
ibm.com/redbooks

Linux and Branch
Banking

Bart Jacob
David Janson

Oliver Mark
Fabio L Marras

Branch banking transformation trends

An IBM Patterns for e-business
approach

The vital role of Linux

Front cover

Linux and Branch Banking

December 2002

International Technical Support Organization

SG24-6909-00

© Copyright International Business Machines Corporation 2002. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (December 2002)

Note: Before using this information and the product it supports, read the information in
“Notices” on page ix.

Contents

Figures . vii

Notices . ix
Trademarks . x

Preface . xi
The team that wrote this redbook. xii
Become a published author . xiii
Comments welcome. xiv

Chapter 1. An introduction to Linux . 1
1.1 What is Linux. 2

1.1.1 Standards . 3
1.1.2 Minimum operating requirements . 3

1.2 IBM and Linux . 4
1.2.1 Linux as a server . 4
1.2.2 Linux as a client . 5

1.3 Linux in a business environment . 6
1.3.1 Business use. 6
1.3.2 Benefits and risks . 6

1.4 Summary . 9

Chapter 2. Branch banking environment . 11
2.1 The state of branch banking . 12

2.1.1 Branch banking trends . 13
2.2 Branch technology challenges . 14

2.2.1 Total cost of ownership . 14
2.2.2 Quality of Service . 15
2.2.3 Speed to market . 15

2.3 Branch transformation strategies . 15
2.3.1 Branch software strategy overview . 17
2.3.2 Multichannel context . 21

2.4 Branch structure . 24
2.4.1 Branch systems. 24
2.4.2 Employees . 27

2.5 Common branch banking scenarios . 32
2.5.1 Host-centric scenario . 32
2.5.2 Host-centric with local applications scenario. 33
2.5.3 Distributed processing scenario . 34
© Copyright IBM Corp. 2002. All rights reserved. iii

2.6 Component model for branch banking . 36
2.6.1 Component diagram . 36
2.6.2 Component definitions . 37

2.7 Summary . 43

Chapter 3. Branch banking requirements . 45
3.1 Solution architecture objectives and principles . 46

3.1.1 Cost-related objectives . 46
3.1.2 Implementation-related objectives . 47
3.1.3 Programming-related objectives . 49

3.2 Business context . 51
3.3 System context . 54
3.4 Functional requirements . 55

3.4.1 Operational considerations . 55
3.5 Non-functional requirements . 58

3.5.1 Cost of operation. 58
3.5.2 Capacity, performance, and scalability . 59
3.5.3 Reliability and availability . 59
3.5.4 Security . 60
3.5.5 System management . 60
3.5.6 User and desktop management . 61
3.5.7 IT standards and existing IT infrastructure . 61
3.5.8 Geographic constraints . 61

3.6 Change cases . 61
3.7 Summary . 62

Chapter 4. IBM Patterns for e-business overview 63
4.1 Introduction to Patterns for e-business . 64
4.2 The Patterns for e-business layered asset model 66

4.2.1 How to use Patterns for e-business . 67
4.3 Summary . 72

Chapter 5. Applying IBM Patterns for e-business to branch banking . . . 73
5.1 Starting to use Patterns for e-business . 74

5.1.1 Describing the problem or problems we want to solve 74
5.1.2 The solution or solutions alternatives . 74
5.1.3 Gathering and summarizing requirements and drivers 75

5.2 Business context . 77
5.3 IT context. 79

5.3.1 Application and technology portfolio . 80
5.3.2 Transformation strategies . 81

5.4 Pattern selection . 82
5.4.1 Selecting Business and Integration patterns. 82
5.4.2 Composite pattern. 84
iv Linux and Branch Banking

5.4.3 Application and Runtime patterns . 86
5.4.4 Customer loyalty in the financial services industry 105
5.4.5 Composite pattern: e-Bank . 108
5.4.6 WSBCC and Eontec . 112

5.5 Summary . 116

Chapter 6. Linux-based products applicable to branch banking 117
6.1 Linux in branch banking environments . 118

6.1.1 Network services. 118
6.1.2 User management and security . 122
6.1.3 File and print services . 125
6.1.4 Store and forward . 126
6.1.5 Database services. 127
6.1.6 Application servers . 129
6.1.7 Messaging servers . 129
6.1.8 Systems management . 130

6.2 Summary . 132

Chapter 7. Scenario for a new branch banking solution 133
7.1 Scenario overview . 134
7.2 Scenario solution. 136
7.3 Summary . 139

Appendix A. IBM Software for Linux . 141
DB2 for Linux . 141

DB2 Universal Database products . 142
DB2 application development . 142
Informix . 143
Connectors . 143

WebSphere for Linux . 144
Application server . 144
Application integration . 144
Industry solutions . 145
Development tool . 145
Presentation . 146
Deployment . 146
Integration . 146

Lotus Domino for Linux . 147
Collaboration . 147
Workflow . 147

IBM Tivoli software . 147
Security . 148
Storage . 148
Performance and availability . 149
 Contents v

Configuration and operations . 149

Related publications . 151
IBM Redbooks . 151

Other resources . 151
Referenced Web sites . 151
How to get IBM Redbooks . 152

IBM Redbooks collections. 152

Index . 153
vi Linux and Branch Banking

Figures

2-1 Current architecture with isolated channels . 12
2-2 Built for multichannel . 18
2-3 Multichannel environment . 22
2-4 Scenario for a host-centric branch solution . 33
2-5 Host-centric with local applications scenario . 34
2-6 Distributed processing scenario. 35
2-7 Component diagram . 37
3-1 Business context diagram . 52
3-2 System context diagram . 54
3-3 Estimated bank costs per transaction . 59
4-1 Patterns layered asset model . 67
4-2 Pattern representation of a custom design . 69
4-3 Custom design . 69
5-1 Some important sources for customer requirements 76
5-2 Business and Integration pattern relationships 77
5-3 Where Business and Integration patterns apply 85
5-4 All Business and Integration patterns apply . 86
5-5 Stand-Alone Single Channel application pattern 89
5-6 Stand-Alone Single Channel runtime pattern. 90
5-7 Directly Integrated Single Channel application pattern 92
5-8 Directly Integrated Single Channel runtime pattern 93
5-9 As-Is Host application pattern . 94
5-10 Customized Presentation to Host application pattern 95
5-11 Router application pattern . 98
5-12 Router runtime pattern . 99
5-13 Decomposition application pattern . 101
5-14 Decomposition runtime pattern . 102
5-15 Agent application pattern . 104
5-16 Agent runtime pattern . 105
5-17 Customer loyalty architecture . 106
5-18 Patterns of customer loyalty. 107
5-19 e-Bank architecture . 109
5-20 Patterns of e-Bank . 110
5-21 Runtime pattern for Self-Service Decomposition Application pattern . 114
5-22 Revised view of the Runtime pattern . 115
7-1 Step 3: Create a new infrastructure . 137
7-2 Future infrastructure outline . 137
7-3 Future infrastructure product mapping . 138
© Copyright IBM Corp. 2002. All rights reserved. vii

viii Linux and Branch Banking

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
© Copyright IBM Corp. 2002. All rights reserved. ix

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AS/400®
CICS®
DB2®
DB2 Connect™
DB2 Universal Database™
developerWorks™
Everyplace™
IBM®
IBM eServer™
IMS™
Informix®

Intelligent Miner™
iSeries™
LANDP®
MQSeries®
OS/2®
OS/390®
Perform™
pSeries™
Redbooks (logo)™
Redbooks™
S/390®

SP™
System/390®
ThinkPad®
Tivoli®
Tivoli Enterprise™
Tivoli Enterprise Console®
VisualAge®
WebSphere®
xSeries™
z/OS™
zSeries™

The following terms are trademarks of International Business Machines Corporation and Lotus Development
Corporation in the United States, other countries, or both:

Domino™
Lotus Notes®
Lotus Workflow™

Lotus®
Notes®
SmartSuite®

Word Pro®

The following terms are trademarks of other companies:

Linux is a registered trademark of Linus Torvalds.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United
States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

C-bus is a trademark of Corollary, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure
Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.
x Linux and Branch Banking

Preface

This IBM Redbook addresses two topics that may, at first, seem rather
orthogonal. One of these topics is the world of banking, and specifically, the
transformation of branch banking. We spend a great deal of time in this book
describing the branch banking environment, the transformation that is currently
taking place related to branch banking, and various architectures and techniques
being used to define the branch bank of the future from an IT perspective.

The second topic is Linux. The phenomenal open source operating system,
whose use within e-businesses as a secure and robust platform has skyrocketed
since its inception.

This redbook discusses the applicability of Linux to the branch banking
environment and why it should be given strong consideration as the basis for
branch banking systems of the future.

Chapter 1, “An introduction to Linux” introduces Linux and discusses its
applicability as a server and as a client.

Chapter 2, “Branch banking environment” begins our discussion of branch
banking, including how it has evolved and why there is such an emphasis in the
industry around its transformation.

Chapter 3, “Branch banking requirements” describes the key requirements of a
branch banking solution from both a business and an IT perspective.

Chapter 4, “IBM Patterns for e-business overview” introduces IBM Patterns for
e-business. These patterns have been successfully used to document the
problems and possible solutions for companies becoming e-businesses.

Chapter 5, “Applying IBM Patterns for e-business to branch banking” applies
Patterns for e-business to the branch banking environment. Though the solutions
we describe are generic, this chapter can be used as a guide for utilizing patterns
to define the solutions required for your environment.

Chapter 6, “Linux-based products applicable to branch banking” provides an
overview of the facilities available for Linux that can make it a viable solution for
branch environments.

Chapter 7, “Scenario for a new branch banking solution” provides a sample
scenario showing a branch banking solution of the future.
© Copyright IBM Corp. 2002. All rights reserved. xi

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Austin Center.

Bart Jacob is a Senior Technical Staff Member at IBM Corp - International
Technical Support Organization, Austin Center. He has 21 years of experience
providing technical support across a variety of IBM products and technologies,
including communications, object-oriented software development, and systems
management. He has 10 years of experience at the ITSO, where he has been
writing IBM redbooks and creating and teaching workshops around the world on
a variety of topics. He holds an MS degree in Numerical Analysis from Syracuse
University.

David Janson is a certified Consulting IT Architect with the IBM Architecture and
Technology Center of Excellence. With over 20 years of experience in the IT
industry, the last 7 of which have been with IBM, Mr. Janson's areas of expertise
include Enterprise Architecture, e-business Solution Architecture, Application
Integration, and software development methods. His special interest in
techniques that accelerate the process of architecting and implementing IT
solutions has made IBM Patterns for e-business an area of particular focus. Mr.
Janson is also an experienced instructor and has had the pleasure of teaching
classes on a number of advanced topics related to software architecture and
design. He holds Bachelor of Science degree from Southern Illinois University.

Oliver Mark is a certified Consulting IT Architect in IBM Global Services
Germany. He has over 12 years of experience in the client/server area, mainly in
the banking sector, with a clear focus on OS/2-based end-to-end architectures.
He is responsible for all IBM Global Services service offerings for OS/2 and its
customers in the EMEA Central Region. He holds a degree in economics and
computer technologies. His areas of expertise include OS/2, Warp Server, IBM
Communication products, Windows, and Linux, as well as Infrastructure and
Systems Management architectures.

Fabio Marras is an IBM I/T Architect in Solutions Financial Services Sector in
Brazil. He has 12 years of experience developing solutions for the finance
industry. He holds a degree in Electronic Engineering, and his areas of expertise
include networking hardware and software, as well as system integration across
multiple platforms.
xii Linux and Branch Banking

Thanks to the following people for their contributions to this project:

Jonathan Adams, IBM Software Group
Margie A. Bachman, IBM Global Financial Services Sector
Larry Baldauf, IBM Software Group
Arthur Cannon, IBM Global e-business Solution Center, Dallas
Jakob Carstensen, IBM Software Group
Jose Carlos Duarte Goncalves, IBM e-Business Technical Sales
Laerte H. Fagundes, IBM Financial Services Sector
Rod Fleming, IBM Global e-business Solution Center, Dallas
David H. Fritz, IBM Software Group
Henry C. Hudson, IBM Financial Services Sector
Catherine McCauley, IBM Global e-business Solution Center, Dallas
John Medicke, IBM Software Group
Thomas Pack, IBM Software Group
Michael Paolini, IBM Linux Integration Center
Bill Reed, IBM Software Group
Jason Salcido, IBM Global e-business Solution Center, Dallas
Timothy F. Sipples, IBM Software Group
Lori Small, IBM Software Group
Lloyd Stearns, IBM Software Group
Pablo E. Suarez, IBM Global Services
Barbara Trainor, IBM Software Group

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html
 Preface xiii

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. JN9B Building 003 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493
xiv Linux and Branch Banking

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

Chapter 1. An introduction to Linux

Although we do not start our detailed description of the branch banking
environment until Chapter 2, it is important to position Linux within a finance
industry context to begin this book.

IBM expects Linux to become a significant platform option for our financial
services customers. This is not just speculation. Banks, brokers, and insurance
companies are using Linux already, and we expect many others to follow, albeit in
generic and niche areas first, before tackling mission-critical transaction-oriented
workloads.

With the recent stock market corrections and reductions in retail brokerage
volumes adding to market competition, the already intense focus on cost is likely
to be even higher, driving further investigation into efficiencies in e-business
infrastructure and more cost-effective ways of working. This view is supported by
the recent DataMonitor study on IT efficiency in the financial services sector,
which found cost control to be the number one or two driver of IT strategies in
42% of our customers for 2002. We expect this to further drive Linux investments,
both at an individual application level and in server consolidation scenarios.

Let’s start our discussion with a brief overview of Linux.

1

© Copyright IBM Corp. 2002. All rights reserved. 1

1.1 What is Linux
Linux is a UNIX-like, POSIX-compliant operating system distributed under the
GNU software license, meaning that the operating system and its source code
are available for free. Initially developed in the early 1990s by Linus Torvalds
along with other programmers around the world, Linux supports all the major
Window managers and all the Internet utilities, such as FTP, Telnet, and SLIP. It
provides true 32-bit and 64-bit multitasking, virtual memory, shared libraries, and
TCP/IP networking. It also has a full set of program development utilities,
including C++ compilers and debuggers.

Linux consists of four major components: the kernel, the shell, the file structure,
and the utilities.

Although it has been implemented across a variety of hardware platforms, it is
most often deployed on Intel-based processors. The Linux kernel is designed to
use the special protected-mode features of Intel 80x86 processors. Therefore,
Linux makes use of the protected-mode, descriptor-based memory management
paradigm and many of the other advanced features of these processors. Linux
also exploits the multitasking capability of 80386 protected-mode programming.
The Linux kernel supports demand-paged loaded executable so that only those
segments of a program that are actually used are read into memory from disk.
Likewise, if multiple instances of a program are running at once, only one copy of
the program code will be in memory.

The Linux kernel includes many improvements specifically designed for
enterprise. The kernel has built-in support for eight-way symmetric
multiprocessing, and the TCP/IP stack has been rewritten to increase stack
performance and provide better scalability in multiprocessing systems.

The Linux kernel is a monolithic kernel, in that all device drivers are part of the
kernel proper. However, Linux does support loadable device drivers that can be
loaded and unloaded from memory through user commands. The kernel is
capable of emulating 387-FPU instructions itself so that systems without a math
coprocessor can run programs that require floating-point math instructions.

Linux users interact with the Linux kernel through their own individual shells. The
shell provides an interface between the kernel and the user. Shells provide a
command line interface to the Linux kernel; if the user prefers a GUI interface,
XFree86, can be installed. XFree86 is a freely available distribution of the X
Window System, containing the X server, programming libraries for developing X
applications, and documentation. Window managers are also available. The
window manager provides the graphical interface that lets users send commands
to the Linux kernel by clicking windows, icons, and menus, much as they would
on a Microsoft Windows or Mac machine.
2 Linux and Branch Banking

1.1.1 Standards
Linux is a Posix-compliant OS, and its constituent subsystems support all
relevant ANSI, ISO, IETF, and W3C standards. From the beginning, Linux was
developed according to the Posix standard. The standard defines how a
UNIX-like system needs to operate, specifying details such as system calls and
interfaces. Posix defines a universal standard to which all UNIX versions must
adhere. Most of the popular versions of UNIX are Posix compliant. Linux Posix
compliance has made it possible for developers to port many popular UNIX
applications and utilities to Linux.

Linux provides a complete implementation of TCP/IP networking. The complete
range of TCP/IP clients and services are supported. The Linux TCP/IP system
provides a standard socket programming interface so that any program that uses
TCP/IP can be ported to Linux.

Linux also supports the standard ISO-9660 file system for CD-ROMs. The Linux
printing software consists of the UNIX standard lp and lpr software. Any parallel
printer supported by MS-DOS or another operating system should be supported
by Linux. Linux supports the full range of serial modems, both internal and
external.

In short, the range of interfaces and capabilities that have become standard
across virtually all operating environments are also available for Linux and
implemented through open source code and based on industry standards. This
combination provides a stable and predictable environment for developing,
porting, or running business-critical applications.

1.1.2 Minimum operating requirements
According to the Linux specification for Intel-based platforms, the minimum PC
requirements for Linux are an Intel 386 computer with about 4 MB of RAM. But to
run the graphical interface and to have enough speed and space to run
applications, most commercial distributions of Linux now recommend at least a
486 (preferably, a Pentium) machine with 64 MB of RAM and a 600 MB hard
drive. Linux requires a minimum of two disk partitions: swap and system. The
base Linux root file system uses between 50 MB and 100 MB of disk space.
Swap space should be equal to RAM memory, with an absolute minimum of 16
MB recommended. However, the size of the Linux system partition will be larger,
based on what the Linux system is used for and the scalability and portability of
file systems to other disk partitions.
 Chapter 1. An introduction to Linux 3

Although the actual hardware requirements will be dependent on the business
and application requirements, it is safe to say that the design and efficiency of the
Linux environment allows companies to build robust systems using relatively
generic and less expensive hardware.

In summary, Linux, as a full-function, standards-based operating system with
relatively minimal hardware requirements, has been getting a lot of attention from
businesses looking for less expensive solutions to meet their IT demands.

Of course, Linux distributions are also available for other hardware platforms,
including the full range of IBM servers from xSeries to zSeries. For the minimum
requirements on platforms other than Intel, please see the relevant Linux
distribution documentation.

1.2 IBM and Linux
For IBM, this is all about customer choice and application enabling. IBM is
involved in all stages of the Linux phenomenon: contributing code and skills to
Linux development itself; delivering Linux-ready hardware platforms in
conjunction with established Linux distributors; porting IBM’s industry-leading
middleware to Linux; providing open-access Linux developer resources; helping
customers and business partners implement Linux solutions; and providing
support through IBM Multivendor Software Supportline contracts.

1.2.1 Linux as a server
Every IBM Server platform has Linux as an option, either as an alternative to the
native operating system, or as a co-resident application environment. IBM
provides a wide range of choices for Linux application deployment in the industry.
However, this does not mean that IBM expects all applications to be Linux-based
and, indeed, new offerings, such as the 64-bit z/OS successor to OS/390,
demonstrate that IBM will continue to invest in other environments that support
and enable our customers’ critical applications.

For customers who just want Linux, the Intel-based xSeries provides native
support. The xSeries now also addresses the server consolidation market, as it
is possible to partition the x440 system in up to four hardware virtual machines
and up to 64 software virtual machines.

The IBM pSeries server provides enhanced capability to execute Linux
applications using the Linux operating environment in native mode or in a logical
partition (LPAR). IBM AS/400 customers who want to implement Linux capability
also can take advantage of the Linux in LPAR support in the iSeries.
4 Linux and Branch Banking

Meanwhile, Linux for zSeries extends the capability of Linux for S/390 into the
64-bit world and retains the unique ability to provide massively parallel
implementations of thousands of “virtual Linux servers” all within a single
enterprise server. This unique capability has been behind a number of significant
customer projects among IBM’s Linux customer references.

To complement this platform capability, IBM has extended its already broad
portfolio of middleware offerings to include Linux on the server. IBM WebSphere,
Lotus Domino, DB2 Universal Database, and Tivoli all provide Linux support
today as a natural extension of their multiplatform strategies and regard Linux as
a Tier 1 platform for future developments.

1.2.2 Linux as a client
There are still a large number of OS/2-based clients in use by IBM financial
services customers, and, therefore, significant interest in whether IBM considers
migration to Linux to be strategically viable. For the general-purpose, full-function
(“heavy”) client environment, the market assessment today continues to be “not
yet,” although the increasing focus on cost containment in all areas is prompting
increased interest in Linux in this context as companies and governments look
forward.

However, for specialized environments, such as development desktops and
thin-client solutions, particularly in branch environments, Linux may be
appropriate and provide an extremely cost-effective alternative. In addition to
Linux itself, there are mainstream offerings available, such as the Netscape
(Mozilla) browser, the OpenOffice suite (now available with support and
documentation for a fee as StarOffice), Adobe Acrobat Reader, and so forth.

IBM has also recently announced the WebSphere Studio Application Developer
for Linux and our involvement in the Open Source Eclipse program to enhance
the Linux development environment in the future. More information about the
Eclipse project can be found at:

http://www.eclipse.org/

At a hardware level, IBM provides a number of Linux-ready ThinkPads, and there
are device drivers available for many common components. However, many
customer environments include specific devices and programs for which support
is not yet available for Linux, and so IBM is working directly with the OS/2
Customer Advisory Council, and individual OS/2 customers within the context of
our branch transformation services, to investigate specific migration scenarios
and possibilities. As a contributor to these migration scenarios, the Java
eXtensions for Financial Services (J/XFS) code has been tested on Linux and
can thus provide financial device access to Java applications running in a Linux
environment, just as J/XFS does today on OS/2.
 Chapter 1. An introduction to Linux 5

http://www.eclipse.org/

1.3 Linux in a business environment
In this section, we describe some of the roles Linux plays in businesses today
and address some of the benefits, as well as issues, related to Linux.

1.3.1 Business use
Within corporations, Linux has made significant inroads within the IT
infrastructure. Companies have reported considerable success deploying Linux
as front-end application servers and in numerous infrastructure environments,
such as caching, VPN networking, DNS, and proxy, as well as Web server
environments. Linux is being implemented in numerous replicated deployments,
such as in-store controllers, kiosks, rental and reservation systems, and
thin-client access to databases. Other applications are in technical and scientific
computing clusters, digital entertainment, and special effects.

At first, Linux was used to turn older systems with minimum resources into
inexpensive Web servers, domain name servers, or e-mail servers. As such,
Linux has become a popular development and production platform for many
Internet service providers and Web-hosting service providers. Linux brings down
the cost of traditionally high-end business computing to the reach of many
smaller organizations. Because of its lower initial installation costs, as well as its
reputation as a stable operating environment, Linux has been used extensively
for implementing Web server farms and other installations requiring a large
number of server machines where ease and cost of deployment, as well as
availability, are important.

With the porting of IBM middleware, such as DB2, WebSphere, Lotus Domino,
and Tivoli management products, to Linux, many businesses are starting to
deploy Linux-based systems as application servers, as well as Web servers.

1.3.2 Benefits and risks
Benefits and risks are one of the most important topics to be analyzed when
developing a new solution or considering a change to your current environment.
In the next sections, we discuss some of the benefits and risks related to Linux.

Open source development
Because developers have access to the Linux source, changes can be made to
operating system code to meet the needs of individual applications. With a
proprietary operating system, users are dependent on the vendor to make any
needed change. If not enough customers request the change to make it
profitable, the vendor may refuse to do it. If the vendor agrees to make the
change, they may charge for the change or decide not to support it later, or both.
6 Linux and Branch Banking

On the other hand, many enterprise users would rather leave changes up to a
vendor than make the change themselves and have to share their code with the
Linux open source community. The most oft-cited reason given by larger
companies with 2000+ employees for not installing Linux is that the proprietary
nature of the software their companies depends on precludes them from open
source development.

