

ibm.com/redbooks

DB2 UDB’s High Function
Business Intelligence
in e-business

Nagraj Alur
Peter Haas

Daniela Momiroska
Paul Read

Nicholas Summers
Virginia Totanes

Calisto Zuzarte

Exploit DB2’s materialized views
(ASTs/MQTs) feature

Leverage DB2’s statistics,
analytic and OLAP functions

Review sample business
scenarios

Front cover

DB2 UDB’s High-Function Business Intelligence
in e-business

September 2002

International Technical Support Organization

SG24-6546-00

© Copyright International Business Machines Corporation 2002. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (September 2002)

This edition applies to all operating system platforms that DB2 UDB Version 8 supports.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. QXXE Building 80-E2
650 Harry Road
San Jose, California 95120-6099

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Take Note! Before using this information and the product it supports, be sure to read the
general information in “Notices” on page xvii.

Contents

Figures . vii

Tables . xi

Examples. xiii

Notices . xvii
Trademarks . xviii

Preface . xix
The team that wrote this redbook. xx
Notice . xxii
Comments welcome. xxii

Chapter 1. Business Intelligence overview. 1
1.1 e-business drivers . 2

1.1.1 Impact of e-business . 5
1.1.2 Importance of BI . 7

1.2 IBM’s BI strategy and offerings . 9
1.2.1 BI and analytic enhancements in DB2 UDB 11
1.2.2 Advantages of BI functionality in the database engine 12

1.3 Redbook focus . 12
1.3.1 Materialized views. 13
1.3.2 Statistics, analytic and OLAP functions. 14

Chapter 2. DB2 UDB’s materialized views . 15
2.1 Materialized view overview . 16

2.1.1 Materialized view motivation . 16
2.1.2 Materialized view concept overview . 17
2.1.3 Materialized view usage considerations . 19
2.1.4 Materialized view terminology . 20

2.2 Materialized view CREATE considerations . 21
2.2.1 Step 1: Create the materialized view . 22
2.2.2 Step 2: Populate the materialized view . 22
2.2.3 Step 3: Tune the materialized view . 26

2.3 Materialized view maintenance considerations . 26
2.3.1 Deferred refresh . 27
2.3.2 Immediate refresh . 34

2.4 Loading base tables (LOAD utility) . 37
© Copyright IBM Corp. 2002 iii

2.5 Materialized view ALTER considerations . 41
2.6 Materialized view DROP considerations . 42
2.7 Materialized view matching considerations . 42

2.7.1 State considerations . 44
2.7.2 Matching criteria considerations . 44
2.7.3 Matching permitted . 45
2.7.4 Matching inhibited . 56

2.8 Materialized view design considerations . 60
2.8.1 Step 1: Collect queries & prioritize . 63
2.8.2 Step 2: Generalize local predicates to GROUP BY 64
2.8.3 Step 3: Create the materialized view . 65
2.8.4 Step 4: Estimate materialized view size . 65
2.8.5 Step 5: Verify query routes to “empty” the materialized view 66
2.8.6 Step 6: Consolidate materialized views . 66
2.8.7 Step 7: Introduce cost issues into materialized view routing. 67
2.8.8 Step 8: Estimate performance gains . 67
2.8.9 Step 9: Load the materialized views with production data 69
2.8.10 Generalizing local predicates application example 69

2.9 Materialized view tuning considerations . 87
2.10 Refresh optimization . 90
2.11 Materialized view limitations . 92

2.11.1 REFRESH DEFERRED and REFRESH IMMEDIATE 92
2.11.2 REFRESH IMMEDIATE and queries with staging table 93

2.12 Replicated tables in nodegroups . 95

Chapter 3. DB2 UDB’s statistics, analytic, and OLAP functions. 99
3.1 DB2 UDB’s statistics, analytic, and OLAP functions 100
3.2 Statistics and analytic functions . 100

3.2.1 AVG. 101
3.2.2 CORRELATION . 101
3.2.3 COUNT . 102
3.2.4 COUNT_BIG . 102
3.2.5 COVARIANCE . 103
3.2.6 MAX . 103
3.2.7 MIN . 104
3.2.8 RAND . 104
3.2.9 STDDEV . 105
3.2.10 SUM . 106
3.2.11 VARIANCE . 106
3.2.12 Regression functions. 107
3.2.13 COVAR, CORR, VAR, STDDEV, and regression examples. 110

3.3 OLAP functions . 117
3.3.1 Ranking, numbering and aggregation functions 118
iv High-Function Business Intelligence in e-business

3.3.2 GROUPING capabilities ROLLUP & CUBE 125
3.3.3 Ranking, numbering, aggregation examples. 127
3.3.4 GROUPING, GROUP BY, ROLLUP and CUBE examples 138

Chapter 4. Statistics, analytic, OLAP functions in business scenarios . 149
4.1 Introduction . 150

4.1.1 Using sample data . 150
4.1.2 Sampling and aggregation example . 151

4.2 Retail . 154
4.2.1 Present annual sales by region and city . 154
4.2.2 Provide total quarterly and cumulative sales revenues by year . . . 156
4.2.3 List the top 5 sales persons by region this year 159
4.2.4 Compare and rank the sales results by state and country 160
4.2.5 Determine relationships between product purchases 164
4.2.6 Determine the most profitable items and where they are sold 167
4.2.7 Identify store sales revenues noticeably different from average . . . 171

4.3 Finance . 173
4.3.1 Identify the most profitable customers . 173
4.3.2 Identify the profile of transactions concluded recently 176
4.3.3 Identify target groups for a campaign . 181
4.3.4 Evaluate effectiveness of a marketing campaign 184
4.3.5 Identify potential fraud situations for investigation 192
4.3.6 Plot monthly stock prices movement with percentage change 193
4.3.7 Plot the average weekly stock price in September 195
4.3.8 Project growth rates of Web hits for capacity planning purposes . . 198
4.3.9 Relate sales revenues to advertising budget expenditures. 201

4.4 Sports . 206
4.4.1 For a given sporting event. 206
4.4.2 Seed the players at Wimbledon . 213

Appendix A. Introduction to statistics and analytic concepts 217
A.1 Statistics and analytic concepts . 218

A.1.1 Variance . 218
A.1.2 Standard deviation . 219
A.1.3 Covariance . 220
A.1.4 Correlation . 222
A.1.5 Regression . 223
A.1.6 Hypothesis testing . 224
A.1.7 HAT diagonal . 226
A.1.8 Wilcoxon rank sum test. 229
A.1.9 Chi-Squared test . 229
A.1.10 Interpolation . 231
A.1.11 Extrapolation. 231
 Contents v

A.1.12 Probability . 231
A.1.13 Sampling. 232
A.1.14 Transposition . 232
A.1.15 Histograms . 232

Appendix B. Tables used in the examples . 235
DDL of tables . 236

Appendix C. Materialized view syntax elements 241
Materialized view main syntax elements . 242

Related publications . 245
IBM Redbooks . 245

Other resources . 245
Referenced Web sites . 245
How to get IBM Redbooks . 246

IBM Redbooks collections. 246

Index . 247
vi High-Function Business Intelligence in e-business

Figures

1-1 Changing business environment . 2
1-2 Business critical processes . 4
1-3 e-business impact . 6
1-4 Intelligent e-business DataBase Associates International copyright . . . 10
1-5 Business Intelligence functionality . 13
2-1 Materialized view overview . 17
2-2 CREATE materialized view overview. 21
2-3 Deferred refresh. 28
2-4 Incremental refresh with staging table . 30
2-5 Immediate refresh using incremental update. 35
2-6 LOAD application sample . 39
2-7 Materialized view optimization flow . 43
2-8 Matching columns, predicates, and expressions 46
2-9 Matching GROUP BY and aggregate functions. 52
2-10 Overview of the design of REFRESH DEFERRED materialized views . 62
2-11 Get snapshot for dynamic SQL . 63
2-12 Sapient star schema . 70
2-13 Sapient graphical user interface . 71
2-14 Multi-query optimization in REFRESH TABLE with materialized views . 91
2-15 Materialized view limitation categories. 92
2-16 Collocation in partitioned database environment 96
3-1 D11 Employee salary & bonus. 111
3-2 Linear regression . 116
3-3 Ranking, numbering and aggregate functions 119
3-4 Window partition and window order clauses . 120
3-5 Window aggregation group clause. 121
3-6 Windowing relationships . 124
3-7 GROUP BY clause. 125
3-8 Super Groups ROLLUP & CUBE. 126
3-9 Employee rank by total salary . 130
3-10 Employee DENSE_RANK by total salary . 131
3-11 RANK, DENSE_RANK and ROW_NUMBER comparison. 132
3-12 PARTITION BY window results . 133
3-13 Salary as a percentage of department total salary 134
3-14 Five day smoothing of IBM . 135
3-15 IBM five day moving average. 136
3-16 Seven calendar day moving average. 137
3-17 Grouping result . 139
© Copyright IBM Corp. 2002 vii

3-18 Sales item detail for March . 140
3-19 Sales item detail for April . 141
3-20 Results of the ROLLUP query . 142
3-21 ROLLUP visualization as tables. 143
3-22 ROLLUP visualization as bar chart - week 13 143
3-23 ROLLUP visualization as bar chart - week 14 144
3-24 CUBE query result . 145
3-25 Three dimensional cube - sales by sales person, day, week. 146
3-26 CUBE query result explanation . 147
3-27 CUBE query tables . 148
4-1 Yearly sales by city, region . 155
4-2 Cumulative sales by quarter, annually and reporting period 157
4-3 Cumulative sales by quarter and annually . 158
4-4 Cumulative sales by quarter for 1993 . 158
4-5 Top 5 sales persons by region . 160
4-6 Global ranking . 161
4-7 Levels in hierarchy . 162
4-8 Ranking within peers . 163
4-9 Ranking within parent . 164
4-10 CORRELATION output . 165
4-11 Correlation of purchases of beer and snack foods 166
4-12 Correlation of purchases of beer and milk . 166
4-13 Store with highest profit of each variety of coffee 168
4-14 Highest profit of all varieties of coffee in a given store. 168
4-15 Most profitable product in each store . 169
4-16 Most profitable store for each variety of coffee 170
4-17 Total profit by store . 170
4-18 Profit by product in each store . 171
4-19 Store revenue and deviation from mean . 172
4-20 Standard deviations from the mean by revenue 173
4-21 Profit from a customer . 174
4-22 Customer profitability ranking result. 175
4-23 Customer profitability bar chart . 176
4-24 Equi-width histogram data . 178
4-25 Equi-width chart . 178
4-26 Equi-height histogram data . 180
4-27 Equi-height histogram . 180
4-28 Chi-Squared value of city and product preference relationship 183
4-29 Wilcoxon W . 184
4-30 Wilcoxon W . 187
4-31 Top Ten Palo Alto customers who got mortgages in February 188
4-32 Negative correlation between income range and mortgage loans. . . . 189
4-33 Palo Alto branch 1 total sales by product. 190
viii High-Function Business Intelligence in e-business

4-34 Palo Alto branches’ total monthly sales, one row per month 191
4-35 Palo Alto branches’ total monthly sales . 192
4-36 Monthly averages and percent change . 194
4-37 Monthly stock prices . 195
4-38 September stock prices . 197
4-39 September stock prices . 198
4-40 Non-linear curve fitting . 201
4-41 Hat diagonal . 203
4-42 Standard deviation around regression line . 205
4-43 All athletes in the diving event . 207
4-44 Gold, Silver and Bronze winners in diving . 208
4-45 Divers and their scores . 208
4-46 Athletes ranking in their country. 209
4-47 Number of medals each country won and total medals awarded v.1 . 210
4-48 Number of medals each country won and total medals awarded v.2 . 211
4-49 Medals won by day, country and total medals by country 212
4-50 Ranking when there are ties . 213
4-51 Tournament seeding . 215
4-52 Comparison graph to demonstrate seeding versus world rank 215
A-1 Sample correlation visualizations. 223
A-2 HAT diagonal influence of individual data points 227
A-3 Histogram. 233
A-4 Equi-height or frequency histogram . 234
C-1 Main syntax elements of materialized views . 242
C-2 REFRESH TABLE statement. 243
 Figures ix

x High-Function Business Intelligence in e-business

Tables

2-1 Refresh considerations . 27
2-2 Intra-database replication versus inter-database replication 97
3-1 List of statistics and analytic functions . 100
3-2 Function computations. 109
4-1 Survey data contingency table . 182
4-2 Chi-squared test for independence test statistic 182
A-1 Salaries for department D11 . 218
A-2 Covariance meaning . 221
A-3 Correlation coefficient meaning . 222
© Copyright IBM Corp. 2002 xi

xii High-Function Business Intelligence in e-business

Examples

2-1 Example of creating a deferred refresh materialized view 19
2-2 Example of creating a refresh immediate materialized view 19
2-3 LOADing from a cursor . 24
2-4 Creating a refresh deferred materialized view . 27
2-5 Materialized view with REFRESH DEFERRED option 30
2-6 Creating a refresh immediate materialized view 34
2-7 Superset predicates and perfect match materialized view 1 45
2-8 Superset predicates and perfect match — matching query 1 45
2-9 Superset predicates and perfect match materialized view 2 45
2-10 Superset predicates and perfect match — matching query 2 46
2-11 Aggregation functions & grouping columns materialized view 1 47
2-12 Aggregation functions & grouping columns — matching query 1 47
2-13 Aggregation functions & grouping columns materialized view 2 47
2-14 Aggregation functions & grouping columns — matching query 2 48
2-15 Aggregation functions & grouping columns materialized view 3 48
2-16 Aggregation functions & grouping columns — matching query 3 48
2-17 Internally rewritten query by DB2 using the materialized view. 49
2-18 Nullable columns or expressions in GROUP BY 50
2-19 Nullable columns or expressions in GROUP BY — user query 51
2-20 Rewritten query . 51
2-21 Extra tables in the query materialized view . 52
2-22 Extra tables in the query — matching query . 52
2-23 Extra tables in the materialized view . 53
2-24 Extra tables in the materialized view — matching query 53
2-25 Informational and system-maintained referential integrity constraints . . 54
2-26 CASE expression materialized view . 55
2-27 CASE expression — matching query. 56
2-28 Materialized view contains fewer columns than in query 57
2-29 Materialized view contains fewer columns than in query — no match. . 57
2-30 Materialized view with more restrictive predicates. 57
2-31 Materialized view with more restrictive predicates — no match. 58
2-32 Query: expression not derivable from materialized view 58
2-33 Query: expression not derivable from materialized view — no match . . 58
2-34 Capturing snapshot data into a table . 64
2-35 Query involving a simple predicate . 64
2-36 Generalize simple predicate to GROUP BY in a materialized view 65
2-37 “Problem” queries listed in priority order . 71
2-38 Materialized view AST3 . 73
© Copyright IBM Corp. 2002 xiii

2-39 EXPLAIN of Query 1 . 73
2-40 EXPLAIN of Query 2 . 75
2-41 EXPLAIN of Query 3 . 77
2-42 Materialized view AST5 . 78
2-43 EXPLAIN of Query 4 . 78
2-44 EXPLAIN of Query 5 . 80
2-45 Materialized view AST6 . 82
2-46 EXPLAIN of Query 6 . 82
2-47 EXPLAIN of Query 7 . 84
2-48 Materialized view AST7 . 85
2-49 EXPLAIN of Query 8 . 86
2-50 Columns that form unique keys in materialized views 88
2-51 Creating a replicated table in a nodegroup . 96
3-1 RAND function . 105
3-2 COVARIANCE example. 111
3-3 CORRELATION example 1 . 112
3-4 CORRELATION example 2 . 112
3-5 VARIANCE example . 113
3-6 STDDEV example 1 . 113
3-7 STDDEV example 2 . 114
3-8 Linear regression example 1 . 114
3-9 Linear regression example 2 . 115
3-10 Linear regression example 3 . 116
3-11 Linear regression example 4 . 117
3-12 Table containing an odd number of rows. 128
3-13 Table containing an even number of rows . 128
3-14 Compute median value with an even number of data points in the set 129
3-15 RANK() OVER example. 130
3-16 DENSE_RANK() OVER example . 130
3-17 ROW_NUMBER, RANK, DENSE_RANK example 131
3-18 RANK & PARTITION example . 132
3-19 OVER clause example. 134
3-20 ROWS & ORDER BY example . 135
3-21 ROWS, RANGE & ORDER BY example . 136
3-22 GROUPING, GROUP BY & CUBE example . 138
3-23 ROLLUP example . 141
3-24 CUBE example . 144
4-1 Sample & aggregation example. 151
4-2 Create sample table . 153
4-3 Compute the group size. 153
4-4 Scale the estimate by the true sampling rate . 153
4-5 Annual sales by region and city . 155
4-6 Sales revenue per quarter & cumulative sales over multiple years . . . 156
xiv High-Function Business Intelligence in e-business

4-7 Top 5 sales persons by region this year . 159
4-8 Globally rank the countries & states by sales revenues 161
4-9 Sales among peers . 162
4-10 Sales within each parent . 163
4-11 Relationship between product purchases . 165
4-12 Store with the highest profit on the different varieties of coffee 167
4-13 Coffee variety delivering the highest profit in each store 168
4-14 Most profitable product in each store . 169
4-15 Most profitable store for each variety of coffee 169
4-16 Sales revenues of stores noticeably different from the mean 172
4-17 Most profitable customers . 174
4-18 Equi-width histogram query . 177
4-19 Equi-height histogram query . 179
4-20 Chi-square computation. 183
4-21 Compute the ‘W’ statistic . 184
4-22 Generate feb_sales data . 186
4-23 Compute the ‘W’ statistic . 186
4-24 Top 10 Palo Alto customers who got mortgages in February 188
4-25 Are income and mortgage related? . 189
4-26 Palo Alto total sales . 189
4-27 Total monthly sales . 190
4-28 Palo Alto branches’ total monthly sales . 191
4-29 Customer usage profile view . 193
4-30 Detect & flag unusually large charges . 193
4-31 Monthly movement of stock prices with percentage change 194
4-32 Average weekly stock price in September . 196
4-33 Representing a non-linear equation . 199
4-34 Computer slope and intercept . 199
4-35 Compute R2 200

4-36 Correct R2 computation on original untransformed data 200
4-37 Determine the HAT Diagonal for the set of various cities 202
4-38 Cities where budgets to sales deviations outside the norm 204
4-39 All athletes competing in the event . 207
4-40 Rank athletes by score and identify the medal winners. 207
4-41 Rank each athlete within their individual countries 209
4-42 Medals by country & total medals awarded to date 209
4-43 Medals by country by day . 210
4-44 Medals won by day, country and total medals by country 211
4-45 Rank athletes when scores are tied . 212
4-46 Seed the players at Wimbledon . 214
B-1 AD_CAMP . 236
B-2 CAL_AD_CAMP. 236
B-3 BIG_CHARGES . 236
 Examples xv

B-4 CUST . 236
B-5 CUST_DATA . 236
B-6 CUSTTRANS . 236
B-7 EMPLOYEE . 236
B-8 EVENT . 237
B-9 FACT_TABLE . 237
B-10 FEB_SALES . 237
B-11 LC_PURCHASES . 237
B-12 LOC . 238
B-13 LOOKUP_MARKET . 238
B-14 PRICING . 238
B-15 PROD. 238
B-16 PROD_OWNED. 238
B-17 SALES . 239
B-18 SALES_DTL. 239
B-19 SEEDINGS . 239
B-20 STOCKTAB . 239
B-21 SURVEY . 239
B-22 SURVEY_MORTG. 239
B-23 TRAFFIC_DATA . 240
B-24 T . 240
B-25 TRANS. 240
B-26 TRANSACTIONS . 240
B-27 TRANSITEM . 240
xvi High-Function Business Intelligence in e-business

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
© Copyright IBM Corp. 2002 xvii

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
AS/400®
DataJoiner®
DataPropagator™
DB2®
DB2 Connect™
DB2 Extenders™

DB2 OLAP Server™
DB2 Universal Database™
Everyplace™
IBM®
IMS™
Intelligent Miner™
MVS™

Net.Data®
Perform™
QMF™
Redbooks™
Redbooks(logo)™
SP™
WebSphere®

The following terms are trademarks of International Business Machines Corporation and Lotus Development
Corporation in the United States, other countries, or both:

Lotus®
1-2-3®

Approach®
Word Pro®

K-station™

The following terms are trademarks of other companies:

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United
States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

C-bus is a trademark of Corollary, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure
Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.
xviii High-Function Business Intelligence in e-business

Preface

This IBM Redbook gives you an overview of the DB2 UDB engine’s Business
Intelligence (BI) functionality, and provides guidelines and examples of its use in
real world business scenarios.

The focus is on DB2 UDB’s materialized views feature (also known as Automatic
Summary Tables [ASTs], or Materialized Query Tables [MQTs], as this feature is
now called in DB2 product documentation), and its statistics, analytic, and OLAP
functions.

Other BI functionality such as replication is not covered in this book.

This book is organized as follows:

1. Chapter 1 provides an overview of IBM’s Business Intelligence strategy and
offerings, and positions the contents of this document with respect to the
overall solution.

2. Chapter 2 describes materialized views, and provides guidelines for creating,
updating and tuning them.

3. Chapter 3 provides an overview of DB2 UDB’s statistics, analytic, and OLAP
functions, with examples of their use.

4. Chapter 4 describes typical business level queries that can be answered
using DB2 UDB’s statistics, analytic and OLAP functions. These business
queries are categorized by industry, and describe the steps involved in
resolving the query, with sample SQL and visualization of the results.

5. Appendix A is an introduction to statistics and analytic concepts used in
resolving business queries described in Chapter 4.

6. Appendix B describes the DDL of the tables used in the examples.

7. Appendix C describes the main syntax elements of materialized view
creation.
© Copyright IBM Corp. 2002 xix

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, San Jose Center.

Nagraj Alur is a Project Leader with the IBM International Technical Support
Organization, San Jose Center. He has more than 28 years of experience in
DBMSs, and has been a programmer, systems analyst, project leader,
consultant, and researcher. His areas of expertise include DBMSs, data
warehousing, distributed systems management, and database performance, as
well as client/server and Internet computing. He has written extensively on these
subjects and has taught classes and presented at conferences all around the
world. Before joining the ITSO in November 2001, he was on a two-year
assignment from the Software Group to the IBM Almaden Research Center,
where he worked on Data Links solutions and an eSourcing prototype.

Peter Haas received a Ph.D. in Operations Research from Stanford University in
1986. He has been a Research Staff Member at the IBM Almaden Research
Center since 1987, where a major focus of his work has has been the application
of probabilistic and statistical techniques to database systems. He invented a
number of methods used by the DB2 query optimizer to estimate query
processing costs, as well as methods for estimation of catalog statistics that have
been incorporated into the DB2 RUNSTATS utility. He was a principal
implementor of the correlation analyis and linear regression functions in DB2
UDB, and helped provided similar functionality to the DB2 Warehouse Manager
product. He also developed technology for interactive online processing of
complex aggregation queries, and led an effort to develop a prototype "online
aggregation" interface to DB2. This work earned him the IBM Research Division
1999 Best Paper Award and an Honorable Mention at the 1999 ACM SIGMOD
conference. Recently, he has been leading an effort to provide sampling and
estimation functionality in DB2, and is helping to develop the proposed ISO
standard for sampling in SQL queries. He is a member of the Institute for
Operations Research and Management Sciences and is currently an Associate
Editor for the journal "Operations Research". Since 1999, he has been affiliated
with the Department of Management Science and Engineering at Stanford
University, where he teaches a course on computer simulation.

Daniela Momiroska is an IT Specialist from Macedonia, working in Business
Innovation Services in The Netherlands. She worked in IBM for three years as an
HR Access developer, and in the last two years as a WebSphere Commerce
Suite developer. Daniela has developed on-line shops for different customers,
and has extensive knowledge of Internet based products centered around the
WebSphere family. She holds a degree in computer science from the university
of Skopje, Macedonia.
xx High-Function Business Intelligence in e-business

Paul Read is a Relational Database Specialist with 20 years of experience in
application and system development and management. He is the lead EMEA
technical professional for DB2 products on the INTEL platforms and Mobile
platforms in the EMEA ATS PIC. He manages the beta and early support
programs for DB2 UDB and Everyplace. He also provides technical consulting
for the DB2 Brand software products across all platforms.

Nicolas Summers is a Senior IT Specialist working in Atlanta, Georgia for the
IBM Americas Techline organization. His current responsibilities include technical
sales support on DB2, Data Management, and Business Intelligence Solutions.
He has over 17 years experience in the IT environment as a manufacturing
engineer, systems engineer, sales specialist and technical sales support
specialist. He holds degrees in Chemistry and Chemical Engineering.

Virginia Totanes is a DB2 UDB DBA IBM Certified Solutions Expert with over 20
years of experience in application development and support. Since joining IBM
Canada's Data Warehousing practice (Business Intelligence) in 1999, she has
assisted in building marketing data mart and CRM data warehouse. Virginia is
knowledgeable of DB2 in MVS, AIX, Intel and AS/400 platforms.

Calisto Zuzarte is the manager of the DB2 Query Rewrite development group at
the IBM Toronto Lab. His key interest is in the SQL Query performance area. His
expertise spans the query rewrite and the cost based optimizer components,
both key components within the SQL compiler, that impact query performance.
Other development projects include features in DB2 involving data integrity
constraints. He also manages the DB2 interests within the Centre for Advanced
Studies (CAS) based in Toronto.

We would like to acknowledge the following people for their significant
contributions to this project:

Vikas Krishna
Guy Lohman
Hamid Pirahesh
Richard Sidle
IBM Almaden Research Center

Michelle Jou
Bob Lyle
Swati Vora
IBM Silicon Valley Laboratory

Petrus Chan
Steve La
Bill O’Connell
IBM Toronto Laboratory
 Preface xxi

Aakash Bordia
Daniel DeKimpe
Gregor Meyer
IBM Silicon Valley Laboratory

Yvonne Lyon, for her technical editing and FrameMaker expertise
IBM International Technical Support Organization, San Jose Center

Notice
This publication is intended to help DB2 database administrators, application
developers, and independent software vendors (ISVs) leverage DB2 UDB
engine’s powerful business intelligence functionality to achieve superior
performance and scalability of their e-business applications. The information in
this publication is not intended as the specification of any programming
interfaces that are provided by DB2 UDB Version 8. See the PUBLICATIONS
section of the IBM Programming Announcement for DB2 UDB Version 8 for more
information about what publications are considered to be product documentation.

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to the address on page ii.
xxii High-Function Business Intelligence in e-business

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

Chapter 1. Business Intelligence
overview

In this chapter we provide an overview of IBM’s Business Intelligence strategy
and offerings. We position the contents of this document with respect to the
overall solution.

The topics covered include:

� e-business drivers
� IBM’s BI strategy and offerings
� Redbook focus

1

© Copyright IBM Corp. 2002 1

1.1 e-business drivers
A number of factors have changed the business environment in recent years —
from events such as global economics and competition, mergers and
acquisitions, and savvy and demanding customers — to technology advances
such as the World Wide Web, cheaper PCs and a host of Internet access devices
such as PDAs, cellular telephones, and set tops. This is shown in Figure 1-1.

Figure 1-1 Changing business environment

Organizations clearly recognize that they can no longer dictate systems or
clients, that the Internet cannot be controlled, and that downtime will impact more
than employee productivity.

Events

Business

Global economics and competition
Mergers and acquisitions

Savvy customers

Technology

World Wide Web
Cheaper PCs

Internet access devices such as
PDA, palm, set top, telephone, etc.

Compressed time cycles from product conception to market
Customer Relationship Management

Reduce costs by streamlining processes
Exploit emerging opportunities

Changing Business Environment
2 High-Function Business Intelligence in e-business

To survive and thrive in such an environment, organizations must adapt and
innovate — business as usual could be a recipe for disaster. More so than ever
before, the following issues are critical. It is now mandatory for a business to:

� Acquire and retain loyal and profitable customers. Businesses must become
more responsive to its customers needs.

� Reduce costs by streamlining and transforming business processes,
improving the productivity and efficiency of its employees and business
partners and customers (self service and cutting out the intermediary — or
disintermediation, as it is now called — is an important element here). While
reducing costs is a perennial favorite that is generally characterized by stop
and starts, this now takes on a new urgency.

� Become competitive with very short product conception to implementation to
return on investment (ROI) cycles.

� Pursue every possible channel such as the Internet, and exploit emerging
opportunities to ensure success and avoid failure.

Businesses recognize the urgency to transform various business processes for
competitive advantage.

Note: With government bodies, the emphasis is more on keeping its
constituents happy — since acquisition and attrition are not relevant in
most cases.
 Chapter 1. Business Intelligence overview 3

These processes are highlighted in Figure 1-2.

Figure 1-2 Business critical processes

These are the business critical processes we are concerned with:

� Customer Relationship Management (CRM), which has to do with identifying,
understanding, anticipating and satisfying customer needs, that is, building
loyalty through improved customer satisfaction.

� e-commerce, which is a new channel for an organization's goods and
services to a whole wider global market.

� Supply Chain Management (SCM), which has to do with inter-company
business processes. This involves improving the efficiency (and reducing
costs) of interactions with suppliers, partners, distributors, customers, etc.

Business Critical Processes

An e-business organization connects critical business systems
directly to employees, customers, suppliers and distributors, via the
internet, intranets and extranets to gain a competitive advantage
4 High-Function Business Intelligence in e-business

� Enterprise Resource Planning (ERP), which has to do with managing the
bread-and-butter processes of an organization from planning, manufacturing,
inventory, shipping/distribution, accounting and human resources.

� Workgroup collaboration, which has to do with sharing of resources and
information amongst an organizations employees such as E-mail, meetings,
document sharing, etc. Field Force Automation improves the productivity of
employees in the field (salesman, technical support/maintenance persons,
and delivery personnel) and improves customer satisfaction and
responsiveness.

� Business Intelligence (BI) which has to do with collecting and analyzing
business information from a multitude of internal and external sources
for competitive advantage.

� Knowledge Management (KM), which has to do with combining and matching
information and personnel skills to great effect.

By extending the reach of an organization's business critical systems using
Internet technologies, the opportunity exists to gain significant competitive
advantage by transforming:

� Employees — from competent to responsive individuals

� Customers — from one time interaction to lifetime loyalty through mass
personalization instead of mass marketing

� Suppliers and distributors — from independence to interdependence

1.1.1 Impact of e-business
IT organizations have long understood their mission to support the applications
required to meet business objectives via an infrastructure that delivers
acceptable performance, availability, security, integrity and access to its user
community. Most business organizations today have successfully implemented
such infrastructures on private networks for their user community consisting of
primarily their worldwide employees.

However, e-business results in the addition of customers, suppliers and
distributors to the user community mix over the Internet, as well as intranets and
extranets, accessing business critical systems. This is because the user
community is now potentially global (requiring 7x24 operation), multi-lingual,

Important: When an organization connects its business critical systems
directly to customers, suppliers, distributors and employees in order to gain a
competitive advantage, it transforms the organization and becomes an
e-business.
 Chapter 1. Business Intelligence overview 5

generally use a browser interface on a multiplicity of client platforms, have a lot of
concerns over security and privacy, and can generate unpredictable workloads.
Customers in particular have choices (they are just a mouse-click away from
going over to the competition) and expect rapid response and superior service.

Figure 1-3 e-business impact

This has the potential to add orders of magnitude of complexity to the challenges
of managing the demands of the exploding user community. e-business
therefore exacerbates an already challenging situation.

e-business Impact

1
12

2

3

4
567

8

9

10

11

Available (7x24)

Web
Enable

Scaleable

Secure

National
Language
Support

Connect
to

Business
Critical

Systems
Support
Assorted

Client
Devices
6 High-Function Business Intelligence in e-business

1.1.2 Importance of BI
In today’s tough and competitive business climate, managers know that no
matter what their core business, they are in the “information business”. They
must drive decisions that directly influence results, and realize that businesses
that effectively use information to manage and impact decision making will have
the greatest competitive edge.

Powerful transaction-oriented information systems are now commonplace in
every major industry, effectively leveling the playing field for corporations around
the world.

Industry leadership now requires analytically oriented systems that can
revolutionize a company's ability to rediscover and utilize information they
already own. These analytical systems derive insight from the wealth of data
available, delivering information that's conclusive, fact-based and actionable. i.e.
Business Intelligence.

Business intelligence can improve corporate performance in any
information-intensive industry. Companies can enhance customer and supplier
relationships, improve the profitability of products and services, create
worthwhile new offerings, better manage risk, and pare expenses dramatically,
among many other gains. Through business intelligence applications such as
target marketing, customer profiling, and product or service usage analysis,
businesses can finally begin using customer information as a competitive asset.

Having the right intelligence means having definitive answers to such key
questions as these:

� Which of our customers are most profitable, and how can we expand
relationships with them?

� Which of our customers provide us minimal profit, or cost us money?

� Which products and services can be cross-sold most effectively, and to
whom?

Important: Of particular relevance to our upcoming discussion on BI is the
unpredictability of the number and complexity of interactions from a user
community that can test the most powerful servers (hardware and database)
available.

Scalability is a critical requirement — both the ability for existing servers
(hardware and database) to cope with spikes and workload growth, as well as
the ability to painlessly augment existing server resources with more powerful
servers or clusters of servers.
 Chapter 1. Business Intelligence overview 7

� Which marketing campaigns have been most successful?

� Which sales channels are most effective for which products?

� How can we improve the caliber of our customers' overall experience?

Most companies have the raw data to answer these questions, since operational
systems generate vast quantities of product, customer and market data from
point-of-sale, reservations, customer service, and technical support systems.
The challenge is to extract this information and reap its full potential.

Many companies take advantage of only a small fraction of their data for strategic
analysis. The remaining untapped data, often combined with data from external
sources like government reports, trade associations, analysts, the Internet, and
purchased information, is a gold mine waiting to be explored, refined, and
shaped into vital corporate knowledge. This knowledge can be applied in a
number of ways, ranging from charting overall corporate strategy to
communicating personally with employees, vendors, suppliers, and customers
through call centers, kiosks, billing statements, the Internet, and other touch
points that facilitate genuine one-to-one marketing on an unprecedented scale.

e-business impact on BI
Early business information systems were viewed as being standalone strategic
decision making applications separate from operational systems that manage
day to day business operations and supply data to the data warehouse and data
marts.

However, the information and analyses provided by these systems have become
vital to tactical day-to-day decision making as well, and are being integrated into
the overall business processes.

In particular, e-business is:

� Encouraging this integration since organizations need to be able to react
faster to changing business conditions in the e-business world than they do in
the brick and mortar environment. The integration of business information
systems into the overall business process can be achieved by building a
closed loop decision making system in which the output of BI applications is
routed to operational systems in the form of recommended actions such as
product pricing changes for addressing specific business issues.

� Causing organizations to consider extending this closed loop process to the
real-time automatic adjustment of business operations and marketing
campaigns based on the decisions made by the BI system. Such a real-time
closed loop system would deliver on-demand analytics for decision making
capable of providing a significant competitive edge.
8 High-Function Business Intelligence in e-business

� Placing significant scalability requirements on a BI system because of
e-business’ characteristics of unpredictable workloads and voluminous data.

In the following section we provide an overview of IBM’s BI strategy and product
offerings, and focuses on key BI scalability characteristics in the DB2 Universal
Database server product.

1.2 IBM’s BI strategy and offerings
IBM has been a leader in BI, beginning with the landmark paper:

“An Architecture for a Business and Information System”,
by Paul Murphy and Barry Devlin, 1988 IBM System Journal

Since then, IBM has invested significant development and marketing resources
into the delivery of a set of technologies, products and partnerships for an
integrated end-to-end enterprise analytics1 solution.

IBM’s enterprise analytics strategy has four main objectives:

� Support on-demand enterprise analytics and real-time decision making.

� Integrate BI and enterprise analytical processing into DB2 UDB.

� Simplify the building of an integrated system for delivering enterprise
analytics.

� Form partnerships with leading BI and enterprise analytic vendors such as
Ascential Software, Brio Technology, Business Objects, Evoke Software,
Evolutionary Technology International (ETI), Hyperion Solutions, Trillium
Software and Vality Technology.

Figure 1-4 describes the framework of an intelligent e-business and lists IBM’s BI
and enterprise analytics products. Also listed therein are the database
requirements for BI which we will elaborate on in a following section.

1 Enterprise Analytics is the collection of all critical business information metrics derived from a BI
system, that is needed by executives, managers and business analysts to react rapidly to trends and
changes in the marketplace
 Chapter 1. Business Intelligence overview 9

Figure 1-4 Intelligent e-business DataBase Associates International copyright

With reference to the above framework, IBM’s products are as follows:

� Portal:

– Federated data access products include DB2 Connect, DB2 Life Sciences
Data Connect, DB2 Relational Connect, DB2 DataJoiner, DataJoiner
Classic Connect, Data Links Manager, Net.Data, Data Warehouse
development, DB2 Data Warehouse Manager, DB2 DataPropagator, IMS
DataPropagator, Data Refresher and WebSphere MQ.

– Portal development products include WebSphere Portal Server, Enterprise
Information Portal and Lotus K-station and Discovery Server.
10 High-Function Business Intelligence in e-business

� Database Management products:

– DB2 Universal Database integrated with DB2 Control Center, Data
Warehouse Center, DB2 OLAP Starter Kit, DB2 Connect, DB2 Extenders
for multimedia data, DB2 XML Extender, DB2 DataPropagator and
Net.Data.

– DB2 Everyplace, DB2 Query Patroller, DB2 Performance Monitor and DB2
Net Search Extender.

� Analytics:

– Analytic applications such as WebSphere Commerce Suite, WebSphere
Commerce Analyzer and WebSphere Site Analyzer.

– Analytic application development products such as DB2 Intelligent Miner
Scoring, DB2 Intelligent Miner for Data, DB2 Intelligent Miner for Text,
DB2 OLAP Server, DB2 OLAP Server Analyzer, DB2 Spatial Extender,
Query Management Facility and Visual Age for Java.

Please refer to the appropriate IBM product documentation for details about
these products.

1.2.1 BI and analytic enhancements in DB2 UDB
A number of features have been added to DB2 UDB over the years to enhance
the performance of BI and analytics, and thereby the scalability of the DB2 UDB
engine particularly in an e-business environment of voluminous data,
unpredictable workloads and rapidly changing business environments.

DB2 UDB BI and analytic performance features include SQL language
extensions such as VARIANCE, COVARIANCE, CORRELATION, regression,
ROLLUP and CUBE operators, support for large tables and bufferpools,
partitioning of large tables for parallel processing, inter-query and intra-query
parallel processing, materialized views for creating and refreshing summarized
data, cost-based optimizer with multiple join algorithms, star schema
optimization, index only access, index ANDing and ORing, caching of optimized
SQL statements for repeat queries, and query rewrite of inefficient queries.
 Chapter 1. Business Intelligence overview 11

1.2.2 Advantages of BI functionality in the database engine
The advantages of executing BI functions in the database engine include:

� Superior scalability:

By executing query requests as close to the data as possible, significant
performance can be achieved thus enabling a larger workload to be serviced
with the same amount of computing resources.

Automatic exploitation of the database engine’s parallelism capabilities adds
significantly to performance and scalability of BI queries.

� Consistent results:

Evaluating BI functions in the database engine guarantees consistent results
and precision handling across all queries

� Reduced data latency:

When BI functionality is executed by analytic tools, they typically operate on
data that has been extracted and transformed from the operational system.
There is a degree of latency introduced as a consequence. Also this
intermediate extract/transform process may inhibit organizations from
performing more frequent analytics.

By supporting BI functions in the engine, organizations can potentially run
analytics:

– Directly against operational data thereby reducing the impact of latency.

– More frequently against the data which could enable an organization to
detect changing business conditions in a more timely fashion, thus gaining
a competitive advantage.

� Reliability, availability, security and maintainability:

A database engine’s inherent manageability characteristics are available to all
BI queries.

1.3 Redbook focus
In this redbook, we cover DB2 UDB engine features that have not been
adequately discussed in either the DB2 technical library or other redbooks, but
are critical to the performance and scalability of a BI system.

Our focus is on materialized views (aka Automatic Summary Tables [AST] or
Materialized Query Tables [MQT] in IBM product documentation), and the
statistics, analytic and OLAP functions in the DB2 UDB engine that can be
exploited by analytic applications, DSS, OLAP and mining tools shown in
Figure 1-5, to achieve superior performance and scalability.
12 High-Function Business Intelligence in e-business

Figure 1-5 Business Intelligence functionality

1.3.1 Materialized views
Materialized views provide a powerful look aside capability for the DB2 optimizer
to significantly improve the performance of complex and long running decision
support queries over voluminous data. In some cases, the improvement has
been in orders of magnitude!

The obvious challenges for the DBA are:

� Identifying the requirements for such materialized views
� Creating and maintaining them efficiently
� Dispensing with them when they are no longer necessary

These materialized view issues are covered in this book.

Data Warehouse

DSS OLAP MINING

ETML

IBM Intelligent Miner
SAS
etc

IBM/ESSBASE
Cognos

Microstrategy
Business Objects

Brio
etc

WebSphere Commerce Suite, Siebel, i2, Ariba, etc

 Analytic Applications (SCM, CRM..)

Business Intelligence Functionality

Import from:
Legacy & External

Sources

DB2

DBMSs
Files
Web
ERP
etc

DB2DB2

IBM QMF
MS Access
IBM/ESRI

etc

Attention: Materialized views are known as Automatic Summary Tables
(AST), or Materialized Query Tables (MQT) in IBM product documentation.
We will use the more widely known term materialized views to mean
ASTs/MQTs throughout this document.
 Chapter 1. Business Intelligence overview 13

1.3.2 Statistics, analytic and OLAP functions
A number of SQL extensions have been implemented in DB2 UDB in support of
key statistics, analytic and OLAP functions as described earlier, and this list is
expected to grow over time.

Application developers and tool vendors who take advantage of DB2 UDB’s SQL
extensions can be expected to achieve significant performance benefits thus
obtaining greater throughput and scalability, and a competitive edge.

In this book we discuss the various statistics, analytic, and OLAP functions
supported in DB2 UDB, and provide examples of their usage in real world
business scenarios.

Important: The actual performance benefits of using this functionality will
depend upon an organization’s unique workload and the resources available.
14 High-Function Business Intelligence in e-business

Chapter 2. DB2 UDB’s materialized
views

In this chapter we provide an overview of DB2’s materialized views, and offer
guidelines for creating, updating, and tuning them.

The topics covered include:

� Materialized view overview
� Materialized view CREATE considerations
� Materialized view maintenance considerations
� Loading base tables (LOAD utility)
� Materialized view ALTER considerations
� Materialized view DROP considerations
� Materialized view matching considerations
� Materialized view design considerations
� Materialized view tuning considerations
� Refresh optimization
� Materialized view limitations
� Replicated tables in nodegroups

2

© Copyright IBM Corp. 2002 15

2.1 Materialized view overview
In this section, we describe:

� Materialized view motivation
� Materialized view concept overview
� Materialized view usage considerations
� Materialized view terminology

2.1.1 Materialized view motivation
Before we explain what a materialized view is, let us discuss the motivation for its
introduction.

