
ibm.com/redbooks

Front cover

Best Practices
for
High-Volume Web Sites

Authored by the
The High-Volume Web Sites Team

Designing for scalability

Planning for growth

Managing Web sites for
performance

International Technical Support Organization

Best Practices for High-Volume Web Sites

December 2002

SG24-6562-00

© Copyright International Business Machines Corporation 2002. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (December 2002)

This edition includes papers published by IBM’s High-Volume Web Sites Team.

Note: Before using this information and the product it supports, read the information in “Notices” on page v.

Contents

Notices .v
Trademarks . vi

Preface . vii
The team that wrote this redbook. viii
Become a published author . xii
Comments welcome. xii

Part 1. Best practices . 1

Chapter 1. Knowing your workload . 3
Introduction to workload patterns . 6
Understanding your workload . 7

Chapter 2. Designing for scalability . 11
Introducing scalability . 12
Six steps to scaling your infrastructure . 14
Additional techniques . 19
Common pitfalls . 21
Choosing between two and three tiers . 22
Emerging standards and technologies. 23
Summary . 25

Chapter 3. Designing pages for performance . 27
Introducing Web communications . 28
When bad things happen to good pages . 30
What's a good page? . 33
Design practices that can improve performance . 34
It is not just about satisfying customers . 37

Chapter 4. Planning for growth . 39
Introducing a methodology for capacity planning . 40
Summary . 56
References. 57

Chapter 5. Maximizing Web site availability . 59
Introduction . 60
Availability concepts and costs . 60
On the way to continuous availability . 64
Common inhibitors . 64
Common techniques . 65
Summary . 74
References. 75

Part 2. Customer engagements . 77

Chapter 6. Managing Web site performance. 79
Step 1. Establish performance objectives . 81
Step 2. Monitor and measure the site . 82
Step 3. Analyze and tune components . 83
© Copyright IBM Corp. 2002. All rights reserved. iii

Step 4. Predict and plan for the future . 85
Some performance management scenarios . 87
Tools for monitoring performance . 91
Summary . 95
References. 96

Chapter 7. Charles Schwab puts growth plan to the test . 97
Schwab's e-business today . 97
Making sure the new architecture measures up . 98
IBM benchmark . 99
Schwab's response to the benchmark results . 100
Technical benchmark details . 101

Chapter 8. Fine-tuning the scalability of a multi-tier architecture 105
Introducing the Barista project . 106
Testing Barista . 107
Summary of Barista results . 113
Best practices. 114
Summary . 116
Software and test tools. 118
Monitoring tools . 118

Chapter 9. Improving the scalability of a WebSphere application with multihome
servlets . 119

Overview of scaling servlets. 120
Multihome servlets . 122
Benefits of multihome servlets . 123
Summary . 127
References. 127

Related publications . 129
Referenced Web sites . 129
How to get IBM Redbooks . 130

IBM Redbooks collections. 130

Index . 131
iv Best Practices for High-Volume Web Sites

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, modify, and
distribute these sample programs in any form without payment to IBM for the purposes of developing, using,
marketing, or distributing application programs conforming to IBM's application programming interfaces.
© Copyright IBM Corp. 2002. All rights reserved. v

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

IBM eServer™
Redbooks(logo)™
IBM®
iSeries™
MQSeries®
POWERparallel®
pSeries™

PTX®
Redbooks™
RS/6000®
SP™
ThinkPad®
Tivoli®
Tivoli Enterprise™

Tivoli Enterprise Console®
WebSphere®
z/OS™
zSeries™
DB2®

The following terms are trademarks of International Business Machines Corporation and Lotus Development
Corporation in the United States, other countries, or both:

Lotus® Word Pro®

The following terms are trademarks of other companies:

Sun Solaris is a trademark of Sun Microsystems, Inc. in the United States, other countries, or both.

LoadRunner is a trademark of the Mercury Interactive Corporation in the United States, other countries, or
both.

Oracle is a trademark of the Oracle Corporation in the United States, other countries, or both.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United
States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

C-bus is a trademark of Corollary, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure Electronic
Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.
vi Best Practices for High-Volume Web Sites

Preface

For more than three years, IBM's High-Volume Web Sites (HVWS) team has been working
with many of the world's largest Web sites. The team has accumulated a significant amount
of knowledge and defined best practices for designing and deploying high-volume sites,
earning a reputation as one of the world's leading centers of expertise on scalable e-business
infrastructures. The team has locations in California, New York, Japan, Korea, China,
Taiwan, and the United Kingdom.

The IT infrastructures that comprise most high-volume sites present unique challenges in
design, implementation, and management. While actual implementations vary, Figure 0-1
shows a typical e-business infrastructure comprised of several tiers. Each tier handles a
particular set of functions, such as serving content (Web servers, such as the IBM HTTP
Server), providing integration business logic (Web application servers, such as the
WebSphere Application Server), or processing database transactions (transaction and
database servers). Site workloads are assumed to be high volume, serving dynamic, volatile
data.

Figure 0-1 Multi-tier infrastructure for e-business

The HVWS team analyzes site traffic patterns to improve performance and availability.
Figure 0-2 shows how IBM's HVWS team defines the life cycle of a Web site; it shows also
the categories of best practices recommended for one or more phases of the cycle.

Edge
server

Web
server

Application
server

Database
server &
legacy

systems

Internet

Users
© Copyright IBM Corp. 2002. All rights reserved. vii

Figure 0-2 Life cycle of a Web site

As it accumulates experience and knowledge, the HVWS team publishes papers aimed at
helping CIOs and others like you understand and meet the new challenges presented during
one or more of the phases. This IBM Redbook is a compilation of the HVWS papers, which
are available individually at the HVWS Web page.

The team that wrote this redbook
Many IBMers contributed effort and information to these chapters and projects.

This first edition contains nine chapters divided into two parts. Part 1 has chapters dedicated
to the HVWS best practices. Part 2 contains chapters describing some customer
engagements that characterize the kind of work we do with our customers.

Part 1 contains our best practices information.

Knowing your workload is the foundation of our recommended best practices for high-volume
Web sites. Chapter 1, Know your workload, was written by:

� Willy Chiu

� Paul Dantzig

� Harish Grama

� Rich Grega

� Linda Legregni

� Joe Spano

with contributions from the Super Scalable Architecture team:

� Maggie Archibald

� Michael Conner

� Daniel Dias

Planning Architecture
Design
Build &

Test
Deploy Service

delivery

Life cycle of a Web site

Best
practices

Know your workload

Design for scalability
Manage end-to-end

performance

Design pages for
performance

Plan for growth

Target continuous availability
viii Best Practices for High-Volume Web Sites

� Greg Flurry

� Parag Gondhalekar

� Leonard Hand

� Richard McDonald

� Mark Palmer

This chapter introduces common workload patterns and provides the information you need to
characterize your workloads.

Optimizing for scalability remains a significant challenge for e-businesses as they balance the
demands for availability, reliability, security, and high performance. Vendors are responding
with infrastructure options and supporting hardware and software platforms that address
these requirements. Chapter 2, Design for scalability, was written by:

� Willy Chiu

� Paul Dantzig

� Harish Grama

� Rich Grega

� Linda Legregni

� Joe Spano

with contributions from the Super Scalable Architecture team:

� Maggie Archibald

� Michael Conner

� Daniel Dias

� Greg Flurry

� Parag Gondhalekar

� Leonard Hand

� Richard McDonald

� Mark Palmer

This chapter identifies current products and emerging trends that are most likely to improve
the scalability of your e-business infrastructure.

Web page performance can make or break a Web site. Chapter 3, Design pages for
performance, was written by:

� Mike Amerson

� Gerry Fisher

� Larry Hsiung

� LeRoy Krueger

� Nat Mills

This chapter discusses the significance of the time it takes to download a Web page and
introduces page design practices that can reduce download time and improve resource
utilization.
 Preface ix

As e-business and its related requirements grow at "Web speed", a critical issue is whether
the IT infrastructure supporting the Web sites has what it needs to provide available, scalable,
fast, and efficient access to the company's information, products, and services. Chapter 4,
Plan for growth, was written by:

� Jerry Cuomo

� Alan Emery

� Larry Hsiung

� Mike Ignatowski

� Zhen Liu

� Mark Squillante

� Noshir Wadia

� Cathy Xia

� Li Zhang

This chapter discusses a methodology for modeling your high-volume Web site so that
proposed changes can be analyzed to determine how performance objectives can best be
met.

High availability is more important than ever now that your customers, suppliers, and/or
employees rely on your Web site. Chapter 5, Maximize Web site availability, was written by:

� Tom Alcott

� Scott Bryant

� Mike Fitzgerald

� Ebbe Jalser

� Tricia Jiang

� Bob Kalka

� Richard McDonald

� Patrick McMahon

� Scott Sims

This chapter reviews availability concepts and practices that can help you achieve your
availability objectives. It includes a summary of practices that pertain specifically to
e-business infrastructures.

As enterprises implement Web applications in response to the pressures of e-business,
managing performance becomes increasingly critical. Chapter 6, Manage Web site
performance, was written by:

� Willy Chiu

� Jerry Cuomo

� Ebbe Jalser

� Rahul Jain

� Frank Jones

� W. Nathaniel Mills III

� Bill Scully

� Joe Spano
x Best Practices for High-Volume Web Sites

� Brad Willard

� Ruth Willenborg

� Helen Wu

This chapter introduces a methodology for managing performance from one end of the
e-business infrastructure to the other. It identifies some best practices and tools that help
implement the methodology.

Part 2 has three chapters and describes some customer engagements that characterize the
kind of work we do with our customers.

Chapter 7, Charles Schwab puts growth plan to the test, was written by:

� Willy Chiu

� Keith Jones

This chapter describes a joint project between IBM and Charles Schwab and Co., Inc. to
develop an architecture for Schwab's Web site that could cope with soaring growth. It
includes a description of the configuration, the test itself, and the test results.

Chapter 8, Fine-tuning the scalability of a multi-tier architecture, was written by:

� Lisa Case-Hook

� Mike Crumbliss

� Paul Edlund

� Harold Hall

� Bob Maher

� Luis Ostdiek

� Joe Spano

� Ted Tran

� Jay Warfield

describes the later phases of the project introduced in Chapter 7. During these phases, the
project team separated the business logic and presentation layers into different tiers and
tested various scenarios to find which topology provides the best performance.

Chapter 9, Improving the scalability of a WebSphere application with multihome
servlets, was written by:

� Ranjit Nayak

� Ursula Richter

� Ted Tran

� Fred Tucci

� Jay Warfield

� Helen Wu

This chapter describes an engagement in which the HVWS team assessed the performance
and scalability of an online trading application in a large commercial bank and found a major
bottleneck in application memory. They developed the multihome servlet technique as an
alternative to servlet cloning.
 Preface xi

Thanks to the following people for their contributions to this Redbook project:

Susan Holic, IBM HVWS Team, Silicon Valley Laboratory, San Jose, California

Linda Legregni, Manager, HVWS Team Project Office, Silicon Valley Laboratory, San Jose,
California

Joe DeCarlo, Manager, International Technical Support organization, San Jose, California

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook dealing with
specific products or solutions, while getting hands-on experience with leading-edge
technologies. You'll team with IBM technical professionals, Business Partners and/or
customers.

Your efforts will help increase product acceptance and customer satisfaction. As a bonus,
you'll develop a network of contacts in IBM development labs, and increase your productivity
and marketability.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments about this or
other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. 1WLB Building 80-E2
650 Harry Road
San Jose, California 95120-6099
xii Best Practices for High-Volume Web Sites

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

Part 1 Best practices

Part 1 is a compilation of the High-Volume Web Sites team best practices.

Part 1
© Copyright IBM Corp. 2002. All rights reserved. 1

2 Best Practices for High-Volume Web Sites

Chapter 1. Knowing your workload

As Figure 0-2 on page viii shows, knowing your workload is the foundation of our
recommended best practices for high-volume Web sites. It is key during all phases of the life
cycle.

Most high-volume Web sites experience volumes that can vary widely on a seasonal or other
cyclical basis, or that exhibit burstiness as a result of sudden and unpredictable changes in
user demand. Figure 1-1 shows how the volumes of four different actual Web sites can vary
by as much as a factor of five to ten.

Figure 1-1 Some typical Web site loads over a 24-hour period

1

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

0

50

100

150

200

250

(T
ho

us
an

ds
)

H
its

/H
ou

r

Cust A

Cust B

Cust C

Cust D

Hours
© Copyright IBM Corp. 2002. All rights reserved. 3

An example of a bursty site would be an online trading site at the opening of the market, or a
sporting site during a very popular event. Such variation underscores the challenge of
planning for volumes, and suggests that planning for average volumes is unlikely to be
effective. Other factors that define the workload pattern include the volume of page views and
transactions, the volume and type of searches, the complexity of transactions, the volatility of
the data, and security considerations.

Figure 1-2 shows how seasonality can affect retail sites; notice the peak during the December
holiday season and how it grew from 1999 to 2000.

Figure 1-2 Example of a retail site with seasonal peaks, growing from year to year

Figure 1-3 is an example of the broad range of hits per day versus page views per day.

Ja
n

-9
9

F
eb

-9
9

M
ar

-9
9

A
p

r-
99

M
ay

-9
9

Ju
n

-9
9

Ju
l-

99
A

u
g

-9
9

S
ep

-9
9

O
ct

-9
9

N
o

v-
99

D
ec

-9
9

Ja
n

-0
0

F
eb

-0
0

M
ar

-0
0

A
p

r-
00

M
ay

-0
0

Ju
n

-0
0

Ju
l-

00
A

u
g

-0
0

S
ep

-0
0

O
ct

-0
0

N
o

v-
00

D
ec

-0
0

0

1

2

3

4

5

6

(m
ill

io
n

s)

H
it

s
P

er
 H

o
u

r

4 Best Practices for High-Volume Web Sites

Figure 1-3 Examples of metrics for page hits per day

0.1
0.1

1 10 100

1

10

100

1000

Page views/day (m illions)

Hits/day
(millions)

Retailer 4

Retailer 1 *

Nagano Olympics

Retailer 3 *

Retailer 5 *

Retailer 2

Govt

* Average volumes; non-asterisked customers are peak volumes

Retailer 6

Estimated

Online trading

Bank

ShopIBM

Publishing

Wimbledon
Sydney Olympics

Online trading

Online trading
Portal
Chapter 1. Knowing your workload 5

Introduction to workload patterns
Workload patterns vary, and sites with similar patterns can be classified into site types. We've
identified five distinct workload patterns and corresponding Web site classifications. This
section contains a guide for determining your workload pattern and selecting scaling
techniques.

Publish/subscribe Web sites provide users with information
Sample publish/subscribe sites include search engines, media sites, such as weather.com
and numerous newspapers and magazines, and event sites, such as those for the Olympics
and the Wimbledon championships. Site content changes frequently, driving changes to page
layouts. While search traffic is low in volume, the number of unique items sought is high
resulting in the largest number of page views of all site types. As an example, the Sydney
Olympics site successfully handled a peak volume of 1.2 million hits per minute using IBM's
WebSphere Edge Server. The Wimbledon 2000 site successfully handled a peak volume of
430,000 hits per minute using IBM's WebSphere Edge Server. The Wimbledon 2001 site
handled 208.5 million page views, three times the number of the 2001 site, as well as almost
twice the number of unique users. Security considerations are minor compared to other site
types. Data volatility is low. This site type processes the fewest transactions and has little or
no connection to legacy systems.

Online shopping sites let users browse and buy
Sample sites include typical retail sites where users buy books, clothes, and even cars. Site
content can be relatively static, such as a parts catalog, or dynamic where items are
frequently added and deleted as, for example, promotions and special discounts that come
and go. Search traffic is heavier than the publish/subscribe site, though the number of unique
items sought is not as large. Data volatility is low. Transaction traffic is moderate to high, and
almost always grows. The typical daily volumes for many large retail customers running on
IBM's WebSphere Commerce Suite range from less than one million hits per day to over 50
million hits per day, with a range from 100,000 transactions per day to three million
transactions per day for the higher-volume sites; of the total transactions, typically between
1% and 5% are buy transactions. When users buy, security requirements become significant
and include privacy, nonrepudiation, integrity, authentication, and regulations. Shopping sites
have more connections to legacy systems, such as fulfillment systems, than the
publish/subscribe sites, but generally less than the other site types.

Customer self-service sites let users help themselves
Sample sites include banking from home, tracking packages, and making travel
arrangements. Home banking customers typically review their balances, transfer funds, and
pay bills. Data comes largely from legacy applications and often comes from multiple sources,
thereby exposing data consistency. Security considerations are significant for home banking
and purchasing travel services, less so for other uses. Search traffic is low volume;
transaction traffic is moderate, but growing rapidly.

Trading sites let users buy and sell
Of all site types, trading sites have the most volatile content, the highest transaction volumes
(with significant swing), the most complex transactions, and are extremely time sensitive.
Auction sites are characterized by highly dynamic bidding against items with predictable life
times. Products like IBM's WebSphere Application Server have the performance features that
enable these sites to meet customer demand. Trading sites are tightly connected to the
legacy systems, for example, using IBM's MQSeries® for connectivity. Nearly all transactions
interact with the back end servers. Security considerations are high, equivalent to online
shopping, with an even larger number of secure pages. Search traffic is low volume.
6 Best Practices for High-Volume Web Sites

Using Web services, B2B sites buy from/sell to each other
These sites include dynamic programmatic links between arms-length businesses (where a
trading partner agreement might be appropriate). One business is able to discover another
business with which it may want to initiate transactions. Example: supply chain management.
Data comes largely from legacy applications and often comes from multiple sources, thereby
exposing data consistency. Security requirements are equivalent to online shopping.
Transaction volume is moderate, but growing; transactions are typically complex, connecting
multiple suppliers and distributors.

Understanding your workload
Here's a summary of the five HVWS workload patterns and in Tables 1-1, 1-2, and 1-3 you
may wish to use the information when categorizing your Web site and determining which
characteristics most affect the components of your infrastructure.

Table 1-1 Workload patterns and Web site classifications

Site Type Publish/
Subscribe

Online
Shopping

Customer
Self-Service

Trading Web Services/
B2B

Pattern

Categories/
Examples

Search engines
Media
Events

Exact inventory
Inexact inventory

Home banking
Package
tracking
Travel
arrangements

Online stock
trading
Auctions

eProcurement

Content Dynamic
change of the
layout of a page,
based on
changes in
content, or need

Many page
authors and
page layout
changes
frequently

High volume,
non user
specific access

Fairly static
information
sources

Catalog either
flat (parts
catalog) or
dynamic (items
change
frequently, near
real time)

Few page
authors and
page layout
changes less
frequently

User specific
information: user
profiles with data
mining

Data is in legacy
applications

Multiple data
sources,
requirement for
consistency

Extremely time
sensitive

High volatility

Multiple
suppliers,
multiple
consumers

Transactions are
complex and
interact with
back end

Data is in legacy
applications

Multiple data
sources,
requirement for
consistency

Transactions are
complex

Security Low Privacy,
nonrepudiation,
integrity,
authentication,
regulations

Privacy,
nonrepudiation,
integrity,
authentication,
regulations
(Banking); Low
for others

Privacy,
nonrepudiation,
integrity,
authentication,
regulations

Privacy,
nonrepudiation,
integrity,
authentication,
regulations

Percent Secure
Pages

Low Medium Medium High Medium
Chapter 1. Knowing your workload 7

If your application has a characteristic not included in Table 1-2, add it if you believe scalability
would be affected.

Table 1-2 Characterizing your workload

Cross-
session Info

No High Yes Yes Yes

Searches Structured by
category
Totally dynamic
Low volume

Structured by
category
Totally dynamic
High volume

Structured by
category
Low volume

Structured by
category
Low volume

Structured by
category
Low to moderate
volume

Unique Items High Low to Medium Low Low to Medium Moderate

Data Volatility Low Low Low High Moderate

Volume of
transactions

Low Moderate to High Moderate and
growing

High to Very
High (very large
swings in
volume)

Moderate to Low

Legacy
Integration/
Complexity

Low Medium High High High

Page Views High to Very
High

Moderate to High Moderate to Low Moderate to High Moderate

Site Type Publish/
Subscribe

Online
Shopping

Customer
Self-Service

Trading Web Services/
B2B

Site Type Publish/
Subscribe

Online
Shopping

Customer
Service

Trading Web
Services/
B2B

Your
Workload

Character
of
Workload

High Volume
Dynamic
Transactional
Fast Growth

Yes Yes Yes Yes Yes Yes

Volume of
User
specific
Responses

Low Low Medium High Medium

Amount of
Cross
Session
Information

Low High High High High

Volume of
Dynamic
Searches

Low High Low Low Medium

Transaction
Complexity

Low Medium High High High
8 Best Practices for High-Volume Web Sites

Table 1-3 is generalized and may not match your specific workload. Remember, if you added
a characteristic to the previous table you will need to add that characteristic to this table as
well.

Table 1-3 Determine the components most affected

Transaction
Volume
Swing

Low Medium Medium High High

Data Volatility Low Low Low High Medium

Number of
Unique Items

High Medium Low Medium Medium

Number of
Page Views

High Medium Low Medium Medium

Percent
Secure Pages
(privacy)

Low Medium Medium High High

Use of
Security
(authenticate,
integrity,
nonrepudiate)

Low High High High High

Other
Workload
Character
Items

High

Site Type Publish/
Subscribe

Online
Shopping

Customer
Service

Trading Web
Services/
B2B

Your
Workload

Infrastructure
Component

Edge
Server

Web
Presentation
Server

Web
Application
Server

Security
Servers

Transaction
Servers

Data
Servers

Network

Character
of
Workload

High volume,
dynamic,
transactional,
fast growth

High High High High High High High

High
percent
user traffic
responses

Low Low High Low High High Low

High
percent
cross session
information

Low Medium High Low Low Medium Low
Chapter 1. Knowing your workload 9

High
volume of
dynamic
searches

Medium High High Low Medium High Medium

High
transaction
complexity

Low Low High Medium High High Low

High
transaction
volume
(swing)

Low Medium High Low High High Low

High data
volatility

Low High High Low Medium High Low

High number
unique items

Low Low Medium Low High High Low

High number
page views

High High Low Low Low Low High

High percent
secure pages
(privacy)

Low High Low High Low Low Low

High security Low High High High High Low Low

Infrastructure
Component

Edge
Server

Web
Presentation
Server

Web
Application
Server

Security
Servers

Transaction
Servers

Data
Servers

Network
10 Best Practices for High-Volume Web Sites

Chapter 2. Designing for scalability

The significance of designing for scalability and high performance cannot be understated.
We know from analysts that slow performance costs e- business sites many millions of dollars
per month. Volumes are growing as well. For example, the 2001 Wimbledon site had nearly
twice the number of unique users, and three times the number of page views as the 2000 site.
An e-commerce site we work with saw their holiday season peak hits grow from just under 1
million hits per hour in 1999 to over 5 million hits per hour in 2000. We work with an online
trading site whose page views per day grew from approximately nine million to approximately
16 million over the same period. Page views per day at an auction site grew from
approximately 65 million to approximately 200 million over the same period.

You know that the success of your company's e-business depends on your organization's
ability to design and implement an infrastructure that yields the measures of high
performance, availability, and reliability expected to support the business objectives for
revenue and customer satisfaction. The infrastructure consists of hardware, software, and
network components you select for their ability to meet your needs of today and tomorrow.

Scalability refers to a component's ability to adapt readily to a greater or lesser intensity of
use, volume, or demand while still meeting business objectives. Understanding the scalability
of the components of your e-business infrastructure and applying appropriate scaling
techniques can greatly improve availability and performance. Scaling techniques are
especially useful in multi-tier architectures when you evaluate components associated with
the edge servers, the Web presentation servers, the Web application servers, and the data
and transaction servers.

The objective of this chapter is to introduce scalability and scaling techniques and to help you
understand that to optimize for the success of your company's e-business, you must evaluate
all new and upgraded components of your infrastructure for scalability. IBM's IT experts have
been working with customers to analyze many of the world's largest Internet and intranet
sites, including IBM's own, to determine which attributes affected scalability and to help
customers implement scalable Web sites. This chapter will help you understand your
workload patterns and classify your site. You'll learn which scaling techniques are best for
specific components and how other large customers have realized the benefits of scaling
using IBM's middleware products, such as WebSphere ®, MQSeries®, DB2 ®, and Tivoli®.

2

© Copyright IBM Corp. 2002. All rights reserved. 11

Introducing scalability
Most e-businesses face the same challenges, the most significant of which are unpredictable
growth and the ability to have solutions ready for unknown problems. If your Web site is
typical, it most likely started with displaying company information and has evolved to
processing simple, if not, complex transactions. You know now that the skills required to
display information are different from those required to process transactions. Failure to
optimize graphics, frequent table scans and joins of multiple tables, and the resulting I/O
bottlenecks combine to degrade performance. Site availability is stressed by unpredictable
traffic and inadequate discipline regarding systems management. The problems you're facing
may be compounded by poor application design and systems that are poorly configured,
under powered, or both.

Meeting such challenges requires unprecedented flexibility and capacity for change in all
areas, especially your IT operation. We believe the success of future e-businesses may be
tied to the selection of components that can be individually and/or collectively adjusted to
meet variable demands. Such flexibility is called scalability and is a feature your team needs
to understand and measure for each component within your infrastructure. Scalability is
related to the features of performance (response time) and capacity (operations per unit of
time) but should not be considered synonymous.

Scaling a multi-tiered infrastructure from end to end means managing the performance and
capacities of each component within each tier. The basic objectives of scaling a
component/system are to:

� Increase the capacity or speed of the component

� Improve the efficiency of the component/system

� Shift or reduce the load on the component.

As one increases the scalability of one component, the result may change the dynamics of
the site service, thereby moving the "hot spot" or bottleneck to another component. The
scalability of the infrastructure depends on the ability of each component to scale to meet
increasing demands. Figure 2-1 illustrates the relationship between performance curves,
response time, and the scaling target.
12 Best Practices for High-Volume Web Sites

Figure 2-1 Scalability/performance curves

Notice the "Original Performance Curve" is unable to meet the acceptable level of response
time for the scaling target. By scaling components within a Web site, we can improve the
performance of the site. Refer to the Improved Performance Curve in Figure 2-1.

Table 2-1 introduces the scaling techniques and relates them to the scaling objectives. For
example, if your objective is to increase the speed of a component, you would consider using
a faster or special machine and/or creating a machine cluster. Altering the load on a
component is often less straightforward. For example, an item in a cache can be served up
faster than an item in a database. If a large number of requests can be handled using a cache
instead of the database, the overall load on the database is reduced, affording greater
scalability for the entire system. Frequently, the techniques that reduce load on one
component actually make other components more efficient, thus compounding the scaling
effect.

Table 2-1 How scaling techniques relate to scaling objectives

ID Scaling Technique Increase
Capacity/Speed

Improve
Efficiency

Shift/Reduce
Load

1 Use faster machine X

2 Create machine cluster X

3 Use a special machine X X

4 Segment the workload X X

5 Batch requests X
Chapter 2. Designing for scalability 13

Six steps to scaling your infrastructure
We recommend you consider this high-level approach to classifying your Web site and
learning which scaling techniques could be applied. The approach is systematic, but you and
your best IT architects will need to improvise and adapt the approach to your situation. There
are six steps:

1. Understand the application environment

2. Categorize your workload

3. Determine the components most impacted

4. Select the scaling techniques to apply

5. Apply the techniques

6. Reevaluate

Knowing your workload pattern (publish/subscribe and customer self-service, for example)
determines where to focus your scalability efforts, and which scaling techniques to apply. For
example, a customer self-service site such as an online bank needs to focus on transaction
performance, and the scalability of databases that contain customer information used across
sessions. These considerations would not typically be significant to a publish/subscribe site.

Step 1. Understand the application environment
For existing environments, the first step is to identify all components and understand how
they relate to each other. The most important task is to understand the requirements and flow
of the existing application(s) and what can or cannot be altered. The application is key to the
scalability of any infrastructure, so a detailed understanding is mandatory to scale effectively.
At a minimum, your analysis must include a breakdown of transaction types and volumes as
well as a graphic view of the components in each tier.

Figure 2-2 can help you determine where to focus your scalability planning and tuning efforts.
The figure shows where latency is greatest for representative customers in three of the
workload patterns, and in which tier you should concentrate for each. For example, for online
banking, most of the latency typically occurs in the database server, whereas the application
server typically experiences the greatest latency for online shopping and trading sites. The
way applications manage traffic between tiers significantly affects the distribution of latencies
between the tiers, which suggests that careful analysis of application architectures is an
important part of this step and could lead to reduced resource utilization and faster response
times. You should collect metrics for each tier, and make behavior predictions for your users
for each change you implement. WebSphere Application Server has application programming
interfaces that provide detailed data useful for monitoring application performance.

6 Aggregate user data X

7 Manage connections X

8 Cache data and requests X X

ID Scaling Technique Increase
Capacity/Speed

Improve
Efficiency

Shift/Reduce
Load
14 Best Practices for High-Volume Web Sites

Figure 2-2 How latency varies based on workload pattern and tier

As you analyze requirements for a new application, you have the opportunity to build scaling
techniques into your infrastructure. New applications offer you the opportunity to consider all
that is new in the areas of each component type, such as open interfaces and new devices,
the potential to achieve unprecedented transaction rates, and the ability to employ rapid
application development practices. Each technique affects application design; similarly,
application design impacts the effectiveness of the technique. To achieve proper scale,
application design must consider potential scaling effects. In the absence of known workload
patterns, you'll need to follow an iterative, incremental approach.

Step 2. Categorize your workload
All site types, like yours, are considered to have high-volumes of dynamic transactions. Your
site type will become clear as you evaluate your site for the other characteristics that pertain
to transaction complexity, volume swings, data volatility, security, and others. If you need
help, refer to Table 1-1 on page 7 and Table 1-2 on page 8 in Chapter 1.