Vendor accountability
Larger organizations tend to prefer proprietary products to open source software
because they rely on vendor accountability; they require a vendor that can
provide them with complete support coverage, from the system kernel to system
configuration. Naturally, they are apprehensive about introducing Linux, whose
main support and accountability comes from the open source community. While
these companies could look to Linux distribution vendors, as well as to those that
market Linux on their machines such as IBM, for support, many argue that the
business models these vendors have built around Linux are still untested and
may not withstand the long haul. However, others point out that there is no
guarantee that companies that build their business models around proprietary
operating systems will not fail. What is guaranteed is that no matter what the fate
of the open source vendors, users still own the Linux source and do not have to
depend on any one company to upgrade it for them. They can do it themselves
as part of the open source community.

Management costs
Most IT departments would contend that it does not make sense to use a system
management tool that would cost them more than the systems to be managed.
That is why many IT managers are turning to open source tools to manage Linux
servers. These tools, such as NetSaint and Webmin, are available for free.
Managers are also leveraging their UNIX expertise to write their own
administration and monitoring scripts.

However, where Linux coexists on a network with other operating system
platforms, managing Linux servers separately from other enterprise resources
and using different tool kits to do so would actually raise the total cost of owning
Linux. In these situations, users should look to their management solutions
vendors, such as IBM Tivoli software, to provide the necessary tools.

Reliability, availability, scalability
While the Linux kernel version 2.4 will handle eight-way Intel systems, Linux
multiprocessing capabilities are considerably less than that of high-end UNIX and
Windows 2000 servers. Therefore, Linux is not always the best choice for
high-end applications, such as database installations. However, many users may
find that Linux clustering will satisfy their availability requirements at an
 Chapter 1. An introduction to Linux 7

affordable cost. Using commodity hardware, users can spread the workload
across many smaller, less expensive systems.

Companies that have adopted Linux clusters typically have superior in-house
skills, with control over their own applications, and are more comfortable with the
risks involved in building their own clusters than they are with having to wait for
third-party applications to be developed. For those without such skills, IBM offers
the Linux IBM ^ Cluster 1350 line of pre-assembled server clusters. The
Linux IBM ^ Cluster 1350 line also includes bundled applications and
server-level software, plus integration testing and technical support services. The
clusters can be set up with a minimum of four Intel-based servers, which can be
expanded to more than a thousand servers. The servers come installed and
preconfigured with full systems administration, maintenance, and workload
management software, along with server-level software, such as DB2 or IBM
WebSphere Application Server and e-business software.

Availability of applications
Linux provides a complete UNIX programming environment, including all of the
standard libraries, programming tools, compilers, and debuggers that users have
come to expect from comparable UNIX systems. Nevertheless, porting
applications to the Linux platform by the major software vendors has been
relatively slow, especially in terms of databases, middleware, and legacy
Windows applications. With investments in Linux by major computer companies,
such as IBM, Oracle, and SAP, this situation is changing quickly. Major
applications, such as IBM DB2, IBM WebSphere, Oracle 8i and 9i, and SAP
mySAP.com, have been certified to run on one or more Linux platforms.

Application compatibilities among distributions
Even though more applications are being ported to Linux, there is no guarantee
that they will run on all Linux distributions. This is because each distribution can
have a different version of the same library, making it difficult for developers to
know which one to use when porting their application from one Linux platform to
another. Applications compiled to run with one version will probably not run under
a distribution that uses a different version. What is more, an application that
requires one version of a library can overwrite an existing library with a newer
version that may be incompatible with existing applications that rely on the former
library. Java-based applications provide one possible solution.

Costs of migrating to Linux from current environment
Organizations that have made considerable investments in Microsoft Windows
will have to weigh the costs of implementing Linux against any savings in
licensing costs. These costs include not only the costs of skills and tools, but also
the time it takes to acquire them. While UNIX shops can use the tools and skills
they already have to deploy Linux, shops that have made a significant investment
8 Linux and Branch Banking

in Windows hardware and software and developing their people's skills to
support their investment, such as Visual Basic development or system
administrators with MCSE certification, may find the conversion costs difficult to
justify. However, Linux is already popular in colleges and universities, and most of
new graduates have Linux experience.

1.4 Summary
Linux has been around for nearly a decade, and in recent years, it has captured
the interest and recognition of businesses as a robust and viable operating
environment for many applications.

This chapter has provided a high-level introduction to Linux, discussed some of
the ways businesses are utilizing Linux, and highlighted some of the
considerations related to Linux.

In the next chapter, we discuss the current state of branch banking and some of
the drivers that are causing a branch bank transformation. Because the IT
infrastructure to support branch banking may be changing significantly to support
this transformation, Linux should be seriously considered as a cost-effective
base for these new environments.
 Chapter 1. An introduction to Linux 9

10 Linux and Branch Banking

Chapter 2. Branch banking
environment

This chapter provides an overview of the current state and structure of branch
banking environments. It discusses the business pressures and challenges
currently facing branch banking environments. We discuss the latest trends for
approaching those issues, both from a business and a technical perspective. We
also address the software strategy at the application level to solve the branch
banking problems in a broader context of a multichannel solution.

We also cover the organizational structures of such branch bank environments,
because any solution that is put in place must meet the functional needs of the
individuals that operate and manage the bank branch.

2

© Copyright IBM Corp. 2002. All rights reserved. 11

2.1 The state of branch banking
“The retail bank branch is not dead. On the contrary, there are more branches
today and more households per branch than ever before”, as stated in the
TowerGroup article “The Retail Bank Branch of the Future” published in August
2001. In this same article, the TowerGroup concluded, “Bank customers still
prefer to use the physical branch to many automated channels and that, in fact,
92% of all households surveyed had visited a branch in the month prior to being
surveyed.”

“Irrespective of the fact that the majority of U.S. consumers are now ready for
online banking in technological terms, behaviorally they continue to be slow to
migrate away from traditional channels like the local bank branch or call centers,”
said Michael Weil, TowerGroup’s managing director of Primary Market Research.
“Rather than dropping existing channels, consumers use what they know while
slowly adding new delivery channels into the mix. The move to online
banking-and ultimately to wireless as a delivery channel for financial services-will
continue to evolve.”

So, what we usually see is a single-channel branch accessing data on the central
system in parallel to all other channels, as seen in Figure 2-1.

Figure 2-1 Current architecture with isolated channels

Teller

ATM

Home

Front
Office

VSAM
Deposits

DB2
Customer

IMS
Loans

CICS
Insurance

Checking & Savings

Internet Banking

Consumer Loans

Insurance

Campaigns

~80%

Functional

*Source: The TowerGroup 1999

Marketing

Redundancy*

TellerTeller

ATMATM

HomeHome

Front
Office
Front
Office

VSAM
Deposits

DB2
Customer

IMS
Loans

CICS
Insurance

Checking & SavingsChecking & Savings

Internet BankingInternet Banking

Consumer LoansConsumer Loans

InsuranceInsurance

CampaignsCampaigns

~80%

Functional

*Source: The TowerGroup 1999

MarketingMarketing

Redundancy*
12 Linux and Branch Banking

2.1.1 Branch banking trends
The banking industry has undergone significant changes in the past several
years regarding delivery of retail products and services. A February 2002 article
from TowerGroup, “Retail Bank Branch Renewal in the United States: The
Market, Technology Directions, and Vendors”, explained “There has been
relatively little strategic investment in the retail branch bank infrastructure over
the last ten years.” They give four primary reasons for this:

� Emphasis on the continual emergence of alternative delivery channels
(Internet, cell phones, PDAs, and so on).

� Existing technology, such as OS/2, which has been the predominant
operating system in branch banks for a number of years, has been reliable,
stable, and has had a low total cost of ownership. Also, 3270 terminals and
4700 controllers have provided reliable connections to the mainframe.

� There has been little need for advanced technology in the branch, while banks
were focused on alternative channels.

� The pain factor involved in changing existing technologies includes the cost of
new hardware and software, along with the training required to introduce new
interfaces and business processes into the branch. Bank executives have
been hesitant to change without a clear ROI for new investments.

However, a number of factors have forced banks to rethink the strategic roles of
their branch channel and to consider a major renewal of their existing
technologies. The TowerGroup predicts, “In terms of absolute value, the biggest
area of global spending over the next five years will be in bank branch renewal.”
Reasons for this include:

� The banks’ hope that the emerging call center and Internet channels would
lead to the elimination of a significant number of branches has not come to
pass. Most have realized that the branch channel will continue to be a
significant piece of a multichannel solution. However, due to the slowdown in
branch spending and the addition of other channels with a variety of
architectures, the IT infrastructure of many banks is neither cost-effective nor
suited to the demands of multichannel delivery. As stated in a recent article in
The Banker magazine, “Integrating internal systems and multiple channels
should be at the top of the list of the IT agenda for banks.”

� According to TowerGroup, “The second driver of branch renewal is the
ultimate demise of OS/2 as the underlying operating system for branch
automation solutions worldwide. Support of OS/2 and the hardware it resides
on will become increasingly expensive and difficult to acquire.” Other obsolete
technologies, such as 3270 emulation, IBM 4700 controllers, Windows 95/98,
and in some cases even DOS or Windows 3.1, face similar issues.
 Chapter 2. Branch banking environment 13

Along with these obsolete technologies, the need for new multichannel services,
and the lack of investment and technological readiness combine to make the
branch bank the largest channel for investment over the next years.

Also, banks are seeking to derive greater value from the retail branch delivery
system through transformation activities. These activities include increasing
branch effectiveness, creating financial centers capable of developing and
maintaining long-term relationships, and developing flexible branch
configurations that can meet the special needs of particular customer segments.
Today's retail branch delivery system infrastructures lack the required flexibility
and are, at the same time, costly to maintain and operationally intensive.

2.2 Branch technology challenges
In order to deliver the technology solutions that help achieve the business goals
of branch transformation, bank IT providers are faced with three key challenges:

� Cost

� Quality of service

� Speed to market

2.2.1 Total cost of ownership
Because cost is a key element of the value equation, banks are concerned that
branch transformation solutions can be deployed at an affordable cost. There are
two major areas of cost involved in branch transformation: solution deployment
costs and ongoing operating costs.

Solution deployment costs include the costs of new software (operating systems,
middleware, and applications), hardware (clients, servers, and networks), and
people costs (both internal and external) for integration, coding, installation, and
education. Costs can be mitigated by reuse of the existing hardware and
software infrastructure, minimizing new hardware requirements, and by keeping
user interfaces and processes consistent to reduce training requirements.

Ongoing ownership costs include systems management, service and support,
upgrade costs for hardware and software, downtime due to defects, user errors,
service interruptions, security problems, such as viruses or denial of service
attacks, and any resources and downtime involved in deployment of new tools or
services. The key to reducing ongoing ownership costs is a manageable
infrastructure that reduces people costs and has the flexibility to offer a wide
range of choices and options for deployment of new or upgraded solutions.
14 Linux and Branch Banking

2.2.2 Quality of Service
Quality of Service (QoS) is important both in reducing costs and in providing
high-quality customer service, which can be a competitive differentiator. Issues
include security, availability, reliability, performance, and scalability. Security is of
increasing concern due to new and more virulent viruses, hacking, and denial of
service attacks. Availability, reliability, and performance all contribute to
high-quality customer service, and scalability allows the bank to provide
increased services without increasing costs or degrading performance. All of
these are best achieved by an infrastructure that is flexible enough to allow the
customer to make the right choices and trade-offs to optimize each of these
Quality of Service parameters based on their particular needs.

2.2.3 Speed to market
In today’s competitive environment, banks are looking for a solution that enables
them to quickly respond to changing market demands, whether it is by
reconfiguring their branches around new delivery models, or rapidly deploying
applications to support new revenue-generating products and services. A
non-proprietary, open architecture that is flexible and that allows centralized
management and deployment of applications is essential to the rapid delivery of
new business functionality. An e-business architecture that minimizes the
dependency on distribution of code to client systems can provide an optimal
solution.

2.3 Branch transformation strategies
Branch banking transformation can be defined as the updating, replacement or
re-engineering, or both, of computer systems that support both staff and
customers in the branch offices of retail banks.

But, what are banks hoping to accomplish through their investments in the
branch channel? Because branches do not seem to be going away, banks are
seeking to derive more value from their branches through a combination of
initiatives designed to increase the revenue produced while decreasing the cost
of delivering services through this expensive, yet necessary, channel.

In order to drive additional revenue from their customers, banks know that they
must improve their understanding of their customers’ needs and offer them the
right products and services at the right price. They also know that they must
focus on customer satisfaction and improved service to retain and grow
relationships with their most profitable customers.
 Chapter 2. Branch banking environment 15

To do this, banks are focused on a number of different initiatives:

� Transforming the role of the branch from that of a transaction-oriented center
to a relationship-oriented center capable of providing a broad range of
products and services and focused on developing and maintaining long-term
relationships.

� Partnering with local businesses to offer innovative products and services
from external partners.

� Creating relationship teams to focus on the complete financial needs and
issues of high-value customers, with the branch representative becoming a
“relationship manager” and through collaboration, leveraging the collective
knowledge and skills of the institution to meet the customers’ needs.

� Developing flexible branch configurations based on the needs and value of
specific customer segments.

� Joining their branch and customer relationship management (CRM) initiatives
to deliver better customer information to the branch and improve cross-selling
at every touch point.

While driving additional revenue is one part of the equation, banks are still
acutely aware of the need to reduce branch costs. Because personnel costs
account for a significant portion of branch expense, initiatives aimed at improving
productivity and effectiveness are key to cost reduction objectives. These can
include:

� Re-engineering branch processes, such as teller, sales platform, and lending,
or introducing new technologies, such as check capture, check copy, and
optimized self-service deposit taking, in order to streamline processes and
improve productivity.

� Drive more transactions to lower cost channels and automate low-value,
high-volume transactions through information kiosks, ATMs, and teller assist
units.

� Empower staff with guided sales tools to decrease the dependency on
experts to deliver product and service information.

� Use external suppliers to out source costly operational processes.

� Offer remote access to specialists who can provide sophisticated financial
planning and specialized product knowledge in order to mitigate the need for
specialists in every branch.
16 Linux and Branch Banking

� Improve employee productivity by delivering enterprise information and
services online, including broadcast messages, announcements and alerts,
HR services and information (intranet), e-Learning, e-mail, collaborative tools,
static information (procedures manual, product information, forms,
branch/ATM locator), bank directory (phone numbers, people, departments),
and dynamic forms.

These and other strategies are placing pressure on the bank IT providers to
deliver IT solutions that can not only deliver these capabilities, but also provide a
flexible and scalable infrastructure that can quickly support whatever future
business initiatives the lines of business may undertake.

2.3.1 Branch software strategy overview
This section introduces some of the basic principles and assumptions for a
branch transformation software strategy and why they are important.

Build it to support multichannel
We believe that as banks begin to look at how they will transform their branch
delivery channels, many of them will seek to do so in the context of a larger,
multichannel delivery strategy, a strategy that enables them to integrate all of
their delivery channels and deliver all of their products and services in a
consistent manner, regardless of the channel the customer chooses to use.

Why is this important? Because statistics tell us customers are multiple channel
users. Therefore, a bank must endeavor to optimize each and every interaction
with the customer, regardless of the channel, both to the advantage of the
customer and to the bank itself. Such treatment is key not only to improving
customer service and satisfaction, but also to solidifying long-term and profitable
relationships.

By looking at their branches as part of an overall delivery strategy, banks will be
able to tailor branch services to meet the needs of the customers who use the
branch, as well as develop a channel strategy that matches service levels to
customer value, and set the appropriate goals for branch transformation.

With this in mind, the software strategy for branch transformation is built on the
overall software strategy for a multichannel delivery system, with specific
emphasis on providing solutions to unique issues related to the branch location
and the channels it supports. On the other hand, although they may be thinking
strategically, cost pressures and other immediate demands will cause banks to
act tactically. The software strategy (in fact, the entire infrastructure strategy)
must accommodate this and offer a value proposition for those who choose a
more tactical approach to branch transformation.
 Chapter 2. Branch banking environment 17

Figure 2-2 Built for multichannel

We discuss multichannel considerations in more detail in 2.3.2, “Multichannel
context” on page 21.

Build it based on e-business technologies
The nature of the banking business is that the universal tool for the execution of
nearly all business processes, marketing, sales, development, production, and
distribution of financial products and services, is the information system. No other
industry is better suited for e-business than the finance industry.

Most financial institutions first encountered e-business technology when they
began to use the Internet to provide electronic home and office banking facilities.

As the second phase of home banking began to take hold in the mid to late
1990s, it quickly became clear that a “fat client” home banking application would
present a huge maintenance and support challenge to banks. Banks that had
any experience at all managing a large network of PC-based clients deployed
throughout their branches were uncomfortable with the prospect of distributing
software to millions of client PCs of unknown origin and providing technical
support to millions of customers with limited technical skill. Luckily, the World
Wide Web began to achieve commercial acceptance, and Internet technologies
became popularly available to home users, making it possible to deliver home
banking services through a Web browser. Although this did not totally mitigate
the support issues, it helped make home banking a viable and cost-effective
delivery channel.

When we look at branch networks today, many of the same issues that drove
banks to choose the Internet to deliver banking services to home users still exist
in the branch network: it is a large, distributed network with users of limited
technical skill. Internet technologies have come a long way and have achieved a

Teller

Today's

Core

Services

and Data

Wireless

Home

Mobile

ATM

Channel

Services and

Presentation

JSPs

Transcode

Servlets

Common

Multichannel

Business Logic

Servlets

EJBs

JavaBeans

Connectors

JDBC

EJBs

JavaBeans
18 Linux and Branch Banking

level of maturity and robustness that make them not just the solution for
self-service home banking, but also ideal as the technology infrastructure for the
bank’s branch network and, therefore, for the entire multichannel delivery
infrastructure.

Moreover, leading banks recognize that a flexible, open, standards-based
infrastructure will be essential to helping them retain their competitive edge in a
marketplace that increasingly demands innovative business model deployment
and rapid response to changing market dynamics.

It is focused on the unique needs of the branch location. Banks have a long
history of managing large, distributed technology networks and are keenly aware
of the costs associated with managing such a network and supporting a large
community of relatively non-technical users. While they value flexibility and
openness in their infrastructure, banks are also acutely focused on the need for a
secure and stable operational environment underpinning their most visible and
highly used channel. So, the challenge is twofold: providing a flexible
infrastructure that will enable them to react quickly to change, while delivering a
stable, reliable, and manageable operational environment at a predictable cost of
ownership.

The adoption of e-business technologies, with server-based applications and thin
clients (browser-based), helps to address some of the issues of software
distribution, as well as simplifies the support required by internal help desk
personnel. In addition, with increased bandwidth capabilities, it is now possible to
centralize servers and still deliver satisfactory performance and reliability to the
branches. Centralized servers communicating with thin clients can significantly
reduce the management burden that results in the high cost of delivering
technology to the branch.

On the other hand, we are well aware that centralization of servers and totally
thin clients may not be appropriate for all banks. Some banks will not be able to
acquire reliable bandwidth in order to sustain the performance and availability
they require. While desirable, thin clients may not be possible in the near term as
a result of their dependence on existing client/server applications and
productivity tools, such as the Microsoft Office, Lotus SmartSuite, and Lotus
Notes applications.

Furthermore, the advent and popularization of Internet technologies has
propelled security into a new dimension. Older, more proprietary technologies
deployed in the branch were relatively immune to some of today’s security risks.
But as they deploy open technologies, such as TCP/IP, and widely available, yet
vulnerable, operating systems, such as Windows, banks are concerned about
the heightened security threat.
 Chapter 2. Branch banking environment 19

All of this is intended to create a stable and secure operational environment that
is flexible enough to address the unique needs of each customer and, at the
same time, deliver a manageable cost of ownership.

It must support the needs of the builders and the buyers
There are two different categories of clients, and the software strategy must
address each one’s requirements:

� Builders

Those who prefer to build their own applications. Banks that prefer to build
typically do so because they do not feel an independent software vendor
(ISV) can satisfy their needs or because they consider branch delivery a core
competence that they prefer to maintain in-house.

� Buyers

Those who prefer to buy their applications from best-of-breed ISVs.

Infrastructure, middleware, and tools to support the creation of a multichannel
delivery system for banking or to support a specific channel implementation must
be considered during the software strategy definition, and it must be based on
“de facto” standards to avoid support and continuance problems.

A compelling environment, that is, comprehensive, integrated, and easy-to-use
tooling, is of paramount importance to the builder group in order for them to
develop these applications quickly and maintain a speed-to-market advantage.
Another factor that influences the tooling requirements is that the depth of
e-business technology skills in banks is quite variable: some banks have
significant depth of skills, while others have only basic capabilities, if any at all.
The tooling capabilities, therefore, must cater to the needs of both ends of the
spectrum: the power users and the novices.

While tooling is a critical factor to the builders, what about buyers? We believe
that tooling is important to them as well, although in an indirect way. In order for
the buyers to fulfill their needs with software providers or ISVs, there must be
applications to buy. This means that ISVs need tools in order to produce the
banking applications that buyers want to buy. ISVs typically have a greater depth
of skill in the platforms on which they choose to implement, so power tools are
probably more important, but the basic requirements are the same:
comprehensive, integrated, and easy-to-use. One significant difference between
ISVs and builders is that ISVs typically want to maintain a degree of vendor
independence. Therefore, they will be inclined to prefer tools that are open and
do not tie them to a specific platform vendor.
20 Linux and Branch Banking

2.3.2 Multichannel context
Financial institutions are launching channel integration efforts to improve service,
lower costs, and gain a comprehensive view of the customer. But, building a
multichannel delivery system is hard work and not inexpensive, particularly for
the first channel to be implemented. Like many infrastructure investments, it is
difficult to justify the return based on a single channel or application
implementation.

Instead, the ROI must be looked at in terms of the long-term flexibility and cost
savings delivered and the benefits accrued as a result of reduced complexity and
improved speed to market.

The cornerstone of this is an architecture that encourages enterprise-wide reuse
of applications and infrastructure components. Figure 2-3 on page 22 depicts
what we believe to be the framework or logical architecture of a multichannel
delivery system for banking. This is consistent with our customer-centric
architecture and the multichannel logical architecture described by the
TowerGroup.
 Chapter 2. Branch banking environment 21

Figure 2-3 Multichannel environment

Integrated customer view
No multichannel solution will be successful unless the infrastructure successfully
brings together the disparate data about a customer and delivers a single,
consistent view of all that is known about the customer to the applications and
users who serve the customer.

This integration of customer data can be physical, aggregating customer data
physically by replicating it from existing systems, or logical, aggregating customer
data logically, in that it knows where the data is and provides the services to get
it, or a combination of both.

Core business
processing

Banking

Investments

Insurance

Payments

ERP Systems

Enterprise Services

External partners

ATM/POS networks
Payment networks
Exchanges
Clearing/settlement
Custodians

Enterprise
integration

External process
gateways

Process Integration

Transaction
Integration

Information
Integration

External information
gateways

External data

Account aggregation
News
Market data
Exchange rates
Investment pricing

Common business
logic

Customer profile

Marketing

Sales

Business
transactions

Service
 customer care

Advice/decision
support

Fulfilment

...

Channel-specific
logic

Teller

Platform sales

ATM - Retail
customer

Web - Retail
customer

IVR - Retail
customer

Call center
agent

Web - Small
business

...

Access Services

Device
enablement

Authentication

Access control

Content delivery

Dialog
management

Personalization

Collaboration
tools

...

Call Center

Teller

Platform

ATM

Web

Wireless

Phone

Staffed Channels

Self-Service
Channels

Integrated customer view

Consolidated client information
Complete contact history

Business analytics

Data mining
Segmentation
Campaigns
Reporting

Channels interaction
22 Linux and Branch Banking

Core business processing
These applications, typically known as the back-office or legacy applications, are
the systems of record that manage customer accounts, process transactions,
and provide enterprise-wide services. The front-office applications (enabled
through the multichannel infrastructure) are required to interact with these
applications for access to customer financial data and transaction processing
capability.