In a data warehouse environment, users often issue queries repetitively against
large volumes of data with minor variations in a query’s predicates. For example:

� Query A might request the number of items belonging to a consumer
electronics product group sold in each month of the previous year for the
western region.

� Query B may request the same kind of information for only the month of
December for all regions in the USA.

� Query C might request monthly information for laptops for all regions in the
USA over the past 6 months.

The results of these queries are almost always expressed as summaries or
aggregates. The base data could easily involve millions of transactions stored in
one or more tables, that would need to be scanned repeatedly to answer these
queries. Query performance is more than likely to be poor in such cases.

Materialized views were introduced to address the aforementioned performance
problems.
16 High-Function Business Intelligence in e-business

2.1.2 Materialized view concept overview
Figure 2-1 provides an overview of the materialized view concept.

Figure 2-1 Materialized view overview

Support for materialized views requires the following:

� Having a DBA pre-compute an aggregate query, and materialize the results
into a table. This summary table would contain a superset of the information
that could answer a number of queries that had minor variations.

� Enhancing the DB2 optimizer to automatically rewrite a query against the
base tables, to target the materialized view instead (if appropriate) in order to
satisfy the original query.

Since the materialized view often contains precomputed summaries and/or a
filtered subset of the data, it would tend to be much smaller in size than the base
tables from which it was derived. When a user query accessing the base table is
automatically rewritten by the DB2 optimizer to access the materialized view
instead, then significant performance gains can be achieved.

DB2 Optimizer

 SQL Queries
Against Base Tables

Base Table
T2

materialized views
T1,T2,..Tn

Base Table
Tn

Base Table
T1

Immediate
Refresh

Deferred
Refresh

with
query

rewrite

no
query

rewrite

OR
 Chapter 2. DB2 UDB’s materialized views 17

Figure 2-1 also shows that two approaches may be adopted to maintain the
materialized view:

� In the deferred refresh approach, DB2 does not automatically keep the
materialized view in sync with the base tables, when the base tables are
updated. In such cases, there may be a latency between the contents of the
materialized view, and the contents in the base tables.

� In the immediate refresh approach, the contents of the materialized view are
always kept in sync with the base tables. An update to an underlying base
table is immediately reflected in the materialized view as part of the update
processing. Other users can see these changes after the unit of work has
completed on a commit. There is no latency between the contents of the
materialized view and the contents in the base tables.

The pros and cons of each approach are discussed in detail in 2.3, “Materialized
view maintenance considerations” on page 26.

Case Study: In one customer scenario, a query required computing the total
sales for all product categories for the year 1998. It involved joining a 1.5
billion row transaction table with three dimensional tables. The query had to
touch at least 400 million rows in the transaction table.

Without an materialized view, the response time on a 22-node SP was 43
minutes.

With an materialized view, the response time was reduced to 3 seconds!!!

In this case, DB2 touched at least 4000 times fewer rows and avoided a join.

The benefits achievable with materialized views depends upon one’s
own unique workload, and your mileage will vary.

Important: Materialized view functionality is somewhat similar to the role of a
DB2 index which provides an efficient access path that the query user is
typically unaware of. However, unlike an index, a user may directly query the
materialized view, but this is not generally recommended since it would detract
from the appeal of an materialized view being a black box that an
administrator creates and destroys as required to deliver superior query
performance.

Adapting their queries to use a materialized view may not be a trivial exercise
for the user.
18 High-Function Business Intelligence in e-business

Example 2-1 and Example 2-2 show examples of creating a materialized view.
Details of the syntax are described in Appendix C-1, “Main syntax elements of
materialized views” on page 242.

Example 2-1 Example of creating a deferred refresh materialized view

CREATE TABLE custtrans AS
(
SELECT cust_id, COUNT(*) AS counttrans
FROM trans
WHERE cust_id > 500
GROUP BY cust_id
)
DATA INTITIALLY DEFERRED REFRESH DEFERRED

Example 2-2 Example of creating a refresh immediate materialized view

CREATE TABLE dba.trans_agg AS
(
SELECT ti.pgid, t.locid, t.acctid, t.status,
 YEAR(pdate) as year, MONTH(pdate) AS month,
 SUM(ti.amount) AS amount, COUNT(*) AS count
FROM transitem AS ti, trans AS t
WHERE ti.transid = t.transid
GROUP BY YEAR(pdate), MONTH(pdate)
)
DATA INITIALLY DEFERRED REFRESH IMMEDIATE

A number of other parameters such as DISABLE | ENABLE QUERY
OPTIMIZATION, MAINTAINED BY SYSTEM | USER, PROPAGATE IMMEDIATE
etc. are applicable to materialized views, and are allowed to default in the
examples shown.

2.1.3 Materialized view usage considerations
The decision to implement materialized views will depend upon answers to the
following questions:

1. Is it acceptable for the user application if the user query gets different results
depending on whether the query routes to the materialized view, or accesses
the base tables directly?

Note: In both these examples, it is the “DATA INITIALLY DEFERRED
REFRESH DEFERRED | IMMEDIATE” that identifies it as a materialized view.
The SUMMARY keyword that was part of the earlier syntax for creating
materialized views is not required, but is supported for backward compatibility.
 Chapter 2. DB2 UDB’s materialized views 19

2. What is the acceptable latency of data for the query?

– For data warehouses and strategic decision making, there can be (and in
some cases needs to be) a certain latency such as end-of-day or
end-of-week or end-of-month information. In such cases, the materialized
views need not be kept in sync with the base tables. DB2 supports a
deferred refresh of the materialized view for such scenarios

– For OLTP and tactical decision making, any materialized view latency may
be unacceptable, and DB2 supports an immediate refresh of the
materialized view in such cases. It is important to note that there could be
significant performance overheads for updates of the base tables when the
volume of update activity is high in these scenarios.

3. Will the performance benefits of implementing materialized views be
significant enough to offset the overheads of maintaining them. Overheads
include disk space for the staging table1 (if one exists), materialized view and
any associated indexes, and cost of maintaining the materialized view when
the underlying base tables are updated.

2.1.4 Materialized view terminology
While materialized views involving aggregate tables were initially introduced to
address performance problems in a data warehouse environment, they can also
be exploited for better performance in an e-business environment. For example,
in e-commerce, product catalog information can be cached on mid-tier servers to
significantly improve the performance of catalog browsing. Materialized views
can be used to cache back-end database product information on a mid-tier, and
such materialized views do not involve summary data. DB2 supports such
caching by allowing materialized views to be defined over nicknames that are
used to define a remote table. Populating the materialized view involves pulling
data from the remote table and storing it locally, resulting in significant
performance benefits. Note that this only applies to deferred refresh materialized
views.

1 See “Incremental refresh” on page 29 for further details.
20 High-Function Business Intelligence in e-business

Materialized views were introduced in DB2 UDB Version 5, and have been
continuously enhanced with new capabilities since then.

2.2 Materialized view CREATE considerations
Figure 2-2 provides an overview of the steps involved in creating a materialized
view.

Figure 2-2 CREATE materialized view overview

Note: Prior to DB2 UDB V8, materialized views were named Automatic
Summary Tables (ASTs) in IBM product documentation. While it was possible
to define non-aggregate materialized views in DB2 UDB V7, the restriction
was that such a materialized view could only be defined on single base table.
In DB2 UDB V8, this restriction has been removed, and since materialized
views can include other than summary data, the more generalized term
Materialized Query Tables (MQT) was introduced. ASTs can be considered to
be a subset of the generalized MQT which specifically includes summary data.

Attention: Throughout this document, we use the more widely known term
materialized views to mean ASTs/MQTs.

Is the
materialized view
MAINTAINED BY

SYSTEM?

Tune the materialized view
(indexes, runstats)

CREATE the materialized view
(may be MAINTAINED BY SYSTEM or

MAINTAINED BY USER)
materialized view goes into

 CHECK PENDING NO ACCESS state

REFRESH TABLE
statement

(resets
CHECK PENDING NO ACCESS

state)

NO

Reset
CHECK PENDING NO ACCESS

state using
SET INTEGRITY statement

YES

SET INTEGRITY
 statement

(resets
CHECK PENDING NO ACCESS

 state)

MAINTAINED BY USER

Use
LOAD or IMPORT

 to populate
the materialized view

STEP 2

STEP 3

STEP 1

POPULATE THE MATERIALIZED VIEW
 Chapter 2. DB2 UDB’s materialized views 21

We now briefly describe these steps:

2.2.1 Step 1: Create the materialized view
Assuming that the user has determined what the materialized view should look
like (see 2.8, “Materialized view design considerations” on page 60 for a
discussion of the design considerations), the following occurs when the
materialized view creation DDL is executed.

� Since the materialized view has not yet been populated, it is placed in
CHECK PENDING NO ACCESS2 state regardless of whether it is a system
maintained or a user maintained materialized view. No SQL read or write
access is permitted against tables in a CHECK PENDING NO ACCESS state.

� Dependencies regarding the base tables and the materialized view are
recorded in SYSCAT.TABLES, SYSCAT.TABDEP, SYSCAT.VIEWS just as any
other table or view definition creation.

� All packages that update the base tables on which the materialized view is
built are invalidated if the REFRESH IMMEDIATE option is chosen, or it is a
REFRESH DEFERRED materialized view that is associated with a staging
table. This is because the SQL compiler must add appropriate operations in
the package to support the refresh immediate materialized views or staging
tables. When the package is first accessed after invalidation, an automatic
rebind ensures that the package has been updated to support the
materialized view or staging table.

An EXPLAIN of the rebound package will highlight the additional SQL
operations being performed to support materialized views.

2.2.2 Step 2: Populate the materialized view
DB2 supports materialized views that are either:

� MAINTAINED BY SYSTEM (default): In this case, DB2 ensures that the
materialized views are updated, when the base tables on which they are
created get updated. Such materialized views may be defined as either
REFRESH IMMEDIATE, or REFRESH DEFERRED. If the REFRESH
DEFERRED option is chosen, then either the INCREMENTAL or NON
INCREMENTAL refresh option can be chosen during refresh. This is
discussed in detail in 2.3, “Materialized view maintenance considerations” on
page 26.

� MAINTAINED BY USER: In this case, it is up to the user to maintain the
materialized view whenever changes occur to the base tables. Such
materialized views must be defined with the REFRESH DEFERRED option.

2 This was previously called the CHECK PENDING state.
22 High-Function Business Intelligence in e-business

Even though the REFRESH DEFERRED option is required, unlike
MAINTAINED BY SYSTEM, the INCREMENTAL or NON INCREMENTAL
option does not apply to such materialized views, since DB2 does not
maintain such materialized views.

A couple of possible scenarios where such materialized views could be
defined are as follows:

a. For efficiency reasons, when the user is convinced that (s)he can
implement materialized view maintenance far more efficiently than the
mechanisms used by DB2. For example, the user has high performance
tools for rapid extraction of data from base tables, and loading the
extracted data into the materialized view.

b. For leveraging existing “user maintained” summaries, where the user
wants DB2 to automatically consider them for optimization for new ad hoc
queries being executed against the base tables.

Appendix C, “Materialized view syntax elements” on page 241 provides details
about the syntax, etc.

Populating a MAINTAINED BY SYSTEM materialized view
Typically, one of the following two approaches can be used to populate a
MAINTAINED BY SYSTEM materialized view. These are described briefly as
follows:

1. SET INTEGRITY

The following statement causes the materialized view to be populated, and
results in the CHECK PENDING NO ACCESS state being reset on successful
completion.

SET INTEGRITY FOR tablename IMMEDIATE CHECKED3

2. REFRESH TABLE

The following statement also causes the materialized view to be populated,
and the CHECK PENDING NO ACCESS state to be reset on successful
completion.

REFRESH TABLE tablename

3 Since we do not have constraints on materialized views, we should not specify exception tables for
materialized views.

Note: SET INTEGRITY statement also applies to staging tables (see 2.3.1,
“Deferred refresh” on page 27 for details on staging tables).
 Chapter 2. DB2 UDB’s materialized views 23

Users may want to avoid this logging overhead during the initial population of
the materialized view by following these steps:

1. Make the base tables read only.

2. Extract the required data from the base tables, and write it to an external file.

3. IMPORT or LOAD the extracted data into the materialized view. These
operations are permitted on a table in CHECK PENDING NO ACCESS state.

4. Reset the CHECK PENDING NO ACCESS state on the materialized view
using the following statement:

SET INTEGRITY FOR tablename ALL IMMEDIATE UNCHECKED

5. Make the base tables read/write.

Another option, which overcomes the concern of extracting data correctly to an
external file, is to use the LOAD the data from a cursor, as shown in
Example 2-3.

Example 2-3 LOADing from a cursor

-- base table definition
CREATE TABLE t1

(
c1 INT,
c2 INT,
c3 INT
);

-- create the refresh deferred materialized view
CREATE TABLE a1 AS

(
SELECT c1, count(*) AS cs

Note: There is no semantic difference between using the SET INTEGRITY or
the REFRESH TABLE syntax; both are treated identically.

Attention: Using the SET INTEGRITY or REFRESH TABLE approaches to
populate the materialized view involves using SQL INSERT subselect type
processing, which may result in excessive logging when very large
materialized views are being populated.

Important: With this approach, it is the user’s responsibility to ensure that the
data being loaded into the materialized view correctly matches the query
definition of the materialized view.
24 High-Function Business Intelligence in e-business

FROM t1
GROUP BY c1
)

DATA INITIALLY DEFERRED REFRESH DEFERRED;

-- make the base table read only

-- ensure that the cursor is not closed automatically
UPDATE COMMAND OPTIONS USING C OFF;

-- cursor declaration that mirrors materialized view query definition
DECLARE cc CURSOR FOR

SELECT c1, COUNT(*)
FROM t1
GROUP BY c1;

-- LOAD the materialized view with the contents of the cursor
LOAD FROM CC OF CURSOR REPLACE INTO a1;

-- reset the CHECK PENDING NO ACCESS state onthe materialized view
SET INTEGRITY FOR a1 ALL IMMEDIATE UNCHECKED;

-- make the base table read/wite

When incremental refresh4 is supported for such materialized views, REFRESH
TABLE can subsequently be used to perform the necessary ongoing
maintenance of this materialized view when the underlying tables are updated.

Populating a MAINTAINED BY USER materialized view
In the user-managed approach, it is the user’s responsibility to populate the
materialized view, and make it available for matching by resetting the CHECK
PENDING NO ACCESS state. The user is responsible for ensuring the
consistency and integrity of the materialized view. Typically, the user would:

1. Make the base tables read only.

2. Extract the required data from the base tables, and write it to an external file.

4 See 2.3.1, “Deferred refresh” on page 27 for a discussion of incremental refresh.

Note: When incremental refresh is not supported for such materialized views,
it may be more appropriate to create materialized views as MAINTAINED BY
USER, and adopt the following approach for populating user maintained
materialized views.
 Chapter 2. DB2 UDB’s materialized views 25

3. IMPORT or LOAD the data into the materialized view — these operations are
permitted on a table in CHECK PENDING NO ACCESS state.

4. Reset the CHECK PENDING NO ACCESS state using the following
statement:

SET INTEGRITY FOR tablename ALL IMMEDIATE UNCHECKED

This action is recorded in the CONST_CHECKED column5 (value ‘U’) in the
catalog table SYSCAT.TABLES column, indicating that the user has assumed
responsibility for data integrity of the materialized view.

5. Make the base tables read/write.

The process described in Example 2-3 can also be used to populate a
maintained by user materialized view.

2.2.3 Step 3: Tune the materialized view
This involves the creation of appropriate indexes, and executing the RUNSTATS
utility on the materialized view to ensure optimal access path selection.
“Materialized view tuning considerations” on page 87 describes these
considerations in greater detail.

2.3 Materialized view maintenance considerations
DB2 supports two approaches for maintaining materialized views — a deferred
refresh approach, and an immediate refresh approach. These approaches are
described in this section.

Table 2-1 summarizes some considerations relating to refresh immediate and
refresh deferred materialized views.

Important: SQL INSERT statements cannot be issued against a table in
CHECK PENDING NO ACCESS state. If the user wishes to populate the
materialized view using SQL INSERT statements, then (s)he must first reset
the CHECK PENDING NO ACCESS state. However, optimization must first be
disabled via the DISABLE QUERY OPTIMIZATION option in the CREATE
DDL to ensure that a dynamic SQL query does not accidentally optimize to
this materialized view while the data in it is still in a state of flux. Once the
materialized view has been populated, then optimization needs to be enabled.

5 CONST_CHECKED is defined as a CHAR(32) and is viewed as an array, where the value stored at
CONST_CHECKED(5) represents a summary table.
26 High-Function Business Intelligence in e-business

Table 2-1 Refresh considerations

2.3.1 Deferred refresh
This maintenance approach is used when the materialized view need not be kept
in sync with the base tables as the base tables are being updated. The data may
be refreshed when appropriate as deemed by the administrator. Such
materialized views are called REFRESH DEFERRED tables.

Example 2-4 shows an example of SQL for creating a REFRESH DEFERRED
materialized view.

Example 2-4 Creating a refresh deferred materialized view

CREATE SUMMARY TABLE dba.summary_sales
AS (SELECT)
DATA INITIALLY DEFERRED
REFRESH DEFERRED

Items REFRESH IMMEDIATE REFRESH DEFERRED

System maintained only System maintained User maintained only

Static SQL Optimization No optimization No optimization

Dynamic SQL Optimization Optimization Optimization

SQL INSERT,
UPDATE, DELETE
against
materialized view

Not permitted Not permitted Permitted

REFRESH TABLE
tablename

Permitted Permitted Not applicable

REFRESH TABLE
NOT
INCREMENTAL

Permitted Permitted Not applicable

REFRESH TABLE
INCREMENTAL

Permitted Requires staging table Not applicable

Staging table Not applicable Same restrictions to
creating them, as those
applying to REFRESH
IMMEDIATE materialized
views

Not applicable
 Chapter 2. DB2 UDB’s materialized views 27

Figure 2-3 provides an overview of maintaining a REFRESH DEFERRED
materialized view.

Figure 2-3 Deferred refresh

A REFRESH DEFERRED materialized view may be maintained via a REFRESH
TABLE command with either a full refresh (NOT INCREMENTAL) option, or an
incremental refresh (INCREMENTAL) option.

� With a full refresh, DB2 deletes the contents of the contents of the
materialized view, scans the base table(s), computes and generates all the
necessary rows, and then inserts these rows in to the materialized view.

� With an incremental refresh, a staging table6 must be defined for the
materialized view. DB2 synchronously updates the staging table as the base
tables are being updated, and then computes the delta joins and aggregates
for updating the materialized view when the incremental refresh is requested.

Restriction: Materialized view optimization does not occur for static SQL
statements with REFRESH DEFERRED tables.

6 See “Incremental refresh” on page 29 for further details.

Important: Only MAINTAINED BY SYSTEM materialized views support the
REFRESH TABLE command.

Base Table
T2

Staging
Table
ST1

Base Table
Tn

Base Table
T1

Full Refresh

Incremental Refresh

MV
T1,T2,..Tn

synchronous

SQL
INSERTs
UPDATEs
DELETEs

+
LOAD

delta aggregate
28 High-Function Business Intelligence in e-business

A brief discussion of the full refresh and incremental refresh follows:

Full refresh
The following statement will request a full refresh of the materialized view
dba.summary_sales:

REFRESH TABLE dba.summary_sales NOT INCREMENTAL

The NOT INCREMENTAL option specifies a full refresh for the materialized view
by recomputing the materialized view definition. When this is done, all existing
data within the table is deleted, and the query defining the materialized query
table is computed in it's entirety. For the duration of a full refresh, DB2 takes a
share lock on the base tables, and a z-lock on the materialized view. Depending
upon the size of the base tables, this process can take a long time. The base
tables are not updatable for this duration, and the materialized view is not
available for access or optimization. An additional consideration is that significant
logging may occur during a full refresh as it populates the materialized view.

Incremental refresh
The following statement will request an incremental refresh of the materialized
view dba.summary_sales:

REFRESH TABLE dba.sales_summary INCREMENTAL

The INCREMENTAL option specifies an incremental refresh for the materialized
view by considering only the consistent content of an associated staging table.

Note: If DB2 detects that the materialized view needs to be fully recomputed,
then an error condition is returned.

Important: If neither INCREMENTAL nor NOT INCREMENTAL is specified on
the REFRESH TABLE statement, the system will determine whether
incremental processing is possible. If not possible, full refresh will be used.
The following actions apply:

� If a staging table is present for the materialized view that is to be refreshed,
and incremental processing is not possible because the staging table is in
a pending state, an error is returned.

� Full refresh will be performed if the staging table is inconsistent and the
staging table is pruned.

� Incremental refresh will be performed using the contents of a valid staging
table, and the staging table will be pruned.
 Chapter 2. DB2 UDB’s materialized views 29

Figure 2-4 provides an overview of the steps involved in creating, enabling and
exploiting a staging table on the materialized view shown in Example 2-5.

Example 2-5 Materialized view with REFRESH DEFERRED option

CREATE SUMMARY TABLE summary_sales
AS (SELECT)
DATA INITIALLY DEFERRED
REFRESH DEFERRED

Figure 2-4 Incremental refresh with staging table

We discuss each of these steps briefly.

Step 1
The staging table is created on the previously defined materialized view in this
step.

Restriction: For this to be successful, even though the sales_summary table
is defined with the REFRESH DEFERRED option, it must satisfy all the
conditions of a REFRESH IMMEDIATE materialized view as described in
“Materialized view limitations” on page 92.

Note: Both the materialized view sales_summary and the staging table
sales_stage are in a CHECK PENDING NO ACCESS state.

C R E A T E T A B LE sa les_s tage
 F O R sa les_s um m ary
 P R O P A G A T E IM M E D IA T E

S E T IN T E G R IT Y F O R sa les_stage
 A LL IM M E D IA T E U N C H E C K E D

R E F R E S H T A B LE s a le s_sum m ary
 N O T IN C R E M E N T A L

C R E A T E S T A G IN G
T A B LE

M A K E S T A G IN G
T A B LE A V A ILA B LE

IN IT IA L P O P U L A T IO N
O R F U L L R E F R E S H

R E F R E S H T A B LE s a les _sum m ary
 IN C R E M E N T A L

IN C R E M E N T A L
R E F R E S H

U P D A T E / D E L E T E / IN S E R T & L O A D IN S E R T
a c tiv ity

S te p 2

S te p 3

S te p 5

S tep 1

S te p 4
30 High-Function Business Intelligence in e-business

The PROPAGATE IMMEDIATE parameter in the CREATE TABLE statement
indicates that any changes made to the base tables as part of an INSERT,
DELETE, UPDATE operation are immediately added to the staging table, with
additional information generated in the three extra columns of the staging
table.This is done as part of the same SQL statement.

The schema of the staging table looks much like the materialized view for which it
has been defined. The difference is that the staging table may have two or three
more columns than its associated materialized view. These additional columns
are as follows:

� GLOBALTRANSID CHAR(8) — global transaction ID for each propagated row

� GLOBALTRANSTIME CHAR(13) — the timestamp of the transaction

� OPERATIONTYPE INT — values -1, 0 and 1 for SQL DELETE, UPDATE and
INSERT respectively

For replicated7 materialized views and non-aggregate query materialized views,
the staging table contains three more columns than the associated materialized
view. Otherwise, the staging table only contains two extra columns, with the
OPERATIONTYPE column being omitted.

Step 2
Issuing the SET INTEGRITY statement against the staging table takes it out of
the CHECK PENDING NO ACCESS state, thus making it available for
processing.

Step 3
Issuing the REFRESH TABLE statement against the materialized view
sales_summary with the NOT INCREMENTAL option, populates the materialized
view and takes it out of CHECK PENDING NO ACCESS state on successful
completion.

Step 4
This step reflects ongoing update activity against the underlying base tables. For
SQL operations, the staging table is updated synchronously within the same unit
of work as the SQL INSERT, UPDATE or DELETE statement.

Restriction: Each column name in the staging table must be unique and
unqualified. If a list of column names is not specified, the columns of the table
inherit the names of the columns of the associated summary table and the
additional columns are defined. If a list of columns is specified, it has to
include the required extra columns.

7 This applies to a partitioned database environment.
 Chapter 2. DB2 UDB’s materialized views 31

Step 5
When the user issues the following REFRESH TABLE statement against the
materialized view with the INCREMENTAL option, DB2 uses the data in the
staging table if possible, to update the target materialized view and prune the
processed data in the staging table as part of this process.

REFRESH TABLE dba.summary_sales INCREMENTAL

The rows in the staging table are grouped and consolidated as required, before
the changes are applied to the materialized view.

Note that until the materialized view is refreshed via a REFRESH TABLE
statement, the content of the staging table reflects the delta changes to the base
table(s) since the last REFRESH TABLE statement.

Note: When LOAD INSERT is used against the base table(s), the staging
table is not updated synchronously unlike the case of SQL statements.

The following steps will synchronize the staging table with the contents of the
base table(s).

1. SET INTEGRITY FOR base_table_name IMMEDIATE CHECKED

This statement will make the base table available after verifying the
consistency of the newly appended rows to the base table. It will also
cause a CHECK PENDING NO ACCESS state to be set on the staging
table. This is to ensure that a subsequent REFRESH TABLE on the
materialized view with an INCREMENTAL option will fail, since the staging
table is not synchronized with the base table.

2. SET INTEGRITY FOR staging_table_name IMMEDIATE CHECKED

This statement causes the staging table to be synchronized with the delta
changes of LOAD INSERT activity, and makes the staging table available
by removing the CHECK PENDING NO ACCESS state.

Important: DB2 takes a z-lock on the materialized view and the staging table
(if one exists) during the REFRESH TABLE statement. If the staging table is
unavailable for extended periods of time because of a lengthy refresh, then it
has the potential to negatively impact update activity on the base tables.
Similarly, having the materialized view unavailable for an extended period
because of refresh times can negatively affect the performance of queries
accessing the materialized view.
32 High-Function Business Intelligence in e-business

Deferred refresh considerations
The frequency of execution of the REFRESH TABLE statement has an impact on
the following:

� Latency of the data: The tolerance for this is dependent upon the
application.

� Logging overhead: More frequent refreshes have the potential to involve
more updates against the materialized view. Less frequent refreshes may
result in fewer updates because data consolidation may occur either on the
staging table or the base table.

Logging space can be of concern when large volumes of data are involved in
refreshing a materialized view. During refresh, rows have to be
inserted/updated into the materialized view. If a staging table exists, it has to
be pruned as well. This contributes to logging overhead. Either one of the
following approaches may alleviate this problem.

– The preferred approach would be to use the ALTER TABLE NOT
LOGGED INITIALLY option to avoid logging during the refresh. By limiting
the unit-of-work to the REFRESH TABLE statement, the probability of an
inadvertent rollback due to an error is quite small. In the unlikely case that
a rollback does occur, the materialized view can be refreshed again.
However, only a full refresh occurs in such cases (no incremental refresh
is possible), and the database administrator will have to drop and recreate
the materialized view DDL definition since the rollback will result in the
materialized view being placed in the DELETE ONLY state.

– An alternative method would be to temporarily make the materialized view
look like a regular table so that it can be populated directly using LOAD8 or
suitably batched insert statements with subselects corresponding to the
query used to define the materialized view. When the entire table is
populated, convert this table back to an materialized view using the SET
SUMMARY option in the ALTER TABLE statement as discussed in 2.5,
“Materialized view ALTER considerations” on page 41.

You can choose to increase the space for active logs via either of the following
methods:

– Increase the number of secondary log files.

– Set the number of secondary log files to ‘-1’ which is interpreted as infinite
log space. This does not imply additional disks as long as log archival is
used. With log archival, the active log is migrated to tertiary storage. In the
event of a rollback, any recovery requiring log data from the archived log
may be take an extended amount of time. Refer to the Data Recovery and
High Availability Guide and Reference (DATA-RCVR) for more details.

8 The input to this LOAD may come from an EXPORT to a file.
 Chapter 2. DB2 UDB’s materialized views 33

2.3.2 Immediate refresh
This maintenance approach is used when the materialized view must be kept in
sync with any changes in the base tables on which it has been defined are
updated. Such materialized views are called REFRESH IMMEDIATE tables.

Example 2-6 shows an example of SQL for creating a refresh immediate
materialized view.

Example 2-6 Creating a refresh immediate materialized view

CREATE SUMMARY TABLE dba.summary_sales
AS (SELECT)
DATA INITIALLY DEFERRED
REFRESH IMMEDIATE

Tip: Incremental refresh should be used to reduce the duration of the refresh
process, and should be considered when one or more of the following
conditions exist:

� The volume of updates to the base tables relative to size of the base tables
is small.

� Duration of read only access to the base tables during a full refresh is
unacceptable.

� Duration of unavailability of the materialized view during a full refresh is
unacceptable.

Important: Not all materialized views can be defined to be REFRESH
IMMEDIATE. The principle behind what materialized view can be defined as
REFRESH IMMEDIATE is governed by the ability to compute the changes to
the materialized view from the delta changes to the base tables, and any other
base tables involved. Refer to 2.11, “Materialized view limitations” on page 92
for details about these restrictions.

Attention: Materialized view optimization occurs for both static and dynamic
SQL statements with REFRESH IMMEDIATE tables.

Note: The REFRESH TABLE statement can be issued against a REFRESH
IMMEDIATE materialized view — it is generally used for initially populating the
materialized view.
34 High-Function Business Intelligence in e-business

REFRESH IMMEDIATE tables are synchronized with the base tables in the same
unit of work as the changes (inserts, updates or deletes) to the base tables.
Given the synchronous nature of the immediate refresh capability, the atomic
requirement for the change propagation can have a negative impact on
transactions updating the base tables.

An incremental update mechanism is used to synchronize a REFRESH
IMMEDIATE materialized view whenever update activity occurs against a base
table. The process involved is shown in Figure 2-5.

Figure 2-5 Immediate refresh using incremental update

When an SQL statement modifies a row in the base table, the following steps
occur in atomic fashion:

1. The modified row is captured.

2. The query defining the materialized view is computed based on the modified
row, computing the delta joins and delta aggregation to generate the data
necessary to update the materialized query table.

3. The delta is applied to the materialized view.

Note: This processing occurs at statement execution time as opposed to
occurring at commit time.

Base Table
T2

MV
T1,T2,..Tn

Base Table
Tn

Base Table
T1

Delta Select/Join

Delta
Aggregate

Delta Apply

SQL
INSERTs
UPDATEs
DELETEs

+
LOAD

Delta Propagation
in

same unit-of-work
 Chapter 2. DB2 UDB’s materialized views 35

Consider, for example, that you have an materialized view that has data grouped
by month. Assume that the data was up to and including the month of June. If a
sales entry is made for the month of June, the delta change to the aggregation is
computed so that the row in the materialized query table is updated to reflect the
newly inserted row in the base sales table. If a row is inserted into the sales table
for the month of July, a new row would be inserted in the materialized view since
one did not exist before for July.

When a LOAD INSERT operation is performed on the base table(s) of a
materialized view, the newly appended data is invisible for read access, thus
ensuring that the base table(s) and corresponding materialized views are still in
sync.

In order to make the appended data visible and synchronized with the
materialized view, perform the following steps:

1. Issue the following statement against the base table:

SET INTEGRITY FOR base_table_name IMMEDIATE CHECKED

This statement will make the base table available after verifying the
consistency of the newly appended rows to the base table. It will also cause a
CHECK PENDING NO ACCESS state to be set on the materialized view.

2. Issue a SET INTEGRITY or REFRESH TABLE of the materialized view with
the INCREMENTAL option to bring the materialized view in sync with all the
rows added by the LOAD INSERT operation.

See “Loading base tables (LOAD utility)” on page 37 for some of the options
available when loading data into a base table.

Immediate refresh considerations
Two main considerations apply here as follows:

� REFRESH IMMEDIATE materialized views require updates to the underlying
base table(s) to be reflected within the same unit of work. This atomic
requirement can have a significant negative impact on transactions updating
the base table(s). You should carefully evaluate the business requirements of

Note: DB2 may use pipelining or temporary tables to effect this operation.

Attention: Since this entire operation is atomic, any error encountered while
updating either the base table or the materialized view will roll back all the
changes during the unit of work. This guarantees the synchronization of the
materialized view with the base tables.
36 High-Function Business Intelligence in e-business

zero latency between the base tables and materialized view before choosing
the REFRESH IMMEDIATE option.

� Another consideration is that lock contention may be an issue for higher level
aggregation rows. The higher the level of aggregation, the greater the chance
of concurrency issues against the materialized view when multiple users are
concurrently performing updates on the base tables. For example, a
materialized view containing the total sales for the year may need to update
the row for the current active year for every sales transaction that pertains to
the current year.

One way to reduce contention on such REFRESH IMMEDIATE materialized
views, is to redefine it as a REFRESH DEFERRED materialized view, and
associate a staging table with it. An incremental refresh of this materialized
view will significantly reduce this lock contention. However, since the
semantics of data latency changes with this option, you should carefully
evaluate the business requirements of zero latency between the base tables
and materialized view before choosing this approach to reduce lock
contention.

2.4 Loading base tables (LOAD utility)
The base tables of a materialized view may be updated either through SQL
statements, or via the LOAD utility.

In DB2 V7, when a LOAD was performed on the base tables, all the
corresponding materialized views were put in a CHECK PENDING NO ACCESS
state, until complete synchronization of the materialized view and base tables
had been accomplished via the SET INTEGRITY or REFRESH TABLE
statements. When the tables involved are very large, the time to refresh may be
very large, since the entire base data is scanned and not just the recently
appended data. This can result in very poor response times for user queries,
since materialized view optimization would be inhibited, because of its CHECK
PENDING NO ACCESS state (see “Matching criteria considerations” on page 44
for details of limitations of matching).

Attention: The following discussion applies to REFRESH IMMEDIATE
materialized views and staging tables.

Important: Remember that LOAD INSERT appends rows after the last page
of the table.
 Chapter 2. DB2 UDB’s materialized views 37

In DB2 V8, functionality has been added to improve the availability of
materialized views during a load of base tables as follows:

1. Reduce the time it takes to refresh a materialized view by only scanning the
LOAD appended data. This applies to both refresh deferred and refresh
immediate materialized views.

2. Keep the materialized views available for optimization during and after the
load, by blocking access to the appended data, until all the (refresh
immediate9) materialized views have been synchronized with the base tables.

In order to support this high availability functionality, the following capabilities
have been added:

� Three new table states have been introduced:

– CHECK PENDING READ ACCESS state:

This allows read access to tables, but only up to and not including the first
loaded page.

– CHECK PENDING NO ACCESS state:

This was previously just called the CHECK PENDING state, and had to be
renamed given the new CHECK PENDING READ ACCESS state.

– NO DATA MOVEMENT state:

This ensures that the RID of a row cannot change. Therefore operations
such as REORG, or REDISTRIBUTE, or update of a partitioning key, or an
update of a key in an multi-dimensional cluster (MDC) table will all be
inhibited. SQL insert, update (excepting those mentioned) and delete
operations do not change the RIDs, and are therefore permitted.

� New options have been added to the LOAD:

– CHECK PENDING CASCADE DEFERRED | IMMEDIATE:

CASCADE DEFERRED specifies that descendent foreign key tables, and
descendent refresh immediate and staging tables are not put into CHECK
PENDING NO ACCESS state, but left in normal state.

– ALLOW READ ACCESS | NO ACCESS:

ALLOW READ ACCESS specifies that all the data prior to the first page
appended can continue to be read, but not updated.

� A new option has been added to SET INTEGRITY:

– FULL ACCESS:

9 By definition, refresh deferred materialized views do not care about data latency issues.
38 High-Function Business Intelligence in e-business

This option specifies that full read write access should be allowed on the
table, even if there are dependent materialized views for this table that
have not yet been refreshed with the newly load appended data. If this
option is not specified, the table has the NO DATA MOVEMENT mode set
on it.

Assume a scenario shown in Figure 2-6. Here SALES is the base table on which
two materialized views SALES_SUM and SALES_SUM_REGION are defined.
The SALES table has check constraints in its definition (such as region code
checking), and is also involved in referential integrity constraints with the
PRODUCT and STORE_SALES tables.

Figure 2-6 LOAD application sample

Assume a LOAD insert10 is done on SALES with the CHECK PENDING
CASCADE DEFERRED option.

LOAD INSERT INTO SALES CHECK PENDING CASCADE DEFERRED...ALLOW READ
ACCESS...

1. LOAD issues a SET INTEGRITY SALES OFF which causes SALES to be put
in CHECK PENDING READ ACCESS state (because of the ALLOW READ
ACCESS option), and the data gets loaded.

2. STORE_SALES, PRODUCT, SALES_SUM and SALES_SUM_REGION are
left in normal state because of the CHECK PENDING CASCADE
DEFERRED option.

10 This causes data to be appended to existing data in the table. If LOAD replace is done, the entire
contents of the table are deleted and replaced by the new data. The CHECK PENDING CASCADE
DEFERRED option can still be used for LOAD REPLACE, but the ALLOW READ ACCESS option
cannot be used for LOAD REPLACE.

SALES_SUM_REGION

STORE_SALES

PRODUCT

SALES SALES_SUM
 Chapter 2. DB2 UDB’s materialized views 39

SQL statements will only be able to access the SALES table data prior to the
beginning of the first loaded page (because of the ALLOW READ ACCESS
option), and also be able to use SALES_SUM and SALES_SUM_REGION for
optimization because they are still in sync. This has expanded the window of
availability of the materialized view and base table.

3. At the end of the load, SALES still has the CHECK PENDING READ
ACCESS state set.

4. Next11 a SET INTEGRITY SALESIMMEDIATE CHECKED....is issued for
verifying the integrity of the new data loaded. This takes an exclusive lock on
SALES and puts it into a NO DATA MOVEMENT state, and also puts the
SALES_SUM and SALES_SUM_REGION materialized views in a CHECK
PENDING NO ACCESS state. STORE_SALES will remain in normal state
since the rows added do not affect the referential integrity relationship with
STORE_SALES. The PRODUCT table is also unaffected by the rows added
to SALES and is therefore left in normal state.

At this point, materialized view optimization will be suspended because both
the SALES_SUM and SALES_SUM_REGION materialized views are in
CHECK PENDING NO ACCESS state.

5. Assuming a successful SET INTEGRITY SALES step, we issue a REFRESH
TABLE SALES_SUM statement which results in an incremental update using
only the data after the first loaded page, which is a much faster operation than
scanning the entire base table. This reduces the window of availability of the
SALES_SUM materialized view as well. When this refresh is completed
successfully, the CHECK PENDING NO ACCESS state is reset on
SALES_SUM, but not on SALES_SUM _REGION which has not been
refreshed as yet. SALES continues to be in the NO DATA MOVEMENT state.

6. Now a REFRESH TABLE SALES_SUM_REGION causes that table to be
taken out of CHECK PENDING NO ACCESS state and available for

11 The SET INTEGRITY step is not required if the base table has no parent tables, descendent
tables, check constraints, or generated columns.

Note: SET INTEGRITY SALES will cause local check constraints to be
verified, as well as referential integrity violations checked against the
PRODUCT table. These checks may fail, which would result in states being
rolled back to the way it was at the end of the load.

Note: SALES_SUM materialized view is now available for optimization,
while SALES_SUM_REGION is not, since it is in CHECK PENDING NO
ACCESS state.
40 High-Function Business Intelligence in e-business

materialized view optimization as well. Since this is the final materialized view
on SALES, the NO DATA MOVEMENT state is reset on SALES.

The above features significantly improve the availability of the materialized views,
and thereby the scalability and performance of queries.

2.5 Materialized view ALTER considerations
THE ALTER statement can be used to convert a materialized view to a regular
table, and vice versa.

The following statement converts an existing materialized view into a regular
table. This causes all the packages dependent on this materialized view to be
invalidated.

ALTER TABLE tablename SET SUMMARY AS DEFINITION ONLY

The following statement converts an ordinary table into an materialized view,
where the summary-table-definition defines the query and
refreshable-table-options.

ALTER TABLE tablename SET SUMMARY AS summary-table-definition

ALTER may be used for several reasons:

� Correcting the materialized view options to address changing requirements
over time.

� Temporarily taking materialized view optimization offline for maintenance,
such as creating indexes.

� Taking it offline to avoid logging overhead as described in , “Deferred refresh
considerations” on page 33.

The following restrictions apply to changing a regular table into an materialized
view. The regular table must not:

� Already be a materialized view
� Be a typed table

Important: If the FULL ACCESS option is chosen on the SET INTEGRITY
SALES step, then the NO DATA MOVEMENT state is not set on the SALES
table. What this means is that full read/write access is permitted on SALES,
and therefore incremental update is no longer possible on the SALES_SUM
and SALES_SUM_REGION tables. When a REFRESH TABLE is issued
against these tables, a full refresh is done which has a negative impact on
availability of the materialized view. The decision to use FULL ACCESS is
therefore an implementation choice.
 Chapter 2. DB2 UDB’s materialized views 41

� Have any constraints, unique indexes or triggers defined on it
� Be referenced in the definition of another materialized view

Also, you cannot ALTER a regular table into a staging table or vice versa.

2.6 Materialized view DROP considerations
When a materialized view is dropped, all dependencies are dropped and all
packages with dependencies on the materialized view are invalidated. Views
based on dropped materialized views are marked inoperative.

2.7 Materialized view matching considerations
The DB2 SQL Compiler analyzes user queries and produces an optimal access
path to produce the desired results. These are the two key components most
relevant to materialized views:

� Query rewrite component:

This component analyzes the query and if appropriate, rewrites this query into
another form that it believes will perform in superior fashion to the one written
by the user. This capability frees the user from having to deal with different
syntactic representations of the same semantic query, and instead focus on
using syntax (s)he is most comfortable with.

Part of this query rewrite process is the task of considering materialized views
for optimization. This includes checking for certain:

– States
– Matching criteria

� Cost based optimizer component

This component performs a cost analysis of materialized view processing
versus base table access, and decides on the optimal access path.

Figure 2-7 graphically depicts this process.
42 High-Function Business Intelligence in e-business

Figure 2-7 Materialized view optimization flow

We focus here on the query rewrite component task relating to materialized
views, that is, state considerations and matching criteria considerations.

DB2’s Snapshot Monitor captures dynamic SQL statement executions in a
statement cache and gathers statistics about them, such as the number of
executions, number of rows reads and updated, and execution times. However,
this statement cache only includes the user’s original dynamic SQL query, and
not the version that gets to the DB2 optimizer after query rewrite.

Important: DB2’s EXPLAIN tables capture information about static and
dynamic SQL statements, costs, and access path selected for a query. The
EXPLAIN_STATEMENT table in particular, contains the text of the original
SQL statement entered by the user, along with the rewritten (if appropriate)
SQL statement used by the DB2 optimizer to choose the optimal access path
for executing the SQL query. This potentially modified SQL statement may
bear little resemblance to the original SQL query, as it may have been
rewritten and/or enhanced with additional predicates as determined by the
DB2 SQL Compiler.

