially problematic for older machines;
prior to G5, there was no support for the IEEE floating-point format in the
ESA/390 family. As all Linux floating-point expects IEEE, these machines are
especially poor performers for graphics and other computational loads. The G5
family introduced IEEE support via microcode; the G6 family received a
significant floating-point performance boost by moving IEEE support into actual
silicon.

1.5 z/VM and why you want it
Linux for zSeries and S/390 can be run in several different modes, each with its
own advantages and disadvantages. At the present time the available modes are
Native, LPAR, and z/VM4. These options are discussed briefly in the IBM
Redbook Linux for S/390, SG24-4987.

We strongly recommend that z/VM be used to deploy Linux in the ISP/ASP
environment. There are some additional complexities and skills that will need to
be learned, but we believe that z/VM offers an extremely powerful environment
which is necessary to successfully manage hundreds or thousands of virtual
Linux servers. Some of the features z/VM brings are:

� Resources can be shared among multiple Linux images, including CPU,
memory, storage, and network adapters.

� New guests can be added quickly, without requiring dedicated resources.

� There are extremely high-speed virtual networks between guests.

� It provides centralized storage management and backup.

� A rich debug and test environment allows images to be created that duplicate
production systems, without requiring additional physical resources.

� It provides comprehensive workload monitoring and control facilities.

4 With the release of z/VM 4, we no longer recommend the Virtual Image Facility (VIF) as a configuration option. z/VM
version 4 removes many of the limitations present in VIF and has additional functionality specifically designed to support
Linux for zSeries and S/390.
16 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

1.6 Skills and resources required
While running Linux for zSeries and S/390 has many advantages in terms of
potential reductions in staffing requirements and hardware management costs,
this does not mean that it is a simple undertaking. Running hundreds or
thousands of servers is a complex undertaking in any environment and requires
qualified, knowledgeable staff to implement successfully.

Each phase of the deployment of Linux for zSeries and S/390 in the ISP/ASP
requires a slightly different mix of skills. To a certain extent, the requirements will
vary from company to company, depending on existing business processes and
systems in place. The general guidelines offered here may offer some direction.

1.6.1 Planning and installation
This is by far the most critical phase of any ISP/ASP system deployment. The
decisions taken during this phase can have a dramatic impact on the future
performance and ultimate scalability of the system. This is especially the case for
Linux for zSeries and S/390, where the system itself serves as infrastructure for
many virtual servers. The infrastructure must be solidly in place and
well-designed in order for the guest servers to also be stable and efficient.

For this phase the following individuals should be heavily involved (some roles
may be filled by the same person):

� Linux system administrator
� Network administrator
� z/VM system programmer
� Technical support manager
� Sales and marketing representative

The Linux system administrator and network administrator fulfill much the same
roles they would in any normal multiserver deployment: assigning IP addresses,
designing subnets, determining disk layout, and so on.

We believe that the addition of a technical support manager and sales/marketing
representative to the planning team is important to the ultimate success of the
project. Both technical support and sales departments need to be aware of
characteristic advantages and limitations of the virtual server environment to
properly inform and support their customers.

One of the most crucial members of this team is the z/VM system programmer.
Unfortunately, this is also likely to be a difficult position to staff for most ISP/ASP
operations. There are many parts of the system that need to be configured
appropriately, and this requires a relatively high skill level with z/VM. Each
 Chapter 1. Introduction 17

system is slightly different, therefore generic “cookbook” approaches are less
likely to be successful. It may be possible to acquire this expertise on a
temporary contract or consulting basis during the planning phase, and brought in
as needed once production operations begin.

1.6.2 Linux image deployment
Once the system is installed and configured, the deployment of new virtual
servers is much less complicated. The network administrator will still be
responsible for managing IP addresses and network architecture, and the Linux
system administrator is responsible for configuring each individual server.
However, the Linux system administrator needs to develop some z/VM skills to
maximize the efficiencies of the system. Ideally there will be a fair degree of
automation in place to create new images, as we detail later in this book.

1.6.3 Maintenance
Maintenance will typically be the domain of the normal operations support staff.
In most cases we anticipate that typical UNIX server monitoring and
maintenance skills are readily transferable to the zSeries environment, with
minimal additional training in some specifics of the z/VM monitoring and control
functions.
18 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Chapter 2. Sizing

As effective as zSeries and z/VM are in their ability to run large numbers of Linux
guests, there are of course limits to how much work a given system can handle.
Accordingly, in this chapter we discuss guidelines concerning sizing for your
applications and workloads.

This includes topics such as CPs, storage, DASD, and network bandwidth, as
well as a general overview of the reasoning behind some accepted sizing
methodologies and our assessment of their validity.

2

© Copyright IBM Corp. 2001 19

2.1 The nature of sizing
First of all, it’s important to realize that despite the best efforts of many experts
both within and outside of IBM, sizing is an inexact science, at best. A sizing
estimate is an approximation of the hardware resources required to support a
given workload. This estimate is drawn from the best information available at a
point in time, in order to obtain a base to work from.

But of course, the actual result will often differ from the results of the estimate,
due to factors such as imperfect data (the Garbage-In, Garbage-Out scenario),
workload skew not being accounted for in the sizing, custom code, and other
customizations.

Add to this the fact that lab conditions do not fully correspond to real world
production environments, and it becomes obvious why sizing results cannot be
guaranteed. This is not to say sizing cannot be done, of course, but rather to
emphasize the fact that there is always a certain margin of error involved.

This is particularly noteworthy in our case because of the differences in the
performance characteristics between Linux on the x86 and Linux on the zSeries
platforms. As noted in Chapter 1, “Introduction” on page 3, the processor,
memory, and I/O architectures of the zSeries platform are substantially dissimilar
to the platforms Linux has historically been run on.

Therefore, extra care is needed when performing sizing estimates for running
Linux on the zSeries, as the shift in relative capacity of the systems may be
larger than expected. Also, one should keep in mind that sizing is really just a
“first guess” based on the best available data, and should always be followed up
by further analysis.

This also means that you need to understand relative capacity across server
architectures, which serves as the basis for sizing. This subject is covered in the
next section.

2.1.1 Sizing vs. capacity planning
Before we move on, we need to provide a clarification: some readers may be
familiar with the term capacity planning. This is a service that IBM has been
offering for many years to its customers. On the S/390 platform, this involves
getting SMF data (and projected growth rates) from the customer’s installation,
and then modeling the combination to provide an understanding of how to handle
the growth.

However, this is not what we mean by sizing.
20 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Capacity planning is relatively predictable because it involves migrating
well-understood workloads with measured usage data within the same
architecture. However, when we size Linux applications for the zSeries, not only
are we moving across very different platforms, but are often doing so with little or
no application data available for analysis to support the sizing.

Given these limitations, readers who are used to the methodology and results of
capacity planning should reevaluate their expectations for system sizing. To
reiterate: sizing is definitely an area where the margin of error tends to be on the
large side. But enough about limitations; let’s see what sizing can do for you.

2.2 Relative system capacity
To really understand relative capacity, we need to understand the balance of
processor power, the internal bandwidth per processor, and the relative ability of
the operating system to schedule work in a way that efficiently utilizes resources.

When estimating the relative capacity of servers, most people base their
calculations on the correlation between processor speed and system capacity.

For example, many home PC users tend to regard the clock rate as the prime
indicator, but this is too simplistic, not to mention misleading, due to
microprocessor design differences (witness the recent battle between Intel and
AMD, or the older x86 vs. PowerPC conflict, for some high-profile examples).

Other users turn to benchmarks. Some use a processor-oriented benchmark like
SPECint, but differences in the memory and I/O subsystems are masked. Some
use an industry standard or published application benchmark like TPC-C or SAP
R3 SD, but the presence of workload imbalances (called “skew”) and variance in
the amount of data handled (“working set size”) make these imperfect measures,
as well. We examine benchmarks in more detail in the next section.
 Chapter 2. Sizing 21

2.2.1 Benchmarks
Traditionally, benchmarks have played an important role in migration and
workload planning. If you’re going to deploy new applications or port existing
applications to a new platform, you’ll want to know how the new system will
perform—this where benchmarking comes in.

Well-established organizations such as the Transaction Processing Performance
Council (TPC) and the Standard Performance Evaluation Corporation (SPEC)
have long maintained sets of performance metrics with which to evaluate the
many platforms that are commercially available: These organizations are on the
Web at:

http://www.tpc.org
http://www.spec.org

However, these benchmarks are not very useful, for two basic reasons:

� At the time of writing, IBM has not released any benchmarks for Linux on the
zSeries.

� Benchmarks by nature tend to be artificial, and in some cases misleading.

The second comment may be considered a bit controversial, so let’s discuss
further what we mean by “artificial” and “misleading”.

Attention: In the mainframe environment, people often used the term MIPS to
indicate relative capacity. MIPS is an acronym for “Millions of Instructions Per
Second”, but it has also been called a “Misleading Indicator of Processor
Speed”, and even “Meaningless Indicator of Processor Speed”.

There is perhaps some justification for these terms because instruction rate
has only a casual relationship to MIPS ratings, which are actually relative
throughput metrics on a scale where the S/370 158 was considered 1 MIPS.
Mainframes have been designed, with a balance of internal bandwidth, I/O
performance, processor speed, and scheduling capability, to achieve their
MIPS ratings on the workloads called Large Systems Performance Ratios
(LSPRs), which have become well understood over time. LSPR ratios are not
simply a measure of relative processor speed, even though they are often
assigned a metric called MIPS.

The term MIPS has caused many people to compare instruction rates of
various processor architectures as a way to compare server capacity. But
because mainframe MIPS ratings are not really instruction rates, they cannot
be used directly in this manner.
22 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

http://www.tpc.org
http://www.spec.org

Real throughput by a system is the result of many factors. Processor design and
clock speed (collectively referred to here as processor power), internal bandwidth
for memory and I/O, and scheduling of work in order to effectively utilize available
resources (done by the operating system) are the primary considerations.
Therefore, system capacity can only be effectively compared when all these
factors are taken into account.

Figure 2-1 shows a graphical representation of this concept.

Figure 2-1 Relative system capacity on 3 axes

The misleading part comes into play when we realize that some benchmarks do
not look at the “big picture” of the system. For instance, the SPECcpu
benchmark, true to its name, focuses almost exclusively on the processor. In
other words, it is only looking at the vertical axis of this graph, which represents
the processor power of the engines in question, multiplied by the number of
engines in the system, as noted in the legend.

But with this approach, bandwidth (which measures the data rate per processor
between the cache and memory), and scheduling (which represents processor
utilization typical to the particular system), are both ignored. What good is a
blazing fast CPU that is sitting idle? The slowest processor in the world can do
nothing just as quickly as the fastest.

So if processors, bandwidth, and scheduler are equally stressed by the workload,
the relative capacity of the machines can be represented by the geometric mean
of the parameters. This is shown in Figure 2-2 on page 25.

Processors

BandwidthScheduler

box A - 8way box B - 64way box C - 24way z900 - 16way
 Chapter 2. Sizing 23

If the workload shifts away from balance, then relative capacity also shifts. Thus,
for CPU-intense environments where the parallel portion of the work is in balance
(also known as “skewless”), the relative scaling will shift away from the mean
toward the machines with more and faster CPUs. When significant data stress
(large “working set”, mixed workload, large user counts, etc.) or skew (data
sharing, variable usage patterns, “spikiness” causing workload imbalances) is
present in the workload, the relative scaling will shift in favor of machines with
higher internal bandwidth per engine and better scheduling.

The result is that the relative capacity of machines will vary significantly from
workload to workload. Figure 2-2 on page 25 illustrates the difference between
the relative capacity indicated by most commercial benchmarks (the processor
bars) and a workload which has enough data stress and/or skew to move the
capacity toward the geometric mean of processor, internal bandwidth, and
scheduler, using the data from Figure 2-1 on page 23.

You can see that the IBM machines are more balanced than the others, and also
that the S/390 does not fare well with CPU-intense work. This follows intuitively
from the conflicting views offered by the proponents and opponents of the
machine: scaling on the processor bars indicates that the machine is “big”, while
scaling by the bandwidth bars indicates that it is “slow”.

The situation is compounded by the fact that most people work with workstations
or PCs, where processor speed has a much higher leverage on total capacity to
do work. But because servers need to respond to many users, there is much
more “context switching” in their workloads than in that of a PC. This means the
internal bandwidth and scheduling (the second and third bars) become more
critical to the capacity to do work, and to do it quickly.

Understood in this sense, then, system capacity is measured by the size (or,
geometrically speaking, the area) of the triangles seen in Figure 2-1 on page 23.
No longer are you restricted by a single aspect of the system’s performance.
24 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Figure 2-2 Geometric Mean of sample systems

2.2.2 The bottom line
The bottom line of this discussion is that the relative capacity of machines varies
with workload. This is most dramatic when it comes to the S/390, but differences
also show up between “enterprise” and “midrange” UNIX servers, UNIX and NT

servers, older and newer servers, etc.

It is true that within a machine type (family), relative capacity is close to the
relative processor speed, unless a bottleneck develops. But this is not true for
systems with different architectures. Therefore, benchmarks which are reliable
indicators in comparing like machines cannot be used to compare different
machine types with the same confidence. Since the objective is to make the best
possible decision when choosing a server for a given workload, it is important to
consider how the characteristics of the workload match the design structure and
capabilities of the various machines.

For these reasons, it is impossible to simply position the various servers in a list
from largest to smallest. IBM's large commercial servers have more robust
scheduling and higher internal bandwidth per processor than other servers,
allowing them to maintain high processing rates in the face of skew. As a result,
they will have higher capacity than their competition on many real workloads.

b
o

x
A

-
8w

ay

b
o

x
B

-
64

w
ay

b
o

x
C

-
24

w
ay

z9
00

-
16

w
ay

Processors
Bandwidth
Scheduler
Geomean
 Chapter 2. Sizing 25

To address the issue of workload dependence, IBM has put resources in place to
provide sizing, capacity analysis, and capacity planning assistance. If you need a
sizing performed, contact Techline at (888) 426 5525, or fill out a TechXpress
form on the following Web site:

http://dalnotes1.sl.dfw.ibm.com/atss/techxpress.nsf/request

2.3 Utilization
Linux on zSeries is really about doing the work of many smaller servers on one
(or a few) larger servers. This is typically done to gain advantages in total cost. In
most scenarios, the advantage is realized by reductions in the growth of
floorspace, power, people, network complexity, etc. It turns out that server
consolidation is most viable when there is some inefficiency in the current
operation. This can come about in a variety of ways, and no two total cost
scenarios will be exactly the same. However, returning to the capacity effects of
server consolidation, we observe the following.

Clearly, we are not going to be able to show consolidation viability if the
application is CPU-intensive enough to show the S/390 engines at a
disadvantage. However, this does not turn out to be the biggest lever. Utilization
can have up to a tenfold (or more) leverage on relative capacity. This is because
distributed servers are designed for the individual peaks of the various workloads
in question. This level of capacity is an overdesign for the composite peak of the
workload, unless all workloads peak simultaneously, which almost never
happens.

Furthermore, as we have seen, response time on some servers and workloads
can be very sensitive to utilization. When servers are inexpensive, there is a
tendency to buy more when the response time starts to grow, regardless of the
actual load on the machine. In some cases, this can happen at 40% or 50%
utilization, resulting in many machines with very low average utilization.

Then there are all the other servers which tend to go with a production system -
backups, test, development, and infrastructure servers such as file, print, DNS,
security, system managers, and so on.

When all these are added together in a composite utilization picture, the
utilization can be quite low, even at the peaks.
26 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

http://dalnotes1.sl.dfw.ibm.com/atss/techxpress.nsf/request

2.3.1 White space - unused capacity
Since utilization is a major factor in assessing the effect of consolidation, we
need to understand it better. We also need to know its inverse, which is the “white
space”, or unused capacity of a system.

We start with definitions. This is particularly important because utilization is
defined by how we measure it. All machines contain a counter that is
incremented every cycle. This counter is used to generate a running notion of
time within the system. The hardware counter is not infinitely long, but it is
typically rolled over into a software counter kept in storage that is sufficiently long
that we don't have to worry about it rolling over. Most machines have another
counter which increments only on cycles when the processor is busy (this
includes when it is busy waiting for memory on a cache miss). This counter is
also extended by software and the count of busy cycles is kept in memory.
Utilization is defined as the change in the “busy count” divided by the change in
the total ”cycle count”.

Since cycles occur at a fixed rate in time, the change in cycle count is a measure
of a time interval. Thus, the software that generates utilization data operates by
periodically checking the change in the busy count. The cycle count in the
denominator is determined by how often the software is run. This in turn is
controlled by starting the data gathering code at regular intervals by dispatching
it when the change in the cycle counter indicates that an interval has completed.
When it runs, the data gatherer reads both counters, does the division, and
stores or displays the result for use to look at.

White space is simply defined as 1 - utilization. Thus, utilization is a statistic
which is always an average or probability. This is why we need to be careful when
we talk about peak and average utilization. The shorter the interval used to
gather the utilization data, the more the utilization number looks like either one or
zero. This is because if we get to the ultimately short interval of one cycle, the
machine is either busy or it is not. Moreover, the shorter the interval used to
gather utilization data, the more impact the gathering of data has on what we are
measuring. In the most extreme case, the software that does the gathering keeps
the rest of the system from running and the utilization becomes 100%, even
though the throughput has gone to zero.

Because of these factors, utilization graphs will look spikier when the interval is
short, and smoother when it is long. Because it is easier to see the white space
on smoother graphs, and because the impact of gathering statistics on longer
intervals has lower impact on the system, we typically look at 1- to 15-minute
intervals when gathering statistics.

Is this enough? See the utilization profiles in Figure 2-3 on page 28, which all
have 50% white space.
 Chapter 2. Sizing 27

Figure 2-3 Sample utilization charts with 50% white space

Obviously, the average utilization is not enough, because the peak of each
workload is also of interest. One one hand, we need to have enough capacity to
handle the peak, but we’d also like to minimize the white space in order to run
more efficiently. In each of these cases, 50% of the capacity goes unused.

When we build a composite of all 4 workloads, we get the graph shown in
Figure 2-4:

Figure 2-4 Utilization after consolidation - also 50% white space

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

1

2

3

4

28 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Here we see that the peak workload is about 80% of the total individual
configured capacity. If this peak holds up, we probably are not getting a large
lever from consolidating. However, often such peaks occur because of scheduled
batch windows for data loads, reports, backups, etc, which can be prioritized or
rescheduled using white space in different periods, thus smoothing the curve and
reducing the peak.

The example of 30+ servers shown in Figure 2-5 illustrates this case; the peaks
are identified as database backups that are all scheduled at the same time on the
distributed solution, but can be staggered to reduce the peaks on the
consolidated machine. In this example the distributed solution has about 62%
white space, meaning that over half of the configuration goes unused.

Some of this occurs naturally, even if the individual systems are efficiently
configured, because individual systems must be configured for each workload’s
peak; this is shown as the grey space on the chart. Only 30% of the distributed
configuration is “headroom”, even though 60% of the composite is white space.
This means that even if 30% headroom is maintained, the composite can be built
with 30% less total capacity.

Figure 2-5 Using Virtual Servers

In this particular case, the composite utilization is actually quite high for a
distributed solution. In many other cases, there is even more white space. For
example, Figure 2-6 on page 30 shows the composite of 147 servers in IBM's
“universal server farm” run by IGS as part of their Web-hosting operation. Here,
the composite peaks at 13%—this means there’s over 87% white space in the
configuration.

0

50

100

150

T
ho

us
an

ds

DBonly
DB&Web
ORfin&PS

RYO UNIX
DSS

Dev$TST
Sum Peaks

Distributed Capacity
Avg Load
 Chapter 2. Sizing 29

(,)-9cording to priority
Figure 2-6 Web servers - consolidation candidate

Sources of white space
So where do such large inefficiencies in the deployment of computer power come
from? White space comes from six main sources:

� Spikes
� Headroom
� Redundancy
� Fragmentation
� Partitioning
� Skew

Spikes
“Spikes” in a workload result from the variance of its demand for service over
time. If the demand is very variable and the work is high priority, it is difficult to
use the white space, because the work that fills the troughs must be overridden
by the high priority spike.

This has several implications. First, when white space is caused by spikiness,
there must be a .6(,)-9g6(,)-9heduler in plag6(,)-9e that can dispatg6(,)-9h work ag6
30 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Rapid context switching of large context changes is a characteristic of workload
mixing that occurs when work is added to a system to use white space. The
S/390 hardware design is particularly well-suited to this environment. It is the
underlying shared L2 cache and high memory bandwidth per processor which
enables this, and by extension, the ability to run virtual machines.

Figure 2-7 Context Switch Profile

Headroom
Many distributed systems experience an “accelerating ramp” in response time as
the load grows. Under light load, they exhibit very good-to-excellent response
time, but this tends to slip as load is applied. Users often use perceived response
time instead of utilization to understand how heavily loaded a system is. In some
workloads, the loss of performance occurs at 50% or less utilization. This means
that additional capacity is brought online at relatively low utilization.

Refer to Figure 2-8 on page 32 for an example of this concept. In this graph, the
250 MHz 32-way machine achieved 25% faster turnaround than an S/390 G4 2X
10-way sysplex on this group of batch jobs, employing 60% more processors at
low utilization. However, as the load was doubled and then tripled, this advantage
was not maintained.

2 4 8 16 24 32 64 128

of processes

0 K
4 K
8 K
16 K
32 K
64 K

be
tt

er

2 4 8 16 24 32 64 96

of processes

0 K
4 K
8 K
16 K
32 K
64 K

Linux for zSeries Linux/Intel

High Memory Bandwidth allows fast context switching which enables virtual machines
 Chapter 2. Sizing 31

Figure 2-8 An SAS workload capacity curve

Redundancy
Many distributed solutions contain redundant systems as backups for availability,
test, development, integration, etc. These extra non-production systems add
capacity but are sometimes not used at all, or have very low utilization, or peak in
utilization at different times than the production systems.

Fragmentation
Workloads grow as a continuum, whereas capacity is added in discrete
quantities. As a result, whenever there is enough capacity configured, there is
some amount of white space just based on the difference between the quantum
step and the continuous growth in the workload. When the solution is distributed,
the quanta are often whole systems, or the capacity is a set of individual
sub-workloads, each continuously growing and having its demands met by its
own quantum steps in capacity. This results in fragmentation of the resulting
white space. By combining the loads, only one quantum of workload is only
partially filled, instead of several.

Partitioning for integrity and isolation
Sometimes the user will create many small systems so that a failure will only
impact a small subset of users; this is known as partitioning. Work is also
partitioned, in order to create isolation and prevent interference. Finally,
partitioning is often used in place of prioritization, so that each sub-workload gets
the full attention of the machine upon which it is run.

1X 2X 3X

Load

3

4

5

6

7

8

9

T
ur

na
ro

un
d

T
im

e

Solaris 32way

OS/390 16way
32 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

The end result of any of these actions is white space. Partitioning also leads to
the replication of data, often requiring off-shift batch updates which can drive
higher peaks than the daily online workload. This leads to white space outside
the batch window.

Skew
When multiple processors or systems are working in parallel, they are almost
never kept uniformly busy. Much effort is expended in balancing workload, but in
the end, none of the various methods for doing so work perfectly. The result is
that white space emerges on some machines, when others are heavily loaded.

Regardless of the source, white space represents wasted compute power.
Server consolidation is a means by which to remove some of the waste and run
more efficiently.

2.4 Example sizing - analysis of company XYZ
Now that most of the theory for sizing has been discussed, let’s take a look at
sizing a given configuration.

This is the setup we inherit at the fictitious company XYZ.

Table 2-1 Setup for company XYZ

Note: Before we go through each of the elements of sizing, keep in mind that
many of the calculations we base our sizing on are confidential and cannot be
explicitly written out. There are several reasons for this, the most important being
we do not want to set a “standard” for how to size. Although this may seem
counterintuitive, when one considers how many variations there can be in
hardware (notice that our setup is fairly small and homogeneous, which will not
always be the case), software, and workload, one can see why we cannot
endorse a generic formula with some constants and a few variables. Since each
situation is different, each sizing will have to vary accordingly. The intent here is
to illustrate the principle, and not the specific implementation.

Function Server type # of servers Average utilization

File Server Compaq DL380 10 10%

DNS Server Sun 5S 4 15%

Firewall Sun420R 2 15%

Web Server Sun280R 10 15%
 Chapter 2. Sizing 33

CPs
The engines of a system are always considered its primary attribute—even in the
traditional mainframe environment (where emphasis on the processor is not as
heavy as it is in the PC world). Accordingly, most of our efforts will be
concentrated here.

The theory is deceptively simple: you measure how much load is on the current
system (in other words, how heavily utilized it is), then translate this number into
a zSeries equivalent via a workload factor (WLF), and that’s that. The formula
which represents this calculation is:

MIPS needed = %Utilization * Current Capacity * WLF

Making comparisons
As mentioned previously, architectural differences between processor families
make comparisons between them very difficult. The clock speed competition
between chip manufacturers has escalated recently, and this competition helps
underscore the point. What makes it even more remarkable is that some of these
chips share the same architecture. How much harder it is, then, to compare
processors from completely different architectures.

Figure 2-9 CPU-intense work (top) vs. data-intense work (bottom)

CPU Time
Memory

Time

I/O

Time

CPU Busy

CPU Time Memory Time I/O Time

CPU Busy

zSeries

Others

CPU Time
Memory

Time
I/O

Time

CPU Busy

CPU Time
Memory

Time

I/O

Time

CPU Busy

zSeries

Others
34 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

This is especially problematic for the S/390 and zSeries processors, since they
are much better at data-intensive workloads such as databases, Business
Intelligence, On-Line Transaction Processing, and “cache-killer” applications than
they are at CPU-intensive tasks such as benchmarks and graphics rendering
(see Example 2-9).

Nevertheless, that is the task before us now. Let’s examine each component of
the equation separately.

Utilization
Determining utilization is the most straightforward element. Since running Linux
under VM means consolidating discrete, underutilized servers, it is important to
find out the current usage. There are a variety of tools for the job, depending on
the platform you’re starting out on (Norton Systemworks for Windows servers, for
instance). The key here is to have a duration that is long enough to give a
realistic average utilization, and to identify what the peak time characteristics are,
as explained in the previous section.

Remember that the more accurate the reading, the better off your sizing will be.

Current capacity
Determining current capacity should be fairly simple, as well. What we are
referring to here is the TPC-C benchmark “transaction per minute” (tpm)
numbers for each machine as they are configured. Obviously, the way these
numbers reflect reality will vary somewhat depending on the workload, but they
are good starting points.

If your workload is usual in some way, you are always free to compile your own
data and come up with an unofficial tpm number, or even “tweak” the official
numbers so they are more representative of your situation. Just be aware of the
risks involved should these numbers be off.

Workload factor
The challenge here is to find a conversion factor to take us from our utilized tpm
rating to the traditional S/390 MIPS rating.
 Chapter 2. Sizing 35

Much easier said than done, of course; the pitfalls are many. However, we’ll limit
our discussion to the two primary issues:

� Usage & workload - Chances are you’re extremely tired of seeing this by now,
but the fact remains that you must consider the application and work that is
being ported, in order to size it properly. This is not idle speculation we’re
engaging in. In terms of tpms, the relative capacity of a S/390 engine can vary
from around 20 tpm/MIPS in CPU-heavy benchmarks to well over 200
tpm/MIPS for Samba workloads.

� “Generation Gap” - At the time of writing, there are three generations of IBM
eServer zSeries processors we are looking at running Linux under: the G5,
G6, and z900 engines. Needless to say, there are numerous differences
between them. For instance, the IEEE floating point instructions are
implemented in microcode in the G5 chips, but are done via actual circuitry in
the G6 processors. The resulting performance increase is somewhere in the
neighborhood of an order of magnitude. Therefore, the S/390 or zSeries
processors you’ll be migrating to is also an important consideration.

Memory
Also known as storage to the traditional mainframe folks, the zSeries machines
are at a definite advantage when it comes to memory. Compared to its Intel and
UNIX counterparts, the zSeries memory architecture is much more mature and
efficient.

Consider Figure 2-10 on page 37. You can see the large breaks in the bandwidth
as the L1 and then the L2 cache sizes are exceeded by the amount of data to be
moved. Converting these results to tpm/MIPS yields the results shown in
Figure 2-11 on page 37. Thus we can surmise that the tpm/MIPS grows with
working set size, which drives cache misses and stressing the internal bandwidth
shown here.

Refer to 3.3, “Memory topology” on page 55 for a more detailed analysis of this
topic.

Note: As already discussed, using MIPS numbers is not the best way to
gauge performance for S/390 and zSeries machines. For performance
measurements, LSPR is much better. However, keeping the end goal in mind,
all we’re after here is a conversion from tpm to MIPS so we can identify how
many processors are needed to run the same workload as our starting
environment on our target S/390 or zSeries machine. This is not to be taken
as an endorsement of the MIPS rating in general.
36 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Figure 2-10 Memory read bandwidth

Figure 2-11 tpm/MIPS vs. working set size

Data Size

T
hr

ou
gh

pu
t

Sun E10k 400 Mhz

G6

Linux Intel

be
tte

r

be
tte

r
fo

r
S

/3
90

Log data size

tp
m

/M
IP

S

Intel 1way
Sun 8 way

Range is from 32 to 200 tpm/MIPS
 Chapter 2. Sizing 37

DASD, channels and network bandwidth
I/O is heavily dependent on application characteristics. The situation on the
source platform can be assessed using tools like Netbench, but a porting
discipline has not really been developed for these factors yet. Refer to 3.2, “Disk
topology” on page 46 and 3.4, “Network topology” on page 64 for a discussion of
how these systems work.

2.5 Concluding remarks
In general, we are looking at a range of 30 to 200 tpm per MIPS of relative
capacity. Data-intense workloads fall at the high end of this range, while
CPU-bound workloads fall at the low end. The tpm per MIPS also can go up
about 30% between a zSeries uniprocessor solution and a 16-way solution.

The art of sizing is in measuring the utilization properly, and choosing a WLF to
use.

The TPC policies do not allow for the publication of unofficial TPC-C results or
estimates, and IBM supports this policy. No single benchmark can accurately
represent the way a system will perform in a specific customer environment. IBM
sizing teams use multiple sources of information, including confidential estimates
of benchmark results to deliver the best proposal possible for a given situation.
38 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Figure 2-12 Capacity Profile - a more complete view

In Figure 2-12, you can see that box C is stronger on cache and internal
bandwidth. You’ll also notice that both boxes A and B are weak in “parallel hell”
(for example, highly integrated transaction systems which requires significant
sharing and synchronization which cannot be buried by redundancy) and strong
in “parallel nirvana” (where the serial portion of the execution is small). The
zSeries is ahead of the rest in parallel hell but weak in parallel nirvana,
particularly if the work is CPU-bound. Box A is a relatively small machine when
looked at this way.

2.5.1 Total Cost of Ownership (TCO)
Now that we’ve established how to quantify relative capacity, we need to
understand how to compare costs between servers. It is not enough to tally
price/performance, but rather it is necessary to understand the total cost
associated with each server type. The reason for this is that in raw capacity, you
can always put together enough small machines with low prices to show a better
price and capacity advantage for a distributed solution. Therefore, simply looking
at $ per tpm as suggested by the published TPC-C benchmark results will be
misleading, even if the tpm/MIPS (or tpmA/tpmB for that matter) is adjusted to
account for different architectures.

Cache-Switch

Mem-IO

Power/CPU

Cache-Switch/CPU

Mem - IO/CPU

Power

box A box B box C zSeries
 Chapter 2. Sizing 39

This is because differences in server architectures and implementation go
beyond capacity. Even within a family of servers, differences between clusters
and a large machines appear. These variables drive differences in a variety of
non-acquisition costs, such as occupancy, network engineering, operations
(people), and outage costs. Therefore, to understand which server type should
be deployed, it is necessary to look at the Total Cost of Ownership (TCO) of
competing solutions.

However, even this is not a simple matter of adding up well-known average
values to get a “typical” result. The problem is that there is a very large variance
in each of the variables involved. There are usually unique and significant cost
factors which can only be listed as “other costs” in any one-size-fits-all method of
computing the TCO. Having said that, the following is an attempt to build a TCO
model which fits most situations.

The Total Cost components
Here is an outline of the components of Total Cost:

1. Time
a. How far into future
b. How often are upgrades
c. How many upgrade steps in Study

2. Hardware
a. Price
b. Discount
c. Maintenance
d. Financing
e. Overlap, Deployment, or Depreciation cost
f. Node Count
g. Rack Count

3. Software
a. Price

i. Per seat
ii. Per CPU
iii. Per Unit of Capacity
iv. Per Box
v. One time or Monthly License Fee
vi. Cost per Rack (includes power connection)

b. Maintenance
4. Occupancy

a. Burden per SQ ft. (Rent, facilities, lights, heat, cooling, etc.)
i. Rent
ii. Facilities
iii. Lighting
iv. Heat/Cooling
40 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

v. Clearances (Sq. foot per Rack)
b. Power

i. $ Per Kilowatt Hour
ii. Kilowatt Hour per Rack (estimated)

5. Storage
a. Total Bytes
b. Compressed Bytes
c. Redundant Bytes
d. Tape Drives
e. Replicated Data (does the solution consolidate it?)
f. SAN, Integrated or External implementation (or apportionment)

6. Network
a. Cost per Connection
b. Routers per Rack

7. People
a. Operational

i. Uncloned
ii. Cloned
iii. Super Cloned

b. Skills
i. Per Architecture
ii. Servers per Administrator

c. Automation investment
i. Current Investment
ii. To be developed

8. Outage Costs - Loss Model
a. Productivity Loss

i. User Count
ii. % Users effected
iii. User Burden Rate

b. Revenue Loss
i. $/Minute of opportunity losses
ii. $/Minute of penalty losses

c. Loss of Confidence or Reputation (Stock Price loss)
i. Publicity exposure
ii. Stock price vulnerability

9. Other costs
a. Migration Costs (Databases, Middleware, ISV code, etc.
b. Porting Costs (Home Grown Applications)
c. Facilities engineering costs
d. Network Engineering costs
e. Solution Architecture costs
f. Reengineering for scalability costs
 Chapter 2. Sizing 41

2.5.2 Some trade-offs
With sizing, there is a fundamental decision to be made up front: do you upgrade,
replace, or add to the existing infrastructure? Each of these paths leads to a
different set of trade-offs in TCO.

For example, a customer may need to double its capacity. If the customer
decides to upgrade existing boxes, this is typically done by adding processors,
memory and I/O to each box. In this case, overlap costs are small and network
engineering costs are small to large, depending on the whether network
connections are added to the existing boxes. Staffing can remain flat, power is up
marginally, and floorspace only goes up if routers are added. However, there is
the risk that scalability engineering costs occur, if the applications reach internal
scaling limits on the upgraded systems.

Alternatively, suppose the customer decides to replace hardware. Now there are
depreciation costs and deployment costs to consider. Network, staff/operations,
and floorspace costs may potentially go down, but one is still faced with the same
scalability engineering issues (more work per instance).

Finally, let’s assume that the customer decides to add hardware. In this case,
floorspace, people/operations, network and other costs go up, but scalability
engineering issues are different (for examplehow parallel is the workload, how
good is the load balancing, and how good is the data partitioning). Now,
assuming we are doubling the boxes to double the capacity, this typically means
that utilization on the new boxes is lower than on the existing boxes. Alternatively,
we can chose to add fewer, but larger boxes, in which case the scalability
engineering requirements would include both the larger instance and more
instances forms of scaling. In this case there is little or no depreciation, but there
may be some overlap cost.

Another fundamental decision is the choice of upgrade granularity, which is how
frequently will capacity be added, or in what increments.

2.5.3 Final reminder
We’ve stated several times in this chapter that sizing is an important but difficult
process. In our experience, even if you were to consult sizing experts on the best
methodology (especially for Linux on the zSeries and S/390), chances are that
you’d end up with as many methods (and results) as there were experts.

As a matter of fact, a Gartner Research Note (P-13-7373) released in June 2001
states:
42 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

There is no easy way of initially sizing how many MIPS an S/390 or zSeries
will require to handle projected loads, especially with the varying system
utilization of a large number of servers.

However, with the proper preparation and an understanding of the topic, a good
sizing can be done. This chapter should serve as a guide to that understanding,
as well as a bridge to resources that will help you along the process. It may be
helpful to refer again to 2.2.2, “The bottom line” on page 25. While neither simple
nor straightforward, this is an important phase of any migration project which
cannot simply be ignored.
 Chapter 2. Sizing 43

44 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Chapter 3. Virtual server architecture

In this chapter we discuss aspects of running many “virtual” servers on a single
mainframe. We do not address the clustering of virtual servers, but instead
examine the issues involved in structuring a large collection of servers for
manageability and efficiency. At the end of the chapter, we offer
recommendations based on our testing.

The chapter introduces concepts that are expanded upon in later chapters.

3

© Copyright IBM Corp. 2001 45

3.1 Why an architecture is required
In large, discrete server environments (and even in some smaller ones), there
are a number of management and operational issues to be faced. These include:

Scalability How to allow for increasing capacity in the environment
Management How to control, configure and monitor the environment
Growth How to add new servers to the environment

The penguin colony provides solutions to some of these issues, which one
reason why the concept is attractive. However, if the structure of the environment
is not planned in advance, the benefits of the solutions provided by the penguin
colony are reduced.

By designing the penguin colony according to a set architecture (what we refer to
as a” virtual server architecture”), you can build the environment so that issues of
scalability and management are addressed, and so that it becomes easy to
create new servers for the environment when required.

3.1.1 Components of the virtual server architecture
Here we introduce the components of the virtual server architecture, and discuss
alternatives for their implementation. The components that must be considered in
the architecture are:

� Disk topology - see 3.2, “Disk topology”
� Memory topology - see 3.3, “Memory topology” on page 55
� Network topology - see 3.4, “Network topology” on page 64

At the end of this chapter, we offer recommendations based on the testing we
performed. However, different approaches may suit your environment better than
the choices we made in our testing. The purpose of this chapter is to present a
discussion of the issues, so that you can decide on an architecture which works
for your installation; in the language of Internet newsgroups, YMWV1.

3.2 Disk topology
This section discusses the ways that disk can be allocated to Linux images in a
penguin colony.

1 Your Mileage Will Vary, meaning your experiences will almost certainly differ from ours.
46 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

3.2.1 The DASD driver
Linux disk support is provided by the DASD driver code, dasd.c. It provides
support for Count-Key-Data (CKD) and Fixed Block Address (FBA) disk devices,
as well as VM minidisks.

In the Linux installation systems, the DASD driver is provided as a module. This
is because the disk configuration is not known, and is determined as part of the
installation. The installed system has the DASD code built in to the kernel, and
parameters to the DASD driver are passed as part of the kernel parameter line.

The DASD driver uses channel I/O to perform read and write operations. For VM
minidisks using the CMS RESERVE format, VM Diagnose I/O can be used to
provide better performance. More detail on this can be found in 8.10.1, “VM
Diagnose I/O” on page 163.

3.2.2 Linux instances with dedicated disk
The usual method of installing Linux is to dedicate disk volumes to each
instance. In this scenario, every Linux instance has its own disk volumes that no
other instance has physical access to, and each instance is installed in the same
way.

This is not a very efficient installation method for a penguin colony, as there will
be a large amount of redundant data kept in each instance—much of which will
be the Linux installation itself. Software management in this scenario is intensive,
because each Linux instance maintains its own copy of all applications, from
user-level software right down to the kernel.

Also, because there is currently no way to partition DASDs at the Linux level,
there is very little granularity in the possible DASD allocation (however, the
command fdasd will be coming to the Linux for zSeries and S/390 distributions).

This problem can be addressed in two ways:

� At the Linux level, you can use LVM to create virtual volumes that may span
multiple physical DASDs (at the expense of a longer code path to the actual
disk).

� Using VM, minidisks provide a solution by dividing a physical volume into
multiple virtual disks at the VM level.

Either of these options allows the equivalent of partitioning.
 Chapter 3. Virtual server architecture 47

The benefit of this approach is its isolation. In some environments, the ability to
create Linux instances that are entirely separate from each other is very
attractive, and worth the management and definition overhead. By keeping every
disk separate from all others, administrators are free to treat the instance just like
they would a discrete server; they can install their own software, maintain their
own configuration, and run their own services.

However, in spite of the operational isolation of this approach, you can still use
VM concepts to improve management over a discrete server approach. Providing
disaster recovery facilities in this scenario might be as simple as taking copies of
the minidisks allocated to Linux machines, and backing them up. Restoration of a
failed system would then be a matter of restoring the disk images and booting up.

This approach could also be taken with massive data loss, as Figure 3-1
illustrates.

Figure 3-1 Simplified full-volume recovery scenario

In this example, a utility such as VM DDR is used to replace the entire disk
image. Done simplistically, as shown, this approach is non-selective (i.e. it does
not provide a means of retrieving portions of the file system), so it is a method
that would suit the recovery of entire file systems rather than individual files in a
file system.

vmlinux2:/home # rm -rf

vmlinux2:/home # ls -l

total 0

vmlinux2:/home # _

/dev/dasdc1
on

vmlinux2

X

vmlinux2:/home # ls -l

total 12

drwxrwxr-x 2 tot12 users 4096 Sep 19 19:20 html

drwxr-x--- 2 tot12 users 4096 Nov 9 15:00 tot12

drwxr-xr-x 2 tot93 users 4096 Jan 26 08:19 tot93

vmlinux2:/home # _
D'OH!!!
48 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

More discussion on disaster recovery and backup scenarios appears in
Chapter 7, “Backup and restore” on page 127.

3.2.3 Linux sharing data
Because many members of the penguin colony will be identical in software
configuration, it would be ideal to have these instances share this common data
and programs (for example, this might apply to a group of Linux instances that
provide the same service or application to a particular customer). The data
relating to the service must be shared between the servers for consistency.

At the same time, there will be certain data that will have to be different from one
instance to another (such as network configuration data). This data can be stored
on a disk device unique to each instance, but management of this system-unique
data would be simplified if it could be accessible from a single location (or from all
locations) in the penguin colony.

Since the members of our penguin colony have virtual network connections
between them, we can use facilities that make data available across a network.
There are at least two ways to do this:

� “Traditional” network file sharing

A facility such as Server Message Block (SMB) or Network File System (NFS)
is used to provide discrete file system access between servers.

� Global namespace

A virtual file system which introduces a global name space to its members
servers, such as AFS or GFS, provides universal access to data across the
penguin colony.

Server Message Block (SMB)
Also known as the Common Internet File System (CIFS), SMB is the file sharing
protocol used by operating systems like Microsoft Windows and IBM OS/2. Linux
supports SMB through the Samba application suite.

In the situation where you want to share the data on your penguin colony with
SMB clients (such as Windows desktops), running Samba on your Linux
machines is the best approach. However, using Samba to share between Linux
instances does not work well, mostly because Samba does not maintain the
UNIX security information across the network. See Chapter 15, “Integrating and
replacing Microsoft servers” on page 345, for hands-on details.
 Chapter 3. Virtual server architecture 49

Network File System (NFS)
NFS is a common method of sharing file system data among UNIX platforms. An
NFS server makes parts of its file system available over the network, allowing
NFS clients to mount the served file system data into its own file structure. Also,
NFS observes the Linux/UNIX file permission model, so file permissions can be
managed uniformly across an installation.

NFS does have limitations; in this discussion the most important consideration is
an inherent lack of security based on its use of Remote Procedure Call (RPC).
RPC, which uses UDP as the transport mechanism, does not provide a high level
of security for two reasons:

� UDP packets can easily be “spoofed”, defeating security based on the IP
address (or host name) of the source machine.

� Authentication is performed “in the clear” over the network.

One way to confidently use NFS in a penguin colony is to restrict NFS traffic to
separate network connections, isolating it from other traffic; see Figure 3-2 on
page 51. This obviously increases both management and processing overhead.

Note: This does not mean that Samba cannot be used between Linux
machines! For simple file access it is quite capable, especially where a Linux
machine is set up as a Samba server. In this case, using smbmount or
smbclient from another Linux machine to perform ad hoc sharing is easy. For
significant sharing of data between Linux systems, however, a “native” method
that observes the Linux security model is a better choice.

Note: A complete discussion of NFS security is beyond the scope of this book.
Most Linux security books offer information on NFS security.
50 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Figure 3-2 NFS isolation

The design of NFS does not automatically lend itself to providing a global
namespace, but in theory a single NFS client could mount file systems from
many NFS servers, which would provide a location where the relevant parts of all
file systems could be accessed. However, as the number of instances increases,
this arrangement would be very intensive to administer unless a utility such as
automount were used to keep track of the mounted file systems.

Global namespace
The concept of a global namespace brings together the file systems of many
separate servers into a single structure. This happens seamlessly to each
member of the name space.

Global File System (GFS)
GFS is a cluster file system that provides a common name space to member
servers. All servers in the GFS structure can access these physical disks. Disk
devices are allocated to storage subpools, providing the flexibility to group disk
devices according to performance attributes. Then, the file system can physically
locate files in an appropriate subpool according to performance requirements.

VM

Linux

Linux

Linux

Linux

Virtual
router

Internet Internal network

NFS
server
 Chapter 3. Virtual server architecture 51

To arbitrate access to the shared disks, either device-level locking is performed,
or a global locking server is introduced. On platforms that support it, this locking
server uses shared memory for data structures; otherwise, network
communication over TCP/IP is used.

In the Linux-VM case, shared access to the physical disk can be provided by
linking physical disks (or minidisks) to all of the systems participating in the GFS
pool. It is also possible to use the network block device, mounting the physical
disks to one system only and accessing the disk via the network.

Figure 3-3 illustrates the various GFS scenarios.

Figure 3-3 GFS scenarios

Another advantage of GFS is that it is a journalling file system, providing better
file system integrity and faster recovery after a system failure.

The global name space is implemented (in part) with context-dependent
symbolic links (CDSLs). CDSLs are generated by GFS to integrate certain
system-specific file system components (such as /etc) into the global name
space.

At present, support for GFS in Linux on zSeries is in trial stages. There are
difficulties in compiling it on 2.2 kernels, and even on the 2.4 kernels it is not well
proven.

VM

VM R/W
links

DASD or
minidisks

Linux

Linux

Linux

Linux

lock
server

TCP/IP
connections

VM

VM
R/W
links

DASD or
minidisks

Linux

Linux

Linux

Linux

lock
and IO
server

TCP/IP
connections

Direct disk access scenario TCP/IP disk access scenario
52 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Andrew File System (AFS)
AFS is another implementation of a global name space. In addition to the
seamless file system, AFS provides much better security than NFS.

An Open Source implementation of AFS can be found in OpenAFS, the latest
version of which is 1.0.4a. While AFS is well proven as a commercial product,
OpenAFS has yet to prove itself. However, it is reasonably assured of success
given the large number of organizations with experience in AFS. See 15.4,
“Using AFS in an enterprise environment” on page 362 for a hands-on
description.

The Coda file system
Coda (for common data access) is a descendant of AFS, designed by
Carnegie-Mellon University. Coda provides similar features to AFS, with the
addition of a “disconnected” mode of operation, where clients can work on files in
their own local cache if the server is unavailable. When the server is contactable
again, the cache is synchronized automatically. This aspect of its design
indicates its primary use as an accessible file server for end-user data, rather
than a shared file system for servers. More information on Coda can be found at
the Coda Web site:

http://www.coda.cs.cmu.edu

One advantage of Coda is that the Linux kernel supports it natively. However, its
development status is unclear (the bug tracking system is active, but the FAQs
don’t appear to be up to date).

3.2.4 Sharing disk in memory
In 17.3.3, “Using shared segments” on page 411, we describe our work in
developing a way of using the discontiguous saved segment (DCSS) capability of
VM to create an in-memory virtual disk which can be shared across multiple
members of the penguin colony.

This is a very promising area, which would have great benefits to large Linux
virtual server environments. For example, it would be an ideal way to provide
very fast read-only access to the /usr directory for a penguin colony, not only
increasing performance but simplifying software management as well.

3.2.5 Minidisk caching
VM provides a feature that can provide a good performance benefit for physical
disk access, which will assist in any of the scenarios described here. VM minidisk
caching, as the name suggests, allocates memory in VM to cache guest
minidisks to accelerate disk access.
 Chapter 3. Virtual server architecture 53

http://www.coda.cs.cmu.edu

While Linux provides its own buffer cache, it is still advantageous to provide a
“second-level” disk cache, because the Linux cache takes lower priority to real
user processes in Linux’s memory allocation. This means that there may not
always be enough free memory available for Linux to provide an effective cache
internally. The memory for the minidisk cache is preallocated, so there is always
at least one level of caching available to the Linux guests.

Minidisk caching has been shown to dramatically improve the performance of
Linux guests with file systems on minidisk. There is a tradeoff, however, because
allocating memory to minidisk cache means that there is less memory available
to be allocated to guests. Adding more memory to the processor may be justified
in order to be able to take advantage of the available performance gain.

Minidisk caching can be done at a track level or at a block level. Refer to 8.10.2,
“DASD MDC measurement” on page 166 for an analysis of these options.

3.2.6 Limitations of sharing disk
While it is desirable to share as much common information as possible, the
sharing disk approach introduces issues that must be managed.

Caching
If a number of Linux instances have shared access to disk, they will each be
holding a copy of disk blocks in buffer cache. Usually this is not a problem, but if
one of these Linux instances writes to the disk, there will be a period of time
where the other systems sharing that data have an inconsistency. For some
applications, this may be intolerable. Therefore, the shared disk access method
you choose must allow for this.

Also, because main memory is more expensive than disk, it may not be desirable
to have many Linux instances holding copies of the same data in their own
localized buffer caches. This would be particularly relevant when the file system
is held in memory anyway, such as with VM Virtual Disk (VDISK).

The way that the Linux kernel is designed makes it very difficult to “turn off” the
buffer cache. However, in the S/390 environment, in certain circumstances this
would be desirable. The considerable amount of work that this would entail might
be justified for certain configurations.
54 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Locking
While discussing GFS, we discussed the need for a lock manager to arbitrate
access to shared media. This requirement will vary, depending on the
importance of the data and the way in which Linux instances access it. For
example, a file system carrying HTML files mounted read-only by a number of
Web-serving Linux instances arguably does not require a lock server (because
none of the instances can alter the data).

3.3 Memory topology
The allocation of memory in a penguin colony is critical to the performance of
individual instances, and of the entire installation. VM provides ways to improve
the basic operation of Linux instances on S/390 and zSeries.

3.3.1 Linux ‘jiffies’
The Linux kernel employs a 100 Hz timer that “wakes up” the kernel to check for
new work. The 10-millisecond units of time between timer pops are generally
referred to as jiffies, after the name of the kernel variable where the timer count
is stored. Parts of the kernel (and some other software) use this timer to check
for new work when the timer pops, every 10 ms.

To VM, the constant popping of the jiffies timer means that the Linux guest is
always busy. This is because the idle detection processing in VM requires a
longer idle time than the jiffies timer provides. This affects the way in which VM
pages Linux’s memory, because VM pages more aggressively on a guest that is
idle than on a guest that is active. Also, the processing done by Linux at each of
these timer pops becomes significant with large numbers of Linux instances,
causing CPU constraints.
 Chapter 3. Virtual server architecture 55

The 100 Hz timer causes the most significant issue in management of memory in
a penguin colony. The alternatives discussed in this section all provide ways to
manage memory, but all are affected somehow by the 100 Hz timer. A patch to
the Linux kernel has been written by IBM Boeblingen, which provides a kernel
configuration option that removes the 100 Hz timer and replaces it with a different
scheduling mechanism. Unfortunately, Linux developers often use the jiffies
variable for general timing purposes (which sometimes have nothing to do with
work scheduling), so simply removing jiffies from the kernel could have
unpredictable results on other software outside the kernel.

IBM’s patch is still regarded as very experimental and has not been widely
tested. However, because other areas of the Linux community have shown
interest in the 100 Hz timer issue (the user-mode-linux developers, for example),
the patch has a lot of potential.

3.3.2 Large guest memory
The simplest configuration, and the one which most closely mirrors running Linux
on discrete servers, is to simply allocate to each VM guest the same or similar
amount of memory as the discrete server would have.

Note: The CPU impact caused by the timer results some confusion.

If the Linux instance was not processing at the time of the timer pop, it is
driven to check for work, and this costs cycles. If the Linux instance was doing
“real work” at the timer pop, that processing would be interrupted to allow the
timer pop to be handled. Again, this costs cycles.

Therefore, in the penguin colony, reducing (or eliminating) timer processing
has benefits regardless of the average load of the Linux instances.

Information: We had access to a beta build of SuSE Enterprise Server 7.2 for
S/390 and zSeries, which was released on July 3, 2001 and is based on the
2.4.5 kernel. However, even this build, created well after the original availability
of the patch, does not have the patch applied. This reflects how experimental
the patch is.

At the time of writing, the members of the Linux-390 mailing list were
discussing the merits of making it part of the IBM “s390/s390x” patches to the
2.4 kernel.
56 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Due to the way in which Linux utilizes RAM, however, this is not efficient in a
penguin colony. The Linux kernel allocates unused RAM as buffer cache to
improve disk performance. To VM, there are no unused areas of memory, which
makes it difficult to determine what can be paged out; refer to Figure 3-4.

Figure 3-4 VM paging

Not shown in Figure 3-4 is the effect of Linux swap space, which further confuses
the situation. Consider a memory-constrained Linux guest, with Linux swap
space defined, which is operating in a memory-constrained VM system. VM will
be paging Linux memory to relieve VM demands, but at the same time Linux will
be swapping to relieve its own constraints. This can lead to a situation where
pages of memory—marked as swapped-in by Linux but paged out by VM—are
paged-in by VM simply to allow Linux to swap them out! This is generally referred
to as double-paging, and is very undesirable.

An ideal solution allows VM and Linux to work together—or at least not fight each
other.

Linux1'In-use' storage Buffer Cachekernel

'In-use' storage Buffer Cachekernel

'In-use' storage Buffer Cachekernel

'In-use' storage Buffer Cachekernel

'In-use' storage Buffer Cachekernel

Linux2

Linux3

Linux4

Linux5

VM

VM Paging

??
All pages appear in use

to VM, so it cannot
page efficiently

VM Central Storage

Linux guest storage allocation
 Chapter 3. Virtual server architecture 57

3.3.3 Linux swap to VM virtual disk
An alternative way of allocating memory is to reduce the size of the Linux virtual
machine, and allocate more swap space to it. In a discrete server environment,
where disk access is orders of magnitude slower than RAM, this would be
undesirable. Using VM Virtual Disk (VDISK) as Linux swap, however, we can
greatly enhance the performance of Linux swap; refer to Figure 3-5.

Figure 3-5 Linux swap using VDISK

In this case, even though in total we allocate a similar amount of memory to each
Linux instance (once the amount of real memory and VDISK is added up), VM is
able to manage the memory more efficiently.

However, there are limitations to this option:

� Applications which require a large amount of “real RAM” may not be able to
obtain enough real memory to run2.

Linux1'In-use' storagekernel

'In-use' storagekernel

'In-use' storagekernel

'In-use' storagekernel

'In-use' storagekernel

Linux2

Linux3

Linux4

Linux5

VM

VM Paging VM can page VDISK
pages efficiently

VM Central Storage

Linux guest storage allocation
Linux buffer cache

VDISK for Linux swap

2 Empirical evidence suggests that WebSphere falls into this category, requiring a fairly large amount of core (in excess of
128 MB) just to start.
58 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

� Applications that are disk-intensive, and would benefit from Linux buffer
cache, may experience slightly degraded performance (it is not as severe as
forcing a disk I/O in every case if VM caching is in effect).

� Since Linux believes it is using a real disk, the DASD driver will still be used
for swap I/O. This adds a slight performance overhead compared to memory
access.

The VM paging constraint introduced by the Linux 100 Hz timer will still be an
issue here, but because the size of the Linux guests’ memory is reduced, the
total amount of memory affected by the issue is reduced.

3.3.4 Linux swap files in memory
In order to further improve the performance of Linux’s “virtual swap”, we can take
the somewhat radical step of having Linux swap into memory. There are two
ways to achieve this, through using expanded storage or by using Linux
RAMdisks.

Expanded storage
Linux can utilize expanded storage as a block device, using the XPRAM driver.
This would allow an ext2 file system to be created in expanded storage, and
Linux swap files to be defined there. This approach provides a fast swap facility,
but there is little advantage between this approach and just allocating all of the
memory to Linux as central. In addition, expanded storage is not supported on
the z900 in 64-bit z/Architecture mode, so there would appear to be little future in
this method.

Linux RAMdisk
In this configuration, we increase the amount of memory allocated to the guest,
but instead of using external swap devices, we allocate RAMdisks in Linux’s
memory and create swap files on these RAMdisks.

Note: To clarify this point, z/VM supports expanded storage in 64-bit mode,
but only for its own use. An operating system running as a guest in z/VM
cannot use expanded storage. However, a guest OS could indirectly utilize
z/VM’s expanded storage through minidisk caching, VDISK or other z/VM
services, if z/VM was configured to provide these services using expanded
storage.
 Chapter 3. Virtual server architecture 59

Figure 3-6 Linux swap to RAMdisk

This provides a number of advantages over the VDISK method:

� DASD driver is not used to access RAMdisk, thus reducing I/O overhead.

� Multiple RAMdisks can be set up, thus allowing good granularity in balancing
memory available to Linux.

� VM can page the memory used by the RAMdisks more efficiently than if Linux
was using it as buffer cache.

This configuration gives significant control over memory usage. For example, if
an application requiring a large amount of “in-core” memory is started, RAMdisk
swap files can be turned off and the RAMdisk deleted to return the memory to
Linux (this is illustrated in Figure 3-7 on page 61).

Linux1'In-use' storagekernel

'In-use' storagekernel

'In-use' storagekernel

'In-use' storagekernel

'In-use' storagekernel

Linux2

Linux3

Linux4

Linux5

VM

VM Paging VM can again page
efficiently

VM Central Storage

Linux guest storage allocation
Linux buffer cache

Linux RAM disk, used as swap
60 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Figure 3-7 Relieving memory constraint in RAMdisk swap configuration

The reallocation of swap RAMdisk in this way would not improve the operation of
a Linux image whose total memory requirement was close to or exceeded the
size of the VM. If this is the case, removing the swap RAMdisk would actually
cause severe problems, because all the available swap space would be in use.
To perform the operation, additional DASD swap space would have to be brought
on temporarily to manage the change.

The downside of this method is related to the jiffies timer: by increasing the
size of the Linux guest, we’ve reintroduced the larger impact of the timer on VM
paging. For this reason, this method would work best with a kernel modified to
remove the timer.

3.3.5 “Hybrid” swap method
By using both Linux RAMdisk swap areas and VDISK swap space, it is possible
to create an extremely tunable memory architecture which can provide all of the
benefits of the methods discussed so far.

'In-use' memorykernel

'In-use' memorykernel
 Chapter 3. Virtual server architecture 61

In this design, we allocate a number of Linux RAMdisks—but only build swap
space in one of them. We fill the others with large files to force Linux to allocate
the memory to the RAMdisk. In addition, we allocate a VDISK and make Linux
swap to that. The swap space on the VDISK is marked as lower priority than the
RAMdisk swap space. This is illustrated in Figure 3-8.

Figure 3-8 Hybrid Linux swap design

As the memory requirement of the Linux image grows, it will start swapping.
Initially it will swap to the RAMdisk swap area, but if memory requirements
continue to increase, it will fill the RAMdisk and start swapping to the VDISK. At
this point, you delete one of the non-swap RAMdisks, releasing that memory
back to core.

Linux1'In-use' memorykernel

'In-use' memorykernel

'In-use' memorykernel

'In-use' memorykernel

'In-use' memorykernel

Linux2

Linux3

Linux4

Linux5

VM

VM Paging

VM Central Storage

Linux guest storage allocation
Linux buffer cache

Linux RAM disk, used as swap

Linux RAM disk, 'unused'

VDISK used as swap
62 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Figure 3-9 Relieving memory constraint in hybrid swap configuration

The process of deleting one of the filler swap disks can be automated. This
automation could take place either in Linux (through monitoring of page I/O to the
VDISK swap area), or through VM (by monitoring I/O to the VDISK itself). The
memory that is used by the files held in RAMdisk will be paged out by VM, so
there will be a slight overhead in paging space.

Possibly the best use of this approach is to determine the working set size of
Linux virtual machines. By using this approach over time, the ideal configuration
for your virtual machine size can be determined.

The process can be further enhanced to provide greater levels of granularity, by
adding intelligence that recreates the filler disk and incrementally increases the
size of its contents. This can give us a very good understanding of the memory
requirement of the Linux instance. (However, there is a risk that a peak in
memory utilization would skew the results obtained in this method.)

3.3.6 Sharing Linux memory
In a large penguin colony, many instances of common code such as the kernel
will be in memory. VM can provide a shared, read-only storage area that can be
used by many instances simultaneously, using a feature known as Named
Shared Storage (NSS). This can greatly reduce the memory used by the penguin
colony overall.

'In-use' memorykernel

'In-use' memorykernel

'In-use' memorykernel

constrained swap filled up

delete RAM disk

constraint relieved

swap to VDISK starts

swap to VDISK stops
 Chapter 3. Virtual server architecture 63

This shared area can also be used to boot a uniform build of Linux across a large
number of instances. Refer to 10.7, “Linux IPL from NSS” on page 228 for more
details.

3.4 Network topology
In this section we introduce methods for providing network connectivity to Linux
instances in a penguin colony. We look at the connection types available to Linux
on zSeries, and the use of these connection methods in connecting Linux to the
network. We discuss further details of how the connection types are used in
Chapter 4, “Networking a penguin colony”.

3.4.1 Network devices for Linux
There are several connection devices available under Linux. Generally, they fall
into two categories, external interfaces and internal interfaces.

External interfaces
External interfaces allow Linux instances to communicate outside the boundary
of the S/390 or zSeries machine the instance runs in. These are connections to
network devices such as Ethernet switches and routers. The interfaces that fall
into this category are the Open Systems Adapter (OSA) and Common Link
Access to Workstation (CLAW) via ESCON.

Internal interfaces
As the name suggests, internal interfaces are within our S/390 or VM system,
and are used mainly to connect between members of our penguin colony.
Internal interfaces at this time are point-to-point connections which do not
support broadcast. The two internal device types are Virtual
Channel-To-Channel (VCTC), and Inter-User Communications Vehicle (IUCV).

Using internal interfaces, members of the penguin colony can communicate with
each other, without needing connectivity to a physical LAN. Internal interfaces
are the building blocks for providing the virtual networking used in the penguin
colony.

In addition to VCTC and IUCV, there are now HiperSockets on zSeries machines
which were added as this book was being completed. Additionally, z/VM V4R2
allows for virtual HiperSockets and the concept of a Guest LAN. For some
details, see 16.2, “VM LAN support” on page 401.
64 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

3.4.2 Network structure
Since it is not practical to connect all members of the penguin colony to the
network using an external interface, it is necessary to create a “virtual” network
environment within the mainframe. This will involve having certain parts of the
environment set up to do no more than route network traffic. While this takes
away some resources from our worker Linux instances, it is a better approach
than providing dedicated network access to each individual member of the
penguin colony.

There are many ways that network connectivity can be configured inside the
penguin colony. We will cover two of these: a basic design providing simple
connectivity, and an advanced design using multiple interfaces and multipath
routing. We then develop the second approach by introducing virtual IP
addressing to provide enhanced connection availability.

Simple network design
Figure 3-10 on page 66 shows a basic virtual routing structure.

Note: As discussed in “Channel-to-channel (CTC)” on page 74, CTC also
operates over physical parallel or ESCON channels, and can be used to link
Linux systems which exist in different S/390 processors. Unfortunately, this
confuses our classification of CTC a little. The main use of CTC in a penguin
colony will be the virtual kind, however, so for the purpose of this discussion,
we retain the classification.

Restriction: Be aware that the CTC and IUCV drivers have restrictions on the
number of links that can be supported. Refer to “CTC/IUCV device
restrictions” on page 102 for more details.
 Chapter 3. Virtual server architecture 65

Figure 3-10 Virtual router in a penguin colony

This configuration provides for efficient connectivity, and satisfies the
requirement to support many instances using a limited number of network
connections.

Resilient network design
For situations requiring a high degree of availability and redundancy, the
structure shown in Figure 3-11 on page 67 provides redundant virtual and
physical connections.

VM

Linux

Linux

Linux Linux

Linux

Linux

Network

OSA

Router
66 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Figure 3-11 Dual router configuration

To properly exploit this design, some kind of dynamic routing is required between
the virtual routers and the first line of routers in the network cloud. It may also suit
requirements to extend this dynamic routing to include the Linux instances as
well.

The role of the router in these examples could be performed by any
TCP/IP-capable S/390 or zSeries operating system, depending upon your
connectivity method. In this discussion we will consider only Linux and VM
TCP/IP.

Tip: Take care in extending dynamic routing too far into the penguin colony,
because running gated on your Linux instances will result in them having to
process and generate routing updates. This will mean that they will wake up
(and be awakened) at regular intervals, dramatically increasing the idle
overhead of the penguin colony. This situation is discussed further in
Chapter 8, “Performance analysis” on page 147.

VM

Linux

Linux

Linux Linux

Linux

Linux

OSAOSA

Router Router

Network
 Chapter 3. Virtual server architecture 67

Linux as a virtual router
The use of Linux in the virtual router role has the following benefits.

� Efficient routing engine

� Linux’s advanced routing capabilities, including Netfilter

� Ability to build a thin, “routing only” kernel to maximize performance

When adding new members to the penguin colony, however, the CTC and IUCV
drivers must be unloaded in order to add the new connections. This is disruptive
to existing connections (and in the case of the CTC driver, may cause other
servers to be restarted). In addition, the scalability of the CTC and IUCV drivers
is not extensively proven.

The new HiperSockets support, which was announced as this book was being
completed, will allow another networking option for zSeries machines. z/VM
V4R2 provides support for both physical HiperSockets, which have a prerequisite
of z900 hardware, and virtual HiperSockets. As well as running on zSeries
machines, virtual HiperSockets will also run on machines that z/VM V4R2
supports: G5, G6 and Multiprise 3000 models.

VM TCP/IP as a virtual router
Using a VM TCP/IP user as the virtual router addresses the availability issue of
the Linux router, because new devices can be added on the fly using OBEYFILE.

 Also, using VM as a “first-level” router can provide a more proven method of
providing connectivity to Linux using unsupported or experimental network
hardware (for example, Cisco CIP, for which the Linux driver is still considered
experimental).

There are still scalability issues, however, as there are hard restrictions in VM as
to the number of devices available (see “VM TCP/IP restriction” on page 104).
Also, while it is generally considered that the performance of the Linux kernel
would be superior to VM TCP/IP in routing IP packets, it is probably not
significantly better. As it is necessary to set up at least one VM TCP/IP stack
simply to support the VM system itself, the VM TCP/IP stack is a good choice for
general routing use.

Note: The TCPIP OBEY command in VM allows the dynamic alteration of a
running TCP/IP stack using configuration statements contained in a file known
as an OBEYFILE. Refer to VM TCP/IP publications for more details on how
this works.
68 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Combining Linux and VM TCP/IP for routing
In certain high-demand applications, it may be advantageous to combine Linux
and VM TCP/IP routing in a layered approach. This may be necessary as a result
of limitations in the network devices being used, or because the network
interfaces available do not support Linux and you still wish to use Linux routing
features such as Netfilter.

Figure 3-12 illustrates a possible configuration (note that this is only an example;
a real configuration may vary from this).

Figure 3-12 Combining VM TCP/IP and Linux virtual routing

Refer to Chapter 4, “Networking a penguin colony” on page 73, for further
discussion about hierarchical routing structures.

Note: Netfilter becomes available in the Linux 2.4 kernel, and provides firewall
and traffic monitoring functions. It is the replacement for ipchains from the 2.2
kernel, and provides more functionality, including stateful firewalling.

VM

Linux

Linux

Linux

Linux

pSeries3746

Linux

VM
TCP/IP

VM
TCP/IP

Linux
router

Linux
router

Linux

Network
 Chapter 3. Virtual server architecture 69

3.4.3 General network considerations
In this section, we discuss general considerations you should keep in mind
regarding the design of the network.

Talk to your friendly network staff
The success of this kind of design is dependent upon good communication and
discussion with the network design team at your installation. While we’ve drawn
“The Network” in our figures as the ubiquitous cloud, there is a lot of complexity
in that cloud that must be considered by the penguin colony designers, just as
there is complexity in the penguin colony that must be considered by the network
team.

One of the most difficult concepts for many network staff to grasp is that we are
building entire routing domains inside a single physical host. We design links,
routers, and hosts that exist virtually inside VM—but in spite of their being virtual,
they behave the same as physical links, routers, and hosts.

Spend some time with your network team, discussing the interaction between the
network and the penguin colony. Issues including physical connectivity and
dynamic routing will have to be clarified as part of the design of the entire
solution. Refer to Chapter 4, “Networking a penguin colony” on page 73 to find
more about the issues that you will need to cover.

3.5 Workload tuning
In a penguin colony of any size, it is important to remember that all of the Linux
instances are sharing the resources of the S/390 processor complex. In practice,
this means that processor capacity used by unnecessary tasks should be
minimized. Some tips would include the following.

Tip: You may have noticed that the figures in this chapter have the
surrounding VM system shown in very light shading. This is done for a reason,
and we recommend you do the same with your own diagrams.

We suggest that, when presenting your designs to the network staff, you
photocopy the diagrams with a light setting on the photocopier so that the box
representing VM does not show up. In this way, the “virtual” network appears
just like a network with real devices. At a later time, show the real diagrams
which include VM. You can use this method to introduce people to the concept
of virtual networking in a penguin colony.
70 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

� Run only the services you need to do the work you want. This ensures that
the server is working at one task only. (You will see this recommendation from
a security perspective, also.)

� Minimize the number of services that “poll”, or at least be aware of their
impact. Examples of this include nmbd, the Samba NetBIOS name server
daemon, and gated, the dynamic routing daemon.

� Where possible and convenient, use a service to back itself up rather than
running additional services. In this way, the overhead of the server is reduced
by not having to provide a backup service specifically. This is discussed
further in “In-service backup” on page 129.
 Chapter 3. Virtual server architecture 71

72 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Chapter 4. Networking a penguin
colony

This chapter expands some of the issues introduced in Chapter 3, “Virtual server
architecture”, related to connecting your penguin colony to your network.

4

© Copyright IBM Corp. 2001 73

4.1 Network devices
Networking on Linux for zSeries and S/390 offers many physical and virtual
options.

4.1.1 Open Systems Adapter (OSA)
The OSA is a network card for S/390 and zSeries mainframes. Linux can utilize
Ethernet, Fast Ethernet, Gigabit Ethernet and Token Ring OSAs. The
OSA-Express is the newest version of the OSA, providing a number of
improvements and new features, as follows:

� New Gigabit Ethernet interface, and improved Fast Ethernet interface

� Queued Direct I/O (QDIO) mode, which uses the Self-Timed Interconnect
(STI) bus to provide memory-to-memory transfer of network traffic,
dramatically increasing throughput

� IP Assist feature (available in QDIO mode), which offloads adapter processing
from the host TCP/IP stack

� Dynamic OSA Address Table (also in QDIO mode only), which eliminates the
need to predefine IP addresses

� Increased number of IP addresses per port available in OAT: from 16 to 512
on G5/G6 to 2048 on zSeries, and a maximum of 240 entries per OAT

� Increased number of subchannels available

� LCS support for TCP/IP when configured in non-QDIO mode

OSA provides a direct path to the “outside world” where required, but not all
members of a large penguin colony can connect to it. To provide network
connectivity to the entire penguin colony, virtual networking is required. These
issues are discussed in 3.4.2, “Network structure” on page 65.

4.1.2 Channel-to-channel (CTC)
CTC is a point-to-point connection, using either a real S/390 channel interface or
a virtual channel provided by VM. Multiple CTCs can be configured, allowing
connectivity to multiple points in the environment.

The link-layer protocol used by S/390 systems for TCP/IP over CTC is very
similar to Serial Line Interface Protocol (SLIP), an early TCP/IP connection
method used over dial-up communications lines. Because all S/390 operating
systems use the same link protocol, it is possible to connect a Linux instance not
only to another Linux, but also to a VM or OS/390 TCP/IP stack.
74 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

VM Virtual CTC (VCTC) allows a device pair to be configured that links devices
on two guests together. These linked devices then act exactly like a physical
CTC, with VM carrying the network traffic internally between the two guests.
Because no physical I/O is performed, VCTC often performs far better than a
physical CTC. However, VCTC can only be used between guests in the same VM
system (that is, a VCTC cannot link two guests in different VM systems, even on
the same physical machine).

CTC support is provided in Linux using code contributed to the kernel tree by
IBM. The CTC driver can be compiled as part of the kernel, or a module (ctc.o).
CTC has shown high reliability in operation under Linux. However, it cannot be
dynamically configured (you cannot add a new CTC device without unloading
and reloading the CTC module, thus terminating any existing CTC connections).
Also, the CTC driver becomes unstable if the channel is interrupted for any
reason (that is, if the other end of the link is brought down).

4.1.3 Inter-User Communications Vehicle (IUCV)
IUCV provides a virtual communication link which is similar in function to VCTC,
but does not involve channel I/O. It is available only under VM, and can be used
only to connect between Linux images or VM TCP/IP stacks in a single VM
system. Some prior planning is required to ensure that guests have the right
directory authorization to make IUCV connections.

Like CTC support, IUCV support is IBM code that has been contributed to the
kernel, and can be compiled either monolithically or as a module. From the Linux
configuration perspective, it is still a point-to-point TCP/IP connection, so
configuration issues are almost identical to CTC.

Because IUCV does not have to emulate channel I/O, performance is better than
VCTC. While the driver has the same lack of dynamic configuration as the CTC
driver, it has shown more resiliency against interruption of the communications
path than CTC.

4.1.4 Other devices
In the following sections, we discuss other networking options.

Note: The latest versions of the IBM kernel patches include support for
emulation of a raw serial connection over CTC. It can be used to provide a
Linux-to-Linux connection without TCP/IP, which could be used for a console
device.
 Chapter 4. Networking a penguin colony 75

Common Link Access to Workstation (CLAW)
This device type was originally used to provide TCP/IP connectivity to
channel-attached RS/6000 machines, but is now also used to connect to the
Cisco Channel Interface Processor (CIP) card. This would allow installations
using channel- or ESCON-attached Cisco routers to link Linux systems directly,
in order to decrease the routing path between the network and the Linux
instance.

An experimental driver for CLAW has been written by UTS Global, but has not
been extensively proven. An alternative to using this driver would be to use
TCP/IP on VM to link to the hardware, then use IUCV to communicate between
Linux and VM (this is illustrated in “VM TCP/IP as a virtual router” on page 68).

Other S/390 TCP/IP devices
There are a number of other connection types supported by S/390 hardware,
including:

� Channel Data Link Control (CDLC), used to connect to the IBM 3746
Multiprotocol Controller

� Multi Path Channel (MPC), enhanced protocol used for OSA (non-QDIO) and
host-host links

� ATM and FDDI OSAs

� HYPERchannel A220 devices

� SNALINK (TCP/IP access over SNA to 3745)

While Linux does not natively support these connections, it is possible to use a
z/VM or OS/390 system to connect to them, and then use CTC or IUCV to link to
the Linux system.

In some cases it may be possible to reconfigure the hardware to provide direct
connectivity to Linux. For example, if you are using the MPCOSA device type for
communication with an OSA in OS/390, you could create an LCS definition for
use by Linux.

4.1.5 HiperSockets
HiperSockets were annouced after this book was nearly completed, so they are
only mentioned. They were developed to provide a highly available, high-speed
network connection among mainframe operating systems, such as z/OS V1R2 or
later, z/VM V4R2 or later, and Linux distributions with such support. This
integrated any-to-any TCP/IP network provides a list of benefits not achievable
by grouping servers around a z900 interconnected by external networking
technology. See the following Web site for details:
76 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

http://www-1.ibm.com/servers/eserver/zseries/networking/hipersockets.html

4.2 Resilient IP addressing
In 3.4.2, “Network structure” on page 65, we show ways to create reliable
physical connectivity for the members of our penguin colony. However, more
work has to be done to provide resilient connectivity to applications.

Many methods are available to do this, including:

� DNS manipulation (round-robin, dynamic)

� Connection balancing

� Virtual IP addressing

4.2.1 DNS manipulation

Round-robin
The DNS can be altered to resolve name requests to multiple IP addresses. This
is known as round-robin DNS. The DNS zone file lists multiple DNS A records for
the one host name, and DNS will issue each address in sequence in response to
requests for that name. The following is an example:

vmlinuxa IN A 9.12.6.69
IN A 9.12.6.67

The A records can be specified in different orders, or multiple times, in order to
weight the different adapters and bias traffic towards or away from certain
adapters. For example, in the preceding example, if the first IP address was
associated with a Gigabit Ethernet interface and the second was a Fast Ethernet
interface, more connections could be directed to the Gigabit Ethernet interface by
listing that address more often than the other, as follows:

vmlinuxa IN A 9.12.6.69
IN A 9.12.6.69
IN A 9.12.6.69
IN A 9.12.6.69

Analogy: A person who wants high availability telephone service might have a
second phone line installed. However, without listing both phone numbers in
the telephone book, or installing an automatic diversion from one line to the
other, the second line would be useless since no one would know to dial it.

In the same way, multiple IP addresses have to be tied to a single external
iterface in Linux.
 Chapter 4. Networking a penguin colony 77

http://www-1.ibm.com/servers/eserver/zseries/networking/hipersockets.html

IN A 9.12.6.67

This would result in the address of the Gigabit Ethernet adapter being given out
four times more often than the Fast Ethernet interface.

Note that this is not a solution for high availability, since in this model the DNS
server cannot respond to the failure of an interface, and will continue to serve the
address of a failed interface in response to requests. In the example, if the
interface at 9.12.6.69 failed, four out of five connection requests to vmlinuxa
would also fail.

Another issue to consider is DNS caching at the client. In order to balance
connections properly, these installations rely on specifying a short Time-To-Live
(TTL) value in the returned DNS record. This is intended to stop clients from
caching the DNS information, so that repeated requests from clients are
distributed across all servers. It has been found, however, that some client
applications and platforms ignore the TTL value returned from the DNS server.
This might cause a particular client to continually request service from a
non-preferred interface simply because its first request happened to return that
address.

Dynamic DNS
Making the DNS server respond to the state of interfaces and applications is
done using dynamic DNS. The DNS zone is updated by adding and deleting
records on the fly according to factors including load, available applications and
interface state.

Many solutions are possible using dynamic DNS, and it can also be a
prerequisite to some designs based on virtual IP addressing (see “Virtual IP
addressing” on page 79). One example would be to update the DNS to add an
address record when a new interface is added or removed. It is also possible to
integrate with network management utilities to add or remove DNS records
relative to the amount of traffic being carried by the available interfaces.

Like the round-robin DNS option, dynamic DNS is subject to caching of DNS
records in the client. This means that a client may have an extended outage due
to caching of DNS data, even though the DNS server has been correctly updated
to reflect the outage of an application server. Also, dynamic DNS is not yet
standardized across DNS server implementations. For example, the Berkeley
BIND-based DNS server generally distributed with Linux has implemented a
method for dynamic updating which differs from the method used by the VM
TCP/IP DNS server. While these differences can be designed around, it adds to
the complexity of the design.
78 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

4.2.2 Connection balancing
In a connection-balancing scenario, an external (to the Linux hosts) service fields
incoming connection requests and serves them to the real servers. This
approach is used in clustering solutions, and is beyond what is required to
provide network redundancy for a single host. However, a simplified version of
this method could be used at a virtual router to share traffic across interfaces
even on a single machine.

One of the great advantages of this approach is that it eliminates the problems
associated with caching of connection and DNS information, since the IP
address of the distribution server is used for all requests. Unfortunately, this
same feature is the greatest downfall, because in a simplistic design the IP
address of the distribution server becomes a single point-of-failure.

For more information on this kind of design, refer to Chapter 18 of Linux for
zSeries and S/390: Distributions, SG24-6264.

4.2.3 Virtual IP addressing
z/OS and z/VM provide a facility called Virtual IP Addressing (VIPA), which
creates an address within an IP stack that can be used to isolate applications
from the failure of an IP interface. Applications bind to the virtual address instead
of an interface address. If a physical interface fails, dynamic routing protocols can
reroute traffic over other active interfaces, without operator intervention or
outage.

Linux provides a dummy network interface that can be used to provide a similar
feature. The dummy interface has an IP address, but is virtually associated with
the physical interfaces of the Linux host.

Support for the dummy interface must be added to the kernel, either as a module
or monolithically. You may need to add the dummy device support to your kernel
before you can use it (our SuSE distribution did not have the driver available, so
we had to build it).
 Chapter 4. Networking a penguin colony 79

A dummy interface can be added to the resilient design shown in Figure 4-1 on
page 80, producing a design that allows almost transparent backup over the
failure of any one of the network connections. This is shown with respect to a
single Linux image in the figure.

Figure 4-1 Virtual IP addressing using dummy interface

The IP address associated with the Linux image in DNS and other facilities is the
IP address configured on the dummy0 interface. Using IP routing, incoming traffic
is sent to this address using either network interface. If one interface fails, IP
routing can forward the traffic via the other interface.

Tip: If you have a kernel configuration file available, you can issue the
following command to check the configuration status of the dummy device:

cat <config_file_name> | grep DUMMY

Remember that on the SuSE distribution, the pseudo-file /proc/config.gz
contains the configuration of the current kernel. Copy this pseudo-file to
another location and uncompress it to obtain the kernel configuration file.

VM

Router Router

Network

dummy0

iucv1iucv0
kernel

OSAOSA
80 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

While this works for incoming traffic, any outbound traffic the Linux instance
generates is associated with one or the other physical interface. In z/OS and
z/VM, the SOURCEVIPA configuration support provides a means to source IP
packets from the virtual address, removing the dependency on the physical
device. When using SOURCEVIPA, traffic originates from a virtual interface
rather than a real interface.

This support is not available under Linux at this time, so TCP/IP sessions that
originate from a Linux instance using the dummy driver will fail if the interface
those sessions originate on fails. Refer to 17.2, “SOURCEVIPA equivalence for
Linux” on page 409 for a discussion about how this might be provided under
Linux.

4.3 Packet filtering and Network Address Translation
Whenever you connect your computer to today’s Internet world, you are exposed
to intruders from the outside. There are thousands of hackers just waiting to get
into your computer to do damage or, perhaps, steal information. You need
protection against them.

As already mentioned for general networking, our penguin colony is no different
from separate servers. Therefore, our penguins need to be protected also. There
are additional complications in a penguin colony, however, because you are likely
to have many different networks—possibly for different customers—all sharing
the same VM system. Not only does the penguin colony need to be protected
from outside attack, but members of the penguin colony must be protected from
each other as well.

This section introduces the IPTables utility, which controls the Netfilter features of
the Linux 2.4 kernel. Netfilter provides very strong traffic filtering and translation
capabilities, and is suitable for even some advanced firewalling roles inside your
penguin colony.

4.3.1 What is packet filtering
As you can tell from the name, packet filtering is a method of filtering data coming
to your computer, and is commonly used in firewall implementations.