These systems are typically quite fragmented, leading to the fragmentation of
customer information and business rules that, in turn, have created some of the
channel dissonance in many of today’s banking delivery systems. The
multichannel infrastructure must continue to leverage the capabilities of these
systems through integration, but at the same time, mitigate the fragmentation in
service they have created by aggregating customer information and providing a
front end with business logic and rules that disguise their inconsistencies.

Business analytics
One of the reasons for building a multichannel delivery system is to be able to
optimize each and every interaction with the customer, regardless of the channel
through which the interaction occurs. A key to maximizing the effectiveness of a
multichannel delivery system in this regard is a set of business analytic
capabilities that help analyze customer information, identify customer needs,
match products and services to identified needs, and, finally, measure the
effectiveness of interactions with the customer.

As Figure 2-3 on page 22 shows, business analytics includes the following types
of capabilities:

� Data warehouses and the technologies required to populate warehouses

� Data mining tools to assist in mining the data to determine customer
segments and the characteristics that drive customer needs

� Campaign management systems that enable marketing organizations to
create, deploy, and monitor the results of campaigns that target products and
services to meet the needs of specific customer segments

� Reporting tools that provide feedback to management about various system
and customer-related performance indicators

Using a common set of business analytics helps to ensure that the treatment
customers receive across all channels is consistent with respect to their needs
and the services they are offered and the results reflect the totality of the
customer’s interaction with the institution.
 Chapter 2. Branch banking environment 23

Enterprise integration
With the growth in the number of channels and demand to deliver more and more
functionality through these channels, point-to-point integration with back-office
applications and external service providers has proven cumbersome and costly.
In order to reduce the complexity of application integration, institutions are
looking to implement a common integration framework that enables them to
implement integration among applications in an efficient and common way.
Tremendous efficiencies in development and testing can be gained, leading to
lower cost and increased speed of deployment, by implementing the interfaces
required to integrate these applications once on a common integration platform.

As we can see in Figure 2-3 on page 22, there are a number of different
integration disciplines required to support the needs of a multichannel delivery
system, including:

� Data integration

� Process integration

� Message integration

In addition, the enterprise integration framework needs to support integration
with applications and services both within and outside the institution.

2.4 Branch structure
When analyzing the requirements for a new or transformed branch banking
system, we first need to understand the structure of a branch. This structure
includes the current systems and system types that are in place to support the
branch personnel and business objectives.

The current make up of branch automation systems includes devices specific to
the tellers and platform personnel, and in some cases, ATMs. How these
systems are integrated and used by the bank employees are part of the
operational model that is discussed in a later section.

For now, let’s discuss the general system types typically found in bank branches.

2.4.1 Branch systems
Workstations provide an end-user interface to the branch banking system for
users, and servers provide connectivity, data access, or other system
management functions to the workstations. They are all connected through a
physical network, where one or multiple protocols are responsible for fast, stable,
and reliable communication.
24 Linux and Branch Banking

Teller and platform systems
The goal of branch automation systems is to enable the teller and platform
personnel to process customer transactions, access customer account
information, and generate reports.

Central systems store customer information, transaction, and account data, and
traditionally, branch systems access this information.

Because branch automation systems use component technologies, these
systems can make the same information available not only to tellers and
platforms but also to other touch points, like ATMs. The goal is to enable platform
personnel and tellers to have or provide detailed customer account information
and sales prompts for cross-selling and up-selling.

Table 2-1 Some typical functions and transactions available in branch systems

Functions and transactions

Basic functionality

� Deposits
� Withdrawals
� Payments
� Transfers
� Official item purchase
� General ledger transactions
� Electronic journal
� Currency reporting
� Monetary instruments
� User log-in and log-out
� Bait list log
� Dual control
� Customer identification
� Customer and account setup
� Stop payments
� Customer and account inquires
� Customer and account maintenance

� Holds
� Night-deposit processing and

maintenance cash advances
� Wire transfers
� Savings bond redemption
� Currency and coin orders
� Commercial deposit
� Foreign currency exchange
� Multiple transactions for single

customer
� Check order
� Override processing
� Support for over 60 devices and

peripherals, such as magnetic image
character recognition (MICR) readers,
personal identification number (PIN)
pad, magnetic strip readers, teller
cash dispensers, validators, printers,
and other required devices

Administration and management

� Cash management
� Operator profiles and limits

� Report and statistical updates
� Warnings for out-of-policy conditions

Productivity
 Chapter 2. Branch banking environment 25

Branch servers
When client/server technology made its evolution in the late 1980s, it became a
core part of most branch systems. Various features and functions were
transferred both from the mainframe to the branch to provide better performance
and less WAN dependency, as well as from some PC-based stand-alone
applications to a central server to allow multiple users to access and share data.

Also, features such as backup and recovery of data, mail gateways,
communication hubs to remote machines or mainframe systems, or both, central
printing, and many more are part of a two- or three-tier architecture. Copies of
central databases are held for security and accessibility

More recently, due to faster processing, more reliable communications, and the
cost of deploying and managing a fully distributed client/server environment the
trend has shifted back toward more centralization. For example, Web-based
applications are hosted from a single, central server and clustered for availability.
In some cases, only core facilities, such as local data and printer sharing, remain
on branch servers.

Table 2-2 Examples of server functions in branch banking

� Sales tools
� Products presentation
� Products selection
� Scripting
� Calculators
� Signature verification

� Web browser and e-mail
� Calendar
� Branch and office locator
� Fee collection
� Fraud verification

Server functions

Basic functions

� File sharing
� Printing

� Backup and restore
� User authentication

Communications

� Database, local as server or remote
as gateway

� Proxy server for Web applications

� 3270 host connectivity
� 5250 AS/400 or iSeries connectivity

Systems management

� User administration
� Central workstation administration

� Hardware and software inventory
� Security administration

Functions and transactions
26 Linux and Branch Banking

Automatic teller machine: Systems
When ATMs were introduced 30 or so years ago, banks viewed these devices as
a low-cost alternative to providing routine banking services. Consumers viewed
an ATM as a convenient alternative to teller branch banking, because it offered
extended access to their accounts, available during extended hours.

While initially these machines were simply automated cash machines, more
advanced functions have been added over the years as these terminals have
been used more widely and banks have recognized the lower costs of processing
routine transactions through these terminals. These machines continue to
evolve, incorporating not only additional customer-initiated banking transactions,
but also other dispensing capabilities, such as stamps, phone cards, and tickets.

A majority of banks and thrift organizations provide their customers access to
their banking accounts through ATMs. These terminals are deployed in nearly all
bank branches, as well as many non-bank locations, such as convenience
stores, supermarkets, shopping centers, and tourist venues.

Some variations from the traditional ATMs have appeared. Machines with single
functions, such as cash dispensers, depository, check dispensers, and others,
were developed to be used inside branches. For many banking organizations,
this device is viewed as an alternative channel to the branch, while for some
other organizations, it is part of the branch channel.

However, the self-service devices were positioned as a complementary channel
to the branch at the service level by handling many routine transactions that
would have otherwise been handled by the higher-cost teller. Banks are also
deploying these terminals to generate fees, to expand services to other
geographies, and to increase market presence.

Although additional functions and transaction capabilities have been offered at
the ATM, an evaluation of ATM transaction volumes indicates that many
consumers still view these devices simply as cash machines. Approximately
two-thirds of consumers use the ATM, and for a large majority of these
consumers, ATMs represent an essential banking channel that offers convenient
access to cash.

2.4.2 Employees
When looking at branch banking transformation and systems that can enable it, it
is critical to understand the roles of employees within a branch. After all, the
system is being put in place as a tool to make them more efficient and enable
them to drive more business. In this section, we describe the typical roles within a
branch as a basis for understanding solution requirements.
 Chapter 2. Branch banking environment 27

Branch manager
While in small branches, the branch manager acts both as manager and sales
representative, in larger branches, we will find a dedicated branch manager and
one or more sales representatives or branch account representatives.

The branch manager directs all sales and service activities, including supervising
all personnel, and also develops and maintains relationships with customers and
implements policies at the branch level as directed.

Functions
The branch manager functions are as follows:

� Effectively manages all product campaigns and daily sales activities.

� Leads, coaches, develops, supports, and motivates all branch staff to achieve
sales and service goals.

� Ensures an environment of teamwork, sales, and goal attainment.

� Directs entire branch operation; supervises all branch personnel; responsible
for making sure personnel are trained in their respective areas and
cross-trained in other related areas.

� Writes or reviews annual performance appraisals; recommends salary
increases; and recommends disciplinary action or termination as required.

� Responsible for branch loan and deposit growth.

� Answers verbal and written inquiries from customers, businesses, realtors,
title companies, and builders regarding loan products, rates, and services.

� Originates loan applications and prepares the required disclosures. Analyzes
credit requests and submits for approval to management and loan committee.

� Responds to customer inquiries on all bank products.

� Conducts marketing activities for branch by promoting business development
among realtors, builders, businesses, and customers.

� Functions as branch security officer, implementing security procedures and
ensuring proper security training of employees and coordinating with police
agencies.

Assistant sales manager or account representative
In large branches, this role might be split into a true assistant manager and one
or more branch account representatives.

The assistant sales manager or account representative performs a multifaceted
retail banking role. They manage day-to-day activities of the branch, with the
primary responsibility focusing on operations being efficient and effective, assist
in the development of the branch staff through coaching sessions, and monitor
28 Linux and Branch Banking

both branch and individual progress according to goals established by the sales
manager. The assistant sales manager or account representative solicits and
identifies potential customers through counter transactions, in aisle sales, and
incoming telephone inquiries, as well as prospecting target customers. The
assistant sales manager or account representative sells appropriate bank
products to fulfill customers needs and assists the bank in reaching its growth
objectives.

Functions
The assistant sales manager or account representative functions are as follows:

� Sells bank products and services.

� Provides exceptional customer service to all customers.

� Represents the institution in a courteous and professional manner.

� Provides operational support for the branch, processing transactions,
balancing, and training on new equipment).

� Ensures proper controls are maintained over all aspects of branch operations.

� Responsible for security and the maintenance of proper cash requirements
for branch.

� Reports all operational information, reconciling, balancing, and updating files.

� Supervises and assists in the processing of all transactions.

� Completes quality aisle time requirements and daily sales goals.

� In the absence of the sales manager, responsible for ensuring all sales
activities are completed.

� Participates in employee performance appraisals, interviewing of new
employees, and scheduling.

� Solicits new business through promotions at the branch, in aisle sales,
telephone, and mail. Identifies customer needs and sells appropriate bank
products.

� Serves as a mentor and role model for all staff. Assists the individual team
members in attaining their individual goals.

� Services existing customers with retail banking needs to include teller
transactions.

� Follows appropriate bank, regulatory, and legal requirements.
 Chapter 2. Branch banking environment 29

Branch teller
The branch teller provides superior service to customers while accepting
transactions, such as deposits, cashing, checks, and loan payments. The branch
teller also recognizes customer needs and suggests appropriate products or
services.

Functions
The branch teller functions are as follows:

� Provides prompt, efficient, and friendly service to customers at all times.

� Counts cash and coin while processing deposits, loan payments, or cashing
checks according to policies and procedures.

� Post transactions to computer through an online terminal.

� Balances the cash drawer and prepares teller balance sheet on a daily basis,
making sure that cash is kept to a minimum and within limits set by the board
of directors.

� Sells traveler's checks, certified checks, and personal money orders.

� Processes and records night deposit envelopes and transactions.

� May assist with ATM balancing and supply.

Branch loan officer
The branch loan officer works with customers to process loan applications.

The loan officer’s mission is to provide superior service to customers in the loan
area and to recognize customer needs and suggest appropriate products or
services.

Functions
The branch loan officer functions are as follows:

� Sells bank products and services.

� Provides exceptional customer service to all customers.

� Represents the institution in a courteous and professional manner.

� Interviews loan customers, assists with applications, and answers basic loan
questions. Completes all loan customers and advises on loan decisions.

� Services existing customers with retail banking needs to include teller
transactions.
30 Linux and Branch Banking

Branch auditor
The branch auditor reviews all internal processes, documents, papers, and
numbers. The branch auditor usually does not report to any local management to
guarantee objective reviews and findings.

Functions
The branch auditor functions are as follows:

� Reviews of the concurrent audit, RBI inspection, and internal audit reports.

� Examines the delegated authority of branch officials.

� Studies the salient features of books of instruction, especially relating to
advances.

� Reviews various control returns sent by the branch to controlling offices.

� Obtains the accounting policies of the bank.

� Goes through important circulars, especially the closing circular.

� Plans the long form audit report.

� Obtains trial balance to identify the areas to be verified.

� Broadly the areas to be verified as Branch Auditors are as follows:

– Physical verification of cash, security papers, valuable securities, and so
on

– Deposits

– Advances

– Sundry assets, suspense accounts

– Sundry liabilities

– Inter-branch reconciliation

– Fixed assets

– Contingent liabilities

– Income heads

– Expenditure heads

� Evaluates the internal control systems to assist in determining the nature and
extent of audit procedures.
 Chapter 2. Branch banking environment 31

Branch administrator
The branch administrator is responsible for any kind of technical and operational
tasks within the branch network, systems, or machines, such as servers, clients,
and ATMs.

Functions
The branch administrator functions are as follows:

� Provides prompt, efficient, and friendly service to customers at all times.

� Provides technical support for the branch and training on new equipment.

� Responsible for hardware and software installation, maintenance, and
service.

� Responsible for technical security and the maintenance of IT systems.

� Responsible for uninterrupted availability of all hardware, software, and
infrastructure.

2.5 Common branch banking scenarios
This section describes a set of scenarios currently found in various customer
environments. It gives and overview of how the business objectives are
implemented within a technical architecture of systems, network, and application
logic.

Each scenario is described as an overall architecture, including some technical
details, such as products and functions used to accomplish business-critical
workflow.

2.5.1 Host-centric scenario
This first scenario is a straight forward terminal (mainly 3270 emulation)
environment with all business logic and data on a central mainframe. Servers, if
they exist in a branch, are only used for gateway functions or basic file and print
functionality.

Employees in the branches use 3270 terminals or thin clients for all applications,
including mail. The protocol used for this environment is often Systems Network
Architecture (SNA).

Transactions are always processed in a core banking solution that runs on the
mainframe. There is usually one physical unit (PU) defined per branch with
shared logical units (LUs) provided by a communications server or 4700 gateway.
32 Linux and Branch Banking

Local servers in the branch are used for local printing queues and as the
communications server gateway functions for clients using any type of
3270-emulation.

All business logic resides on the central mainframe. The local clients are used for
for presentation services only.

Figure 2-4 Scenario for a host-centric branch solution

2.5.2 Host-centric with local applications scenario
This scenario describes a bank environment with locally installed clients (also
called FAT clients) with all transaction-oriented business logic and data on a
central mainframe. The branch servers act as communication gateways and file
and print servers

The branch infrastructure in this scenario operates a client-based platform based
on Intel machines. The operating environment for the branch applications is
predominantly IBM OS/2 at present, and branch applications have been
developed using VisualAge C++.

Employees in the branches use customer-written or legacy third-party
applications to work on business processes and data. Products such as Lotus

IMS
Transactions

A,B …

CICS
Transactions

… Y,Z

DB2
Databases

Core
Banking
Functions

zOS

4707

OS/2 or Win32

4702
Controller

Thin Client
With 3270

LanDP,
BankPRO or
Comms Server

Syst. Mgmt.

MQSeries

Any OS

BUSINESS LOGIC

IntranetIntranet

ATM File & Print
 Chapter 2. Branch banking environment 33

Notes are used for e-mail and the Netscape browser for intranet Web functions.
The protocol used within the branch is typically TCP/IP. IBM MQSeries
(WebSphere MQ) is used to integrate applications between client, server, and
host systems, as well as application-to-application communication within the
same client.

Transactions are always processed in a core banking solution that runs on the
mainframe. For this, there is a PU defined per branch and shared LUs used by
the applications. A communications server is used to implement the SNA stack
with APIs providing access to LU2 and LU0 applications.

DB2 can be used to store local information for redundancy and availability. It is
also used for journalling and the storage for store and forward applications
utilizing MQSeries.

Figure 2-5 Host-centric with local applications scenario

2.5.3 Distributed processing scenario
This scenario describes a bank environment with locally installed clients (also
called FAT clients) with business logic spread over local (and possibly regional)
servers with data on a central mainframe. This scenario is probably most typical
of many large banking environments today.

IMS
Transactions
A,B …

CICS
Transactions
… Y,Z

DB2
Databases

Core
Banking
Functions

zOSOS/2 or Win32

LanDP,
BankPRO or
Comms Server
As Gateway

Syst. Mgmt.
OS/2 or Win32

BUSINESS LOGIC

IntranetIntranet

ATM File & Print

MQSeries

DB2/2

Custom. or
ISV Apps

BUSINESS LOGIC

LanDP,
BankPRO or
Pcom
34 Linux and Branch Banking

For the branch infrastructure, banks with this environment operate a client/server
platform based on Intel servers. The operating environment for branch
applications is predominantly IBM OS/2 at present, and branch applications have
been developed using VisualAge C++.

Employees in the branches use Lotus Notes and the Netscape browser in
addition to the banking applications. The protocol used within the branch is
TCP/IP. MQSeries is used to integrate applications between client, server, and
host systems, as well as application-to-application communications inside the
same system.

Transactions are always processed in a core banking solution that runs on the
mainframe. For this, there is a PU defined per branch, and a couple of LUs
defined by each branch, and shared LUs are used by the applications. A
communications server is used to implement SNA stack, as well as APIs to
provide access to LU2 and LU0 applications.

DB2 is used to store local temporary information and journal and store
forwarding messages. There is not any sensitive data maintained in the branch.

Figure 2-6 Distributed processing scenario

As an example of an application flow, customer advisors in the branch can enter
a customer number to obtain a full financial profile. From the local branch
application, developed using VisualAge on OS/2, an MQSeries message is

BUSINESS LOGIC

IMS
Transactions
A,B …

CICS
Transactions
… Y,Z

DB2
Databases

Core
Banking
Functions

zOSOS/2 or Win32

LanDP,
BankPRO or
Comms Server

Syst. Mgmt.

MQSeries

DB2/2
OS/2 or Win32

BUSINESS LOGIC

IntranetIntranet

ATM File & Print

MQSeries

DB2/2

Custom. or
ISV Apps

BUSINESS LOGIC

LanDP,
BankPRO or
Pcom

Custom. or
ISV Apps
 Chapter 2. Branch banking environment 35

generated. The message is sent through the branch-based OS/2 server across
the network to the mainframe using SNA protocol. At the mainframe, the
workflow application handles message processing tasks, for example, sending
an MQSeries message to the CICS-based customer information file (CIF) to
obtain general customer information, such as address, telephone number, and a
list of accounts held.

Based on the response, the workflow application then generates more messages
to obtain more specific account information, such as balance, interest, and
service charges. Finally, the workflow application sends a single MQSeries
message to the advisor containing all the information relating to the customer
from the various systems.

The extensive branch network includes ATMs, point-of-sale (POS) terminals, and
workstations. Employees in the branches use Lotus Notes for groupware and
e-mail functions. Client/server branch applications have been developed using
IBM VisualAge C++.

2.6 Component model for branch banking
This section describes a high-level component model for the major elements of a
branch banking system. It provides the functional view of the system that is
required to define the necessary infrastructure. It contains two subsections: a
component diagram and component definitions.

The component diagram section shows the relative placement of functional
components in the system and the high-level connectivity among the
components.

The component definitions section contains the name of each component, a
description of the services the component provides, and any implementation
details known about the component.

Note that some components of the system are based on historical views of the
geographic constraints of branch infrastructures. Options for deployment of those
components in non-traditional ways are explored where appropriate.

2.6.1 Component diagram
The diagram shown in Figure 2-7 on page 37 represents a functional view of the
interaction of the software components within the infrastructure. For
completeness, it also shows the points of component interaction with
components that are outside of the branch banking system with which the
system has to interact. A component diagram normally does not depict the actual
36 Linux and Branch Banking

deployment of components within the environment. The diagram does show
where the components have historically been deployed geographically in a
branch system. The model also does not include all of the system components
that may be required somewhere within the overall system, for example, Domain
Name Service (DNS).

Figure 2-7 Component diagram

2.6.2 Component definitions
Based on the component diagram shown in Figure 2-7, this section provides brief
descriptions of these various components.

Desktop components
Desktop components are defined at a conceptual or macro level rather than the
micro or detailed design level. A great enough level of detail is given to provide
possible trade-offs for thin versus fat application design models.

Middle-Tier ComponentsBranch Server
Components

Back-end
Components

Desktop Components

Presentation
Services

Peripheral
Support

User
Management

Teller
Functions

Platform
Functions

Other
Productivity

Network
Services

User
Management

File & Print
Services

Store &
Forward

Branch Database
Services

System
Management

Network
Services

Application
Server

Messaging

Server

Database

Server

System
Management

Server

Integrated
Customer

Information

Business

Analytics Systems

Core Transactions

Systems

Enterprise

Security Services

Other Delivery

Channels
Other External
Components
 Chapter 2. Branch banking environment 37

Network services
Network services allow the desktop application to communicate with other
systems and external components. Both local LAN and external communications
from the desktop are through the operating system's TCP/IP services
supplemented by local LAN services if required. Communication can be through
HTTP or other TCP/IP protocols as dictated by the application model. In addition,
a plug-in such as IBM WebSphere Host On-Demand, or a fat client application,
such as IBM Personal Communications, can be used to access traditional 3270
type applications.

Presentation services
For a thin client solution, presentation services can be thought of as the Web
browser. The Web browser translates the HTML encoded pages that are
received through HTTP into a form intended for presentation to the user.
Presentation services in a traditional fat client implementation have greater
functional capability and thus allows for richer user interfaces. Although
applications can be built using either paradigm, traditional teller applications that
are keyboard driven with detailed field editing are more difficult to implement
using thin clients, although Java applets can provide the needed capabilities.

Peripheral support
Various specialized devices can be used to provide input to the system or output
from the system. For example, a bank can use ATM cards and personal
identification numbers (PINs) to identify a user when executing transactions in
the branch. A magnetic stripe reader (MSR) can be used to read the ATM card
and a pin-pad can be used for the customer to securely enter the PIN. In
addition, banks can provide a record of a transaction for a customer through a
receipt printer or a passbook printer. These devices then become integral parts
of the branch system. Support for these specialized peripherals is very much
dependent on the application development model that is being used. In so-called
fat applications, the application uses device APIs to interface with native
operating system device drivers. In thin applications, Java can be used with a
standard, such as Java Extensions for Financial Services (J/XFS). More
information about J/XFS can be found at:

http://www.jxfs.com/

User management and security
The use of a branch banking system by branch personnel (tellers and platform
officers) is controlled by a combination of user authentication and role
identification. This component provides a functional role in the determination of
application function flow, but also a more important non-functional role in
controlling access to the system for security purposes. It also provides a set of
permissions and limits by which execution decisions are made. The part of the
user management component that is deployed at the desktop is usually small
38 Linux and Branch Banking

http://www.jxfs.com/

and, in many cases, is totally centralized. The availability of user management
when communications are lost to a central site can complicate the enterprise
management of security.

Teller functions
There are a lot of existing teller applications that can be run on a fat client with
communication to back-end and mid-tier systems through either TCP/IP or SNA
protocols depending on the operational configurations. Alternatively, new
applications can be written using a thin client or browser paradigm. The elements
of a teller application include:

� Customer information: Data is pulled from a customer information file based
on a key piece of data, such as a relationship number. This information, which
includes things such as address and phone number, as well as a list of
accounts for the customer, can then be used during customer servicing.

� Account information: This information includes details on an account, such as
current balance and transaction history.