CUST
TRANS

MQT

Query ... Against base tables CUST and TRANS

DB2 Query Rewrite

Rewrite ?

DB2 Optimizer DB2 Optimizer

Materialized
view cheaper ?

Compensation

Yes

No Yes

No
 Chapter 2. DB2 UDB’s materialized views 43

2.7.1 State considerations
The following state considerations apply for DB2 to even consider materialized
view optimization:

� Materialized view must be created with the ENABLE QUERY OPTIMIZATION
parameter.

� CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION register must
enable optimization of the particular table type. This register can be set to:

SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION = ALL|NONE|SYSTEM|USER

� For REFRESH DEFERRED materialized views, the CURRENT REFRESH
AGE register must be set to ANY.

SET CURRENT REFRESH AGE ANY|0

� REFRESH IMMEDIATE materialized views are always current and are always
candidates for materialized view optimization, regardless of the CURRENT
REFRESH AGE register setting.

� For dynamic and static SQL, the QUERY OPTIMIZATION level must be set to
2, or greater than equal to 5.

– Default value is 5, and this default can be changed in the
DFT_QUERYOPT parameter in the database configuration file

– The level can be changed as follows

SET CURRENT QUERY OPTIMIZATION LEVEL 2

� Materialized view cannot be in a CHECK PENDING NO ACCESS state.

2.7.2 Matching criteria considerations
Matching is the process of reviewing the user query, and evaluating the potential
use of a materialized view for query rewrite.

Assuming that the state criteria are not inhibitors, the query rewrite component
reviews the following criteria to determine the viability of using the materialized
view in the query rewrite.

We discuss these criteria as:

� Matching permitted
� Matching inhibited

Quite often, a materialized view may not exactly match the user query, and DB2
may have to incur some extra processing to massage the materialized view data
to deliver the desired result. This extra processing is called compensation. List
item 2 on page 46 shows an example of compensation.
44 High-Function Business Intelligence in e-business

2.7.3 Matching permitted
Materialized views will be considered for optimization in the following cases:

1. Superset predicates and perfect match:

This is the simplest case where the user query has the same number of
tables as in the materialized view, and the same expressions, and requests
an answer that can be fully met with the data in the materialized view. Here,
the predicates involved in the materialized view must be a superset of those
involved in the query. In DB2 V7, predicate analysis to detect this was limited,
with only exact matches, or simple equality predicates and IN predicates
being considered. In DB2 V8, the analysis has been expanded to cover a
broader range of predicates.

Scenario 1: Consider the materialized view shown in Example 2-7:

Example 2-7 Superset predicates and perfect match materialized view 1

CREATE SUMMARY TABLE custtrans AS
(
SELECT cust_id, COUNT(*) AS counttrans
FROM trans
GROUP BY cust_id
)

DATA INTITIALLY DEFERRED REFRESH DEFERRED

A query that looks like the one shown in Example 2-8 will be considered
matching for materialized view optimization purposes.

Example 2-8 Superset predicates and perfect match — matching query 1

SELECT cust_id, COUNT(*)
FROM trans
WHERE cust_id > 1000
GROUP BY cust_id

Scenario 2: Consider the materialized view shown in Example 2-9:

Example 2-9 Superset predicates and perfect match materialized view 2

CREATE SUMMARY TABLE custtrans AS
(
SELECT cust_id, COUNT(*) AS counttrans
FROM trans
WHERE cust_id > 500
GROUP BY cust_id
)

DATA INTITIALLY DEFERRED REFRESH DEFERRED
 Chapter 2. DB2 UDB’s materialized views 45

A query that looks like the one shown in Example 2-10 will be considered
matching for materialized view optimization purposes.

Example 2-10 Superset predicates and perfect match — matching query 2

SELECT cust_id, COUNT(*)
FROM trans
WHERE cust_id > 1000
GROUP BY cust_id

Figure 2-8 provides additional examples of matching conditions. The “Valid ?”
column indicates whether or not the materialized view will be considered for
optimization or not for the given query.

Figure 2-8 Matching columns, predicates, and expressions

2. Aggregation functions and grouping columns:

Aggregation collapses related groups of rows, resulting in a smaller size of
the materialized view. It is not necessary to define different materialized views
for each type of user grouping. Under certain conditions, DB2 can decide to
use a materialized view even if the materialized view’s grouping is different
from that of the user query. For instance, if the materialized view has a
GROUP BY on a finer granularity, DB2 can compute the result of a coarser
granularity GROUP BY by doing further aggregation12 on top of the
materialized view as shown in the following discussion.

QUERY Materialized View Valid ?

... cust_age >= 15 cust_age >= 20 ...

... cust_age >= 25 cust_age >= 20 ...

... trans_yr IN (2001, 2002) trans_yr IN (2000, 2001) ...

... trans_yr = 2002 trans_yr IN (2000, 2001, 2002) ...

SELECT date, cust_id, SUM(sales) FROM
TRAN WHERE ...

SELECT cust_id, SUM(SALES) FROM
TRAN WHERE ...

SELECT cust_id, INT((cust_age + 5) / 10),
SUM(sales) FROM ... WHERE ...

SELECT cust_id, INT(cust_age / 10),
SUM(sales) FROM ... WHERE ...

No

No

No

Yes

No

Yes

12 This is also called compensation.
46 High-Function Business Intelligence in e-business

Scenario 1: Consider the materialized view shown in Example 2-11, which
has one row for every month of every year.

Example 2-11 Aggregation functions & grouping columns materialized view 1

CREATE SUMMARY TABLE dba.trans_agg AS
(
SELECT ti.pgid, t.locid, t.acctid, t.status,

 YEAR(pdate) as year, MONTH(pdate) AS month,
 SUM(ti.amount) AS amount, COUNT(*) AS count

FROM transitem AS ti, trans AS t
WHERE ti.transid = t.transid
GROUP BY YEAR(pdate), MONTH(pdate)
)

DATA INITIALLY DEFERRED REFRESH IMMEDIATE

The query shown in Example 2-12, with a GROUP BY on YEAR, can be
computed from the above materialized view by aggregating all the months of
a year.

Example 2-12 Aggregation functions & grouping columns — matching query 1

SELECT ti.pgid, t.locid, t.acctid, t.status,
 YEAR(pdate) AS year, MONTH(pdate) AS month,
 SUM(ti.amount) AS amount, COUNT(*) AS count
FROM transitem AS ti, trans AS t
WHERE ti.transid = t.transid
GROUP BY YEAR(pdate)

This capability allows the DBA to optimize by only defining one materialized
view at the month level. This is the simplest form of matching handled by DB2
as far as grouping columns are concerned. The number of materialized views
can be minimized by using complex constructs that include grouping sets,
ROLLUP and CUBE operators. Refer to 3.3.2, “GROUPING capabilities
ROLLUP & CUBE” on page 125 for an overview of DB2’s support of complex
GROUP BY constructs.

Following are some scenarios using grouping sets:

Scenario 2: Consider the materialized view shown in Example 2-13.

Example 2-13 Aggregation functions & grouping columns materialized view 2

CREATE SUMMARY TABLE AST1 AS
(
SELECTGROUP BY GROUPING SETS

((customer_id, product_group_id), YEAR(date_col), MONTH(date_col))
)

 Chapter 2. DB2 UDB’s materialized views 47

DATA INITIALLY DEFERRED REFRESH IMMEDIATE

The DB2 query rewrite engine would consider matching any one of the
queries shown in Example 2-14 against the prior materialized view, assuming
there are no other inhibitors.

Example 2-14 Aggregation functions & grouping columns — matching query 2

SELECT GROUP BY customer_id, product_group_id
SELECT GROUP BY customer_id
SELECT GROUP BY product_group_id
SELECT GROUP BY YEAR(date_col)
SELECT GROUP BY MONTH(date_col)

Scenario 3: Consider the materialized view shown in Example 2-15:

Example 2-15 Aggregation functions & grouping columns materialized view 3

CREATE SUMMARY TABLE ast AS
(
SELECT store_id, cust_id, year, month, COUNT(*) as cnt
FROM Trans
GROUP BY GROUPING SETS

(
(store_id, cust_id, year),
(store_id, year),
(store_id, year, month),
(year)
)

)
DATA INITIALLY DEFERRED REFRESH IMMEDIATE

The query shown in Example 2-16 can be satisfied from the above
materialized view by simply filtering out the rows pertaining to the other
entities in the grouping set.

Example 2-16 Aggregation functions & grouping columns — matching query 3

SELECT store_id, year, COUNT(*) as cnt
FROM Trans
WHERE year > 1990
GROUP BY store_id, year

Note: In the above case, assuming that columns store_id and year are
defined as NOT NULL columns, the DB2 query rewrite engine transforms
the query automatically internally, as shown in Example 2-17.
48 High-Function Business Intelligence in e-business

Example 2-17 Internally rewritten query by DB2 using the materialized view

SELECT store_id, year, cnt
FROM AST
WHERE store_id IS NOT NULL AND
 year IS NOT NULL AND
 cust_id IS NULL AND
 month IS NULL AND
 year > 1990

The following extra predicates are the only compensating predicates needed
to make use of the materialized view.

– The two predicates store_id IS NOT NULL AND year IS NOT NULL
ensure that all the rows from the (store_id, year) grouping are retrieved.

– The cust_id IS NULL predicate ensures that nothing will qualify from the
(store_id, cust_id, year) grouping.

– The month IS NULL predicate will filter out the rows pertaining to the
(store_id, year, month) grouping.

– The store_id IS NOT NULL predicate will ensure that nothing will qualify
from the (year) grouping as well as the empty grouping ().

More complex scenarios might require further grouping.

Similar scenarios can be shown using the ROLLUP and CUBE operators to
satisfy user queries having many different combinations of column groupings.

Important: Such complex materialized views involving grouping sets, and
ROLLUP and CUBE operators not only save disk space, but also can save
refresh times since a single scan of the base tables is sufficient to populate the
materialized view. Creating multiple materialized views on the other hand,
would require individual REFRESH statements to be executed for each
materialized view, and thereby individual accesses against the base tables.
 Chapter 2. DB2 UDB’s materialized views 49

Example 2-18 Nullable columns or expressions in GROUP BY

CREATE TABLE S2 AS
(SELECT Period.year,

Product.id,
Fact.DeliveryCode,
GROUPING(Period.year) AS gpyear,
GROUPING(Product.id) AS gpprodid,
GROUPING(Fact.DeliveryCode) AS gpfactDC,
SUM(Fact.Quantity) AS Quantity,
SUM(Fact.Amount) AS Amount,
SUM(Fact.Quantity * Product.Price) AS QP_Amount

FROM Fact,
Product,
Period

WHERE Fact.prod_id = Product.id and
 Fact.period_id = Period.id

GROUP BY rollup(Period.year,
 Product.id,
 Fact.DeliveryCode))

DATA INITIALLY DEFERRED REFRESH DEFERRED

In this example, columns Period.Year, Product.id and Fact.DeliveryCode in
the GROUP BY are nullable. Therefore, the materialized view will have rows
with NULL values that may either be due to a rolled up aggregation
(sub-total), or due to NULL values from the base table itself. The GROUPING
identifier enables you to differentiate between these two cases. A value of one
in this column indicates that the row was the result of a sub-total from the
GROUP BY function, while a value of zero indicates otherwise. An example of
the results of using the GROUPING identifier is shown in “GROUPING,
GROUP BY and CUBE example” on page 138.

Attention: The assumption in the above scenarios is that the columns or
expressions in the GROUP BY list are defined as NOT NULL. In the event that
this is not true, that is, the GROUP BY list items are nullable, then the
materialized view must have GROUPING identifiers defined as highlighted in
Example 2-18, in order for the DB2 optimizer to consider matching the user
query to the materialized view. The reason for this requirement is that the DB2
optimizer needs to distinguish between NULL values within a materialized
view that could either be due to a rolled up aggregation involving missing rows,
or due to actual NULL values in the base tables itself.

The GROUPING function only needs to be defined for all nullable columns
when super aggregates (ROLLUP, CUBE and grouping sets) are involved.
50 High-Function Business Intelligence in e-business

The query in Example 2-19 has a ROLLUP on fewer columns (only
Period.Year, and Product.id) than in the materialized view.

Example 2-19 Nullable columns or expressions in GROUP BY — user query

SELECT Period.year,
Product.id,
SUM(Fact.Quantity) AS Quantity,

 SUM(Fact.Amount) AS Amount,
SUM(Fact.Quantity * Product.Price) AS QP_Amount

FROM Fact,
Product,
Period

WHERE Fact.prod_id = Product.id and
 Fact.period_id = Period.id

GROUP BY rollup(Period.year,
 Product.id)

Assuming this query matches the materialized view in Example 2-18 on
page 50, then the query would be rewritten as shown here in Example 2-20,
to filter out the unwanted rows.

Example 2-20 Rewritten query

SELECT year,
id,
Quantity,
Amount,

 QP_Amount
FROM S2
WHERE gpfactDC = 1

The ‘gpfactDC = 1’ predicate in the rewritten query only selects those rows in the
materialized view returned by the GROUP BY function, and ignores those
relating to NULLs in the base table itself.
 Chapter 2. DB2 UDB’s materialized views 51

Figure 2-9 provides additional examples of matching conditions. It shows that the
GROUP BY expressions must be derivable from the materialized view.

Figure 2-9 Matching GROUP BY and aggregate functions

3. Extra tables in the query:

DB2 is able to match user queries that contain more tables than those defined
in the materialized view, when the join predicates to the base tables can be
replaced by join predicates between the materialized view and the additional
tables.

Consider the materialized view shown in Example 2-21:

Example 2-21 Extra tables in the query materialized view

CREATE SUMMARY TABLE dba.trans_agg AS
(
SELECT ti.pgid, t.locid, t.acctid, t.status, YEAR(pdate) AS year,

MONTH(pdate) AS month, SUM(ti.amount) AS amount, COUNT(*) AS count
FROM transitem AS ti, trans AS t
WHERE ti.transid = t.transid
GROUP BY YEAR(pdate), MONTH(pdate), ti.pgid, t.locid, t.acctid, t.status
)

DATA INITIALLY DEFERRED REFRESH IMMEDIATE

A user query that looks like the one shown in Example 2-22 can be
considered matching the above materialized view even though it has an
additional location table loc included.

Example 2-22 Extra tables in the query — matching query

SELECT YEAR(pdate) AS year, loc.country, SUM(ti.amount) AS amount, COUNT(*)
AS count

FROM transitem AS ti, trans AS t, loc AS loc
WHERE ti.transid = t.transid AND t.locid = loc.locid
 AND YEAR(pdate) BETWEEN 1990 and 1999
GROUP BY YEAR(pdate), loc.country

QUERY Materialized View Valid ?

... GROUP BY store_id ... GROUP BY cust_id, store_id

... GROUP BY ((cust_age + 5) / 10) ... GROUP BY cust_age / 10

... CUBE(cust_id, store_id) ... GROUPING SETS (cust_id, store_id)

... GROUPING SETS (cust_id, store_id) ... CUBE(cust_id, store_id)

... AVG(sales) SUM(sales), COUNT(*) ...

... COUNT(DISTINCT cust_id) cust_id, COUNT(*)

Yes
No
No

No
Yes

Yes
52 High-Function Business Intelligence in e-business

The loc is joined on the locid column to trans. The locid column is one of the
GROUP BY columns of the materialized view. DB2 can use this column to join
the relevant rows of the materialized view after applying the YEAR predicate
with the loc table. The aggregated results can then be further consolidated by
grouping on the YEAR(pdate) and country.

4. Extra tables in the materialized view:

DB2 is able to match user queries against materialized views that have more
tables than defined in the query, in certain cases where referential integrity is
known to exist.

Consider the materialized view shown in Example 2-23.

Example 2-23 Extra tables in the materialized view

CREATE TABLE dba.PG_SALESSUM AS
(
SELECT l.lineid AS prodline, pg.pgid AS pgroup, loc.country, loc.state,

YEAR(pdate) AS year, MONTH(pdate) AS month, SUM(ti.amount) AS amount,
COUNT(*) AS count

FROM transitem AS ti, trans AS t, loc AS loc,
pgroup AS pg, prodline AS l

WHERE ti.transid = t.transid AND ti.pgid = pg.pgid
AND pg.lineid =l.lineid AND t.locid = loc.locid

GROUP BY loc.country, loc.state, year(pdate),month(pdate), l.lineid,
pg.pgid

)
DATA INITIALLY DEFERRED REFRESH IMMEDIATE

A user query as shown in Example 2-24 can be considered as matching the
above materialized view even though the materialized view has two more
tables pgroup and prodline than in the user query:

Example 2-24 Extra tables in the materialized view — matching query

SELECT YEAR(pdate) AS year, loc.country,
 SUM(ti.amount) AS amount, COUNT(*) AS count
FROM transitem AS ti, trans AS t, loc AS loc
WHERE ti.transid = t.transid AND t.locid = loc.locid
 AND YEAR(pdate) BETWEEN 1990 and 1999
GROUP BY YEAR(pdate), loc.country
 Chapter 2. DB2 UDB’s materialized views 53

The query in Example 2-24 references three tables, while the materialized
view in Example 2-23 has five. It would appear at first glance that these
additional tables pgroup and prodline would affect the result of the above
query, if that materialized view were used in the query rewrite. This would be
true unless DB2 was aware of referential integrity relationships being
involved. For instance, if the pgroup and prodline tables were related to the
other tables through referential integrity, it will not affect the number of rows in
the result. They could be considered as look-up tables that are merely adding
columns to the output.

Example 2-25 Informational and system-maintained referential integrity constraints

-- INFORMATIONAL REFERENTIAL INTEGRITY CONSTRAINT
CREATE TABLE transitem (
.....
.....
pgid INT,
....
CONSTRAINT fk_pgid FOREIGN KEY (pgid) REFERENCES pgroup
ON DELETE CASCADE NOT ENFORCED
.....

-- SYSTEM-MAINTAINED REFERENTIAL INTEGRITY CONSTRAINT
CREATE TABLE pgroup (
.....
.....
lineid INT,
....
CONSTRAINT fk_lineid FOREIGN KEY (lineid) REFERENCES prodline
ON DELETE CASCADE ENFORCED

System-maintained referential integrity (where the constraint attribute is
ENFORCED), as well as informational referential integrity constraints let the
query rewrite component know of the existence of referential integrity. In such
cases, the additional tables in the materialized view are guaranteed not to add
or remove rows in the result, and the query rewrite engine can proceed with
the materialized view matching optimization, and ignore these tables.

Important: Referential integrity may either be system maintained, or
provided as informational constraints (see the NOT ENFORCED constraint
attribute in Example 2-25). With informational referential integrity
constraints, the onus is on the DBA to guarantee the integrity of reference,
since DB2 makes no attempt to enforce referential integrity. Informational
referential integrity constraints help the DB2 optimizer make superior
decisions about matching user queries that have fewer tables than those
defined in the materialized view.
54 High-Function Business Intelligence in e-business

In the above scenario, transitem table is joined to the pgroup table on column
pgid. If pgroup.pgid is the primary key in the referential integrity relationship,
every value of transitem.pgid has one and only one value in pgroup.
Furthermore, if the prodline table has a referential integrity relationship with
the pgroup table, where prodline.lineid is the primary key, this join is also a
join that does not affect the number of rows in the output. The materialized
view can now be used for applying the query predicate, selecting the columns
required by the query, and consolidating the aggregation by further grouping
on only the columns required in the query.

5. CASE expressions in the query:

Typically, matching queries with complex expressions need to have these
complex expressions used in a similar way in the materialized view. There are
some common scenarios that DB2 will handle. For example, DB2 can match
some user queries with CASE expressions to a materialized view that
contains the elements of the CASE expression as part of the GROUP BY
clause, and the SELECT list of the materialized view. DB2 is able to match
some user queries with CASE expressions as follows.

Consider the materialized view shown in Example 2-26.

Example 2-26 CASE expression materialized view

CREATE TABLE S1 AS
(SELECT

Period.year,
Product.id,
Fact.DeliveryCode,
SUM(Fact.Quantity) AS Quantity,
SUM(Fact.Amount) AS Amount,
SUM(Fact.Quantity * Product.Price) AS QP_Amount

FROM
Fact, Product, Period

WHERE
 Fact.prod_id = Product.id and

Fact.period_id = Period.id
GROUP BY

Period.year,
Product.id,
Fact.DeliveryCode)

DATA INITIALLY DEFERRED REFRESH DEFERRED

Note that this materialized view does not have a CASE expression defined.

The query in Example 2-27 will be considered matching for materialized view
optimization purposes. The information required by the user query could
easily be computed from the materialized view as long as DeliveryCode is
part of the GROUP BY items in the materialized view.
 Chapter 2. DB2 UDB’s materialized views 55

Example 2-27 CASE expression — matching query

SELECT Period.Year,
SUM(Fact.Quantity) ,
SUM(

(CASE WHEN Fact.DeliveryCode = 'Y'
THEN (Fact.Amount)

WHEN Fact.DeliveryCode = ‘N’
THEN (Fact.Quantity * Product.Price)

ELSE 0
END)
) AS RevenueForecast

FROM
Fact, Product, Period

WHERE
 Fact.prod_id = Product.id and

Fact.period_id = Period.id and
Period.Year = 2002

GROUP BY Period.year,Product.id,Fact.DeliveryCode

2.7.4 Matching inhibited
Query rewrite component currently does not consider materialized view
optimization in the following cases.

1. Query includes the following constructs:

A query that includes the following constructs will not be considered for
materialized view query rewrite. This is not a comprehensive list. Also, some
of these restrictions may be removed in future releases.

– A base table in the materialized view is itself a target of an UPDATE. For
example, when there is a trigger involved, and the query may select from
the same base table that it also updates.

– Recursion or other complex constructs.

– Physical property functions like NODENUMBER.

– Outer Join.

– UNION.

– XMLAGG.

– Window aggregation functions. These are aggregate functions specified
with the OVER clause.
56 High-Function Business Intelligence in e-business

2. Materialized view missing columns that are in the query:

If the materialized view is missing columns that exist in the base tables, and
the query references those columns, then the materialized view will be
ignored for optimization.

Consider the materialized view shown in Example 2-28.

Example 2-28 Materialized view contains fewer columns than in query

CREATE SUMMARY TABLE custtrans AS
(
SELECT cust_id, COUNT(*) AS counttrans
FROM trans
GROUP BY cust_id
)

DATA INTITIALLY DEFERRED REFRESH DEFERRED

A user query that looks like the following will result in the materialized view
being ignored for optimization purposes. This is because the” trans_date”
column has not been defined in the materialized view shown in Example 2-29.

Example 2-29 Materialized view contains fewer columns than in query — no match

SELECT cust_id, COUNT(*)
FROM trans
WHERE trans_date > '2002-01-01'
GROUP BY cust_id

3. Materialized view contains more restrictive predicates than in the query:

A materialized view cannot be considered matching if it is missing rows
required to satisfy the user query.

Consider the materialized view shown in Example 2-30:

Example 2-30 Materialized view with more restrictive predicates

CREATE SUMMARY TABLE custtrans AS
(
SELECT cust_id, COUNT(*) AS counttrans
FROM trans
WHERE cust_id > 500

Note: The predicates involved in the materialized view must be a superset
of the of those involved in the query. In DB2 V7, predicate analysis to
detect this was limited, where only exact matches or simple equality
predicates and IN predicates were considered. In DB2 V8, the analysis has
been expanded to cover a broader range of predicates.
 Chapter 2. DB2 UDB’s materialized views 57

GROUP BY cust_id
)

DATA INTITIALLY DEFERRED REFRESH DEFERRED

A user query that looks like the following will result in the materialized view
being ignored for optimization purposes. That is, rows corresponding to
cust_id between 400 and 500 are missing in the materialized view shown in
Example 2-31.

Example 2-31 Materialized view with more restrictive predicates — no match

SELECT cust_id, COUNT(*)
FROM trans
WHERE cust_id >= 400
GROUP BY cust_id

4. Query with an expression not derivable from materialized view:

Even if the expression used in the materialized view is not identical to that
used in the query, it might be possible to derive the expression used in the
query from that in the materialized view. However, it is possible for some
“obvious” matching cases to be ignored by DB2 due to precision or other
issues. These restrictions will eventually be handled in future.

Consider the materialized view shown in Example 2-32:

Example 2-32 Query: expression not derivable from materialized view

CREATE summary table custtrans AS
(
SELECT cust_id, SUM(sale_price) AS total, COUNT(items) AS countitems
FROM trans
GROUP BY cust_id
)

DATA INTITIALLY DEFERRED REFRESH DEFERRED

A user query that looks like that shown in Example 2-33 will result in the
materialized view being ignored for optimization purposes, since the
expression cannot be derived by DB2. However, it is possible for some
“obvious” matching cases to be ignored by DB2, either due to precision
issues, truncation issues, or a possibly not implemented as yet. Some of
these restrictions may eventually be handled in the future.

Example 2-33 Query: expression not derivable from materialized view — no match

SELECT cust_id, SUM(sale_price * 0.15) / COUNT(items)
FROM trans
GROUP BY cust_id
58 High-Function Business Intelligence in e-business

5. Friendly arithmetic:

The database configuration parameter:

DFT_SQLMATHWARN NO |YES

sets the default value that determines the handling of arithmetic errors and
retrieval conversion errors as errors (unfriendly) or warnings (friendly) during
SQL statement compilation. For static SQL statements, the value of this
parameter is associated with the package at BIND time. For dynamic SQL
statements, the value of this parameter is used when the statement is
prepared.

The default is NO (unfriendly).

The materialized view will not be considered for query rewrite if the query
demands unfriendly arithmetic, and the materialized view supports friendly
arithmetic.

The materialized view will be considered for query rewrite when the query and
materialized view have identical arithmetic requirements, and also when the
query demands friendly arithmetic and the materialized view supports
unfriendly arithmetic.

6. Isolation mismatch

The isolation level of the materialized view must be equivalent or higher than
that demanded of the user query.

For example, if the materialized view is defined with ISOLATION of CS, then a
query that requests:

– Either UR or CS can match with the materialized view

– RS or RR will not be considered for matching

Note: It is rare for this option to be changed after initial database creation,
since the ramifications may be significant. Please refer to the DB2
Administration Guide for more details.

Note: It is important to know the ISOLATION under which the materialized
view was created. The CLP command CHANGE ISOLATION TO... may be
used to set the ISOLATION level before creating the materialized view.
 Chapter 2. DB2 UDB’s materialized views 59

2.8 Materialized view design considerations
Materialized views have the potential to provide significant performance
enhancements to certain types of queries, and should be a key tuning option in
every DBA’s arsenal.

However, materialized views do have certain overheads which should be
carefully considered when designing materialized views. These include:

� Disk space due to the materialized view and associated indexes, as well as
staging tables.

� Locking contention on the materialized view during a refresh.

– With deferred refresh, the materialized view is offline while the REFRESH
TABLE is executing.

• The same applies to staging table if one exists. Update activity against
base tables is impacted during the refresh window.

– With immediate refresh, there is contention on the materialized view when
aggregation is involved due to SQL insert, update and delete activity on
the base table by multiple transactions.

� Logging overhead during refresh of very large tables.

� Logging associated with staging tables.

� Response time overhead on SQL updating the base tables when immediate
refresh and staging tables are involved, because of the synchronous nature of
this operation.

When a materialized view has many tables and columns in it, it is sometimes
referred to as a “wide” materialized view. Such a materialized view allows a larger
portion of a user query to be matched, and hence provides better performance.
However, when the query has fewer tables in it than in the materialized view, we
need to have declarative or informational referential integrity constraints defined
between certain tables in order for DB2 to use the materialized view for the query
as discussed in 3., “Extra tables in the query:” on page 52.Note that a potential
disadvantage of “wide” materialized views is that they not only tend to consume
more disk space, but may also not be chosen for optimization because of the
increased costs of accessing them.

Important: The objective should be to minimize the number of materialized
views required by defining sufficiently granular REFRESH IMMEDIATE and
REFRESH DEFERRED materialized views that deliver the desired
performance, while minimizing their overheads.
60 High-Function Business Intelligence in e-business

When a materialized view has fewer columns and/or tables, it is sometimes
referred to as a “thin” materialized view. In such cases, we reduce space
consumption at the cost of performing joins during the execution of the query. For
example, we may want to only store aggregate information from a fact table (in a
star schema) in the materialized view, and pick up dimension information from
the dimension tables through a join. Note that in order for DB2 to use such a
materialized view, the join columns to the dimension tables must be defined in
the materialized view. Note also that referential integrity constraints requirements
do not apply to “thin” materialized views.

Figure 2-10 provides an overview of the steps involved in designing REFRESH
DEFERRED materialized views.

Attention: We will only be focusing on designing REFRESH DEFERRED
materialized views, since the data warehouse environment is the predominant
opportunity for exploiting materialized view optimization, and the data
warehouse environment tends to overwhelmingly require access to other than
current data.
 Chapter 2. DB2 UDB’s materialized views 61

Figure 2-10 Overview of the design of REFRESH DEFERRED materialized views

LOAD production data

S3

Reset CHECK PENDING NO ACCESS state if appropriate, execute RUNSTATS, and EXPLAIN the query

Collect all relevant queries, and prioritize them by importance

Is the MV used by the query?
Yes

End of queries?

No

Existing MV suitable?

Generalize local predicates to GROUP BY and design the materialized view (MV)

Are the performance gains satisfactory?

No

No

Consider each query in turn

Size acceptable?
No

Yes

Reduce MV size through splits or
more predicates

No

Modify the MV to suit

Yes

Yes

Create a new MV

Review matching criteria, modify query as required and retry query

Consolidate MV's with only few matching queries, keeping size in mind

Yes
Existing MV modifiable to suit?

No

Create indexes, update MV's with PRODUCTION statistics (MV NOT populated), and EXPLAIN all the queries

Review MV design
issues and reiterate

Yes

Queries still use the MV's?
No

Yes

Execute queries and measure performance with and without MV optimization, and extrapolate performance to production data

Create & populate "miniature" base tables, and MV's with SAMPLE data, and execute RUNSTATS

Cost issue -- may or
may not be a problem.
Further investigation

needed.

S1

S9

S2

S5

S6

S7

S8

S4
62 High-Function Business Intelligence in e-business

We will briefly review each of these steps, and then use an application to
illustrate generalizing of a few local predicates such as DISTINCT, compound,
ROLLUP and CASE.

2.8.1 Step 1: Collect queries & prioritize
The best source of information about SQL queries is the DB2 UDB package
cache using the DB2 Snapshot Monitor. It provides a list of all the SQL
statements, and the frequency of their execution.

The following command provides a verbose listing of all SQL statements, as well
as the total number of executions per statement:

db2 get snapshot for dynamic sql on <database>

Figure 2-11 lists a portion of the results of this command.

Figure 2-11 Get snapshot for dynamic SQL

Note: We will only be focusing on dynamic SQL and deferred refresh
materialized views.

Important: This approach only lists those SQL statements that are currently
in the package cache. It excludes those statements that have been flushed
since the last database restart or activation, as well as due to package cache
size limitations. Users should therefore collect dynamic SQL statement
executions over a period of time in order to arrive at the list of queries requiring
optimization.
 Chapter 2. DB2 UDB’s materialized views 63

The advantage of extracting this information from the package cache is that it is
less disruptive than running Event Monitor.

Once all the dynamic SQL statements of interest have been collected, they need
to be prioritized by importance.

The SQL shown in Example 2-34 can be adapted to store the results of dynamic
SQL capture into a suitable table for subsequent analysis.

Example 2-34 Capturing snapshot data into a table

connect to SAMPLE
delete from ADVISE_WORKLOAD where WORKLOAD_NAME='GET SNAPSHOT'
get snapshot for dynamic sql on SAMPLE write to file
insert into ADVISE_WORKLOAD (WORKLOAD_NAME, STATEMENT_TEXT, FREQUENCY, WEIGHT)
(select 'GET SNAPSHOT',stmt_text,NUM_EXECUTIONS, 1.0 from table
(SYSFUN.SQLCACHE_SNAPSHOT()) sqlsnap where stmt_text not like '%ADVISE_%' and
stmt_text not like '%EXPLAIN_%' and stmt_text not like '%SYSIBM.%' and
stmt_text not like '%SysCat.%' and stmt_text not like '%SYSCAT.%')
commit
connect reset

2.8.2 Step 2: Generalize local predicates to GROUP BY
Consider each query in turn, and generalize the local predicates to a GROUP BY.
A very simple example of this exercise is shown in Example 2-35 and
Example 2-36.

Example 2-35 Query involving a simple predicate

SELECT cust_id, COUNT(*)
FROM trans
WHERE cust_id > 1000 AND cust_age < 50
GROUP BY cust_id

In Example 2-35, the simple predicate is “...WHERE custid > 1000 AND
cust_age < 50“. Generalizing the local predicate involves converting this
predicate to a GROUP BY in a materialized view as shown in Example 2-36. The
assumption made in this materialized view is that user queries are equally likely
to choose from all possible values of cust_id and cust_age, since we have
chosen not to add a filtering predicate in the materialized view.

In Example 2-9 on page 45, the materialized view has a filtering predicate of
“...WHERE cust_id > 500” which implies that the predominant queries will choose
cust_id values above 500, which might be associated with premium customers.
64 High-Function Business Intelligence in e-business

The decision to use filtering predicates should be based on domain expertise,
and the frequency of query requests.

More detailed examples of generalizing local predicates are described in
“Generalizing local predicates application example” on page 69.

Example 2-36 Generalize simple predicate to GROUP BY in a materialized view

CREATE SUMMARY TABLE custtrans AS
(
SELECT cust_id, cust_age, COUNT(*) AS counttrans
FROM trans
GROUP BY cust_id, cust_age
)

DATA INTITIALLY DEFERRED REFRESH DEFERRED

2.8.3 Step 3: Create the materialized view
This step involves determining whether the query under consideration can reuse
an existing materialized view “as is” or with some modifications, or require the
creation of a new materialize view altogether.

In case an existing materialized view can be reused without modifications, then
we need to proceed to bypass size estimation, and check whether the query
under consideration actually routes to the materialized view. This is discussed in
Step 5: Verify query routes to “empty” the materialized view.

2.8.4 Step 4: Estimate materialized view size
A key considerations in the design of materialized views is its size. Typically, the
materialized view should be less than an order of magnitude in size as compared
with the data in the base table(s). Large materialized views impact the cost
formulas for access which might result in their being ignored for routing even
though matching criteria are met. Large materialized views occupy more disk
space, and potentially increase refresh cycle duration, thereby reducing
availability of the materialized view.

If an estimate of the materialized view exceed this order of magnitude
threshold13, then this materialized view needs to be reduced in size by splitting it
into two or more materialized views, and/or by adding filtering predicates to
reduce the number of rows.

13 Order of magnitude is a rule-of-thumb number — you can choose to revise this number upward or
downward based on personal experience.
 Chapter 2. DB2 UDB’s materialized views 65

2.8.5 Step 5: Verify query routes to “empty” the materialized view
Having satisfied ourselves that the size of the materialized view is not an issue,
we need to determine that the query will route to this materialized view. Since the
routing is determined by matching criteria and materialized view access cost
considerations, we need to eliminate the cost aspect of this routing
consideration.

The following steps will verify whether the query can route to the materialized
view based on matching criteria alone:

1. Create the materialized view

2. Remove it from the CHECK PENDING NO ACCESS state via the following
command:

SET INTEGRITY FOR tablename ALL IMMEDIATE UNCHECKED

3. Run runstats on the empty materialized view

4. Run EXPLAIN on the query, and verify that the query is being rewritten by the
DB2 optimizer to route to the materialized view.

If the user query is being routed to the materialized view, then we can be
confident that matching criteria are being met. However, we cannot be certain
that routing will occur when the materialized view is populated with data from the
base tables, since DB2 will weigh cost issues of materialized view access versus
base table access in order to come up with an optimal access plan. Cost issues
will be evaluated in Step 7: Introduce cost issues into materialized view routing.

2.8.6 Step 6: Consolidate materialized views
Once all the queries have been processed, we need to try and minimize the
number of materialized views. One approach is to review those materialized
views that only have a few user queries routing to them, and try and consolidate
them into a few number.

Attention: If EXPLAIN indicates that the user query is not being routed to the
materialized view, then the problem is with the matching criteria. The user
query and/or the materialized view definition must be modified based on
matching criteria discussed in “Matching criteria considerations” on page 44,
and re-EXPLAINed to determine successful routing to the materialized view.

Note: Such consolidation efforts should keep size considerations in mind,
while ensuring that all affected user queries continue to be routed to the
appropriate consolidated materialized views.
66 High-Function Business Intelligence in e-business

2.8.7 Step 7: Introduce cost issues into materialized view routing
Once all the user queries have been processed and confirmed to route to the
empty materialized views, we need to confirm that this routing will occur with
populated materialized views as well.

Create appropriate indexes on the materialized views using the Index Advisor if
needed, and update production data statistics for the materialized views and
indexes.

If EXPLAIN shows that a particular query is no longer being routed to the
materialized view, then it is because the DB2 optimizer has determined that it is
more efficient to access the base tables directly than via the materialized view.

2.8.8 Step 8: Estimate performance gains
Having established that routing occurs to the materialized views with production
statistics, we still need to determine whether such routing will result in
satisfactory performance gains. However, given the sheer volume of data
involved and the time it takes to load a materialized view, we need to ascertain
performance gains without having to load the actual production data.

The solution is to:

1. Create “miniature” base tables and materialized views using sample data that
is representative of production data.

Attention: Do not populate the materialized views with production data, as
this may be a very time consuming process. We first need to verify routing with
production data statistics before populating the materialized views.

Important: This may or may not be a problem, since only an actual runtime
comparison with and without materialized view routing can help pinpoint a
potential issue. Forcing a routing to the materialized view will require updating
materialized view statistics to deceive the DB2 optimizer into thinking that the
materialized view has fewer rows than is actually the case. This scenario will
have to be dealt on a case by case basis, depending upon the priority and
performance of the query.

Important: Without a representative sample of the real world environment,
performance estimates using this approach will be inconclusive,
 Chapter 2. DB2 UDB’s materialized views 67

2. Perform a comparison of query performance with and without materialized
view routing.

The following is an overview of the steps involved:

1. Create “miniature” replicas of the base tables, materialized views, and their
corresponding indexes.

2. Extract a representative sample of production data from the base tables, and
populate the “miniature” base tables with this sample data.

3. Refresh the “miniature” materialized views from the “miniature” base tables.

4. Perform runstats against both “miniature” base tables and materialized
views.

5. EXPLAIN the query to ensure that routing to the materialized views is
occurring.

6. Execute the query and measure the performance with routing in effect.

7. Disable query optimization against the materialized view. This can be
achieved either by setting the query optimization level as described in
“State considerations” on page 44, or ALTERing the materialized view AS
DEFINITION ONLY as described in “Materialized view ALTER considerations”
on page 41.

8. EXPLAIN the query to ensure that the materialized view is being ignored.
Take appropriate action to disable materialized view routing — worst case is
to drop the materialized view!

9. Execute the query and measure the performance with no routing in effect.

10.Quantify the performance gains with and without routing to the materialized
view.

11.Extrapolate the performance gains to production data.

With satisfactory estimates of performance gains, we can proceed to the next
step of loading the production data into the materialized views, executing
runstats against them, and enabling them for optimization.

Note: If routing does not occur, then the causes need to be investigated
and corrected using techniques described earlier.

Attention: If the estimated performance gains are unsatisfactory, then the
design of the materialized view has to be reviewed, and the entire design
process reiterated.
68 High-Function Business Intelligence in e-business

2.8.9 Step 9: Load the materialized views with production data
This step involves loading the materialized views with production data (via
REFRESH TABLE statements), and making them available for DB2 optimization,
after executing runstats against the materialized views and their corresponding
indexes.

2.8.10 Generalizing local predicates application example
Sapient is our sample application that explores data cubes with a star schema,
by slicing and dicing multidimensional data. Any multidimensional data can be
analyzed by this tool.

Sapient consists of a report view, and navigational controls.

� The report view allows for the viewing of the results of data queries on a data
cube. Reports may be summary tables, trend line graphs or pie charts, etc.

� An important part of the navigational controls are the dimensions and metrics
selection boxes. The dimension selection box allows the selection and drill
down on each dimension. This includes drilling down a dimension hierarchy
or cross drilling from one dimension to another. The metric selection box
allows for the selection of the metrics that are computable for the given data
cube. Additional navigation buttons allow forward and backward navigation to
view previous reports, and the drill button to initiate the query to drill a
hierarchy or cross drill a dimension.

Important: The aforementioned steps describe a process that requires skilled
professionals using trial and error techniques in order to design effective
materialized views, and drop them when they are no longer beneficial. The
process is both time consuming and error prone.

Attention: There are plans to provide an Design Advisor in future to assist
DBAs define materialized views that deliver maximum performance benefits
with minimal overheads.
 Chapter 2. DB2 UDB’s materialized views 69

We use the Medline data star schema shown in Figure 2-12 as the target of the
Sapient application.

Figure 2-12 Sapient star schema

The Sapient application provides an interactive interface as shown in Figure 2-13
for accessing the contents of this star schema, and generates appropriate SQL
queries to deliver the desired result.

TIME
Time_ID
Month
Year

COUNTRY
Country_ID
Country_Name

PHARM ACTION
PA_ID
PA_Name INSTITUTION

Inst_ID
Inst_Name

DOCUMENT
Doc_ID
Title
Abstract

AUTHOR
Auth-ID
Auth-Name

PUBLICATION
Pub_Month
Pub_Name
Pub_Type

LANGUAGE
Lang_ID
Lang_Name

Fact1

Medline Data ModelMedline Data Model

MESH
Mesh_ID
Root_Level
First_Level
Second_Level
Third_Level
Fourth_Level
Fifth_Level
Sixth_Level
Seventh_Level
Eighth_Level
Ninth_Level
Qualifier
Tree_Number
Item_Name
Scope_Note
70 High-Function Business Intelligence in e-business

Figure 2-13 Sapient graphical user interface

For the purposes of our scenario, we assume that the performance of the
generated queries are unsatisfactory, and would like to consider designing
materialized views to improve their performance. Example 2-37 shows a list of
the “problem” queries listed in priority order.