Important: Although we provide an introduction to IPTables and Netfilter, and
instructions on how to set up a capable firewall using them, we are not security
experts. These chapters are not substitutes for a proper security assessment
and implementation. Depending on your security requirements, you may still
require dedicated firewall equipment outside your penguin colony.
 Chapter 4. Networking a penguin colony 81

Because everybody wants to communicate, sooner or later you need to connect
your private network to the Internet; this has security considerations. With packet
filtering, you can implement a firewall that will protect your computer from the
outside world. You can also use a firewall on a single computer which, for
example, is connected to the Internet through a dial-up line.

When you install a firewall to protect your internal network, every external
computer that wants to talk to a computer on the internal network must ask the
firewall for permission. If the permission is not granted, access is denied.

4.3.2 What you can do with Linux packet filtering
Using Linux packet filtering, you can do the following:

� Protect your internal network, that is connected to the Internet, from outside
intruders

� Perform Network Address Translation (NAT), which allows
internally-connected computers without a registered Internet address to reach
Internet resources

� Filter the information going in or out of your internal network (or in or out of
just one computer)

� Use your Linux server as a gateway between two different types of networks,
for example, connecting Token-Ring and Ethernet worlds; this can be a cheap
solution in comparison to buying an expensive router

� Share your dial-up Internet connection with others

4.3.3 Planning for packet filtering implementations
In this section, we show some of the possible designs for networking
infrastructures used for packet filtering implementations. In our test environment,
we always assume that the OSA card is configured to pass all traffic to a VM
guest, not just the predefined addresses.

In the OSA card, only one IP address can be defined as the primary route (using
OSA/SF), which means that this address will pass through all packets—not just
the packet with the destination address for this IP address. When the OSA card
is defined to have the primary route, we always use a VM Linux guest as the
entry point for all traffic.

In the following examples, we show a few different approaches for setting up an
internal network for your VM Linux guests.
82 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Single router/firewall with one server
In the scenario shown in Figure 4-2, we have a single Linux image which acts as
a router and firewall for the Linux server on an internal network. In this case we
have only one server.

Figure 4-2 Single router/firewall implementation

VM Linux
Router/Firewall

Internet/Intranet

VM Linux guest
Local network

OSA

IUCV0
 Chapter 4. Networking a penguin colony 83

Single router/firewall with DMZ on one server
In the scenario shown in Figure 4-3, we use a DeMilitarized Zone (DMZ) to host
our Web and mail server. Because the DMZ is hosted on a separate interface,
the other server can be protected from external traffic.

Figure 4-3 Single router/firewall with DMZ

VM Linux
Router/Firewall

Internet/Intranet

VM Linux guest
Local network

VM Linux
DMZ

web/mail

OSA
IUCV0

IUCV1
84 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Single router/firewall with more servers
In Figure 4-4, we use a single Linux image as a router/firewall for more servers.

Figure 4-4 Single router/firewall with more subnets

In this scenario, each server is connected to the router/firewall via an
independent interface. This means that we can control packet routing in such a
way that only the correct packets are being forwarded to the servers. For
example, we can block all broadcast traffic to our servers.

This kind of solution is often used when all servers belong to the same owner. In
this scenario, we could also implement the DMZ for services that must be
separated from the others.

VM Linux
Router/Firewall

Internet/Intranet

VM Linux guest
Local network

III.

VM Linux guest
Local network

I.

VM Linux guest
Local network

II.

OSA

IUCV2IUCV0 IUCV1
 Chapter 4. Networking a penguin colony 85

Two-layer router/firewall implementation
In the scenario shown in Figure 4-5, we use two layers of routers/firewalls. The
first-layer router/firewall is for the up-front Internet connection that serves the
second layer of routers/firewalls. The second-layer firewalls are used to isolate
each local network from the others.

Figure 4-5 Two-layer router/firewall implementation

With such a solution, you provide an independent network for each small colony
of Linux servers that’s connected to the outside world over its dedicated
router/firewall. Also, none of the servers in the local network interferes with the
others, because it is connected to the router on its own interface.

This approach is also needed to implement a big colony of servers in the
single-box solution. On the first router/firewall, we accept all traffic from the
Internet. By implementing packet filtering, we can get rid of unnecessary packets
(i.e., broadcasts) and pass only packets that are going to the services on our
servers.

VM Linux
Router/Firewall

Internet/Intranet

VM Linux
Router/Firewall

VM Linux
Router/Firewall

VM Linux
Router/Firewall

OSA

V
M

Li
nu

x
gu

es
t

Lo
ca

ln
et

w
or

k
I.

V
M

Li
nu

x
gu

es
t

Lo
ca

ln
et

w
or

k
I.

V
M

Li
nu

x
gu

es
t

Lo
ca

ln
et

w
or

k
I.

V
M

Li
nu

x
gu

es
t

Lo
ca

ln
et

w
or

k
Ii.

V
M

Li
nu

x
gu

es
t

Lo
ca

ln
et

w
or

k
II.

V
M

Li
nu

x
gu

es
t

Lo
ca

ln
et

w
or

k
Ii.

V
M

Li
nu

x
gu

es
t

Lo
ca

ln
et

w
or

k
III

.

V
M

Li
nu

x
gu

es
t

Lo
ca

ln
et

w
or

k
III

.

V
M

Li
nu

x
gu

es
t

Lo
ca

ln
et

w
or

k
III

.

86 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

On the second layer, we separate servers among different owners for security
reasons. On this layer, we also take care that the packet traveling to a particular
server does not hit the interface of other servers in the local network. With this
implementation, we ensure that we do not wake up any idle servers without good
reason.

This approach also simplifies the management of the Linux colony inside the box,
because the connections have to be predefined on VM and also in Linux. By
separating each server in small local networks with its own router/firewall, you
have a manageable number of servers (for example, defining connections for ten
servers in the router is much simpler than defining connections for hundreds of
them).

4.3.4 How packets travel through a gateway
In this section we will explain how IP Tables work. You can see the path of a
packet coming into your server in Figure 4-6.

Figure 4-6 How a packet travels

The following list gives brief descriptions of each stage:

Incoming packets This is where the packet enters the gateway.

Routing decision At this point, the kernel decides whether the packet will be
forwarded to another interface, or if it will be sent to a local
process.

Input chain Before the packet gets to the local process, the kernel
checks the rules in this chain against the packet.

Routing
Decision

FORWARD
CHAIN

INPUT
CHAIN

Local
Process

OUTPUT
CHAIN

Incoming
Packets

Outgoing
Packets
 Chapter 4. Networking a penguin colony 87

Local process These are applications or processes running on the
server.

Output chain Before a packet from the local process is sent to the
output interface, the kernel checks the rules in this chain
against the packet.

Forward chain Packets that only travel through the router from one
interface to another are checked against the rules in this
chain.

Outgoing packets This is where the packet exits the server.

As you can see from Figure 4-6 on page 87, there are three places where you
can check the packets in your server:

� Input chain
� Forward chain
� Output chain

In 11.2.6, “Using IP Tables” on page 256, we explain how to use basic IPTables
rules to filter traffic in your Linux instance.

4.3.5 Network Address Translation (NAT)
Network Address Translation (NAT) is used to translate the source or destination
address of the IP packets traveling through the gateway. If you are using a Linux
router/firewall to provide connection between the Internet and a local LAN, you
can use NAT to conserve IP addresses. The router/firewall uses a real IP
address, and to avoid wasting real IP addresses for the machines on the LAN,
NAT is used on the router/firewall to allow the machines on the LAN to use
private IP addresses (10.x.x.x or 192.168.x.x) to access the Internet
transparently. The users see no difference between private and real IP
addresses.

When packets are leaving the LAN, the router/firewall uses NAT to replace the
source address of the originating computer with its source address. The
destination computer replies back to the router/firewall, and the destination
address is modified to send it to the computer on a private LAN.

There are three basic types of NAT:

1. SNAT (Source NAT) - in this process, the source address of the first packet is
modified. SNAT is always done after the routing, just before a packet leaves
the router/firewall.

2. DNAT (Destination NAT) - in this process, the destination address of the first
packet is modified. DNAT is always done before routing, just after a packet
enters the router/firewall.
88 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

3. Masquerading - this is a special form of SNAT.

We discuss each type in greater detail in the following sections.

Source NAT (SNAT)
With SNAT, you change the source address of the packet. This is done before
packets are sent out. All other processes on the router (routing, packet filtering)
will see the packet unchanged.

SNAT is used to change the address that a packet appears to come from. This is
useful in applications like server clustering, where the IP traffic must appear to
originate from the cluster IP address and not from the individual server that
handled the request.

Destination NAT (DNAT)
Destination NAT involves altering the destination address of the packet. This can
be used in Web proxy systems, where a firewall or router transparently redirects
a request from a client to a cache system on your local network.

DNAT is done just after the packet comes in. All other processes (routing, packet
filtering) will see the packet with the destination as you have altered it. This is
important, because if the packet is routed prior to DNAT, it might be sent to the
wrong interface for the altered destination address.

Masquerading
This is the specialized version of SNAT. It is usually used for dynamically
assigned IP addresses (for example, dialups). With masquerading, you do not
need to put in the source address; instead, the source address of the interface
where the packet is going out will be used.

See 11.2.11, “Using IPTables for NAT” on page 263 for a description of how to
use NAT and how to set it up using the iptables tool.

4.4 General network considerations
In “Talk to your friendly network staff” on page 70, we introduced the idea of
discussing connectivity issues with the network team at your installation. This
section introduces some of the issues that need to be addressed during these
discussions.
 Chapter 4. Networking a penguin colony 89

4.4.1 How penguin herding is different
For newcomers to the concept of running Linux guests under VM, the idea of
virtual networking connections between guests can be a bit difficult to grasp.
While it is possible to give a number of your Linux instances access to the
network directly, this would not be making efficient use of the hardware and the
architecture. Through the use of virtual networking, a large amount of the
network infrastructure traditionally present in a server farm can be eliminated.

In some ways, connectivity inside a penguin colony is somewhat easier than in a
discrete server environment. This is because network connectivity is over
non-broadcast point-to-point links, which helps make the environment more
secure than using physical LANs. The routing infrastructure can become quite
complex, however, because of the number of point-to-point links that must be
managed.

When designing virtual routing systems for a penguin colony, remember to treat
virtual routers the same way as real routers when it comes to designing your
routing domains.

Virtual networking can be viewed from a network perspective, and from a
processing perspective.

Virtual networking from a network perspective
In your virtual routing environment, the devices and links between virtual servers
will be functionally identical to real ones. Virtual network devices behave just like
real devices do, and the routing done in virtual routers is no different from routing
in a physical machine.

In addition, because many basic packet-filtering tasks can be performed in your
Linux routers, you can avoid the need for a lot of external firewall equipment
except for high-security applications (as mentioned previously).

Important: We do not suggest that all network tasks be brought into the
penguin colony. Tasks such as high-throughput firewalling and management
of modem banks do not benefit from being moved to S/390. However, savings
can be realized by, for example, not having to provide a network port for each
and every Linux instance.

Note: Refer to 13.7.1, “NetSaint” on page 323, for a discussion of the use of
this open source tool, which we found useful in diagramming and graphically
managing the network connectivity of a penguin colony.
90 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

This is why, when designing the network connectivity, the choices to be made are
no different from the choices that exist in the physical world.

Virtual networking from a processing perspective
In the world of physical routers and networks, the server people need give no
consideration to the CPU consumed by routers and network equipment. The fact
that a router actually contains a CPU and performs work is overlooked by
everyone except the network people who support them. And even network
people will disregard the fact that a modem also has processing function and
requires CPU (or perhaps some analog equivalent).

In your penguin colony, however, routers and links are virtualized by VM, and
share the CPU consumption of the penguin colony. This means that virtual
network traffic will cost real cycles in your S/390 processor. Also, every virtual
interface defined will require buffer space, and this will add up over all the
machines in your penguin colony.

So this is perhaps the most important thing to remember in terms of networking
your penguin colony: in return for what you save in terms of physical network
equipment (routers, switches, network ports), you have to give up some S/390
processor and memory capacity to run your virtual network.

4.4.2 Dynamic routing
Almost all large TCP/IP networks today use some kind of dynamic routing to
maintain connectivity. In our penguin colony, we must interact with the rest of the
network and participate in the routing decisions that occur.

Dynamic routing involves routers exchanging information about the state of the
network. Several protocols are used to provide dynamic routing, including the
following:

� Routing Information Protocol (RIP)
This early dynamic routing protocol uses distance-vector calculations to build
a view of the router network.

� Open Shortest Path First (OSPF)
This link-state protocol uses the status of the links between routers to
calculate the shortest path between endpoints.

� Enhanced Interior Gateway Routing Protocol (EIRGP)
Developed by Cisco Systems, this protocol uses a proprietary algorithm
which combines benefits of distance-vector and link-state algorithms.

� Border Gateway Protocol (BGP)
This routing protocol is used to provide reachability information between
 Chapter 4. Networking a penguin colony 91

separate networks, allowing connectivity between them without exchanging
topology information.

Interior gateway protocols are usually used within an organization to provide
high levels of connectivity between various parts of the internal network. RIP,
OSPF and EIGRP are all interior gateway protocols. Exterior gateway protocols
do not exchange topology information, and as such are used to connect networks
belonging to different organizations (such as a company and their ISP). BGP is
an exterior routing protocol.

The exact method used to “Internetwork” your penguin colony with the rest of
your corporate and/or customer network will vary, depending on a number of
issues, including:

� The routing protocol currently in use in your network
� The addressing scheme used in the penguin colony
� How “open” the Linux instances will be
� The connectivity requirements of your customers
� Isolation from other customers

In the following sections, we present some alternatives and describe “tricks” to
using these alternatives (without going into too much detail). The objective is to
enable technical readers who do not have a background in networking or routing
to discuss issues with the networking people at their installation.

Routing domain
A routing domain is a group of networks that share routing information.
Generally, all routers in a given domain can reach all other networks in that
domain. Within a routing domain, interior gateway protocols are used to provide
this sharing of routing information.

In Figure 4-7 on page 93, three networks are shown. These may be separate
organizations, or divisions within a single organization. Each of the clouds
represents a routing domain.

Tip: For more information on dynamic routing protocols and their
implementation, refer to the abundant documentation that available on this
topic.
92 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Figure 4-7 Routing domains

Routing domains can be used to control the flow of routing information in a large
network, or between networks. For example, a large company with networks in
cities all over the world does not need to have complete sharing of all routing
information across all routers.

When devices in separate domains wish to communicate, some design work is
required. Ideally, you want to allow connectivity as required, without exchanging
topology information. An exterior gateway protocol is used in this role. Routers on
either side inform each other about the networks that can be reached, without
exchanging the detailed information provided in interior routing protocols.

In the example shown in Figure 4-7, control of the routing domains can allow
communication between Network A and Network C, and between Network B and
Network C, but prevent Network C from being used as a gateway between
Networks A and B.

R

R

R

R

R

R

R

R

XX

Network A Network B

Network C
 Chapter 4. Networking a penguin colony 93

Choosing a routing protocol
This process cannot be done in isolation from the networking people (refer to
“Talk to your friendly network staff” on page 70). As we have identified, for
two-way communication to take place in a penguin colony, some interaction must
take place between the penguin colony and the outside. If this boundary is not
well planned, connectivity will be unreliable or may not even work at all. In the
worst case, a poor design could cause problems in other, seemingly unrelated,
parts of the network.

One way of avoiding such problems is to use the same routing protocol inside
the penguin colony as is used outside it. This has the benefit of uniformity across
the whole network—and it does not necessarily mean that the penguin colony
has to exchange complete network data with the rest of the environment (for
example, OSPF allows different Autonomous Systems (AS) within a network, and
this can be used to manage routing updates). This approach can be used in
smaller networks, or where the consistency of using a single routing protocol is
desirable.

Another method is to use a different protocol inside the penguin colony from the
one being used outside, and have the first routers in the network manage the
boundary processing.

Example: Assume that a certain network chooses to use OSPF within its
penguin colony. Because its router network also uses OSPF, it uses a different
OSPF area number for the penguin colony. It sets up dynamic routing
between virtual routers. The virtual routers that own the physical network
connectivity for the penguin colony advertise themselves as the default routers
for the area.

These outward-facing Linux systems would be the boundary between the
penguin colony and the rest of the network. If they are not configured correctly,
it could be possible for the Linux routers to become the default routers for the
entire network! This could have catastrophic results on routing throughout the
network.
94 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

The third method is to use an exterior gateway protocol between the penguin
colony and the rest of the network. This is an extension of the previous model,
but has the effect of completely dividing the networks. It is useful when the
penguin colony requires additional security, or if penguins from multiple
customers are sharing infrastructure.

4.4.3 Using the OSA with Linux
Many different configurations are possible with OSA adapters, but basically one
of two drivers will be used: For all OSA2 cards, the lcs.o driver is used; for
OSA-Express fast Ethernet cards you have a choice: you can use the lcs.o driver
in non-QDIO (or OSE) mode, or the combination of the qeth.o and qdio.o drivers
in QDIO (or OSD) mode. For OSA-Express Gigabit Ethernet cards, the
combination of the qeth and qdio drivers is used, because this card can only be
run in QDIO mode.

When installing distributions, the driver is chosen based on the type of
networking you specify. We describe the files that are important for SuSE
distribution in case you want to modify the networking driver implemented at
install time:

Note: Most routers will maintain separate tables for each routing protocol. If a
router running more than one routing protocol is properly configured, it can
copy routing data from one routing domain into the other; this is known as
“importing” routes.

For example, a router that has RIP configured on one interface and OSPF on
another, can be configured to import the OSPF routes into RIP. This means
that the routers in the RIP network will learn about networks in the OSPF
domain through this router.

Attention: In QDIO mode the OSA-Express card can communicate directly
with the Central Processing Complex (CPC) using data queues in z900
memory and utilizing Direct Memory Access (DMA). This proves to be much
faster than previous technologies. As this redbook was being completed it was
noted that a small number of customers were concerned about performance
of their OSA-Express Gigabit Ethernet cards while being driven by Linux z/VM
guests. Through tuning, it was possible to significantly improve the
performance of these cards. The tuning specifics will be incorporated as
changes to the driver code in the near future. Before this driver code is
available, the lcs.o driver with the OSA-Express fast Ethernet card in
non-QDIO mode may give better performance on Linux guests under z/VM.
 Chapter 4. Networking a penguin colony 95

� /etc/modules.conf - Here you associate the network drivers (e.g., lcs or qeth)
with network interfaces (e.g., eth0 or tr0) via the alias statement. When using
the 2.2 kernel, you also add the parameters for the appropriate network driver.

� /etc/chandev.conf - Here you specify the parameters for the appropriate
network driver when using the 2.4 kernel.

� /etc/rc.config - For the SuSE distribution only, this is where many important
networking variables are set. Specifically, these are as follows:

– NETCONFIG - The number of network cards: (e.g. NETCONFIG="_0" for
one, NETCONFIG="_0 _1" for two)

– IPADDR_x - The TCP/IP address for each interface corresponding to _x
(e.g., IPADDR_0="9.12.6.99" is the IP address for the first interface.)

– NETDEV_x - The device or interface name for each interface
corresponding to _x (e.g., NETDEV_1="eth0" is the device for the second
interface.)

– IFCONFIG_x - The parameters to be passed to the ifconfig command
(e.g., IFCONFIG_0="9.12.6.99 broadcast 9.12.7.255 netmask 255.255.255.0
mtu 1492 up" are the ifconfig parameters for the first interface.)

For details on the drivers’ parameters, see Device Drivers and Installation
Commands. For 2.2 kernels, the manual can be found on the Web at:

www10.software.ibm.com/developerworks/opensource/linux390/documentation-2.2.shtml

For 2.4 kernels, it can be found on the Web at:

www10.software.ibm.com/developerworks/opensource/linux390/documentation-2.4.shtml

OSA Address Table (OAT)
The OSA has a unique design that allows it to be accessed by multiple LPARs or
VM guests simultaneously, each with a different IP address, but attaching to the
same physical LAN. This operating mode of the OSA is known as shared mode.

In shared mode, the OSA Address Table (OAT) is required to provide a mapping
between host device addresses and network IP addresses. This allows the OSA
to send IP packets to the correct LPAR or guest.
96 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

http://www10.software.ibm.com/developerworks/opensource/linux390/documentation-2.4.shtml
http://www10.software.ibm.com/developerworks/opensource/linux390/documentation-2.2.shtml

If your OSA is accessed only by the first-level router on behalf of your penguin
colony, the OAT is not used. In this case, everything will work as you expect,
since the OSA will forward all traffic to the VM guest that activates it, in exactly
the way that a normal Ethernet adapter operates. If you are in shared mode,
however, the OAT is used to determine which VM guest (or LPAR) will receive the
incoming packet.

To ease the definition work required—and to simplify the configuration, in many
cases—a particular VM guest or LPAR can be defined to the OSA as the primary
router. In this case, all IP packets arriving from the network that do not have a
corresponding specific OAT entry will be sent to the LPAR or guest nominated as
the primary router. A secondary router can be defined, to which packets will be
sent if the primary system is not active.

Figure 4-8 shows the process used to dispatch a packet through the OSA.

Note: For more information about OSA-Express, refer to the product manuals
or the IBM Redbook OSA-Express Implementation Guide, SG24-5948, on the
Web at:

http://www.ibm.com/redbooks/abstracts/sg245948.html

Note: Primary router is often referred to as primary default entry in OSA
documentation. Primary router is the term that appears in Linux device driver
documentation.
 Chapter 4. Networking a penguin colony 97

http://www.ibm.com/redbooks/abstracts/sg245948.html

Figure 4-8 Packet path through the OSA

The IP address used in this process is the destination IP address of the packet.
This is may not be the IP address of your router system. If the packet is destined
for one of the Linux images in your penguin colony, then it will be the IP address
of that system and not the router’s address.

To illustrate, in the following list we break down, step by step, the process
involved in sending a packet from somewhere in the network to a Linux instance
in a penguin colony, focusing on the steps that involve the OSA:

Note: A complete description of how TCP/IP routing works is outside the
scope of this book. Almost any documentation on Linux TCP/IP will provide an
introduction to routing and TCP/IP connectivity. Alternatively, you can go to:

http://kernelnewbies.org/documents/ipnetworking/linuxipnetworking.html

The information at this URL provides a good insight into the way that TCP/IP is
implemented in Linux.

Is the IP
address

in the
OAT?

Incoming
IP

packet

Does a
primary
default
exist in

the OAT?

Deliver
the

packet

Is the
primary
system
active?

Is there a
secondary

default
entry?

Is the
secondary

system
active?

Discard
the

packet

YES

NO

NO

NOYES

YES

NO

YES

YES

NO
98 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

http://kernelnewbies.org/documents/ipnetworking/linuxipnetworking.html

1. A packet leaves a client machine somewhere in the IP network. According to
normal IP routing rules, the packet reaches the router immediately before the
OSA in the path to the penguin.

2. The router, upon receiving a packet not intended for itself, has to route the
packet onward through the network. It consults its routing table to determine
the next router in the chain. It finds the correct route, which identifies your
OSA-owning penguin as the next hop to the destination.

3. The routing table shows the IP address of the OSA-owning penguin. The
router performs an Address Resolution Protocol (ARP) request to find the
hardware address which matches the IP address in the routing table.

4. The OSA responds to the ARP request with its hardware address.

5. The router builds a new IP packet, with the same destination IP address field
it has always had on its path through the rest of the network, and sends it over
the Ethernet to the OSA.

6. The OSA receives the packet and consults the OAT to find out where to send
it.

Note: This is the point at which the process can fail in the penguin colony
environment. If the IP address of the Linux instance has not been added to the
OAT, or if the OAT does not have a primary router defined, the OSA will throw the
packet away, and the Linux router will not even be aware of that.

Because each Linux instance in your penguin colony will have at least one IP
address, the definition requirements for the OAT can be huge, or even
impossible. OSA-2 could only have 16 entries in the OAT, with a maximum of 8
per LPAR or guest. This meant that only 7 Linux instances could be supported
behind one router.

Important: Many network folk are surprised by this, since it is unusual to have
an adapter make packet-forwarding decisions without input from the operating
system. Due to the special capabilities of the OSA, however, this behavior is
required.

The concept of the primary and secondary router in the OAT can be confusing.
Primary router, in the OAT, does not mean that the OSA is routing packets.
Think of the primary router as being the LPAR or guest that the OSA thinks is
a router, and can handle packets unknown to the OSA.
 Chapter 4. Networking a penguin colony 99

Even with OSA-Express, which raises these limits considerably, the definition
workload would be enormous. Therefore, the current recommendation when
using OSA adapters for penguin colony connectivity is to either define the router
guest as the primary default entry in the OAT, or dedicate the OSA port to the
router guest, using the OSA non-shared.

Using multiple OSAs
In order to support a high-availability configuration, you may choose to provide
more than one OSA to your Linux router. This usually involves connecting each
OSA to a different LAN, with redundant network connectivity.

You may also use multiple OSAs to provide greater bandwidth to your penguin
colony, in which case you can have these OSAs connected to the same LAN. In
this configuration, you need to be aware that the way the Linux kernel responds
to ARP requests may cause connectivity to fail if you are not using primary
routers in your OSAs.

When an ARP request is received by Linux, the kernel checks to see if the
request is for any interface on that machine. If it is, then the adapter that received
the request will respond to the ARP request with its hardware address, even if
the IP address belongs to another interface.

This behavior will not work with the OSA, however, since only the OSA with the
IP address defined will be able to pass traffic for that address. If you are not
defining your Linux router as the primary default entry in the OAT, you must turn
off this behavior in Linux with the following commands:

echo 1 > /proc/sys/net/ipv4/conf/all/hidden
echo 1 > /proc/sys/net/ipv4/conf/<device-name>/hidden

Note that the line specifying the device name must be repeated for each OSA
interface. These commands must be executed when the system is started, so
adding them to the network startup script is most efficient.

Note: This behavior is generally an efficiency and availability advantage. The
first adapter that receives the ARP request is possibly less busy than other
adapters, and it makes sense to respond to the request as soon as it is
received, rather than waiting until the request is received at the correct
adapter. There may also be a physical cabling problem with the other adapter,
in which case it would never respond.
100 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

QDIO mode
OSA-Express adapters can be defined to support QDIO. This mode gives
high-speed operation through direct use of the STI bus, but it also provides a
facility which allows the operating system to dynamically update the adapter’s
OAT. This dynamic update happens using an “out-of-band” signalling path
between the driver and the adapter.

In QDIO mode, the OAT does still exist, even though you no longer have to build
it manually. Under Linux, the qeth module sends the required information to the
OSA-Express to allow it to update the OAT. Setting primary router status is also
controlled dynamically through the qeth driver.

OAT update from VM TCP/IP or CS/390
QDIO support in VM TCP/IP and Communications Server for OS/390 provides
updates to the OAT for any configured interface. This means that not only is the
IP address for the OSA adapter itself added, but any other interfaces, as well.
This support is required particularly for OS/390, where the use of Virtual IP
Addressing (VIPA) required the VIPA address for a stack be added to the OAT.

There are no updates for addresses that are not connected to the stack,
however. This means that, in the case of an IUCV connection under VM TCP/IP,
for example, the IP address of the local end of the connection is added, but the
remote end is not.

OAT update from Linux
Under Linux, the qeth driver will only add the OSA’s own address to the OAT. No
other addresses on the Linux system are added.

However, the qeth driver supports an interface through the /proc file system
which can be used to manually add an OAT entry against this instance of the
qeth driver. This would allow logic to be added to the network configuration
scripts for CTC and IUCV interfaces. When the interfaces are configured, the
script would additionally invoke the qeth driver to add the peer IP address for the
link to the OAT.

Note: “Out-of-band” signalling is a telecommunications term which refers to a
signalling or control channel that is separate from the path used for data flow.
In the case of the OSA-Express, this path is an extra device address required
when using QDIO mode instead of LCS mode.
 Chapter 4. Networking a penguin colony 101

Sharing an OSA
For some time, it was considered unsafe to share an OSA adapter between
OS/390 or VM systems and Linux. Now, with recent versions of the LCS driver,
this precaution is not necessary. However, you may still choose to exercise
caution when sharing with high-profile production systems.

The choice of whether to share or not to share will become part of your design
process. For example, an existing z/OS installation using one port on an
OSA-Express Fast Ethernet card may have set primary router on a z/OS LPAR to
support the Application VIPA function in z/OS. In this configuration, the
installation is unable to have a z/VM LPAR configured as primary router to
support a penguin colony under z/VM, since an OSA port cannot have more than
one primary router specified. In this situation, two possible solutions exist:

� Use the second OSA-Express Fast Ethernet port.

One port could be dedicated to Z/OS as per the current scenario, and the
second port could then be dedicated to z/VM to be used for the penguin
colony. Each port can have primary router specified independently.

� Use Queued Direct I/O (QDIO) mode in the OSA-Express.

In this mode, z/OS can update the internal OAT in the adapter, as required.
This eliminates the need for primary router to be set on the z/OS LPAR, so
that z/VM can be given the role on behalf of the penguin colony. A CTC
connection could be set up between z/VM and z/OS to route any traffic
intended for z/OS that goes to z/VM incorrectly.

There is also a third solution which is to route all traffic through the z/OS system,
and use a CTC connection from there to the z/VM system. This solution does
increase the hop count to the Linux systems. Also, many z/OS installations prefer
to keep z/OS TCP/IP traffic separate, for security reasons. On the positive side,
z/OS has a new feature called HiperSockets Accelerator which could prove
useful in such a configuration.

4.5 Other issues
In this section, we address CTC/IUCV device restrictions and a VM TCP/IP
restriction.

4.5.1 CTC/IUCV device restrictions
The following device restrictions exist.
102 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Numbers of links
When building a large penguin colony and using a virtual routing scenario, it is
desirable to have as many Linux instances as possible supported off one router.
This increases the server-to-infrastructure ratio of your penguin colony.
Unfortunately, there are currently some restrictions in place that limit the number
of links that can be created.

In the Linux 2.2 kernel, the CTC driver has a hard restriction of a maximum of
8 links. A #define directive in ctcmain.c sets this, and it could be increased to
allow more CTC links to be set up.

In the 2.4 kernel, the restriction has changed: when CTC is compiled into the
kernel, a restriction of 16 links applies, but when the driver is modularized there
does not appear to be a restriction.

The IUCV driver appears more friendly to increasing the number of devices.
While both the 2.2 and 2.4 kernel levels have #define directives limiting the
maximum number of devices to 10, the later versions of the driver provide
instructions in the code for how to increase the limit.

Configurability
As mentioned in “Linux as a virtual router” on page 68, the CTC and IUCV
drivers cannot currently be configured dynamically. This means that the modules
must be unloaded and reloaded to support newly added devices, which requires
all interfaces using that module to be shut down.

This is because the drivers currently only scan for valid devices when they are
initialized. The drivers build control blocks and buffers at that time, and are not
designed to support the dynamic addition of new devices.

Attention: The following points describe ways that the kernel support for CTC
and IUCV can be modified to increase the number of devices supported. In
order to make these changes, you must be familiar with kernel recompilation
and C language syntax. Also, using a rebuilt kernel may have ramifications if
you have a support agreement.

Attention: Modifications to these drivers should not be considered lightly;
issues such as memory consumption must be taken into account. For
example, the CTC driver allocates a 64 KB buffer for each connection it
manages. With 256 connections, a total of 16 MB of memory would be locked
in the CTC driver alone! Therefore, we reiterate: modify these drivers at your
own risk.
 Chapter 4. Networking a penguin colony 103

A useful enhancement to the CTC and IUCV drivers would be the ability to
perform this dynamic reconfiguration. The kernel already provides support to
recognize newly configured devices, and the DASD driver is also being enhanced
in this area. Reconfigurable CTC and IUCV drivers would allow a much more
flexible penguin colony environment to be created, where less planning of future
connectivity would be required—and adding a new penguin to the colony would
be much easier and more dynamic.

4.5.2 VM TCP/IP restriction
Currently, performance of a VM TCP/IP stack degrades after approximately 100
DEVICEs have been defined. The details on this are not clear, and we are not
aware of the nature of the degradation in performance. We are also not aware of
any active work to research this further.

We mention this as a prompt for you to find out more, so that you can factor this
into the planning for your penguin colony.
104 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Chapter 5. Security architecture

In this chapter we discuss security topics related to running Linux on a S/390 or
zSeries. Running a Linux system requires reliable security on any hardware
platform. Using hardware other than S/390 or zSeries often leads to discrete
servers with dedicated hardware resources.

With Linux on S/390 or zSeries, together with the partitioning of the hardware
and the virtualization offered by VM available to the Linux systems, many new
aspects of security arise. On one hand, you must consider if and how the
physical resources of the S/390 or zSeries hardware will be isolated from the
virtual Linux systems. On the other hand, the maintenance of multiple Linux
systems with VM requires some additional security features in front of the
penguins, but also offers clever methods of handling a colony of them.

5

© Copyright IBM Corp. 2001 105

5.1 Sharing isolation and reconfiguration of resources
As discussed in Chapter 1, “Introduction” on page 3, Linux can run on zSeries
and S/390 hardware in three basic modes:

� In native mode
� In LPAR mode
� As VM guests

In the following sections, we discuss security as it pertains to running Linux in the
three different modes.

5.1.1 Running Linux in native mode
The simplest security scenario is with Linux running in native mode. Here Linux is
the only operating system on the hardware. Therefore, all internal resources
(processors, memory, channels) are dedicated and there are no concerns about
sharing these resources with other systems. It is still possible to share external
resources such as DASD with other mainframe systems, but that would imply the
same problems as if the Linux systems were running on a hardware platform
other than S/390 or zSeries.

5.1.2 Running Linux in LPAR mode
The security scenario with Linux running in one or more LPARs gets more
complicated because the PR/SM microcode is used to share the S/390 or
zSeries resources.

An independent operating system can run in each LPAR (whether it’s Linux,
OS/390, VM or others). These LPARs and the various operating systems can
share internal resources. From a logical point of view, the resources seem to be
dedicated to the partition—but from a physical point of view, the hardware is
virtualized and partitioned by PR/SM to be shared among up to 15 LPARs.
PR/SM ensures that each LPAR uses only the resources that have been
allocated to it. If total isolation of a partition is required, the system can be
configured via the IOCP and IOCDS so that no resources are shared among
another partition.

An ISP or ASP has to deal with various servers from several customers, who all
have an essential interest in separating their data and applications from those of
other customers. To make the principle of virtualization by PR/SM acceptable for
these customers, some questions have to be answered:
106 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

1. Is there an official certification that the processes of the PR/SM microcode
are secure, especially under the new zSeries architecture, which adds new
features such as HiperSockets?

2. If CPs are shared between LPARs, is there any risk that one LPAR can
influence the operations in another LPAR?

3. What is the risk if memory is reconfigured from one LPAR to another?

4. How can the dedicated and secured use of peripheral devices be assured, if
shared channels and control units are used?

5. Should there be a secure administration access to Linux for zSeries and
S/390 systems, especially to those that are logically placed in DMZs?

PR/SM certification
Question 1 asks for official statements and guarantees of the security provided
by hardware and microcode. For S/390 servers, which means up to the 9672 G6,
PR/SM has been evaluated according to the European ITSEC E4 (Information
Technology Security Evaluation Criteria, evaluation level E4). This evaluation
certifies that PR/SM can separate and isolate partitions as if they were running
on physically separate systems. This includes topics such as the following:

� Identification and authentication

– PR/SM will associate a unique identifier with each logical partition in the
current configuration.

– Each LPAR is uniquely identified, based on IOCDS definitions.
– The identifier is used to mediate access control.

� Audit and accountability

– All security relevant events are recorded in an audit log.
– The audit log is protected from unauthorized deletions or modifications.
– Applications in LPARs cannot read the audit log.

� Access control

– LPAR security controls define a partition's access to IOCDSs,
performance data, crypto, and reconfigurable channels.

– Access to control units and devices on shared channels can be restricted.
– Dedicated channels, storage, and CPs are never shared.
– PR/SM will prevent the transfer of a message between a logical partition

and any resource not explicitly allocated to it.

� Object reuse

– Storage will be cleared prior to allocation or re-allocation.
– All information in physical processors or coprocessors will be reset before

dispatching the processor to a new logical partition.
 Chapter 5. Security architecture 107

– Non-shared channel paths and attached I/O devices will be reset prior to
allocation to a LPAR

For zSeries servers, a certification based on Common Criteria EAL5 is being
worked on. This certification uses roughly the same criteria as the older ITSEC
E4. For more details, see the URL:

http://www.commoncriteria.org

To answer questions 2 through 5, we have to take a closer look at the way PR/SM
handles the sharing, isolation and reconfiguration of resources among LPARs.

Processors in a LPAR environment
LPARs running on S/390 or zSeries hardware can use either dedicated PUs
(which only one LPAR is allowed to use), or shared PUs (which every LPAR
defined for shared CPs can access).

CPs or IFLs (but not both, in the same LPAR) can be used to run Linux
workloads. A CP is a general purpose processor that has the full ESA/390 and
z/Architecture instruction sets, and it can run all operating systems available for
S/390 or zSeries, including OS/390, z/OS, VM/ESA, z/VM, VSE, and Linux. The
IFL can only be used to run native Linux, or z/VM V4 with Linux guest systems.
While the number of CPs determines the model of the 9672 or 2064 (and with
this the base measurement for the software licenses running on this server), an
IFL is not counted in the pool of PUs that determine software pricing.

While an OS/390 or z/OS LPAR requires CPs, a Linux LPAR (which means native
Linux, or z/VM V4 with Linux guest systems; VM/ESA LPARs still require CPs)
can run either on CPs or on IFLs. Therefore, usually OS/390 or z/OS LPARs
(which require CPs) do not share processors with native Linux or z/VM LPARs
(which can use IFLs). But there still is the possibility, especially for small testing
LPARs, to run Linux on a CP shared with a OS/390 or z/OS LPAR. And of course
IFLs can be shared between two or more Linux LPARS, but not between Linux
and z/OS LPARs.

When a processor is shared between two or more LPARs, each partition is given
access to this processor for a certain amount of time. This is controlled by an
algorithm based on the defined weight of the LPARs. Different partitions may use
a single physical processor at different times, but the information held in the
processor will be cleared before it is used by another partition.
108 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

http://www.commoncriteria.org

If the time allocation for the LPAR is used up, or when the LPAR has no more
work to do for the processor, or when a higher prioritized LPAR is demanding the
processor, an interrupt occurs and the access to the processor is given to the
other partition. When a processor is switched from use by one LPAR to another,
its entire state is preserved and the new LPAR's state is restored. For the
duration of its timeslice, only this LPAR has access to the processor.

Memory in a LPAR environment
Memory is not shared between LPARs, but the total amount of memory installed
on a 9672 or 2064 is divided among the LPARs. Logical storage, both central and
expanded, is represented by the same amount of contiguous physical storage of
the same kind. This is done when the LPARs are activated, and PR/SM does not
move logical partitions once they have been placed in real storage.

PR/SM also allows that physical storage can be deallocated from one logical
partition and reallocated to another while these LPARs are running. If
reconfigured, the storage is cleared as part of the reconfiguration process, so no
data can be presented from one LPAR to another.

However, the operating system has to support this reconfiguration by being able
to clear the areas of memory that are scheduled to be configured off this LPAR
and given to another. VM or native Linux do not support dynamic storage
reconfiguration, so there is no security impact of running Linux on S/390 at all.

Channels and external devices in a LPAR environment
The S/390 and zSeries architectures allow channels and the external devices
connected to these channels to be shared between multiple LPARs.

It is also guaranteed that channels dedicated to one LPAR cannot be accessed
by another LPAR, that access to control units and devices on shared channels
can be restricted, and that non-shared channels will be reset before reallocation
to other LPARs.

If a device that has to be accessed using a shared control unit and shared
channels should be dedicated to one LPAR, this has to be defined in the I/O
Configuration DataSet (IOCDS). PR/SM ensures that no LPAR can access a
device that is not defined to this partition. It prevents the transfer of data between
a LPAR and any resource not explicitly allocated to it.

In an environment with several Linux systems running in different LPARs, it is
possible, and in most cases, sensible, to share channels and control units
between the LPARs—and thus between the Linux systems. However, you need
to be careful when DASD devices are shared. Unlike OS/390 or z/OS, the Linux
operating system itself does not have any built-in procedures that prevent system
images from interacting with each other’s writing operations and destroying the
 Chapter 5. Security architecture 109

integrity of the data. Unless the applications using the DASD devices do provide
special procedures to ensure data integrity, write operations to a shared DASD
device should only be permitted on one Linux system, with the others only
allowed to read the data.

Networking in a LPAR environment
Network devices are handled the same way as other external devices. They are
either channel-attached control units, or located on Open Systems Adapter
(OSA) cards. The ports on the OSA cards can be shared between LPARs, just as
any other channel. The security in shared usage, isolation and reconfiguration of
these devices is the same as with other channels and control units. Additionally,
the network outside of the physical S/390 or zSeries server has to be designed
and set up in a way that no unauthorized access to data or resources is possible.

For system administration tasks especially, secure network access has to be
granted, and this administration network should be separated from the normal
Intranet and Internet.

For the internal network communication between LPARs on the same zSeries
server, two choices are provided which do not need to use any hardware outside.
A TCP/IP connection between two LPARs can be set up by using a shared OSA
port, or by using an in-memory communication vehicle called HiperSockets.

The first environment to support HiperSockets will be Linux for zSeries, z/VM,
z/OS, and any combination of these operating systems running in LPARs on a
zSeries server (there are no HiperSockets for 9672 G5/G6 and Multiprise 3000
servers). Because these connections are not physically attached to the outside
network, they are as secure as the LPARs themselves.

5.1.3 Running Linux under VM
Similar security questions arise with the usage of z/VM or VM/ESA to virtualize
the resources of an LPAR:

� How are VM resources and definitions protected against guest systems?

� What is the remaining risk if the resources of VM guest systems (memory,
CPs) are reconfigured?

� How secure are the different kinds of communication among Linux images
(for example, OSA, HiperSockets, Guest LAN, IUCV or VCTC)?

� How can the dedicated and secured use of peripheral devices be assured, if
shared channels and control units are used?

� How can it be proven that VM guest systems are isolated from each other?
110 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

The System Integrity Statement for VM
The last question is asking again for official statements and guarantees for the
security provided by VM. There is no official certification of VM/ESA or z/VM
comparable to the ITSEC E4 certification of PR/SM. However, the z/VM guest
machine separation uses the very same machine facilities that were created for,
and are used by, PR/SM. So the same level of trust can be placed in z/VM and
VM/ESA guest machine separation as in the PR/SM microcode.

Furthermore, IBM gives a System Integrity Statement for z/VM (in the publication
z/VM General Information, GC24-5991), which is cited here:

System integrity is an important characteristic of z/VM. This statement
extends IBM’s previous statements on system integrity to the z/VM
environment.

IBM has implemented specific design and coding guidelines for maintaining
system integrity in the development of z/VM. Procedures have also been
established to make the application of these design and coding guidelines a
formal part of the design and development process.

However, because it is not possible to certify that any system has perfect
integrity, IBM will accept APARs that describe exposures to the system
integrity of z/VM or that describe problems encountered when a program
running in a virtual machine not authorized by a mechanism under the
customer’s control introduces an exposure to the system integrity of z/VM, as
defined in the following “z/VM System Integrity Definition” section.

IBM will continue its efforts to enhance the integrity of z/VM and to respond
promptly when exposures are identified.

After this statement, in which IBM guarantees fixing every exposure of the
system integrity of z/VM, there follows the “z/VM System Integrity Definition”:

The z/VM control program system integrity is the inability of any program
running in a virtual machine not authorized by a z/VM control program
mechanism under the customer’s control or a guest operating system
mechanism under the customer’s control to:

– Circumvent or disable the control program real or auxiliary storage
protection.

– Access a resource protected by RACF. Resources protected by RACF
include virtual machines, minidisks, and terminals.

– Access a control program password-protected resource.
– Obtain control in real supervisor state or with privilege class authority or

directory capabilities greater than those it was assigned.
– Circumvent the system integrity of any guest operating system that itself

has system integrity as the result of an operation by any z/VM control
program facility.
 Chapter 5. Security architecture 111

Real storage protection refers to the isolation of one virtual machine from
another. CP accomplishes this by hardware dynamic address translation,
start interpretive-execution guest storage extent limitation, and the Set
Address Limit facility.

Auxiliary storage protection refers to the disk extent isolation implemented for
minidisks/virtual disks through channel program translation.

Password-protected resource refers to a resource protected by CP logon
passwords and minidisk passwords.

Guest operating system refers to a control program that operates under the
z/VM control program.

Directory capabilities refer to those directory options that control functions
intended to be restricted by specific assignment, such as those that permit
system integrity controls to be bypassed or those not intended to be generally
granted to users.”

This definition, together with the preceding statement, is a guarantee that VM is
able to provide full system integrity to the VM guest systems, and that IBM will fix
any exposure to this. However, because the CP program and the guest systems
are under the control of the customer, the achieved level of system integrity
depends on the way the VM environment is set up and maintained. This also is
made very clear by having customer responsibilities being defined as follows:

While protection of the customer’s data remains the customer’s responsibility,
data security continues to be an area of vital importance to IBM. IBM’s
commitment to the system integrity of the z/VM environment, as described in
this statement, represents a further significant step to help customers protect
their data.

Product documentation, subject to change, describes the actions that must be
taken and the facilities that must be restricted to complement the system
integrity support provided by z/VM. Such actions and restrictions may vary
depending on the system, configuration, or environment. The customer is
responsible for the selection, application, adequacy, and implementation of
these actions and restrictions, and for appropriate application controls.

So, to give a short answer to the question: there is no external proof or
certification (like E4 from the ITSEC for PR/SM) that VM systems are isolated
from each other. But IBM warrants the integrity of the virtual machine interface
and will accept integrity APARs and fix any problem exposed.

To answer the other questions, again we take a closer look at the way VM
handles the sharing, isolation, reconfiguration, and management of resources
between guest systems. A comprehensive summarization for this is given in
Appendix B of Linux for S/390, SG24-4987.
112 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Definition and management of guest systems
Simply put, z/VM transforms the principles of partitioning—which on the
hardware level are provided by the PR/SM microcode—to the LPAR
environment, and enriches them with virtualization. The Control Program (CP) of
VM is able to virtualize hardware resources, either by sharing or partitioning real
hardware resources, or by emulating their behavior. The definition of the virtual
guest systems and of the resources available to them, as well as the
management of this environment, is also provided by the CP.

Operating system failures that occur in virtual machines do not usually affect the
z/VM operating system running on the real processor, and or the other guests. If
the error is isolated to a virtual machine, only that virtual machine fails and the
user can re-IPL without affecting the testing and production work running in other
virtual machines.

VM resources and definitions are protected through privilege levels. A guest can,
in general, manipulate its own environment; but without special privileges, which
are under customer control, one guest cannot manipulate another's environment.
Users of the virtual machines are unaware of the virtualization done by CP, just
as an LPAR is unaware of the virtualization done by PR/SM.

User access to the VM system and its virtual machines can be controlled by the
Resource Access Control Facility (RACF) licensed program, the strategic
security facility for VM/ESA and z/VM. RACF also checks the authorization for
the use of system resources like minidisks and data in spool files, and audits the
use of them.

However, the RACF database cannot be shared with OS/390. In addition, in a
complex VM environment, we recommend that you use the Directory
Maintenance (DirMaint) product to maintain the user directory.

Processors in a VM environment
The VM Control Program defines and assigns logical processors to the guest
systems, the virtual machines. These logical processors are matched to the
logical processors of an LPAR (or to the physical processors, with VM running on
the native hardware), which PR/SM maps to shared or dedicated physical
processors.

A virtual machine can have up to 64 virtual processors defined, although a
zSeries server can physically only have 16 processors (CPs or IFLs). If the
operating system running in the virtual machine is capable of using multiple
processors, it will dispatch its workload on its virtual processors as if it were
running in a dedicated hardware environment.
 Chapter 5. Security architecture 113

The VM Control Program handles dispatching the virtual processors on the real
processors available to that virtual machine. A real processor can either be
dedicated to a virtual machine, or shared among virtual machines. (Keep in mind
that the VM CP only handles the processors it controls, which means that if VM is
running in an LPAR, a real processor to the VM Control Program can also be a
shared physical processor dispatched by PR/SM.)

There is no security risk if the resources of VM guest systems are reconfigured,
or if the virtual processors of different guest systems are dispatched to the same
physical CPs or IFLs. The state of a processor is preserved for one guest and
restored for another by the VM Control Program (just as PR/SM does for LPARs).
Therefore, no information can be accidentally passed from one VM guest system
to another in this way.

Memory in a VM environment
Each virtual machine has its own defined virtual memory. The physical residency
of the guest system’s memory pages in real storage is managed by the VM
Control Program’s paging mechanism. Pages that have not been referenced can
be moved out of real storage, either into expanded storage or onto a paging
device.

When a virtual machine touches a page that is no longer in real storage, a page
fault occurs and the Control Program will bring the missing virtual page back into
real storage. The memory addresses used within a virtual machine are also
virtual, and they have no meaning outside the virtual machine.

The VM Control Program also allows the sharing of virtual pages by a number of
virtual machines. A shared virtual page requires just one page of real storage, no
matter how many virtual machines are sharing it. This can be used for sharing
the Linux kernel, which is read-only to the guests, enforced by the hardware.

Virtual disks (VDISK) can also be shared by several virtual machines—and data
from shared minidisk (MDISK) caches can be copied to private virtual pages.
This can have a profound effect on the productive use of multiple cloned Linux
guest systems in a z/VM environment. Refer to Chapter 3, “Virtual server
architecture” on page 45 and Chapter 10, “Cloning Linux images” on page 209
for a more detailed discussion.

There also is no security risk if the memory of VM guest systems is reconfigured,
or if portions of the virtual memory of one guest are located by the CP in physical
memory regions where the data of another guest resided earlier. Memory is
cleared when it changes hands, and there is no vestigial information that can
“leak” from one guest to another.
114 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Channels and external devices in a VM environment
Each operating system running in its own virtual machine communicates with
virtual devices. The mapping of virtual to real devices and resources is handled
transparently by the VM Control Program.

The virtual DASD devices used by virtual machines are called VM minidisks.
They are implemented by partitioning a real S/390 volume into cylinder ranges
that appear as separate disk volumes to the virtual machine. A minidisk can span
a whole real disk volume. A real disk can also be dedicated to a virtual machine.

Minidisks (MDISK) can be shared or non-shared. If authorized, one virtual
machine can link to a minidisk belonging to another virtual machine to access the
data on it. Links can either be read-only or read-write.

When a minidisk is write-shared, some software is needed to manage access to
the data. CP is able to cache the contents of minidisks in real or expanded
storage to improve application response times, and to share this minidisk cache
between several virtual machines.

It is also possible to define virtual minidisks (VDISK), which are mapped into real
storage by the VM Control Program, instead of residing on real DASD volumes,
and to share them. The principles of using shared minidisks, shared minidisk
caches and shared virtual minidisks between multiple Linux guest systems is
also very important for running multiple cloned Linux guest systems under z/VM;
refer to Chapter 3, “Virtual server architecture” on page 45 and Chapter 10,
“Cloning Linux images” on page 209 for a more detailed discussion.

If devices such as an OSA port are dedicated to a VM guest, the VM operating
system does not influence the use of this device by the guest operating system.
Also, the dedicated and secure use of peripheral devices such as VM minidisks
is assured, even if shared channels and control units are used.

From a VM perspective, physically shared but logically distinct devices (e.g.
minidisks) are, for all intents and purposes, separate. One guest cannot access
another's data (e.g., by seeking beyond the end of their disk). Interference by one
guest with another from a performance viewpoint can occur, but it is controlled by
VM scheduling mechanisms. Where devices are logically shared (e.g., a shared
minidisk), authorization must be given by a system administrator to establish the
sharing.

Networking in a VM environment
Network communication between a VM guest system and the outside world is
established over the same physical hardware devices (OSA, channel-attached
control units) as previously described, but the VM Control Program manages
access to them. Of course, VM only manages the devices when they are defined
 Chapter 5. Security architecture 115

as shared (rather than dedicated to only one virtual machine). The network has
to be designed and set up so that no unauthorized access to data or resources is
possible—and for system administration tasks, a separate network with secure
access is especially recommended.

For network communication between a virtual machine in a VM LPAR and
another LPAR on the same zSeries server, a shared OSA port can also be used.
If both operating systems support this connection, even HiperSockets can be
used (at the time writing, however, no Linux driver for HiperSockets was
available).

For communicating between two virtual machines running in the same VM
system (with VM running in an LPAR or on the native hardware), three additional
communication vehicles are available:

� The virtual Channel-To-Channel (VCTC) device uses virtual I/O instructions.
These are intercepted by the VM Control Program, which moves the data
between memory buffers.

� The Inter-User Communications Vehicle (IUCV) provides a high-speed pipe
for communications between virtual machines and the VM TCP/IP stack.
IUCV connections can be established between pairs of virtual machines on
the same VM system, or even on different VM systems.

� While VCTC and IUCV offer point-to-point connections, the VM Guest LAN,
introduced with z/VM 4.2, provides multipoint virtual connections between
guests, using virtual HiperSockets adapters within a z/VM system.

The VCTC and the even faster IUCV and Guest LAN connections are essential
for the network design of multiple Linux virtual machines running in one VM
system, with VM running both in LPAR or in basic mode.

All the different kinds of communication between guest systems and LPARs
(such as shared OSA, HiperSockets, IUCV or VCTC) are completely secure in
that an unauthorized third party cannot eavesdrop on them. However, keep in
mind that access to these connections is only as secure as the connected
operating systems using them.

5.2 Linux security
It is beyond the scope of this redbook to describe all the methods and tools
available to increase security on Linux. In this section we discuss general
recommendations for keeping your Linux server secure. In “Additional security
documentation” on page 120, we list other sources you can refer to get a more
comprehensive overview of the various security issues surrounding a Linux
installation.
116 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

5.2.1 What kind of protection do you need
The way a Linux server should be protected is highly dependent upon the
server’s purpose. Therefore, consider what kind of access to the server is
required, what exposures have to be taken into account, what kind of security
attacks can be expected, and which tools to use in order to ensure the security of
the system.

Based on the security basics summaries offered in Linux for S/390, SG24-4987,
and in Linux for zSeries and S/390: Distributions, SG24-6264, we make the
following general recommendations for protecting your Linux server:

� Disable unneeded services

Depending on the Linux distribution used, different services are activated by
default. Many of the network-related services are handled by inetd (or
xinetd). You can deactivate many of these services by editing the
/etc/inetd.conf or etc/xinetd.conf files (but you should consider carefully if the
services are really unneeded before you remove them).

� Use the tcp wrapper

To protect and log the remaining services, the tcp wrappers daemon (tcpd)
should be used. When a communications service request is received, inetd
invokes tcpd first, which then can invoke the requested service. The tcpd
daemon performs some verification, logs the request according to the settings
in the /etc/syslog.conf file, enforces access control and then, if everything is in
order, passes the request on to the requested service.

� Use Secure Shell for remote access

Simply stopping a service like telnet is not a good solution for a Linux server
that needs to be accessed remotely. To allow remote access and to prevent
the password sent to telnet from being “sniffed”, replace the telnet service
with the Secure Shell (SSH).

SSH connections are encrypted and protected against IP or DNS spoofing.
Similarly, the secure copy (scp) command can be used instead of FTP, and
secure login (slogin) can be used instead of rlogin.

For additional security, remote login for root can be forbidden. Then root
access will be limited to the Linux console which is a VM session. In this
scenario, both the VM and the Linux passwords would have to be cracked.

� Use shadow password utilities

The /etc/passwd file often contains encrypted passwords that can be read by
all users. This creates the possibility that weak passwords can be cracked via
dictionary attacks. To avoid this vulnerability, we recommend that you use the
shadow password utility, where passwords are stored in the /etc/shadow file
(which does not have read access).
 Chapter 5. Security architecture 117

Additionally, this file contains information about expiration and renewal, so
maintenance of passwords is eased. Use of shadow passwords is the default
in current versions of all major distributions.

� Use the Pluggable Authentication Module (PAM)

The PAM provides a library of authentication modules, all located in the
/etc/security directory. These modules offer standard procedures for
authentication purposes and can be used by various services, which
configuration files are listed in the directory /etc/pam.d.

Without these modules, every application would have to contain its own
authentication code, if anything more than the standard user authentication by
password is required. And if the authentication requirements of an application
change, the whole application would have to be recompiled. By using PAM,
only the configuration file in the /etc/pam.d directory has to be changed.

� Monitor security news and alerts

In order to keep abreast of news concerning vulnerabilities or bugs in
software running on the Linux server, the system administrator should check
the Web sites related to these products often, and also check general Linux
security-related URLs.

In addition, the sysadmin should frequently monitor the log files of the
applications (usually located in the directory /var/log/) for any problems.

� Use LDAP servers for authentication

For directory services over TCP/IP, the Lightweight Directory Access Protocol
(LDAP) should be used. One or more LDAP servers contain the data making
up the LDAP directory tree. Information about objects (such as people,
organizational units, printers, documents, etc.) are stored as entries in a
hierarchical structure. LDAP provides a mechanism for clients to authenticate
to a directory server, in order to get access to the information provided there.

The implementation usually provided with Linux is OpenLDAP; refer to the
following URL for more information:

http://www.openldap.org

Setup and usage of OpenLDAP is described in Linux for zSeries and S/390:
Distributions, SG24-6264. OpenLDAP provides a directory service called
slapd, which handles access control to, and management of, the databases
containing the directory trees. It also contains the slurpd daemon, which
helps slapd provide replicated service.

� Use firewall tools to secure your network
118 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

http://www.openldap.org

To control the traffic of TCP and UDP packets by using the IP firewall rules on
the Linux kernel, IPTables should be used; see Chapter 11, “Network
infrastructure design” on page 235 for details. Thorough evaluation and
planning of the network infrastructure is required regarding the setup of
Virtual Private Networks (VPN), including the arrangement and use of
proxies, reverse proxies, and firewalls.

� Protect against viruses and trojan horses

Because of its software architecture (in particular, memory management and
file/user permission design), Linux is not susceptible to the traditional viruses
that plague more elementary operating systems like Windows.

But this does not mean that Linux is entirely safe from mischief or external
threats, especially “trojan horse” programs. The distinction between a virus
and a trojan horse is critical, and illustrates why Linux is relatively immune to
viruses but not to trojan horse programs—so let’s explain these terms here.

What is a virus

A virus is a program that actively operates, independently of a user, to attack
various system resources. On most Windows systems, a user is also the
administrator. Therefore, all system resources (disk, memory, applications,
files, logs, devices, etc) are accessible by anyone or anything, including the
virus program.

It is impossible for a Linux operating system to suffer system-level damage
from a virus, because it cannot get access to low-level system functions.
However, just because Linux is relatively safe from viruses doesn't preclude it
from spreading mail-based viruses when it is being used as a mail server.

For this reason, there are antivirus programs that can be used for detection
and disinfection of viruses and malicious code passing through Linux
firewalls; for example, refer to the following URL:

http://www.f-secure.com

What is a trojan horse

By contrast, a trojan horse is a program that cannot operate unless it is
invoked (unwittingly) by a user. Generally speaking, Linux systems don't
execute trojan horses on their own; they must be executed explicitly by the
user, and are especially dangerous if the user is the root or superuser of a
Linux system.

Therefore, to help prevent the introduction and execution of a trojan horse, a
system administrator should, at a minimum, avoid logging in as root or
otherwise assuming superuser capability unless it is absolutely necessary for
some sysadmin task, and should furthermore ensure proper access
permissions on files (which is particularly important for system utilities,
devices and log files).
 Chapter 5. Security architecture 119

http://www.f-secure.com

A very useful hardening tool is tripwire, which is able to detect and report file
and directory modifications. This can help to detect trojan horses and
modified software left by hackers, for example for sniffing passwords.

� Use tools for testing network security

You can use tools such as the scanlog daemon to test network security. This
daemon is able to recognize if someone is requesting more than a specific
number of ports per second, which can indicate that someone is scanning the
Linux server for insecure ports.

5.2.2 Additional security documentation
The following documentation provides detailed information about Linux-related
security topics.The paper “Addressing Security Issues in Linux”, by Mark
Chapman, presents a broad overview of the various security issues regarding
Linux installations, and what you can do to keep these subjects under control. It
is available on the Web at:

http://oss.software.ibm.com/developer/opensource/linux/papers.php

A very useful paper, it discusses the most common tools and utilities for
increasing the level of security, and refers you to various URLs for further
information.

Another excellent paper entitled “Linux Security State of the Union”, by Robb
Romans and Emily Ratliff, is also available at the same URL. The authors
discuss the main prejudices regarding open source software in general and Linux
in particular, which often inhibit the use of these products in production
environments. The contention is that an open source operating system need not
be insecure. On the contrary, the availability of the source code availability
implies the advantage of a very stable product (because everyone is able to run
and test it), whose bugs are fixed with extraordinary speed.

The paper lists and describes projects that are underway to improve overall
acceptance of Linux as a secure operating system, ready for productive usage in
an enterprise environment.

5.3 Cryptography on z/Series
S/390 and zSeries servers offer specialized processors for cryptographic
operations. The IBM 2064 zSeries 900 supports up to eight PCI-CC cards. Each
PCI-CC card contains two engines and is assigned two CHPID numbers. Using
these cards for cryptographic operations, the CPs or IFLs are released from
these processor-absorbing instructions.
120 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

http://oss.software.ibm.com/developer/opensource/linux/papers.php

In an ISP or ASP environment, cryptographic procedures are generally used for
secure TCP/IP connections between the server and the user somewhere in the
Internet. Applications for firewalls, Web serving and mail serving have the
requirement to protect data, as shown in Figure 5-1.

Figure 5-1 Usage of zSeries 900 PCI-CC card

The operating system has to be able to recognize cryptographic instructions,
pass them to the PCI-CC card to be executed, and return the result to the
application.

Linux on S/390 and zSeries will provide this functionality for hardware encryption
in the first step for those asymmetric algorithms used by SSL, which will result in
remarkable performance enhancements for SSL transactions. The future
directions will also include hardware cryptography for symmetric algorithms
(such as DES, 3DES, RC4, etc.), support for cryptographic file system, and
digital signatures.

From a security point of view, there are no system integrity exposures if the
PCI-CC card is shared and used both with OS/390 and Linux workload. Aside
from potential performance concerns if there are not enough crypto features,
there are no security considerations. Each operation is discrete and independent

DMZ

Internet

LPAR
or z/ VM

stock trading
searching
banking
auctions
shopping

SSL

SSL

SSL

Web
Server

Mail
Server

Messaging
Server

FTP
Server

Internet
News

DB
Server

Web
Server

HW
Crypto

SSLover
Hiper
Sockets

SSL over
Hiper
Sockets

SSLover
Hiper
Sockets

Firewall

Firewall

Firewall

Firewall
 Chapter 5. Security architecture 121

of those that precede or follow it. VM manages the queue of requests to ensure
that a guest can see only its own request, as with a shared processor or a shared
channel. Of course, if necessary, a PCI-CC processor can also be dedicated to a
Linux guest system in a virtual machine.
122 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Chapter 6. Migration planning

In this chapter we discuss high-level considerations for planning a migration from
distributed servers to Linux on S/390 or zSeries.

6

© Copyright IBM Corp. 2001 123

6.1 Where to start
The reality of any large organization’s IT infrastructure is that it defies easy
analysis, so how do you select which servers are the best candidates for
migration? By solving the biggest problem first; focus on the area where there is
the most “pain”, and fix it.

6.2 What to look for
Consider the following when selecting which servers to migrate.

6.2.1 Small scope
The most successful very early migration customers we’ve been involved with
were faced with these small-scope requirements:

� Needing to upgrade multiple servers running on older hardware
� Needing to upgrade multiple servers running on older operating systems
� Needing to increase disk capacity
� Being unable to justify underutilized single servers

Normal attrition presents many low-risk opportunities to consolidate single-use
servers. This builds a track record of success and customer satisfaction. The
financial comparison is made using real data.

This type of migration will not justify the purchase of a new S/390 or zSeries;
instead, it assumes there is extra capacity on an already installed machine.
However, the incremental cost of running the migrated servers can be very
accurately measured in terms of the sunk costs in the data center. When
compared to the costs of many upgrades to many small servers, this incremental
approach is very attractive financially, especially in terms of technical support
costs. File and print servers are the typical examples of this migration, and have
been very successful.

Medium scope
Other customers have taken a more comprehensive approach. Rather than wait
for servers to reach end-of-life before migrating them, a more global and
proactive plan is used. Some indicators for using this approach are:

� Consolidating a new acquisition
� Building, expanding, or moving to a new data center
� Implementing a plan for increased capacity
� Redesigning or upgrading a network
124 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

This type of migration depends on having strong skills already in place in the
S/390 datacenter. It assumes there is plenty of capacity on the machine—or a
budget to buy more capacity. It further assumes end-to-end cooperation from all
members of the technical support staff. The people who will support applications
on Linux need to see this as an opportunity to enhance their skills and
marketability. That applies equally to the NT administrator, the MVS system
programmer, and the VM system programmer.

Large scope
Another type of migration happens in companies that perceive a strategic
advantage in exploiting open source code. These companies chose to bet their
business on this model and do not want their competitors to be aware of it, so
there are few references. This approach can take the form of a new, “from the
ground up” deployment, or be a corporate-wide directive to embrace Linux and
migrate to it. The success of such an implementation depends on:

� Strategic, core-business application deployed on Linux
� Strong development, testing, and support staff
� Executive sponsorship
� Competitive advantage

6.3 Total cost comparison framework
In this section we discuss the components you should use to calculate the total
cost comparison.

6.3.1 Staffing
There is a current and growing shortage of skilled IT technicians. Leveraging the
effectiveness of employees you currently have, and attracting the skill set coming
out of college, is a significant financial advantage. Some components of staffing
costs are compared in Table 6-1:

Table 6-1 Staffing cost components

Penguin colony Separate servers

One location Many locations

One staff Much staff, or downtime for travel

Centralized skill redundancy; provides
overlap and backfill

Isolated experts; expensive, hard to
duplicate for 24x7 coverage

Mass, automated customization Manual customization
 Chapter 6. Migration planning 125

6.3.2 Hardware
Hardware price comparisons of single-use servers to a mainframe might seem to
be an easy win for the single server. A production environment includes more
than just a box. When the cost of hardware for failover, backup, peak capacity,
and networking is included, the mainframe can become very competitive. A
calculation of hardware costs should include these items:

� New servers: CPUs, keyboards, monitors
� Disk storage
� Networking hardware: switches, routers, racks and cabling
� Uplift for failover, backup, and peak capacity

6.3.3 Occupancy
Data centers represent large sunk costs, and server consolidation on Linux
zSeries presents a huge opportunity to get the maximum return on that
investment. Using the Linux Community Development System example,
600 servers exist in the floor space of a refrigerator. The cost per square foot for
single-use servers, no matter how efficiently stacked, is going to be a significant
financial burden. Occupancy costs include:

� Floor space
� Heating and cooling
� Electrical consumption
� Uninterrupted power supply

6.3.4 Other factors
The costs of staffing, hardware, software, and occupancy can be measured and
projected with some accuracy. Those costs do not represent the whole picture,
and it is important to consider the following:

� Cost of an outage
� Cost of migration
� Cost of exploiting emerging technology
� Cost of multiple databases
� Cost of multiple copies of one database
� Cost of a proprietary architecture

– Non-portable code
– Restricted interfaces
– Removal of function

It may not be possible to put a cost figure on each of these, but one of them may
be the determining factor that makes Linux on a mainframe the best choice in a
particular situation.
126 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Chapter 7. Backup and restore

In this chapter we discuss how to effectively back up and restore Linux systems.
We describe a number of backup methods, and focus on the use of VM and
Linux tools.

7

© Copyright IBM Corp. 2001 127

7.1 Backup methodologies
Backup and restoration, particularly in large environments, involves more than
simply making a copy of data and keeping it in a safe location (although that is
often a good start). Instead, each different type of data loss scenario requires a
different approach to the restoration of service.

7.1.1 Disaster recovery
In order to recover from a disaster such as loss of a computing center or disk
subsystem, you must consider hardware considerations as well as data
management considerations. Once you solve the hardware issues, you need to
make all of your data available again as quickly as possible.

Taking device-level backups is the easiest way to do this. However, this tends to
be the most disruptive and costly backup method. As an example, Point-to-Point
Remote Copy (PPRC) is an example of device-level backup that is extremely
effective in a disaster recovery role, but it requires that you duplicate your entire
disk storage facility, which may be cost-prohibitive (this is discussed in more
detail in 7.2.2, “Point-to-Point Remote Copy (PPRC)” on page 131).

Using VM DASD Dump Restore (DDR), another method of device-level backup,
requires that you shut down the system using the disk being backed-up, which is
also disruptive (as discussed in 7.3.3, “VM DASD Dump Restore (DDR)” on
page 138).

7.1.2 Logical backup
It is often not appropriate to restore entire file systems at a time. For example, if a
single file is accidentally deleted from a server, the most efficient method of
getting that file back would not be to have to restore an entire file system.

Device-level backup processes are not appropriate for this purpose. Consider
PPRC in this scenario: if the file is deleted on the main disk, within an instant the
deletion is repeated on the mirrored disk.

The same thinking applies in the case of data corruption. An external backup
solution must also be available so that the file can be restored to a time before
the data corruption took place.

7.1.3 Backup types
There are generally considered to be two types of backup: full and incremental.
128 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

A full backup is a copy of the entire file system. This backup could be used to
restore that file system if it was completely destroyed. In a device backup, this
would be an image copy of the entire device. In a logical backup, every file in the
file system would be copied.

An incremental backup only copies changes from the time of the last backup. On
its own, an incremental backup could not restore an entire file system.
Incremental backups are used as a way to keep full backups up-to-date, without
having to repeat the entire full backup every time. Incremental backups are
usually associated with logical backup methods, where directory information
provides an easy way to find out which parts of the file system changed since the
last backup.

7.1.4 Complex application backup
Applications such as databases, which generally keep very large files with
complex internal structures, pose problems for backup processes due to this
internal complexity. A backup program, looking at the file system level, only sees
a large file, and must handle it as such. Even if only a single 1 KB record in a
database file of 1 GB has been changed since the last backup, an incremental
backup of the file system would still back up the entire 1 GB file.

One approach to avoiding this is to use application-specific tools to back up the
application data internally. That way, the file system backup facility can be told to
ignore the application files. For example, there are a number of tools for DB2 that
function within DB2 to perform backups.

Another approach gives the file system backup tool the intelligence to look inside
the application file format and treat it almost like another file system type to be
backed up. The TSM agent for Lotus Domino is an example of this, allowing TSM
to view documents inside .NSF databases and back them up individually.

7.1.5 In-service backup
One method of providing backup for application-specific data is to use a client of
that application to back it up. This can reduce the overhead of running a backup
client in addition to the application server. We refer to this strategy as “in-service”
backup, since the backup happens within the service being provided.

For example, if you have a number of virtual servers providing DNS, the DNS
zone data can be backed up by having another DNS server elsewhere in the
environment configured as a secondary DNS. This secondary DNS will perform
zone transfers to maintain its copy of the configuration, thereby creating a backup
of the data. A similar approach could be taken with HTTP or FTP servers, using
site mirroring programs such as wget.
 Chapter 7. Backup and restore 129

In many cases, the overhead of a backup client on an application server will not
be significant. However, from a security perspective, a highly secure server will
have the minimum number of services running in order to reduce security
exposure. In this case, an in-service backup strategy may be a suitable option.

7.2 Hardware possibilities
You have the following hardware possibilities for backup and restore processes.

7.2.1 FlashCopy
FlashCopy is a feature of the IBM Enterprise Storage Server that can create an
identical copy of disk volumes without interrupting operating system access to
the volume.

This feature can assist the backup process in environments where it is not
convenient to take systems down or to take applications offline. Using FlashCopy,
data can be duplicated to alternate disk volumes, and then brought online to
another system and backed up using traditional methods (tape, etc).

FlashCopy can provide the same support to Linux systems, but it is important to
consider the impact of the buffer cache. If a FlashCopy is performed while there
are buffered writes in cache, data integrity is lost. In a Linux environment, the
following steps would have to be taken:

1. Suspend updates to applications and databases.
2. Flush the Linux buffer cache with the sync command.
3. If VM minidisk caching is used, ensure it is flushed also.
4. Initiate the FlashCopy.
5. When the copy is done, reopen applications and databases.

FlashCopy is designed to copy entire disks at once. This means that copying a
single minidisk will generally involve copying the entire disk on which the minidisk
resides.

Note: Other storage systems have similar capabilities, often called by different
names. Refer to the documentation for your hardware to check whether your
storage systems support such a feature, or refer to your vendor.
130 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

7.2.2 Point-to-Point Remote Copy (PPRC)
Point-to-Point Remote Copy (PPRC) is a feature of S/390 and zSeries disk
controller hardware that allows a remote disk unit to maintain a synchronized
copy of the data held on a production disk. The remote disk unit does not have to
be in the same location as the production unit (but distance restrictions do apply).

PPRC is used extensively in “traditional” S/390 installations to provide disaster
recovery for entire disk enclosures. Since the data is synchronized at the time of
write I/O, the remote disk is virtually identical to the local disk. If the local disk
subsystem is lost, the channel paths to the remote disk can be brought online
and processing resumes at the point of failure.

PPRC incurs a slight overhead in I/O duration, due to its synchronous nature.
The operating system does not see the I/O complete until after the remote unit
has successfully completed.

In a Linux scenario, PPRC can be used as part of a highly redundant and
available permanent storage design. An example of this design is shown in
Figure 7-1.
 Chapter 7. Backup and restore 131

Figure 7-1 PPRC disk configuration for Linux

In this diagram, PPRC is used to synchronously mirror writes to a second disk
subsystem. In the event of a failure of the disk, the paths to the secondary disk
unit are brought online and processing can resume. However, while VM is able to
handle these device switching non-disruptively in many cases, the Linux guest
systems and the applications running in them should be shut down if the primary
DASD is lost, and restarted with using the secondary DASD.

This design is enhanced and discussed further in 7.4, “High availability choices
with zSeries” on page 139.

Note: In “Network block device” on page 137, we discuss a way to produce a
similar mirroring method in Linux, which does not require PPRC.

z / V M

Li
nu

x_
1

Li
nu

x_
2

Li
nu

x_
3

N e t w o r k

P r im a r y
D A S D

S e c o n d a r y
D A S D

P P R C
132 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

7.2.3 IBM 3480/3490 tapes
IBM has written a driver for IBM Model 3480/3490 tape drives. This driver allows
a mainframe tape device to be used by Linux applications and utilities. As with
other device support code, it can be either compiled into the kernel or built as a
module (tape390.o).

Configuration
The driver takes a single parameter, which allows you to specify the devices to be
used by the driver. For example, the following command would load the tape390
module, defining any tape devices between device addresses 0180 and 0183
and one at 0189:

insmod tape390 tape=0180-0183,0189

If you want to have the module loaded automatically when it is required, add the
following lines to /etc/modules.conf:

alias char-major-254 tape390
alias block-major-254 tape390
options tape390 <module-options> # if you want to pass options to it

The specifics quoted here seem to be common in the documentation Device
Drivers and Installation Commands, for both the 2.2.16 and 2.4 kernels.

The driver may search for all tape devices attached to the LINUX machine, or
it may be given a list of device addresses to use. If it is not given a list the
numbers allocated are volatile - the number allocated to any particular
physical device may change if the system is rebooted or the device driver is
reloaded. In particular a device brought online during a LINUX session will be
allocated the next available number at the time it comes online, but at the next
reboot it will be given a number according to the sequence of device
addresses. If a tape= parameter is present at system startup or module load,
all tape devices in the ranges of the specified parameter list will be used. The
devices are then numbered (sequentially from zero) according to the order in
which their subchannel numbers appear in the list.

In both cases the associations between subchannel numbers and device
numbers are listed in the file /proc/tapedevices.

Important: The tape390 driver was written after the SuSE GA distribution was
released, so in order to use the driver on this distribution, you need either to
get an update, or to build the module (and a new kernel) using an updated
source tree.

We used a beta of SuSE Enterprise Server for S/390 7.2, dated June 21 2001,
which was built on a 2.2.19 kernel and did contain the tape390.o module.
 Chapter 7. Backup and restore 133

Operation
The driver interfaces with programs via /dev nodes, with the same name format
expected by standard Linux tape utilities:

� Character mode:

– /dev/ntibmn (non-rewinding)
– /dev/rtibmn (rewinding)

� Block mode:

– /dev/btibmn (for read-only)

Currently, a device major node number has not been formally allocated to this
driver, so major node number 254 is being used until a formal allocation is made.
To use the tape device driver, you must create the /dev nodes manually (unless
your distribution has already created them).

The minor numbers are allocated in pairs starting from 0, with the even number
representing the rewinding device and the odd number for the non-rewinding.
The even number is used for the block device. The driver allocates drive number
0 to the first device found, 1 to the second, and so on.

For example, to create the /dev nodes for the first two tape drives present in the
system, the following commands are used:

mknod /dev/rtibm0 c 254 0
mknod /dev/ntibm0 c 254 1
mknod /dev/btibm0 b 254 0
mknod /dev/rtibm1 c 254 2
mknod /dev/ntibm1 c 254 3
mknod /dev/btibm1 b 254 2

When a major number is formally allocated and the driver modified accordingly,
all that will be needed is for the /dev nodes to be recreated (and the
/etc/modules.conf entries, if present, to be edited) using the right major number.
No changes to the programs that read or write tapes will be necessary.

For more information on the tape driver, refer to Linux for S/390 Device Drivers
and Installation Commands.

Important: If you use devfs on your system, the entries in the /dev tree will be
managed automatically, and will have a format derived from the device
address of the tape drive being used.

For example, the rewinding device for the tape drive on device address 0181
will be referred to as: /dev/tape/0181/char/rewinding.
134 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

7.3 Software tools
You have the following software tool possibilities for backup and restore
processes.

7.3.1 Software RAID
Using kernel support in Linux, multiple disk devices can be assembled into a disk
array using Redundant Array of Inexpensive Disks (I/ORAID) principles. RAID
provides many options for aggregating physical devices into contiguous storage,
simultaneously providing fault-tolerance and a degree of disaster recovery
capability.

On S/390, Linux can utilize software RAID by creating a single RAID volume
across disk devices on separate disk controllers.

Note: RAID is usually implemented in hardware, with specialized controller
devices doing the disk aggregation and presenting a single disk volume to the
operating system. For this reason, we have to refer to software RAID as a
special case.
 Chapter 7. Backup and restore 135

Figure 7-2 Software RAID example

In Figure 7-2, the solid lines represent the real I/O path to the physical devices
involved, and the dashed line shows the path to the RAID volume created. Since
the file system is created on the logical volume, file system I/O appears to be to
the logical device. The RAID driver maps this to an operation to the physical
disks.

The greatest benefit in an S/390 environment is gained when the physical DASD
is distributed across multiple controllers. In this case, depending upon the RAID
configuration used, the logical volume can continue to be available if physical
disk is lost.

RAID
volume

z/VM

Network

DASD 1

DASD 3

DASD 2

Linux
136 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

7.3.2 Network block device
The network block device is a Linux device driver which can provide access to a
physical disk across a TCP/IP network. On its own, it does not offer much to
Linux on S/390, but combined with a mirroring RAID configuration, it can create
an off-site duplicate of a disk volume in a similar way to what PPRC does at a
hardware level.

Figure 7-3 Network block device cross-site

In the example shown in Figure 7.3, Linux systems operate on two separate
processors in two sites. Disk devices at both locations are accessed only by the
Linux systems local to the site. Some of the disk, however, is linked via the
network block device to the Linux system in the other site, creating the
connectivity shown in the diagram (where logically, each system has access to
disk physically at the local site, and via the network to the other site). By creating
a mirroring-RAID volume over these devices, a cross-site mirrored device is
created.

z/VM z/VM

Network

DASD A1 DASD B1

Linux BLinux A

DASD B2 DASD A2
 Chapter 7. Backup and restore 137

The network block device can be used in conjunction with distributed file systems
(see “Global File System (GFS)” on page 51 for a brief description of how GFS
can utilize the network block device).

Using this kind of configuration would provide a cheaper alternative to PPRC for
sites that do not currently have the infrastructure to support PPRC. However, to
maintain disk response times, high speed network connectivity is needed
between the two locations. In certain high-demand applications, the cost of
providing the support infrastructure for PPRC might be justified.

7.3.3 VM DASD Dump Restore (DDR)
DDR is a full-volume disk backup utility that can copy VM minidisks in their
entirety. These backups do not provide any awareness of the contents of the
volume being copied, they simply treat the volume to be copied as a disk file.
DDR can be used as a means of providing full-volume backup and restore
capability to Linux systems running under VM. Using DDR, entire systems can
be dumped to tape, disks at a time.

DDR can be used to take a backup of a Linux system immediately after
installation. In the event of a disaster, this backup could be restored and used as
a starter system for subsequent file-level restoration using another tool.

7.3.4 Amanda
Amanda is an acronym for the “Advanced Maryland Automatic Network Disk
Archiver”; an Open Source backup scheduler. Amanda uses a client-server
arrangement to facilitate the backup of network-attached servers. Using Amanda,
it is possible to have a single tape-equipped server back up an entire network of
servers and desktops. We provide more detail about its use in Chapter 12,
“Backup using Amanda” on page 269.

Important: This operation is best performed when the Linux system is shut
down. If you take a DDR copy of a Linux minidisk, any pending writes that
Linux has in buffer cache will not be present on the backup. This will lead to
data integrity problems. Also, since the Linux file system is mounted when the
copy takes place, if a restoration is required a file system check will take place
when it is first mounted. For ext2 file systems in particular, this may be
undesirable.
138 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

7.3.5 Tivoli Storage Manager (TSM)
TSM provides data-level, multiplatform, consolidated backup capabilities. TSM
agents exist for a variety of server and desktop operating systems, including
z/OS, z/VM, Linux for zSeries and S/390, Windows, and others. TSM backs up
remote file systems over the network to a central point which copies the data to
tape.

TSM offers a number of benefits:

� On supported platforms, TSM provides agents to allow data-level backup of
file structures like DB2, Lotus Domino, and others. This means that TSM can
back up individual documents within a Notes NSF database, for example.

� Integration with hierarchical storage management facilities, such as those
included with DFDSS on z/OS.

� A single backup platform and scheduling point for the entire data center.

TSM is also described in the IBM Redbook Linux for zSeries and S/390:
Distributions, SG24-6264, which is available on the Web at:

http://www.ibm.com/redbooks/abstracts/sg246264.html

7.4 High availability choices with zSeries
In the preceding sections, we describe the procedures to backup and restore VM
and Linux data. But whether whole minidisks are backed up using DDR, or
incremental copies of single Linux datasets are produced by TSM or Amanda,
these backup copies are all out of date the moment after they have been created.
And if data has to be restored by using these backup copies, then updates that
were issued to the data—after the last backup copy was produced—are usually
lost.

In cases where data is destroyed in a logical way (e.g. by some erroneous
program code), then going back to an old but safe copy of the data is probably
acceptable. But what happens if all data belonging to several Linux guests—or
even to the entire VM LPAR—is destroyed?

Note: At this time, Linux for zSeries and S/390 is not one of the platforms
supported for TSM agents, so TSM can only provide file-level backups.
 Chapter 7. Backup and restore 139

http://www.ibm.com/redbooks/abstracts/sg246264.html

In such a case, a disaster recovery effort is required. As pointed out previously,
restoring data from backup copies created by DDR and TSM is very
time-consuming. New hardware has to be provided, installed and defined; the
data from the backup copies has to be restored; and changes to the data after
the last backup copy was made will still be missing. Similar problems arise if the
server itself is damaged in a disaster.