This step involves mapping the most important site characteristics to each component. Once
again, from a scalability viewpoint, the key components of the infrastructure are the edge
servers, the Web application servers, security services, transaction and data servers, and the
network. Table 1-3 on page 9 in Chapter 1 specifies the significance of each workload
characteristic to each component. As you can see, the affect on each component is different
for each workload characteristic.

Step 3. Determine the components most affected
This step involves mapping the most important site characteristics to each component. Once
again, from a scalability viewpoint, the key components of the infrastructure are the edge
servers, the Web application servers, security services, transaction and data servers, and the
network. Table 1-3 on page 9 in Chapter 1 specifies the significance of each workload
characteristic to each component. As you can see, the effect on each component is different
for each workload characteristic.

Edge
server

Web
server

Application
server

Database server
& legacy systems

Internet

Users

ES WS AS DB

Network latency

End-to-end response time

Web site latency
Scope of performance management

Examples of
percent of

latency

Banking

Shopping

Trading

5

26

11 23 61

54 19

5 27 53 15

Edge server Web server

Application server Database server
Chapter 2. Designing for scalability 15

Step 4. Select the scaling techniques to apply to scale the workload
It is worth the best efforts of your IT architects to collect the information needed to make the
best scaling decision. Only when the information gathering is as complete as it can be is it
time to consider matching scaling techniques to components. Manageability, security, and
availability are critical factors in all design decisions. Techniques that provide scalability but
compromise any of these critical factors cannot be used.

Here's a summary of the eight scaling techniques.

1. Use a faster machine This technique applies to the edge servers, the Web presentation
server, the Web application server, the directory and security servers, the existing
transaction and data servers, the network, and the Internet firewall. The goal is to increase
the ability to do more work in a unit of time by processing tasks more rapidly. A faster
machine can be achieved by upgrading the hardware or software. However, one of the
issues is that software capabilities can limit the hardware exploitation and vice versa.
Another issue is that due to hardware or software changes, changes may be needed to
existing system management policies.

2. Create a cluster of machines This technique applies to the Web presentation server, the
Web application server, and the directory and security servers. The primary goal here is to
service more client requests. Parallelism in machine clusters typically leads to
improvements in response time. Also, system availability is improved due to failover safety
in replicas. The service running in a replica may have associated with it state information
that must be preserved across client requests, and thus needs to be shared among
machines. State sharing is probably the most important issue with machine clusters and
can complicate the deployment of this technique. IBM WebSphere's workload balancing
feature uses an efficient data sharing technique to support clustering. Issues such as
additional system management for hardware and software can also be challenging.

3. Use appliance servers This technique applies to the edge servers, the Web presentation
server, the directory and security servers, the network, and the Internet firewall. The goal
is to improve the efficiency of a specific component by using a special purpose machine to
perform the required action. These machines tend to be dedicated machines that are very
fast and optimized for a specific function. Examples are network appliances and routers
with cache, such as the IBM WebSphere Edge Server. Our experience with the
Wimbledon 2001 Web site demonstrated tremendous benefits by using caching; it can
reduce up to 85% of the HTTP traffic to the presentation servers. Some issues to consider
regarding special machines are the sufficiency and stability of the functions and the
potential benefits in relation to the added complexity and manageability challenges. It's
worth noting, however, that the newer generation of devices are increasingly easy to
deploy and manage; some are even self-managed.

4. Segment the workload This technique applies to the Web presentation server, the Web
application server, the data server, the intranet firewall, and the network. The goal is to
split up the workload into manageable chunks thereby obtaining more consistent and
predictable response time. The technique also makes it easier to manage which servers
the workload is being placed on. Combining segmentation with replication often offers the
added benefits of providing an easy mechanism to redistribute work and scale selectively
as business needs dictate. An issue with this technique is that in order to implement the
segmentation, one needs to be able to characterize the different workloads serviced by
the component. After segmenting the workload, additional infrastructure is required to
balance physical workload among the segments, for example, the use of the IBM
WebSphere Edge Server.

5. Batch requests This technique applies to the Web presentation server, the Web
application server, the directory and security servers, the existing business applications,
and the database. The goal is to reduce the number of requests sent between requesters
and responders (such as between tiers or processes) by allowing the requester to define
16 Best Practices for High-Volume Web Sites

new requests that combine multiple requests. The benefits of this technique arise from the
reduced load on the responders by eliminating overhead associated with multiple
requests. It also reduces the latency experienced by the requester due to the elimination
of the overhead costs with multiple requests. Some of the issues are that there may be
limits in achieving reuse of requests due to inherent differences in various requests types
(such as Web front end differs from voice response front end). This can lead to increased
costs of supporting different request types.

6. Aggregate user data This technique applies to the Web presentation server, the Web
application server, and the network. The goal is to allow rapid access to large customer
data controlled by existing system applications and support personalization based on
customer specific data. When accessing existing customer data spread across existing
system applications, the existing applications may be overloaded, especially when the
access is frequent. This can degrade response time. To alleviate this problem, the
technique calls for aggregating customer data into a customer information service (CIS). A
CIS that is kept current can provide rapid access to the customer data for a very large
number of customers; thus, it can provide the required scalability. An issue with a CIS is
that it needs to scale very well to support large data as well as to field requests from a
large number of application servers (requesters).

7. Manage connections This technique applies to the Web presentation server, the Web
application server, and the database. The goal is to minimize the number of connections
needed for an end-to-end system, as well as to eliminate the overhead of setting up
connections during normal operations. To reduce the overhead associated with
establishing connections between each layer, a pool of preestablished connections is
maintained and shared among multiple requests flowing between the layers. For instance,
most application servers provide database connections managers to allow connection
reuse. It is important to note that a session may use multiple connections to accomplish its
tasks, or many sessions may share the same connection. This is called connection
pooling in the WebSphere connection manager The key issue is with maintaining a
session's identity when several sessions share a connection. Reusing existing database
connections conserves resources and reduces latency for application requests, thereby
helping to increase the number of concurrent requests that can be processed. Managing
connections properly can improve scalability and response time. Administrators must
monitor and manage resources proactively to optimize component allocation and use.

8. Cache Caching is a key technique to reduce hardware and administrative costs and to
improve response time. Caching applies to the edge server, the Web presentation server,
the Web application server, the network, the existing business applications, and the
database. The goal is to improve the performance and scalability by reducing the length of
the path traversed by a request and the resulting response, and by reducing the
consumption of resources by components. Caching techniques can be applied to both
static and dynamic Web pages. A powerful technique to improve performance of dynamic
content is to asynchronously identify and generate Web pages that are affected by
changes to the underlying data. Once these changed pages are generated, they must
then be effectively cached for subsequent data requests. There are several examples of
intelligent caching technologies that can significantly enhance the scalability of e-business
systems. The key issue with caching dynamic Web pages is determining what pages
should be cached and when a cached page has become obsolete.

Rather than buying hardware that can handle exponential growth that may or may not
happen, consider specific approaches for these two types of servers:

� For application servers, the main technique for growth path is to add more machines. It is
therefore appropriate to start with the expectation of more than one application server with
a dispatcher in front, such as IBM's WebSphere Edge Server. Adding more machines then
becomes painless and far less disruptive.
Chapter 2. Designing for scalability 17

� For data servers, get a server that is initially oversized; some customers run at just 30%
capacity. This avoids the problem in some environments where the whole site can only use
one data server. Another scaling option when more capacity is needed is to partition the
database into multiple servers.

Most sites we studied separate the application server from the database server. They place
front-end Web serving and commerce application functions on less expensive, commodity
machines and the data server on more robust and secure but more expensive systems. The
trend with many publish/subscribe sites is to put the Web server on eServer pSeries or PCs
and to put the application and databases on larger systems such as high-end pSeries or
zSeries systems. In many accounts, the most important performance tuning factor becomes
the data server. Many commerce sites do not have large databases and achieve improved
performance by caching most or all of the databases in memory.

Step 5. Apply the technique(s)
Apply the selected technique(s) in a test environment first to evaluate not only the
performance / scalability impact to a component, but also to determine how each change
affects the surrounding components and the end-to-end infrastructure. You do not want a
situation where improvements in one component result in an increased (and unnoticed) load
on another component. Figure 2-3 illustrates the typical relationship between the techniques
and the key infrastructure components. By using this figure, you can identify the key
technique for each component. In many cases, all techniques cannot be applied because one
or more of the following is true:

� You cannot afford to invest in the techniques, even if it would help.

� You won't perceive the need to scale as much as the techniques will provide.

� Your cost / benefit analysis shows that the technique will not result in a reasonable
payback.

The IT architect must therefore have a process for applying these techniques in different
situations so that the best return is achieved. This mapping is a starting point and shows the
components to focus on first based on your workload.

Figure 2-3 Scaling techniques applied to components

Database
ServerISP

Web
Page

Server

Web
Application

Server

Internet

Browsers Edge
Server

Directory &
Security Services

Existing
Applications

& Data

Storage
Area

Network

Business
Data 8

1 3 4

6 8

1

8

5

1 2

3 41 3

1 2

3 5

1 2 3

5 6 7 8

4 1 2 3

5 6 7 8

4 1 2 3

5 6 7 8

4

Firewall Firewall

Techniques
1. Use a faster machine
2. Create a cluster
3. Use appliance servers
4. Segment the workload
5. Batch requests
6. Aggregage user data
7. Manage connections
8. Cache
18 Best Practices for High-Volume Web Sites

Step 6. Reevaluate
As with all performance related work, tuning will be required. The goals are to eliminate
bottlenecks, scale to a manageable status those that can't be eliminated, and work around
those that can't be scaled. One of IBM's large customers scaled its peak load 34 times, and
achieved improved peaks as high as 12 million hits per hour using a combination of these
techniques. Some of their tuning actions and the benefits realized were:

� Increasing Web server threads raised the number of requests that could be processed in
parallel.

� Adding indexes to the data server reduced I/O bottlenecks.

� Changing defaults for several operating system variables allowed threaded applications to
use more heaps.

� Caching significantly reduced the number of requests to the data server.

� Increasing the number of edge/appliance servers improved load balancing.

� Upgrading the data server increased throughput.

Such results demonstrate the potential benefits of systematically applying scaling techniques
and continuing to tune. Figure 2-4 shows performance data from a recent scaling study for a
Web site that uses IBM WebSphere Application Server.

Figure 2-4 Scaling a WebSphere online trading site

Additional techniques
One of the most important techniques for high-volume sites with complex transaction
workloads is to push as much work as possible toward the network. This allows the back end
server to be tuned to handle critical transaction workload. Horizontally-scaled commodity
servers can be used for page serving. An effective caching strategy can improve nearly every
site's scalability.

Number of beans nodes

EJB
THROUGHPUT

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

50

100

150

200

250

300

350

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45

350

Number of servlet nodes

SERVLET
THROUGHPUT

0

50

100

150

200

250

300

Trans
/sec

Trans
/sec

Web
Servers

(Servlets)
RS6000

Business
Logic
(EJBs)
RS6000

Network
Dispatchers

RS6000

Database
Server

Legacy Code
Simulators

Internet
Chapter 2. Designing for scalability 19

IBM implemented a reusable infrastructure for its sporting event sites. Many practices have
been refined over time. Caching is extensive. Scores are built into static pages that can be
cached in the network, either in routers or ISP caches. When the scores change, the affected
pages are dynamically updated and the caches invalidated. In general, the use of caching
provides the quickest response time and lowers the system load since the network cached
pages can be served directly to users without a hit to the Web server. Other practices
considered most significant are flattening of product catalogs and fast-path shop design. This
is the approach used for the product catalogs. Catalog pages are flattened into static Web
pages that can be cached like other static pages for the event site. For every 100 browsers on
the site, only 1 to 5 actually buy anything. 95% of the time, browsing is done without
accessing the catalog database. The frequently accessed pages are even cached out in the
network so the Web server load is lower too.

Managing runtime performance has special challenges. More than ever, this task requires a
perspective that considers components from the front-end browsers to the back-end
database servers. The end-to-end perspective must be understood and shared by the IT
management, operations staff, application developers, and Web site designers. Also required
are stated business goals, thoughtful performance objectives, and thorough performance
measurements.

We've developed an end-to-end methodology that aligns the system performance with the
underlying business goals. The methodology combines proactive monitoring, analysis, alert,
and predictive mechanisms. To read about our end-to-end performance methodology, see the
HVWS white paper Managing Web Site Performance.

An e-business must plan for success and look to the future. IBM developed the High-Volume
Web Site (HVWS) Simulator to estimate the performance of complex configurations. The
HVWS Simulator is an analytic queuing model that estimates the performance of a Web
server based on workload patterns, performance objectives, and specified hardware and
software. The results can be used as guidelines for configuration sizing. Performance results
are displayed in sufficient detail to allow users to assess the adequacy of a given
configuration for their requirements, and to provide insight into where the bottlenecks are
likely to occur. This allows the simulator to be useful for capacity planning, evaluation of
infrastructure and workload changes, projecting Web site scalability, and reducing the cost of
prototyping.

Through monitoring and adding traffic load predictions with capacity estimates, we can
achieve a level of automation for self-managed systems. A self-managed system should be
able to handle a wide variety of workload patterns with satisfactory performance. They should
be able to recover gracefully from the stress of unexpected workloads. Therefore, it is
important to monitor system performance in real time, collect necessary data, and feed that
data to predictive tools that can predict workload increases ahead of time. WebSphere
Application Server now has application programming interfaces that provide detailed data
useful for monitoring the performance of applications.

Finally, managing quality of service can increase the availability of resources to prioritized
requests. This involves allocating limited sharable resources to the requests that need them
most by classifying and qualifying requests based on business policies. For example, you
may classify users who buy or are paying ahead of users who browse or are searching. This
technique is directly applicable to online shopping (registered shoppers or frequent
shoppers), self-service, and online trading sites. You may also distinguish between requests
based on complexity. For example, separate the typical simple transactions (product display)
from the complex (payment authorization, tax/shipping/discount calculations).
20 Best Practices for High-Volume Web Sites

Common pitfalls
For over two years now, the HVWS team has been working closely with customers to analyze
their e-business infrastructures across all phases of their life cycles, from planning and
architecture through development, test, and deployment. This section summarizes the most
common mistakes customers make when implementing their e-business infrastructures.

Planning phase
Common planning phase mistakes are:

Customers often have weak linkages between their business planning and IT shops,
resulting in poorly defined scalability targets and growth plans. For example, when a
business team plans a major ad campaign, it must give the IT organization sufficient notice to
prepare the infrastructure to meet demand. One customer experienced what we call "e-panic"
to rapidly install 26 new T1 lines to handle a special promotion where they originally thought
one T1 line would suffice.

Customers sometimes fail to scale their business processes as well as their
e-business infrastructure. We worked with a "click and mortar" business that couldn't
deliver holiday season goods bought through their Web site because their inventory was
insufficient to fulfill their total orders. One health insurance company wisely deferred
deployment of an e-business application until its back office business process could be
scaled to anticipated volumes.

Architecture phase
Common architecture phase mistakes are:

Some IT shops try to "reinvent the wheel." Instead of focusing on their business problem
and their applications, they develop and implement e-business middleware. We've seen
homegrown workload balancers, HTTP servers, and Web application servers. This can
introduce major cost, maintainability, and scalability issues. With the popularity of J2EE
standard platforms, such as WebSphere, reinventing occurs less frequently.

Customers who don't design for scalability limit their options when volumes increase.
It is difficult to project volumes, and because volumes can grow quickly, it is best to have a
scalable architecture that can cope with unexpected growth. One large customer launched a
new site and, on the first day, exceeded its projection for the first year. Many customers have
had reasonable success by projecting new site traffic based on existing site traffic; others
have found projecting traffic based on business expectations to be effective. We recommend
that you plan for workload balancing, and deploy a workload balancer from day one, even if
you only start with a single server. You can add capacity easily when growth occurs.

Design phase
A common design phase mistake is:

Customers don't design Web pages with a performance objective. The latest consultant
studies indicate that many consumers are unwilling to wait more than eight seconds for a
page to download. Well-designed Web pages load faster and enable a site to handle more
users.
Chapter 2. Designing for scalability 21

Development and test phases
The key point about these phases is that there are no shortcuts in the e-business
environment. In fact, due to the complexities of the multi-tier infrastructure, and the external
visibility of performance and availability problems, even more rigor is required.

Many customers struggle to adhere to a development and test process that provides
adequate quality on the aggressive schedules demanded by the Internet. Too often we
see compromises in the testing phase, especially in stress testing. Stress testing is a powerful
tool in ensuring the scalability of a Web site, and in identifying and fixing bottlenecks that
inhibit scaling.

We have tested scalability with one of our online trading customers to ensure that their new,
J2EE-based architecture would scale to very high volumes. We conducted a recent scalability
test with a bank, including testing connected to their production data servers. This proved to
have unique value in that it identified bottlenecks typically not found in a controlled test
environment, for example production firewall settings and limitations in bandwidth to the data
servers.

Deployment phase
Common mistakes in the deployment phase are:

Inadequate change control procedures cause site outages and slowdowns. In one
instance, a bank's customers' balances were visible to others due to a site applying an
untested application change. In another case, configuration changes at a bank resulted in
limits being set on the number of users able to access the system through a firewall. Many
customers were unable to log onto their accounts.

Both of these IT shops had been around long enough to appreciate the importance of change
control, but had made unwise exceptions to their policies due to the time pressures and
complexities of their Web environments.

Complex, multi-tier Web environments require cross-functional cooperation and
processes. To manage availability and performance across a multi-tier, multiplatform
environment, groups that may have operated independently in the past need to work closely.
A customer transaction's availability and performance depends on networks, firewalls, and
often both UNIX™ and mainframe servers. Operational procedures need to span all of these
components, covering a complete end-to-end perspective.

Choosing between two and three tiers
Multi-tier e-business infrastructures provide opportunities for improved scalability and
performance not found in the early days of e-business. These opportunities come with
complexities and challenges that we are just beginning to understand. Figure 2-5 summarizes
the variety of multi-tier infrastructures in use by many of IBM's large customers.

Most modern application architectures require flexibility and thus are usually divided into
logical layers for presentation logic, business logic, and data serving. The infrastructure of
most large sites is comprised of two or more physical tiers with application function distributed
among participating servers. Depending on workload pattern, presentation and business logic
may coreside in one tier, with data serving in a separate tier; or, each may have its own tier;
thus creating a three-tier infrastructure. Scaling is easier with a multi-tier architecture. As
customers scale for increased volumes, they are implementing their applications on the J2EE
computing platform, which facilitates implementation of scalable multi-tier architectures.
22 Best Practices for High-Volume Web Sites

At the highest level, we know that the two-tiered infrastructure is simple, performs well, and is
easiest to maintain. In many two-tier implementations, customers place both presentation
logic and business logic on the first tier. However, with just one firewall between the Internet
and the business logic, the two-tiered design has potential security exposures. These can be
mitigated by implementing a three-tier structure, moving the business logic to a middle tier
behind another firewall. However, as each tier is added, there are scalability and performance
considerations. In some cases, it may make sense to consolidate all logical layers into a
single large system complex.

The optimal solution for your site depends on your workload characteristics and application
environment. A publishing site such as weather.com has a lot of presentation logic and data,
but not much business logic. An online trading site typically has moderate presentation logic
and a lot of business and data logic. The flexibility of having multiple tiers and multiple servers
creates opportunities, challenges, and complexities. WebSphere is exceedingly well suited to
provide the flexibility and robustness needed for these multi-tier alternatives.

Figure 2-5 Examples of two-, three-, and four-tiered infrastructures

Emerging standards and technologies
Emerging standards and technologies will affect scalability, some in ways we are just starting
to understand.

When scaling to new volumes, customers are implementing their Web applications using
J2EE as the standard enterprise computing platform, which makes it easier to implement
scalable multi-tier architectures. Customers are looking at Linux as a way to create more
open solutions at reduced cost. Many are considering the implications of Web services. Web
services is an evolving standard way to expose applications or resources on a network. It

DB2 ServerWeb Server
JSP Servlet Engine

(EJB Container)

Internet

Tier 1 Tier 2

DB2 ServerBusiness Logic
(EJB Container)

Internet

Tier 1 Tier 2 Tier 3

Web Server
JSP Servlet Engine

DB2 ServerJSP Servlet Engine
Business Logic
(EJB Container)

Internet

Tier 1 Tier 2 Tier 3

Web Server

DB2 ServerWeb Server JSP Servlet Engine

Internet

Tier 1 Tier 2 Tier 3 Tier 4

Business Logic
(EJB Container)

* Firewalls between tiers

Architectural
choices typically
driven by:

Security,
isolation from
the open
Internet

Geographical
considerations -
separate data
centers

Separation of
function
(presentation
and business
logic)
Chapter 2. Designing for scalability 23

consists of enabling technologies that allow processes and subprocesses to be located and
accessed over the Web. Web services exploit e-business infrastructures by allowing them to
focus on their core competencies and use partners to supply the remaining capabilities their
business needs to operate. At a recent Web services show, 60% of the IT executives
surveyed expect to use Web services for internal applications, such as retrieving customer
information from a customer relationship management system or passing transactions from
front-office systems to back-office systems. Customers are beginning to implement some of
these standards. For example, XML is increasingly used for managing content and
communicating between tiers. We recently implemented an architecture to access DB2 tables
using Web services and DB2 XML extenders.

Self-managing servers are a key new IBM offering in response to our customers' challenge
of managing their complex infrastructures comprised of multiple tiers and multiple servers.
IBM's new eServer z900 and z/OS offerings will be able to reallocate processing power to a
given application, based on the workload demands of the moment, and thus enabling
tremendous capacity expansion and minimally disruptive scalability.

Pervasive computing devices such as cellular phones, Pads, and handheld computers are
becoming prevalent around the world. In geographies such as the Far East and Europe, the
wireless realm has been exploding. This area is also growing in the U.S., although at a more
moderate pace. Consultants estimate that by 2003 wireless devices will represent 2 billion
Internet access points, more than 60% of all Internet devices. Our customers are asking us
how to best structure their applications to add support for new devices easily and with
minimum disruption, and about the scalability of systems that will support millions of wireless
users. The delivery of video and music to wireless devices is also being explored and its
performance is being tested. This application will create some interesting performance and
scalability challenges. IBM is participating in this exciting new area with the WebSphere
Everyplace Server (WES). WebSphere Everyplace Server provides an integrated, robust
solution designed to ease the entry into pervasive computing and facilitate future scaling as
needed.
24 Best Practices for High-Volume Web Sites

Summary
Designing, integrating, and managing scalable multi-tier infrastructures can be complex,
challenging tasks. However, knowledge, techniques, standards, products, and best practices
are increasingly available to help you. This chapter provides updated information on IBM's
experiences with large customers who face these same challenging tasks, many of whom are
enjoying the benefits that come with improved scalability and performance.

The techniques introduced in this chapter are:

� Use a faster machine

� Create a machine cluster

� Use an appliance server

� Segment the workload

� Batch requests

� Aggregate user data

� Manage connections

� Cache data and requests

A combination of clustered machines, connection management, and caching has enabled
many large customers to scale their Web sites to handle peak loads. We've seen increases
in peak loads as high as 34-fold, and with improved peaks as high as 12 million hits per hour.
Other customers have seen 40-50% improvements in the download time for their Web pages
by applying techniques directed at page performance.

While scaling end-to-end infrastructures is becoming more science than art, it still presents
the best hope for responding to and managing unpredictable demands on your Web site. With
thorough knowledge of such features of your current infrastructure as workload patterns, Web
site components, skills, and budget, your IT architects should begin now to factor scalability
considerations and scaling techniques into their plan for the future.

The challenges to architect a scalable infrastructure are many and real, and they keep
coming, almost at Internet speed. The corresponding opportunities to use new devices and
techniques are just as plentiful and real, as are the business opportunities for those who do it
right. IBM has products and services that can help you implement the scalable infrastructure
needed to make your company's e-business succeed inside and out.
Chapter 2. Designing for scalability 25

26 Best Practices for High-Volume Web Sites

Chapter 3. Designing pages for
performance

You only get one chance to make a first impression. The significance of this adage for your
business is, or likely will be, increasingly associated with your Web site. Many factors
contribute to the first impression of your Web site, but the one your visitors are most likely to
notice, and remember, is how long it takes to download the home page. And, if it takes too
long, your visitors may decide not to stay, not to return, and not to tell their friends about you,
at least not to tell them anything good. This is true regardless of the characteristics of your
site, but its significance is great if your site is an e-commerce site.

Can you confirm the business value of each item on your site's home page? You want the
equivalent of a budget for each page, where space is allocated to each item and you define
the business value you expect returned for that item. Any item without business value
degrades the time needed to download your Web page. Do you design and test your Web site
in the environment most like the environment of the majority of your visitors? If most of your
visitors connect to your site from a typical dial-in connection, your design must optimize for
them to assure their visit is successful by either yielding business for you or, at least, a return
visit from them. These are just two considerations when optimizing Web page design. More
are discussed later.

IBM's High-Volume Web Site team has been working with customers to analyze many of the
world's largest Internet and intranet sites. A portion of this work has been evaluating Web
page design and the factors that contribute to the kind of performance that leads to repeat
business. This chapter reviews some actual case studies and suggests design practices that
can improve page performance and perhaps increase a site's capacity for more concurrent
visitors.

There is no absolutely correct way to set up a Web site. Multiple design and operational
trade-offs exist in setting up even trivial sites. To quantify the affect of trade-offs, IBM uses an
internal tool that provides performance data about the site before and after changes. The tool
analyzes a page and displays details about the timing, size, identity, and source of each page
item; page owners and site operators use these details to identify areas where they can
improve performance.

3

© Copyright IBM Corp. 2002. All rights reserved. 27

There are five major elements that influence the end user experience:

1. The content of the page (information)

2. The presentation of the content (look and feel)

3. The efficiency of presentation (size)

4. The organization of content (packaging)

5. The administration of the web site (delivery)

Although the page analysis tool cannot measure content and presentation, it can provide
information useful in improving efficiency, organization, and delivery. The tool can also be
used to help confirm Web page design standards and practices for optimizing performance.
Design standards and practices can be prototyped and analyzed to document performance
characteristics to be considered along with other considerations (for example, marketing
issues regarding presentation appeal). When applied, the tool has revealed areas where
significant improvement is possible (and has already been achieved) and suggests page
design practices that can help avoid common pitfalls.

Introducing Web communications
The time it takes to download a page results from many factors and the interaction among
them. Page designers who best understand these factors can best optimize page download
time. A significant factor is how basic and secured Web site communications work. Figure 3-1
is a relatively simplified view of Web communications showing the path of a request from a
Web browser to the Web server; note that depending on the configuration of the Web site,
there could be multiple servers of more than one type (data, image, proxy) at more than one
location.
28 Best Practices for High-Volume Web Sites

Figure 3-1 Overview of Web communications

A client user enters a request, for example, a Web site name like www.ibm.com. The browser,
such as Netscape Navigator or Microsoft® Internet Explorer, accepts the request, then
typically uses the Domain Name Service (DNS), a service of the User Datagram Protocol
(UDP), to resolve fully qualified names (FQNs) like www.ibm.com into Internet Protocol (IP)
addresses like 123.321.456.34. DNS builds a connection to the DNS server to obtain the IP
address.

When the browser receives the IP address, it initiates a Hypertext Transfer Protocol (HTTP)
request. HTTP runs on the Transmission Control Protocol (TCP), which runs on IP, which is
the network-layer protocol of the Internet. What happens next depends on whether
communications are secured.

If communications are not secured, the browser passes an HTTP request directly through
TCP/IP, which creates what is called a socket, a virtual mechanism to manage the addressing
needed for sending the request and establishing the connection to the Web server.

If communications are secured, the browser passes a secure HTTP (HTTPS) request to
Socks, a security package that negotiates for transmission through the firewall. Such security
negotiations occur both before sending the request and before receiving the response. The
server also refers to the socket to accept the request and return the response through the
firewall.

When the complete end-to-end connection is established, the server fulfills the request by
obtaining and serving the items that comprise the page. A page is comprised of one or more
text (usually Hypertext Markup Language -- HTML) files, graphic image files (GIFs), audio
clips, video clips, and applets. The HTML specification determines the format and content of
the page. The operation of sending a file to a client is referred to as a hit on the server. The

Overview of Web Communications

Unsecured communications
Flow over the solid lines
If Socks is used to navigate the firewall, the request/response flows
across the short broken lines
DNS can use Socks, or go direct

Secured communications
Negotiations take place before sending the request and receiving the
response

Firewall

Browser

DNS HTTP(S)

UDP/IP TCP/IP

Sockets

Socks

Client

Web
Servers

HTTP(S)

TCP/IP

Sockets

Server

DNS Server

Sockets

UDP/IP
Chapter 3. Designing pages for performance 29

time from the browser's request through receipt of the initial reply is called server response
time.

The design of the communication protocols used by browsers for Web access creates times
when either the Web browser or the Web server must wait for responses from other
components. The more time spent in these protocol waits, the longer the delay site visitors
may experience while waiting for page content. The 'farther' the browser is from the server,
the greater the likelihood of delays due to intermediate links or devices in the path between
the browser and the server. A delay could be added by any hardware or software component,
including components or subsystems of the browser or the server itself. Even in the best
cases, the links and devices in the path act like variable time amplifiers. Each link or device in
the path adds a fixed amount of time to perform its function and also has the potential to add
significant delay due to queuing related to component saturation. For a discussion of the best
practices for scaling Web site capacity, see Chapter 2, “Designing for scalability” on page 11.

When bad things happen to good pages
Many designers of the "first generation" Web sites optimized their design for graphic appeal
and relied on the newness of the Web environment to attract visitors and the variety of "eye
candy" they could offer to keep visitors there and bring them back. Even today, designers who
redesign pages sometimes produce pages that are, from the visitor's viewpoint, prettier but
"worse", as in slower, than their predecessor pages. This is no longer acceptable. Web sites
that permit customers to transact business must offer their information and services in a way
that meets the customers' needs and brings them back for more. That means "performance",
usually measured in response time to a customer's request. The goal is to achieve a perfect
balance of content and performance.