Example 2-37 “Problem” queries listed in priority order

Query 1:
SELECT MESH.SECOND_LEVEL, COUNT(DISTINCT FACT1_SUBSET.DOC_ID) COUNTS
FROM FACT1_SUBSET, MESH
WHERE FACT1_SUBSET.MESH_ID=MESH.MESH_ID AND MESH.ROOT_LEVEL='Anatomy'

AND MESH.FIRST_LEVEL='Body Regions'
GROUP BY MESH.SECOND_LEVEL

Query 2:
SELECT MESH.FIRST_LEVEL, COUNT(DISTINCT FACT1_SUBSET.DOC_ID) COUNTS
FROM FACT1_SUBSET, MESH
WHERE FACT1_SUBSET.MESH_ID=MESH.MESH_ID AND

MESH.ROOT_LEVEL='Chemicals and Drugs'
GROUP BY MESH.FIRST_LEVEL

Query 3:
 Chapter 2. DB2 UDB’s materialized views 71

SELECT MESH.ROOT_LEVEL, COUNT(DISTINCT FACT1_SUBSET.DOC_ID) COUNTS
FROM FACT1_SUBSET, MESH
WHERE FACT1_SUBSET.MESH_ID=MESH.MESH_ID
GROUP BY MESH.ROOT_LEVEL

Query 4:
SELECT AUTHOR.AUTHOR_NAME, COUNT(DISTINCT FACT1_SUBSET.DOC_ID) COUNTS
FROM FACT1_SUBSET, MESH, AUTHOR
WHERE FACT1_SUBSET.MESH_ID=MESH.MESH_ID AND

FACT1_SUBSET.AUTHOR_ID=AUTHOR.AUTHOR_ID AND
MESH.ROOT_LEVEL='Anatomy' AND MESH.FIRST_LEVEL='Animal Structures'

GROUP BY AUTHOR.AUTHOR_NAME

Query 5:
SELECT AUTHOR.AUTHOR_NAME, COUNT(DISTINCT FACT1_SUBSET.DOC_ID) COUNTS
FROM FACT1_SUBSET, MESH, AUTHOR
WHERE FACT1_SUBSET.MESH_ID=MESH.MESH_ID AND

FACT1_SUBSET.AUTHOR_ID=AUTHOR.AUTHOR_ID AND
MESH.ROOT_LEVEL='Anatomy' AND MESH.FIRST_LEVEL IN ('Body Regions','Cells')

GROUP BY AUTHOR.AUTHOR_NAME

Query 6:
WITH DT AS

(
SELECT COUNTRY_NAME, COUNT(*) AS COUNT, YEAR, MONTH,

ROOT_LEVEL, FIRST_LEVEL
FROM FACT1_SUBSET, MESH, TIME, COUNTRY
WHERE FACT1_SUBSET.MESH_ID=MESH.MESH_ID AND

FACT1_SUBSET.TIME_ID=TIME.TIME_ID AND
FACT1_SUBSET.COUNTRY_ID=COUNTRY.COUNTRY_ID

GROUP BY ROLLUP(YEAR, MONTH), ROLLUP(ROOT_LEVEL, FIRST_LEVEL), COUNTRY_NAME
)

SELECT *
FROM DT
ORDER BY COUNTRY_NAME, YEAR, MONTH, ROOT_LEVEL, FIRST_LEVEL

Query 7:
WITH DT AS

(
SELECT COUNTRY_NAME, COUNT(*) AS COUNT, YEAR, ROOT_LEVEL,
FROM FACT1_SUBSET, MESH, TIME, COUNTRY
WHERE FACT1_SUBSET.MESH_ID=MESH.MESH_ID AND

FACT1_SUBSET.TIME_ID=TIME.TIME_ID AND
FACT1_SUBSET.COUNTRY_ID=COUNTRY.COUNTRY_ID

GROUP BY ROLLUP(YEAR), ROLLUP(ROOT_LEVEL), COUNTRY_NAME
)

SELECT *
FROM DT
ORDER BY COUNTRY_NAME, YEAR, ROOT_LEVEL
72 High-Function Business Intelligence in e-business

Query 8:
SELECT AUTHOR.AUTHOR_NAME, DOC_ID,

CASE WHEN
FACT1_SUBSET.DOC_ID=1000 THEN COUNT(*)
ELSE NULL END

FROM FACT1_SUBSET, MESH, AUTHOR
WHERE FACT1_SUBSET.MESH_ID=MESH.MESH_ID AND

FACT1_SUBSET.AUTHOR_ID=AUTHOR.AUTHOR_ID AND
MESH.ROOT_LEVEL='Anatomy' AND
MESH.FIRST_LEVEL IN ('Body Regions','Cells')

GROUP BY AUTHOR.AUTHOR_NAME, DOC_ID

We will consider each query in Example 2-37 in turn, and generalize the local
predicates to design a materialized view, and then verify successful routing to
this materialized view using EXPLAIN.

Query 1:
The materialized view for this query looks like AST3 in Example 2-38. Note the
following generalization of local predicates:

� The predicates on columns MESH.ROOT_LEVEL and MESH.FIRST_LEVEL
are added to the GROUP BY list, and removed from the predicates.

� The COUNT(DISTINCT FACT1_SUBSET.DOC_ID) select list item is replaced
by a column DOC_ID, and an addition of column DOC_ID to the GROUP BY
list.

Example 2-38 Materialized view AST3

CREATE SUMMARY TABLE AST3 AS
(
SELECT ROOT_LEVEL, MESH.FIRST_LEVEL, SECOND_LEVEL, DOC_ID) COUNTS
FROM FACT1_SUBSET, MESH WHERE FACT1_SUBSET.MESH_ID= MESH.MESH_ID
GROUP BY FIRST_LEVEL, ROOT_LEVEL, SECOND_LEVEL, DOC_ID
)

DATA INITIALLY DEFERRED REFRESH DEFERRED IN USERSPACE1

An estimate of the size of the materialized view was well within the limit of an
order of magnitude as compared to the base table. After creating this
materialized view, and populating it, we ran an EXPLAIN of Query 1 to confirm
that it was being routed to AST3 as shown in Example 2-39.

Example 2-39 EXPLAIN of Query 1

******************** EXPLAIN INSTANCE ********************
DB2_VERSION: 07.02.0
SOURCE_NAME: SQLC2D01
 Chapter 2. DB2 UDB’s materialized views 73

SOURCE_SCHEMA: NULLID
EXPLAIN_TIME: 2002-08-26-16.47.17.125000
EXPLAIN_REQUESTER: DB2ADMIN

Database Context:

Parallelism: None
CPU Speed: 7.478784e-007
Comm Speed: 0
Buffer Pool size: 5256
Sort Heap size: 20000
Database Heap size: 600
Lock List size: 50
Maximum Lock List: 22
Average Applications: 1
Locks Available: 1243

Package Context:

SQL Type: Dynamic
Optimization Level: 5
Blocking: Block All Cursors
Isolation Level: Cursor Stability

---------------- STATEMENT 1 SECTION 203 ----------------
QUERYNO: 1
QUERYTAG:
Statement Type: Select
Updatable: No
Deletable: No
Query Degree: 1

Original Statement:

SELECT MESH.SECOND_LEVEL, COUNT(DISTINCT FACT1_SUBSET.DOC_ID) COUNTS
FROM FACT1_SUBSET, MESH
WHERE FACT1_SUBSET.MESH_ID=MESH.MESH_ID AND MESH.ROOT_LEVEL='Anatomy' AND
 MESH.FIRST_LEVEL='Body Regions'
GROUP BY MESH.SECOND_LEVEL

Optimized Statement:

SELECT Q3.$C1 AS "SECOND_LEVEL", Q3.$C0 AS "COUNTS"
FROM
 (SELECT COUNT(Q2.$C1), Q2.$C0
 FROM
 (SELECT Q1.SECOND_LEVEL, Q1.COUNTS
 FROM DB2ADMIN.AST3 AS Q1
 WHERE (Q1.FIRST_LEVEL = 'Body Regions') AND (Q1.ROOT_LEVEL =
74 High-Function Business Intelligence in e-business

 'Anatomy')) AS Q2
 GROUP BY Q2.$C0) AS Q3

Query 2:
Note the following generalization of local predicates for this query:

� The predicate on column MESH.ROOT_LEVEL is added to the GROUP BY
list, and removed from the predicate. MESH.ROOT_LEVEL is not a nullable
column.

� The COUNT(DISTINCT FACT1_SUBSET.DOC_ID) select list item is replaced
by a column DOC_ID, and an addition of column DOC_ID to the GROUP BY
list.

We see that a materialized view from the above generalization is a coarser
granular version of AST3, since it only groups on MESH.ROOT_LEVEL. We can
therefore potentially reuse AST3.

We ran an EXPLAIN of Query 2 to confirm that it was being routed to AST3 as
shown in Example 2-40.

Example 2-40 EXPLAIN of Query 2

******************** EXPLAIN INSTANCE ********************

DB2_VERSION: 07.02.0
SOURCE_NAME: SQLC2D01
SOURCE_SCHEMA: NULLID
EXPLAIN_TIME: 2002-08-26-16.58.54.265000
EXPLAIN_REQUESTER: DB2ADMIN

Database Context:

Parallelism: None
CPU Speed: 7.478784e-007
Comm Speed: 0
Buffer Pool size: 5256
Sort Heap size: 20000
Database Heap size: 600
Lock List size: 50
Maximum Lock List: 22
Average Applications: 1
Locks Available: 1243

Package Context:

SQL Type: Dynamic
Optimization Level: 5
 Chapter 2. DB2 UDB’s materialized views 75

Blocking: Block All Cursors
Isolation Level: Cursor Stability

---------------- STATEMENT 1 SECTION 203 ----------------
QUERYNO: 1
QUERYTAG:
Statement Type: Select
Updatable: No
Deletable: No
Query Degree: 1

Original Statement:

SELECT MESH.FIRST_LEVEL, COUNT(DISTINCT FACT1_SUBSET.DOC_ID) COUNTS
FROM FACT1_SUBSET, MESH
WHERE FACT1_SUBSET.MESH_ID=MESH.MESH_ID AND MESH.ROOT_LEVEL='Chemicals and
 Drugs'
GROUP BY MESH.FIRST_LEVEL

Optimized Statement:

SELECT Q3.$C1 AS "FIRST_LEVEL", Q3.$C0 AS "COUNTS"
FROM
 (SELECT COUNT(Q2.$C1), Q2.$C0
 FROM
 (SELECT Q1.FIRST_LEVEL, Q1.COUNTS
 FROM DB2ADMIN.AST3 AS Q1
 WHERE (Q1.ROOT_LEVEL = 'Chemicals and Drugs')) AS Q2
 GROUP BY Q2.$C0) AS Q3

Query 3:
Note the following generalization of local predicates for this query:

� The COUNT(DISTINCT FACT1_SUBSET.DOC_ID) select list item is replaced
by a column DOC_ID, and an addition of column DOC_ID to the GROUP BY
list.

� There is no local predicate.

We see that a materialized view from the above generalization is a coarser
granular version of AST3, since it only groups on MESH.ROOT_LEVEL. We can
therefore potentially reuse AST3.

We ran an EXPLAIN of Query 2 to confirm that it was being routed to AST3 as
shown in Example 2-41.
76 High-Function Business Intelligence in e-business

Example 2-41 EXPLAIN of Query 3

******************** EXPLAIN INSTANCE ********************

DB2_VERSION: 07.02.0
SOURCE_NAME: SQLC2D01
SOURCE_SCHEMA: NULLID
EXPLAIN_TIME: 2002-08-26-17.07.12.593002
EXPLAIN_REQUESTER: DB2ADMIN

Database Context:

Parallelism: None
CPU Speed: 7.478784e-007
Comm Speed: 0
Buffer Pool size: 5256
Sort Heap size: 20000
Database Heap size: 600
Lock List size: 50
Maximum Lock List: 22
Average Applications: 1
Locks Available: 1243

Package Context:

SQL Type: Dynamic
Optimization Level: 5
Blocking: Block All Cursors
Isolation Level: Cursor Stability

---------------- STATEMENT 1 SECTION 203 ----------------
QUERYNO: 1
QUERYTAG:
Statement Type: Select
Updatable: No
Deletable: No
Query Degree: 1

Original Statement:

SELECT MESH.ROOT_LEVEL, COUNT(DISTINCT FACT1_SUBSET.DOC_ID) COUNTS
FROM FACT1_SUBSET, MESH
WHERE FACT1_SUBSET.MESH_ID=MESH.MESH_ID
GROUP BY MESH.ROOT_LEVEL

Optimized Statement:
 Chapter 2. DB2 UDB’s materialized views 77

SELECT Q3.$C1 AS "ROOT_LEVEL", Q3.$C0 AS "COUNTS"
FROM
 (SELECT COUNT(Q2.$C1), Q2.$C0
 FROM
 (SELECT Q1.ROOT_LEVEL, Q1.COUNTS
 FROM DB2ADMIN.AST3 AS Q1) AS Q2
 GROUP BY Q2.$C0) AS Q3

Query 4:
The materialized view for this query looks like AST5 in Example 2-42. Note the
following generalization of local predicates for this query:

� The predicates on columns MESH.ROOT_LEVEL and MESH.FIRST_LEVEL
are added to the GROUP BY list, and removed from the predicates.

� The COUNT(DISTINCT FACT1_SUBSET.DOC_ID) select list item is replaced
by a column DOC_ID, and an addition of column DOC_ID to the GROUP BY
list.

Example 2-42 Materialized view AST5

CREATE SUMMARY TABLE AST5 AS
(
SELECT ROOT_LEVEL, MESH.FIRST_LEVEL, AUTHOR_NAME, DOC_ID
FROM FACT1_SUBSET, MESH, AUTHOR
WHERE FACT1_SUBSET.MESH_ID=MESH.MESH_ID AND
FACT1_SUBSET.AUTHOR_ID=AUTHOR.AUTHOR_ID
GROUP BY FIRST_LEVEL, ROOT_LEVEL, AUTHOR_NAME, DOC_ID
)

DATA INITIALLY DEFERRED REFRESH DEFERRED IN USERSPACE1

An estimate of the size of the materialized view was well within the limit of an
order of magnitude as compared to the base table. We ran an EXPLAIN of Query
4 to confirm that it was being routed to AST3 as shown in Example 2-43.

Example 2-43 EXPLAIN of Query 4

******************** EXPLAIN INSTANCE ********************

DB2_VERSION: 07.02.0
SOURCE_NAME: SQLC2D01
SOURCE_SCHEMA: NULLID
EXPLAIN_TIME: 2002-08-27-15.50.44.109000
EXPLAIN_REQUESTER: DB2ADMIN

Database Context:

78 High-Function Business Intelligence in e-business

Parallelism: None
CPU Speed: 7.478784e-007
Comm Speed: 0
Buffer Pool size: 5256
Sort Heap size: 20000
Database Heap size: 600
Lock List size: 50
Maximum Lock List: 22
Average Applications: 1
Locks Available: 1243

Package Context:

SQL Type: Dynamic
Optimization Level: 5
Blocking: Block All Cursors
Isolation Level: Cursor Stability

---------------- STATEMENT 1 SECTION 203 ----------------
QUERYNO: 1
QUERYTAG:
Statement Type: Select
Updatable: No
Deletable: No
Query Degree: 1

Original Statement:

SELECT AUTHOR.AUTHOR_NAME, COUNT(DISTINCT FACT1_SUBSET.DOC_ID) COUNTS
FROM FACT1_SUBSET, MESH, AUTHOR
WHERE FACT1_SUBSET.MESH_ID=MESH.MESH_ID AND
 FACT1_SUBSET.AUTHOR_ID=AUTHOR.AUTHOR_ID AND MESH.ROOT_LEVEL='Anatomy'
 AND MESH.FIRST_LEVEL='Animal Structures'
GROUP BY AUTHOR.AUTHOR_NAME

Optimized Statement:

SELECT Q3.$C1 AS "AUTHOR_NAME", Q3.$C0 AS "COUNTS"
FROM
 (SELECT COUNT(Q2.$C1), Q2.$C0
 FROM
 (SELECT Q1.AUTHOR_NAME, Q1.DOC_ID
 FROM DB2ADMIN.AST5 AS Q1
 WHERE (Q1.FIRST_LEVEL = 'Animal Structures') AND (Q1.ROOT_LEVEL =
 'Anatomy')) AS Q2
 Chapter 2. DB2 UDB’s materialized views 79

 GROUP BY Q2.$C0) AS Q3

Query 5:
Note the following generalization of local predicates for this query:

� The predicates on columns MESH.ROOT_LEVEL and MESH.FIRST_LEVEL
are added to the GROUP BY list, and removed from the predicates. Note that
the MESH.FIRST_LEVEL is an IN predicate.

� The COUNT(DISTINCT FACT1_SUBSET.DOC_ID) select list item is replaced
by a column DOC_ID, and an addition of column DOC_ID to the GROUP BY
list.

We see that a materialized view from the above generalization is a coarser
granular version of AST5, since it only groups on MESH.ROOT_LEVEL and
MESH.FIRST_LEVEL. We can therefore potentially reuse AST5. We ran an
EXPLAIN of Query 4 to confirm that it was being routed to AST5 as shown in
Example 2-44.

Example 2-44 EXPLAIN of Query 5

******************** EXPLAIN INSTANCE ********************

DB2_VERSION: 07.02.0
SOURCE_NAME: SQLC2D01
SOURCE_SCHEMA: NULLID
EXPLAIN_TIME: 2002-08-27-15.58.30.937000
EXPLAIN_REQUESTER: DB2ADMIN

Database Context:

Parallelism: None
CPU Speed: 7.478784e-007
Comm Speed: 0
Buffer Pool size: 5256
Sort Heap size: 20000
Database Heap size: 600
Lock List size: 50
Maximum Lock List: 22
Average Applications: 1
Locks Available: 1243

Package Context:

SQL Type: Dynamic
Optimization Level: 5
Blocking: Block All Cursors
Isolation Level: Cursor Stability
80 High-Function Business Intelligence in e-business

---------------- STATEMENT 1 SECTION 203 ----------------
QUERYNO: 1
QUERYTAG:
Statement Type: Select
Updatable: No
Deletable: No
Query Degree: 1

Original Statement:

SELECT AUTHOR.AUTHOR_NAME, COUNT(DISTINCT FACT1_SUBSET.DOC_ID) COUNTS
FROM FACT1_SUBSET, MESH, AUTHOR
WHERE FACT1_SUBSET.MESH_ID=MESH.MESH_ID AND
 FACT1_SUBSET.AUTHOR_ID=AUTHOR.AUTHOR_ID AND MESH.ROOT_LEVEL='Anatomy'
 AND MESH.FIRST_LEVEL IN ('Body Regions','Cells')
GROUP BY AUTHOR.AUTHOR_NAME

Optimized Statement:

SELECT Q3.$C1 AS "AUTHOR_NAME", Q3.$C0 AS "COUNTS"
FROM
 (SELECT COUNT(Q2.$C1), Q2.$C0
 FROM
 (SELECT Q1.AUTHOR_NAME, Q1.DOC_ID
 FROM DB2ADMIN.AST5 AS Q1
 WHERE (Q1.ROOT_LEVEL = 'Anatomy') AND Q1.FIRST_LEVEL IN ('Body Regions',
 'Cells')) AS Q2
 GROUP BY Q2.$C0) AS Q3

Query 6:
The materialized view for this query looks like AST6 in Example 2-45. Note the
following generalization of local predicates for this query:

� The YEAR, MONTH, ROOT_LEVEL, FIRST_LEVEL, and COUNTRY_NAME
columns in the GROUP BY list are all nullable, and therefore require the
GROUPING function to be defined in the select list of the materialized view.

Note: As explained in topic 2 on page 46, the GROUPING function must
be defined for all nullable columns when super aggregates (ROLLUP,
CUBE and grouping sets) are involved.
 Chapter 2. DB2 UDB’s materialized views 81

An estimate of the size of the materialized view was well within the limit of an
order of magnitude as compared to the base table. After creating this
materialized view, and populating it, we ran an EXPLAIN of Query 6 to confirm
that it was being routed to AST6 as shown in Example 2-46.

Example 2-45 Materialized view AST6

CREATE SUMMARY TABLE AST6 AS
(
SELECT COUNTRY_NAME, COUNT(*) AS COUNT, YEAR, MONTH, ROOT_LEVEL,
FIRST_LEVEL, GROUPING(COUNTRY_NAME) AS GPCNAME, GROUPING(YEAR) AS GPYEAR,
GROUPING(MONTH) AS GPMONTH, GROUPING(ROOT_LEVEL) AS GPRLEVEL,
GROUPING(FIRST_LEVEL) AS GPFLEVEL
FROM FACT1_SUBSET, MESH, TIME, COUNTRY
WHERE FACT1_SUBSET.MESH_ID=MESH.MESH_ID AND
FACT1_SUBSET.TIME_ID=TIME.TIME_ID AND
FACT1_SUBSET.COUNTRY_ID=COUNTRY.COUNTRY_ID
GROUP BY ROLLUP(YEAR, MONTH), ROLLUP(ROOT_LEVEL, FIRST_LEVEL), COUNTRY_NAME
)

DATA INITIALLY DEFERRED REFRESH DEFERRED IN USERSPACE1

Example 2-46 EXPLAIN of Query 6

******************** EXPLAIN INSTANCE ********************

DB2_VERSION: 07.02.0
SOURCE_NAME: SQLC2D01
SOURCE_SCHEMA: NULLID
EXPLAIN_TIME: 2002-08-29-13.38.21.687000
EXPLAIN_REQUESTER: DB2ADMIN

Database Context:

Parallelism: None
CPU Speed: 7.478784e-007
Comm Speed: 0
Buffer Pool size: 5256
Sort Heap size: 20000
Database Heap size: 600
Lock List size: 50
Maximum Lock List: 22
Average Applications: 1
Locks Available: 1243

Package Context:

SQL Type: Dynamic
Optimization Level: 5
Blocking: Block All Cursors
82 High-Function Business Intelligence in e-business

Isolation Level: Cursor Stability

---------------- STATEMENT 1 SECTION 203 ----------------
QUERYNO: 1
QUERYTAG:
Statement Type: Select
Updatable: No
Deletable: No
Query Degree: 1

Original Statement:

with dt as
 (select cast(country_name as varchar(20)) as country_name, COUNT(*) as
 count, year, month, cast(root_level as varchar(20)) as root_level,
 cast(first_level as varchar(20)) as first_level
 from fact1_subset, mesh, time, country
 where fact1_subset.mesh_id=mesh.mesh_id and
 fact1_subset.time_id=time.time_id and
 fact1_subset.country_id=country.country_id
 group by rollup(year, month), rollup(root_level, first_level),
 country_name) select *
from dt
order by country_name, year, month, root_level, first_level

Optimized Statement:

SELECT Q1.COUNTRY_NAME AS "COUNTRY_NAME", Q1.COUNT AS "COUNT", Q1.YEAR AS
 "YEAR", Q1.MONTH AS "MONTH", Q1.ROOT_LEVEL AS "ROOT_LEVEL",
 Q1.FIRST_LEVEL AS "FIRST_LEVEL"
FROM DB2ADMIN.AST6 AS Q1
ORDER BY Q1.COUNTRY_NAME, Q1.YEAR, Q1.MONTH, Q1.ROOT_LEVEL, Q1.FIRST_LEVEL

Query 7:
Note the following generalization of local predicates for this query:

� The YEAR, ROOT_LEVEL, and COUNTRY_NAME columns in the GROUP
BY list are all nullable, and therefore require the GROUPING function to be
defined in the select list of the materialized view.

We see that a materialized view from the above generalization is a coarser
granular version of AST6, since it only groups on three of the five columns
defined in AST6. We can therefore potentially reuse AST6.
 Chapter 2. DB2 UDB’s materialized views 83

We ran an EXPLAIN of Query 7 to confirm that it was being routed to AST6 as
shown in Example 2-47.

Example 2-47 EXPLAIN of Query 7

******************** EXPLAIN INSTANCE ********************

DB2_VERSION: 07.02.0
SOURCE_NAME: SQLC2D01
SOURCE_SCHEMA: NULLID
EXPLAIN_TIME: 2002-09-04-17.02.40.562000
EXPLAIN_REQUESTER: DB2ADMIN

Database Context:

Parallelism: None
CPU Speed: 7.478784e-007
Comm Speed: 0
Buffer Pool size: 5256
Sort Heap size: 20000
Database Heap size: 600
Lock List size: 50
Maximum Lock List: 22
Average Applications: 1
Locks Available: 1243

Package Context:

SQL Type: Dynamic
Optimization Level: 5
Blocking: Block All Cursors
Isolation Level: Cursor Stability

---------------- STATEMENT 1 SECTION 203 ----------------
QUERYNO: 1
QUERYTAG:
Statement Type: Select
Updatable: No
Deletable: No
Query Degree: 1

Original Statement:

with dt as
 (select cast(country_name as varchar(20)) as country_name, COUNT(*) as
 count, year, cast(root_level as varchar(20)) as root_level
 from fact1_subset, mesh, time, country
84 High-Function Business Intelligence in e-business

 where fact1_subset.mesh_id=mesh.mesh_id and
 fact1_subset.time_id=time.time_id and
 fact1_subset.country_id=country.country_id
 group by rollup(year), rollup(root_level), country_name) select *
from dt
order by country_name, year, root_level

Optimized Statement:

SELECT Q1.COUNTRY_NAME AS "COUNTRY_NAME", Q1.COUNT AS "COUNT", Q1.YEAR AS
 "YEAR", Q1.ROOT_LEVEL AS "ROOT_LEVEL"
FROM DB2ADMIN.AST6 AS Q1
WHERE (Q1.GPMONTH = 1) AND (Q1.GPFLEVEL = 1)
ORDER BY Q1.COUNTRY_NAME, Q1.YEAR, Q1.ROOT_LEVEL

Query 8:
The materialized view for this query looks like AST7 in Example 2-48. Note the
following generalization of local predicates for this query:

� The predicates on columns MESH.ROOT_LEVEL and MESH.FIRST_LEVEL
are added to the GROUP BY list, and removed from the predicates. Note that
the MESH.FIRST_LEVEL is an IN predicate.

� The COUNT(*) function in the CASE expression in the select list is replaced
by a COUNT(*), and the FACT1_SUBSET.DOC_ID column is added to the
GROUP BY list. The CASE expression is removed from the select list
altogether.

An estimate of the size of the materialized view was well within the limit of an
order of magnitude as compared to the base table. After creating this
materialized view, and populating it, we ran an EXPLAIN of Query 6 to confirm
that it was being routed to AST7 as shown in Example 2-49.

Example 2-48 Materialized view AST7

CREATE SUMMARY TABLE AST7 AS
(
SELECT ROOT_LEVEL, MESH.FIRST_LEVEL, AUTHOR_NAME, DOC_ID, COUNT(*) AS C
FROM FACT1_SUBSET, MESH, AUTHOR
WHERE FACT1_SUBSET.MESH_ID=MESH.MESH_ID AND
FACT1_SUBSET.AUTHOR_ID=AUTHOR.AUTHOR_ID
GROUP BY FIRST_LEVEL, ROOT_LEVEL, AUTHOR_NAME, DOC_ID
)
DATA INITIALLY DEFERRED REFRESH DEFERRED IN USERSPACE1
 Chapter 2. DB2 UDB’s materialized views 85

Example 2-49 EXPLAIN of Query 8

******************** EXPLAIN INSTANCE ********************

DB2_VERSION: 07.02.0
SOURCE_NAME: SQLC2D01
SOURCE_SCHEMA: NULLID
EXPLAIN_TIME: 2002-08-29-13.27.27.781000
EXPLAIN_REQUESTER: DB2ADMIN

Database Context:

Parallelism: None
CPU Speed: 7.478784e-007
Comm Speed: 0
Buffer Pool size: 5256
Sort Heap size: 20000
Database Heap size: 600
Lock List size: 50
Maximum Lock List: 22
Average Applications: 1
Locks Available: 1243

Package Context:

SQL Type: Dynamic
Optimization Level: 5
Blocking: Block All Cursors
Isolation Level: Cursor Stability

---------------- STATEMENT 1 SECTION 203 ----------------
QUERYNO: 1
QUERYTAG:
Statement Type: Select
Updatable: No
Deletable: No
Query Degree: 1

Original Statement:

SELECT AUTHOR.AUTHOR_NAME, doc_id,
case
when fact1_subset.doc_id=1000
THEN count(*)
ELSE NULL END
FROM FACT1_SUBSET, MESH, AUTHOR
WHERE FACT1_SUBSET.MESH_ID=MESH.MESH_ID AND
86 High-Function Business Intelligence in e-business

 FACT1_SUBSET.AUTHOR_ID=AUTHOR.AUTHOR_ID AND MESH.ROOT_LEVEL='Anatomy'
 AND MESH.FIRST_LEVEL IN ('Body Regions','Cells')
GROUP BY AUTHOR.AUTHOR_NAME, doc_id

Optimized Statement:

SELECT Q3.$C2 AS "AUTHOR_NAME", Q3.$C1 AS "DOC_ID",
CASE
WHEN (Q3.$C1 = 1000)
THEN Q3.$C0
ELSE NULL END
FROM
 (SELECT SUM(Q2.$C2), Q2.$C0, Q2.$C1
 FROM
 (SELECT Q1.DOC_ID, Q1.AUTHOR_NAME, Q1.C
 FROM DB2ADMIN.AST7 AS Q1
 WHERE (Q1.ROOT_LEVEL = 'Anatomy') AND Q1.FIRST_LEVEL IN ('Body Regions',
 'Cells')) AS Q2
 GROUP BY Q2.$C1, Q2.$C0) AS Q3

2.9 Materialized view tuning considerations
Two broad categories of tuning considerations apply to materialized views as
follows:

� User query related: These are the considerations related to improving the
performance of user queries against base tables that get routed to the
materialized view. This includes ensuring that RUNSTATS is current, and that
appropriate indexes exist on the materialized view.

� Materialized view maintenance related: These are considerations related
to improving the performance of materialized view maintenance by DB2 when
updates occur on the underlying tables. We recommend that you follow these
guidelines:

– Create a non-unique index on the materialized view columns that
guarantee uniqueness of rows in a materialized view. Refer to “No
duplicate rows in materialized view restriction” on page 94 for guidelines

Attention: We did not conduct any performance measurements to determine
the performance gains of routing to the materialized views. In a real world
environment, you would need to continuously evaluate the efficacy of
materialized views, and create and drop them as needed based on
performance needs.
 Chapter 2. DB2 UDB’s materialized views 87

on identifying these columns. Example 2-50 shows examples of columns
that form unique keys in different materialized views.

In the case of a partitioned materialized view, the partitioning key should
be a subset of the columns described above.

– Do not create an index on the staging table, since such indexes will
degrade the performance of appends to the staging table.

– Create an informational or system enforced referential integrity (RI)
constraint on joins in a materialized view if appropriate, since DB2 takes
advantage of these constraints to optimize the maintenance of
materialized views.

Consider a materialized view with a join between the primary key of the
parent table and corresponding foreign key of the child table. DB2 takes
advantage of such an RI constraint to eliminate maintenance operations
on the materialized view. For example, DB2 deduces that an insert to the
parent table will not affect the materialized view since the join is empty.
That is, due to the RI constraint between the parent table and child table,
an insert of a row in the parent table guarantees that there can be no
matching rows in the child table.

It is more appropriate to create informational referential constraints to
achieve this optimization, rather than system enforced referential
constraints, since the latter has application development as well as
operations impact. Example 2-25 on page 54 shows an example of
system enforced and informational referential integrity constraints.

– Partition the staging table according to the partitioning of the materialized
view to promote collocated joins.

In choosing indexes, you should also take into account any joins necessitated
by REFRESH IMMEDIATE and staging materialized view maintenance
operations that must be included in packages updating the base tables. An
EXPLAIN of such packages will identify these maintenance operations which
might benefit greatly from appropriate indexes on the joined columns.

Example 2-50 Columns that form unique keys in materialized views

-- Case 1: A materialized view with a simple GROUP BY
--
CREATE TABLE loc_status_summary(locid, status, total, count) AS

(
SELECT t.locid, t.status, sum(ti.amount), COUNT(*)
FROM trans AS t, transitem AS ti
WHERE t.transid = ti.transid

Note: Unique indexes can not be defined on a materialized view.
88 High-Function Business Intelligence in e-business

GROUP BY t.locid, t.status
)
DATA INITIALLY DEFERRED REFRESH IMMEDIATE

-- The GROUP BY items form a unique key in the result of the materialized view.
-- In the above case, columns locid and status form the unique key.

-- Case 2: A materialized view with complex GROUP BY

CREATE TABLE loc_rollup(country, country_grouping, state,
state_grouping, total, count) AS

(
SELECT l.country, grouping(l.country), l.state, grouping(l.state),

sum(ti.amount), COUNT(*)
FROM trans AS t, transitem AS ti, loc AS l
WHERE t.transid = ti.transid and t.locid = l.locid
GROUP BY ROLLUP(l.country, l.state)
)
DATA INITIALLY DEFERRED REFRESH IMMEDIATE

-- The GROUP BY items plus the GROUPING columns of the
-- nullable GROUP BY items form a unique key.
-- Columns loc.country and loc.state are nullable and so
-- GROUPING(l.country) and GROUPING(l.state) must be included
-- in the materialized view to avoid duplicate rows.
-- The columns that form the unique key in the above example are country,
-- country_grouping, state and state_grouping.

-- Case 3: A join materialized view without GROUP BY

CREATE TABLE trans_join(transid, acctid, transitemid, amount) AS
(
SELECT t.transid, t.acctid, ti.transitemid, ti.amount
FROM trans AS t, transitem AS ti
WHERE t.transid = ti.transid
)
DATA INITIALLY DEFERRED REFRESH IMMEDIATE

-- A unique key of each underlying table must appear in the result of the
-- materialized view query and the unique key of the materialized view is
-- the combination of those unique keys.
-- In the above example, columns transid and transitemid (the keys of trans and
-- transitem respectively) form the unique key of the materialized view.
 Chapter 2. DB2 UDB’s materialized views 89

2.10 Refresh optimization
REFRESH TABLE operations can have the following negative impacts:

� Refresh takes a z-lock on the materialized view thus making it unavailable for
access by SQL queries. Performance can be significantly impacted for
queries depending on materialized view optimization during the refresh
window.

� Refresh also takes a z-lock on the staging table (if one exists). This can have
a negative impact on updates to the base tables (they will not succeed), if
refresh takes an extended period of time, since the staging table is updated in
the same unit-of-work as updates to the base table.

� Refresh causes logging to occur as a consequence of updates to the
materialized view, as well as pruning of the staging table. Refresh also
consumes CPU, IO and buffer pool resources that impacts other users
contending for the same resources.

Refresh resource consumption can be reduced by combining multiple
materialized view refreshes in a single REFRESH TABLE statement. DB2 uses
“multi-query optimization” to share joins and aggregations required of each
materialized view in order to reduce the resource consumption against base
tables shared by the materialized views. Figure 2-14 describes this process.
90 High-Function Business Intelligence in e-business

Figure 2-14 Multi-query optimization in REFRESH TABLE with materialized views

AST1 is a materialized view based on tables TRANS, STORE and CUST, while
AST2 is based on tables TRANS and STORE.

Consider issuing the following:

REFRESH TABLE AST1, AST2

This causes DB2 to attempt to match the materialized view queries to formulate a
“common subsumer” query CS, which is executed on the base tables, the results
of which are then suitably predicated to update AST1 and AST2 respectively.
This approach optimizes resource consumption against the base tables and
staging tables. This has a positive impact on the performance of SQL queries,
and updates of base tables associated with staging tables.

Considerations in grouping materialized views in a single REFRESH TABLE
statement include:

� Identical or overlapping base tables.

� Identical latency requirements for both materialized views, or at least
acceptable latency discrepancies between the materialized views.

� Large size of the base tables — significant performance gains can be
achieved in such cases.

INSERT INTO AST1
SELECT store_name, cust_name,
 SUM(sales) AS ss, COUNT(*) AS cnt
FROM CS
WHERE year = 2001
GROUP BY store_name, cust_name

INSERT INTO AST2
SELECT store_name, year,
 SUM(sales) AS ss, COUNT(*) AS cnt
FROM CS
WHERE year >= 1998
GROUP BY store_name, year

SELECT store_name, cust_name, year,
 SUM(sales) AS ss, COUNT(*) AS cnt
FROM Trans T, Store S, Cust C
WHERE T.store_id = S.store_id
 AND T.cust_id = C.cust_id
 AND T.year >= 1998
GROUP BY store_name, year, cust_name

Common Subsumer CS

SELECT store_name, cust_name,
 SUM(sales) AS ss, COUNT(*) AS cnt
FROM Trans T, Store S, Cust C
WHERE T.store_id = S.store_id
 AND T.cust_id = C.cust_id
 AND T.year = 2001
GROUP BY store_name, cust_name

SELECT store_name, year,
 SUM(sales) AS ss, COUNT(*) AS cnt
FROM Trans T, Store S
WHERE T.store_id = S.store_id
 AND T.year >= 1998
GROUP BY store_name, year

AST2AST1
REFRESH TABLE AST1, AST2
 Chapter 2. DB2 UDB’s materialized views 91

2.11 Materialized view limitations
The limitations applying to materialized views fall into the categories and
subcategories shown in Figure 2-15.

Figure 2-15 Materialized view limitation categories

The following sections describe the restrictions in each of the above categories.

2.11.1 REFRESH DEFERRED and REFRESH IMMEDIATE
The following fullselect restrictions apply to both REFRESH DEFERRED and
REFRESH IMMEDIATE materialized views:

� References to a materialized view, declared temporary table, or typed table in
any FROM clause.

� References to a view where the fullselect of the view violates any of the listed
restrictions on the fullselect of a materialized view.

� Expressions that are a reference type or DATALINK type (or distinct type
based on these types).

� Functions that have external action.

� Functions written in SQL.

Materialized VIew Limitations

Restrictions that ONLY apply to
 REFRESH IMMEDIATE materialized views

and
 REFRESH DEFERRED materialized views

associated with a staging table

General restrictions

Restrictions related to the requirement
that there can be NO DUPLICATES in the

materialized view

Restrictions when
there is no GROUP
BY clause defined

Restrictions that apply to
BOTH

REFRESH IMMEDIATE
and

REFRESH DEFERRED
 materialized views

Restrictions when
a GROUP BY

clause is defined
92 High-Function Business Intelligence in e-business

� Functions that depend on physical characteristics (for example
DBPARTITIONNUM, HASHEDVALUE).

� Table or view references to system objects (catalog tables). EXPLAIN tables
should also not be specified.

� Expressions that are a structured type or LOB type (or a distinct type based
on a LOB type).

� When REPLICATED is specified, the following restrictions apply:

– GROUP BY clause is not allowed.

– The materialized view query must only reference a single table, that is, not
include a join.

2.11.2 REFRESH IMMEDIATE and queries with staging table
The following limitations only apply to REFRESH IMMEDIATE materialized
views, and queries used to create REFRESH DEFERRED tables associated with
a staging table.

General restrictions
� The fullselect must be a subselect, with the exception that UNION ALL is

supported in the input table expression of a GROUP BY.

� The subselect can not include:

– References to a nickname
– Functions that are non-deterministic
– Scalar fullselects
– Predicates with fullselects
– Special registers like CURRENT TIMESTAMP
– SELECT DISTINCT

� If the FROM clause references more than one table or view, it can only define
an inner join without using the explicit INNER JOIN syntax.

� GROUP BY restrictions

When a GROUP BY clause is specified, the following considerations apply:

– Column functions SUM, COUNT, COUNT_BIG and GROUPING (without
DISTINCT) are supported. The select list must contain a COUNT(*) or
COUNT_BIG(*) column. If the materialized view select list contains
SUM(X) where X is a nullable argument, then the materialized view must
also have COUNT(X) in its select list. These column functions can not be
part of any expressions.

– A HAVING clause is not allowed.
 Chapter 2. DB2 UDB’s materialized views 93

– If in a multiple partition database partition group, the partitioning key must
be a subset of the GROUP BY items.

No duplicate rows in materialized view restriction
The materialized view must not contain duplicate rows, and the following
restrictions specific to this uniqueness requirement apply, depending upon
whether or not a GROUP BY clause is specified.

� When a GROUP BY is specified, the following uniqueness related restrictions
apply:

– All GROUP BY items must be included in the select list.

– When the GROUP BY contains GROUPING SETS, CUBE or ROLLUP,
then the GROUP BY items and associated GROUPING column functions
in the select list must form a unique key of the result set. Thus, the
following restrictions must be satisfied:

• No grouping sets may be repeated. For example, ROLLUP(X,Y),X is
not allowed because it is equivalent to GROUPING
SETS((X,Y),(X),(X))

• If X is a nullable GROUP BY item that appears within GROUPING
SETS, CUBE, or ROLLUP, then GROUPING(X) must appear in the
select list

� When a GROUP BY clause is not specified, the following uniqueness related
restrictions apply:

– The materialized view’s non-duplicate requirement is achieved by deriving
a unique key for the materialized view from one of the unique key
constraints defined in each of the underlying tables. Therefore, the
underlying tables must have at least one unique key constraint defined on
them, and the columns of these keys must appear in the select list of the
materialized view definition.
94 High-Function Business Intelligence in e-business

Certain operations cannot be performed on the base tables of a materialized
view that needs to be incrementally maintained.

� IMPORT REPLACE cannot be used on an base table of a materialized view.

� ALTER TABLE NOT LOGGED INITIALLY WITH EMPTY TABLE cannot be
done on a base table of a materialized view.

� Materialized views cannot be used as exception tables to collect information
when constraints are being validated during bulk constraints checking (during
LOAD or executing the SET INTEGRITY statement).

2.12 Replicated tables in nodegroups
In a partitioned database, the performance of join queries can be greatly
enhanced through collocation of rows of the different tables involved in the join.
Figure 2-16 describes such an environment, where the STORE and TRANS
tables have been partitioned on storeid column. An SQL query that requires a
join on the storeid column will see significant performance benefits from this
partitioning scheme, because of the greater parallelism achieved through
collocated joins.

However, when the CUST table is also involved in the join, then a collocated join
is not possible, since the CUST table does not have a storeid column, and
therefore cannot be partitioned by storeid. While DB2 UDB can choose to
perform a directed join in this particular case14, the performance of such joins is
less efficient than that of a collocated join, since the movement of rows is inline
with query execution.

Note: DB2 sometimes allows you to define a REFRESH DEFERRED table
even though it cannot use it for materialized view optimization. In such cases,
it issues a warning SQL20059W (sqlstate 01633).

A typical scenario for this functionality is when a database administrator needs
to:

1. Create a data mart based on detailed data from operational systems.
2. Provide direct access to end users to this data mart only, without allowing

them access to the base detailed data.
3. Control the refresh cycle of this data mart via the REFRESH TABLE

statement.

This is an example of creating an materialized view that is directly accessible
by end users, and is not involved in materialized view optimization.
 Chapter 2. DB2 UDB’s materialized views 95

Figure 2-16 Collocation in partitioned database environment

Example 2-51 shows an example of creating such a materialized view, which
creates an intra-database replica.

Example 2-51 Creating a replicated table in a nodegroup

CREATE TABLE custr1 AS
(SELECT * FROM cust)

DATA INITIALLY DEFERRED REFRESH IMMEDIATE REPLICATED IN <a nodegroup>

14 Broadcast or repartitioned joins can be used when the tables are not joined on the partitioning
column.

Attention: We can now use materialized views to replicate tables to other
nodes to enable collocated joins to occur even though the all the tables are not
joined on the partitioned key. In Figure 2-16, CUST is replicated to the other
nodes using the materialized view infrastructure in order to enable collocated
joins for superior performance.