� Financial transactions: The transactions that change the financial state of an
account (deposits, withdrawals, check cashing, and so on).

� Electronic journal: A log of all transactions that are executed by a teller. The
journal may be held on the client machine, at a branch server, or at a regional
server. In a completely centralized system, it may consist of a database query
using a teller's ID as a key. In a system requiring offline processing, it may
also provide the capability to store the transactions locally and forward them
to the middle tier or back-end components when the online connection is
restored.

Platform functions
Platform functionality deals with providing the customer with information about
their existing accounts or services, presenting choices of financial services that a
customer may want to purchase, and actually filling out applications or opening
new accounts. The platform user needs functions that a teller uses, such as
customer information and account information, but also needs a rich set of
functions for tracking customer interactions, making sales presentations, and
filling out forms. All of these functions are more presentation than transaction
driven and therefore lend themselves fairly well to thin client applications that are
navigated using a mouse rather than a keyboard. Customer interaction is more
casual and conversational, giving the platform personnel more time to assimilate
information provided by the system. In addition, the information that needs to be
input is more free-form and extensive, which means that interaction with the
system is less hurried. Although rich GUI-driven applications using drag and drop
have been used extensively in the past, a similar experience using drop-down
lists and pre-fills in a browser can be just as intuitive and effective in a less
time-driven environment.
 Chapter 2. Branch banking environment 39

Office productivity
Some platform personnel in retail banking branch offices have need for the
typical office productivity tools that have become synonymous with the evolution
of the personal computer. These applications, e-mail, word processors, spread
sheets, and so on, are very often used on the sales platform. There are a variety
of applications that can provide these capabilities across different operating
systems.

Branch server components
Most banks still believe that a branch server is required to ensure the required
availability of the system at all times and to help in managing the end-user
desktops. The combination of more reliable branch to data center
communications and thin client applications might allow some banks to consider
eliminating the branch server, but providing for local file and print sharing, as well
as the ability to operate when the central system is not available provide strong
reasons to keep a branch server as part of the infrastructure.

Network services
The server's network services component provides LAN communication and any
gateway functionality that may be required. An example of gateway capability
would be for the provision of SNA communications over a TCP/IP network. In a
pure TCP/IP network, this communication function would not be required. A
branch server may also provide gateway functionality for a satellite or grocery
store branch.

User management
Users must be authenticated, and there must be a control point for determining
their role based desktop capabilities. If secure, offline capability is required in the
branch, and then this server functionality is a necessity. In addition, the
application would have to have access to the user roles in order to determine
what limits on functionality should be applied to a given user. One example of this
need is for doing overrides. A head teller or branch manager may be allowed to
override an offline transaction limit for a customer. A person with this higher level
of authority would have to be defined as a separate role, and the specific
characteristics of the role need to be made available for use by the application.

File and print services
Application components may have to make use of these types of services under
certain application design models. An example of such a requirement would be
the need to share a laser printer among multiple tellers or platform officers. File
sharing is also important, and may be critical for employees who move to various
machines but still need access to previously created files.
40 Linux and Branch Banking

Store and forward
A store and forward mechanism is used in branch systems to ensure that
transactions can continue to be accepted in the branch when the connection to
the transaction system of record is not available. This is typically due to the loss
of communications, but could also be for other reasons. A transaction record is
stored in a database, log file, or electronic journal that contains all of the
information that would normally be sent to the transaction system. It may also
contain a time stamp or sequence number, or both. The forwarding mechanism is
an automatic process that runs in the background to forward the transactions to
the core transaction system when it becomes available. Although a branch server
is a logical place to deploy a store and forward mechanism, some applications
deploy this capability in each client. If communications with a regional or
centralized server can be guaranteed to the required reliability level, the store
and forward mechanism could be centralized. Another option would be to not
have any offline capability and only handle transactions when the core
transaction system is available to the branch.

Branch database services
Some application models currently use a database in the branch to house data
that is required in offline mode. For example, some implementations of an
electronic journal might use a database. In addition, a database may be used to
store configuration data that is required during offline processing. Branch
database services may not be required in more centralized application design
models with limited offline requirements.

System management
One of the primary roles for a branch server is the management of end-user
desktop configurations. Rather than managing desktops directly, the server can
be used to cache desktop configurations. When changes are made, the system
management software running on the server can automatically update the
desktops.

Middle-tier components
In an e-business architecture, many of the application components of the system
can be deployed in centralized servers. In this way, they can be shared by many
branches, as well as by other delivery channels. Some of these components are
described at a high level in the following.

Application server
An application server is the software component within an e-business
architecture where an application's business logic is executed. It acts as an
intermediary between the end-user interaction components on the front-end and
the data components on the back-end. In a banking branch system, there may be
multiple application servers for different business needs.
 Chapter 2. Branch banking environment 41

Messaging server
A messaging server provides a common communications transport layer for all
applications within the infrastructure. It can be used to provide routing based on
business rules, as well as translation from one message format to another. Use
of a messaging server provides an integration point for tying together disparate
system components.

Database server
A middle-tier database server provides the branch banking system with
application and system data specific to servicing at the branches or other
delivery channels. The requirements for this database will be very dependent on
the needs of various applications and the design of those applications. Some
application design models may not require a middle tier database but obtain all
required data from the back-end systems.

System management server
A system management system in the middle tier is used to administer all system
management functions for the branch system. Configurations for all desktops in
the delivery system are administered through this server. When configurations
change, the server is responsible for distributing those changes to the branch
server, which in turn, administers those changes to the individual desktops. In
other system management designs, this server may be configured to manage
desktops directly. In addition to configuration management, the server may also
be a collection point for alerts generated by downstream components indicating
failures or performance bottlenecks.

Back-end components
The back-end components are not part of the branch banking system. They are
enterprise systems that provide services required by the branch banking system.
In order to complete the architecture of the branch banking system, all interfaces
to the back-end systems need to be well defined and understood.

Integrated customer information
Integrated customer information or customer information files (CIF) hold an
integrated view of a customer's total relationship with the bank.

Business analytics
Business analytics can provide analysis of a customer's financial holdings and
transaction history to provide guidance on product suitability and financial risk.

Core transaction systems
Core transaction systems provide account-level transaction capability and
history.
42 Linux and Branch Banking

Enterprise security systems
Enterprise security systems provide the information necessary to authenticate
users and determine their system-level permissions.

2.7 Summary
The branch banking environment, which has not changed significantly over the
last decade, is starting to go through a major transformation. This chapter has
described some of the drivers for this transformation.

In addition, it has provided general information about the structure of branch
offices and the types of systems that have typically been in place to support
them. We have also provided three different scenarios that represent how many
banks operate their branch banking systems today.

If you have been in the banking industry for very long, this chapter may not have
provided you with much information that you were not already familiar with.
However, it is important to provide this information as a basis for discussions in
the upcoming chapters. The next chapter provides some specific information
about branch banking requirements, and that sets us up for the remainder of the
redbook to discuss a Patterns for e-business approach to designing a solution
and understanding where Linux can be an important piece of that solution.
 Chapter 2. Branch banking environment 43

44 Linux and Branch Banking

Chapter 3. Branch banking
requirements

In this chapter, we continue our discussion of branch banking by focusing on
some of the requirements that will drive the ultimate solution.

We begin with some general objectives and principles. We next look at the
requirements from both a business and system context and then look at more
detailed functional and non-functional requirements.

3

© Copyright IBM Corp. 2002. All rights reserved. 45

3.1 Solution architecture objectives and principles
The solution architecture objectives and principles can be divided into three
primary categories:

� Cost-related objectives

� Implementation-related objectives

� Programming-related objectives

3.1.1 Cost-related objectives
The solution architectural objectives must be aligned with IT strategies that have
a basis in controlling costs over time. These objectives are as follows:

� Reduce costs: A network computing architecture should exploit the network
in order to reduce costs. It allows reduction of the computing resources
required on the client and supports deployment on network computers, using
the network as a vehicle for on-demand distribution of software components.
In addition, the architecture supports deployment of reusable business
components in a managed server environment.

� Preserve investment: An important goal is to preserve the financial
institution’s investment in the host systems and computing infrastructure, as
well as in other new technologies. This makes it important to carefully
consider technology selections in order to ensure that they are strategic and
will have enduring value.

� Offer choices: Allow customers the flexibility to choose their hardware,
operating systems, networking systems, databases, communication
protocols, and third-party software products. The system must also support
flexible distribution of function and data based on the network environment
and physical topology.

� Evolve gracefully: The system must be flexible and resilient to both business
and technological changes. This helps to support rapid application
development and to increase competitiveness by improving time to market.

� Provide manageability: Once deployed and in production, the system must
be easy to manage and resilient to changes in the run-time environment. It
must also support remote management. Servers and clients must be able to
be managed by a remote site, to solve technical or business issues that can
happen during operation.

� Allow incremental investment: The system must support the ability to
incrementally develop and deploy new business function and technology. In
addition, it must support the ability to include new solutions as they become
available.
46 Linux and Branch Banking

� Maximize usability: The system as a whole must be well suited to the needs
of its users: not only end users, but also developers and systems
management personnel.

� Maximize reusability: The system must be constructed in such a way as to
maximize reuse of components in all retail delivery solutions. In addition, it
must be able to meet the diverse needs of solutions and access channels in
financial institutions around the world.

3.1.2 Implementation-related objectives
The solution architecture must be open, scalable, and easy to implement. These
principles are related to the architecture objectives and are the basis for the
platform selections, programming model specifications, and overall functional
requirements of the solution. These objectives are as follows:

� Open

– Supports industry standards: An architecture is open when it uses open
industry and e-business standards, such as TCP/IP, HTML, HTTP, Java,
JDBC, and JavaServer Pages (JSPs), wherever possible. These
standards provide a solid foundation and make it easier to use available
proven components instead of building custom ones and to change
vendors and implementations to satisfy changing business requirements.
Industry standards tend to be strategic and have longer life spans because
of the high levels of investment and commitment involved with creating
them.

– Extendable and customizable: An architecture must be built to be
extendable and customizable at many different layers or channels. This
means it can be used in a wide range of situations and can accommodate
specialized requirements that are specific to an individual channel,
customer, country, or region.

– Provide insulation: The solution architecture must isolate and abstract
interactions with other systems to insulate architecture-based applications
from the specifics of other systems. In a global solution, this is essential to
provide the flexibility to adapt to many diverse environments, particularly
different host systems and databases.

– Preserve investment: The principles listed above ensure the preservation
of customer investments. The solution architecture safely preserves the
investments in current hardware, software, operating systems, network,
communication infrastructure and protocols, and back-end subsystems of
the customer environment.
 Chapter 3. Branch banking requirements 47

� Scalable

– Logical tiers: The benefits of a logical tiers architecture, such as the
Network Computing Architecture (see the Network Computing Framework
Component Guide, SG24-2119), are well known. The Network Computing
Architecture is logical in that it specifies that the presentation layer must be
decoupled from the business logic, which must be decoupled from the
data access layer, but it does not specify how to physically deploy the tiers.
Although this approach is a form of isolation, it also provides scalability by
allowing each of these layers of the system to change independently of the
others. That is, the platform selections and design of each layer can
change without impacting the rest of the system. This architecture also
requires that the presentation layer be thin to realize the goals of network
computing. This means that workstations with a small amount of physical
memory and no virtual memory can download and execute the
application.

The main objective of the solution architecture is to support the model of a
multiple-tier network computing application while also allowing
engagement teams to implement solutions based on other application
models, such as a two-tier fat client application.

– Replaceable components: Components are packages of system function
with established interfaces and a predetermined execution environment.
As long as a component is within its required execution environment, and
it interacts with other system components through its public interfaces, it is
replaceable with minimal effort. This construction enables high levels of
reuse and allows the system to evolve without causing large ripple effects.
It also allows the implementation of components and their execution
environments to vary to meet performance or scalability requirements.

– Enterprise topology independence: This notion extends the idea of a
logical tiers architecture so that not only are the tiers independent of
physical location, but system components are independent of any specific
physical topology. This makes the solutions highly flexible for deployment
in different environments by allowing customers to configure the system as
needed to achieve the scalability desired for their environment.

� Easy to implement

– Visual programming: Where possible, framework-based solutions use
visual programming to assemble the application from parts. This technique
is particularly effective in developing application screens and rapid
assembly of graphical user interfaces.
48 Linux and Branch Banking

– Separate analysis from design: Analysis should be a separate process
from design and have its own distinct work products. Solutions of this
product suite should use analysis to form an entirely logical representation
of system function that is independent of technology or implementation.
This helps to retain the value of earlier development effort even if the
implementation must change entirely.

– Development methodology: A methodology for guiding the development
process in an engagement project to make solution implementation easier
and the deployment faster must be provided.

– Transaction-oriented: Most branch products require a solution in which
an enterprise-centric, back-end system executes most of the application
business logic, and the front end of the solution, running in a delivery
channel, must behave as a transaction posting engine to run the
transactions in the back-end system. A well-defined architecture must
address this type of requirement, especially in a high-volume transaction
processing environment.

– Development effort: An easy way to implement new transactions or
applications is based on the parameter’s externalization, so business
operations behave differently depending on their specific set of external
parameters. This enables solutions to deliver new functions and
capabilities without requiring new coding, simply by adding new external
parameters to the system.

3.1.3 Programming-related objectives
Development of new business applications or re-engineering existing
applications often focuses on the Java programming language and on mature
Internet technologies creating reusable components within an overall framework
for your application. This ensures that component-based applications can be
deployed with confidence as integral parts of robust production systems, while a
framework provides consistency and completeness over your components.

Application development needs to be based on a shared central repository that
supports component reuse and extensive parameterization of object definitions.
Its design hides technical issues from solution designers, which allows them to
focus on business function rather than on the underlying technical details.

These features create benefits in the areas of project completion time,
intermediate- and long-term cost-effectiveness, and readiness for future
changes, improvements, and evolution.

For example, IBM WebSphere Business Component Composer provides these
features.
 Chapter 3. Branch banking requirements 49

These objectives are as follows:

� Reduced risk: Components are a fast and competitive way to solve your
application needs, but being fast and competitive does not mean that you are
left exposed to risk.

– Proven product: Components are a mature foundation for products
developed for software applications for the financial services sector.

– Systems work together: The extensive use of open computing industry
standards (including Internet standards) protects against incompatibilities
between systems.

– Protection against obsolescence: The inherent flexibility and the ability
to update component-based applications protects these applications from
becoming obsolete.

– Fast response to the business environment: The application
development environment allows quick changes to applications in
response to changing business conditions.

– Build it right the first time: The application development environment is
required to support teamwork, and this, in turn, promotes dialog and
sharing of ideas; fewer details will be overlooked.

– Preserve stable IT infrastructures: Existing systems that provide reliable
service can continue to be used through communications components.
These components provide connectivity to legacy systems.

� Faster time to market: The development approach that a framework of
components promotes is designed to shorten development cycles and flatten
the learning curve for the project team. The objective of this approach is to
effectively save development effort, improve consistency, and reduce the time
to market for all delivery channels.

– Shortened development cycles: A framework provides an environment
that supports rapid application development by exploiting the benefits of
component reuse. It does this by promoting the extensive use of
object-oriented techniques and a high degree of application object
parameterization.

– Ready-to-use components: A framework of components provide a set of
prebuilt infrastructure components with well-defined interfaces. The
components are immediately available for development and are ready to
be incorporated into delivery channel applications. A project team needs
only to learn how to use them, not how to build them.
50 Linux and Branch Banking

– Parametric application definition: The development model is based on a
centralized object repository where all the relevant information about the
application is maintained. With this model, adding a new function to a
framework-based application usually involves little more than using the
Development Workbench to add definitions to the Development
Workbench Repository.

– Flattened learning curve: A component-based framework usually hides
the underlying technical details of the framework. This reduces the amount
of time and effort needed by a project team to learn the framework
features and how to use them to deliver a solution. The development
model creates a clear separation of roles that allows project team
members to focus on their specific tasks.

3.2 Business context
The context diagram, shown in Figure 3-1 on page 52, covers the following
essential elements of the branch banking system and its external interfaces:

� Customers request services and support, as well as receive those services.
Both activities can involve one or more channels

� Tellers provide services and support to customers on one of the other
channels. Therefore, they might no longer be a traditional teller behind a
desk, but also a virtual teller in an online bank branch.

� A platform officer provides services and support within the branch or central
side, so they are more or less back-end support staff for front-end processes.
These can also be online brokers, loan officers on the phone, and so forth.

� Concierge or support staff in the branch is both for convenience of customers
and tellers or officers in the branch, like any administrative person.

� Enterprises can be a receiver or requester for services from or to a branch or
a bank overall.

� Business partners provide services beyond the core scope of the branch for
customer convenience and portfolio completeness.
 Chapter 3. Branch banking requirements 51

Figure 3-1 Business context diagram

The following lists, although not comprehensive, provide a summary of the types
of business tasks that must be taken into account when defining the
requirements for a branch banking solution.

Simple tasks
Simple tasks are defined by two characteristics, one is the involvement of a
single person, either a teller or a branch sales representative, and the other is a
relatively straight forward transaction.

Examples of simple tasks include:

� Deposit of withdrawal for one account, where a teller enters the account
number and the amount being transferred into the system

� Clearing a check at the teller’s desk

� Automatic money withdrawal on an ATM

� Money transfer between two accounts within the bank or within the country
52 Linux and Branch Banking

� Selling a simple bank product on an automated sales point

� Querying information for a bank product

� Credit line verification by the account representative or the branch manager

Complex tasks
Complex tasks are defined as tasks that either require more than one person to
work on, for example, the 4-eye principle or 2-key security, as well as any kind of
multistaged application processing. This could be either real time or
asynchronous using message queueing or workflow processing. These
processes can have the following different types of required interactions:

� Human to human: A teller requires approval from the branch manager for a
certain transaction.

� Multiple information sources: A process can only be completed by gathering
information from multiples sources or writing multiple results back to a set of
targets.

� Business to business: A good example would be an alliance between the
bank and an insurance company, where both resell each others products and
have access to each others systems for information and data exchange.

Examples for complex tasks are as follows:

� Opening a new account that requires the approval from branch management,
as well as clearance from a central authority for checking the credit history of
that person.

� Any large withdrawal that might fall under money laundering regulations
requires approval on-site and potentially from the central side and is recorded
and tracked.

� A more complex investment plan or loan application that may involve opening
additional, special accounts, financial checks, or batch process calculations.

� An alliance between the bank and an insurance company, where both resell
each others products and have access to each others systems for information
and data exchange.

� Portfolio management requires information from multiple sources to be
queried, processed, and put together to extract a portfolio recommendation
for a specific customer or customer requirement. Also, managing this portfolio
may require access to various accounts, even across banks.

� Credit card approval usually involves a central clearance application to
process the request and approve the credit of the requesting person.
 Chapter 3. Branch banking requirements 53

3.3 System context
The context diagram, shown in Figure 3-2, covers the following essential
elements of the branch banking system and its external interfaces:

� End users (tellers and platform personnel)

� The branch banking system composed of:

– Desktops in the branches and back office

– Server (optional)

– Infrastructure components

– Regional and centralized application and infrastructure components

� The back-end resources and systems represent bank systems of record or
utility functions with which the application must interface in performing its
mission. These include customer information systems, transaction processing
systems, and business analytics.

� Bank enterprise security services provide authentication and access control
to the applications.

Figure 3-2 System context diagram

Sales
Platform

Banking
Branch
System

Integrated Customer
Information

Core Transaction
Systems

Business Analytics
Systems

Enterprise Security
Services

Teller
54 Linux and Branch Banking

3.4 Functional requirements
The functional requirements of a banking branch system are those customer
service functions required to open accounts, make inquiries on accounts, and
provide transactional services. Branch banking requirements are usually split into
two broad categories: teller and platform.

Teller functionality includes taking deposits of cash and checks, providing cash
and check withdrawals, paying loans, and so on. Platform functions include
opening accounts, taking loan applications, and providing information about
products and services. Although platform functionality is of more value to the
bank because of the emphasis on bringing in revenue, teller functionality is
somewhat more mission critical, because it involves a need for a consistent level
of service where and when the customer requires it.

Teller functionality is well defined, and the application requirements are well
known and fairly static. Platform requirements, on the other hand, vary from bank
to bank and tend to change over time as new ways of providing information and
selling to customers evolve. Office productivity tools, such as word processors
and spreadsheets, may handle some of these requirements. Tellers and platform
officers, as employees of the financial institution, may also have a need for
indirect applications, such as HR, e-mail, and general information. Most of these
can be handled by iintranet access through a Web browser.

In addition to the actual application functionality, other functional requirements
include the ease and speed of changing or adding new functions and a
requirement for providing consistent service across multiple retail delivery
channels. These requirements have led to the recent innovations in providing
multichannel functionality that can be reused in all others delivery channels.

3.4.1 Operational considerations
Operational considerations deal with qualities or constraints that an IT system
must satisfy. These include service level requirements, such as reliability,
availability, serviceability, security, scalability, performance, workload
management, and systems management. This section provides some early
details about the architecture elements needed to ensure that the non-functional
requirements of the banking branch system are met.

Reliability, availability, and serviceability
The availability expectations of a system relate to how many hours in the day,
days per week, and weeks per year the system is going to be available to its
users and how quickly they should be able to recover from failures. In order to
meet the reliability, availability, and serviceability (RAS) objectives, there should
 Chapter 3. Branch banking requirements 55

be no single points of failure in essential system nodes. All application servers,
database servers, messaging servers, and back-end servers would be deployed
using redundancy, load balancing, and clustering technology. In the branch, the
availability of users to work at any desktop would ensure that desktops would
never be a single point of failure. If a desktop failed, the user could just move to a
machine that is not in use.

Persistent data should not be stored on desktops except for logging or backup
purposes. Requirements for being operational in the face of multiple failures (for
example, client and server or server and network) would be costly and may not
be a justifiable expense. Servers are potentially a single point of failure and that
is why they should be used in backup scenarios with primary operation through
redundant centralized servers, where the cost can spread over more users.

Because of the redundant nature of the middle-tier and back-end system nodes,
most planned maintenance can take place while the rest of the system remains
online and available to end users. Desktops and other branch system nodes can
be maintained during non-business hours.

Security
The primary requirements for security must be achieved naturally in the branch
system architecture. It must have a locked down desktop that only permits
access to applications that are controlled by the server and the system
administrator.

In the preferred mode, users would not be able to load their own applications into
the desktop. Any disks loaded by the user would be for data backup and would
not be executable. Internet access would either not be allowed or would be
accessible through a proxy server with sufficient network farewell controls. File
transfers initiated by the user would also not be allowed. In addition, the branch
system must be customized to the role or roles allowed for a specific user, and
therefore, access to information and transactional systems would be tightly
controlled.

Optionally, all communications between the branches and the regional or central
data centers can be encrypted to ensure data confidentiality, and message
authentication codes can be attached to all data communications to ensure that
data is not altered.
56 Linux and Branch Banking

Performance
A performance model must be used as a method of sizing the physical
components of an IT Infrastructure. The performance model attempts to capture
a combination of the application behavior and the non-functional requirements.
The elements of a performance model include node performance, application
performance, network performance, and database performance. These elements
are explored more deeply as the architecture is detailed to the specification and
physical implementation levels.

System management and maintainability
System management and maintainability refers to the maintenance and
administration of the branch software and hardware systems. It involves
configuration management, application management and maintenance, and
monitoring of all system nodes and application components for early detection of
failure or performance deterioration.

Configuration management
Configuration management deals with the tracking and deployment of hardware
nodes and software components across the enterprise. For a large financial
institution's branch system, this can be a large undertaking involving 5,000
locations, more than 75,000 hardware nodes, and multiple system and
application software footprints.

Application management and maintenance
This is oftentimes viewed as part of configuration management. This involves the
ability to update both system and application software components to meet
changing business requirements, such as adding new functions and changing
data formats. Application changes are made by generating new packages and
including them in revised desktop definitions. System changes can be made
using tools that are available to update the systems. In a branch system, the
deployment of the updates becomes very difficult. Specialized system
management components and nodes may need to be defined when driving the
architecture to the specification and physical level in order to simplify the
deployment process.