The major factors that contribute to download time are page size in kilobytes, number and
complexity of items, number of servers accessed, and whether SSL is used. Table 3-1 shows
the way these factors can be measured. The actual measurements of two related pages
demonstrate how measurements between page types can vary, particularly when
communications are secured.

Table 3-1 Page download measurements

Measurement Home Login (secure page)

Load time (seconds) 6.112 13.59

Size (bytes) 29853 35150

Number of items 8 12

Numbers of servers accessed 1 Unknown

Number of connections 5 6

Failed connections 0 0

Total connection time 5.058 seconds / 31% 3.271 seconds / 9.95%

Average connection time 0.561 seconds 0.27 seconds

Total SSL connection time Not applicable 4.433 seconds / 13%

Total server response time 7.936 seconds / 48% (little high) 10.999 seconds (SSL) / 13%

Average server response time 0.881 seconds 0.916 seconds (SSL)

Total delivery time 3.206 seconds / 19% 14.174 seconds (SSL) / 43%
30 Best Practices for High-Volume Web Sites

In Table 3-1, the shaded measurements are all considered good. In our experience to date,
we've concluded the following are "good" measurements for a dial-up modem connection as
shown in Table 3-2:

Table 3-2 Good measurements

While acceptable, these measurements are not considered world class. As an example, the
page load time is acceptable at less than 30 seconds, yet we consider load time at less than
20 seconds to be world class. A more specific way to rank load times is shown in Table 3-3:

Table 3-3 Page load time rankings

IBM's page analysis tool is designed to explain some of the mysteries about how Web pages
are delivered to Web browsers, and to help designers and site operators improve
performance and user satisfaction. It does this by revealing details about the timing, size,
identity, and source of each item that makes up a page. The details revealed can be used to
identify areas where performance improvement could enhance the end user experience.

Figure 3-2 is an example of how the tool presents page download measurements; we added
the text boxes for this article to help you understand and interpret the output. Easily installed
on and run from the client side, the tool presents the total download time for the page (purple
line) and the timing, size, identity, and source for each page item. The tool uses colors to
represent different measurements.

Average delivery time 0.356 seconds 1.181 seconds (SSL)

Address resolution time 0.579 seconds 0 seconds

Measurement Home Login (secure page)

Average server response time < 0.5 seconds

Number of items per page < 20

Page load time < 30 seconds

Page size in bytes < 64K

Seconds to load Ranking

Less than 10 Excellent

10-15 Very Good

15-20 Good

20-25 Adequate

25-30 Slow

Over 30 Unacceptable
Chapter 3. Designing pages for performance 31

Figure 3-2 Sample measurement of a Web page

Designing, tuning, and redesigning Web pages is fraught with unintended consequences.
Certainly designers do not design their pages to load slowly. Here are examples of Web
pages whose download time was improved significantly after analysis by IBM's team and tool:

� For the home page of an online retailer, IBM's tool revealed that the browser was
requesting one page item, a spacer GIF, multiple times in a caching environment. Spacer
GIFs are commonly used to create white space on the page. Upon analysis, we
determined that the HTML references for this item were so close to each other that the
response to the first request was not received in the cache before the browser issued
another request. By issuing the first request earlier, the response can be cached, thereby
eliminating the need for subsequent requests.

� We've seen 'no cache' set on items in an environment where the browser is capable of
caching, while the page at the server was set up to not allow the browser to cache that
content, even static GIFs. Failure to use caching for the simple items, such as GIFs, uses
up valuable time.

� Another large online retailer's home page exhibited the common problem of too many
items (over eighty). There is no rule on determining the correct size and number of items.
The minimum number and size that relays the correct information and loads the fastest is
optimal. Oversimplifying, we can take the average overhead of 640 bytes per item. This
amounts to 51,200 bytes of overhead to move the 82,592 bytes of graphics data or 62%
overhead (51,200/82,592). The time taken to move the image data was 27.83 seconds
(we measured and subtracted from load time, the time from the beginning of request to the
startup of the first connection that began retrieving an image and subtracted this from the
page load time 30.5 - 2.67 = 27.83) or a rate of 4807 bytes/second (51,200 + 82,592 =
133,792 / 27.83 = 4807) for this load.

Page size 122.1 KB -- should
generally be <= 64K
Consider compressing HTML
files

53 items requested -- should
generally be <= 20
Considerable overhead to
request/respond/deliver
Consider consolidation of
items where possible

Inconsistent server
response time

 (0.2-2.0 seconds)
Objective is

 0.5 seconds
32 Best Practices for High-Volume Web Sites

If we tried to find the optimal load, it would be the four concurrent connections used by the
browser sending data constantly with the least amount of overhead. This would be four
files (each with a size of ¼ the 82,592 bytes) at 20,648 bytes each. The overhead for the
four files would be approximately 2560 bytes (4 X 640) or 3%. It would take approximately
17.71 seconds (2,560 + 82,592 = 85,152 / 4807 = 17.71) to load the four files. This says
that reducing the number of images and keeping the same amount of data, the maximum
time that could be saved is 10.12 seconds (27.83 - 17.71 = 10.12).

If the reduction of the number and size of images (for example, by adjusting the number of
colors, or the size of the composite image) could be done, then the time savings could be
greater. While it's probably not feasible to go from eighty images to four, reducing the
number of images makes a significant difference. The only way to optimize this area is
with design, prototyping, and measurements to achieve a balance between good
presentation and optimal delivery.

� A large bank implementing online banking was able to reduce the time it took to download
its home page from 15 minutes to 26 seconds. Our analysis demonstrated that their
download time was slowed by too many items (60), too much data (>115K), and,
especially, their unnecessary use of encryption. Eliminating encryption on the home page,
upgrading specific hardware components, and some HTTP tuning yielded not only
significantly reduced download time but also increased Web site capacity.

What's a good page?
Generally speaking, we observe that pages that load the fastest:

� Present a few simple, small items, selected for their business value

� Retrieve items from a single server

� Combine requests for multiple items from the same server

� Use persistent connections

� Request items early

� Store and retrieve items used more than once from the browser cache

� Assign private information to private pages and secure private data only

� Use preproduction utilities that remove extra white space from the source HTML

Pages with features that enable visitors to keep moving appear to load fast, which, from a
visitor's standpoint, can be nearly as valuable as actually loading fast. Pages with these
features:

� Present early the links to the site's major sections

� Use direct links

� Label visual components that are hot

In the next section, we review how these features translate into page design practices and we
discuss the related constraints and trade-offs.
Chapter 3. Designing pages for performance 33

Design practices that can improve performance
IBM's work to-date with several customers with high-volume Web sites suggests there are
many practices that when followed reduce the time it takes to download a Web page.

A common theme among many recommended practices is moderation in all things. For
example, any page is likely to have multiple items and require multiple connections. What's
important is that page designers consider every item first for its business value and second
for its size and complexity. Page designers can control for size and complexity and must
assure the item's business value, size, and complexity justify the time each contributes to the
overall download time. Page designers can also influence the number and types of
connections and must understand how the choices they make affect download time.

For efficiency, Web designers and developers tend to locate themselves in proximity to the
Web server they are working with. Most try to be on the same LAN. Web site visitors tend to
be farther away and may be connected via dial-up at considerably slower speeds. From their
viewpoint, the Web designers may not see much difference in response time, but the site
visitor will see the benefits of thoughtful packaging. It is a good Web site development policy
that developers regularly view pages under development by using connections that are
typical for the target users.

Web pages have common components and characteristics that can and should be managed
with an eye toward minimizing download time. Doing the "right" thing will not always be
possible, and some components or characteristics may be outside of the control of the page
designer. Still, everyone with an interest in the site's performance should understand these
factors and their related trade-offs:

� Number, size, and complexity of items

� Number of connections

� Number of servers accessed

� Use of white space

� Load sequences

� Data security

Manage number, size, and complexity of items
The number, size, and complexity of page items is the single most significant contributor to
page size, page complexity, and the time it takes to download the page. Quite simply, pages
with a few, simple items -- selected for their business value -- load the fastest and yield the
most satisfied visitors

Number of items: It's impossible to generalize about the correct number of items. After
selecting the required items, there are techniques that can help minimize download time:

� Send a menu as a browser or client-side map instead of a table with individual graphic
elements. Tables are inherently slower, especially those with graphic elements.

� Combine items. The Web server will require fewer machine cycles to retrieve and deliver
content.

� Avoid rollover GIFs. Using mouse rollovers that dynamically change the displayed GIF
looks interesting, but requires additional GIFs be downloaded for the effect to operate
differently over each menu item. Eliminating the rollover GIF can reduce the number of
items.
34 Best Practices for High-Volume Web Sites

There are additional techniques, although most trade off some amount of interface function
for a reduction in the number of items.

Size: Consider each item's size in relation to the information it is intended to convey or the
function it is intended to perform. The larger an item is, the longer it takes to load. Usually,
large items are not necessary to deliver intended information or function.

Complexity: The complexity of a page affects how quickly it can be presented. Consider the
delays involved when choosing items with features that add complexity. Factors that
contribute to page complexity include large tables, table cells whose sizes are dynamically
calculated, Java scripts, and Java applets. Animated GIFs, image color management, and
image dithering can also contribute delays. These delays vary from browser to browser, and
from level to level within a browser; thankfully they tend to become faster with new levels, but
not always.

Items formed or described poorly or incompletely can suspend the browser to socket
communication. Some tables may be so complex that the browser is fully occupied by their
operation and cannot service its socket connections. Time goes on, but nothing in-progress
ends. The offending item is probably already at the browser and is being acted on when the
hang occurs. Servers and networks can hang also, but a browser hang is almost always
reproducible. Such hangs can lead to lost connections, requiring resources to reconnect,
adding to overall load time and dissatisfaction of visitors.

The number and size of HTML files are indicators of page complexity. While HTML coding is
outside the scope of the HVWS team's analysis, we do know there are utility programs, such
as GZIP, available to compress HTML files. We have seen GZIP reduce the size of a HTML
file by 80-90%. A smaller HTML file reduces download time and permits the browser to start
presenting the page sooner.

Manage number of connections
Information from a Web server reaches the Web browser by way of TCP/IP socket
connections. The connection(s) must be opened on both ends before page information can
flow. Each connection takes time to set up and take down, and some connections inherently
take more time than others. Consider the following for each required connection:

� Persistent connections can reduce connection setup overhead if multiple items must be
transmitted

� Secured connections take more time to set up

A Web site can have some control over whether it leaves open or closes a socket connection
after delivering an item. If the Web site closes connections, the browser must establish a new
connection for each item. This type of connection overhead can significantly extend the delay
visitors experience when loading pages. Most browsers attempt to keep the connection on
their end open, but both ends have to agree that the connection can be held open. The choice
to keep a connection open is usually made at the Web server by way of a server configuration
option to determine whether the server will support the use of persistent connections when
the browser is capable of persistent connections.

High-volume Web sites may wish not to maintain persistent connections because such
connections can lead to consumption of all available ports or other constrained server
resources like "threads". Additional resources may have to be made available at the server
to support persistent connections.

A reasonable objective is to limit the connections per page to four. As servers and HTTP
server software evolve, they expand their limits where resources become constrained. Site
visitors may benefit when the connections at the server end are kept open.
Chapter 3. Designing pages for performance 35

Manage number of servers accessed
In the best of worlds, the few, simple items would reside on the same server, yielding the
fastest possible download time. In the real world, however, page items often reside on more
than one server. These items may be from servers at one site or servers across multiple sites.
Each time another server is used, the browser must connect a socket to the new server. If all
of the browser's connections are being held open, an existing connection must be broken in
order to connect to the new server. Many times additional items are required from the first
server and the connection must then be reestablished. When possible, organize items to
come from a single server. When you must use multiple servers, combine requests from the
same server to take advantage of open connections.

Banner advertising is an example of an item that usually resides on a site different from the
base page HTML information. When including a banner, specify the banner's dimensions in
the base HTML so the browser does not have to calculate the size. Some browsers will not
display any content beyond the banner until it has retrieved the banner and calculated its size.
Other browsers may start to display the page and then flicker as the size of arriving ad images
is calculated and the page is reformatted.

Web sprayers may be in use in front of a Web server's address. A Web sprayer appears as
one address to the browser but actually hides multiple servers providing content. Items with
long composite times may be coming from an address different from the base page's HTML.
Depending on browser design, such items may hold up displaying the page.

Some sites use a technique that allows multiple names for the same server address and can
make the site easier and faster to find. For example, http://www.xyznewscom and
http://xyznews.com refer to the same site. If you use this technique, try to avoid switching to
the other server name during the page load. Some sites handle the situation by returning a
page stub that refers the Web browser to the other name. This results in making the Web
browser use more time to look up the other name for the site and establish a new connection
before it can retrieve the page content.

Use direct links whenever possible to avoid the cost of an intermediate page. Redirection is
best reserved for pointing browsers to a new set of pages when loaded from an old
bookmark.

Using the browser's memory cache can reduce download time for a page with multiple
requests for the same item. For example, designers use spacer GIFs to position page items.
Rather than consecutive requests for spacer GIFs, it's preferable to request a spacer GIF,
then request other items. This allows the server time to serve the GIF into the browser's
cache so that the GIF is available for subsequent requests. Retrieving the GIF from the cache
is faster than returning to the server for each request.

Manage use of white space
Judicious management of white space can help achieve acceptable download times and may
even extend the time before a server needs to be added.

Page designers often use white space to help them visualize the page presentation. The
browser doesn't need the extra white space to operate properly. Consider using available
utilities to remove the extra white space in the source HTML before placing the page(s) on the
production Web server.

Avoid the use of extra white space on pages requiring encryption. While extra white space in
clear text can be compressed well across a dial-up line, encrypted white space does not
compress well because it is no longer a string of repeated character symbols. After
encryption, each block of repeating spaces is usually represented by a unique byte string,
36 Best Practices for High-Volume Web Sites

making them less likely to be compressed by the modems. Each extra byte costs something
to deliver and provides no improvement for site visitors.

Manage load sequences
Designers can sequence requests for items in such a way that download time is optimized.
The objective is to specify the sequence such that concurrent operations allow the page to be
loaded smoothly. Request items, especially large items and those required for navigation,
early to avoid delay at the end of the load sequence. Ideally, the browser should be able to
identify items in time to keep its connections to the server busy.

Understand impact of data security
SSL (privacy) handshakes and encryption can be time consuming for both ends. Because
privacy creates a drag on each item, it is even more important to design encrypted pages
well. The significance of the practices discussed above is escalated when applied to
encrypted pages.

HTML items on an encrypted page do not compress well because the HTML is converted to
long sequences of numbers that do not work well with dial-up modem compression schemes.
This makes the topic about extra white space even more important on an encrypted page.

Clearly, information that is private must be kept private. The balance here is to assign private
information to private pages and public information to public pages, and avoid mixing private
and public data. The overhead required for the private information should not be invested in
any public information.

It is not just about satisfying customers
Of course, your business success depends on satisfied customers. Achieving healthy rates of
repeat business on your Web site is your objective. The design practices suggested herein
can help you improve the performance of your Web site, which can surely contribute to
customer satisfaction. At a minimum, your page designers should adopt these practices as
part of their design task:

� Manage number, size, and complexity of items

� Manage number of connections

� Manage number of servers accessed

� Manage use of white space

� Manage load sequences

� Understand impact of data security

Ideally, you should enhance your design team with specific performance expertise. Thus
enhanced, your team should be able to develop a site that satisfies customers, reduces
consumption of valuable IT resources, and simplifies your operations. When implemented,
these practices may also help you increase the capacity of your site as you serve more
concurrent visitors with the same hardware.
Chapter 3. Designing pages for performance 37

38 Best Practices for High-Volume Web Sites

Chapter 4. Planning for growth

As e-business and its related requirements grow at "Web speed", a critical issue is whether
the IT infrastructure supporting the Web sites has what it needs to provide available, scalable,
fast, and efficient access to the company's information, products, and services. More than
ever, CIOs and their teams struggle with the challenges to minimize downtime and network
bottlenecks and maximize the use of the hardware and software that comprises their
e-business infrastructure.

The IT infrastructure supporting most high-volume Web sites (HVWSs) typically has multiple
layers of machines, frequently called tiers, and each tier handles a particular set of functions,
such as serving content (Web presentation servers), providing integration business logic
(Web application servers), or processing database transactions (transaction and database
servers). Figure 4-1 shows an e-business infrastructure comprised of several tiers. Each tier
consists of multiple machines, from two to hundreds, to provide capacity and availability for
the functions running at that tier. The IBM WebSphere software platform for e-business
includes edge servers, Web application servers, development and deployment tools, and
Web applications.

4

© Copyright IBM Corp. 2002. All rights reserved. 39

Figure 4-1 Multi-tier infrastructure for e-business

Even with this growing complexity, typical IT infrastructures can be analyzed and related
models developed to assist in predicting and planning how to meet future requirements. This
chapter presents a methodology for IT professionals to use to determine whether their Web
site can satisfy future demands and to evaluate potential workload and infrastructure
changes. It also introduces the concept of configuring a Web site based on an analysis of how
different components combine to best meet the performance objectives of your particular
workload pattern, potentially reducing the costs of prototyping and stress testing.

IBM's IT experts have been working with many IBM customers to analyze large Web sites and
help customers implement scalable Web sites. Some of these customers are already working
with IBM to exploit and further the technologies for capacity planning being developed. Our
methodology is based on this on-going research as well as IBM's patterns for e-business.

Introducing a methodology for capacity planning
Our methodology for capacity planning is based on our analysis of many large Web sites,
including IBM's, and continuing engagements with large customers seeking to improve site
performance, accurately project workloads, and make infrastructure changes that will satisfy
future requirements. The methodology consists of four steps:

1. Identify your workload pattern

2. Measure performance of current site

3. Analyze trends and set performance objectives

4. Model your infrastructure alternatives

The steps are introduced below, then described in more detail throughout the rest of the
chapter. These steps are useful whether you are considering changes to a current site or
planning a new site. The chapter focuses on technologies for capacity planning. Implementing
such technologies will affect your IT organizations, processes, and people; the related
implications are not addressed in this chapter.

Infrastructure for e-business

Internet

Directory
& Security
Services

Web
Application

Servers

Transaction
Servers

Data
Servers

Web
Presentation

Servers
E

d
ge

 S
er

ve
rs

Intranets

Extranets
40 Best Practices for High-Volume Web Sites

1. Identify your workload pattern. Your workload is assumed to be high-volume and growing,
serving dynamic data, and processing transactions. Beyond that, you must consider other
characteristics, such as transaction complexity, data volatility, and security. After your
analysis, it becomes clear that your workload pattern fits into one of five classifications:
publish/subscribe, online shopping, customer self-service, trading, or business-to-business.
Correctly identifying your workload pattern assures the best results from the remaining steps
and maximizes your site's chances for satisfying future requirements.

2. Measure performance of current site. As always, you must understand the present
before planning the future. You need to measure these site characteristics: volumes (hits,
page views, transactions, searches), arrival rates, response times by class, user session
time, number of concurrent users, and processor and disk utilization. If you're planning a new
site, you'll need to estimate these metrics; IBM's high-volume Web site team can provide
typical site profiles.

3. Analyze trends and set performance objectives. Your workload is growing and your
current metrics, no matter how good they are, must improve, along with the capacities of the
hardware and software that comprise your infrastructure. In this step, you analyze trends to
determine future peak volumes, then set objectives for each metric identified in Step 2, along
with any new metric that applies to your future requirements.

4. Model your infrastructure alternatives. At this point, you are ready to determine the
components needed to construct your site's infrastructure. IBM can help you match
components to the particular requirements and objectives of your workload pattern.

Our methodology for capacity planning complements IBM's patterns for e-business by
referring to:

http://www.ibm.com/developerworks/patterns

in that each High-Volume Web Sites (HVWS) workload pattern can be mapped to one of the
e-business patterns for site design. Regardless of the methodology you used to design your
site, our capacity planning methodology can complement that effort and establish a
foundation for managing your capacity requirements.

Step 1. Identify your workload pattern
Your workload is assumed to be high-volume and growing, serving dynamic data, and
processing transactions. Beyond that, you must consider other characteristics, such as
transaction complexity, data volatility, security, and others. After your analysis, it becomes
clear that your workload pattern fits into one of five classifications: publish/subscribe, online
shopping, customer self-service, trading or business-to-business. Correctly identifying your
workload pattern assures the best results from the remaining steps and maximizes your site's
chances for satisfying future requirements.

Review the workload pattern descriptions below to identify your workload pattern. You may
also want to refer to Table 1-1 on page 7 in Chapter 1.

Publish/subscribe Web sites provide users with information. Sample publish/subscribe
sites include search engines, media sites, such as newspapers and magazines, and event
sites, such as those for the Olympics and for the championships at Wimbledon. Site content
changes frequently, driving changes to page layouts. While search traffic is low in volume, the
number of unique items sought is high resulting in the largest number of page views of all site
types. As an example, the Sydney Olympics site successfully handled a peak volume of 1.2
million hits per minute using IBM's WebSphere Application Server, WebSphere Commerce
Suite, and MQSeries. Security considerations are minor compared to other site types. Data
volatility is low. This site type processes the fewest transactions and has little or no
connection to any legacy systems.
Chapter 4. Planning for growth 41

http://www.ibm.com/developerworks/patterns

Online shopping sites let users browse and buy. Sample sites include typical retail sites
where users buy books, clothes, and even cars. Site content can be relatively static, such as a
parts catalog, or dynamic where items are frequently added and deleted as, for example,
promotions and special discounts come and go. Search traffic is heavier than the
publish/subscribe site, though the number of unique items sought is not as large. Data
volatility is low. Transaction traffic is moderate to high, and almost always grows. The typical
daily volumes for many large retail customers, running on IBM's WebSphere Commerce
Suite, range from less than one million hits per day to over 13 million hits per day, and with a
range from 100,000 transactions per day to three million transactions per day in the top range;
of the total transactions, typically between 1% and 5% are buy transactions. When users buy,
security requirements become significant and include privacy, nonrepudiation, integrity,
authentication, and regulations. Shopping sites have more connections to legacy systems,
such as fulfillment systems, than the publish/subscribe sites, but generally less than the other
site types.

Customer self-service sites let users help themselves. Sample sites include banking from
home, tracking packages, and making travel arrangements. Data comes largely from legacy
applications and often comes from multiple sources, thereby exposing data consistency.
Security considerations are significant for home banking and purchasing travel services, less
so for other uses. Search traffic is low volume; transaction traffic is low to moderate, but
growing.

Trading sites let users buy and sell. Of all site types, trading sites have the most volatile
content, the highest transaction volumes (with significant swing), the most complex
transactions, and are extremely time sensitive. Products like IBM's WebSphere's Application
Server play a key role at these sites. Trading sites are tightly connected to the legacy
systems, for example, using IBM's MQSeries for connectivity. Nearly all transactions interact
with the back end servers. Security considerations are high, equivalent to online shopping,
with an even larger number of secure pages. Search traffic is low volume.

Business-to-business sites let businesses buy from and sell to each other. Data comes
largely from legacy applications and often comes from multiple sources, thereby exposing
data consistency. Security requirements are equivalent to online shopping. Transaction
volume is moderate, but growing; transactions are typically complex, connecting multiple
suppliers and distributors. There are two styles of this pattern:

1. Business-to-business integration: this style includes programmatic links between
arms-length businesses (where a trading partner agreement might be appropriate).
Example: supply chain management.

2. eMarketplace or B2M2B: the M represents the eMarketplace, which supports multiple
buyers and suppliers. The buying function can be performed online or programmatically.
Example: e-Marketplace.

Step 2. Measure performance of current site
As always, you must understand the present before planning the future. You need to measure
these site characteristics: volumes (hits, page views, transactions, searches), arrival rates,
response times by class, user session time, number of concurrent users, and processor and
disk utilization. If you're planning a new site, IBM has site profiles you can use to estimate
these metrics.

Our analysis of the performance of e-business infrastructures under various workload
patterns demonstrates that workload pattern complexities (for example, bursty arrival
patterns) can significantly affect resource demands, throughput, and the latency encountered
by user requests, in terms of higher average response times and higher response time
variance. Without adaptive, optimal management and control of resources, service level
agreements (SLAs) based on response time are impossible. The capacity requirements on
42 Best Practices for High-Volume Web Sites

the site are increased while its ability to provide acceptable levels of performance and
availability diminishes.

When analyzing your current site, do not overlook the design of your Web pages. IBM's work
to-date suggests there are many practices that when followed reduce the time it takes to
download a Web page. Web pages have common components and characteristics, such as
page size and number of items, that can and should be managed with an eye toward
minimizing download time. Doing the "right" thing will not always be possible, and some
components or characteristics may be outside of the control of the page designer. Still,
everyone with an interest in the site's performance should understand these factors and their
related trade-offs. Figure 4-2 summarizes page design metrics from 15 different Web sites;
the metrics vary but strongly suggest that page design is an important performance
component that when managed well can improve a site's capacity. Metrics considered good
or excellent are shaded green; less favorable metrics are shaded with yellow, and
unacceptable metrics are shaded with red. For more information, see Chapter 3, “Designing
pages for performance” on page 27. The IBM WebSphere Studio Page Detailer component is
a tool that can help identify the types of information shown in Figure 4-2, but also graphically
illustrates how these components can affect page responsiveness.

Figure 4-2 Examples of Web page metrics

Understand workload metrics
Correctly identifying your workload pattern prepares you for measuring and understanding
the complexities of your site. Each workload pattern has an associated class of user
requests. Figure 4-3 shows an example of classes of user requests associated with the online
shopping workload pattern.

Each class is characterized by how the requests arrive at the Web site and the resources
required to satisfy the request. The major factors affecting arrivals include standard (marginal)
distribution, dependence structure and seasonality. In general, IBM's analysis demonstrates
complex behaviors that include light-tailed and heavy-tailed distributions, short-range and
long-range dependencies, strong seasonality and periodicity, and geographic effects. The
typical assumption of independent exponential interarrivals of Web requests does not hold
true under these conditions and one has to solve the problem with nontraditional assumptions
that require complex mathematical algorithms. IBM's mathematical research of these

Example of Web page metrics

Web
page

Page load
time (sec)

Page size
(bytes)

Number
of items

Number of
connections

Number of
servers

Failed
connections

1 32.33 179,968 51 17 2 0

2 30.5 140,842 80 7 2 0

3 31.78 136,943 25 6 1 0

4 26.26 122,146 53 7 1 0

5 78.26 121,664 56 21 3 0

6 41.648 111,281 37 5 2 0

7 34.45 105,433 35 21 2 0

8 22.18 93,580 29 6 1 0

9 22.52 84,240 46 46 1 0

10 27.03 72,411 36 36 4 0

11 19.951 64,347 30 19 1 0

12 29.741 61,073 40 11 1 0

13 15.14 56,430 25 5 1 0

14 15.69 43,891 23 23 1 0

15 8.77 39,189 12 5 2 0
Chapter 4. Planning for growth 43

characteristics has enabled the development of improved models to understand and predict
the impacts of these relationships and behaviors.

Figure 4-3 Each workload pattern has an associated class of user requests

Distribution and dependence Web traffic exhibits bursty, heavy-tailed, and correlated arrival
patterns. Bursts refer to the random arrival of requests, with peak rates far exceeding the
average rates. These bursts are caused by unpredictable events such as major stock market
swings or special events such as Christmas or Valentine's Day. Such events yield
dependencies among requests (for example, larger bursts tend to occur in close proximity),
heavy-tail distributions (for example, very high variability in the sizes of the bursts), and the
combination of dependencies and heavy-tail distributions. A heavy-tailed distribution for a
random variable is one where the tail of the distribution decreases sub exponentially. For
these distributions, the probability that a large value occurs is nonnegligible. The batch arrival
process exhibits such heavy-tailed behavior and the batch request sizes tend to be strongly
correlated. A practical consequence of burstiness and heavy-tailed and correlated arrivals is
difficulty in capacity planning.

Burstiness and wide-ranging hit rates are among the most obvious workload pattern
complexities that affect Web site performance and availability. In traditional models, requests
are independent and the variance in the burst sizes are relatively small. These distributions
belong to the class of light-tailed distributions. The burstiness of a HVWS yields heavy-tailed
distributions and a strong dependence structure. This is illustrated by the traffic patterns from
the 1998 Nagano Olympic games, as shown in Figure 4-4. Such bursts of requests are
triggered by some special event, for example, in this case when Japan won the Gold medal
for ski jumping in Nagano. Contrast the heavy-tailed distribution from Asia with the light-tailed
distribution on the same day from Europe. Further, note the dependence structure from day to
day, as well as within each day, at both locations.

User
request
classes

HVWS
workload
patterns

Publish/subscribe
Online shopping
Customer
self-service
Trading
Business-to-business

Enter
Browse
Search
Register
Select
Shopping cart
Buy
Buy confirmation
Exit
44 Best Practices for High-Volume Web Sites

Figure 4-4 Traffic patterns from Nagano Olympic Games

IBM's Wimbledon 2000 Web site also exhibited extreme bursts on its busiest day, 7 July
2000. Figure 4-5 graphs the record-breaking the site traffic on that day when peak hits per
minute reached 963,948 and peak hits per day totalled 281,605,872).

Figure 4-5 IBM's Wimbledon Web site on its record-breaking day

The foregoing nontraditional request traffic stresses the Web server. Bursty traffic with
heavy-tailed distributions degrades the performance by several orders of magnitude over
light-tailed distributions. For heavy-tailed distributions, the extremely large bursts occur
relatively more frequently than the light-tailed model. Moreover, the dependence structure
causes these bursts to occur in close proximity to each other. With such input traffic
characteristics, the performance measures, in particular, the response time, have similar
characteristics as the input traffic. This helps to explain why some sports and e-business Web

Traffic patterns
1998 Nagano Olympic Games

Asia

0

8000

16000

0 12 24

Traffic from Asia contains very large bursts, whereas traffic from Europe is much less bursty

Large traffic bursts from Asia are primarily due to strong interest in Japan for events related to ski jumping

Traffic from Europe is more scattered due to time differences and broader interests in events

Traffic from both Asia and Europe have strong dependence structures

Europe

0 12 24

0

8000

16000

Days of February 1998 Days of February 1998

Heavy
TailedHeavy-tailed

Light-tailed

Wimbledon 2000
Chapter 4. Planning for growth 45

sites are more difficult to maintain than relatively simple Web sites (for example, a university
Web site serving only static content).