Attention: This form of replication should not be confused with the replication
provided by DB2 DataPropagator, which is typically used for inter-database
replication, that is, for replicating data between different databases. Table 2-2
summarizes the differences between materialized view intra-database
replication, and DB2 DataPropagator inter-database replication.

TRANS
storeid2

TRANS
storeid1

TRANS
storeid3

STORE
storeid1

STORE
storeid2

STORE
storeid3

CUST CUST CUSTCUST
Replicated Tables

Good for colocated joins and avoiding
the movement of data between
partitions for each query.
Ideal for a star schema configuration
where dimension tables are not huge
and disk space is not an issue.
96 High-Function Business Intelligence in e-business

Table 2-2 Intra-database replication versus inter-database replication

Replication
type

Definition Sources Targets Maintenance Usage

Intra-database
(materialized
view)

CREATE
TABLE
statement

Local DB2 tables
only

Local DB2 tables
only

Synchronously
maintained

Existence of
materialized
view is
transparent to
the application

Inter-database
(DB2 Data
Propagator)

Source and
subscriptio
ns defined
through the
DB2
Control
Center, or
the
DataJoiner
DJRA tool

Local or remote
DB2 tables and
views.
Heterogeneous
relational sources
via DataJoiner
nicknames.
External data is
staged in a
consistent change
data format.

Local or remote
DB2 table.
Heterogeneous
relational targets
supported via
DataJoiner
nicknames, with
other external
targets via
consistent change
data table
interface.

On demand
using
subscription
events and/or
COPYONCE
Apply startup
option.

Asynchronously
updated from
captured
changes —
either
timer-driven or
event-driven.

The
application
must explicitly
reference the
replica.
 Chapter 2. DB2 UDB’s materialized views 97

98 High-Function Business Intelligence in e-business

Chapter 3. DB2 UDB’s statistics,
analytic, and OLAP
functions

In this chapter we provide an overview of DB2 UDB’s statistics, analytic, and
OLAP functions.

3

© Copyright IBM Corp. 2002 99

3.1 DB2 UDB’s statistics, analytic, and OLAP functions
DB2 UDB’s query related functions are broadly classified into two categories:

� Statistics and analytic functions
� Online Analytical Processing (OLAP) functions

Appendix A, “Introduction to statistics and analytic concepts” on page 217
provides an introduction to some of the analytic concepts described here.

The following sections briefly describe these functions and provide examples to
explain their usage where appropriate.

3.2 Statistics and analytic functions
The various analytic functions supported are listed in Table 3-1.

Table 3-1 List of statistics and analytic functions

Statistics and analytic functions Description

AVG Returns the average of a set of numbers.

CORRELATION or CORR Returns the coefficient of correlation of a set of number pairs.

COUNT Returns the count of the number of rows in a set of rows or values.

COUNT_BIG Returns the number of rows or values in a set of rows or values.
Result can be greater than the maximum value of integer.

COVARIANCE or COVAR Returns the covariance of a set of number pairs.

MAX Returns the maximum value in a set of values.

MIN Returns the minimum value in a set of values.

RAND Returns a random floating point number between 0 and 1

STDDEV Returns the standard deviation of a set of numbers.

SUM Returns the returns the sum of a set of numbers

VARIANCE or VAR Returns the variance of a set of numbers.

Regression features:

REGR_AVGX Returns quantities used to compute regression diagnostic statistics

REGR_AVGY Returns quantities used to compute regression diagnostic statistics.
100 High-Function Business Intelligence in e-business

3.2.1 AVG
The AVG function returns the average of a set of numbers.

ALL indicates duplicate rows are to be included, and this is the default.

The average function is applied to a set of values after eliminating all null values.
If DISTINCT is specified, duplicate values are eliminated as well.

3.2.2 CORRELATION
The CORRELATION function returns the coefficient of correlation of a set of
number pairs. The coefficient indicates the strength of the linear relationship
between the set of variables.

The input values must be numeric, and the data type of the result is
double-precision floating point.

REGR_COUNT Returns the number of non-null number pairs used to fit the
regression line.

REGR_INTERCEPT or
REGR_ICPT

Returns the y-intercept of the regression line.

REGR_R2 Returns the coefficient of determination for the regression.

REGR_SLOPE Returns the slope of the regression line.

REGR_SXX Returns quantities used to compute regression diagnostic statistics.

REGR_SXY Returns quantities used to compute regression diagnostic statistics.

REGR_SYY Returns quantities used to compute regression diagnostic statistics.

Statistics and analytic functions Description

Note: ALL and DISTINCT have the same meaning in other functions where
they are supported.
 Chapter 3. DB2 UDB’s statistics, analytic, and OLAP functions 101

The function is applied to the set of numeric pairs derived from the argument
values (expression 1,expression2) by the elimination of all pairs for which either
expression1 or expression2 is null.

� A null result implies the input set is empty.
� When the result is not null, it will be between minus one and one.
� A zero value means the two expressions are not linearly related.
� A minus one or a plus one mean they are linearly perfectly related.

An example of correlation is shown in, “CORRELATION examples” on page 112.

3.2.3 COUNT
The COUNT function counts the number of rows or values in a set of rows or
values. A row that includes only NULL values is included in the count, thus the
result cannot be null. The result is a large integer.

The result is the number of rows in the set.

3.2.4 COUNT_BIG
The COUNT_BIG function counts the number of rows or values in a set of rows
or values. It functions the same as COUNT except that the result can be greater
than the maximum value of integer. The result data type of COUNT_BIG is a
decimal with precision 31 and scale 0. Nulls are treated like they are in COUNT.
102 High-Function Business Intelligence in e-business

3.2.5 COVARIANCE
Covariance is a measure of the linear association between two variables. It is
typically used as an intermediate computation enroute to other statistics
functions such as the correlation coefficient.

The covariance value depends upon the units in which each variable is
measured, unlike the case of the correlation coefficient.

The COVARIANCE function calculates the population1 covariance of a set of
number pairs. If both variables tend to be above or below the average
simultaneously, then the covariance is positive. If one variable tends to have
above-average values when the other variable has below average values, then
the covariance is negative.

Input to the COVARIANCE function is a set of numeric pairs, and the output is a
double-precision floating point type.

The function is applied to the set of numeric pairs derived from the argument
values (expression 1,expression2) by the eliminating all pairs wherein either
expression1 or expression2 is null.

A null result indicates an empty input set.

An example of covariance is shown in “COVARIANCE example” on page 111.

3.2.6 MAX
The MAX function returns the maximum value in a set of values.

The function is applied to the set of values derived from the argument values by
the elimination of null values.

If the function is applied to an empty set, the result is a null value.

1 A population is a collection of all data points for a given subject of interest.

Note: The specification of DISTINCT has no effect on the result, and is
therefore not recommended. It is included for compatibility with other relational
systems.
 Chapter 3. DB2 UDB’s statistics, analytic, and OLAP functions 103

3.2.7 MIN
The MIN function returns the minimum value in a set of values.

The function is applied to the set of values derived from the argument values by
the elimination of null values.

If the function is applied to an empty set, the result is a null value.

3.2.8 RAND
The RAND function returns a random floating point value between 0 and 1 using
the argument as the optional seed value. The function is defined as
non-deterministic.

An argument is not required, but if it is specified it can be either an INTEGER or
SMALLINT. Providing a seed value guarantees the repeatability of the result, and
is generally used for debugging purposes.

The result can be null, if the argument is null.

Note: The specification of DISTINCT has no effect on the result, and is
therefore not recommended. It is included for compatibility with other relational
systems.
104 High-Function Business Intelligence in e-business

Executing the SQL in Example 3-1 results in a 10% sample (corresponding to
0.1) of all the rows in the CUSTOMERS table.

Example 3-1 RAND function

SELECT * FROM CUSTOMERS
WHERE RAND() < 0.1

Note that this is a "Bernoulli2 sample". In the above SQL, if there were 100,000
rows in the CUSTOMERS table, the actual number of rows in the sample is
random, but is equal on average to (100,000 / 10) = 10,000.

Since this technique involves a complete scan of the CUSTOMERS table, it is
appropriate in situations where a sample is created once, and then used
repeatedly in multiple queries. In other words, the cost of creating the sample is
amortized over multiple queries.

3.2.9 STDDEV
The STDDEV function returns the population standard deviation (as opposed to
the sample standard deviation) of a set of numbers.

The relationship between population standard deviation (SDpop) and sample
standard deviation (SDsamp) is as follows:

Where:

n is the population size.

The input must be numeric and the output is double-precision floating point.

The STDEV function is applied to the set of values derived from the argument
values by the elimination of null values.

If the input data set is empty the result is null. Otherwise, the result is the
standard deviation of the values in the set.

2 In Bernoulli sampling, each row is selected for inclusion in the sample with probability q=(n/N)
where ‘n’ is the desired sample size, and ‘N’ is the total number of rows and rejected with probability
(1-q), independently of the other rows. The final sample size is random, but is equal to ‘n’ on average.

SDpop
n 1–()

n
----------------- SDsamp×=
 Chapter 3. DB2 UDB’s statistics, analytic, and OLAP functions 105

An example of standard deviation is shown in “STDDEV examples” on page 113.

3.2.10 SUM
The SUM function returns the sum of a set of numbers. The function is applied to
the set of values derived from the argument values by the elimination of null
values.

If the function is applied to an empty set, the result is a null value. Otherwise, the
result is the sum of the values in the set.

3.2.11 VARIANCE
The VARIANCE function returns the population variance (as opposed to the
sample variance) of a set of numbers.

The relationship between population variance (Varpop) and sample variance
(Varsamp) is as follows:

Where:

n is the population size.

The argument values must be numeric.

The function is applied to the set of values derived from the argument values by
the elimination of null values.

If the function is applied to an empty set, the result is a null value.

An example of variance is shown in, “VARIANCE example” on page 113.

Varpop
n 1–()

n
----------------- Varsamp×=
106 High-Function Business Intelligence in e-business

3.2.12 Regression functions
The regression functions support the fitting of an ordinary-least-squares
regression line of the form:

Where:

Y is the dependent variable.

X is the independent variable.

a is the slope of the regression line.

b is the y-intercept.

Both ‘a’ and ‘b’ are called coefficients.

There are nine distinct regression functions. They are:

REGR_SLOPE Calculates the slope of the line (the parameter ’a’ in the
above equation).

REGR_INTERCEPT (REGR_ICPT) calculates the y-intercept of the regression
line (’b’ in the above equation).

REGR_COUNT Determines the number of non-null pairs used to
determine the regression.

REGR_R2 Expresses the quality of the best-fit regression.
(R-squared) is referred to as the coefficient of
determination or the ’goodness-of-fit’ for the regression.

REGR_AVGX Returns quantities that can be used to compute various
diagnostic statistics needed for the evaluation of the
quality and statistical validity of the regression model
(They are defined further in this section).

REGR_AVGY (Refer to the foregoing description.)

REGR_SXX (Refer to the foregoing description.)

REGR_SYY (Refer to the foregoing description.)

REGR_SXY (Refer to the foregoing description.)

Y aX b+=
 Chapter 3. DB2 UDB’s statistics, analytic, and OLAP functions 107

The following considerations apply to regression functions:

� The input for all of the regression functions must be numeric.

� The output of REGR_COUNT is integer and all the remaining functions output
in double-precision floating point.

� The regression functions are all computed simultaneously during a single
pass through the data set.

� If the input set is not empty, and after elimination of the null pairs:

– VARIANCE(expression2) is positive, then REGR_COUNT returns the
number of non-null pairs in the set, and the remaining functions return
results that are defined in Table 3-2.

– VARIANCE(expression2) is equal to zero, then the regression line either
has infinite slope or is undefined. In this case, the functions
REGR_SLOPE, REGR_INTERCEPT, and REGR_R2 each return a null
value, and the remaining functions return values defined in Table 3-2.

� If the input set is empty, REGR_COUNT returns zero, and the remaining
functions return a null value.

Important: Each function is applied to the set of values derived from the input
numeric pairs (expression1,expression2) by the elimination of all pairs for
which either expression1 or expression2 is null. In other words, both values
must be non-null to be considered for the function.

Attention: expression1 corresponds to the Y variable and expression2
corresponds to the X variable.
108 High-Function Business Intelligence in e-business

� When the result is not null:

– REGR_R2 is between 0 and 1.

– REGR_SXX and REGR_SYY is non-negative. This non-negative value is
used to describe the spread of the values for either X or Y from the their
average values.

Table 3-2 Function computations

The order in which the values are aggregated is undefined, but every
intermediate result must be within the range of the result data type.

Function Computation

REGR_SLOPE(expr1,expr2) COVAR(expr1,expr2)/VAR(expr2)

REGR_ICPT(expr1,expr2) AVG(expr1) - REGR_SLOPE(expr1, expr2) *
AVG(expr2)

REGR_R2(expr1, expr2) POWER(CORR(expr1, expr2), 2) if
VAR(expr1)>0

REGR_R2(expr1,expr2) 1 if VAR(expr1) = 0

REGR_AVGX(expr1,expr2) AVG(expr2)

REGR_AVGY(expr1, expr2) AVG(expr1)

REGR_SXX(expr1, expr2) REGR_COUNT(expr1, expr2) * VAR(expr2)

REGR_SYY(expr1, expr2) REGR_COUNT(expr1, expr2) * VAR(expr1)

REGR_SXY(expr1, expr2) REGR_COUNT(expr1, expr2) *
COVAR(expr1, expr2)

Important: The difference between REGR_AVG and AVG is that all nulls are
excluded in the REGR_AVG computations, while they are included in the
AVG(expression) computation.

Tip: In general, it is more efficient even in the absence of null values, to use
the regression functions to compute the statistics needed for a regression
analysis, than to perform the equivalent computations using ordinary column
functions such as AVG, VARIANCE, and COVARIANCE.
 Chapter 3. DB2 UDB’s statistics, analytic, and OLAP functions 109

The usual diagnostic statistics that accompany a linear regression analysis can
be computed in terms of the above functions as follows, and are offered with
minimal explanation. All the following expressions apply to a simple linear
regression, that is a model which includes only one independent variable.

� Adjusted R2

1 - ((1-REGR_R2)*((REGR_COUNT - 1) / (REGR_COUNT - 2)))

� Standard error (standard deviation of the residuals):

SQRT((REGR_SYY-(POWER(REGR_SXY,2)/REGR_SXX)) / (REGR_COUNT-2))

Note that:

� Total sum of squares:

REGR_SYY

� Regression sum of squares:

POWER(REGR_SXY,2) / REGR_SXX

� Residual sum of squares:

(Total sum of squares) - (regression sum of squares)

� t statistic:

For each coefficient (slope and intercept in the simple linear regression
model), there is a concern as to whether the coefficient’s value is meaningful,
or if the coefficient is really zero. That is, the independent variable (x) does not
contribute to the value of the dependent variable (y). The ‘t statistic’ can help
make this determination

t statistic for slope

REGR_SLOPE * SQRT(REGR_SXX) / (Standard error)

t statistic for intercept

REGR_INTERCEPT/((Standard error) *
SQRT((1/REGR_COUNT)+(POWER(REGR_AVGX,2)/REGR_SXX))

3.2.13 COVAR, CORR, VAR, STDDEV, and regression examples
The following examples give a flavor of the use of these functions in a number of
scenarios.

ithresidual yi axi b+()–=
110 High-Function Business Intelligence in e-business

COVARIANCE example
We wish to explore the relationship between employee salary and the bonus that
they receive, using the data shown in Figure 3-1.

Figure 3-1 D11 Employee salary & bonus

The DB2 SQL for covariance could be as shown in Example 3-2:

Example 3-2 COVARIANCE example

SELECT COVARIANCE (salary,bonus)
FROM employee
WHERE workdept = ‘D11’

The result of this query is 23650.86.

This positive result indicates there is a positive relationship between salary and
bonus, that is, employees with high (low) salaries tend to get high (low) bonuses.

While this conclusion appears intuitive with only a few data points, it is less
obvious when there are a large number of data points involved — say 1000 or
10,000 employees. The covariance function thus enables relationships between
variables.

Correlation helps quantify the strength of the relationship.

Note: Covariance by itself does not indicate how strong the relationship is. It
merely indicates one exists and whether it is a positive or negative relation. To
determine the strength of a relationship the correlation must be calculated.
 Chapter 3. DB2 UDB’s statistics, analytic, and OLAP functions 111

CORRELATION examples
Using the same salary bonus example in Figure 3-1, we can quantify the strength
of the relationship with the SQL shown in Example 3-3:

Example 3-3 CORRELATION example 1

SELECT CORRELATION (salary,bonus) AS cor
FROM employee
WHERE workdept = ‘D11’

The result of the query is 0.739.

This quantitatively confirms the reasonably strong linear relationship between
salary and bonus from the employees in department ‘D11’.

Another example of correlation involving the retail industry is shown in
Example 3-4. Assume we have the transactions of purchases from all the
customers of a a retail organization selling a variety of products, and we would
like to identify customers with similar buying habits. For example, when Customer
A bought a particular product, Customer B also tended to buy the same product.
Such information can be put to effective use in targeted marketing.

A view called transhist is created that contains the customer id, product id, and
the dollar amount purchased over all transactions.

Example 3-4 CORRELATION example 2

SELECT a.custid as custid1, b.custid as custid2,
CORR(a.amount, b.amount) AS cor

FROM transhist a, transhist b
WHERE a.prodid = b.prodid AND a.custid < b.custid
GROUP BY a.custid, b.custid
HAVING CORR(a.amount, b.amount) >= 0.5 AND COUNT(*) > 100
ORDER BY a.custid, cor DESC

This query joins the view with itself, and uses the HAVING clause to restrict the
output to cases of high correlation (>= 0.5), and to cases where there are at least
a 100 products involved, that is, there are at least 100 data points used to
compute the correlation.

The result of this query is as follows:

CUSTID1 CUSTID2 CORR
----------- ----------- -----
1026 8271 0.51
1071 2014 0.74 <=
1071 7219 0.63
2014 7219 0.58
8271 9604 0.56
112 High-Function Business Intelligence in e-business

The result shows a high correlation between the buying habits of Customer 1071
and Customer 2014, that is, whenever customer 1071 bought a large amount of
a given product, then customer 2014 also tended to buy a large amount of the
same product.

VARIANCE example
DB2 has a built-in function to calculate variance. Using the same salary and
bonus data shown in Figure 3-1, our SQL is shown in Example 3-5:

Example 3-5 VARIANCE example

SELECT AVG(salary), VARIANCE(salary) AS Variance
FROM employee
WHERE workdept = 'D11’

The average salary is $24677.78, while the variance in our case is
1.885506172839506E7.

However this is not very intuitive, and standard deviation provides a more intuitive
answer.

STDDEV examples
Using the same data as shown in Figure 3-1, the standard deviation of salary of
employees in department ‘D11’ an be computed as shown in Example 3-6:

Example 3-6 STDDEV example 1

SELECT AVG(salary), STDDEV(salary) AS StandDev
FROM employee
WHERE workdept = 'D11'

The result of this query is an average of $2477.78 and a standard deviation of
$4342.24.

It indicates the variation of individual salaries from the average salary for the set,
and is more intuitive than the variance function discussed earlier.

Another example of standard deviation involves computing the various statistics
of an organization’s sales worldwide over multiple years.

The data is contained in three tables: trans, transitem, and loc, as shown in
Example 3-7.
 Chapter 3. DB2 UDB’s statistics, analytic, and OLAP functions 113

Example 3-7 STDDEV example 2

SELECT loc.country AS country, YEAR(t.pdate) AS year,
 COUNT(*) AS count, SUM(ti.amount) AS sum,
 AVG(ti.amount) AS avg, MAX(ti.amount) AS max,
 STDDEV(ti.amount) AS std
FROM trans t, transitem ti, loc loc
WHERE t.transid = ti.transid AND loc.locid = t.locid
GROUP BY loc.country, year(t.pdate)

The result of this query is as follows:

country year count sum avg max stddev
------- ------ ------ ------ ------ ------ ------
 USA 1998 235 127505 542.57 899.99 80.32
 USA 1999 349 236744 678.35 768.61 170.45
GERMANY 1998 180 86278 479.32 771.65 77.41
GERMANY 1999 239 126737 530.28 781.99 72.22
...

The result shows commonly gathered statistics related to sales such as COUNT,
SUM, AVG and MAX. The STDDEV function shows that USA sales in 1999 are
much more variable (STDDEV of $170.45) than sales in other years and other
locations, i.e., the amounts in the individual sales transactions vary more widely
from their average value of $678.35.

Linear Regression examples
Using the same data shown in Figure 3-1, we will derive a regression model
where salary is the independent variable and bonus is the dependent variable
using the DB2 SQL shown in Example 3-8.

Example 3-8 Linear regression example 1

SELECT REGR_SLOPE (bonus , salary) AS slope,
REGR_ICPT (bonus , salary) AS intercept
FROM employee
WHERE workdept = ‘D11’

The result of this query is a slope of 0.0125 and an intercept is $179.313, that is:

Bonus 0.0125 Salary× 179.313+=
114 High-Function Business Intelligence in e-business

DB2 has a R2 function, REGR_R2. The properties of R2 are:

� R2 bound is between 0 and 1.

� If R2 equals 1 then all the points fit on the regression line exactly.

� If R2 equals zero then the two attributes are independent.

The closer R2 is to 1, the better the computed linear regression model. In
general, an R2 greater than 0.75 or so, is considered a good fit for most
applications. However, it varies by application and it is ultimately up to the user to
decide what value constitutes a good model.

The DB2 SQL could look as shown in Example 3-9:

Example 3-9 Linear regression example 2

SELECT REGR_R2 (bonus , salary) AS r2
FROM employee
WHERE workdept = 'D11'

The result of this query is 0.54624.

Since R2 is not very close to 1, we conclude that the computed linear regression
model does not appear to be a very good fit.

Another example of using regression involves the assumption of a linear
relationship between the advertising budget and sales figures of a particular
organization that conforms to the equation:

Where:

‘y’ is the sales dependent variable.

‘x’ is the advertising budget independent variable.

‘a’ is the slope.

‘b’ is the y-axis intercept corresponding to budget cost even with zero sales.

Note: The columns referenced in the regression functions are reversed from
those in the variance and covariance examples. Since we wish to determine
BONUS as a function of SALARY, it is listed first before SALARY.

y ax b+=
 Chapter 3. DB2 UDB’s statistics, analytic, and OLAP functions 115

The queries shown in Example 3-10 determine the values for ‘a’, and ‘b’ given a
set of non-null values of budget and sales data points in a table ‘t’:

Example 3-10 Linear regression example 3

SELECT
 REGR_COUNT(t.sales, t.ad_budget) AS num_cities,
 REGR_SLOPE(t.sales, t.ad_budget) AS a,
 REGR_ICPT(t.sales, t.ad_budget) AS b
FROM t

The result of the query is as follows, with REGR_COUNT returning the number of
(x,y) non-null pairs used to fit the regression line.

num_cities a b
---------- ------ ------
126 1.9533 13.381

The input data and the derived linear model are shown in Figure 3-2.

Figure 3-2 Linear regression

While the foregoing SQL models the equation, it does not tell you the quality of
the fit, that is, the accuracy of the regression line. As described earlier, the R2

statistic must be computed to determine the quality of the regression line. R2 is
the square of the correlation coefficient (CORR). R2 can also be interpreted as
the proportion of variation in the ‘y’ values that is explained by the variation in the
‘x’ values, as opposed to variation due to randomness or to other variables not
included in the model. Consider the coding shown in Example 3-11.

0

50

100

150

200

250

0 20 40 60 80 100

sa
le

s

ad_budget

y = 1.9533x + 13.381
116 High-Function Business Intelligence in e-business

Example 3-11 Linear regression example 4

SELECT
 REGR_COUNT(t.sales, t.ad_budget) AS num_cities,
 REGR_SLOPE(t.sales, t.ad_budget) AS a,
 REGR_ICPT(t.sales, t.ad_budget) AS b,
 REGR_R2(t.sales, t.ad_budget) as rsquared
FROM t

The result of this query is as follows. It shows R2 to be 0.95917, which is a very
high quality of fit of the regression line.

num_cities a b rsquared
---------- ------ ------ ---------
128 1.9533 13.381 0.95917

3.3 OLAP functions
OLAP is “a category of software technology hat enables analysts, managers and
executives to gain insight into data through fast, consistent, interactive access to
a wide variety of possible views of information that has been transformed from
raw data to reflect the real dimensionality of the enterprise as understood by the
user”.3

Typical enterprise dimensions are time, location/geography, product and
customer.

While OLAP systems have the ability to answer “who” and “what” questions, it is
their ability to answer “what if” and “why” that sets it apart from data warehouses.
OLAP enables decision making about future actions.

Important: DB2 supports non-linear regression models involving a single
independent variable. For example,

y = a x
2 + b

Restriction: We do not support regression models involving more than one
independent variable. For example,

y = a1x1 + a2x2 +anxn + b

3 BI Certification Guide (SG24-5747)
 Chapter 3. DB2 UDB’s statistics, analytic, and OLAP functions 117

OLAP functions provide the ability to return the following information in a query
result:

� Ranking with RANK & DENSE_RANK.
� Numbering with ROW_NUMBER.
� Aggregation with existing column functions such as MAX, MIN, AVG etc.

Key to OLAP functions is the ability to define the set of rows over which the
function is applied, and the sequence in which the function is applied. This set of
rows is called a window. When an OLAP function is used with a column function,
like AVG, SUM, MAX, etc., the target rows can be further refined, relative to the
current row, as either a range, or a number of rows preceding and following the
current row. For example, within a window partitioned by month, a moving
average can be calculated over the previous three month period.

Besides windowing, the ability to group sets of rows is critical to OLAP
functionality. ROLLUP and CUBE are extensions to the GROUP BY clause to
provide OLAP functionality. ROLLUP and CUBE are called super-groups.

We discuss OLAP functionality as:

� Ranking, numbering and aggregate functions
� GROUPING capabilities ROLLUP & CUBE

We then follow it with examples.

3.3.1 Ranking, numbering and aggregation functions
Figure 3-3, Figure 3-4, and Figure 3-5 provide an overview of the syntax of some
of the OLAP functions.
118 High-Function Business Intelligence in e-business

Figure 3-3 Ranking, numbering and aggregate functions
 Chapter 3. DB2 UDB’s statistics, analytic, and OLAP functions 119

Figure 3-4 Window partition and window order clauses
120 High-Function Business Intelligence in e-business

Figure 3-5 Window aggregation group clause
 Chapter 3. DB2 UDB’s statistics, analytic, and OLAP functions 121

A brief explanation of some of the OLAP functions follows, with examples
provided as appropriate.

RANK
The RANK function assigns a sequential rank of a row within a window.

The RANK of a row is defined as one plus the number of rows that strictly
precede the row.

Rows that are not distinct within the ordering of the window are assigned equal
ranks.

If two or more rows are not distinct with respect to the ordering, then there will be
one or more gaps in the sequential rank numbering. That is, the results of RANK
may have gaps in the numbers resulting from duplicate values.

DENSE_RANK
Like the RANK function, DENSE_RANK assigns a sequential rank to a row in a
window. However, its DENSE_RANK is one plus the number of rows preceding it
that are distinct with respect to the ordering. Therefore, there will be no gaps in
the sequential rank numbering, with ties being assigned the same rank.

ROWNUMBER
ROWNUMBER computes the sequential row number of the row within the
window defined by an ordering clause (if one is specified), starting with 1 for the
first row and continuing sequentially to the last row in the window.

If an ordering clause, ORDER BY, is not specified in the window, the row
numbers are assigned to the rows in arbitrary order as returned by the
sub-select.

PARTITION BY
The PARTITION BY clause allows for subdividing the window into partitions. A
partitioning-expression is used to define the partitioning of the result set.

ORDER BY
The ORDER BY clause defines the ordering of rows within a window that
determines the value of the OLAP function or the meaning of the ROW values in
the window-aggregation-group-clause (see the following section concerning the
window-aggregation-group).

The ORDER BY clause does not define the ordering of the query result set.
122 High-Function Business Intelligence in e-business

A sort-key-expression is an expression used in defining the ordering of the rows
within the window. This clause is required when using the RANK and
DENSE_RANK functions.

There are two sorting sequences:

� ASC — Sorts the sort-key-expression in ascending order. Null values are
considered last in the order by default since in DB2 nulls are considered high
values.

� DESC — Sorts the sort-key-expression in descending order. Null values are
considered first in the order unless NULLS LAST is specified.

Window aggregation group clause
The window-aggregation-group clause defines the window to a set of rows with a
defined ordering relative to the rows in the window.

ROWS
ROWS indicates the window is defined by counting rows.

RANGE
RANGE indicates the window is defined by an offset from a sort key.

group-start, group-between and group-end
The group start, between and group-end functions define the ROWS or RANGE
window to be some number of rows or range of rows around the current row in
the window. These functions make it possible to compute moving average types
of calculations.

group-start
Specifies the starting point for this aggregation group. The window ends at the
current row when UNBOUNDED PRECEDING or PRECEDING is specified
(more later). Specification of the group-start clause is the equivalent to a
group-between clause of the form “BETWEEN group-start AND CURRENT
ROW”.

group-between
Specifies the aggregation group start and end based on either ROWS or RANGE
that fit within the specified group-bound1 (beginning) and group-bound2
(endpoint).

group-end
Specifies the ending point of the aggregation group. The aggregation group start
is the current row. Specification of a group-end clause is the equivalent to a
group-between clause of the form “BETWEEN CURRENT ROW AND
group-end”.
 Chapter 3. DB2 UDB’s statistics, analytic, and OLAP functions 123

Figure 3-6 graphically depicts the relationships among the various window
bounds that follow.

Figure 3-6 Windowing relationships

Group-bounds one and two
A discussion of group-bounds follows.

� CURRENT ROW specifies the start or end of the window as the current row.

� UNBOUNDED PRECEDING includes the entire window preceding the
current row. This can be specified with either ROWS or RANGE.

� UNBOUNDED FOLLOWING includes the entire window following the current
row. This can be specified with either ROWS or RANGE.

� PRECEDING specifies either the range or number of rows preceding the
current row as being in the window. If ROWS is specified, then value is a
positive integer indicating a number of rows. If RANGE is specified, then the
data type of value must be comparable to the type of the sort-key-expression
of the window ORDER BY clause.

Note: NFirst is always equal to 1.
124 High-Function Business Intelligence in e-business

� FOLLOWING specifies either the range or number of rows following the
current row as being in the window. If ROWS is specified, then value is a
positive integer indicating a number of rows. If RANGE is specified, then the
data type of value must be comparable to the type of the sort-key-expression
of the window ORDER BY clause.

3.3.2 GROUPING capabilities ROLLUP & CUBE
The result of a GROUP BY operation is a set of groups of rows. Each row in this
result represents the set of rows for which the grouping-expression is satisfied.
Complex forms of the GROUP BY clause include grouping-sets and
super-groups.

Figure 3-7 GROUP BY clause

A grouping sets specification allows multiple grouping clauses to be specified in a
single statement. This can be thought of as a union of two or more groups of
rows into a single result set. It is logically equivalent to the union of multiple
subselects with the group by clause in each subselect corresponding to one
grouping set. A grouping set can be a single element, or can be a list of elements
delimited by parentheses, where an element is either a grouping expression, or a
super-group.

GROUP BY a is equivalent to GROUP BY GROUPING SETS ((a))
GROUP BY a,b,c is equivalent to GROUP BY GROUPING SETS ((a,b,c))

In terms of OLAP functions we will confine our discussion to the two
super-groups ROLLUP and CUBE, whose syntax is shown in Figure 3-8.

Note: For grouping, all null values from a grouping-expression are considered
equal.
 Chapter 3. DB2 UDB’s statistics, analytic, and OLAP functions 125

Figure 3-8 Super Groups ROLLUP & CUBE

ROLLUP
A ROLLUP group is an extension to the GROUP BY clause that produces a
result set that contains sub-total4 rows in addition to the ’regular’ grouped rows.
Sub-total rows are ’super-aggregate’ rows that contain further aggregates whose
values are derived by applying the same column functions that were used to
obtain the grouped rows. A ROLLUP grouping is a series of grouping-sets.

For example:

GROUP BY ROLLUP (a,b,c)
is equivalent to
GROUP BY GROUPING SETS
(
(a,b,c)
(a,b)
(a)
()
)

Notice that the n elements of the ROLLUP translate to n+1 grouping sets.

4 These are called sub-total rows, because that is their most common use. However, any column
function can be used for the aggregation including MAX and AVG.
126 High-Function Business Intelligence in e-business

CUBE
The CUBE super-group is the other extension to the GROUP BY clause that
produces a result set that contains all the sub-total rows of a ROLLUP
aggregation and, in addition, contains ’cross-tabulation’ rows. Cross-tabulation
rows are additional ’super-aggregate’ rows. They are, as the name implies,
summaries across columns if the data were represented as a spreadsheet.

Like ROLLUP, a CUBE group can also be thought of as a series of grouping-sets.
In the case of a CUBE, all permutations of the cubed grouping-expression are
computed along with the grand total. Therefore, the “n” elements of a CUBE
translate to 2n (2 to the power n) grouping-sets. For instance, a specification of:

GROUP BY CUBE (a,b,c) is equivalent to
GROUP BY GROUPING SETS
(
(a,b,c)
(a,b)
(a,c)
(b,c)
(a)
(b)
(c)
()
)

Notice that the 3 elements of the CUBE translate to 8 grouping sets.

Unlike ROLLUP, the order of specification of elements does not matter for CUBE.

CUBE (DayOfYear, Sales_Person) is the same as CUBE (Sales_Person,DayOfYear)

CUBE is an extension of the Rollup clause. The CUBE clause not only provides
the column summaries we saw in rollup but also calculates the row summaries
and grand totals for the various dimensions.

3.3.3 Ranking, numbering, aggregation examples
These functions are useful in determining ranks, positioning, sequences and
medians. They have been used by:

� Financial institutions to identify top profitable customers

� International Olympic Committee to rank contestants, assign medals and
leading country medal rankings

Note: The order in which the grouping-expressions is specified is significant
for ROLLUP.
 Chapter 3. DB2 UDB’s statistics, analytic, and OLAP functions 127

Medians are useful in applications where the average is greatly influenced by a
few extreme values, called outliers. Companies want to build sales campaigns
that hit the largest segment of their target population and not the average.

There is no DB2 function to compute the median of a set of data elements.
However, the following SQL can be used to compute the median of a set of data
elements.

Computing the median
The computation of the median value depends upon whether there are an odd
number, or an even number of data points in the set.

� For an odd number, the median is the middle element of the sorted rows. In
Example 3-12, the median value is 25.70.

� For an even number, the median is the average of the two middle elements of
the sorted rows. In Example 3-13, the average of the sum of (25.7 + 32.0) =
28.85. There are other ways of dealing with an even number of data elements
for example, return (n/2), or [(n+2) + 1] smallest value.

Example 3-12 Table containing an odd number of rows

1, 50.2
2, 25.7
3, 32.0
4, 17.2
5, 18.4
6, 19.6
7, 44.3
8, 22.5
9, 1000.7

Example 3-13 Table containing an even number of rows

1, 50.2
2, 25.7
3, 32.0
4, 17.2
5, 18.4
6, 19.6
7, 44.3
8, 1000.7

Note: (The median is the midpoint of a set of data elements. Take following
sequence of numbers: 3, 5, 7, 8, 37. The median is 7. The Average or mean is
12.
128 High-Function Business Intelligence in e-business

The SQL shown in Example 3-14 determines the median value for a table that
may include either an odd number of rows, or an even number of rows. In the
case of an odd number of rows, the virtual table ‘dt3’ has only a single row in it,
while in the case of an even number of rows, ‘dt3’ has 2 rows in it. When the
following query is issued against the table shown in Example 3-12, the median
value is 25.70, and when executed against the table shown in Example 3-13, the
median value is computed as 28.85.

Example 3-14 Compute median value with an even number of data points in the set

WITH
 dt1 AS (SELECT purchases, ROWNUMBER() OVER (ORDER BY purchases) AS num
 FROM cust_data),
 dt2 AS (SELECT COUNT(purchases) + 1 AS count FROM dt1),
 dt3 AS (SELECT purchases FROM dt1,dt2
 WHERE num = FLOOR(count/2e0) OR num = CEILING(count/2e0))
SELECT DECIMAL(AVG(purchases),10,2) AS median FROM dt3

RANK example
Assume we would like to rank employees by total compensation and listed
alphabetically.

The SQL in Example 3-15 shows that the ORDER BY clause in the RANK ()
OVER statement controls only the ranking sequence and not output sequence.

Important: Note that there are no nulls in the set of data points. If nulls are
present, then they should be excluded from the evaluation by adding to the
above query a predicate such as ...WHERE purchases IS NOT NULL.

Note: It is worth observing that the value for average purchases is distorted by
the customer making a purchase of 1000.70. This may or may not be a data
entry error.

Note: When specifying an OLAP function like Rank, Dense_Rank,
Row_Number, a window is specified that defines the rows over which the
function is applied, and in what order. This window is specified via the OVER()
clause.
 Chapter 3. DB2 UDB’s statistics, analytic, and OLAP functions 129

Example 3-15 RANK() OVER example

SELECT EMPNO, LASTNAME, FIRSTNME, SALARY+BONUS AS TOTAL_SALARY,
RANK() OVER (ORDER BY SALARY+BONUS DESC) AS RANK_SALARY
FROM EMPLOYEE
WHERE SALARY+BONUS > 30000
ORDER BY LASTNAME

The result of this query is shown in Figure 3-9.

Figure 3-9 Employee rank by total salary

One can see gaps and duplicates in the ranks in the above result. If
DENSE_RANK is specified there will be no gaps in the sequential rank
numbering.

DENSE_RANK example
Non-distinct rows get the same rank but the row following a tie is given the next
sequential rank.

Rewriting the above SQL with DENSE_RANK would look as shown in
Example 3-16.

Example 3-16 DENSE_RANK() OVER example

SELECT EMPNO, LASTNAME, FIRSTNME, SALARY+BONUS AS TOTAL_SALARY,
DENSE_RANK() OVER (ORDER BY SALARY+BONUS DESC) AS RANK_SALARY
FROM EMPLOYEE
WHERE SALARY+BONUS > 30000
ORDER BY LASTNAME
130 High-Function Business Intelligence in e-business

The result of this query is shown in Figure 3-10.

Figure 3-10 Employee DENSE_RANK by total salary

2

ROW_NUMBER, RANK and DENSE_RANK example
Since ROW_NUMBER creates a sequential numbering to the rows in the
window, it can be used with an ORDER BY clause in the window to eliminate
gaps or duplicates.

Without the ORDER BY clause, ROW_NUMBER assigns sequential numbers to
rows arbitrarily as retrieved by the subselect. Such a result is not related to
ranking but merely assigning arbitrary numbers to rows.

Example 3-17 shows the differences between RANK, DENSE_RANK and
ROW_NUMBER.

Example 3-17 ROW_NUMBER, RANK, DENSE_RANK example

SELECT EMPNO, LASTNAME, FIRSTNME, SALARY+BONUS AS TOTAL_SALARY,
RANK() OVER (ORDER BY SALARY+BONUS DESC) AS RANK_SALARY,
DENSE_RANK() OVER (ORDER BY SALARY+BONUS DESC) AS DENSERANK,
ROW_NUMBER() OVER (ORDER BY SALARY+BONUS DESC) AS ROW_NUMBER
FROM EMPLOYEE
WHERE SALARY+BONUS > 30000

Note: Since Nulls collate high, nulls in RANK and DENSERANK functions are
ranked first for descending rankings. This can be overridden with the “nulls
last” parameter, RANK () OVER (ORDER BY salary desc nulls last) as rank-
ing.
 Chapter 3. DB2 UDB’s statistics, analytic, and OLAP functions 131

The result of this query is shown in Figure 3-11.

Figure 3-11 RANK, DENSE_RANK and ROW_NUMBER comparison

RANK and PARTITION BY example
The following is an example of using the PARTITION BY clause which allows for
subdividing the rows into partitions. It functions similar to the GROUP BY
function, but is local to the window set whereas GROUP BY is a global function.

Assume we want to find the top 4 ranking of employee salary within each
department.

We will need to use the RANK function with partition (ranking window) by
department. We will need to use a common table expression otherwise the
reference to RANK_IN_DEPT in our subselect is ambiguous.

The SQL is shown in Example 3-18.

Example 3-18 RANK & PARTITION example

WITH SALARYBYDEPT AS(
SELECT WORKDEPT, LASTNAME, FIRSTNME,SALARY,

RANK() OVER (PARTITION BY WORKDEPT ORDER BY SALARY DESC NULLS LAST)
AS RANK_IN_DEPT

FROM EMPLOYEE)
SELECT WORKDEPT, LASTNAME,FIRSTNME,SALARY, RANK_IN_DEPT
FROM SALARYBYDEPT
WHERE RANK_IN_DEPT <= 4 AND WORKDEPT IN
('A00','A11','B01','C01','D1','D11')
ORDER BY WORKDEPT, RANK_IN_DEPT, LASTNAME
132 High-Function Business Intelligence in e-business

The result of this query is shown in Figure 3-12.

Figure 3-12 PARTITION BY window results

The employee table is first partitioned by department. Then the ranking function
is applied based on highest to lowest salary within the common table expression.
Then the outer select chooses only the top 4 employees in the departments
requested and orders them by department and rank in the department. Ties in
rank are listed alphabetically.

OVER clause example
With the OVER clause it is possible to turn aggregate function like SUM, AVG,
COUNT, COUNT_BIG, CORRELATION, VARIANCE, COVARIANCE, MIN, MAX,
and STDDEV into OLAP functions. Rather than returning the aggregate of the
rows as a single value the OVER function operates on the range of rows
specified in the window and returns a single aggregate value for the range. The
following example illustrates this function.

Assume we would like to determine for each employee within a department the
percentage of that employee’s salary to the total department salary. That is if an
employee’s salary is $20,000 and the department total is $100,000 then the
employee’s percentage of the department’s salary is 20%.

Our SQL would look as shown in Example 3-19:
 Chapter 3. DB2 UDB’s statistics, analytic, and OLAP functions 133

Example 3-19 OVER clause example

SELECT WORKDEPT,LASTNAME,SALARY, DECIMAL(SALARY,15,0)*100/SUM(SALARY)
OVER (PARTITION BY WORKDEPT) AS DEPT_SALARY_PERCENT
FROM EMPLOYEE
WHERE WORKDEPT IN ('A00','A11','B01','C01','D1','D11')
ORDER BY WORKDEPT, DEPT_SALARY_PERCENT DESC

The result of this query is shown in Figure 3-13. The SUM(SALARY) (sum of
salary) is ranged by the OVER (PARTITION BY... clause to only those values in
each department.

Figure 3-13 Salary as a percentage of department total salary
134 High-Function Business Intelligence in e-business

This same concept can be applied to determine product percentage of sales for
various product groups within a retail store, bank or distribution center.