Traditional architectures provide a reliable environment
With many Linux servers under VM, the traditional S/390 and zSeries
configuration for setting up high availability computing can be exploited to provide
a reliable Linux operating environment.

S/390 and zSeries architecture is designed for continuous availability, which
means that the services have to provide both high availability (the avoidance of
unscheduled outages) as well as continuous operations (the avoidance of
scheduled outages). In an OS/390 or z/OS environment, this goal is usually
reached by exploiting the design of a Parallel Sysplex, enriched by remotely
mirroring DASD devices to build a Geographical Dispersed Parallel Sysplex
(GDPS).

While Linux is not able to participate in a Parallel Sysplex, all other architectural
design points a GDPS is based on can be used to design a highly available Linux
production environment on zSeries. This includes the use of remote DASD
mirroring to provide consistent copies of all data, the use of Capacity BackUp
(CBU) to enable required computing power at the surviving server, and the use of
automation to handle all procedures for bringing up the backup systems and
redefining network and channels.

Figure 7-4 on page 141 shows a sample scenario, which we discuss in detail.
140 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Figure 7-4 High availability Linux scenario, normal operations

In this example, the Linux servers operate in two z/VM LPARs on two zSeries
servers, which are located in two physically separated computing centers
(indicated by the dotted grey line between the servers). Each of these zSeries
servers also contains a defined, but inactive, LPAR, which is supposed to take
over the workload of the other server in case of a disaster.

In order to offer sufficient computing power to this LPAR without hampering the
work of the Linux guest systems in the other productive LPAR, additional
redundant processors are available that can be concurrently activated by using
the Capacity BackUp (CBU) feature. CBU is available on 9672 and zSeries z900
servers; refer to the IBM Redbook IBM ^ zSeries 900 Technical Guide,
SG24-5975, for more details. It is available on the Web at:

http://www.ibm.com/redbooks/abstracts/sg245975.html

z/VM
Li

nu
x_

1

Li
nu

x_
2

Li
nu

x_
3

in
ac

tiv
e

LP
A

R

z/VM

Li
nu

x_
A

Li
nu

x_
B

Li
nu

x_
C

in
ac

tiv
e

LP
A

R

Network

Primary
DASD

Secondary
DASD

PPRC
 Chapter 7. Backup and restore 141

http://www.ibm.com/redbooks/abstracts/sg245975.html

The data belonging to the z/VM operating systems of both zSeries servers, as
well as the minidisks of all the Linux virtual machines, are located on a DASD
control unit (CU) attached to both servers, using FIbre channel CONnections
(FICON) or Enterprise System CONections (ESCON). The DASD devices are
remotely mirrored to another DASD CU, by using the synchronous Peer-to-Peer
Remote Copy (PPRC) abilities, provided, for example, by the 2105 Enterprise
System Server (ESS).

The operating systems (z/VM and Linux) are not aware of this mirroring; only the
connections to the primary DASD CU are activated. Nevertheless, connections to
the secondary DASD CU are defined and cabled (indicated by dotted lines),
ready to be used in the case of a disaster.

Also, the network connections are defined to both LPARs in each zSeries server,
but only the connections to the productive LPAR are active.

7.4.1 Loss of a DASD control unit
The following scenario discusses what happens if the primary DASD control unit
(CU) fails, as illustrated in Figure 7-5 on page 143.
142 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

http://www.ibm.com/redbooks/abstracts/sg245975.html

Figure 7-5 High availability Linux scenario, after failure of DASD control unit

If the primary DASD CU becomes unavailable for some reason, the mirrored data
on the secondary CU has to be used. In order for this to happen, the devices of
the primary CU have to be configured offline to all attached operating systems,
and the devices on the secondary CU have to be configured online.

Because the secondary devices are simply mirrored images of the primary ones,
they contain the same data and even have the same VOLSER, and the failed I/O
operations of the attached systems can be set up again on the secondary DASD
hardware.

Depending upon how fast the switch is performed, and on the time the
applications and operating systems accept a delay in I/O operations, the
applications may continue to work without being disrupted. However, with Linux
running as a VM guest operating system, all Linux images affected by the failing
primary DASD should be shut down and rebooted from the secondary DASD.

z/VM
Li

nu
x_

1

Li
nu

x_
2

Li
nu

x_
3

in
ac

tiv
e

LP
A

R

z/VM

Li
nu

x_
A

Li
nu

x_
B

Li
nu

x_
C

in
ac

tiv
e

LP
A

R

Network

Primary
DASD

Secondary
DASD

PPRC
(suspended)
 Chapter 7. Backup and restore 143

It may be possible, depending upon how often the Linux system accesses the
minidisks on the failing DASD, that the secondary DASD can be configured
online by CP, without Linux having noticed the temporary absence of the
minidisks—or it can at least be possible to repair these minidisks with Linux still
running. But this will require manual intervention in the Linux system to ensure
that the restored minidisks are working correctly and the data is not corrupted.

Therefore, for ease of use and to ensure data integrity, in the case of the loss of
one or more DASD volumes, we recommend the following:

� Configure the failing devices offline to VM.
� Shut down the affected Linux systems.
� Configure the secondary devices online.
� Restart the Linux systems with using the secondary devices.

With the loss of the primary DASD CU, mirroring with PPRC is of course
suspended, and further operations have to continue without mirroring until the
CU is available again. The failure of the secondary DASD CU, the failure of the
PPRC connection between the both CUs, and the loss of the access to one or
several devices also need to be considered.

For example, if the zSeries server is able to issue a write I/O operation to the
primary DASD device, but the primary CU is not able to operate mirroring to the
secondary CU because the connection between the CUs units has failed, the I/O
by default will not be completed. In this case you have to decide if the I/O
operations to the primary CU should be resumed without mirroring, or if the
operations have to be stopped.

The primary DASD CU does not know why there is no response from the
secondary CU; possibly the entire second computing center has been destroyed,
or it may only be the result of a weak cabling connection. For this reason it will
probably be necessary to get more information regarding the state of the
secondary CU before deciding how to continue with the I/O operation.

The procedures to gather the necessary information, the rules for making the
appropriate decisions, and the execution of the required commands have to be
coded and established by using automation utilities. Besides the basic hardware
functionality, this is one of the most complex topics of a GDPS.

7.4.2 Loss of a S/390 or zSeries server
The next scenario involves the failure of a whole zSeries server. If a disaster
strikes the computing center, and the server is not able to continue operations,
the workload has to be transferred to the surviving server in the other computing
center. This is illustrated in Figure 7-6 on page 145.
144 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Figure 7-6 High availability Linux scenario, after failure of server system

On the surviving server, an additional LPAR has already been defined for
disaster recovery purposes. This LPAR is now activated by loading the operating
system from the same DASD devices as the failing system used, using the
already installed connections to the primary DASD CU. The PPRC mirroring
operations between the primary and secondary DASD CU continue without any
changes.

While the LPAR activation on the server can take place immediately after the
failure of the original server, the processor capacity of the surviving server has to
be adjusted as soon as possible, in order to meet the needs of the combined
workloads of both servers. This can be done by exploiting the 9672 or 2064 z900
CBU feature, which allows you to activate physically available but unused
processors non-disruptively.

Resuming network connections to the restored LPAR is also no problem, since
the LPAR activation is done with exactly the same data as the failed original
LPAR, and the same network addresses as before are used. The OSA of the new
LPAR on the surviving server makes itself known to the network with these
addresses, and network operations resume as before; the fact that the physical
hardware has changed is transparent to the routers in the network.

z/VM
Li

nu
x_

1

Li
nu

x_
2

Li
nu

x_
3

in
ac

tiv
e

LP
A

R
z/VM

Li
nu

x_
A

Li
nu

x_
B

Li
nu

x_
C

Network

Primary
DASD

Secondary
DASD

PPRC

z/VM

Li
nu

x_
1

Li
nu

x_
2

Li
nu

x_
3

 Chapter 7. Backup and restore 145

In summary, the hardware capabilities of PPRC and CBU allow you to achieve a
high availability computing environment based on Linux under VM on S/390 or
zSeries. But the scenarios we presented require a thorough understanding of the
reasons for failures, the actions that have to be taken to recover from failures,
and the consequences of these actions. Although it is possible to handle such
recovery tasks manually, as computing environments become increasingly
complex, there is a greater need for automated processes.
146 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Chapter 8. Performance analysis

In this chapter we discuss the performance analysis and tuning of Linux images
running under VM.

Performance of a large system is critical to its success, only one step away from
functionality. Once a system has been developed and is functional, the next
question is—what is the price performance? If price performance is very low, a
system and service is more likely to succeed. The intent of this chapter is to help
you realize an optimal price performance.

8

© Copyright IBM Corp. 2001 147

8.1 Performance considerations
The aspects of performance measurement and tuning that are needed in
environments serving many users are extensive. This chapter reviews server
resource analysis, subsystem analysis, server delay analysis and some level of
response time analysis. The methods of storing performance data is also a
consideration; is report format sufficient, or is a performance database
necessary to allow detailed analysis—and even accounting functions—to be
performed? In an environment where service is associated to charge-back, the
performance database becomes more important.

S/390 and zSeries systems are large systems with many potential points of
contention, and many places of potential optimization. Each subsystem can be
complex and have many options. Any subsystem, when overutilized, can be a
global system bottleneck. As your workload changes or grows, utilization of one
resource can reach a threshold that causes a significant global resource
shortage. On a system where changes on one server can impact performance of
another, you need to monitor the environment carefully.

Many early Linux for S/390 installations did not have VM performance skills—and
ran into problems which easily could’ve been avoided. For example, the most
common complaints often were “things stop” or “this system is slow”. Both of
these issues can result from very simple configuration problems.

VM has a very sophisticated scheduling mechanism that is designed to efficiently
support thousands of users, even when resources are overcommitted. Linux has
some features that impact the view of resource utilization. Understanding storage
and page space requirements when designing a system allows you to avoid
configuration and utilization problems.

8.2 Why measure performance
Performance measurement and tuning has a cost in terms of staffing and time. In
environments where the cost of purchasing a new system is less than the cost of
analyzing the performance of a system, it is common to not spend much time on
performance analysis. However, in a zSeries and S/390 environment, most
installations will require both real time analysis as well as a structured
methodology for capacity planning. This section describes methodologies for
both real time performance analysis and capacity planning.
148 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Projecting requirements when moving applications from an NT or Linux/Intel
environment to zSeries and S/390 is important, in order to ensure a high level of
success. If the resource requirements of an application exceed what is available
or what makes economic sense, then that needs to be understood prior to
moving the application to zSeries and S/390. Choosing applications to run
effectively on zSeries and S/390 will greatly increase the chance of success.

8.2.1 Cost of running applications
In environments such as ISP and ASP, where charge-back is reasonable, the
cost of running each application is a consideration. Each application should be
evaluated to determine which platform is most cost effective. Some applications
will be more cost effective on dedicated RISC processors, while others will be
more cost effective on zSeries and S/390.

Applications that require resource for only short periods of time are very effective
in an S/390 time-sharing environment, because when the applications are idle,
they do not consume processor or storage resource. As the applications become
active, they are brought back into memory. The cost of storing the application on
disk (page space) can be measured in cents-per-megabyte and is usually
insignificant.

However, applications that require significant dedicated resource have a very
different cost model—instead of using an amount of storage for a small
percentage of time, these applications require storage most of the time. For
these applications, there is no choice other than to ensure the resource is
provided all the time. Because the cost of dedicating resources is much higher,
the cost of running this application is also higher and potentially should be put on
a platform suitable to the requirements. This may be an LPAR, or a non-S/390
server; the platform decision should be based on what is economically justified.

8.2.2 Controlling costs
Once the cost of running an application is known, you’ll want to monitor those
costs. If an application or server suddenly increases its resource requirements,
either due to programming errors or increased workload, the cost of running that
application will rise. Given a charge-back environment, there will be issues if the
additional costs are not recognized as they occur; sudden increases in monthly
costs can cause problems. By monitoring costs as they are incurred, both
customers and service providers will have a better understanding of the provided
service.
 Chapter 8. Performance analysis 149

To ensure the cost of running an application does not increase without
management awareness, you will need to have a performance monitoring
methodology. This methodology should include thresholds for resource use and
should be monitored programmatically. Mechanisms for alerting management of
unexpected increases in resource requirements are required components of
managing this type of service.

8.2.3 Controlling the impact of one application on another
In environments where there may be several different customers and where
Service Level Agreements are required, there’s a need to monitor each
application and server on a real time basis to ensure that problems with one
customer do not impact other customers. It is common practice to provide an
automated alert system to check operational values against threshold settings.
Details on implementing this function are discussed in 8.13, “Alerts” on
page 175.

8.3 Measurement tools
Following is a list of some of the measurement tools available on VM:

� ESALPS from Velocity Software

See 8.3.1, “Measurement tool used” on page 151.

� FCON/ESA from IBM

FCON/ESA provides performance monitoring capabilities with system
console operation in full screen mode. FCON/ESA can give you an immediate
view of system performance, or post-process its own history files. Threshold
monitoring and user loop detection is also provided, as well as the ability to
monitor remote systems. The most recent enhancements include support for
remote access via APPC, virtual disk in storage reports, and enhanced
minidisk cache reports.

� Real Time Monitor (RTM) VM/ESA from IBM

With RTM VM/ESA, you can get an immediate view of current system
performance. Use RTM VM/ESA for short-term monitoring, analysis and
problem-solving. It can simplify performance analysis and the installation
management of VM/ESA environments. The latest RTM VM/ESA service
includes support for the RAMAC array family, and support for RTM VM/ESA to
run in 370 Accommodation mode on VM/ESA Version 2.

� VM Performance Analysis Facility (VMPAF) from IBM
150 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Use VMPAF to statistically correlate and chart system performance problems,
tuning information, and trend analysis. VMPAF does this by analyzing the
relationships between variables from VMMAP, VMPRF, monitor and other
data sources in order to determine which subsystems are most impacting
your current system performance. Then, using interactive graphics, VMPAF
gives you a quick, clear picture of these relationships.

� VM Performance Reporting Facility (VMPRF) from IBM

VMPRF uses your system monitor data to analyze system performance, and
to detect and diagnose performance problems. VMPRF provides interim
reports, plus summary and trend data that show resource use by user ID or
user class, response time, DASD activity, channel utilization and system
throughput.

8.3.1 Measurement tool used
The measurements in this chapter were performed using the Linux Performance
Suite (ESALPS), a commercial product from Velocity Software that is available
on the Web at:

http://VelocitySoftware.com

The ESALPS components we used were: ESATCP, for gathering Linux and
Network performance data; ESAMON, for processing the VM performance
monitor records and data gathered by ESATCP; ESAMAP, to provide reports for
long-term analysis. ESAMON and ESAMAP are based on the CP monitor
providing current performance data and long-term historical data. (ESAWEB, the
fourth component of ESALPS and a VM-based Webserver, was not used for
these measurements.)

ESAMON creates a Performance Data Base (PDB) to store performance data.
This data is then used as input for reporting in many forms. There are two forms
of the PDB, referred to in the ESALPS documentation as “History files”. The first
form has a one-minute granularity and allows a detailed analysis. The second
form has a 15 minute granularity and is long term, with each day’s data being
summarized.

In this chapter, we provide examples and give recommendations about how to
use these effectively. The reports and real time displays provide the performance
information in the same format. Each report and display has a name (such as
ESAUSRC) which provides user configuration data. Menus and tables of content
help users find the needed reports and displays. Performance reporting is
performed for:

� User data, showing resource requirements by user, user class, accounting
codes.
 Chapter 8. Performance analysis 151

http://VelocitySoftware.com

� Response time data, showing response times based on the CP definition of
transactions.

� Processor subsystem, showing details of all processors and LPARs.

� DASD and DASD Cache, showing DASD response times, by I/O component,
cache controller data showing cache hit information, read/write data, etc.
MDC hits (I/O satisfied by the CP minidisk cache function) by device are
provided, as well as MDC hits by user. Data is provided both by device and by
control unit. Channels are measured, and seek analysis is provided.

� Storage subsystem showing user storage, MDC storage, CP storage and
available storage.

� Paging/Spooling subsystems, showing device and system activity, as well as
utilization.

� Non-DASD I/O showing tapes, network controllers, channel-to-channel
adapters and any other attached device, showing both by device and by
control unit.

� TCP/IP data showing traffic at each layer of the IP stack (Transport layer, IP
Layer, Interface/Hardware layer), and for the local VM stack, traffic and
network response times by subnet and by application.

� Linux data showing by resource utilization by application (processor and
storage), disk utilization, storage use for cache and buffer. Data is provided for
any Linux being monitored.

8.3.2 Screen display
Screens can be displayed by from a CMS virtual machine executing “ESAMON
screen”. The examples in this chapter can be displayed in this manner. For
example, issuing the command ESAMON SMART gives you the screen shown in
Example 8-1. This screen is automatically updated every 60 seconds.

Example 8-1 Output of ESAMON SMART command

TUNER: SMART ITSO 08/09 13:51-13:52
 Seconds until next interval: 57 2064 40ECB
 <----------Top Users----------> <-----------Servers----------->
 Userid: CPU% IO/Sec Pg/Sec Userid: CPU% IO/Sec Pg/Sec
 1) ESAWRITE 0.33 0.80 0 VMLINUX9 1.8 27.67 0.02
 2) VMRTM 0.23 0 0 VMLINUX7 1.7 0.75 0
 3) ESASERVE 0.00 0 0 VMLINUX2 1.1 0.45 0
 4) ESATCP 0.00 0 0 TUX8MSTR 0.3 0.37 0
 5) HUB6 0.05 0 0 VMLINUX6 0.3 0.02 0
 6) SNMPD 0.00 0 0 TUX60002 0.2 0 0

<---------CPU Statistics-----> <---In Queue User statistics----> <-Page->
%cpu %usr %prb %sys %ovr %idl InQ Q0 Q1 Q2 Q3 Eli Ldng <-rate->
152 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

8.86 7.48 5.97 1.39 1.50 190. 17.3 1.98 1.08 0.28 14 0 0 2.3

8.4 Measurement data sources
With environments including Linux servers and VM hosts all linked in a network,
there is a need to measure each environment to understand the full system.
However, each environment of the system has different measurement
requirements and data sources, so combining the different data sources to
understand your capacity and performance will be the challenge. Following is a
list of the common data sources for each environment.

� Network - the most common method of evaluating network performance is by
using a Simple Network Management Protocol (SNMP) data source.This is
well defined and includes many network performance metrics. It has been
extended by many vendors and open source groups to include information
found useful for specific network components. SNMP Version 2C is the most
common. This includes password protection of the data (community names),
and performance enhancements in the protocol.

� z/VM - measuring VM is typically done using the CP Monitor as a data source.
This technology scales very well and is widely used. The monitor reports on
almost everything that has been thought to be useful on reporting subsystem
and user performance for VM systems. As new releases of z/VM come out,
and new releases of TCP/IP appear, the monitor is enhanced to provide
instrumentation for new features.

Most performance analysis products suitable for a large environment will be
based on the CP monitor. An alternative to using the CP monitor is to use a
diagnose interface to look at internal VM control blocks. This provides access
to most data. The downside is that every release of VM requires the data
interface to be updated, whereas the CP Monitor is automatically updated
with each data source, allowing users of the CP monitor to run without impact
on new releases of VM.

� Linux - how to measure Linux from a global perspective is new technology. A
good open source performance data source is NETSNMP. Linux is being
enhanced significantly and the associated data source must be enhanced as
well. NETSNMP provides performance data accessible to network monitors
using SNMP. This performance data includes the network traffic, a set of
private MIBS from University of California/Davis (UCD MIBS), and HOST
MIBS that are defined in RFC 1157. The HOST MIBS provide data on
applications for processor and storage requirements, as well as data on each
 Chapter 8. Performance analysis 153

device of the Linux system. There is active development of NETSNMP, with
new releases regularly.

NETSNMP is included in the three major Linux distributions (Red Hat, SuSE,
Turbolinux) providing a common data source for analyzing performance. It
can be found on sourceforge at:

http://net-snmp.sourceforge.net/

See 13.6.2, “SNMP installation” on page 306 for more detailed information on
installing NETSNMP.

� CP Monitor - there are many options as to what data to have the monitor
produce. For real-time monitoring, an interval of 60 seconds is common,
balancing the overhead of collecting the data with the problem of a very long
interval that hides performance spikes.

Measuring Linux wait states seems to be much more useful with a state
sampling of .1 (10 times per second). The overhead of this method seems to
be immeasurable, but it’s a reasonable place to start. If you are using
ESALPS, then all domains should be enabled except for SEEK and
SCHEDULE (these should be enabled when you are performing specific
analysis and require SEEK or SCHEDULE data).

8.5 Local vs. global performance tuning
In an environment with many virtual servers, having the technology and
personnel to optimize the environment is a necessity. Optimizing a large, single,
expensive system has significant payback, while optimizing small minicomputers
often takes only a few minutes (or consists only of paying for inexpensive
upgrades). However, tuning a large system that shares resources entails different
requirements, ones that may be surprising to installations that are new to the
zSeries and S/390 environment.

Virtual machines (Linux servers) should be tailored to the applications. Allocating
resources to one virtual machine takes resources away from other
applications—the difference between thinking globally and thinking locally.
Minimizing resource requirements for one application means more resources are
available for other applications; this reduces your overall costs.

Recognizing there are performance people from two radically different
environments (local and global), tuning and performance analysis must be
designed for the appropriate environment.
154 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

http://net-snmp.sourceforge.net/

8.5.1 Local environment
Local environments use dedicated servers and tend to have one application on a
server; they then tune that server to meet the application requirements. For some
applications (Web serving, Lotus Notes, print serving), multiple servers might be
dedicated to one application. The benefit of this approach is that work occurring
inside one server does not impact work on other servers. Because the cost of
each server is small, the cost of incremental growth is not necessarily a capital
expenditure.

8.5.2 Global environment
The traditional performance methodology is two to three decades old and is
based on global optimization of a system, evaluating systems with many
applications sharing resources. In this global type of environment, resources are
typically more expensive and therefore sharing those resources is a primary
objective.

When one application or user on the system consumes large amounts of a
resource, it impacts other applications or users on the system. Thus, global
optimization requires you to evaluate all aspects of performance—from both a
resource subsystem perspective and from an application perspective. Most large
installations have dedicated personnel just for performance analysis, capacity
planning and system optimization.

With current directions, and with cost justifications for moving many smaller
servers to fewer and larger zSeries and S/390 systems, the optimization
perspectives must be global—one server in a virtual machine can impact other
servers on that system.

8.6 Linux operational choice
There are two methodologies for operating Linux; probably the most efficient is to
use a mix of both. One is the typical VM/CMS methodology, where one virtual
machine runs one (and only one) application. The other methodology is more like
a typical VM/VSE or centralized Linux server environment, where one server
runs many applications. The advantage of running small servers with only one
application is that the server can be tuned for the application. The advantage of
the larger server running many applications is a reduction in overall overhead.

Security considerations also influence the operational choice; having many
applications running on only one server increases the risk an application falling
prey to a hacker allowing access to data from multiple applications. Using single
application servers greatly reduces your security risks.
 Chapter 8. Performance analysis 155

See Chapter 5, “Security architecture” on page 105 for a discussion on security.

8.7 The CP scheduler
The multiprogramming level of z/VM is probably higher than that of any other
platform. With possibly tens of thousands of users, each running their own
programs and environment, there is a requirement for sophisticated task
management and scheduling. The CP scheduler provides this function. The
scheduler determines when users run, how often they run, which users to
restrain when a resource is constrained, and many other functions. There are
several controls that installations can use to tune the scheduler. Generally, the
default values for these controls are appropriate.

Note that the scheduler has been tuned to run thousands of CMS (single tasking)
users, as well as 10 to 20 large multitasking operating systems such as VSE,
TPF or OS/390. Some installations may run even 100 larger guests. The
operational considerations of running thousands of Linux servers on the z/VM
system are not completely known. Education and new methods of tuning will
likely be required.

8.7.1 Queue definitions
The scheduler categorizes each user by how long it has been running. Short
tasks fall into queue 1, intermediate tasks are in queue 2, and long-running tasks
are in queue 3. There is also a queue 0 for high priority work.

Linux servers that run a timer to do some small amount of work every 10 mS
break this model. With the timer interrupt every 10 mS, CP classifies any Linux
server as a long-running task, and will put it in queue 3. An implementation of the
timer routines in Linux without using the 10 mS interrupt has been proposed, but
is not yet available in the mainstream kernel sources.

However, measurements of a preliminary implementation showed the expected
reduction of CPU resource usage for idle Linux servers. The measurements also
showed that CP again was able to distinguish transactions, and did not classify
every Linux server as a queue 3 user all the time.

When the Linux server is dispatched less frequently, you will have more control;
long-running jobs are likely more resource-intensive, and you can reduce the
number of queue 3 servers allowed to compete for resource. Reducing the
concurrent number of tasks competing for resource then reduces the contention
felt by the shorter tasks.
156 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

8.7.2 Global controls
The two most useful SRM controls are the DSPBUF and LDUBUF.

DSPBUF is used to control the number of users accessing the processor.
Generally, the DSPBUF is not needed; however, when your processor is
constrained, you can use the DSPBUF to limit the number of queue 3 users
allowed to compete for the processor resource, which will in turn reduce the
processor utilization. Thus, even in a very processor-constrained environment,
short tasks will run very fast.

LDUBUF is used to control the number of users allowed to page. The default
value of LDUBUF allows a system to thrash (the point where pages are being
paged out for one working server to allow another working server to resume
work). If you get to this point, the only solution is to reduce the number of servers
competing for the paging resource. Lowering the LDUBUF from its default value
does that. Linux servers have working sets that are variable and typically very
large. Because of this, the scheduler may not react as fast as you’d like to current
storage demands, so you may need to use STORBUF and XSTOR to achieve the
desired effect.

STORBUF limits the amount of storage in use by dispatchable users. The
STORBUF control is more often a hindrance than an assist to performance. Most
performance people recommend raising the STORBUF control in order to make it
non-operational. The XSTOR operand tells the scheduler to treat some percent
of expanded storage as main storage (the usual recommendation is 50% for this
value).

Virtual machines that are being held back due to resource constraint are kept on
a list called the “eligible list”. If you never have any users on the eligible list, the
scheduler is not detecting a shortage of resources that could be alleviated by
holding some users back. Thus, if LDUBUF is holding users back, then users
would otherwise be loading in working sets which the paging subsystem may not
be able to support, the DSPBUF reduces the number of dispatchable users, and
the STORBUF limits the amount of storage in use by dispatchable users.

Following are the shortcut recommendations for scheduler controls. The
numbers following the set command are for: a) all queues, b) queues 2 and 3,
and c) queue 3. This allows you to set the amount of contention for each
resource by queue.

Note: You should raise the queue 3 value of DSPBUF if processor utilization
never exceeds 90%, and lower it if processor utilization often is at 100% for long
periods of time.

SET SRM STORBUF 300 250 200
SET SRM DSPBUF 32000 32000 30
 Chapter 8. Performance analysis 157

SET SRM LDUBUF 80 60 40
SET SRM XSTOR 50%

One method for measuring the impact of the scheduler on users is to look at the
ESAUSRQ display, which provides most of the needed information. Knowing
when there are users that are being held back by the scheduler because of the
settings for LDUBUF or DSPBUF tells you which resource is constrained.

8.7.3 Local controls
There is a local control for each server that should be used sparingly. Setting a
virtual machine to QUICKDSP tells the scheduler to never hold this user back,
regardless of resource constraints. Virtual machines such as your TCP/IP
gateways, security monitors, and the operator, should have this option.

Use QUICKDSP only to protect specific virtual machines when resources are
very constrained. Using it too often will disable one of the most important
features of the scheduler: the ability to survive serious resource shortages.

Priority between virtual machines is provided by the use of SHARE settings.
There are two options for SHARE settings, relative and absolute. Users with a
relative share will get a smaller overall share as more users logon. Users with an
absolute share maintain their share regardless of the number of other virtual
machines.

Thus, users such as TCP/IP or security managers should be given absolute
shares as their workload increases when more users logon. Relative shares are
used to control how the remaining resource is divided up between the rest of the
virtual machines. The following recommendations can be given.

� Set the shares to absolute for all service machines that you expect will need
to provide more work as more virtual machines are created, and set the
shares to relative for all others.

� Set the ABSOLUTE shares to the peak required value (for example, 8% for
TCP/IP if that is TCP/IP’s requirement at peak load).

� Using the default of RELATIVE 100 is recommended unless you have a need
to prioritize work.

Do not use very high relative shares, because using high relative shares for one
or more users reduces your ability to prioritize your production work. For
example, if there are 10 servers, and all servers are relative 100, then each
server is scheduled to obtain about 10% of the system.
158 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

The arithmetic is quite simple: the “Normalized Share” is the relative share
divided by the total of the relative shares. If one of the servers is then given a
relative share of 200, that user gets a significant increase of about 9% (from
100/1100 to 200/1100).

Giving one user (TCP/IP, for example) a relative share of 10,000 means that each
default user has a share of 100/11000, or less than 1%. There is no need to
confuse the scheduler by reserving 90% of the resources for a guest that only
needs 5%. Proper tuning of your system means allocating absolute shares to
your key service machines.

A second part of the local controls is setting a cap on how much processing
power a user is allowed to absorb. There are two reasons to do this: for
accounting (to ensure users do not get more than what is paid for), and when
users loop, or run very CPU-intensive jobs (to minimize their impact on other
servers).

The following sets a target average share, but limits the server to 5% of the
processing resource. The effects of the LIMITHARD are measurable on the
ESAXACT (transaction analysis) report.

SET SHARE REL 100 ABS 5% LIMITHARD

8.8 Processor subsystem
Knowing how much processor is used, and by which servers, is information you
need to know for efficient capacity planning. Controlling the rate at which your
servers access the processor is done by setting Shares. Share settings have a
minimum value and a maximum value, with several options and variations of
each.

Using the CP monitor, you can capture over 99.9% of the processing power
used. Building a processor map showing how much processor is used by LPAR,
VM, Linux servers, VM servers, and CMS allows you to project future
requirements based on new users or customers.

One of the issues seen in the past was the following: an important Linux
application was ported in a fashion guaranteed to produce poor performance. As
the Processor Local Dispatch Vector Report (ESAPLDV) in Example 8-2 shows,
there were about 70,000 dispatches per second on each processor—this should
be about 1000 on systems that are running well. This overhead was very costly;
running anything 211,000 times per second would intuitively have a very high
cost!
 Chapter 8. Performance analysis 159

This is the kind of potential problem that’s extremely hard to diagnose without the
proper tools. An installation might perceive that S/390 performance is
bad—when, in reality, a simple correction to the application might eliminate
200,000 calls to a function that does not need to be called.

On a dedicated processor, this might not be an issue. However, on a zSeries or
S/390 system where most resources are shared, this application would be
inappropriate to run as it performs in this example.

Other items to examine in the report are the number of steals and moves per
second (low numbers are desirable). The Moves To Master value indicates how
many calls are made to functions that must be single-threaded on the master
processor. High numbers indicate use of functions that may not be appropriate
for a high performance application.

The PLDV Lengths values show the number of virtual machines waiting on each
processor queue, indicating the current level of multiprogramming. This is a good
example of the need for VM performance analysis and Linux performance
analysis.

Example 8-2 Sample Processor Local Dispatch Vector Report (ESAPLDV)

<VMDBK Moves/sec> <--------PLDV Lengths-------> Dispatcher
CPU Steals To Master Avg Max Mstr MstrMax %Empty Long Paths
 - ------ --------- ---- --- ---- ------- ------ ----------
 0 823.8 0.7 0.2 1.0 . . 83.3 70489.8
 1 111.1 0 0.4 1.0 . . 55.0 70454.2
 2 196.4 0 0.4 2.0 . . 61.7 70056.8
 ------ --------- ---- --- ---- ------- ------ ----------
 1131.3 0.7 1.0 4.0 . . 200.0 211000.7

8.9 Storage subsystem
Lack of storage to meet the requirement results in paging, and paging causes
delays in service. Monitoring the storage requirements and the impacts of
applications provides necessary feedback for capacity planning. There are many
ways to reduce storage, and on VM there are different types of storage. For
storage capacity planning purposes, you should maintain a map of your storage
to understand the requirements for VM, Minidisk Cache, Linux user storage (by
customer), VM Servers (TCP/IP, management service machines), and CMS
users, if any. This map should be maintained for both Expanded Storage and
Real Storage.
160 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

8.9.1 Storage options
For storage (memory), there are several options, each with different impacts on
Linux, applications, and your global resources. Coming from a minicomputer or
microcomputer environment, administrators have been taught that swapping is
undesirable. When swapping to slow SCSI devices, this may be true, but on
zSeries and S/390, there are many other options—and these options can reduce
your overall (global) resource requirements. For swapping, the alternative options
are:

� Use Virtual disk as a swap device. The benefit is a much smaller page space
requirement, as well as a smaller requirement for real storage.

� Use RAMdisk as a swap device. The benefit is a smaller requirement for real
storage. When sharing storage between many servers, this is important.

8.10 DASD subsystem
For DASD (disk) storage, there are options to share some amount of disk
between servers, read only. Using VM’s minidisk cache to cache shared data
once is significantly more effective than having each Linux cache the same data.

There are currently1 three different ways to format the disks to be used by Linux.

dasdfmt The DASD driver in Linux for zSeries and S/390 comes
with the dasdfmt utility to format the disks. It formats all
tracks on the disk with a fixed block size. There is no
support for this particular format in existing S/390
software.

CMS FORMAT The FORMAT program in CMS also formats the disk with
fixed block size, but adds a special eye catcher in R3. This
format is recognized by CMS and by CP.

RESERVE With the CMS RESERVE command, a single big file is
created to fill the entire (CMS-formatted) minidisk. The
Linux file system is then built into this single big file such
that the original CMS formatting of the disk is retained.

There is a small penalty for using the CMS RESERVE format in that some of the
blocks on the disk are not available for use by Linux. These blocks are used for
CMS housekeeping, as shown in Figure 8-1.

1 The patches that were made available on June 29, 2001 appear to change several things in this area. We have not yet
investigated what the impact of these changes is.
 Chapter 8. Performance analysis 161

Figure 8-1 Minidisk prepared with RESERVE

However, the advantage of this approach is that the disk can be accessed by a
CMS user ID and is clearly identified as in-use to everyone. CMS applications
can even read and write the blocks in the file (for example, with the diskupdate
stage in CMS Pipelines). An extra bonus may be the fact that the big file on the
disk has a file name and file type which gives you 16 more characters to guide
systems management processes (like writing with a marker on CD-R disks that
you created).

Linux can also use a disk that was only formatted by CMS. In this case Linux will
use all the blocks on the disk such that CMS ACCESS will fail on this disk
afterwards. Even when you do not need the ability to access the blocks from
CMS, there may still be a good reason to prefer this format over Linux dasdfmt.
VM directory management products like DirMaint can format the disk before
making it available to the user ID.

Entire minidisk

Linux file system

Reserved file

CMS fst's
162 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

We believe there is no good reason to use the dasdfmt command for Linux
images on VM, except for the situation where you have a virtual machine running
Linux and you forgot to format the disks. Since Linux does not yet tolerate
DETACH and LINK of minidisks very well, you’d have no option otherwise but to
shut down the Linux system and get back to CMS to format it (but if you do an
automatic format with DirMaint, that would not happen anyway).

8.10.1 VM Diagnose I/O
The biggest advantage of the CMS RESERVE style of format, however, is that it
is the only disk format for which the current Linux for S/390 DASD driver can use
VM Diagnose I/O. Diagnose I/O is a high-level protocol that allows the user ID to
access blocks on its minidisks with less overhead than pure S/390 channel
programs with Start Subchannel (SSCH).

To enable VM diagnose I/O in the DASD driver, you must configure the kernel to
enable the “Support for DIAG access to CMS formatted Disks” which is not done
in the default SuSE kernel. To enable the option, you first need to disable the
“Support for VM minidisk (VM only)” configuration option (also known as the old
mdisk driver).

Tip: If you use IBM RAMAC Virtual Array (RVA), there would be a benefit if
you use the “Instant format” function. The “Instant format” is part of the VM
SnapShot function such that an instant copy of a formatted (empty) disk is
made on the extent to be formatted using the SnapShot feature of RVA. This
copy is instantaneous and does not occupy back-end storage in the RVA.

Note: There used to be a bug in the DASD driver that prevented Linux from
booting from a CMS RESERVEd minidisk. This resulted in the
recommendation to avoid that format when you wanted to boot from disk.

This is bug was fixed long ago. You can make a CMS RESERVEd mini disk
bootable with silo. Whether you want to do that on VM, or use a NSS to IPL
from, is another matter.
 Chapter 8. Performance analysis 163

The DASD driver with the May 14, 2001 SuSE distribution appears to be broken.
When configured to use the DIAG support, it refused to use the diagnose
interface for the disk that was prepared with the CMS RESERVE command. After
fixing the dia250() function in dasd_diag.c to return the correct return code, the
minidisk was recognized by the driver as such, but Linux then appeared to hang
after it started to scan the partition table. Both these problems have been fixed in
the 2.2.18 patches from Linux for S/390, but the fix apparently was not ported
back to 2.2.16.

Showing the benefits of VM Diagnose I/O
To quantify the effects of VM Mini Disk Cache (MDC) and Diagnose I/O, we did a
simple test using the Linux 2.2.18 kernel with the linux-2.2.18-s390 patch. Each
Linux image in the test booted with a RAMdisk and then ran a script as shown in
Example 8-3. The loop in the script creates a 64 MB file and then reads it four
times to allow some of the I/O be satisfied using the cache. The file is large
enough to completely flush the buffer cache of the Linux image.

Example 8-3 Sample script for testing diagnose I/O

mke2fs /dev/dasda1 -b 4096
mount /dev/dasda1 /mnt

while [true]; do
 dd if=/dev/zero of=/mnt/temp bs=1024 count=65536
 cp /mnt/temp /dev/null
 cp /mnt/temp /dev/null
 cp /mnt/temp /dev/null
 cp /mnt/temp /dev/null
 rm /mnt/temp
done

We ran a number of Linux images with this script (on a VM system that turned
out of be more I/O-constrained than we expected).

Note: The configuration options in the kernel are slightly confusing in that
“CMS formatted disk” really means a disk prepared with the RESERVE
command. There is no technical reason why this should be like that. When the
kernel is configured without the DIAG option, the DASD driver will use SSCH
for the I/O. The VM Diagnose interface does not require the disk to be
RESERVEd, so as long as it is fixed-block formatted; Diagnose I/O could have
been used for both types.
164 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Three different ways to format a disk for Linux, and three different styles of MDC,
gives nine combinations, but some of these do not need to be measured; see
Table 8-1. Only Diagnose I/O is eligible for record MDC. This means that the
Linux DASD driver specifying record MDC for the other two styles of formatting
disables MDC.

Table 8-1 Impact of MDC on response time

The difference between track and record MDC is very small in this experiment,
because the I/O was mainly sequential and involved a relatively small amount of
data. With more random access to the data, one should expect record MDC to
waste less storage for reading in unwanted data, and thus be more effective.

Table 8-2 Comparison showing the benefits of MDC

Note: When the MDC design was changed to cache full tracks of data rather
than just the 4 K formatted CMS minidisks, this caused problems for database
applications that do fairly random access to the blocks on their disk, or at least
do not follow a track-related reference pattern. The full track cache was then
enhanced with the “Record MDC” (sometimes referred to as “Classic MDC”).
Since Linux does not have a track-based reference pattern either, it was
assumed that Record MDC would make a difference.

No MDC Track MDC Record MDC

dasdfmt 30.5 s 17.0 s N/A

FORMAT 30.3 s 17.1 s N/A

RESERVE 36.3 s 8.8 s 8.9 s

Format MDC CPU s I/O Elapsed times

dasdfmt no 1.87 3.09 30.5

track 1.96 2.44 17.0

FORMAT off 1.90 3.25 30.3

track 1.41 1.68 17.1

RESERVE off 2.37 11.3 36.3

track 1.91 2.65 8.9

record 1.93 2.28 8.9
 Chapter 8. Performance analysis 165

The comparison in Table 8-2 on page 165 clearly shows improved response
times when using Diagnose I/O combined with MDC. The channel programs
used by the DASD driver appear to be “MDC unfriendly” in that they do not
exploit MDC very well. We have not been able yet to understand why this is the
case. Considering the obvious advantage of Diagnose I/O, it is not very
interesting to fix the channel programs used by the DASD driver when running on
VM.

8.10.2 DASD MDC measurement
The following ESADSD2 real time screen shot shows a sample measurement
over time to help you to understand the effects of track minidisk cache against
block minidisk cache. A block-level copy was done on CMS from the LNX013
volume, one at 11:00 with track cache in use, and one at 11:07 with record
cache. Using track cache, about 1500 I/Os were issued; using record cache,
18,000 I/Os were issued. Intuitively, this is reasonable with there being 15 blocks
per track; using track cache for sequential I/O should greatly reduce the number
of physical I/O.

The following shows the activity to the device over time. When evaluating DASD
response time, the response time value is usually the most significant; it shows
how much time an average I/O takes to the device. When this value is large, then
the components of response are evaluated. The components of DASD are
evaluated as follows:

Pend time This is the time for the I/O to be started on the channel;
normally less than 1mS.

Disc time This is the time for the control unit to access the data. This
includes rotational delays, seek delays, and processing time
inside the control unit. Disc (for disconnect) time is normally
less than 2 to 3 mS on cache controllers.

Connect time This is the time to transfer the data on the channel, normally
less than 2 mS for a 4K block of data.

Service time This is normally the sum of pend time plus disconnect time
plus connect time. In some environments, installations may
choose to use just disconnect plus connect, but this is not
typical.

Queue time This is the result of many users accessing the same device. If
the device is already servicing another user when an I/O is
started, the I/O sits in queue. The length of time in queue is
queue time. This is the component of response time that,
under load, is the most variable and the most serious.
166 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

The sample shows that connect time is high when using track cache, and low
when using record cache. Record cache moves one 4 K block of data each I/O,
and track cache will move up to 15 blocks of data. This example shows the best
case for track cache, being a copy of a large file. More typical is random 4 K I/O,
in which case reading in a track of cache wastes transfer time and cache space.

When evaluating performance, data has different requirements. If moving data
sequentially, then using track cache can be measured.

Screen: ESADSD2 ITSO ESAMON V3.1 08/07 10:58-11:16
1 of 3 DASD Performance Analysis - Part 1 DEVICE 3ba1 2064 40ECB

Dev Device %Dev <SSCH/sec-> <-----Response times (ms)--->
Time No. Serial Type Busy avg peak Resp Serv Pend Disc Conn
-------- *--- ------ ------ ---- *---- ----- ----- ----- ----- ----- -----
10:59:00 3BA1 LNX013 3390-9 0.0 0.5 0.5 0.8 0.8 0.5 0.0 0.3
11:00:00 3BA1 LNX013 3390-9 8.6 8.5 8.5 10.2 10.2 1.3 0.0 8.9 <=Track Cache
11:01:00 3BA1 LNX013 3390-9 15.9 17.2 17.2 9.2 9.2 0.2 0.0 9.0
11:07:00 3BA1 LNX013 3390-9 24.5 197.3 197.3 1.2 1.2 0.2 0.0 1.0 <=RecordCache
11:08:00 3BA1 LNX013 3390-9 12.4 102.7 102.7 1.2 1.2 0.2 0.0 1.0
11:15:00 3BA1 LNX013 3390-9 0.1 0.6 0.6 1.0 1.0 0.2 0.0 0.8
11:16:00 3BA1 LNX013 3390-9 0.1 0.2 0.2 3.6 3.6 1.9 0.0 1.7

8.10.3 High connect time analysis
DASD performance when running Linux guests is very different. After reviewing
the following analysis, an I/O trace was performed. However, as we will see,
sometimes “an I/O is not an I/O”: Linux using the Start Subchannel I/O driver will
chain over 100 CCWs together - with write operations, up to 130 I/O chained
together and perceived as one I/O. At 130 times 4 K blocks, that’s over 500 K
transmitted per I/O! Sometimes, an I/O is not just an I/O.

The graph in Figure 8-2 on page 168 shows the distribution of read-CCWs over
the channel programs2. Some 30% of the channel programs have just a single
read-CCW and another 30% have 32 reads in them! To phrase it differently: more
than 70% of the reads come from a channel program that was reading 128 KB at
once.

2 The reads are simply “command-chained” in the channel programs, not using suspend and resume operations like CP
does for paging I/O.
 Chapter 8. Performance analysis 167

Figure 8-2 Number of read-CCWs in a channel program

The measurements for Figure 8-2 come from a SuSE “default system” install
where the contents of the three CDs was copied to a single large minidisk with an
ext2 file system. When the CDs were unpacked to the clean disk, very likely files
ended up mostly in consecutive blocks in the file system. Because the install
process mainly reads large rpm packages from the disk, this makes it easy for
Linux to build long channel programs.

While this may not be the typical Linux application we need to run, it is not an
artificial situation either because Linux tries very hard to combine multiple disk
I/Os in a single operation.

Example 8-4 on page 169 looks at a control unit during a test run.The control unit
is an RVA. In this case, the operations were 100% read I/O. (High connect times
limit the ability of a control unit to service other users, so consideration of the
type of work and the appropriate hardware to support the work will be needed.)

Note: From looking at the read-CCWs combined in a channel program, we get
the impression that “track” in the Linux device driver does not match the track
on the real device. We did not test this because it would be easier to verify by
reading the source code. For efficiency of the control unit cache and MDC, it
could be attractive if Linux were more aware of the geometry of the real DASD
devices.

0 8 16 24 32 53

Reads per SSCH

0

500

1000

1500

N
um

be
r

of
S

S
C

H
s

168 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

In this example, the control unit 3B03, with a range of 256 addresses, is
performing a peak of 58.3 I/Os per second, each with an average connect time of
13 milliseconds. Using the 17:21 interval, multiplication of 14 mS times 54 I/O per
second shows that a channel is about 75% busy. As channel utilization
increases, delays waiting for the channel will occur. You should always ensure
that sufficient channel resources are available to meet your workload
requirements.

Example 8-4 Control unit during test run

Screen: ESADSD2 ITSO ESAMON V3.1 08/07 17:09-17:33
1 of 3 DASD Performance Analysis - Part 1 CU 3b03 2064 40ECB

 Dev Device %Dev <SSCH/sec-> <-----Response times (ms)--->
Time No. Serial Type Busy avg peak Resp Serv Pend Disc Conn
-------- *--- ------ ------ ---- *---- ----- ----- ----- ----- ----- -----
17:17:00 3B03 . 3990 0.0 8.2 8.2 0.5 0.5 0.1 0.0 0.3
17:18:00 3B03 . 3990 0.0 10.7 10.7 7.9 7.9 0.2 0.5 7.2
17:19:00 3B03 . 3990 0.3 49.7 49.7 15.7 15.7 0.9 1.0 13.8
17:20:00 3B03 . 3990 0.4 56.8 56.8 16.6 16.6 0.7 1.0 14.9
17:21:00 3B03 . 3990 0.4 54.2 54.2 16.2 16.2 0.6 1.4 14.1
17:22:00 3B03 . 3990 0.4 58.3 58.3 15.7 15.7 0.8 1.9 13.0
17:23:00 3B03 . 3990 0.2 29.9 29.9 19.2 19.2 0.5 1.0 17.7

After looking at the performance analysis of this control unit, the next step is to
understand how many paths to the device there are and how they are impacted.
Example 8-5 shows there are 4 paths to the devices on this control unit: 41, 4C,
36, and 56.

Example 8-5 DASD configuration display

Screen: ESADSD1 ITSO ESAMON V3.1 08/07 19:37-19:38
1 of 3 DASD Configuration LIMIT 500 DEVICE 3b0 2064 40ECB

 Dev Device <----Online CHPIDs----> Ctl Unit UserID MDisks
 No. SysID Serial Type Shr 01 02 03 04 05 06 07 08 Model (if ded) Linked
---- ----- ------ ------ --- -- -- -- -- -- -- -- -- -------- -------- ------
3BA0 0CFD LNX012 3390-9 NO 41 4C 36 56 3990-3E . 0
3BA1 0CFE LNX013 3390-9 NO 41 4C 36 56 3990-3E . 19
3BA2 0CFF VMLPG2 3390-9 NO 41 4C 36 56 3990-3E . 0
3BA3 0D00 LNX014 3390-9 NO 41 4C 36 56 3990-3E . 5
3BA4 0D01 LNX015 3390-9 NO 41 4C 36 56 3990-3E . 9
 Chapter 8. Performance analysis 169

170

 Dev Device %Dev <SSCH/sec-> <-----Response times (ms)--->
Time No. Serial Type Busy avg peak Resp Serv Pend Disc Conn
-------- *--- ------ ------ ---- *---- ----- ----- ----- ----- ----- -----
20:01:00 3BA3 LNX014 3390-9 0.3 0.1 0.1 24.4 24.4 0.3 22.6 1.4
20:08:00 3BA3 LNX014 3390-9 1.0 0.5 0.5 20.1 20.1 0.2 16.1 3.8
20:09:00 3BA3 LNX014 3390-9 0.0 0.2 0.2 0.4 0.4 0.2 0.0 0.2
20:12:00 3BA3 LNX014 3390-9 6.8 1.5 1.5 46.0 46.0 0.5 3.1 42.3
20:13:00 3BA3 LNX014 3390-9 54.4 18.7 18.7 29.0 29.0 1.4 2.1 25.5
20:14:00 3BA3 LNX014 3390-9 84.2 23.7 23.7 35.6 35.6 1.0 2.7 31.9
20:15:00 3BA3 LNX014 3390-9 63.9 18.0 18.0 35.5 35.5 1.3 1.5 32.7
20:16:00 3BA3 LNX014 3390-9 65.5 18.3 18.3 36.8 35.8 1.2 1.5 33.1
20:17:00 3BA3 LNX014 3390-9 32.7 6.8 6.8 47.8 47.8 1.6 0.9 45.3
20:20:00 3BA3 LNX014 3390-9 2.1 1.3 1.3 15.9 15.9 0.5 6.2 9.1
20:21:00 3BA3 LNX014 3390-9 0.2 0.2 0.2 11.6 11.6 0.1 5.1 6.3

8.10.5 DASD/cache
I/O response time is made up of several components that include disk rotation
time, seek time, data transfer times, control unit overheads and queue time. The
technologies to deal with these can be faster disks and different forms of cache
(processor-based cache or storage controller-based cache). Example 8-8 further
analyzes the data from the previous example. Note that cache is active 100% of
the time (Pct. Actv Samp), and three of the four samples were in the 10 to 12%
read. This validates the statement that this measurement was of write I/O.

The I/O for write hits on the RVA was almost 100% hit, using DASD fast write.
DASD fast write is a function provided by the control unit that accepts the data,
and terminates the I/O operation from the host perspective. Then the control unit
moves the data to disk. This optimization allows more I/O to be started to the
device without waiting for data to actually be written to the relatively slow disks.
The small number of read I/O were almost always a “hit”, meaning satisfied by
data in the cache.

Example 8-8 Cache analysis

Screen: ESADSD5 ITSO ESAMON V3.1 08/07 20:11-20:15
1 of 3 3990-3 Cache Analysis DEVICE 3ba3 2064 40ECB

 Pct. <-------------------per second------>
 Dev Actv <------Total-------> <----Read---->
Time No. Serial Samp I/O Hits Hit% Read% I/O Hits Hit%
-------- ---- ------ ---- ---- ---- ---- ----- ---- ---- ----
20:12:00 3BA3 LNX014 100 1.4 1.3 90.8 24.1 0.3 0.3 90.5
20:13:00 3BA3 LNX014 100 18.2 17.6 96.9 12.2 2.2 2.2 100
 Chapter 8. Performance analysis 171

20:14:00 3BA3 LNX014 100 23.2 22.3 96.1 10.4 2.4 2.4 97.9
20:15:00 3BA3 LNX014 100 17.0 16.5 97.3 12.3 2.1 2.0 97.7

8.11 Network performance
Network performance analysis is part of ESALPS. This allows you to determine
what nodes are active, and how much network activity is being generated by
each one. The screen in Example 8-9 shows the active nodes. The ones that are
recognized as running Linux are noted. The TCPIP and HUB6 are VM TCP/IP
stacks.

From this screen, moving the cursor to a node and pressing PF2 will show the
configuration of that node. Note that in the Name column, a convention was used
to include the virtual machine name in the configuration file when setting up the
SNMP daemon on Linux. This allows you to look at this configuration data and
recognize which virtual machine is running the server.

Example 8-9 Active nodes sample

Screen: ESATCPD ITSO ESAMON V3.1 08/09 13:07-13:08
1 of 1 TCP/IP Node list NODE * 2064 40ECB

 Node IP Address Name
 ---- --------------- ------------------------

 TCPIP . .
 HUB6 . .
 IVO123 9.12.0.123 nf3000-1
 ITSO237 9.185.246.237 linux7 (Linux)
 ITSO232 9.185.246.232 linux2 (Linux)

PF1=Help PF2=ESATCPC PF3=Quit PF4=ESATCPT PF5=ESAHST4 PA1=CP
PF7=Backward PF8=Forward PF12=Exit
PA2=Copy
 ====>

Performance data comes in different flavors. The ESATCP2 screen shows the IP
layer of data. The four screens showing data from the TCP/IP stacks are
ESATCP1, ESATCP2, ESATCP3, and ESATCP4.

Looking at a stack as TCP/UDP (transport layer) on top, that is ESATCP1. The
next layer of the stack is the IP layer, shown in ESATCP2. ICMP is shown in
ESATCP3, and the hardware/Interface layer is shown in ESATCP4.
172 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Example 8-10 shows the IP layer from the test system. In this instance, there was
not a lot of activity. What is shown is the number of datagrams forward and
delivered. Note that the “HUB” stack is a VM TCP/IP stack in a virtual machine
called HUB6, which is acting as a virtual hub between the Linux servers. It
forwards all datagrams, rather than delivering them to the local transport layer
and applications.

Many errors in TCP/IP are found in the “Discarded” category. There are many
reasons to discard datagrams, such as when they are wrongly addressed, or use
an invalid port. We suggest you track errors such as these to detect hackers, and
applications that have coding errors.

Example 8-10 IP layer from test system

Screen: ESATCP2 ITSO ESAMON V3.1 08/09 14:14-14:16
1 of 2 TCPIP Internetwork Layer Data NODE * LIMIT 500 2064 40ECB

 <Internet Protocol Datagrams per Second > <Datagram output>
 <Input datagrams> <Discarded Inp Errors > <Discarded>
Time Node Total Fwrd Dlvrd Hdr Addr Port Other Reqst NoRte Other
-------- -------- ----- ----- ----- ----- ----- ----- ----- ----- ----- -----
14:16:00 TUX8MSTR 1.55 0.00 0.97 0.00 0.00 0.00 0.00 1.32 0.00 0.00
 ITSO232 0.98 0.00 0.98 0.00 0.00 0.00 0.00 0.98 0.00 0.00
 ITSO237 1.18 0.00 1.18 0.00 0.00 0.00 0.00 1.08 0.00 0.00
 HUB6 6.53 6.53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
 TCPIP 3.02 0.00 3.02 0.00 0.00 0.00 0.00 3.18 0.00 0.00
14:15:00 TUX8MSTR 2.60 0.00 1.05 0.00 0.00 0.00 0.00 6.83 0.00 0.00
 ITSO232 0.25 0.00 0.25 0.00 0.00 0.00 0.00 0.22 0.00 0.00
 ITSO237 0.82 0.00 0.82 0.00 0.00 0.00 0.00 0.88 0.00 0.00
 HUB6 3.48 3.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
 TCPIP 3.65 0.00 3.65 0.00 0.00 0.00 0.00 3.90 0.00 0.00

8.11.1 Network errors
ESALPS also utilizes the TUNETCP macro, which provides network error
information. This macro checks for up to 50 different errors on each node being
measured. When network slowdown is perceived, executing this macro from
either a CMS ID or from a Web browser will show all errors detected using the
SNMP data source.
 Chapter 8. Performance analysis 173

8.12 Server resources
Each server has resource requirements that are needed for both understanding
server performance, and for projecting the capacity requirements and growth of
the server. The performance characteristics of each server that you will want to
monitor are: storage, processor, DASD I/O, network traffic, swap, and probably a
few more.

The next step beyond measuring server requirements is to monitor individual
applications. When the resource requirements of each application are known,
then the growth of each application allows for more accurate capacity planning.

Capacity planning allows you to plan price performance, and to provide Service
Level Agreements. In the following sections, we provide suggestions on what
application and server data you should monitor and why, in order to ensure
optimal performance.

8.12.1 Resources by application
Building a profile of an application allows for accurate capacity planning. Knowing
the characteristics of an application also allows you to know when current
operational characteristics are out of the normal range, suggesting a problem.
Storage and processor requirements by application should be well known.

8.12.2 Resources by server
Each server’s resource (Storage, Processor and I/O) requirements should be
measured. Detecting variations in server requirements can be done with very
little overhead. Determining that a server is outside the normal range of operation
early means that problem resolution will take less time.

Example 8-11 shows the processor time and storage profile of the top few users
on this test/development system. By reviewing this data from your production
workload, you’ll have an idea of what servers will top the list (using more CPU
than other servers), which servers typically use a lot of storage, and how much.
There are additional displays showing I/O data by user ID, as well.

Example 8-11 Processor time and storage profile - top users

Screen: ESAUSR2 ITSO ESAMON V3.1 08/08 17:29-17:30
1 of 3 User Resource Utilization USER * 2064 40ECB

 <------CPU time-------> <----Main Storage (pages)----->
 UserID <----(seconds)----> T:V <Resident> Lock <---WSSize---->
Time /Class Total Virt Rat Total Actv -ed Total Actv Avg
-------- -------- ---------- -------- --- ----- ---- ---- ----- ---- ----
174 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

17:30:00 System: 36.088 35.354 1.0 371K 371K 465 412K 412K 11K
 TUX60000 31.641 31.528 1.0 23302 23K 0 22303 22K 22K
 TUX60001 2.069 2.021 1.0 22159 22K 0 24576 24K 24K
 VMLINUX7 0.283 0.255 1.1 31360 31K 30 32768 32K 32K
 VMLINUX1 0.223 0.190 1.2 19198 19K 0 24110 24K 24K
 ESAWRITE 0.195 0.193 1.0 1357 1357 1 1356 1356 1356
 TUX60002 0.190 0.150 1.3 7483 7483 0 7218 7218 7218
 VMLINUX4 0.186 0.156 1.2 23275 23K 31 23244 23K 23K
 VMLINUX9 0.171 0.141 1.2 6195 6195 0 6076 6076 6076

8.12.3 Resources by accounting
Service Level Agreements include caps on resources used by the customer. If a
customer has multiple servers, you will want an easy way to monitor those
resources by customer. The monitor can be used as the capture ratio (the
amount of resource accounted for divided by the amount of resource used) is
normally above 99% when using ESAMON to capture the data. The monitor data
contains accounting codes from the CP directory. All of the performance data can
then be reported by accounting code.

8.13 Alerts
Automating detection of problems is important when you have hundreds or
thousands of servers. Your system will run much better if problems are detected
early. ESAMON provides a large set of alerts defined in a file called EXCPN
ALERTDEF. The alert function can be started by any user with access to
ESAMON with the command ESAMON ALERT. Examples of alerts included by
default are:

� Large virtual machine storage sizes and working sets.
� High virtual machine processor utilization, spool consumption, page rate, and

I/O rate.
� Looping user detection.
� Idle user detection.
� Missing user detection to ensure all required users are online. The required

users are defined in the file named MISSING USER.
� Missing DASD detection to ensure all required DASD are online. The file

MISSING DASD provides the list of required volume serials.
� High system page rates.
� Storage offline.
� IDASD utilization and rates.
� Processor utilization.
 Chapter 8. Performance analysis 175

Alerts can be defined by the installation. Following are some that you may want
to add:

� Excessive resources by accounting number
� Eligible lists
� IP Traffic above a specific limit
� Linux swap rates and virtual disk pages resident
� Buffer cache excessive – this leads to high storage requirements
� MDC “not allowed” – fair share for MDC exceeded

8.13.1 Defining and modifying alerts
Each ESAMON alert is defined in a file called EXCPN ALERTDEF, which
contains multiple alerts such as the following defined. Example 8-12 defines an
alert with code VMCP, which will show users above 5% in blue, users above 10%
in blue reverse video, and users above 15% in yellow (the latter also has a
warning message sent to the operator).

The text of the alert message is defined with the text operand. The EXCPN
ALERTDEF file can (and should) be tailored to meet installation needs. It was
designed for a CMS interactive environment supporting thousands of users.

Example 8-12 An alert definition

ALERT CPUUTIL VMCP
LEVEL1 5 BLUE
LEVEL2 10 BLUE REV
LEVEL3 15 YELLOW REV ACTION CP MSG OP &USERID RUNNING CRAZY
text User &userid at &cpuutil% of processor

Figure 8-3 on page 177 shows a user using excessive CPU; 5 users with
excessive working sets; a user that was idle for an extended period; users that
should be logged, but are missing; spool utilization greater than 20%; and more.
Thresholds were set low for this example; in your case, you’ll want to edit the
exception definition file to meet your installation’s requirements. Each type of
alert can be a different color, reverse video, and/or blinking, as a way to
emphasize specific problems.
176 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Figure 8-3 ESAMON alert

8.14 Service Level Agreements
You will need to include documentation on service measurement facilities if you
provide Service Level Agreements to users or customers. The requirements
should include what to report, and how to report it. With today’s technology, many
customers will want to use a Web-based application to view their data. You
should evaluate your performance reporting needs and be prepared for service
level reporting.

From a measurement perspective, you will want to monitor resources by
accounting number, assuming the Service Level Agreement can be matched to
one. Availability of each server should also be monitored.

ESATCP provides alerts to a designated user, which could be to the operator or
to a special service machine that has been set up with a PROP function. Each
Linux node that will be monitored can have a designated virtual machine user ID
that will be alerted for error messages and for a lack of responsiveness.

The terms to include in your Service Level Agreements should define the service
being provided, the costs of those service, and escalation procedures, as follows:
 Chapter 8. Performance analysis 177

� Resource consumption by consumer, minimum guarantee, and cap
� Resource reporting mechanism, report details, reporting granularity
� Alert definition, who is to be alerted, and responses to be taken
� Availability guarantee, reporting mechanism, and reporting granularity

8.14.1 Availability alerts
There are multiple methods you can use to measure availability. Unfortunately,
the most common is to measure the server as being “available” unless a user has
called in to complain! When running a service environment, knowing when
servers are down is more important. The technologies used can be something
like ping, which checks a server for response on a regular basis.

ESATCP provides an alert function using SNMP; each node that you have
defined to ESATCP can be monitored for availability at a granularity of your
choice. Setting the AVAILTIME parameter to as low as 5 seconds will cause a
message to be sent every 5 seconds. When no response for 5 seconds is
perceived, an alert will be sent to the designated user. (Note that this measures
SNMP responsiveness, and not the applications.)

This is suitable for high level availability where potential for losing connectivity
and/or the server itself exists. One application may still have failed without
impacting other applications or SNMP. As you develop more requirements for
availability, you should have tools that test each application. For an example,
refer to the discussion on NetSaint in 13.7.1, “NetSaint” on page 323.

8.14.2 Cost of measuring availability
Whichever method of measuring availability you choose, ensure that the cost is
minimal. Stories of disabling monitors and having network traffic drop by a
significant percent are not uncommon. The cost of using SNMP for testing
availability to a server at each designated interval is two UDP packets on the
network, each less than 100 bytes.

8.14.3 Availability reporting
The PDB provided by ESALPS records the amount of time a server is up during
each interval. The default interval is 60 seconds, with hourly summaries. The
following PDB extract provides an hourly summary of availability.

EXTRACT:
RECTYPE=’SU’
X = ‘STOPTIME’
Y = ‘HSTSYS.UPTIME’
178 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

8.14.4 Measuring service
Each server or customer will have agreed-upon resource access—meaning that
the server is guaranteed some amount of processing power and some number of
I/O each interval. The interval could be per hour, or even per minute.

The service consumed is provided in the ESALPS Performance Data Base. In
addition, the wait states of these servers are provided as well. The monitor
samples each server to determine what the server is waiting for (this could be
page wait, CPU wait, idle or several other states).

For this kind of analysis, the monitor should use a sampling rate of .1, or 10 times
per second. The default setting used by ESALPS is normally a rate of 1 per
second. This should be changed during the ESALPS installation.

8.15 Measurement function installation
For measuring Linux using NETSNMP, you will need to install NETSNMP on
each server you wish to measure. ESALPS is installed on z/VM.

8.15.1 ESALPS installation
ESALPS is made up of ESATCP, ESAMAP, ESAMON, and ESAWEB. They
include the support for NETSNMP data, as well as standard MIB-II data. These
products are installed per directions that are provided with the products.
Personnel are available for on-site installation assistance as well.

Each node (Linux or otherwise) that you wish to monitor will need to be defined to
ESATCP as a node file. This file includes the IP address and the community
name.

8.15.2 NETSNMP installation
Installing NETSNMP is documented in 13.6.2, “SNMP installation” on page 306.
Configure ESATCP with the password (community name) you have coded, and
then restart ESATCP. If SNMP is installed with the virtual machine name in the
SYSTEM description, you’ll be able to easily match IP Node with the virtual
machine when the virtual machine is operating under VM.
 Chapter 8. Performance analysis 179

8.16 Measurement methodology
With measurement data provided from any Linux platform, and in fact any UNIX
that runs NETSNMP, you can compare application requirements from one
platform to another. This will assist you in choosing which applications to run on
zSeries and S/390.

8.16.1 Measuring Linux applications
Each application running on a server (virtual or dedicated) will have different
resource requirements. Using the host software resource report (ESAHST1)
provided by ESALPS, you can determine the resource requirements of each
application.

In Example 8-13, sampling everything from SNMP over a period of 3 minutes, the
SNMP Daemon used 0.93% of this Linux (on S/390) server. The HTTP servers
are using 8.8 MB each, and SNMPD is using 2468 K.

Example 8-13 LINUX HOST Software Analysis Report

Screen: ESAHST1 ITSO ESAMON V3.1 08/07 16:46-16:47
1 of 1 LINUX HOST Software Analysis Report NODE * LIMIT 500 2064 40ECB

 <--Software Program---------> <CPU Seconds> CPU Storage(K)
Time Node Name ID Type Status Total Intrval Pct Current
-------- -------- -------- ----- ------ ------- ----- ------- ----- ----------
16:47:00 ITSO237 httpd 0 0 0 4 0.00 0.00 8836
 snmpd 0 0 0 229 1.67 0.93 2468
 sulogin 0 0 0 0 0.00 0.00 448
 httpd 0 0 0 4 0.00 0.00 8836
 httpd 0 0 0 5 0.00 0.00 8692
 inetd 0 0 0 0 0.00 0.00 576

8.16.2 Measuring Linux server requirements
Each server may run many applications. The sum of the resource requirements
of these servers impact the total storage requirements, the amount of swap
space required, and the processing power requirements. The ESAHST1 report
provides, by application, the processor and storage requirements of each
application. These values should be followed over peak periods to show how they
would impact other workloads if moved to a zSeries or S/390. Using the
abbreviated sample from Example 8-13, this server uses about 30 MB for the
identified applications.
180 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

In Example 8-14 and Example 8-15, an ESAUCD2 real-time example, you can
then measure the total amount of storage that Linux has allocated. The first
screen shows the amount of real storage and swap storage available and in use
by Linux. When using Linux under z/VM, you’ll want to minimize storage
requirements.

Alerts can and should be set to show when Linux guests use swap, and when the
buffer exceeds some threshold Using swap indicates the need for more memory,
while a large buffer indicates too much storage.

Of the 512 MB defined on this system (516328 K), about 480 MB is accounted for
between the shared storage, the buffer storage, the cache storage and the “used”
storage. Reducing the size of the ITSO232 machine by 400 K would have no
impact on the applications currently in use.

Example 8-14 LINUX UCD Memory Analysis Report (screen 1 of 2)

Screen: ESAUCD2 ITSO ESAMON V3.1 08/08 14:35-14:55
1 of 2 LINUX UCD Memory Analysis Report NODE * LIMIT 500 2064 40ECB

 <--Real Storage--> <-----SWAP Storage----> Total
Time Node Total Avail Used Total Avail Used MIN Avail
-------- -------- ------ ----- ----- ----- ----- ----- ----- -----
14:55:00 ITSO232 516328 457K 58960 143K 142K 1360 16000 58960
 ITSO237 257000 176K 80524 143K 143K 0 16000 320K
14:54:00 ITSO232 516328 457K 58960 143K 142K 1360 16000 58960
 ITSO237 257000 176K 80524 143K 143K 0 16000 320K
14:53:00 ITSO232 516328 457K 58968 143K 142K 1360 16000 58968
 ITSO237 257000 176K 80524 143K 143K 0 16000 320K
14:52:00 ITSO232 516328 457K 59100 143K 142K 1360 16000 59100
 ITSO237 257000 176K 80524 143K 143K 0 16000 320K

Example 8-15 LINUX UCD Memory Analysis Report (screen 2 of 2)

 Screen: ESAUCD2 ITSO
 2 of 2 LINUX UCD Memory Analysis Report

 <--Storage in Use-> Error
 Time Node Shared Buffer Cache Message
 -------- -------- ------ ------ ----- -----------
 14:52:00 ITSO232 37788 378112 9432
 ITSO237 28412 28952 10216
 14:51:00 ITSO232 38380 378112 9432
 ITSO237 28412 28952 10216
 14:50:00 ITSO232 38380 378112 9432
 ITSO237 28412 28952 10216
 Chapter 8. Performance analysis 181

8.16.3 Measuring VM Virtual Machine
On VM, the resource reports (ESAUSR2, ESAUSR3, ESAUSR4) show the
resources of the virtual machine. When analyzed, the data from the ESAHST1
display closely matched the processing requirements reported against the virtual
machine by VM on the ESAUSR2 display.

8.17 Tuning guidelines
In the following sections, we provide miscellaneous configuration guidelines that
will help you avoid problems and bypass errors that may be not be obvious to
installations installing VM for the first time.

8.17.1 Paging and spooling (one extent per Real Device Block)
There should be only one page or spool extent per volume. Having multiple
extents adds to overhead and may degrade performance. Both spool and page
I/O have been optimized with a “never-ending channel program” that allows I/O to
bypass the overhead of starting I/O. By having volumes with different types of
data, there is an added overhead for each I/O of stopping one I/O and then
starting another.

8.17.2 Enterprise Storage Server (ESS)
For VM, you’ll want to define as many Real Device Blocks as possible; only use
3390-9 emulation when absolutely necessary.

The issue with current DASD caching technology is based on a large percent of
the I/O being handled by the cache. Under z/VM (at least through V4.1), there is
only one real device block per logical disk—and there is a restriction that only
one I/O can be started at a time to each logical disk.

Thus, if you have a very large amount of data on a single volume, then when one
I/O must retrieve data from the disk, no other I/O can be started even for data
that is currently residing in the cache. OS/390 supports large volumes using
Parallel Access Volumes (PAV). This allows OS/390 to have multiple I/O to a
single logical device by defining multiple paths to a device.

Thus, with PAV, a logical device can be busy, and the data that’s being cached for
that device by the ESS is available on other paths. Z/VM does not support this.
Without PAV support, you will get optimum performance with smaller and more
device addresses.
182 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

However, there are two considerations:

1. Large files that are accessed by a single task are not impacted by not having
duplicate paths to data. The task must wait for an I/O to complete before
starting another one.

2. Large numbers of small servers with random I/O should have the ability to
have concurrent I/O. When configuring your storage controller, maximize the
number of concurrent I/O by maximizing the number of logical devices.

8.17.3 Virtual machine sizes
Reduce virtual machine sizes as much as possible. Tailoring a server to a
specific application and minimizing its storage requirements will mean more
storage is available for other servers.

8.17.4 DASD format
The DASD formats and I/O drivers are documented in 8.10, “DASD subsystem”
on page 161. You should measure I/O response times, the impact of using MDC,
and DASD cache to determine if you are getting the most out of your DASD
subsystem.

With dasdfmt, MDC only works with track cache, and you must use the ECKD
driver that does start subchannels.

The CMS Format Reserved has several advantages, both operationally and from
a performance perspective. Either the DIAG driver (Diagnose250) or the ECKD
driver may be utilized. When using the DIAG driver, MDC can utilize record level
caching. For applications with 4 K blocks read in a random fashion, record level
caching will read in just 4 K records instead of full tracks of data. This can reduce
the I/O time, channel delays, and storage requirements. Operationally, the files
may be read using CMS utilities such as backup.

8.17.5 MDC: fair share considerations (NOMDCFS)
Servers that provide data to other servers should have OPTION NOMDCFS in
their directory. MDC is managed with a fair share algorithm that will disallow data
to be inserted in to MDC by users that have exceeded their share. For some
servers, however, using fair share is inappropriate—so for these servers, put
OPTION NOMDCFS in their CP directory entry.
 Chapter 8. Performance analysis 183

8.17.6 Swap: RAMdisk vs. virtual disk
To reduce Linux storage (by reducing the amount of storage Linux will use for
caching data, yet still have enough storage to meet operational requirements),
two methods are available:

1. You can define a RAMdisk as part of Linux virtual storage and use this as
swap. Linux will then only use this storage for a swap disk.

2. You can use the VM virtual disk facility. By defining a virtual disk and then
telling Linux to use it as a swap device, you have a swap device in storage.

When using virtual disks for swap, the important measurement is the amount of
storage being used by the swap disk, from the VM perspective. When the amount
of storage used for swap becomes large as compared to the virtual machine size,
you are likely incurring overhead of moving pages from swap to Linux main
storage (which is a cost in processing time).

While no rules of thumb have been developed for this yet, you could assume that
controlling the rate of Linux swap activity should be the secondary objective, with
the primary objective being to reduce the total storage (virtual machine plus
virtual disk) requirements. The ESAVDSK real time display provided by
ESAMON shows exactly how much storage is in use for the virtual disk. The
ESAVDSK report produced by ESAMAP shows the same information, but
normally over a longer period of time.

The following ESAVDSK is an example of a virtual disk used for swap for the
duration of a single task. When there was a requirement for more storage, the
virtual disk was used. After it was no longer needed, the virtual disk was paged
out.

Screen: ESAVDSK Velocity Software, Inc. ESAMON V3.1
 <--pages--> DASD X-
 Resi- Lock- Page Store
Time Owner Space Name dent ed Slots Blks
-------- -------- ------------------------ ----- ----- ----- -----
12:15:01 LINUX001 VDISK$LINUX001$0202$0009 36 0 50 0
12:16:01 LINUX001 VDISK$LINUX001$0202$0009 36 0 50 0
12:17:01 LINUX001 VDISK$LINUX001$0202$0009 173 0 50 0
12:18:01 LINUX001 VDISK$LINUX001$0202$0009 293 0 35 0
12:19:01 LINUX001 VDISK$LINUX001$0202$0009 293 0 35 0
12:39:01 LINUX001 VDISK$LINUX001$0202$0009 259 0 35 0
12:40:01 LINUX001 VDISK$LINUX001$0202$0009 259 0 35 0
12:41:01 LINUX001 VDISK$LINUX001$0202$0009 207 0 86 0
12:42:01 LINUX001 VDISK$LINUX001$0202$0009 207 0 86 0
12:43:01 LINUX001 VDISK$LINUX001$0202$0009 13 0 280 0
12:44:01 LINUX001 VDISK$LINUX001$0202$0009 13 0 280 0
12:45:01 LINUX001 VDISK$LINUX001$0202$0009 13 0 280 0
184 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

8.17.7 Timer tick kernel changes
The currently available Linux for zSeries and S/390 distributions implement the
timer functions in the kernel using a 10 mS interrupt that increments the “jiffies”
global variable. Work is being done on an implementation that is more suitable to
Linux running as guests under VM.

When planning on operating many Linux servers under z/VM, you should plan on
implementing this “no more jiffies” patch as soon as it is available. This reduces
the processor requirements of supporting many idle guests. Without this patch,
you can expect 0.2 to 0.3% of a processor (G5) to be used by each idle server.

8.17.8 Kernel storage sharing
Reducing storage requirements by sharing storage is used by CMS for the CMS
operating system, by programs, and for data. This technology is slowly being
developed for Linux. We suggest you watch for developments and implement
them when possible.
 Chapter 8. Performance analysis 185

186 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Part 2 Practical
considerations

In this part of the book we provide explicit examples of the work we did during
this residency. For a theoretical discussion of the concepts behind installing and
managing z/VM and Linux for zSeries and S/390 systems, see Part 1,
“Theoretical considerations” on page 1.

Part 2
© Copyright IBM Corp. 2001 187

188 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Chapter 9. VM configuration

Running a large number of Linux virtual machines on a VM system is a serious
challenge, with many configuration and tuning issues to deal with in order to
make the system work properly. Some of these issues are related to VM, and
some are Linux issues. In this chapter, we focus on the VM aspects of the
configuration.

9

© Copyright IBM Corp. 2001 189

9.1 General VM configuration issues
Using an average VM system straight out of the box, you will probably not be able
to run a large number of Linux images efficiently, so you should be aware of the
following general guidelines.

9.1.1 Allocate sufficient paging space
Virtual machines running Linux tend to be rather large (compared to average
CMS users), so be prepared to have sufficient paging DASD set up to
accommodate all the virtual storage that you give out to your users. Unlike with
CMS users, over time virtual machines running Linux will use all the storage you
give them.

The recommendation currently is to have twice as much paging space on DASD
than the sum of your total virtual storage, in order to let CP do block paging. This
means that to run 10 Linux virtual machines of 512 MB each in an LPAR with 2
GB of main storage, you need to have 14 GB worth of paging DASD. Failure to do
so may cause your VM system to take a PGT004 abend before you notice paging
space filling up.

With this amount of space you will not be tempted to mix it with other data, but it
should be clear you do not mix paging space with other data on the same
volumes. If you plan to use saved systems to IPL Linux images as outlined in this
chapter, you also need to seriously evaluate spooling capacity, because NSS
files reside on the spool volumes. See 8.17.1, “Paging and spooling (one extent
per Real Device Block)” on page 182 to learn why this is important.

9.2 Things to do for new Linux images
When creating new Linux images, the following tasks need to be performed.

9.2.1 Create a central registry
In order to manage a large number of Linux images on a VM system, you need to
maintain a central registry of the Linux images and use standard processes to
create the user IDs. Several of the utility services on VM would need to do the
correct things to these images, based on the registration.

For the purpose of this discussion, it does not really matter whether this “central
registry” is your white board in the office or a few files on a shared disk
somewhere in the system. (However, ease of access and the options for
automation make it attractive to use online files to hold the configuration data.)
190 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

9.2.2 Create the user ID in the CP directory
The CP directory entry only defines the virtual machine, but many of the
parameters (such as storage) that define the virtual machine can be specified or
overruled at startup time. Also, many aspects of the virtual machine, such as
performance settings, cannot yet be specified in the CP directory and therefore
need to be handled by automation software. Other aspects, such as IUCV
authorization, do need to be defined in the CP directory. The point is that if, in
your installation, many things need to be arranged outside the CP directory, it is
questionable whether Linux images need to be bound to specific VM user IDs.

Compare this to an installation with discrete servers where these servers do not
have a hard disk and boot from the LAN. The tables in bootp will define what
image needs to run on what hardware. This makes it easy to deal with hardware
failures and so on.

You could adopt a similar strategy in VM and use the parameters that must be in
the CP directory to help you determine what user ID to use.

9.2.3 Allocate the minidisks
When you create a Linux image, you need to allocate and initialize the disks for
the Linux image. You need to plan this carefully so that you can place the
minidisks on the proper volumes.

9.2.4 Define the IP configuration
Each Linux image will need TCP/IP connectivity. Apart from getting an IP
address for the system and having it registered in the Domain Name System
(DNS), the Linux image will also need a network connection. Depending on the
network architecture used, this means you must define the IP address in the
OSA configuration or prepare the point-to-point connection in the VM TCP/IP or
Linux hub.

9.2.5 Install and configure the Linux system
When the user ID is defined in VM and TCP/IP characteristics are known, the
Linux system can be installed and configured. Note that, with a number of similar
Linux images running on the same VM system, there are more efficient ways to
get another working Linux image than just run the entire installation process;
these issues are addressed in Chapter 10, “Cloning Linux images” on page 209.
 Chapter 9. VM configuration 191

9.2.6 Register the user ID with automation processes
This registration will ensure that the user ID is automatically started, stopped,
monitored, and so on.

9.2.7 Register the user ID so backups can be made
This registration should also ensure recovery will be done when something
“breaks”.

9.3 Using VM TCP/IP as the virtual router
The VM TCP/IP stack can be used as a virtual router. With the current
restrictions of the CTC and IUCV drivers in Linux (see 17.1, “Ability to
reconfigure CTC and IUCV” on page 408), there are advantages in using the VM
TCP/IP stack.

For example, new interfaces and point-to-point links can be defined and activated
on the VM TCP/IP stack without stopping and starting it. However, the process to
do this—as well as the syntax of the configuration files—can be slightly
intimidating. The following section demonstrates how to use the OBEYFILE
command to dynamically create the connections. The topology of the network is
shown in Figure 9-1 as a guide to the IP addresses given in the examples.

Figure 9-1 Topology of the network

.1
.2

.3

.4
.5

192.168.6.

9.12.6.74 9.12.6.96

ESATCP
192 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

The scenario described here is for IUCV connections. The same process can be
done for CTC connections, with a few minor differences. The first difference is in
the DEVICE and LINK statements (see TCP/IP Planning and Customization,
SC24-5981, for the details). The other difference is that virtual CTC devices need
to be defined in the VM TCP/IP stack virtual machine and COUPLEd to the
corresponding other virtual CTC device.

9.3.1 Dynamic definitions and the PROFILE TCPIP file
When the VM TCP/IP stack is started, it reads the configuration from its profile.
When you change the configuration of a running VM TCP/IP stack with the
OBEYFILE command, you must also update the profile to make sure these
changes will be picked up when the VM TCP/IP stack is restarted.

The OBEYFILE command is unlike other VM commands. When a user issues
the OBEYFILE command, that causes the VM TCP/IP stack link to the minidisk
of that user. It then reads the file specified on the OBEYFILE command from that
disk to pick up the configuration statements. This means the VM TCP/IP stack
must be authorized to link to the user’s disk (either by the ESM or through a valid
read-password).

A “naive” implementation of OBEYFILE can cause problems with ad hoc
changes to the TCP/IP configuration. If the program is invoked by an automated
process, most of these problems can be avoided.

Because you also need to update the TCP/IP profile, you want that disk to be
linked R/O by the VM TCP/IP stack. This way the user that issues the OBEYFILE
commands can also update the profile.

Note: If no ESM is used on VM, the read-password must be supplied as an
option for the OBEYFILE command. It is annoying that the OBEYFILE
command parses the parameters and options different from normal CMS
commands. The read-password (specified as an option after the “(“ character)
is only recognized when filetype and filemode of the file are specified.

Note: Now that the QUERY MDISK command with the USER option is
available even for general users, we believe it should be considered a bug that
the VM TCP/IP stack does not use this for the OBEYFILE command. With the
current implementation, it is quite possible for a VM TCP/IP stack to link an
incorrect disk and activate the wrong configuration statements.
 Chapter 9. VM configuration 193

9.3.2 Creating the device and link
The point-to-point connection in VM TCP/IP requires both a device and a link to
be defined in the PROFILE TCPIP file:

Figure 9-2 The DEVICE statement for an IUCV connection

Figure 9-3 The LINK statement for an IUCV connection

While having device names and link names promotes flexibility, for point-to-point
connections it can become quite cumbersome.