System monitoring
Agents that regularly poll the site and measure its response time will perform
system monitoring. The system needs to be integrated to the centralized
monitoring system so that branch systems-related alerts would be distributed in
the same manner as other error conditions in the rest of the bank's system.
 Chapter 3. Branch banking requirements 57

3.5 Non-functional requirements
The non-functional requirements of an IT system specify those aspects of the
system that are not directly related to the application functionality. The primary
non-functional requirements that need to be dealt with are service level
requirements, such as capacity and performance (volumetric), availability,
security, and system management.

Other typical non-functional requirements include properties to ensure portability
and maintainability and any system constraints. Typical system constraints
include business constraints that the system must satisfy (for example,
geographical location), existing technical standards, and technical “givens” that
constrain the system architecture and design (for example, existing IT
infrastructure).

The non-functional requirements detailed in the following sections form the basis
for the trade-offs and decisions made in the architecture and design of a
representative retail banking branch infrastructure. They directly affect the choice
and number of various components and thus the overall cost of the infrastructure.

3.5.1 Cost of operation
The costs, both for operations and technology, are one of the major drivers for
decisions on all levels within a branch bank environment. While some of the
following requirements have only implicit influence to overall costs, the total costs
for the new solution need to meet business requirements. It is not unusual that
the return on investment is required to be less than 12 months.

A 1996 study by Gemini Consulting found that the cost to banks of financial
transactions varies widely, depending on how they are accomplished. The study
does not account for up-front costs, such as installing a PC banking system or
building a bank branch office. 1

1 http://news.mpr.org/features/199608/01_catlinb_banking/banktranscript.htm
58 Linux and Branch Banking

http://news.mpr.org/features/199608/01_catlinb_banking/banktranscript.htm

Figure 3-3 Estimated bank costs per transaction

3.5.2 Capacity, performance, and scalability
In a distributed system, such as a branch system, the emphasis is not so much
on the capacity of individual components in the branch, but on how the branch
components integrate to the up-stream components. With the current state of
technology for most application designs, performance is usually more affected by
things such as communications bandwidth and the number of transactions
aggregated from all branches than the performance of an in-branch server or
end-user desktops.

3.5.3 Reliability and availability
Branch banks need to be available on a typical business schedule, usually five
days a week, eight hours a day, excluding holidays. There may be extended
hours one day a week or shortened hours on Saturday. During the time a branch
is open, information systems need to be available essentially without failure. The
total system uptime, including the ability to process some transactions when
communications to back-end systems are not available, must approach 100%. If
the branch cannot accept transactions in some manner, then it might as well
close. Therefore, contingency plans and systems must be in place to cover any
system component failure or temporary loss. For purposes of this document, the
required maximum system failure recovery time is assumed to be few hours, and
the required system restart time is assumed to be less than minutes. Because

Teller Phone Debit Card ATM Credit Card PC Internet
 Chapter 3. Branch banking requirements 59

the branches are open only during scheduled business hours, maintenance is
easily scheduled during non-business hours.

The middle-tier and back-end systems that support the branch channel must
have reliability and availability characteristics that support the branch
requirement. Because these systems also support other channels, such as the
Interactive Voice Response (IVR), call center, and Internet, they are normally
designed for virtual 24x7 availability with the required reliability and redundancy
to achieve those goals.

3.5.4 Security
The main security requirements of a banking branch system are as follows:

� Local and remote user authentication

� Functions authorization based on roles

� Data confidentiality

� Protection from malicious or fraudulent attacks

Detailed security requirements can be very specific to a particular bank, because
the ways in which security is implemented in the enterprise will vary widely. Other
considerations, such as single signon and the need for data encryption, may also
be dependent on specific policies, procedures, and network implementation.

3.5.5 System management
As with any IT system, the architecture needs to accommodate the ability to
monitor all system components and respond to outages using automated
procedures to the greatest extent possible. In the case of a branch system, there
are some key specific requirements for achieving this goal, as follows:

� The ability to update both system and application code automatically

� The ability to restore a failed system to its pre-failure state

� The ability to add new applications to previously installed systems

� The ability to detect, diagnose, and correct problems quickly with minimal
human intervention

The distributed nature of a branch system presents cost challenges for system
management, because the number of end-user desktops is high, and there may
be communication limitations in deploying common system management tools.
60 Linux and Branch Banking

3.5.6 User and desktop management
In a distributed system, such as a branch system, the administration of the
environment might not be local to the branch, so a remote configuration of users,
roles, applications, and desktop settings is required. This goes along with the
ability to provide a consistent desktop for a user logging on to different physical
machines, or multiple users logging on to a single machine at different times, a
roaming user.

Furthermore, a consistent look and feel needs to be accomplished, so users
would not necessary realize which underlying platform their client machines are
running on.

3.5.7 IT standards and existing IT infrastructure
IT infrastructure and IT standards constraints are very specific to individual banks
or financial institutions. Common constraints are the choice of operating systems
and hardware platforms, specific database products, network topology, security
products and processes, and enterprise system management products. When
drilling down to the specification and physical implementation architecture levels,
the existing standards and infrastructure present constraints that will oftentimes
affect the available choices for functional components or operational nodes. At
the conceptual level, some typical choices have been made in this document that
may or not be correct for a particular bank implementation.

3.5.8 Geographic constraints
Branch systems have the same constraints in virtually all geographies. Although
urban settings in a specific country or region may have better infrastructure than
cities in other parts, branch offices of large financial institutions may exist in rural
areas with limited or cost prohibitive access to some communication services.
Therefore, the architecture will have to accommodate data communication
reliability and availability limitations. Specific implementations of the architecture,
however, may be able to take advantage of superior communication capability.

3.6 Change cases
Any potential future requirements that the system may have to support should be
evaluated and validated to ensure that the architecture is able to accommodate
them. IBM defines change cases as possible future changes to a system. In this
document, change cases are used to indicate areas in which both functional and
non-functional requirements may change for different banks, or areas in which
emerging technologies may allow significant change in the system infrastructure.
 Chapter 3. Branch banking requirements 61

Proper focus on potential change cases ensures that the system is easy to
extend, easy to maintain or port, robust in the face of change, and quick to
develop. The focus is on what is important and likely, rather than what is possible.
Change cases try to predict change. Such predictions rarely turn out to be
exactly true. Users, sponsors, suppliers, developers, and other stakeholders
determine the properties of a system. Changes can arise from many sources, for
example:

� Business drivers: New and modified business processes and goals

� Technology drivers: Adaptation of the system to new platforms, integration
with new components

� Changes in the profile of the average user

� Changes in the integration needs with other systems

� Scope changes arising from the migration of functionality from external
systems

Because change cases are predictive, they are themselves subject to change.
Were they 100% certain, they would, by definition, be deferred requirements.

3.7 Summary
This chapter has described some of the requirements for a branch banking
system from several different perspectives. These requirements will be used as
input when we look at IBM Pattern for e-business that apply to branch banking
solutions.

Whether you use Patterns for e-business or another methodology to architect
your solution, these requirements and ways of looking at them are still applicable.
As shown in Chapter 6, “Linux-based products applicable to branch banking” on
page 117, Linux can play a key role for building an infrastructure that meets
these requirements.
62 Linux and Branch Banking

Chapter 4. IBM Patterns for e-business
overview

IBM Patterns for e-business are a collective set of proven architectures that have
been compiled from more than 20,000 successful Internet-based engagements.
This repository of assets can be used by companies to facilitate the development
of Web-based applications. They help an organization understand and analyze
complex business problems and break them down into smaller, more
manageable functions that can then be implemented using low-level design
patterns.

4

© Copyright IBM Corp. 2002. All rights reserved. 63

4.1 Introduction to Patterns for e-business
As companies compete in the e-business marketplace, they find that they must
re-evaluate their business processes and applications so that their technology is
not limited by time, space, organizational boundaries, or territorial borders. They
must consider the time it takes to implement the solution, as well as the
resources (people, money, and time) they have at their disposal to successfully
execute the solution. These challenges, coupled with the integration issues of
existing legacy systems and the pressure to deliver consistent high-quality
service, present a significant undertaking when developing an e-business
solution.

In an effort to alleviate the tasks involved in defining an e-business solution, IBM
has built a repository of patterns to simplify the effort. In simple terms, a pattern
can be defined as a model or plan used as a guide in making things. As such,
patterns serve to facilitate the development and production of things. Patterns
codify the repeatable experience and knowledge of people who have performed
similar tasks before. Patterns not only document solutions to common problems,
but also point out pitfalls that should be avoided. IBM Patterns for e-business
consists of documented architectural best practices. They define a
comprehensive framework of guidelines and techniques that were actually used
in creating architectures for customer engagements. Patterns for e-business
bridge the business and IT gap by defining architectural patterns at various
levels, from Business patterns to Application patterns to Runtime patterns,
enabling easy navigation from one level to the next. Each of the patterns
(Business, Integration, Application, and Runtime) help companies understand
the true scope of their development project and provide the necessary tools to
facilitate the application development process, thereby, allowing companies to
shorten time to market, reduce risk, and more importantly, realize a more
significant return on investment.

The core types of Patterns for e-business are as follows:

� Business patterns
� Integration patterns
� Composite patterns
� Application patterns
� Runtime patterns and matching product mappings

When a company takes advantage of these documented assets, they are able to
reduce the time and risk involved in completing a project.
64 Linux and Branch Banking

For example, a line-of-business (LOB) executive who understands the business
aspects and requirements of a solution can use Business patterns to develop a
high-level structure for a solution. Business patterns represent common business
problems. A LOB executive can match their requirements (IT and business
drivers) to Business patterns that have already been documented. The patterns
provide tangible solutions to the most frequently encountered business
challenges by identifying common interactions among users, business, and data.

Senior technical executives can use Application patterns to make critical
decisions related to the structure and architecture of the proposed solution.
Application patterns help refine Business patterns so that they can be
implemented as computer-based solutions. Technical executives can use these
patterns to identify and describe the high-level logical components that are
needed to implement the key functions identified in a Business pattern. Each
Application pattern would describe the structure (tiers of the application),
placement of the data, and the integration (loosely or tightly coupled) of the
systems involved.

Finally, solution architects and systems designers can develop a technical
architecture by using Runtime patterns to realize the Application patterns.
Runtime patterns describe the logical architecture that is required to implement
an Application pattern. Solution architects can match Runtime patterns to
existing environment and business needs. The Runtime pattern they implement
establishes the components needed to support the chosen Application pattern. It
defines the logical middleware nodes, their roles, and the interfaces among these
nodes in order to meet business requirements. The Runtime pattern documents
what must be in place to complete the application, but does not specify product
brands. Determination of actual products is made in the product mapping phase
of the patterns.

In summary, Patterns for e-business captures e-business approaches that have
been tested and proven. By making these approaches available and classifying
them into useful categories, LOB executives, planners, architects, and
developers can further refine them into useful, tangible guidelines. The patterns
and their associated guidelines allow the individual to start with a problem and a
vision, find a conceptual pattern that fits this vision, define the necessary
functional pieces that the application will need to succeed, and then actually build
the application. Furthermore, Patterns for e-business provides common
terminology from a project’s onset and ensures that the application supports
business objectives, significantly reducing cost and risk.
 Chapter 4. IBM Patterns for e-business overview 65

4.2 The Patterns for e-business layered asset model
The Patterns for e-business approach enables architects to implement
successful e-business solutions through the reuse of components and solution
elements from proven, successful experiences. The Patterns for e-business
approach is based on a set of layered assets that can be exploited by any
existing development methodology. These layered assets are structured in such
a way that each level of detail builds on the last. These assets include:

� Business patterns that identify the interaction between users, businesses,
and data.

� Integration patterns that tie multiple Business patterns together when a
solution cannot be provided based on a single Business pattern.

� Composite patterns that represent commonly occurring combinations of
Business patterns and Integration patterns.

� Application patterns that provide a conceptual layout describing how the
application components and data within a Business pattern or Integration
pattern interact.

� Runtime patterns that define the logical middleware structure supporting an
Application pattern. Runtime patterns depict the major middleware nodes,
their roles, and the interfaces between these nodes.

� Product mappings that identify proven and tested software implementations
for each Runtime pattern.

� Best-practice guidelines for design, development, deployment, and
management of e-business applications.

These assets and their relation to each other are shown in Figure 4-1 on
page 67.
66 Linux and Branch Banking

Figure 4-1 Patterns layered asset model

Patterns for e-business Web site
The Patterns for e-business Web site provides an easy way of navigating top
down through the layered Patterns for e-business assets in order to determine
the preferred reusable assets for an engagement.

For easy reference to Patterns for e-business, refer to the Patterns for e-business
Web site at:

http://www.ibm.com/developerWorks/patterns/

4.2.1 How to use Patterns for e-business
As described in the previous section, Patterns for e-business are structured in
such a way that each level of detail builds on the last. At the highest level are
Business patterns that describe the entities involved in the e-business solution. A
Business pattern describes the relationship between the users, the business
organization or applications, and the data to be accessed.

Composite patterns appear in the hierarchy shown in Figure 4-1 above the
Business patterns. However, Composite patterns are made up of a number of
individual Business patterns and at least one Integration pattern. In this section,
we discuss how to use the layered structure of the Patterns for e-business
assets.

Best-Practice Guidelines

Application Design
Systems Management
Performance
Application Development
Technology Choices

Integration
patterns

Composite
patterns

Customer
requirements

Business
patterns

Application
patterns

Runtime
patterns

Product
mappings

Any m
ethodology
 Chapter 4. IBM Patterns for e-business overview 67

http://www.ibm.com/developerWorks/patterns/

There are four primary Business patterns, as shown in Table 4-1.

Table 4-1 Business patterns

It would be very convenient if all problems fitted nicely into the four Business
patterns, but reality says that things will often be more complicated. The patterns
assume that all problems, when broken down into their most basic components,
will fit more than one of these patterns. When a problem describes multiple
objectives that fit into multiple Business patterns, Patterns for e-business provide
the solution in the form of Integration patterns.

Integration patterns allow us to tie together multiple Business patterns to solve a
problem. The Integration patterns are shown in Table 4-2.

Table 4-2 Integration patterns

These Business and Integration patterns can be combined to implement
installation-specific business solutions. We call this a Custom design.

Business patterns Description Examples

Self-Service
(User-to-Business)

Applications where users
interact with a business via
the Internet

Simple Web site
applications

Information Aggregation
(User-to-Data)

Applications where users
can extract useful
information from large
volumes of data, text,
images, and so on

Business intelligence,
knowledge management,
Web crawlers

Collaboration
(User-to-User)

Applications where the
Internet supports
collaborative work
between users

E-mail, community, chat,
video conferencing, and so
on

Extended Enterprise
(Business-to-Business)

Applications that link two or
more business processes
across separate
enterprises

EDI, supply chain
management, and so on

Integration patterns Description Examples

Access Integration Integration of a number of services
through a common entry point

Portals

Application Integration Integration of multiple applications
and data sources without the user
directly invoking them

message brokers,
workflow managers
68 Linux and Branch Banking

We can represent the use of a Custom design to address a business problem
through an iconic representation, as shown in Figure 4-2.

Figure 4-2 Pattern representation of a custom design

If any of the Business or Integration patterns are not used in a Custom design,
we can show that with lighter blocks. For example, Figure 4-3 shows a custom
design that does not have a mandatory Collaboration business pattern or an
Extended Enterprise business pattern for a business problem.

Figure 4-3 Custom design

A Custom design may also be a Composite pattern if it recurs many times across
domains with similar business problems. For example, the iconic view of a
Custom design in Figure 4-3 can also describe a Sell-Side Hub composite
pattern.

A
ce

ss
 In

te
gr

at
io

n

Self-Service

Collaboration

Information Aggregation

Extended Enterprise A
pp

lic
at

io
n

In
te

gr
at

io
n

A
ce

ss
 In

te
gr

at
io

n

Self-Service

Collaboration
(optional)

Information Aggregation

Extended Enterprise
(optional) A

pp
lic

at
io

n
In

te
gr

at
io

n

 Chapter 4. IBM Patterns for e-business overview 69

Several common uses of Business and Integration patterns have been identified
and formalized into Composite patterns. The identified Composite patterns are
shown in Table 4-3.

Table 4-3 Composite patterns

Composite
patterns

Description Examples

Electronic
Commerce

User-to-online-buying.
� www.macys.com
� www.amazon.com

Portal

Typically designed to aggregate
multiple information sources
and applications to provide
uniform, seamless, and
personalized access for its
users.

� Enterprise intranet portal
providing self-service
functions, such as payroll,
benefits, and travel
expenses

� Collaboration providers who
provide services such as
e-mail or instant messaging

Account Access

Provide customers with
around-the-clock account
access to their account
information.

� Online brokerage trading
apps

� Telephone company
account manager functions

� Bank, credit card, and
insurance company online
apps

Trading
Exchange

Allows buyers and sellers to
trade goods and services on a
public site.

� Buyer's side - interaction
between buyer's
procurement system and
commerce functions of
e-Marketplace

� Seller's side - interaction
between the procurement
functions of the
e-Marketplace and its
suppliers

Sell-Side Hub
(Supplier)

The seller owns the
e-Marketplace and uses it as a
vehicle to sell goods and
services on the Web.

� www.carmax.com
(car purchase)
70 Linux and Branch Banking

The makeup of these patterns is variable in that there will be basic patterns
present for each type, but the Composite can easily be extended to meet
additional criteria. For more information about Composite patterns, refer to
Patterns for e-business: A Strategy for Reuse by Jonathan Adams, et al., ISBN
1931182027.

Selecting Patterns and product mapping
After the appropriate Business pattern is identified, the next step is to define the
high-level logical components that make up the solution and how these
components interact. This is known as the Application pattern. A Business
pattern will usually have multiple Application patterns identified that describe the
possible logical components and their interactions. For example, an Application
pattern may have logical components that describe a presentation tier for
interacting with users, a Web application tier, and a back-end application tier.

The Application pattern requires an underpinning of middleware that is
expressed as one or more Runtime pattern. Runtime patterns define functional
nodes that represent middleware functions that must be performed.

After a Runtime pattern has been identified, the next logical step is to determine
the actual product and platform to use for each node. Patterns for e-business
have product mappings that correlate to the Runtime patterns, describing actual
products that have been used to build an e-business solution for this situation.

Finally, guidelines assist you in creating the application using best practices that
have been identified through experience.

For more information about determining how to select each of the layered assets,
refer to the Patterns for e-business Web site at:

http://www.ibm.com/developerWorks/patterns/

Buy-Side Hub
(Purchaser)

The buyer of the goods owns
the e-Marketplace and uses it
as a vehicle to leverage the
buying or procurement budget
in soliciting the best deals for
goods and services from
prospective sellers across the
Web.

www.wre.org
(WorldWide Retail Exchange)

Composite
patterns

Description Examples
 Chapter 4. IBM Patterns for e-business overview 71

http://www.ibm.com/developerWorks/patterns/

4.3 Summary
This chapter has provided an overview of Patterns for e-business. Patterns for
e-business is a process for looking at a problem space and requirements and
applying proven Business, Integration, Application, and Runtime patterns to
design a solution.

The next chapter investigates how these patterns can be applied to a branch
banking environment.
72 Linux and Branch Banking

Chapter 5. Applying IBM Patterns for
e-business to branch
banking

The previous chapter, IBM Patterns for e-business overview, establishes the
overall context of Patterns for e-business. This chapter builds on that background
information by exploring:

� How Patterns for e-business apply to the transformation of banking at the
branch and enterprise levels

� How Linux can be used to implement Patterns for e-business based solutions

Linux and the Patterns for e-business can be used in defining Linux-based
banking solutions in two contexts:

� At the branch bank level: Branch banks face near-term issues for which
Patterns for e-business provide alternatives that fit within an existing
environment while positioning the bank for the future.

� At the enterprise level: Patterns for e-business provide a context and road
map for transforming a bank’s enterprise architecture and show where Linux
can play a key role.

5

© Copyright IBM Corp. 2002. All rights reserved. 73

5.1 Starting to use Patterns for e-business
Patterns for e-business let us describe both the problem or problems we want to
solve and the solution or solutions that can be used to address those problems.
For example, Business patterns let us characterize the types of problems we
want to solve in simple but powerful terms. After we have described the scope
and nature of the problem or problems we want to solve, Patterns for e-business
leads us to solution alternatives in the form of Application and Runtime patterns.
These patterns can be implemented through the use of well-known combinations
of technology components (the Product mapping alternatives that are associated
with Runtime patterns). At each point, we will need to make decisions about
which pattern alternatives are the best choice for the situation, and for that, we
need some key information as input to the decisions.

5.1.1 Describing the problem or problems we want to solve
The first step in applying Patterns for e-business is to establish which Business
or Integration patterns, or both, are a good fit, in other words, which ones best
represent the problem or problems we are trying to solve. To make that choice,
we need to look at the problem space, identifying key business and IT
requirements. Those requirements will let us make decisions about which
Business and Integration patterns apply.

The Business and Integration patterns describe common characteristics that are
found in a broad range of business processes across multiple industries. One of
the goals in defining these patterns was to apply an 80/20 rule: Assure that these
patterns could be applied to a majority of business processes in order to address
a majority of a business’s needs. Because of this, we can be confident of finding
a good match for a majority of banking business process scenarios.

5.1.2 The solution or solutions alternatives
After we have described the problem space and determined which Business and
Integration patterns apply, we will be ready to start looking at solution
alternatives, in the form of Application patterns, for each of the Business and
Integration patterns we have selected. The solution alternatives described in
Patterns for e-business also identify technology component Product mappings
that can be used to implement instances of the Runtime patterns. Once again,
we have some decisions to make, and we will need to collect and summarize
some key information as input into those decisions.

The Patterns for e-business Application patterns, Runtime patterns, and Product
mappings are based on frequently recurring themes found in the functional and
operational aspects of successful system architectures. In most cases, these
74 Linux and Branch Banking

patterns are reflected in a large number of successfully implemented systems. In
some cases, we will also find what are referred to as emerging patterns that are
considered valuable alternatives, but may be too recent to have been widely
implemented yet. The key difference between the standard patterns and
emerging patterns is the number of times the pattern has been implemented in
the field. Although emerging patterns have been used less frequently than
standard patterns, and therefore cannot be considered mainstream patterns yet,
their capabilities and initial track record make them likely candidates to move
beyond the early adopter stage and into the mainstream solution pattern
category.

5.1.3 Gathering and summarizing requirements and drivers
We can look for the information we need for our pattern selection decisions by
focusing on the following areas where we can gather customer requirements:

� Business context

This area of focus looks at user profiles and business processes so that we
can summarize customer requirements and identify key business drivers,
both of which are important in determining which Business patterns apply.
The business drivers will also help us evaluate Application pattern
alternatives.

� User interactions

This area of focus looks at how users interact with each other, another key to
identifying which Business patterns apply.

� IT context

This area of focus looks at application and technology portfolios to establish a
high-level context at the branch and enterprise levels. This will identify any
significant technical considerations that could influence the solution and
identify key IT drivers. The IT drivers will also help us in a future step when we
evaluate Application pattern alternatives.

� Interactions among users and components in the IT systems

This area of focus looks at the ways in which users make use of IT services
and how components that provide those services are deployed and interact
with each other (and with external systems). This helps identify which
Business and Integration patterns apply.
 Chapter 5. Applying IBM Patterns for e-business to branch banking 75

Figure 5-1 Some important sources for customer requirements

The customer requirements that are found in these focus areas define and
establish the scope of the problem or problems we want to solve and lead us to
conclusions about which Business and Integration patterns apply. If multiple
patterns apply at this level, we could end up with a Composite pattern or Custom
design (we will look more closely at this later in this chapter). Figure 5-2 on
page 77 shows the relationships between Business and Integration patterns.
After we have taken a look at our requirements, we will modify this figure to
highlight the patterns we have that best describe our specific situation.