ROWS and ORDER BY example
It is possible to define the rows in the window function using a window aggregate
clause when an ORDER BY clause is included in the definition. This allows the
inclusion or exclusion of ranges of values or rows within the ordering clause.
Assume we want to smooth the curve of random data similar to the 50 and 200
day moving average of stock price found on numerous stock Web sites.

The SQL and the result of the query are shown in Example 3-20 and Figure 3-14.

Example 3-20 ROWS & ORDER BY example

SELECT DATE,SYMBOL,CLOSE_PRICE,AVG(CLOSE_PRICE) OVER
(ORDER BY DATE ROWS 5 PRECEDING) AS SMOOTH
FROM STOCKTAB
WHERE SYMBOL = 'IBM'

Figure 3-14 Five day smoothing of IBM
 Chapter 3. DB2 UDB’s statistics, analytic, and OLAP functions 135

Figure 3-15 IBM five day moving average

The equivalent result can be calculated using the RANGE instead of ROWS.
ROWS works well in situations when the data is dense, that is, there are no
values duplicated or missing.

ROWS, RANGE, and ORDER BY example
Stock tables have the weekends missing. RANGE can be used to overcome gaps
as illustrated in the following example.

Assume we want to calculate the seven day calendar average with the intent of
taking into account the weekends. We will compare the results of ROWS versus
RANGE. The SQL is shown in Example 3-21:

Example 3-21 ROWS, RANGE & ORDER BY example

SELECT DATE, SUBSTR(DAYNAME(DATE),1,9) AS DAY_WEEK, CLOSE_PRICE,
DEC(AVG(CLOSE_PRICE) OVER (ORDER BY DATE ROWS 6 PRECEDING),7,2) AS
AVG_7_ROWS,
COUNT(CLOSE_PRICE) OVER (ORDER BY DATE ROWS 6 PRECEDING) AS COUNT_7_ROWS,
DEC(AVG(CLOSE_PRICE) OVER (ORDER BY DATE RANGE 00000006. PRECEDING),7,2) AS
AVG_7_RANGE,
COUNT(CLOSE(CLOSE_PRICE) OVER (ORDER BY DATE RANGE 00000006. PRECEDING) AS
COUNT_7_RANGE
FROM STOCKTAB
WHERE SYMBOL=’IBM’

Note: IBM stock price data is not historically accurate.
136 High-Function Business Intelligence in e-business

The result of this query is shown in Figure 3-16 , and it illustrates the difference in
ROWS versus RANGE.

Attempting to use ROWS in setting the window for seven calendar days actually
returns 7 preceding rows. These seven rows span more than one calendar week.

RANGE fixes this problem by recognizing the weekend gap. Therefore RANGE is
appropriate when there are gaps in the input data.

Figure 3-16 Seven calendar day moving average

Note: The result of a DATE arithmetic operation is a DEC(8,0) value. We
therefore need to specify the comparison value in the RANGE operator with a
precision of DEC(8,0), in order to obtain the correct result.
 Chapter 3. DB2 UDB’s statistics, analytic, and OLAP functions 137

3.3.4 GROUPING, GROUP BY, ROLLUP and CUBE examples
We provide examples using GROUPING, GROUP BY, ROLLUP and CUBE.

GROUPING, GROUP BY and CUBE example
Grouping is used in conjunction with the super-group functions, GROUP BY
CUBE or ROLLUP. The purpose of the GROUPING function is to identify
summary rows in the CUBE and ROLLUP query results. The GROUPING
function returns a one or a zero to indicate whether or not a row returned by the
GROUP BY function is a sub-total row generated by the GROUP BY function.

A one means the row was the result of a sub-total, and a zero means the row was
not the result of a sub-total.

The input to the GROUPING function can be any type, but must be an item of the
associated GROUP BY clause. Consider Example 3-22.

Example 3-22 GROUPING, GROUP BY & CUBE example

SELECT SALES_DATE,
 SALES_PERSON,
 SUM(SALES) AS UNITS_SOLD,
 GROUPING(SALES_DATE) AS DATE_GROUP,
 GROUPING(SALES_PERSON) AS SALES_GROUP
FROM SALES
GROUP BY CUBE (SALES_DATE, SALES_PERSON)
ORDER BY SALES_DATE, SALES_PERSON
138 High-Function Business Intelligence in e-business

The result of this query is shown in Figure 3-17.

Figure 3-17 Grouping result

The ‘1’s in the DATE_GROUP column indicate the value in the UNIT_SOLD
column are sub-total rows generated by the GROUP BY CUBE clause. Likewise
the ones in SALES_GROUP column indicate these rows are also sub-total rows.
The last row were DATE_GROUP and SALES_GROUP are both one indicates
this row is a grand total row.

This function is used for end user applications built to recognize SALES_DATE
sub-total row by the fact that the value of DATE_GROUP is 0, and the value of
SALES_GROUP is 1.

Note: Figure 3-17 is output from the DB2 Command Line Processor. Here
nulls are represented as “-”.
 Chapter 3. DB2 UDB’s statistics, analytic, and OLAP functions 139

A SALES_PERSON sub-total row can be recognized by the fact that the value of
DATE_GROUP is 1 and the value of SALES_GROUP is 0. A grand total row can
be recognized by the value 1 for both DATE_GROUP and SALES_GROUP.

ROLLUP example
In our sales data example in Figure 3-18 and Figure 3-19, we want to summarize
the sales data by sales person and date with a rollup of sales to a day and week
level for weeks 13 and 14 in 1996.

Figure 3-18 Sales item detail for March
140 High-Function Business Intelligence in e-business

Figure 3-19 Sales item detail for April

Our SQL looks as shown in Example 3-23.

Example 3-23 ROLLUP example

SELECT WEEK(SALES_DATE) AS WEEK,
 DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
 SALES_PERSON, SUM(SALES) AS UNITS_SOLD
FROM SALES
WHERE WEEK(SALES_DATE) IN (13,14) AND
YEAR(SALES_DATE) = 1996
GROUP BY ROLLUP (WEEK(SALES_DATE), DAYOFWEEK(SALES_DATE), SALES_PERSON)
ORDER BY WEEK, DAY_WEEK, SALES_PERSON

The results are presented in Figure 3-20.
 Chapter 3. DB2 UDB’s statistics, analytic, and OLAP functions 141

.

Figure 3-20 Results of the ROLLUP query

The key to translating the format of the query results is to recognize the output
format is controlled by the ORDER BY statement. In the preceding example, the
output is sequenced first on week, then days within that week and finally by sales
person for that day. Secondly, a summary or rollup row is inserted based on the
order of the rollup statement. It is processed in reverse order. First the rollup for
each sales person is given for the first day. Then, for that day, a rollup is given.

Note: The last row in Figure 3-20 has no entry in the first two columns. These
blanks are technically speaking nulls. The DB2 Command Center translates
nulls to blanks in this case. Other tools may display nulls differently. This same
behavior is seen in the DB2 Command Center output for CUBE.
142 High-Function Business Intelligence in e-business

After all sales person summaries for that day are presented. After all days in a
week are processed in this manner then a rollup row for each week is given. This
process continues until all weeks are processed. Finally, a rollup grand total is
given.

To put in succinctly, rollup processing provides column summaries. This is
demonstrated in Figure 3-21.

The results are best viewed as tables, spreadsheets or bar charts. These tables
and charts can be made by translating the preceding results into and
commercially available spreadsheet and charting tool. These are shown in
Figure 3-22 and Figure 3-23.

Figure 3-21 ROLLUP visualization as tables

Figure 3-22 ROLLUP visualization as bar chart - week 13
 Chapter 3. DB2 UDB’s statistics, analytic, and OLAP functions 143

Figure 3-23 ROLLUP visualization as bar chart - week 14

CUBE example
To calculate a CUBE in our previous example we merely replace ROLLUP with
CUBE in the GROUP BY clause as shown in Example 3-24.

Example 3-24 CUBE example

SELECT WEEK(SALES_DATE) AS WEEK,
 DAYOFWEEK(SALES_DATE) AS DAY_WEEK,
 SALES_PERSON, SUM(SALES) AS UNITS_SOLD
FROM SALES
WHERE WEEK(SALES_DATE) in (13,14) AND
YEAR(SALES_DATE) = 1996
GROUP BY CUBE (WEEK(SALES_DATE),
DAYOFWEEK(SALES_DATE), SALES_PERSON)
ORDER BY WEEK, DAY_WEEK, SALES_PERSON
144 High-Function Business Intelligence in e-business

The result of this query is shown in Figure 3-24.

Figure 3-24 CUBE query result
 Chapter 3. DB2 UDB’s statistics, analytic, and OLAP functions 145

These results are more readily understood when translated into a three
dimensional cube (our three dimensions are Weeks, Days and Sales Person) or
tables laid out one on top of another.

Figure 3-25 Three dimensional cube - sales by sales person, day, week

In Figure 3-26 we have added labels to the sections of the query result to aid in
the creation of the tables. Unlike the results in Rollup, which are column
summary tables, the results of a Cube are cross tabulation tables. The three
tables based upon our example are:

� Units Sold for Sales Person by Day for Week 13
� Units Sold for Sales Person by Day for Week 14
� Units Sold - Sales Person by Day for Weeks 13 and 14
146 High-Function Business Intelligence in e-business

Figure 3-26 CUBE query result explanation
 Chapter 3. DB2 UDB’s statistics, analytic, and OLAP functions 147

The tables are built using any commercially available spreadsheet tool. We
simply follow the template provided in Figure 3-26 to create the three tables in
Figure 3-27. In Figure 3-27 the super-aggregate rows are represented as the
column labeled “Total” in those tables. The rows labeled “Total” in those tables
are the row summaries referred to in the previous discussion of sub-total rows for
the ROLLUP function.

Figure 3-27 CUBE query tables
148 High-Function Business Intelligence in e-business

Chapter 4. Statistics, analytic, OLAP
functions in business
scenarios

In this chapter we discuss typical business level queries that can be answered
using DB2 UDB’s statistics, analytic and OLAP functions. These business
queries are categorized by industry, and describe the steps involved in resolving
the query, with sample SQL and visualization of the results.

The target audience is application developers, and DBAs who are unfamiliar with
statistics, analytic and OLAP functions, but quite knowledgeable about SQL.

4

© Copyright IBM Corp. 2002 149

4.1 Introduction
We describe typical business queries in the following industries:

� Retail
� Finance
� Sports

This is the format we followed for each industry sector:

1. A statement of the business requirement

2. Data fields/attributes required to address the requirement

3. DB2 UDB functions used in the queries

4. The steps involved in addressing the requirement, and for each step:

– The SQL required
– The result set
– How the result set is converted for visualization
– Visualization of the result

The data for our queries come from different sources, and some of these are
documented in Appendix B, “Tables used in the examples” on page 235, while
the content of others are listed in the business requirement solution.

4.1.1 Using sample data
In many cases, the volume of data available may be very large, and it may not be
cost-effective or timely enough to analyze the entire data. In such cases, it would
be appropriate to take a representative sample of the data and perform analyses
on it instead. An efficient and cost-effective sampling function can have a
significant impact on the scalability of a system involving large volumes of data
that typify the e-business environment.

Attention: Many of these business queries problems apply to other industries
as well

Important: Source data to answer the business query varies from
organization to organization. We therefore assume that appropriate extraction,
cleansing, and transformation of the data has been done to present it in one or
more normalized tables for our queries. The latency of the data and the
end-to-end performance perception of the business query is impacted by the
efficiency of the extraction and transformation process.
150 High-Function Business Intelligence in e-business

DB2 provides support for a RAND function which uses a “Bernoulli Sampling”
technique. See Chapter 3.2.8, “RAND” on page 104 for an explanation of the
RAND function.

The quality of the sample and the size of the sample will play a significant role in
the accuracy of the result obtained. A discussion of these considerations is
beyond the scope of this document, suffice to say that these factors are unique to
each domain and possibly to each organization.

Sampling may be used for auditing, data mining as well as getting approximate
answers to aggregation type questions.

4.1.2 Sampling and aggregation example
Assume we have a very large table containing sales data by country and we
would like to obtain the sales summary by year and country using sampling, and
assess the “standard error” of the estimate. We use the familiar trans, transitem,
and loc tables for this query. Consider Example 4-2.

Example 4-1 Sample & aggregation example

SELECT loc.country AS country, YEAR(t.pdate) AS year,
 SUM(ti.amount) / :samp_rate AS est_sales,
 SQRT((1e0/:samp_rate)*(1e0-(1e0/:samp_rate))*SUM(amount*amount)) AS
std_err
FROM trans t, transitem ti, loc loc
WHERE t.transid = ti.transid AND loc.locid = t.locid
 AND RAND(1) < :samp_rate
GROUP BY loc.country, YEAR(t.pdate)

Attention: The reader is strongly urged to get familiar with sampling theory
and its applicability to their business environment prior to using DB2 UDB’s
RAND function.

Important: When sampling from a single table, care should be taken to
ensure that the extracted sample is representative, and large enough to
provide an acceptable degree of accuracy. Trial and error is probably the best
practical approach to hone in on an acceptable sample size.

Another factor to be considered is that in general, a join of sampled tables is
not statistically equivalent to a sample from the join of the original tables. An
acceptable approach for a join involving referentially constrained tables, may
be to sample the foreign key table, and then extract the rows in the referenced
table using the foreign key values in the sample. You should evaluate the
efficacy of this approach in your particular environment.
 Chapter 4. Statistics, analytic, OLAP functions in business scenarios 151

The foregoing query takes a Bernoulli sample from a join of the 3 tables, using a
sampling rate of 0.01 resulting in approximately 1% of the rows being selected.
In order to estimate the sum for the entire table, we need to scale the answer up
by a factor of (1 / :samp_rate) which is 100. The “standard error” is computed as
shown.

The result of the foregoing query is as follows:

country year est_sales std_err
------- ------ --------- -------
 USA 1998 127505 1326.09
 USA 1999 236744 2133.17
GERMANY 1998 86278 961.45
GERMANY 1999 126737 1488.66
...

Typically, there is a high probability that the true sum will lie within +/- 2 standard
errors1 of the estimate. Therefore, in the foregoing query given the low standard
error computation, there is a high probability that the estimated sums are
accurate to within about a 2 percent error.

The optimizer can treat the sampling predicate like any other predicate for
optimization purposes.

Notes: The samp_rate is a parameter that specifies the sampling rate. In the
foregoing example, our sampling rate is 0.01 or 1%.

Also, the formula used in the query for std_err computation is offered without
explanation.

1 Sampling Techniques by Cochran ISBN 0-471-16240-X

Attention: When the original table is very large and the sampling rate is not
extremely small, we can typically be more specific about the precision of our
estimator. For example, the true value of the sum is within +/- 1.96 standard
errors with probability approximately 95%, and within +/- 2.576 standard errors
with probability approximately 99%.

Important: The main drawback to this approach is that a scan of the entire
table is required, so that there is no I/O savings. In practice, it may be
desirable to amortize the sampling cost over multiple queries by saving the
sample as a table. The sample should be refreshed periodically however, so
that sampling anomalies do not systematically influence the results.
152 High-Function Business Intelligence in e-business

In the following queries, we obtain a better estimate of total sales for each group,
by scaling up using the true sampling rate, that is, the group size in the entire
table divided by the group size in the sampled table. This scaleup, though more
expensive to compute, leads to more stable and precise estimators.

The SQL shown in Example 4-2 creates the sample table.

Example 4-2 Create sample table

CREATE TABLE samp_table(country, year, amount) AS
 SELECT loc.country, YEAR(t.pdate), ti.amount
 FROM trans t, transitem ti, loc loc
 WHERE t.transid = ti.transid AND loc.locid = t.locid

 AND RAND(1) < :samp_rate

The SQL shown in Example 4-3 creates a view that computes the group size
‘g_size’.

Example 4-3 Compute the group size

CREATE TABLE big_group_sizes(country, year, g_size) AS
 SELECT loc.country, YEAR(t.pdate), COUNT(*)
 FROM trans t, transitem ti, loc loc
 WHERE t.transid = ti.transid AND loc.locid = t.locid
 GROUP BY loc.country, YEAR(t.pdate)

The SQL shown in Example 4-4 scales up the estimate by the true sampling rate
as highlighted.

Example 4-4 Scale the estimate by the true sampling rate

SELECT s.country, s.year, b.g_size * AVG(s.sales) AS est_sales,
 SQRT(b.g_size * b.g_size * ((1e0 - :samp_rate)/COUNT(s.amount))
 * (1e0 - (1e0/COUNT(s.amount))) * (COUNT(s.amount)/(COUNT(s.amount)-1e0))
 * VAR(s.amount)) AS std_err
FROM samp_table s, big_group_sizes b
WHERE s.country = b.country AND s.year = b.year
GROUP BY s.country, s.year, b.g_size

Important: You need to ensure that the appropriate indexes are created and
statistics collected before running the following query. This is business as
usual performance tuning activity. Typically indexes are created on join
columns and grouping columns to improve the performance of queries. In the
foregoing example, indexes could be created (if they do not already exist for
semantic reasons) on columns trans.transid, transitem.transid, trans.locid,
loc.locid, and loc.country.
 Chapter 4. Statistics, analytic, OLAP functions in business scenarios 153

We do the scaleup by computing the average sales for a group in the sampled
table (that is, total sales for the group divided by the group size), and then
multiplying by g_size, the size of the group in the original table.

We also used a different standard error formula using the VAR function that
corresponds to the different estimator.

4.2 Retail
We have selected the following typical business queries for our examples:

1. Present annual sales by region and city.
2. Provide total quarterly and cumulative sales revenues by year.
3. List the top 5 sales persons by region this year.
4. Compare and rank the sales results by state and country.
5. Determine relationships between product purchases.
6. Determine the most profitable items and where they are sold.
7. Identify store sales revenues noticeably different from average.
8. Project growth rates of Web hits for capacity planning purposes.

4.2.1 Present annual sales by region and city
This is a typical report reviewing sales results for planning budgets, campaigns,
expansions/consolidations etc.

Data
Input for this report is primarily transaction data along with dimension information
relating to date, product, and location. Attributes of interest include:

� Date of transaction, product purchased, product price and quantity purchase

� Product code, product name, subgroup code, subgroup name and product
group and product group name

� Region, city

BI functions showcased
GROUP BY, ROLLUP

Steps
Our data resided in a FACT_TABLE and a LOOKUP_MARKET table.
154 High-Function Business Intelligence in e-business

The SQL shown in Example 4-5 was run in DB2 Control Center.

Example 4-5 Annual sales by region and city

SELECT b.region_type_id, a.city_id, SUM(a.sales) AS TOTAL_SALES
FROM fact_table a, lookup_market b
WHERE YEAR(transdate)=1999 AND a.city_id=b.city_id

AND b.region_type_id=6
GROUP BY ROLLUP(b.region_type_id,a.city_id)
ORDER BY b.region_type_id, a.city_id

Figure 4-1 shows the results of this query.

Figure 4-1 Yearly sales by city, region

Note: To reduce the size of the query result, the foregoing SQL limits the
query to region 6, and the transaction date to 1999.
 Chapter 4. Statistics, analytic, OLAP functions in business scenarios 155

4.2.2 Provide total quarterly and cumulative sales revenues by year
This is again a typical report reviewing sales results for planning purposes. Our
query reported on years 1993 to 1995.

Data
The main source of input for this query is transaction data with the key attributes
of transaction date and transaction amount. Our data resides in two tables.

� TRANS contains dated transactions of all transaction records within a store.
Each transaction contains a set of transaction items.

� TRANSITEM contains the associations with products and product groups.

BI functions showcased
OVER, PARTITION BY, ORDER BY

Steps
We executed the SQL shown in Example 4-6 via the DB2 Control Center:

Example 4-6 Sales revenue per quarter & cumulative sales over multiple years

SELECT YEAR(pdate) as year,
QUARTER(pdate) as quarter,
SUM(ti.amount) as quarter_sales,
SUM(SUM(ti.amount)) OVER (PARTITION BY YEAR(pdate) ORDER BY

QUARTER(pdate)) as cume_sales_year,
SUM(SUM(ti.amount)) OVER (ORDER BY YEAR(pdate), QUARTER(pdate)) as

cume_sales
FROM trans t, transitem ti
WHERE t.transid=ti.transid and year(pdate) BETWEEN 1993 AND 1995
GROUP BY YEAR(pdate),QUARTER(pdate)

Figure 4-2 shows the results of this query.

Note: Some rows of the result table were removed to fit on the page. The
result shows ROLLUP of two groupings (region, city) returning three totals as
follows:

� Total for region, city
� Total for region
� Grand total
156 High-Function Business Intelligence in e-business

Figure 4-2 Cumulative sales by quarter, annually and reporting period

We visualized this result as a bar chart, as follows:

1. Using the DB2 command center, we saved our data into a text file.

2. We created the MS-Excel file from it, and then imported it into the Brio tool for
creating charts.

3. With drag-and-drop of CUME_SALES values for years 1993, 1994, and 1995,
from Figure 4-2, we created the charts shown in Figure 4-3 and Figure 4-4.
 Chapter 4. Statistics, analytic, OLAP functions in business scenarios 157

Figure 4-3 Cumulative sales by quarter and annually

Figure 4-4 Cumulative sales by quarter for 1993
158 High-Function Business Intelligence in e-business

4.2.3 List the top 5 sales persons by region this year
This query requires the sales persons to have completed at least 10 sales
transactions, and would typically be used for recognition purposes.

Data description
The main source of input to this query is sales information with the key attributes
of date of sale, sales person, region, and count of sales transactions. All our data
resides in the SALES table.

BI functions showcased
RANK, OVER, PARTITION BY, ORDER BY

Steps
We executed the SQL shown in Example 4-7 via the DB2 Control Center:

Example 4-7 Top 5 sales persons by region this year

WITH temp(region,sales_person,total_sale,sales_rank) AS
(
SELECT region, sales_person, COUNT(sales) AS total_sale,

RANK() OVER (PARTITION BY region ORDER BY COUNT(sales) DESC) AS
sales_rank

FROM sales
GROUP BY region, sales_person
)

SELECT * FROM temp WHERE sales_rank <=5 AND total_sale >10

TOTAL_SALE counts the number of sales transactions.

Figure 4-5 shows the results of this query. Using a common table expression, a
“virtual” table called temp is first created with results from number of sales
(TOTAL_SALE) with partitioning over a region.The table temp is then ranked to
show the top five salesmen whose TOTAL_SALE is >=10.
 Chapter 4. Statistics, analytic, OLAP functions in business scenarios 159

Figure 4-5 Top 5 sales persons by region

4.2.4 Compare and rank the sales results by state and country
This query compares the sales results rolled up to country and state level for
1994. Its purpose is to view global sales ranking, peer to peer ranking among
states and countries, with ranking within parent levels.

Data
Our data is sourced from sales transactions, using the same tables as used
earlier. The key attributes are transaction date, transaction amount, state, and
country. Our data resides in the following tables:

� TRANS
� TRANSITEM
� LOC

BI functions showcased
GROUPING, RANK, OVER, ORDER BY, ROLLUP

Steps
We executed multiple queries, each addressing a particular requirement.
160 High-Function Business Intelligence in e-business

Query 1
The query shown in Example 4-8 globally ranks the countries and states by the
sales revenues:

Example 4-8 Globally rank the countries & states by sales revenues

SELECT SUM(ti.amount) AS sum, loc.country, loc.state,
GROUPING(loc.country) + GROUPING(loc.state) AS level,
RANK() OVER (ORDER BY SUM(ti.amount) DESC) AS global_rank

FROM trans t, transitem ti, loc loc
WHERE t.transid =ti.transid AND loc.locid = t.locid AND YEAR(pdate) = 1994
GROUP BY ROLLUP (loc.country, loc.state)
ORDER BY global_rank

Figure 4-6 shows the results of this query.

Figure 4-6 Global ranking
 Chapter 4. Statistics, analytic, OLAP functions in business scenarios 161

States, countries, and the world have a level by hierarchy. The world has level 2,
states have level 1, and the countries have a level 0 within the LEVEL as shown
in Figure 4-7. The world is ranked 1 (GLOBAL_RANK) by virtue of the total sales
transactions.

Figure 4-7 Levels in hierarchy

Query 2
The query shown in Example 4-9 ranks the sales among peers, that is, rank all
the countries, and then the states, across multiple countries.

Example 4-9 Sales among peers

SELECT SUM(ti.amount) AS sum, loc.country, loc.state,
GROUPING(loc.country) + GROUPING(loc.state) AS level,
RANK () OVER (PARITION BY GROUPING (loc.country) + GROUPING(loc.state)
ORDER BY SUM(ti.amount) DESC) AS rank_within_peers

FROM trans t, transitem ti, loc loc
WHERE t.transid = ti.transid AND loc.locid = t.locid AND YEAR(pdate) = 1994
GROUP BY ROLLUP (loc.country, loc.state)
ORDER BY level DESC, rank_within_peers

Figure 4-8 shows the results of this query.
162 High-Function Business Intelligence in e-business

Figure 4-8 Ranking within peers

Query 3
The query shown in Example 4-10 ranks the sales within each parent, that is,
rank all the countries, and then states within each country.

Example 4-10 Sales within each parent

SELECT SUM(ti.amount) AS sum, loc.country, loc.state,
GROUPING (loc.country) + GROUPING(loc.state) AS level,
RANK() OVER (PARTITION BY GROUPING (loc.country) + GROUPING(loc.state),
CASE WHEN GROUPING(loc.state) = 0 THEN loc.country END
ORDER BY SUM (ti.amount) DESC) AS rank_within_parent

FROM trans t, transitem ti, loc loc
WHERE t.transid = ti.transid AND loc.locid = t.locid

AND YEAR(pdate) = 1994
 Chapter 4. Statistics, analytic, OLAP functions in business scenarios 163

GROUP BY ROLLUP(loc.country, loc.state)
ORDER BY level desc,
CASE WHEN level =0 THEN loc.country END,
rank_within_parent

Figure 4-9 shows the results of this query.

Figure 4-9 Ranking within parent

4.2.5 Determine relationships between product purchases
The purpose of this query is to try and establish whether there is a relationship
between products purchased by customers, so that it can be used by sales
persons to cross-sell complementary products.

It is well known that there is a strong relationship between certain product
purchases, such as hammers and nails, paint and paint brushes and sanding
paper, etc.

However, other relationships may not be so readily apparent. For example, a
supermarket chain discovered a relationship between beer and candies
(sweets), while another retailer discovered a relationship between late-night
gasoline purchases and flowers.
164 High-Function Business Intelligence in e-business

Data mining is often used to discover unexpected or complex relationships;
however, it is possible to use DB2 UDB’s CORRELATION function to identify the
nature of a relationship between 2 sets of data.

Many retailers now offer “LOYALTY” cards with the intention of being able to
collect data based on peoples purchase pattern and thereby create targeted
sales campaigns. Often these campaigns are based on very simple analysis of
large volumes of data.

Data
The main source of data is the transactions obtained from purchases from a
loyalty card scheme database. The key attributes of interest in our example are
card number and the purchases of six items (coffee, beer, snack foods, bread,
ready meals and milk).

BI functions showcased
CORRELATION

Steps
The steps we followed are shown in Example 4-11.

Example 4-11 Relationship between product purchases

SELECT DEC(CORRELATION(beer,snacks),15,2) AS “Beer_Snacks”,
DEC(CORRELATION(beer,milk),15,2) as “Beer_Milk”

FROM lc_purchases

The SQL in this example does two simple correlation calculations between
purchases (dollar amount) of beer and snack foods, and beer and milk.
Figure 4-10 shows the result of this query.

Figure 4-10 CORRELATION output

The sample data shows a very high correlation between purchases (dollar
amount) of beer and snack foods, but almost no correlation between beer and
milk.

The sample data used in the foregoing example was charted using BRIO.
Figure 4-11 and Figure 4-12 show that in our given sample, almost everyone who
bought beer also bought some snack foods. However, only one person bought
beer and milk.
 Chapter 4. Statistics, analytic, OLAP functions in business scenarios 165

Figure 4-11 Correlation of purchases of beer and snack foods

Figure 4-12 Correlation of purchases of beer and milk
166 High-Function Business Intelligence in e-business

4.2.6 Determine the most profitable items and where they are sold
Being able to determine one’s most profitable items and where they are sold
enables an organization to optimize product purchases and product distribution
for maximum profitability.

To establish the profit on an item you need to know its cost to you and the price at
which it is sold. In this example we will use the sales figures from a fictional
world-wide Coffee Retailer and cross calculate the profit based on the profit of
these items in their respective countries.

Data
Our data is mainly taken from pricing and transactions.

� The PRICING view includes store, item, and sales information.
� The TRANSACTIONS view includes store, item, cost, and price sold.

BI functions showcased
RANK, OVER, PARTITION BY, ORDER BY

Steps
This query is answered via multiple steps as follows:

1. For each variety of coffee, determine the store with the highest profit.

2. For each store, determine the coffee variety with the highest profit.

3. Determine the most profitable product in each store.

4. Determine the most profitable store for each variety of coffee.

Step 1
The query shown in Example 4-12 calculates the store with the highest profit on
the different varieties of coffee:

Example 4-12 Store with the highest profit on the different varieties of coffee

SELECT store, item, profit
FROM

(
SELECT store, item, price - cost AS profit,
RANK() OVER (PARTITION BY item ORDER BY price - cost DESC) AS
rank_profit
FROM pricing
) AS ranked_profit

WHERE rank_profit = 1
ORDER BY profit DESC
 Chapter 4. Statistics, analytic, OLAP functions in business scenarios 167

Figure 4-13 shows the results of this query.

Figure 4-13 Store with highest profit of each variety of coffee

Step 2
The query shown in Example 4-13 determines the coffee variety delivering the
highest profit in each store:

Example 4-13 Coffee variety delivering the highest profit in each store

SELECT store, item, profit
FROM

(
SELECT item, store, price - cost AS profit,

RANK() OVER (PARTITION BY store ORDER BY price - cost DESC) AS
rank_profit

FROM pricing
) AS ranked_profit

WHERE rank_profit = 1
ORDER BY profit DESC

Figure 4-14 shows the results of this query.

Figure 4-14 Highest profit of all varieties of coffee in a given store

In the foregoing examples it is obvious that New York has the highest profits for
most of the varieties. However, this does not necessarily mean the most profits.
168 High-Function Business Intelligence in e-business

Step 3
The query shown in Example 4-14 calculates the most profitable product in each
store.

Example 4-14 Most profitable product in each store

WITH tt AS
(
SELECT store, item, SUM(sales) AS total
FROM transactions
GROUP BY store, item
)

SELECT store, item, total_profit
FROM

(
SELECT a.store,a.item,b.total*(a.price - a.cost) AS total_profit,

RANK() OVER (PARTITION BY b.store ORDER BY b.total(a.price - a.cost)
DESC) AS rank_profit

FROM pricing a, tt b
WHERE a.store=b.store AND a.item=b.item
) AS ranked_profit

WHERE rank_profit = 1
ORDER BY 3 DESC

Figure 4-15 shows the results of this query.

Figure 4-15 Most profitable product in each store

Step 4
The query shown in Example 4-15 calculates the most profitable store for each
variety of coffee:

Example 4-15 Most profitable store for each variety of coffee

WITH tt AS
(
SELECT item, store, SUM(sales) AS total
FROM transactions
GROUP BY store, item
)

SELECT item, store, total_profit
FROM

(

 Chapter 4. Statistics, analytic, OLAP functions in business scenarios 169

SELECT a.store,a.item,b.total*(a.price - a.cost) AS total_profit,
RANK() OVER (PARTITION BY b.item ORDER BY b.total(a.price - a.cost)
DESC) AS rank_profit

FROM pricing a, tt b
WHERE a.store=b.store AND a.item=b.item
) AS ranked_profit

WHERE rank_profit = 1
ORDER BY 3 DESC

Figure 4-16 shows the results of this query.

Figure 4-16 Most profitable store for each variety of coffee

The data from these results is charted in Figure 4-17 and Figure 4-18.

Figure 4-17 Total profit by store
170 High-Function Business Intelligence in e-business

Figure 4-18 Profit by product in each store

These figures show that Ankara is below New York in profit for every product,
while being the more profitable store.

4.2.7 Identify store sales revenues noticeably different from average
The purpose is to identify leading and lagging stores with the intention of either
shutting down or initiating sales campaigns in poorly performing stores, or
analyzing the better performing stores for their best practices to apply to other
stores.

In this example we will use the sales figures from a fictional world-wide Coffee
Retailer and calculate the revenues in their respective countries.

Data
The attributes in this example are the same pricing and transactions tables used
in the previous example.

BI functions showcased
AVG, STDDEV

Steps
The steps we followed are shown in Example 4-16.
 Chapter 4. Statistics, analytic, OLAP functions in business scenarios 171

Example 4-16 Sales revenues of stores noticeably different from the mean

WITH t1(item,store,total) AS
(
SELECT item, store, SUM(sales)
FROM transactions
GROUP BY store, item
),
t2(store,total_revenue) AS

(
SELECT a.store, SUM(b.total*a.price)
FROM pricing a, t1 b
WHERE a.store=b.store AND a.item.=b.item
GROUP BY a.store
),
t3 (avg_rev, std_rev) AS

(
SELECT AVG(total_revenue) AS avg_revenue,
STDDEV(total_revenue) AS dev_revenue
FROM t2

)
SELECT a.store,a.total_revenue,

(a.total_revenue - b.avg.rev)/b.std_rev AS deviations
FROM t2 a, t3 b

In the foregoing SQL, we create three “virtual” tables to arrive at the final result,
as follows:

1. t1 is a summary of sales by store and item. Sales is expressed in terms of
dollars.

2. t1 is then used in conjunction with the pricing table to create, t2, a table of
revenues.

3. t3 is average and standard deviation of the data from t2.

Finally, we calculate how many standard deviations each stores’ mean is from
the overall mean.

Figure 4-19 shows the results of this query.

Figure 4-19 Store revenue and deviation from mean
172 High-Function Business Intelligence in e-business

Figure 4-20 charts this relationship.

Figure 4-20 Standard deviations from the mean by revenue

From our previous example, and this one, Ankara makes almost twice the profit
of the Tokyo store on almost half the revenue, thus making Ankara the most
profitable store.

4.3 Finance
1. Identify the most profitable customers
2. Identify the profile of transactions concluded recently
3. Identify target groups for a campaign
4. Evaluate effectiveness of a marketing campaign
5. Identify potential fraud situations for investigation
6. Plot monthly stock prices movement with percentage change
7. Plot the average weekly stock price in September
8. Project growth rates of Web hits for capacity planning purposes
9. Relate sales revenues to advertising budget expenditures

4.3.1 Identify the most profitable customers
Determining customers that buy products/services that bring the most profit to
the company can be used to build stronger customer relationships and increase
profitability and customer satisfaction.
 Chapter 4. Statistics, analytic, OLAP functions in business scenarios 173

Data
We assume that there is a data warehouse containing information about
customers and products/services they subscribe to. And we assume that we
have already done an analysis of how much profit each product or service brings
to the company per year.

The main sources of our data are:

� Product information which lists the products/services offered
� Customer details
� Products/Services purchased by customers

Customer profitability is the price of the product minus the cost the company
incurs in providing the service, as shown in Figure 4-21.

Figure 4-21 Profit from a customer

BI functions showcased
RANK, DENSE_RANK, ROW_NUMBER, ORDER BY

Companies rank their customers based on their business rules. In this example,
we show ranking using RANK, DENSE_RANK and ROWNUMBER in order to
show the differences in the results of these functions.

Steps
The SQL shown in Example 4-17 provides the desired result.

Example 4-17 Most profitable customers

SELECT a.custid,SUM(c.profit) AS total_profit,
RANK() OVER (ORDER BY SUM(c.profit) DESC) AS rank,
DENSERANK() OVER(ORDER BY SUM(c.profit) DESC) AS denserank,
ROW_NUMBER() OVER(ORDER BY SUM(c.profit) DESC) AS rownum

FROM cust a, prod_owned b, prod c
WHERE a.custid=b.custid AND b.prodid=c.prodid
GROUP BY a.custid

Customer yearly profit is calculated:

Customer Total Profit (CTP) = (N1 x P1) + (N2 x P2) +...(Nn x Pn)

Where:

N = number of product/service a customer has per product type

P = profit for product type
174 High-Function Business Intelligence in e-business

Figure 4-22 shows the results of this query.

Figure 4-22 Customer profitability ranking result

We ran the query in IBM QMF and saved the output in an MS-Excel spreadsheet
and used MS-Excel charting to create the bar chart shown in Figure 4-23.
 Chapter 4. Statistics, analytic, OLAP functions in business scenarios 175

Figure 4-23 Customer profitability bar chart

4.3.2 Identify the profile of transactions concluded recently
We look at the profile of transactions from two perspectives as follows:

� Query 1 identifies the transaction amount range which accounted for most of
the companies transactions. For how many of our transactions are worth less
9,000 dollars. This information can be used to identify spending patterns for
targeted sales campaigns.

� Query 2 identifies the value of transactions by percentage of volumes. For
example, what is value of our transactions at the 90th percentile? This can be
used in more detailed analysis. For example, if the retailer knows that 90
percent of his sales are less than 20,000 dollars, then he can infer that
stocking many items more $20,000 may not be cost-effective. However, he
can identify products within the most common ranges.

Data
The major source for this analysis are the transactions. In our example, this data
is contained in 2 tables.

� TRANS which is the master transaction table which holds summary details of
completed transactions.

� TRANSITEM is the sales details table which holds the individual products
sold and their value by transaction.
176 High-Function Business Intelligence in e-business

BI functions showcased
SUM, ROWNUMBER, OVER, ORDER BY

Query 1
The SQL shown in Example 4-18 can be used to generate the result set that can
then be displayed via an equi-width histogram. The transactions are assigned to
a range bucket based on the sales value of a transaction.

Example 4-18 Equi-width histogram query

WITH dt AS
(
SELECT t.transid, SUM(amount) AS trans_amt,

CASE
WHEN (SUM(amount) - 0)/((60000 - 0)/20) <= 0 THEN 0
WHEN (SUM(amount) - 0)/((60000 - 0)/20) >= 19 THEN 19
ELSE INT((SUM(amount) - 0)/((60000 - 0)/20))

END AS bucket
FROM trans t, transitem ti
WHERE t.transid=ti.transid
GROUP BY t.transid
)

SELECT bucket, COUNT(bucket) AS height,
(bucket + 1)*(60000 - 0)/20 AS max_amt

FROM dt
GROUP BY bucket

In this query, assuming a maximum transaction amount of $60,000 (based on
domain knowledge of this application), we create twenty $3000 range buckets in
the common table expression, and then count the number of transactions in each
bucket range. The CASE expression is used to assign a bucket to a particular
transaction, and the result of the common table expression is a table by
transaction of the transaction amount and the bucket it belongs to. The query
querying the result of the common table expression, then groups the rows by
bucket, counts the number of transactions in each bucket, and lists the upper
range of the bucket for these transactions.

Figure 4-24 shows the results of this query.
 Chapter 4. Statistics, analytic, OLAP functions in business scenarios 177

Figure 4-24 Equi-width histogram data

This data was copied into Lotus 1-2-3 to generate the equi-width histogram
shown in Figure 4-25.

Figure 4-25 Equi-width chart
178 High-Function Business Intelligence in e-business

The data and histogram shows that a significant proportion of the transactions
are less than fifteen thousand, with a peak in the six to nine thousand range. The
answer to the number of transactions worth less than 6,000 dollars is 1058. The
graph also shows that 449 transactions are less than 3000 dollars, and 609
transactions are between 3000 and 6000 dollars.

Query 2
The SQL shown in Example 4-19 can be used to generate the result set that can
then be displayed via an equi-height histogram. The bucket boundaries are
chosen so that each bucket contains approximately the same number of data
points.

Example 4-19 Equi-height histogram query

WITH dt AS
(
SELECT t.transid, SUM(amount) AS trans_amt,

ROWNUMBER() OVER (ORDER BY SUM(amount))*10/
(
SELECT COUNT(DISTINCT transid) + 1
FROM transitem
) AS bucket

FROM trans t, transitem ti
WHERE t.transid=ti.transid
GROUP BY t.transid
)

SELECT (bucket+1)*10 AS percentile, COUNT(bucket) AS b_count,
MAX(trans_amt) AS max_value

FROM dt
GROUP BY bucket

In this example we have used 10 buckets, so that 10% of the data points fall in
each bucket. The internal bucket boundaries are often referred to as the 0.1, 0.2,
..., 0.9 quantiles of the data distribution, or as the 10th, 20th,, 90th percentiles.
For example, Figure 4-26 shows that the 10th percentile for our data is $2840.05,
that is, 10% of transactions have a dollar value less than this amount.

In effect, the query computes the total sales amount for each of ‘n’ transactions
as trans-amt, sorts the amounts in increasing order, and assigns the number one
to the smallest transaction, two to the next largest transaction, etc. using the
ROWNUMBER() function. Multiplying these numbers by 10 (the number of
buckets), and then dividing these numbers by ‘n’ (which is computed as
COUNT(DISTINCT transid)), and rounding to the nearest integer produces the
desired bucket number for each transaction.

Figure 4-26 shows the results of this query.
 Chapter 4. Statistics, analytic, OLAP functions in business scenarios 179

Figure 4-26 Equi-height histogram data

As mentioned earlier, that the MAX_VALUE represents the transaction amount at
the bucket boundary.

This data is copied into Lotus 1-2-3 to create the equi-height histogram shown in
Figure 4-27. The histogram will display the max values in each bucket as the
width. It is called an “equi-height” histogram because the ranges are set to the
same height. The data in the graph has been manipulated so that the max value
is the boundary. The individual figures have had the preceding value subtracted.

Figure 4-27 Equi-height histogram

The data and histogram shows that 30% of all transactions are worth less than
7,060 dollars.
180 High-Function Business Intelligence in e-business

4.3.3 Identify target groups for a campaign
The objective is to identify a particular group of customers from a larger set that
will most likely respond to a marketing campaign, thus resulting in a better return
on investment.

In our example, a financial institution would like to increase revenue by marketing
mortgages to customers during the first quarter of the new fiscal year. Previous
wider coverage state-wide and county-wide campaigns have been unsuccessful,
and the company would like to focus on a particular city for better results.

Candidate target cities chosen are Palo Alto (8 branches) and San Jose (9
branches) since they are located in the Silicon Valley area which has highest
average family income in the state of California. The rationale being that people
with high incomes generally own their homes or would like to own homes, and
therefore are ideal targets for the campaign.

The decision to choose Palo Alto or San Jose as the target city was based on the
following analysis.

1. A survey was conducted of the residents of Palo Alto and San Jose and the
results were analyzed.

2. Using the Chi-squared technique, infer from the results if a relationship exists
between where a customer lives and the product (s)he will buy.

3. If such a relationship exists, use the Wilcoxon Rank Sum Test to prove that
Palo Alto residents will likely buy mortgage loans.