Fortunately TCP/IP doesn’t care if we use the same identifier both for the device
name and for the link name1. And since the VM TCP/IP stack has just a single
point-to-point connection to each Linux image, we might as well use the user ID
of the Linux virtual machine as device name and link name. Since the parsing
rules for the TCP/IP profile do not require the DEVICE and LINK statement to be
on different lines, we can put both on the same line. The syntax may look a bit
redundant, but this makes it much easier to automate things.

The definition in the TCP/IP profile for a point-to-point link to our point-to-point
connections can now be defined as shown in Example 9-1.

Example 9-1 The DEVICE and LINK statements for our virtual router

device tcpip iucv 0 0 tcpip a link tcpip iucv 0 tcpip
device vmlinux6 iucv 0 0 vmlinux6 a link vmlinux6 iucv 0 vmlinux6
device tux80000 iucv 0 0 tux80000 a link tux80000 iucv 0 tux80000
device tux80001 iucv 0 0 tux80001 a link tux80001 iucv 0 tux80001
device tux80002 iucv 0 0 tux80002 a link tux80002 iucv 0 tux80002
device tux80003 iucv 0 0 tux80003 a link tux80003 iucv 0 tux80003

1 There is no concern that future versions of VM TCP/IP will be more strict in this aspect.
194 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

The first connection is the “uplink” to the VM TCP/IP stack which we used to give
ESATCP (part of the Linux Performance Suite) access to the Linux images. The
second one provides a direct connection to another Linux image on the same VM
system to allow clients in that Linux image (e.g. telnet) to access the Linux
images. This connection would not be possible via the real network. See 4.4.3,
“Using the OSA with Linux” on page 95 for more details.

If you compare this with the syntax definition for the DEVICE and LINK
statement, you can deduce which occurrence of the user ID is what. (This may
seem confusing, but will be worth the effort because you won’t need to
remember whether the START statement requires the link name or the device
name.)

9.3.3 Defining the home address for the interface
The IP address of the VM TCP/IP stack side of the point-to-point connection
must be defined in the HOME statement.

Figure 9-4 The syntax of the HOME statement

For point-to-point connections, the same IP address can be specified for each
link. Since the IP address does not have to be in the same subnet as the other
side of the connection (we specify a subnet mask of 255.255.255.255), we can
even use the uplink IP address for it.

The virtual router in our example does not have its own real network interface
either, but uses an IUCV connection to the main VM TCP/IP stack. The first part
of the HOME statement in our profile is shown in Example 9-2.

Example 9-2 The HOME statement in the TCP/IP profile

home
 192.168.6.1 tcpip
 192.168.6.1 vmlinux6
 192.168.6.1 tux80000
 192.168.6.1 tux80001
 192.168.6.1 tux80002
 192.168.6.1 tux80003

Unfortunately, VM TCP/IP requires all interfaces to be listed in a single
OBEYFILE operation when a new interface is added.
 Chapter 9. VM configuration 195

9.3.4 Defining the routing information
The GATEWAY statement is used to specify the IP address of the stack at the
other side of the point-to-point connection.

Figure 9-5 The syntax of the GATEWAY statement

As shown in Figure 9-5, each of the connections must be listed in the GATEWAY
statement. Example 9-3 shows the routing statements for our virtual router. The
tcpip link is the uplink connection to the VM TCP/IP stack.

Example 9-3 The GATEWAY statement in the profile

GATEWAY
; (IP) Network First Link Max. Packet Subnet Subnet
; Address Hop Name Size (MTU) Mask Value
; ----------- ------------ ------- ----------- ----------- --------
 9.12.6.96 = tcpip 8188 host
 9.12.6.74 = vmlinux6 8188 host
 defaultnet 9.12.6.74 vmlinux6 8188 0

 192.168.6.2 = tux80000 8188 host
 192.168.6.3 = tux80001 8188 host
 192.168.6.4 = tux80002 8188 host
 192.168.6.5 = tux80003 8188 host

The defaultnet route is to the Linux machine vmlinux6 (instead of to the VM
TCP/IP stack, as you might expect); this is because the 192.168 addresses only
exist on this VM system. Trying to let one of these images connect to another
host in the 9. network wouldn’t work because there is no route back into this VM
system.

Just as with the HOME statement, VM TCP/IP requires the entire GATEWAY
statement to be supplied in the OBEYFILE command when something must be
changed or added to it.
196 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

9.3.5 Starting the connection
To start the point-to-point connection, the START command is given for the
device.

Figure 9-6 The syntax of the START command

A single START command is used to start the connection for the device. The
TCP/IP profile must have START commands for all devices that you want to start.
If you are defining the devices and links up front, it may be an advantage to
postpone the START until the Linux guest is ready to connect. Otherwise you
would waste time (and console log lines) with the VM TCP/IP stack retrying that
connection.

Retry and reconnect
The connection between two TCP/IP stacks via IUCV consists of two IUCV
paths. Each side will “connect” its sending connection to the other party. For a
working IP connection, both paths need to be up. When the sending IUCV path is
“severed” by the other end, the stack will respond by “severing” the other path as
well.

There is difference between the way the VM TCP/IP stack and the Linux netiucv
driver handle the connection setup. When an existing connection is stopped from
the VM side, Linux will notice that and bring the link down as well (and show that
in the system log.

However, when the link is started again from the VM side, Linux will not pick up
the connection request. Even an ifconfig iucv0 up command will not do the
trick because the network layer assumes the connection is still up. To make Linux
take action, you need to execute ifconfig iucv0 down followed by an ifconfig
iucv0 up command. Unfortunately, that removes the default route you may have
set up using that connection. We believe the Linux netiucv driver should be
changed to listen for a connection attempt again after the path was severed.

If the VM TCP/IP stack is retrying the link, it will attempt to connect to the other
side every 30 seconds. Between those attempts, the VM TCP/IP stack is
“listening” all the time and will respond immediately when Linux tries to establish
a connection.
 Chapter 9. VM configuration 197

For a CTC connection, there also is a retry every 30 seconds when the
connection is down. The process is slightly different in that the VM TCP/IP stack
does not have a read outstanding all the time when the connection is waiting to
be retried. This means that when a new Linux image is brought up, it may need to
wait up to 30 seconds before the VM TCP/IP stack is able to take notice of the
attempt. This waiting period may seem trivial, but it really is not when you talk
about bringing up a new image in 90 seconds.

9.3.6 Putting all the pieces together
A simple program was written to add the connection for a Linux image to the VM
TCP/IP stack. It updates the PROFILE TCPIP and issues the OBEYFILE
command to activate the new connection on the running VM TCP/IP stack. To
make the file easier to parse, we added a few special comments in the file to
mark the place where items should be inserted. Our TCPIP PROFILE is shown in
Example 9-4.

A generic parsing routing for the configuration file is complicated, but we do not
need this flexibility when the new entries are added through an automated
process anyway.

Example 9-4 The PROFILE TCPIP for our virtual router

tinydatabufferpoolsize 20
monitorrecords
timestamp prefix

device tcpip iucv 0 0 tcpip a link tcpip iucv 0 tcpip
device vmlinux6 iucv 0 0 vmlinux6 a link vmlinux6 iucv 0 vmlinux6
device tux8mstr iucv 0 0 tux8mstr a link tux8mstr iucv 0 tux8mstr
device tux80000 iucv 0 0 tux80000 a link tux80000 iucv 0 tux80000
device tux80001 iucv 0 0 tux80001 a link tux80001 iucv 0 tux80001
; =device

home
 192.168.6.1 tcpip

Attention: We believe there are problems with the way the Linux CTC driver
handles the reconnect. More than once we found Linux in a tight loop, trying to
restore a broken CTC connection. We did not have the time to dig into these
problems. Casual debugging of this with the CP TRACE command is difficult
with the 10 mS timer tick going on.

The 2.4.5 version of the kernel appears to be changed in using a shorter
period to wait for a response from the other side. That period could be too
short, since we were frequently unable to restart a failing connection.
198 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

 192.168.6.1 vmlinux6
 192.168.6.1 tux8mstr
 192.168.6.1 tux80000
 192.168.6.1 tux80001
; =home

GATEWAY
; (IP) Network First Link Max. Packet Subnet Subnet
; Address Hop Name Size (MTU) Mask Value
; ----------- ------------ ------- ----------- ----------- --------
 9.12.6.96 = tcpip 8188 host
 9.12.6.74 = vmlinux6 8188 host
 defaultnet 9.12.6.74 vmlinux6 8188 0
 192.168.6.254 = tux8mstr 8188 host

 192.168.6.3 = tux80000 8188 host
 192.168.6.4 = tux80001 8188 host
; =gateway

start tcpip
start vmlinux6
start tux8mstr

start tux80000
start tux80001
; =start

With the restrictions we’ve put on the layout of the configuration file, the program
to do the updates can be really simple, as shown in Example 9-5. The program
adds the proper entries to a copy of the configuration file on the A-disk. It then
builds a temporary file with the DEVICE statement, the START statement and the
HOME and GATEWAY sections, and issues an OBEYFILE command against
that file. When OBEYFILE gives a return code 0, the configuration file is replaced
by the new one, and the temporary files are erased.

Example 9-5 Simple program to add a connection to the configuration

/* ADDTCPIP EXEC Add a Linux guest to TCP/IP */

parse arg userid nr .

'PIPE state PROFILE TCPIP * | spec w1.3 1 | var config'
workfile = 'TEMP TCPIP A'

'PIPE <' config '|locate /'userid'/ | count lines | var cnt'
if cnt > 0 then
 do
 Chapter 9. VM configuration 199

 say 'Link for' userid 'probably already present'
 return 1
 end

devs = 'device' userid 'iucv 0 0' userid 'a link' userid 'iucv 0' userid
home = ' 192.168.6.1 ' userid
gate = ' 192.168.6.'left(nr,3) '= ' userid '8188 host'
strt = 'start' userid

'PIPE (end \)',
 '\ <' config,
 '| x1: strtolabel /; =device/',
 '| i: fanin',
 '| >' workfile,
 '\ var devs | i:',
 '\ x1:',
 '| x2: strtolabel /; =home/ | i:',
 '\ var home | i:',
 '\ x2:',
 '| x3: strtolabel /; =gateway/ | i:',
 '\ var gate | i:',
 '\ x3:',
 '| x4: strtolabel /; =start/ | i:',
 '\ var strt | i:',
 '\ x4: | i:'

'PIPE (end \)',
 '\ <' workfile,
 '| strfrlabel /; =device/', /* Take HOME and GATEWAY sect */
 '| strtolabel /; =gateway/',
 '| preface var strt', /* and the START */
 '| preface var devs', /* Add the DEVICE statement */
 '| >' userid 'TCPIP A'

'OBEYFILE' userid 'TCPIP A (READ'
if rc = 0 then
 do
 'COPYFILE' workfile config '(OLDD REPL'
 'ERASE' workfile
 'ERASE' userid 'TCPIP A'
 end
return rc

Deleting a link is also possible. Because of the simple layout of the configuration
file, we can do it with a program as shown in Example 9-6 on page 201.
Unfortunately, we cannot delete the device statement once it is defined to the VM
TCP/IP stack, but we can at least stop it.
200 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Example 9-6 Deleting a connection from the configuration

/* DELTCPIP EXEC Delete a Linux image from TCP/IP configuration */

parse arg userid .
'PIPE var userid | xlate lower | var userid'

'PIPE state PROFILE TCPIP * | spec w1.3 1 | var config'
workfile = 'TEMP TCPIP A'

'PIPE <' config '| nlocate /'userid'/ | >' workfile

'PIPE (end \)',
 '\ <' workfile,
 '| strfrlabel /; =device/', /* Take HOME and GATEWAY sect */
 '| strtolabel /; =gateway/',
 '| literal STOP' userid, /* and the START */
 '| >' userid 'TCPIP A'

'OBEYFILE' userid 'TCPIP A (READ'
if rc = 0 then
 do
 'COPYFILE' workfile config '(OLDD REPL'
 'ERASE' workfile
 'ERASE' userid 'TCPIP A'
 end
return rc

9.3.7 Define and couple the CTC devices
In addition to what is shown in previous sections for point-to-point connections
over IUCV, a virtual CTC needs to be defined and coupled. Both DEFINE and
COUPLE are CP commands that can be issued through the NETSTAT CP
interface. The COUPLE command can be issued from either side of the
connection. The hcp command (from the cpint package) can be used to issue the
COUPLE commands from the Linux side.

To have the virtual CTCs defined at startup of the VM TCP/IP stack, you can
define them in the user directory or include them in the SYSTEM DTCPARMS file
with the :vctc tag. When the CTC is defined through the DTCPARMS file, the
COUPLE command is also issued (provided the Linux machine is already started
up). The PROFILE EXEC of your Linux guest should also be prepared to define
the virtual CTC (if not done through the user directory) and try to couple to the
VM TCP/IP stack, in case Linux is started after the VM TCP/IP stack.
 Chapter 9. VM configuration 201

If you run a large number of Linux images this way, you probably should have a
control file read by the PROFILE EXEC of your Linux guest to define the proper
virtual CTCs. One option would be to read and parse the DTCPARMS control file
of TCP/IP so that you have a single point to register the CTCs.

9.4 Using DirMaint to create Linux virtual machines
On a VM system with more than a few user IDs, it is impractical to maintain the
user directory manually. Editing the directory by hand is cumbersome and
error-prone. Security is another consideration, because if you do not run an
External Security Manager for VM, logon passwords and minidisk passwords are
also maintained in the user directory—and they are visible in clear text to the
person maintaining the directory (and anyone who looks over his or her
shoulder).

DirMaint is the IBM program product to manage your VM user directory. Its
complete name is “5748-XE4 Directory Maintenance VM/ESA”.

If your installation is using DirMaint, you must use DirMaint to maintain the user
directory; you do not have the option in that case of managing your Linux user
IDs by hand-editing the USER DIRECT (and trying to do so could cause serious
problems). The same holds true when the VM installation is using a directory
management product from a solution developer like VM:Secure. You cannot
realistically run different directory management products on the same VM
system.

Using DirMaint is not the only way to manage your user directory; it can also be
managed by a CMS application as a simple flat file in CMS and brought online
with the DIRECTXA command. If you only have very typical standard Linux
images, then maintaining this flat file could be automated fairly easily. However,
when you run z/VM to host a large number of Linux images, you are likely to end
up with a lot of user IDs that are non-standard or different.

9.4.1 Why to avoid GET and REPLACE
Even when DirMaint is in control of your user directory, you can still mostly
maintain it yourself if you want to use GET and REPLACE commands to update
user entries in DirMaint. However, we recommend that you learn the DirMaint
commands to do incremental directory updates, because this is less error-prone
than editing the directory entries by hand. Understanding how to use these
DirMaint commands will also give you an idea of how the process can be
automated.
202 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

An additional bonus for avoiding the use of GET and REPLACE is that the
DirMaint console log will give you a full report of each change that was made to
the directory.

9.4.2 Keeping the user directory manageable
Both directory profiles and prototype files can be used to simplify management of
the user directory.

Directory profiles
The CP user directory supports profiles to be used in the definition for a user in
the directory. The INCLUDE directory statement in the user entry identifies the
profile to be used for that user. Obviously DirMaint also supports the use of these
directory profiles. The profile itself is managed by DirMaint similar to user IDs, so
you can use normal DirMaint commands to add statements to profiles.

The profile contains the directory statements that are identical for the user IDs
(e.g. link to common disks, IUCV statements). You can create different profiles for
the different groups of users that you maintain.

Example 9-7 Sample directory profile

PROFILE TUX6PROF
ACCOUNT TUX6
IPL 1B0
IUCV TUX6MSTR
MACHINE XA
CONSOLE 0009 3215 T
SPOOL 000C 2540 READER *
SPOOL 000D 2540 PUNCH A
SPOOL 000E 1403 A
LINK MAINT 0190 0190 RR
LINK MAINT 019D 019D RR
LINK MAINT 019E 019E RR
LINK TUX6MSTR 0191 0191 RR
LINK TUX6MSTR 01A1 01A1 RR
LINK TUX6MSTR 01A0 02A0 RR
LINK VMLINUX6 01B0 01B0 RR

The include profile shown in Example 9-7 is used for all Linux images in a
penguin colony to allow each of the user IDs to set up an IUCV connection to the
“leader of the colony” (which is TUX6MSTR, in this case) and have links to some
of the disks of the leader.
 Chapter 9. VM configuration 203

Prototype files
A prototype is like a skeleton for a user entry in the directory. The prototype is
only used by the DIRM ADD command with the LIKE option to create a new user
entry according to the prototype.

Example 9-8 Using DIRM ADD with LIKE to add a user ID

dirm add tux80004 like tux8 pw icefloes
DVHXMT1191I Your ADD request has been sent for processing.
Ready; T=0.04/0.04 14:58:40
 DVHREQ2288I Your ADD request for TUX80004 at * has been accepted.
 DVHBIU3425I The source for directory entry TUX80004 has been updated.
 DVHBIU3425I The next ONLINE will take place as scheduled.
 DVHSCU3541I Work unit 08145842 has been built and queued for processing.
 DVHSHN3541I Processing work unit 08145842 as RVDHEIJ from VMLINUX,
 DVHSHN3541I notifying RVDHEIJ at VMLINUX, request 75.1 for TUX80004
 DVHSHN3541I sysaffin *; to: AMDISK 01A0 3390 AUTOG 100 LNX MR BLKSIZE
 DVHSHN3541I 4096
 DVHRLA3891I Your DMVCTL request has been relayed for processing.
 DVHDRC3428I Changes made to directory entry DATAMOVE have just been
 DVHDRC3428I placed online.
 DVHDRC3428I Changes made to directory entry TUX80004 have just been
 DVHDRC3428I placed online.
 DVHRLA3891I Your DMVCTL request has been relayed for processing.
 DVHREQ2289I Your ADD request for TUX80004 at * has completed; with RC
 DVHREQ2289I = 0.

 DVHSHN3541I Processing work unit 08145842 as RVDHEIJ from VMLINUX,
 DVHSHN3541I notifying RVDHEIJ at VMLINUX, request 75.1 for TUX80004
 DVHSHN3541I sysaffin *; to: AMDISK 01A0 3390 AUTOG 100 LNX MR BLKSIZE
 DVHSHN3541I 4096
 DVHDRC3428I Changes made to directory entry DATAMOVE have just been
 DVHDRC3428I placed online.
 DVHDRC3428I Changes made to directory entry TUX80004 have just been
 DVHDRC3428I placed online.
 DVHSHN3430I AMDISK operation for TUX80004 address 01A0 has finished
 DVHSHN3430I (WUCF 08145842).

The DIRM ADD command in Example 9-8 shows how user ID TUX80004 was
added using the prototype TUX8. The USER statement in the prototype file
would cause each user ID created from the prototype to have the same
password.
204 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

To avoid that, DirMaint requires the password for the user ID to be specified on
the ADD command. The asynchronous messages from this command also refer
to the DATAMOVE user ID. Because the AMDISK statement in the prototype
specifies that disk should be formatted, it is handed to the DATAMOVE user ID
first to have it formatted. A so-called “workunit” is created to format the disk. The
second part of the output shows the messages related to the workunit being
created and completed.

Changes that you apply to a prototype file afterward will not affect the user
entries created using that prototype. The prototype is used for directory
statements that cannot be placed in the profile (like USER and INCLUDE) and
MDISK statements that are similar but not identical (although the number of
minidisks and their sizes will be the same, the starting cylinder will be different for
each Linux image). Automatic allocation (using the AUTOV or AUTOG option)
can be used to define the minidisks.

Example 9-9 Prototype file

USER TUX8 ICEFLOE 48M 256M G
 INCLUDE TUX8PROF
 MDISK 01A0 3390 AUTOG 100 LNX MR

When a new user ID is added using this prototype file, DirMaint will automatically
allocate 100 cylinders in group LNX for the minidisk.

9.4.3 Rotating allocation
Automatic allocation in DirMaint is not only very useful when combined with
skeletons, but also for ad hoc adding of minidisks to existing user IDs. When
multiple volumes are grouped together, DirMaint can do rotating allocation on
these volumes and distribute the minidisks over the volumes in that group.

Example 9-10 Fragment of EXTENT CONTROL for rotating allocation

:REGIONS.
 *RegionId VolSer RegStart RegEnd Type
 VMLU1R VMLU1R 001 3338 3390-03 3390 1 USER
 LNX013 LNX013 1 10016 3390-09 3390 1 USER
 LNX014 LNX014 1 10016 3390-09 3390 1 USER
 LNX015 LNX015 1 10016 3390-09 3390 1 USER
:END.
:GROUPS.
 *GroupName RegionList
 ANY VMLU1R
 LNX (ALLOCATE ROTATING)
 LNX LNX013 LNX014 LNX015
:END.
 Chapter 9. VM configuration 205

The (ALLOCATE ROTATING) entry in the LNX group in the example causes
DirMaint to distribute the minidisks over these three volumes. When you use
automatic allocation in skeleton files, the disks for the new user would otherwise
probably be allocated on the same volume. This could be bad for I/O
performance if you have a high degree of multiprogramming in the Linux image,
especially when you use large disks like (emulated) 3390-9.

9.4.4 Implement exit for minidisk copy
The DVHDXP exit in DirMaint would need to be implemented to allow DirMaint to
copy disks that contain a Linux file system. While increasing or decreasing the
size of the minidisk with an ext2 file system is fairly hard to do, copying an ext2
file system from one minidisk to the other is not difficult (especially when CMS
RESERVEd mini disks are being used, the DFSMS COPY command can to do
this).

DirMaint is prepared to use DFSMS when installed. This should allow
DATAMOVE at least to copy a CMS RESERVEd minidisk to another extent of the
same size and device type. (Unfortunately, we were unable to verify this because
DFSMS was not installed on the VM system we used.) We believe DFSMS
COPY does not currently copy the IPL records of the disk, so if your Linux
images need to IPL from disk (rather than NSS), that would be something to
watch out for.

Implementing a routine for DVHDXP using the program shown in Example 10-4
on page 214 is fairly straightforward using the DirMaint documentation. DirMaint
development is aware of these restrictions, so it is possible they will be removed
in some future version.

9.5 Using an alternate boot volume
Linux for S/390 does not use lilo as the Intel implementation does2. Being
unable to get back to your previous kernel can make testing a new kernel
somewhat risky. However, you can mount a small minidisk over /boot and use
that as the IPL device; Example 9-11 on page 206 shows how to prepare one of
the two IPL minidisks.

Example 9-11 Preparing a separate boot disk

cat /proc/dasd/devices
0205(ECKD) at (94:0) is dasda:active at blocksize: 4096, 36000 blocks, 140 MB
0204(ECKD) at (94:4) is dasdb:active at blocksize: 4096, 36000 blocks, 140 MB
0201(ECKD) at (94:8) is dasdc:active at blocksize: 4096, 468000 blocks, 1828 MB

2 The patches for the 2.4.5 kernel from June 2001 change various things in this area. This may even include an option to
select from different kernels.
206 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

0202(ECKD) at (94:12) is dasdd:active at blocksize: 4096, 468000 blocks, 1828 MB
206A(ECKD) at (94:16) is dasde:active at blocksize: 4096, 18000 blocks, 70 MB
206B(ECKD) at (94:20) is dasdf:active at blocksize: 4096, 18000 blocks, 70 MB
mke2fs /dev/dasdf1 -b 4096
mke2fs 1.19, 13-Jul-2000 for EXT2 FS 0.5b, 95/08/09
Filesystem label=
OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
18016 inodes, 17997 blocks
899 blocks (5.00%) reserved for the super user
First data block=0
1 block group
32768 blocks per group, 32768 fragments per group
18016 inodes per group
Writing inode tables: done
Writing superblocks and filesystem accounting information: done
mount /dev/dasdf1 /mnt
cd /boot
tar cf - . | tar xf - -C /mnt
cd /
umount /mnt
mount /dev/dasdf1 /boot
df
Filesystem 1k-blocks Used Available Use% Mounted on
/dev/dasdb1 139452 83080 49176 63% /
/dev/dasdc1 1842540 752128 996816 43% /usr
/dev/dasdf1 69720 1812 64312 3% /boot

As you can see, the IPL minidisk could have been much smaller than the 100
cylinders we happened to have. This new boot disk can now be updated with the
new kernel, and silo makes the disk bootable.

Example 9-12 Making the alternate disk bootable

cd /boot
ls
. System.map-2.2.16 image image.config ipldump.boot
iplfba.boot parmfile parmfile.orig
.. boot.map image.autoconf.h image.version.h ipleckd.boot
lost+found parmfile.map
cp /usr/src/linux/arch/s390/boot/image .
cp /usr/src/linux/System.map System.map-2.2.16
cat parmfile
dasd=0205,0204,0201,202,206a,206b root=/dev/dasdb1 noinitrd
df .
Filesystem 1k-blocks Used Available Use% Mounted on
/dev/dasdf1 69720 1820 64304 3% /boot
silo -d /dev/dasdf
o->ipldevice set to /dev/dasdf
 Chapter 9. VM configuration 207

Testlevel is set to 0
IPL device is: '/dev/dasdf'
bootsector is: '/boot/ipleckd.boot'...ok...
bootmap is set to: '/boot/boot.map'...ok...
Kernel image is: '/boot/image'...ok...
original parameterfile is: '/boot/parmfile'...ok...
final parameterfile is: '/boot/parmfile.map'...ok...
ix 0: offset: 00026a count: 0c address: 0x00000000
ix 1: offset: 000277 count: 80 address: 0x0000c000
ix 2: offset: 0002f7 count: 80 address: 0x0008c000
ix 3: offset: 000377 count: 7c address: 0x0010c000
ix 4: offset: 0003ff count: 02 address: 0x00188000
ix 5: offset: 000401 count: 01 address: 0x00008000
Bootmap is in block no: 0x00000402
#

To complete the process, you should add the new /boot to /etc/fstab so that the
correct System.map will be picked up by klogd, but you may want to skip that
step the first time your try your new kernel. You can create several alternate boot
disks this way, if necessary.

Note: Another approach is described in the IBM Redbook Linux for S/390 and
zSeries: Distributions, SG24-6264. It renames the /boot directory first, and
then creates a new mount point /boot and mounts the new boot disk on that.

Although that approach works as well, we believe the method we detailed in
this book is somewhat more elegant.
208 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Chapter 10. Cloning Linux images

In order to run a large number of Linux images on VM, you need to have those
images in the first place. There are different ways to create these images, as
discussed in this chapter.

10
© Copyright IBM Corp. 2001 209

10.1 Overview
One way of creating Linux images is to install each image from scratch, as if you
were going with the set of CDs from one server to the next. If you run a significant
number of Linux images, and the images are very similar, you may want options
that will help you avoid repeating the entire install process for each Linux image.
Procedures for this type of repeated installation for discrete servers have been
developed for internal use in many organizations.

Often these procedures are tailored to meet the specific requirements of the
organization. An initiative for a generic approach is the IBM Open Source project
“Linux Utility for cluster Installation” (LUI). The source code for this project is
available at the developerWorks Web site. Unfortunately, during this residency
we did not have time to see if LUI is applicable to Linux for S/390 as well. Some
Linux distributions offer their own approach for repeated installs (such as the
YaST shortcuts in SuSE and the mkkickstart utility in Red Hat).

When you run Linux images on VM, you have additional options. With VM, you
can easily access the disks of the Linux images even when the Linux image is
not running. You can use VM utilities to copy the disks from one image over to
another image, and then apply the modifications that are needed to use this copy
in the next Linux image. This process of making the copy and applying the
changes is often referred to as “cloning” Linux images.

10.2 Installing Linux images the easy way
The most straightforward way to install Linux images on a VM system is to create
the VM user ID with sufficient minidisks, and install the Linux from some
distribution on these minidisks. If you have only a few Linux images on the same
VM system, you could simply repeat the process for each of them. This process
is well documented in the redbook IBM ^ Linux for zSeries and S/390:
Distributions, SG24-6264.

However, if you have more than just a few Linux images, manually doing the
entire installation over and over again is tedious and inefficient, so you may want
a few shortcuts. Because the SuSE distribution uses a full-screen menu-based
installer, it does not lend itself very well to automated repeated installs. The
Turbolinux and Red Hat distribution is easier to automate if you are planning to
do a fresh install for each Linux image.
210 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

10.2.1 Providing fast access to the install medium
If you have only a small number of Linux images, you may want to do a fresh
install for each of them. You may also want to do this for educational or
recreational purposes. Rather than getting all the rpm packages via TCP/IP for
each install, you can put a copy of the ISO images on a large minidisk and have
the Linux image use a R/O link to that disk.

The commands in Example 10-1 show how to mount the ISO images of the
installation CDs into your file system before you start the installation program.
With the ISO images mounted like this, you can point YaST to the /install/cd1
directory to find the installation material.

Example 10-1 Mount the ISO images via the loop device

mkdir /install
cd /install
mkdir cd1 cd2 cd3
mount -o loop,ro suse-us-s390-cd1.iso cd1
mount -o loop,ro suse-us-s390-cd2.iso cd2
mount -o loop,ro suse-us-s390-cd3.iso cd3
cd /
yast
...

You can simplify this process even further by unpacking the ISO images to a
single large ext2 file system (thereby avoiding the use of the loop device during
the install). This way you can also add your own packages to the installation
medium, or upgrade some of the packages in it.

Example 10-2 Copy the contents of the ISO images to a file system

mount /dev/dasde1 /mnt
cd /install
cd cd1 ; tar cf - . | tar xpf - -C /mnt/ ; cd ..
cd cd2 ; tar cf - . | tar xpf - -C /mnt/ ; cd ..
cd cd3 ; tar cf - . | tar xpf - -C /mnt/ ; cd ..
cp /boot/ipleckd.boot .
cd /
umount /install
mount /dev/dasde1 /boot
ln suse/images/tapeipl.ikr image
ln suse/images/parmfile parmfile
ln suse/images/initrd initrd
silo -d /dev/dasde -r initrd
 Chapter 10. Cloning Linux images 211

The last few commands in Example 10-2 create links in the root directory of the
disk to each of the starter files (kernel, parameter file and initrd image) and a
copy of ipleckd.boot. The silo command makes the disk bootable for installation.

To install Linux in a new user ID, you can link to this big disk that contains the
unpacked three ISO images and IPL it. Installation from such a disk is very fast.

10.3 Building a quick start disk
By using the “hidden” option of the silo command, you can make a disk with a
kernel, parameter file, and initrd to be used as the startup system or rescue
system (to avoid punching kernel and RAMdisk images). As with the recipe in
9.5, “Using an alternate boot volume” on page 206, you need to mount the disk to
be prepared on /boot in order for silo to work. The difference is in the -r option
of silo, which allows you to specify the initrd image.

Example 10-3 Using silo to make a quick start disk

vmlinux6:/boot # silo -d /dev/dasdh -r initrd.gz
o->ipldevice set to /dev/dasdh
o->ramdisk set to initrd.gz
Testlevel is set to 0
IPL device is: '/dev/dasdh'
bootsector is: '/boot/ipleckd.boot'...ok...
bootmap is set to: '/boot/boot.map'...ok...
Kernel image is: '/boot/image'...ok...
original parameterfile is: '/boot/parmfile'...ok...
final parameterfile is: '/boot/parmfile.map'...ok...
initialramdisk is: 'initrd.gz'...ok...
ix 0: offset: 00016d count: 0c address: 0x00000000
ix 1: offset: 00017a count: 80 address: 0x0000c000
ix 2: offset: 0001fa count: 80 address: 0x0008c000
ix 3: offset: 00027a count: 6d address: 0x0010c000
ix 4: offset: 0002e7 count: 01 address: 0x00008000
ix 5: offset: 001d10 count: 0c address: 0x00800000
ix 6: offset: 001d1d count: 80 address: 0x0080c000

Note: There is a bug in the SuSE install program in that it misses an FBA
device (for example, a VDISK) when building the parameter file after installing
the packages. After you exit YaST, you must mount the new root device again
and edit the parameter file to include your swap device at the beginning of the
parameters for the DASD driver.

In order to be able to install further packages after the reboot, you’ll want to
include the disk with the installation files as well—do that at the end of the
parameters for the DASD driver. Finally, run silo again.
212 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

..[snip].
ix 22: offset: 002520 count: 80 address: 0x0100c000
ix 23: offset: 0025a0 count: 32 address: 0x0108c000
Bootmap is in block no: 0x000002e8

You will also notice that the list of blocks in this case is much longer than when no
RAMdisk image is specified. If you now umount the disk and issue a sync
command, the disk can be linked from other user IDs to quickly boot a system
with RAMdisk.

10.4 Copying disks instead of doing a full install
With virtual machines on VM, you have options other than simply repeating the
entire installation process for each image. For example, you can use the DASD
Dump and Restore (DDR) utility after a full installation of Linux to copy the
contents of the minidisks of one virtual machine to another set of minidisks. This
is very practical if you want to keep a copy of your entire Linux system when you
are going to do significant changes to your Linux system. That other copy can be
started by linking the minidisk at the correct address (this is necessary because
the kernel parameters refer to the minidisk address).

Instead of switching between IPLs of one of these copies in the same virtual
machine, you can also take the copy and IPL it in another virtual machine.
However, there are a few complications when you do this. For example, the two
copies of Linux you get this way are completely identical, including any
configuration changes done by the installation program (e.g. IP address, device
addresses, etc).

Important: Make sure you shut down your Linux image before you copy the
contents of the minidisks. This is obvious when you run the DDR utility in the
same virtual machine that was running Linux. However, when you run the
DDR utility in another user ID with a R/O link to your Linux disks, you need to
keep this in mind.

This is because when the disks of a running Linux image are copied, the
resulting file system will at best be “dirty” (not cleanly unmounted, so an fsck
is required at boot time). Since Linux buffers data in memory before writing it
out to disk, your copy could be incomplete and inconsistent if the system is
actively doing work. The same applies to normal backups of these disks with
your VM backup product.
 Chapter 10. Cloning Linux images 213

Therefore, in order to use this approach for generating new Linux images, you
need to find the correct point in the installation process to copy the disk. You also
need to understand what configuration changes must be repeated for the new
image, and how to do these changes.

10.4.1 Copying disks for cloning images
Many will tell you that using DDR is the best way to copy minidisks. While it is
probably the cheapest, Table 10-1 shows that it is not always the fastest way to
do the job.

Table 10-1 Copying a 250-cylinder minidisk with ext2 file system

The alternative copy on CMS was done with a little pipeline that is shown in
Example 10-4 (which we could do because the disk was prepared with
RESERVE before we ran mke2fs against it). Because this ext2 file system
happened to be filled only for 70% in this case, there are still a lot of blocks filled
with binary zero. Those blocks do not need to be copied to the target disk. The
second run is even faster because MDC is offering a lot of help. DDR does not
appear to benefit from MDC.

Example 10-4 Using CMS Pipelines to copy the payload of a reserved disk

PIPE
< tux01a0 tux6mstr j /* Read from the input disk */
| spec number 1.10 ri 1-* n /* Insert block number in record */
| not verify 11-* x00 /* Drop when just ‘00’X chars */
| fileupdate tux01a0 tux60000 k /* to write them to disk */

PIPE
 mdiskblk number j 1.2 /* Read boot record from disk */
| mdiskblk write k 1.2 /* and write to target disk */

The question remains as to how much you could benefit from MDC in a real-life
situation when cloning Linux images, and whether you can spare the CPU
cycles. When the file system is more scattered over the disk, or when the file
system contains more data than the arbitrary value of 70% used in our test, then
the benefit of the CMS-based copy will soon disappear.

Elapsed time (s) I/Os MDC
hits

CPU time (s)

DDR copy (first) 30 3014 0 0.148

DDR copy (second) 29 3014 0 0.125

CMS copy (first) 34 13759 41 0.880

CMS copy (second) 19 13759 1166 0.800
214 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

10.4.2 Determine the point to copy the disks
All current distributions use a process where you boot Linux with a RAMdisk to
populate the disks, and then boot from disk. After booting from disk, SuSE for
example runs SuSEconfig again and rewrites all kind of files (including the keys
for SSH, if you installed that). Therefore, the most practical point at which to copy
the disks during the install process is just before this reboot from disk.

Note: This means you must keep this original install system, without booting it, if
you want to clone more images from it. If necessary, you can get back into YaST
again and add more packages if you have to, and subsequent copies will then
also have those packages installed.

10.4.3 Locating the files to be customized for each cloned image
For each cloned Linux image, you now have to customize the files that are
prepared during the first phase of the install (with IP address, host name, root
password, etc).

There is no easy recipe for this step; determining which files need to be changed
will depend on the distribution and the packages installed. This step will have to
be done for each new release of the distribution, although the differences
between two releases of the same distribution will probably be very small.

Various tools in Linux are available to assist in determining which files to change.
(For example, we ran a find -mtime 0 -type f command, which showed that
only 98 out of 82711 files in our SuSE install were changed). If you look at the list
of files, you see there are also a few with “old” and “bak” in their names that you
can ignore for this process.

For each file found by this find command, you can use grep to search for files
that contain the IP address or host name, as shown:

grep 192.168.0.2 ‘find -mtime 0 -type f‘

We expected the changes for a SuSE distribution to be rather trivial1 because
SuSEconfig takes many of the configuration parameters from /etc/rc.config. After
the reboot, SuSEconfig rewrites most of the files that were identified as changed
during the installation.

1 This turned out to be more complicated than expected because many things happen outside SuSEconfig (for example,
/etc/route.conf). The process outlined in the following sections can handle all these changes anyway, so there is less
reason to depend on SuSEconfig for some of the work.
 Chapter 10. Cloning Linux images 215

When the cloned image uses the same type of network interface and the same
DNS and gateway, you do not have to change these when cloning an image. And
when you select a unique-enough hostname and IP address for the first install,
you may be able to just use a few sed commands, as shown in Example 10-5.

Example 10-5 Update the rc.config with IP address and hostname

cat /mnt/etc/rc.config \
| sed s/192.168.0.2/192.168.0.4/ \
| sed s/tux6mstr/tux60002/ > /root/rc.config

cp /root/rc.config /mnt/etc/rc.config

To change the initial root password, you can chroot to the file system to be
prepared and invoke the passwd command. (For SuSE, however, this is
somewhat useless since it will prompt for a new password anyway at the first
reboot.)

Using diff to find the changes
You can also take a more “brute force” approach to identifying the differences
between cloned images by using the diff command. The diff command
compares two files and lists the differences between the files.

For this approach, you perform an identical install according to the book on two
different Linux images. Keep these installations the same for the configuration
items that will be the same for all your cloned images (e.g. the DNS or domain
name), and then deliberately introduce a difference for the items that must be
customized for each cloned image (e.g. IP address and hostname).

After completing the installation up to the point where the first boot from disk is
required, link both file systems in a single Linux image (the examples here show
this running with a RAMdisk system because that’s an easier way to configure
the DASD driver).

Example 10-6 Mounting the two file systems to be compared

insmod dasd dasd=200,1a0,1a1,1b0,1b1,0cd
Using /lib/modules/2.2.16/block/dasd.o
cd /mnt
mkdir a b
mount /dev/dasdb1 a -r
mount /dev/dasdc1 a/usr -r
mount /dev/dasdd1 b -r
mount /dev/dasde1 b/usr -r
df
Filesystem 1k-blocks Used Available Use% Mounted on
/dev/ram2 25901 22377 3524 86% /
/dev/dasdb1 174116 44968 120160 27% /mnt/a
/dev/dasdc1 1415848 692296 651632 52% /mnt/a/usr
216 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

/dev/dasdd1 69628 44968 21068 68% /mnt/b
/dev/dasde1 1415848 692296 651632 52% /mnt/b/usr

The fragment in Example 10-6 shows how to load the DASD driver and mount
the file systems under the root file system. Because both installs were done on a
root file system with two disks, all these disks are needed here.

Unfortunately, these file systems contain absolute path names in the symbolic
links, so you can not simply run diff against both file trees. Instead, change the
absolute path names in the symbolic links to relative ones (there are 69 of those
in a “default” install of SuSE). You can identify the problems with the following
commands:

find -type l|xargs ls -l $1|cut -b 56-|grep "[^]* -> /"

Alternatively, if you don’t want to change the symbolic links in the file system, you
can first run md5sum against each file in both file systems (to compute a checksum
for each file), and then use diff on the files that have different checksums.
Obviously, computing the checksum for each file with md5sum is not a cheap
process, but on the configuration we used, it completed in two minutes for a
“default install” of SuSE. You need to do this once during the preparation.

The scenario in Example 10-7 shows we use the chroot command before
running diff. With chroot, you run another command (the shell, in this case) with
the specified directory as the root of the file system. The absolute symlinks in the
file system now match the file system. The exit command terminates the shell
and returns back to the configuration before the chroot command.

Example 10-7 Computing the checksum for each file in the file system

df
Filesystem 1k-blocks Used Available Use% Mounted on
/dev/ram2 25901 22381 3520 86% /
/dev/dasdb1 174116 48884 116244 30% /mnt/a
/dev/dasdc1 1415848 692296 651632 52% /mnt/a/usr
/dev/dasdd1 69628 44968 21068 68% /mnt/b
/dev/dasde1 1415848 692296 651632 52% /mnt/b/usr
mount b -o remount,rw
chroot b
find / -type f | xargs md5sum $1 > /sums
sort -k 2 /sums > sumsort
exit
 Chapter 10. Cloning Linux images 217

Because find did not always return the files in the same order, it was necessary
to sort the list on file name. We could have done the sort by piping the output of
xargs into it, but the temporary files created by sort caused a lot of noise in the
output.

Using the files with checksums created in the previous steps, we can now identify
the files that are different by using diff to compare these two files, as follows.

diff -u a/sumsort b/sumssort |grep ^\- |cut -b 36- \
| a/usr/bin/gawk '{print "diff -u a"$0" b"$0} ' \
| grep / |/bin/sh

A portion of the output of running diff against these pairs of files is shown in
Example 10-8. The patch command can take a file like this as its input, to apply
the changes to the files in the file system of a cloned Linux image.

Example 10-8 Fragment of the output of diff comparing the files

--- a/etc/rc.config Wed Jul 25 08:42:09 2001
+++ b/etc/rc.config Wed Jul 25 08:48:21 2001
@@ -132,7 +132,7 @@
 #
 # IP Adresses
 #
-IPADDR_0="192.168.0.2"
+IPADDR_0="192.168.0.3"
 IPADDR_1=""
 IPADDR_2=""
 IPADDR_3=""

To use a process like this for customizing cloned images, you have to generate
the proper modified version of this output and feed it to the patch command. After
cleaning up the output of diff by hand and removing the patches to files that will
be replaced by SuSEconfig anyway, a diff file of only 83 lines remained, updating
8 different files in the system.

In the diff file, we replaced things like the host name and IP address by strings
that are easy to identify (like :hostname:), and a simple script with a few sed
commands can now produce the patch file.

Note: We “cheated” a bit with the gawk command. Because the RAMdisk
system did not have gawk installed, we used the gawk executable from the
mounted file system that we were comparing. However, a better solution
would be to install gawk in the RAMdisk system—or to run with a full Linux
system.
218 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Example 10-9 Script to create the specific patch for a cloned image

#! /bin/sh
if [-z $5]; then
 echo "Need hostname IP-address gateway-userid gateway-ip gateway-mtu"
 exit
fi
cat generic.diff \
 | sed "s/:hostname:/$1/ " \
 | sed "s/:cloneip:/$2/ " \
 | sed "s/:gatewayid:/$3/ " \
 | sed "s/:gatewayip:/$4/ " \
 | sed "s/:gatewaymtu:/$5/" \

Figure 10-1 illustrates how the first and second install are compared with diff.
The output is then transformed into a generic patch. The shell script in
Example 10-1creates a specific patch out of the generic patch. This specific
patch is used as the input for the patch program.

Note: If you generate a patch as outlined, you’ll also touch files that are
marked as “do not modify” because they are maintained by SuSEconfig.

In theory, you could simply modify rc.config and then run SuSEconfig to
generate the other files. However, in our case, we decided to patch the output
files anyway because that avoids running SuSEconfig and rebooting the
system.
 Chapter 10. Cloning Linux images 219

Figure 10-1 Using diff and patch to configure the cloned images

10.4.4 Reducing the number of changes required
Carefully designing your virtual server architecture can significantly reduce the
number of changes to be made to each cloned image. If you have a number of
different classes of Linux images, then it may be easier to have one separate
master image for each category. This will result in fewer changes to be made to a
cloned image—which is not only easier to manage, but also essential if you want
to share disk space among Linux images.

Many useful results can be realized through proper design of VM user IDs for the
Linux images. If you keep the differences in the CP directory and the PROFILE
EXEC, you can avoid changes to the cloned images. This means, for example,
that you keep the same device address for your virtual CTCs on each Linux
image, even though they connect to a different address on your virtual hub or VM
TCP/IP stack. This way the entry in /etc/modules.conf can be the same for each
image.

A significant simplification would be if the cloned images could make use of
Dynamic Host Configuration Protocol (DHCP) instead of having hardcoded IP
addresses in the configuration files. However, DHCP requires an Ethernet or
Token Ring interface, so it doesn’t work with point-to-point connections like IUCV
and CTC interfaces.

2ndinstall

1st install

compare
withdiff

generic

copyA
plaincopy

createspecificpatch

patchA patchB patchC

copyB copyC

applypatch
220 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Note that running DHCP does not have to mean you hand out different IP
addresses for your systems (which is what DHCP normally is used for). You can
manually bind IP addresses to the physical interfaces and keep the same IP
address each time the server starts. DHCP would only be the easy way to
configure the IP stack of each system.

You could even do dynamic IP addresses for your servers. This would be an
option when combined with Dynamic Domain Name Service (DDNS). In that
case, each system would register through DDNS, for example, as the next
system offering a particular service. Round-robin DNS would then cause the
traffic to be spread over multiple systems.

10.4.5 When to apply the configuration changes
There are at least two different ways to apply the changes to the copied disks for
the new Linux image.

� Store a small script in the boot process to apply these changes the first time
the cloned image is executed. Instead of using a custom script with
hardcoded values, you can write a generic script that obtains the IP address
and hostname through some other mechanism. The hcp command from the
cpint package can be used to obtain the user ID of the virtual machine
running the image.

� Mount the file system into an existing running Linux image and run a script to
apply the changes. This is a more flexible choice, because you can do
different repair actions that may be necessary (like installing additional
packages). Unfortunately, it is currently difficult to access the file system of a
Linux image that is not running (also known as a “dead penguin”), or one that
does not have a network connection.

Which method will work best in your situation depends on various aspects of your
installation (such as network topology, naming convention, etc).

10.5 Sharing code among images
The process outlined in 10.4, “Copying disks instead of doing a full install” on
page 213 can simplify the install process, but it does not yet exploit z/VM facilities
for sharing resources. For those who are used to working with VM, it appears
obvious that you want to share the common code between your Linux images.
For a “default install” of SuSE, about 85% of the disk space is used for the /usr
directory of the file system. Most packages have their binaries installed in /usr, so
it seems obvious that this also should be shared.
 Chapter 10. Cloning Linux images 221

The Linux Standard Base (LSB) defines the file system hierarchy such that /usr
can be shared among images (outside the S/390 world, over NFS).
Unfortunately, it also defines that application code should be installed in /opt,
which makes sharing /usr less attractive.

The file system can be split over two separate minidisks after installation, but it’s
much easier to let YaST do that job; during installation, you define one disk to
hold the /usr directory and YaST will copy all those files to that minidisk. This
process is apparently so obvious that many people have built Linux images that
had a R/O link to a common minidisk holding the /usr subtree of the file system.
This results in a significant reduction in disk space requirements for running a
large number of Linux images.

However, as with many cheap solutions, this one also comes with a few
drawbacks.

� Once a Linux image is using the shared /usr disk, it is no longer possible to
make changes to the contents of the disk.

In CMS, to share R/O minidisks, people have developed tricks to deal with the
“one writer - many readers” situation, but for Linux this does not work because
every Linux image will buffer parts of that disk in its buffer cache.

� Portions of applications live outside the /usr directory, for example in /bin and
/sbin. When those other portions are part of the private disk space of the
Linux image, it will be difficult to maintain consistency when upgrading
packages. This means there is no easy way to upgrade the systems
afterward.

� Many applications and users need to write into portions of /usr for their
function. An example of this is the package manager rpm that keeps its
database (the software inventory) in /usr, as well.

� Many applications do not separate code and data (like WebSphere, writing
the log file in the bin directory by default), which makes it very difficult to share
code.

� The recent standards define /opt to hold packages that are not part of the
code system. This would make sharing /usr less effective.

We believe a realistic answer to this could be a new device driver as described in
“Shadowed disk support” on page 413. This code is not available yet.

Despite these drawbacks, this simple way of sharing the disk may be attractive
for special situations (for example, “disposable penguins” only needed for a
limited period). If an application has a specific requirement to write in an
otherwise R/O directory, a private writable directory can be provided through a
symlink to another part of the file system, or by “overmounting” with another
block device (via the loop driver, for example).
222 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

10.6 Breeding a colony of penguins
For a demonstration of the cloning process, we had to use a configuration with
/usr on a separate R/O linked minidisk, despite the drawbacks illustrated in 10.5,
“Sharing code among images” on page 221. Trying the cloning process with
private disk space for each cloned penguin would have been too expensive, both
in disk space and in time to create the images.

Unfortunately, YaST runs SuSEconfig after the first reboot, which turns out to
write into the /usr directory. This means we need to finish the install process
completely before we have a file system that can be copied and used by others.
Since other installations may have similar restrictions, we decided to take a more
generic approach and complete the install before copying the disks.

The cloning process is demonstrated with each of the steps invoked by hand.
This does not mean the process could not be automated, but it’s probably easier
to follow this way than with a single program that does all.

10.6.1 Images used in the cloning process
The images used in the cloning process will have a few minidisks:

01A0 A 100-cylinder private disk to hold the root file system

02A0 R/O link to the original root file system for copying

01A1 A 2000-cylinder disk linked R/O by all images

00CD R/O link to a starter disk with initrd

Each of the cloned images will have an IUCV connection to a single common VM
TCP/IP stack.

10.6.2 Create a patch file for cloning
We create a patch for the cloning process as described in “Using diff to find the
changes” on page 216. Doing this after finishing the install is not much different
from doing it earlier in the process.

Obviously, diff will also find a lot of differences in log files and other things that
you do not want to end up in the patch, so you can get those out of the process
as soon as possible with, for example, a few grep commands before sorting the
list of filenames.

To create the two different disks to compare, we copied the 01A0 disk of the
install system to a new minidisk and then ran YaST in the installation system to
change the IP address and hostname.
 Chapter 10. Cloning Linux images 223

Although the chosen network setup resulted in identical gateway addresses and
default routes for each of the cloned images, we decided to put that in the patch
anyway to have a more generic patch.

Example 10-10 Patch generated for the demo setup

--- a/etc/HOSTNAME Wed Aug 8 02:54:04 2001
+++ b/etc/HOSTNAME Wed Aug 8 03:04:17 2001
@@ -1 +1 @@
-tux8mstr
+:hostname:
--- a/etc/hosts Wed Aug 8 02:54:04 2001
+++ b/etc/hosts Wed Aug 8 03:04:17 2001
@@ -21,4 +21,4 @@
 ff02::2 ipv6-allrouters
 ff02::3 ipv6-allhosts

-192.168.6.254 tux8mstr.hub6.itso.ibm.com tux8mstr
+:myip: :hostname:.hub6.itso.ibm.com :hostname:
--- a/etc/rc.config Wed Aug 8 02:54:02 2001
+++ b/etc/rc.config Wed Aug 8 03:04:16 2001
@@ -132,7 +132,7 @@
 #
 # IP Adresses
 #
-IPADDR_0="192.168.6.254"
+IPADDR_0=":myip:"
 IPADDR_1=""
 IPADDR_2=""
 IPADDR_3=""
@@ -151,7 +151,7 @@
 # sample entry for ethernet:
 # IFCONFIG_0="192.168.81.38 broadcast 192.168.81.63 netmask 255.255.255.224"
 #
-IFCONFIG_0="192.168.6.254 pointopoint 192.168.6.1 mtu 8188 up"
+IFCONFIG_0=":myip: pointopoint :gwip: mtu :gwmtu: up"
 IFCONFIG_1=""
 IFCONFIG_2=""
 IFCONFIG_3=""
@@ -207,7 +207,7 @@
 # (e.g. "riemann.suse.de" or "hugo.linux.de")
 # don't forget to also edit /etc/hosts for your system
 #
-FQHOSTNAME="tux8mstr.hub6.itso.ibm.com"
+FQHOSTNAME=":hostname:.hub6.itso.ibm.com"

 #
 # Shall SuSEconfig maintain /etc/resolv.conf (needed for DNS) ?
--- a/etc/route.conf Thu Aug 9 16:21:37 2001
+++ b/etc/route.conf Thu Aug 9 16:19:37 2001
224 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

@@ -34,4 +34,4 @@
 # 192.168.0.1 0.0.0.0 255.255.255.255 ippp0
 # default 192.168.0.1
 192.168.6.1 0.0.0.0 255.255.255.255 iucv0
-default 192.168.6.1
+default :gwip:

The resulting patch is shown in Example 10-10. It turns out to be very small. It
touches only four files in the system (those marked with +++ characters). This
patch was stored in the root directory of the installation system so that it would be
available in each cloned image as well.

Copy the root file system and IPL starter system
The root file system is copied using the COPYDISK program shown in
Example 10-11. Exploiting the fact that this root file system is filled for 70%, this
turned out to be the fastest solution.

Example 10-11 The COPYDISK program

/* Copy a reserved disk to a formatted disk */
signal on error
arg cuu1 cuu2 .

'ACCESS' cuu1 'J'
'PIPE COMMAND LISTFILE * * J | var infile'
parse var infile fn .
'ACCESS' cuu2 'K'
queue '1'; 'RESERVE' fn userid() 'K'
'PIPE <' infile,
 '| spec number 1.10 ri 1-* n',
 '| not verify 11-* x00',
 '| fileupdate' fn userid() 'K'
'PIPE mdiskblk number J 1.2 | mdiskblk write K'
return rc

After the root file system is copied, the RAMdisk system is started.

Example 10-12 Copying the root file system and IPL with RAMdisk

copydisk 2a0 1a0
DMSACC724I 2A0 replaces J (2A0)
DMSACP723I J (2A0) R/O
DMSACC724I 1A0 replaces K (1A0)
DMSRSV603R RESERVE will erase all files on disk K(1A0). Do you wish to
continue? Enter 1 (YES) or 0 (NO).
1
DMSRSV733I Reserving disk K
 Chapter 10. Cloning Linux images 225

Ready; T=0.54/0.80 20:43:15
ipl 0cd clear
Linux version 2.2.16 (root@ikr_tape.suse.de) (gcc version 2.95.2 19991024
(release)) #1 SMP Tue May 1 11:47:13 GMT 2001
Command line is: ro ramdisk_size=32768 root=/dev/ram0 ro

Load the DASD driver and mount the disks
Now the DASD driver is loaded and the new disks are mounted.

Example 10-13 Accessing the disks from the RAMdisk system

insmod dasd dasd=1a0,1a1
Using /lib/modules/2.2.16/block/dasd.o
dasd:initializing...
dasd:Registered successfully to major no 94
dasd(eckd):ECKD discipline initializing
dasd:Registered ECKD discipline successfully
dasd(fba):FBA discipline initializing
dasd:Registered FBA discipline successfully
dasd(eckd):01A0 on sch 0: 3390/0C(CU:3990/04) Cyl:100 Head:15 Sec:224
dasd(eckd):01A0 on sch 0: 3390/0C (CU: 3990/04): Configuration data read
dasd: devno 0x01A0 on subchannel 0 (ECKD) is /dev/dasda (94:0)
dasd(eckd):01A1 on sch 9: 3390/0C(CU:3990/04) Cyl:1500 Head:15 Sec:224
dasd(eckd):01A1 on sch 9: 3390/0C (CU: 3990/04): Configuration data read
dasd: devno 0x01A1 on subchannel 9 (ECKD) is /dev/dasdb (94:4)
dasd:waiting for responses...
dasd(eckd):/dev/dasda (01A0): capacity (4kB blks): 72000kB at 48kB/trk
 dasda:(CMS1)/TUX1A0:(MDSK) dasda dasda1
dasd(eckd):/dev/dasdb (01A1): capacity (4kB blks): 1080000kB at 48kB/trk
 dasdb:(CMS1)/TUX1A1:(MDSK) dasdb dasdb1
dasd:initialization finished
mount /dev/dasda1 /mnt
mount /dev/dasdb1 /mnt/usr -r

Apply the patch to the copied file system
The patch is applied to the copied file system by running the updclone.sh
program. By running the program with chroot, it sees the file system mounted at
/mnt as its root file system for the duration of the program.

chroot /mnt /updclone.sh tux80000 192.168.6.2 192.168.6.1 8188
patching file etc/HOSTNAME
patching file etc/hosts
patching file etc/rc.config
patching file etc/route.conf
226 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

The updclone.sh script reads the generic patch and transforms that into a patch
specific for this image using the host name and IP address specified. For a less
error-prone implementation, you should consider storing the host names and IP
addresses in a table on that disk. That way, a grep could be used to get the
arguments for the updclone.sh script.

Example 10-14 The updclone.sh program to apply the patch

#! /bin/sh

if [-z $4]; then
 echo "Need hostname IP-address gateway-ip gateway-mtu"
 exit
fi
cat generic.diff \
 | sed "s/:hostname:/$1/ " \
 | sed "s/:myip:/$2/ " \
 | sed "s/:gwip:/$3/ " \
 | sed "s/:gwmtu:/$4/ " \
 | patch -p1 $5

If you register the Linux images in DNS, you could even consider getting the
arguments for updclone.sh from that. The hcp command could be used to get the
user ID of the virtual machine. Given a practical naming convention, nslookup
could get you the IP address of the Linux image and the gateway.

Shut down the system
The system shutdown should not only unmount the file systems cleanly, but also
leave network connections in a better state to be restarted when the image is
rebooted. Unfortunately, the starter system does not load a disabled-wait PSW,
but loops after a shutdown. You get out of this using the #CP command to do the
IPL.

Example 10-15 Shutting down the starter system

shutdown -h now
Syncing all buffers...
Sending KILL signal to linuxrc for shutdown...
Sending all processes the TERM signal...
Aug 9 22:05:27 suse exiting on signal 15
Sending all processes the KILL signal...
Syncing all buffers...
Turning off swap...
Unmounting file systems...
/dev/dasdb1 umounted
/dev/dasda1 umounted
/dev/ram2 umounted
 Chapter 10. Cloning Linux images 227

IPL from the patched root file system
With the patches applied, the Linux image can now be booted from the new disk.

Example 10-16 IPL from the root file system after the patch was applied

IPL 1A0 CLEAR
Linux version 2.2.16 (root@Tape.suse.de) (gcc version 2.95.2 19991024
(release))
 #1 SMP Sun May 6 06:15:49 GMT 2001
Command line is: ro dasd=0200,01A0,01A1,0cd,0100,0101 root=/dev/dasdb1 noinitrd
iucv=$TCPIP

We are running under VM
This machine has an IEEE fpu
Initial ramdisk at: 0x02000000 (16777216 bytes)
Detected device 01A0 on subchannel 0000 - PIM = F0, PAM = F0, POM = FF
Detected device 0009 on subchannel 0001 - PIM = 80, PAM = 80, POM = FF
Detected device 000C on subchannel 0002 - PIM = 80, PAM = 80, POM = FF

10.7 Linux IPL from NSS
A Named Saved System (NSS) is like a snapshot copy of part of the memory of a
virtual machine. In addition to simulating the normal S/390 IPL of a device, VM
can also IPL a virtual machine from a NSS. This is especially efficient for CMS,
because the NSS for CMS is defined such that large portions of it can be shared
between virtual machines. This reduces the storage requirements for running a
large number of CMS virtual machines.

An NSS can have shared and non-shared pages. The S/390 architecture
requires all pages in a single 1 MB segment to be either shared or non-shared.
The shared pages will be shared among all virtual machines that IPL the NSS.
For the non-shared pages, each virtual machine will get its own copy, initialized
from the NSS.

10.7.1 Using an NSS with just the kernel
Unfortunately,the Linux for S/390 kernel is not designed to be shared among
images. The writable portions of the kernel are mixed with the read-only portions.
While the non-shared pages do not reduce overall memory requirements, having
memory initialized at startup should at least speed up the boot process.
228 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

One of the complications with running the kernel from an NSS is that the kernel
parameters (e.g. disk addresses for the DASD driver) need to be the same for
each Linux image using this NSS. Fortunately, VM allows us to tailor the virtual
machine to fit on the addresses defined for the kernel that was saved in the NSS.

While you can create the NSS by IPL from the virtual reader, it is easier to do
when booting from disk because silo gives you the information you need to
define your NSS.

Example 10-17 Output of silo to compute NSS addresses

original parameterfile is: '/boot/parmfile'...ok...
final parameterfile is: '/boot/parmfile.map'...ok...
ix 0: offset: 002592 count: 0c address: 0x00000000
ix 1: offset: 00259f count: 80 address: 0x0000c000
ix 2: offset: 00261f count: 80 address: 0x0008c000
ix 3: offset: 00269f count: 76 address: 0x0010c000
ix 4: offset: 001609 count: 01 address: 0x00008000
Bootmap is in block no: 0x0000160a

When you run silo to make a disk bootable, it displays the memory address
where the kernel is going to be loaded. The addresses in Example 10-17 show
that different portions of the kernel use the memory from 0 to 0x00182000. This
means that the NSS should at least contain the pages 0-1812 in exclusive write
(EW) mode (and there is no reason to do more than that).

To freeze the Linux image at the correct point during the IPL process, you can
use the CP TRACE command. The current Linux for S/390 kernel starts
execution at address 0x010000, so the following TRACE command will cause the
Linux image to stop at that point.

When execution is stopped at that point, the TRACE command causes the
segment to be saved and also ends the trace.

Example 10-18 Defining the NSS and saving it

DEFSYS SUSE 0-181 EW MINSIZE=40M
HCPNSD440I The Named Saved System (NSS) SUSE was successfully defined in fileid
0089.
TRACE INST RANGE 10000.2 CMD SAVESYS SUSE "#TRACE END ALL
IPL 1B0 CLEAR
Tracing active at IPL
 -> 00010000 BASR 0DD0 CC 2
HCPNSS440I Named Saved System (NSS) SUSE was successfully saved in fileid 0089.
Trace ended

2 You can use the “Scientific” mode of the calculator in your MS Windows accessories to do the computations.
 Chapter 10. Cloning Linux images 229

After the NSS has been saved as shown in Example 10-18, the Linux images can
boot this kernel with a simple IPL SUSE command.

CP IPL SUSE
Linux version 2.2.18 (root@vmlinux6) (gcc version 2.95.2 19991024
SMP Thu Jul 19 10:07:30 EST 2001

Because the NSS is defined as exclusive write (EW), the kernel pages are not
shared by the Linux images and using the NSS does not reduce overall storage
requirements as it does with CMS. Work is in progress to change the layout of
the kernel such that significant portions of the code can be shared.

10.7.2 Using an NSS as a starter system
To simplify the boot process, we packaged the kernel with the RAMdisk image in
a single NSS that was completely defined as EW. We compared an NSS with a
compressed RAMdisk image to one with an uncompressed RAMdisk image,
expecting an impressive performance boost when skipping the RAMdisk
uncompress at each IPL. However, Table 10-2 shows that the opposite was true
in our case.

Table 10-2 Elapsed time to boot from NSS

A more detailed comparison of the two scenarios showed us that the CPU usage
for an IPL from the compressed RAMdisk is indeed significantly higher (as
expected), but the 10 seconds of elapsed time missing in the case of the
uncompressed RAMdisk turn out to be spooling I/O for CP loading the pages of
the NSS in (one at a time).

However, when a Linux image was already running from its non-shared copy of
the NSS, the next image could IPL from NSS in 3 seconds—this suggests that
CP incorrectly considers all EW pages from a NSS as if they were shared pages
(where it is safe to say EW is the most obvious indication of not sharing the
page).

For an NSS like CMS, this is not a significant issue since there are just a few EW
pages in the segment. However, we can assume that excessive use of an NSS
with a lot of EW pages should be avoided.

10.7.3 Picking up IPL parameters
One of the problems with an IPL from NSS is that the kernel parameters are
defined in the NSS and will be the same for each image that IPLs the NSS.

Compressed RAMdisk image 12 s

Uncompressed RAMdisk image 19 s
230 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

The CP IPL command in z/VM has a PARM option that allows the user to pass
parameters to the system that is being IPLed. Traditionally, this is used by CMS
to control some options in the IPL process (like bypass execution of the system
profile). A logical extension of this is to use that option to tailor the command line
parameters for Linux as well (for example, to specify what disks to use).

In order to experiment with this, a “quick and dirty” patch was written against the
Linux kernel to pick up the argument from the IPL command.

Example 10-19 Patch to pass IPL parameters to the kernel

--- boelinux-2.2.16/arch/s390/bootipleckd.S Mon Apr 30 17:22:41 2001
+++ linux/arch/s390/boot/ipleckd.S Wed Aug 8 18:20:12 2001
@@ -41,6 +41,7 @@

 .org 0xf0 # Lets start now...
 _start: .globl _start
+ stm %r0,%r15,0x0fc0 # save the registers for later
 l %r1,__LC_SUBCHANNEL_ID # get IPL-subchannel from lowcore
 st %r1,__LC_IPLDEV # keep it for reipl
 stsch .Lrdcdata
@@ -112,7 +113,23 @@
 mvc 0x500(256,%r3),0x80(%r4)
 mvc 0x600(256,%r3),0x180(%r4)
 mvc 0x700(256,%r3),0x280(%r4)
-.Lrunkern:
+.Lrunkern: # We align here to 0x0200
+ j .stopnss # because that is easy to
+ .org 0x0200 # remember for the trace
+.stopnss:
+ lm %r0,%r15,0x0fc0 # last instr when not NSS
+ stm %r0,%r15,0x0fc0 # first instr from NSS
+ tr 0x0fc0(64,0),.ebcasc # translate saved registers
+ lm %r3,%r4,.Lstart
+.find00:
+ cli 0x480(%r3),0x00 # end of string?
+ la %r3,1(%r3)
+ jnz .find00
+ mvi 0x47f(%r3),0x020 # put a blank instead of 0x00
+ mvc 0x480(64,%r3),0x0fc0
+ mvi 0x4c0(%r3),0x00 # and a 0x00 in case all 64 used
+ lm %r3,%r4,.Lstart
+.notnss:
 # lhi %r2,17
 # sll %r2,12
 # st %r1,0xc6c(%r2) # store iplsubchannel to lowcore
@@ -296,7 +313,43 @@
 .long 0x47400010,0x00000000+.Llodata
 .Lrdccw:
 Chapter 10. Cloning Linux images 231

 .long 0x86400000,0x00000000
- .org 0x800
+
+
+ .org 0xe00 # EBCDIC to lowercase ASCII table
+.ebcasc:
+ .byte 0x00,0x01,0x02,0x03,0x07,0x09,0x07,0x7F
+ .byte 0x07,0x07,0x07,0x0B,0x0C,0x0D,0x0E,0x0F
+ .byte 0x10,0x11,0x12,0x13,0x07,0x0A,0x08,0x07
+ .byte 0x18,0x19,0x07,0x07,0x07,0x07,0x07,0x07
+ .byte 0x07,0x07,0x1C,0x07,0x07,0x0A,0x17,0x1B
+ .byte 0x07,0x07,0x07,0x07,0x07,0x05,0x06,0x07
+ .byte 0x07,0x07,0x16,0x07,0x07,0x07,0x07,0x04
+ .byte 0x07,0x07,0x07,0x07,0x14,0x15,0x07,0x1A
+ .byte 0x20,0xFF,0x83,0x84,0x85,0xA0,0x07,0x86
+ .byte 0x87,0xA4,0x9B,0x2E,0x3C,0x28,0x2B,0x7C
+ .byte 0x26,0x82,0x88,0x89,0x8A,0xA1,0x8C,0x07
+ .byte 0x8D,0xE1,0x21,0x24,0x2A,0x29,0x3B,0xAA
+ .byte 0x2D,0x2F,0x07,0x8E,0x07,0x07,0x07,0x8F
+ .byte 0x80,0xA5,0x07,0x2C,0x25,0x5F,0x3E,0x3F
+ .byte 0x07,0x90,0x07,0x07,0x07,0x07,0x07,0x07
+ .byte 0x70,0x60,0x3A,0x23,0x40,0x27,0x3D,0x22
+ .byte 0x07,0x61,0x62,0x63,0x64,0x65,0x66,0x67
+ .byte 0x68,0x69,0xAE,0xAF,0x07,0x07,0x07,0xF1
+ .byte 0xF8,0x6A,0x6B,0x6C,0x6D,0x6E,0x6F,0x70
+ .byte 0x71,0x72,0xA6,0xA7,0x91,0x07,0x92,0x07
+ .byte 0xE6,0x7E,0x73,0x74,0x75,0x76,0x77,0x78
+ .byte 0x79,0x7A,0xAD,0xAB,0x07,0x07,0x07,0x07
+ .byte 0x5E,0x9C,0x9D,0xFA,0x07,0x07,0x07,0xAC
+ .byte 0xAB,0x07,0x5B,0x5D,0x07,0x07,0x07,0x07
+ .byte 0x7B,0x61,0x62,0x63,0x64,0x65,0x66,0x67
+ .byte 0x68,0x69,0x07,0x93,0x94,0x95,0xA2,0x07
+ .byte 0x7D,0x6A,0x6B,0x6C,0x6D,0x6E,0x6F,0x70
+ .byte 0x71,0x72,0x07,0x96,0x81,0x97,0xA3,0x98
+ .byte 0x5C,0xF6,0x73,0x74,0x75,0x76,0x77,0x78
+ .byte 0x79,0x7A,0xFD,0x07,0x99,0x07,0x07,0x07
+ .byte 0x30,0x31,0x32,0x33,0x34,0x35,0x36,0x37
+ .byte 0x38,0x39,0x07,0x07,0x9A,0x07,0x07,0x07
+
 # end of pre initialized data is here CCWarea follows
 # from here we load 1k blocklist
 # end of function

Note that the patch shown in Example 10-19 is not a production-strength
solution, and it has not yet been submitted to the IBM team in Boeblingen who
maintain the S/390-specific portions of the kernel source.
232 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

The length of the parameters passed on the IPL command is restricted to 64
characters. This may not be sufficient in many cases, so we wrote the code such
that the parameters are appended to whatever is already in the kernel (i.e. the
parameters in the parameter file as it was used in silo).

To exploit this patch, a trace should be set up to stop execution at 0x0200, at
which point the SAVESYS command can be issued, as shown in Example 10-20.

Example 10-20 Defining and saving the NSS

CP DEFSYS SUSE216A 0-181 EW MINSIZE=40M PARMREGS=0-15
The Named Saved System (NSS) SUSE216A was successfully defined in fileid 0110.
TRACE I R 200.2
IPL 1A0 CLEAR
Tracing active at IPL
 -> 00000200 LM 980F0FC0 00000FC0 CC 2
SAVESYS SUSE216A
Named Saved System (NSS) SUSE216A was successfully saved in fileid 0110.
TRACE END ALL
Trace ended

This is very similar to what is shown in 10.7.1, “Using an NSS with just the
kernel” on page 228, except for the different address to freeze the IPL.

Example 10-21 Demonstrate the modified kernel command line

IPL SUSE216A PARM TEST=EXAMPLE
Linux version 2.2.16 (root@tux60000) (gcc version 2.95.2 19991024 (release)) #1
SMP Wed Aug 1 18:21:27 EST 2001
Command line is: ro dasd=0200,01A0,01A1,0cd root=/dev/dasdb1 noinitrd
 test=example
We are running under VM
This machine has an IEEE fpu
Initial ramdisk at: 0x02000000 (16777216 bytes)
Detected device 01A0 on subchannel 0000 - PIM = F0, PAM = F0, POM = FF
Detected device 01A1 on subchannel 0001 - PIM = F0, PAM = F0, POM = FF
Detected device 0009 on subchannel 0002 - PIM = 80, PAM = 80, POM = FF

Note: The IPL parameters are not restricted to the IPL from NSS. You can
also use them when you IPL from disk. With a little more code in the kernel, it’s
possible to make the code pick up a SAVESYS option to save the NSS, as is
done for CMS.

Tip: Additional parameters specified in the kernel command line (not used by
the kernel or device drivers) end up as environment variables to the boot
scripts. This can be used to pass options to the boot scripts (e.g. IP address).
 Chapter 10. Cloning Linux images 233

The IPL in Example 10-21 shows the test=example option added to the IPL
command. This shows up again at the end of the command line echoed by the
kernel.

The current implementation of the DASD driver requires all disks to be specified
in a single dasd= parameter. If we want to tailor the list of disks at each IPL, we
need to specify them all on the IPL command. When the dasd= parameter is
specified more than once, the last one is used. This is useful because the patch
allows us to override the list of disks defined in the parameter file.

You can do more with this than override the dasd= parameter. Parameters that
are not processed by the built-in driver during the boot process will be made
available as environment variables to the init process. This means you can pick
up values in the boot scripts (e.g. to configure your IP address). If you need the
values after the init process has completed, you can take the contents of the
/proc/cmdline pseudo file to retrieve the parameters.

Note: Because CP will uppercase the command when typed in on the
console, the patch was made to translate it to lowercase. This way we can
specify the options for Linux that need to be lowercase. This obviously causes
problems when you want to do things in uppercase. Doing it right will take
more thinking and more coding.
234 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Chapter 11. Network infrastructure
design

This chapter uses the networking theory introduced in Chapter 4, “Networking a
penguin colony” on page 73 to help you design your virtual networking
environment.

11
© Copyright IBM Corp. 2001 235

11.1 Virtual IP addressing
In this section we describe how to set up our virtual IP address solution using the
Linux dummy interface. In 4.2.3, “Virtual IP addressing” on page 79, we introduce
the concept of virtual IP addressing using dummy, and this method becomes part
of the solution presented in the remainder of this chapter.

11.1.1 Sample configuration
In our example scenario, we have a single Linux instance which uses private IP
addressing on the CTC device to the router, but requires a public IP address for
network connectivity.

11.1.2 Compiling dummy.o
If dummy interface support is not present in your kernel, you’ll have to build it.
Although this is not a major task, instructions on how to build a complete new
kernel are beyond the scope of this book. Instead, you can refer to the Linux
HOWTOs to find one on kernel complication that describes the basics.

In your kernel configuration file, dummy support is controlled by the
CONFIG_DUMMY variable. Make this value Y or M to include dummy support.
Figure 11-1 on page 237 shows a make menuconfig session at the S/390
Network device support panel. Here, we have selected to add the dummy
support as a module. We recommend that the dummy support be built as a
module, as this provides the least intrusive way of adding the support to a
running system.
236 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Figure 11-1 Compiling dummy net driver support into kernel

Once you have updated the kernel configuration, you can make just the network
module directory with the following command (issued from the root of the Linux
source tree):

make modules SUBDIRS=drivers/net

In our case, we received the following output from the compilation:

make modules SUBDIRS=drivers/net
make -C drivers/net CFLAGS="-Wall -Wstrict-prototypes -O2
-fomit-frame-pointer -fno-strict-aliasing -D__SMP__ -pipe
-fno-strength-reduce -DMODULE" MAKING_MODULES=1 modules
make[1]: Entering directory `/usr/src/linux-2.2.16.SuSE/drivers/net'
gcc -D__KERNEL__ -I/usr/src/linux/include -Wall -Wstrict-prototypes -O2
-fomit-frame-pointer -fno-strict-aliasing -D__SMP__ -pipe
-fno-strength-reduce -DMODULE -c -o dummy.o dummy.c
rm -f $TOPDIR/modules/NET_MODULES
echo dummy.o >> $TOPDIR/modules/NET_MODULES
echo drivers/net/
drivers/net/
cd $TOPDIR/modules; for i in dummy.o; do \
 ln -sf ../drivers/net//$i $i; done
make[1]: Leaving directory `/usr/src/linux-2.2.16.SuSE/drivers/net'
 Chapter 11. Network infrastructure design 237

Once the module has been built, it must be copied to the /lib/modules tree so that
the kernel utilities can find the module when required. The easiest way is to
simply copy the module using the following command:

cp drivers/net/dummy.o /lib/modules/2.2.16/net/

This is obviously for a 2.2.16 kernel; you will need to confirm the correct directory
under /lib/modules/ for your system.

After copying the module, run the command depmod -a to recreate the module
dependency file. Once this is complete, you can issue modprobe or insmod to
install the dummy module:

insmod dummy
Using /lib/modules/2.2.16/net/dummy.o

You are now ready to configure a dummy interface.

11.1.3 Configuring dummy0
In our example, our Linux instance has a CTC device configured with an IP
address of 192.168.11.1. We want to add a dummy interface with the IP address
9.12.6.99, which is visible to outside our network. The following command will do
this:

ifconfig dummy0 9.12.6.99 broadcast 9.12.6.99 netmask 255.255.255.255 mtu 1500

Now, we can ping our interface to see that it is active:

ping 9.12.6.99
PING 9.12.6.99 (9.12.6.99): 56 data bytes
64 bytes from 9.12.6.99: icmp_seq=0 ttl=255 time=10.469 ms
64 bytes from 9.12.6.99: icmp_seq=1 ttl=255 time=5.903 ms
--- 9.12.6.99 ping statistics ---
2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max = 5.903/8.186/10.469 ms

Attention: Usually, the command make modules_install is used to copy
newly-compiled modules into the right /lib/modules directory. However, if you
used the make command shown above and have not previously built a kernel
and full modules in this source tree, do not use the make modules_install
command to install the new module. Doing so would delete all of your existing
modules.
238 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Our dummy interface is ready to receive traffic. To complete the configuration, the
rest of the network will have to be configured to direct traffic for the virtual IP
address to the correct Linux instance. In our test case, we entered static routes in
the intervening routers. This allowed us to connect to services from Windows
machines on the network to our Linux instance using the virtual IP address; see
Figure 11-2:

Figure 11-2 Accessing server using virtual IP address

The next step would be to add the virtual IP address to name resolution services
such as DNS or NIS. When clients request the address for our server, these
services should respond with the virtual IP address rather than an interface
address. The interface addresses can remain in the name server, but with a
different name that identifies which interface in the server the address belongs to
(such as hub port or device name). This can aid problem resolution when tracing
connectivity faults.
 Chapter 11. Network infrastructure design 239

11.1.4 Using virtual IP addressing in penguin colonies
It may seem intensive to use host routes to access virtual IP addresses on
numerous Linux instances. However, when combined with a hierarchical routing
model, the routes required to reach the Linux servers can be aggregated into
small network routes.

For example, if you have a number of second-level Linux routers with worker
penguins behind them, you would allocate a small subnet of IP addresses to
each Linux router. The addresses used by the workers would be allocated from
this subnet. This enables you to have only a single subnet route, for the
addresses behind each Linux router. This process could be continued back up
the chain of Linux routers, “supernetting” the addresses from each lower level.

In this example, worker penguins reside at the third level of a penguin colony
design. Two levels of routing are being performed, with the first level done by a
VM TCP/IP guest.

Important: This method of implementing a virtual IP address only works for
connections inbound to the Linux instance. For outbound connections, Linux
will use the address of the network interface. We can use NAT to make the
traffic appear to originate at the dummy interface, and this is explained in
11.2.12, “Examples for using NAT in the enterprise and ISP/ASP” on
page 265.

Attention: This process is known as route summarization, and is often
performed in TCP/IP networks to control and minimize the amount of routing
data transferred between routers.

Normally, route summarization is performed automatically by dynamic routing
protocols in routers, but the method shown here reduces (or even eliminates)
the need to run a dynamic routing protocol within the penguin colony.
240 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Figure 11-3 Example penguin colony network

We are using IUCV connections inside the penguin colony shown in Figure 11-3,
so we work within the limitations of the IUCV driver in having a maximum of 10
IUCV links defined. This means that each router serves nine workers. We also
must work within TCP/IP subnetting rules, which dictate that to provide 9 IP
addresses in a subnet we must use a '/28' mask, which provides 14 addresses
for use (this gives us a small amount of room for expansion).

Virtual Subnet Router name Virtual IP hosts Route served
TUXnetA TUXR1 9.12.42.1 - 9.12.42.14 9.12.42.0/28
TUXnetB TUXR2 9.12.42.17 - 9.12.42.30 9.12.42.16/28
TUXnetC TUXR3 9.12.42.33 - 9.12.42.46 9.12.42.32/28
TUXnetD TUXR4 9.12.42.49 - 9.12.42.62 9.12.42.48/28

TUXR1

TUXR2

TUXR4VM
TCP/IP

TUXR3

IP NetworkRtr1 Rtr2

TUXnetA

TUXnetB TUXnetC

TUXnetD

TUXCWWW
9.12.42.33

hostA
172.16.11.9

Rtr3
 Chapter 11. Network infrastructure design 241

Each router penguin must have the host routes to all the worker penguins it
manages (these would usually be added automatically when the interfaces are
configured, but because we are using virtual addresses on dummy interfaces,
they would have to be configured in advance). In the VM TCP/IP stack, however,
only the four subnet routes shown in the previous table are needed. The relevant
section of the GATEWAY statement from the TCP/IP PROFILE of the TCP/IP
guest is shown here:

GATEWAY
; IP Network First Link Max. Packet Subnet Subnet
; Address Hop Name Size (MTU) Mask Value
; ---------- ------------ ------ ----------- ------------ -----------
 9 192.168.1.1 TUXR1 1500 0.255.255.240 0.12.42.0
 9 192.168.1.2 TUXR2 1500 0.255.255.240 0.12.42.16
 9 192.168.1.3 TUXR3 1500 0.255.255.240 0.12.42.32
 9 192.168.1.4 TUXR4 1500 0.255.255.240 0.12.42.48

Routers in the enterprise network that need to direct traffic to VM TCP/IP for
forwarding now only require a single route that covers all of our worker penguins.
In this case, the total range of host addresses goes from 9.12.42.1 to
9.12.42.62. This is the 9.12.42.0 network with a 255.255.255.192 mask.

As an example, if the network uses Cisco routers, the IOS configuration
command to add this network route is:

Rtr3(config)# ip route 9.12.42.0 255.255.255.192 192.168.0.1

where 192.168.0.1 is the address of the OSA adapter used by VM TCP/IP to
connect to the IP network. This command would be entered at the router
adjacent to the OSA.

Alternatively, to allow a Linux host on the same network as the OSA to connect to
the penguin colony, the route command would look like this:

route add -net 9.12.42.0 netmask 255.255.255.192 gw 192.168.0.1

To verify this, we can follow the path of a packet through the network. In our
diagram, hostA starts a Web browser and requests a document from
TUXCWWW. The IP address of TUXCWWW is 9.12.42.33, which is within the
network 9.12.42.0/26.

Note: It should not be necessary to manually enter this route into all routers in
the network. A dynamic routing protocol in the IP network would usually take
care of propagating the route to the rest of the network. Also, by using a
dynamic routing protocol in VM TCP/IP, the route could be advertised directly
from VM.
242 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

The routers in the network have learned that the bottom router in the diagram is
the path to the 9.12.42.0/26 network, so the packet is forwarded there, and that
router forwards it to VM TCP/IP. When the VM TCP/IP stack receives the packet,
it recognizes that 9.12.42.33 is part of the 9.12.42.32/28 network, and forwards
the packet to TUXR3.