With respect to SLAs, a more powerful set of servers is needed to achieve the same level of
service for heavy-tailed distributions in comparison with the case of independent light-tailed
request traffic. To guarantee good performance, we need to focus on peak traffic duration
because it is the huge bursts of requests that most degrade performance. That is why some
busy sites require more "head room" (spare capacity) to handle the volumes; for example, a
high-volume online trading site reserves spare capacity with a ratio of three to one.

Seasonality: Seasonality refers to the periodicity of the request patterns. Seasonal traffic is
most often represented by the regular daily activities of the users of a Web site. For example,
traffic to some e-trading Web sites has consistent peaks and valleys each day when the
market opens and closes. Seasonal traffic is also observed in monthly intervals, for example,
when users pay bills at the end of the month, and during designated periods, for example, the
holiday season.

Figure 4-6 shows an example of seasonal traffic from the Nagano Olympic Web site. The
figure plots the number of requests received every five minutes by all servers from Monday,
February 9th through Sunday, February 16th. While each daily cycle varies considerably, note
that each day has three peaks and that overall traffic intensity increases each weekday then
decreases on the weekend. These patterns repeated each week, demonstrating seasonal
variations that correspond to weekly cycles.

Figure 4-6 Example of seasonality demonstrated by one week from Nagano

Seasonal requests can degrade the performance of the Web server because, for the peak
duration, large batches of requests occur around the same time. The central questions are
how high is the peak and how long is the peak duration. The answers to these two questions
can have a significant impact on how powerful the Web server should be in order to handle a
specific SLA. To satisfactorily handle request traffic, the capacity of the Web server should be
close to peak request level, with some "head room" to allow for unexpected growth.
46 Best Practices for High-Volume Web Sites

Other factors that define the workload pattern include the volume of page views and
transactions, the volume and type of searches, the complexity of transactions, the volatility of
the data, and security considerations.

The rest of this section introduces techniques available to obtain the measurements you need
to complete your capacity plan.

Obtain site measurements
Each workload pattern requires specific measurements. Table 4-1 is an example of some
current measurements of an online shopping site.

Table 4-1 Online shopping site measurements

By analyzing typical user visits, it's possible to create probabilities about future user visits.
Online shoppers, for example, typically browse, may search, and occasionally buy. You can
develop various scripts to describe user visits. Tables 4-2, 4-3, and 4-4 contain samples of
scripts for online shopping, online banking, and online trading.

Table 4-2 Online shopping script

Measurement Today

Concurrent users 40,000

Hits/second 3,480

Response time in seconds 28

Pages/second 346

Pages /visit 10.6

Visits/second 32.6

Minutes/visit/user 20

Ratio of user visit type 93% browse only
6% browse/search
2% buy

Browse Home page
Choose department (static HTML)
Choose category
Choose subcategory
Choose product 1
Choose product 2
Choose department (dynamic
category display)
Choose category
Choose subcategory
Choose product 1
Choose product 2

Search Home page
Select product search
Submit keyword
Select new search
Submit keyword
Chapter 4. Planning for growth 47

Table 4-3 Online banking script

Table 4-4 Online trading script

Using the scripts and the data from your measurements, you can create what is called a
transition matrix. Figure 4-7 is an example of a transition matrix for an online shopping visit.
Viewing the sample transition matrix as it relates to the sample script above, you can easily
see the browse and search requests; the buy request occurs when the user decides to add
(to shopping bag) and pay.

Buy Home page
Select "AtHome" department
Select "Candles" category
Select "Scented" subcategory
Select "tripod candle"
Select "Add to shopping bag"
Select "Checkout"
Select "Complete order online"
Select "Charge it"

Login
Force PIN change
Main menu
Add a payee
Schedule 6 bill multi-payment
Edit a payment
Customize
Financial summary
Account details
Request a check copy
Verify check copy request
Sign-off

Login
Query position
Get quote 1
Get quote 2
Get quote 3
Get quote 4
Get quote 5
Trade - buy
Check status
Get quote 6
Get quote 7
Get quote 8
Trade - Sell
Check status
Logoff
48 Best Practices for High-Volume Web Sites

Figure 4-7 Example of a transition matrix for an online shopping visit

Step 3. Analyze trends and set performance objectives
Your workload is growing and your current metrics, no matter how good they are, must
improve, along with the capacities of the hardware and software that comprise your
infrastructure. In this step, you analyze trends to determine the characteristics of future peak
volumes, then set objectives for each metric identified in Step 2, along with any new metric
that applies to your future requirements. Table 4-5 is an example of current and projected
measurements for an online shopping site. Performance objectives are usually driven by
business objectives, for example, to improve response time to preferred customers.

Table 4-5 Projected measurements for online shopping site

The ability to accurately forecast request patterns is an important requirement of capacity
planning. Our forecasting methodology is based in part on constructing a set of
mathematical methods and models that isolate and characterize the trends,
interdependencies, seasonal effects, randomness, and other key behavior in the Web site's
request patterns. This includes, for example, the use of piece wise autoregressive moving

Measurement Today Projected

Concurrent users 40,000 100,000

Hits/second 3,480 8,700

Response time in seconds 28 < 10

Pages/second 346 865

Pages /visit 10.6 10.6

Visits/second 32.6 81.6

Minutes/visit/user 20 20

Ratio of user visit type 93% browse only
6% browse/search
2% buy

92% browse only
6% browse/search
2% buy
Chapter 4. Planning for growth 49

average (ARIMA) processes combined with heavy-tailed distributions. Figure 4-8 is an
example of a request pattern we would consider for our models; it shows the number of
requests received per second over the period of one hour at the Nagano Olympic site. The
curve fitted to these measurements is shown in the middle of the data points.

Since each of the key traffic characteristics can scale differently, we use a general set of
mathematical methods to estimate the intensity of each characteristic in future request
patterns and to scale each characteristic to its forecasted intensity. We then combine these
scaled mathematical models to characterize and predict request patterns. By using our
mathematical methods to isolate, characterize, and forecast the trends, interdependencies,
seasonal effects, randomness, and other key behavior in the request patterns, we have
developed a general methodology that provides a more accurate and effective approach for
predicting request patterns than other approaches being used today.

Figure 4-8 Requests per second over one hour during Nagano Olympics

Our methodology has proven effective in practice, having been used to predict request
patterns of actual sites over both short-term and long-term time frames. In particular, we used
our methodology to predict the peak hour request volumes for a recent sporting event Web
site hosted by IBM based on request patterns from the Web site in three previous years, as
shown in Figure 4-9, together with 95% confidence intervals. The arrows illustrate one of our
approaches, namely a first-order rate-of-change method, for estimating the traffic intensity
scaling factor from year to year. Note the exponential growth seen as you go from 1997 to
2000. We then used the forecasted scaling factor for 2000 and our methodology to scale the
peak hour traffic model from 1999 to obtain our forecasted peak hour traffic model for 2000.
Our forecasts were found to be in excellent agreement with the site's actual peak volumes.
Moreover, these methods have been applied with equal success to estimate request patterns
for upcoming seasonal events, such as the Christmas online shopping rush. We also used
our methodology to forecast request patterns over short-term time frames (days, weeks);
50 Best Practices for High-Volume Web Sites

again, our forecasts were found to be in excellent agreement with the site's actual request
patterns.

Figure 4-9 Traffic scaling for peak hours in different years

Step 4. Model your infrastructure alternatives
At this point, you are ready to determine the components needed to construct your site's
infrastructure. IBM can help you match components to the particular requirements and
objectives of your workload pattern.

The technologies IBM is developing for HVWS capacity planning rely on the three models
depicted in Figure 4-10.

 Traffic scaling for peak hours in different years

1997 1998 1999 2000

Number of hits
Confidence intervals

Year

Number
of
hits

Growth
scaling
factor
Chapter 4. Planning for growth 51

Figure 4-10 Models for HVWS capacity planning

The business model, or business usage model, defines the e-business pattern and workload
pattern. There is a user behavior model for each workload pattern. Each workload pattern
consists of several classes of user requests. The arrival patterns and routes (transition
matrices) site visitors follow for each class comprise the user behavior model. The hardware
and software resources, and the amount of each required to satisfy each class of user
requests, comprise the infrastructure model.

The infrastructure model processes browse, search, and buy transactions. The model
assumes:

� The Web site has multiple layers of machines, or tiers, each handling a particular set of
functions, such as the site depicted in Figure 4-11 (the figure does not include firewall
layers).

� A load-balancer, such as the network dispatcher, routes requests to multiple Web
front-end servers using an algorithm to distribute requests evenly among the servers.

� The front-end Web servers handle requests for static or dynamic pages.

� The Web application server processes business logic for the transactions initiated by the
request. In Figure 4-11, the account and quote servers are the application servers.

� The back-end database server handles requests for dynamic pages that involve obtaining
or updating information; such requests do not return through the load balancer.

 Models for HVWS simulator

 User Behavior

Model

Infrastructure

Model

Business and

workload

patterns

Arrival patterns

and transition

matrixes

 Business Model

Server

structure,

resource use
52 Best Practices for High-Volume Web Sites

Figure 4-11 A Web site with multiple tiers

We formulate a class of queuing networks to model multi-tier architectures in order to analyze
performance at different levels. We further derive a variety of solutions to these models under
different input traffic patterns and at different time-scales. This family of mathematical models
and solutions are general enough to abstract the underlying hardware and software details,
but detailed enough to produce meaningful performance results. We consider the queuing
system, where the resources of each tier is modeled by multiserver queues that have specific
relationships to one another. These relationships are determined through measured or
estimated workload characteristics. We then solve the performance/capacity problem against
a set of user requirements, such as the number of concurrent users, response time, or
throughput rate. We have also developed unique formulas to allow us to estimate the behavior
of the system where peak demands are significantly higher than average demand, and there
is a nonnegligible probability of accessing large amounts of data by the user. Our method is
flexible enough to model horizontal and vertical scaling, or a combination, depending on user
requirements and workload characteristics. For example, we can increase the number of Web
servers by adding another server or by adding another processor on a given server. Given the
appropriate Web site and workload data, we are then able to obtain performance estimates
from our performance models and analysis.

We have developed capacity plans for a number of IBM-hosted Web sites. Figure 4-12
depicts one such site and reflects the process of calibrating our model using current data from
the site, then developing projections based on current data, trends, and objectives. In
Figure 4-12, the first three response time curves reflect the current data used to calibrate the
model as discussed in Step 2. By analyzing current metrics and component information, we
are able to project the fourth curve.

Referring to Figure 4-12, the results show that when the request traffic is light, one front-end
server is enough to handle the load. As the traffic increases, the response time curve remains
flat until the front-end CPU reaches a utilization of 90% (2.8 million hits/hour). At this point, a
minor increase in the load can rapidly plunge the system into a situation resembling deadlock,
where the front-end server attempts to serve more and more files at slower and slower
speeds, such that few are experiencing satisfactory response times. This means that the
front-end server has become the bottleneck. We therefore need to add a front-end server,
and upon doing so, the front-end CPU utilization drops as desired. The response time curve
becomes flat until the front-end CPU again reaches a utilization of 90% (5.1 million hits/hour),

Internet

Account
Server

Account
Database
Servers

General
Ledger
Database
Servers

Web
Presentation

Servers

E
d

g
e

S
er

ve
rs

Quote
Server

Intranets

Extranets

Example of a multi-tiered infrastructure

Front
tier

Middle
tier

Back
tier
Chapter 4. Planning for growth 53

when we need to consider adding another front-end server. The back-end server becomes
the bottleneck only after about 15 front-end servers are handling around 28 million hits/hour.

Figure 4-12 Scaling a WebSphere Commerce Web site

Figure 4-13 is a sample of a graph we produce when analyzing performance objectives
against specific hardware and software components.

Scaling a WebSphere Commerce Suite Web site

500K 5M 10M 15M 20M 25M 30M

4

5

6

7

8

9

10

11

Response
Time

(seconds)

WS = 1 WS = 2 WS = 6 WS = 15

WS = Web Servers

2.8M 5.1M 12.8M 28.0M

Hits/Hour
54 Best Practices for High-Volume Web Sites

Figure 4-13 Sample graph showing components of performance
Chapter 4. Planning for growth 55

Summary
The challenge of effective capacity planning for high-volume Web sites is an awesome one,
but not insurmountable. The methodology suggested offers a road map toward understanding
your workload pattern and current metrics, analyzing trends and setting objectives for the
future, and, finally, selecting the IT infrastructure components needed to meet your
performance objectives. The ability to analyze your site's requirements in the context of your
particular workload pattern can contribute greatly to making the right selections. IBM's HVWS
team is available to assist you in the application of these steps and the development of
appropriate models for your environment. And IBM's WebSphere and MQSeries products, as
evidenced by their extraordinary performance at the Sydney Olympics, are significant parts of
IBM's solution for rapidly growing e-business infrastructures.

Of course, the subject of capacity planning is an ongoing study. Increasingly valuable
information is available, as well as exciting new offerings from IBM, such as the Capacity
Advantage tool and "capacity on demand" options that will greatly enhance the ability to
respond to traffic growth. With an eye toward discovering and documenting modern design
practices that allow ever greater capacities and scalability, IBM's HVWS group is refining its
methodology, developing tools that embody that methodology, fine tuning its mathematical
methods, and looking at the additional challenges presented by such areas as network
caching and the fast-growing business-to-business workloads. The promise remains great,
however, of meeting future needs while planning effectively and reducing costs.
56 Best Practices for High-Volume Web Sites

References
See the following at the High Volume Web Sites Web page:

http://www.ibm.com/websphere/developer/zones/hvws

– IBM High-Volume Web Sites, Design for Scalability, December 1999

– IBM High-Volume Web Sites, Web Site Personalization, February 2000

– IBM High-Volume Web Sites, Design Pages for Performance, May 2000

A.K. Iyengar, M.S. Squillante, L. Zhang. Analysis and characterization of large-scale web
server access patterns and performance. World Wide Web, Vol. 2, 1999.

W.N. Mills, M.S. Squillante, C.H. Xia, Li. Zhang. Web workload service requirement analysis:
A queueing network approach. IBM Research Report, 2000.

Z. Liu, N. Niclausse, C. Jalpa-Villanueva. “Web traffic modeling and performance comparison
between HTTP1.0 and HTTP1.1”, System Performance Evaluation: Methodologies and
implications, pp. 177-189, 2000.

M.S. Squillante, D.D. Yao, L. Zhang. “Internet traffic: Periodicity, tail behavior and
performance implications”, System Performance Evaluation: Methodologies and Applications,
pp. 23-37, 2000.

M.S. Squillante, D.D. Yao, L. Zhang. Web traffic modeling and web server performance
analysis. IEEE Conference on Decision and Control, December 1999.

D. A. Menasce and V. A. F. Almeida. Capacity Planning for Web Performance: Metrics,
Models, and Methods, Prentice Hall, 1998.

D.A. Menace and V.A.F. Almeida. Scaling for E-Business: Technologies, Models,
Performance, and Capacity Planning, Prentice Hall, 2000.
Chapter 4. Planning for growth 57

http://www.ibm.com/websphere/developer/zones/hvws

58 Best Practices for High-Volume Web Sites

Chapter 5. Maximizing Web site availability

What happens when your Web site is down? At the least, your site's users become idle, your
staff goes into crisis mode, and everyone's productivity decreases. At the worst, the users are
your customers and they go somewhere else to buy the product or service your company
offers. Depending on how long the site is down, customer satisfaction and revenue are
diminished, and the reputation of your IT organization, if not your company, is damaged. It's
not a good place to be. That's why availability is such an important aspect of managing a
successful e-business Web site.

This chapter reviews availability concepts, all of which are well known to IT professionals.
Given the increasing complexities of managing e-business infrastructures and the increasing
intolerance for any outages, the chapter stresses that the basic concepts and practices of
availability are more important than ever. It also reviews practices specifically related to
e-business infrastructures; understanding and applying these practices appropriately can
improve your availability statistics and help you achieve your target of continuous availability.

5

© Copyright IBM Corp. 2002. All rights reserved. 59

Introduction
IT professionals have been designing systems for high availability for a long time. Most of
these systems were implemented in highly structured and controlled environments. With the
advent of the Internet and e-business, you now have potentially millions of users, all around
the world, operating at all times, and using client/server connections that are not under the
control of your IT organization. We are in an era when IT and information do more than simply
support a business; they provide businesses a competitive edge in the marketplace. Small
outages, tolerated just a few years ago, can now mean significant losses of revenue, which
can be quantified, as well as lost opportunities for future business. e-business, globalization,
industry consolidation, merger mania, and server consolidation are the forces setting new
standards for availability.

Today's high volume e-business Web sites require the highest possible availability to ensure
they achieve their business goals for customer satisfaction, repeat business, and profitability.
Large e-business Web sites consist of several tiers of servers, each of which have unique
availability characteristics and represent possible points of failure. This increases the
challenge IT faces in providing a continuously available Web site. Highly available systems
are necessary to support corporate strategies and provide a competitive advantage.
Increasingly, e-business sites are demanding continuous availability. No time for planned
outages and certainly no time for unplanned outages is fast becoming the norm. The luxury of
having a window of time to perform system backups has vanished, along with the idea that
one can risk the possibility of an unplanned outage. In the increasingly seamless world of
e-business, customer relationship management, and supply chain management, where
financial transactions depend on a chain of events, no link in the availability chain can be
broken and certainly, the central engine of commerce, the server, cannot be down. The
corporate strategy demands 7/24 availability of service and IT must support this corporate
strategy.

Figure 5-2 shows that a focus on availability is appropriate during all phases. This chapter
reviews availability concepts and techniques pertinent to high volume Web sites. IBM
recognizes that the complexities of e-business infrastructures make the basics of managing
availability more important than ever.

Availability concepts and costs
This section discusses availability, high availability, and continuous availability.

Availability > high availability > continuous availability
In IT, a system, application, or component that can be used is considered to be available.
Availability is the measurement of the time the element is out of use, that is, experiencing an
outage. Availability is usually expressed as a percentage of time the element is not out of
service; the availability measure is calculated by subtracting the duration of the outage from
the base time and dividing the results by the base. High availability is the term usually
associated with the ability to run for extended periods of time with minimal or no unplanned
outage. In measurement terms, high availability is frequently considered to be 99.99% or
greater. When looking at measurements of system availability, it is important to consider the
context of that measurement. For example, a “5 nines” operating system/hardware
combination does not mean that your systems will now only have five minutes of downtime in
a year. Instead, this means that the operating system and associated hardware can achieve
this. An entire system must take into account the network, software failures, human error, and
a myriad of other factors. Thus, speaking of availability without a context does not necessarily
have enough meaning.
60 Best Practices for High-Volume Web Sites

Continuous availability is the ability to provide high levels of availability all day every day
(24/7/365) with minimal planned or unplanned disruptions due to maintenance, upgrades, or
failures. Figure 5-1 shows that no unplanned outages, yielding high availability, and no
planned outages, yielding continuous operations, can combine to approach continuous
availability.

Figure 5-1 Continuous availability

Availability is best understood from the perspective of those who visit and use your Web site.
From that perspective, three elements of an outage reduce availability: frequency, duration,
and scope (the number of users affected). As you identify and implement availability
improvements, you must understand what is contributing to the frequency, duration, and
scope of your outages.

How long is an outage really? As a point of reference, here's how availability measures
translate into actual time lost as shown in Table 5-1:

Table 5-1 Availability versus actual time lost

To provide continuous availability, every element of your infrastructure must support
continuous availability. The level of service delivered to your customers can be no higher than
the availability of the weakest link. Improving one element to deliver near 100% availability
while ignoring other elements does not provide as much benefit to your customer as a more
balanced approach. Figure 5-2 shows an e-business infrastructure comprised of many
elements with various availability measures.

Measure Time lost per year

99.9999% 32 seconds

99.999% 5 minutes

99.99% 53 minutes

99.9% 8.8 hours

99% 87 hours (3.6 days)

90% 876 hours (36 days)

High Availability
The characteristic of a system that
delivers an acceptable or agreed-to
high level of service to "end-users"
during scheduled periods.

Continuous Availability
The characteristic of a system that
delivers an acceptable or agreed-to high
level of service at any time of the day on
any day of the year.

Continuous Operations
The characteristic of a system that
allows an "end-user" to access the
system at any time of the day on any
day of the year (24/7/365).

No Unplanned Outages
Fault avoidance
Fault tolerance
Environmental independence
Failure-proof applications
Fast recovery and restart

No Planned Outages
Nondisruptive changes
Nondisruptive maintenance
Continuous applications

=

Chapter 5. Maximizing Web site availability 61

Figure 5-2 e-business infrastructure with availability measures

The total availability of an infrastructure is calculated by multiplying the availability of each
component, for example, 98.5% x 98.5% x 99.5% etc. It's great that many elements have
pretty high availability, but the fact that some have considerably less and that the overall
availability of the infrastructure is just 87%, suggests that a more balanced design would
provide better total availability.

Unavailability is expensive
Outages, poor performance, and scheduled interruptions affect business opportunities, costs,
and customer satisfaction. Outages bring tremendous costs to the business in the form of
productivity losses in IT and the business units, lost revenue, and other penalties.

The cost of an outage is the sum of:

Productivity of affected users = hourly cost of affected users X hours of disruption

+Lost IT productivity = hourly cost of affected staff X hours of lost productivity

+Impact to customer service

+Lost revenue = lost revenue per hour X hours of outage

+Other business losses incurred

Overtime payments = hourly wages X overtime hours

+ Wasted goods

+ Financial penalties or fines

Typically, lost revenue represents the greatest financial exposure, but can be the most difficult
to quantify.

Continuous availability is expensive
Availability is not free. It takes hard work and serious management attention to integrate many
diverse components, people, and processes into a stable, highly available system. High
availability starts with reliable products. Today's products are reliable and are capable of
delivering high levels of availability, but reliable products alone will not assure high quality
service. Very high levels of availability rely on an infrastructure and application design that
includes availability techniques and careful system integration. A lack of, or failure to follow,
careful management and effective systems management procedures, is actually the most

Availability 98.5% 98.5% 99.5% 98.1% 99.6% 97.3%

Availability 97.4% 98.3% 99.9% 99.8% 99.6% 99.7%

Browser ISP Network Switch /
Router Load Balancer Firewall

HTTP Server Firewall
Web

Application
Server

Distributed
Data Base

Server

SNA WAN-
Gateway

Host
CICS / DB

Total site availability including all components: 87 %
62 Best Practices for High-Volume Web Sites

common cause of outages. Change management, in particular, needs more emphasis.
Effective management systems that employ defined and repeatable processes contribute
significantly to higher levels of availability while, in the long run, actually decreasing the cost
of IT services through more effective and efficient use of IT resources.

Making trade-offs
While highly available systems are desirable, an optimum balance between the costs of
availability solutions and the costs of unavailability is usually required. Factoring in the
intangible consequences of an outage adds to the requirement to invest in very high levels of
availability. Figure 5-3 suggests how to analyze the trade-offs between the costs and
consequences of an outage.

Figure 5-3 Trade-offs between costs and consequences of an outage

Figure 5-4 has a view of how this balance applies to different HVWS workloads and when the
investment in availability could reach the point of diminishing returns. Each workload shown
has a different cost to its business for each outage. Accordingly, each workload invests in
availability in proportion to its outage costs. You can see that high availability becomes
increasingly expensive as you approach 100%. The online broker, for example, will probably
invest more than a marketing information site, but even its investment is eventually limited.

Availability Strategy

Continuous
Availability

Consequences
Enterprise demise

Legal

Business strategy

Image

Personnel morale

Penalties

Cost of an outage
Lost revenue

Lost user productivity

Lost IT productivity

Overtime payments

Wasted goods

Fines

High
Availability

Four Nines
(99.99%)

Availability

Loss
due to

unavailability

Cost
of

availability

Special
solutions

High
availability
design

Effective
processes

Standard
prroducts
Chapter 5. Maximizing Web site availability 63

Figure 5-4 Investments in availability vary by workload pattern

On the way to continuous availability
This section introduces, at a high level, the factors that get in the way of achieving availability
objectives and the common techniques used to improve availability. It concludes with a more
detailed discussion of some of the improvement techniques. Of course, skilled employees are
essential to achieving continuous availability. Your employees must be trained on the
products, tools, and processes they use and/or support.

Common inhibitors
This list identifies the characteristics of your IT operation that may be contributing to outages
and unsatisfactory availability. Your IT operation would be the exception if it didn't suffer at
least one of these characteristics:

� IT focus is on component availability and tools rather than the users' perception of
availability and processes to manage end-to-end availability

� At least one of the following could be considered insufficient:

– Management focus

– Long range planning

– Change management

– Problem analysis/management

– Trained personnel

– Process definition and repeatability

� Application design practices lag business availability requirements

� Failure to exploit availability features of current products

The Web environment introduces additional inhibitors that require at least understanding, if
not proactive management to optimize for availability: ISP availability, client affinity, content
management, DNS servers, and systems management. Most Web sites also face the
challenge of an unpredictable workload. Sudden bursts of requests can exceed a site's

0% 100%

$

Availability

Invested in high
availability

Online trading
Total cost of outage

Online trading
invests to here

Online shopping
Total cost of outage

Publish/subscribe
Total cost of
outage

Online shopping
invests to here

Publish/subscribe
invests to here
64 Best Practices for High-Volume Web Sites

capacity and, at the least, increase the response time, sometimes dramatically, or, at the
worst, cause the site to crash. Our HVWS white paper, Planning for Growth, describes
workload burstiness and strategies to plan for it.

Management focus is required to significantly improve availability. There are many alternative
solutions; the challenge is to understand the problems and customize the approaches to
develop a solution.

Common techniques
This section introduces management and technical techniques you can use to reduce the
number, duration, and scope of outages. Improvements can result from implementing any
one, or any combination. High availability requires a balanced approach to implementing all.

Design your applications to enhance availability Application design must be mindful of
objectives for continuous availability.

Assure your IT processes promote availability Effective systems management processes
or management systems are necessary to proactively prevent problems, minimize risk
associated with changes, and restore service quickly and efficiently.

Design your infrastructure for availability The primary characteristics of your infrastructure
that can contribute to high availability are reliable components, redundancy of components
and data, products with built-in availability functions and features, and automation.

The rest of this section discusses these techniques in more detail. Again, because of the
complexities of the e-business environment, understanding and attending to these basics are
more important than ever. Making the right choices in the design and management of your
applications, your IT processes, and your e-business infrastructure will pay significant
dividends in improved availability.

Design your applications to enhance availability
For an e-business Web site, the focus of application design must include the requirements of
the customers for performance, availability, and reliability. Availability requirements must
share the forefront of application design. Existing applications and processes may need to be
redesigned with these increased requirements in mind. The consequences of ignoring or
minimizing the requirement can no longer be tolerated.

IBM suggests your process for designing applications be enhanced to meet the availability
requirement:

� Educate your designers and developers about customer requirements and the cost of an
outage.

� Include availability objectives in application design; involve availability experts early.

� Exploit availability features of current products; maintain installed products at current
levels.

� Select components that have characteristics suitable for the negotiated availability
requirement.

� Consider data access and data maintenance.
Chapter 5. Maximizing Web site availability 65

� Design to keep the scope of failure small:

– Minimize impact to other components

– Isolate and contain important functions such as the session engine and databases

– Provide selective redundancy for those functions that have broad impact to the rest of
the system (for example, directories and databases)

� Design application recovery and initialization processes to be fast and easy on everybody
(customers, operators, administrators).

� Seek alternatives to applications that require planned outages.

� Design batch processes that do not affect online applications.

� Employ standard processes and procedures to help improve communications and reduce
the likelihood of errors. Naming conventions, for example, help reduce errors and can also
provide a built-in check during changes and other activities.

� Acquire monitoring and problem determination tools that are robust and easy to use.
Implement application-level monitoring as appropriate.

Robust testing is necessary to ensure conformance to availability design specifications and to
validate that a component is ready to be introduced into the production environment. A
complete end-to-end system is a unique integration of many diverse hardware components,
software systems, subsystems, applications, network, servers, and access devices
assembled from various vendors and suppliers. Documentation, procedures, and numerous
support organizations are also involved in delivering quality service. These must be tested
together in a system test or they will be tested for the first time in production with possibly
disastrous consequences.

Assure your IT processes promote availability
Your availability measures are true indicators of the scope and effectiveness of your IT
processes. In the large e-business infrastructures we work with, the presence of thorough,
well-understood, and well-managed processes remain a key factor in site availability. Sadly, it
often takes an unplanned outage to put the spotlight on insufficient processes.

IBM suggests you review your IT processes to be sure that the availability requirement is
reflected:

� Ensure IT vision includes availability; many organizations will contribute to the success of
your vision; assure each understands the significance of an end-to-end approach and of
an inclusive, efficient process of communicating among organizations

� Create, maintain and manage the availability strategy and plan

� Establish target objectives

� Monitor service level achievements

� Monitor end-user availability, identify availability issues, and follow up

� Sensitize the organization to the value of availability and lead your IT operation to a
proactive environment

� Assess current state and identify gaps

� Monitor and guide these related and dependent processes for availability considerations:

– Problem management

– Change management

– Recovery management

– Capacity management, including planning for traffic bursts
66 Best Practices for High-Volume Web Sites

– Configuration management

– Design, development, and deployment processes (phase reviews, availability
guidelines)

– Testing

� Ensure architecture and design includes availability objectives and features

Web-based applications often span a number of different resources, from the front-end to
back-end legacy systems. It is critical to have a systems management solution that can
consistently manage and secure the total environment. There are many management
products that function well to address individual resources. However, if Web site availability is
critically important, a complete end-to-end solution can best meet your requirements. A
solution from Tivoli can address each of the following critical areas.