Data
The main sources of data for this query are:

� Cumulative Distribution of the Chi-square table
� Survey results in the form of Survey tables
� Cumulative Distribution of the Wilcoxon Rank-Sum Statistic table

BI functions showcased
SUM, CUBE, LOG(n), GROUPING, RANK

Steps
We executed the following three steps to arrive at the answer.

Step 1
This involved collecting the survey data and loading it into a DB2 table called
SURVEY. An SQL query (not shown here) was issued against the SURVEY
table it to arrive at a Contingency table as shown in Table 4-1.
 Chapter 4. Statistics, analytic, OLAP functions in business scenarios 181

Table 4-1 Survey data contingency table

This data was then loaded into a DB2 table SURVEY.

Step 2
We used the Chi-squared technique to prove that there is a statistically
significant relationship between where customer lives and the product he/she will
buy by disproving the null hypothesis. In other words, disproving that where
customers live has no bearing on what products they buy.

The formula for the “maximum likelihood” Chi-squared test for independence is
shown in Table 4-2.

Table 4-2 Chi-squared test for independence test statistic

The SQL query for calculation of the foregoing Chi-square (X) is shown in
Example 4-20.

Product Palo Alto San Jose Total

checking/savings 45 85 130

visa 30 10 40

mortgage 110 80 190

Total 185 175 360

Chi-squared Test for Independence Test Statistic:

Maximum Likelihood X = 2n log (n)
+ [2n11 log (n11) + ... + 2n rc
- [2n1+ log (n1+) + ... + 2nr+ log (nr+)]
- [2n+1 log (n+1) + ... + 2n+c log (n+c)]

Where:
nij: # in cell (i,j)
ni+: row i sum
n+j: column j sum
n: total # of user

Note: Table lookups and complex calculations can be automated in DB2 via
User Defined Functions (UDFs).
182 High-Function Business Intelligence in e-business

Example 4-20 Chi-square computation

WITH c_table (prod_name, city, n, g1, g2) AS
(

SELECT prod_name, city, count(*), 2e0*(0.5e0-GROUPING(prod_name)),
2e0*(0.5e0-GROUPING(city))

FROM survey
GROUP BY CUBE (prod_name, city)
)

SELECT SUM(g1*g2*2e0*n*log(n)) as chi2
FROM c_table

The result of this query is shown in Figure 4-28.

Figure 4-28 Chi-Squared value of city and product preference relationship

The Cumulative Distribution of the Chi-square table (not shown here) shows that
under the null hypothesis, there is no statistical relationship between where the
customer lives and the products (s)he will buy. The probability of seeing a
Chi-square values of 34.1139 or higher is less than 0.001%.

Therefore, we conclude that there is a relationship between where a person lives
and the products (s)he will buy.

Step 3
Here we use the Wilcoxon Rank Sum Test to prove that Palo Alto residents will
likely buy more mortgages than the residents of San Jose.

Here too, it involves disproving the null hypothesis, that is we disprove that
customers in Palo Alto will not buy more mortgages than the residents of San
Jose. This involves the following steps:

a. Collect the percentage of people who responded “yes” to likely buying
mortgages for each branch in Palo Alto and San Jose. Load the statistics
to a table called SURVEY_MORTG. The columns in this table are:

Cityid - city
Branchid - branch within the city
PercentYes - Percentage of branch customers who responded YES

Important: Consider using floating point data type instead of INTEGER or
DECIMAL to avoid arithmetic exceptions such as overflow, when multiple
divide and multiplication operators involved.
 Chapter 4. Statistics, analytic, OLAP functions in business scenarios 183

b. Compute the Wilcoxon Rank Sum Test one-tail analysis for Palo Alto —
also known as the ‘W’ statistic.

c. Look up the table of tail probabilities for this ‘W’ statistic value, in order to
determine whether the null hypothesis is disproved or not.

Step 3b

Compute the ‘W’ statistic for Palo Alto. Consider Example 4-21.

Example 4-21 Compute the ‘W’ statistic

WITH ranked_mortg (city, ranks) AS
(
SELECT city, RANK() OVER (ORDER BY PercentYes)
FROM survey_mortg
)

SELECT SUM(ranks) as W
FROM ranked_mortg
WHERE city='Palo Alto'

The result of this query is shown in Figure 4-29.

Figure 4-29 Wilcoxon W

Step 3c

Based on the Table of Tail probabilities for small values of ranks (not shown
here), the probability of getting a rank sum of 93 is only 2.3% under the null
hypothesis, which is quite low. We therefore conclude that Palo Alto residents
will likely respond to our mortgage loan campaign a compared to San Jose
residents.

4.3.4 Evaluate effectiveness of a marketing campaign
The objective is to evaluate the effectiveness of a mortgage loans campaign, so
that a decision can be made whether to expand it to other areas, or change
tactics altogether.

Attention: Table lookups and complex calculations can be automated in DB2
via User Defined Functions (UDFs).
184 High-Function Business Intelligence in e-business

The scenario is that a month-long (February) marketing campaign in Palo Alto
just ended. The campaign sold mortgage loans to homeowner customers who do
not have mortgages with the company.

The effectiveness of a campaign is determined by comparing the results of the
target city where the campaign was run, with a comparable “control” city where
no campaign was done. San Jose was selected as the “control” city of this
campaign since it is comparable to Palo Alto in the number of branches. San
Jose has nine (9) branches and Palo Alto has eight (8) branches.

Data
The main data source is an existing data warehouse containing the following key
attributes:

� Customer identification
� Product identification
� City (location of branch)
� Branch identification
� Customer income range
� Number of mortgage loans acquired
� Date of transaction (of mortgage loan)

We queried the data warehouse to accumulate February mortgage loan sales for
each branch in San Jose and Palo Alto, and then inserted the query results into a
“feb_sales” table.

The Cumulative Distribution of the Wilcoxon Rank-Sum Statistic table is used
here as well.

BI functions showcased
RANK, DENSE_RANK, ROW_NUMBER, ORDER BY, CORRELATION, CUBE,
SUM

Steps
We executed the following three steps to answer our query:

� Load the data from a data warehouse into a “feb_sales” table

� Determine whether the campaign was successful using the Wilcoxon Rank
Sum Test

� Report the results

Step 1
This involves loading the data from the data warehouse, and loading it into a DB2
“feb_sales” table.
 Chapter 4. Statistics, analytic, OLAP functions in business scenarios 185

Step 1a

The SQL shown in Example 4-22 was executed in DB2 Control Center to
generate data for our feb_sales table which was located on a different DB2
server.

Example 4-22 Generate feb_sales data

SELECT city, branch_id, sum(qty) AS sales
FROM sales_dtl
WHERE (city='San Jose' OR city='Palo Alto') AND YEAR(date_sold)=2001

AND MONTH(date_sold)=02
GROUP BY city,branch_id

Step 1b

The results of this query was saved in a comma delimited (DEL) file and
transported to the target DB2 server.

Step 1c

The DEL file was imported into the “feb_sales” table on the target DB2 server.

Step 2
This involves using the Wilcoxon Rank Sum Test to prove that the campaign was
successful by disproving the null hypothesis

a. Compute the Wilcoxon Rank Sum Test one-tail analysis for Palo Alto —
also known as the ‘W’ statistic

b. Look up the table of tail probabilities for this ‘W’ statistic value, in order to
determine whether the null hypothesis is disproved or not

Step 2a

Compute the ‘W’ statistic for Palo Alto. Consider Example 4-23.

Example 4-23 Compute the ‘W’ statistic

WITH ranked_sales (city, ranks) AS
(
SELECT city, RANK() OVER (ORDER BY sales)
FROM feb_sales
)

SELECT SUM(ranks) as W
FROM ranked_sales
WHERE city='Palo Alto'
186 High-Function Business Intelligence in e-business

The result of this query is shown in Figure 4-30.

Figure 4-30 Wilcoxon W

Step 2b

Based on the Table of Tail probabilities for small values of ranks (not shown
here), the probability of getting a rank sum of 94 is only 2.3%. In other words,
the probability that Palo Alto campaign was not successful is about 2.3%,
which is quite low. We therefore conclude the campaign was successful.

Step 3
Once the campaign is considered successful, the following additional information
can be gathered.

a. Who are the customers that responded positively to the mortgage loan
campaign? List top ten Palo Alto customers who got their mortgages
during February.

b. Was there a relationship between income and mortgage loans?

For each customer, count the mortgages he/she has and determine its
relationship to customer’s income range using DB2 CORRELATION
function (assuming a linear relationship).

c. Report Palo Alto Total Sales.

d. Report Palo Alto Branches’ sales by city, branch, month (one row for each
month).

e. Report Palo Alto Branch 1 sales by city, branch, month (one row for
product).

Step 3a

List top 10 Palo Alto customers who got mortgages in February. Consider
Example 4-24.

Attention: Table lookups and complex calculations can be automated in DB2
via User Defined Functions (UDFs).
 Chapter 4. Statistics, analytic, OLAP functions in business scenarios 187

Example 4-24 Top 10 Palo Alto customers who got mortgages in February

WITH rank_tab (custid, mortg_count, rank, denserank, rownumber) AS
(
SELECT a.custid, count(b.prod_type) AS mortg_count,

RANK () OVER (ORDER BY count(b.prod_type)) AS rank,
DENSE_RANK () OVER (ORDER BY COUNT(b.prod_type)) AS denserank,
ROW_NUMBER () OVER (ORDER BY COUNT(b.prod_type)) AS rownumber

FROM cust a, prod_owned b
WHERE a.custid=b.custid AND city = 'Palo Alto' AND
MONTH(b.open_date)=02 AND PROD_TYPE=3
GROUP BY a.custid
)

SELECT custid, mortg_count, rank, denserank, rownumber
FROM rank_tab
WHERE rownumber <=10

The results of this query are shown in Figure 4-31.

Figure 4-31 Top Ten Palo Alto customers who got mortgages in February

Step 3b

Are income and mortgage related? Consider Example 4-25.
188 High-Function Business Intelligence in e-business

Example 4-25 Are income and mortgage related?

WITH cust_tab (cusitd, income_range, total_mortg_loans)AS
(
SELECT a.custid, a.income_range,

COUNT(b.prod_type) AS total_mortg_loans
FROM cust a, prod_owned b
WHERE a.custid=b.custid AND MONTH(b.open_date)=02 AND PROD_TYPE=3
GROUP BY a.custid, income_range, b. prod_type
)

SELECT CORR(income_range, total_mortg_loans) from cust_tab

The results of this query are shown in Figure 4-32.

Figure 4-32 Negative correlation between income range and mortgage loans

The result is -0.7545929350231552, indicating that income range and
mortgage loans may be inversely related. The statistical significance of this
number is probably not totally intuitive and may not be true in all demographic
areas. We therefore need to test further for statistical significance.

Step 3c

Report Palo Alto total sales.

We limited the query to Branch 1 to ensure result fits just a page. Consider
Example 4-26.

Example 4-26 Palo Alto total sales

SELECT a.city, a.branch_id, b.prod_name, COUNT(*) AS products_sold
FROM prod_owned a, prod b
WHERE a.prodid=b.prodid AND a.city='Palo Alto' AND a.branch_id=1
GROUP BY CUBE(a.city, a.branch_id, b.prod_name)
ORDER BY a.city, a.branch_id, b.prod_name

The results of this query are shown in Figure 4-33.
 Chapter 4. Statistics, analytic, OLAP functions in business scenarios 189

Figure 4-33 Palo Alto branch 1 total sales by product

Step 3d

Report Palo Alto Branches’ Total Monthly sales, one row per month. Consider
Example 4-27.

Example 4-27 Total monthly sales

SELECT a.city, a.branch_id, COUNT(*) AS month_prod_sold,
MONTH(open_date) AS month

FROM prod_owned a, prod b
WHERE a.prodid=b.prodid AND a.city='Palo Alto'
GROUP BY a.city, a.branch_id, MONTH(open_date)

The results of this query are shown in Figure 4-34.
190 High-Function Business Intelligence in e-business

Figure 4-34 Palo Alto branches’ total monthly sales, one row per month

Step 3e

Report Palo Alto Branches’ Total Monthly sales. Consider Example 4-28.

Example 4-28 Palo Alto branches’ total monthly sales

SELECT city, branch_id, m1_sales, m2_sales
FROM

(
SELECT a.city, a.branch_id, MONTH(open_date) as month,

COUNT(*) AS m1_sales,
SUM(COUNT(*)) OVER(PARTITION BY a.city, a.branch_id ORDER BY
MONTH(open_date)
ROWS BETWEEN 1 FOLLOWING AND 1 FOLLOWING) AS m2_sales

FROM prod_owned a, prod b
WHERE a.prodid=b.prodid AND a.city='Palo Alto'
GROUP BY a.city, a.branch_id, MONTH(open_date)
) as dt

WHERE MONTH=1
 Chapter 4. Statistics, analytic, OLAP functions in business scenarios 191

The results of this query are shown in Figure 4-35.

Figure 4-35 Palo Alto branches’ total monthly sales

4.3.5 Identify potential fraud situations for investigation
The objective is to determine potential credit card fraud by looking for large
variations in current purchases as compared to past purchase practices.

Data
� A Profile view maintains the average and standard deviation of each

customer’s credit card purchases over a reference period.

� A Big_charges table that has customer transactions whose charge card
amounts that are more than two standard deviations above the average.

BI functions showcased
AVG, STDDEV

Steps
1. First create a customer card usage PROFILE view.

2. Detect unusually large charges and insert a row into the BIG_CHARGES
table.

3. Assume there is a trigger on the BIG_CHARGES table that sets off an alarm if
for example, a customer has more than three big charges within a 12 hour
period. This is not shown here.

Step 1
Create a customer usage PROFILE view as shown in Example 4-29.
192 High-Function Business Intelligence in e-business

Example 4-29 Customer usage profile view

CREATE VIEW profile(cust_id, avg_amt, sd_amt) AS
 SELECT cust_id, AVG(charge_amt), STDDEV(charge_amt)
 FROM custtrans
 WHERE date BETWEEN '2002-01-01' and '2002-03-31'
 GROUP BY cust_id

Step 2
Detect and flag unusually large charges by writing them to the BIG_CHARGES
table as shown in Example 4-30.

Example 4-30 Detect & flag unusually large charges

CREATE TRIGGER big_chrg
AFTER INSERT ON custtrans
REFERENCING NEW AS newrow FOR EACH ROW MODE DB2SQL
WHEN (newrow.charge_amt > (SELECT avg_amt + 2e0 * sd_amt
 FROM profile
 WHERE profile.cust_id = newrow.cust_id))
INSERT INTO big_charges(cust_id,charge_amt)
 VALUES(newrow.cust_id, newrow.charge_amt)

Here the incoming transaction’s charge amount is checked to see whether it
exceeds twice the standard deviation value above the average for this customer,
and writes this transaction to the BIG_CHARGES table if true.

Another trigger (not shown here) needs to be written for the BIG_CHARGES
table which sets off alarms when the number of such charges over a given period
exceeds pre-defined thresholds.

4.3.6 Plot monthly stock prices movement with percentage change
The objective is to determine the average price of the stock per month and its
percentage change over the previous month. This information can be used for
trend analysis for making investment decisions.

In our example, we use the stock price data for a 6-month period.

Data
The main attributes are stock symbol, date, and closing price of the stock on that
date.

BI functions showcased
OVER, ORDER BY, ROWS BETWEEN
 Chapter 4. Statistics, analytic, OLAP functions in business scenarios 193

Steps
The necessary steps are shown in Example 4-31.

Example 4-31 Monthly movement of stock prices with percentage change

WITH month_avg(month,avg_price) AS
(
SELECT MONTH(date), AVG(close_price)
FROM stocktab
WHERE symbol = ‘HAL’
GROUP BY MONTH(date)
),

month_avgs(month,cur_avg,last_avg) AS
(
SELECT month,avg_price,MAX(avg_price) OVER (ORDER BY month ROWS BETWEEN
1 PRECEDING AND 1 PRECEDING)
FROM month_avg
)

SELECT month, DEC(cur_avg,7,3) AS “average price”,
DEC(100e0*(cur_avg - last_avg)/last_avg,7,3) AS “% Change”
FROM month_avgs

The first temporary table created is a straight summation of the averages by
month. The second temporary table uses the first to create a table with the
additional column showing the preceding month average. Then we select from
the second temporary table and calculate the monthly percentage change.

The results of this query are shown in Figure 4-36.

Figure 4-36 Monthly averages and percent change

Attention: The ROWS BETWEEN 1 PRECEDING AND 1 PRECEDING
clause gets the value of the expression for the immediately preceding row.
MAX does not have any impact on a single row.
194 High-Function Business Intelligence in e-business

This data was copied into Lotus 1-2-3 to produce the bar/line chart shown in
Figure 4-37. It shows the average monthly price as line graph and the
percentage change as histogram to emphasize the difference between the two
types of figures.

Figure 4-37 Monthly stock prices

4.3.7 Plot the average weekly stock price in September
This time we plot the average weekly price in the month of September, using
“running mean” smoothing to reveal underlying trends in the data. The smoothed
trend line is sometimes called non-parametric regression because it does not
have a parametric representation (e.g., y=ax).

In this example we will use the stock price data for a 3-month period and
calculate the moving 7-point average and a calendar week average.

Data
The main attributes are stock symbol, date, and closing stock price on that date.

BI functions showcased
AVG, OVER, ORDER BY, ROWS BETWEEN, RANGE BETWEEN
 Chapter 4. Statistics, analytic, OLAP functions in business scenarios 195

Steps
The necessary steps are shown in Example 4-32.

Example 4-32 Average weekly stock price in September

SELECT date,symbol,close_price,
DEC(AVG(close_price) OVER (ORDER BY date ROWS BETWEEN 3 PRECEDING and 3
FOLLOWING),7,3) AS cal_wk_avg,
DEC(AVG(close_price) OVER (ORDER BY date RANGE BETWEEN 00000003.
PRECEDING AND 00000003. FOLLOWING)7,3) AS tra_wk_avg

FROM stocktab

The first calculation is a straight average of 7 prices - that day’s closing price, the
3 preceding recorded prices, and 3 following recorded prices. However, this does
not take into account days on which the markets are closed such as holidays and
weekends for which there are no prices recorded. ROW based windows are okay
when the data is dense; however, when there are missing rows or duplicates, the
results can be misleading.

The second calculation uses the range offset to overcome the ROW based
window problem. RANGE enables you to specify the aggregation group based in
terms of values (date in our case) rather than on absolute row position.
Therefore, the running average will only be over the 5 working days, since
RANGE over date will limit the aggregation to a maximum of 3 calendar days on
either side of the current row’s date, and therefore account for the missing
weekend prices.

Note: The result of a DATE arithmetic operation is a DEC(8,0) value. We
therefore need to specify the comparison value in the RANGE operator with a
precision of DEC(8,0), in order to obtain the correct result.
196 High-Function Business Intelligence in e-business

The results of this query are shown in Figure 4-38.

Figure 4-38 September stock prices
 Chapter 4. Statistics, analytic, OLAP functions in business scenarios 197

The data is copied into Lotus 1-2-3 and charted as shown in Figure 4-39.

Figure 4-39 September stock prices

4.3.8 Project growth rates of Web hits for capacity planning purposes
An online retailer of books and music recently created a new Web site devoted to
discount home electronics, and wants to assess the rate of increase of the Web
site hit rate during the first few months of operation. Typically, the daily hit rate for
a popular new news site grows rapidly for a while, and so it is natural to try and fit
a power (non-linear) curve to the data.

The objective is to project the growth rate in order to perform capacity planning.

Data
The major attributes in this scenario are the number of hits, and the day of the
hits on the Web site.
198 High-Function Business Intelligence in e-business

BI functions showcased
REGR_COUNT, REGR_SLOPE, REGR_ICPT

Steps
Consider a non-linear equation of the form:

This is equivalent to:

log y = a log x + log b

It can be represented as shown in Example 4-33.

Example 4-33 Representing a non-linear equation

SELECT
REGR_SLOPE(LOG(y), LOG(x)) AS a,
EXP(REGR_ICPT(LOG(y), LOG(x))) AS b
.......

The aforementioned curve fitting is explored in the query shown in Example 4-34.

Example 4-34 Computer slope and intercept

SELECT
REGR_COUNT(hits,days) AS num_days,
REGR_SLOPE(LOG(hits),LOG(days)) AS a,
EXP(REGR_ICPT(LOG(hits),LOG(days))) AS b

FROM traffic_data

The foregoing query lists the number of non-null pairs of hits and day in the table,
and computes the values of ‘a’ and ‘b’ in the foregoing equation.

The results of the foregoing query is shown as follows, and indicates that there
were 100 non-null data points in the table, and that the estimated values for ‘a’
and ‘b’ are 1.9874 and 21.4302 respectively.

num_days a b
------------------- ----------------------- -----------------------

100 1.9874 21.4302

R2 provides the quality of the curve fitting, and is incorrectly2 computed using
the SQL shown in Example 4-33.

2 This is the incorrect method because we are computing this function on the transformed data using
logarithmic function, rather than on the untransformed date.

y bx=
a

 Chapter 4. Statistics, analytic, OLAP functions in business scenarios 199

Example 4-35 Compute R2

SELECT
REGR_COUNT(hits,days) AS num_days,
DECIMAL(REGR_SLOPE(log(hits), log(days)),10,4) AS a,
DECIMAL(EXP(REGR_ICPT(log(hits), log(days))),10,4) AS b,
DECIMAL(REGR_R2(log(hits), log(days)),10,4) AS r2

FROM traffic_data

The results of the foregoing query, using the built-in R2 function, are shown as
follows.

num_days a b r2
-------------- ------------- --------------- ----------------

100 1.9874 21.4302 0.9912

However, in order to correctly compute R2 for the non-linear fit of the original
untransformed data, the SQL shown in Example 4-36 should be used.

Example 4-36 Correct R2 computation on original untransformed data

WITH coeffs(a,b) AS
(
SELECT

REGR_SLOPE(LOG(hits),LOG(days)) AS a,
EXP(REGR_ICPT(LOG(hits),LOG(days))) AS b

FROM traffic_data
),

residuals(days,hits,error) AS
(
SELECT

t.days,t.hits,t.hits - c.b*power(t.days,c.a)
FROM traffic_data t, coeffs c
)

SELECT 1e0-(SUM(error*error)/REGR_SYY(hits,days)) AS rr2
FROM residuals

The result of this query is as follows:

-------------------rr2
+9.55408646608249E-001

Note that the correct value R2 is 0.955 which is lower than 0.991. This is typical.
Computing of R2 for the transformed data usually results in an overestimate of
the goodness of fit.

The curve fitting data and R2 value is shown in Figure 4-40 as charted by
Kaleidograph.
200 High-Function Business Intelligence in e-business

Figure 4-40 Non-linear curve fitting

The graph demonstrates that the hit rate grows non-linearly as per the following
equation:

Hit Rate = 21.43 * days1.9874

4.3.9 Relate sales revenues to advertising budget expenditures
The objective is to identify the impact of advertising budget expenditures on sales
revenues in a number of cities in California, and potentially interpolate the
perceived relationship via a regression.

Caveat: Such a curve is useful for short range predictions, but not long range
ones.

0

5 104

1 105

1.5 105

2 105

2.5 105

0 20 40 60 80 100

hi
ts

 p
er

 d
ay

days since inception

hit rate = 21.43 * (days ^ 1.9874)

Transformed data's R2 = 0.991
Untransformed data's R2 = 0.955
 Chapter 4. Statistics, analytic, OLAP functions in business scenarios 201

We answer this question in 2 phases as follows:

� In phase 1, we use the HAT diagonal to determine the quality of the sample
data before proceeding with the regression analysis.

� In phase 2, we perform regression on the sound sample data and use
standard deviation about the regression line to identify unusually effective
advertising campaigns.

Phase 1
In order to perform a good regression analysis, it is important that the sample
data should be spread out evenly over the range of the dependent variable,
otherwise, some data may have an undue influence over the regression line
parameters. This is investigated via the HAT diagonal for the sample cities.

Data
The main source of data for this query is a table containing the advertising
expenditures and sales revenues for each city.

BI functions showcased
REGR_AVGX, REGR_SXX

Steps
We executed the SQL shown in Example 4-37 to determine the HAT Diagonal for
the set of various cities:

Example 4-37 Determine the HAT Diagonal for the set of various cities

WITH stats(mx, mx2, sxx) AS
(
SELECT REGR_AVGX(sales,ad_budget),REGR_AVGX(sales,ad_budget*ad_budget),

REGR_SXX(sales,ad_budget)
FROM cal_ad_camp
)

SELECT d.label as city,
(s.mx2 - 2 * s.mx * d.ad_budget + d.ad_budget * d.ad_budget) / s.sxx

AS hat
FROM cal_ad_camp d, stats s
ORDER BY hat DESC

Note that we use REGR_AVGX(sales,ad_budget*ad_budget) rather than
AVG(ad_budget*ad_budget) for two reasons:

1. AVG(ad_budget*ad_budget) may include x-values for which the
corresponding y-value is NULL, which is not used in the regression.

2. Regression functions are designed to work together, efficiently computing all
the necessary statistics in a single pass through the data.
202 High-Function Business Intelligence in e-business

The results of the foregoing query are shown below and charted in Figure 4-41.

city hat
----------- ------
Los Angeles 0.9644
Boonville 0.1222
Grass Valley 0.1195
Yreka 0.1154
Gilroy 0.1099
Lemoore 0.1011
Hilmar 0.1011
Mendocino 0.0923
Turlock 0.0922
Morgan Hill 0.0910
Truckee 0.0910

Figure 4-41 Hat diagonal

The results show that right most x_axis advertising budget expenditures
corresponding to Los Angeles has a significant impact on the slope of a potential
regression line.

0

2

4

6

8

10

12

0 2 4 6 8 10 12

sa
le

s

ad_budget

Los Angeles
 Chapter 4. Statistics, analytic, OLAP functions in business scenarios 203

This draws attention to the fact that this outlier merits further investigation. In this
case our domain knowledge of Los Angeles and the other cities such as Morgan
Hill, tells us it is the relative population difference and number of stores that
accounts for this outlier. In other cases, it may point to a data capture error. The
HAT Diagonal thus highlights outliers that merit further investigation by domain
experts.

Phase 2
We determine the effectiveness of the advertising budget on sales in this phase
using a demographically similar sample.

Data
The source of data is the cleaned up sample of Phase 1.

BI functions showcased
REGR_SLOPE, REGR_ICPT, REGR_COUNT, REGR_SXX, REGR_SYY,
REGR_SXY

Steps

We executed the SQL shown in Example 4-38 to identify cities where the
deviation of advertising budgets to sales revenues were outside the norm by
more than two standard deviations above or below the regression line, where
“standard deviation” is defined in a manner appropriate for regression. The
regression line represents the “normal” relation between advertising budgets and
resulting sales revenues.

Example 4-38 Cities where budgets to sales deviations outside the norm

WITH dt(a, b, sigma) AS
(
SELECT
 REGR_SLOPE(sales,ad_budget),
 REGR_ICPT(sales,ad_budget),
 SQRT((REGR_SYY(sales,ad_budget)-(REGR_SXY(sales,ad_budget)
 *REGR_SXY(sales,ad_budget)
 /REGR_SXX(sales,ad_budget)))
 / (REGR_COUNT(sales,ad_budget) - 2))
FROM ad_camp
)

SELECT city, ad_budget, sales

Attention: We therefore strongly recommend computing the HAT diagonal on
the available data points before attempting a regression on it. The existence
of outliers influencing the slope may draw attention to the need for further
investigation about the quality of the data.
204 High-Function Business Intelligence in e-business

FROM ad_camp ac, dt
WHERE sales > a*ad_budget + b + 2e0*sigma
ORDER BY ad_budget

The foregoing query computes the “regression standard deviation” sigma in
terms of build-in regression functions. The results of the foregoing query are
shown below and charted in Figure 4-42.

CITY BUDGET SALES
------ ------ ------
Fresno 15.26 82.00
San Diego 84.99 223.81

Here, San Diego and Fresno are cities that show their sales revenues being two
or more standard deviations about the norm as represented by the regression
line. Fresno obviously showed significantly better sales revenue returns on
adverting budget investment as compared to the norm, while San Diego did not.

Figure 4-42 Standard deviation around regression line

0

50

100

150

200

250

0 20 40 60 80 100

sa
le

s

ad_budget

y = 1.963x + 13.609
 Chapter 4. Statistics, analytic, OLAP functions in business scenarios 205

4.4 Sports
We have selected the following typical sports queries for our examples.

1. For a given sporting event:

a. List all the athletes competing in the event

b. Rank the athletes by score and identify the medal winners

c. Rank each athlete within their individual countries

d. Identify the medals won by country, and the total number of medals
awarded to date

e. List the medals won by day, country and the total number of medals won
by each country

f. Rank the athletes when there are tied scores

2. Seed the players at Wimbledon.

4.4.1 For a given sporting event
We review the diving event in our example.

Data
The key attributes of interest are:

� Event identification
� Name of athlete
� Country athlete represents
� Score of athlete in diving

BI functions showcased
RANK, DENSERANK, OVER, PARTITION BY, ORDER BY, ROLLUP, CUBE

Steps
Query a
List all the athletes competing in the event, as shown in Example 4-39.

Acknowledgement: Much of the data and the SQL examples shown here
have been adapted from Dan Gibson of IBM Toronto Lab’s paper on “DB2
Universal Database’s Business Intelligence Functions assist in the Sydney
2000 Olympics Games”.
206 High-Function Business Intelligence in e-business

Example 4-39 All athletes competing in the event

SELECT event_name, event_date, athlete, country, score
FROM event

The results of this query are shown in Figure 4-43.

Figure 4-43 All athletes in the diving event

Query b
Rank the athletes by score and identify the medal winners, as shown in
Example 4-40.

Example 4-40 Rank athletes by score and identify the medal winners

SELECT event_name, athlete, score, country,
DENSERANK() OVER(ORDER BY score DESC) AS Rank,
CASE DENSERANK() OVER(ORDER BY score DESC)

WHEN 1 THEN 'Gold'
WHEN 2 THEN 'Silver'
WHEN 3 THEN 'Bronze'
END AS Medal

FROM event
WHERE event_name='Diving'
ORDER BY Rank
 Chapter 4. Statistics, analytic, OLAP functions in business scenarios 207

The results of this query are shown in Figure 4-44.

Figure 4-44 Gold, Silver and Bronze winners in diving

The query was run in IBM QMF and results saved in an MS-Excel spreadsheet,
and then bar-charted as shown in Figure 4-45.

Figure 4-45 Divers and their scores
208 High-Function Business Intelligence in e-business

Query c
Rank each athlete within their individual countries, as shown in Example 4-41.

Example 4-41 Rank each athlete within their individual countries

SELECT athlete, score, country, rank FROM
(
SELECT event_name, athlete, score, country,
DENSERANK () OVER(PARTITION BY country ORDER BY score DESC) as Rank
FROM event
) AS nested_events

The results of this query are shown in Figure 4-46.

Figure 4-46 Athletes ranking in their country

Query d
Identify the medals won by country, and the total number of medals awarded to
date, as shown in Example 4-43.

Example 4-42 Medals by country & total medals awarded to date

WITH medal_info (day, score, country, event, medal) AS
(
SELECT DAYNAME(event_date), score, country, event_name,

CASE DENSERANK() OVER(PARTITION BY event_name ORDER BY score DESC)
WHEN 1 THEN 'Gold'
WHEN 2 THEN 'Silver'
WHEN 3 THEN 'Bronze'
 Chapter 4. Statistics, analytic, OLAP functions in business scenarios 209

END AS medal
FROM event
)

SELECT day, country, COUNT(medal) AS Medal
FROM medal_info
WHERE medal IS NOT NULL
GROUP BY ROLLUP(day, country)
ORDER BY day, country

The predicate “WHERE medal IS NOT NULL” ignores athletes who did not get
medals.

The results of this query are shown in Figure 4-47.

Figure 4-47 Number of medals each country won and total medals awarded v.1

A slight variation of the foregoing query has the order changed from “day,
country” to “country, day”. Notice that, in Example 4-43, totals by country are
returned rather than totals by day!

Example 4-43 Medals by country by day

WITH medal_info (day, score, country, event_name, medal)AS
(
SELECT DAYNAME(event_date), score, country, event_name,

CASE DENSERANK() OVER(PARTITION BY event_name ORDER BY SCORE DESC)
WHEN 1 THEN 'Gold'
WHEN 2 THEN 'Silver'
WHEN 3 THEN 'Bronze'
END AS medal

FROM event
)

SELECT day, country, COUNT(medal) AS Count
210 High-Function Business Intelligence in e-business

FROM medal_info
WHERE medal IS NOT NULL
GROUP BY ROLLUP(country, day)
ORDER BY country, day

The results of this query are shown in Figure 4-48.

Figure 4-48 Number of medals each country won and total medals awarded v.2

Query e
List the medals won by day, country and the total number of medals won by each
country, as shown in Example 4-44.

Example 4-44 Medals won by day, country and total medals by country

WITH medal_info (day, score, country, event, medal) AS
(
SELECT DAYNAME(event_date), score, country, event_name,

CASE DENSERANK() OVER(PARTITION BY event_name ORDER BY score DESC)
WHEN 1 THEN 'Gold'
WHEN 2 THEN 'Silver'
WHEN 3 THEN 'Bronze'
END AS medal

FROM event
 Chapter 4. Statistics, analytic, OLAP functions in business scenarios 211

)
SELECT day, country, count(medal) AS Count
FROM medal_info
WHERE medal IS NOT NULL
GROUP BY CUBE(day, (country,medal))
ORDER BY day, country

The results of this query are shown in Figure 4-49.

Figure 4-49 Medals won by day, country and total medals by country

Query f
Rank the athletes when there are tied scores, as shown in Example 4-45.

Example 4-45 Rank athletes when scores are tied

SELECT event_name, athlete, score, country,
RANK() OVER(ORDER BY score DESC) AS Gappy_Rank

FROM event
WHERE event_name='Diving'
ORDER BY Gappy_Rank
212 High-Function Business Intelligence in e-business

The results of this query are shown in Figure 4-50.

Figure 4-50 Ranking when there are ties

4.4.2 Seed the players at Wimbledon
Many tournaments organize their knockout competitions based on seedings.
Seeding of players is designed to prevent the leading players from meeting one
another in the early rounds of a tournament.

Previously at tournaments like Wimbledon the seeding had been decided by a
committee. Nowadays, they are based on calculations based on the players’
recent performances at pre-defined tournaments.

While a professional ranking and the seeding for a tournament are interrelated,
they are not the same thing. A professional ranking is normally an indication of
performance over a set period of time and a specific set of competitive events.
Seeding is usually done using the ranking and information specific to the event,
and is meant to insure the best draw possible.

In preparing a draw, it is important to consider as much background information
about the player/team’s performance as possible. Most events are seeded
according to a set of criteria that current ranking, previous performance in the
competition or similar competitions.

Data
The major attributes in this scenario are current ranking, and the participants
results from the last 5 tournaments.

BI functions showcased
RANK, DENSERANK
 Chapter 4. Statistics, analytic, OLAP functions in business scenarios 213

Steps
The necessary steps are shown in Example 4-46.

Example 4-46 Seed the players at Wimbledon

WITH tt1 (player,rank,r1,r2,r3,r4,r5) AS
(
SELECT player,w_ranking,DENSERANK() OVER (ORDER BY t_1 ASC),

DENSERANK() OVER (ORDER BY t_2 ASC),
DENSERANK() OVER (ORDER BY t_3 ASC),
DENSERANK() OVER (ORDER BY t_4 ASC),
DENSERANK() OVER (ORDER BY t_5 ASC)

FROM seedings
),
tt2 (player,rank,seeding) AS

(
SELECT player,rank,RANK() OVER (ORDER BY rank+r1+r2+r3+r4+r5, rank
ASC)
FROM tt1
)

SELECT player,rank,seeding
FROM tt2
WHERE seeding <= 16
ORDER BY seeding

This query creates a temporary table “dt” with results from previous tournaments
converted to a numerical value based on the DENSERANK function (this
replaces null with the lowest rank). The “dt” table is then used to calculate the
seeding for each player. When seeding is duplicate, weighting is applied based
on the player’s world ranking and only the top 16 players are seeded.
214 High-Function Business Intelligence in e-business

The results of this query are shown in Figure 4-51.

Figure 4-51 Tournament seeding

This data can be copied into Lotus 1-2-3 and charted as show in Figure 4-52.

Figure 4-52 Comparison graph to demonstrate seeding versus world rank
 Chapter 4. Statistics, analytic, OLAP functions in business scenarios 215

The graph demonstrates that the weighting added by the individual’s
performance in previous tournaments would produce a different seeding to the
world ranking. In fact in this scenario only one player (T House) has a seeding
exactly the same as his ranking.
216 High-Function Business Intelligence in e-business

Appendix A. Introduction to statistics and
analytic concepts

In this appendix we offer an introduction to various statistics and analytic
concepts used in the earlier chapters to solve business problems.

The audience for this section consists of application developers, as well as
DBAs, who are required to translate the power users’ business problems into one
or more SQL queries that return the required result using the built-in analytic
functionality of DB2 UDBs.

A

© Copyright IBM Corp. 2002 217

A.1 Statistics and analytic concepts
The following statistics and analytic concepts are introduced in this section:

� Variance
� Standard deviation
� Covariance
� Correlation
� Regression
� Hypothesis testing
� Hat diagonal
� Wilcoxon rank sum test
� Chi-Squared test

In the next several sections we will briefly discuss these terms.

A.1.1 Variance
Variance measures the spread of a set of observations/measurements around
the average value for this set. In other words, it is the average squared deviation
of a set.

For example, assume 10 employees in department D1 having salaries as shown
in Table A-1.

Table A-1 Salaries for department D11

Name Salary (in $000)

Mary 40

Bill 35

Dan 50

Jean 45

Gene 43

Sally 60

Michael 30

Robert 44

Samantha 48

John 45
218 High-Function Business Intelligence in e-business

In order to determine the variance in these salaries, we first need to determine
the average salary. Average is also referred to as the mean, and the terms are
interchangeable for our purposes.

The average is ((40,000 +35,000+...+48,000+45,000)/10) = 44,000.

Variance is defined as:

Where:

Xi is the ith observation on variable X.

X is the average.

i starts at 1 and continues up to n observations.

The Greek letter Sigma represents the summary of the enclosed equation.

The relationship between population variance (Varpop) and sample variance
(Varsamp) is as follows:

Where:

n is the population size

A.1.2 Standard deviation
While the computation of variance is necessary and useful for further analysis of
data, its meaning is most often not intuitive. The better understood quantity is
standard deviation.

Important: When the data values represent the entire set of values, then the
Population Variance is computed.

When the data values represent a sample (subset) of the entire set of values,
then the Sample Variance is computed.

Var x() Xi X–()
2

i 1=

n

�
� �
� �
� �
� �

n⁄=

Varpop
n 1–()

n
----------------- Varsamp×=
 Appendix A. Introduction to statistics and analytic concepts 219

Standard deviation is the root mean square distance of the data from the mean.
The definition of standard deviation is the square root of the variance.

The relationship between population standard deviation (SDpop) and sample
standard deviation (SDsamp) is as follows:

Where:

n is the population size.

A.1.3 Covariance
This is not related to the variance function.

Covariance is a measure of the linear association between two variables. The
The covariance value depends upon the units of measurement of the variables
involved, and therefore unusable directly. A more useful measure of the linear
relationship can be gained via correlation.

Covariance is defined as follows:

Important: When the data values represent the entire set of values, then the
Population Standard Deviation is computed.

When the data values represent a sample (subset) of the entire set of values,
then the Sample Standard Deviation is computed.

StdDev SQRT VAR X()() Xi X–()
2

i 1=

n

�
� �
� �
� �
� �

n⁄==

SDpop
n 1–()

n
----------------- SDsamp×=

Cov X Y,() Xi X–()(

i 1=

n

� Yi Y–()) n⁄×=
220 High-Function Business Intelligence in e-business

Where:

Xi is the ith observation on variable X.

Yj is the jth observation on variable Y.

X is the average of all values of X.

Y is the average of all values of Y.

i starts at 1 and continues up to n observations.

The Greek letter Sigma represents the summary of the enclosed equation.

The meaning of covariance given Table A-2.

Table A-2 Covariance meaning

The relationship between population covariance (Covarpop) and sample
covariance (Covarsamp) is as follows:

Where:

n is the population size.

Covariance Value Meaning

Greater than zero (positive) The variables are directly linearly related.
As one increases so does the other.

Zero There is no linear relationship between the
two variables.

Less than zero (negative) The variables are inversely linearly
related. As one increases the other
decreases.

Important: When the data values represent the entire set of values, then the
Population Covariance is computed.

When the data values represent a sample (subset) of the entire set of values,
then the Sample Covariance is computed.

Covarpop
n 1–()

n
----------------- Covarsamp×=
 Appendix A. Introduction to statistics and analytic concepts 221

A.1.4 Correlation
Correlation is normalized covariance.

That is divide the covariance by the square root of the variance of the two
variables as represented by the following equation:

The correlation value (most texts refer to it as a coefficient) is a number between
-1 and 1.

The values for CORR(X,Y), the correlation coefficient is shown in Table A-3.

Table A-3 Correlation coefficient meaning

Correlation coefficients measure the degree of the linear relationship between
variables.

� +1 indicates a very strong or direct relationship. If we plotted the salary and
bonus data that had a correlation of 1 all the data points would lie on a
straight line with positive slope.

� -1 also indicates a strong relationship, and the data points would also lie in a
straight line but with negative slope.

� 0 indicates that there is no linear relationship and the data points are
scattered all over the place.

Therefore, correlation is a measure of how well the data points align themselves.
Figure A-1 is a visual representation of varying correlation coefficients.

Correlation Value Meaning

CORR(X,Y) between 0 and 1 (positive) The attributes are directly linearly related.
As one increases so does the other.

CORR(X,Y) equal 0 There is no linear relationship between the
two attributes.

CORR(X,Y) between -1 and 0 (negative) The attributes are inversely linearly
related. As one increases the other
decreases.

CORR X Y,() Cov X Y,() Var X() Var Y()×()÷=
222 High-Function Business Intelligence in e-business

Figure A-1 Sample correlation visualizations

A.1.5 Regression
The purpose of regression is to find the linear equation that best describes the
relationship between a dependent variable, and two or more dependent
variables. This equation can then be used to interpolate or extrapolate
unobserved/unmeasured values, or detect outliers.

When there is one dependent and one independent variable the regression is
called a simple linear regression. Some texts also refer to this method as Least
Squares Fit.

Note: Correlation does not identify any non-linear relationships that may exist
between two sets of variables. The visualization graph with correlation = -0.02
shows a strong sinusoidal relationship that correlation does not identify.
 Appendix A. Introduction to statistics and analytic concepts 223

A linear relationship can be expressed in the form:
:

Where:

x is an independent variable.

A is the slope of the line.

B is the intercept with the y-axis.

y is the dependent variable.

A simple regression tries to find the best fit for A and B given a number of data
points.

Once the model coefficients (A and B) are computed, we need to know the
accuracy of the model This is critical in order to understand the reliability of any
extrapolations.