Customer
requirements

Customer
requirements

Business
patterns

Composite
patterns

Integration
patterns

Application
patterns

Product
mappings

Runtime
patterns

Technology
portfolio

Application
portfolio

IT
drivers

Business
drivers

Business
processes

User
profiles
76 Linux and Branch Banking

Figure 5-2 Business and Integration pattern relationships

After we have described the problems we want to solve, establishing which
Business and Integration patterns apply (as well as some possible Composite
patterns or Custom designs), we can move on to the patterns that describe
solutions: the Application and Runtime patterns. The business and IT drivers that
were collected during our analysis of customer requirements (as described in
Chapter 3, “Branch banking requirements” on page 45) will be a key input to this
next decision making process.

5.2 Business context
A wide variety of types of users appear as we study banking scenarios. Some
examples are as follows:

� Customer
� Branch manager
� Loan officer
� Teller
� Vault supervisor
� Administrative assistant

We can see that both internal and external users make direct use of a bank’s
automated business services. For external users (typically a
Business-to-Customer, B2C, scenario), this could take the form of a customer

Self-Service

Collaboration

Information Aggregation

Extended EnterpriseA
cc

es
s

In
te

gr
at

io
n

A
pp

lic
at

io
n

In
te

gr
at

io
n

 Chapter 5. Applying IBM Patterns for e-business to branch banking 77

using an ATM, using a bank’s Internet site, or placing a call to a customer service
representative or voice response unit (VRU) to inquire about their account status.
In the future, a bank might also want to make these services available through a
mobile hand held device. For internal users (a Business-to-Employee, B2E,
scenario), this could take the form of a teller using a terminal or workstation
during face-to-face transactions with a customer, or a loan officer entering a loan
application using their desktop workstation.

These interactions tell us that there are a number of self-service scenarios where
a user can directly access automated IT services. We can also see that it is
highly desirable for these IT services to be made available through multiple
channels or modes of delivery:

� Desktop workstations

� ATMs or kiosks

� Home PC browser

� IVR unit

� Call center

Of special interest to banks is the need to support the mobility of users, while
providing a personalized and secure set of IT services. For example, some
branch employees need to be able to perform their work from any of a number of
workstation locations. At whichever location they find themselves, they need a
specific, tailored set of application services presented through a consistent user
interface.

This is often accomplished today through the use of technology that logs a user
in and loads a user-specific desktop onto their workstation. This approach
supports the use of a range of application architectures, from stand-alone and
thick client application styles, to multi-tier distributed thin client topologies. As
older applications are replaced by a predominance of server-centric applications,
the need to provide a heavy-weight client machine will decrease, and along with
it, the need to deploy applications to the client desktop. That trend will make it
increasingly easier to provide application services at a wider range of locations
and through a wider range of devices.

In addition to the self-service types of interactions we have described, there are
also many examples of collaboration-style interactions within a branch banking
environment. For example, a large or unusual withdrawal may require approval
from the branch manager. Similarly, opening a new account may require
collaboration between the account representative and credit checking personnel.

To summarize, one of the generalizations we can make is that we have users
that are both internal and external to the organization. We also see that users
78 Linux and Branch Banking

interact with automated IT services through a number of channels (desktops,
ATMs, IVRs, call centers). We also see that users interact with each other in
face-to-face situations, and also through IT services that support both immediate
and deferred collaboration.

5.3 IT context
Financial institutions span a broad range of sizes in terms of both their customer
base and geographic distribution. This leads to a range of enterprise
infrastructure topologies, some of which are more centralized, while others are
more distributed at a regional and branch level. One repeating theme is that the
bank branch continues to play a key role. The importance of the customer facing
business processes carried out at bank branches means that the underlying IT
services need to be as available as possible so that key business transactions
can take place when the customer is there at the branch.

Here are some key IT requirements and drivers:

� IT services that need to be available through multiple delivery channels

� Flexible support for mobile or roaming users

� Access security controls

� Personalized presentation of IT services

� Need to accommodate varying network infrastructure capabilities

� Need to maximize the availability of services, in some cases providing a
period of reduced services as an alternative to a period of no services

� Emphasize application and technology strategies that minimize the total cost
of ownership

� Emphasize application and technology strategies that reduce application
complexity and maximize the inter-operability and reuses of application
services

� Emphasize application and technology strategies that provide flexibility in
deploying IT services across a range of distributed or centralized topologies

The distributed nature of branch banking adds special challenges and influences
the architectural decisions made for key banking applications. One important
aspect of this is the need to provide several levels of autonomy so that if one
component of the system is not available, other components can continue to
operate and deliver at least some level of function. One example of this is the
need to allow an ATM to dispense cash up to a pre-set limit (but not perform a
balance inquiry) even if the enterprise systems it integrates with are not
 Chapter 5. Applying IBM Patterns for e-business to branch banking 79

available, or to take a deposit at a teller station even if the branch server is
temporarily offline.

The architecture of a bank’s IT systems will benefit from being flexible and
adaptable in terms of how its application and technology components are
deployed at a branch, regional, or enterprise level to match the characteristics of
its organization and infrastructure capabilities.

5.3.1 Application and technology portfolio
A wide range of applications are in use today, and we are likely to find a variety
of application topologies and user interface styles:

� Monolithic stand-alone applications that run on a client desktop (for example
productivity applications, such as word processors and spreadsheets).

� Applications with components that have been partitioned and distributed,
operating at a branch level, in some cases integrating with enterprise
applications. These are traditional two-tier client/server applications that have
significant application components deployed on the client desktop which
interact with other application components on a local server, or a database on
a local server.

� Traditional host-based applications accessed through a terminal style
interface, either on a dedicated terminal device, or through a terminal
emulator that is loaded onto a client desktop.

Individual applications may also be difficult to integrate and share data with the
following:

� Individual applications may have been implemented to support a specific
business process and may not be designed to interoperate. Wherever that
characteristic exists, there is a lost opportunity to combine the underlying
application services in a new way to meet new competitive situations.

� The information underlying these applications may be stored in separate,
independent data stores. This can limit the bank’s ability to exploit valuable
information across product lines, making it more difficult to manage a complex
portfolio or to identity worthwhile cross-selling opportunities.

Cases where applications or their data cannot be easily integrated or combined
imposes limits on the speed with which a bank can implement new or enhanced
services. This affects a bank’s competitive position.
80 Linux and Branch Banking

Branch clients
Some of these application characteristics, combined with the need to support
user mobility, leads to the use of technology that lets a user’s desktop follow
them to whichever client machine they are working at. This can involve loading
that machine from the operating system on up to the applications, based on a
user’s role and preferences.

The range of application topologies requires a robust client machine, which
imposes limits on the ability to deliver IT services through a wider array of
channels. This can become a significant inhibitor to extending IT services to
customers over the Internet.

Branch servers
Branch servers have evolved capabilities to provide a personalized locked down
desktop, as well as host server-side application components and databases,
host connectivity, and traditional file and print services. These features are aimed
at the need to support a robust client desktop, as well as traditional two-tier
client/server applications. Over time, some of these capabilities must be
retained, such as the ability to provide a personalized, secured interface to
application services, while others can be shed, such as the capability of remotely
loading an operating system and applications to a client desktop (as application
architecture evolves to be client independent).

5.3.2 Transformation strategies
Over time, a bank transformation strategy is aimed at increasing the range of
integrated application services available to users, while also increasing the range
of channels through which these services are delivered. To accomplish this,
application architecture and the underlying technology infrastructure architecture
need to follow a strategy to evolve away from dependence on a specific client or
server configuration and deployment topology and toward consistent adoption of
flexible, open standards and alternatives.

Bank transformation will most often take place in stages, with each step
delivering specific short-term benefits, while being aligned to support a
longer-term strategy. While the first steps are likely to be driven by urgent
near-term pressures, they need to be viewed in the context of the overall
transformation strategy. Patterns for e-business are particularly useful in
accelerating the identification of both near-term and strategic solutions, which
increases the likelihood that short-term, as well as long-term, objectives can be
met.
 Chapter 5. Applying IBM Patterns for e-business to branch banking 81

5.4 Pattern selection
Reviewing the customer requirements will lead us to specific Business and
Integration patterns. For a business as complex as we find in the banking
industry, many patterns are likely to apply, resulting in a Composite pattern.
Business and IT drivers will then lead us to specific Application and Runtime
patterns.

5.4.1 Selecting Business and Integration patterns
Patterns for e-business Business patterns fall into four categories. Each of these
covers generalized characteristics of common business process requirements.
Let’s see where bank transformation and business process requirements apply
in this area:

� Self-Service: The user-to-business interactions we have found, such as
customers using an ATM, or a teller using a teller workstation, indicate that
the solution involves the Self-Service business pattern. At the branch level,
the ability of a bank employee to move from one location to another and have
their personal set of capabilities follow them is an important factor in
maximizing efficiency. Over time, customers and bank employees will more
than likely have an increasing number of automated business processes
made directly available to them in a self-service mode, making this Business
pattern of increasing importance.

� Collaboration: User-to-user interactions can be found in business processes
ranging from opening an account, loan origination, customer inquiries, and
large withdrawals. For example, a branch manager may need to authorize a
withdrawal that is more than some specified amount. This indicates that the
Collaboration business pattern applies. Because user-to-user collaboration
can improve the efficiency of an organization, as well as increase the number
of opportunities for the bank to interact with their customer base, it is likely
that the number of collaboration scenarios and the importance of this pattern
will increase.

� Information Aggregation: Business processes, such as portfolio
management, cross-sell marketing, and business performance measurement,
require the collection and analysis of information from multiple sources. This
indicates that the Information Aggregation pattern will apply. As more and
more information is aggregated, new opportunities to exploit this valuable
resource are likely to be found, leading to the need for increasingly
sophisticated approaches to information aggregation.
82 Linux and Branch Banking

� Extended Enterprise: Some business processes cross enterprise
boundaries. Collecting credit history during loan origination, transactions
involving securities, and fund transfers are examples of business processes
that can involve other business partners. This indicates that the Extended
Enterprise business pattern applies. This is also an area that is likely to
increase in importance as banks adopt more e-banking. For example,
e-banking provides integrated management of customer-related data, which
had traditionally been managed by a number of separate systems, in its
customer information system. Therefore, related departments can share and
analyze accurate customer data. Furthermore, the analytic CRM system
provides market and customer trend analysis to allow the bank to conduct
more effective, proactive marketing activities.

Integration patterns fall into two categories: Access Integration and Application
Integration. Each of these basic patterns can be subdivided into more discrete
collections of services or characteristics. Let’s see where our requirements lead
us in this area.

The Access Integration pattern is subdivided into four areas of common services:

� Device Support services: When we considered the Self-Service business
pattern, we discovered that it is essential for a bank to be able to provide its
services through multiple channels. This increases the number of touch
points the bank can have with its customers, as well as providing flexibility in
delivering services to its employees in a variety of contexts. The Access
Integration pattern Device Support services can be used to provide or extend
a bank’s multichannel capabilities.

� Presentation services: Providing a common look and feel is a key to
achieving high employee productivity, as well as in establishing a bank’s
brand image with its customers. Both of these are important requirements
that can be met through the Access Integration pattern Presentation services.

� Personalization services: Bank employees often need the ability to move
from location to location as they carry out their work. The Access Integration
Personalization services addresses the need to have a user’s personal set of
capabilities follow them from one desktop to another.

� Security and Administration: Security is one of the most important
requirements in a banking environment. The Access Integration Security and
Administration services supports a need to define and administer role-based
policies and to have those policies applied as a user moves from access point
to access point.

The Application Integration pattern can be viewed in several dimensions. One of
the key aspects is whether the integration is aimed at invoking application
processes or accessing data. Another aspect pertains to whether the
application-to-application interactions are synchronous or asynchronous. Still
 Chapter 5. Applying IBM Patterns for e-business to branch banking 83

another important aspect is whether the integration uses a point-to-point or
multi-point topology. Lastly, application integration scenarios can be
characterized in terms of message flow: do messages simply pass through an
integration point, does message transformation or enrichment take place, or are
messages being routed. Let’s see where process-focused and data-oriented
Application patterns apply in this area:

� Process-focused: The common services provided by process-focused
Application patterns are protocol adapter, message handler, data
transformation, decomposition/recomposition, routing/navigation, state
management, security, local business logic, and business unit of work
management. The five process-focused Application patterns are Direct
Connection, Aggregator, Transactional, Broker, and Managed Process.

� Data-oriented: Data-oriented Application patterns can be characterized
based on topology (centralized or decentralized), as well as by database
affinity (homogeneous/same vendor, multi-vendor relational/all ODBC or
JDBC, heterogeneous structured/some non-relational but all have a
structured layout, structured with non-structured/integrating both structured
database content with unstructured content). The four data-focused
Application patterns are Propagation, Replication, Operational Data Store
(ODS), and Federated Repository.

One thing that is clear from our analysis of the bank transformation and business
process requirements is that a bank’s individual IT services need to be integrated
in ways that support multichannel access and simplified and consistent user
interfaces. When we consider a bank’s need to interact with its business
partners, we see additional points at which applications need to integrate, and in
this case, integration occurs across enterprise boundaries. The bottom line is
that the Application Integration pattern clearly applies to our solution. Deciding
which of these patterns and pattern dimensions apply requires consideration of
both business and technical requirements. We highlight specific cases of
application integration in the following sections.

5.4.2 Composite pattern
We can see that each of the Business and Integration patterns applies in some
way to bank transformation. Figure 5-3 on page 85 highlights requirements that
led us to select each of these patterns.
84 Linux and Branch Banking

Figure 5-3 Where Business and Integration patterns apply

Our resulting Composite pattern at this level is shown in Figure 5-4 on page 86.

A
ce

ss
 In

te
gr

at
io

n

Self-Service

Collaboration

Information Aggregation

Extended Enterprise

A
pp

lic
at

io
n

In
te

gr
at

io
n

Passbook services, loan
origination, banking product sales,

credit line verification

Account opening, loan
origination, customer inquiry,

large withdrawal

Loan origination, credit history,
securities buy/sell, transfers

Multichannel device support
services:

Desktop, ATM, Internet,
Kiosk, IVR, Call Center

Inter-application
message routing

Presentation services:
Universal desktop,

common look and feel

Personalization services:
Personalized desktop
services, roaming user

access

Security and
administration services:

Login, user profile
administration

Managed workflow
processing

Operational Data Store
or Data

Warehouse/Data Mart

Portfolio management,
cross selling
 Chapter 5. Applying IBM Patterns for e-business to branch banking 85

Figure 5-4 All Business and Integration patterns apply

At the end of this chapter, we look at customer loyalty and e-banking scenarios
where a Composite pattern can be applied.

Before we look at the Composite patterns scenarios, we want to identify suitable
Application and Runtime patterns and decide how they can be applied to our
solution. Because we have a special focus on the branch bank in this redbook,
we will look most closely at the Self-Service business pattern and the associated
Application and Runtime patterns. The Self-Service business pattern also
provides a springboard for a discussion of the role of Access and Application
Integration patterns.

5.4.3 Application and Runtime patterns
Under each of the Business and Integration patterns we have identified is a
group of Application patterns. The Application patterns describe generalized
logical application topologies: the “shape” of applications that address a
Business or Integration pattern’s requirements.
86 Linux and Branch Banking

Business and IT drivers are a key input to selecting Application patterns. As
described in 2.2, “Branch technology challenges” on page 14, the key challenges
to be addressed include:

� Speed to market: The adaptability of a bank’s solutions are key to being
positioned to respond to competitive pressures and changing marketplace
demands. Adaptation could take the form of rapid reconfiguration, or rapid
deployment of new or enhanced applications.

� Total cost of ownership (TCO): Branch transformations must be affordable; a
key consideration is to establish a plan for when specific components will be
replaced: which components must be replaced in the initial step, which are
more easily retained, addressing the expenditure rate.

� Quality of Service (expressed in terms of non-functional requirements:
security, availability, reliability, performance, scalability, so these are really IT
drivers).

Self-Service application and runtime patterns
There are seven Self-Service application patterns, some of which could be used
to provide immediate solutions, while others support longer term objectives:

� Stand-Alone Single Channel
� Directly Integrated Single Channel
� As-Is Host
� Customized Presentation to Host
� Router
� Decomposition
� Agent

The following sections discuss each of these Self-Service application patterns
and identifies Runtime patterns that can be used to implement them

Single Channel, limited integration patterns
The Stand-Alone Single Channel application pattern is a single channel pattern
that is useful when there is no immediate need to integrate the application with
other systems, and where the time-to-market driver is especially significant. The
Directly Integrated Single Channel application pattern is another single channel
pattern, but supports point-to-point integration with other systems. This pattern
can be used to reduce the latency of business events and maximize the reuse of
legacy systems. This pattern can also represent an evolutionary future step for
the Stand-Alone Single Channel pattern.

The As-Is Host application pattern extends the reach of legacy applications that
use a terminal-style user interface to new channels. This pattern allows users to
access legacy applications through a thin client browser instead of a specialized
terminal device or a heavier weight desktop terminal emulator. The Customized
 Chapter 5. Applying IBM Patterns for e-business to branch banking 87

Presentation to Host application pattern can be used to provide a new user
interface for legacy applications. Multiple legacy applications can be given a
new, more efficient, and consistent user interface, as well as making the legacy
applications available through a thin client browser.

Multichannel, complex integration patterns
To address multichannel and complex integration scenarios, we look to a second
group of Self-Service application patterns. The Router application pattern is
focused on addressing multichannel delivery of services. It accomplishes this by
providing a standard set of application services that can be requested from one
of a number of different delivery channels, such as browser, Kiosk, IVR, or call
center. A request from any channel is routed to the appropriate application
system for processing. This approach eliminates the need for point-to-point
integration for each individual channel.

The Decomposition application pattern builds on the Router pattern by adding
the capability of being able to break individual requests from a channel into
multiple requests to enterprise applications, and then recombining the individual
responses into a single response back to the originating channel. This enables a
more sophisticated set of services that combine the capabilities of multiple
applications.

The Agent application pattern further extends the Router and Decomposition
patterns by adding its own intelligence to the responses from multiple enterprise
applications. It can transform a group of enterprise applications that are not
capable of directly integrating with each other into what could be considered a
new federated application that is more than the sum of the individual application
services.

The Agent pattern can, for example, evaluate information returned from multiple
enterprise applications and apply business rules to arrive at a cross selling
recommendation that no individual application would be able to make.

Stand-Alone Single Channel pattern
In this section, we describe the Stand-Alone Single Channel application and
runtime patterns.

Application pattern
Figure 5-5 on page 89 illustrates the Stand-Alone Single Channel application
pattern.
88 Linux and Branch Banking

Figure 5-5 Stand-Alone Single Channel application pattern

This pattern typifies the separation of presentation services from application
services. In an e-business context, this is often implemented through very
sparing use of presentation logic on the client.

For situations where there is an urgent time-to-market pressure to deliver
application services through new access channels, this application is one of the
fastest way to implement new services. One of the key features of this pattern is
that it is not dependant on integration with other systems, which eliminates what
can be one of the more challenging aspects of integrating new systems. This
also means that the application services could be deployed to servers at a
branch, region, or enterprise level, depending on the bank’s specific
requirements.

In a bank transformation context, this pattern could be used to move monolithic
applications that currently can only run on a robust client desktop with a specific
operating configuration to a thin client, server-oriented architecture. This would
not only reduce the need for high-powered desktop hardware, it could also
extend the reach of the application to any device with a standard Internet
browser capability. This pattern could be implemented in several ways,
depending on the type of application under consideration.

For applications that are stand-alone applications, such as desktop productivity
applications (for example, a word processor), the application could be hosted on
a central server using technology, such as Citrix Winframe or Connectix
VirtualServer. In this case, the application runs on a server instead of the
desktop. The presentation of the application’s user interface is handled through a
thin client component, which is much less dependant on its operating
environment than the application itself, thus extending the reach of the
application to a wider range of devices and users. This approach can also be
used for client/server applications where there is a thick client component, and
where there is no time or interest in migrating the application to a multitier
e-business based architecture.
 Chapter 5. Applying IBM Patterns for e-business to branch banking 89

For traditional two-tier applications, where there is an interest in migrating to a
multitier, e-business based architecture, the Stand-Alone Single Channel
application pattern provides one option. As long as the application does not
require integration with other applications, this pattern can be used.

Several benefits accrue from using this approach. First of all, the application can
be re-architected using a Model View Controller (MVC) based application
framework. By applying this separation of concerns approach to the application
architecture, the application not only can be moved to an e-business
environment, immediately making it available through additional device
channels, but perhaps more importantly, the underlying application services can
be made available through a more generalized interface, which positions the
application for wider reuse and easier integration in the future.

Runtime pattern
Figure 5-6 illustrates the Stand-Alone Single Channel runtime pattern.

Figure 5-6 Stand-Alone Single Channel runtime pattern

The client node presentation services can be implemented through Java script,
Java applet, or only HTML. On the server side, a JSP can be used to
encapsulate any other dynamic presentation-related logic. Application logic that
interprets requests from the browser and delegates the request to a business
model layer and business logic components are housed in separate
90 Linux and Branch Banking

components, such as servlets, Java classes, or JavaBeans (in other, more
sophisticated patterns, Enterprise JavaBeans could be used, along with various
application integration techniques).

The emerging Runtime pattern shown in Figure 5-6 on page 90 could be used as
the basis for implementing this approach and demonstrates how this Application
pattern could be implemented on a Linux server platform. This pattern is
considered emerging because some of the products have only recently become
available on the Linux platform and have not yet achieved as wide use as they
have on other platforms.

Table 5-1 Pattern summary: Stand-Alone Single Channel

Directly Integrated Single Channel pattern
In this section, we describe the Directly Integrated Single Channel application
and runtime patterns.

Application pattern
Figure 5-7 on page 92 illustrates the Directly Integrated Single Channel
application pattern.

Key characteristics � Single channel at a time
� No integration with other applications

Commonly used
technology
components

� Linux server
� WebSphere Edge Server
� IBM Developer Kit for Linux
� WebSphere Application Server AE
� DB2 UDB EE
� IBM HTTP Server
� IBM Access Manager for e-business
 Chapter 5. Applying IBM Patterns for e-business to branch banking 91

Figure 5-7 Directly Integrated Single Channel application pattern

This Application pattern extends the Stand-Alone Single Channel pattern to
provide an approach for applications that can use a point-to-point connection
with one or more back-end applications (or data, or both). As a Single Channel
pattern, it could be used to implement any one of the delivery channels.

The simplicity of this pattern is achieved by limiting the scope of the pattern to a
single channel and to relatively simple integration techniques. While this makes
the pattern easier to implement than some of the other patterns, the trade off is
that it is also limiting, not being a multichannel solution (see “Router pattern” on
page 98, “Decomposition pattern” on page 101, and “Agent pattern” on
page 104), and usually does not interact with more than one enterprise
application in any individual transaction (see “Decomposition pattern” on
page 101 and “Agent pattern” on page 104). There may or may not be a need for
modification of the back-end legacy applications depending on their current
capabilities (note that there is one back-end application node that represents an
unmodified application, and another node that represents an application that
would be modified to support integration).

synchronous
Presentation Application

Application node
containing new or

modified components
Read / Write data

Application
2

Application
1

synchronous
asynchronous

Application node containing
existing components with no
need for modification or that

cannot be changed
92 Linux and Branch Banking

Runtime pattern
Figure 5-8 illustrates the Directly Integrated Single Channel runtime pattern.

Figure 5-8 Directly Integrated Single Channel runtime pattern

This pattern adds connector components to enable integration between the
e-business application and previously existing legacy applications. These
connectors are point-to-point, meaning that request and response conversations
between the e-business and legacy applications do not go through any
intermediate dynamic routing or transformation nodes, resulting in a less
complicated infrastructure architecture. Although a load balancing node is not
explicitly shown in this pattern, one could easily be added (see Figure 5-6 on
page 90).
 Chapter 5. Applying IBM Patterns for e-business to branch banking 93

Table 5-2 summarizes this pattern’s key characteristics and technology
components.