Finally the packet arrives at TUXR3, and it knows that 9.12.42.33 is a host route
accessible via the IUCV connection to the TUXCWWW guest. The packet is
forwarded to TUXCWWW, the destination.

The path for return traffic, while inside the penguin colony, would simply use
default routes. The worker penguins nominate the router penguin as default, and
the router penguins nominate VM TCP/IP as default. VM TCP/IP, in turn, would
use the appropriate network router as default. Once into the IP network, normal
IP routing would return the traffic to hostA.

If we need to add more routers for more penguins, changing the mask from
255.255.255.192 to 255.255.255.128 would change the definition to the
9.12.42.0/25 network, which covers host addresses from 9.12.42.1 to
9.12.42.126. This means that we can add another four routers to the
configuration, carrying on the same pattern for subnet allocation as the original
four routers.

11.2 Packet filtering and NAT with IPTables
In this section we present an example configuration using the designs discussed
in 4.3, “Packet filtering and Network Address Translation” on page 81.

Attention: Consult your networking team, or a reference on TCP/IP routing,
before you decide on an addressing scheme. There are dependencies on
subnetting and supernetting that can become complex and are not easily
changed after the network is in production, so planning for expansion is very
important.

Also, the details of ensuring that the routes to the worker penguins are
properly distributed to the IP network must be analyzed. As host configurators,
don't assume that just because the routing network uses a dynamic routing
protocol, that the right thing will happen “automagically". Discuss your
requirements with the network team, so that a solution which is mutually
agreeable can be achieved.
 Chapter 11. Network infrastructure design 243

11.2.1 What you need to run packet filtering
To set up a packet filter server with IPTables, your Linux installation needs to
meet the following requirements:

1. You need kernel Version 2.4.5 or higher with the latest S/390 patches from the
Linux for S/390 developerWorks page at:

http://www10.software.ibm.com/developerworks/opensource/linux390/index.shtml

We recommend that you use the latest available stable version. The kernel
has to be compiled with support for netfilters. This means that you have to
select CONFIG_NETFILTER in the kernel configuration. Depending of your
packet filtering configuration, you also need to select the proper configuration
options under IP: Netfilter Configuration. We recommend that you compile
all your networking options and available modules. If you want to use your
Linux server as a router, choose IP - advanced router under TCP/IP
networking. This will also increase the routing performance.

2. Loadable kernel modules version 2.4.6 or newer with the latest S/390 patches
from the Linux for S/390 developerWorks page.

3. IPTables 1.2.2 or newer.

If your Linux installation does not include the required software levels, you should
download all available patches and compile new versions of the software
yourself. Usually the kernel that comes with a distribution is not enabled to
support netfilters, so you need to recompile the kernel with the required support.

11.2.2 Network configuration for a packet filtering implementation
In this section we describe our lab network setup for implementing a packet
filtering solution.

Important: IPTables is the follow-on to IPChains, which was used in the 2.2
kernel.
244 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

http://www10.software.ibm.com/developerworks/opensource/linux390/index.shtml

Figure 11-4 Lab network setup No.1

As you can see in Figure 11-4, we set up a two-layered router/firewall
implementation. All our Linux images are running inside VM. In the example we
have the following setup:

1. vmlinux4

vmlinux4 is acting as a main router for our penguin colony. It is connected to
the outside world via an Ethernet connection using an lcs driver. The setup for
the eth0 interface is as follows:

ETH0 9.12.6.80 255.255.255.0

vmlinux4 is then connected to the second-layer router/firewall VM Linux9 over
the IUCV connection:

IUCV0 192.168.1.1 Pointopoint 192.168.1.2

In our example, we used SuSE 7.2 31-bit distribution; the entries in the
/etc/rc.config file for this setup are shown in Example 11-1 on page 246.

VMLINUX4

Internet/Intranet

VMLINUX9

TUX00000 TUX0MSTR

ETH0 (lcs)
9.12.6.80

IUCV0 (iucv)
192.168.1.1

IUCV0 (iucv0)
192.168.1.2

IUCV2 (iucv)
10.0.1.1

IUCV1 (iucv)
10.0.0.1

IUCV0 (iucv)
10.0.0.2

IUCV0 (iucv)
10.0.1.2

DUMMY0 (dummy)
192.168.2.2

DUMMY0 (dummy)
192.168.2.1

192.168.1.2 0.0.0.0 255.255.255.255 IUCV0
192.168.2.0 192.168.1.2 255.255.255.255 IUCV0
9.12.6.80 0.0.0.0 255.255.255.0 ETH0
default 9.12.6.75

192.168.1.1 0.0.0.0 255.255.255.255 IUCV0
10.0.0.2 0.0.0.0 255.255.255.255 IUCV1
10.0.1.2 0.0.0.0 255.255.255.255 IUCV2
192.168.2.1 10.0.0.2 255.255.255.255 IUCV1
192.168.2.2 10.0.0.2 255.255.255.255 IUCV2
default 192.168.1.1

10.0.1.1 0.0.0.0 255.255.255.255 IUCV0
default 10.0.1.1

10.0.1.1 0.0.0.0 255.255.255.255 IUCV0
default 10.0.1.1

OSA
 Chapter 11. Network infrastructure design 245

Example 11-1 /etc/rc.config file entries for vmlinux4

#
Networking
#
Number of network cards: "_0" for one, "_0 _1 _2 _3" for four cards
#
NETCONFIG="_0 _1"

#
IP Adresses
#
IPADDR_0="9.12.6.80"
IPADDR_1="192.168.1.1"
IPADDR_2="192.168.2.1"
IPADDR_3="10.0.0.1"

#
Network device names (e.g. "eth0")
#
NETDEV_0="eth0"
NETDEV_1="iucv0"
NETDEV_2="NONE"
NETDEV_3="NONE

#
Parameters for ifconfig, simply enter "bootp" or "dhcpclient" to use the
respective service for configuration.
Sample entry for ethernet:
IFCONFIG_0="192.168.81.38 broadcast 192.168.81.63 netmask 255.255.255.224"
#
IFCONFIG_0="9.12.6.80 broadcast 9.12.6.255 netmask 255.255.255.0 mtu 1492 up"
IFCONFIG_1="192.168.1.1 pointopoint 192.168.1.2 mtu 1492 up"
IFCONFIG_2=""
IFCONFIG_3=""

#
Runtime-configurable parameter: forward IP packets.
Is this host a router? (yes/no)
#
IP_FORWARD="yes"

We also have to set up the correct routing tables so that our second-level
router/firewall and the servers connected to it will be accessible from the
outside world. In our example, all the servers connected to the second-layer
router/firewall have IP addresses in the 192.168.2.0 subnet.
246 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

In our example we have the following routes:

– Default route 9.12.6.75
– Route to the 192.168.2.0 subnet via the second-layer router/firewall

This means that we forward all the traffic to the subnet 192.168.2.0 to the
second-level router/firewall.

Example 11-2 shows the /etc/route.conf file used in our installation:

Example 11-2 /etc/route.conf file for vmlinux4

9.12.6.0 0.0.0.0 255.255.255.0 eth0
192.168.1.2 0.0.0.0 255.255.255.255 iucv0
default 9.12.6.75 0.0.0.0 eth0
192.168.2.0 192.168.1.2 255.255.255.0 iucv0

2. vmlinux9

vmlinux9 is our second layer router/firewall. vmlinux9 is connected to the
vmlinux4 over the IUCV connection IUCV0:

IUCV0 192.168.1.2 Pointopoint 192.168.1.1

Each server connected to the router/firewall on the second layer uses its own
IUCV interface. In our example, we have two servers connected with IUCV1
and IUCV2 connections:

IUCV0 10.0.0.1 Pointopoint 10.0.0.2
IUCV0 10.0.1.1 Pointopoint 10.0.1.2

Example 11-3 shows the /etc/rc.config file entries for this setup:

Example 11-3 /etc/rc.config file entries for vmlinux9

#
Networking
#
Number of network cards: "_0" for one, "_0 _1 _2 _3" for four cards
#
NETCONFIG="_0 _1 _2"

#
IP Adresses
#
IPADDR_0="192.168.1.2"
IPADDR_1="10.0.0.1"
IPADDR_2="10.0.1.1"
IPADDR_3=""

#
Network device names (e.g. "eth0")
#
NETDEV_0="iucv0"
 Chapter 11. Network infrastructure design 247

NETDEV_1="iucv1"
NETDEV_2="iucv2"
NETDEV_3=""

#
Parameters for ifconfig, simply enter "bootp" or "dhcpclient" to use the
respective service for configuration.
Sample entry for ethernet:
IFCONFIG_0="192.168.81.38 broadcast 192.168.81.63 netmask 255.255.255.224"
#
IFCONFIG_0="192.168.1.2 pointopoint 192.168.1.1 mtu 1492 up"
IFCONFIG_1="10.0.0.1 pointopoint 10.0.0.2 mtu 1492 up"
IFCONFIG_2="10.0.1.1 pointopoint 10.0.1.2 mtu 1492 up"
IFCONFIG_3=""

#
Runtime-configurable parameter: forward IP packets.
Is this host a router? (yes/no)
#
IP_FORWARD="yes"

We also have to set up the correct routing tables so that the servers
connected to this router will be accessible from outside world. In our example,
all servers have IP addresses in the 192.168.2.0 subnet and we have the
following routes:

– Default route 192.168.1.1
– Route to the 192.168.2.1 address via the IUCV1 connection
– Route to the 192.168.2.2 address via the IUCV2 connection

The traffic for each individual server is forwarded to the unique connection
used just for this server. In this case, only the packets with the address of the
destination server will go to this server.

Example 11-4 shows the /etc/route.conf file used in our configuration:

Example 11-4 /etc/route.conf file for vmlinux9

192.168.1.1 0.0.0.0 255.255.255.255 iucv0
10.0.0.2 0.0.0.0 255.255.255.255 iucv1
10.0.1.2 0.0.0.0 255.255.255.255 iucv2
default 192.168.1.1 0.0.0.0 iucv0
192.168.2.1 10.0.0.2 255.255.255.255 iucv1
192.168.2.2 10.0.1.2 255.255.255.255 iucv2

3. tux0mstr

tux0mstr is a first server in our colony. It has an IUCV connection IUCV0 to
the second-layer router/firewall vmlinux9:

IUCV0 10.0.0.2 Pointopoint 10.0.0.1
248 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

The real address of the server is implemented on the DUMMY0 interface. We
used this approach because we wanted to have the real subnet in the
connection to the router/firewall:

DUMMY0 192.168.2.1 255.255.255.255

Example 11-5 shows the corresponding entries in the /etc/rc.config file used
in our configuration:

Example 11-5 /etc/rc.config file entries for tux0mstr

#
Networking
#
Number of network cards: "_0" for one, "_0 _1 _2 _3" for four cards
#
NETCONFIG="_0 _1"

#
IP Adresses
#
IPADDR_0="10.0.0.2"
IPADDR_1="192.168.2.1"
IPADDR_2=""
IPADDR_3=""

#
Network device names (e.g. "eth0")
#
NETDEV_0="iucv0"
NETDEV_1="dummy0"
NETDEV_2=""
NETDEV_3=""

#
Parameters for ifconfig, simply enter "bootp" or "dhcpclient" to use the
respective service for configuration.
Sample entry for ethernet:
IFCONFIG_0="192.168.81.38 broadcast 192.168.81.63 netmask 255.255.255.224"
#
IFCONFIG_0="10.0.0.2 pointopoint 10.0.0.1 mtu 1492 up"
IFCONFIG_1="192.168.2.1 broadcast 192.168.2.1 netmask 255.255.255.255 mtu 1492
up"
IFCONFIG_2=""
IFCONFIG_3=""

#
Runtime-configurable parameter: forward IP packets.
Is this host a router? (yes/no)
#

 Chapter 11. Network infrastructure design 249

IP_FORWARD="yes"

For the routing, we just need to set up the default route to the second-layer
router/firewall. This means that all the packets are traveling back to the router.

Example 11-6 shows the /etc/route.conf file used in our configuration:

Example 11-6 tux0mstr /etc/route.conf file

10.0.0.1 0.0.0.0 255.255.255.255 iucv0
default 10.0.0.1 0.0.0.0 iucv0

4. TUX00000

TUX00000 is our second server in the colony and uses the same approach
for the network setup as tux0mstr. Example 11-7 shows the /etc/rc.config file
entries:

Example 11-7 /etc/rc.config file entries for TUX00000

#
Networking
#
Number of network cards: "_0" for one, "_0 _1 _2 _3" for four cards
#
NETCONFIG="_0 _1"

#
IP Adresses
#
IPADDR_0="10.0.1.2"
IPADDR_1="192.168.2.2"
IPADDR_2=""
IPADDR_3=""

#
Network device names (e.g. "eth0")
#
NETDEV_0="iucv0"
NETDEV_1="dummy0"
NETDEV_2=""
NETDEV_3=""

#
Parameters for ifconfig, simply enter "bootp" or "dhcpclient" to use the
respective service for configuration.
Sample entry for ethernet:
IFCONFIG_0="192.168.81.38 broadcast 192.168.81.63 netmask 255.255.255.224"
#
IFCONFIG_0="10.0.1.2 pointopoint 10.0.1.1 mtu 1492 up"
250 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

IFCONFIG_1="192.168.2.2 broadcast 192.168.2.2 netmask 255.255.255.255 mtu 1492
up"
IFCONFIG_2=""
IFCONFIG_3=""

#
Runtime-configurable parameter: forward IP packets.
Is this host a router? (yes/no)
#
IP_FORWARD="yes"

Example 11-8 shows the /etc/route.conf file used in our configuration:

Example 11-8 TUX00000 /etc/route.conf file

10.0.1.1 0.0.0.0 255.255.255.255 iucv0
default 10.0.1.1 0.0.0.0 iucv0

As you can see from the /etc/rc.config file entries, we enabled IP forwarding on
both of our routers/firewalls and servers. With IP forwarding enabled, Linux can
act as a router. In our example we did not use any router daemons for the routing
purposes, but instead simply defined static routes.

11.2.3 How to permanently enable IP forwarding
By default, IP Forwarding is not enabled. In order to enable it, edit the
/etc/rc.config file and make sure IP_FORWARD is set to yes. You can check the
status of IP_FORWARD setting with the following command:

grep IP_FORWARD /etc/rc.config

The output should be similar to:

IP_FORWARD=”yes”

Run SuSEconfig to commit the changes, and restart the network by typing the
following:

rcnetwork restart

Alternatively, you can execute the following command:

/etc/init.d/network restart

You can check if your IP forwarding is enabled by executing the following
command:

cat /proc/sys/net/ipv4/ip_forward

If IP forwarding is enabled, the output of this command will be 1.
 Chapter 11. Network infrastructure design 251

Now your server is ready to act as a router. You can verify this by pinging the eth0
interface with IP address 9.12.6.80 from the tux0mstr Linux on 192.168.2.1 IP
address; you are pinging the external interface in our main router from the Linux
server on the 10.0.0.2 IP.

As you’ll notice, there will be no reply to this ping because the ping command will
use the IP address of the IUCV0 connection as the source address—not the
address of the DUMMY0 adapter that is used to assign the external address of
the server. When the packet is received by the main router/firewall, this will reply
to the address 10.0.0.2, because this address was specified as the source for the
ping.

Since we have not have defined any special route to the 10.0.0.0 subnet, the
packet will go the default gateway 9.12.6.75, and of course the gateway will drop
the packet because it does not have the route definition for the 10.0.0.0 subnet.
To resolve this issue, we have to add the following route to the /etc/route.conf file
on the vmlinux4 Linux system:

– Route to the 10.0.0.0 subnet via the second layer router/firewall

Example 11-9 shows the modified /etc/route.conf file:

Example 11-9 Modified /etc/rc.config file

9.12.6.0 0.0.0.0 255.255.255.0 eth0
192.168.1.2 0.0.0.0 255.255.255.255 iucv0
default 9.12.6.75 0.0.0.0 eth0
192.168.2.0 192.168.1.2 255.255.255.0 iucv0
10.0.0.0 192.168.1.2 255.255.0.0 iucv0

After modifying this file, you should execute the following command:

/etc/initd.d/route restart

Now you should try to execute the ping command on the tux0mstr Linux again:

ping 9.12.6.80

If the ping is successful, both of your routers are working correctly. You will see
output similar to Example 11-10:

Example 11-10 Pinging the main router external interface

tux0mstr:~ # ping 9.12.6.80
PING 9.12.6.80 (9.12.6.80): 56 data bytes
64 bytes from 9.12.6.80: icmp_seq=0 ttl=254 time=0.405 ms
64 bytes from 9.12.6.80: icmp_seq=1 ttl=254 time=0.425 ms
64 bytes from 9.12.6.80: icmp_seq=2 ttl=254 time=0.430 ms
64 bytes from 9.12.6.80: icmp_seq=3 ttl=254 time=0.427 ms
64 bytes from 9.12.6.80: icmp_seq=4 ttl=254 time=0.403 ms
252 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

--- 9.12.6.80 ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max = 0.403/0.418/0.430 ms

To access the servers on 192.168.2.0 subnet in our colony from the outside
world, the routers on the network have to be updated to reflect this configuration.
This means that all the traffic for the 192.168.2.0 subnet has to go to the IP
address 9.12.6.80 in our example.

In our test environment, we had the computers on the same subnet as our main
router external interface. So we simply added the static route with the command
from the Windows 2000 command prompt, and we were able to access the
servers in our colony:

C:\> route add 192.168.2.0 mask 255.255.255.0 9.12.6.80

At this point, following our process, the routers for your Linux colony inside the
zSeries should also be successfully set up.

11.2.4 The first IP Tables rules
Now we can deploy the routers. We want to limit the access to our servers in the
colony, as shown in Figure 11-4 on page 245, so in our example, we’ll allow only
HTTP protocol to our servers. Before we implement our protection, however, we
try to ping our server with the command:

ping 192.168.2.1

Example 11-11 shows the result:

Example 11-11 Pinging the server

C:\>ping 192.168.2.1

Pinging 192.168.2.1 with 32 bytes of data:

Reply from 192.168.2.1: bytes=32 time=10ms TTL=253
Reply from 192.168.2.1: bytes=32 time<10ms TTL=253
Reply from 192.168.2.1: bytes=32 time<10ms TTL=253
Reply from 192.168.2.1: bytes=32 time<10ms TTL=253

Ping statistics for 192.168.2.1:
 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
 Minimum = 0ms, Maximum = 10ms, Average = 2ms

The following steps will implement security rules for the servers.
 Chapter 11. Network infrastructure design 253

1. We created a new chain for our rules with the command:

iptables -N httpallow

2. We defined the rule, in our httpallow chain, which allows all connections from
the computer we’re using for remote management of the router/firewall with
the command:

iptables -A httpallow -s 9.12.6.133 -j ACCEPT

3. We defined the rules, in our httpallow chain, which allows building a new
connection only for the HTTP protocol with the command:

iptables -A httpallow -m state --state NEW -p TCP --dport www -j ACCEPT
iptables -A httpallow -m state --state NEW -p UDP--dport www -j ACCEPT

4. We defined the rule, in our httpallow chain, which keeps alive the established
and related connections with the command:

iptables -A httpallow -m state --state ESTABLISHED,RELATED -j ACCEPT

5. With the following command we defined the rule, in our httpallow chain, which
drops all other incoming packets:

iptables -A httpallow -j DROP

6. Finally, with the following commands, we need to define that all the packets
from the INPUT and FORWARD chain will jump into our httpallow chain:

iptables -A INPUT -j httpallow
iptables -A FORWARD -j httpallow

Now we were ready to test our security implementation. We pinged the server
with the command:

ping 192.168.2.1

Example 11-12 shows the output:

Example 11-12 Pinging after applying security rules

C:\>ping 192.168.2.1

Pinging 192.168.2.1 with 32 bytes of data:

Reply from 9.32.44.3: Destination host unreachable.
Reply from 9.32.44.3: Destination host unreachable.
Reply from 9.32.44.3: Destination host unreachable.
Request timed out.

Note: We discuss the meaning of the iptables commands in “Using IP Tables”
on page 256.
254 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Ping statistics for 192.168.8.1:
 Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),
Approximate round trip times in milli-seconds:
 Minimum = 0ms, Maximum = 0ms, Average = 0ms

As you can see, ping is not working. This means our security was successful!
Next we tried to connect to the server with a browser; Figure 11-5 shows the
screen we received:

Figure 11-5 Accessing the Web server after applying security rules

11.2.5 Checking your filter
With the /usr/sbin/iptables command you can set up your rules for packet
checking.
 Chapter 11. Network infrastructure design 255

You can examine the current checking policies by using the -L flag with the
iptables command. You should see output similar to that shown in
Example 11-13:

Example 11-13 Listing of the default IP Tables policies

iptables -L
Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

11.2.6 Using IP Tables
With the /usr/sbin/iptables command, you can create, change or delete your
own policies for checking packets or you can modify built-in policies. You cannot
delete the built-in chains, but you can append your rules to the existing chains or
even create your own chains.

To manage whole chains you can use the parameters described in Table 11-1.

Table 11-1 Parameters for managing the whole chains

Note: By default, all checking policies are set to Accept. This means that all
packets can come in, go through, or go out from your server without any
restrictions.

Parameter Description

-N Create a new chain

-X Delete an empty chain

-P Change the policy for a built-in chain

-L List the rules in a chain

-F Flush the rules out of a chain

-Z Zero the packets and the byte counters on all rules in a chain

-E Rename the chain
256 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

For manipulating rules inside the chain, you can use the parameters explained in
Table 11-2.

Table 11-2 Parameters for managing rules in the chain

11.2.7 How to create a rule
Each rule specifies a set of conditions the packet must meet, and what to do if
those conditions are met.

The most common syntax for creating a new rule is as follows:

/usr/sbin/iptables -t table -A INPUT -s source -d destination \
-p protocol -i input_interface -o output_interface -f -p extension \
-m match_extension -j target

The parameters are described in the Table 11-3.

Table 11-3 IP Tables parameters

Parameter Description

-A Append new rule to a chain

-I Insert a new rule in a chain at some position

-R Replace a rule at some position in a chain

-D Delete a rule at some position in a chain

-D Delete the first rule that matches in a chain

Parameter Description

-t table The table to manipulate. If you omit this parameter, the
table “filter” will be used. The “filter” table holds the rules
for packet filtering.

-A INPUT Append a new rule to an INPUT chain.

-s source IP address or host name of the source.

-d destination IP address or host name of the destination.

-p protocol Type of the protocol to which a rule is applied.

-i input_interface The input network interface to match.

-o output_interface The output network interface to match.

-f Fragments flag - if this is used, the rule is only valid for
second and further fragments through.
 Chapter 11. Network infrastructure design 257

-p extension With this you invoke extension. The following “new
match” extensions are available (you can also use a
custom-supplied extension):

1. TCP (-p tcp), the parameters are:

--tcp-flags
(ALL,SYN,ACK,FIN,RST,URG,PSH,NONE)

--syn (short for --tcp-flags SYN,RST,ACK,SYN)

--sport (source port)

--dport (destination port)

--tcp-option (examine TCP options)

2. UDP (-p udp), the parameters are:

--sport (source port)

--dport (destination port)

3. ICMP (-p icmp), the parameters are:

--icmp-type (icmp type)

-m match_extension With this option you load “other match” extensions:

1. mac (-m mac), the parameters are:

--mac-source (source MAC address)

2. limit (-m limit), the parameters are:

--limit (maximum average number of matches per
second)

--limit-burst (maximum burst, before --limit takes
over)

3. owner (-m owner), the parameters are:

--uid-owner (user ID)

--gid-owner (group ID)

--pid-owner (process ID)

--sid-owner (session ID)

4. state (-m state), the parameters are:

--state (NEW - new packets, ESTABLISHED -
packets which belong to the established connection,
RELATED - related packets, INVALID - unidentified
packets)

Parameter Description
258 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

For example, if you want to create a rule for denying the ICMP protocol packets,
which are used when you execute the ping command, for a specific IP address
you will do this by executing the command:

/usr/sbin/iptables -A input -s IP_address -p icmp -j DROP

If you omit the protocol definition, all packets will be denied. So for example, to
block access to your machine from network 172.168.1.0 with subnet mask
255.255.255.0, execute the following command:

/usr/sbin/iptables -A input -s 172.168.1.0/255.255.255.0 -j DROP

Or you can use:

/usr/sbin/iptables -A input -s 172.168.1.0/24 -j DROP

As you can see, the subnet mask can be specified with the number of used bits
for that mask.

-j target What we do with the packet that matches the rule. The
built-in targets are:

1. ACCEPT - packet will be accepted

2. DROP - packet will be dropped

For the target, you can also use a user-defined chain.
By providing a kernel module or iptables extension, you
can have additional targets. The default extension in the
iptables distribution are:

1. LOG - kernel logging of matching packets; the
parameters are:

--log-level (log level)

--log-prefix (the string up to 29 characters, which will
show at the beginning of the message)

2. REJECT - the same as DROP, but sender is sent the
ICMP port unreachable error message. In some
cases the message is not sent - RFC 1122, the
parameters are:

--reject-with (you can alter the replay packet used)

There are also two special built-in targets:

1. RETURN - for a built-in chain, the policy of the chain
is executed; for a user-defined chain, the traversal
continues at the previous chain, just after the rule
which jumped to this chain

2. QUEUE - the packet is queued to the userspace
processing

Parameter Description
 Chapter 11. Network infrastructure design 259

To disallow any traffic from your server to network 172.168.1.0 with subnet mask
255.255.255.0, use this command:

/usr/sbin/iptables -A output -d 172.168.1.0/24 -j DROP

Here we used the -d parameter to specify the destination address.

11.2.8 Using the inversion ! option
With some parameters, you can use the inversion option !, which means that the
rule will be applied to everything except the parameters specified after !. For
example, if you want to deny packets that come from all IP addresses except
from network 192.168.1.0 with subnet mask 255.255.255.0, you can do this by
executing the command:

/usr/sbin/iptables -A input -s ! 192.168.1.0/24 -j DROP

11.2.9 Making the rules permanent
To make rules permanent, you have to create the script with the IPTables
commands and integrate this script into your boot process. Using the example
from 11.2.4, “The first IP Tables rules” on page 253, we created a script similar to
that shown in Example 11-14:

Example 11-14 Script for setting up rules

#! /bin/sh
/usr/sbin/iptables -N httpallow
/usr/sbin/iptables -A httpallow -s 9.12.6.133 -j ACCEPT
/usr/sbin/iptables -A httpallow -m state --state NEW -p TCP --dport www -j ACCEPT
/usr/sbin/iptables -A httpallow -m state --state ESTABLISHED,RELATED -j ACCEPT
/usr/sbin/iptables -A httpallow -j DROP
/usr/sbin/iptables -A INPUT -j httpallow
/usr/sbin/iptables -A FORWARD -j httpallow

In our example we named this script /etc/init.d/filters. Because the default run
level for our system is 3, we positioned this script to execute at the end of the run
level 3 with the following command:

ln -s /etc/init.d/rc3.d/S99filters /etc/init.d/filters

After rebooting, we verified that the rules were loaded by using the following
command:

/usr/sbin/iptables -L

Note: The rules you make are not permanent, so next time you restart the
server they will be lost.
260 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Example 11-15 shows our output:

Example 11-15 Current rules

/usr/sbin/iptables -L
Chain INPUT (policy ACCEPT)
target prot opt source destination
httpallow all -- anywhere anywhere

Chain FORWARD (policy ACCEPT)
target prot opt source destination
httpallow all -- anywhere anywhere

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

Chain httpallow (2 references)
target prot opt source destination
ACCEPT all -- tot67.itso.ibm.com anywhere
ACCEPT tcp -- anywhere anywhere state NEW tcp
dpt:http
ACCEPT all -- anywhere anywhere state
RELATED,ESTABLISHED
DROP all -- anywhere anywhere

11.2.10 Sample packet filtering configuration for ISP/ASP
In this section we show how to create packet filtering rules to protect the ISP/ASP
environment. For this environment, we assume that the following services will be
offered on the servers:

1. Web service - HTTP, HTTPS
2. FTP service - FTP
3. SMTP service - SMTP
4. POP3 service - POP3
5. Secure shell service - SSH

For the rules for each service, we follow the approach described in 11.2.4, “The
first IP Tables rules” on page 253. For each type of service, we will allow NEW
TCP and UDP packets, and packets from ESTABLISHED and RELATED
connections.

In our example, we will allow all packets from the administration computer with IP
address 9.12.6.133; all other packets will be dropped. Example 11-16 on
page 262 shows the script we used to set these rules; we named this script
/etc/init.d/filters.
 Chapter 11. Network infrastructure design 261

Example 11-16 ISP/ASP packet filtering security

#! /bin/sh
/usr/sbin/iptables -N httpallow
/usr/sbin/iptables -A httpallow -s 9.12.6.133 -j ACCEPT
/usr/sbin/iptables -A httpallow -m state --state ESTABLISHED,RELATED -j ACCEPT
/usr/sbin/iptables -A httpallow -m state --state NEW -p TCP --dport www -j ACCEPT
/usr/sbin/iptables -A httpallow -m state --state NEW -p UDP --dport www -j ACCEPT
/usr/sbin/iptables -A httpallow -m state --state NEW -p TCP --dport https -j ACCEPT
/usr/sbin/iptables -A httpallow -m state --state NEW -p UDP --dport https -j ACCEPT
/usr/sbin/iptables -A httpallow -m state --state NEW -p TCP --dport ftp-data -j ACCEPT
/usr/sbin/iptables -A httpallow -m state --state NEW -p UDP --dport ftp-data -j ACCEPT
/usr/sbin/iptables -A httpallow -m state --state NEW -p TCP --dport ftp -j ACCEPT
/usr/sbin/iptables -A httpallow -m state --state NEW -p TCP --dport smtp -j ACCEPT
/usr/sbin/iptables -A httpallow -m state --state NEW -p UDP --dport smtp -j ACCEPT
/usr/sbin/iptables -A httpallow -m state --state NEW -p TCP --dport pop3 -j ACCEPT
/usr/sbin/iptables -A httpallow -m state --state NEW -p UDP --dport pop3 -j ACCEPT
/usr/sbin/iptables -A httpallow -m state --state NEW -p TCP --dport ssh -j ACCEPT
/usr/sbin/iptables -A httpallow -m state --state NEW -p UDP --dport ssh -j ACCEPT
/usr/sbin/iptables -A httpallow -m state --state NEW -p TCP --dport domain -j ACCEPT
/usr/sbin/iptables -A httpallow -m state --state NEW -p UDP --dport domain -j ACCEPT
/usr/sbin/iptables -A httpallow -j DROP
/usr/sbin/iptables -A INPUT -j httpallow
/usr/sbin/iptables -A FORWARD -j httpallow

Note: This script should be started each time the server is restarted, as
described in 11.2.9, “Making the rules permanent” on page 260.

We also created a script for deleting all rules from the /etc/init.d/filters script. This
script is called /etc/init.d/filters-down and is shown in Example 11-17.

Example 11-17 Script for deleting rules

#! /bin/sh
/usr/sbin/iptables -F httpallow
/usr/sbin/iptables -F INPUT
/usr/sbin/iptables -F FORWARD
/usr/sbin/iptables -X httpallow

To delete all rules, execute the following command:

/etc/init.d/filters-down

To re-enable the rules, execute the following command:

/etc/init.d/filters
262 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

11.2.11 Using IPTables for NAT
In 4.3.5, “Network Address Translation (NAT)” on page 88, we introduced the
concept of NAT. In this section we discuss the types of NAT and how they are set
up using IPtables.

To manipulate NAT chains we use IP Tables, the same tool used for packet
filtering—but instead of using the default table “filter”, we use table “nat”.

Figure 11-6 shows where NAT takes place in the packet’s journey through the
router/firewall.

Figure 11-6 NAT role in IP packet travel

Basically, NAT is implemented using the same principle as packet filtering, using
three built-in chains to control address translation. As you can see in Figure 11-6
those chains are:

1. PREROUTING - for DNAT, when packets first come in

2. POSTROUTING - for SNAT, when packets leave

3. OUTPUT - for DNAT of locally generated packets

Tip: If for some reason your network is not working after executing the script
/etc/init.d/filters-down, you should execute the following commands:

/etc/init.d/network restart
/etc/init.d/route restart

Note: In the Linux 2.2 kernel, different tools were used to set up filtering and to
set up NAT, so this is an improvement.

Incoming
Packets

Routing
Decision

FORWARD
CHAIN

INPUT
CHAIN

Local
Process

OUTPUT
CHAIN

POSTROUTING
SNAT

PREROUTING
DNAT

Outgoing
Packets

OTPUT
DNAT
 Chapter 11. Network infrastructure design 263

Source NAT
Source NAT is specified with rule -j SNAT and the --to-source option, which
specifies the IP address, a range of the IP addresses, and optional port of range
of ports. You can also use the -o (outgoing interface) option to specify that the
rule only applies to traffic on a particular interface.

For example, to change the source address of your packet to 172.168.2.1,
execute the command:

iptables -t nat -A POSTROUTING -o eth0 -j SNAT --to-source 172.168.2.1

To change the source address to 172.168.2.1, ports 1-1023, use this command:

iptables -t nat -A POSTROUTING -p tcp -o eth0 -j SNAT \
--to-source 172.168.2.1:1-1023

Masquerading
See 4.3.5, “Network Address Translation (NAT)” on page 88 for a discussion of
masquerading.

Masquerading is specified using rule -j MASQUERADE. For example, to masquerade
everything leaving our router on eth0, we used:

iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

Destination NAT
Destination NAT is specified with the rule -j DNAT and the --to-destination
option, which specifies the IP address, a range of the IP addresses, and optional
port of range of ports. You can also use the -i (incoming interface) option to
specify that the rule is to apply only to a particular interface.

To alter the destination of locally generated packets, use the OUTPUT chain.

For example, to change the destination address to 192.168.10.1, execute the
following command:

iptables -t nat -A PREROUTING -i eth0 -j DNAT \
--to-destination 192.168.10.1

To change the destination address of Web traffic to 192.168.10.1, port 8080, use
this command:

iptables -t nat -A PREROUTING -p tcp --dport 80 -i eth0 -j DNAT \
--to-source 192.168.2.1:8080

Redirection
This is a specialized version of DNAT, a convenient equivalent of doing DNAT to
the address of the incoming interface.
264 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

For example, to send the incoming port 80 Web traffic to our squid (transparent)
proxy, we used the following command:

iptables -t nat -A PREROUTING -i eth0 -p tcp --dport 80 \
-j REDIRECT --to-port 3128

Special protocols
Some protocols do not work well with NAT, so for each of these protocols we
need two extensions—one for connection tracking of the protocol, and one for the
actual NAT.

Inside the netfilter distribution, there are currently modules for FTP:

1. ip_conntrack_ftp.o
2. ip_nat_ftp.o

If you plan to use NAT for FTP transfers, insert the following modules as shown:

insmod ip_conntrack_ftp
insmod ip_table_nat
insmod ip_nat_ftp

11.2.12 Examples for using NAT in the enterprise and ISP/ASP
In this section, we show you how to use NAT in the enterprise and in ISP/ASP
environments.

Changing the source address
In 11.2.3, “How to permanently enable IP forwarding” on page 251, we showed
how to add a special route to the 10.0.0.0/255.255.0.0 subnet, because some of
the packets coming from our server had the source address from this subnet.

However, instead of providing this special route, we can use the SNAT translation
on the servers:

iptables -t nat -A POSTROUTING -o iucv0 -j SNAT --to-source dummy0_IPaddr

Attention: If you are doing source NAT, you must ensure that the routing is set
up correctly. That means if you change the source address so it is different
from your external interface (for example, if you use unused IP addresses in
your subnet), you need to tell your router to respond to ARP requests for that
address as well. This can be done by creating an IP alias:

ip address add IP_address dev eth0
 Chapter 11. Network infrastructure design 265

This command will always change the source IP address of the packet to the
IP_address of the DUMMY0 interface, which in our example is used as the
server’s external interface. Because the routers/firewalls are already aware of the
routes to this external address, we do not need to provide an additional route to
the 10.0.0.0/255.255.0.0 subnet.

Providing access to the Internet from an intranet
In this example, we show how to provide transparent access for an internal
computer on the private subnet via the VM Linux router connected to the Internet
with the public IP address. The sample configuration is shown in Figure 11-7.

Figure 11-7 Internet access for local LAN

Without any settings, the packet traveling from the internal network via the
VM Linux router/firewall will reach its Internet destination. But the source address
of this package is from our internal subnet—and the server we are talking to
does not know how to send the packet back.

To resolve this, we have to enable the source network address translation (SNAT)
for each packet going out of the router. This can be done with the following
command:

VM Linux
Router/F irewall

In ternet/Intranet

Com puters on
In ternal network

O SA1

OSA2

10.0.0 .0-10.0.254.254/255 .255 .0.0
G W 10.0 .10.1

E TH 1 10 .0.10.1/255 .255.0 .0

ETH0 9 .12.6 .84/255.255.255 .0
GW 9.12.6 .75

S /390 a
266 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

iptables -t nat -A POSTROUTING -s 10.0.0.0/255.255.0.0 -o eth0 \
-j SNAT --to-source 9.12.6.84

With this rule, we are configuring the kernel to change the source address of
each packet coming from the 10.0.0.0/255.255.0.0 subnet to the IP address of
our external interface 9.12.6.84.

When the packet from the internal subnet reaches the server on the Internet, this
server will respond to the router; and when the packet comes back to the router,
it will send that packet back to the computer on the internal subnet, with the
destination address of this computer.

Port forwarding
If you use the DeMilitarized Zone (DMZ) approach for your servers, this can be
done using port forwarding. In the DMZ setup, you separate your Web/mail
server from the server that is connected to the router/firewall over a private
subnet.

This server’s private subnet is separated from the local subnet used for
computers accessing the Internet. The example of such a setup is shown in
Figure 11-8 on page 268.

Tip: If you plan to also provide FTP access to the Internet, insert the following
two modules into the kernel:

insmod ip_conntrack_ftp
insmod ip_nat_ftp
 Chapter 11. Network infrastructure design 267

Figure 11-8 Port forwarding

In this scenario, the HTTP requests, for example, are coming to our router, which
means that our www name is associated with the router external interface in the
DNS. But because we do not have the Web server running on the router, we
forward those packets to the Web server, which is in the DMZ. You can achieve
this with the following command:

iptables -t nat -A PREROUTING -p tcp -d 9.12.6.84 --dport 80 \
-j DNAT --to-destination 192.168.1.2:80

As you can see, we forward all TCP packets coming to address 9.12.6.84 port 80
to the address 192.168.1.2 port 80. You can also do port forwarding for other
services.

11.2.13 Additional information
You can find more information on the official Linux IP Tables on the Linux
Documentation Project home page:

http://www.linuxdoc.org

VM Linux
DMZ

Web/mail

VM Linux
Router/Firewall

Internet/Intranet

Computers on
Local network

OSA1

OSA2

ETH0 9.12.6.84/255.255.255.0
GW 9.12.6.75

ETH1 10.0.10.1/255.255.0.0

10.0.0.0-10.0.254.254/255.255.0.0
GW 10.0.10.1

IUCV0
192.168.1.1

IUCV0
192.168.1.2

S/390
268 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

http://www.linuxdoc.org

Chapter 12. Backup using Amanda

In this chapter we discuss the Advanced Maryland Automatic Network Disk
Archiver, known as Amanda.

Since Amanda has not previously been written about specifically for the Linux for
zSeries and S/390 environment, we provide basic information about its operation
and use in this environment. The Amanda package is included in the SuSE
distribution.

For more information about general Amanda usage, refer to the Amanda Web
page:

http://www.amanda.org

Along with useful information, this site contains page links to Amanda archives
and a number of mailing lists on Amanda (you can also join the mailing lists from
here).

12
© Copyright IBM Corp. 2001 269

http://www.amanda.org

12.1 About Amanda
Amanda is an open source backup scheduler, originally developed at the
University of Maryland for scheduling the backup of computing facilities there.

Amanda uses a client-server arrangement to facilitate the backup of
network-attached servers. Using Amanda, it is possible to have a single
tape-equipped server backing up an entire network of servers and desktops.

12.1.1 How Amanda works
Backups are scheduled on one or more servers equipped with offline storage
devices such as tape drives. At the scheduled time, the Amanda server contacts
the client machine to be backed up, retrieving data over the network and writing it
to tape. The data from the client can be stored in a staging area on disk, which
improves the performance of the tape writing process (or provides a fallback, in
case of tape problems).

Amanda can perform compression of the data being backed up, using standard
Linux compression utilities (gzip, bzip). If network utilization is high, the
compression can be done on the client to reduce the network load and potentially
reduce backup times. This also lightens the load on the backup server, which
may be processing many simultaneous backups.

Figure 12-1 shows Amanda’s client-server architecture.

Note: Like many other Open Source Software projects, Amanda comes with
no warranty, has no formal support, and is developed in people’s spare time.

This consideration should be kept in mind when choosing a backup strategy.
270 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Figure 12-1 Amanda client-server architecture

Amanda uses its own authentication and access protocol, and it can also use
Kerberos for authentication. It can be used to back up SMB/CIFS servers directly,
which provides an alternative to running the amandad process on the clients1.

Configuring an Amanda server involves five tasks:

1. Identifying the clients, and the devices on those clients, to be backed up
2. Establishing access controls to allow the server to read the clients’ data
3. Configuring the disk staging areas on the server
4. Configuring the tapes and tape schedule
5. Setting up and activating the backup schedule

The backup schedule is usually invoked by entries in the /etc/crontab file to
invoke the amdump program at the correct intervals. amdump initiates the connection
to the client machine to read the data and output it to the staging disk. When this
is done, amdump calls standard Linux tape management programs to write the
data to tape. Amanda also provides support programs to recover from errors
caused by tapes filling, incorrect tapes being loaded, and other possible failures.

Naturally, there is also an amrestore program to facilitate recovery of data from a
backup.

Offline
storage

amanda
server

amanda
clients

Compressed

staging
Raw data

1 For Linux servers, this only makes sense if Samba was being set up on the server anyway, since it is more difficult to set
up Samba than amandad.
 Chapter 12. Backup using Amanda 271

12.2 Using Amanda in a penguin colony
Use of Amanda can be helpful in a penguin colony because of its low overhead
and native Linux operation.

12.2.1 Planning for Amanda
The Amanda configuration process involves firstly determining the backups to be
done, and creating configuration directories for these. The backup is then
referred to by that directory name in all Amanda commands.

Amanda differs from other backup utilities in regard to the backup cycle. Other
systems have a set process for the time that a full backup is done in relation to
incremental backups (such as full backups on the weekend, and incremental
backups overnight during the week).

Amanda does not work this way. It will switch between level-0 (full) and level-1
(incremental) backups during the cycle specified in the amanda.conf file,
dependent upon the number of tapes available, the time since the last full
backup, and so on. It will make sure that at least one level-0 backup is available
at all times, and that a backup image is not overwritten if it would be required to
form part of a backup.

12.2.2 Configuring Amanda
Amanda is configured using two major configuration files in the backup set
configuration directory:

Note: Amanda is a backup scheduler, and does not actually perform the
backups itself. The Amanda programs launch utilities like tar, dump and
smbtar to perform the backup.

Important: Amanda is a file-level backup system. This means, for example,
that it is not aware of the internal structure of databases (refer to “Complex
application backup” on page 129 for more information on this).

At the time of writing, there is no plan to extend Amanda to provide awareness
of file internals.

Tip: The Amanda FAQ-O-Matic, available at the following site, contains
information as to how a “traditional” backup cycle can be set up.

http://www.amanda.org/cgi-bin/fom?
272 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

http://www.amanda.org/cgi-bin/fom?

� amanda.conf
� disklist

amanda.conf
The file amanda.conf contains the following data for each backup:

� Specifications of tape drives to be used for this backup set
� Maximum network bandwidth to be used for this backup
� Definition of the backup cycle (number of tapes, duration, backup frequency)
� Other attributes of the backup set.

Our sample amanda.conf file is shown in Example 12-1.

Example 12-1 Example amanda.conf file

#
amanda.conf - sample Amanda configuration file

org "ITSOArchive” # your organization name for reports
mailto "amanda“ # space separated list of operators at your site
dumpuser "amanda" # the user to run dumps under
inparallel 2 # maximum dumpers that will run in parallel (max 63)
netusage 800 Kbps # maximum net bandwidth for Amanda, in KB per sec
dumpcycle 4 weeks # the number of days in the normal dump cycle
runspercycle 20 # the number of amdump runs in dumpcycle days
tapecycle 25 tapes # the number of tapes in rotation
bumpsize 20 Mb # minimum savings (threshold) to bump level 1 -> 2
bumpdays 1 # minimum days at each level
bumpmult 4 # threshold = bumpsize * bumpmult^(level-1)
etimeout 300 # number of seconds per filesystem for estimates.
dtimeout 1800 # number of idle seconds before a dump is aborted.
ctimeout 30 # max. number of seconds amcheck waits for client host
tapebufs 20 # tells taper how many 32k buffers to allocate.
runtapes 1 # number of tapes to be used in a single run of amdump
tapedev "/dev/ntibm0" # the no-rewind tape device to be used
rawtapedev "/dev/ntibm0" # the raw device to be used (ftape only)
tapetype IBM-3480-B40 # what kind of tape it is (see tapetypes below)
labelstr "^ITSO[0-9][0-9]*$" # label constraint regex: all tapes must match

Specify holding disks.
holdingdisk hd1 {

comment "main holding disk"
directory "/dumps/amanda"# where the holding disk is

Tip: The amanda.conf file provided with the Amanda product (in a backup set
called “example”) contains a great deal of information about configuring
Amanda backups.
 Chapter 12. Backup using Amanda 273

use 290 Mb # how much space can we use on it
chunksize 1Gb # size of chunk if you want big dump to be

dumped on multiple files on holding disks
}

infofile "/var/lib/amanda/ITSOArchive/curinfo" # database DIRECTORY
logdir "/var/lib/amanda/ITSOArchive" # log directory
indexdir "/var/lib/amanda/ITSOArchive/index" # index directory
tapelist is stored, by default, in the directory that contains amanda.conf

define tapetype IBM-3490E-B40 {
comment "IBM 3490E-B40"
length 913152 kbytes # these numbers generated by the
filemark 32 kbytes # Amanda tapetype program
speed 2439 kps # (not supplied with SuSE)

}

dumptypes
define dumptype global {

comment "Global definitions"
index yes

}
define dumptype always-full {

global
comment "Full dump of this filesystem always"
compress none
priority high
dumpcycle 0

}
define dumptype root-tar {

global
program "GNUTAR"
comment "root partitions dumped with tar"
compress none
index
exclude list "/usr/local/lib/amanda/exclude.gtar"
priority low

}
define dumptype user-tar {

root-tar
comment "user partitions dumped with tar"
priority medium

}
define dumptype high-tar {

root-tar
comment "partitions dumped with tar"
priority high

}
define dumptype comp-root-tar {
274 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

root-tar
comment "Root partitions with compression"
compress client fast

}
define dumptype comp-user-tar {

user-tar
compress client fast

}
define dumptype holding-disk {

global
comment "The master-host holding disk itself"
holdingdisk no # do not use the holding disk
priority medium

}
define dumptype comp-user {

global
comment "Non-root partitions on reasonably fast machines"
compress client fast
priority medium

}
define dumptype nocomp-user {

comp-user
comment "Non-root partitions on slow machines"
compress none

}
define dumptype comp-root {

global
comment "Root partitions with compression"
compress client fast
priority low

}
define dumptype nocomp-root {

comp-root
comment "Root partitions without compression"
compress none

}
define dumptype comp-high {

global
comment "very important partitions on fast machines"
compress client best
priority high

}
define dumptype nocomp-high {

comp-high
comment "very important partitions on slow machines"
compress none

}
define dumptype nocomp-test {

global
 Chapter 12. Backup using Amanda 275

comment "test dump without compression, no /etc/dumpdates recording"
compress none
record no
priority medium

}
define dumptype comp-test {

nocomp-test
comment "test dump with compression, no /etc/dumpdates recording"
compress client fast

}

network interfaces
define interface local {

comment "a local disk"
use 1000 kbps

}
define interface eth1 {

comment "100 Mbps ethernet"
use 800 kbps

}

disklist
The other configuration file you have to create is named disklist, which tells the
amdump program which disks (or directories) on which hosts to back up.

#
File format is:
#
hostname diskdev dumptype [spindle [interface]]
#
ITSO machines.
#
vmlinux2 dasdb1 comp-root 1 local
vmlinux2 dasdc1 comp-user 2 local
vmlinux2 //tot12/vjc smb-user 1 eth1
vmlinux7 dasda1 comp-root 1 eth1
vmlinux7 dasdb1 comp-user 2 eth1

Note: Amanda does not provide a tape definition for the IBM mainframe tape
devices supported by the tape390 driver. Therefore, we had to follow
instructions contained in the example amanda.conf file in order to create a
tapetype entry. To do this, however, we had to obtain the source package for
Amanda, because the tapetype program is not supplied with the SuSE
binaries of Amanda.

Once the tapetype program was available, we ran it against our 3490E-B40
tape drive to produce the tapetype entry shown in Example 12-1 on page 273.
276 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

As you can see, it is fairly easy to specify the servers and devices to be backed
up. The dumptype (third field) must be given for each entry. This value chooses
the type of dump from the amanda.conf file.

The spindle attribute refers to disk configurations where different physical file
systems may exist as partitions of a single physical disk (which is not usually an
issue for zSeries). The attribute can be used to increase performance by
ensuring that Amanda does not simultaneously back up different file systems that
share the same physical disk.

Amanda can also back up using SMB, allowing Windows machines to be
included in your Amanda backup sets. An example of how this is configured
appears in the third line of our example disklist.

From the perspective of the Amanda server, the SMB share to be backed up is
part of the file system of an Amanda client. On that Amanda client, however, the
SMB code in Amanda uses smbclient to access the SMB share on the Windows
host. Files are retrieved from the source using SMB, then sent using the normal
Amanda protocols from the client to the server.

Other files are created in the configuration directory, but are maintained by
Amanda. These include tapelist, which is a list of the tapes that belong to a
particular backup set and is updated by the amlabel program.

Tape changer
Amanda can utilize a tape changer if one is installed. It does this using a shell
script identified in the tpchanger entry in amanda.conf. As long as your tape
changer provides a program-level interface, Amanda can make use of it. Sample
scripts for popular tape changers are supplied with Amanda.

Tip: Unless you specifically want to have backups operating sequentially,
specify each file system on a particular host with a different spindle value to
make sure that you get the maximum simultaneous operation.

Restriction: Using Amanda to back up Windows shares does not retain the
Access Control List (ACL) information from the Windows file system. If you
have complex ACLs in your Windows servers, Amanda is not the best backup
solution. It is more suitable for lightweight backups of data directories on
desktop computers, for example.

Also, the binaries of the Amanda package as distributed with SuSE do not
have SMB support enabled in the amandad client. To test this function, we had
to rebuild amandad from source.
 Chapter 12. Backup using Amanda 277

Without the tpchanger parameter set, Amanda automatically switches off any
multitape capability. So in order to use the automatic tape loader (ATL) on our
3490E-B40 (which automatically loads the next tape in the rack when the current
tape is ejected), we had to either find a suitable script, or write our own.

We used the chg-multi script provided with Amanda to drive our ATL. The script
provides enough basic function to support our autoloader, but also can be used
as a template for writing your own scripts. The chg-multi script is generic, which
saved us from having to write specific commands in the script to drive our ATL.

Amanda drives the tape changer during a backup process. For example, since it
knows all of the labelled tapes in a backup set and keeps track of which tape can
be used next, it can skip through the tapes in the rack until the required tape is
loaded. It can also load another tape if the backup requires it.

Activating Amanda
The following line needs to be added (or un-commented) to your /etc/inetd.conf
configuration file to enable the Amanda client.

amanda dgram udp wait amanda /usr/lib/amanda/amandad amandad

In this example, /usr/lib/amanda/amandad is the path to the amandad executable.
This line was already present on our SuSE installation (with the amanda package
installed), and simply had to be un-commented.

For the Amanda server, two more lines must be added to the inetd configuration
to support the index service. Again, these lines were already in the
/etc/inetd.conf file on our system and just had to be un-commented.

amandaidx stream tcp nowait root /usr/lib/amanda/amindexd amindexd
amidxtape stream tcp nowait root /usr/lib/amanda/amidxtaped amidxtaped

12.2.3 Backing up with Amanda
Prior to making any backups, you must plan and set up your amanda.conf and
disklist files. This is because all operations in Amanda are performed with
respect to the backup set being used. All of the am commands require the backup
set name (the configuration directory name) as a parameter.

Important: Any time the inetd configuration is changed, you must signal inetd
to initialize. You can use the following command:

killall -HUP inetd
278 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Once you’ve created your configuration, you can then label your tapes using the
amlabel command. This command creates the label that Amanda uses to identify
the tape. Various information is kept here, including the name of the backup set
the tape belongs to and the date the tape was used. The amlabel command also
adds the tape to the tapelist file.

Note: You’ll need to label all tapes in your backup set prior to using them for
backups.

When we ran amlabel on our first tape, we received this output.

amlabel normal ITSODaily00
labeling tape in slot 0 (/dev/ntibm0):
rewinding, reading label, not an amanda tape
rewinding, writing label ITSODaily00, checking label, done.

Having labelled your tapes, you can now test your configuration using the
amcheck program. This program will identify any problems with your
configuration by doing the steps that Amanda would normally take in preparation
for a backup.

A sample run of amcheck is shown here.

amcheck normal
Amanda Tape Server Host Check

WARNING: holding disk /dumps/amanda: only 294236 KB free

(296960 KB requested)
amcheck-server: slot 0: date X label ITSODaily00 (first labelstr match)
NOTE: skipping tape-writable test
Tape ITSODaily00 label ok
NOTE: info dir /var/lib/amanda/ITSODaily/curinfo: does not exist
NOTE: it will be created on the next run

Tip: When creating your configuration, it is a good idea to have your holding
area on a separate file system from the data being backed up. Otherwise,
staging files will become part of your backup, and your incremental backups
for that file system will be huge.

You can also experiment with using the exclude parameter in amanda.conf to
exclude the holding area from being backed up.

Tip: Many Amanda users run amcheck prior to the backup run in their regular
backup process. This is because if amcheck detects an error, it is easier to fix
the problem and schedule the backup run later—rather than repair a backup
that fails during execution.
 Chapter 12. Backup using Amanda 279

NOTE: index dir /var/lib/amanda/ITSODaily/index: does not exist
Server check took 2.702 seconds

Amanda Backup Client Hosts Check

Client check: 2 hosts checked in 0.343 seconds, 0 problems found

(brought to you by Amanda 2.4.2)

In this example, amcheck is informing us that we are slightly short of holding disk
space. It also did a tape check, and the results are shown (‘date X’ on an
Amanda tape indicates a tape that has been labelled but not used).

The next two messages are indications that we have not done a backup before.
Amanda can keep two sets of information about backups:

� curinfo
This is information about the current status of the backup set, including which
disklist entries are backed up to what level, and so on.

� index
Optional (you must select it in your dumptype), the index keeps track of all
files backed up, and is used by the amrecover program to ease the task of
restoring data.

Amanda will create the relevant directories as required.

Finally, amcheck contacts the clients listed in the disklist to verify that they are
contactable, and that authorization has been given to the backup server to obtain
files from them.

The next step is to test a backup. Normally you would have the command issued
from cron, but it is a good idea to run backups manually until you are comfortable
with the process. The following command will start the amdump program,
commencing a run of the “normal” backup set:

amdump normal

While the backup is running, the amstatus command can give you information
about the progress of the backup, as shown in Example 12-2:

Tip: The amdump program does not execute in the background, by default, so
if you want to issue commands in your terminal window while amdump is
running, you’ll need to force amdump to the background. Invoke amdump as
follows:

amdump normal &
280 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Example 12-2 Output from amstatus

amstatus normal
Using /var/lib/amanda/ITSODaily/amdump from Mon Jul 30 16:58:38 EDT 2001

vmlinux2://tot12/vjc 0 82299k dumping 31872k (38.73%) (16:59:15)
vmlinux2:dasdb1 0 [dumps too big, but cannot incremental dump new disk]
vmlinux2:dasdc1 0 14944k finished (16:59:21)
vmlinux7:dasda1 0 181822k dumping 84064k (46.23%) (16:58:53)
vmlinux7:dasdb1 0 293784k wait for dumping

SUMMARY part real estimated
 size size
partition : 5
estimated : 5 1976075k
failed : 1 1397244k (70.71%)
wait for dumping: 1 293784k (14.87%)
dumping to tape : 0 0k (0.00%)
dumping : 2 115936k 264121k (43.90%) (5.87%)
dumped : 1 14944k 20926k (71.41%) (0.76%)
wait for writing: 0 0k 0k (0.00%) (0.00%)
writing to tape : 0 0k 0k (0.00%) (0.00%)
failed to tape : 0 0k 0k (0.00%) (0.00%)
taped : 1 14944k 20926k (71.41%) (0.76%)
all dumpers active
taper idle
network free kps: 2540
holding space : 29932k (10.17%)
 dumper0 busy : 0:00:28 (100.00%)
 dumper1 busy : 0:00:28 (100.00%)
 taper busy : 0:00:05 (19.82%)
 0 dumpers busy : 0:00:00 (0.00%)
 1 dumper busy : 0:00:00 (0.00%)
 2 dumpers busy : 0:00:28 (100.00%) not-idle: 0:00:20 (73.56%)
 no-dumpers: 0:00:07 (26.44%)

In this case, the backup of dasdb1 on vmlinux2 has failed because it is too large
for the tape. However, the next time amdump was run, the dump of dasdb1 on
vmlinux2 was added to the tape. So why did this occur?

Referring to FAQ lists for Amanda, when it has a large number of level 0 backups
to do (as would happen for the first backup in a set), it is sometimes unable to
plan a backup run that would pick them all up. The next time the backup is run,
the file system is correctly backed up.
 Chapter 12. Backup using Amanda 281

Once the amdump program is complete, a mail message is sent to the operators
given in the amanda.conf file; see Example 12-3:

Example 12-3 Backup completion report

Date: Mon, 30 Jul 2001 17:10:46 -0400
From: Amanda Admin <amanda@vmlinux2.itso.ibm.com>
To: amanda@vmlinux2.itso.ibm.com
Subject: ITSODaily AMANDA MAIL REPORT FOR July 30, 2001

These dumps were to tape ITSODaily00.
The next tape Amanda expects to use is: a new tape.

FAILURE AND STRANGE DUMP SUMMARY:
 vmlinux2 dasdb1 lev 0 FAILED [dumps too big, but cannot incremental dump new disk]

STATISTICS:
 Total Full Daily
 -------- -------- --------
Estimate Time (hrs:min) 0:00
Run Time (hrs:min) 0:12
Dump Time (hrs:min) 0:12 0:12 0:00
Output Size (meg) 509.9 509.9 0.0
Original Size (meg) 1221.6 1221.6 0.0
Avg Compressed Size (%) 41.7 41.7 --
Filesystems Dumped 4 4 0
Avg Dump Rate (k/s) 713.4 713.4 --

Tape Time (hrs:min) 0:03 0:03 0:00
Tape Size (meg) 510.0 510.0 0.0
Tape Used (%) 57.2 57.2 0.0
Filesystems Taped 4 4 0
Avg Tp Write Rate (k/s) 2674.2 2674.2 --

?
NOTES:
 planner: Adding new disk vmlinux2:dasdb1.

Restriction: Amanda cannot currently write an image to tape if it must span
more than one tape. Each entry in the disklist file (i.e. each disk to be backed
up) creates a single image file to be written to tape, and while images for
separate disks can be written across tapes in a single run, a single image that
is larger than a tape cannot be split across tapes.

If you have large partitions to be backed up, it will be necessary to configure
them as separate entries in your disklist file until Amanda supports images
spanning tapes.
282 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

 planner: Adding new disk vmlinux2:dasdc1.
 planner: Adding new disk vmlinux2://tot12/vjc.
 planner: Adding new disk vmlinux7:dasda1.
 planner: Adding new disk vmlinux7:dasdb1.
 driver: WARNING: /dumps/amanda: 296960 KB requested, but only 294188 KB available.
 taper: tape ITSODaily00 kb 522240 fm 4 [OK]

?
DUMP SUMMARY:
 DUMPER STATS TAPER STATS
HOSTNAME DISK L ORIG-KB OUT-KB COMP% MMM:SS KB/s MMM:SS KB/s
-------------------------- --------------------------------- -------------
vmlinux2 //tot12/vjc 0 164614 146048 88.7 4:49 505.8 0:53 2763.8
vmlinux2 dasdb1 0 FAILED --
vmlinux2 dasdc1 0 44931 14944 33.3 0:22 668.1 0:06 2685.1
vmlinux7 dasda1 0 393946 144544 36.7 2:44 879.0 0:56 2602.8
vmlinux7 dasdb1 0 647442 216576 33.5 4:16 844.9 1:21 2664.0

(brought to you by Amanda version 2.4.2)

Driving the tape changer
The amtape program provides the interface to the changer script identified in the
amanda.conf file. Using amtape, you can load the next tape in the rack, load a
tape with a particular label, eject a tape, and other operations.

The following example shows some amtape commands in use.

amtape normal show
amtape: scanning all 6 slots in tape-changer rack:
slot 0: date 20010730 label ITSODaily00
slot 1: date 20010731 label ITSODaily01
slot 2: date 20010731 label ITSODaily02
slot 3: date 20010801 label ITSODaily03
slot 4: date 20010801 label ITSODaily04
slot 5: date X label ITSODaily05
amtape normal reset
amtape: changer is reset, slot 0 is loaded.
amtape normal current
amtape: scanning current slot in tape-changer rack:
slot 0: date 20010731 label ITSODaily02

Tip: Refer to the amtape man page for more information, and keep in mind
that if your ATL is gravity-fed, you’ll only be able to move forward through the
slots in the changer.
 Chapter 12. Backup using Amanda 283

In this example, an operator checks which tapes are currently loaded in the ATL.
Amanda scans each tape and outputs the label information it finds. After this the
slots are empty, so the operator reloads the tapes and resets Amanda’s status of
the changer. Then, the operator rechecks the tape in the current slot.

amadmin
The amadmin program provides commands that allow you to control the backup
process. A number of options are available, including:

� Force a full backup of a disklist entry at the next run
� Mark a tape to be reusable or non-reusable
� Find which tapes the backups for a particular host or disk are on
� Display information about the backups for certain hosts or disks

In “Reporting with amadmin” on page 289, we discuss the use of some amadmin
commands for use with reporting.

Scheduling your backup
Once your testing has gone smoothly, add an entry to /etc/crontab which will start
the backup automatically at regular times. An example is shown here:

22 2 * * * amanda amdump normal

This will instruct cron to issue the command amdump normal under the user
amanda every day at 2:22am.

It is also possible to use the amcheck command in the schedule, to provide a
pre-test for the backup run.

22 1 * * * amanda amcheck -m normal
22 2 * * * amanda amdump normal

Important: With this type of tape changer, Amanda does not keep track of
when tapes have been changed or moved. The amtape reset command is an
administrative command that advises Amanda that the status of the ATL has
changed and reset to start.

Note: There are many commands available with amadmin. We suggest you
refer to the amadmin man page to get more information.

Important: Remember to restart cron after making a change to crontab.
284 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

These lines in the crontab will schedule an amcheck prior to the scheduled time
of the backup (in this case, at 1:22am, with the backup scheduled for 2:22am).
The -m switch on the amcheck command instructs it to run silently, but to send an
e-mail to the backup operators if any problems occur. This allows a problem that
would cause the backup to fail (wrong tape loaded, network problem) to be
rectified before the start of the backup.

12.2.4 Restoring
The amrecover program is the front-end to the Amanda recovery process, and it
is invoked from the system you wish to restore files onto. It works similar to FTP,
making the backup set appear like an FTP server.

Amanda restores files relative to the root of the point the backup was taken from.
For example, on our test system vmlinux2, /dev/dasdb1 is the root file system,
and /dev/dasdc1 is mounted at /home. To restore files directly into the directory
/home/tot12/testing, we would change to the /home directory and start
amrecover from there. The amrestore program will expand the files into the
correct directory.

You can choose to restore files into a different directory, so that you can migrate
changes from a backup. For example, if you select /home/tot12/backup as the
location to restore to, when you restore /home/tot12/testing, you’ll find the
restored files in the directory /home/tot12/backup/tot12/testing.

12.2.5 Reporting
Amanda keeps extensive logs of the backup process, and comes with utilities to
read the logs and report on attributes of the backup process.

amoverview
The amoverview program produces a summary of the history of the backup set.

amoverview normal

Note: The amrestore program actually performs the restoration. If you know
which backup file on the tape contains your required data, you can invoke
amrestore directly. To make the restoration process easier, amrecover uses
the backup indexes to feed the correct information to amrestore for you.

Example: An example of a single file recovery session is shown in “Single file
or directory restoration with Amanda” on page 292.
 Chapter 12. Backup using Amanda 285

 date 07 07 08 08
host disk 30 31 01 02

vmlinux1 dasdb1 0 1
vmlinux1 dasdc1 0 1
vmlinux2 //tot12/vjc 0 11 10 1
vmlinux2 dasdb1 E 0 11 1
vmlinux2 dasdc1 0 11 01 1
vmlinux3 dasdb1 E 0
vmlinux3 dasdc1 0 1
vmlinux7 dasda1 0 11 11 1
vmlinux7 dasdb1 0 11 11 1

It doesn’t look like much data, but there is a great deal of information in this
output. The amoverview program prints the details of each disk in the backup set,
when a backup was performed or attempted, and the backup level taken at that
time. Let’s look at the line for vmlinux2:dasdc1:

� A level 0 backup was taken on July 30.

� Two level 1 backups were taken on July 31.

� A level 0 backup, and then a level 1 backup, were taken on August 1.
The level 0 taken on this day have made the previous backups redundant.
These prior backups would not be required for a disaster recovery restoration,
but may still be used if files from prior to August 1 were required.

� A level 1 backup was done on August 2.

An E indicates that a backup was attempted, but an error occurred. Both
vmlinux2:dasdb1 and vmlinux3:dasdb1 experienced errors on their first attempt.
A possible reason is that the size of the backup was too large to be taken with the
other backups being done at the time. For both of these disks, you can see that
the level 0 backup was done on the next run.

The amoverview tool gives you an easy way to check that your file systems are
being backed up in a timely manner.

amplot
The amplot program analyses amdump files (produced during every amdump
run) and produces a graphical analysis of the dump.
286 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

The graphs produced by amplot show statistics such as job queue length,
network bandwidth utilization, holding disk utilization, tape idle time, and number
of dumper tasks in use. A sample graph from amplot is shown in Figure 12-2 on
page 288.

Note: amplot uses the gnuplot program, which in turn requires X. The amplot
output displays in an X window. We had to download and compile gnuplot in
order to use amplot. The gnuplot source can be obtained at:

http://www.gnuplot.org

The default configuration for gnuplot installs into /usr/local/bin, but amplot as
packaged by SuSE expects gnuplot to be found in /usr/bin. You will need to
take this into account if you build gnuplot for use with amplot.

If you do not have an X display, or if you prefer printed output, amplot can
generate output as a Postscript file. Refer to the amplot man page for more
information.
 Chapter 12. Backup using Amanda 287

http://www.gnuplot.org

Figure 12-2 Sample amplot graph

Network bandwidth utilization is shown as a percentage of the bandwidth allowed
in the amanda.conf file. On this graph, we see that network bandwidth does not
appear to be a bottleneck. The graph also shows that the holding disk is full
during the last part of the backup.
288 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

The graphs can be used to point out ways to improve performance. In our
example, even though we only have three dumpers allocated, they are never all
active at once. In fact, except for an instant after the estimates are performed,
only one dumper is active at a time for the duration of the backup. This would
seem to indicate that Amanda is being prevented from dumping more than one
image at a time, which might be a combination of insufficient holding disk space
and large backup images.

The e-mail reports sent to the Amanda users at the end of a backup run also
contain useful information about the backup process.

Reporting with amadmin
Apart from the operational aspects of amadmin that we cover in earlier sections,
there are reporting sub-commands that are very useful.

One of these sub-commands, info, summarizes the data compression and
speed statistics of the last three backups for a disk,or for all disks on a host, or for
all disks in the backup set. It also shows on which tapes the most recent backup
data can be found.

amadmin normal info vmlinux2 dasdc1

Current info for vmlinux2 dasdc1:
 Stats: dump rates (kps), Full: 711.0, 679.0, -1.0
 Incremental: 16.0, 32.0, 16.0
 compressed size, Full: 33.3%, 33.3%,-100.0%
 Incremental: 43.8%, 43.8%, 43.8%
 Dumps: lev datestmp tape file origK compK secs
 0 20010801 ITSODaily03 1 44931 14944 21
 1 20010802 ITSODaily06 4 73 32 2

This example shows information about our vmlinux2:dasdc1. The dump rates are
shown, as well as the size of the data written to tape, for the last three
incremental and full backups written (in our case, since there have been only two
full backups, the last column of data for full backup is meaningless).

The balance sub-command gives an insight into the way that Amanda schedules
full backups within a backup cycle. The purpose of the command is to view how
balanced the tape runs have been during the backup cycle, but through
interpreting the display, you can gain an understanding of part of Amanda’s
internal scheduling.

Tip: The report sent at the end of an Amanda backup run is generated by the
amreport program. You can run amreport at any time to get the summary of a
backup run. Refer to the amreport man page for instructions.
 Chapter 12. Backup using Amanda 289

The following shows the output from amadmin balance, run early in the backup
cycle.

amadmin normal balance

 due-date #fs orig KB out KB balance

 8/02 Thu 0 0 0 ---
 8/03 Fri 0 0 0 ---
 8/04 Sat 0 0 0 ---
 8/05 Sun 0 0 0 ---
 8/06 Mon 2 1041388 361120 -0.3%
 8/07 Tue 1 1297449 425824 +17.6%
 8/08 Wed 6 2922844 1023456 +182.7%

TOTAL 9 5261681 1810400 362080 (estimated 5 runs per
dumpcycle)

This display tells us where full backups are currently due in the schedule.
Amanda estimates the amount of data that will be backed up on these dates,
based on previous backups, and uses these values to calculate the balance of
the cycle.

According to the current plan, 6 out of the 9 file systems in the backup set are
due on August 8. This means that the size of the backup on that date will be
almost three times the average size of those backups. This creates a huge
imbalance in the duration of the backup.

To minimize this, Amanda will promote some of these full backups to earlier in the
cycle, in order to balance the workload more evenly throughout the backup cycle.

When Amanda promotes a full backup, you will see messages like this in your
backup report:

NOTES:
 planner: Full dump of vmlinux3:dasdc1 promoted from 2 days ahead.
 planner: Full dump of vmlinux7:dasda1 promoted from 4 days ahead.

In this case, Amanda decided to bring the full backups for these two file systems
forward, in order to achieve a balanced backup cycle. Over the course of your
backup cycle you may see these messages, especially if your file systems
change in size over time.

Important: Amanda will never postpone a full backup to balance the cycle.
290 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

12.2.6 Disaster recovery using Amanda
Amanda can be deployed in a disaster recovery role. With the aid of a small
Linux system that loads using an initial root device (also known as a disaster
recovery “bootstrap” system), Amanda can recover full systems up to the last
incremental backup.

The system you use as a disaster recovery bootstrap would be like the
installation starter system you first used to install Linux (unfortunately, you cannot
use one of the installation systems because amandad is not present on these
systems).

In 10.7, “Linux IPL from NSS” on page 228 we describe a way to build a VM NSS
which can be used to IPL Linux images, and this is a useful way to implement a
DR bootstrap. We describe other ways to build starter systems elsewhere in
Chapter 10.

The process would work as follows:

1. IPL the disaster recovery bootstrap image in your Linux guest.

2. Load the network driver and establish network connectivity.

3. Load the DASD driver, correctly mapping the DASDs as configured in the
Linux instance to be restored (a standard disk configuration would help here).

4. Reformat the device which will contain your root file system.

5. Run amrecover to restore the root file system.

6. Execute step 4 for any “first level” file systems you have on separate devices
(e.g. /usr, /home), and mount these empty file systems at their correct mount
points.

7. Run amrecover on the “first level” file systems.

Note: Refer to the amadmin man page for further information about the other
sub-commands available.

Important: Remember to install the amanda package as part of your disaster
recovery bootstrap system, and to add the amandad line to inetd.conf.

Important: If you use LVM, this step will include a restoration of your LVM
configuration using vgcfgrestore (assuming you backed-up your configuration
using vgcfgbackup, and that the backup resides on a non-LVM file system!).
Otherwise, manually recreate your LVM configuration.
 Chapter 12. Backup using Amanda 291

8. Repeat steps 6 and 7 for any remaining file systems you have, stepping
through the organization of your physical devices as required.

While Amanda can be used in this way to provide disaster recovery capability, it
is not the most efficient method of providing full volume backup for Linux
instances under VM. A better way would be to have VM perform backups of the
minidisks all at once, and use Amanda to provide incremental backups only.
Restoration would then involve a VM-level full volume restoration of the Linux
system’s minidisks, followed by incremental restoration of changed files using
Amanda.

12.3 Backup and recovery scenarios
This section illustrates scenarios using the concepts discussed in this chapter.

12.3.1 Single file or directory restoration with Amanda
In Example 12-4, we show a file recovery session using amrecover. The file
mrtg_total.pl has been deleted from the root user’s home directory, and we want
to restore that file from our Amanda backup.

Example 12-4 A file restore session using amrecover

vmlinux7:/ # amrecover normal -s vmlinux2 1
AMRECOVER Version 2.4.2. Contacting server on vmlinux2 ...
220 vmlinux2 AMANDA index server (2.4.2) ready.
200 Access OK 2
Setting restore date to today (2001-08-01)
200 Working date set to 2001-08-01.
200 Config set to normal.
200 Dump host set to vmlinux7.
$CWD '/' is on disk 'dasda1' mounted at '/'.
200 Disk set to dasda1.
/
amrecover> history 3
200- Dump history for config "normal" host "vmlinux7" disk "dasda1"
201- 2001-07-31 1 ITSODaily01 4
201- 2001-07-31 1 ITSODaily02 3
201- 2001-07-30 0 ITSODaily00 2
200 Dump history for config "normal" host "vmlinux7" disk "dasda1"
amrecover> setdate --07-31 4
200 Working date set to 2001-07-31.
amrecover> settape vmlinux2:default 5
Using default tape from server vmlinux2.
amrecover> cd root 6
/root
292 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

amrecover> ls 7
2001-07-30 .
2001-07-30 .bash_history
2001-07-30 .exrc
2001-07-30 .gnupg/
2001-07-30 .gtkrc-kde
2001-07-30 .kde/
2001-07-30 .kde2/
2001-07-30 .kxmlrpcd
2001-07-30 .mcoprc
2001-07-30 .xinitrc
2001-07-30 KDesktop/
2001-07-30 bin/
2001-07-30 dead.letter
2001-07-30 gd/
2001-07-30 lcs-2.4.5-s390-2.tar.gz
2001-07-30 linux-2.2.19.tar.gz
2001-07-30 linux-2.4.5.tar.gz
2001-07-30 linux/
2001-07-30 mrtg_total.pl
2001-07-30 netsaint/
2001-07-30 sieve
2001-07-30 sieve.c
amrecover> add mrtg_total.pl 8
Added /root/mrtg_total.pl
amrecover> list 9
TAPE ITSODaily00 LEVEL 0 DATE 2001-07-30
 /root/mrtg_total.pl
amrecover> extract 10

Extracting files using tape drive /dev/ntibm0 on host vmlinux2.
The following tapes are needed: ITSODaily00

Restoring files into directory /
Continue? [Y/n]: y

Load tape ITSODaily00 now
Continue? [Y/n]: y
restore: ./root: File exists
set owner/mode for '.'? [yn] n
amrecover> quit 11
200 Good bye.
vmlinux7:/ # cd root
vmlinux7:~ # ls -l
total 45252
drwxr-xr-x 11 root root 4096 Aug 1 03:31 .
drwxr-xr-x 18 root root 4096 Jul 17 10:09 ..
-rw------- 1 root root 8405 Jul 28 10:06 .bash_history
-rw-r--r-- 1 root root 1124 Feb 29 2000 .exrc
 Chapter 12. Backup using Amanda 293

drwx--x--x 2 root root 4096 Jul 17 10:07 .gnupg
-rw-r--r-- 1 root root 1105 Jul 18 04:47 .gtkrc-kde
drwx------ 2 root root 4096 Jul 18 03:27 .kde
drwx------ 6 root root 4096 Jul 18 03:58 .kde2
-r-------- 1 root root 21 Jul 18 04:47 .kxmlrpcd
-rw------- 1 root root 31 Jul 18 04:47 .mcoprc
-rwxr-xr-x 1 root root 2186 Apr 11 21:50 .xinitrc
drwx------ 3 root root 4096 Jul 18 08:21 KDesktop
drwxr-xr-x 2 root root 4096 Jul 17 10:07 bin
-rw------- 1 root netsaint 208645 Jul 27 02:42 dead.letter
drwxr-x--- 6 root root 4096 Jul 26 08:49 gd
-rw-r--r-- 1 root root 18690 Jul 21 10:17 lcs-2.4.5-s390-2.tar.gz
drwxr-xr-x 14 1046 netsaint 4096 May 26 11:12 linux
-rw-r--r-- 1 root root 19343412 Jul 20 00:40 linux-2.2.19.tar.gz
-rw-r----- 1 root root 26534489 Jul 27 08:07 linux-2.4.5.tar.gz
-rwxr-xr-x 1 root root 27675 Jul 26 08:44 mrtg_total.pl
drwxr-xr-x 4 root root 4096 Jul 20 08:14 netsaint
-rwxr-xr-x 1 root root 16481 Jul 18 04:12 sieve
-rw-r----- 1 root root 1293 Jul 18 04:12 sieve.c

1. The amrecover program is invoked, specifying the name of the backup set
(normal) and the Amanda server to be used (-s vmlinux2).

2. amrestore reports that it successfully contacted the index server on vmlinux2.
It sets defaults for the amrecover session based on current directory, today’s
date, etc.

3. We request a backup history of the disk, to check that we can get the file we
are looking for at the date we need.

4. We want the file as at 31 July, and the backup covers this. The setdate
command is used to set the point-of-reference for the restore.

5. The settape command specifies where the backup tapes (and the tape
drive) are located.

6. We can now look through the backup set to locate the file to be restored. First,
we change to the directory the file was located.

7. After changing directory, we issue the ls command to list the files and
directories in the backup. Notice that the file we want to restore, mrtg_total.pl,
does appear in the list. The date beside the file tells us the most recent
version of this file available. Since a level 0 backup was done on July 30, and
incremental backups on July 31, it appears that the file did not change
between the full backup and the incrementals.

8. Having located the file, we add it to our extraction list using the add command.

9. Using the list command, we can check the details of the recovery we are
about to do. amrestore tells us which tape it will be using, and the path to the
file being restored.
294 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

10.The extract command commences the restoration. amrecover prompts us
for information to complete the restore, including when to load the tape. Since
we are recovering into our existing directory (/root), the attempt to create the
directory fails (restore: ./root: File exists), and this is normal. Again,
since the directory already exists, we do not need to change permissions.

11.The file recovery is complete, and we can exit amrecover and check that the
file is correct.
 Chapter 12. Backup using Amanda 295

296 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Chapter 13. System monitoring

In this chapter, we review methods by which an enterprise running Linux guest
machines under VM can record the computing resources consumed by those
guest systems. This information could then form the basis of a charge back
system.

We also discuss how to monitor the availability of Linux guest machines. This
includes system availability, response times and the availability of services such
as DNS, mail servers and Web servers.

13
© Copyright IBM Corp. 2001 297

13.1 Why measure resource consumption
In the context of this redbook, there are essentially two reasons to measure
resources consumed in a computing environment. Firstly, a service provider
(whether an ASP, ISP or traditional enterprise) will often want to bill its users for
their use of computing resources such as CPU time, disk space and network I/O
bandwidth.

Secondly, there is a need to ensure that Service Level Agreements are being
adequately met.

13.2 Charge back method
The charge back or billing methodology you choose will depend on the type of
services you’re providing to your customers. For example, the billing
requirements of an ASP or ISP will probably be quite different from those used by
an enterprise using Linux on VM as a server consolidation platform.

13.2.1 Service Provider accounting and billing
For an ASP or ISP, services and rates are the basis for a charge back system.
Each service provided by the service provider has a rate (or fee) that falls into
one of two categories: sign-up fees or usage fees.

The sign-up fee is a one-time flat fee charged to set up the user account for the
service. The usage fee is a predetermined, recurring charge that occurs during
each billing cycle. The usage criteria may be based on several models, ranging
from a simple scheme where a flat fee is charged for the use of the service, to
sophisticated schemes where the exact usage of each resource (CPU, memory,
disk, network bandwidth etc.) is metered and billed to the user. Promotions and
discounts are frequently offered to encourage new users to sign up and current
users to use more services.

At the end of the billing cycle, the billing software computes the total charge for
each user and mails an invoice or debits a credit card account, depending on the
user’s payment model.

There are a number of open source ISP billing and account administration
packages available for Linux. One example is Freeside, which is available at:

http://www.sisd.com/freeside
298 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

http://www.sisd.com/freeside

The service provider must have an accurate way of billing the customer for such
things as application usage and system resource usage. Application usage is
easily tracked by methods as simple as using timestamp checkpoints embedded
in the application programs. With this method, the customer signs on to the
application, and the time is recorded. When the customer signs off, the time is
once again recorded. To generate a bill, the start and end times are used to
calculate the charge for that particular user’s session.

Billing for system resource usage is more complex, as it requires a greater level of
measurement and recording. The first part of this chapter focuses on system
resource measurement.

13.2.2 Enterprise accounting and billing
Enterprises are using Linux under VM as a server consolidation platform. For
example, you can consolidate many disparate file and print servers or
infrastructure servers (such as DNS, firewall, e-mail) onto a single S/390 or
zSeries machine.

These functions may be purely internal within an organization and as such, an
ASP or ISP billing model would probably not apply. However, it’s often necessary
to charge back individual departments within an organization for their use of
computing resources. This requirement has existed since the earliest days of
computing, when precious computing resource had to be shared among many
groups.

13.3 What can we measure
There are many measurement metrics available. However, not all of these are
necessarily useful for charge back purposes. For that reason, we’ll focus on CPU
consumption, DASD utilization and network bandwidth usage. Given that in the
context of this redbook we ran multiple Linux guest systems under VM, we’ll use
a combination of VM and Linux tools to derive the resource measurements.

13.4 CPU time accounting
In the following sections, we detail the various aspects of CPU time accounting,
including how to set up virtual machines for accounting purposes, and how to set
up Linux process accounting.
 Chapter 13. System monitoring 299

http://www.sisd.com/freeside

13.4.1 VM accounting
The VM operating system has the capability to generate accounting records that
can be used for charge back.

The VM Control Program (CP) creates and records accounting records when
particular system events occur. Once accounting is running, CP creates an
accounting record whenever one of the following events occurs:

� A virtual machine logs off, or detaches a virtual processor.
� A user detaches a dedicated device.
� A user releases temporary disk space.
� A virtual machine issues a DIAGNOSE code X'4C'
� A SNA/CCS terminal session ends.
� The system checkpoints (during shutdown, for example).
� You enter the ACNT command.