The coefficient of determination or r squared (r2) value provides us with
information about the accuracy of the linear regression model that was
computed.

A.1.5.1 R2 (R Squared)
The efficacy of the regression model is often measured by how much of the
variability of the data it explains.

R2 (also known as the coefficient of determination) can be interpreted as the
proportion of variability in the data values that is explained by the model.

The value of R2 ranges between 0 and 1. The closer it is to 1, the better the
model does in explaining the data.

A.1.6 Hypothesis testing
Hypothesis testing is a major part of inferential statistics. It is a formal procedure
to collect sample data and then use this data to verify whether a given hypothesis
is true or not.

y Ax B+=

Attention: A hypothesis is a claim or statement about the state of the world.

Null hypothesis is the logical negation of the hypothesis.
224 High-Function Business Intelligence in e-business

The hypothesis often takes the form of a statement about an unknown
population1 parameter, or the relation between unknown population parameters.

A hypothesis test begins with two statements about a population that are
mutually exclusive:

1. The average weight of mountain lions is 150 pounds.

2. The average weight of mountain lions is not 150 pounds.

Often the statements will refer to a population parameter such as a population
mean. Sometimes it applies to more than one population, such as a claim that
the means of 4 different populations are all equal.

Since the population parameter is a number (call it PP), these statements will
have one of the following three different forms, where ‘a’ is a constant.

1. PP is equal to ‘a’ versus PP is not equal to ‘a’.

2. PP is greater than or equal to ‘a’ versus PP is less than ‘a’.

3. PP is less than or equal to ‘a’ versus PP is greater than ‘a’.

The hypothesis that includes equality is called a null hypothesis, while the one
that does not include equality is called the alternative hypothesis.

In each of the above three forms listed above, the first statement is a null
hypothesis.

The sample data provides the way to distinguish between the null and alternative
hypothesis. For example, if the null hypothesis claims that the population mean is
10, while the sample mean turns out to be 5 and the sample data is very
representative of the population, then the odds are good that the null hypothesis
is wrong. Likewise, if the claim is that the population mean is greater than or
equal to 10, and the sample mean is 5, then the odds are good that the null
hypothesis is wrong, and similarly for the third form listed above.

If we do not reject the null hypothesis, we accept it rather than affirm it.

1 A population is a collection of all data points of interest.

Important: In the case of an equality hypothesis, the sample data will rarely
prove the null hypothesis to be true. It will be very difficult to convince
someone that the population mean is exactly 10 no matter how much of a
sample we gather.
 Appendix A. Introduction to statistics and analytic concepts 225

In order to measure whether the sample data is extreme enough to contradict the
null hypothesis, a test statistic is used. This is a random variable with a known
probability distribution that can be used to measure how likely we are to get such
sample data given that the null hypothesis is true. If, given the null hypothesis,
the probability of getting such a value is extremely low, then we would be inclined
to reject the null hypothesis in favor of the alternative hypothesis. On the other
hand, if the probability is not too small, then the null hypothesis might well be true
and we would have to accept it.

Some well known test statistics include the chi-squared statistic, and the
Wilcoxon Rank Sum Test ‘W’ statistic.

Before computing the test statistic, a significance level needs to be set. This is
our cutoff in terms of what we consider to be a probability that could happen by
chance, and typically is either 5% or 1%. The probability that given the null
hypothesis, you would get sample data this extreme or worse is called the
p-value of the test. Once the p-value is found, it is compared to the significance
level. If the p-value is larger than the significance level, then you accept the
null hypothesis. If the p-value is less than the significance level, then you reject
the null hypothesis.

In the first case (PP is equal to ‘a’), the null hypothesis can be proved wrong in
two ways as follows:

1. PP is bigger than ‘a’.

2. PP is smaller than ‘a’.

This kind of test is called a two-tailed hypothesis test, because in the graph of
the probability distribution of the test statistic, the “tails” to both the left and right
correspond to the rejection of the null hypothesis.

In the second case, where rejection occurs because we think that PP is smaller
than the constant ‘a’ is called a left-tailed hypothesis test.

In the third case, where rejection occurs because we think PP is larger than the
constant ‘a’ is called a right-tailed hypothesis test.

Collectively the left-tailed and right-tailed hypotheses tests are called one-tailed
tests.

A.1.7 HAT diagonal
The HAT diagonal is used in conjunction with linear regression.

As discussed, linear regression involves a best fit of a collection of x,y pairs to a
mathematical equation of the form:
226 High-Function Business Intelligence in e-business

However, depending upon the data points, it is possible for the slope A and
intercept B to be unduly influenced by data points far from the mean of x.

The HAT diagonal test measures the leverage of each observation on the
predicted value for that observation.

This concept is demonstrated in Figure A-2, “HAT diagonal influence of individual
data points” on page 227. The data point at x=9 is far from the data points with
X-values between 0 and 2. The paired value of y for x=9 has a large influence on
the slope in this example.

Therefore, depending upon the computed slope, for a given value of x=9, the
value of Y is 5 or 9 which is a significant difference.

The HAT diagonal test identifies data paris that exert such undue influence on
the computed slope. The user may then choose to exclude or include these data
points from the computed linear regression model based on their unique
understanding of the domain of these data points, in order to obtain a more
accurate linear regression model.

Figure A-2 HAT diagonal influence of individual data points

y Ax B+=
 Appendix A. Introduction to statistics and analytic concepts 227

The formula to calculate the HAT diagonal is:

Where:

Values that are above the generally accepted cutoff of 2p/n for the HAT diagonal
values, should be investigated further to determine their validity. This is typically
done by including more values in the regression to represent this outlying range
or validation of this data pair. Here:

� n is the number of observations used to fit the model.
� p is the number of parameters in the model.

For the charts in Figure A-2 on page 227:

� p is 1 variable.

� n is 6 observations.

Therefore, any observation whose HAT is greater than 2x1/6 = 0.33, should be
suspect.

The data point at x=9 has a HAT of 0.979 which is nearly three times larger than
the cutoff, and is therefore suspect.

HATdiagonal Hi() mx2 2mxxi x2
i+()–() Sxx()⁄=

mx2

1
n
--- xi

2

i 1=

n

�=

mx
1
n
--- xi

i 1=

n

�=

Sxx xi mx–()2

i 1=

n

�=
228 High-Function Business Intelligence in e-business

A.1.8 Wilcoxon rank sum test
The Wilcoxon rank sum test is used to test the assumption that outcomes for a
variable (or a set of variables) under differing conditions are related. That is, the
outcome under the test and control conditions are purely random and the two
conditions have no effect on the outcome.

The basic concept here is that if there is no difference between attribute values
for two populations, then ranks from one population should not be systematically
higher or lower than those of the other. The distribution of ranks for a population
is known under null hypothesis. If ‘W’ is so large that the probability of ‘W’ being
greater than or equal to the computed statistic is small, then reject the null
hypothesis.

A potential use of this test is determining the success or failure of a marketing
campaign in a particular demographic area by comparing the sales results of a
campaign test area with that of another area where no campaign was in effect.

The test methodology involves:

1. Determining an overall ranking to all the outcomes in both test and control
groups

2. Summing the ranks of the test group and comparing it with an expected result
sum of ranks assuming there is no effect in the test group. The expected
results is based on the number of observations made in both the test and
control group.

3. Looking up in published tables the probability that the expected and observed
results differ by some value.

A.1.9 Chi-Squared test
The Chi-squared (X2) test is used to determine if two or more “categorical”
attributes are independent.

Important: The Wilcoxon test is attractive because it is a non-parametric test.
In other words, it does not require that the distribution of the attribute values
have a specified functional form such as a normal distribution, gamma
distribution, etc. Other tests like the TWO SAMPLE t TEST are parametric
tests which make assumptions that the data is normally distributed. The
absence of these limitations makes the Wilcoxon test attractive.
 Appendix A. Introduction to statistics and analytic concepts 229

A categorical attribute has a finite number of possible values. An example of a
categorical attribute could be gender. There are only two possible values, male or
female. Another example is the answer to a survey question where the only
allowed responses are satisfied, neutral, or dissatisfied.

The basic concept here is that if two attributes are independent, then the
expected frequencies factor is defined by the probability equation as follows:

P(a,b) = P(a) * P(b)

where ‘P’ is the probability, and ‘a” and ‘b’ represent the attributes.

We then see if the actual frequencies approximately satisfy the above rule.

The formula for X2 is:

Where:

O is the observed frequency

E is the expected frequency.

Clearly, to use X2 one must determine or be given the expected frequency of a
given attribute having a specific outcome.

� In a coin flip example, the expected frequency of a head or tail being flipped is
equal given there are no external forces in play on our coin. Thus the
expected frequency is 50% for heads and 50% for tails.

� Another example of expected frequency where there are only two possible
outcomes but the expected frequencies of either outcome is not equal is
human male/female population categorization for different age ranges.
Younger populations are nearly equal in frequency of males and females,
while older populations tend to have high frequencies of females than males.
Clearly this is due to females living longer than males.

Once we have the expected frequency and have our observed data categorized,
X2 requires the calculation of our observed frequency for each category.

a. After that the difference between observed and expected frequencies is
squared so that all values are positive.

a. Sum these values and calculate the ratio of this sum against the expected
frequency.

The closer this value is to zero the more likely the attributes are independent. If
X2 is large there is a high probability the attributes are dependent. Probability
verses X2 tables are published in many statistics textbooks.

ChiSquared X
2() O E–()2

E⁄�=
230 High-Function Business Intelligence in e-business

A.1.10 Interpolation
Interpolation simply means to calculate a new value in between two known
values. Linear interpolation uses the output of a linear regression to arrive at new
values of a dependent variable based on the input of an independent variable
value in to the linear regression model. That is, interpolation is the creation new
values at equal distances along a line between two known values.

A.1.11 Extrapolation
Extrapolation involved projecting out to new values outside the range of known
values based on a regression model. In general, extrapolation is not very reliable
and the results so obtained are to be viewed with a healthy scepticism. In order
for extrapolation to be at all reliable, the original data must be very consistent.

A.1.12 Probability
The probability of an event is the likelihood of it occurring, and is expressed as a
number between 0 (certainty that the event will not occur) and 1 (certainty that
the event will occur).

In a situation where all outcomes of an experiment are equally likely, then the
probability of an event is equal to the number of outcomes corresponding to that
event divided by the total number of possible outcomes.

In a deck of 52 playing cards, the probability of drawing a KING would be 4/52,
since there are 4 KINGs in the deck. The probability of drawing KINGS or
QUEENS would be 8/52. The probability of not drawing a KING or QUEEN would
be 44/52.

If A and B represent events, the some properties of probabilities include:

Pr(not A) = 1 - Pr(A)
Pr (A or B) = Pr(A) + Pr(B) if A & B are mutually exclusive events
Pr (A or B) = Pr(A) + Pr(B) - Pr(A and B) for any 2 events
Pr (A and B) = Pr(A) x Pr(B) if A and B are independent events

A.1.12.1 Conditional probability
Given 2 events A and B, the conditional probability of A given B is the probability
that A will occur, given that B has occurred. If B has nonzero probability, then the
condition probability of A given B is:

Pr(A|B) = Pr(A and B) / Pr(B)
 Appendix A. Introduction to statistics and analytic concepts 231

A.1.13 Sampling
Critical to statistics is the taking of a sample from a very large population on
which to perform analyses. Two important factors that apply to a sample are the
following:

1. Size of the sample, that is, the number of units selected from the entire
population.

2. Quality of the sample (or how good or representative is the sample) vis-a-vis
the population from which it was extracted.

The selection process is critical to the sample, for example, excluding minorities
in a voter survey would significantly taint the results of analysis of such a sample.

A sampling procedure that ensures that all possible samples of ‘n’ objects are
equally likely is called a Simple Random Sample. A simple random sample has
two properties that make it the standard against which all other methods are
measured as follows:

1. Unbiased — each object has the same chance of being chosen.

2. Independence — selection of one object has no influence on the selection of
the other objects .

Deriving totally unbiased, independent samples may not be cost effective, and
other methods are used to come up with efficient and cost-effective samples. For
example, knowing something about the population allows for different techniques
such as Stratified sampling, Cluster sampling and Systematic sampling.

A.1.14 Transposition
Transposition is simply moving the rows to the columns and vice versa. This is
sometimes called Pivoting.

A.1.15 Histograms
A histogram is a graphical representation of the distribution of a set of data.

A histogram lets us see the shape of a set of data - where its center is, and how
far it spreads out on either side. It can provide a graphical representation of other
statistics like spread, and skewness.

Skewness describes if the ‘tail’ is to the left or right. Right-hand skewness is
referred to as positive and left-hand is negative.
232 High-Function Business Intelligence in e-business

Individual data points are grouped together into ranges in order to visualize how
frequently data in each range occurs within the data set. High bars indicate more
data in a given range, and low bars indicate less data. In the histogram shown in
Figure A-3, the peak is in the 20-39 range, where there are five points.

Figure A-3 Histogram

The popularity of a histogram comes from its intuitive easy-to-read picture of the
location and variation in a data set. There are, however, two weaknesses of
histograms that you should bear in mind:

� Histograms can be manipulated to show different pictures. If too few or too
many bars are used, the histogram can be misleading. This is an area which
requires some judgment, and perhaps some experimentation, based on the
analyst's experience.

� Histograms can also obscure the time differences among data sets. For
example, if we looked at data for #births/day in the United States in 1996, you
would miss any seasonal variations, e.g. peaks around the times of full moon.
Likewise, in quality control, a histogram of a process run tells only one part of
a long story. There is a need to keep reviewing the histograms and control
charts for consecutive process runs over an extended time to gain useful
knowledge about a process.

A.1.15.1 Equi-width histograms
An equi-width histogram is a special case of the above histogram, with the
requirement that the x-axis ranges are equally distributed, while the y-axis
represents the frequency distribution within each of those x-axis ranges.

A.1.15.2 Equi-height histograms
An equi-height histogram is similar to the typical histogram discussed previously
in that it graphically represents the distribution of data, but it uses a slightly
different scale. In an equi-height histogram the height of each bar is equal and
X-axis range varies.
 Appendix A. Introduction to statistics and analytic concepts 233

Figure A-4 Equi-height or frequency histogram
234 High-Function Business Intelligence in e-business

Appendix B. Tables used in the examples

In this appendix we describe the DDL of the tables used in the examples
provided throughout this redbook.

B

© Copyright IBM Corp. 2002 235

DDL of tables
The tables are presented here in alphabetical order. The content of these tables
varied from query to query, and is therefore not shown here.

Example: B-1 AD_CAMP

CREATE TABLE “AD_CAMP” (
“AD_BUDGET” REAL,
“SALES” REAL)

Example: B-2 CAL_AD_CAMP

CREATE TABLE “CAL_AD_CAMP” (
“CITY” VARCHAR(15),
“AD_BUDGET” REAL,
“SALES” REAL)

Example: B-3 BIG_CHARGES

CREATE TABLE "BIG_CHARGES" (
 "CUSTID" CHAR(10) NOT NULL,
 "CHARGE_AMT" DEC(9,2) NOT NULL)

Example: B-4 CUST

CREATE TABLE "CUST" (
 "CUSTID" CHAR(10) NOT NULL,
 "MARITAL_STATUS" CHAR(1),
 "INCOME_RANGE" INTEGER NOT NULL,
 "ZIPCODE" INTEGER,
 "RESIDENCE" VARCHAR(5))

Example: B-5 CUST_DATA

CREATE TABLE "CUST_DATA" (
 "CUSTID" INTEGER NOT NULL,
 "PURCHASES" DEC(9,2) NOT NULL)

Example: B-6 CUSTTRANS

CREATE TABLE "CUSTTRANS" (
 "CUSTID" CHAR(10) NOT NULL,
 "CHARGE_AMT" DEC(9,2) NOT NULL,
 "DATE" DATE NOT NULL)

Example: B-7 EMPLOYEE

CREATE TABLE "EMPLOYEE" (
 "EMPNO" CHAR(6) NOT NULL,
 "FIRSTNME" VARCHAR(12) NOT NULL,
236 High-Function Business Intelligence in e-business

 "MIDINIT" CHAR(1) NOT NULL,
 "LASTNAME" VARCHAR(15) NOT NULL,
 "WORKDEPT" CHAR(3),
 "PHONENO” CHAR(4),
 "HIREDATE" DATE,
 "JOB" CHAR(8),
 "EDLEVEL" SMALLINT NOT NULL,
 "SEX" CHAR(1),
 "BIRTHDATE" DATE,
 "SALARY" DEC(9,2),
 "BONUS" DEC(9,2),
 "COMM" DEC(9,2))

Example: B-8 EVENT

CREATE TABLE "EVENT" (
 "EVENT_NAME" CHAR(15),
 "EVENT_DATE" DATE,
 "ATHLETE" CHAR(8),
 "COUNTRY" CHAR(15),
 "SCORE" DECIMAL(3,1))

Example: B-9 FACT_TABLE

CREATE TABLE "FACT_TABLE" (
 "CITY_ID" INTEGER NOT NULL,
 "PRODUCT_KEY" INTEGER NOT NULL,
 "TIME_ID" INTEGER NOT NULL,
 "SCENARIO_ID" INTEGER NOT NULL,
 "TRANSDATE" DATE,
 "SALES" INTEGER,
 "COGS" INTEGER,
 "MARKETING" INTEGER,
 "MISC" INTEGER,
 "PAYROLL" INTEGER,
 "OPENING_INVENTORY" INTEGER,
 "ADDITIONS" INTEGER,
 "ENDING_INVENTORY" INTEGER)

Example: B-10 FEB_SALES

CREATE TABLE "FEB_SALES" (
 "CITY" VARCHAR(15),
 "BRANCH_ID" INTEGER,
 "SALES" INTEGER)

Example: B-11 LC_PURCHASES

CREATE TABLE “LC_PURCHASES” (
 Appendix B. Tables used in the examples 237

 “CARDNO” CHAR(12) NOT NULL,
 “COFFEE“ DEC(7,2),
 “BEER” DEC(7,2),
 “SNACKS” DEC(7,2),
 “BREAD” DEC(7,2),
 “READY_MEALS” DEC(7,2),
 “MILK” DEC(7,2))

Example: B-12 LOC

CREATE TABLE “LOC” (
“LOCID” CHAR(10) NOT NULL,
“CITY” VARCHAR(10), STATE CHAR(2),
“COUNTRY” VARCHAR(10))

Example: B-13 LOOKUP_MARKET

CREATE TABLE "LOOKUP_MARKET" (
 "REGION" VARCHAR(50),
 "REGION_TYPE_ID" INTEGER,
 "STATE" VARCHAR(50),
 "STATE_TYPE_ID" INTEGER,
 "CITY_ID" INTEGER NOT NULL,
 "CITY" VARCHAR(50),
 "SIZE_ID" INTEGER,
 "POPULATION" INTEGER)

Example: B-14 PRICING

CREATE “TABLE PRICING” (
“STORE” CHAR(15) NOT NULL,

 “ITEM” CHAR(10),
 “COST“ DEC(7,2),

“PRICE” DEC(7,2))

Example: B-15 PROD

CREATE TABLE "PROD" (
 "PRODID" CHAR(10) NOT NULL,
 "PROD_TYPE" INTEGER,
 "PROFIT" DECIMAL(5,2),
 "PROD_NAME" CHAR(10))

Example: B-16 PROD_OWNED

CREATE TABLE "PROD_OWNED" (
 "PRODID" CHAR(10),
 "PROD_TYPE" INTEGER,
 "OPEN_DATE" DATE,
 "CUSTID" CHAR(10),
238 High-Function Business Intelligence in e-business

 "BRANCH_ID" INTEGER,
 "CITY" VARCHAR(15))

Example: B-17 SALES

CREATE TABLE "SALES" (
 "SALES_DATE" DATE NOT NULL,
 "SALES_PERSON" VARCHAR(15) NOT NULL,
 "REGION" VARCHAR(15) NOT NULL,
 "SALES" INTEGER)

Example: B-18 SALES_DTL

CREATE TABLE "SALES_DTL" (
 "CITY" VARCHAR(15),
 "BRANCH_ID" INTEGER,
 "PRODID" CHAR(10),
 "QTY" INTEGER,
 "DATE_SOLD" DATE)

Example: B-19 SEEDINGS

CREATE TABLE “SEEDINGS” (
“PLAYER” CHAR(20) NOT NULL,

 “W_RANKING” SMALLINT NOT NULL,
 “T_1” SMALLINT,
 “T_2” SMALLINT,
 “T_3” SMALLINT,
 “T_4” SMALLINT,
 “T_5” SMALLINT)

Example: B-20 STOCKTAB

CREATE TABLE “STOCKTAB” (
“DATE” DATE,
“SYMBOL” CHAR(5),
“CLOSE_PRICE” DECIMAL(8,3))

Example: B-21 SURVEY

CREATE TABLE "SURVEY" (
 "CUSTID" INTEGER,
 "PROD_NAME" VARCHAR(10),
 "CITY" VARCHAR(10))

Example: B-22 SURVEY_MORTG

CREATE TABLE "SURVEY_MORTG" (
 "CITY" VARCHAR(10),
 Appendix B. Tables used in the examples 239

 "BRANCH" INTEGER,
 "MORTG_PREF" INTEGER)

Example: B-23 TRAFFIC_DATA

CREATE TABLE "TRAFFIC_DATA" (
 "HITS" INTEGER,
 "DAYS" INTEGER)

Example: B-24 T

CREATE TABLE “T” (
“SALES” DEC(9,2),
“AD_BUDGET” DEC(9,2))

Example: B-25 TRANS

CREATE TABLE “TRANS” (
“TRANSID” CHAR(10) NOT NULL,
“ACCTID” CHAR(10) NOT NULL,
“PDATE” DATE NOT NULL,
“STATUS” VARCHAR(15),
“LOCID” CHAR(10) NOT NULL)

Example: B-26 TRANSACTIONS

CREATE TABLE “TRANSACTIONS” (
“STORE” CHAR(15) NOT NULL,
“QUARTER” CHAR(2) NOT NULL,
“ITEM” CHAR(10) NOT NULL,
“SALES” INT NOT NULL)

Example: B-27 TRANSITEM

CREATE TABLE “TRANSITEM” (
“TRANSITEMID” CHAR(10) NOT NULL,
“TRANSID” CHAR(10) NOT NULL,
“AMOUNT” DECIMAL(10,2) NOT NULL,
“PGID” CHAR(10) NOT NULL)
240 High-Function Business Intelligence in e-business

Appendix C. Materialized view syntax
elements

In this appendix we describe the main syntax elements associated with creating
and refreshing materialized views.

C

© Copyright IBM Corp. 2002 241

Materialized view main syntax elements
Figure C-1 describes the main syntax elements for creating and refreshing
materialized views.

Figure C-1 Main syntax elements of materialized views

When DEFINITION ONLY is specified, any valid fullselect that does not
reference a typed table or typed view can be specified.The query is used only to
define the table. Such a table is not a materialized view. Therefore, the
REFRESH TABLE statement cannot be used.
242 High-Function Business Intelligence in e-business

With the DATA INITIALLY DEFERRED option, data is not inserted into the table
as part of the CREATE TABLE statement. The materialized view has to be
populated using the SET INTEGRITY command or a REFRESH TABLE
statement, or some other user determined mechanisms depending upon whether
the materialized view is system maintained or user maintained.

The ENABLE QUERY OPTIMIZATION parameter allows the materialized view to
be used for query optimization.

The DISABLE QUERY OPTIMIZATION ensures that the materialized view is not
used for query optimization, however, it can still be directly queried

The MAINTAINED BY SYSTEM option indicates that the data in the materialized
view is maintained by the system and it is the default.

The MAINTAINED BY USER option indicates that the materialized view is
maintained by the user. The user is allowed to perform update, delete, or insert
operations against the user-maintained materialized view. The REFRESH
TABLE statement, used for system-maintained materialized views can not be
invoked against user-maintained materialized views. Only a REFRESH
DEFERRED materialized view can be defined as MAINTAINED BY USER.

Figure C-2 shows the syntax of the REFRESH statement that refreshes the data
in a materialized view.

Figure C-2 REFRESH TABLE statement

These are the options for the REFRESH statement:

� The INCREMENTAL option specifies an incremental refresh for the table by
considering only the appended portion (if any) of its base tables, or the
content of an associated staging table (if one exists, and its contents are
consistent).

� The NOT INCREMENTAL option specifies a full refresh for the table by
recomputing the materialized view definition.
 Appendix C. Materialized view syntax elements 243

244 High-Function Business Intelligence in e-business

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 246.

� Business Intelligence Certification Guide, SG24-5747

Other resources
These publications are also relevant as further information sources:

� Answering Complex SQL Queries Using Automatic Summary Tables, IBM
Almaden Research Center, Markos Zaharioudakis, Roberta Cochrane,
George Lapis, Hamid Pirahesh, Monica Urata, which may be obtained from
the Technical Library in the IBM Almaden Research Center, San Jose, CA.

� IBM DB2 UDB SQL Reference, SC09-4845

� DataBase Associates: IBM Enterprise Analytics for the Intelligent e-business:

http://www-3.ibm.com/software/data/pubs/papers/bi/bi.pdf

� Sampling Techniques by Cochran, Wiley, 1977, ISBN 0-461-16240-X

� The Cartoon Guide to Statistics, Gonick & Smith, HarperPerenial, 1993,
ISBN 0-06-273102-5

� Forgotten Statistics, Downing & Clark, Barronn’s, 1996, ISBN 0-8120-9713-0

� Statistics for the Utterly Confused, Lloyd Jaisingh, McGraw Hill, 2000,
ISBN 0-07-135005-5

Referenced Web sites
These Web sites are also relevant as further information sources:

� IBM DB2 UDB Technical Library

http://www-4.ibm.com/cgi-bin/db2www/data/db2/udb/winos2unix/support/v7pubs.
d2w/en_main
© Copyright IBM Corp. 2002 245

How to get IBM Redbooks
You can order hardcopy Redbooks, as well as view, download, or search for
Redbooks at the following Web site:

ibm.com/redbooks

You can also download additional materials (code samples or diskette/CD-ROM
images) from that site.

IBM Redbooks collections
Redbooks are also available on CD-ROMs. Click the CD-ROMs button on the
Redbooks Web site for information about all the CD-ROMs offered, as well as
updates and formats.
246 High-Function Business Intelligence in e-business246 High-Function Business Intelligence in e-business

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

Index

Symbols
‘W’ statistic 186

A
Adjusted R2 110
aggregation 151
ALLOW READ ACCESS 39
ALTER TABLE 33, 41
alternative hypothesis 225
appended data 38
AST 21
atomic 36
Automatic Summary Tables 21
AVG 101, 171, 192, 195

B
Bernoulli sample 105, 151–152
Business Intelligence 5

advantages of functionality in database engine
12
enhancements in DB2 UDB 11
importance 7
strategy 9

Business Intelligence overview 1
business scenarios 149

C
CASE expression 55, 177
CHECK PENDING CASCADE DEFERRED 39
CHECK PENDING NO ACCESS 22–23, 37–38,
40, 44, 66
CHECK PENDING READ ACCESS 38, 40
Chi-squared 182, 226
chi-squared 229
collocated joins 96
compensating predicates 49
compensation 44
concepts 217

Chi-squared 229
conditional probability 231
Correlation 222
COVARIANCE 220
© Copyright IBM Corp. 2002
equi-height histograms 233
equi-width histograms 233
Extrapolation 231
HAT diagonal 226
Histograms 232
Hypothesis testing 224
Interpolation 231
Probability 231
Regression 223
Sampling 232
Standard deviation 219
Transposition 232
VARIANCE 218
Wilcoxon rank sum test 229

Conditional probability 231
CONST_CHECKED 26
CORRELATION 101, 112, 165, 185
correlation 222
correlation coefficient 116, 222
COUNT 102
COUNT_BIG 102
COVARIANCE 103, 111, 220
CUBE 47, 94, 127, 138, 144, 181, 185, 206
CURRENT MAINTAINED TABLE TYPES FOR OP-
TIMIZATION 44
CURRENT REFRESH AGE 44

D
data warehouses 20
deferred refresh 18, 27, 33, 60
DEFINITION ONLY 41
DELETE ONLY state 33
DENSE_RANK 130–131, 174, 185, 206, 213
DFT_QUERYOPT 44
DISABLE QUERY OPTIMIZATION 26
dynamic SQL 34, 43, 59, 63

E
e-business 2, 5, 8

drivers 2
impact 5, 8

ENABLE QUERY OPTIMIZATION 44
equi-height histogram 180, 233
 247

equi-width histogram 177, 233
Event Monitor 64
exception tables 23
EXPLAIN 43
Extrapolation 231

F
filtering predicates 65
finance business scenario

Identify potential fraud situations for investiga-
tion 192
Identify target groups for a campaign 181
Identify the most profitable customers 173
Identify the profile of transactions concluded re-
cently 176
Plot monthly stock prices movement with per-
centage change 193
Plot the average weekly stock price in Septem-
ber 195
Project growth rates of web hits for capacity
planning purposes 198
Relate sales revenues to advertising budget ex-
penditures 201

full refresh 29, 34, 41

G
Generalizing local predicates 69
generalizing local predicates 65
GROUP BY 138, 154
group-between 123
Group-bounds one and two 124
group-end 123
GROUPING 138, 160, 181
GROUPING function 50
GROUPING SETS 94
grouping sets 47
group-start 123

H
HAT diagonal 202, 204, 226
histogram 232
Hypothesis testing 224

I
immediate refresh 18, 34, 60
IMPORT 26
INCREMENTAL 22, 27, 29

Incremental refresh 29, 34
incremental update 35, 40–41
Index Advisor 67
information business 7
Interpolation 231
ISOLATION 59

J
join predicates 52

L
latency 18, 20, 33
Least Squares Fit 223
left-tailed hypothesis test 226
linear regression 110, 114, 226
LOAD 26

ALLOW READ ACCESS | NO ACCESS 38
CHECK PENDING CASCADE DEFERRED | IM-
MEDIATE 38

LOADing 37
Locking contention 60
LOG(n) 181
logging 33, 41, 60, 90

M
MAINTAINED BY SYSTEM 28

populate 23
MAINTAINED BY USER

populate 25
Matching criteria 44
matching criteria 44, 66
matching inhibited

Friendly Arithmetic 59
Isolation Mismatch 59
Materialized view contains more restrictive pred-
icates than in the query 57
Materialized view missing columns that are in
the query 57
Query includes the following constructs 56
Query with an expression not derivable from ma-
terialized view 58

matching permitted
Aggregation functions and grouping columns
46
Case expressions in the query 55
Extra tables in the materialized view 53
Extra tables in the query 52
248 High-Function Business Intelligence in e-business

Superset predicates and perfect match 45
Materialized view

cache 20
concept 17
create 21
customer scenario 18
design 60
DROP 42
functionality 18
limitations 92
matching considerations 42
motivation 16
optimization 34
refresh approaches 26
tuning 87

materialized view 13, 21
aggregate tables 20
apply delta 35
considerations 19
creating 19
delta aggregation 35
delta joins 35
LOADing 37
MAINTAINED BY SYSTEM 22
MAINTAINED BY USER 22
nicknames 20
non-aggregate 21, 31
parameters 19
replicated 31
thin 61
wide 60

materialized view design
Step 1

Collect queries & prioritize 63
Step 2

Generalize local predicates to GROUP BY
64

Step 3
Create the materialized view 65

Step 4
Estimate materialized view size 65

Step 5
Verify query routes to “empty” materialized
view 66

Step 6
Consolidate materialized views 66

Step 7
Introduce cost issues into materialized view
routing 67

Step 8
Estimate performance gains 67

Step 9
Load the materialized views with production
data 69

Materialized view syntax 241
MAX 103
median 128

computing it 129
MIN 104
MQT 21
multi-dimensional cluster 38
multi-query optimization 90

N
NO DATA MOVEMENT 38, 40
NON INCREMENTAL 22
non-linear equation 199
non-linear regression 117
NOT INCREMENTAL 27, 29
null hypothesis 224–225
Nullable 51
nullable 50

O
OLAP functions 117

DENSE_RANK 122
RANK 122

OLTP 20
one-tailed tests 226
ORDER BY 122, 135–136, 156, 159–160, 167,
174, 177, 185, 193, 195, 206
OVER 156, 159–160, 167, 177, 193, 195, 206
OVER clause 133

P
package cache 63
packages 41
PARTITION BY 122, 132, 156, 159, 167, 206
pipelining 36
population 103, 225
population standard deviation 105, 220
population variance 106, 219
precision issues 58
probability 231
PROPAGATE IMMEDIATE 31
p-value 226
 Index 249

Q
QUERY OPTIMIZATION 44
query rewrite 42, 48, 54, 56, 59

R
R Squared 224
R2 224
RAND 104, 151
RANGE 123, 136
RANGE BETWEEN 195
RANK 129, 131–132, 159–160, 167, 174, 181, 185,
206, 213
Redbooks Web site 246

Contact us xxii
referential integrity 39, 53–54

informational 60
Informational constraints 54
NOT ENFORCED 54
System-maintained 54

REFRESH DEFERRED 22, 27, 30, 44, 60, 92, 95
REFRESH IMMEDIATE 22, 30, 34, 37, 44, 60, 92
Refresh optimization 90
REFRESH TABLE 23, 27, 37, 90, 243

INCREMENTAL 243
NOT INCREMENTAL 243

REGR_AVGX 202
REGR_COUNT 199, 204
REGR_ICPT 199, 204
REGR_SLOPE 199, 204
REGR_SXX 202, 204
REGR_SXY 204
REGR_SYY 204
regression 223

R2 224
regression functions 107

REGR_AVGX 107
REGR_AVGY 107
REGR_COUNT 107
REGR_INTERCEPT 107
REGR_R2 107
REGR_SLOPE 107
REGR_SXX 107
REGR_SXY 107
REGR_SYY 107

regression standard deviation 205
Regression sum of squares 110
Replicated tables 95
replication

Inter-database 97
Intra-database 97

Residual sum of squares 110
retail business scenario

Compare and rank the sales results by state and
country 160
Determine relationships between product pur-
chases 164
Determine the most profitable items and where
they are sold 167
Identify stores’ sales revenues significantly dif-
ferent from average 171
List the top 5 sales persons by region this year
159
Present annual sales by region and city 154
Provide total quarterly and cumulative sales rev-
enues by year 156

right-tailed hypothesis test 226
ROLLUP 47, 51, 94, 138, 140, 154, 160, 206
ROW_NUMBER 131, 174, 185
ROWNUMBER 122, 177
ROWS 123, 135–136
ROWS BETWEEN 193
ROWS BETWEEN, 195

S
sample data 150
sample standard deviation 105, 220
sample variance 106, 219
sampling 151, 232
sampling rate 152
secondary log 33
SET INTEGRITY 23, 37, 40

FULL ACCESS 38
SET SUMMARY 33
significance level 226
simple linear regression 110, 223
Simple Random Sample 232
Snapshot Monitor 43, 63
sports business scenario

For a given sporting event 206
Seed the players at Wimbledon 213

SQL Compiler 42
staging table 22–23, 27, 29, 31, 60
standard deviation 113, 204, 219
Standard error 110
State 44
statement cache 43
250 High-Function Business Intelligence in e-business

static SQL 34
Statistics and analytic functions 100
Statistics, analytic and OLAP functions 14
STDDEV 105, 113, 171, 192
SUM 106, 177, 181, 185
SUMMARY 19
summary table 31
synchronization 36
System maintained 27

T
t statistic 110
Tables 235
tables

AD_CAMP 236
BIG_CHARGES 236
CAL_AD_CAMP 236
CUST 236
CUST_DATA 236
CUSTTRANS 236
DDL 236
EMPLOYEE 236
EVENT 237
FACT_TABLE 237
FEB_SALES 237
LC_PURCHASES 237
LOC 238
LOOKUP_MARKET 238
PRICING 238
PROD 238
PROD_OWNED 238
SALES 239
SALES_DTL 239
SEEDINGS 239
STOCKTAB 239
SURVEY 239
SURVEY_MORTG 239
T 240
TRAFFIC_DATA 240
TRANS 240
TRANSACTIONS 240
TRANSITEM 240

temporary tables 36
Total sum of squares 110
Transposition 232
truncation issues 58
two-tailed hypothesis test 226

U
User maintained 27

V
VARIANCE 106, 113, 218

W
Wilcoxon Rank Sum 183, 186, 226, 229
Window aggregation group clause 123

Z
z-lock 29, 90
 Index 251

252 High-Function Business Intelligence in e-business

(0.5” spine)
0.475”<

->0.875”
250 <

-> 459 pages

DB2 UDB’s High-Function Business Intelligence in e-business

®

SG24-6546-00 ISBN 0738424609

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

DB2 UDB’s High-Function
Business Intelligence
in e-business

Exploit DB2’s
materialized views
(ASTs/MQTs)

Leverage DB2’s
statistics, analytic
and OLAP functions

Review sample
business scenarios

This IBM Redbook deals with exploiting DB2 UDB’s
materialized views (also known as ASTs/MQTs), statistics,
analytic, and OLAP functions in e-business applications to
achieve superior performance and scalability. This redbook is
aimed at a target audience of DB2 UDB application
developers, database administrators (DBAs), and independent
software vendors (ISVs).

We provide an overview of DB2 UDB’s materialized views
implementation, as well as guidelines for creating and tuning
them for optimal performance.

We introduce key statistics, analytic, and OLAP functions, and
describe their corresponding implementation in DB2 UDB with
usage examples.

Finally, we describe typical business level queries that can be
answered using DB2 UDB’s statistics, analytic, and OLAP
functions. These business queries are categorized by
industry, and describe the steps involved in resolving the
query, with sample SQL and visualization of results.

Back cover

	Front cover
	Contents
	Figures
	Tables
	Examples
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Notice
	Comments welcome

	Chapter 1. Business Intelligence overview
	1.1 e-business drivers
	1.1.1 Impact of e-business
	1.1.2 Importance of BI

	1.2 IBM’s BI strategy and offerings
	1.2.1 BI and analytic enhancements in DB2 UDB
	1.2.2 Advantages of BI functionality in the database engine

	1.3 Redbook focus
	1.3.1 Materialized views
	1.3.2 Statistics, analytic and OLAP functions

	Chapter 2. DB2 UDB’s materialized views
	2.1 Materialized view overview
	2.1.1 Materialized view motivation
	2.1.2 Materialized view concept overview
	2.1.3 Materialized view usage considerations
	2.1.4 Materialized view terminology

	2.2 Materialized view CREATE considerations
	2.2.1 Step 1: Create the materialized view
	2.2.2 Step 2: Populate the materialized view
	2.2.3 Step 3: Tune the materialized view

	2.3 Materialized view maintenance considerations
	2.3.1 Deferred refresh
	2.3.2 Immediate refresh

	2.4 Loading base tables (LOAD utility)
	2.5 Materialized view ALTER considerations
	2.6 Materialized view DROP considerations
	2.7 Materialized view matching considerations
	2.7.1 State considerations
	2.7.2 Matching criteria considerations
	2.7.3 Matching permitted
	2.7.4 Matching inhibited

	2.8 Materialized view design considerations
	2.8.1 Step 1: Collect queries & prioritize
	2.8.2 Step 2: Generalize local predicates to GROUP BY
	2.8.3 Step 3: Create the materialized view
	2.8.4 Step 4: Estimate materialized view size
	2.8.5 Step 5: Verify query routes to “empty” the materialized view
	2.8.6 Step 6: Consolidate materialized views
	2.8.7 Step 7: Introduce cost issues into materialized view routing
	2.8.8 Step 8: Estimate performance gains
	2.8.9 Step 9: Load the materialized views with production data
	2.8.10 Generalizing local predicates application example

	2.9 Materialized view tuning considerations
	2.10 Refresh optimization
	2.11 Materialized view limitations
	2.11.1 REFRESH DEFERRED and REFRESH IMMEDIATE
	2.11.2 REFRESH IMMEDIATE and queries with staging table

	2.12 Replicated tables in nodegroups

	Chapter 3. DB2 UDB’s statistics, analytic, and OLAP functions
	3.1 DB2 UDB’s statistics, analytic, and OLAP functions
	3.2 Statistics and analytic functions
	3.2.1 AVG
	3.2.2 CORRELATION
	3.2.3 COUNT
	3.2.4 COUNT_BIG
	3.2.5 COVARIANCE
	3.2.6 MAX
	3.2.7 MIN
	3.2.8 RAND
	3.2.9 STDDEV
	3.2.10 SUM
	3.2.11 VARIANCE
	3.2.12 Regression functions
	3.2.13 COVAR, CORR, VAR, STDDEV, and regression examples

	3.3 OLAP functions
	3.3.1 Ranking, numbering and aggregation functions
	3.3.2 GROUPING capabilities ROLLUP & CUBE
	3.3.3 Ranking, numbering, aggregation examples
	3.3.4 GROUPING, GROUP BY, ROLLUP and CUBE examples

	Chapter 4. Statistics, analytic, OLAP functions in business scenarios
	4.1 Introduction
	4.1.1 Using sample data
	4.1.2 Sampling and aggregation example

	4.2 Retail
	4.2.1 Present annual sales by region and city
	4.2.2 Provide total quarterly and cumulative sales revenues by year
	4.2.3 List the top 5 sales persons by region this year
	4.2.4 Compare and rank the sales results by state and country
	4.2.5 Determine relationships between product purchases
	4.2.6 Determine the most profitable items and where they are sold
	4.2.7 Identify store sales revenues noticeably different from average

	4.3 Finance
	4.3.1 Identify the most profitable customers
	4.3.2 Identify the profile of transactions concluded recently
	4.3.3 Identify target groups for a campaign
	4.3.4 Evaluate effectiveness of a marketing campaign
	4.3.5 Identify potential fraud situations for investigation
	4.3.6 Plot monthly stock prices movement with percentage change
	4.3.7 Plot the average weekly stock price in September
	4.3.8 Project growth rates of Web hits for capacity planning purposes
	4.3.9 Relate sales revenues to advertising budget expenditures

	4.4 Sports
	4.4.1 For a given sporting event
	4.4.2 Seed the players at Wimbledon

	Appendix A. Introduction to statistics and analytic concepts
	A.1 Statistics and analytic concepts
	A.1.1 Variance
	A.1.2 Standard deviation
	A.1.3 Covariance
	A.1.4 Correlation
	A.1.5 Regression
	A.1.6 Hypothesis testing
	A.1.7 HAT diagonal
	A.1.8 Wilcoxon rank sum test
	A.1.9 Chi-Squared test
	A.1.10 Interpolation
	A.1.11 Extrapolation
	A.1.12 Probability
	A.1.13 Sampling
	A.1.14 Transposition
	A.1.15 Histograms

	Appendix B. Tables used in the examples
	DDL of tables

	Appendix C. Materialized view syntax elements
	Materialized view main syntax elements

	Related publications
	IBM Redbooks
	Other resources

	Referenced Web sites
	How to get IBM Redbooks
	IBM Redbooks collections

	Index
	Back cover