Table 5-2 Pattern summary: Directly Integrated Single Channel

As-Is Host and Customized Presentation to Host patterns
In this section, we describe the As-Is Host and Customized Presentation to Host
application and runtime patterns.

Application patterns
Figure 5-9 and Figure 5-10 on page 95 illustrate the As-Is Host and Customized
Presentation to Host application patterns.

Figure 5-9 As-Is Host application pattern

Key characteristics � Single channel
� Point-to-point integration with individual applications

Commonly used
technology
components

� Linux server
� WebSphere Edge Server
� IBM Developer Kit for Linux
� WebSphere Application Server AE
� IBM HTTP Server
� IBM Access Manager for e-business
� DB2 Connect Enterprise Edition for Linux
� eNetworks Communications Server
� CICS Transaction Gateway
� IMS Connector for Java (runtime classes)

An infrastructure
node with no

application code
Read / Write data

Host
application

tier

synchronous

Application node containing existing
components with no need for
modification or that cannot be

changed
94 Linux and Branch Banking

Figure 5-10 Customized Presentation to Host application pattern

These two patterns enable browser access to applications that have a
terminal-oriented user interface, thus extending the reach of the applications to
new locations and lighter weight client devices. These patterns work well in
situations where the host application needs to be left unchanged (hence the
application tier node with the bold border).

These two patterns represent two different solution approaches. The As-Is Host
pattern provides the user with the original user interface design, while moving the
terminal emulator function off of the client. The Customized Presentation to Host
pattern can be used to provide a redesigned, more Web-like user interface,
making it possible to simplify or streamline the user interface, and also making it
possible to provide a more consistent user interface across a range of terminal
oriented applications.

In the As-Is Host pattern, an infrastructure node with no application code
provides terminal emulation functions on a server, presented through a browser,
eliminating the need for the client to have a terminal emulator installed or running
on it. Moving the terminal emulation function upstream from the client provides
several benefits:

� The host application can be accessed from new devices, with simplified client
node requirements. The ability to use a zero footprint client lowers the cost of
the client node and simplifies its configuration.

� The host application can be used at new locations, for example, where
browser access to the enterprise network is available, but a server with a host
communications gateway component might not be.

Application node
containing new or

modified components
Read / Write data

Application node containing
existing components with no
need for modification or that

cannot be changed

Application
tier

synchronousPresentation
tier
 Chapter 5. Applying IBM Patterns for e-business to branch banking 95

� Placement of the server node that hosts the terminal emulation function
becomes an easier decision than may have been the case for the
communications gateway needed for a thick client-based terminal emulator.
The presentation tier server could be located at a branch, region, or central
location.

The Customized Presentation to Host pattern adds intelligence to the
presentation tier to provide the capability to reformat host screens. Like the As- Is
Host pattern, this pattern is useful when the host application is not going to be (or
cannot be) modified and will be used as is. This pattern can be used to mask the
complexity of host applications, and it can also be used to give multiple host
applications a common look and feel. Key benefits from using this pattern are as
follows:

� All of the benefits of the As-Is Host pattern also apply to this pattern.

� The underlying applications can take on a look and feel that is consistent with
other Web-based applications.

� Multiple terminal-oriented applications that may have very different user
interface designs can be given a consistent user interface design.

� The improved, more consistent user interface reduces training time and cost.

� The usability improvements can lead to increased productivity and reduced
turnover.

Runtime pattern
The topology for these two patterns are similar to Figure 5-8 on page 93.
However, instead of needing all of the connection technology components
highlighted in that topology, we would use components that simplify the
transformation of host screen data streams. The base technology components
are as follows:

� A client that supports a Java-enabled browser: This could be a lightweight
desktop running any operating system that supports the browser
requirements.

� A Linux server running: WebSphere Application Server.

� The underlying implementation of the As-Is Host pattern is based on a
server-hosted terminal emulation product: IBM WebSphere Host Publisher.
(At the time of this writing, IBM WebSphere Host Publisher is not supported
on Linux.)
96 Linux and Branch Banking

� The underlying implementation of the Customized Presentation to Host
pattern uses some form of screen scraping mechanism to transform the host
screens into a more user friendly interface. The following off-the-shelf
products are available that can significantly reduce the effort to implement this
pattern:

• Client Access Family V5R1

• Host Access Transformation Server (HATS); 3270, 5250 through a
browser with a Web-like look and feel

Table 5-3 summarizes this pattern’s key characteristics and technology
components.

Table 5-3 Pattern summary: As-Is Host, Customized Presentation to Host

Key characteristics � Make terminal-oriented host applications available
through a browser.

� As-Is Host pattern moves terminal emulations off the
client, leaving the original user interface design
unchanged.

� Customized Presentation to Host also moves terminal
emulation off of the client, and in addition, transforms the
original user interface design into a new user-friendly
design.

Commonly used
technology
components

� Linux server.
� WebSphere Edge Server.
� IBM Developer Kit for Linux.
� Web Sphere Application Server AE.
� DB2 UDB EE.
� IBM HTTP Server.
� IBM Access Manager for e-business.
� IBM WebSphere Host Publisher (As-Is Host) (At the time

of this writing, IBM WebSphere Host Publisher is not
supported on Linux.)

� Host Access Transformation Server (HATS)
(Customized Presentation to Host).
 Chapter 5. Applying IBM Patterns for e-business to branch banking 97

Router pattern
In this section, we describe the Router application and runtime patterns.

Application pattern
Figure 5-11 illustrates the Router application pattern.

Figure 5-11 Router application pattern

This Application pattern represents a fan out on the presentation side to support
multiple channels (that is, uses a hub and spoke configuration instead of having
each channel provide its own point-to-point integration with business
applications). The multiple presentation nodes represent different access
channels, such as a browser, IVR, or ATM.

The router tier supports multiple channels on the presentation side and can route
requests from any of those channels to the appropriate enterprise application.
The router does not fan requests out on the application side (as does the
Decomposition pattern). Each incoming request is routed to one target
application.

The synchronous connection on the right is logical, not physical, and the
implementation could use a non-blocking messaging technique in addition to
other synchronous techniques, in any case, on the presentation side, the
interaction appears to the user to be synchronous. The router can perform
protocol conversion (for example, HTTP to RMI) and session concentration, in
addition to request routing. Router can also enforce role-based security rules.

synchronousPresentation
2

Router
Tier

Application node
containing new or modified

code for this project
Read / Write data

Back-end
Application

2

synchronous

Application node containing
existing components with

no need for modification or
that cannot be changed

Presentation
1

Back-end
Application

1

Read only data

The application logic
issues a call/return (or

blocking) request
synchronous

The application logic
issues a send

(non-blocking) request
asynchronous
98 Linux and Branch Banking

The Router pattern also uses the Access Integration and Application Integration
patterns.

An example of how the Router pattern can be used would be to support access
to client account information through the Internet, kiosks, VRU, call center, and
teller stations. A limitation of this pattern is that it provides a one product or
account at a time view (see “Decomposition pattern” on page 101 and “Agent
pattern” on page 104 for a consolidated view).

Runtime pattern
More than one runtime variation exists for this Application pattern. One approach
is to use a message broker for integration. For example, WebSphere MQ can
provide message transport between the router node and back-end applications
(as well as between the router and channel specific applications). WebSphere
MQ Integrator can provide intelligent routing and message transformation.
Figure 5-12 shows a commonly used approach based on the WebSphere MQ
product family.

Another emerging pattern approach is based on the user of an object request
broker. In this case, the Integration Server node would be populated with
WebSphere Application Server Enterprise Edition, and connectors, such as
WebSphere MQ, to support integration with back-end applications.

Figure 5-12 Router runtime pattern
 Chapter 5. Applying IBM Patterns for e-business to branch banking 99

Table 5-4 summarizes this pattern’s key characteristics and technology
components.

Table 5-4 Pattern summary: Router

Key characteristics � Make application services available through multiple
channels.

� Move to a hub and spoke topology that provides
back-end application services to any channel without the
channel needing to know details of the back-end
application locations or message formats.

� Intelligent request routing from a channel to the
appropriate application system.

� Message transformation of requests and responses.
� Session concentation: the router maintains a reduced

set of sessions with back-end applications, instead of
each channel needing to maintain its own set.

� Enforce channel- and role-based security policy.
� Eliminate the need for each channel to support

dedicated point-to-point connections to back-end
application systems.

Commonly used
technology
components
(message broker
based)

� Linux server
� WebSphere Edge Server (optional)
� IBM Developer Kit for Linux
� WebSphere Application Server AE
� DB2 UDB EE
� IBM HTTP Server
� IBM Access Manager for e-business
� WebSphere MQ
� WebSphere MQ Integrator
� WebSphere MQ classes for Java
100 Linux and Branch Banking

Decomposition pattern
In this section, we describe the Decompoition application and runtime patterns.

Application pattern
Figure 5-13 illustrates the Decomposition application pattern.

Figure 5-13 Decomposition application pattern

The Decomposition application pattern extends the Router pattern to enable
processing of more sophisticated requests. As with the Router pattern, this
pattern can handle requests from multiple channels. It goes beyond the Router
by being able to break down a request from a channel into multiple requests to
back-end applications, and then assembles each back-end application response
into a single response back to the original requester.

This pattern is based on the Router’s hub and spoke architecture and extends it
by adding intelligence to decompose then recompose requests and responses.
One client request becomes multiple requests to individual enterprise
applications (referred to as fan out), and each of the individual results are
collected into a single response back to the client (referred to as fan in). A local
work-in-progress database may be used to hold intermediate results that are
needed to represent process state and to assemble the final response back to
the channel, as well as transformation and routing business rules. Although the
decomposition of an inbound message (fan out) requires intelligence in the
integration server, an even more challenging aspect of this pattern is the need to
collect, correlate, and assemble the individual responses (fan in).

synchronousPresentation
2

Decomposition
Tier

Application node
containing new or

modified code for this
project

Read / Write data

Back-end
Application

2

synchronous

Application node
containing existing code

with no need for
modification for this project

or that can not be
changed

Presentation
1

Back-end
Application

1

Transient data
Work in progress
Cached committed data
Staged data (data replication flow)

asynchronous
 Chapter 5. Applying IBM Patterns for e-business to branch banking 101

An important benefit of this pattern is that a consistent consolidated customer
view becomes available through any of multiple channels. Without the
capabilities of this pattern, each channel would need the intelligence to know
which back-end applications provide specific information and services. The
Decomposition pattern concentrates this intelligence in the interrogation node,
which greatly simplifies the design of individual channels.

Runtime pattern
Similar to the Router pattern, several Runtime patterns could be used to
implement the Decomposition application pattern. Figure 5-15 on page 104
represents a commonly used approach based on the use of a message broker.

Figure 5-14 Decomposition runtime pattern

Table 5-5 on page 103 summarizes this pattern’s key characteristics and
technology components.
102 Linux and Branch Banking

Table 5-5 Pattern summary: Decomposition

Key characteristics � Make application services available through multiple
channels.

� Move to a hub and spoke topology that provides back-end
application services to any channel without the channel
needing to know details of the back-end application
locations or message formats.

� Intelligent request routing from a channel to the appropriate
application system.

� Message transformation of requests and responses.
� Session concentation: The router maintains a reduced set of

sessions with back-end applications, instead of each
channel needing to maintain its own set.

� Enforce channel- and role-based security policy.
� Eliminate the need for each channel to support dedicated

point-to-point connections to back-end application systems.

Commonly used
technology
components
(message broker
based)

� Linux server
� WebSphere Edge Server (optional)
� IBM Developer Kit for Linux
� WebSphere Application Server AE
� DB2 UDB EE
� IBM HTTP Server
� IBM Access Manager for e-business
� MA88 support pack (MQ JMS classes)
� WebSphere MQ
� WebSphere MQ Integrator
� IA72 Mixers Aggregator plug-in (fan out and fan in support)
� WebSphere MQ classes for Java
� WebSphere Application Server EE
 Chapter 5. Applying IBM Patterns for e-business to branch banking 103

Agent pattern
In this section, we describe the Agent application and runtime patterns.

Application pattern
Figure 5-15 illustrates the Agent application pattern.

Figure 5-15 Agent application pattern

This Application pattern extends the Router and Decomposition patterns. It
provides a unified, customer-centric view that can be exploited for mass
customizing of services and for cross-selling purposes. The Agent pattern makes
intelligent use of work-in-progress cached data to push content to users based
on analysis of the data.

A variation of the Agent pattern uses an Operational Data Store (ODS) instead of
relying on individual requests to return the required data.

Examples:

� E-commerce sites with targeted marketing

� Call center representatives being prompted with cross-selling scripts

� Work-in-progress database holding long running transaction data (for
example, a loan application staged until submitted) before committing
changes

synchronousPresentation
2

Agent
Tier

Application node
containing new or

modified components
Read / Write data

Back-end
Application

2

synchronous

Presentation
1

Back-end
Application

1

Transient data
Work in progress
Cached committed data
Staged data (data replication flow)

asynchronous

Application node containing
existing components with no
need for modification or that

cannot be changed

asynchronous
104 Linux and Branch Banking

Figure 5-16 Agent runtime pattern

Products that can be deployed on Linux:

� See Stand-alone Single Channel for base products

� WebSphere Personalization Server for Multiplatform 4.0

� WebSphere Personalization Server 3.5

� WebSphere Extended Personalization Offering 4.0 (WAS, WSAD, WS
Personalization for Multiplatform, WS Site Analyzer)

5.4.4 Customer loyalty in the financial services industry
The intense, enterprise-wide focus on customer loyalty initiatives by many
financial institutions points to an emerging truth: The ultimate goal is to retain and
grow a base of dedicated customers. That is easier said than done, especially
when you have separate applications and systems that address single business
issues. The challenge is even more daunting when you consider that customers
now expect more and have more choices than ever before. There is little room
for error.

By integrating all data into a single view, data can be transformed into accessible
customer information to allow delivery of consistent, customized services over
any channel. A solution should provide the tools that enable the vendor to treat
 Chapter 5. Applying IBM Patterns for e-business to branch banking 105

customers as individuals and deliver value on their terms: what they want, when
they want it. Customer analytics determine the projected lifetime value of a
customer to the organization so that service levels can be matched to individual
customer profitability levels.

Figure 5-17 Customer loyalty architecture

Desktop

Wireless

e-mail

B2B Portal

Channel
Enablement

E
dg

e
S

er
ve

r,
 S

ec
ur

eW
ay

, T
ra

ns
co

di
ng

 P
ub

lis
he

r,
 D

ire
ct

al
k

Portal

Personalization
Customization

WPS

Account Access

WCS

Non-Web Contact

e-mail Automation

Kana
Response

Call Center

Siebel

e-mail
Management

Kana
Connect

Business Intelligence
Campaign Management

Data Warehouse

 Campaing Analysis
 Management Segmentation

DB2

MQSI

Intell Miner

WBI

Adapters

Internet

Telephony

Back-End
Systems
106 Linux and Branch Banking

Figure 5-18 Patterns of customer loyalty

Patterns identified in customer loyalty are shown in Table 5-6.

Table 5-6 Customer loyalty patterns

Patterns Application Patterns

Information Aggregation Data Mining

Information Aggregation Population - Multistep

Information Aggregation Information Access - Read Only

Information Aggregation Mining/Analysis

Collaboration Store and Retrieve

Application Integration Managed Process

Application Integration Broker

Application Integration ODS

Access Integration Single Sign-On and Role-Based Access

Self-ServiceSelf-Service

CollaborationCollaboration

Application
Integration
Application
Integration

Access
Integration

Access
Integration

Application
Integration
Application
Integration

Information AggregationInformation Aggregation

Application
Integration
Application
Integration
 Chapter 5. Applying IBM Patterns for e-business to branch banking 107

Business processes in customer loyalty
The following describes the businesses processes:

� Cross-industry processes:

– Customer sales analysis
– Multichannel campaign
– Product sales analysis
– Customer loyalty analysis (acquisition, retention)
– Order entry service
– Order entry management
– Customer life cycle

� Financial industry processes:

– Insurance claim
– Inquiry claim
– Add first notice of loss
– Policy quote (specialization of order entry service)
– Add bill payment

� Solution specific processes:

– Real-time campaign management

5.4.5 Composite pattern: e-Bank
Less than ten years after the emergence of the World Wide Web, e-business is
radically reshaping retail financial services. In particular, the rapid growth of
online trading has shown how e-commerce can reduce prices, increase
convenience, and add value in ways that can build market share rapidly for firms
that understand this new medium.

The stage is now set for the rapid expansion of Internet-based retail banking
services. In the next three years, IBM expects e-commerce to rise exponentially
as competition among online personal finance providers accelerates, boosting
demand for online lending, bill payment, and investment services. Amid the
proliferation of new Internet financial services and products, online consumers

Access Integration Personalized Delivery

Access Integration Pervasive Device Access

Customer Portal composite pattern

Employee Portal composite pattern

Account Access composite pattern

Patterns Application Patterns
108 Linux and Branch Banking

are searching for clarity and convenience. Retail banks can meet this compelling
need by building low-cost, interactive banking platforms that allow their
customers to electronically simplify and integrate a broad range of personal
financial services.

e-Bank is a customer-oriented system. For example, e-Bank provides integrated
management of customer-related data, which had traditionally been managed by
a number of separate systems, in its customer information system. Therefore,
related departments can share and analyze accurate customer data.
Furthermore, the analytic CRM system provides market and customer trend
analysis to allow the bank to conduct more effective, proactive marketing
activities.

Figure 5-19 e-Bank architecture

Channel
Enablement

E
dg

e
S

er
ve

r,
 S

ec
ur

eW
ay

, T
ra

ns
co

di
ng

 P
ub

lis
he

r,
 D

ire
ct

al
k

Portal

Personalization
Customization

WPS

Account Access

WCS

Non-Web Contact

e-mail Automation

Kana
Response

Call Center

Siebel

e-mail
Management

Kana
Connect

Business Intelligence
Campaign Management

Data Warehouse

 Campaign Analysis
 Management Segmentation

DB2

MQSI

Intell Miner

WBI

Adapters

Enterprise Systems

Transaction Services

Account Mgt

Credit & Cash
Mgt

Statement &
Billing

Accounting

W
B

I

Desktop

Wireless

e-mail

Telephony

B2B Portal

Internet
 Chapter 5. Applying IBM Patterns for e-business to branch banking 109

Figure 5-20 Patterns of e-Bank

The patterns identified in e-Bank are shown in Table 5-7.

Table 5-7 e-Bank pattern

Patterns Application Patterns

Information Aggregation Population - Multistep

Information Aggregation Data Mining

Information Aggregation Extensive User Update

Information Aggregation Information Access - Read Only

Collaboration Managed Collaboration

Extended Enterprise Document Exchange

Application Integration Propagation

Application Integration Broker

Application Integration Transactional

Application Integration Managed Process

Self-Service

Collaboration

Application
Integration

Access
Integration

Application
Integration

Information Aggregation

Application
Integration

Self-Service

Collaboration

Application
Integration

Access
Integration

Application
Integration

Information Aggregation

Application
Integration
110 Linux and Branch Banking

Business processes in e-Bank
The following describes the businesses processes:

� Cross-industry processes:

– Customer sales analysis
– Customer account inquiry
– Order entry soft/hard
– Order entry services
– Order management soft/hard
– Order management services
– Multichannel campaign
– Product sales analysis
– Product life-cycle management (add, change, delete, replace)
– Customer life-cycle management (add, change, delete)
– Request for quote
– User access management (add, change, delete)
– Accounts receivable
– Accounts payable
– Customer service request
– Customer loyalty analysis (acquisition, retention)
– Online billing and statement with payment

� Financial industry processes:

– Credit and cash management
– Add bill payment
– Account management
– Electronic transfer
– Stop payment
– Transaction services
– Balance inquiry
– Account inquiry

Application Integration Operational Data Store

Access Integration Pervasive Device Access

Access Integration Single Sign-On and Role-Based Access

Access Integration Personalized Delivery

Customer Portal composite pattern

Employee Portal composite pattern

Account Access composite pattern

Patterns Application Patterns
 Chapter 5. Applying IBM Patterns for e-business to branch banking 111

– Deposit account statement inquiry
– Credit card statement closing
– Deposit account transaction inquiry
– Card account transaction inquiry
– Bank account transaction image inquiry
– Interest rate inquiry
– Bank account taxation inquiry
– Foreign exchange rate inquiry
– Stop check add
– Stop check cancel
– Stop check inquiry
– Stop check audit
– Stop check synchronization
– Funds transfer add
– Funds transfer modify
– Funds transfer status modify
– Funds transfer cancel
– Funds transfer inquiry
– Funds transfer audit
– Funds transfer synchronization
– Recurring transfer model add
– Recurring transfer model modify
– Recurring transfer model cancel
– Recurring transfer model inquiry
– Recurring transfer model audit
– Recurring transfer model synchronization
– Check order add
– Deposit book order add

5.4.6 WSBCC and Eontec
IBM and business partner Eontec have collaborated to combine WebSphere
Business Components Composer (WSBCC) with the Eontec financial
components. In the resulting solution, WSBCC multichannel business operations
can launch a request to an Eontec financial component that can, in turn, use
WSBCC Communication Services to integrate with other applications and data.
Together, Eontec and WSBCC can be used to create a multichannel application
that supports the Self-Service business pattern.

Eontec uses a J2EE-based architecture including stateless session beans and
entity beans that implement bean-managed persistence. This approach allows
the entity beans (and the underlying Eontec framework) to adapt to alternative
mechanisms to persist information, such as a database or through the use of
other application services. The Eontec framework’s persistence layer uses
services of the Eontec Financial Process Integrator component to integrate with
112 Linux and Branch Banking

services of enterprise applications. The Financial Process Integrator uses
WSBCC Communication Services to access a larger framework of enterprise
applications.

For example, consider a request from a client received through the WSBCC
multichannel presentation layer that invokes an Eontec component that needs to
populate itself with data that resides in another (for example, legacy) application.
The Eontec component will make a request to the Eontec persister layer, which
will be passed to the Eontec Financial Process Integrator. The Financial Process
Integrator uses its routing configuration information to determine which system or
connector needs to be used to access the data and what transformation needs to
occur before sending the request using WSBCC Communication Services, as
well as after a response is received. These characteristics fit well with the
description of the Self-Service Decomposition application pattern.

The Self-Service Decomposition application pattern has one basic Runtime
pattern associated with it, as shown in Figure 5-1 on page 76. This Runtime
pattern emphasizes the separation of concerns between application functions
provided by the Application Server node and integration functions provided by
the Integration Server node. A literal interpretation of this Runtime pattern would
typically lead to deployment of application services on one physical server and
integration services on another, separate, physical server. A less strict
interpretation of this pattern as a logical view could allow for the possibility of
deploying both application and integration services on a single physical server.

The former, literal approach emphasizes hub and spoke style integration
services that are made available to a wide range of applications. This explicit
tiering is optimized for loose coupling between application services and for
providing a generalized set of enterprise-wide integration services. A physical
hub and spoke configuration also maximizes the session concentration
characteristics of the Decomposition Runtime pattern, typically reducing the total
number of connections that need to be established with other existing
applications. Figure 5-21 on page 114 is a representation of this approach.
 Chapter 5. Applying IBM Patterns for e-business to branch banking 113

Figure 5-21 Runtime pattern for Self-Service Decomposition Application pattern

A less strict interpretation of the Decomposition pattern could be implemented
using integration services that are more tightly coupled to an overall application
service framework and which could be deployed on the same node as the
application services. This approach could result in an infrastructure topology that
is likely to be easier to implement and less complex. This simplicity could
potentially give up some ground in the areas of the level of generalization of the
integration services and in session concentration. WSBCC standardized
Communication Services reduces these concerns. A revised view of the
Decomposition Runtime pattern is shown in Figure 5-22 on page 115. A notable
feature of this revised topology is a single logical node labeled Application &
Integration Server. This topology is very similar to the Self-Service Directly
Integrated Single Channel runtime pattern seen previously in this chapter.