When one of these events occurs, CP creates and stores an accounting record
that describes the event. Then CP notifies the accounting virtual machine of the
new record. Accounting records remain in storage until the accounting virtual
machine retrieves them. The default limit for accounting is 20 records. If the
number of records in storage reaches that number, CP notifies the primary
system operator. The buildup of records in storage indicates that retrieval is not
active. You can change the limit with the RECORDING command.

13.4.2 Setting up virtual machines for accounting

The VM installation media supplies a sample directory entry for an accounting
virtual machine. This entry contains the required IUCV authorization for
connecting to the CP accounting system service. Also supplied is a sample
system configuration file that defines the user ID for the accounting virtual
machine as DISKACNT.

The user ID for the accounting virtual machine is defined as part of the
SYSTEM_USERIDS statement in the system configuration file so that it is
automatically logged on by CP at IPL. A sample PROFILE EXEC for the
accounting virtual machine is also supplied.

Note: If VM accounting has not been enabled at your installation, this section
will show you how to set up this process. For more detailed information on
setting up a virtual machine for accounting, refer to the latest version of the
VM Planning and Administration publication.
300 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

To set up a virtual machine to begin recording accounting information
automatically, you must have the proper PROFILE EXEC and user directory set
up. The following steps show this procedure:

1. Log on as MAINT.

2. Determine the write password of the accounting virtual machine’s 191 disk.

Verify that the directory entry for this virtual machine contains the required
IUCV authorization for connecting to the CP accounting system service (for
example, IUCV *ACCOUNT).

3. Link to the accounting virtual machine’s 191 disk by entering:

link to diskacnt 191 as 391 wr

When CP responds with ENTER WRITE PASSWORD: enter, for example, the
following:

wpass

where wpass is the write password of the accounting virtual machine. The
accounting virtual machine’s 191 disk is now your 391 disk.

4. Access the 391 disk by entering:

access 391 x

If you receive a message that says X'391'DEVICE ERROR, you must format the
391 disk by entering:

format 391 x

CMS responds as follows:

FORMAT WILL ERASE ALL FILES ON DISK X (391).DO YOU WISH TO CONTINUE?
(YES|NO).

Answer yes and when CP responds with ENTER DISK LABEL, enter:

acnt

You can use any 1- to 6-character label name.

Note: The accounting virtual machine has been specified in either the
SYSTEM_USERIDS ACCOUNT1 or ACCOUNT2 system configuration file
statement, or the SYSACNT macroinstruction. Before linking to the accounting
virtual machine’s 191 disk, find out its write password by examining its user
directory entry.

If the accounting virtual machine’s 191 disk does not have a write password,
you must supply one and update the directory.
 Chapter 13. System monitoring 301

5. Copy the file named DVM PROFILE from MAINT’s 193 disk (we have
accessed the 193 disk as k) to the 391 disk by entering:

copyfile dvm profile k profile exec x

6. Release and detach the 391 disk by entering:

release x (det

7. If the accounting virtual machine is not logged on, use the XAUTOLOG
command to log on the accounting virtual machine automatically. To do this
for the DISKACNT user ID, enter:

xautolog diskacnt

8. You can use the CP command QUERY RECORDING to ensure that
accounting is active, for example, by entering the following:

query recording

Example 13-1 shows an example of the output.

Example 13-1 Query recording output

RECORDING COUNT LMT USERID COMMUNICATION
EREP ON 00000000 002 EREP ACTIVE
ACCOUNT ON 00001155 020 DISKACNT ACTIVE
SYMPTOM ON 00000000 002 OPERSYMP ACTIVE

13.4.3 Virtual machine resource usage - record type 01
There are a number of VM accounting records available, but for Linux guest CPU
consumption data, we’re primarily interested in record type 01. This record is
produced whenever a user logs off or whenever the ACNT command is entered.
Among other things the record contains information on the following:

� User ID (Linux guest name)
� Number of seconds connected to CP
� Milliseconds of processor time used, including time for supervisor functions
� Milliseconds of virtual CPU time used
� Number of page reads
� Number of page writes
� Number of requested virtual I/O starts for non-spooled I/O

Note: The DVM PROFILE is the PROFILE EXEC for the accounting, symptom
record recording, and error recording virtual machines. The RETRIEVE utility,
which does the IUCV connect to the *ACCOUNT system service, is invoked
from this PROFILE EXEC.
302 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

13.4.4 Processing accounting records
Over time, the accounting virtual machine's A disk fills with accounting records.
CP sends a message to the primary system operator when the A disk is 75% full,
when it is 90% full, and when it is completely full. You can also log on the
accounting virtual machine and check the disk yourself. When the disk is full, you
must process some of the old records and erase some files to make room for
new ones.

The CMS Utility ACCOUNT can be used to process accounting records. Since
z/VM 4.1, the CMS utilities have been bundled into the base z/VM installation
and are no longer a separate, chargeable product.

Example 13-2 from the ACCOUNT command illustrates that we can use VM
accounting to gather data on CPU consumption for all Linux guests running
under VM.

Example 13-2 Output from the VM ACCOUNT command

VM SYSTEM USAGE OVER THE PERIOD 07/12/01 TO 07/12/01 ALL SHIFTS
USERID SESS CONNECT RATIO REAL-CPU VIRT-CPU PG READ PG WRITE SIO
TUX0MSTR 1 000004:35 00974 0000:00:17 0000:00:10 6082 10874 33682
VMLINUXA 1 000844:50 00001 0596:31:23 0234:57:01 38644 95891 107830
VMLINUXB 1 000702:14 00663 0001:03:31 0000:43:40 237642 235045 49061
VMLINUXC 1 000702:14 00582 0001:12:23 0000:48:30 230075 256174 62389
VMLINUX2 1 000697:30 00309 0002:15:07 0001:54:22 621859 634902 2553131
VMLINUX3 1 000031:43 00638 0000:02:59 0000:01:50 10490 16233 9429
VMLINUX4 1 000702:16 00453 0001:32:53 0001:08:39 60941 80382 240205
VMLINUX5 1 000001:33 ***** 0000:00:00 0000:00:00 0 0 397
VMLINUX6 1 000863:18 00562 0001:32:07 0001:12:14 142996 230437 4847862
VMLINUX7 4 000078:35 00605 0000:07:47 0000:05:19 17 3395 70930
VMLINUX8 1 000080:20 ***** 0000:00:00 0000:00:00 0 876 26
VMLINUX9 1 000573:23 00548 0001:02:44 0000:45:39 39402 115050 704388
 TOTALS 41 020860:28 00033 0615:45:31 0242:59:18 1915393 2265598 10406917

13.4.5 Linux process accounting
Process accounting is the method of recording and summarizing processes
executed on an individual Linux guest machine. Process accounting collects
metrics such as the elapsed CPU time, average memory use, I/O information,
and the name of the user who ran the process. The kernel will log process
accounting information after a process terminates.

Note: Refer to CMS Command and Utility Reference for complete information
about the ACCOUNT utility.
 Chapter 13. System monitoring 303

If you do require Linux process accounting, you should first install the acct rpm
package. If you are running SuSE, this package resides in the ap1 package
directory, with the filename acct.rpm.

After installing the rpm, you can edit /etc/rc.config to enable accounting at Linux
boot time with the following command:

rpm -ivh acct.rpm

The parameter to edit in /etc/rc.config is named START_ACCT. Make sure that it is
set as follows:

START_ACCT=yes

Once the Linux system has been rebooted, process accounting will be started
automatically.

The lastcomm command can be used to show the last commands that have been
executed in a Linux system. The information displayed includes the command
name, who ran the command, and the amount of CPU time consumed.

The sa command is a tool for summarizing and reporting on logged process
accounting data stored in the acct file. Refer to the sa man page for a complete
description of the syntax available.

13.5 Disk space utilization
In the context of this redbook, we are running many Linux guest systems under
the VM operating system. As such, each Linux guest will have a number of
minidisks. A simple approach to billing customers for the amount of disk space
they consume would be to use existing VM utilities to report on DASD space
utilization.

If the VM installation uses the User Directory (i.e., not DIRMAINT), then we can
use the CP utility DISKMAP to provide us with space utilization information for
Linux guests.

Note: Depending on the model of implementing Linux servers under VM, it
might be sufficient to use VM accounting to record CPU consumption at a
guest level rather than recording at a process level with individual Linux
guests.

Important: Remember to run the SuSEconfig command after you have edited
/etc/rc.config.
304 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Example 13-3 Output from DISKMAP

VOLUME USERID CUU DEVTYPE START END SIZE
 0 0 1 GAP
LIS32A LINMNT2 208 3390 00001 03338 03338

From this example we can see that the Linux guest system LINMNT2 has 3338
cylinders of DASD allocated to it.

If the VM installation is using the Directory Maintenance (DIRMAINT) utility, then
the systems programmer can issue the command:

dirm dirmap

This command will generate a report detailing the current DASD utilization on the
VM system. Example 13-4 illustrates the output that is generated:

Example 13-4 Output from DIRM DIRMAP

USER DIRECT Map of Minidisks 14:38:05 20010713
____ ______ ___ __ _________ ________ ________
Volser Type Ownerid Addr SysAffin Start End Length Flags
______ ____ _______ ____ ________ _____ ___ ______ _____
--
LIUSR1 3390 0 0 1 Gap
 LI2000 0191 * 1 100 100
 LI2000 0200 * 101 3100 3000
 MONWRITE 0203 * 3101 3338 238
--
LIUSR2 3390 0 0 1 Gap
 LI2000 0201 * 1 3000 3000
 MONWRITE 0200 * 3001 3338 338
--

13.6 Network bandwidth usage
There are two options for attributing bandwidth consumption to individual Linux
guests in a VM environment. You can either use the SNMP server that is
provided as part of VM’s TCP/IP stack, or you can use SNMP services provided
within Linux. In our case, we’ve chosen to focus on SNMP services within a Linux
environment. For detailed information on configuring an SNMP virtual machine
under VM’s TCP/IP stack, refer to z/VM TCP/IP Planning and Customization,
SC24-5981.
 Chapter 13. System monitoring 305

13.6.1 An introduction to SNMP
Simple Network Management Protocol (SNMP) is an application-layer protocol
that facilitates the exchange of management information between network
devices. It is part of the TCP/IP protocol suite. There are two standard levels of
SNMP: SNMPv1 and SNMPv2. There is a third version of SNMP SNMPv3, but
acceptance of this as a standard is still pending.

The two primary components of an SNMP implementation are the SNMP agent
and the Network Management Application. It is a client server architecture where
the SNMP agent is the server and the SNMP manager is the client.

An agent is a software component that resides on a managed device and collects
management information. A managed device could be a UPS, a router, a server,
or one of a multitude of other device types. In our context, a managed device will
be one or more Linux guest machines. The Network Management application
can monitor and control devices on which an SNMP agent is running.

The three commands that are most commonly used in SNMP communications
are read, write, and trap; they have the following characteristics:

Read This command is used by the network management application
to query SNMP agents for management information.

Write This command is used by the network management application
to modify variables maintained by the SNMP agent.

Trap This command is used by SNMP agents to send alerts to
network management applications when defined thresholds are
met, or specific events occur.

The collection of management information that an agent is responsible for is
called the Management Information Base (MIB). MIBs are organized
hierarchically in a tree structure and are comprised of managed objects.
Managed objects are the leaf nodes of the MIB tree.

SNMP is typically used to gauge network performance, find and resolve network
problems, and plan for network growth. However, you can also use SNMP to
monitor vendor-specific hardware such as the current load on a UPS, the CPU
utilization on routers, hubs, and servers, and even disk I/O and free space.

13.6.2 SNMP installation
Most Linux distributions should include some version of SNMP. We chose to use
the UCD-SNMP package for this redbook. We started on the Web at:

http://net-snmp.sourceforge.net/
306 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

http://net-snmp.sourceforge.net/

UCD-SNMP includes various SNMP tools: an extensible agent, an SNMP library,
tools for requesting or setting information from SNMP agents, tools for generating
and handling SNMP traps, a version of the netstat command which uses SNMP,
and a Tk/Perl MIB browser. You will probably also want to install the
ucd-snmp-utils package, which contains UCD-SNMP utilities.

To install the UCD-SNMP package, enter the following command:

rpm -ivh /suse/cd1/n2/ucdsnmp.rpm

Once the package is installed, an example configuration file can be found in
/usr/share/doc/packages/ucdsnmp/EXAMPLE.conf. Copy the EXAMPLE.conf file
to the /etc directory as follows:

cp /usr/share/doc/packages/ucdsnmp/EXAMPLE.conf /etc/ucdsnmpd.conf

13.6.3 SNMP configuration
We now want to configure SNMP for our local environment by editing the
/etc/ucdsnmp.conf file. Example 13-5 shows the simple modifications we made to
the file:

Example 13-5 Changes to /etc/ucdsnmp.conf

sec.name source community
com2sec local localhost localitso
com2sec mynetwork 9.0.0.0/8 itso

As shown, we set the community name (which is synonymous with a password)
to localitso, in order to access the SNMP data from our local system. If we had
wanted to access this machine’s SNMP data from another machine in the
network (limited to users with an IP address of 9.x.x.x), we would’ve used the
password itso.

These modifications will be enough to get SNMP working in your environment;
however, you should spend some time reviewing the configuration file to ensure
you have the correct parameters set for your installation.

Note: Although the RPM package is called ucdsnmp, the project has now
been renamed to Net-SNMP.

Note: The following example illustrates how we installed and configured
SNMP using a SuSE system, with UCD-SNMP 4.2.1. The steps may differ if
you are running a different Linux distribution, or if you are running a different
level of UCD-SNMP.
 Chapter 13. System monitoring 307

http://net-snmp.sourceforge.net/

Now we edited the file /etc/rc.d/snmpd. We wanted to change the startup
command so that the SNMP daemon uses our /etc/ucdsnmpd.conf as the
configuration file.

Therefore, we changed the following line:

startproc /usr/sbin/snmpd -f || return=$rc_failed

to read:

startproc /usr/sbin/snmpd -f/etc/ucdsnmpd.conf || return=$rc_failed

Finally, before starting the SNMP services, we edited /etc/rc.config by changing
the following line:

START_SNMPD="no"

to read:

START_SNMPD="yes"

As a result, the SNMP daemon will start automatically from now on when Linux is
booted. However, it is not actually running yet.

We were now ready to start SNMP services manually by using this command:

rcsnmpd start

To test our SNMP implementation, we used the snmpget command. This
command queries SNMP agents on specified hosts for one or more OID values.
The syntax is as follows:

snmpget HOST COMMUNITY OID

Try the following command and you should get a similar response:

snmpget localhost localitso .1.3.6.1.2.1.1.1.0
system.sysDescr.0 = Linux tux390 2.2.16 #1 SMP Wed Nov 8 10:57:03 GMT 2000 s390

The OID .1.3.6.1.2.1.1.1 maps to the system description. To see all of the
available objects in our tree, we used the snmpwalk command. This command
queries an entire tree, instead of individual OIDs.

The basic syntax is the same as snmpget (although the two commands have
several different options):

snmpwalk localhost public .1

Note: Always remember to re-run SuSEconfig after making any changes to
/etc/rc.config.
308 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

With this command, you “walk” the entire tree of OIDs that are available to you.
You can use the snmpwalk and snmpget commands from a remote Linux host on
the network and get the same result.

This is a very basic implementation of SNMP. Included with the example
ucdsnmpd.conf file are methods for monitoring CPU utilization, disk space, and
several other useful examples. With these packages, you are also able to set
traps to be sent to a specified host.

13.6.4 Network bandwidth monitoring
There are many tools available to monitor bandwidth consumption. In our case,
we focus on just one of those tools, MRTG. This is not an endorsement of that
product; rather, we picked one of the many available open source tools in this
area merely to demonstrate how easy it is to install and configure.

13.6.5 MRTG
The Multi Router Traffic Grapher (MRTG) is an open source tool that utilizes
SNMP to monitor the traffic load on servers, routers, or virtually anything that
generates SNMP records. It can be found on the Internet at:

http://people.ee.ethz.ch/~oetiker/webtools/mrtg/

It is licensed for use under the terms of the GNU General Public License.

MRTG generates HTML pages containing PNG images which provide a
snapshot visual representation of this traffic. MRTG is an excellent example of
what you can do with SNMP. MRTG can be used to report on more than just
network traffic; in our example, we also report on CPU consumption.

13.6.6 MRTG installation and customization
If you are using SuSE, you can get the MRTG package from the n1 packages
directory, filename mrtg.rpm

To install the MRTG package, enter the following command:

rpm -ivh mrtg.rpm

Note: The following example illustrates how we installed and configured
MRTG using a SuSE system, using MRTG 2.9.10. The steps may differ if you
are running a different Linux distribution or if you are running a different level
of MRTG. Also note that we ran with UCD-SNMP 4.2.1.
 Chapter 13. System monitoring 309

http://people.ee.ethz.ch/~oetiker/webtools/mrtg/

In our example, we created a configuration file to monitor the network traffic on
the localhost and provide us with CPU statistics. We first used the cfgmaker tool
to create the configuration file:

cfgmaker localitso@localhost > /etc/mrtg.conf

The cfgmaker program will discover the network interfaces that are defined to
your Linux guest, and write this information (along with appropriate HTML tags)
into the configuration file. In our example, the Linux guest has an OSA-Express
Fast Ethernet interface.

Example 13-6 Ethernet interface as defined in /etc/mrtg.conf

Target[localhost_3]: 3:localitso@localhost:
SetEnv[localhost_3]: MRTG_INT_IP="9.12.6.73" MRTG_INT_DESCR="eth0"
MaxBytes[localhost_3]: 1250000
Title[localhost_3]: Traffic Analysis for 3 -- vmlinux7
PageTop[localhost_3]: <H1>Traffic Analysis for 3 -- vmlinux7</H1>
 <TABLE>
 <TR><TD>System:</TD> <TD>vmlinux7 Guest Machine</TD></TR>
 <TR><TD>Maintainer:</TD> <TD>CCW <Caroline@javadog.org></TD></TR>
 <TR><TD>Description:</TD><TD>eth0 </TD></TR>
 <TR><TD>ifType:</TD> <TD>ethernetCsmacd (6)</TD></TR>
 <TR><TD>ifName:</TD> <TD></TD></TR>
 <TR><TD>Max Speed:</TD> <TD>1250.0 kBytes/s</TD></TR>
 <TR><TD>Ip:</TD> <TD>9.12.6.73 (vmlinux7.itso.ibm.com)</TD></TR>
 </TABLE>

We now needed to edit the newly created mrtg.conf file. At the top of the file, we
added an entry for the working directory where MRTG will place the HTML and
.PNG files. Because we were using Apache as the Web server in our example,
we elected to use a subdirectory called mrtg off the default Apache
DocumentRoot. We added the following WorkDir entry in the file /etc/mrtg.conf:

WorkDir: /usr/local/httpd/htdocs/mrtg

Before running MRTG, we also decided to add some additional CPU reporting
definitions into the /etc/mrtg.conf file. This is an example of the extra reporting
that can be achieved using SNMP—we are not limited to simply network
statistics; instead CPU, memory, disk and many other resource measurements
are available.

Note: We encountered problems when MRTG tried to discover interface
information for virtual CTC or IUCV devices. Refer to 13.6.8, “MRTG reporting
for Virtual CTC or IUCV devices” on page 314 for a discussion of the extra
steps needed to get bandwidth reporting to function using these devices.
310 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Example 13-7 CPU reporting definitions in /etc/mrtg.conf

LoadMIBs: /usr/share/snmp/mibs/UCD-SNMP-MIB.txt
Target[localhost.cpu]:ssCpuRawUser.0&ssCpuRawIdle.0:localitso@localhost
RouterUptime[localhost.cpu]: localitso@localhost
MaxBytes[localhost.cpu]: 100
Title[localhost.cpu]: CPU LOAD
PageTop[localhost.cpu]: <H1>User CPU Load %</H1>
Unscaled[localhost.cpu]: ymwd
ShortLegend[localhost.cpu]: %
YLegend[localhost.cpu]: CPU Utilization
Legend1[localhost.cpu]: User CPU in % (Load)
Legend2[localhost.cpu]: Idle CPU in % (Load)
Legend3[localhost.cpu]:
Legend4[localhost.cpu]:
LegendI[localhost.cpu]: User
LegendO[localhost.cpu]: Idle
Options[localhost.cpu]: nopercent

LoadMIBs: /usr/share/snmp/mibs/UCD-SNMP-MIB.txt
Target[localhost.usrsys]:ssCpuRawUser.0&ssCpuRawSystem.0:localitso@localhost
RouterUptime[localhost.usrsys]: localitso@localhost
MaxBytes[localhost.usrsys]: 100
Title[localhost.usrsys]: CPU LOAD
PageTop[localhost.usrsys]: <H1>CPU (user and system) Load %</H1>
Unscaled[localhost.usrsys]: ymwd
ShortLegend[localhost.usrsys]: %
YLegend[localhost.usrsys]: CPU Utilization
Legend1[localhost.usrsys]: User CPU in % (Load)
Legend2[localhost.usrsys]: System CPU in % (Load)
Legend3[localhost.usrsys]:
Legend4[localhost.usrsys]:
LegendI[localhost.usrsys]: User
LegendO[localhost.usrsys]: System
Options[localhost.usrsys]: nopercent

LoadMIBs: /usr/share/snmp/mibs/UCD-SNMP-MIB.txt
Target[localhost.cpusum]:ssCpuRawUser.0&ssCpuRawUser.0:localitso@localhost +
ssCpuRawSystem.0&ssCpuRawSystem.0:localitso@localhost /+
ssCpuRawNice.0&ssCpuRawNice.0:localitso@localhost
MaxBytes[localhost.cpusum]: 100
Title[localhost.cpusum]: CPU LOAD
PageTop[localhost.cpusum]: <H1>Active CPU Load %</H1>
Unscaled[localhost.cpusum]: ymwd
ShortLegend[localhost.cpusum]: %
YLegend[localhost.cpusum]: CPU Utilization
Legend1[localhost.cpusum]: Active CPU in % (Load)
Legend2[localhost.cpusum]:
Legend3[localhost.cpusum]:
 Chapter 13. System monitoring 311

Legend4[localhost.cpusum]:
LegendI[localhost.cpusum]: Active
LegendO[localhost.cpusum]:
Options[localhost.cpusum]: nopercent

13.6.7 MRTG reporting
We were now ready to run MRTG. In your case, you should first run such a tool
manually, and then, when you’re happy with the reporting, you can use cron to
automate the recording. The first couple of times MRTG is run, it gives warning
messages such as those shown in Example 13-8. These messages are normal
and can be safely ignored.

Example 13-8 Warning messages when first running MRTG

Rateup WARNING: /usr/bin//rateup could not read the primary log file for tux390.au.ibm.com
Rateup WARNING: /usr/bin//rateup The backup log file for tux390.au.ibm.com was invalid as well
Rateup WARNING: /usr/bin//rateup Can't remove tux390.au.ibm.com.old updating log file
Rateup WARNING: /usr/bin//rateup Can't rename tux390.au.ibm.com.log to tux390.au.ibm.com.old
updating log file
Rateup WARNING: /usr/bin//rateup could not read the primary log file for localhost.3
Rateup WARNING: /usr/bin//rateup The backup log file for localhost.3 was invalid as well
Rateup WARNING: /usr/bin//rateup Can't remove localhost.3.old updating log file
Rateup WARNING: /usr/bin//rateup Can't rename localhost.3.log to localhost.3.old updating log
file

MRTG must be run regularly to capture SNMP statistics, with the recommended
interval being every 5 minutes. You can update the /etc/crontab file to automate
the running of MRTG, as shown in Example 13-9:

Example 13-9 An /etc/crontab definition to run MRTG automatically every 5 minutes

*/5 * * * * root /usr/bin/mrtg /etc/mrtg.conf > /dev/null 2>&1

Using our example, we now saw a number of HTML pages populating the
directory /usr/local/httpd/htdocs/mrtg.

An example of one of the pages MRTG generates is shown in Figure 13-1 on
page 313:
312 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Figure 13-1 MRTG Traffic Analysis page

It would be useful to see all the graphs for traffic analysis, CPU consumption, etc.
on a single Web page. The MRTG package includes a utility called indexmaker
which can be used to create an index.html page incorporating all the reports on
to a single Web page.

indexmaker /etc/mrtg.conf --output=/usr/local/httpd/htdocs/mrtg/index.html

In this example, we ran indexmaker against our MRTG configuration file, telling it
to write the newly created index.html file to the MRTG HTML directory.

An example of the index.html page is shown in Figure 13-2 on page 314.
 Chapter 13. System monitoring 313

Figure 13-2 MRTG index page created by indexmaker

13.6.8 MRTG reporting for Virtual CTC or IUCV devices
When running many Linux guests under VM, it is highly probable that many of
these guests will not have dedicated network interface cards. Instead, they will
gain network connectivity via one or more virtual CTC or IUCV point-to-point
connections with a VM TCP/IP stack.

We found that the MRTG program cfgmaker does not correctly recognize Virtual
CTC or IUCV devices as their ifSpeed value in the MIB tree is set to 0. To get
around this, we manually added a speed value into the MIB tree by adding a
parameter into /etc/ucdsnmpd.conf as follows:

interface interface_name interface_type speed_in_bits/sec
314 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Example 13-10 Changes to /etc/ucdsnmpd.conf for IUCV or CTC devices

interface ctc0 111 10000000
interface iucv0 111 10000000

In this example, we specified a maximum speed of 10Mbps. The 111 refers to
the interface as a “Stack-to-Stack” device. For a complete listing of all available
interface types, we referred to the file /usr/share/snmp/mibs/IANAifType-MIB.txt

With these changes in place, we recycled the SNMP daemon as follows:

rcsnmpd restart

At the level of SuSE we were running at time of writing (SuSE 7.2 beta, kernel
2.2.19), we found that adding a speed value in the MIB tree for the Virtual CTC or
IUCV devices was not enough to get bandwidth information. The CTC and IUCV
drivers at that level did not perform the necessary byte recording.

To resolve this issue, we made patches to both the CTC and IUCV drivers for the
2.2.19 level of the Linux kernel. These patches are in the file
ctc-iucv-bytestat.patch and can be downloaded from:

ftp://www.redbooks.ibm.com/redbooks/SG246299

Ensure that you have the source code for the 2.2.19 Kernel in /usr/src/linux (this
patch was only tested at 2.2.19). Copy the patch that you've downloaded from
the Internet to the directory /usr/src/linux/drivers/s390/net/. You should see
(among others) the files ctc.c and netiucv.c These are the source files for the
CTC and IUCV drivers. To apply the patch from the shell, type:

patch -b -i ctc-iucv-bytestat.patch

You should see the output:

patching file ctc.c
patching file netiucv.c

If there are no errors listed, the module source code is now patched. Now
compile the modules. To do this, go to the /usr/src/linux directory.

Note: The speed value you specify will not affect the actual speed of the
device; it will only alter the scaling of the MRTG graphs. You may need to alter
this speed value to suit your environment to ensure the graph scaling is
meaningful.
 Chapter 13. System monitoring 315

Compile the module support into binaries by typing:

make modules

Once this has finished, type:

make modules_install

This will install the modules into their runtime directories.

You can now use the modules; refer to Linux for S/390 Device Drivers and
Installation Commands for information on module syntax. You should now have
accurate byte recording for the Virtual CTC and IUCV devices.

13.6.9 Monitoring multiple Linux guests
So far we’ve outlined how to set up SNMP and MRTG for a single Linux guest.
However, as previously mentioned, in the context of this redbook we ran multiple
Linux guest systems, so now we describe how to add more Linux guests into the
MRTG reporting model.

Note: This assumes that you have already selected that you want CTC and
IUCV module support. If you have not already made this selection, then you
need to first run the command make menuconfig from /usr/src/linux.

Then, under the selection:

S/390 Network device support

make sure the following selections are made:

<M> CTC device support
<M> IUCV device support (VM only)

Exit and save the configuration.

Note: Because Linux kernel and device driver development are such
fast-moving and dynamic fields, we will not be providing patches for any other
level of the CTC/IUCV device drivers. From reviewing the source code for the
CTC and IUCV drivers at the 2.4.5 level of the Linux kernel, it appears that the
byte-recording limitation has been removed.
316 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

To add more Linux guests into the MRTG reporting model, you first need to set
up UCD-SNMP on any additional Linux guests that you wish to monitor. If you
have established UCD-SNMP on a master Linux system that you use for cloning,
then no further installation or configuration requirements may be necessary.
However, if you do not use a cloning technique, then you have to set up
UCD-SNMP according to the guidelines in this chapter.

Once the Linux systems that you wish to monitor have SNMP running, you can
then run the MRTG cfgmaker utility to snmpwalk their MIB tree. This will
determine what network interfaces they are using.

The syntax of cfgmaker is as follows:

cfgmaker community_name@host_name > config_file_name

Run it against another Linux guest, as follows:

cfgmaker itso@vmlinux2.itso.ibm.com > mrtg.conf.vmlinux2

Now edit the mrtg.conf.vmlinux2 file, extracting the necessary interface
information and adding it to your existing /etc/mrtg.conf file.

In our example, we added the definitions shown in Example 13-11 to the
/etc/mrtg.conf file:

Example 13-11 Interface information gathered from walking vmlinux2’s MIB tree

Target[vmlinux2.itso.ibm.com_4]: 4:itso@vmlinux2.itso.ibm.com:
SetEnv[vmlinux2.itso.ibm.com_4]: MRTG_INT_IP="9.12.6.99" MRTG_INT_DESCR="eth1"
MaxBytes[vmlinux2.itso.ibm.com_4]: 1250000
Title[vmlinux2.itso.ibm.com_4]: Traffic Analysis for -- vmlinux2
PageTop[vmlinux2.itso.ibm.com_4]: <H1>Traffic Analysis for -- vmlinux2</H1>
 <TABLE>
 <TR><TD>System:</TD> <TD>vmlinux2 Guest machine.</TD></TR>
 <TR><TD>Maintainer:</TD> <TD>SEW <simon@42.org></TD></TR>
 <TR><TD>Description:</TD><TD>eth1 </TD></TR>
 <TR><TD>ifType:</TD> <TD>ethernetCsmacd (6)</TD></TR>
 <TR><TD>ifName:</TD> <TD></TD></TR>
 <TR><TD>Max Speed:</TD> <TD>1250.0 kBytes/s</TD></TR>
 <TR><TD>Ip:</TD> <TD>9.12.6.99 (vmlinux2.itso.ibm.com)</TD></TR>
 </TABLE>

Figure 13-3 on page 318 shows an example of an MRTG Web page reporting on
network traffic for four Linux guest systems.
 Chapter 13. System monitoring 317

Figure 13-3 Multiple Linux guests on a single page

So far, we only looked at the traffic throughput reporting capabilities of MRTG. In
the following section, we show how to determine how much total bandwidth over
time is being used by the individual Linux guest machines.

13.6.10 Total bandwidth reporting
To report on the total network traffic profile for our Linux guests, we used the
mrtg_total Perl script written by Josef Wendel. This script generates HTML
reports for bandwidth usage on a per day and per month basis. The script is
available on the Internet at:

http://www.geocities.com/josef_wendel/mrtg_total.html

There are a number of prerequisite Perl modules which you may not have
installed on your system.
318 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

http://www.geocities.com/josef_wendel/mrtg_total.html

These modules are available from the Comprehensive Perl Archive Network
(CPAN) Web site at the following URL:

http://cpan.valueclick.com/modules/by-module/GD

The modules we downloaded were:

� GD-1.33
� GDGraph-1.33
� GDTextUtil-0.80
� GDGraph3d-0.55

To use these modules, place the mrtg_total script and all the modules into a
suitable directory on the Linux guest that is running MRTG. In our case, we
placed the files in a directory called /home/gd.

Untar all of the files, then go into each subdirectory in the module order listed
above and install that particular module. If you do not install them in the order
listed, you may be trying to install a module that has a dependency on a module
that hasn’t been installed yet. Following is the first module installation, as an
example:

$ cd /home/GD-1.33
$ perl Makefile.PL
$ make
$ make install

Now copy the mrtg_total.pl script to the /usr/local/bin directory.

The mrtg_total script should be run once a day to generate its report. We ran it
automatically by placing an entry into the /etc/crontab file.

Following is an /etc/crontab definition to run mrtg_total automatically once a day:

10 0 * * * root /usr/local/bin/mrtg_total.pl /etc/mrtg.conf

We were now ready to edit the MRTG configuration file to add extra parameters
for each network interface so that the mrtg_total script will generate cumulative
traffic information about each interface.

Using one of the interfaces from our previous example, we added the lines in
italics to the /etc/mrtg.conf file; see Example 13-12 on page 320.

Note: If you run mrtg_total.pl and get an error message stating bad
interpreter: No such file or directory, then you need to change the
location of the Perl program as referenced in the mrtg_total.pl script. The
script expects to find the Perl executable in /usr/local/bin/perl. In a default
SuSE system, that executable resides in /usr/bin/perl.
 Chapter 13. System monitoring 319

http://cpan.valueclick.com/modules/by-module/GD

Example 13-12 Added parameters to include cumulative traffic information about each interface

Interface 3 >> Descr: 'eth0' | Name: '' | Ip: '9.12.6.73' | Eth: '00-06-29-6c-cb-ce'
Target[localhost_3]: 3:localitso@localhost:
#-#Total[localhost_3]: Traffic Totals for 9.12.6.73
#-#Total-Unit[localhost_3]: M
#-#Total-Ratio[localhost_3]:yes
SetEnv[localhost_3]: MRTG_INT_IP="9.12.6.73" MRTG_INT_DESCR="eth0"
MaxBytes[localhost_3]: 1250000
Title[localhost_3]: Traffic Analysis for 3 -- vmlinux7
PageTop[localhost_3]: <H1>Traffic Analysis for 3 -- vmlinux7</H1>
 <TABLE>
 <TR><TD>System:</TD> <TD>vmlinux7 Guest machine.</TD></TR>
 <TR><TD>Maintainer:</TD> <TD>SEW <Simon@42.org></TD></TR>
 <TR><TD>Description:</TD><TD>eth0 </TD></TR>
 <TR><TD>ifType:</TD> <TD>ethernetCsmacd (6)</TD></TR>
 <TR><TD>ifName:</TD> <TD></TD></TR>
 <TR><TD>Max Speed:</TD> <TD>1250.0 kBytes/s</TD></TR>
 <TR><TD>Ip:</TD> <TD>9.12.6.73 (vmlinux7.itso.ibm.com)</TD></TR>

We would add additional lines, with relevant labels and comments, for each
device we are reporting on in the MRTG configuration file.

The graphs generated by the mrtg_total script reside in the same directory as all
the other MRTG HTML files. Figure 13-4 on page 321 and Figure 13-5 on
page 322 are two examples of traffic reporting by day and by month for one of
our OSA-Express Fast Ethernet cards (as you can see, this was a test system
and the traffic was only heavy for a short period).
320 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Figure 13-4 Traffic totals by day
 Chapter 13. System monitoring 321

Figure 13-5 Traffic totals by month

13.7 Availability monitoring
In any computing environment, a mechanism is needed to monitor the health of
the systems. In an environment with hundreds of Linux guest machines running
under VM, it would quickly prove impractical to monitor these systems manually.

As is often the case in the open source community, there are many availability
monitoring packages to choose from. We focused on a tool called NetSaint,
which is available on the Web at:

http://www.netsaint.org
322 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

http://www.netsaint.org

The tool appeared to be straightforward to install and configure, and provided us
with enough monitoring function to be useful in an environment with many Linux
systems.

13.7.1 NetSaint

NetSaint is an open source software package that carries the GPL license. It can
be used to monitor not only Linux hosts, but also many other types of servers or
routers. It can also monitor individual services that those machines are running.

For example, if a server is unavailable, or network traffic is running slow or disk
drives are filling up, NetSaint can be used to e-mail or page support staff.
NetSaint uses a modular, “plugin” architecture to perform the actual service
checks, which allows you to choose from a large number of plugins and also
allows you to develop your own plugins for the specific needs of your
environment.

The NetSaint package can be downloaded from the following URL:

http://www.netsaint.org/download

The version we used in this redbook was NetSaint 0.0.6. As you may surmise
from the version numbering, this was still very much a work in progress;
nevertheless, from our testing we found it to be very useful.

We downloaded the package netsaint-0.0.6.tar.gz, which includes the core
program, CGIs, and documentation from the URL:

http://www.netsaint.org/download/netsaint-0.0.6.tar.gz

We also downloaded the NetSaint plugins package (at level 1.2.9-4) from the
Source Forge Web site at the following URL:

http://prdownloads.sourceforge.net/netsaintplug/netsaint-plugins-1.2.9-4.tar.gz

Note: The following example illustrates how we installed and configured
NetSaint 0.0.6 using a SuSE system. The steps may differ if you are running a
different Linux distribution or if you are running a different level of NetSaint.
 Chapter 13. System monitoring 323

http://www.netsaint.org
http://www.netsaint.org/download

13.7.2 Installing NetSaint

The installation manual that comes with the NetSaint package is the definitive
guide to all aspects of installing and configuring the product. We include the
following sections simply to give you a “jump-start” guide to getting the product
and up and running quickly.

First decide which Linux guest machine will act as the NetSaint server. This
machine will interrogate other machines, as defined in its configuration file, to
determine their availability and service level. Once you have selected a suitable
Linux guest, upload the two files mentioned above into a suitable directory. We
used /home/netsaint/. Untar the files as follows:

tar -zxvf netsaint-0.0.6.tar.gz
tar -zxvf netsaint-plugins-1.2.9-4.tar.gz

You should now have two new subdirectories, netsaint-0.0.6 and
netsaint-plugins-1.2.9-4. In our case, we first configured and compiled the core
NetSaint program, and then configured and compiled the plugins.

Next, we created a base directory to be used as the runtime directory for
NetSaint:

mkdir /usr/local/netsaint

Before starting the compilation, we needed to create a NetSaint group and user
ID to be used for file ownership. The following two commands illustrate how to do
this:

groupadd netsntg
useradd netsaint -g netsntg

Note: As long as you are running Linux and have a copy of the GNU C
Compiler (gcc), the installation of NetSaint should prove to be simple.
However, if you wish to see the graphs produced by the statusmap CGI, you
will also need to install the GD library. If the GD library does not come as part
of your distribution, you can download it from the following URL:

http://www.boutell.com/gd

To check whether or not you have the GD library installed, execute the
following find command from the shell:

find / -name libgd.a

If you get a match, it means that you have the GD library installed.
324 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

http://www.boutell.com/gd

We were now ready to run the configuration script to initialize variables and
create the makefile:

./configure --prefix=/usr/local/netsaint --with-cgiurl=/cgi-bin/netsaint \
--with-htmurl=/netsaint/ --with-netsaint-user=netsaint \
--with-netsaint-grp=netsntg --with-gd-lib=/usr/local/lib/ \
--with-gd-inc=/usr/local/include/

When that completed successfully, a makefile had been built and we were ready
to compile NetSaint core code and the CGIs:

make all

After that completed successfully, we installed the binaries, documentation, and
sample HTML files:

make install

We created and installed sample configuration files using the following
commands:

make config
make install-config

We needed to change directory to the plugins install directory, and run the
configuration script for the NetSaint plugins, as follows:

cd /home/netsaint/netsaint-plugins-1.2.9-4
./configure --prefix=/usr/local/netsaint --with-netsaint-user=netsaint \
--with-netsaint-group=netsntg --with-cgiurl=/cgi-bin/netsaint

After that completed successfully, we compiled the plugins with the following
command:

make all

Finally, we installed the binaries to the directory /usr/local/netsaint/libexec/ as
follows:

make install

13.7.3 Configuring the Web interface
The next step is to configure the Web interface so that you can access NetSaint
status pages and run the NetSaint CGI programs from your Web browser.
 Chapter 13. System monitoring 325

We edited our Apache configuration file (by default, this usually resides in a file
called /etc/httpd/httpd.conf).

We added the following line (in our example, we added it at the bottom of the file):

Alias /netsaint/ /usr/local/netsaint/share/

Next we needed to create an alias for the NetSaint CGIs:

ScriptAlias /cgi-bin/netsaint/ /usr/local/netsaint/sbin/

Now we restarted the Apache Web server; if running SuSE, this can be done as
follows:

rcapache restart

You should now be able to go to the NetSaint Web interface by pointing your Web
browser at the following URL:

http://whatever_your_hostname_is/netsaint

You should be greeted with the screen shown in Figure 13-6 on page 327:

Note: The following section makes the assumption that you are running
Apache as your Web server.

Important: The ScriptAlias definition must precede the default Apache cgi-bin
ScriptAlias entry in the httpd.conf file.
326 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Figure 13-6 NetSaint welcome screen

13.7.4 User authorization
We secured our NetSaint services, so that only authorized staff can use the tool,
by adding the lines shown in Example 13-13 to the /etc/httpd/httpd.conf file:

Example 13-13 User Authentication statements in httpd.conf

<Directory /usr/local/netsaint/sbin>
AllowOverride AuthConfig
order allow,deny
allow from all
Options ExecCGI
</Directory>

<Directory /usr/local/netsaint/share>
AllowOverride AuthConfig
 Chapter 13. System monitoring 327

order allow,deny
allow from all
</Directory>

At this point we’ve only told Apache that access to the NetSaint CGI’s and HTML
files requires authorization. We now needed to define the users that are
authorized to access those files using the Apache htpasswd program. The
command syntax is as follows:

htpasswd -c /usr/local/netsaint/etc/htpasswd.users netsaintadmin

This will create a file called htpasswd.users, with the first user ID being
netsaintadmin. The htpasswd program will prompt you for a password for that
user ID. To create additional users, use the following command:

htpasswd /usr/local/netsaint/etc/htpasswd.users <username>

We now needed to create a file called .htaccess (yes, that is a period at the front
of the file name). A copy of the file must reside in two locations:
/usr/local/netsaint/sbin, and /usr/local/netsaint/share. The contents of the file
should be as follows:

AuthName "NetSaint Access"
AuthType Basic
AuthUserFile /usr/local/netsaint/etc/htpasswd.users
require valid-user

Finally we needed to make some modifications to the CGI configuration file
/usr/local/netsaint/etc/nscgi.conf.

The following changes were made for our configuration:

use_authentication=1
authorized_for_system_information=*
authorized_for_configuration_information=*
authorized_for_system_commands=*
authorized_for_all_services=*
authorized_for_all_hosts=*
authorized_for_all_service_commands=*
authorized_for_all_host_commands=*

The use_authentication=1 parameter enables authorization checking. The
authorized_for parameters all have a value of asterisk (*). This means that any
user who has successfully been authenticated by Apache will have access to
these CGIs.
328 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

13.7.5 Configuring NetSaint
Since we’ve configured the NetSaint infrastructure, we now turn to configuring
NetSaint itself. NetSaint has three configuration files: a “main” configuration file,
netsaint.cfg; a “host” configuration file, hosts.cfg; and a “CGI” configuration file,
nscgi.cfg. The configuration files reside in the directory /usr/local/netsaint/etc/.

Unless you have made any changes to the default installation steps previously
described above, there’s no need to make changes to the main configuration file
unless you specifically want to.

The bulk of the configuration occurs in the hosts.cfg file. It is here that you define
the systems that you wish to monitor. This file is quite complex, so we’ll use an
example environment to describe how to configure it.

Figure 13-7 uses the NetSaint package to display our network and server
configuration:

Figure 13-7 Example configuration - diagram generated by NetSaint

We focus on the two machines at the far left of the diagram, the G5-router and
tux390. The definitions for all the other machines in the diagram will be very
similar to those two.

We start by opening the file /usr/local/netsaint/etc/hosts.cfg in an editor.

Host definitions
We first need to discuss the host definition section. The syntax of that section is
shown in Example 13-14:

Example 13-14 Host definitions syntax

host[<host_name>]=<host_alias>;<address>;<parent_hosts>;<host_check_command>;
 Chapter 13. System monitoring 329

<max_attempts>;<notification_interval>;<notification_period>;
<notify_recovery>;<notify_down>;<notify_unreachable>;
<event_handler>

Example 13-15 shows our coding:

Example 13-15 Host definitions

host[G5-router]=G5 VM 3.1 Router;9.185.122.219;;check-router-alive;20;60;24x7;1;1;1;
host[tux390]=tux390 VM Guest;9.185.122.217;G5-router;check-host-alive;10;120;24x7;1;1;1;

The G5-router is actually a VM TCP/IP stack on a z/VM LPAR running on a 9672
G5 processor. The tux390 host is a Linux VM guest connected to the VM TCP/IP
stack via Virtual CTC links.

In the host definition for the G5-router, we say that we want to run the
check-router-alive command against this machine. The check-router-alive
command is defined in the file /usr/local/netsaint/etc/commands.cfg. It sends a
single ICMP ping to the defined machine every 60 seconds.

To change the checking interval from 60 seconds to another value, you must
change the interval_length parameter; this is set in the netsaint.cfg file. If there is
100% packet loss, or if the round trip average is 5000ms (5 seconds) or longer,
an error is flagged. These settings are can be configured in the commands.cfg
file.

Similar definitions were been made for the tux390 host. Note, however, that we
defined the G5-router as the parent host of the tux390 machine. This is
particularly useful when we use the status map and 3-D status map CGIs,
because we can easily see the relationship between different machines in our
network.

Host groups
Next, we need to review the host groups section. As the name implies, this allows
us to group together one or more hosts for the purposes of notifying support staff
when an outage is detected.

The syntax for this section is:

hostgroup[<group_name>]=<group_alias>;<contact_groups>;<hosts>

Note: For a complete description of all the available configuration options,
refer to NetSaint documentation.
330 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

In our example, we coded the following:

hostgroup[G5Penguins]=All Linux Guests under VM on G5;linux-admins;tux390
hostgroup[routers]=All routers;linux-admins;itso-router,MP2000-router,G5-router

Note that we only defined the tux390 host under the G5Penguins group; if we
had more Linux guests under this VM system, then we would add their names
here.

Command configuration
The command configuration section can be used to define the functions you wish
to run when an exception occurs. For example, we chose to use the default
e-mail notification, which notifies the defined user whenever a problem is
detected:

Example 13-16 Send an e-mail when an exception is detected

command[notify-by-email]=/bin/echo -e '***** NetSaint 0.0.6 *****\n\nNotification Type:
$NOTIFICATIONTYPE$\n\nService: $SERVICEDESC$\nHost: $HOSTALIAS$\nAddress: $HOSTADDRESS$\nState:
$SERVICESTATE$\n\nDate/Time: $DATETIME$\n\nAdditional Info:\n\n$OUTPUT$' | /bin/mail -s '**
$NOTIFICATIONTYPE$ alert - $HOSTALIAS$/$SERVICEDESC$ is $SERVICESTATE$ **' $CONTACTEMAIL$

Contact configuration
The contact section defines who to contact with the notification that an outage
has occurred. We defined the netsaintuser as the recipient of all contact
messages:

Example 13-17 Contact section

contact[netsaintuser]=NetsaintUser;24x7;24x7;1;1;1;1;1;1;notify-by-email,notify-by-epager;host-
notify-by-email,host-notify-by-epager;root

When there is a problem, the netsaintuser will be notified via e-mail, and also via
a pager message sent through an e-mail pager gateway.

Service configuration
NetSaint not only monitors the availability of whole host machines, but it can also
monitor individual services running within a machine. For example, we can define
services to be monitored such as POP3, HTTP, and DNS. Netsaint will check that
these services are indeed active on a machine.

The syntax of the service sections is shown in Example 13-18:

Example 13-18 Service section

service[<host>]=<description>;<volatile>;<check_period>;<max_attempts>;
<check_interval>;<retry_interval>;<notification_group>;
<notification_interval>;<notification_period>;<notify_recovery>;
 Chapter 13. System monitoring 331

<notify_critical>;<notify_warning>;<event_hander>;<check_command>

For the G5-router, we defined the following service definition:

Example 13-19 G5-router service definition

service[G5-router]=PING;0;24x7;3;5;1;linux-admins;240;24x7;1;1;0;;check_ping

Because this machine was simply acting as a router to our Linux guest, all we
needed to do was ping the machine regularly to verify that it was still up. For our
tux390 host, we added several more service definitions, as follows:

Example 13-20 tux390 host service definition

service[tux390]=PING;0;24x7;3;5;1;linux-admins;240;24x7;1;1;0;;check_ping
service[tux390]=HTTP;0;24x7;3;2;1;linux-admins;240;24x7;1;1;1;;check_http
service[tux390]=DNS;0;24x7;3;2;1;linux-admins;240;24x7;1;1;1;;check_dns

Along with regular pings to check machine availability, we also checked that the
Web server and DNS were running.

The final step to complete before running NetSaint is to edit the nscgi.conf file. In
our case, we wanted to add definitions for site-specifc graphics and enable
NetSaint process checking by making the following additions:

Example 13-21 Changes to nscgi.conf file

hostextinfo[tux390]=/serverinfo/tux390.html;bluetux.gif;bluetux.jpg;bluetux.gd2;Linux 390;
hostextinfo[G5-router]=/serverinfo/g5.html;G5icon.gif;G5icon.jpg;G5icon.gd2;System 390 G5;

netsaint_check_command=/usr/local/netsaint/libexec/check_netsaint \
/usr/local/netsaint/var/status.log 5 '/usr/local/netsaint/bin/netsaint' #uncomment this line

We added graphics (.gif, .jpg and .gd2 files) so that the various screens available
in the NetSaint Web interface will display our unique icons.

Note: You need to create these graphics yourself. To create .gd2 files, you can
use the utility pngtogd2, which is part of the GD package.
332 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

13.7.6 Starting and stopping NetSaint

There are four methods of starting NetSaint: manually from a shell in the
foreground; manually from a shell, but running NetSaint as a background task;
manually as a Daemon; or automatically, as the Linux system boots.

While initial testing is carried out, we recommend that you manually run NetSaint
as a foreground task. When you’re comfortable that everything is configured
correctly, you can automate NetSaint to start at boot time with the following
command:

/usr/local/netsaint/bin/netsaint /usr/local/netsaint/etc/netsaint.cfg

To stop NetSaint when running in foreground mode, simply press <CTRL-C> to
get out of the program. Refer to NetSaint documentation for other methods.

13.7.7 Using NetSaint
Once you have completed the configuration, you’re ready to start NetSaint. Go to
the main Web page to begin verifying that it is indeed working as you expect.

Type in the valid URL from your Web browser (it should be something like the
following:

http://your_hostname/netsaint

You’ll be prompted for a valid user ID and password; if you followed the example
in this chapter, the user ID should be netsaintadmin. You will then be greeted by
the Web page as displayed in 13.7.3, “Configuring the Web interface” on
page 325.

To verify that your configuration definitions are successful, select the option
Status Summary. Using that screen, as shown in Figure 13-8 on page 334, you
can then drill down to individual servers.

Note: Refer to the NetSaint documentation for a complete description of all
options available for starting, stopping, and restarting NetSaint.
 Chapter 13. System monitoring 333

Figure 13-8 NetSaint Status Summary screen

NetSaint has two very useful graphic-based CGIs: statusmap.cgi, and
statuswrl.cgi. statuswrl.cgi produces VRML output.

Figure 13-9 on page 335 and Figure 13-10 on page 336 show examples of these
CGIs.

Important: If you select the 3D-Status Map option from the Web page and it
prompts you to save a file to disk, then it means you do not have a VRML
plugin installed for your Web browser. The NetSaint documentation
recommends using a VRML plugin such as Cortona, Cosmo Player or
WorldView.
334 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Figure 13-9 Status map CGI

You can select individual machines and gather more information about their
service status.
 Chapter 13. System monitoring 335

Figure 13-10 3D status map

With the 3D status map, you can literally fly around the Linux guests, identifying
ones that may have problems (in our example, the problem guest displays as
red).

If you find a machine that has a service problem, you can click that guest and be
transferred to the status page for that specific machine. From there you can drill
down further, thus pinpointing exactly what the problem is.

In Figure 13-11 on page 337, we can see that the Linux guest vmlinux1 is
currently down:
336 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Figure 13-11 Service details screen

13.8 Summary
In this chapter we have outlined some of the methods by which an organization
can account for resources consumed by Linux/390 VM Guest systems. We have
also examined just a few of the many ways in which organizations can monitor
their Linux systems.

Comprehensive monitoring can be done very cheaply through many, very
professional, Open Source packages. And as the popularity of Linux grows, more
and more tools are becoming available every month. These tools are being
written both by the open source community and by an ever-increasing number of
software vendors, such as Tivoli.
 Chapter 13. System monitoring 337

Undoubtedly the methods and sophistication of accounting for Linux resource
consumption will continue to mature, as we have seen on other platforms.
338 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Chapter 14. Web application servers

One of the most significant developments to appear recently in the software
world is the Web application server. Although technically “application server” is a
generic term, in common usage it refers to a server that implements the Java 2
Enterprise Edition (J2EE) standard. Some Java application servers include IBM
WebSphere Application Server, BEA WebLogic, Lutris Enhydra, and Tomcat and
Resin from the Apache Project.

Properly deploying WebSphere Application Server or any other application
server is a very complex undertaking with many key decision points that are
dependent on the particulars of each application. Fully exploring such a
deployment is beyond the scope of this book.

There are issues with WebSphere Application Server (and other application
servers) that require special consideration in the Linux for zSeries and S/390
environment. In this chapter, we discuss some of these issues and provide
possible solutions.

14
© Copyright IBM Corp. 2001 339

14.1 WebSphere issues
In order for you to effectively deploy WebSphere on Linux for zSeries and S/390,
we need to explain how WebSphere workloads differ from the other workloads
we’ve discussed. These differences have a major effect on your deployment
options and the relative merits of those options.

14.1.1 Java Virtual Machine (JVM)
As an implementation of the J2EE standard, WebSphere is based completely on
Java technology. This means that all of WebSphere (both internal and application
components) runs in a Java Virtual Machine (JVM). In some sense, the JVM can
be viewed as its own small virtual server, which emulates a sort of system with a
limited set of instructions and functions. Compiled Java byte-code is executed by
the JVM, which runs as a process under the host operating system.

Some implementations of the JVM include Just-In-Time compilation (JIT). This
technique involves compiling the Java byte-code into native instructions just
before execution. This technique potentially provides significant improvements in
execution time.

As a result of this interpreted implementation, Java applications tend to be
somewhat more CPU-intensive than would otherwise be expected. For starters,
the byte-code interpretation can take up to half of the execution time. There is
also some overhead associated with Java’s garbage collection routines. In the
case of JIT compilation, some extra CPU time is still required to perform the
translation to native code, though the total is usually still much less than for fully
interpreted byte-code.

The JVM is also a pure stack-based machine; there are no “registers” to pass
parameters, so data is always allocated on the stack (and thus uses memory).

14.1.2 Objects
Java is considered an object-oriented language. Object-oriented programming is
a tool for improving software engineering methods and programmer
effectiveness, not performance. Several artifacts of Java’s object-orientation
affect the resource demands of Java code:

� Loading of class hierarchies - loading one class requires loading all that
class’s ancestors, as well

� Indirection - most data accesses are through at least two levels of indirection,
which makes memory access a more significant part of overall performance
340 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

� Dynamic binding - most methods are looked up by name (i.e. a string) rather
than by an address, thus requiring lots of string parsing overhead at runtime1

� Cache-unfriendly behavior - objects tend to be less easily kept in cache,
especially for architectures with a large number of distinct objects

In general, these behaviors mean that Java code tends to be a large consumer of
memory, both in terms of usage and bandwidth.

It is important to also recognize that the architecture of WebSphere applications
themselves can have a significant impact on the run-time behavior. Applications
that are written as a few, relatively large objects can take advantage of a deep
private cache (such as that provided by the pSeries) and thus are not as efficient
on a shared-cache architecture such as the zSeries. Conversely, applications
composed of many smaller objects will tend to be more efficient on the zSeries.

14.2 Options for running WebSphere
IBM WebSphere Application Server presents several different options for
deployment in the Linux for zSeries and S/390 environment. Each deployment
option has its own advantages and disadvantages, and is more appropriate for
some environments than others. In fact, the particular behavior of a specific
WebSphere Application Server application may make it more appropriately
implemented in a particular way.

Note that because of the relatively high memory and CPU demands of
WebSphere, we do not currently recommend running many (tens or hundreds) of
separate WebSphere Application Server instances on Linux for zSeries and
S/390.

14.2.1 WebSphere Application Server for zSeries and S/390 Linux
One option is to use WebSphere Application Server V3.5 for Linux for zSeries
and S/390. This version is shipped with the Java 1.2.2 JVM rather than the Java
1.3, and thus will not have the performance enhancements offered by the new
JVM. However, this option allows the user to leverage their existing expertise in
Linux

We hope that eventually WebSphere Application Server V4 will be released for
Linux for zSeries and S/390, and that some of the performance enhancements
will carry over to this platform; however, at the time of writing no such release has
been announced.

1 This is not to say that this technique is necessarily a negative; it actually simplifies relocation, for one. But nothing
comes for free, and there is a runtime cost associated with it.
 Chapter 14. Web application servers 341

14.2.2 WebSphere Application Server for z/OS
Another configuration option is to deploy WebSphere Application Server for z/OS
on a separate LPAR running z/OS. At the time of writing, the current released
version WebSphere Application Server for z/OS is V4, which includes Java 1.3
JVM. This JVM is expected to have significant performance gains over the Java
1.2.2 JVM included in WebSphere Application Server V3.5.

An additional cost will be the software and staffing costs associated with z/OS.
This option may be most appropriate if z/OS is already installed in the
organization and personnel are available to support it.

14.2.3 Separate servers
A third option, of course, is to deploy WebSphere Application Server on separate
servers - pSeries AIX servers, for example. This method allows WebSphere
Application Server to have exclusive access to all the memory and CPU
resources on the machine. It also significantly increases the complexity of an
installation, requiring additional hardware, power, network, and other resources.
However, in situations where WebSphere Application Server is running extremely
complex applications at very high utilizations, this may be the best way to handle
the workload.

14.3 Planning for WebSphere Application Server
A key factor in planning for WebSphere Application Server is minimizing the
impact it has on other z/VM guests while ensuring it has sufficient resources to
meet its performance targets. Fortunately, the zSeries architecture provides
powerful tools ideally suited to achieving these goals. By combining z/VM and
LPARs, we can deploy WebSphere Application Server in ways that maximize
performance and manageability.

We strongly recommend that WebSphere Application Server servers be set up in
their own LPAR, separate from the other Linux for zSeries and S/390 guests
(Web servers and such). This applies to WebSphere Application Server for Linux
for zSeries and S/390, as well as to WebSphere Application Server for z/OS. In
both cases, having a dedicated set of resources with the same general access
patterns makes management simpler and minimizes unexpected interactions.

We also recommend that WebSphere Application Server servers be deployed as
z/VM guests. The additional flexibility conferred by z/VM in administering the
servers is significant, especially in a production ISP or ASP environment.
342 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

14.4 Test environments
One particular advantage of running WebSphere Application Server as a VM
guest is that it allows the easy creation of development, test, and staging servers.
This becomes especially important since it is not currently feasible to run
individual WebSphere Application Servers for hundreds of clients. If customer
applications need to be run on a shared WebSphere Application Server
environment, then it is critical that there be cordoned-off areas where
applications can be thoroughly tested before being deployed on the production
server.

This is one area where the zSeries architecture has a distinct advantage. By
creating test and staging servers as additional z/VM guests, it is possible to have
a test environment that is essentially identical to the production environment,
without additional equipment costs. These guests should be created within the
WebSphere Application Server-dedicated LPAR to maintain segregation from
other Linux for zSeries and S/390 guests.

An example deployment scenario is presented in Figure 14-1. Note that while the
example shows the WebSphere Application Server LPAR as running on CPs
rather than IFLs, this is only necessary in the case of WebSphere Application
Server for z/OS; the processors for that LPAR can be IFLs if running WebSphere
Application Server for Linux for zSeries and S/390.
 Chapter 14. Web application servers 343

Figure 14-1 Sample WebSphere deployment

CP CP CP CP

x GB y GB z GB Memory

Processors

LPARs

I/O
OSAOSAOSA Escon Escon Escon Escon Escon Escon Escon

ESCDIntranet

Adminnet

Internet

z/VMz/VM Linux
TCP/IP

FirewallLi
nu

x_
1

Li
nu

x_
2

Li
nu

x_
3

Li
nu

x_
n

VCTC / IUCV

HiperSockets HiperSockets

IFL IFL IFL IFL IFL

Guest LAN

P
ro

du
ct

io
n

W
A

S

S
ta

gi
ng

W
A

S

Te
st

W
A

S

344 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Chapter 15. Integrating and replacing
Microsoft servers

In this chapter we will discuss how to use you VM Linux images to replace
existing Microsoft servers or integrate into the existing Microsoft Windows
network.

15.1 Using Samba as a domain controller
Samba can also act as Windows NT 4.0 Primary Domain Controller (PDC) for
Windows clients. When set up in this fashion, it has the following capabilities:

� Perform domain logons for Windows NT 4.0/2000 clients

� Place Windows 9x clients in user level security

� Retrieve a list of users and groups from a Samba PDC to Windows
9x/NT/2000 clients

� Supply roaming user profiles

� Allow Windows NT 4.0 style system policies

15
© Copyright IBM Corp. 2001 345

15.1.1 Setting up a Samba PDC
The following settings should be made in the /etc/smb.conf file for Samba to act
as Windows PDC:

� In the [global] section, we add the following values:

– netbios name = VMLINUX8 // NETBIOS name of the server
– workgroup = SAMBAITSO // domain name
– os level = 64
– preferred master = yes // we want to act as preferred master
– domain master = yes // we want to act as domain master
– local master = yes // we want to act local master
– security = user // passwords are kept on the Samba server
– encrypt passwords = yes
– domain logons = yes // we allow domain logons
– logon path = \\%N\%U\profile // where the user profiles are stored
– logon drive = H: // where user home directories will be mounted
– logon home = \\%N\%U // user home directory
– logon script = logon.cmd // generic logon script for all users

� In the [netlogon] section we define the netlogon share. The logon script
value in the global section is relative to this share.

– path = /sambashares/netlogon // directory for netlogon share
– writeable = no
– writelist = ntadmin // only administrators can write here

� [profiles] section, here we define the share for storing user profiles:

– path = /sambashares/ntprofiles
– writeable = yes
– create mask = 0600
– directory mask = 0700

The /etc/smb.conf from our test system is as follows:

Samba config file created using SWAT
from tot67.itso.ibm.com (9.12.6.133)
Date: 2001/08/07 14:05:20

Global parameters
[global]
 workgroup = SAMBAITSO
 netbios name = VMLINUX8

Note: Samba 2.2.1 is required for PDC functionality when using Windows
2000 SP2 clients
346 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

 server string = Samba PDC 2.2.1a on VMLINUX8
 encrypt passwords = Yes
 map to guest = Bad User
 keepalive = 30
 domain logons = Yes
 os level = 64
 preferred master = True
 domain master = True
 wins support = Yes
 kernel oplocks = No
 winbind uid = 10000-20000
 winbind gid = 10000-20000
 template shell = /bin/bash
 winbind separator = +

[homes]
 comment = home-directory
 read only = No
 create mask = 0750
 browseable = No

[printers]
 comment = All Printers
 path = /tmp
 create mask = 0700
 printable = Yes
 browseable = No

[windowsshare]
 comment = Share for W2KSAMBA Domain Users group
 path = /sambashares/windowsshare

[netlogon]
 path = /sambashares/netlogon
 write list = ntadmin

[profiles]
 path = /sambashares/ntprofiles
 read only = No
 create mask = 0600
 directory mask = 0700
 Chapter 15. Integrating and replacing Microsoft servers 347

15.1.2 Creating a machine trust account
For each machine participating in a domain, a machine trust account has to be
created on the Domain controller. The password for the machine account acts as
a secret for secure communication with the Domain controller. This means that
the PDC cannot be spoofed by another computer with the same NETBIOS name
trying to access the data. Windows 9x computers are never true members of a
domain because they do not have a machine trust account and thus there is no
secure communication with the Domain controller.

In the current release, Samba requires a UNIX user ID to exist because Samba
computes the Windows NT SIDs from the UNIX UIDs. This means that all
machine accounts must have an entry in /etc/passwd and /etc/smbpasswd. You
can create a machine trust account in two ways:

1. Manually

Using the useradd command, we added a machine (in our example) with the
NETBIOS name TOT11:

useradd -g 100 -d /dev/null -c Peters_W2K -m -s /bin/false TOT11$

The following entry is now added to the /etc/passwd file:

TOT11$:x:501:100:Peters_W2K:/dev/null:/bin/false

Now you need to create the /etc/smbpasswd entry with the following
command:

smbpasswd -a -m TOT11
Added user TOT11$

Now you should join the domain from the client computer.

2. Automatically

The recommended way of creating an account is to add it on the fly. For this
you need to add the following parameter to your /etc/smb.conf file:

add user script = /usr/bin/useradd -d /dev/null -g 100 -s /bin/false -M %u

Important: Manually creating is the same as creating an account with
Server Manager in Windows NT. From the time you create a machine trust
account manually to the time you join to the domain, every client with the
NETBIOS name can join the domain. This means that it can get a lot of
data from the domain, because PDC inherently trusts the members of a
domain.
348 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

15.2 Using Samba in Windows domains
Integration of the Linux and Windows worlds is a big challenge of today’s IT
industry. One of the aspects of this challenge is how to use the same account
created in a Windows Active Directory database on the Linux servers. For
example, if we incorporate a Samba server into the Windows 2000 Active
Directory and want to share the disks from this Samba server, we would normally
need to reproduce all user IDs, group IDs, and passwords on the Linux server. To
avoid this work, the package Winbind was written.

Winbind combines the worlds of UNIX and Windows NT/2000 by allowing a UNIX
server to become a full member of a Windows domain. After joining the domain,
the UNIX server sees all users and groups as if they were native UNIX users and
groups. This means that whenever the UNIX programs query for the user ID or
group ID, they ask the Windows Domain controller for the specified domain to
validate the user or group ID.

Winbind hooks into the operating system at a low level, via the NSS name
resolution modules in the C library. This redirection to the Windows Domain
controller is transparent. Users on the UNIX machine can use Windows user and
group names as they would use “native” UNIX names. For example, they can
own the files with their user ID, log in to the system and even run an X-window
session as Windows Domain users. The only difference in user names is that
they have the Domain name incorporated into the user name, for example
DOMAIN\username or DOMAIN\groupname. This is necessary for Winbind so it
can determine which Domain controller is responsible for authentication.

Winbind also provides the Pluggable Authentication Module (PAM) to provide
authentication via a Windows 2000 domain to any PAM-enabled application. This
solves the problem of synchronizing passwords between the systems, because
all the passwords are stored in a single location on the Windows Domain
controller or Active Directory.

Important: In Samba 2.2.1 only the root can be used to add the machine
accounts. Therefore, it is necessary to create an entry in /etc/smbpasswd
for root. For security reasons we recommend that you use a different
password from the one used for the UNIX root account.
 Chapter 15. Integrating and replacing Microsoft servers 349

15.2.1 Recompiling the latest Samba package
In our environment we were using the SuSE 7.2 31 bit version of Linux. Before
recompiling the newest version you should install the version which comes with
the distribution so that the /etc/rc.config file gets updated with the correct
configuration for Samba. You also need to ensure that the Samba daemon is
started automatically by specifying “yes” in START_SMB in /etc/rc.config as
shown in the following:

start samba? ("yes" or "no")
Windows 95 / NT - File- and Printservices
#
START_SMB="yes"

After changing the START_SMB setting, run the following command:

SuSEconfig

To recompile the latest Samba package with the additional packages needed for
integration into Windows domains you need to get the files samba-latest.tar.gz
and samba-appliance-0.5-src.tar.gz. Start at the Samba home page:

http://www.samba.org

Then find a download mirror. The latest Samba package is in the top directory
and the Samba appliance package is in the subdirectory named appliance. Copy
those two files into the /usr/src directory. Before recompiling the two packages,
check if you have installed the following packages:

� pam_devel

To successfully recompile the latest Samba (in our example we used version
2.2.1a), follow these steps:

1. Unpack the latest source:

cd /usr/src
tar xzf samba-latest.tar.gz

2. Start the configuration script for Makefile:

cd samba-2.2.1a/source
./configure --prefix=/usr --libdir=/etc --with-privatedir=/etc \
--localstatedir=/var/log --with-codepagedir=/usr/lib/samba/codepages \
--sbindir=/usr/sbin --with-smbmount --with-automount --with-vfs \
--with-quotas --with-profile --with-msdfs --mandir=%{_mandir} \
--with-swatdir=/usr/lib/samba/swat \
--with-sambabook=/usr/lib/samba/swat/using_samba --with-pam \
--with-pam_smbpass

3. After the Makefile is created, compile the package:

make LOCKDIR=/var/lock/samba
350 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

http://www.samba.org

4. Stop the Samba daemon:

/etc/init.d/smb stop

5. Install the newly compiled Samba:

make install LOCKDIR=/var/log/samba

6. Start the newly installed Samba:

/etc/init.d/smb start

To check if you are really running the new version, execute the following
command; the output should be similar to the following:

smbd -V
Version 2.2.1a

If you managed to do all the tasks just described, you are now running the latest
version of Samba. Congratulations!

Now we need to compile utilities from the Samba appliance source code. To do
this, follow these steps:

1. Unpack the latest source:

cd /usr/src
tar xzf samba-appliance-0.5-src.tar.gz

2. Start the configuration script for Makefile:

cd samba-appliance-0.5/source/tng
cp /usr/share/automake/config.sub .
./configure --prefix=/usr --libdir=/etc --with-privatedir=/etc \
--localstatedir=/var/log --with-codepagedir=/usr/lib/samba/codepages \
--sbindir=/usr/sbin --with-smbmount --with-automount --with-vfs \
--with-quotas --with-profile --with-msdfs --mandir=%{_mandir} \
--with-swatdir=/usr/lib/samba/swat -enable-static=yes -enable-shared=no\
--with-sambabook=/usr/lib/samba/swat/using_samba --with-pam \
--with-pam_smbpass

3. After the Makefile is created, compile the following packages: samedit,
nsswitch and winbind:

make nsswitch LOCKDIR=/var/lock/samba
make bin/samedit LOCKDIR=/var/lock/samba

4. Copy the following files into your Samba bin directory (in SuSE 7.2, this is
/usr/sbin):

cp bin/windindd /usr/sbin
cp bin/wbinfo /usr/sbin
cp bin/sanmedit /usr/sbin
cp nsswitch/libnss_winbind.so /lib/libnss_winbind.so.2
cp nsswitch/pam_winbind.so /lib/security/pam_winbind.so
 Chapter 15. Integrating and replacing Microsoft servers 351

15.2.2 Joining the Active Directory
By using the tools we compiled, we now join our Linux Samba server to the
Windows 2000 Active Directory. In our example, we installed Windows 2000
Server with the following setup:

� Windows 2000 server with SP2 installed
� Domain name: itso.ibm.com
� NETBIOS domain name: ITSO
� Host name: itsont1.itso.ibm.com
� IP Address: 9.12.0.60/255.255.255.0, gateway 9.12.0.1

The VM Linux Samba server has the following attributes:

� Samba 2.2.1a with Winbind extensions from Samba-appliance-0.5 version
� Host name: vmlinux8.itso.ibm.com
� IP Address: 9.12.6.72/255.255.255.0, gateway 9.12.6.75

To join the Windows 2000 Active Directory we use the samedit command. Follow
these steps to join the Linux Samba server to the Windows 2000 Active
Directory:

1. Modify the /etc/smb.conf file to include the following parameters:

workgroup = ITSO
security = DOMAIN
password server = 9.12.0.60
encrypt passwords = yes

2. Connect to the Windows 2000 server:

samedit -S ITSONT1 -W ITSO -U Administrator

Type in the Administrator password; the output of the command should be
similar to the following:

samedit -S ITSONT1 -W ITSO -U Administrator
added interface ip=9.12.6.72 bcast=9.12.6.255 nmask=255.255.255.0
Enter Password:
Server: \\ITSONT1: User: Administrator Domain: ITSO
Connection: 1st session setup ok
2nd session setup ok
OK

If the NETBIOS server name (in our example ITSONT1) could not be resolved
into the IP address by your DNS server, you can add the NETBIOS server
name into the /etc/lmhists file, which provides the NETBIOS-to-IP address
resolution. You can see the example of the /etc/lmhosts file in Example 15-1.

Example 15-1 The /etc/lmhosts file

This file provides the same function that the
lmhosts file does for Windows.
352 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

It provides another way to map netbios names to ip addresses.
See the section on 'name resolve order' in the manual page to
smb.conf for more information.

Sample entry:
192.168.1.1 samba
9.12.0.60 ITSONT1

3. After successfully logging into the Windows 2000 server, use the following
commands (Example 15-2) to add your Linux Samba server to the Active
Directory:

Example 15-2 Adding a user to a domain

samedit -S ITSONT1 -W ITSO -U Administrator
added interface ip=9.12.6.72 bcast=9.12.6.255 nmask=255.255.255.0
Enter Password:
Server: \\ITSONT1: User: Administrator Domain: ITSO
Connection: 1st session setup ok
2nd session setup ok
OK
[ITSONT1\Administrator@ITSO]$ createuser VMLINUX8$ -L
createuser VMLINUX8$ -L

SAM Create Domain User
Domain: ITSO Name: vmlinux8$ ACB: [W]
Resetting Trust Account to insecure, initial, well-known value: "vmlinux8"
vmlinux8 can now be joined to the domain, which should
be done on a private, secure network as soon as possible
Create Domain User: OK
[ITSONT1\Administrator@ITSO]$

There is an alternative way to join the Windows 2000 Active Directory by using
smbpasswd. To use this approach, follow these steps:

1. Create a computer account with the “Active Directory Users and Groups” tool
on the Windows 2000 server, with the name vmlinux8.

2. Reset the account by right-clicking it and select “Reset Account.”

3. On VM Linux server, join the domain by executing the command:

smbpasswd -j ITSO -r ITSONT1

Note: In the case that you get message “Create Domain User: FAILED”, this
means that account was created, but it is disabled. To start using the account
you need to reset and enable it in “Active Directory Users and Groups” tool on
the Windows 2000 server. You will find this account under Computer accounts.
 Chapter 15. Integrating and replacing Microsoft servers 353

15.2.3 Setting up Winbind
Before starting Winbind, add the following lines to the /etc/smb.conf file:

� winbind separator = +

This is the separator for separating the Windows Domain name from the user
name; for example, ITSO+Administrator.

� winbind uid = 10000-20000

This means that Windows Domain users will be mapped to this range of UNIX
user IDs.

� winbind gid = 10000-20000

This means that Windows Domain groups will be mapped to this range of
UNIX group IDs.

� winbind cache time = 15

� winbind enum users = yes

� winbind enum groups = yes

� template homedir = /home/%D%U

This is the definition for the home directory of Windows Domain users.

� template shell = /bin/bash

This is the login shell for Windows Domain users logging into the VM Linux
Samba server. If you do not want to allow remote logins for Windows Domain
users, use /bin/false.

Now you can start Winbind with the command:

windind

You can test the Winbind functionality by listing users and groups from the
Windows 2000 Active Directory.

Users:

wbinfo -u

You will see output similar to that shown in Example 15-3.

Example 15-3 Windows Domain users

wbinfo -u
ITSO+Administrator
ITSO+Guest
ITSO+IUSR_NF5500W2K
ITSO+ivo
ITSO+IWAM_NF5500W2K
354 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

ITSO+krbtgt
ITSO+mikem
ITSO+openldap
ITSO+tot67
ITSO+TsInternetUser
#

Users:

wbinfo -g

You will see output similar to that shown in Example 15-4.

Example 15-4 Windows Domain groups

wbinfo -g
ITSO+Domain Admins
ITSO+Domain Users
ITSO+Domain Guests
ITSO+Domain Computers
ITSO+Domain Controllers
ITSO+Cert Publishers
ITSO+Schema Admins
ITSO+Enterprise Admins
ITSO+Group Policy Creator Owners
ITSO+DnsUpdateProxy
#

15.2.4 Setting up /etc/nsswitch.conf
To fully incorporate Winbind functionality into the Linux security layout, you
should also modify /etc/nsswitch.conf with the following entries:

� passwd: files winbind

� groups: files winbind

You can check the setup of the nsswitch configuration with the id command as
shown in Example 15-5.

Example 15-5 Checking the id data for Windows user name

id ITSO+ivo
uid=10000(ITSO+ivo) gid=10000(ITSO+Domain Users) groups=10000(ITSO+Domain
Users)
#

 Chapter 15. Integrating and replacing Microsoft servers 355

With this setup you can now share a directory from your Samba server and
assign the Windows Domain group permission to it. In this case, Windows
Domain users can use Samba shared directories. In our example, we created the
directory /sambashares/windowsshare with the commands:

mkdir /sambashares
mkdir /sambashares/windowsshare

Then we assigned full permissions for the Domain Users group from ITSO
Domain as is shown in Example 15-6.

Example 15-6 Setting the permissions for the Windows Domain Users

chgrp "ITSO+Domain Users" windowsshare
ls -l
total 12
drwxr-xr-x 3 root root 4096 Aug 3 12:46 .
drwxr-xr-x 19 root root 4096 Aug 3 12:46 ..
drwxr-xr-x 2 root ITSO+Dom 4096 Aug 3 12:47 windowsshare
chmod 770 windowsshare
ls -l
total 12
drwxr-xr-x 3 root root 4096 Aug 3 12:46 .
drwxr-xr-x 19 root root 4096 Aug 3 12:46 ..
drwxrwx--- 2 root ITSO+Dom 4096 Aug 3 12:47 windowsshare
#

To share /sambashares/windowsshare, add the following lines to the
/etc/smb.conf file as shown in Example 15-7.

Example 15-7 Defining a windows share

[windowsshare]
 comment = Share for ITSO Domain Users group
 path = /sambashares/windowsshare
 read only = No

15.2.5 Setting up the PAM authentication
With the Winbind package you also get the Pluggable Authentication Modules
(PAM) for Winbind. This module allows the setup of your Linux server to
authenticate the users against the Windows Domain controller. This means that
you can log on to the Linux server running Winbind with the username from the
Windows Active Directory. In Figure 15-1 on page 357 we show how this process
is done.
356 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Figure 15-1 Using Winbind for authentication

As you can see in Figure 15-1, the process of authentication is as follows:

1. Service gets the request.

2. Because service is PAM-aware, it passes the request handling to the
underlying PAM modules.

3. The PAM module for Winbind passes the request to the Winbind daemon.

4. The Winbind daemon passes the request to the Windows Domain controller.

5. If the user exists in the Windows Active Directory database, the information is
passed back to the Winbind daemon.

6. The Winbind daemon then passes this information back to the PAM module.

7. PAM then informs service that this user is allowed to use it.

If the user does not exist, this information comes back to the service and service
denies the access.

To achieve this, modify the file for the service which you want to access with this
user ID. In SuSE 7.2, these files are located in the /etc/pam.d directory as shown
in the following:

ls -l /etc/pam.d/
total 92
drwxr-xr-x 2 root root 4096 Aug 2 17:50 .

Windows 2000/NT
Domain Controller

VM Linux
winbind

PAM

NSSservice

Request for authentication
Data
 Chapter 15. Integrating and replacing Microsoft servers 357

drwxr-xr-x 38 root root 4096 Aug 7 09:52 ..
-rw-r--r-- 1 root root 305 Jun 17 22:23 chfn
-rw-r--r-- 1 root root 305 Jun 17 22:23 chsh
-rw-r--r-- 1 root root 631 Jun 18 01:03 ftp
-rw-r--r-- 1 root root 95 Jun 18 06:30 imap
-rw-r--r-- 1 root root 749 Aug 3 11:37 login
-rw-r--r-- 1 root root 623 Aug 2 17:50 login.org
-rw-r--r-- 1 root root 259 Jun 18 01:04 netatalk.pamd
-rw-r--r-- 1 root root 517 Jun 17 20:33 other
-rw-r--r-- 1 root root 305 Jun 17 22:23 passwd
-rw-r--r-- 1 root root 95 Jun 18 06:30 pop
-rw-r--r-- 1 root root 311 Jun 18 01:23 ppp
-rw-r--r-- 1 root root 322 Jun 18 12:34 proftpd
-rw-r--r-- 1 root root 263 Jun 17 22:11 rexec
-rw-r--r-- 1 root root 455 Jul 18 09:38 rlogin
-rw-r--r-- 1 root root 292 Jun 17 22:11 rsh
-rw-r--r-- 1 root root 216 Aug 3 13:59 samba
-rw-r--r-- 1 root root 439 Aug 2 17:50 sshd
-rw-r--r-- 1 root root 352 Jun 17 22:36 su
-rw-r--r-- 1 root root 108 Jun 17 23:05 su1
-rw-r--r-- 1 root root 60 Jun 17 23:16 sudo
-rw-r--r-- 1 root root 318 Jun 17 23:39 xdm

1. To allow use of the Windows Active Directory user names to log on to your
Linux system, modify the /etc/pam.d/logon file as shown in the following:

cat /etc/pam.d/login
#%PAM-1.0
auth required /lib/security/pam_nologin.so
auth required /lib/security/pam_env.so
auth required /lib/security/pam_mail.so
auth sufficient /lib/security/pam_winbind.so
account required /lib/security/pam_unix.so audit
account required /lib/security/pam_winbind.so
password required /lib/security/pam_pwcheck.so nullok
password required /lib/security/pam_unix.so nullok \

use_first_pass use_authtok
password required /lib/security/pam_winbind.so
session required /lib/security/pam_unix.so
session required /lib/security/pam_limits.so

Now you can try to log on to the Linux server running the Winbind daemon using
the Windows Active Directory account. The following was our successful logon:

telnet vmlinux8
Trying 9.12.6.72...
Connected to vmlinux8.
Escape character is '^]'.
Welcome to SuSE Linux 7.2 (S390) - Kernel 2.4.5 (2).
358 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

vmlinux8 login: ITSO+ivo
Password:
Last login: Fri Aug 3 17:15:32 from localhost
Have a lot of fun...
No directory /home/ITSO/ivo!
Logging in with home = "/".

15.3 Replacing Microsoft Exchange Server
An Internet Services Provider has to offer at least a basic mail serving
functionality to its customers. Once messages have been delivered into the
mailbox of the recipient's message store, the recipient needs message access
methods to retrieve and work with the messages. These mail servers usually are
based on the simple Post Office Protocol, version 3 (POP3). POP3 treats the
message store as a single in-box. The user agent can retrieve and delete
messages from this in-box. Once messages are retrieved and deleted from the
POP3 server, it is the user agent's responsibility, if necessary, to retain messages
in some local message store. While a POP3 client can leave mail on the server
(by not deleting it), the POP3 protocol lacks mechanisms to categorize, file, or
search the mail, so the POP3 server message store can quickly become
unmanageable. Also, most large-scale POP3 servers enforce a storage limit,
refusing to accept new mail for a user whose limit has been exceeded.

Thus, the POP3 model strongly encourages the complete transfer of mail to the
client, where a well-designed client can provide many more capabilities to the
user. This has the advantage that the communication with the server is simple,
but it has the disadvantage that the user cannot conveniently use more than one
computer to read mail: the mail remains on whichever computer the user reads it.