Manage availability from the end-user's perspective. Any systems management solution
for improving Web site availability should begin with the end goal in mind. The experience of
the actual end-user accessing your Web site should be monitored regularly. If the user
experience begins to fall below what is considered acceptable, administrators must be
notified and corrective action taken immediately.

Availability in this context refers to not only the traditional definition of ensuring that a user
does not encounter Page Not Found (404) errors, but also two broader factors:

1. Users must be able to get online and be productive quickly, for example, by automating the
process of signing up users and enabling their access to appropriate resources, after
which the e-business is available to them

2. When users are online, the content delivered to them meets predetermined performance
guidelines, for example, considering the time it takes for a user to access pages on the
Web site. Users perceive slow sites to be unavailable.

Consider the end-to-end business process view. Resources must be managed in the
context of a business process. Ensuring Web site availability is based on several different
resources acting together as an end-to-end system. An advanced systems management
product provides the topology view of the resources that make the business processes
associated with a given Web site. This allows administrators to understand the impact of any
one resource on the Web site and ultimately allow administrators to prioritize their actions
based on real business needs.

Ensure availability through consistent policy compliance. A leading inhibitor to
availability is unexpected downtime from security breaches, which are typically caused by
inconsistent application of a security and privacy policy across the entire application and
platform stack. Because application developers, IT security administrators, and IT operations
groups usually manually administer security and privacy policies across only the resources
that they directly manage, simple policy actions such as adding or deleting customers (or
employees or partners) often result in inconsistent levels of access being set across the
infrastructure. The ability to set the security and privacy policy once, and have that policy
consistently and immediately applied across the entire e-business stack, is a critical success
factor for availability.

Monitor availability for all critical infrastructure resources. If it is determined that the user
experience has started to deteriorate, systems administrators must have tools to understand
the health of the secure, critical infrastructure on which your Web site is built. This
infrastructure includes all the resources that have a part in the site's availability. In a
WebSphere environment, this should include front-end resources such as Web servers, the
WebSphere Application Server, messaging software such as MQ Series, as well as the
back-end legacy applications that might reside on zSeries and other platforms. The entire
Chapter 5. Maximizing Web site availability 67

stack should be considered across these resources, including the hardware, operating
systems, network security devices, middleware, and the applications themselves.

Ensure optimal configuration of your system resources. Tools are available to configure
and deploy software and upgrades thereto across your infrastructure. This assures that
designated components are equipped with the same level of software and avoids outages
that result from incompatibilities.

Automate workload scheduling across your infrastructure. Tools are available to
automate tasks and/or series of tasks. This assures that tasks are completed when and
where required and avoids outages that result from missed steps.

Capture and make use of historical management data. A thorough systems management
solution captures a considerable amount of data from a variety of perspectives as outlined
above. Not only is this data important for understanding and ensuring the real-time availability
of your Web site, but it also serves as valuable input for historical reporting applications. Such
applications should include functions such as service level management, capacity planning,
and security audit compliance. Ideally all the management data captured should be sent to a
common data warehouse so that customers may compare and correlate as required from the
variety of sources available. Such an approach will allow you to discover trends and plan for
sufficient capacity to maximize high Web site availability as your needs change over time.

Design your infrastructure for availability
The typical e-business Web site has an infrastructure comprised of several tiers from the
firewall(s) to data/transaction server(s). There are usually two or three, less commonly four
core tiers that handle a particular set of functions, such as serving content (Web servers),
providing integration business logic (Web application servers), and processing database
transactions (transaction and database servers). A multi-tiered infrastructure inherently
contributes to availability by segregating functions and simplifying communications among
components of the infrastructure.

Reliable components are key to availability. Hardware components can fail and software
quality varies from release to release, making other techniques for high availability equally
important. Availability functions and features are built in to most products. Some features are
automatic and are effective by default, but others require exploitation and tuning. Effective
installation, implementation, tuning, education, and documentation processes are imperative
to be sure full advantage is realized from these features.

Redundancy is a primary and well-understood means of achieving high availability --
redundant components, redundant systems, redundant data, and even redundant people.
Redundancy works by eliminating single points of failure. There are many approaches and
levels of redundancy, each with different cost and effectiveness trade-offs. Figure 5-5
provides an example of a multi-tier system with redundancy built-in to each layer to provide
high-availability.
68 Best Practices for High-Volume Web Sites

Figure 5-5 Multi-tier infrastructure designed for high availability

Automation is critical to continuous availability. Time lost during a failover to back-up
diminishes availability. Automation is necessary to reduce or eliminate human intervention
during recovery. Automation also introduces consistent execution and reduces the probability
of human error.

This section reviews techniques that can improve the availability of your overall site
infrastructure as well as that of specific site components. It presumes you seek reliable
components with built-in availability features and employ them as soon as and as much as
possible. It concludes with techniques for those complex infrastructures that use more than
one physical site.

Create hardware and software clusters / implement load balancing
A cluster (either hardware or software) provides the infrastructure to allow higher availability
and scalability of any given component. The basic tenant is to provide a common addressing
scheme to various underlying components. For example, a load balancer/IP sprayer provides
a single IP address/name for a group of servers. The load balancer/IP sprayer routes
requests to the appropriate server within the cluster. End users only need to address their
requests to the published IP resource; the load balancer determines which server should
handle the request. The load balancer should also be able to determine when a server in its
cluster is functioning (or not), and route requests only to functioning servers. This provides
greater availability for the given resource. A second benefit is the ability to add (and subtract)
servers from the cluster, which allows the cluster to scale to meet end user demands for the
service. Clustering can be implemented in each tier to the extent needed to optimize for
availability. When clusters are used, load balancing techniques are used to dynamically
manage site traffic. Specific load balancing components are often used to distribute network
traffic across the servers based on criteria such as load equalization, server utilization, and/or
application affinity.

Business Logic
/ Object Svr

Marketing
HTTP Server

Research
HTTP Server

Order HTTP
Server

DMZ Internal (Trusted) Network

Outer
Firewall

WAN Load
Balancer

Client

Order HTTP
Server

Inner
Firewall

Business
Transaction

Server

Database
Server

Backend
Service
Provider

Database
Server

Research
HTTP Server

Marketing
HTTP Server

LAN Load
Balancer

Marketing
HTTP Server

Research
HTTP Server

Order HTTP
ServerOuter

Firewall
Order HTTP

Server
Inner

Firewall

Research
HTTP Server

Marketing
HTTP Server

LAN Load
Balancer

Business Logic
/ Object Svr
Business

Transaction
Server

Cross Site
Synchronization

Note: network appliances such as routers have been removed for clarity.

Internet

External (Untrusted) Network

Orders
Chapter 5. Maximizing Web site availability 69

Typically, redundancy is implemented by installing one or more components that are identical
to the primary component. Each component has different availability probabilities; how you
combine them is key to the overall environment availability.

When redundancy is applied to components with a high probability of failure, for example, the
Web server, the overall availability for the aggregate of redundant components increases.
Depending on the component's function, there are specific considerations regarding
redundancy and load balancing. Table 5-2 summarizes considerations for specific
components.

Table 5-2 Components for consideration

WebSphere considerations The WebSphere Application Server is architected to provide
clustering. With prudent planning and deployment, the WebSphere runtime (and your
applications) can be made highly available. When planning for high availability with
WebSphere, consider redundancy for the components listed in Table 5-2. Give special
consideration to:

� WebSphere Application Server (both Web container and EJB container)

� WebSphere Administration Server (security, naming (bootstrap and name server), location
service daemon, workload management, serious event log, transaction log)

� The database containing the WebSphere Administration Server; configure this database
server with a hardware-based solution such as high availability cluster multi-processing
(HACMP).

Component Consideration for redundancy and load balancing

Exterior connectivity Multiple Internet service providers (ISPs) assure that an ISP failure does not make
your site unavailable

Domain name server (DNS) Use one primary and any number of backup DNSs. A DNS supports multiple sites
by passing a different IP address every time it is queried with a name (DNS round
robin selection).

Load balancer Implement a backup load balancer. The backup would be a similarly configured
load balancer that has a heartbeat with the primary; if the primary load balancer
fails, the backup initiates a take over function. This feature is available in most load
balancers and has been implemented by the WebSphere Edge Server.

External cache Implement redundant caches in parallel with a load balancer to distribute the load.
In a reverse proxy scenario, this increases availability of the Web servers.

Firewall Implement redundant firewalls, load-balanced to give the appearance of being
available. Because the connections through a firewall tend to be longer (socket
connections versus HTTP), the load-balancing decision needs to be made when the
session is initiated and kept during the whole session.

Web server and application
server

Implement redundant servers, load-balanced to give greater availability. Each
server should be able to handle identically any request. If a shopping cart is being
used, some sort of persistent store is needed. If the server doesn't have the user's
state cached, it must get it from the persistent store.

Directory and security server Implement redundant servers, load-balanced to give the appearance of being
available for read only operations. For write operations, use a primary server and
replicate changes to the backup machines.

Databases Implement physical or logical failover and recovery schemes for application,
administration, and session databases.

Physical connections between
servers

Implement redundancy of the physical connections.
70 Best Practices for High-Volume Web Sites

Figure 5-6 shows a minimal topology for a highly available WebSphere configuration. For
more information, refer to the paper Failover and Recovery in WebSphere Application Server
Advanced Edition 4.0.

Figure 5-6 Minimum topology for a highly available WebSphere configuration

Consider WebSphere Edge Server for Multiplatforms
WebSphere Edge Server for Multiplatforms is Web infrastructure software that addresses the
scalability, reliability, and performance needs of e-business applications in local and
geographically distributed environments. Its functions incorporate robust, leading-edge
caching and load balancing that together compensate for the inherent weakness of the
Internet to support critical business applications and expectations.

Network Dispatcher (ND) is the load balancing component of the WebSphere Edge Server. It
is a software based solution that provides dynamic load balancing across multiple servers,
groups of servers, and geographic locations in a highly scalable, highly available fashion. As a
software solution, it is highly adaptable to an enterprises' particular needs. ND dynamically
balances not only HTTP traffic, but SSL and FTP as well (which can be major components of
a Web site's usage pattern). Through its use of advisors (Java code that executes from a
client's view of the Web site), ND can detect the status of servers beyond the first tier of HTTP
servers. It has the ability to follow a code path through the HTTP server, to the application
servers, and through to the back-end database servers. If it detects that the resources on
which the HTTP servers depend are having problems, it routes traffic around those HTTP
servers, thus providing a better end use experience of the Web site. Built into ND is a high
availability feature that involves the use of a secondary machine that monitors the main, or
primary, machine and stands by to take over the task of load balancing should the primary
machine fail. This rapid takeover maintains the open connections that have been created on
the primary ND. This technology (ND) has been used to power some of the busiest sites in
Internet history. The Olympic Web sites, Wimbledon and U.S. Open Web sites, and many
others, which were processing millions of hits an hour, have all been powered with ND
providing the dynamic load balancing.

Database(s)

Admin
ServerHTTP

HTTP

Network
Dispatcher

WAS
App
WAS
App
WAS
App

WAS
App
WAS
App
WAS
App

HA with
WebSphere
Edge Server
or hardware
clustering

Network
Dispatcher
(standby)

HA with
HTTP
server plug-in

HA with
EJB WLM

HA with
hardware
clustering
or software
clustering

Admin
Server

Internet

Firewall

HA with
hardware
clustering

LDAP

HA with
hardware
clustering
Chapter 5. Maximizing Web site availability 71

Web Traffic Express is the web caching/proxy server portion of WebSphere Edge Server. A
caching proxy server is useful for enterprises wishing to enhance the Web experience for
people visiting their Web sites, because it pushes the content closer to the end users, thus
giving them faster response. With the latest release of the Edge Server (Version 2.0), the
ability to store static content (as traditional caching proxies do), has been augmented by the
ability to actually execute application software on the caching proxy. This functionality not only
allows for increased availability (now there are more servers that can handle the requests),
but also adds scalability to the Web site (because the back-end servers are handling fewer
requests).

Consider availability while implementing connectors
The IBM WebSphere MQ family provides an open, scalable, industrial-strength messaging
and information infrastructure, enabling enterprises and beyond to integrate business
processes. MQSeries provides asynchronous messaging, thereby enabling connections
among multiple systems. The central issue in availability is that, when possible, messages
can take alternate routes through the MQSeries infrastructure and not be delayed for longer
than necessary where alternate routing is not possible. The availability of an MQ solution can
be increased by hardware clustering, software clustering, queue sharing, and fault tolerant
operating systems. These techniques provide failover, simultaneous access, or hardware
redundancy to maximize the availability of even a single queue. Software clustering and
queue sharing exploit multiple queue managers to achieve higher availability.

Connection pooling is an application-server concept used to minimize the amount of
resources used for connections to database and transaction servers. If the resources
required to support a particular connection, here called a connection agent or simply agent,
are relatively large, it makes sense to maintain an agent for only the active connections.
Further, if it is relatively expensive in terms of processing to construct and destroy an agent, it
also makes sense to keep some around for immediate assignment to connections that make
the transition from inactive to active. In this technique, when a connection transitions from
active to inactive, its agent is “cleaned up” and placed in the pool of such agents ready to be
assigned to connections that become active. This ready pool of agents is the connection pool.
Connection pooling can be used by any type of server to reduce the cost of supporting
connections going from inactive to active to inactive. Your infrastructure should include a
mechanism to recover the connection pool from a disruption of service to the database
server. WebSphere Application Server includes such a mechanism.

Protect your data from accidental loss, viruses, and disasters
It is critical to protect and manage your mission-critical business data, by implementing a
centralized enterprise backup, archive and disaster recovery solution over a storage area
network (SAN) and/or traditional network environment. A solution like Tivoli Storage Manager
can enable you to restore and recover files, directories, file systems, databases, or entire
computers after the accidental deletion of a document, virus infection, hardware failure or
theft, or destruction of your IT center due to some sort of disaster.

While many companies place special demands on their storage management software,
fundamental expectations apply across all environments. These expectations are that storage
management software provides:

� High data availability

� Backups that have limited impact on systems in use

� Rapid, easily available, and completely reliable data recovery

� Clear and precise disaster recovery capability to aid in a disaster
72 Best Practices for High-Volume Web Sites

The relative importance of these items varies among companies, but all need to appear in a
company's assessment of its own efficiency of operation.

SANs change how data is accessed and increases availability
A SAN is a dedicated, centrally managed, secure information infrastructure, which enables an
any-to-any interconnection of servers and storage systems. A SAN:

� Facilitates universal access and sharing of resources.

� Supports unpredictable, explosive information technology (IT) growth.

� Provides affordable 24 x 365 availability.

� Simplifies and centralizes resource management.

� Improves information protection and disaster tolerance.

� Enhances security and data integrity of new computing architectures.

SANs are based on a systematic approach to data storage management pioneered by IBM
almost 30 years ago. Now SANs are rapidly being integrated into distributed network
environments using fiber channel technology. SANs improve availability because of their
abilities to dynamically reconfigure storage environment to handle increasing capacity
requirements or to recover from hardware failure, and to share a single copy of data among
multiple host servers. Their enhanced copy functions facilitate the "cloning" of servers locally
or in geographically dispersed sites.

Multiple physical sites to protect against the effect of disasters
For customers who require very high availability and reliability from their e-business Web
sites, locating the Web servers in multiple geographically-dispersed sites protects against
potentially catastrophic events such as:

� Complete power failure of computer complex

� Loss of network connectivity due to failure at network service provider premise

� Overloading of network capacity at a single site due to demand peaks or denial of service
attacks

� Physical disasters

Properly implemented, a multisite front end has significant benefits:

� High availability/reliability

� Load balancing of network traffic between sites

� Potential for "smart" caching functions

At the same time, it adds another level of complexity to the overall Web solution in trying to
balance the network traffic among the sites and provide seamless redundancy. A plan for a
multisite implementation must include a strategy for failover and load balancing. The loads at
each site must be managed so that sufficient capacity is available if an event requires a site to
assume the load of a failed site.
Chapter 5. Maximizing Web site availability 73

Summary
Today's high volume e-business Web sites require the highest possible availability.
Increasingly, e-business sites are demanding continuous availability. No link in the availability
chain can be broken and the central engine of commerce, the server, cannot be down. Many
corporate strategies demand 7/24/365 availability of service and the IT organizations must
support this strategy.

As with nearly all the traditional IT challenges -- design, performance, capacity planning -- the
availability challenge hasn't necessarily gotten any easier in the e-business world. We learn
again that the fundamentals are as important as ever. And we learn of new and improved
products and techniques that can help address the constant challenges. These best practices
can contribute to your availability objectives:

� Design your application to enhance availability

� Assure your IT processes promote availability

� Design your infrastructure for availability

Availability is a discipline, it is a technology, it is a corporate culture. It involves systems
management, application design, even organizational structure and above all, a commitment
from the IT organization and the business to make it a focus. There is no free lunch. In this
chapter, our objective has been to help you understand how you can achieve world class
results and to arm you with knowledge so you are the informed decision maker in this critical
area of IT management.
74 Best Practices for High-Volume Web Sites

References
Failover and Recovery in WebSphere Application Server Advanced Edition 4.0. See:

http://www7.software.ibm.com/vadd-bin/ftpdl?1/vadc/wsdd/pdf/modjeski.pdf

So You Want to Estimate the Value of Availability, IBM publication GG22-9318

See the following IBM Redbooks at:

http://www.ibm.com/redbooks

WebSphere Edge Server: Working with Web Traffic Express and Network Dispatcher,
SG24-6172-00

WebSphere on RS/6000 SP and Clusters Centralized Management and Monitoring,
SG24-6037-00

Roadmap to Availability on the iSeries 400, REDP0501

Carnegie Mellon Software Engineering Institute at:

http://www.sei.cmu.edu
Chapter 5. Maximizing Web site availability 75

http://www7.software.ibm.com/vadd-bin/ftpdl?1/vadc/wsdd/pdf/modjeski.pdf
http://www.ibm.com/redbooks
http://www.sei.cmu.edu

76 Best Practices for High-Volume Web Sites

Part 2 Customer
engagements

Part 2 describes customer engagements that characterize the type of work the High-Volume
Web Sites team performs for its customers.

Part 2
© Copyright IBM Corp. 2002. All rights reserved. 77

78 Best Practices for High-Volume Web Sites

Chapter 6. Managing Web site performance

As more of your company's business moves to the Internet, your IT organization is becoming
a major focal point for such important business measures as revenue and customer
satisfaction. You're enjoying unprecedented visibility, and it may not all be positive. If it hasn't
already, the performance of your Web site will become critically important.

This chapter deals with managing performance. More than ever before, this task requires a
perspective that considers components of the infrastructure from end-to-end: from the
front-end browsers to the back-end database servers and legacy systems. The end-to-end
perspective must be shared not only by you and your operations staff, but also by application
developers and Web site designers. Required as well are thoughtful objectives for
performance coupled with thorough measurements of performance.

This chapter proposes a methodology that you can follow to manage your Web site's
performance from end to end. Ideally, you have characterized your workload, selected and
applied appropriate scaling techniques, assured that performance is considered in Web page
design, and implemented capacity planning technologies. If you have not, you may want to
review the white papers related to those phases of the life cycle at the same time as you
consider this methodology (see References). Regardless, the methodology presented here
can help you define your challenges and implement processes and technologies to meet
them.

Our best practices methodology for managing the performance of a high-volume Web site
consists of familiar tasks:

� Establish objectives

� Monitor and measure the site

� Analyze and tune components

� Predict and plan for the future

Some benefits you can expect after implementing the end-to-end methodology include:

� Proper reporting of quality of service metrics

� Interactive and historical data on end-to-end performance

� Rapid identification of the problem source

6

© Copyright IBM Corp. 2002. All rights reserved. 79

� Improved support of business goals

� Understanding and control of transaction costs

� World class customer support and satisfaction

The goal of implementing the end-to-end methodology is to align the system performance
with the underlying business goals. The methodology, coupled with implementation of the
capacity-on-demand options available from IBM's powerful server family, make the goal
achievable, and set the stage for self-managing IT infrastructures.

Managing the performance of a high-volume Web site requires a new look at familiar tasks
such as setting objectives, measuring performance, and tuning for optimal performance. First,
HVWS workloads are different from traditional workloads. HVWS workloads are assumed to
be high-volume and growing, serving dynamic data, and processing transactions. Additional
characteristics that can affect performance include transaction complexity, data volatility,
security, and others. IBM has determined that HVWS workload patterns fit into one of five
classifications: publish/subscribe, online shopping, customer self-service, trading, or
business-to-business. Correctly identifying your workload pattern will position you well for
making the best use of the practices recommended in this and related chapters. For more
information about how IBM distinguishes among HVWS workloads, see the Design for
Scalability white paper.

Secondly, those performing the tasks must extend their perspective to include the e-business
infrastructure from end to end. This is most effective when all participants understand the
application's business requirements, how their component contributes to the application, and
how a transaction flows from one end of the infrastructure to the other. Only then can they
work together to optimize application performance and meet key business needs. It's often
best when one person is assigned ownership of each application considered critical to the
e-business; the application owner assures the customer's perspective of application
performance -- response time -- remains the primary focus of all participants.

This chapter proposes a methodology that you can follow to manage your Web site's
performance from end to end. Ideally, you have characterized your workload, selected and
applied appropriate scaling techniques, assured that performance is considered in Web page
design, and implemented capacity planning technologies. If you have not, you may want to
review the white papers related to those phases of the life cycle at the same time as you
consider this methodology. Regardless, the methodology presented here can help you define
your challenges and implement processes and technologies to meet them.

Figure 6-1 shows our methodology for managing the performance of a high-volume Web site
in the context of a multi-tier infrastructure.
80 Best Practices for High-Volume Web Sites

Figure 6-1 Methodology for managing performance of a HVWS

Our methodology consists of familiar tasks with a new twist, driven by the requirement for an
end-to-end perspective, and including tools that are available now to help you get started. The
last part of this chapter has some sample scenarios about managing performance and a
summary of tools available from IBM, including Tivoli, IBM's provider of e-business
infrastructure management software.

Step 1. Establish performance objectives
The first task is to establish performance objectives for the business, the application, and
operations. Performance objectives for the business include numbers of log-ons and page
hits, and browse-to-buy ratios. Objectives for the application include availability, transaction
response time, and total cost per transaction. Operations objectives include resource
utilization (network, servers, etc.) and the behavior of the components that comprise the
e-business application.

You should use the results of an application benchmark test to establish the "norms". Ideally,
you acquire the norms from controlled benchmark and stress testing. If this isn't possible, you
should closely monitor and measure the deployment of the application and use the results to
produce a performance profile ranging from the average to the peak hours and/or days.

Metrics should be established from outside the site (response times, availability, ease of
navigation, security, etc.), and from each server tier (CPU, I/O, storage, network utilization,
database load, intranet traffic rates, etc.). You need to establish thresholds so that operations
can be notified when targets are near, at, or over their limits. The last section of this chapter
has a list of tools available from IBM and Tivoli.

Managing against a set of norms is an ongoing process. Frequent updates to expectations
and thresholds may be required. Marketing may schedule a promotion that will drive site
traffic to new highs. It is important that this be planned for to avoid "false alarms" that can
occur if you haven't updated your thresholds for the expected spikes in load.

Methodology Overview

Monitor Predict & PlanAnalyze
Establish

Performance
Budget

Edge
Server

Web
Server

Application
Server

Data Base
Server &
Legacy

Systems

Internet

Users

Component latency
Focal points for performance management

Network latency

End-to-end response time

Web site latency
Chapter 6. Managing Web site performance 81

The team that sets the objectives should include representatives of each area; if that is not
possible, the combined objectives should be communicated clearly to all areas, along with the
emphasis on what may be considered a new paradigm, that of the end-to-end perspective.

Step 2. Monitor and measure the site
In this step you examine and analyze the performance of the application. You view the
application as a transaction flow from the browser through the Web servers and, if applicable,
to the back-end database and transaction servers, and back to the browser. You are
concerned with the entities that make up the system (operating system, firewalls, application
servers, Web servers, etc.) only insofar as they support the application.

To understand end-to-end performance, you must understand and document the flow of each
transaction type, for example, search, browse, buy, trade, etc. That done, you can use
software that monitors the actual flow and alerts operations when any metric you specify
exceeds the norms established in Step 1.

For example, the alert informs you that your target page response time has been exceeded.
You know that something in the system has degraded, but where is the slowdown occurring?
How do you find the culprit?

You could instrument your application to record information at various points in the transaction
flow. An open standard, ARM (Application Resource Management) defines an API and library
for these records. In addition to Tivoli, several vendors have tools to display and analyze this
data. We have used exactly this type of instrumentation to manage various high-volume Web
sites. It is important to note that instrumentation adds modifications and overhead to the
application.

Instead of recording information on every transaction, you can take averages at several
points. Information about averages is nearly as good as full instrumentation, but comes at a
lower cost and uses existing and transparent tools. Tools such as the IBM Tivoli Performance
Viewer can be used to extract these averages through the resource management interface.

Other available tools:

� Report on the quality of customer experiences

� Analyze the Web site to verify links and enforce content policy

� Aggregate Web data into an overall business view

� Correlate log and performance data

� Monitor availability

� Use online analytic processing (OLAP) techniques to provide decision support

WebSphere Application Server provides a set of comprehensive performance metrics. For
servlets and beans, these include: number of requests, requests per second, execution time,
and errors. Java™ metrics reported include: active memory, available memory, threads
active, threads idle, etc. Database connections are also included: connection times, active
database connections, users waiting for database access.

It's best to continuously monitor the site availability from outside to insure that transactions
are executing successfully and within criteria. Examine the site navigation periodically to
validate the links and content. Resource monitors will need to roll up their data into an
aggregate application view. Web logs have to be analyzed and correlated with other resource
data.
82 Best Practices for High-Volume Web Sites

In a recent customer engagement, IBM's HVWS team investigated a problem of slow
customer response time. The Web server was running Netscape Enterprise Server and the
WebSphere Application Server for dynamic content generation using Java servlets. A middle
tier used enterprise Java beans (EJBs) to process transactions and then a JDBC call to the
database tier. Using the external monitor for response times, they found that during peak
hours, response times for consumer transactions increased from fourteen seconds to twenty
seconds. Using the IBM Tivoli Performance Viewer and some DB2 tools, they collected the
internal elapsed times for the application components. Figure 6-2 shows the analysis of how
each component contributed to total response time. Comparing the baseline time with the
peak times, it's easy to see that the slowdown occurs in the servlet tier. Performance Viewer
showed that the application server was running out of worker threads under peak load.
Allocating additional worker threads eliminated the slowdown.

Figure 6-2 Application response times - baseline vs peak

Step 3. Analyze and tune components
So far, the methodology has provided objectives, measurements, and application insights.
Thus it has allowed you to understand, monitor, and report on end-to-end performance. It has
also allowed rapid problem determination. When performance issues come up, you can
quickly investigate the application and isolate an individual component. Scenarios based on
real events that show how components are analyzed and tuned are described at the end of
this chapter.

In this step, you analyze and tune specific components. One common question is Does the
application scale gracefully? In general, scalability refers to a component's ability to adapt
readily to a greater or lesser intensity of use, volume, or demand while still meeting business

Baseline Peak
0

5

10

15

20

25

Servlet
Internet&Render
Other(LAN)
Database
EJB

Application Response Times
Chapter 6. Managing Web site performance 83

objectives. You want to assure that your application scales smoothly wherever deployed
without experiencing thrashing, bottlenecks, or response time difficulties. You need to
examine how your application uses resources: you're interested in CPU consumption per
transaction and I/O and network overhead. See also Design for Scalability, our HVWS paper
that recommends which scaling techniques should be applied to specific components.

Another important question: Is the application meeting economic criteria? Now that resource
consumption is understood, you know the 'cost per transaction' and you can assess whether
the application is using resources as projected by the performance objectives. You want to
consider the best practices pertaining to scalability and page design and learn what's needed
to optimize how the resources in each tier are used. The application owner uses this to work
with development, operations, and design to control and/or improve the efficiency of the
application. In this way costs are held on budget.

We used the methodology recently to benchmark a customer's application and found that
throughput seemed to be stalled in the database server. Furthermore, the database was
consuming more resources than was expected based on the historical archived data. The
DBA ran the analysis tools and quickly determined that one of the application SQL
statements was forcing a full table scan (very expensive, very bad). This hadn't had any
measurable effect during the initial deployment of the application with a limited number of
customers. However, as the number of customers grew, the size of the database increased
significantly. The DBA was able to define an alternate index into the table, test the change,
and resolve the problem within a short time. It was the methodology that pointed us quickly to
the database tier and allowed us to determine the cause of the problem and solve it quickly.

The all-important question Can response time be improved? Using the component response
times, the application owner works with operations to tune and allocate resources to insure
good response times. For example, the Web servers may need more memory to allow a
larger cache and reduce I/O times.

In one recent engagement, the customer help desk was flooded with complaints of slow or
nonexistent performance. The senior management was concerned that the system seemed to
be failing and IT seemed unable to tell them why. Using our methodology, we accessed the
site with the WebSphere Studio Page Detailer to analyze page response times. Page Detailer
showed us that response times were long due to excessive delays in obtaining TCP/IP socket
connections. We investigated the intranet, firewalls, and site connectivity. It turned out that
when the site went online, the firewalls had been set up to allow a fixed number of concurrent
socket connections. As traffic increased (the site was succeeding), more and more customers
contended for the same number of connections. This was easily corrected. In this case, as in
many others, the solution seems obvious when you isolate the fault to an individual
component. It is the methodology that allows us to do so.

Figure 6-3 shows tools and technologies available to monitor and analyze Web site
components. You can see, for example, that you can monitor response time proactively using
WebSphere Studio Page Detailer and IBM Tivoli Monitoring for Transaction Performance.
Tivoli provides Monitoring for Web Infrastructure to manage and monitor Web server and
application server components. The last section of this chapter has more detail about some
available tools.
84 Best Practices for High-Volume Web Sites

Int

ern

et

s

e

r

s

I

B

M

T

i

v

o

l

i

W

e

b

S

i

t

e

A

n

a

l

y

z

e

r

Figure 6-3 Tools available to monitor and analyze Web site components

Step 4. Predict and plan for the future
Sadly, none of us can predict the future. However, an increasing amount of valuable
information and useful tools are available to help you plan proactively to keep your Web site
serving customers as they expect to be served and to avoid the problems that plague busy
sites.