Enterprise customers, which are thinking about consolidating their servers on
Linux on zSeries, usually are using more complex mail serving applications,
based on or at least supporting the Internet Mail Access Protocol, version 4
(IMAP4). This newer access protocol defines a much richer message store,
allowing mail to be stored in multiple mailboxes. A rich set of message and
mailbox manipulation functions exists. While a POP3 message can be handled
only as a single block, IMAP4 allows access to individual parts of the message.
Provisions exist to allow message stores to be replicated to a local store (and
resynchronized later) for the mobile user. The IMAP4 model, in contrast to the
POP3 model, involves storing mail on the server, where it may be accessed by
any client, and using the client's storage only for caching messages for efficiency
or for traveling.
 Chapter 15. Integrating and replacing Microsoft servers 359

The standards described so far allow messages to be transmitted through the
Internet, but only “in the clear”. Features such as authentication and encryption
are needed to make message transmission secure. Authentication allows
messages to be signed, so the recipient can confirm that the sender is the
person claimed. Encryption allows data to be sent in such a fashion that only a
recipient with a key can decrypt the data. For e-mail, directory services are
needed to access user information, such as a given user's e-mail address.
Lightweight Directory Access Protocol (LDAP), is the standard that describes
how to access directory data. Directory services will play an even greater role for
storing and accessing public keys to enable secure messaging.

Earlier e-mail systems were developed for a homogeneous group of users on a
single network. They typically have a large set of features allowing the creation
and manipulation of compound documents. Their delivery systems often support
guaranteed deliveries and receipt notifications. Additional integrated functions for
calendars and schedules are not uncommon. On the other hand, they often do
not scale well to large user communities, because they were developed for a
small, homogeneous domain. They cannot exchange mail with other systems
except through specially designed gateways, which lose information in the
process of converting between mail formats.

For these reasons, widely accepted groupware and e-mail systems (such as
Microsoft Exchange or Lotus Notes) are now designed to also support the
common Internet standards like POP3 and IMAP4. Of course, the rich document
layout offered, for example, by Lotus Notes is lost when sending an e-mail to a
server that is not of the same kind, and advanced functions like calendars can
only be used between two Lotus Notes servers. But the pure mailing functionality
is still sustained, even when communicating with simple POP3 servers.

So a mail serving application on a Linux server running on zSeries is expected to
at least support the IMAP4 protocol, and to communicate with Lotus Notes or
Exchange clients. Additionally it is preferred that a functionality comparable to
those of the major groupware applications is offered. Various applications are
available that meet these requirements, some commercial, some open source.
We will have a closer look at one example of each group.

Naturally, from an IBM point of view, Lotus Domino is the recommended
application for mail serving and collaboration. However, although there is an
Intel-based Linux version, until now no Linux version for zSeries is available, so
we will not discuss this software now.
360 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

15.3.1 The Bynari Insight Server
In April 2001, Bynari Inc. announced that its messaging and collaboration
product, Insight Server, runs on the IBM zSeries and S/390 under the Linux
operating system ports for those platforms. See also:

http://www.bynari.net

Insight is a commercial UNIX/Linux collaboration tool for enterprises. It was
developed due to the computer industry’s need of a UNIX/Linux client for MS
Exchange with Outlook functionality. Insight bridges the gap between Outlook
users and UNIX/Linux workstations, allowing them to collaborate in a seamless
fashion. It enables a number of messaging protocols to communicate so that
various platforms can work together—the way systems designers intended.

Bynari began offering Insight Server as an entry level platform for small to
medium size businesses wanting functionality found in Microsoft Exchange.
Soon, demand for larger user populations began, asking for more robust
hardware platforms. Having already scaled Insight Server for Compaq's non-stop
clusters, Bynari's developers began looking at IBM mainframes as the next step
on its product roadmap.

Originally designed as a platform for the large populations of Microsoft Outlook
users not connected to Exchange, Insight Server has also proven its value as a
cost effective replacement for Exchange. Insight Server supports IMAP, POP3,
SMTP, and LDAP protocols for numerous e-mail clients including Outlook,
Outlook Express, Eudora and Netscape Messenger. Additionally, Insight Server
offers meeting management, shared calendars and folders, and other
collaboration functions for workgroup oriented clients including Microsoft Outlook
and Bynari's own Insight client.

15.3.2 The Cyrus IMAP server
The Cyrus IMAP server, a scalable enterprise mail system designed for use in
small to large enterprise environments using standards-based technologies, is
developed by the Cyrus Project at Carnegie Mellon University. It provides access
to personal mail and system-wide bulletin boards through the IMAP protocol.
Documentation is provided at :

http://asg2.web.cmu.edu/cyrus

The software can be downloaded from:

ftp://ftp.andrew.cmu.edu/pub/cyrus-mail
 Chapter 15. Integrating and replacing Microsoft servers 361

http://www.bynari.net
http://asg2.web.cmu.edu/cyrus
ftp://ftp.andrew.cmu.edu/pub/cyrus-mail

A full Cyrus IMAP implementation allows a seamless mail and bulletin board
environment to be set up across multiple servers. It differs from other IMAP
server implementations in that it is run on “sealed” servers, where users are not
normally permitted to log in. The mailbox database is stored in parts of the file
system that are private to the Cyrus IMAP system. All user access to mail is
through software using the IMAP, POP3, or KPOP protocols. The private mailbox
database design gives the server large advantages in efficiency, scalability, and
in the ease of administration. Multiple concurrent read/write connections to the
same mailbox are permitted. The server supports access control lists on
mailboxes and storage quotas on mailbox hierarchies.

A brief description of how to install the Cyrus IMAP server in a Linux
environment, together with Sendmail and OpenLDAP, is provided in “The
Exchange Server Replacement HOWTO” by Curt Johnson, and in the “Cyrus
IMAP HOWTO” by Aurora Skarra-Gallagher, both of which can be found at:

http://www.linuxdoc.org

15.4 Using AFS in an enterprise environment
In this section we talk about the Andrew File System (AFS) and how it can
participate and be used in an IT VM Linux environment. We will also outline the
installation instructions for setting up an AFS server and client in a VM Linux
environment. In our test environment we used OpenAFS, which was donated by
IBM from its version of commercial AFS implementation. IBM branched the
source of the AFS product, and made a copy of the source available for
community development and maintenance.

15.4.1 What is AFS
AFS makes it easy for people to work together on the same files, no matter
where the files are located. AFS users do not have to know which machine is
storing a file, and administrators can move files from machine to machine without
interrupting user access. Users always identify a file by the same path name and
AFS finds the correct file automatically, just as happens in the local file system on
a single machine. While AFS makes file sharing easy, it does not compromise
the security of the shared files. It provides a sophisticated protection scheme.

AFS uses a client/server computing model. In client/server computing, there are
two types of machines: Server machines store data and perform services for
client machines; client machines perform computations for users and access
data and services provided by server machines. Some machines act as both
client and server. In most cases, you work on a client machine, accessing files
stored on a file server machine.
362 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

ftp://ftp.andrew.cmu.edu/pub/cyrus-mail
http://www.linuxdoc.org

15.4.2 Building OpenAFS
You can get the latest OpenAFS from:

http://www.openafs.org

In our test environment we used OpenAFS version 1.1.1. After downloading the
package, you can unwind it with the command:

tar xzf openafs-1.1.1-src.tar.bz2

Then move to the source directory and run the configuration program with the
commands:

cd openafs-1.1.1
mv config.sub config.sub.org
cp /usr/share/automake/config.sub .
./configure --with-afs-sysname=s390_linux24 \

--with-linux-kernel-headers=/usr/src/linux

Compile the package with the command:

make

After compilation, all the binary and configuration files reside in the
openafs-1.1.1/s390_linux24 directory. For a minimal configuration of your AFS
system, you need to install at least one server. This server will then act as:

� File server machine
� Database server machine
� Binary distribution machine
� System control machine

15.4.3 Installing OpenAFS
To install and configure OpenAFS on the VMLinux server, follow the following
steps.

Creating AFS directories
Create the AFS directories with the commands:

mkdir /usr/afs
mkdir /usr/vice
mkdir /usr/vice/etc

Important: You have to install the kernel source before compiling. In our
example we installed the source in /usr/src/linux.
 Chapter 15. Integrating and replacing Microsoft servers 363

http://www.openafs.org

Loading AFS modules into the kernel
1. Change to the directory as indicated (assuming that /usr/src/openafs-1.1.1 is

the source code directory):

cd /usr/src/openafs-1.1.1/s390_linux24/dest/root.client/usr/vice/etc

2. Copy the AFS kernel library files to the local /usr/vice/etc/modload directory
with the command:

cp -rp modload /usr/vice/etc

3. Copy the initialization scripts to the local directory for initialization files (in our
example, /etc/init.d):

cp -p afs.rc /etc/init.d/afs

4. Run the AFS initialization script to load the AFS extensions into the kernel:

/etc/init.d/afs start

Configuring server partitions
Each AFS file server must have at least one partition or logical volume dedicated
to storing AFS volumes. Each partition is mounted on /vicepxx, where xx is one
or two lowercase letters. The /vicepxx directories must reside in the machine’s
root directory. In our example, we selected the /dev/dasd/0209/part1 as the
partition for AFS file serving. Follow these steps to configure the partitions:

1. Create the mount directory:

mkdir /vicepa

2. Create the file system on the partition, add an entry to the /etc/fstab file, and
mount the partition with the command:

mke2fs /dev/dasd/0209/part1 -b 4096

An example of the /etc/fstab file after adding the mounting entry is as follows:

cat /etc/fstab
/dev/dasd/0204/part1 swap swap defaults 0 0
/dev/dasd/0201/part1 / ext2 defaults 1 1
/dev/dasd/0209/part1 /vicepa ext2 defaults 0 2
proc /proc proc defaults 0 0
mount /vicepa

Enabling AFS Login
AFS also provides the PAM authentication for PAM-capable clients. The following
steps show you how to set up the configuration for each service for which you
wish to use AFS authentication. You can skip this section if you do not want to
use client functionality on this server.

1. Copy the PAM libraries into the /lib/security directory:
364 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

If you plan to use the AFS Authentication Server (kaserver process):

cd /lib/security
cp /usr/src/openafs-1.1.1/s390_linux24/dest/lib/pam_afs.so.1 .
ln -s pam_afs.so.1 pam_afs.so

If you plan to use Kerberos implementation of AFS authentication:

cd /lib/security
cp /usr/src/openafs-1.1.1/s390_linux24/dest/lib/pam_afs.krb.so.1 .
ln -s pam_afs.krb.so.1 pam_afs.krb.so

2. For each service from /etc/pam.d, put the following line into the auth section:

auth sufficient /lib/security/pam_afs.so try_first_pass ignore_root

Insert this line just after the entries that impose conditions under which you
want the service to fail. The ignore_root parameter means that the AFS PAM
module will ignore the local superuser root and also any user with UID 0.
Following is our /etc/pam.d/login file for login service:

cat /etc/pam.d/login
#%PAM-1.0
auth required /lib/security/pam_nologin.so
auth required /lib/security/pam_env.so
auth required /lib/security/pam_mail.so
auth sufficient /lib/security/pam_afs.so try_first_pass ignore_root
auth requisite /lib/security/pam_unix.so nullok #set_secrpc
account required /lib/security/pam_unix.so
password required /lib/security/pam_pwcheck.so nullok
password required /lib/security/pam_unix.so nullok use_first_pass \

use_authtok
session required /lib/security/pam_unix.so none # debug or trace
session required /lib/security/pam_limits.so

Starting the BOS Server
The BOS (Basic OverSeer) Server is used to monitor and control other AFS
server processes on its server. Follow these steps to install and start the BOS
Server:

1. Copy the files:

cd /usr/src/openafs-1.1.1/s390_linux24/dest/root.server/usr/afs
cp -rp * /usr/afs

2. Start the BOS Server, include the -noauth flag to disable authorization
checking (authentication is not running yet):

/usr/afs/bin/bosserver -noauth &

3. Verify that the BOS server created /usr/vice/etc/ThisCell and
/usr/vice/etc/CellServDB as symbolic links to the corresponding files in the
/usr/afs/etc directory:
 Chapter 15. Integrating and replacing Microsoft servers 365

ls -l /usr/vice/etc

If the links do not exist, create them with the commands:

cd /usr/vice/etc
ln -s /usr/afs/etc/ThisCell ThisCell
ln -s /usr/afs/etc/CellServDB CellServDB

Defining cell name and membership for the server process
Here we assign the cell name. You should know that changing the name is very
difficult, so you should plan the name carefully. Usually, the cell name is the same
as the name of the Internet domain you are using. There are two important
restrictions: the name cannot include uppercase letters or more than 64
characters.

Use the following steps to set the cell name:

1. Change to the directory with the AFS programs with the command:

cd /usr/afs/bin

2. With the bos setcellname command, set the cell name:

./bos setcellname vmlinux8.itso.ibm.com itso.ibm.com -noauth

As you can see, we issued bos setcellname with two parameters:

– machine name = vmlinux8.itso.ibm.com
– cell name = itso.ibm.com

3. Verify that the server you are installing is now registered as the cell’s first
database server:

./bos listhosts vmlinux8.itso.ibm.com -noauth
Cell name is itso.ibm.com
Host 1 is vmlinux8

Starting the database server process
Now we create four database server processes in the /usr/afs/local/BosConfig
file and start them running. They run on the database server machine only.

� The Authentication Server (the kaserver process) maintains the
Authentication Database.

� The Backup Server (the busserver process) maintains the Backup Database.

� The Protection Server (the ptserver process) maintains the Protection
Database.

� The Volume Location (VL) Server (the vlserver process) maintains the
Volume Location Database (VLDB).
366 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Follow these steps to create these server processes (we assume that you are in
the /usr/afs/directory):

1. Start the Authentication Server:

./bos create vmlinux8.itso.ibm.com kaserver simple \
/usr/afs/bin/kaserver -cell itso.ibm.com -noauth

2. Start the Backup Server:

./bos create vmlinux8.itso.ibm.com buserver simple \
/usr/afs/bin/buserver -cell itso.ibm.com -noauth

3. Start the Protection Server:

./bos create vmlinux8.itso.ibm.com ptserver simple \
/usr/afs/bin/ptserver -cell itso.ibm.com -noauth

4. Start the VL Server:

./bos create vmlinux8.itso.ibm.com vlserver simple \
/usr/afs/bin/vlserver -cell itso.ibm.com -noauth

Initializing cell security
Now we initialize the cell’s security mechanisms. We begin by creating two initial
entries in the Authentication Database:

� A generic administrative (in our example we call it admin)

After installation, all administrators can use this account or you can create a
separate account for each of them.

� The entry for the AFS server process, called afs

There are no logons under this user ID, but Authentication Server’s Ticket
Granting (TGS) module uses the associated key to encrypt the server tickets
that it grants to AFS clients.

Note: AFS’s authentication and authorization software is based on algorithms
and other procedures known as Kerberos, as originally developed by Project
Athena at the Massachusetts Institute of Technology. Some cells choose to
replace the AFS Authentication Server and other security-related protocols
with Kerberos as obtained directly from Project Athena or other sources. If you
wish to do this, contact the AFS Product Support group now to learn about
necessary modifications to the installation.
 Chapter 15. Integrating and replacing Microsoft servers 367

In the following steps we show how to create these two entries. Keep in mind that
this process does not configure all of the security mechanisms related to the AFS
Backup System. To do this you need to refer to the IBM AFS Administration
Guide on the Web at:

http://oss.software.ibm.com/developerworks/opensource/afs/docs.html

1. Change to the directory with the AFS programs with the command:

cd /usr/afs/bin

2. Enter the kas interactive mode with the -noauth option, because the server is
in no-authorization checking mode. Then create admin and afs entries:

./kas -cell itso.ibm.com -noauth
ka> create afs
initial_password:
Verifying, please re-enter initial_password:
ka> create admin
initial_password:
Verifying, please re-enter initial_password:

3. Examine the afs entry checksum:

ka> examine afs

User data for afs
key (0) cksum is 824768179, last cpw: Wed Aug 8 09:42:29 2001
password will never expire.
An unlimited number of unsuccessful authentications is permitted.
entry never expires. Max ticket lifetime 100.00 hours.
last mod on Wed Aug 8 09:42:29 2001 by <none>
permit password reuse

4. Turn on the ADMIN flag for the admin entry and then examine the entry to verify
that the admin flag appears:

ka> setfields admin -flags admin
ka> examine admin
User data for admin (ADMIN) - you can see the ADMIN flag is present
key (0) cksum is 824768179, last cpw: Wed Aug 8 09:42:39 2001
password will never expire.
An unlimited number of unsuccessful authentications is permitted.
entry never expires. Max ticket lifetime 25.00 hours.
last mod on Wed Aug 8 09:47:32 2001 by <none>
permit password reuse

5. Quit the kas server:

ka> quit

6. Now we need to add admin to the /usr/afs/etc/UserList file, to enable admin to
issue privileged bos and vos commands:

./bos adduser vmlinux8.itso.ibm.com admin -cell itso.ibm.com -noauth
368 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

http://oss.software.ibm.com/developerworks/opensource/afs/docs.html

7. Next define the AFS server encryption key in /usr/afs/etc/KeyFile:

./bos addkey vmlinux8.itso.ibm.com -kvno 0 -cell itso.ibm.com -noauth
input key:
Retype input key:

For the input key, type in the password you used for creating the afs entry in
step 1.

8. Verify that the checksum for the new key in the Keyfile is the same as the
checksum defined for the key Authentication Database’s afs entry that we
displayed in step 2.:

./bos listkey vmlinux8.itso.ibm.com -cell itso.ibm.com -noauth
key 0 has cksum 824768179
Keys last changed on Wed Aug 8 12:03:59 2001.
All done.

As you can see in our example, the keys are the same.

9. Now we need to create the Protection Database Entry for the admin user. By
default, the Protection Server assigns AFS UID 1 to the admin user, because
it is the first entry you are creating. If the local password file (/etc/passwd or
equivalent) already has an entry for admin that assigns it a UNIX UID other
than 1, it is best to use the -id argument on the pts createuser command to
make the new AFS UID match the existing UNIX UID. Otherwise, it is best to
accept the default. In our example we already have the admin user on the
system with a UID of 501:

./pts createuser -name admin -cell itso.ibm.com -id 501 -noauth
User admin has id 501

10.Next add the admin user to the system:administrators group and then check if
this was successful:

./pts adduser admin system:administrators -cell itso.ibm.com -noauth
./pts membership admin -cell itso.ibm.com -noauth
Groups admin (id: 1) is a member of:
system:administrators

11.Now we need to restart the bos server with the -all flag to restart the
database server processes, so that they start using the new server encryption
key:

./bos restart vmlinux8.itso.ibm.com -all -cell itso.ibm.com -noauth

You can check whether the AFS server processes are running with the
command:

ps ax | grep afs
 9050 ? S 0:00 /usr/afs/bin/bosserver -noauth
11419 ? S 0:00 /usr/afs/bin/kaserver
11420 ? S 0:00 /usr/afs/bin/buserver
11421 ? S 0:00 /usr/afs/bin/ptserver
 Chapter 15. Integrating and replacing Microsoft servers 369

11422 ? S 0:00 /usr/afs/bin/vlserver

Starting the file server, volume server, and salvager
To start the fs process, which consists of the File Server, Volume Server, and the
Salvager (fileserver, volserver and salvager processes), follow these steps:

1. Change to the directory with the AFS programs with the command:

cd /usr/afs/bin

2. Create the fs process:

./bos create vmlinux8.itso.ibm.com fs fs /usr/afs/bin/fileserver \
/usr/afs/bin/volserver /usr/afs/bin/salvager -cell itso.ibm.com -noauth

You can verify that the fs process has started successfully with the command:

./bos status vmlinux8.itso.ibm.com fs -long -noauth
Instance fs, (type is fs) currently running normally.
Auxiliary status is: file server running.
Process last started at Wed Aug 8 12:39:05 2001 (2 proc starts)
Command 1 is '/usr/afs/bin/fileserver'
Command 2 is '/usr/afs/bin/volserver'
Command 3 is '/usr/afs/bin/salvager'

You can see that in our example the servers are running with no problems.

3. Because this is the first AFS file server in our cell, we need to create the first
AFS volume, root.afs:

./vos create vmlinux8.itso.ibm.com /vicepa root.afs -cell itso.ibm.com \
-noauth

Volume 536870912 created on partition /vicepa of vmlinux8.itso.ibm.com

As you can see, we used our /vicepa partition for the root.afs AFS volume.

Starting the server portion of the update process
Start the server portion of the Update Server (the upserver process) to distribute
the contents of directories on this machine to other server machines in the cell. It
becomes active when you configure the client portion of the Update Server on
additional server machines.

Distributing the contents of its /usr/afs/etc directory makes this server the cell’s
system control machine. The other servers in the cell run the upclientetc
process (an instance of the client portion of the Update Server) to retrieve the
configuration files. Use the -crypt argument to the upserver initialization
command to specify that the Update Server distributes the contents of the
/usr/afs/etc directory only in encrypted form. Several of the files in the directory,
particularly the KeyFile file, are crucial to cell security and so must never cross
the network unencrypted.
370 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

(You can choose not to configure a system control server, in which case you must
update the configuration files in each server’s /usr/afs/etc directory individually.
The bos commands used for this purpose also encrypt data before sending it
across the network.)

Distributing the contents of its /usr/afs/bin directory to other servers of its system
type makes this server a binary distribution machine. The other servers of its
system type run the upclientbin process (an instance of the client portion of the
Update Server) to retrieve the binaries.

The binaries in the /usr/afs/bin directory are not sensitive, so it is not necessary
to encrypt them before transfer across the network. Include the -clear argument
to the upserver initialization command to specify that the Update Server
distributes the contents of the /usr/afs/bin directory in unencrypted form unless
an upclientbin process requests encrypted transfer.

Note that the server and client portions of the Update Server always mutually
authenticate with one another, regardless of whether you use the -clear or
-crypt arguments. This protects their communications from eavesdropping to
some degree.

Start the Update Server process with the commands:

cd /usr/afs/bin
./bos create vmlinux8.itso.ibm.com upserver simple \

"/usr/afs/bin/upserver -crypt /usr/afs/etc -clear /usr/afs/bin" \
-cell itso.ibm.com -noauth

Starting the Controller for NTPD
Keeping the clocks on all server and client machines in your cell synchronized is
crucial to several functions, and in particular to the correct operation of AFS’s
distributed database technology, Ubik. The time skew can disturb Ubik’s
performance and cause service outages in your cell.

The AFS distribution includes a version of the Network Time Protocol Daemon
(NTPD) for synchronizing the clocks on server machines. If a time
synchronization program is not already running on the machine, then in this
section you start the runntp process to configure NTPD for use with AFS.

In our example we did not have another time synchronization protocol running,
so we decided to use runntp from the AFS server:

1. Create the runntp process:

Note: Do not run runntp process on top of another NTPD or another time
synchronization protocol is already running on the machine.
 Chapter 15. Integrating and replacing Microsoft servers 371

If you have a reliable network connection to an outside time source:

./bos create vmlinux8.itso.ibm.com runntp \
simple "/usr/afs/bin/runntp hostname+" -cell itso.ibm.com -noauth

If you plan to use the local clock as the time source (as we did in our
example):

./bos create vmlinux8.itso.ibm.com runntp \
simple "/usr/afs/bin/runntp -localclock" -cell itso.ibm.com -noauth

If you have a connection to an outside time source, but it is not reliable:

./bos create vmlinux8.itso.ibm.com runntp \
simple "/usr/afs/bin/runntp -localclock hostname+" \
-cell itso.ibm.com -noauth

In our example we deleted the definition for the runntp process with the
command:

./bos delete vmlinux8.itso.ibm.com runntp

15.4.4 Installing client functionality
The server which we just installed is the AFS file server, database server, system
control server, and binary distribution server. Now we need to make this server
also the client machine.

Copying client files to the local disk
Before installing and configuring the AFS client, we need to copy the necessary
files from the build directory:

cd /usr/src/openafs-1.1.1/s390_linux24/dest/root.client/usr/vice/etc
cp -p * /usr/vice/etc
cp: omitting directory `C'
cp: omitting directory `modload'
cp -rp C /usr/vice/etc

Note: In the OpenAFS version we used, the NTP package was not compiled,
because it is obsolete. The clients are getting time from the AFS servers
anyway. You should install the NTP server on the AFS server. It is available on
the Web at:

http://www.eecis.udel.edu/~ntp

Or use any other NTP server. In SuSE 7.2 they have included the XNTP
package, which can be used for this purpose.
372 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

http://www.eecis.udel.edu/~ntp

Defining cell membership for client processes
Every AFS client machine has a copy of the /usr/vice/etc/ThisCell file on its local
disk to define the machine’s cell membership for the AFS client programs that run
on it. The ThisCell file you created in the /usr/afs/etc directory (in “Defining cell
name and membership for the server process” on page 366) is used only by
server processes.

Among other functions, the ThisCell file on a client machine determines the
following:

� The cell in which users authenticate when they log onto the machine,
assuming it is using an AFS-modified login utility

� The cell in which users authenticate by default when they issue the klog
command

� The cell membership of the AFS server processes that the AFS command
interpreters on this machine contact by default

//TODO: Should “To define this” be “To define cell membership”?

To define this, remove the symbolic link created in “Starting the BOS Server” on
page 365 and create the new ThisCell file by copying the server copy of this file
from /usr/afs/etc/ThisCell. With this you define the same cell for both server and
client processes, which gives you the most consistent AFS performance:

cd /usr/vice/etc
rm ThisCell
cp /usr/afs/etc/ThisCell ThisCell

Creating the client CellServDB file
The /usr/vice/etc/CellServDB file on a client machine’s local disk lists the
database server machines for each cell that the local Cache Manager can
contact. If there is no entry in the file for a cell, or if the list of database server
machines is wrong, then users working on this machine cannot access the cell.

Because the afsd program initializes the Cache Manager, it copies the contents
of the CellServDB file into kernel memory. The Cache Manager always consults
the list in kernel memory rather than the CellServDB file itself. Between reboots
of the machine, you can use the fs newcell command to update the list in kernel
memory directly.

Follow these steps to create the CellServDB file:

1. Remove the symbolic link created in “Starting the BOS Server” on page 365:

cd /usr/vice/etc/
rm CellServDB
 Chapter 15. Integrating and replacing Microsoft servers 373

2. Create CellServDB with the local cell entry and display it to verify the file:

cat /usr/afs/etc/CellServDB > CellServDB
cat CellServDB
>itso.ibm.com #Cell name
9.12.6.72 #vmlinux8

Configuring the cache
The Cache Manager uses a cache on the local disk or in machine memory to
store local copies of files fetched from file server machines. As the afsd program
initializes the Cache Manager, it sets basic cache configuration parameters
according to definitions in the local /usr/vice/etc/cacheinfo file.

The file has three fields:

1. The first field names the local directory on which to mount the AFS file space.
The conventional location is the /afs directory.

2. The second field defines the local disk directory to use for the disk cache. The
conventional location is the /usr/vice/cache directory, but you can specify an
alternate directory if another partition has more space available. There must
always be a value in this field, but the Cache Manager ignores it if the
machine uses a memory cache.

3. The third field specifies the number of kilobyte (1024 byte) blocks to allocate
for the cache.

The values you define must meet the following requirements:

� On a machine using a disk cache, the Cache Manager expects always to be
able to use the amount of space specified in the third field. Failure to meet this
requirement can cause serious problems, some of which can be repaired only
by rebooting. You must prevent non-AFS processes from filling up the cache
partition. The simplest way is to devote a partition to the cache exclusively.

� The amount of space available in memory or on the partition housing the disk
cache directory imposes an absolute limit on cache size.

� The maximum supported cache size can vary in each AFS release; see the
Release Notes for the current version.

� For a disk cache, you cannot specify a value in the third field that exceeds
95% of the space available on the partition mounted at the directory named in
the second field. If you violate this restriction, the afsd program exits without
starting the Cache Manager and prints an appropriate message on the
standard output stream. A value of 90% is more appropriate on most
machines. Some operating systems (such as AIX) do not automatically
reserve some space to prevent the partition from filling completely; for them, a
smaller value (say, 80% to 85% of the space available) is more appropriate.
374 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

� For a memory cache, you must leave enough memory for other processes
and applications to run. If you try to allocate more memory than is actually
available, the afsd program exits without initializing the Cache Manager and
produces the following message on the standard output stream:

afsd: memCache allocation failure at number KB

The number value is how many kilobytes were allocated just before the
failure, and so indicates the approximate amount of memory available.

Configuring a disk cache
To configure the disk cache, perform the following steps:

1. Create a local directory for caching with the command:

mkdir /usr/vice/cache

2. Create the cacheinfo file; in our example, we define a 50 MB disk cache:

echo "/afs:/usr/vice/cache:50000" > /usr/vice/etc/cacheinfo

Configuring a memory cache
To configure the memory cache, do the following:

Create the cacheinfo file; in our example, we create a 25 MB memory cache:

echo "/afs:/usr/vice/cache:25000" > /usr/vice/etc/cacheinfo

Configuring the Cache Manager
By convention, the Cache Manager mounts the AFS file space on the local /afs
directory. The afsd program sets several cache configuration parameters as it
initializes the Cache Manager, and starts daemons that improve performance.
These options are stored in the afsd options file. In the afs configuration file there
are three predefined cache sizes:

� SMALL is suitable for a small machine that serves one or two users and has
approximately 8 MB of RAM and a 20 MB cache.

� MEDIUM is suitable for a medium-sized machine that serves two to six users
and has 16 MB of RAM and a 40 MB cache.

� LARGE is suitable for a large machine that serves five to ten users and has 32
MB of RAM and a 100 MB cache.

By default the distributed afs.conf file options are set to MEDIUM.

Tip: Disk caches smaller than 10 MB do not perform well, and also memory
caches smaller than 5 MB do not perform well. The cache size depends on the
number of users using the client machine.
 Chapter 15. Integrating and replacing Microsoft servers 375

Follow these steps to configure the Cache Manager:

1. Create the local directory on which to mount the AFS file space:

mkdir /afs

2. Copy the AFS configuration option file to the /etc/sysconfig directory (in the
case of the Suse 7.2 distribution we used, you need also to create this
directory):

mkdir /etc/sysconfig
cp /usr/vice/etc/afs.conf /etc/sysconfig/afs

3. Edit the /etc/sysconfig/afs file if you want to incorporate any changes:

Change AFS_SERVER=off to AFS_SERVER=on.

In our example we added -nosettime, because this is a file server that is also
a client. This flag prevents the machine from picking up the file server in the
cell as its source for the correct time.

There are also two more parameters you can use:

– -memcache specifies that the machine will use a memory cache.
– -verbose specifies that the trace of Cache Manager’s initialization will be

displayed on the standard output stream.

Example 15-8 shows an example of the AFS configuration file.

Example 15-8 Our /etc/sysconfig/afs file

#! /bin/sh
Copyright 2000, International Business Machines Corporation and others.
All Rights Reserved.

This software has been released under the terms of the IBM Public
License. For details, see the LICENSE file in the top-level source
directory or online at http://www.openafs.org/dl/license10.html

Configuration information for AFS client

AFS_CLIENT and AFS_SERVER determine if we should start the client and or
the bosserver. Possible values are on and off.
AFS_CLIENT=on
AFS_SERVER=on

AFS client configuration options:
LARGE="-stat 2800 -dcache 2400 -daemons 5 -volumes 128"
MEDIUM="-stat 2000 -dcache 800 -daemons 3 -volumes 70 -nosettime"
SMALL="-stat 300 -dcache 100 -daemons 2 -volumes 50"
OPTIONS=$MEDIUM

Set to "-verbose" for a lot of debugging information from afsd. Only
useful for debugging as it prints _a lot_ of information.
376 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

VERBOSE=

OPTIONS are the options passed to afsd.
OPTIONS="$OPTIONS $VERBOSE"

Sample server preferences function. Set server preferences using this.
afs_serverprefs() {
/usr/afsws/etc/fs setserverprefs <host> <rank>
#}

Either the name of an executable script or a set of commands go here.
AFS_POST_INIT=afs_serverprefs
AFS_POST_INIT=

15.4.5 Completing the installation of the first AFS server
The machine is now configured as an AFS file server and client machine. In this
final phase of the installation, we initialize the Cache Manager and then create
the upper levels of AFS file space, among other procedures.

Verifying the AFS initialization script
Follow these step to complete this task:

1. Shut down the bos server:

/usr/afs/bin/bos shutdown vmlinux8.itso.ibm.com -wait

2. Issue the ps command to learn the bosserver process’s ID and then kill that
process:

ps ax | grep bosserver
9050 ? S 0:00 /usr/afs/bin/bosserver -noauth
kill -9 9050

3. Reboot the VM Linux server, log on as root, and then start the AFS
initialization script and wait for the message that all daemons are started:

cd /
shutdown -h now

login: root
password: root_password

/etc/init.d/afs start
Starting AFS services.....
afsd: All AFS daemons started.
 Chapter 15. Integrating and replacing Microsoft servers 377

4. As a basic test of correct AFS functioning, try to authenticate as admin:

/usr/afs/bin/klog admin
Password: admin_passwd

5. Issue the tokens command to verify that the klog command was successful:

/usr/afs/bin/tokens

Tokens held by the Cache Manager:

User's (AFS ID 501) tokens for afs@itso.ibm.com [Expires Aug 9 18:09]
--End of list--

6. Issue the bos status command to verify that the output of each process
reads “currently running normally”:

/usr/afs/bin/bos status vmlinux8.itso.ibm.com
Instance kaserver, currently running normally.
Instance buserver, currently running normally.
Instance ptserver, currently running normally.
Instance vlserver, currently running normally.
Instance fs, currently running normally.
Auxiliary status is: file server running.
Instance upserver, currently running normally.

7. Check the volumes with the command:

cd /
/usr/afs/bin/fs checkvolumes
All volumeID/name mappings checked.

Activating the AFS initialization script
After confirming that the AFS initialization script works correctly, we take the
action necessary to have it run automatically at each reboot.

On the SuSE 7.2 distribution you can do this by creating two symbolic links into
run level 3, which is the default run level used:

cd /etc/init.d/rc3.d/
ln -s ../afs S99afs
ln -s ../afs K01afs

Configuring the top levels of the AFS file space
If you have not previously run AFS in your cell, you now configure the top levels
of your cell’s AFS file space. We created the root.afs volume in “Starting the file
server, volume server, and salvager” on page 370. Now we set the Access
Control List (ACL) on the /afs directory. Creating, mounting, and setting the ACL
are the three steps required when creating any volume.
378 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

After setting the ACL on the root.afs volume, create your cell’s root.cell volume,
mount it as a subdirectory of the /afs directory, and set the ACL. Create both a
read/write and a regular mount point for the root.cell volume. The read/write
mount point enables you to access the read/write version of replicated volumes
when necessary. Creating both mount points essentially creates separate
read-only and read-write copies of your file space, and enables the Cache
Manager to traverse the file space on a read-only path or read/write path as
appropriate.

Then replicate both the root.afs and root.cell volumes. This is required if you want
to replicate any other volumes in your cell, because all volumes mounted above a
replicated volume must themselves be replicated in order for the Cache Manager
to access the replica.

When the root.afs volume is replicated, the Cache Manager is programmed to
access its read-only version (root.afs.readonly) whenever possible. To make
changes to the contents of the root.afs volume (when, for example, you mount
another cell’s root.cell volume at the second level in your file space), you must
mount the root.afs volume temporarily, make the changes, release the volume,
and remove the temporary mount point.

To set up the ACL for the /afs directory, follow these steps:

1. Edit the ACL on the /afs directory with fs setacl. We add the entry that
grants the l (lookup) and r (read) permissions to the system:anyuser group.
With this we enable all AFS users who can reach your cell to traverse trough
the directory. If you prefer to enable access only to locally authenticated
users, substitute the system:authuser group.

/usr/afs/bin/fs setacl /afs system:anyuser rl

2. Create the root.cell volume and then mount it in the subdirectory of /afs,
where it serves as the root of our cell’s local AFS file space. At the end we
create an ACL entry for the system:anyuser group:

/usr/afs/bin/vos create vmlinux8.itso.ibm.com /vicepa root.cell
Volume 536870915 created on partition /vicepa of vmlinux8.itso.ibm.com
/usr/afs/bin/fs mkmount /afs/itso.ibm.com root.cell
/usr/afs/bin/fs setacl /afs/itso.ibm.com system:anyuser rl

3. To shorten the path names for users in the local cell we create a symbolic link
to a shortened cell name:

cd /afs
ln -s itso.ibm.com itso

Note: By default the system:administrators have all seven rights. This is
the default entry that AFS places on every new volume’s root directory.
 Chapter 15. Integrating and replacing Microsoft servers 379

ls -l
total 8
drwxrwxrwx 2 root root 2048 Aug 8 20:44 .
drwxr-xr-x 22 root root 4096 Aug 8 20:29 ..
lrwxr-xr-x 1 admin root 12 Aug 8 20:44 itso -> itso.ibm.com
drwxrwxrwx 2 root root 2048 Aug 8 20:41 itso.ibm.com

4. Create a read/write mount point for the root.cell volume (we created the
regular mount point in step 2). By convention, the read/write mount point
begins with a period:

cd /usr/afs/bin
./fs mkmount /afs/.itso.ibm.com root.cell -rw

5. Define the replication site for the root.afs and root.cell volumes:

./vos addsite vmlinux8.itso.ibm.com /vicepa root.afs
Added replication site vmlinux8.itso.ibm.com /vicepa for volume root.afs
./vos addsite vmlinux8.itso.ibm.com /vicepa root.cell
Added replication site vmlinux8.itso.ibm.com /vicepa for volume root.cell

6. Verify that the Cache Manager can access both the root.afs and root.cell
volumes before you attempt to replicate them:

./fs examine /afs
Volume status for vid = 536870912 named root.afs
Current disk quota is 5000
Current blocks used are 5
The partition has 6737196 blocks available out of 6737440

./fs examine /afs/itso.ibm.com
Volume status for vid = 536870915 named root.cell
Current disk quota is 5000
Current blocks used are 2
The partition has 6737196 blocks available out of 6737440

7. Release the replica of root.afs and root.cell you created in the previous steps:

./vos release root.afs
Released volume root.afs successfully
./vos release root.cell
Released volume root.cell successfully

8. Check the volumes to force the Cache Manager to notice that you have
released read-only versions of the volumes, then examine the volumes again:

./fs checkvolumes
All volumeID/name mappings checked.
./fs examine /afs
Volume status for vid = 536870912 named root.afs
Current disk quota is 5000
Current blocks used are 5
380 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

The partition has 6737248 blocks available out of 6737440

./fs examine /afs/itso.ibm.com
Volume status for vid = 536870915 named root.cell
Current disk quota is 5000
Current blocks used are 2
The partition has 6737248 blocks available out of 6737440

Storing AFS binaries in AFS
In the conventional configuration, you make AFS client binaries and configuration
files available in the subdirectories of the /usr/afsws directory on client machines
(afsws is an acronym for AFS workstation). You can conserve local disk space by
creating /usr/afsws as a link to an AFS volume that houses the AFS client
binaries and configuration files for this system type.

In this section we create the necessary volumes. The conventional location to
which to link /usr/afsws is /afs/cellname/sysname/usr/afsws.

Follow these steps to complete this task:

1. Create volumes for storing the AFS client binaries for this system type. In our
example we create the volumes s390_linux24, s390_linux24.usr and
s390_linux.usr.afsws:

./vos create vmlinux8.itso.ibm.com /vicepa s390_linux24
Volume 536870918 created on partition /vicepa of vmlinux8.itso.ibm.com
./vos create vmlinux8.itso.ibm.com /vicepa s390_linux24.usr
Volume 536870921 created on partition /vicepa of vmlinux8.itso.ibm.com
./vos create vmlinux8.itso.ibm.com /vicepa s390_linux24.usr.afsws
Volume 536870924 created on partition /vicepa of vmlinux8.itso.ibm.com

2. Now mount those volumes:

./fs mkmount -dir /afs/.itso.ibm.com/s390_linux24 -vol s390_linux24
./fs mkmount -dir /afs/.itso.ibm.com/s390_linux24/usr \

-vol s390_linux24.usr
./fs mkmount -dir /afs/.itso.ibm.com/s390_linux24/usr/afsws \

-vol s390_linux24.usr.afsws

3. Release the new root.cell replica and check the volumes so the local Cache
Manager can access them:

./vos release root.cell
Released volume root.cell successfully
./fs checkvolumes
All volumeID/name mappings checked.

4. Grant the lookup and read access to the system:anyuser group on each new
directory’s ACL:

cd /afs/.itso.ibm.com/s390_linux24
 Chapter 15. Integrating and replacing Microsoft servers 381

/usr/afs/bin/fs setacl -dir . usr usr/afsws -acl system:anyuser rl

5. We set an unlimited quota an the s390_linux.usr.afsws volume so we do not
have any problems copying appropriate files for distribution, without
exceeding the quota:

/usr/afs/bin/fs setquota /afs/.itso.ibm.com/s390_linux24/usr/afsws 0

6. Copy the neccessary files:

cd /afs/.itso.ibm.com/s390_linux24/usr/afsws/
cp -rp /usr/src/openafs-1.1.1/s390_linux24/dest/bin .
cp -rp /usr/src/openafs-1.1.1/s390_linux24/dest/etc .
cp -rp /usr/src/openafs-1.1.1/s390_linux24/dest/include .
cp -rp /usr/src/openafs-1.1.1/s390_linux24/dest/lib .

7. Set the permissions to allow system:authuser to look up and read on
directories /etc, /include, and /lib and deny the access for the group
system:anyuser to those directories. The group system:anyuser still needs
the lookup and read permissions to the /bin directory to enable
unauthenticated users to access the klog binary:

cd /afs/.itso.ibm.com/s390_linux24/usr/afsws
/usr/afs/bin/fs setacl -dir etc include lib -acl system:authuser rl \

system:anyuser none

8. Create the symbolic link /usr/afsws on the local disk to the directory
/afs/itso.ibm.com/@sys/usr/afsws:

ln -s /afs/itso.ibm.com/@sys/usr/afsws /usr/afsws

Congratulations! You have just completed the installation of the AFS server on
your VM Linux.

15.4.6 Installing clients on other servers
In this section we describe how to install the AFS client on the server from which
you want to access the AFS files.

Transfer the installation files to the client server
Follow these steps to transfer the installation files from the server where you
compiled the OpenAFS package to the client server. In our example, the server
with compiled packages was vmlinux8.itso.ibm.com.

1. Create the gz package:

cd usr/src/openafs-1.1.1/s390_linux24/

Tip: If you do not want to type the whole path to AFS suite commands, such
as fs, you should include the following paths to the PATH environment
variable: /usr/afsws/bin and /usr/afsws/etc.
382 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

tar -c -z dest > s390_linux24afs.gz

2. Transfer the file to the client computer with ftp; for example, create the
directory and unpack into this directory:

mkdir /afsinstall
cd /afsinstall/
ftp vmlinux8.itso.ibm.com
Connected to vmlinux8.itso.ibm.com.
...
ftp> cd /usr/src/openafs-1.1.1/s390_linux24
ftp> bin
ftp> get s390_linux24afs.gz
...
11253760 bytes received in 00:00 (24.35 MB/s)
ftp> bye
221 Goodbye.
tar zxf s390_linux24afs.gz

Creating AFS directories on the local disk
Create the directories for holding binary and configuration files with the
commands:

mkdir /usr/vice
mkdir /usr/vice/etc

Loading AFS into the kernel
Follow these steps to load the AFS modules into the kernel:

1. Copy the AFS kernel files into the /usr/vice/etc/modload directory:

cd /afsinstall/dest/root.client/usr/vice/etc/
cp -rp modload /usr/vice/etc

2. Copy the initialization script and start it:

cp -p afs.rc /etc/init.d/afs
/etc/init.d/afs start
Starting AFS services.....

Enabling AFS login
Follow the instructions in “Enabling AFS Login” on page 364 to enable AFS login
on the client server. Keep in mind that the installation files are now in the
/afsinstall directory, not in /usr/src/openafs-1.1.1/s390_linux24.

Loading and creating client files
Follow these steps to complete this task:

1. Copy the client files:
 Chapter 15. Integrating and replacing Microsoft servers 383

cd /afsinstall/dest/root.client/usr/vice/etc/
cp -p * /usr/vice/etc
cp: omitting directory `C'
cp: omitting directory `modload'
cp -rp C /usr/vice/etc

2. Create the /usr/vice/etc/ThisCell file. With this cell you define the membership
of this client server:

echo "itso.ibm.com" > /usr/vice/etc/ThisCell

3. From your AFS server, copy CellServDB to /usr/vice/etc/CellServDB.

Configuring the cache
We already explained, in “Configuring the cache” on page 374, how the cache
works and what the needed parameters are. Here we just outline the procedure
to implement this on the client machine. In our example, we use the disk cache:

1. Create the directory for the cache:

mkdir /usr/vice/cache

2. Create the cacheinfo file with a cachesize of 25000 KB:

echo "/afs:/usr/vice/cache:25000" > /usr/vice/etc/cacheinfo

Configuring the Cache Manager
We explained the function of the Cache Manager in “Configuring the Cache
Manager” on page 375. Follow these steps to set up the Cache Manager on the
client server:

1. Create the directory for the cache:

mkdir /afs

2. Copy the configuration file:

mkdir /etc/sysconfig
cp /usr/vice/etc/afs.
cp /usr/vice/etc/afs.conf /etc/sysconfig/afs

3. Edit the configuration file to suit your needs. Following is our example file:

#! /bin/sh
Copyright 2000, International Business Machines Corporation and others.
All Rights Reserved.

This software has been released under the terms of the IBM Public
License. For details, see the LICENSE file in the top-level source
directory or online at http://www.openafs.org/dl/license10.html

Configuration information for AFS client
384 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

AFS_CLIENT and AFS_SERVER determine if we should start the client and or
the bosserver. Possible values are on and off.
AFS_CLIENT=on
AFS_SERVER=off

AFS client configuration options:
LARGE="-stat 2800 -dcache 2400 -daemons 5 -volumes 128"
MEDIUM="-stat 2000 -dcache 800 -daemons 3 -volumes 70 -memcache"
SMALL="-stat 300 -dcache 100 -daemons 2 -volumes 50"
OPTIONS=$MEDIUM

Set to "-verbose" for a lot of debugging information from afsd. Only
useful for debugging as it prints _a lot_ of information.
VERBOSE=

OPTIONS are the options passed to afsd.
OPTIONS="$OPTIONS $VERBOSE"

Sample server preferences function. Set server preferences using this.
afs_serverprefs() {
/usr/afsws/etc/fs setserverprefs <host> <rank>
#}

Either the name of an executable script or a set of commands go here.
AFS_POST_INIT=afs_serverprefs
AFS_POST_INIT=

Starting the Cache Manager
1. Reboot the VM Linux server, log on as root, and then start the AFS

initialization script and wait for the message that all daemons are started:

cd /
shutdown -h now
...
login: root
password: root_password
...
/etc/init.d/afs start
Starting AFS services.....
afsd: All AFS daemons started.

2. Follow the instructions in “Activating the AFS initialization script” on page 378
to enable the script to load automatically.
 Chapter 15. Integrating and replacing Microsoft servers 385

Setting up volumes and loading binaries into AFS
Here we create /usr/afsws on the local disk to the directory in AFS that houses
AFS binaries for this system type. We prepared those binaries in the “Storing
AFS binaries in AFS” on page 381.

1. Create /usr/afsws on the local disk as a symbolic link to the directory
/afs/itso.ibm.com/@sys/usr/afsws with the command:

ln -s /afs/itso.ibm.com/@sys/usr/afsws /usr/afsws

Congratulations! Now you are ready to use the AFS file system on your client.
Next time you log on to your system, you will already be authenticated to the AFS
server.

15.4.7 \Installing Windows 2000 OpenAFS Client
In this section we explain how to install and configure Windows 2000 OpenAFS
Client. You can obtain the compiled version of AFS client from:

http://www.openafs.org/release/latest.html

In our example we used version 1.0.4.a.

After installing the package, start the AFS client. You will see a window similar to
Figure 15-2.

Important: On any Linux system on which you want to use the AFS logon with
authentication to the AFS server, you still have to define a /etc/passwd entry
with the same username and user ID as defined on the AFS server. This is
required by the AFS PAM module. It authenticates you to the AFS server, but it
still requires a local entry in the /etc/passwd file.
386 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

http://www.openafs.org/release/latest.html

Figure 15-2 Windows 2000 AFS Client

On the Advanced tab, click Configure AFS Client and you will see a window
similar to Figure 15-3 on page 388.
 Chapter 15. Integrating and replacing Microsoft servers 387

Figure 15-3 Configuring Windows 2000 AFS Client

Select the AFS Cells tab and click Add... , and you will see a window similar to
Figure 15-4 on page 389.
388 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Figure 15-4 Defining the AFS Cell

Define your AFS Cell name here, and the server that is holding this cell. In our
example you can see that the cell name is itso.ibm.com and that the server is
vmlinux8.itso.ibm.com. Now start the AFS client service.

After defining the AFS Cell and starting the service, you can log on to get the
tokens. In the main AFS client setup shown in Figure 15-2 on page 387, select
the Tokens tab and click Obtain New Tokens.... You will see a window similar to
Figure 15-5 on page 390.
 Chapter 15. Integrating and replacing Microsoft servers 389

Figure 15-5 Logging on to the AFS server

Now you can map the AFS directory /afs to the drive letter on your Windows
2000 workstation. In the main AFS client setup shown in Figure 15-2 on
page 387, select the Drive Letters, and you will see a window similar to
Figure 15-6.

Figure 15-6 Mapping the /afs directory to the local drive letter

After you mapped the /afs directory to the drive letter, you can see the /afs
content by exploring the drive you assigned. You will see a window similar to
Figure 15-7 on page 391.
390 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Figure 15-7 /afs directory mapped to the drive

Tip: If you define the same username and password on the AFS server as you
use on you Windows 2000 workstation you can integrate the logon to AFS
server with you workstation logon. With this you can use single logon to the
workstation and AFS server.
 Chapter 15. Integrating and replacing Microsoft servers 391

392 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Chapter 16. z/VM 4.2 Linux features

In this chapter, we describe the enhancements shipped with IBM's z/VM 4.2
Operating System that can benefit customers running Linux guest virtual
machines.

We review the System Administration Facility, which can help in the creation and
management of multiple Linux guests. This facility can also be used to migrate
from an existing Virtual Image Facility (VIF) environment.

We also review the VM LAN Support introduced in z/VM 4.2. This facility allows
z/VM to support multiple internal, virtualized LAN segments. Individual guest
machines can define a virtual network interface card (NIC) and then connect to
the virtual or guest LAN segment using existing communications software, such
as the Linux TCP/IP stack (we refer to these as “guest LANs” to avoid confusion
with virtual LAN, since that term has been adopted by an IEEE standard,
802.1q).

16
© Copyright IBM Corp. 2001 393

16.1 System Administration Facility
The System Administration Facility is in part based on a number of ease-of-use
functions developed for the S/390 Virtual Image Facility (VIF) product. These
functions include the creation of Linux guest machines, the assignment of disk
space for those guests, and the ability to start and stop Linux servers. The facility
is comprised of a client component which runs in either a Linux or CMS guest.
This client component communicates with a server component known as the
VMADMIN server.

16.1.1 Who should use the System Administration Facility
The System Administration Facility is intended for use in a new, non-tailored
z/VM system. It will not function if you want to use a pre-existing system.
VMADMIN manages the user directory (which means that you can't do it—either
manually, or through a directory management product such as DIRMAINT).

Before deciding on whether or not this facility is going to be useful in your
environment, we recommend that you review the following flowchart, which
comes from the System Administration Facility Guide, SC24-6034.
394 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Figure 16-1 Figure 5-1 How to proceed after installing z/VM

16.1.2 Initializing the System Administration Facility
If you decide to use the System Administration Facility in your environment,
execute the following steps to initialize the facility (before proceeding, however,
we recommend you first read the instructions given in System Administration
Facility Guide, SC24-6034).

1. Logon to CMS on the newly installed z/VM system, using the VMADMIN user
ID.

2. Enter the command VMADMCTL START. (Note that this command can only be
entered once; you cannot stop and then restart VMADMCTL.)

3. Reply to the prompts with your environment-specific responses.

Install z/VM

Have
you modified

z/VM ?

Y STOP HERE
This facility is not
for you

STOP

Do you
have an

existing VIF
to migrate ?

Use the VIFMGR
command

Y

N

Do you
want to use

System Admin
Facility?

Y

N

Use VMADMCTL
START to set up
environment

Do you
want to use

the CMS
client?

Y

Use VMADMIN
command STOP

STOP

Setup to use
Linux client

N
Use other z/VM
facilities (see z/VM
Planning & Admin)
 Chapter 16. z/VM 4.2 Linux features 395

You’ll need the following information about your environment in order to
answer the VMADMCTL initialization questions:

– Network device address for the VMADMIN server

Network devices such as OSA cards have two (and sometimes, three)
device addresses assigned to them. There is always an even number and
an odd device number, which represent read and write subchannels.

On an OSA Express card running in QDIO mode, there’s a third device for
the control subchannel. To answer this prompt, specify the even device
address number of the network card you’ll be using for VMADMIN. For
example, if using an OSA card with device addresses 0x0500, 0x0501,
and 0x0502, you’d reply with 0500.

– The network device's port number or port name

This is the number or name of the starting even port, or the name
associated with the network device that is assigned to the VMADMIN
server.

– VMADMIN server network type

– The type of local area network (LAN) to which the server is connected. For
a QDIO device, specify either FastEthernet, FE, GigabitEthernet, or GB.
For a non-QDIO device, specify either Ethernet, 802.3, TokenRing, TR, or
FDDI.

– VMADMIN server network MTU size (576, 1492, 1500, 2000, 4096, 4352
or 8902)

– VMADMIN server IP address

– VMADMIN server subnet mask

– IP address of gateway to be used by the System Administration Facility

Once configuration has completed, the VMADMIN server will be initialized and a
message will be generated, informing you that VMADMIN is now operational.

Following is an example of the initialization process that includes the prompts
and example responses:

VMADMCTL START
HLEVMA0050I Reply RESTART at any time to start over or QUIT to terminate
HLEVMA0052R Enter Server network device address:
9.12.6.73
HLEVMA0036E Device address must be hexadecimal
HLEVMA0052R Enter Server network device address:
292C
HLEVMA0053R Enter Server network port number:
0
396 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

HLEVMA0054R Enter Server network type (Ethernet, 802.3, TokenRing, TR,
FDDI):
Ethernet
HLEVMA0055R Enter Server network MTU size (576, 1492, 1500, 2000, 4096,
4352, 8902):
1500
HLEVMA0056R Enter Server IP address:
9.12.6.73
HLEVMA0057R Enter Server IP mask:
255.255.255.0
HLEVMA0058R Enter Server gateway IP address:
9.12.6.75
HLEVMA0079I
HLEVMA0079I Here is the configuration (please make a note of it):
HLEVMA0079I
HLEVMA0079I Server:
HLEVMA0079I Network device address: 292C
HLEVMA0079I Network port: 0
HLEVMA0079I Network type: ETHERNET
HLEVMA0079I Network MTU size: 1500
HLEVMA0079I IP address: 9.12.6.73
HLEVMA0079I IP mask: 255.255.255.0
HLEVMA0079I Gateway IP address: 9.12.6.75
HLEVMA0079I Client IP address:
HLEVMA0079I
HLEVMA0080R Is this correct (Yes(1),No(0)):
1
14:51:28 AUTO LOGON *** VMADMIN USERS = 8 BY MAINT
HLEVMA0498I VMADMCTL complete - VMADMIN is now operational

Verify that all the settings are correct by using the VMADMIN Q ALL command:

VMADMIN Q ALL
HLE$QU0079I
HLE$QU0079I Here is the configuration (please make a note of it):
HLE$QU0079I
HLE$QU0079I Server:
HLE$QU0079I Network device address: 292C
HLE$QU0079I Network port: 0
HLE$QU0079I Network type: ETHERNET
HLE$QU0079I Network MTU size: 1500
HLE$QU0079I IP address: 9.12.6.73
HLE$QU0079I IP mask: 255.255.255.0
HLE$QU0079I Gateway IP address: 9.12.6.75
HLE$QU0079I Client IP address: NOT DEFINED
HLE$QU0079I
HLE$QU1300I 0 of 0 MB of server paging space in use
HLE$QU1301I 0 MB of 0 MB of Linux image partition space in use
 Chapter 16. z/VM 4.2 Linux features 397

HLE$QU1302I VMADMIN performance: CPU is Green, Paging is Green, I/O is
Green
HLE$QU1324I No paging volumes are defined
HLE$QU1324I No image volumes are defined
HLE$QU1303I Server uses IP address 9.12.6.73 with device 292C
HLE$QU1306I Server level: 18, Service 000
HLE$QU1307I Last boot on 2001-08-02 at 15:15:06

16.1.3 Using VMADMIN
VMADMIN functions can be run from a CMS session or from a Linux guest
machine. Before you can run VMADMIN from Linux, however, you must first
create a Linux image, using the VMADMIN CMS client. Once you have created
the first Linux system, all other VMADMIN work can be done from Linux.

Figure 16-2 Example System Administration Facility environment

VMADMIN
Server z/VM 4.2

DASD
- Executables
- Image Paging Space
- Linux DASD Partitions

CMS Linux Linux Linux TCP/IP
Systems
Management
Client

Systems
Management
Client

Linux0 Linux1 Linuxn

Network

292C 292D

OSA

2902 2903

OSA
398 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

16.1.4 Creating the initial Linux guest
The following steps take you through the creation of the initial Linux virtual
machine. These steps must be performed from a CMS session that has access
to the VMADMIN facility. (Typically, in a new installation you should use the
MAINT user ID for this task.)

1. Using the VMADMIN SERVER VOLUME command, create the paging and
image (Linux filesystem) space that will be used by the Linux guest.

Note: The following examples show user input in bold.

Create a paging device, using device address 3E44, and give it a volume
label of VM3E44.

vmadmin server volume add paging 3e44 vm3e44
16:19:38 DASD 3E44 ATTACHED TO VMADMIN 1000 BY VMADMIN WITH DEVCTL
HLE$VO2004I Command may take up to 16 minutes; please wait

Once the format has completed, map the volume to ensure that everything
worked.

vmadmin server volume map used vm3e44
HLE$VO2216E VM3E44 (3E44) is a PAGING volume
Command Complete

Add a volume for "image" space (i.e., space that will be used by the Linux
filesystems). Once this completes, also map this volume to ensure that the
format completed successfully.

vmadmin server volume add image 3ca3 vm3ca3
HLE$VO2200I IMAGE volume VM3CA3 added
Command Complete

2. Create the first Linux guest by using the command VMADMIN IMAGE CREATE.
(In our case we named it LNXMSTR since it is the first Linux guest, but you
can name it whatever you prefer.)

Note: This command merely defines the guest to VM and does not perform
the actual Linux install.

vmadmin image create LNXMSTR
Enter password for Image:
PASSWORD
Re-enter password:
PASSWORD
HLE$IM1500I Image LNXMSTR created successfully
Command Complete

3. Use the VMADMIN SERVER INSTALL command to copy the kernel image,
parmline, and initial ramdisk files from a nominated FTP server to the guest
machine. Once this completes, you’ll be ready to boot the Linux system
starter system.
 Chapter 16. z/VM 4.2 Linux features 399

Select the FTP server that contains the kernel image, parmline, and initial
RAMdisk that you want to install. In our case we used SuSE, so the location
of these files is stored in the suse.ins file.

Note: We had a problem in getting this step to work, at first. We resolved the
problem by editing the suse.ins file, entering fully qualified path names (i.e.
paths from the root directory) for the image, parmline, and initrd files. This
problem may now be resolved, however, as we were using an early build of
z/VM 4.2.

VMADMIN SERVER INSTALL 9.12.6.134 ftpuser ftppwd suse.ins
HLE$IN2305I Transferring Linux from 9.12.6.134 suse.ins
HLE$IN2003I Command may take up to 20 seconds; please wait
HLE$IN2304I Linux installed from 9.12.6.134 suse.ins
Command Complete

4. Define the network device that’ll be used by the first Linux guest, by using the
VMADMIN IMAGE NETWORK command. In our example, the Linux guest will use
an OSA card with device addresses 2902 and 2903 (see Figure 16-2 on
page 398 for details).

VMADMIN IMAGE NETWORK lnxmstr add 2902
HLE$IM1506I NETWORK ADD completed successfully
Command Complete

5. Authorize the Linux master guest to be able to be able to run VMADMIN
commands.

vmadmin server clientipaddress 9.12.6.65
HLE$CL2504I Ping to Client IP address 9.12.6.65 failed
HLE$CL2501I Client IP address is set to 9.12.6.65 successfully
Command Complete

6. Provide read-only access to VMADMIN's 203 minidisk, which holds the Linux
vmadmin command.

vmadmin partition share vmadmin 203 with lnxmstr 203
HLE$PA1506I PARTITION SHARE completed successfully
Command Complete

You’re now ready to boot the initial Linux guest machine.

7. Logon to a CMS session using (in our example) user ID LNXMSTR. The
Linux system will automatically boot.

LOGON LNXMSTR PASSWORD
There is no logmsg data
FILES: NO RDR, NO PRT, NO PUN
LOGON AT 21:55:18 EDT THURSDAY 08/16/01
Linux version 2.2.19 (root@s390l6) (gcc version 2.95.2
(SuSE+gcc-2.95.2.4-diffs+gcc-bugfixes)) #1 SMP Mon Jun 18 05:19:40 2001
Command line is: ramdisk_size=32768 root=/dev/ram0 ro
We are running under VM
400 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

This machine has an IEEE fpu
Initial ramdisk at: 0x02000000 (16777216 bytes)
Detected device 001F on subchannel 0000 - PIM = 80, PAM = 80, POM = FF
Detected device 2902 on subchannel 0001 - PIM = 80, PAM = 80, POM = FF
Detected device 2903 on subchannel 0002 - PIM = 80, PAM = 80, POM = FF
Detected device 0203 on subchannel 0003 - PIM = F0, PAM = F0, POM = FF
...

8. Because this is the first time this Linux image has been booted, you’ll be
prompted for networking definitions. Configure the network, and then telnet to
the image. You can now install the full system by using an appropriate
installation script (we used YaST in our example).

To issue VMADMIN commands from the Linux guest, once you log onto the
image, you must make the DASD at device number 203 known to Linux and it
must be mounted read-only. (For more information about the procedure you’ll
need to follow to accomplish this step, refer to the documentation for the Linux
distribution you are using.)

Note: For a complete description of the functions available with the System
Administration Facility, refer to the z/VM 4.2 publication System
Administration Facility Guide, SC24-6034.

16.2 VM LAN support
Prior to z/VM 4.2, virtual connectivity options for connecting one or more virtual
machines were restricted to virtual channel-to-channel (CTC) links, and the Inter
User Communications Vehicle (IUCV) facility. These are point-to-point
connections, which means that in the case of CTC links, when you want two
virtual machines to communicate with each other, you must define CTC device
pairs in each machine and couple those devices between guest machines.You
also have to define static routing statements in each guest that needs to
communicate with another guest in the system.

Another problem with point-to-point links is that, if one side of the connection
went down, it was often difficult to subsequently reconnect the two machines.
Frequently, one of the Linux guest machines would have to reboot in order to pick
up the connection.
 Chapter 16. z/VM 4.2 Linux features 401

Figure 16-3 Guest virtual connectivity options prior to z/VM 4.2”

From z/VM 4.2, CP has been enhanced to provide a feature known as “VM LAN”;
see Figure 16-4 on page 403. This feature allows you to create multiple virtual
LAN segments within a z/VM environment, and there is no limit on the number of
LAN segments that you can create. Individual guest machines can create a
virtual Network Interface Card (NIC) to allow them to connect to the virtual LAN
and communicate with other guests using standard TCP/IP protocols.

The virtual NIC emulates a HiperSockets device, as introduced by the zSeries
z900 GA-2 machines in late 2001. As the VM LAN is a virtualization technique, it
is not limited to the use of zSeries hardware; support for VM LAN goes back to
9672 Generation 5 machines and the Multiprise 3000.

Unlike with the complexity of point-to-point connections, when using the VM LAN
facility, you only have to define the virtual network adapter in each guest and
connect that adapter to the LAN.

USERFUSEREUSERDUSERCUSERBUSERA USERG

Virtual
CTCs IUCV

Virtual
CTC

Virtual
CTC

Virtual
CTC IUCVIUCV

Point-to-Point connections
VM/ESA or z/VM CP
402 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Figure 16-4 VM LAN support in z/VM 4.2

To use the VM LAN, the guest O/S (for example, Linux) must be able to support
HiperSockets. In our case, we used an IBM internal test Linux system which had
Hipersockets support built into the QETH driver.

VM LANs can be created or destroyed dynamically. It is possible to have both
unrestricted and restricted LANs. Access to a restricted LAN is controlled via an
access control list.

16.2.1 Creating a VM LAN
To manually create a virtual LAN for a group of VM guests, follow these steps:

1. Create a VM LAN segment in the VM host system.

CP define lan SEWLAN MAXCONN 100 ownerid system
23:00:55 LAN SYSTEM SEWLAN is created

We created a LAN called SEWLAN, and the maximum number of guests that
can connect to this LAN is 100. The MAXCONN setting can be changed to
any number between 1 and 1024. Alternatively, if you do not use a
MAXCONN value, then there is no limit on the number of guests that can
connect to this LAN.

The LAN definition given in our example is not permanent across IPLs of VM,
so you should add a DEFINE LAN statement to VM's SYSTEM CONFIG file.
Refer to the DEFINE LAN section in the z/VM CP Command and Utility
Reference for additional details on this subject.

USERFUSEREUSERDUSERCUSERBUSERA USERG

Virtual
Network
Interface

z/VM 4.2 CP

Virtual
Network
Interface

Virtual
Network
Interface

Virtual
Network
Interface

Virtual
Network
Interface

Virtual
Network
Interface

Virtual
Network
Interface

LANx LANy
 Chapter 16. z/VM 4.2 Linux features 403

2. On each individual guest machine, you must create a virtual network interface
card (NIC).

CP define nic 500 hiper devices 3
23:08:01 NIC 0500 is created; devices 0500-0502 defined

This creates a set of devices that will look like a HiperSockets interface to
Linux. Again, this is not a permanent definition; it will only exist for the life of
the guest session. To make this definition permanent, add a SPECIAL
statement in the CP directory for that guest, either by editing the USER
DIRECT file or by running DIRMAINT.

3. On each guest, connect the virtual NIC to the LAN.

CP couple 500 to system sewlan
23:10:12 NIC 0500 is connected to LAN SYSTEM SEWLAN

To ensure this happens whenever a Linux guest starts up, put this COUPLE
command into each guest's PROFILE EXEC file.

16.2.2 Using the VM LAN with Linux guests
Note: The information in this section is based on tests using a pre-GA QDIO
driver on an internal IBM system; your experiences may be different. Both the VM
LAN facility and the supporting Linux device drivers will be available by late 2001
as GA code.

To use the VM LAN with Linux guests, we followed these steps:

1. We defined the VM LAN, created a virtual NIC for each our Linux guests, and
then connected those NICs to the LAN as discussed in 16.2.1, “Creating a
VM LAN” on page 403.

2. We booted Linux, using an initial RAMdisk installation.

3. When we got to the networking prompts, we entered the following details:

Welcome to Linux for S/390
Is your machine connected to a network (Yes/No) ? yes

Select the type of your network device
1) for lcs osa token ring
2) for lcs osa ethernet
3) for qdio osa ethernet
4) for channel to channel and escon channel connections
5) for IUCV
6) for CLAW
Enter your choice (1-6): 3

Please type in the channel device configuration options, e.g
qeth0,0xfd00,0xfd01,0xfd02,0,1
404 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

qeth parameter:
qeth0,0x0500,0x0501,0x0502,0,0,0

Please enter your IP address: 192.168.0.10
Please enter the net mask: 255.255.255.0
Please enter the net address: [192.168.0.0] 192.168.0.0
Please enter the gateway address: [192.168.0.1] 192.168.0.1
Please enter the IP address of the DNS server:
Please enter your host name: zvmlnx3.itso.ibm.com
Please enter the DNS search domain: itso.ibm.com

Configuration will be:
Channel device : qeth0,0x0500,0x0501,0x0502,0,0,0
Host name : zvmlnx3.itso.ibm.com
IP address : 192.168.0.10
Net mask : 255.255.255.0
Broadcast address: 192.168.0.255
Gateway address : 192.168.0.1
Net address : 192.168.0.0
DNS IP address :
DNS search domain: itso.ibm.com
Is this correct (Yes/No) ?
Yes

4. When we got to the Linux shell, we entered the command ifconfig -a in
order to determine if we had a hipersockets device defined.

ifconfig -a
hsi0 Link encap:Ethernet HWaddr 00:00:00:00:00:00
 NOARP MTU:8192 Metric:1
 RX packets:0 errors:0 dropped:0 overruns:0 frame:0
 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:100
 Interrupt:14

lo Link encap:Local Loopback
 inet addr:127.0.0.1 Mask:255.0.0.0
 UP LOOPBACK RUNNING MTU:16436 Metric:1
 RX packets:14 errors:0 dropped:0 overruns:0 frame:0
 TX packets:14 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0

We also entered a CP QUERY NIC command to determine the status of our
Linux guest machine's virtual Network Interface Card. As seen from the
following example, we had an established session, but did not have an IP
address bound to the NIC.

CP Q NIC 500 DETAILS
Adapter 0500 Type: HIPER Name: UNASSIGNED Devices: 3
Port 0 MAC: 00-04-AC-00-00-05 LAN: SYSTEM ITSOLAN MFS: 16384
 Chapter 16. z/VM 4.2 Linux features 405

Connection Name: HALLOLE State: Session Established
Device: 0500 Unit: 000 Role: CTL-READ
Device: 0501 Unit: 001 Role: CTL-WRITE
Device: 0502 Unit: 002 Role: DATA

5. We displayed the contents of the /proc/chandev file in order to verify that the
devices 0x500,0x501,and 0x0502 have been detected.

cat /proc/chandev

channels detected
chan cu cu dev dev in chan

Irq devno type type model type model pim chpids use reg.
===
0x0000 0x2946 0x04 0x3088 0x60 0x0000 0x00 0x80 0x1900000000000000 no no
0x0001 0x2947 0x04 0x3088 0x60 0x0000 0x00 0x80 0x1900000000000000 no no
0x000e 0x0500 0x10 0x1731 0x05 0x1732 0x05 0x80 0x0500000000000000 yes yes
0x000f 0x0501 0x10 0x1731 0x05 0x1732 0x05 0x80 0x0500000000000000 yes yes
0x0010 0x0502 0x10 0x1731 0x05 0x1732 0x05 0x80 0x0500000000000000 yes yes

6. We were now ready to activate the hipersockets device via an ifconfig
command, as follows:

ifconfig hsi0 192.168.0.1 netmask 255.255.255.0 multicast up

hsi0 Link encap:Ethernet HWaddr 00:00:00:00:00:00
inet addr:192.168.0.10 Mask:255.255.255.0
UP RUNNING NOARP MULTICAST MTU:8192 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100
Interrupt:14

7. Finally, we performed another QUERY NIC command and noted that this time,
we had an IP address bound to the virtual NIC.

#CP Q NIC 500 DETAILS
Adapter 0500 Type: HIPER Name: UNASSIGNED Devices: 3
Port 0 MAC: 00-04-AC-00-00-05 LAN: SYSTEM ITSOLAN MFS: 16384
Connection Name: HALLOLE State: Session Established
Device: 0500 Unit: 000 Role: CTL-READ
Device: 0501 Unit: 001 Role: CTL-WRITE
Device: 0502 Unit: 002 Role: DATA
Unicast IP Addresses: 192.168.0.10

This Linux guest can now communicate with any other member of the virtual LAN
without requiring static routes to individual machines or specific COUPLE
statements to link it to other guests.
406 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Chapter 17. Roadmap

In this chapter we discuss some areas we would have liked to have investigated
further. Some research was done to test “good ideas.” In some cases
experiments were done and prototypes were coded to verify the ideas. We
believe these areas could allow significant improvements to running Linux
images on VM, but time did not allow us to complete the work.

17
© Copyright IBM Corp. 2001 407

17.1 Ability to reconfigure CTC and IUCV
In “Linux as a virtual router” on page 68 we drew attention to the lack of ability to
reconfigure the CTC and IUCV drivers.

The way that these drivers work is that connections are defined when the device
driver is loaded. The restrictions are different for each driver:

CTC The virtual CTCs must be defined at Linux IPL time because the
current Linux kernel does not properly handle dynamically defined CTC
devices. The devices do not need to be coupled to the peer user ID
until the moment you want to activate the connection, so you can
postpone that decision and use the hcp command to do the couple.
Thus, the restriction is only in the number of devices you want to use.

IUCV The IUCV driver does not use S/390 devices, so it is not subject to
restrictions in the device layer of the kernel. The current driver,
however, requires all peer user IDs to be specified when the driver is
loaded. You can unload the driver and specify additional peer user IDs,
but that means you must bring down the other IUCV connections in this
image.

We believe it would not be very difficult to change the IUCV driver such that you
specify only the number of connections when it is loaded, and specify the peer
user ID just before the ifconfig command by writing into a /proc entry. This
would give the IUCV driver at least the flexibility of the CTC driver.

There are also some scaling issues with the CTC driver that prevent this from
being effective. When a number of connections are down and the virtual router is
trying to establish the connection, this appears to keep the CTC driver from
sending packets on the other connections that are up.

Currently a maximum of 8 or 10 connections is defined for the CTC and IUCV
drivers. People have suggested that this could be changed (based on the fact
that it is defined as a constant), but that might be less trivial than it looks. The
CTC driver allocates 2 times a 64 KB buffer for each connection, so 100
connections would require 12.5 MB of storage. This would make it hard to create
a small compact Linux router that can be kept resident by z/VM. The IUCV driver
requires the user IDs to be listed when the driver is loaded. That causes some
practical problems as well if you want to specify hundreds of user IDs.

It would be very attractive if z/VM would provide a kind of virtual network based
on IUCV or some other interface to CP (as opposed to virtual point-to-point
connections). Such a virtual network should offer broadcast capability as well so
that a DHCP server (in a Linux image on VM, connected to that same virtual
LAN) would provide the information to let a DHCP client in each Linux image
408 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

configure the IP stack automatically (as suggested in 10.4.4, “Reducing the
number of changes required” on page 220). Given the penetration of Ethernet in
the Linux arena, it would be attractive if the Linux device driver would make it
appear as a network interface on a virtual Ethernet LAN.

17.2 SOURCEVIPA equivalence for Linux
As discussed in 4.2.3, “Virtual IP addressing” on page 79, we can use a dummy
interface in our Linux instance to provide a persistent traffic path for TCP/IP
connections. This is used to provide a single addressing point for applications,
even when multiple interfaces are used. It also allows for private IP addressing
ranges to be used in the virtual routing setup, conserving the Internet address
range.

While the dummy interface provides resilient connectivity support for incoming
connections, it does not assist when the Linux instance establishes an outbound
connection. This is because of the way the TCP/IP connect() function works.
Part of connect() processing uses the TCP/IP routing table to determine which
interface the connection request (TCP SYN packet) will be sent over. The IP
address of this interface is used as the source address for the connection.

In z/OS and z/VM, this default behavior has been modified, adding extra
processing to support SOURCEVIPA. z/OS and z/VM check the configuration for
the interface chosen in connect(), and if SOURCEVIPA has been specified for
that interface, the address of the appropriate VIPA will be used as the source
address.

It would be possible to make the same changes to the Linux INET code to
support the same feature. There are many considerations, however, that would
have to be considered:

� The change would have to be duplicated in TCP and UDP (and may operate
differently for both).

� IPV4 and IPV6 would need to be looked at.

� Other parts of the kernel might be affected. For example, the code that sends
the SYN packet may be dependent on the interface address determined in
connect(), and would have to be changed as well.

Note: This assessment of the SOURCEVIPA function in z/OS and z/VM has
been done simply by looking at how the function works, not by actual
inspection of the code. None of the authors of this redbook have access to
z/OS or z/VM code, so the way the function is implemented may be different
from this.
 Chapter 17. Roadmap 409

� Applications that initiate connections might not perform as expected.

A fairly large amount of work would be involved in making this kind of
modification to the INET code. However, at the end of the task Linux would be
able to benefit from the same high-availability connectivity as z/OS and z/VM for
incoming and outgoing connections.

Even without a function like SOURCEVIPA in your penguin colony, though, you
obtain high availability for incoming connections using the dummy interface ad
previously described.

17.3 DCSS-mapped block devices
Reduction of the storage requirements (“footprint”) of the Linux images is one of
the prerequisites for effectively running a large number of Linux images on a VM
system. One of the options for reducing the footprint is to share storage among
the images. Sharing the read-only portions of the kernel as suggested in 10.7.1,
“Using an NSS with just the kernel” on page 228 will help somewhat, but the
kernel is only a small portion of the Linux image. It would be much more
attractive to share the application code (the shared libraries and binaries).

17.3.1 Sharing between processes
When a process needs access to an executable or shared library, an mmap()
function call is used to map this file into the virtual storage of the process. The file
is not completely read into memory before the process starts, but portions are
brought into storage when needed (like demand paging). When the process
accesses a part of the file that is not in Linux storage, a page fault exception
passes control to the kernel to start the I/O to read in a portion of that file and
resume the process when the I/O has completed. In the case of shared libraries,
another process might need the same portion of the mapped file and it would find
the portion already in storage and not encounter a page fault. This means that
portion of the file will be loaded into Linux storage only once. Popular portions of
files will continue to reside in storage and will happen to be available for
processes when needed.

This is something Linux does on each platform. It is not unique to S/390 and it
does not exploit S/390 facilities other than the Dynamic Address Translation
hardware (referred to as Memory Management Unit (MMU) on other platforms).
410 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

17.3.2 Sharing between images
This sharing process, described in 17.3.1, “Sharing between processes” on
page 410, happens within a single Linux image. When Linux images are sharing
disks with code, many of the Linux images will have read in the same portions of
the same files. From a VM point of view, this means that duplicates of the same
data is in the virtual storage of each of these Linux images. If the pages are
referenced frequently enough by the Linux images, they will be part of the
resident storage of the virtual machine. It would be very attractive if VM could
play similar tricks as Linux does and map these virtual machine pages on the
same real page frames. Since Linux is using normal I/O operations to read the
data, it is not trivial for VM to recognize the pattern and perform a form of
mapping.

Some benefit may be gained from VM Minidisk Cache (MDC) that will cache
portions of the data in real storage page frames.

When the Linux image issues the I/O to get the data because it page faults, it is
probably too late for VM to intercept and try to do smart things. This is further
complicated by the fact that each Linux image will read that block of disk into a
different page of the virtual machine storage.

One option would be to use the z/VM facilities to do something similar to the
Linux mmap() function. The z/VM facilities, however, build on the XC architecture,
and Linux for S/390 currently cannot run in that mode.

17.3.3 Using shared segments
Another z/VM facility to share storage is a discontiguous saved segment (DCSS).
A virtual machine can “attach” a DCSS, which means that a defined part of its
address space is mapped on a DCSS. The pages of the DCSS reside in a
special spool file and are brought in when necessary through the VM paging
subsystem, and will remain in storage when referenced frequently enough.
Multiple virtual machines share the real page frames, much like the mmap()

Note: One could argue whether MDC is effective in this case. Because Linux
images already buffer these popular pages themselves, MDC will not notice
that the page is more popular than other pages read once by a Linux image.
The Linux I/O tends to be rather “MDC unfriendly” (except when using the
diagnose interface), so this may be a moot point. Rather than argue, we
probably should measure.
 Chapter 17. Roadmap 411

approach in Linux. The DCSS is normally located outside the virtual storage of
the virtual machine (i.e., at a virtual address beyond the size of the virtual
machine). At boot time Linux will set up tables to map what it sees as real page
frames, not segments attached to it after the boot process.

The way we can talk Linux into using a DCSS could be to have a block device
driver. The block device driver will issue a Diagnose 64 call to attach the segment
when the device is opened. The way to access the segment would be through
the ioremap() function in Linux (this is used on PC platforms to access memory
on PCI cards). The kernel currently does not export the symbol for device driver
modules to use it, but this is trivial to do in arch/s390/kernel/s390_ksyms.c. We
made that change and the code appears to work as expected, in that a device
driver module can access the data in the segment.

The first attempt to implement this DCSS block device was to build a device
driver on top of the device file system (devfs) so that segment names would show
up in the /dev tree when attached. While this might be an elegant approach for a
production driver, it turned out to be “a lot of work.”

The second attempt involved taking the XPRAM device driver that is part of the
Linux for S/390 source tree, and change it to use a DCSS. The module was
changed to take the names of the DCSS as a parameter when loading.

Aug 9 01:05:34 tux60000 kernel: dcssinfo:trying to load module
Aug 9 01:05:34 tux60000 kernel: dcssinfo:initializing:
Aug 9 01:05:34 tux60000 kernel: dcssdebug:dcss: this is 0 TUXTEST
Aug 9 01:05:34 tux60000 kernel: dcssdebug: major 34
Aug 9 01:05:34 tux60000 kernel: dcssinfo: hardsector size: 4096B
Aug 9 01:05:34 tux60000 kernel: dcssdebug:diag64 TUXTEST is 0 20000000 200fffff
Aug 9 01:05:34 tux60000 kernel: dcssinfo: 1024 kB expanded memory found.
Aug 9 01:05:34 tux60000 kernel: dcssdebug: device(0) offset = 0 kB, size = 1024 kB
Aug 9 01:05:34 tux60000 kernel: dcssinfo:Module loaded successfully

While writing the redbook the device driver was already doing the ioremap() call
and it kept the pointer to the mapped memory for the segment. The request()
function was changed to copy from and to mapped memory. In fact, we do not
want to copy the page into Linux storage. We need to convince the system to use
the page sitting outside virtual storage. Some extra stuff is needed to load the
segment in non-shared mode to have it writable and to issue the SAVESYS when
the segment is detached.

Another interesting application for the DCSS driver would be to attach a segment
that has been prepared with the mkswap command. This would be like a swap disk
in virtual disk (VDISK), but without the expensive channel programs to drive it.
412 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

17.4 Shadowed disk support
In the case where many hundreds to thousands of Linux images are essentially
similar installations, with the exception of a few configuration files, it would be
advantageous to have some means of minimizing the number of disk devices
needed. To this end we began investigating the feasibility of a “shadowed” disk
driver. This driver would use a common master drive as read-only data, but
writes would be directed to a guest-specific shadow disk. Subsequent reads
would retrieve changed blocks from the shadowed disk and unchanged blocks
from the master disk.

One significant possible benefit to using a “shadowed” approach is that it
becomes a much simpler matter to upgrade software for all the systems
simultaneously. Several issues still remain; for example, configuration file format
changes will still require some careful consideration and thought. In the main,
though, it will be highly desirable to be able to “insta-patch” all the Web servers at
once. It also greatly simplifies the management of hundreds of images by
ensuring that they are all running the same version of software.

Another use of a disk shadow is to allow extremely simple recovery to a “known
good” state. If one of the guest images manages to damage its configuration to
the point that it cannot be easily repaired, or even that it will no longer boot, all
that must be done is to delete the shadow and replace it with a blank, new
shadow. In a matter of seconds, the system is up and running again with a known
baseline configuration. With some of the other configuration automation
techniques we have discussed, the newly “rebuilt” machine could even
automatically make the first changes (e.g. IP address) such that when it comes
up it is already alive and well on the network. Carrying this idea even further, for
well-defined servers all carrying out a similar function (i.e., a cluster of Web
servers) an automated process could automatically “resurrect” a failed server by
bringing online a new, freshly configured image while retaining the old shadow
copy for the system administrator to look at to determine the cause of the failure.

Combined with the DCSS driver in “DCSS-mapped block devices” on page 410,
this would not only save disk space, but would also allow portions of the common
master driver to reside in storage that is shared among Linux images.

One aspect of the driver that is somewhat more complex is maintaining shadow
consistency with the master disk. If the master disk changes at all, then the block
map on the shadow is invalid. Some tools could be developed that will:

� Generate a new shadow based on the old shadow and master

� Rebuild shadow/master to reclaim unused space (this will depend on how the
file system behaves)
 Chapter 17. Roadmap 413

� Add new shadows to an existing shadow (multiple shadow disks to expand
shadow capacity)

� Factor common changes out of multiple shadows to generate a new, more
efficient master

� Simplify shadow management for the system administrator

A prototype implementation using the Linux md driver was developed during this
residency, but was not completed in time for significant results to be documented
in this book. Development is continuing, and we hope to be able to publish results
at some future date.

17.5 File system access tool for systems management
Linux currently does not properly handle the dynamic LINK and DETACH of
minidisks as CMS users are used to having.

There is a need to allow one Linux image to access the file system of another
(not running) Linux image. When authorized to do so, users can link to each
other’s minidisks. Unfortunately, the current implementation of Linux for S/390
does not support dynamic linking to a minidisk and use of this disk in the DASD
driver. Even when Linux would correctly handle the machine check interrupts
involved with configuration changes of the virtual machine, the DASD driver
would still need to be unloaded and reloaded with new parameters (which is not
possible when the root file system is on disk).

The possibility to do this builds on VM facilities and is therefore not present on
other Linux platforms.

17.5.1 Possible use for the utility
In general, systems management can be simplified when a running Linux image
can dynamically access the file system on a minidisk other than the minidisks
linked to the virtual machine at IPL. The restrictions of the kernel and DASD
driver currently do not offer this option.

Ad-hoc file system repair activities
For CMS-based applications, a VM systems programmer or application
programmer would want to link and access minidisks of service machines to
investigate issues and fix problems. A similar facility would be useful for systems
management of Linux images on VM.
414 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Alternative data sharing
Instead of sharing data via permanent network connections, applications can
exploit VM facilities to link to the file system of another Linux image. This should
be done while the other Linux image is not running (in which case a network
connection would not be possible, anyway).

Automated configuration changes of cloned images
When a new Linux image is created by copying the disks of an existing Linux
image, several files must be customized for the new image (IP address, host
name, root password). This process can be simplified if normal Linux utilities can
be used to apply these changes.

DirMaint-controlled file system copy
For minidisks in CMS format with CMS files, DirMaint can automatically copy the
files when the size of a minidisk needs to be increased. If a Linux system can
dynamically link to the old and new minidisk, the same function could be
implemented for minidisks containing a Linux file system. This is very important
for storage management.

17.5.2 Design outline
A program on the user's Linux image (the master) will take the arguments
needed to access the minidisk (user ID, virtual address, optionally read
password, mount point). Because of the limitations of the DASD driver to
dynamically add devices, a new Linux image (the worker) must be started when
a minidisk needs to be accessed. This new image links the proper minidisk and
IPL Linux from an NSS that also contains a RAMdisk image. The DASD driver
can now be loaded and the file system on the minidisk can be mounted in the
root file system. The new Linux image connects to the master Linux image via an
IUCV connection and exports the mounted file system via NFS. The program that
initiated this can now mount that exported file system in its own file system.

With an enhancement to pick up the IPL parameters, as shown in 10.7.3,
“Picking up IPL parameters” on page 230, we do not even need to boot with
initrd. The additional disks can be specified in the IPL command: an extra option
could be passed to the boot scripts to indicate what action is required from the
worker.
 Chapter 17. Roadmap 415

17.5.3 Detailed design
The IPL of the worker should be reasonably fast to make this work. We have
seen that booting a kernel with an uncompressed 30 MB RAMdisk image from
NSS can be done within 3 seconds when the pages needed are already in
storage. The RAMdisk image can probably be made smaller, which would further
speed up the process. If necessary, the system can be IPLed from disk if that
turns out to be faster.

To get IUCV connections between worker and master, the proper IUCV
statements must be in the CP directory. The netiucv driver requires all peer user
IDs to be defined when the driver is loaded. These restrictions suggest that we
create a few of these workers for each virtual machine that must use this facility.
These workers should be dedicated to this master. This simplifies security
issues, because the workers can have the same authorization as the master. The
workers do not need disk space, so the cost of half a dozen workers for each
system administrator is not much.

The program to initiate this function can find the first free IUCV connection and
XAUTOLOG the corresponding worker. The XAUTOLOG command can be
issued using the hcp command in the cpint package. An ifconfig command can
be issued to define the IUCV connection. Root authorization in Linux is normally
needed for the hcp command, but that applies to the final mount command as
well.

17.5.4 Additional points for the implementation
Booting from RAMdisk may be too restrictive for a full implementation. The
alternative is to keep a separate root device for each worker. Because of the
restrictions of the DASD driver, the kernel must be IPLed from NSS and a small
modification must be made to the bootstrap such that it takes parameters from
the IPL command to insert them in the command line for the kernel. This is not
rocket science and has been done before. It would be very useful for other
purposes as well and greatly simplify the IPL from NSS.

To make the facility more generic, it must be possible to pass the command to be
executed on the worker. By default, this would be the script to set up the network
connection with the master, but it will also be possible to have a command
executed without connecting the network. This results in a kind of background
processing outside the virtual machine.

To copy a file system to a new disk, two minidisks must be linked and the tar and
untar for the copy must be issued.
416 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

An elegant solution would be if the worker could mount part of the master's file
system so that local scripts and commands in the master could be executed.
Different levels of commands and libraries could make this very complicated.

Some complications with respect to UID and GID may occur when files in the
target file system are modified or created.

The private IUCV network between each worker and the master is a secure
solution and there are no security risks for the NFS export in the worker.

The DASD driver currently has a delay of 10 seconds in the startup. The reason
for this is unclear. It should be possible to remove this delay or improve the
process.

Most parameters will be fixed for each worker and could be taken from a file on
the 191 disk using the cmsfs driver (or computed from the user ID of the virtual
machine). The actual parameters for the command could be passed to the Linux
boot scripts via CP Globalv variables (for example, the TAG of a virtual device).

There are no specific requirements for the level of Linux running in the worker.
The only requirement is that it should be reasonably current, but it probably can
be an off-the-shelf kernel with RAMdisk. With recent levels of Linux, the
incompatibilities between different versions of the DASD driver seem to be fixed.

17.6 Synergy with CMS Pipelines
CMS Pipelines is the z/VM built-in productivity tool for CMS. Many CMS
applications are written to use CMS Pipelines facilities. In the hands of an
experienced plumber, CMS Pipelines is also very useful for ad-hoc analysis of
the output of experiments, as we did while writing the redbook.

While CMS Pipelines design was originally mildly inspired by the concept of
pipes in UNIX, it has been enhanced significantly beyond that. It features
multistream pipes as well as pipes that dynamically modify the topology of the
pipeline by adding segments to the running pipeline. CMS Pipelines has drivers
to interface with various z/VM facilities.

The CMS Pipelines home page is hosted by Princeton University at

http://pucc.princeton.edu/~pipeline
 Chapter 17. Roadmap 417

http://pucc.princeton.edu:80/~pipeline

The home page has pointers to several papers on CMS Pipelines. It also offers
the latest version of the CMS Pipelines Runtime Library free for download to
allow customers with slightly older levels of CMS to run the latest version of CMS
Pipelines on their system. The z/VM documentation comes with two publications
for CMS Pipelines users:

� CMS Pipelines Reference, SC24-5971
� CMS Pipelines User’s Guide, SC24-5970

Experienced plumbers tend to prefer the documentation in the “CMS Pipelines
Author’s Edition,” which is available on the VM Collection CDs as well as on the
home page:

http://pucc.princeton.edu/~pipeline/pipeline.book

In an earlier residency, John Hartmann, the author of CMS Pipelines, created the
“Plumber’s Workbench” (PWB). It is a workstation application with CMS in its
back room. It allows access to all of CMS Pipelines from the workstation. PWB is
available for OS/2 and MS Windows workstations. John Hartmann also worked
on a PWB client for Linux (including Linux for S/390). This gives Linux
applications access both to CMS Pipelines and to CMS applications.

We did some experiments with the code and it certainly works, though the syntax
of the vmpipe command is error prone due to the overloading of the “|” character.
To manipulate Linux data with CMS Pipelines, the PWB client sends the data
over a TCP/IP connection to the PWB agent running in a CMS user ID. Since
Linux for S/390 can have a fast connection to the CMS user ID, this is less likely
to be a showstopper.

For people with the appropriate skills, it could be very attractive to use those
skills for their Linux work. The ideal would be to have a Linux implementation of
CMS Pipelines. This is currently not available.

17.7 Make DirMaint the registration vehicle
Several things need to be arranged in VM to create a new Linux image, as shown
in 9.2, “Things to do for new Linux images” on page 190. It could be attractive to
enhance DirMaint so that it takes the role of central registration vehicle in VM.

To do this, there would be a need for new options in the prototype files that invoke
exit routines to do the “things” that are needed for the new Linux images. For
example, a new statement in the prototype file could look like this:

ADDIP subnet-17
418 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

http://pucc.princeton.edu:80/~pipeline
http://pucc.princeton.edu/~pipeline/pipeline.book

This could invoke an exit that allocates a new IP address for this image in a
specific subnet, and creates the definitions in the TCP/IP configuration files,
DNS, DHCP, etc. If real network interfaces are used, the exit should probably
pass the correct DEVICE statements to DirMaint to have these included in the
directory entry for the new image.

Because we do not know yet what is needed, a flexible implementation should
make the statements, as well as the exit routines, user-defined.

The same processes obviously would take care of removing the definitions when
the Linux image is deleted with DirMaint, or when the creation process is rolled
back for some reason.

Discussion with people associated with DirMaint development showed they are
aware of the need to make DirMaint assist in cloning Linux images. One of the
possible enhancements could be to have the DATAMOVE virtual machine create
new minidisks as a copy of an original disk rather than format them.
 Chapter 17. Roadmap 419

420 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Appendix A. Linux Community
Development System

The Linux Community Development System (LCDS) was created by a team of
IBMers in the spring of 2001. Its purpose was to provide the open source
community with free access to Linux on a mainframe. In this chapter, we describe
the experiences and lessons learned.

A

© Copyright IBM Corp. 2001 421

Components of the system
The following sections discuss the system components.

Linux on a mainframe for free
The first component of the Linux Community Development System is the Linux
part—in other words, making Linux systems on S/390 available to the open
source community. Here is the invitation as it appears on the LCDS home page:

http://www-1.ibm.com/servers/eserver/zseries/os/linux/lcds/index.html

 Welcome to the Linux Community Development System (the 'Service'), a Service
provided by IBM. The Service provides you with access to a Linux on S/390
environment for the purpose of providing the Open Source community with a
platform to develop, port and/or test drive your products or applications on
this platform. We anticipate the majority of users to include entrepreneur
developers/vendors that otherwise might not have the opportunity to test/port
their code to the S/390 platform. However, we invite all interested parties
that meet the established terms and conditions to register and experience
‘Linux for S/390’.

Community: the global response
The LCDS home page opened for business on May 22, 2001. In three days the
page had received 27,000 hits. Not all of those hits led to a request for a Linux
system, but as of late July 2001, there were a little over 600 images running on
the system. The users are a truly global community, representing these
countries:

� Angola
� Argentina
� Australia
� Austria
� Belgium
� Brazil
� Bulgaria
� Canada
� Chile
� China
� Croatia
� Czech Republic
� Denmark
� Dominican Republic
� Egypt
422 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

http://www-1.ibm.com/servers/eserver/zseries/os/linux/lcds/index.html

� Estonia
� Finland
� France
� Germany
� Great Britain
� Greece
� Hungary
� Iceland
� India
� Indonesia
� Ireland
� Israel
� Italy
� Japan
� Malaysia
� Mexico
� Netherlands
� New Zealand
� Norway
� Pakistan
� Peru
� Poland
� Romania
� Russia
� Singapore
� South Korea
� Spain
� Sri Lanka
� Sweden
� Switzerland
� Taiwan
� Thailand
� Turkey
� Ukraine
� United Arab Emirates
� United Kingdom
� United States
� Venezuela
� Vietnam
� Yugoslavia
 Appendix A. Linux Community Development System 423

Development: what is being tried
The users represent a global range of applications as well as geographies. Film
production, aerospace, pharmaceutical, insurance and banking companies are
participating, as well as many universities from around the world, and gnu.org.
The following list shows the variety of reasons users gave for wanting a Linux
system on S/390:

� Rotund prime sequencing
� Samba, Apache, Sendmail
� Digital document system
� C++ compiles, C code front ends, general tests
� Cryptography, security, intrusion detection
� Java, XML, XMK
� Wireless, voice, embedded devices
� Working on, experimenting with, testing...
� Want to see:

– If this works
– How easy it is
– If I can port

� Pong
� Oriental herbology

System: what it is being run on
The operating system software that runs the LCDS is z/VM. This allows
hundreds of unique Linux images to exist on one physical machine. The
hardware is S/390 technology, not zSeries. The techniques learned and refined
on this system will deliver even better results as they are deployed on 64-bit,
zSeries hardware. The full details of the system are described in the following
section.

Technical implementation of the LCDS

Hardware specifications

CPU
The LCDS is hosted on a 9672 G6 Model ZX7 machine. This hardware has IEEE
floating point and is 31-bit technology. It is a 10-way processor, with 32 GB of
memory. It is part of the S/390 family.
424 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

DASD/disk capacity
The Linux images and z/VM operating system have access to disk storage on a
Shark (Enterprise Storage Server) Model 2105-F20 configured with 2.1 terabytes
of capacity.

Network
The network design of the LCDS had to accommodate an interesting mix of legal
and physical characteristics. The z/VM operating system had to be accessible to
IBM employees who were setting it up and administering it on the internal IBM
network. The Linux guests had to be on a direct connection to the Internet, and
there could be no connection between the two (Internet and internal IBM). The
physical constraints included the use of an existing T1 connection to the Internet
over a 3172 LAN Channel Station. Although there was only one physical
connection to the Internet, the design had to accommodate hundreds of unique
IP addresses—one for each Linux guest.
 Appendix A. Linux Community Development System 425

Figure 17-1 LCDS connection to the Internet

A total of 2000 IP addresses were obtained. These addresses are spread across
20 routers in groups of 100. All the routers to the Linux guests are themselves
Linux guests. This allows the exploitation of z/VM architecture by networking all
the Linux guests through virtual, or software-defined, connections. The LCDS
uses IUCV-type connections, as opposed to Virtual Channel To Channel (VCTC).
The IUCV connections were found to initialize quicker and recover more
automatically, for example after a reboot.

One task of the Linux routers is to do Network Address Translation (NAT). Within
the LCDS virtual network, the Internet addresses are translated to class A
10.x.x.x addresses. This means the 2000 purchased Internet addresses do not
have to be consumed by internal routers, name servers, and gateways.

network
x.x.10.0

Linux Guest
serving as
a router

network
x.x.11.0

network
x.x.12.0

network
x.x.13.0

z/VM Host
9672-G6

IBM 3172 LAN
Channel Station

AT&T
Internet
426 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

The other advantage of the 10.x.x.x addresses is that they cannot be routed. The
network traffic isn't going to “leak”. Within the LCDS network, ICMP is turned off.
This means ping cannot be used to discover the network topology. Once users of
the LCDS are logged on to their Linux image, they can access any address on
the Internet using any protocol that is authorized on the target server.

Within the LCDS network, the Linux guests are architecturally isolated from each
other. This isolation is achieved under the control of z/VM. Each Linux guest can
only have access to a resource that is defined to it. There are no pathways
available for a Linux guest to communicate with, access, or modify any resource
that is not defined to it.

The domain name server is within the scope of the LCDS network. Since this is a
very dynamic setup, with Linux images being defined by the dozen, it seemed
better to control the configuration of the name server within the LCDS staff.

Back-routers are used to contain and shorten the network traffic among the Linux
guests. They allow an asset to be shared without exposing the traffic (and asset)
to the Internet.

As mentioned before, ping (ICMP) is turned off. The only access to log in as root
is through SSH access. Telnet and ftp are enabled, and can be used once you
have successfully logged in.

Staff and processes

Team
The Linux Community Development System was designed, implemented, and is
administered by a small team based mostly in Endicott, NY. Everyone involved
made their contributions while still keeping their day job, in keeping with the open
source community tradition. They are officially part of the Advanced Technical
Support (ATS) organization. The team members are:

John Sutera Manager
Bill Bitner Performance, VM Development
Pamela Bryant PROP
Steve Gracin Networking, RedHat, WebSphere Application

Server
Stanley Jones Jr Registration, Lotus Notes work flow
Bob Leicht Enrollment, SSH, System
Richard Lewis VM, Networking, System
John Schnitzler Jr Hardware, IOCP, SSH
Jon vonWolfersdorf Networking, LCDS Home Page
 Appendix A. Linux Community Development System 427

Pam Bryant and Richard Lewis are based in Gaithersburg. The rest of the team
is in Endicott, as is the hardware.

Register
Access to the LCDS is open to anyone (except internal IBMers), anywhere in the
world. A form is provided on the Internet, asking for a minimal amount of
information, including the user's purpose in testing Linux on a mainframe. Once
the form is filled out, a Lotus Note is sent to an administrative ID. This ID is
monitored by two team members. When a request for a Linux system is received,
it is converted to an entry in a Lotus database. The request is reviewed, then
accepted or rejected. An accepted request triggers a Lotus Notes agent to
assign an ID and password, which are sent to the requestor.

Generate a system
One requirement for access to the LCDS is SSH (Secure SHell) encryption. The
requestor is responsible for getting a terminal emulator that is SSH capable, and
for generating public and private keys.

Note: The freeware program PuTTY does both, with the PuTTYgen.exe and
putty.exe programs. They can be found on the Web at:

http://www.chiark.greenend.org.uk/~sgtatham/putty

When requestors of a Linux system receive the note with the ID and password,
they use these to sign on to a secure Web page. This Web page is on the LCDS
z/VM system where the Linux guests are defined and run. The ID and password
are validated, then a new Linux guest is generated. The automated generation
process creates a VM guest Linux user, with associated disk space, virtual
memory, and a network address.

The CLONEM exec takes advantage of CMS techniques such as PIPES. It also
uses drivers from the open source community. Rick Troth of BMC Software has
written a driver that allows CMS files to be read from Linux, and Neale Ferguson
of Software AG has written a device driver that allows CP commands to be
issued from Linux (see Appendix B, “Using the hcp command” on page 437 for
more details.) This permits an architecture where customization information is
managed from z/VM, which allows one person to administer hundreds of
systems from one central focal point.

There are two other key pieces of interface technology. The first is the Web page
mentioned earlier. It is CA's VM:Webgateway. It allows the requestor information
to be collected in the z/VM environment and propagated to each new Linux
guest. The second interface is specialized customization to the boot process of
Linux. Richard Lewis of the IBM Washington System Center created a shell script
that runs very early in the boot process, before the network connection is started.
428 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

http://www.chiark.greenend.org.uk/~sgtatham/putty

The script reads the customization information on the Linux guest's A-disk
(gathered from the Web page). It assigns the correct network address and
essentially answers the questions a user answers when installing a Linux
distribution.

The first access that requestors of the Linux guest have to their system is when
they SSH into it as root. They do not have to go through SuSE or Turbo panels to
configure the distribution. This automated process provides a high level of
security, as it shields the user from the underlying z/VM system, prevents
network configuration errors (accidental or deliberate), and reserves control of
the configuration process to the system owner.

Help, Support
When someone downloads Linux and installs it on their home PC, they
understand they are on their own as far as technical support is concerned. It is
their responsibility to find (or contribute!) answers through the use of news
groups and mailing lists. The same is true on the Linux Community Development
System. Free access to a somewhat hard-to-acquire and expensive hardware
platform has been provided by IBM. The goal is to prove that Linux on the
mainframe is the same as any other Linux. “The same” includes the same style
of support. There is a forum on the LCDS Web site, where community members
share their experiences. They can describe problems they have encountered,
and may receive technical help. However, no one is restricted to using only that
forum, and there is no guarantee they will get an answer there. Technical support
comes from the open source community at large.

It often happens that a Linux system crashes after some user tests or
modifications. Since the requestor of an LCDS Linux guest machine does not
have access to the “big red switch” (the power switch) to do a reset of the
hardware, it was necessary to provide a way to reboot a seriously incapacitated
Linux guest. The REBOOT service machine is accessed using SSH and accepts
the name of your Linux machine as the login ID. There are four options to choose
from. You can:

� Exit without doing anything.
� IPL your Linux with a rescue system. This reboots a Linux rescue system

from a RAM disk.
� IPL your Linux from a specified device. This performs a normal reboot.
� Force your Linux offline; do not restart it. This forces a shutdown -h now,

which will then require a reboot with either option 2 or 3.
 Appendix A. Linux Community Development System 429

As of the time of writing, there were over 600 Linux guests running on the LCDS.
At no time has a reboot of one Linux guest impacted any of the others. The
architecture of z/VM allows complete freedom for individual users to try any
high-risk change they like, while completely isolating the other Linux machines
from any impact of that change.

Monitoring
The LCDS usage has been monitored both interactively and using accumulated
statistics. The historical data has turned up interesting facts, such as z/VM
setting a new record for paging of 259,000 pages per second. The previous
record was 45,000 pages per second. This is a testament to the robustness of
the z/VM architecture.

Network monitoring showed no particular bottlenecks. Once network traffic is
within the virtual network of z/VM and the Linux routers, communication is at very
high speed and bandwidth. The physical limitation is the capacity of the T1 line. A
sample graph of the daily usage is shown in Figure A-1.

Figure A-1 percent utilization of the T1 line
430 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

The higher line (blue) is inbound traffic, and the lower line (red) is outbound
traffic. The usage pattern is a pretty typical workday series of peaks and valleys
as people come in to work, come back from lunch, and hurry to finish something
at the end of the day. The graph of weekly activity showed that Saturday was one
of the busier days—an interesting finding.

Interactive observation of the Linux guests was done by the LCDS staff. On
occasion, a spike in CPU activity would be noted and investigated. In a
production ISP/ASP environment, this process could be automated. The CP
ACCOUNT facility also collected the CPU activity for each guest, and could have
been used to track high CPU usage.

One area that several people would like to explore is the possibility of using the
Monitor facility. This system interface is used in CMS to report more detailed
usage information from within the virtual machine. CMS reports statistics on its
Shared File System, as an example. Neale Ferguson has started work on a Linux
driver to talk to the Monitor Application Data interface. Some members of the
LCDS team hope to cooperate in refining this driver.

Termination
Users are given access to a Linux guest for 30, 60, or 90 days. At the end of the
time they requested, the image is deleted from the system. It is the users’
responsibility to retrieve any data they wish to keep. The automated process to
return resources to the system is fairly basic, since there is no requirement for
any information to be preserved.

Evolution and lessons learned
The LCDS has been a very dynamic experiment, and a fast-changing
environment. A lot has been learned, both about z/VM running Linux guests, and
about the nature of the Linux kernel. Several refinements to z/VM tuning were
made, and there was at least one contribution to the Linux kernel.

z/VM
The IBM labs have been doing validation of the early Linux code drops, even
before they go to the various distributors. The LCDS staff has been actively
engaged in that validation. Two areas of interest have been the DASD drivers and
how Linux behaves with mini-disk caching. There was an iteration of the kernel
that did not respond well to mini-disk caching, but that was quickly resolved. The
code drops that are being tested as of this writing will be out in the fall of 2001.
 Appendix A. Linux Community Development System 431

z/VM Release 4.10 includes an enhancement to CCW translation. Code was
written for VSE guests that improved I/O to DASD devices. (VSE is another
operating system.) This fast path code was only available for DASD, since VSE
systems typically do a lot of data processing, and very little network activity. IBM
developers working with Linux under z/VM realized that although VSE did very
little network activity, Linux does a lot of network activity. They thought of making
the I/O commands to network devices eligible for the fast path code. This was
done for LAN Channel Station (LCS) and CTC connections and a 40%
improvement in processor efficiency for network I/O was achieved for Linux
guests.

Linux
The Linux kernel has a bit of logic that wakes up to check for work. It is referred to
as jiffies or the jiffies timer pop. This results in wasteful overhead on a
mainframe processor that is optimized to respond to interrupts. David Boyes of
Sine Nomine Associates has experimented with altering the Hz value in the Linux
kernel. The default value is 100, but it has been set to a value such as 16. This
means more useful work is done, and there is less dispatching of a Linux
machine that has no work to do, simply to check for work. Setting the Hz value
too low can be a problem. Responsiveness goes down, and some things stop
working. At this time the LCDS timer is set to its normal default value of 100, in
order to maintain the consistency of Linux on other platforms.

A patch has been submitted to the Linux organization that implements a much
different scheduling technique. It is not in the platform-dependent code. It would
affect all platforms, and is designed to help all platforms that have multiple
processors, but it has not been accepted into the kernel. Users or distributors do
have the option of including the patch, which applies to Linux 2.4. There is a
great deal of interest in this area of the code, so a lot of innovation can be
expected. The Linux news groups and mailing lists will have the most current
information.

Tuning both
One problem that was encountered very quickly was default settings for cron.
There is a security package that scans for trivial passwords, which by default was
started at midnight. On a single Linux system, this is a very conscientious thing
to do. When hundreds of Linux guests on the same hardware all do the same
thing, at the same time, it is a very bad thing to do! The system spiked to 1000%
busy (which means all 10 CPUs were at 100% utilization) and paging went to
259,000/s. The system did not crash. Eventually all the Linux guests completed
the scan for trivial passwords, and CPU busy returned to normal. It took a bit of
investigation to discover the cause of the activity, but it was simple to fix. As
upgrades are made and Linux is reinstalled, the defaults in cron are checked for
tasks that should not be scheduled to run.
432 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

A characteristic of Linux is that the more memory it has allocated, the more it will
use that memory for file caching. In some architectures, this is very desirable.
However, when running under z/VM, it is more efficient to use the mini-disk
caching capability. In fact, when a change was made to the LCDS system to
reduce the amount of mini-disk caching storage and give it to paging,
performance actually got worse. Paging and file I/O are covered extensively in
Chapter 3, “Virtual server architecture” on page 45.

Structuring the file system to save space
One concern the LCDS staff had was to not use up the available disk space any
faster than could be helped. After some experimentation, the structure shown in
Figure A-2 on page 434 was chosen. The greatest amount of file space is used in
the part of the directory tree under /usr. Therefore, much of that part of the file
system is mounted read only (r/o).
 Appendix A. Linux Community Development System 433

.

Figure A-2 LCDS file system structure - r/o and r/w files

The attribute of being read/only is enforced at the z/VM level. Editing the
/etc/fstab file and changing /usr to be read/write does not affect access to the
underlying physical device. To provide users with their own, private read/write
files, a separate device is mounted at /usr/local. This allows about 80% of the file
system to exist in one copy, shared read/only, by all 600 Linux guests.

bin
boot

cdrom
dev

etc
floppy

home
lib

mnt
root

sbin
tmp

var

mdisk 200
(/dev/dasda1)

r/w

opt

mdisk 401
(/dev/dasdc1)

r/o

usr

mdisk 410
(/dev/dasdb1)

r/o

share

mdisk 411
(/dev/dasdf1)

r/o

local

mdisk 201
(/dev/dasdg1)

r/w

games

sample.rwfs
(/dev/loop1)

r/w

/dev/dasda1 / ext2 defaults 1 1
/dev/dasdb1 /usr ext2 defaults,ro 1 2
/dev/dasdc1 /opt ext2 defaults,ro 1 3
/dev/dasdf1 /usr/share ext2 defaults,ro 1 4
/dev/dasdg1 /usr/local ext2 defaults 1 5
/dev/loop1 /usr/games ext2 defaults,noauto 0 0
none /proc proc defaults 0 0

proc
434 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Perhaps the most outstanding result of running the LCDS has been to witness
the integrity of the architecture. The inadvertent stress test that drove the system
to 1000% busy did not result in an outage. We have seen how z/VM ensures the
isolation of each server. This allows for the most effective economy of scale in
consolidating servers in one hardware footprint, while at the same time
permitting owners of the Linux guest the same freedom and autonomy they could
have on a workstation-based server.

Summary
There are many options to the S/390 Linux architecture and system design that
may be feasible for accommodating multiple Linux guests. The team utilized
existing hardware, software, Linux distributions and network topology that was
available. The LCDS demonstrates S/390 and z/VM versatility, strength and
security within an existing I/T environment that is worldwide in scope and
responsiveness.
 Appendix A. Linux Community Development System 435

436 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Appendix B. Using the hcp command

Neale Ferguson of Software AG wrote the package cpint for Linux for S/390 to
provide an interface to some CP functions. One of the components is the hcp
command, which uses the Diagnose 8 interface to issue CP commands on
behalf of the guest virtual machine that runs the Linux image. The cpint package
for the 2.2 series kernel can be downloaded from the following Web site:

http://penguinvm.princeton.edu/programs/cpint.tar.gz

To use the package you need to compile the programs and install them on each
of the systems where you want to use the package. This can be very impractical
if you have many different systems. It is possible to package the compiled
binaries and installation script in an rpm package that can be installed along with
the other packages on each Linux system.

Creating an rpm package for cpint
An rpm package consists of the source files, patches, and the spec file that
describes how to apply the patches, how to build the binaries and how to install
the binaries on the system.

For a Red Hat installation, the rpm files reside in the /usr/src/redhat/ directory. In
a SuSE installation, these files are in the /usr/src/packages/ directory.

To build an rpm package from the source files, we need to create a spec file:

B

© Copyright IBM Corp. 2001 437

http://penguinvm.princeton.edu/programs/cpint.tar.gz

Example: B-1 The cpint.spec file

Vendor: Rob van der Heij
Distribution: SuSE Linux 7.0 (s390)
Name: cpint
Packager: rob@rvdheij.com

Copyright: GPL
Group: Applications/System
Provides: cpint
Autoreqprov: on
Version: 2.2.16
Release: 3
Summary: Device driver for CP diagnose functions
Source: http://penguinvm.princeton.edu/programs/cpint.tar.gz1

Buildroot: /var/tmp/cpint-root/

%define cpintmajor 254

%description
Author:Neale Ferguson <Neale.Ferguson@SoftwareAG-USA.com>

The cpint package provides the cpint device driver that communicates with
VM/ESA through the CP Diagnose interface. Most useful right now is the
diagnose 8 which allows the virtual machine to issue CP commands to query
or modify the status of the virtual machine.

%prep
%setup -n cpint

%build
make

%install
linuxvers=`uname -r`
rm -rf $RPM_BUILD_ROOT
mkdir -p $RPM_BUILD_ROOT/dev
mknod $RPM_BUILD_ROOT/dev/cpcmd c %{cpintmajor} 8
chown root:wheel $RPM_BUILD_ROOT/dev/cpcmd
install -p -D hcp $RPM_BUILD_ROOT/sbin/
install -p -D cpint.o $RPM_BUILD_ROOT/lib/modules/$linuxvers/misc/

%post
if grep " cpint" /etc/modules.conf > /dev/null
then

true
else

echo "alias char-major-%{cpintmajor} cpint" >> /etc/modules.conf

1 Unfortunately Neale packaged also binaries in his tar file so we untarred it, did a make clean and then tarred it again.
438 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

/sbin/depmod -a
fi

%postun
if grep -w "cpint" /etc/modules.conf > /dev/null
then

grep -v -w "cpint" /etc/modules.conf > /etc/modules.conf.new \
&& install -b -p /etc/modules.conf.new /etc/modules.conf

 rmmod cpint 2> /dev/null
/sbin/depmod -a

fi

%files
%attr(600,root,root)/dev/cpcmd
/sbin/hcp
/lib/modules/%{version}/misc/cpint.o

%changelog
* Mon Jun 11 2001 rob@rvdheij.com
- Fixed incorrect mode for /dev/cpcmd node
* Fri Jun 08 2001 rob@rvdheij.com
- Use modules.conf rather than conf.modules

The next step is to copy the cpint.tar.gz (and optionally any patch files for the
package) into the SOURCES/ directory, and then build the binaries rpm.

rpm -bb cpint.spec

This creates the binaries rpm in the SPECS/s390 directory. To package the
source and patches with the spec file, you create the source rpm package. The
rpm -ba command creates both binaries and source rpm.

Installing the cpint rpm package
When the binaries rpm is created, the install is very simple:

rpm -Uvh cpint-2.2.16-3.s390.rpm

If you do this on another system, you don’t even have to copy the rpm file over by
hand. A single rpm command can take care of the FTP and install (provided you
put the rpm package in a place that can be reached via FTP):

rpm -Uvh ftp://hostname/path/cpint-2.2.16-3.s390.rpm

Using the hcp command
Because the install scripts in the rpm package also register the major number for
cpint in /etc/modules.conf, the kernel module will be loaded automatically when
you issue the hcp command:
 Appendix B. Using the hcp command 439

hcp q t
TIME IS 20:00:55 EDT FRIDAY 07/13/01
CONNECT= 99:59:59 VIRTCPU= 077:40.06 TOTCPU= 098:48.55

Seeing this will make the average VM user probably feel at home immediately,
but there are a few gotchas to watch out for. Make sure you specify the command
in double quotes when necessary:

hcp m * test
HCPMSG020E Userid missing or invalid

What happened in this case is that the shell substituted the “*” with the list of files
in the current directory, as it does with each shell command. Depending on the
number of files in the directory, you may also get another indication of the
problem:

hcp m * test
Write: Cannot allocate memory

Another one to watch out for is typing the hcp command without any parameters.
This causes the virtual machine to drop in CP READ and get logged off after
some time.
440 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Appendix C. Using the Linux 2.4 kernel

In this appendix we describe how we upgraded to the Linux 2.4.5 kernel. There
are different ways to get a Linux-2.4.5 kernel running on your system. We
experienced, howeve, that not all obvious routes to that goal were easy to travel
for someone with minimal Linux skills.

On June 29, just before we started our work on this Redbook, another “code
drop” was done by the IBM team in Boeblingen. Part of the patches published on
the IBM DeveloperWorks Web site were the S/390 patches for the Linux-2.4.5
kernel. This latest patch is called linux-2.4.5-s390, just like the previous one
published on June 13. The size of the patch, however, has grown from 25 KB to
1.5 MB. The “readme” with the patch explains the new function introduced with
this patch. One of the biggest chunks in this patch appears to be a rework of the
DASD driver.

C

Note: We were unable to get a system running with this new DASD driver on
existing disks. Because of this we decided to stick with the June 13 version of
the patch (which is not available on the Web site any more). Later experiments
suggest that this may have been caused by devfs unintendedly being enabled.
Unfortunately, we did not have time to retrace our steps and repeat the
process.
© Copyright IBM Corp. 2001 441

Silo and the DASD driver
Changes to the ioctl() functions in the DASD driver make the silo from your
2.2.16 kernel fail with the 2.4.5 kernel. From the /usr/src/linux directory you need
to make silo again. Unfortunately, the changes in silo and the DASD driver are
incompatible, so you should keep both versions of silo around. We renamed the
old silo to /sbin/silo-2.2.16 and copied the new one as /sbin/silo-2.4.5. This way
you are constantly reminded to use the correct version.

There is a bug in silo in that it fails to clean up the temporary device node. This
happens when the version of silo does not match the DASD driver in the kernel.
The error message to recognize is shown in Example C-1. You need to rm
/tmp/silodev to run silo again.

Example: C-1 Error message indicating the left-over device node

silo.c (line:428) 'mknod ("/tmp/silodev", S_IFBLK | S_IRUSR | S_IWUSR,
fst.st_dev)' returned 17='File exists'

If you want you can even write your own shell script /sbin/silo to pick the correct
version based on the level of the kernel. The shell script is shown in
Example C-2.

Later versions of silo support a configuration file. We did not use this because it
mainly caused us problems and did not play well with alternate boot volumes.

Example: C-2 Shell script to pick the correct version of silo

#! /bin/sh
$0-`uname -r` $*

Can of worms: Somewhere along the line, the ELF architecture number for
s390 has changed from 0xa390 to the now official 0x0016. The binaries
contain this number to prevent binaries from another architecture to be
executed on your system (which is good). This new number is defined in
binutils and will cause the loader to produce binaries marked with the new
number. At the same time the kernel was changed such that it can support
both types of binaries, so this is upwards compatible.

This same architecture code is also present in the kernel modules, including
the object code only (OCO) ones for the OSA interface. You need to get the
correct version of the modules to make sure they can be loaded or you will be
without your network connection. The depmod command will warn you about
the architecture difference.
442 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Another bug in silo is that it leaves temporary files like parm.6Djosg in the /boot
directory. You may want to enhance your silo script such that it removes these
temporary files before running silo again.

In the latest 2.4.5 patches the silo command has disappeared. We have not yet
worked with zipl, which should perform the same function.

Steps to upgrade SuSE 7.0 to Linux-2.4.5 kernel
Using the intermediate May 7 version of SuSE 7.0, you should be able to get
2.4.5 running following this recipe.

Untar the linux-2.4.5 sources
Get the linux-2.4.5.tar.gz file from the Web at:

ftp://ftp.kernel.org

or your other favorite FTP site and put that in /usr/src for now. You probably
should save the current 2.2.16 sources as well, as follows:

cd /usr/src
rm linux
tar xzf linux-2.4.5.tar.gz
mv linux linux-2.4.5
ln -s linux-2.4.5 linux

Apply the IBM patches
You need to download linux-2.4.5-s390.tar.gz from the DeveloperWorks Web site
and untar that. The following assumes you do this in /root/patch245/:

cd /usr/src/linux
patch -p1 -i /root/patch245/linux-2.4.5-s390.diff

Attention: When you copy a new kernel to your /boot directory, you should
avoid overwriting the active kernel (for example, by avoiding the default name
“image”). The way silo works is that it records the block numbers of the kernel
in a special bootmap file. When Linux is booted, these blocks are read into
memory from disk without checking the directories on the disk. If you overwrite
your active kernel, these blocks become unused and may be overwritten later
by other files. If you do not run silo at this point (for example, because it does
not work on your new kernel), you are close to being unable to boot your old
kernel again. For peace of mind you should implement the process outlined in
9.5, “Using an alternate boot volume” on page 206 when you play with kernel
upgrades.
 Appendix C. Using the Linux 2.4 kernel 443

ftp://ftp.kernel.org

The CTC driver at this level of code has a small problem that, at the very least,
floods the console with error messages. There were also reports about sudden
hangs of the driver, which may be caused by the same bug. The patch for this
bug is in Example C-3. It must be applied in the same way as the
linux-2.4.5-s390.diff patch.

Example: C-3 Patch for the ctc driver in 2.4.5

--- boelinux-2.4.5/drivers/s390/net/ctcmain.c Wed Apr 18 23:40:07 2001
+++ linux-2.4.5/drivers/s390/net/ctcmain.c Wed Jun 20 23:48:45 2001
@@ -988,7 +988,7 @@
 first = 0;
 }
 atomic_dec(&skb->users);
- dev_kfree_skb(skb);
+ dev_kfree_skb_any(skb);
 }
 spin_lock(&ch->collect_lock);
 if (ch->dccw) {

Copy the config file from your old source tree
You probably want the new kernel configured similar to what you had on the
previous one. If you have been building the 2.2.16 kernel yourself, the config file
for the kernel will be the .config file in /usr/src/linux-2.2.16SuSE. If you did not do
this already, then you find a copy of it as image.config in your /boot directory.
Copy the config file to /usr/src/linux/.oldconfig and run make oldconfig now. You
will be prompted for the new configuration options that were not in your old
kernel.

Build the kernel and modules
You can now build the kernel and modules, starting in the /usr/src/linux/. This
process may take a while, depending on the processing resources you have
available:

cd /usr/src/linux
make image modules modules_install

Because of the incompatibility with silo and the new DASD driver as explained
in “Silo and the DASD driver” on page 442, you should also build silo and make
yourself the shell script for it:

make silo

Restriction: The IUCV driver in this 2.4.5 level appears to be broken as well in
that it caused a kernel oops with the first IP packet transmitted. A new version
is being tested, but for the time being you will need to use CTC instead (and
apply this patch).
444 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

cp arch/s390/tools/silo/silo /sbin/silo-2.4.5

Prepare the boot disk
Unless you are very certain of what you are doing, you should prepare yourself
an alternate boot disk as explained in 9.5, “Using an alternate boot volume” on
page 206 and mount this at /boot. Copy the new kernel to the /boot directory and
run silo with your normal parameter file:

cp System.map /boot/System.map-2.4.5
cp arch/s390/boot/image /boot/image-2.4.5
cd /boot
silo -d /dev/dasd? -f image-2.4.5 -p parmfile

Install your network driver
Depending on the type of network interface used in the system, you may need to
get the version of one of the Object Code Only network drivers from the
DeveloperWorks Web site. You can create a /lib/modules/2.4.5/oco directory for
these (if you put them in the kernel directory they may disappear when you run a
make modules_install again). If you add the network drivers after running the
make modules_install, then you need to run depmod -a again.

If you use a CTC or IUCV connection to the system, the driver will have been built
already by the make modules step.

Shut down and reboot
You can now shut down your Linux system and boot from the new boot disk.
Though the messages during boot will be slightly different, things should look
fairly normal with this boot. If it fails to get your network driver going you should
log on from the virtual console as root and run depmod -a again.

About the timer patch
During the weeks we were writing this redbook, there was a lively discussion on
the Linux-390 mailing list about the possible benefit of the so-called “timer patch.”
A few months before that Martin Schwidefsky from IBM Boeblingen posted a
possible way in which Linux for S/390 could do without the 10 mS timer tick. The
description of the proposed patch can be found on the Web at:

http://lwn.net/2001/0412/kernel.php3

Attention: Do not pick the 2.4.5-2 version of the network drivers. These
versions use the new 0x0016 ELF architecture code which does not work with
the modutils and kernel we have here.
 Appendix C. Using the Linux 2.4 kernel 445

http://lwn.net/2001/0412/kernel.php3

The patch removes the global variable “jiffies” that is used by the kernel and
device drivers for time measurement. Instead, it provides a macro called “jiffies”
to compute the current value using the STCK instruction. Though Martin posted
portions of the patch to the kernel mailing list, there still is work to be done if you
want to implement this yourself.

For the work on the redbook we had access to a preliminary version of the patch
that Martin proposed. This patch is not part of the mainstream kernel sources. It
is unclear whether this is going to happen at all.

The patch must be applied just like the linux-2.4.5-s390.diff, on top of what you
have there now:

cd /usr/src/linux
patch -p1 -i /root/patches245/timer-2.4.5-s390.diff

Unfortunately, the lcs.o driver for 2.4.5 has a dependency on the “jiffies” symbol
that is removed by the timer patch. The qdio driver does not have this
dependency, so we expect this should continue to work (but we were not able to
try it). Since the source for the lcs driver is not part of the kernel sources, we
cannot rebuild it ourselves. Apart from the qdio driver the only alternative left now
is the CTC driver.

The version of the timer patch that we used failed to export a symbol, thus
causing unresolved references if you want to build the CTC driver as a module.
The patch in Example C-4 fixes this problem. Apply it just like the timer patch
before rebuilding the kernel.

Example: C-4 Exporting the “init_timer_cc” symbol

--- boeblinux-2.4.5/arch/s390/kernel/s390_ksyms.c Wed Apr 11 21:02:28 2001
+++ linux-2.4.5/arch/s390/kernel/s390_ksyms.c Sun Jul 29 17:07:02 2001
@@ -8,6 +8,7 @@
 #include <asm/checksum.h>
 #include <asm/delay.h>
 #include <asm/setup.h>
+#include <asm/io.h>
 #if CONFIG_IP_MULTICAST
 #include <net/arp.h>
 #endif
@@ -20,7 +21,7 @@
 EXPORT_SYMBOL(_zb_findmap);
 EXPORT_SYMBOL(__copy_from_user_fixup);
 EXPORT_SYMBOL(__copy_to_user_fixup);
-
+EXPORT_SYMBOL(__ioremap);
 /*
446 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

http://lwn.net/2001/0412/kernel.php3

 * semaphore ops
 */

After applying the timer patch you should run make dep again, followed by a make
image modules modules_install as before. Then write the new kernel and map
to your /boot directory and run silo.

Using the device file system
The /dev directory as we know it contains the entries that describe the hardware
devices for your Linux image. To be more precise, /dev contains an entry for each
hardware device you could possibly have in your Linux image. You see lots of
/dev/dasd* entries because some Linux image could have 20 disks and need an
inode to access the device. To have all /dev inodes in the private disk space of
each Linux image is difficult to maintain. It also is a waste of disk storage, even
though the entries themselves are rather small.

It is not practical to put /dev on an R/O shared disk because some applications
need to change the owner of the device entry. This is not possible on an R/O
shared disk. For specific cases (like tty devices) there is a virtual file system, but
a more attractive solution is the device file system (Devfs). The patches for Devfs
were done by Richard Gooch and have been included in the 2.3.46 kernel.

Devfs is a virtual file system, similar to the proc file system mounted in Linux as
/proc. The entries shown in such a file system with the ls command do not really
exist. Specific entry points of the device driver for the file system (like procfs or
devfs) are called when a directory listing is required. Other entry points are called
when you read or write a “file” in the virtual file system. If you type the command
cat /proc/uptime, that value is computed because you want to display it. Just as
/proc provides the peepholes to expose kernel variables to the applications,
devfs shows the device configuration of the Linux image to the applications. The
device file system is mounted on the /dev mount point, so with devfs running /dev
contains only the devices present in your configuration at that moment.

The device drivers must be aware of devfs. They must call the correct devfs
functions to register and they must provide the proper data structures to hold the
device information. Whenever devfs needs information about a directory in the
device file system, it invokes the appropriate functions of the device driver. For
compatibility, a devfsd package is available that provides access to the old inodes
through the new devfs interfaces.

The DASD driver with Linux for S/390 has been enhanced to support devfs as
well. The difference is obvious when you use the df command to show the
mounted file systems.
 Appendix C. Using the Linux 2.4 kernel 447

Example: C-5 Device names shown with devfs

tux60002:/proc # df
Filesystem 1k-blocks Used Available Use% Mounted on
/dev/dasd/01A0/part1 174116 63256 101872 38% /
/dev/dasd/01A1/part1 1415848 1169352 174576 87% /usr

Because the DASD driver keeps the active devices in a specific subtree of the
/dev file system, it is easy to see what disks are accessible to the Linux image.

Example: C-6 Full list of disk devices in the system

tux60002:/proc # find /dev/dasd
/dev/dasd
/dev/dasd/0200
/dev/dasd/0200/disc
/dev/dasd/0200/part1
/dev/dasd/01A0
/dev/dasd/01A0/disc
/dev/dasd/01A0/part1
/dev/dasd/01A1
/dev/dasd/01A1/disc
/dev/dasd/01A1/part1
/dev/dasd/01C0
/dev/dasd/01C0/disc
/dev/dasd/01C0/part1

The listing in Example C-6 shows the entries in /dev/dasd for this particular
system. The DASD driver creates a subdirectory named after the device address.
In this subdirectory is one entry for the raw device (the disc entry) and one for
each partition on the disk. In addition to the subdirectories named after the
device address, there is also a /dev/discs directory, shown in Example C-7, that
lists the disks in sequential order. These entries are links to the corresponding
entries in the /dev/dasd directory.

The /dev/discs directory is the standard Linux devfs structure. This is not specific
to Linux for S/390. On another platform these entries would be links to SCSI or
IDE devices.

Example: C-7 Available disk devices in /dev/discs

tux60002:/dev/discs # ls -l
total 0
drwxr-xr-x 1 root root 0 Dec 31 1969 .
drwxr-xr-x 1 root root 0 Dec 31 1969 ..
lr-xr-xr-x 1 root root 12 Dec 31 1969 disc0 -> ../dasd/0200
lr-xr-xr-x 1 root root 12 Dec 31 1969 disc1 -> ../dasd/01A0
lr-xr-xr-x 1 root root 12 Dec 31 1969 disc2 -> ../dasd/01A1
448 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

lr-xr-xr-x 1 root root 12 Dec 31 1969 disc3 -> ../dasd/01C0

The FAQ at the following Web site is recommended reading material if you want
to get started with the device file system:

http://www.atnf.csiro.au/~rgooch/linux/docs/devfs.html

Installing the device file system on SuSE
We installed the device file system on a SuSE 7.0 system upgraded with a
Linux-2.4.5 kernel as described in Appendix C, “Using the Linux 2.4 kernel” on
page 441. The first step is to configure the kernel to support a device file system
(but not enable the option to mount/dev automatically).

With this kernel active you can install devfsd (from the SuSE distribution).
Because the device file system mounts on top of the /dev directory, anything in
there becomes unaccessible. The devfsd package contains the devfsd daemon
that provides the compatibility interface. This way the old programs will continue
to work, even when you mount devfs over/dev.

When you have verified that devfsd is working properly at the next reboot, you
can enable the option devfs=mount in the kernel parameter file (and run silo
again).

Attention: The startup script /sbin/init.d/boot.devfs use by SuSE refers to a
file /sbin/init.d/mygrep (because grep lives in /usr/bin, which is not yet
available at that point during startup). The installation of devfsd did not put the
file there, so we copied it over from /usr/share/doc/packages/devfsd/ to get it
working

Attention: We found that mingetty did not work with devfs for us, despite the
comments about devfs in the code (it looks like support was added for some
devices needed as virtual console, but not the /dev/console we have with
Linux for S/390). This resulted in error messages about /dev/console
permissions. The easiest way out for the moment was to remove mingetty and
use sulogin instead in /etc/initab.
 Appendix C. Using the Linux 2.4 kernel 449

http://www.atnf.csiro.au/~rgooch/linux/docs/devfs.html

450 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 453.

� Linux for S/390, SG24-4987

http://www.ibm.com/redbooks/abstracts/sg244987.html

� Linux for zSeries and S/390: Distributions, SG24-6264

http://www.ibm.com/redbooks/abstracts/sg246264.html

� IBM ^ zSeries 900 Technical Guide, SG24-5975

http://www.ibm.com/redbooks/abstracts/sg245975.html

� OSA-Express Implementation Guide, SG24-5948

http://www.ibm.com/redbooks/abstracts/sg245948.html

Other resources
These publications are also relevant as further information sources:

� z/VM V4R1.0 General Information, GC24-5991

� z/VM TCP/IP Planning and Customization, SC24-5981

� z/VM TCP/IP Programmer's Reference, SC24-5983 (available softcopy only)

� z/VM TCP/IP User's Guide, SC24-5982 (available softcopy only)

Referenced Web sites
These Web sites are also relevant as further information sources:

� The Linux for S/390 developerWorks page:

http://www10.software.ibm.com/developerworks/opensource/linux390/index.shtml

� The Coda Web site:

http://www.coda.cs.cmu.edu
© Copyright IBM Corp. 2001 451

http://www.coda.cs.cmu.edu
http://www.ibm.com/redbooks/abstracts/sg246264.html
http://www.ibm.com/redbooks/abstracts/sg244987.html
http://www.ibm.com/redbooks/abstracts/sg245975.html
http://www.ibm.com/redbooks/abstracts/sg245948.html
http://www10.software.ibm.com/developerworks/opensource/linux390/index.shtml

� The paper “Linux IP Networking - A Guide to the Implementation and
Modification of the Linux Protocol Stack” by Glenn Herrin, May 2000:

http://kernelnewbies.org/documents/ipnetworking/linuxipnetworking.html

� The paper “Addressing Security Issues in Linux” by Mark Chapman,
December 2000, and the paper “Linux Security State of the Union” by Robb
Romans and Emily Ratliff, May 2001, both available at:

http://oss.software.ibm.com/developer/opensource/linux/papers.php

� The Linux kernel FTP site:

ftp://ftp.kernel.org

� The OpenLDAP organization:

http://www.openldap.org

� The NET-SNMP home page:

http://net-snmp.sourceforge.net

� Linux Devfs (Device File System) FAQ:

http://www.atnf.csiro.au/~rgooch/linux/docs/devfs.html

� Linux Documentation Project home page:

http://www.linuxdoc.org

� Advanced Maryland Automatic Network Disk Archiver (Amanda) home page:

http://www.amanda.org

� Gnuplot Central home page:

http://www.gnuplot.org

� Multi Router Traffic Grapher (MRTG) home page:

http://people.ee.ethz.ch/~oetiker/webtools/mrtg/

� NetSaint home page:

http://www.netsaint.org

� OpenAFS home page:

http://www.openafs.org

� Samba home page:

http://www.samba.org

� Bynari home page:

http://www.bynari.net

� A resource for learning how the kernel works with regard to TCP/IP:

http://kernelnewbies.org/documents/ipnetworking/linuxipnetworking.html
452 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions452 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

http://www.openldap.org
http://net-snmp.sourceforge.net
http://www.coda.cs.cmu.edu
http://kernelnewbies.org/documents/ipnetworking/linuxipnetworking.html
http://oss.software.ibm.com/developer/opensource/linux/papers.php
http://www.atnf.csiro.au/~rgooch/linux/docs/devfs.html
http://www.linuxdoc.org
http://www.amanda.org
http://www.gnuplot.org
http://people.ee.ethz.ch/~oetiker/webtools/mrtg/
http://www.netsaint.org
http://www.openafs.org
http://www.samba.org
http://www.bynari.net
http://kernelnewbies.org/documents/ipnetworking/linuxipnetworking.html
ftp://ftp.kernel.org

� CMS Pipelines home page:

http://pucc.princeton.edu/~pipeline

� Dante home page:

http://www.inet.no/dante

How to get IBM Redbooks
Search for additional Redbooks or Redpieces, view, download, or order hardcopy
from the Redbooks Web site:

ibm.com/redbooks

Also download additional materials (code samples or diskette/CD-ROM images)
from this Redbooks site.

Redpieces are Redbooks in progress; not all Redbooks become Redpieces and
sometimes just a few chapters will be published this way. The intent is to get the
information out much quicker than the formal publishing process allows.

IBM Redbooks collections
Redbooks are also available on CD-ROMs. Click the CD-ROMs button on the
Redbooks Web site for information about all the CD-ROMs offered, as well as
updates and formats.
 Related publications 453

http://www.inet.no/dante
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://kernelnewbies.org/documents/ipnetworking/linuxipnetworking.html
http://pucc.princeton.edu:80/~pipeline

454 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions454 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Special notices

References in this publication to IBM products, programs or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent program that does not infringe any of IBM's intellectual property rights
may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Corporation, Dept.
600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any formal
IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been reviewed
by IBM for accuracy in a specific situation, there is no guarantee that the same or
similar results will be obtained elsewhere. Customers attempting to adapt these
techniques to their own environments do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of these
Web sites.
© Copyright IBM Corp. 2001 455

The following terms are trademarks of other companies:

Tivoli, Manage. Anything. Anywhere.,The Power To Manage., Anything.
Anywhere.,TME, NetView, Cross-Site, Tivoli Ready, Tivoli Certified, Planet Tivoli,
and Tivoli Enterprise are trademarks or registered trademarks of Tivoli Systems
Inc., an IBM company, in the United States, other countries, or both. In
Denmark, Tivoli is a trademark licensed from Kjøbenhavns Sommer - Tivoli A/S.

C-bus is a trademark of Corollary, Inc. in the United States and/or other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United States
and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through The Open Group.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks
owned by SET Secure Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service
marks of others
456 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Index

Symbols
/dev/discs 448
/etc/crontab 271
/etc/init.d/network 251
/etc/pam.d 118
/etc/pam.d/login 365
/etc/passwd 117
/etc/rc.config 251, 304
/etc/route.conf 247, 251
/etc/shadow 117
/etc/smb.conf 352
/usr/afs/bin/klog 378
/usr/afs/etc/ThisCell 373
/usr/afs/local/BosConfig 366
/usr/vice/etc/CellServDB 373

Numerics
2064 15, 120
3746 76

A
Access Control List (ACL) 378
ACCOUNT 303
accounting

Linux process 303
acct package 304
Active Directory 349

joining 352
Address Resolution Protocol (ARP) 99
AFS 49

Cache Manager 374
client functionality 372
completing installation 377
configuring the cache 374
confinguring top levels 378
defining cell name 366
defining encryption key 369
loading into kernel 383

afsd 373, 374
alternate boot volume 206
amadmin 284, 289
Amanda 138, 269
© Copyright IBM Corp. 2001
backup and recovery scenarios 292
backup via SMB 277
disklist 273, 276
using a tape changer 277
using with cron 284

amanda.conf 273, 278
amandad 271
amcheck 280
amdump 271, 280, 281
amoverview 285
amplot 286

sample output 288
amrecover 285
amstatus 280
Andrew File System (AFS) 53
architecture

disk 14
I/O 11
memory 10
network 13
processor 8
virtual server 45

ASP 3
ATM 76
automatic tape loader (ATL) 278
automount 51
availability monitoring 322

B
backup

in service 129
loss of an entire server 144
of complex applications 129
software 135
types 128

backup and restore 127
using Amanda 269

benchmarks 22
billing 298
Border Gateway Protocol (BGP) 91
BOS 365
busserver 366
Busy Count 27
 457

bzip 270

C
cache

L1 and L2 10
Cache Manager 375
Capacity BackUp (CBU) 140
capacity planning 20
Capacity Upgrade on Demand (CUoD) 10
CCWs 167
CellServDB 373, 384
Central Processor (CP) 9
Central Processor Complex (CPC) 11
cfgmaker 317
channel 12
Channel Data Link Control (CDLC) 76
Channel-to-Channel (CTC) 74
charge back 298
check-router-alive 330
chroot 216, 217, 226
Cisco CIP 68, 76
cloning images

copying disks for 214
creating a patch file 223
quick start disk 212
sharing code 221

cloning Linux images 209
CMS pipeline 214
CMS Pipelines 417
CMS RESERVE format 47
cmsfs 417
Coda file system 53
Common Internet File System (CIFS) 49
Common Link Access to Workstation (CLAW) 64,
76
Compatibility I/O Cage 13
connection balancing 79
control unit, DASD

loss of 142
COPYDISK 225
Count-Key-Data (CKD) 47
cpint 437
cpint.spec 438
cron 284
Cryptographic Element (CE) 11
cryptography 120
CTC

device restrictions 102

possible enhancement 408
Cycle Count 27

D
DASD

formatting options for performance 161
DASD Dump and Restore (DDR) 138, 213
dasdfmt 161
DCSS 53
DCSS-mapped block devices 410
DEFSYS 233
DeMilitarized Zone (DMZ) 84
devfs 448
device file system 447

installing on SuSE 449
DHCP 221
Diagnose I/O 163

benefits 164
diff 216
DIRECTXA command 202
DIRM ADD command 204
DirMaint 162, 202, 415, 418

DVHDXP exit 206
EXTENT CONTROL 205

disaster recovery 128, 140
discontiguous saved segment (DCSS) 411
disk architecture 14
DISKACNT 300
disklist 273, 276, 278
Distributed Converter Assemblies (DCAs) 11
DMZ (DeMilitarized Zone) 267
DNAT 88, 89, 263
DNS 191
DNS manipulation 77
double-paging 57
DSPBUF 157
dummy interface 79, 409
DVM PROFILE 302
Dynamic Address Translation 410
Dynamic DNS 78
Dynamic Domain Name Service (DDNS) 221
dynamic OSA Address Table 74
dynamic routing 91

E
EAL5 108
Enhanced Interior Gateway Routing Protocol (EIR-
GP) 91
458 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

Enterprise Storage Server (ESS) 14, 15, 130, 142
ESALPS 150, 151
ESCON 13, 14
ESCON-16 channel card 12
expanded storage 59
ext2 138
exterior gateway protocols 92
External Time Reference/Oscillator (ETR/OSC) 11

F
FCON/ESA 150
fdasd 47
FDDI 76
Ferguson, Neale 437
FICON 13, 14, 142
FICON channel card 12
find 215
firewall 247, 249
Fixed Block Address (FBA) 47
FlashCopy 130
floor space 3
FORMAT, CMS command 161
forward chain 88
fragmentation 32
Freeside 298
fsck 213

G
gawk 218
GD library 324
Geographical Dispersed Parallel Sysplex (GDPS)
140
GFS 49, 51, 138

status on zSeries 52
gnuplot 287
GPL 323
groupadd 324

H
hcp 201, 227, 416

using 437
headroom 29, 31
high availability 139
HiperSockets 64
htpasswd 328
HYPERchannel 76

I
I/O architecture 11
IEEE floating-point 5
IMAP4 359
inetd 117
input chain 87
Integrated Coupling Facility (ICF) processor 9
Integrated Facility for Linux (IFL) 9
interior gateway protocols 92
Inter-User Communications Vehicle (IUCV) 64, 75,
116
IOCDS 106, 109
IOCP 106
ioremap() 412
IP Assist 74
IP forwarding 251
IP Tables 87
ip_nat_ftp 265
IPL command

PARM option 231
IPTables 244
iptables 267, 268
ISO images

mounting 211
ISP 3
ITSEC E4 107
IUCV

device restrictions 102
possible enhancement 408

J
J2EE 339
Java 339
Java Virtual Machine (JVM) 340
jiffies 55, 61, 185, 446
Just-In-Time compilation (JIT) 340

K
kas 368
kaserver 365, 366
Kerberos 367
klog 373
klogd 208

L
LDAP 118
lilo 206
 Index 459

Linux
as a virtual router 68
cloning 209
modes it can be run in 5
RAMdisk for memory 59
running as a VM guest 7
running in LPAR mode 6
running in native mode 5
security 116
sharing memory 63
swap space 58
swap space in memory 59
using the 2.4 kernel 441
using the OSA with 95

Linux Community Development System 126, 421
components 422
lessons learned 431
monitoring 430
summary 435
team 427
technical implementation 424

Linux Documentation Project 268
Linux Standard Base (LSB) 222
locking

in shared file systems 55

M
maintenance 18
major number 134
Maryland

University of 270
masquerading 89, 264
MDC 166
mdisk driver 163
measurement tools 150
memory

in Linux images 56
sharing 63
sizing 36

memory architecture 10
memory queues

with OSA-Express 14
Microsoft servers

replacing 345
migration planning 123
Minidisk Cache (MDC) 411
minidisk cache (MDC) 53, 214
mirroring 137, 144

mke2fs 214
mkkickstart 210
mkswap 412
mmap() 410
modes

as a VM guest 7
in an LPAR 6
native 5

modload 364
MPCOSA 76
MRTG 316

bandwidth reporting 318
mrtg_total 319
Multi Path Channel (MPC) 76
Multi-Chip Module (MCM) 8

N
Named Saved System (NSS) 228
Named Shared Storage (NSS) 63
Net Saint

host groups 330
NetSaint 322

3D status map 336
building 325
command configuration 331
configuring 325, 329
download 323
screen shot 329
service configuration 331
starting and stopping 333
summary screen 334
user authorization 327
using 333

netsaint.cfg 329
NETSNMP 153, 179
Network Address Translation (NAT) 88, 263, 426
network architecture 13
network block device 137
network design

resilient 66
network performance 172
Network Time Protocol Daemon (NTPD) 371
networking

devices 74
NFS 50
NOMDCFS 183
nscgi.cfg 329
nslookup 227
460 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

NSS 415

O
OBEY command 68
OBEYFILE 68, 192, 193, 199
Open Shortest Path First (OSPF) 91
Open Systems Adapter (OSA) 64, 74
OpenAFS

installing 363
OpenLDAP 118
OS/390 101
OSA

sharing 102
using multiple 100

OSA Address Table (OAT) 74, 96
OSA/SF 82
OSA-2 13
OSA-Express 14

features 74
QDIO mode 101

OSA-Express (OSA-E) 12
output chain 88

P
P/390 6
packet filtering 81, 243

planning 82
what it is 81

Parallel Sysplex 140
parts of the book

practical 187
theoretical 1

passwords
synchronizing NT and Linux 349

penguins
breeding 223

performance analysis 147
alerts 175
DASD subsystem 161
DASD write analysis 170
data sources 153
global controls 157
global vs. local tuning 154
measurement tools 150
measuring Linux applications 180
network performance 172
server resources 174
storage subsystem 160

tuning guidelines 182
why measure 148

PGT004 abend 190
pipeline 214
Plato 3
Pluggable Authentication Module (PAM) 118, 349
Point-to-Point Remote Copy (PPRC) 131
POP3 359
port forwarding 267
PPRC 137
practical discussions 187
private IP addresses 88
processor

bandwidth 9
cache 10

processor architecture 8
Processor Resource/System Manager (PR/SM) 6
processors

configuration rules 9
PROFILE EXEC 220
PROFILE TCPIP 194, 198
pts 369
ptserver 366
putty 428

Q
qdio driver 446
QDIO mode

OSA-Express
QDIO mode 101

Queued Direct I/O (QDIO) 14
Queued Direct IO (QDIO) 74
QUICKDSP 158

R
R/390 6
RAID 135
RAMAC Virtual Array (RVA) 163
rcapache 326
RECORDING 300
Redbooks Web site 453

Contact us xviii
relative capacity 21
RESERVE, CMS command 161
resilient IP addressing 77
round-robin DNS 77
routing

using VM TCP/IP 192
 Index 461

routing domain 92
Routing Information Protocol (RIP) 91
routing protocols

choosing 94
RPC 50
rpm 439
RTM 150
runntp 371

S
S/390

architecture overview 4
Samba

building 350
setting up as a PDC 346
using as a domain controller 345

samedit 352
SAVESYS 233, 412
scanlog 120
scp 117
secure shell 117
security 105

cryptography 120
in LPAR mode 106
in native mode 106
Linux 116
PR/SM certification 107
System Integrity Statement for z/VM 111
under VM 110
viruses 119
with channels 109
with memory 109

sed 216
Self-Timed Interconnect (STI) 74
Self-Timed Interfaces (STIs) 12
Serial Line Interface Protocol (SLIP) 74
server farm 3
Service Level Agreement 298
service level agreements 177
setacl 379
setcellname 366
setdate 294
shadow passwords 118
shadowed disk 413
Shark 14
SID 348
silo 212, 229, 442
sizing 19

example 33
memory 36

skew 33
skills required 17
slapd 118
slogin 117
slurpd 118
SMB 49
SNALINK 76
SNAT 88, 263
SNMP 153, 178, 316
snmpwalk 317
SOURCEVIPA 81, 409
SPECcpu 23
spikiness 30
SSH 428
SSL transactions 121
Standard Performance Evaluation Corporation
(SPEC) 22
subpools 51
SuSEconfig 215, 251
swap space 184
sync 130, 213
System Assist Processor (SAP) 9, 12
SYSTEM DTCPARMS 201
system maintenance 18
system monitoring 297

T
tape changer 277
tape driver

usage 133
tape support 133

major number 134
tape390 133
tcpd 117
team

photo xvi
team that wrote this book xiv
Techline 26
TechXpress form on Web 26
thanks to xvi
theoretical discussions 1
Time-To-Live (TTL) 78
Tivoli Storage Manager (TSM) 139
tokens 378
Tomcat 339
Total Cost of Ownership (TCO) 39, 125
462 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

components 40
trade-offs 42

TRACE 229
Transaction Processing Performance Council (TPC)
22
trust account 348
tuning guidelines 182

U
UCD-SNMP 317
UID 348
umount 213
University of Maryland 270
upclientbin 371
upclientetc 370
updclone.sh 227
upserver 370
USER DIRECT file 202
utilization 26
UTS Global 76

V
VDISK 58, 61, 63, 115, 212
Velocity Software 150
Virtual Channel-To-Channel (VCTC) 64, 116
Virtual IP Addressing (VIPA) 79
virtual networking 90
Virtual Private Networks (VPN) 119
virtual processors

under VM 113
virtual router 68

using VM 68
virtual server architecture 45

disk topology 46
memory topology 55
network topology 64

viruses 119
vlserver 366
VM

ACCOUNT command 303
accounting 300
accounting records 302
Diagnose I/O 163
TCP/IP restriction 104

VM configuration 189
VM Diagnose I/O 47
VMPAF 150
VMPRF 151

W
WebSphere Application Server 341

planning 342
wget 129
whitespace - unused capacity 27
workload tuning 70
written manuals

philosophy 3

X
XAUTOLOG 416
xautolog 302
xinetd 117

Y
YaST 215, 222, 223

Z
z/OS 342
z/VM

advantages with Linux 16
zipl 443
zSeries

architecture overview 4
models 15
 Index 463

464 Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions

(1.0” spine)
0.875”<

->1.498”
460 <

-> 788 pages

Linux for IBM
 ̂

 zSeries
and S/390: ISP/ASP Solutions

®

SG24-6299-00 ISBN 0738423521

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Linux for IBM
zSeries and S/390:
ISP/ASP Solutions
Create and maintain
hundreds of virtual
Linux images

Running on the
mainframe

Managed by z/VM

This IBM Redbook describes how Linux can be
combined with z/VM on zSeries and S/390
hardware - the mainframe. This combination of
hardware and operating systems enables Internet
Service Providers (ISP) and Application Service
providers (ASP) to more efficiently provide
services. We assume a broad definition of ASP to
include production enterprise solutions as simple
as file serving.

In a world of discrete servers, when a new resource
is required, workload can either be added to an
existing server or a new one can be purchased.
Often a new server is installed and the server farm
grows in the enterprise.

S/390 and zSeries hardware, microcode and
software allow physical resources to be made
virtual among Linux systems. This allows many
hundreds of Linux systems to exist on a single
server. Running multiple Linux images as guests of
VM/ESA or z/VM is a smart choice.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Preface
	The team that wrote this redbook
	Special notice
	IBM trademarks
	Comments welcome

	Part 1 Theoretical considerations
	Chapter 1. Introduction
	1.1 What this redbook is
	1.2 What this redbook is not
	1.3 zSeries and S/390 architecture overview
	1.3.1 Modes of running Linux
	1.3.2 Processor architecture
	1.3.3 Memory architecture
	1.3.4 I/O architecture
	1.3.5 Network architecture
	1.3.6 Disk architecture
	1.3.7 Models

	1.4 Solution applicability
	1.4.1 Better matches
	1.4.2 More difficult matches

	1.5 z/VM and why you want it
	1.6 Skills and resources required
	1.6.1 Planning and installation
	1.6.2 Linux image deployment
	1.6.3 Maintenance

	Chapter 2. Sizing
	2.1 The nature of sizing
	2.1.1 Sizing vs. capacity planning

	2.2 Relative system capacity
	2.2.1 Benchmarks
	2.2.2 The bottom line

	2.3 Utilization
	2.3.1 White space - unused capacity

	2.4 Example sizing - analysis of company XYZ
	2.5 Concluding remarks
	2.5.1 Total Cost of Ownership (TCO)
	2.5.2 Some trade-offs
	2.5.3 Final reminder

	Chapter 3. Virtual server architecture
	3.1 Why an architecture is required
	3.1.1 Components of the virtual server architecture

	3.2 Disk topology
	3.2.1 The DASD driver
	3.2.2 Linux instances with dedicated disk
	3.2.3 Linux sharing data
	3.2.4 Sharing disk in memory
	3.2.5 Minidisk caching
	3.2.6 Limitations of sharing disk

	3.3 Memory topology
	3.3.1 Linux ‘jiffies’
	3.3.2 Large guest memory
	3.3.3 Linux swap to VM virtual disk
	3.3.4 Linux swap files in memory
	3.3.5 “Hybrid” swap method
	3.3.6 Sharing Linux memory

	3.4 Network topology
	3.4.1 Network devices for Linux
	3.4.2 Network structure
	3.4.3 General network considerations

	3.5 Workload tuning

	Chapter 4. Networking a penguin colony
	4.1 Network devices
	4.1.1 Open Systems Adapter (OSA)
	4.1.2 Channel-to-channel (CTC)
	4.1.3 Inter-User Communications Vehicle (IUCV)
	4.1.4 Other devices
	4.1.5 HiperSockets

	4.2 Resilient IP addressing
	4.2.1 DNS manipulation
	4.2.2 Connection balancing
	4.2.3 Virtual IP addressing

	4.3 Packet filtering and Network Address Translation
	4.3.1 What is packet filtering
	4.3.2 What you can do with Linux packet filtering
	4.3.3 Planning for packet filtering implementations
	4.3.4 How packets travel through a gateway
	4.3.5 Network Address Translation (NAT)

	4.4 General network considerations
	4.4.1 How penguin herding is different
	4.4.2 Dynamic routing
	4.4.3 Using the OSA with Linux

	4.5 Other issues
	4.5.1 CTC/IUCV device restrictions
	4.5.2 VM TCP/IP restriction

	Chapter 5. Security architecture
	5.1 Sharing isolation and reconfiguration of resources
	5.1.1 Running Linux in native mode
	5.1.2 Running Linux in LPAR mode
	5.1.3 Running Linux under VM

	5.2 Linux security
	5.2.1 What kind of protection do you need
	5.2.2 Additional security documentation

	5.3 Cryptography on z/Series

	Chapter 6. Migration planning
	6.1 Where to start
	6.2 What to look for
	6.2.1 Small scope

	6.3 Total cost comparison framework
	6.3.1 Staffing
	6.3.2 Hardware
	6.3.3 Occupancy
	6.3.4 Other factors

	Chapter 7. Backup and restore
	7.1 Backup methodologies
	7.1.1 Disaster recovery
	7.1.2 Logical backup
	7.1.3 Backup types
	7.1.4 Complex application backup
	7.1.5 In-service backup

	7.2 Hardware possibilities
	7.2.1 FlashCopy
	7.2.2 Point-to-Point Remote Copy (PPRC)
	7.2.3 IBM 3480/3490 tapes

	7.3 Software tools
	7.3.1 Software RAID
	7.3.2 Network block device
	7.3.3 VM DASD Dump Restore (DDR)
	7.3.4 Amanda
	7.3.5 Tivoli Storage Manager (TSM)

	7.4 High availability choices with zSeries
	7.4.1 Loss of a DASD control unit
	7.4.2 Loss of a S/390 or zSeries server

	Chapter 8. Performance analysis
	8.1 Performance considerations
	8.2 Why measure performance
	8.2.1 Cost of running applications
	8.2.2 Controlling costs
	8.2.3 Controlling the impact of one application on another

	8.3 Measurement tools
	8.3.1 Measurement tool used
	8.3.2 Screen display

	8.4 Measurement data sources
	8.5 Local vs. global performance tuning
	8.5.1 Local environment
	8.5.2 Global environment

	8.6 Linux operational choice
	8.7 The CP scheduler
	8.7.1 Queue definitions
	8.7.2 Global controls
	8.7.3 Local controls

	8.8 Processor subsystem
	8.9 Storage subsystem
	8.9.1 Storage options

	8.10 DASD subsystem
	8.10.1 VM Diagnose I/O
	8.10.2 DASD MDC measurement
	8.10.3 High connect time analysis
	8.10.4 DASD write analysis
	8.10.5 DASD/cache

	8.11 Network performance
	8.11.1 Network errors

	8.12 Server resources
	8.12.1 Resources by application
	8.12.2 Resources by server
	8.12.3 Resources by accounting

	8.13 Alerts
	8.13.1 Defining and modifying alerts

	8.14 Service Level Agreements
	8.14.1 Availability alerts
	8.14.2 Cost of measuring availability
	8.14.3 Availability reporting
	8.14.4 Measuring service

	8.15 Measurement function installation
	8.15.1 ESALPS installation
	8.15.2 NETSNMP installation

	8.16 Measurement methodology
	8.16.1 Measuring Linux applications
	8.16.2 Measuring Linux server requirements
	8.16.3 Measuring VM Virtual Machine

	8.17 Tuning guidelines
	8.17.1 Paging and spooling (one extent per Real Device Block)
	8.17.2 Enterprise Storage Server (ESS)
	8.17.3 Virtual machine sizes
	8.17.4 DASD format
	8.17.5 MDC: fair share considerations (NOMDCFS)
	8.17.6 Swap: RAMdisk vs. virtual disk
	8.17.7 Timer tick kernel changes
	8.17.8 Kernel storage sharing

	Part 2 Practical considerations
	Chapter 9. VM configuration
	9.1 General VM configuration issues
	9.1.1 Allocate sufficient paging space

	9.2 Things to do for new Linux images
	9.2.1 Create a central registry
	9.2.2 Create the user ID in the CP directory
	9.2.3 Allocate the minidisks
	9.2.4 Define the IP configuration
	9.2.5 Install and configure the Linux system
	9.2.6 Register the user ID with automation processes
	9.2.7 Register the user ID so backups can be made

	9.3 Using VM TCP/IP as the virtual router
	9.3.1 Dynamic definitions and the PROFILE TCPIP file
	9.3.2 Creating the device and link
	9.3.3 Defining the home address for the interface
	9.3.4 Defining the routing information
	9.3.5 Starting the connection
	9.3.6 Putting all the pieces together
	9.3.7 Define and couple the CTC devices

	9.4 Using DirMaint to create Linux virtual machines
	9.4.1 Why to avoid GET and REPLACE
	9.4.2 Keeping the user directory manageable
	9.4.3 Rotating allocation
	9.4.4 Implement exit for minidisk copy

	9.5 Using an alternate boot volume

	Chapter 10. Cloning Linux images
	10.1 Overview
	10.2 Installing Linux images the easy way
	10.2.1 Providing fast access to the install medium

	10.3 Building a quick start disk
	10.4 Copying disks instead of doing a full install
	10.4.1 Copying disks for cloning images
	10.4.2 Determine the point to copy the disks
	10.4.3 Locating the files to be customized for each cloned image
	10.4.4 Reducing the number of changes required
	10.4.5 When to apply the configuration changes

	10.5 Sharing code among images
	10.6 Breeding a colony of penguins
	10.6.1 Images used in the cloning process
	10.6.2 Create a patch file for cloning

	10.7 Linux IPL from NSS
	10.7.1 Using an NSS with just the kernel
	10.7.2 Using an NSS as a starter system
	10.7.3 Picking up IPL parameters

	Chapter 11. Network infrastructure design
	11.1 Virtual IP addressing
	11.1.1 Sample configuration
	11.1.2 Compiling dummy.o
	11.1.3 Configuring dummy0
	11.1.4 Using virtual IP addressing in penguin colonies

	11.2 Packet filtering and NAT with IPTables
	11.2.1 What you need to run packet filtering
	11.2.2 Network configuration for a packet filtering implementation
	11.2.3 How to permanently enable IP forwarding
	11.2.4 The first IP Tables rules
	11.2.5 Checking your filter
	11.2.6 Using IP Tables
	11.2.7 How to create a rule
	11.2.8 Using the inversion ! option
	11.2.9 Making the rules permanent
	11.2.10 Sample packet filtering configuration for ISP/ASP
	11.2.11 Using IPTables for NAT
	11.2.12 Examples for using NAT in the enterprise and ISP/ASP
	11.2.13 Additional information

	Chapter 12. Backup using Amanda
	12.1 About Amanda
	12.1.1 How Amanda works

	12.2 Using Amanda in a penguin colony
	12.2.1 Planning for Amanda
	12.2.2 Configuring Amanda
	12.2.3 Backing up with Amanda
	12.2.4 Restoring
	12.2.5 Reporting
	12.2.6 Disaster recovery using Amanda

	12.3 Backup and recovery scenarios
	12.3.1 Single file or directory restoration with Amanda

	Chapter 13. System monitoring
	13.1 Why measure resource consumption
	13.2 Charge back method
	13.2.1 Service Provider accounting and billing
	13.2.2 Enterprise accounting and billing

	13.3 What can we measure
	13.4 CPU time accounting
	13.4.1 VM accounting
	13.4.2 Setting up virtual machines for accounting
	13.4.3 Virtual machine resource usage - record type 01
	13.4.4 Processing accounting records
	13.4.5 Linux process accounting

	13.5 Disk space utilization
	13.6 Network bandwidth usage
	13.6.1 An introduction to SNMP
	13.6.2 SNMP installation
	13.6.3 SNMP configuration
	13.6.4 Network bandwidth monitoring
	13.6.5 MRTG
	13.6.6 MRTG installation and customization
	13.6.7 MRTG reporting
	13.6.8 MRTG reporting for Virtual CTC or IUCV devices
	13.6.9 Monitoring multiple Linux guests
	13.6.10 Total bandwidth reporting

	13.7 Availability monitoring
	13.7.1 NetSaint
	13.7.2 Installing NetSaint
	13.7.3 Configuring the Web interface
	13.7.4 User authorization
	13.7.5 Configuring NetSaint
	13.7.6 Starting and stopping NetSaint
	13.7.7 Using NetSaint

	13.8 Summary

	Chapter 14. Web application servers
	14.1 WebSphere issues
	14.1.1 Java Virtual Machine (JVM)
	14.1.2 Objects

	14.2 Options for running WebSphere
	14.2.1 WebSphere Application Server for zSeries and S/390 Linux
	14.2.2 WebSphere Application Server for z/OS
	14.2.3 Separate servers

	14.3 Planning for WebSphere Application Server
	14.4 Test environments

	Chapter 15. Integrating and replacing Microsoft servers
	15.1 Using Samba as a domain controller
	15.1.1 Setting up a Samba PDC
	15.1.2 Creating a machine trust account

	15.2 Using Samba in Windows domains
	15.2.1 Recompiling the latest Samba package
	15.2.2 Joining the Active Directory
	15.2.3 Setting up Winbind
	15.2.4 Setting up /etc/nsswitch.conf
	15.2.5 Setting up the PAM authentication

	15.3 Replacing Microsoft Exchange Server
	15.3.1 The Bynari Insight Server
	15.3.2 The Cyrus IMAP server

	15.4 Using AFS in an enterprise environment
	15.4.1 What is AFS
	15.4.2 Building OpenAFS
	15.4.3 Installing OpenAFS
	15.4.4 Installing client functionality
	15.4.5 Completing the installation of the first AFS server
	15.4.6 Installing clients on other servers
	15.4.7 \Installing Windows 2000 OpenAFS Client

	Chapter 16. z/VM 4.2 Linux features
	16.1 System Administration Facility
	16.1.1 Who should use the System Administration Facility
	16.1.2 Initializing the System Administration Facility
	16.1.3 Using VMADMIN
	16.1.4 Creating the initial Linux guest

	16.2 VM LAN support
	16.2.1 Creating a VM LAN
	16.2.2 Using the VM LAN with Linux guests

	Chapter 17. Roadmap
	17.1 Ability to reconfigure CTC and IUCV
	17.2 SOURCEVIPA equivalence for Linux
	17.3 DCSS-mapped block devices
	17.3.1 Sharing between processes
	17.3.2 Sharing between images
	17.3.3 Using shared segments

	17.4 Shadowed disk support
	17.5 File system access tool for systems management
	17.5.1 Possible use for the utility
	17.5.2 Design outline
	17.5.3 Detailed design
	17.5.4 Additional points for the implementation

	17.6 Synergy with CMS Pipelines
	17.7 Make DirMaint the registration vehicle

	Appendix A. Linux Community Development System
	Components of the system
	Linux on a mainframe for free
	Community: the global response
	Development: what is being tried
	System: what it is being run on

	Technical implementation of the LCDS
	Hardware specifications
	Network
	Staff and processes
	Evolution and lessons learned

	Summary

	Appendix B. Using the hcp command
	Appendix C. Using the Linux 2.4 kernel
	Steps to upgrade SuSE 7.0 to Linux-2.4.5 kernel
	Using the device file system

	Related publications
	IBM Redbooks
	Other resources

	Referenced Web sites
	How to get IBM Redbooks
	IBM Redbooks collections

	Special notices
	Index
	Back cover