Figure 6-4 shows one week of page hits for one of IBM's retail customers. All of the days have
essentially the same pattern with predictable peaks and valleys. This site showed no
'weekend effect', which may not be true for its 'brick and mortar' store, nor for other retailers.
This kind of information enables site personnel to prepare for peaks and use the valleys for
other operations when needed.

Proactive
monitoring of

user
response-

PageDetailer

End-to-end
probes

(Periodic
reports on

E2E
response

time)

Router,
Firewall,

Edge Server
reports

IBM Tivoli
Perfor-
mance
Viewer

Access Logs,
WebSphere

Tools,
OS logs &

tools

IBM Tivoli
Monitoring

for Web
Infra-

strucure

DB
tools,
etc.

Monitoring, analyzing, and predicting to enable self-management

Presentation Server
Utilization

0

20

40

60

80

Response
Time

Edge
Server

Web
Server

Application
Server

Data Base
Server &
Backend
SystemsU
Chapter 6. Managing Web site performance 85

B M T i v o l i
M o n i t o r i n g f o r T r a n s a c t i o n P e r f o r m a n c e

I

Figure 6-4 Retailer usage patterns over one week

While a typical week, as shown in Figure 6-4, can be counted on, a retailer also has to plan
for seasonal rushes when peaks can easily exceed those of a typical week. Figure 6-5 shows
a retail site over six months, including the annual holiday period when the number of hits
tripled. During this kind of load, the site must be at its best, if possible free of other operations.

Figure 6-5 Retail customer seasonal peaks

Retailers aren't the only e-business facing seasonal demands. Look in Figure 6-6 at how the
number of hits for a bank grew over the months approaching tax time. Clearly, the financial
sites have their own version of weekly and seasonal peaks and valleys.

High variability in peaks and valleys
Predictable

Daily patterns are similar
No weekend effect
Not true for all retail

0

50000

100000

150000

200000

250000

12
:0

0 A
M

3:0
0

6:0
0

9:0
0

12
:00

PM
15

:0
0

18
:0

0
21

:0
0

Sunday

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday
Hits

Nov Dec Jan Feb Mar Apr

20

30

10Hits in
millions
86 Best Practices for High-Volume Web Sites

Figure 6-6 Hit rates over six months for a financial site

These examples demonstrate that it is possible to monitor your site and detect trends from
which you can plan for the future and meet your business objectives. Your site will have peaks
and valleys. You can measure them. You can reasonably predict when your peaks will occur
and you can position the resources you need to handle the demand and serve your
customers (and bring them back!).

Your trend data should suggest whether and when additional site components are needed.
Powerful new servers have options, as well, that can generate capacity based on predicted
workload. IBM can help you clarify which components match your particular requirements
and objectives. See the Planning for Growth paper to learn about our capacity planning
methodology and the HVWS Simulator for WebSphere.

Some performance management scenarios
This appendix contains three brief scenarios that are based on real events and demonstrate
the principles of our methodology for managing performance.

CIO
When reviewing his schedule for the upcoming week, the CIO notes a midweek meeting with
the marketing department, a Tuesday working lunch with his colleague from Finance, and the
monthly CEO staff meeting on Thursday. He works with his assistant to be sure he takes
appropriate information to each meeting.

On Tuesday he will take the latest reports showing costs, projected capacity over the next
year, and likely capital spending. Figure 6-7 shows, at a high level, the cost per transaction
Chapter 6. Managing Web site performance 87

and the cost breakdown by tier. Figure 6-8 illustrates the expected growth in the number of
users and transactions. These expectations were jointly reached with the marketing group.
The CIO will show his Finance colleague how the increase in workload drives a needed
increase in capacity and, thus, capital spending for next year. He points out that operations is
working closely with application development to examine costs. They have identified where
improvements can be made in the application and have projected the cost savings in terms of
cost per transaction and reduced capital spending. He uses the cost savings chart in,
Figure 6-9, to show how the proposed improvements will reduce the cost per transaction
more effectively than the in-plan improvements.

Figure 6-7 Average cost per Web transaction
88 Best Practices for High-Volume Web Sites

Figure 6-8 Current and projected system load

Figure 6-9 Cost savings with proposed enhancement

The CIO asks Finance to support him in prioritizing these changes in the development plan
over other candidate items from other departments.

At the marketing meeting he brings the charts that report system availability, response time,
transaction rates, and an analysis of consumer navigation experience. Marketing is
concerned about an upcoming promotion. They expect that it will drive traffic to new highs
and worry that the system will slow down. Having anticipated this line of discussion the CIO
brings out charts showing the current peak demand on the system and the amount of
Chapter 6. Managing Web site performance 89

available overhead. He is able to demonstrate that the system has the headroom to handle up
to a 30% increase in workload while still maintaining current response times during peak
hours. His colleagues in marketing are pleased to see that IT has anticipated the effects of
the ad campaign and are satisfied that the system will be able to contain the burst of traffic.

Finally, our CIO prepares for the CEO monthly staff meeting. Each major function is expected
to present a short highlight report on the current and upcoming months. The CIO will show
charts that illustrate system availability, response time and costs vs. targets. He will then
discuss upcoming events, like the marketing campaign, and his plans to support them. He
expects the presentation to go well because he is confident that the system is providing him
the proper information to support his role.

Content problems
Last week, marketing, sales, development, and IT proudly deployed a new application that not
only significantly enhanced the function of the e-business site, but also dramatically improved
the look and feel of the site for the consumer.

After just a few days, however, IT noted that the IBM Tivoli Monitoring for Transaction
Performance tool was producing alerts that indicated that nearly all pages were slowing down
and response time was approaching the maximum allowed by the service level agreement.
Using the IBM Tivoli Web Site Analyzer to examine site traffic patterns, IT observed that the
site slowed down in proportion to the number of new visitors and customers. All pages were
affected, indicating the problem was systemic.

IT contacted Development to review the new content. Development remained puzzled, as
they had tested the new pages thoroughly before migrating them into production.

The application owner convened the performance team. One member was detailed to
examine page performance using the WebSphere Studio Page Detailer. He reported: "Page
Detailer shows that socket connect and SSL connect times are fine. This would seem to
absolve the network, firewalls, routers, and TCP/IP layers. It also shows that transactions are
processing well within criteria, so there doesn't seem to be a problem with that part of the
system. However, Page Detailer does show that static content (such as GIFs) slowed down
dramatically after the new application was deployed.”

Armed with this information the team quickly identified the Web server as the likely problem
area since it is responsible for serving up static content. As this shop was using Netscape
Enterprise Server they asked for a PerfDump to be executed. PerfDump reports on the
internal performance of the server. Within minutes they were able to examine the output and
determine that the cache hit ratio for static content had degraded. Clearly the addition of the
new application had added too much new static content to be served and the Web server
cache was now too small to efficiently manage the new total. A quick look at the operating
system input/output statistics using VMSTAT confirmed that real I/O had jumped dramatically
within a day or so of the new application roll out.

IT was able to modify the cache size setting in the Web server and deploy the change at the
next scheduled maintenance period.

Bottleneck
The e-business site was launched last month, just in time for the TV ad campaign. To date the
site is successful. Traffic is growing as predicted, sales are strong, and complaints have been
quite low. However, in the past few days, the application seems to have hit a bottleneck. The
number of transactions has plateaued, while the response time per page has jumped
dramatically.
90 Best Practices for High-Volume Web Sites

IT employs the IBM Tivoli Monitoring for Transaction Performance tool to examine the site.
They determine that only transaction pages have slowed down; the number of transactions
(sales, etc.) continues to rise, while the number successfully processed is stagnant.
Customers are complaining to the help desk and by e-mail about the slow response times.
Analysis of the access logs produced by IBM Tivoli Web Site Analyzer confirms that many
customers are leaving the site without waiting for their business to complete. Later they
complain about not knowing if their business was successfully processed. A transaction in
doubt is the worst possible customer problem, one that can destroy confidence in the site and
the enterprise.

It's apparent there is a problem in the transaction processing. IT still checks out the Web
server to eliminate it as a component of the problem. Next the team extracts the overall
response times for transactions (from the Tivoli Web management solution) and uses the IBM
Tivoli Performance Viewer to obtain the average elapsed times for the servlet and bean
during the slowdown. Rapid subtractions demonstrate that the increased load extended the
execution time of the bean. In fact, when a specific transaction rate is reached, the application
can't process any more transactions in the bean layer. Additional requests exacerbate the
problem in that the transaction rate remains fixed but response times become nonlinear as
incoming transactions queue up waiting for the bean.

Performance Viewer at the bean engines also showed that the application server threads
were busy processing requests while VMSTAT showed the CPU was less than 50% busy with
no I/O or page wait. Believing that the bottleneck was found, the team recommended that
additional threads be assigned to the pool so that the bean could process more concurrent
requests.

Tools for monitoring performance
This section introduces some tools available to monitor Web site performance.

IBM Tivoli Monitoring for Web Infrastructure
IBM Tivoli Monitoring for Web Infrastructure is a critical tool to help ensure the optimal
performance and availability of both application servers and the associated Web servers that
feed them. It provides a single point of control to enable IT organizations to understand the
health of the key elements of a Web-based environment. It allows administrators to quickly
identify problems, alert appropriate personnel as required, and offer a means for automated
problem correction. In addition, Tivoli Monitoring for Web Infrastructure provides a real-time
view of performance health and feeds a common data warehouse for historical reporting and
analysis. Ultimately this tool increases the effectiveness of an IT organization and helps
ensure optimal performance and availability of critical Web infrastructure.

IBM Tivoli Performance Viewer
The IBM Tivoli Performance Viewer can be used with operating system tools such as vmstat
to monitor a number of performance measures related to the application server. These
metrics are classified into enterprise Java beans (EJBs), ORB thread pool, system runtime
resources, database connection pool, and servlets. Performance Viewer is available for all
WebSphere Application Server platforms.

Performance Viewer on EJB. Performance Viewer monitors execution of your EJBs at three
levels: server, EJB container, and individual EJB. The table below summarizes the statistics
provided as listed in Table 6-1.
Chapter 6. Managing Web site performance 91

Table 6-1 EJB statistics

Performance Viewer on servlet. Performance Viewer monitors execution of servlets at three
levels: servlet engine, Web application, and individual servlet. It monitors and collects
cumulative metrics at servlet engine levels and provides an analysis of the metrics at the Web
application and for individual servlets. Metrics collected include requests per second, average
response time, and number of concurrent requests.

Performance Viewer on system resources. Performance Viewer monitors system resources
consumed by the Java virtual machines (JVM). It collects and reports such JVM metrics as
total memory and amount of memory used/available.

IBM Tivoli Web Site Analyzer
The IBM Tivoli Web Site Analyzer measures Web site traffic. Site Analyzer provides detailed
analysis of Web content integrity, site performance, usage statistics, and a report writing
feature to build reports from the content integrity and usage statistics. Table 6-2 summarizes
the functions of each major feature of the Site Analyzer.

Table 6-2 Site analyzer functions

Statistic Stateless Session
Beans

Stateful Session
Beans

Entity Beans

Instantiate Yes Yes Yes

Destroy Yes Yes Yes

Requests Yes Yes Yes

Requests per second Yes Yes Yes

Execution time Yes Yes Yes

Live beans (pooled and active) Yes Yes Yes

Creates Yes Yes

Removes Yes Yes

Activation Yes Yes

Passivation Yes Yes

Loads Yes

Stores Yes

Feature Functionality

Content and Site Structure
analysis

� Identify most popular (or least popular) page resources

� Detects unavailable resources such as broken links or missing files

� Content with excessive load time

� Web page standards and legal compliance

Usage analysis � Who accessed the site -- are they a first-time visitor, repeat visitor, or belong
to a category of visitors

� Where they originated from, who referred them, length of visit

� How they navigated the site, what they did, where they exited
92 Best Practices for High-Volume Web Sites

IBM Tivoli Monitoring for Transaction Performance
The IBM Tivoli Monitoring for Transaction Performance tool helps maintain the availability and
performance of e-business systems. Transaction performance in the Web environment is
maintained by measuring customer response times, executing prerecorded transactions at
regular intervals, and scanning your site for potential problems. It helps you benchmark and
improve Web quality of experience, giving you an understanding of your Web performance
from a user point of view. For enterprise applications key performance metrics are collected
and analyzed to ensure your internal customers are receiving good performance. By
providing a Web to enterprise solution a complete end-to-end view of transaction
performance is delivered.

Providing an end-to-end view of performance requires different types of monitors that are
specialized for the different requirements of the Web and enterprise environments. To
address these unique environments, Tivoli Monitoring for Transaction Performance includes
these components:

Quality of Service Monitor. Captures performance data from customer transactions without
using invasive server plug-ins or client agent software. When a preset threshold is exceeded it
generates an alert in the form of an e-mail, a page, a Simple Network Management Protocol
trap, or an event sent to Tivoli Enterprise Console®. Individual Web addresses can be easily
monitored to insure key Web site links are performing well.

Synthetic Transaction Investigator. Executes prerecorded transactions from multiple
locations on your site to help deliver the availability of key services and benchmark response
times. Synthetic Transaction Investigator provides a browser-based record and playback
function and supports a wide range of dynamic content. Alerts are generated when
transactions exceed performance thresholds or fail to complete.

Enterprise Application Performance Monitor. Includes a drill-down capability in the
components of key transactions, helping you pinpoint the bottlenecks of a slow transaction.
You can monitor the response time of components in a multi-tier application— through
instrumentation or simulation. Both methods use common services to record the response
times and check them against thresholds on a Tivoli endpoint.

Site Investigator. Scans your Web site for page-size violations, HTTP errors (including
broken links), pages that exceed user-defined limits and content inconsistent with corporate
policy. Site Investigator generates alerts when it discovers pages that violate any of your
specified constraints.

Visualization and reports � Allow users to view site structure and quickly locate pages with problems
via color schemes and icons

� On-demand searching for certain page attributes

� Provide predefined reports that are fully customizable

Fully distributed
Web-based configuration

� Extraction, transformation, and load process transforms raw data into
valuable information, which is stored in a open, star database schema

� Client interface provides administration, visualization and report-generation
functions

Feature Functionality
Chapter 6. Managing Web site performance 93

AIX performance tools
A variety of AIX tools is available to first identify and understand the work load, and then to
help set up an environment that approximates the ideal execution environment for the work.
Table 6-3 summarizes the AIX monitoring tools.

Table 6-3 AIX monitoring tools

Tasks Tools Metrics

AIX monitoring AIX tools
Perfagent tools
Sample tools
Adapter tools
Switch tools

Managing memory resources vmstat
sar
lsps
ps
svmon

Managing CPU resources vmstat
sar
time
cpu_state

Managing network resources netstat

Netscape monitoring Perfdump Cache hit ratios, memory, threads

Site Investigator IBM Tivoli Monitoring for Transaction
Performance

Content
Response time
Availability

Quality of Service IBM Tivoli Monitoring for Transaction
Performance

Content
Response time
Availability

Synthetic Transaction IBM Tivoli Monitoring for Transaction
Performance

Content
Response time
Availability

Analyze data/generate reports IBM Tivoli Web Site Analyzer Site traffic analysis
94 Best Practices for High-Volume Web Sites

Summary
Managing the performance of a high-volume Web site is challenging, exciting, and possible.
Following a methodology such as the one presented in this chapter will help guide you and
your team toward tasks they can understand and goals they can achieve. The success of your
company's e-business depends on the tools and techniques your IT team chooses. There are
many available, and more are coming, as well as capacity-on-demand options from IBM's
powerful server family that set the stage for self-managing IT infrastructures. As always, their
use succeeds best in the context of a process.

The 'best practices' methodology for managing a high-volume Web site includes developing
an end-to-end perspective of the site and following these familiar steps:

� Establish objectives

� Monitor and measure the site

� Analyze and tune components

� Predict and plan for the future

Using this methodology, your IT team can help your company meet the revenue and customer
satisfaction objectives of its e-business and enjoy improved IT performance management
benefits, such as:

� Proper reporting of quality of service metrics

� Interactive and historical data on end-to-end performance

� Rapid identification of the problem source

� Improved support of business goals

� Understanding and control of transaction costs

� World class customer support and satisfaction

IBM's experience with high-volume Web sites has yielded valuable information and revealed
the methodologies and tools needed for a successful e-business site. The HVWS team can
help you be on your way to just such a successful site.
Chapter 6. Managing Web site performance 95

References
The WebSphere Application Server Performance Web site provides access to helpful
performance reports, tools, and downloads at:

http://www.ibm.com/software/webservers/appserv/performance.html

See all the IBM HVWS papers at:

http://www.ibm.com/websphere/developer/zones/hvws

See all IBM Redbooks on WebSphere performance information at:

http://www.ibm.com/redbooks

For the latest on the IBM Tivoli performance and availability tools see:

http://www.tivoli.com/products/solutions/availability/news.html

The IBM WebSphere software platform for e-business includes edge servers, Web
application servers, development and deployment tools, and Web applications. Find out more
at the WebSphere Developer Domain at:

http://www.ibm.com/websphere/developer

To find out more information about the IBM WebSphere Commerce Suite, used by customers
who run large-scale online shopping sites that we have studied, see:

http://www.ibm.com/software/webservers/commerce

To find out more information about the software used by trading sites we've studied using
WebSphere Application Server, see:

http://www.ibm.com/software/webservers/appserver

For more information about the software used by trading sites we've studied using,
WebSphere MQSeries, see:

http://www.ibm.com/software/software/ts/mqseries

Download a demo version of PageDetailer, the tool in WebSphere Studio that measures in
detail every element in a page download to assists in performance analysis and optimization
at:

http://www.ibm.com/software/webservers/studio/download.html
96 Best Practices for High-Volume Web Sites

http://www.ibm.com/software/webservers/appserv/performance.html
http://www.ibm.com/software/webservers/studio/download.html
http://www.ibm.com/software/software/ts/mqseries
http://www.ibm.com/software/webservers/appserver
http://www.ibm.com/software/webservers/commerce
http://www.ibm.com/websphere/developer
http://www.tivoli.com/products/solutions/availability/news.html
http://www.ibm.com/redbooks
http://www.ibm.com/websphere/developer/zones/hvws

Chapter 7. Charles Schwab puts growth
plan to the test

At the forefront of online financial dealing, Charles Schwab provides high volume trading and
tailored, up-to-the-minute financial information. Having developed various separate
e-business channels during the early days of the Internet, their runaway success made it
clear the next step was to give customers a single view of their different dealings with the
company. The current infrastructure was serving its purpose well but, with the number of
customer transactions rocketing skyward, Schwab needed to establish an architecture for the
future that could cope with soaring growth, give greater flexibility and economy, and provide
state-of-the-art customer service and satisfaction.

After thorough investigation, the obvious choice to meet their business goals was a
Java**-based architecture built on the IBM* WebSphere* Software Platform for e-business.
Having narrowed the field to this combination, Wilfried Kruse, Vice President of Architecture
for Electronic Brokerage at Schwab, put up one more hurdle before the final mission-critical
decision was made: "I want proof that Java/WebSphere can provide at least the same level of
scalability and robustness as our current CGI (Common Gateway Interface) implementation".
He looked to IBM to provide that proof.

IBM's High Volume Web Sites organization performed an extensive benchmark, which
resulted in all requirements met and many exceeded, providing validation of the chosen
architecture for future Schwab.com trading.

Schwab's e-business today
The Charles Schwab trading site - one of the best known in the finance industry - is just one
of a number of electronic financial product channels that has evolved in response to market
demand. Schwab's presence on the Web is well established and growing strongly. Today that
strong growth is manageable and containable using existing technologies but to meet future
demand Schwab looked for a single architecture to:

7

© Copyright IBM Corp. 2002. All rights reserved. 97

� Provide an integrated view of the different channels to customers

� Exploit the opportunities that e-business has opened up by streamlining future
development

� Separate business and presentation logic to accommodate changes more efficiently

� Reduce costs

Schwab was looking for integration without losing scalability or dependability, and after
careful research decided Java and IBM WebSphere Application Server looked like the
answer to the new cross-channel application architecture. Java, as a leading edge
technology, would attract programming skills to Schwab, and the combination of Java and
WebSphere would provide the capacity for future growth while reducing the cost profile.

The proposed new architecture was code-named "Barista" (a barista is a person who serves
coffee, in this case Java), and as Wilfried Kruse, VP of Architecture for Electronic Brokerage
points out with tongue in cheek, "once a project has a code name it's taken seriously". To
obtain proof of viability for large-scale deployment using the Barista architecture, he
partnered with IBM to demonstrate that Java and WebSphere together perform as well or
better than his current Web trading infrastructure.

Today's busy 24x7 Charles Schwab Web site runs on approximately 700 RS/6000s with four
CPUs each, serving over 90,000 concurrent end user sessions. The majority of the current
Web applications are based on C/CGI technology, which exhibits good linear horizontal
scalability - adding new systems to the configuration results in a predictable increase in
throughput on the Web servers.

Making sure the new architecture measures up
Wilfried Kruse, recognizing the mutual benefits, invited IBM to demonstrate that the new
Barista architecture was mature enough to handle his future mission-critical workload and
provide, at least, the scalability and robustness of the current C/CGI implementation. "We
partnered with IBM so they could help us get the best from their technology and we could help
them best utilize their technology in our market."

In response, the joint Schwab and IBM team set up the Barista High Volume Web Site
Benchmark environment with four major goals:

1. Administration: To demonstrate that IBM's implementation of Java and IBM WebSphere
Application Server can be installed and administered economically in a large scale,
multi-node environment.

2. Stability: To demonstrate that the Java and WebSphere Application Server technologies
are robust and stable, by running the environment for 48 consecutive hours without failure
or performance degradation.

3. Scalability: To demonstrate that the Java and WebSphere Application Server technologies
can scale at least as well as, or better than, Schwab's existing C/CGI technology, by
varying the workload and number of nodes used in testing.

4. Performance: To demonstrate the Java and WebSphere technologies perform at least as
well as, or better than, the current Schwab CGI technologies in comparable
circumstances.

For Wilfried Kruse the key business goal was "whether the architecture and the technology
could support Schwab volumes. Could we achieve comparable performance and scalability
without incurring extra deployment costs? Our existing systems have known scalability
characteristics and we wanted the future systems to be at least as good."
98 Best Practices for High-Volume Web Sites

IBM benchmark
To accomplish these benchmark goals, a large-scale system environment was set up at
IBM's SP Benchmark Center in Poughkeepsie representing approximately one tenth of the
scale of Schwab's existing production systems. It consisted of 64 R/S6000 4-way SMP Web
servers running Netscape Enterprise Server and WebSphere Application Server software, 12
additional systems emulating the corporate server functions, and several other systems
driving the application workload by distributing requests across the Web servers. The
administration and operational procedures were developed and enhanced during the
benchmarking.

Schwab selected a critical aspect of their online trading system for the benchmark: presenting
account information to customers, and a servlet was created to perform that function. For the
test, five accounts were defined that differed mainly in the number of positions that the
account held, resulting in varying amounts of information being delivered. The corporate
server functions for the Schwab application were emulated in the test, because they use
proprietary interfaces.

The results achieved for the benchmark were:

1. Administration: A Java and WebSphere installation and an efficient administration process
were developed and successfully implemented for a 64-node SP configuration.

2. Stability: The stability of the large-scale WebSphere configuration was demonstrated by a
soak test in which the 64-node WebSphere system ran for 48 consecutive hours without
failure or errors in either the hardware or software. Performance data collected over 12
consecutive hours showed stable throughput and CPU utilization.

3. Scalability: Scalability was demonstrated in configurations up to 64 nodes by showing
almost linear throughput (page views/second against number of nodes) at both low and
high levels of workload.

4. Performance: The Java and WebSphere technologies performed at 300% of the stated
goal. The current C/CGI technology provides approximately 1.3 page views/second/node
at 37 % CPU utilization; IBM Java and WebSphere technologies achieved approximately
3.8 page views/second/node at 30 - 40 % CPU utilization. At higher CPU utilization (>
90%), 564 page views/second were attained with an average response time of less than
two seconds using the 64-node configuration as shown in Figure 7-1. Assuming a
configuration comparable with Schwab's installation in February 2000, this level of
performance will support 100,000 concurrent end-user sessions during "market storms"
(periods with very high volumes of requests).
Chapter 7. Charles Schwab puts growth plan to the test 99

Figure 7-1 Page views per second

These results met or exceeded the criteria set by Wilfried Kruse and his team at Schwab. Not
only does Barista, backed by IBM Java and WebSphere technologies, ease development,
simplify the separation of business and presentation logic, reduce development costs, and
provide an integrated view of the different channels to customers, but its benchmark results
fully met the criteria for handling high volume mission critical workload.

Schwab's response to the benchmark results
In summary, the results achieved in the Barista High Volume Web Site Benchmark
adequately demonstrated the suitability of the Schwab Barista architecture - and the IBM
Java/WebSphere technologies - for high volume application use at Schwab.com. When
asked about the outcome of the benchmark project, Wilfried Kruse replies, "Performance was
comparable, so that was good. The stability was good, which we'd expect from IBM. But
throughput was much better, by a factor of three, so that was really good because it means
we can utilize the new technology, keep the existing hardware, and handle higher volumes."

He also comments on having to curb the enthusiasm of Schwab programmers for the new
technology until the benchmark was completed. "Once the results came out and were
positive, it was like a floodgate opened. In the past some developers were interested in
building their own product architectures, but now they've seen the new architecture is proven,
and it's simple enough and yet sophisticated enough to handle our business, they're saying
'let me use it', which is a really good change."

"... throughput was much better, by a factor of three …"
100 Best Practices for High-Volume Web Sites

"Initially we'll be writing a lot of infrastructure that already exists - reinventing the same wheels
in the Java space - so there won't be savings straight away, but once we have a critical mass
of the new infrastructure and products deployed in this new environment, new development
will be much more productive than in the current C/CGI environment."

And what benefits will Schwab's customers see? "They'll see more consistent products, and
more coherent product behavior," says Kruse "because there will be a more integrated
front-end presentation layer across the different financial product channels." Other benefits
are that “Schwab can roll out new functions in smaller increments much faster, our product
release procedure will be more efficient. And quality will improve because we'll get a lot more
reusable code - that means code that's already tested will be used in new ways, it won't need
to be reinvented. I expect a lot of productivity and quality gains from that."

And Wilfried Kruse recognizes the value of partnering with IBM, "A very encouraging effort,
I'm very pleased with how it went." Follow-on work is to explore the use and scalability of EJB
(Enterprise Java Beans) technology.

IBM partnership executive Keith Jones reflects on the results achieved, "This project
presented a significant challenge to both the Schwab and IBM teams. The results speak to
the strength of the Barista architecture and the strength of IBM Java and WebSphere
technologies and the people behind them. Schwab are leading exploiters of these
technologies; their leadership translates to a quantum leap for large scale e-business."

Technical benchmark details
The technical benchmark details are covered in this section.

Goals
The four major goals were:

1. Administration: To demonstrate that WebSphere can be installed and administered in an
environment with a large number of nodes. Sets of nodes would be administered at the
same time, with a single command to any set of nodes. This technique was verified
against the 64 Web server nodes and 12 back-end nodes, and was used for all
components in the setup.

2. Stability: To demonstrate that Java and WebSphere Application Server technologies are
robust and stable, by running the environment for 48 consecutive hours without failure.
System performance, judged by a few key performance indicators, would be constant over
the period. IBM would monitor the rate at which the system processes requests to ensure
that it could handle the same load throughout the period. Response times of the requests
would also be monitored to make sure the CPU utilization was not increasing over the
period.

3. Scalability of Servlet: To demonstrate that Java and WebSphere Application Server
technologies will scale. Linear scalability is achieved if twice as many nodes can handle
twice the throughput with the same CPU utilization of each node. IBM tested this by
varying the number of nodes and the throughput. They also verified that as the number of

"Once we have a critical mass of the new infrastructure and products deployed in this new
environment, new development will be much more productive than in the current C/CGI
environment."

"Our product release procedure will be more efficient and quality will improve."
Chapter 7. Charles Schwab puts growth plan to the test 101

nodes increased the throughput would increase proportionally. CPU utilization and
response time would also be measured.

4. Performance of CGI vs. servlet: To demonstrate that Java and WebSphere technologies
perform as well as or better than the CGI technology in Schwab's current Web trading
environment. The WebSphere servlet and CGI both running under Netscape in the same
configuration would be compared for performance, throughput, CPU utilization, and
response time.

Test scenarios
The test scenarios exercised a servlet provided by Schwab from their Barista architecture
project. The servlet performs a critical aspect of the online trading application; it allows users
to view their account information. The test implemented five accounts that held varying
numbers of stock positions in the account portfolio. Each account returns a different size page
to the Web browser.

The servlet provides business logic that supplies data to a JSP (Java Server Page), which is
then returned to the user's Web browser. The servlet obtains much of the information that it
displays by using a proprietary interface to a back-end server. For the purposes of this
benchmark, the functions of the back-end were emulated by a C++ program and a set of
sample files running on an AIX system.

For the servlet vs. CGI performance comparison, Schwab provided production CGI programs
and servlets with JSPs for the comparable application function.

The servlet function contains business logic that fills in different areas on the screen. First it
performs a logon, and when done performs a logoff, so that it only obtains information that
this user is allowed to see. It has the ability to handle user preferences. It shows urgent
notifications, retail offerings, news items, and a graph of current market status. It also shows
users their specific account balances, and a list of each position they hold. In the smallest
account, there are no positions held, while in the largest account there are hundreds of
positions.

The servlet obtains much of the information for these sections through proprietary interfaces
to back-end systems, which Schwab has developed. For the purposes of this project, the
functions of the back-end were emulated by a Unix program and a set of files.

Benchmark environment
In IBM's SP Benchmark Center in Poughkeepsie NY, the setup was 64 SP Silvernodes
running WebSphere Application Server Advanced Edition 3.0.2, twelve additional nodes to
emulate the back-end server function, and several other machines used to drive the system
(using Mercury Interactive's LoadRunner) and to distribute requests (using IBM Network
Dispatcher). All these nodes were connected together using a CISCO 6509 switch. Each
Web server had a single 100MB LAN connection. Each back-end server had two 100MB LAN
cards, and the other machines had one or more gigabit LAN cards.

� Twenty four-way S80 and 12-way S7A machines were used to simulate the workload.
These systems were selected based on the anticipated workload by the test driver.

� Four-way F50 (H70) machines were selected as network dispatcher. Their function was to
dispatch and then balance the workload on 64 Websphere nodes. These are the most
commonly used machines for the dispatching function

� Sixty-four SP Silvernodes (332 MHz, 4-way RS/6000 SMP nodes) were used to configure
WebSphere. These nodes were used to measure the administration, performance,
stability, and scalability of the system. These are the same nodes that are used in
Schwab's production system.
102 Best Practices for High-Volume Web Sites

� Twelve Winterhawk (375 MHz, 4-way RS/6000 nodes) were used to simulate the delay of
the back-end database server. These nodes were based on the anticipated workload and
hardware availability.

� Network topology: Fully meshed 64 fast Ethernet connections were configured, one from
each Web server, to the CISCO 6509. Additional 24 fast Ethernet connections to the
switch used for the Etherchannel connections to each of the 12 Echo servers (two fast
Ethernet per node). Lastly a total of 10 separate Gigabit connections were in place for the
two Load drivers (S80: 4 Gigabits & S70: 2 Gigabits) and the four Network Dispatchers (1
Gigabit each). Network configuration was selected based on the anticipated load.

Software configuration
The software configuration is shown in Figure 7-2 and consists of:

� IBM AIX 4.3.3

� IBM Java JDK 1.1.8

� IBM WebSphere Application Server Advanced Edition 3.02

� IBM DB2 UDB 5.2

� IBM Network Dispatcher 2.1

� Netscape Enterprise Server 3.6

Figure 7-2 Software configuration
Chapter 7. Charles Schwab puts growth plan to the test 103

For more information, contact:

� Charles Schwab:

www.schwab.com

� IBM WebSphere:

ibm.com/WebSphere

� IBM Java:

ibm.com/Java.
104 Best Practices for High-Volume Web Sites

Chapter 8. Fine-tuning the scalability of a
multi-tier architecture

Charles Schwab and Co., Inc. (member SIPC/NYSE), long a pioneer in online financial
services, determined in early 2000 that a new e-business architecture for the future was
needed to manage future growth, give greater flexibility and economy, and provide
state-of-the-art customer service and satisfaction. Consistent with Schwab's forward thinking,
they decided the clear choice to meet their business goals for the retail business was a
multi-tier Java-based architecture built on the IBM® WebSphere® software platform for
e-business.

IBM and the Schwab Integrated Client Technology (ICT) and Java Object Services (JOS)
departments designed and developed a new architecture, code-named Barista.1 Relying
heavily on IBM's hardware and expertise, the joint team executed a set of benchmark tests to
validate the architecture and determine how to balance the number of servers in each tier for
optimal performance. At the beginning of Barista, Wilfried Kruse, VP of Architecture for ICT,
gave IBM the challenge: "I want proof that Java/WebSphere can provide at least the same
level of scalability and robustness as our current CGI (common gateway interface)
implementation". The success of the first phase of Barista is described in the white paper,
Charles Schwab puts growth plan to the test.

This chapter describes the subsequent work with the Barista architecture. One of the
enhancements key to meeting Schwab's business goals of economic scalability and
consistency across customer channels was to separate their business logic and presentation
layers into separate tiers. The presentation tier was implemented using servlets and the
business logic tier was implemented using Enterprise JavaBeans (EJB). Barista also
implemented new technologies in the presentation and business logic tiers. In the
presentation tier, servlets use eXtensible stylesheet language (XSL) and the Xalan eXtensible
stylesheet language transformations (XSLT) processor. In the business logic tier, the
database implementation uses an IBM DB2 database and IBM pSeries S80 technology

Barista testing demonstrated the scalability, performance, stability and manageability of the
Barista architecture in a multi-tier environment. The last phase of Barista development
culminated with the testing of a new home page application for Schwab's financial customers
called myHome. The tests emphasized hardware/software capacity planning numbers,
performance, and stability. At each phase, the test results validated Schwab's architectural

8

© Copyright IBM Corp. 2002. All rights reserved. 105

decisions. Stability, scalability, and performance results exceeded expectations. The testing
demonstrated near linear scalability.

The Barista project validated Schwab's decisions to move to a multi-tier, Java-based
architecture built on the IBM WebSphere software platform for e-business environment. The
architecture satisfied Schwab's key business goals.

The Barista project had great significance to Schwab and to IBM. It demonstrated what is
possible with the new Java technologies when implemented in the multi-tier environment. It is
symbolic of what can be done and must be done as we increase our understanding of how
best to implement the new technologies that will shape the future of e-business. With the
advent of new standards such as Java 2, Enterprise Edition (J2EE) and Web services, there
is much to do to assure effective implementations and continued e-business success.

Introducing the Barista project
The requirement to create a new e-business infrastructure for Schwab's retail electronic
brokerage gave both Schwab and IBM the opportunity to apply the latest in technologies and
best practices. Schwab presented the challenges of managing economic growth in a dynamic
business environment, and IBM presented practices based on its accumulated experience
with some of the world's largest Web sites and accumulated knowledge of what to do and
what to avoid.

Both companies contributed their best skills to the team that would explore what was possible
and necessary to design, validate, implement, and manage a complex new infrastructure. The
Barista project proceeded in phases. Each phase concluded with tests to validate the
performance and scalability of the architecture within a single domain2 and across multiple
domains. Testing focused on the architecture's performance and ability to scale to anticipated
business volumes. As one of the largest online brokers with a need to manage growth
incrementally, Schwab made scalability one of their top priorities for the Barista architecture.

The Barista architecture is based on Java and built on the IBM WebSphere software platform
for e-business. In the beginning, the Barista architecture used a Java server page (JSP) for
presentation logic and a servlet for business logic in a single tier3. The team extended Barista
to introduce a multi-tier architecture by separating presentation and business logic layers into
separate tiers. This critical step enabled Barista to:

� Segregate functions in a way that allows consistent presentation across channels and
reuse of application code and data

� ·Exploit the scaling benefits inherent in multi-tier environments

� ·Create a foundation for manageable growth

Figure 8-1 shows the current topology of the Barista test environment.
106 Best Practices for High-Volume Web Sites

Figure 8-1 Topology of Barista test environment

Separating presentation and business logic laid the foundation for disciplined application
development. The presentation tier was implemented using servlets and the business logic
tier was implemented using Enterprise JavaBeans (EJBs). Finally, the team implemented new
technologies in the presentation and business logic tiers. In the presentation tier, servlets use
XSL and the Xalan XSLT processor. In the business logic tier, the database implementation
uses an IBM DB2 database and IBM pSeries S80 technology. The tests used echo servers to
simulate the transaction system.

Testing Barista
Testing focused on Barista's performance and ability to scale to anticipated business
volumes. Workload balancing was used to determine the number of servers in the
presentation and business logic tiers that produced the best performance. This is an iterative
process that must be followed to insure the performance and scalability of a multi-tier solution
and attain the most efficient use of resources in each tier. Typically, an organization will have
to execute tests of this nature several times to determine how many servers in each tier yield
the best performance.

The Barista tests consisted of variations on two scenarios. The variations involved increasing
the number of servers in a domain in the single domain tests and varying the number of
domains in the multiple domain tests. This section describes the scenarios and some of the
key results; it concludes with a summary of the results and our conclusions.

Mercury Interactive's LoadRunner tool was used to generate the workloads. Each test driver
was specified to simulate typical user scenarios accelerated to computer speed, essentially
eliminating the latency of human interaction. The combined drivers (as many as 54) simulated
a heavier than typical user workload, able to saturate the system more intensely than actual
human users.

Barista EJB test scenario
Figure 8-2 shows the topology of the Barista EJB test.

Web Servers
Servlets (w/XSL,
XALAN), JSPs

RS/6000 SP
AIX, WAS

Business
Logic
(EJBs)

RS/6000 SP
AIX, WAS

Network
Dispatchers
RS/6000 SP

AIX, eND

Database Server
DB2

pSeries S80
AIX

Echo
Servers

RS/6000 SP
AIX

Internet
Chapter 8. Fine-tuning the scalability of a multi-tier architecture 107

Figure 8-2 Topology for Barista EJB test

The test scenario used the Account Overview application, which displays information about a
customer's account. To test varying loads, the tests accessed two sample accounts, 906 and
939. Tests using account 906 placed higher loads on the database than those using account
939. The results showed that the transaction throughput scaled linearly, while the resource
consumption per transaction and response time remained relatively flat.

Figure 8-3 shows page throughput measurements in the multiple domain tests as additional
domains are added. The tests used one, five, ten, and 15 domains. Each domain consisted of
three servers in the presentation layer, one server in the business logic layer, a 3:1 ratio, and
54 test drivers.

This test offers a strong proof point to the inherent scalability of the WebSphere Application
Server (WAS). WAS exploits caching within its architecture, and minimizes resource
management overhead by pooling key system components, such as connections and EJBs.

Figure 8-3 Results of the Barista EJB multidomain test scenario

WebSphere's workload management capabilities offer flexible alternatives for ensuring
scalable load balancing. IBM's long-standing experience in designing scalable, balanced,

Web Servers
Servlets (w/XSL,
XALAN), JSPs

RS/6000 SP
AIX, WAS

Business
Logic
(EJBs)

RS/6000 SP
AIX, WAS

Network
Dispatchers
RS/6000 SP

AIX, eND

Echo
Servers

RS/6000 SP
AIX

Internet

1 5 10 15
Domains: 54 drivers per domain

0

100

200

300

400

500

P
ag

e
vi

ew
s

p
er

 s
ec

o
n

d

Acct 906

Acct 939

Page throughput
108 Best Practices for High-Volume Web Sites

symmetric multiprocessing systems (SMPs) has also been applied in designing WebSphere,
enabling near-linear scaling in a distributed, multiserver configuration.

In the single domain tests, WebSphere and the Barista application code scaled proportionally
as servers were added to the domain. Note in Figure 8-4 that the largest domain -- 44
presentation logic servers, 15 business logic servers, and 15 database servers -- comprised
an unusually large WebSphere domain. The facilities at IBM's HVWS Lab in Poughkeepsie
were used for these tests. The transaction rate scaled linearly as servers were added to the
measurement domain. The average response time remained within acceptable limits and
decreased in the largest domain. CPU utilization per server remained consistent.

Figure 8-4 Results of the Barista EJB single domain test scenario

myHome application tests
At this point in the project, Barista implemented new technologies in the presentation and
business logic tiers as shown in Figure 8-5. In the presentation tier, servlets use XSL and the
Xalan XSLT processor. In the business logic tier, the database implementation uses an IBM
DB2 database and IBM pSeries S80 technology. Barista testing focused on specific tests
necessary to support the planned deployment of a new home page for Schwab's financial
customers called myHome. The myHome application displays a home page personalized with
information specific to each customer. The tests emphasized hardware/software capacity
planning numbers, performance, and stability. The tests also focused on workload balancing
to determine how many servers in each tier produced the best performance measurements.

15-5-5 30-10-10 44-15-15

11 drivers per Web server

100

150

200

250

300

350

400

T
ra

n
sa

ct
io

n
s

p
er

 s
ec

o
n

d

Acct906

Page throughput
Chapter 8. Fine-tuning the scalability of a multi-tier architecture 109

Figure 8-5 Topology for Barista test (one presentation and one business logic)

The goal of the tests run against the Barista myHome application was to measure the
throughput and response time under high volume. The first tests determined the baseline
throughput performance with and without security. Then the full scenario was run to
determine the maximum throughput achievable with one server in the presentation layer and
one server in the business logic layer.

Figure 8-6 shows the tests results, indicating that a single presentation server did not saturate
the business logic layer. As load increased, the presentation server peaked at 95% busy while
the business logic server was only 68% busy. Note in Figure 8-6, when the presentation
server reached 95%, increasing the load did not result in significant increases in transaction
rate, but did increase response time. This exemplifies the sort of nonlinear behavior that can
occur when CPU utilization exceeds 90%. It was clear that to achieve optimal performance, it
was necessary to add presentation servers.

Database Server
DB2

pSeries S80
AIX

Web Servers
Servlets (w/XSL,
XALAN), JSPs

RS/6000 SP
AIX, WAS

Network
Dispatchers
RS/6000 SP

AIX, eND

Echo
Servers

RS/6000 SP
AIX

Internet

Business
Logic
(EJBs)

RS/6000 SP
AIX, WAS
110 Best Practices for High-Volume Web Sites

Figure 8-6 Results of Barista test (one presentation server and one business logic server)

The next test was designed to determine how the application scaled as additional
presentation servers were added. As shown in Figure 8-7, the test used two presentation
servers to one business logic server, a 2:1 ratio. As load increased the business logic server
peaked at 93.9% busy while the presentation servers averaged only 73.9% busy.

Figure 8-7 Topology for Barista test (two presentations and one business logic server)

Processor Busy
myHomePage - full non cluster 1:1

0

20

40

60

80

100

120

3 6 9 12 15 18 21 24 27 30

Drivers

C
P

U
 %

 B
u

sy

Servlet Barista and DOS

Response Time
myHomePage - full non cluster 1:1

0

0.5

1

1.5

2

2.5

3

3 6 9 12 15 18 21 24 27 30

Drivers

S
ec

o
n

d
s

Transaction Rate
myHomePage - full non cluster 1:1

0

5

10

15

20

25

30

35

3 6 9 12 15 18 21 24 27 30

Drivers

T
ra

n
sa

ct
io

n
s

p
er

 s
ec

o
n

d

CPU Seconds per TXN
myHomePage - full non cluster 1:1

0.2018

0.129

0

0.05

0.1

0.15

0.2

0.25
S

ec
o

n
d

s

Servlet1:1 Bean 1:1

Web Servers
Servlets (w/XSL,
XALAN), JSPs

RS/6000 SP
AIX, WAS

Network
Dispatchers
RS/6000 SP

AIX, eND

Database Server
DB2

pSeries S80
AIX

Echo
Servers

RS/6000 SP
AIX

Internet

Business
Logic
(EJBs)

RS/6000 SP
AIX, WAS
Chapter 8. Fine-tuning the scalability of a multi-tier architecture 111

The results shown in Figure 8-8 indicate that 42 test drivers (simulating 42 users) were able to
saturate the business logic layer to 93.9% CPU utilization, while the presentation servers
averaged 73.9% busy at a transaction rate of 29.4 per second with a response time of 1.4
seconds.

Figure 8-8 Results of Barista test (two presentation servers and one business logic server)

Here we see that by increasing the number of presentation servers, the business logic server
could be fully utilized. It is also an excellent example of how changing the capacity of one tier
can affect the load on an adjacent tier. Adding servers to the presentation tier resulted in
increased load on the business logic tier, fully utilizing the processors in that tier. This is one
step in the iterative process of workload balancing that must be followed to attain the most
efficient use of resources at every tier. Typically, an organization will have to execute tests of
this nature several times to determine the number of servers in each tier that yields optimum
performance. In each test, the numbers of servers may be adjusted and new measurements
taken. It is important to use workloads that most closely approximate real production loads.
When the new configuration is in production, under real life workloads, resource utilization in
each tier needs to be carefully monitored. IBM has tools with built-in workload models that
can be used to estimate resource requirements.

Finally, to determine stability, the testers ran a soak test for 25 hours. The test used two
presentation servers and one business logic server. The presentation servers averaged 76%
busy and the business logic server averaged 93% busy at a load of 60 page views/second.

Processor Busy
HomePage - full non cluster 2:1

0

20

40

60

80

100

120

18 24 30 36 42 48 54

Drivers

C
P

U
 %

 B
u

sy

Servlet Barista

Response Time
HomePage - full non cluster 2:1

0

0.5

1

1.5

2

2.5

3

18 24 30 36 42 48 54

Drivers

S
ec

o
n

d
s

Transaction Rate
HomePage - full non cluster 2:1

0

5

10

15

20

25

30

18 24 30 36 42 48 54

Drivers

T
ra

n
sa

ct
io

n
s

p
er

 s
ec

o
n

d

CPU Seconds per TXN
HomePage - full non cluster 2:1

0.2327

0.129

0

0.05

0.1

0.15

0.2

0.25

S
ec

o
n

d
s

Servlet 2:1 Bean 2:1
112 Best Practices for High-Volume Web Sites

See Figure 8-9 for details. The small dip seen eight hours into the run occurred when the
HTTP server executed a cleanup service routine to recycle its threads.

Figure 8-9 Results of Barista soak test

Summary of Barista results
Scalability: WebSphere Application Server and the Barista application code scaled in a near
linear fashion throughout the load range of individual systems and from a single to many
domains and also within large domains. Scaling in the business logic layer was linear as the
workload increased from 18 through 54 drivers. The application and the system behaved well
throughout the measured range, and response time increased evenly from 0.7 to 1.4
seconds. These results validate the soundness of the Barista architecture and inherent
scalability of the WebSphere Application Server.

Workload balancing: The objective of workload balancing is to determine the number of
servers in each tier that yields consistent CPU utilization across tiers, while driving high
workloads without exceeding 90% CPU utilization. CPU utilization above 90% may result in
nonlinear scaling. Barista testing verified a ratio of three presentation servers to one business
logic servers. Schwab and IBM agreed that the Barista test workload did not represent
production experience and agreed that follow-on testing with more representative workloads
will be considered. During the testing of the myHome application, server ratios of 1:1 and 2:1
were tested, with 2:1 providing the best workload balance. In addition to the number of
servers, factors that contribute to the performance of a multi-tier architecture include
workload mix, data transferred between physical layers, number of HTTP connections per
HTML page, upstream caching, and application design.

Performance: Each test obtained performance measurements. In testing the myHome
application, tests were successfully run on the two presentation servers and one business
logic server configuration. Maximum throughput in this environment was achieved with 42
drivers driving 29.4 transactions per second with a response time of 1.4 seconds. In the EJB
test scenarios, performance was demonstrated across 15 domains with 400 transactions per
second achieved, using a complex total account overview transaction. Each domain
Chapter 8. Fine-tuning the scalability of a multi-tier architecture 113

consisted of three presentation servers and one business logic server. Response time below
two seconds was achieved with CPU utilization above 80 percent. A single domain of 44
presentation servers and 15 business logic servers was constructed. This system maintained
an average response time below two seconds and CPU utilization above 75 percent while
delivering over 350 transactions per second.

Stability: Soak tests were used to demonstrate the stability of the infrastructure. In a 25-hour
soak test, the business logic tier was over 90% busy, the system remained stable, and all
results processed normally. Testers determined it was unnecessary to continue the test past
25 hours as the testing in Barista had already shown the stability of the architecture. Stability
in the large-scale environment was confirmed by completing a 43-hour soak test. Transaction
load averaged 140 page views per second with a zero error rate. A consistent average
response time of 1.4 seconds was achieved. This test was conducted in a server ratio of
15:5:5 (presentation / business logic / echo) domain with average CPU utilization at 75% for
the presentation tier and 84% in the business logic tier.

Manageability: The team developed and successfully implemented processes for installing
and administering Barista in the WebSphere environment. The results indicate that the
Barista and WebSphere application code can be deployed, operated, and managed
successfully in a high volume environment. The domain of 44 presentation servers and 15
business logic servers is an unusually large single WebSphere domain. Complexity of system
operation increases as the number of systems grows. This consideration requires attention
during deployment. The High Volume Web Site team described to Schwab the methodology
used to recognize bottlenecks and implement tuning. Schwab management asked that the
information and methodology be shared within Schwab.

Code review: Experts from IBM reviewed the Barista architecture and code. Schwab
management has requested future reviews. Motivated by interim test results, IBM analyzed
Java performance using Java profiling tools to identify areas in the Schwab code that were
candidates for reducing path length and effect on system resources. This work was repeated
using the final test configuration to provide Schwab with the most current results. Schwab
management requested access to the necessary tools and education to enable their ongoing
use of the techniques.

Best practices
IBM reviewed the Barista architecture. The review identified some of the best practices used
in the design, implementation, and testing of the Barista architecture.

Multi-tier architecture: Schwab designed the Barista architecture to be layered, allowing it to
scale to handle growing workloads and be tuned to make the most efficient use of system
resources. WebSphere Application Server has been designed to operate efficiently in
multi-tier environments. It exploits caching within its architecture, and minimizes resource
management overhead by pooling key system components such as connections and EJBs.
Its workload management capabilities offer flexible alternatives for ensuring scalable load
balancing. IBM's long-standing experience in designing scalable, balanced, symmetric
multiprocessing systems (SMPs) has also been applied in designing WebSphere, enabling
near-linear scaling in a distributed, multiserver configuration

Designing for scalability and planning for growth: Schwab understands the critical
importance of designing for scalability and planning for growth. Following our HVWS best
practices, they understand the significance of analyzing the scalability of the components of
the presentation and business logic tiers. They selected appropriate scaling techniques,
effectively using horizontal scaling and workload balancing. As their architecture evolved, they
114 Best Practices for High-Volume Web Sites

reevaluated their scaling and workload balancing to ensure solutions that will scale effectively
during workload peaks.

Workload balancing: Barista testing focused on determining the number of servers in each
tier that yielded the best performance and scalability. The need for this testing is indicated
whenever a significant change to the infrastructure is made. Some examples of such changes
are additions or changes to hardware or software in anticipation of increased volumes, the
addition of an application, or even the installation of an upgrade to any key software
component. The techniques used will allow Schwab to accurately tune their production
systems as they deploy future applications using the Barista architecture. WebSphere
Application Server's workload management capabilities offer flexible alternatives for ensuring
scalable load balancing.

Style sheet caching: Schwab designed the Barista architecture to use XML and XSLT.
Recognizing the potential for performance problems in XML/XSLT solutions, Schwab made
two good decisions that allowed them use XML and XSLT efficiently. They implemented style
sheet caching and built document object model (DOM) trees (in-memory documents) rather
than using XML strings. Effective caching is a powerful tool to improve both scalability and
site response times. There are at least seven levels at which Web sites can exploit caching.
Style sheet caching is an effective way to improve the performance of XML based solutions.

Dynamic caching: The possibility of using the dynamic caching feature in WebSphere 3.5.3
was under investigation at the end of the Barista testing. Dynamic caching allows dynamically
built Web pages to be held in a cache that can be keyed by any of a number of objects, for
instance, parts of the HTTP request, the user session, user id, etc. If a matching page is
found in the cache, the servlet or JSP is not even invoked. Instead, the cached value is
returned. Schwab continues its evaluation of dynamic caching.
Chapter 8. Fine-tuning the scalability of a multi-tier architecture 115

Summary
The joint project between IBM and Charles Schwab succeeded not only because the
business and technical objectives were met, but also because of the combined strengths that
each company brought to the project. With significant foresight, Schwab contributed their
challenging environment for the future of online trading and their electronic brokerage. IBM
contributed skills and products that addressed those challenges. Clearly, WebSphere's broad
range of features and functions, as well as its implementation using J2EE, met the challenge.
The Barista project demonstrated that:

� Schwab's Barista architecture performs well and scales to anticipated business volumes.

� A multi-tier architecture is a viable and correct choice for large, growing workloads.
Scalability, performance, and stability measurements met or exceeded objectives.

� WebSphere scales in a near linear fashion as workload is increased.

� WebSphere applications can be deployed, operated, and managed successfully in a
high-volume environment implemented in a multi-tier architecture.

� WebSphere exploits caching within its architecture.

� WebSphere minimizes resource management overhead by pooling key system
components such as connections and EJBs.

� WebSphere's workload management capabilities ensure scalable load balancing.

The IBM and Schwab teams collaborated throughout the project. IBM experts assisted
Schwab in designing the architecture. IBM supplied HVWS test sites at the Silicon Valley Lab
and the Poughkeepsie lab. Technical staff from Schwab, the IBM HVWS team, and the
WebSphere Development and Architecture/Performance teams collaborated to design and
execute the tests of the Barista architecture. Kruse notes that "the collaboration among teams
was exceptional not only because our objectives were met, but also because Schwab and
IBM jointly pushed the envelope on what was currently understood as possible, and each
came away with knowledge and experience that brings business value to their individual
organizations."

Charles Schwab has developed in the Barista architecture, a solid foundation for the future
development of their retail electronic brokerage. "The new Barista architecture will improve
our ability to scale our Web site economically, as well as provide more consistent services to
our customers," says Kruse. The architecture, based upon best of breed technology such as
Java, WebSphere and DB2, proved to exceed all expectations for scalability, stability,
performance, and manageability.

The environments for different Barista tests were similar. The primary difference was the
number of servers required for the types of testing. Barista testing focused on stress tests of
the architecture, and so required many servers. For example, in one of the scenarios IBM
created an unusually large single WebSphere domain consisting of 44 servers in the
presentation tier, 15 servers in the business logic tier, and 15 servers in the back-end. Barista
testing required a smaller configuration as the focus was on testing the behavior of a specific
application.
116 Best Practices for High-Volume Web Sites

Figure 8-10 shows the topology of the large-scale Barista test environment.

Figure 8-10 Topology of the Barista test environment

LoadRunner Generator
6 RS/6000 SPs 4gb

100 Mb
Ethernet

Network
Dispatcher
2 RS/6000 SPs
3gb

Web Servers
RS/6000 SP

4gb

EJB Servers
RS/6000 SP 4gb

DB2 Admin server
2 RS/6000 SPs 4gb

Echo Servers
4 RS/6000 SPs 1gb
6 RS/6000 SPs 4gb

SP Switch
Equiv to 1gb
ethernet

AIX 4.3.3.2
WAS AE 3.5.
JDK 1.2.2.7
DB2 EE 6.1 FP4
NES 3.6.3
Barista code

AIX 4.3.3.2.
JDK 1.1.8.8
eND 2.1

NT 4.0 sp6
LR 6.5 Ctrl

AIX 4.3.3.2
LR 6.5 Generator

AIX 4.3.3.2
WAS AE 3.5
JDK 1.2.2.7
DB2 EE 6.1 FP4
Barista Code

AIX 4.3.3.2
JDK 1.1.8
Echo Code

AIX 4.3.3.2
DB2 EE 6.1 FP4
WAS DBs for clusters

2 LoadRunner
Controller PCs

2 Admin
Thinkpads

Windows 2000
X-Windows

ntload1
129.40.17.240

ntload2
129.40.17.241

Red -100 mb Ethernet
Green - Admin network
Node name = VxxNxx
Blue - SP Switch

KEY
Barista III
SDE2 Database Server
S80 24-way
AIX 4.3.3.2
DB2 V7.1 FP2

Barista II
Sun UE10000
Solaris 2.7
Oracle 8.1.6
RDBMS
Chapter 8. Fine-tuning the scalability of a multi-tier architecture 117

Table 8-1 summarizes the hardware used.

Table 8-1 Hardware used

Software and test tools
� WebSphere Application Server 3.5.3 Image GA Version

� Java Development Kit (JDK) 1.2.2, 1.1.8 plus Service Level 8

� AIX 4.3.3.2

� DB2 Universal Database (UDB) 7.1 Fixpack 2 – for database

� DB2 UDB 6.1 Fixpack 4 – for WAS repositories

� eND Network Dispatcher 2.1 (now a component of WebSphere Edge Server)

� Netscape Enterprise Server 4.6.1

� Mercury Interactive LoadRunner 6.5.2 (controller for Microsoft Windows NT, generator for
AIX)

� Microsoft Windows NT 4.0 with Service Pack 6 – For LoadRunner Controllers

Monitoring tools
� AIX -- PTX

� AIX -- topas

� AIX -- svmon

� Mercury Interactive LoadRunner Analyzer

� WebSphere Resource Analyzer

� WebSphere container tracing

� WebSphere Thread Analyzer

� Live Jinsight – Java Profiler

Device Quantity Hardware Definition

Web server and database servers 60 IBM RS/6000 Scalable POWERparallel
Systems (RS/6000 SP)

Echo servers 15 RS/6000 SP

DB2 database 1 IBM pSeries S80 24-way processor

Oracle database 1 Sun Solaris

9077 router 1 For database connectivity

LoadRunner driver 6 RS/6000 SP

LoadRunner controller 2 PC with Microsoft Windows NT

Administration laptops 2 IBM ThinkPads

Administration server 2 RS/6000 SP

Network Dispatcher 2 RS/6000 SP
118 Best Practices for High-Volume Web Sites

Chapter 9. Improving the scalability of a
WebSphere application with
multihome servlets

Successful e-businesses are those that can adapt quickly and efficiently to the demands of
their business growth. Many such businesses found that the single tier Web environment that
was a satisfactory configuration for their initial customer volumes can no longer meet their
business needs. As e-businesses experience growth in customers and customer
transactions, the Web environment infrastructure must evolve, or scale, to satisfy the
increasing demands. The requirement for scalability can also be driven by application
inefficiencies, a fairly common occurrence in new online applications. In either case, the
scalability of an application and its environment becomes a key factor in an e-business'
success.

The technical approaches to achieving scalability are typically vertical scaling (within a
system) or horizontal scaling (across systems). This chapter describes multihome servlets, a
vertical scaling technique that the High Volume Web Sites (HVWS) team has deployed
successfully in customer engagements. The chapter also compares multihome servlets to
another vertical scaling technique, servlet cloning. Both techniques seek to optimize resource
use by segmenting the resources of the physical system. While servlet cloning provides many
scaling advantages, it imposes strict technical prerequisites that can hinder extensive use.
The multihome servlets technique is an alternative way of gaining the benefits of servlet
cloning - primarily, smaller Java virtual machines (JVMs) that reduce the impact of garbage
collection - without incurring the drawbacks - primarily, the requirement to use session
persistence.

The implementation of multihome servlets segments a physical machine by creating a virtual
host and pairing it with its own servlet (JVM), and then creating multiple copies of these pairs
in one physical machine. The creation of virtual hosts enables each virtual host-servlet pair to
be uniquely addressable by the dispatching hardware/software. Thus, when the dispatching
hardware/software receives a request from the browser application, the dispatcher
determines what particular virtual host-servlet pair to direct the request to, thereby distributing
the application load across the available virtual host-servlet pairs. Features within the

9

© Copyright IBM Corp. 2002. All rights reserved. 119

dispatcher are responsible for sending subsequent requests from each browser session to
the appropriate virtual host-servlet pair.

Using the technique of multihome servlets WebSphere customers can quickly and easily
improve the scalability of their Web environment, whether the need for additional system
throughput is a result of application inefficiencies or volumes growth.

Overview of scaling servlets
Servlets are the Java programs that generate dynamic content and interact with Web clients.
Servlets can be implemented in different ways depending on the requirements of the
operating environment. The limitations of a single servlet may suggest the need for servlet
cloning. When servlet cloning does not yield the necessary scaling, the technique of
multihome servlets may be appropriate.

Single-tier e-business applications are relatively simple. A typical configuration for a
WebSphere application, shown in Figure 9-1, consists of one Web (HTTP) server and one
Web application server (WAS) with one Java virtual machine (JVM) containing servlets and
one Enterprise JavaBean (EJB) container. The Web server and Web application server reside
on the same machine. The performance of this configuration is limited by the power of the
machine and by various constraints inherent in the configuration. As the number of end-users
increases, the performance may be seriously diminished by the limited capacity of such a
configuration.

Figure 9-1 Basic WebSphere e-business application configuration

Experience shows that a single application server, implemented by a single JVM process,
cannot always fully use the processing power of a large machine. This is particularly true on
large multiprocessor machines because of inherent concurrency limitations within a single
JVM. The mechanisms available to improve the scalability of a WebSphere application
require a configuration implemented with such features as workload management, fail-over,
fault isolation, and session management.

Client

Client

Web server

Host

JVM

Servlets

Web application server

EJB

EJB container

Back-end database

Back-end
database
120 Best Practices for High-Volume Web Sites

The most common and widely used mechanism is vertical cloning, which is the practice of
defining clones of an application server on the same physical machine. Vertical cloning
provides a straightforward mechanism to create multiple JVM processes that together can
fully use the available processing power. Each clone uses its own JVM to provide an
identical, but independent, process in which the application runs. Vertical cloning simplifies
system administration because clones can be used to quickly create and maintain identical
copies of a server configuration. It is a way to organize workload distribution for several
mechanisms provided with WebSphere, such as open servlet engine (OSE) remote, workload
manager, and servlet redirector.

The implementation of vertical cloning in the JVM/servlet layer is called servlet cloning.
Servlet cloning is an easy way to duplicate resources to facilitate workload management and
fail-over. Servlet cloning involves using WebSphere administration commands to create a
model of an existing JVM, then to create clones of that model. Figure 9-2 shows a single-tier
configuration with servlet cloning.

Figure 9-2 Configuration with servlet cloning

The JVM manages the session between the HTTP client and the servlet. The session
manager stores session-related information either in memory within the application server ---
in which case it cannot be shared with other application servers --- or in a back-end database,
shared by all application servers. The latter option is referred to as session persistence.

Session persistence is critical to HTTP sessions with any load distribution configuration.
Therefore, servlet cloning requires session persistence. When a back-end database query is
involved, performance is compromised because of the overhead needed to facilitate the
query. To improve performance, the session manager may implement sophisticated caching
optimizations to minimize the overhead of accessing the back-end database. However, to
facilitate caching, the overhead also requires WebSphere to use DB2 to cache session data.

Some applications implement their proprietary sessions and don't use the WAS session.
Those applications might not work correctly when implementing servlet cloning. In our

Client

Client

Web server

Host

JVM

V JV
JVM

V JV
JVM

V JVJVM

Servlet
clone

Web application server

Back-end
database

Back-end
database

EJB container

EJB
clone

EJB
clone

EJB
clone

EJB
clone
Chapter 9. Improving the scalability of a WebSphere application with multihome servlets 121

customer engagement experience, we've observed that when the customer application is not
fit for servlet cloning, symptoms of external problems emerge, for example:

� Intermittent servlet/JSP generic page errors

� Failure of application to achieve improvements in throughput (transactions per second or
HTTP hits per second)

Therefore, the prerequisite of session persistence imposes challenges when servlet cloning is
either not appropriate or does not achieve desired levels of scalability. Such prerequisites
limit extensive use of servlet cloning and diminish its acknowledged advantages.

Multihome servlets
Using multihome servlets can reduce the limitations of servlet cloning. Figure 9-3 shows the
implementation of multihome servlets. A traditional, single-tier e-business configuration
consists of a single physical machine with one IP address serving as host to one JVM/servlet.
Servlet cloning enables a single physical machine to serve as host to multiple JVM/servlets.
Now a single machine can host multiple IP addresses through the use of virtual hosts, each
served by a JVM/servlet.

Figure 9-3 Multihome servlet technique

Resources associated with one virtual host cannot share data with resources associated with
another virtual host, even if the virtual hosts share the same physical machine. Even though
the virtual hosts share a machine, each one has a unique Web address and runs its own
JVM, isolated from other virtual hosts and therefore not requiring workload manager.

Servlet Web server EJB container

EJB
clone 1

Back-end
database -

-

Back-end
database

Host 1

IP
Sprayer

Host 2

Host 3

Host 4

JVM 1
Servlet

1

JVM 2
Servlet

2

JVM 3
Servlet

3

JVM 4
Servlet

4

Virtual
Host 1

Virtual
Host 2

Virtual
Host 3

Virtual
Host 4

EJB
clone 2

EJB
clone 3

EJB
clone 4

VH
1

VH
2

VH
3

VH
4

Client

Client
122 Best Practices for High-Volume Web Sites

Each virtual host has a logical name, for example VH1 and VH2, and a list of one or more
DNS aliases by which it is known. A DNS alias is the TCP/IP hostname and port number used
to request the servlet. When a servlet request is made, the server name and port number
entered into the browser are compared to a list of all known aliases in an effort to locate the
correct virtual host and serve the servlet.

The resources of an original servlet application can be associated with WebSphere's
VirtualHost1 and the resources of the second copied servlet with WebSphere's VirtualHost2.
VirtualHost1 is defined in WebSphere mapping to WebServer VH1, and VirtualHost2 is
mapped to WebServer VH2. In our case of using Apache WebServer, both VH1 and VH2 are
defined in the server configuration of the same physical machine. Now the two virtual host
sites offer the same servlet.

Each host with a distinctive IP address has its own instances of the servlet, which are
unaware of instances of the other hosts. An initial browser request is made using a generic
VirtualHost Web address, which is routed to a specific VirtualHost1(2) site either by using a
hardware local director or a software tool such as WebSphere's Edge Server (Network
Dispatcher). Subsequent requests during the same session go directly to the same
VirtualHost as a result of enabling Network Dispatcher's sticky feature or implementing the
application accordingly.

Benefits of multihome servlets
Multihome servlets can offer significant benefits. They provide the ability to:

� Circumvent bottlenecks in application memory

� Improve scalability

� Implement a tactical solution and maintain important business opportunities

Bottlenecks in application memory are common in online applications developed in-house.
Multihome servlets are a way to avoid bottlenecks while achieving scalability and maintaining
high performance. Many HVWS customer engagements involve integrating in-house
applications with the WebSphere application server. Because the e-business requirements
for the application are new and application developers are still learning how to address them,
memory bottlenecks are common. A major cause of memory bottlenecks is what is called
memory leak, a condition that cannot always be fixed before putting an application into
production.

When there is memory leak, the application requires more memory and a correspondingly
larger JVM heap. The time it takes for Java to compact or reclaim space (garbage collection)
is a product of heap size. As heap size increases, application response time becomes long
and unstable. Because the multihome servlets segment the original heap size, the heap for
each servlet is smaller. When the size of a heap is reduced, there is a corresponding
reduction in the time for garbage collection and performance is maintained.

An application bottleneck can also result from the low-level design of the application, which
involves frequency of certain function calls, interface to the network layers, basic data type
choices, and thread processing procedures. Removing the bottleneck could involve
redesigning the architecture. Many customers can't afford to mount that level of effort and
indefinitely delay deploying the application. While such a delay probably results in a better
technical application, it can expose the company to the considerable risk of losing their online
business opportunities to their competition.

The next section describes the experience of the HVWS team with a major bank. Managing a
bottleneck as described above enabled the bank's application to scale and function as
Chapter 9. Improving the scalability of a WebSphere application with multihome servlets 123

required in the production environment. With the application in production, the customer is
working toward its business objectives, while the development team diagnoses and corrects
the root cause of the bottleneck. Multihome servlets provide a good interim solution, adding
some tasks to application deployment and maintenance.

Case study
In a recent customer engagement, the HVWS team faced a bottleneck in application memory.
The project was to assess the performance and scalability characteristics of an online trading
system for a major commercial bank. The CPU utilization on the Web or Web application
(EJB) servers was stuck at 40-50 percent. If the load increased slightly, the response time
rose by a factor of five; sometimes the application terminated. The logins per second, which
was the more important performance criterion, never exceeded seven. However, the bank's
objective for the test environment was twenty logins per second. Vertical cloning diminished
performance even more because of the overhead required given the application did not
support session persistence.

Performance improved significantly with multihome servlets. Multihome servlets avoided the
application bottleneck and met the business objectives set by the bank's executives. Two
configurations were tested: the first configuration (3:2) had a ratio of three servlet machines
called Web servers to two EJB machines called Web applications servers; the second
configuration (3:3) had a ratio of three servlet machines to three EJB machines. With
multihome servlets, the CPU utilization increased to over 90%, the logins per second rose by
144%, and the total testing load doubled. Here is the summary of the test results.

Multihome servlets improved the scalability of the application while maintaining satisfactory
performance. The following charts compare the performance of applications with a single
servlet and four multihome servlets in a 3:2 configuration.

Figure 9-4 compares the key performance data of the customer application. In this test, we
tried to drive the single servlet application to the maximum of 1125 users. Response time
degraded to almost ten seconds and CPU utilization stuck at 70%. The number of quotes per
second, one of the key business criteria, was far below the customer requirement. With four
multihome servlets, we can drive 1140 users with 4.9 seconds in response time and 80 to
90% CPU utilization. The number of quotes per second was six times higher.

Figure 9-4 Performance comparison of single servlet application versus multihome servlets application

The measures associated with login and quote transactions were of primary interest to the
customer because login consumes the most resources and quote is the most important
function of the application. Figures 9-5 and 9-6 compare the performance of the key functions

Criteria Test Results
w ith 1 Servlet

Test Results
w ith 4 Servlets

Total Users 1125 1140

JVM Used 1 4

Login Rate 11.4 /sec 16.2 /sec

Quote Rate 68 /sec 424 /sec

Servlet CPU 60% 80.4%

EJB CPU 70% 89%

Login response time 9.8 4.9 sec

Quote response time 5.5 2.5 sec
124 Best Practices for High-Volume Web Sites

of login and quote. The figures show that the multihome servlet application improved
significantly: transactions per second increased and response time decreased.

Figure 9-5 Performance comparison of single servlet application versus multihome servlets application
on transactions per second of key business criteria

Figure 9-6 Performance comparison of single servlet application versus multihome servlets application
on response time of key business criteria

Setting up multihome servlets
This section summarizes how we set up the multihome servlets. The information is for your
reference only and the details might be different in each configuration.

Prerequisites
� Install WebSphere 3.5 or above in end-to-end, single host configuration.

� Confirm the application executed without errors.

� Shut down the Web servers, the Web application servers, and the WebSphere domain.

Comparison for Login and Quote Transactions
per Second on Single Servlet and 4 Servlets

68

424

11.4

16.2

0

100

200

300

400

500

Single Servlet Multi Servlet

0

5

10

15

20

25

Quote Login

Response Time Comparison in Seconds of Single
Servlet and 4 Servlets

9.8

4.95.5

2.5

0
2
4
6
8

10
12

Single Servlet Multi Servlet

Login Quote
Chapter 9. Improving the scalability of a WebSphere application with multihome servlets 125

Setup
Figure 9-7 summarizes the steps required to set up multihome servlets.

Figure 9-7 Setting up multihome servlets

1. Obtain an additional IP addresses for each virtual home. This allows a Web server to
respond to requests for more than one server address.

2. Configure the Web server to accept IP packets for multiple addresses. This can be
accomplished with the ifconfig alias flag.

3. Create new VirtualHost for each additional virtual home in WebServer configuration. This
can be done in the HTTP configuration file, httpd.conf, of the IBM HTTP server or Apache
Web server, as follows:

<VirtualHost hostxx.some_domain.com>
DocumentRoot /www/docs/hostxx.some_domain.com
ServerName hostxx.some_domain.com
ErrorLog logs/hostxx.some_domain.com-error.log
TransferLog logs/hostxx.some_domain.com-access.log

</VirtualHost>

4. For a Microsoft IIS server, in IIS admin console, go to Action. Click Advanced on the Web
Site tab. Enter each IP address and its corresponding port number.

5. Use either XML or GUI Admin Console to create new AliasHost for each virtual home in
the WebSphere configuration.

6. Use the WAS batching facility, XML export/import facility, or online GUI Admin console to
create the multihome servlet by copying the original servlet application to as many new
servlet application names as needed.

7. Associate each new copied servlet application with a unique AliasHost created above.

8. Restart the Web server, which will incorporate the new IP addresses and associated
changes.

9. Restart the WebSphere node. The admin console will reflect the changes and new servlet
applications.

10.Start each servlet application through the admin console.

11.Verify that each servlet application works and responds to browser requests. We may try
each IP address from the browser and see if all the IP addresses work correctly.

Get IP
addresses

Configure
Web server
(ifconfig)

Create
VirtualHost

Create
AliasHost Copy servlet

app

Link servlet
app to

AliasHost

Restart
Web server

Restart
WebSphere

Restart each
servlet app

Verify each
servlet app
126 Best Practices for High-Volume Web Sites

Summary
The HVWS team developed the multihome servlet technique when confronted with the
limitations imposed by the prerequisite of servlet cloning for session persistence. Multihome
servlets offer a useful alternative to servlet cloning. Their benefits include the ability to:

� Circumvent bottlenecks in application memory

� Improve scalability

� Implement a tactical solution and maintain important business opportunities

Multihome servlets offer these benefits when servlet cloning is either not appropriate or does
not achieve desired levels of scalability. This chapter reviewed the circumstances that led to
the development of the multihome servlet technique. It describes their benefits and a
procedure for setup.

References
WebSphere Scalability: WLM and Clustering, using WebSphere Application Advanced
Edition, SG24-6153-00, at:

http://www.ibm.com/redbooks

Design for Scalability, An Update, September 2001, at the IBM High-Volume Web Site:

http://www.ibm.com/websphere/developer/zones/hvws
Chapter 9. Improving the scalability of a WebSphere application with multihome servlets 127

http://www.ibm.com/websphere/developer/zones/hvws
http://www.ibm.com/redbooks

128 Best Practices for High-Volume Web Sites

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this redbook.

Referenced Web sites
These Web sites are also relevant as further information sources:

� WebSphere Application Server Performance Web site provides access to helpful
performance reports, tools, and downloads

http://www.ibm.com/software/webservers/appserv/performance.html

� High Volume Web Sites

http://www.ibm.com/websphere/developer/zones/hvws

� Failover and Recovery in WebSphere Application Server Advanced Edition 4.0

http://www7.software.ibm.com/vadd-bin/ftpdl?1/vadc/wsdd/pdf/modjeski.pdf

� IBM Tivoli performance and availability tools

http://www.tivoli.com/products/solutions/availability/news.html

� IBM WebSphere software platform for e-business includes edge servers, Web application
servers, development and deployment tools, and Web applications

http://www.ibm.com/websphere/developer

� IBM WebSphere Commerce Suite, used by customers who run large-scale online
shopping sites

http://www.ibm.com/software/webservers/commerce

� Software used by trading sites studied using WebSphere Application Server

http://www.ibm.com/software/webservers/appserver

� Software used by trading sites studied using, WebSphere MQSeries

http://www.ibm.com/software/software/ts/mqseries

� Download a demo version of PageDetailer, the tool in WebSphere Studio that measures in
detail every element in a page download to assists in performance analysis and
optimization

http://www.ibm.com/software/webservers/studio/download.html

� Carnegie Mellon Software Engineering Institute

http://www.sei.cmu.edu
© Copyright IBM Corp. 2002. All rights reserved. 129

http://www.sei.cmu.edu
http://www.ibm.com/software/webservers/studio/download.html
http://www.ibm.com/software/software/ts/mqseries
http://www.ibm.com/software/webservers/appserver
http://www.ibm.com/software/webservers/commerce
http://www.ibm.com/websphere/developer
http://www.tivoli.com/products/solutions/availability/news.html
http://www7.software.ibm.com/vadd-bin/ftpdl?1/vadc/wsdd/pdf/modjeski.pdf
http://www.ibm.com/websphere/developer/zones/hvws
http://www.ibm.com/sofware/webservers/appserv/performance.html

How to get IBM Redbooks
You can order hardcopy Redbooks, as well as view, download, or search for Redbooks at the
following Web site:

ibm.com/redbooks

You can also download additional materials (code samples or diskette/CD-ROM images) from
that site.

IBM Redbooks collections
Redbooks are also available on CD-ROMs. Click the CD-ROMs button on the Redbooks Web
site for information about all the CD-ROMs offered, as well as updates and formats.
130 Best Practices for High-Volume Web Sites

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

Index

A
additional scaling techniques 19
AIX performance tools 94
application response times - baseline versus peak 83
availability ix, 60

assure your IT processes promote availability 66
common

inhibitors 64
techniques 65

components for consideration 70
concepts and costs 60
continuous availability 60–61
create hardware and software clusters/implement
load balancing 69
design your applications to enhance availability 65
design your infrastructure for availability 68
e-business infrastructure with availability measures
62
high availability 60
implementing connectors 72
introduction 60
investments in availability vary by workload pattern
64
making trade-offs 63
minimum topology for a highly available WebSphere
configuration 71
multiple physical sites to protect against the effect of
disasters 73
multi-tier infrastructure designed for high availability
69
protect your data from accidental loss, viruses, and di-
sasters 72
SANs change how data is accessed and increases
availability 73
trade-offs between costs and consequences of an out-
age 63
unavailability is expensive 62
versus actual time lost 61

availability versus actual time lost 61
average cost per Web transaction 88

B
basic WebSphere e-business application configuration
120
benefits of multihome servlets 123
best practices viii

C
capacity planning 40

analyze trends and set performance objectives 41,
49
identify your workload pattern 41
measure performance of current site 41–42
© Copyright IBM Corp. 2002. All rights reserved.
model your infrastructure alternatives 41, 51
character of workload

amount of cross session information 8
data volatility 9
high volume dynamic transactional fast growth 8
number of page views 9
number of unique items 9
other workload character items 9
percent secure pages (privacy) 9
transaction complexity 8
transaction volume swing 9
use of security (authenticate, integrity, nonrepudiate)
9
volume of dynamic searches 8
volume of user specific responses 8

characterizing your workload 8
Charles Schwab

Barista 98
EJB test scenario 107
introducing the project 106
test environment

hardware 118
monitoring tools 118
software and test tools 118

benchmark
environment 102
software configuration 103

best practices 114
e-business today 97
fine-tuning the scalability of a multi-tier architecture
105
IBM benchmark 99
making sure the new architecture measures up 98
page views per second 100
proposed architecture Barista 98
results

Barista EJB multidomain test scenario 108
Barista EJB single domain test scenario 109
Barista soak test 113
Barista test (one presentation server and one busi-
ness logic server) 111
Barista test (two presentation servers and one
business logic server) 112
summary of Barista results 113

Schwab response to the benchmark results 100
technical benchmark details 101
test scenarios 102
testing Barista 107
topology

Barista EJB test 108
Barista test (one presentation and one business
logic) 110
Barista test (two presentations and one business
logic server) 111
Barista test environment 107, 117
 131

Charles Schwab puts growth plan to the test 97
choosing between two and three tiers 22
common pitfalls

architecture phase 21
deployment phase 22
design phase 21
development and test phases 22
planning phase 21
summary 21

comparing multihome servlets to servlet cloning 119
components most affected 9
configuration with servlet cloning 121
continuous availability 61
customer

engagements viii, xi
self-service sites let users help themselves 6

D
design 27

pages for performance 27
practices that can improve performance 34
scalability 11

E
each workload pattern has an associated class of user re-
quests 44
e-business infrastructure with availability measures 62
emerging standards and technologies 23
example

seasonality demonstrated by one week from Nagano
46
transition matrix for an online shopping visit 49
two-, three-, and four-tiered infrastructures 23
Web page metrics 43

F
fine-tuning the scalability of a multi-tier architecture 105

H
high availability x
high performance ix
High Volume Web Sites (HVWS)

locations 138
High-Volume Web Sites (HVWS) vii, 138

locations vii
hit rates over six months for a financial site 87
how latency varies based on workload pattern and tier 15
how scaling techniques relate to scaling objectives 13

I
IBM Tivoli Monitoring for Transaction Performance 93
IBM Tivoli Monitoring for Web Infrastructure 91
IBM Tivoli Performance Viewer 91
IBM Tivoli Web Site Analyzer 92
IBM Wimbledon Web site on its record-breaking day 45
improving the scalability of a WebSphere application with
multihome servlets 119

infrastructure component
data servers 9
edge server 9
network 9
security servers 9
transaction servers 9
web application server 9

introducing
methodology for capacity planning 40
scalability 12
Web communications 28
workload patterns 6

investments in availability vary by workload pattern 64
It is not just about satisfying customers 37

J
J2EE 23

K
know your workload 3

L
life cycle of a Web site viii
Linux 23

M
managing Web site performance 79
maximize Web site availability 59
measure performance of current site 42
methodology

capacity planning 40
managing performance xi
managing performance of a HVWS 81
modeling x

metrics for page hits per day 5
minimum topology for a highly available WebSphere con-
figuration 71
models for HVWS capacity planning 52
multihome

servlet technique 122
servlets 119, 122

multihome servlets case study 124
multi-tier

infrastructure designed for high availability 69
infrastructure for e-business vii, 40

O
online shopping

sites let users browse and buy 6
online shopping script 47
online shopping site measurements 47
optimizing for scalability ix
overview

scaling servlets 120
Web communications 29
132 Best Practices for High-Volume Web Sites

P
page design practices

manage
load sequences 37
number of connections 35
number of servers accessed 36
number, size, and complexity of items 34
use of white space 36

understand impact of data security 37
page download measurements 30
page load time rankings 31
pattern

categories/examples 7
content 7
cross-session info 8
data volatility 8
legacy integration/complexity 8
page views 8
percent secure pages 7
searches 8
security 7
unique items 8
volume of transactions 8

performance comparison
single servlet application versus multihome servlets
application 124
single servlet application versus multihome servlets
application on response time of key business criteria
125
single servlet application versus multihome servlets
application on transactions per second of key busi-
ness criteria 125

performance management
AIX performance tools 94
analyze and tune components 83
application response times - baseline vs peak 83
average cost per Web transaction 88
comparison

single servlet application versus multihome serv-
lets application 124

cost savings with proposed enhancement 89
current and projected system load 89
establish performance objectives 81
hit rates over six months for a financial site 87
IBM Tivoli Monitoring for Transaction Performance
93
IBM Tivoli Performance Viewer 91
IBM Tivoli Web Site Analyzer 92
monitor and measure the site 82
performance comparison of single servlet application
versus multihome servlets application on response
time of key business criteria 125
performance comparison of single servlet application
versus multihome servlets application on transactions
per second of key business criteria 125
predict and plan for the future 85
retail customer seasonal peaks 86
retailer usage patterns over one week 86
scenarios 87
tools available to monitor and analyze Web site com-

ponents 85
performance monitoring

IBM Tivoli Monitoring for Web Infrastructure 91
pervasive computing devices 24
plan for growth 39
projected measurements for online shopping site 49
publish/subscribe Web sites provide users with informa-
tion 6

R
Redbooks Web site 130

Contact us xii
reliability ix
requests per second over one hour during Nagano Olym-
pics 50
retail

customer seasonal peaks 86
site with seasonal peaks 4
usage patterns over one week 86

S
sample graph showing components of performance 55
sample measurement of a Web page 32
scalability/performance curves 13
scaling a WebSphere Commerce Web site 54
scaling a WebSphere online trading site 19
scaling techniques

aggregate user data 17
batch requests 16
cache 17
create a cluster of machines 16
manage connections 17
segment the workload 16
use a faster machine 16
use appliance servers 16

scaling techniques applied to components 18
security ix
self-managing servers 24
servlets

basic WebSphere e-business application configura-
tion 120
benefits of multihome servlets 123
configuration with servlet cloning 121
multihome 119, 122

case study 124
technique 122

overview of scaling servlets 120
performance comparison

single servlet application versus multihome serv-
lets application on response time of key business
criteria 125
single servlet application versus multihome serv-
lets application on transactions per second of key
business criteria 125

setting up multihome servlets 125
setting up multihome servlets 125
site performance

obtain site measurements 47
seasonality 46
 Index 133

understand workload metrics 43
site type

customer self-service 7
online shopping 7
publish/subscribe 7
trading 7
Web services/B2B 7

steps to scaling infrastructure
apply the techniques 18
categorize your workload 15
determine the components most affected 15
reevaluate 19
select the scaling techniques to apply to scale the
workload 16
understand the application environment 14

storage area networks (SAN) change how data is access-
ed and increases availability 73
summary of the eight scaling techniques 16

T
tools available to monitor and analyze Web site compo-
nents 85
tools for monitoring performance 91
trade-offs between costs and consequences of an outage
63
trading sites let users buy and sell 6
traffic patterns from Nagano Olympic Games 45
traffic scaling for peak hours in different years 51
typical Web site loads over a 24-hour period 3

U
unavailability is expensive 62
understanding your workload 7
using Web services B2B sites buy from/sell to each other
7

W
Web services 23
Web site availability 59
Web site classifications 7
Web site with multiple tiers 53
WebSphere Edge Server for Multiplatforms 71
what is a good page 33
when bad things happen to good pages 30
workload patterns 6

customer self-service sites let users help themselves
6
online shopping sites let users browse and buy 6
publish/subscribe Web sites provide users with infor-
mation 6
trading sites let users buy and sell 6
using Web services B2B sites buy from/sell to each
other 7

workload patterns and Web site classifications 7
134 Best Practices for High-Volume Web Sites

(0.2”spine)
0.17”<->

0.473”
90<->

249 pages

Best Practices for High-Volum
e W

eb Sites

®

SG24-6562-00 ISBN 0738425095

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

Best Practices
for
High-Volume Web Sites

Designing for
scalability

Planning for growth

Managing Web sites
for performance

For more than three years, IBM's High-Volume Web Sites (HVWS) team
has been working with many of the world's largest Web sites. The
team has accumulated a significant amount of knowledge and defined
best practices for designing and deploying high-volume sites, earning
a reputation as one of the world's leading centers of expertise on
scalable e-business infrastructures. The team has locations in
California, New York, Japan, Korea, China, Taiwan, and the United
Kingdom.

The IT infrastructures that comprise most high-volume sites present
unique challenges in design, implementation, and management. While
actual implementations vary, a typical e-business infrastructure is
comprised of several tiers. Each tier handles a particular set of
functions, such as serving content (Web servers, such as the IBM HTTP
Server), providing integration business logic (Web application servers,
such as the WebSphere Application Server), or processing database
transactions (transaction and database servers). Site workloads are
assumed to be high volume, serving dynamic, volatile data. As it
accumulates experience and knowledge, the HVWS team publishes
papers aimed at helping CIOs and others like you understand and meet
the new challenges presented during one or more of the phases. This
IBM Redbook is a compilation of the HVWS papers, which are available
individually at the HVWS Web page:

http://www.ibm.com/websphere/developer/zones/hvws

where you will find the latest on the HVWS teams consultative project
documentation.

Back cover

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Part 1 Best practices
	Chapter 1. Knowing your workload
	Introduction to workload patterns
	Understanding your workload

	Chapter 2. Designing for scalability
	Introducing scalability
	Six steps to scaling your infrastructure
	Additional techniques
	Common pitfalls
	Choosing between two and three tiers
	Emerging standards and technologies
	Summary

	Chapter 3. Designing pages for performance
	Introducing Web communications
	When bad things happen to good pages
	What's a good page?
	Design practices that can improve performance
	It is not just about satisfying customers

	Chapter 4. Planning for growth
	Introducing a methodology for capacity planning
	Summary
	References

	Chapter 5. Maximizing Web site availability
	Introduction
	Availability concepts and costs
	On the way to continuous availability
	Common inhibitors
	Common techniques
	Summary
	References

	Part 2 Customer engagements
	Chapter 6. Managing Web site performance
	Step 1. Establish performance objectives
	Step 2. Monitor and measure the site
	Step 3. Analyze and tune components
	Step 4. Predict and plan for the future
	Some performance management scenarios
	Tools for monitoring performance
	Summary
	References

	Chapter 7. Charles Schwab puts growth plan to the test
	Schwab's e-business today
	Making sure the new architecture measures up
	IBM benchmark
	Schwab's response to the benchmark results
	Technical benchmark details

	Chapter 8. Fine-tuning the scalability of a multi-tier architecture
	Introducing the Barista project
	Testing Barista
	Summary of Barista results
	Best practices
	Summary
	Software and test tools
	Monitoring tools

	Chapter 9. Improving the scalability of a WebSphere application with multihome servlets
	Overview of scaling servlets
	Multihome servlets
	Benefits of multihome servlets
	Summary
	References

	Related publications
	Referenced Web sites
	How to get IBM Redbooks
	IBM Redbooks collections

	Index
	Back cover