While WSBCC can support both interpretations of the Decomposition runtime
pattern, the latter approach, where application services and integration services
are deployed on the same physical server, is a commonly used approach to
WSBCC deployment. When implementing this approach to the Runtime pattern,
the server configuration would be similar to the revised view of the
Decomposition Runtime pattern shown in Figure 5-22 on page 115.
114 Linux and Branch Banking

Figure 5-22 Revised view of the Runtime pattern

As is common with many architectural decisions, there are some trade-offs to
consider with regard to these deployment alternatives. The physical hub and
spoke integration services configuration in Figure 5-1 on page 76 is missing at a
physical level in Figure 5-2 on page 77 but are preserved at a logical level. This is
an important observation to consider. Regardless of the number of servers used
to deploy WSBCC and Eontec, from the standpoint of the application/integration
servers and existing applications, consistent integration techniques are used.
One of the main differences between the two approaches will be in the number of
connections that need to be established between the application/integration
servers and existing applications. One of the important similarities in the two
approaches is the use of a consistent set of integration techniques. In the case of
a branch-level deployment, each branch’s application/integration server would
establish its own connections to existing applications. In a centralized
deployment scenario, the number of connections would be driven by capacity
requirements and the degree of horizontal scaling being employed.

So far, the discussion of WSBCC and Eontec has focused on options for the
deployment of application and integration services. WSBCC also provides
 Chapter 5. Applying IBM Patterns for e-business to branch banking 115

flexible deployment of presentation-related components. Presentation
components can be deployed at execution time in a thin client approach using
Java applets, or can be deployed using a zero footprint client approach by
keeping presentation components on the server side. This allows Eontec
financial application services to be made available on client machines with a
wide range of capacities and physical characteristics.

The flexibility in deployment options across all tiers combined with built-in
financial application services makes WSBCC and Eontec a valuable alternative
to consider as part of a banking transformation strategy at the branch or
enterprise level.

5.5 Summary
This chapter has described in detail how Patterns for e-business can be applied
to branch banking, resulting in various Runtime patterns and Product mappings.
Most of the Product mapping examples use Linux where applicable.

In the next chapter, we describe some specifics of how Linux applies to branch
banking and the various roles for which it is well suited.
116 Linux and Branch Banking

Chapter 6. Linux-based products
applicable to branch
banking

Now that we have described the branch banking environment and Patterns for
e-business in detail, you may have an architecture in mind that will suit your
specific needs. Eventually, you will need to start creating the product mappings
and making the choices for the operating environments across your
infrastructure.

In this chapter, we provide a summary of the various products and facilities
available for Linux environments. This may help you evaluate which systems
within your environment can be, and maybe should be, running Linux.

6

© Copyright IBM Corp. 2002. All rights reserved. 117

6.1 Linux in branch banking environments
In Chapter 3, “Branch banking requirements” on page 45, we discussed what
kind of components and services are required for a branch banking solution. In
this section, we discuss how Linux can address these minimum requirements.

There are many products and solutions currently available for Linux, and this
number is growing daily. In the following sections, we describe just a small subset
of these solutions. Those that we do discuss are often used (and required) within
an IT infrastructure built to support branch banking. Many of these facilities are
provided natively with Linux distributions, while others are add-on packages that
are available for Linux environments.

6.1.1 Network services
Let’s start by discussing some of the network services that are required. Most of
these services have been provided by Linux since its inception and are proven
and stable.

File Transfer Protocol (FTP)
FTP is the simplest way to exchange files between computers on TCP/IP
networks. FTP is an application protocol commonly used to download programs
and other files to desktops or servers from other servers.

Network File System (NFS)
NFS is a client/server application used to share files between machines on a
network as if the files were located on the client's local hard drive. Linux can be
both an NFS server and an NFS client, which means that it can export file
systems to other systems and mount file systems exported from other machines.

Network Information System (NIS)
NIS is a naming and administration system for networks. Using NIS, each host
client or server computer in the system has knowledge about the entire system.
A user at any host can get access to files or applications on any host in the
network with a single user identification and password. NIS is similar to the
Domain Name System (DNS), but somewhat simpler and designed for a small
network and intended for use on local area networks.

NIS uses the client/server model and the Remote Procedure Call (RPC) interface
for communication between hosts. NIS consists of a server, a library of client
programs, and some administrative tools. It is often used with the Network File
System.
118 Linux and Branch Banking

Domain Name System (DNS)
DNS is the way that Internet domain names are located and translated into
Internet protocol addresses. A domain name is a meaningful and
easy-to-remember “handle” for an Internet address.

Because maintaining a central list of host names and their related IP addresses
would be impractical, the lists of domain names and IP addresses are distributed
throughout the network in a hierarchy of authority. There is probably a DNS
server within close geographic proximity to your access point that maps the
domain names in your network and that handles requests or forwards information
to other servers as needed.

Firewall
A firewall is a set of related programs, located at a network gateway server, that
protects the resources of a private network from users from other networks.

Basically, a firewall, working closely with a router program, examines each
network packet to determine whether to forward it to its destination. A firewall
also includes, or works with, a proxy server that makes network requests on
behalf of workstation users.

Hypertext Transfer Protocol (HTTP)
HTTP is a set of rules for exchanging files (text, graphic images, sound, video,
and other multimedia files) on TCP/IP networks. Relative to the TCP/IP suite of
protocols, HTTP is an application protocol. There are many HTTP server
implementations available for Linux.

Hypertext Transfer Protocol Secure (HTTPS)
HTTPS is secure HTTP utilizing encryption.

Apache HTTP Server
The Apache HTTP Server Project is an effort to develop and maintain an open
source HTTP server for modern operating systems, including UNIX and Windows
NT. The goal of this project is to provide a secure, efficient, and extensible server
that provides HTTP services in sync with the current HTTP standards. Apache
has been the most popular Web server on the Internet since April of 1996. For
more information about Apache, see:

http://httpd.apache.org/
 Chapter 6. Linux-based products applicable to branch banking 119

http://httpd.apache.org/

IBM HTTP Server
IBM HTTP Server powered by Apache is based on the Apache HTTP Server.
IBM has enhanced the Apache-powered HTTP Server, for example, adding SSL
for secure transactions and offering full support, when part of the WebSphere
bundle.

IBM Communications Server for Linux
IBM Communications Server for Linus provides a multiprotocol gateway and
provides workstation communications services. It enables personal computers to
communicate with System/390 and AS/400 hosts and other personal computers.
The Enterprise Extender feature allows SNA applications to operate across a
TCP/IP network.

For client/server and distributed applications, IBM Communications Server
includes support for peer-to-peer networking (APPN) network node and end
node. IBM Communications Server also supports a rich set of application
programming interfaces.

IBM WebSphere Host On-Demand
WebSphere Host On-Demand gives your users a simple way to reach critical
host data, without requiring any software to be installed on the client. WebSphere
Host On-Demand uses Java technology to help open the doors to your host data
directly from your browser. This Web-to-host connectivity solution helps provide
secure Web-browser access to host applications, so you can take existing host
applications to the Web without programming. With support for TN3270E,
TN5250, VT52, VT100, VT220, VT320, VT420, and CICS Transaction Gateway
access, users can have a single interface to their key host data. Because it is
Java technology-based, its interface has the same look and feel across various
types of operating environments. It also provides a default GUI to help simplify
the experience for users unfamiliar with traditional green screens.

IBM WebSphere Host Access Transformation Server
IBM WebSphere Host Access Transformation Server (HATS) gives you all the
tools you need to quickly and easily extend your legacy applications to your
customers and employees. HATS makes your 3270 and 5250 applications
available through the most popular Web browsers, while converting your host
screens to a Web-like look and feel. HATS enables you to extend your host
application to the Web within a single day of installing the software without any
changes to your host. HATS is a zero footprint Web-to-host solution; the only
software needed on the client is a Web browser.
120 Linux and Branch Banking

IBM WebSphere MQSeries
WebSphere MQ enables application integration by helping business applications
to exchange information across different platforms by sending and receiving data
as messages. They take care of network interfaces, assure once only delivery of
messages, deal with communications protocols, dynamically distribute workload
across available resources, handle recovery after system problems, and help
make programs portable.

The MQ Adapter allows data to be passed between MQ messages and
applications. Data can then be sent to, or received from, any supported platform.
MQ provides a single, multiplatform application-programming interface. A key
factor is time-independent processing. This means that messages are stored
reliably for later delivery, even if one of the recipients is temporarily unavailable.

IBM WebSphere Edge Server
WebSphere Edge Server distributes application processing to the edge of the
network under centralized administrative and application control. It includes:

� Application off load: Shifts the burden of serving composed, personalized,
dynamic content from the application server to Edge Servers placed at the
network edges by off loading back-end servers and peer links.

� Content distribution: Deploys published Web content to caches and
rehosting servers throughout the network.

� Caching: Improves response time by off loading back-end servers and peer
links as a forward, reverse, or transparent proxy. It caches and invalidates
dynamic content generated by WebSphere Application Server, including
JavaServer Pages (JSPs) components and servlets.

� Load balancing: Through features such as Network Address Translation
(NAT), Network Address Port Translation (NAPT), Proxy and Kernel-level
Content Based Routing (CBR), and others. It can improve server selection,
load optimization, and fault tolerance.

� Security: Can be centralized using Tivoli Access Manager. With the Edge
Server's Caching Proxy configured to use the Tivoli Access Manager Plug-in,
the Access Manager authorization engine ensures only authorized users can
access cached and non-cached resources. This integrated solution helps
ensure control at the edge of your network.

IBM Directory Integrator
IBM Directory Integrator is an integration development and deployment tool that
helps customers quickly and effectively integrate application-specific directories
to provide a consistent, enterprise-level view of directory information.
 Chapter 6. Linux-based products applicable to branch banking 121

With some built-in connectors, an open-architecture Java development
environment to extend or modify these connectors, and tools to apply logic to
data as it is processed, IBM Directory Integrator can help you by:

� Synchronizing and exchanging information between applications or directory
sources.

� Managing data across a variety of data repositories.

� Providing a consistent directory infrastructure that can be used by a wide
variety of applications ranging from security and provisioning to Web services.

� Offering a consistent view of additional directory-based information, such as
product and pricing data, to applications beyond traditional user identity and
passwords.

6.1.2 User management and security
Because most branches have a need for local processing when the
communications link to the central site is unavailable, there is a need to have
some level of user management that can be enforced at the branch level. This
section describes some of the offerings in this area.

Samba
Samba provides Windows Common Internet File System (CIFS) and SMB
functionality for UNIX clients and servers and can be configured to provide a
Windows NT like Primary Domain Controller for the Branch.

It’s based on the common client/server protocol of Server Message Block (SMB)
and Common Internet File System (CIFS). Using client software that also
supports SMB/CIFS, for example, Windows and OS/2 products, an end user
sends a series of client requests to the Samba server on another computer in
order to open that computer's files, access a shared printer, or access other
resources. The Samba server on the other computer responds to each client
request, either granting or denying access to its shared files and resources.

Pluggable Authentication Modules (PAM)
Pluggable Authentication Modules can be used to allow the system administrator
to set authentication policies for PAM-aware applications without having to
recompile authentication programs. PAM does this by utilizing a pluggable,
modular architecture. PAM modules can be developed to authenticate users
against a centralized database.
122 Linux and Branch Banking

When used correctly, PAM provides many advantages for a system administrator,
such as the following:

� A common authentication scheme that can be used with a wide variety of
applications.

� PAM can be implemented with various applications without having to
recompile the applications to specifically support PAM.

� Great flexibility and control over authentication for the administrator and
application developer.

� Application developers do not need to develop their program to use a
particular authentication scheme. Instead, they can focus purely on the
details of their program.

Kerberos
Kerberos is a secure method for authenticating a request for a service in a
computer network. Kerberos lets a user request an encrypted ticket from an
authentication process that can then be used to request a particular service from
a server. The user's password does not have to pass through the network.

Snort
Snort is a lightweight network intrusion detection system, capable of performing
real-time traffic analysis and packet logging on IP networks. It can perform
protocol analysis, content searching and matching, and can be used to detect a
variety of attacks and probes, such as buffer overflows, stealth port scans,
common gateway interface (CGI) attacks, Server Management Block protocol
(SMB) probes, operating system (OS) fingerprinting attempts, and much more.
Snort uses a flexible rule-based language to describe traffic that it should collect
or pass and a modular detection engine. Snort has a real-time alerting capability,
with alert mechanisms for syslog, a user specified file, a UNIX socket, or Win
Popup messages to Windows clients using Samba smbclient.

Lightweight Directory Access Protocol (LDAP)
LDAP is a proposed open standard for accessing global or local directory
services over a network. LDAP is very useful because it was designed to support
propagation across LDAP servers throughout the network, much like the Domain
Name Service (DNS). DNS servers help to connect computers to one another
based on domain names or the type of service requested from a domain. Without
DNS servers, host names could not be translated into IP addresses, which are
required for TCP/IP communication. In the future, LDAP could provide the same
type of global access to many types of directory information. Currently, LDAP is
more commonly used within a single large organization, such as a bank, for
directory services.
 Chapter 6. Linux-based products applicable to branch banking 123

LDAP is a client/server system where the LDAP client connects to an LDAP
server and either queries it for information or provides information that needs to
be entered into the directory. The server either answers the query, refers the
query to another LDAP server, or accepts the information for incorporation into
the directory, based on the permission of the user.

IBM Directory Server
IBM Directory Server provides a powerful Lightweight Directory Access Protocol
identity infrastructure that is the foundation for deploying comprehensive identity
management applications and advanced software architectures, such as Web
services.

IBM Directory Server and the new directory and metadirectory services provide
capabilities that are essential for companies that need to deploy Web services
and user provisioning. A directory is a database used to store and retrieve user,
resource, and other key network information. Metadirectory software aggregates
directory information that may be stored in directories or databases provided by
multiple software vendors and running on a variety of operating systems.

IBM Tivoli Access Manager for e-business
IBM Tivoli Access Manager is a policy-based access control solution for
e-business and enterprise applications. It uniquely addresses the challenges of
e-business security, enabling new and rapidly scaling e-business initiatives to
reach new markets and customers. It also addresses managing growth and
complexity, controlling escalating management costs, and directly tackles the
difficulties of implementing security policies across a wide range of Web and
application resources. Tivoli Access Manager for e-business helps companies by
reducing deployment time and cost for new e-business applications.

Tivoli Access Manager for e-business lets organizations control both wired and
wireless access to applications and data and provides single signon (SSO) for
authorized users. Tivoli Access Manager for e-business integrates with
e-business applications to deliver a secure personalized e-business experience
for authorized users. Tivoli Access Manager includes integrated security for key
customer relationship management (CRM), enterprise resource planning (ERP),
and supply chain management (SCM) e-business solutions, as well as
enhancements for securing J2EE-conforming applications running on
WebSphere Application Server. Tivoli Access Manager for e-business provides
partners, customers, suppliers and employees with secure access to
business-critical applications and data for highly available and scalable
transactions.
124 Linux and Branch Banking

6.1.3 File and print services
Branch offices almost always require some level of local file and printer sharing.
Again, there are many Linux-based products for this area. In this section, we
describe a few of the more popular solutions.

Samba
Samba is a very popular open source server package where a Linux system can
provide file and print services, also known as shares. Samba implements the
Server Message Block (SMB) protocol, a complex protocol, developed by IBM in
1984, that provides file and print services for Windows, OS/2, and Linux client
desktops. Some application components make use of these types of services
under certain application design models.

Samba is used by many people around the world on a daily basis in a production
capacity. Perhaps this is because of Samba's open source nature, the fact that it
ships with Linux distributions, and because of the Samba team's efforts to supply
a product that can work seamlessly in an otherwise Windows-based
environment.

For further information about SAMBA, see:

http://www.samba.org

IBM Tivoli Storage Manager
IBM Tivoli Storage Manager protects your data from hardware failures and other
errors by storing backup and archive copies of data on offline storage. It scales to
protect hundreds of computers running a variety of operating systems across a
wide range of hardware ranging from laptops to mainframes. They can be
connected through the Internet, WANs, or LANs. The Tivoli Storage Manager’s
centralized, Web-based management, smart-data-move and store techniques,
and comprehensive policy-based automation all work together to minimize data
protection administration costs and the impact to both computers and networks.
Optional modules allow business-critical applications that must run 24x365 to
utilize the Tivoli Storage Manager centralized data protection with no interruption
to their service.

IBM Linux Technology Center Omni drivers
The Omni printer driver provides support for over 400 printers using the
Ghostscript framework. In addition, it provides a model for dynamically loading
printer drivers, creating new devices by editing device description files, and
simplifies new printer driver development by allowing for the sub-classing of
previous device features.
 Chapter 6. Linux-based products applicable to branch banking 125

http://www.samba.org

6.1.4 Store and forward
Store and forward services provide support for operations that cannot be
processed online because there is no back-end connectivity, perhaps due to an
unexpected interruption, and also for batch processing operations.

Typically, store and forward services are built into applications or application
frameworks rather than as a separate product. The products described in the
following sections can support applications requiring store and forward
capabilities.

IBM WebSphere Business Components Composer
WebSphere Business Components Composer (WSBCC) is a strategic element
of both multichannel and branch transformation solutions for the retail banking
industry. It brings high value to financial institutions looking to renew retail
delivery channels as part of larger initiatives to improve operating efficiency and
profitability. By enabling financial institutions to build and deploy an infrastructure
that delivers consistent, flexible business logic and customer service across all
retail delivery channels, this offering enhances a bank’s ability to understand and
satisfy unique customer needs.

WSBCC provides a set of components designed specifically for these types of
retail banking applications. By using WebSphere Business Components
Composer's proven component-based middleware framework, retail banks can
build integrated applications to support multiple customer channels and branch
transformation efforts.

IBM Bank Teller Business Components
The IBM WebSphere software branch transformation solution is enabled by IBM
Bank Teller Business Components. These components provide the flexibility and
adaptability to implement a Java teller system based on a set of proven and
high-performing components. The components enable an environment that
allows customers to rapidly build and deploy teller transactions in a manner that
supports transaction reuse across other channels. Implemented by a number of
global financial institutions, the WebSphere branch transformation solution
provides a solid foundation for leveraging WebSphere capabilities across the
enterprise.
126 Linux and Branch Banking

IBM Local Area Network Distributed Platform (LANDP)
LANDP has been designed and developed primarily for retail banking. It is a tried
and tested solution that is used by a large number of customers worldwide,
including some of the world’s largest banks. LANDP includes the following:

� Client/server environment: Supports multiplatform networks running a
combination of Linux, Windows, OS/2, and DOS communicating over NetBios
or TCP/IP.

� Communications servers: Supports different communications links and
protocols to run host applications.

� Data management servers: Provides support for the storage, retrieval, and
updating of data in LANDP workgroups.

� Database servers with multiple access modes, a shared-file server, an
electronic journal, and a store-and-forwarding server cover a wide range of
data management requirements.

� Financial device servers: LANDP can be used to access and share financial
devices.

� Common Application Programming Interface: Used to develop applications for
LANDP environments. The location of services in a workgroup is managed by
LANDP. This means that when you develop an application, you do not need to
know where the server that supports the service is located.

� Migration support: LANDP cross-platform capabilities enable the same
applications and services to be easily migrated across many different
platforms.

6.1.5 Database services
Some application models currently use a database in the branch to house data
that is required in offline mode. For example, some implementations of an
electronic journal might use a database. In addition, a database may be used to
store configuration data that is required during offline processing. Branch
database services may not be required in more centralized application design
models with limited offline requirements.

Red Hat Database
Red Hat Database is the open source database tested and verified for use with
Red Hat Linux Advanced Server and Red Hat Linux. It is powered by an
enhanced version of PostgreSQL and its ISO image is freely downloadable from
the Red Hat download center at:

http://www.redhat.com/apps/download/
 Chapter 6. Linux-based products applicable to branch banking 127

http://www.redhat.com/apps/download/

MySQL
MySQL is one of the world's most popular open source database systems,
designed for speed, power, and precision in mission critical, heavy load use.

The software from MySQL AB that you can download from the MySQL Web site
is licensed under the GPL license and is provided “as is” and is without any
warranty:

http://www.mysql.com

PostgreSQL
PostgreSQL is a sophisticated object-relational DBMS, based on POSTGRES,
developed at the University of California at Berkeley Computer Science
Department, supporting almost all SQL constructs, including sub-selects,
transactions, and user-defined types and functions. It is the most advanced open
source database available anywhere. Commercial support is also available.

IBM DB2 for Linux
The DB2 advantage is simple: pure power at a lower cost than any other
e-business-ready Linux database on the market. With DB2, you can access,
manage, and analyze all forms of information across the enterprise, and on all
major platforms. With Linux becoming a major platform for database and
application servers, DB2 for Linux gives you a robust, easy-to-manage database
that offers high performance, complementing the stability and reliability of Linux.

DB2 for Linux supports and embraces open standards, including Java and XML,
and integrates with many open source products, such as Apache, PHP, Perl, and
Python. DB2 UDB is the most scalable database in production today that can
manage mission-critical data on a single PC, SMPs, clusters, as well as the
mainframe for Linux.

IBM Informix Dynamic Server
IBM Informix Dynamic Server (IDS) provides the mission-critical availability,
reliability, scalability, and data-intensive transaction management capabilities that
a growing number of organizations rely on to succeed in e-business. It also
provides world-leading extensibility features.

Because business logic can be embedded in the database and fully integrated in
IBM Informix Dynamic Scalable Architecture (DSA), IDS can solve business
problems that few other systems can. It can also provide uniform access to client
information, regardless of where it resides, through leading distributed database
and virtual table capabilities, thereby allowing queries to encompass a wide
range of databases, from flat files to other IDS and non-IDS databases.
128 Linux and Branch Banking

http://www.mysql.com

6.1.6 Application servers
In today’s e-business world, application servers play a critical role. Linux provides
a stable and affordable base for running application servers, especially in a large
and distributed environment such as branch banking.

Tomcat
Developed by members of the Jakarta Project, Tomcat is a servlet container
based on Java Servlet 2.3 technology and a JavaServer Pages (JSP) 1.2
implementation. There are other products like it, but Tomcat is the official
reference implementation for these two technologies, and one of the few freely
available application servers that offers support for JSP 1.2.

Tomcat is developed in an open and participatory environment and released
under the Apache Software License. Further information about Tomcat can be
found at:

http://jakarta.apache.org/tomcat/

IBM WebSphere Application Server
WebSphere Application Server is a Java technology-based Web application
server, integrating enterprise data and transactions with the e-business world. It
provides a rich, e-business application deployment environment with a complete
set of application services, including capabilities for transaction management,
security, clustering, performance, availability, connectivity, and scalability.

WebSphere Application Server is the core Web services and J2EE compatible
application server enabled with industry-leading qualities of service and an array
of flexible deployment configurations to meet the needs of stand-alone,
multi-server distributed, and highly dynamic decentralized distributed enterprise
environments.

6.1.7 Messaging servers
Messaging is the exchange of messages (specially-formatted data describing
events, requests, and replies) to a messaging server, which acts as a message
exchange program for client programs.

IBM WebSphere MQ
For additional information about WebSphere MQ, see “IBM WebSphere
MQSeries” on page 121 or the WebSphere MQ Web site at:

http://www-3.ibm.com/software/ts/mqseries
 Chapter 6. Linux-based products applicable to branch banking 129

http://jakarta.apache.org/tomcat/
http://www-3.ibm.com/software/ts/mqseries

6.1.8 Systems management
In a geographically distributed environment such as branch banking, it is
important to have the facilities and tools available to remotely manage the
workstations and servers in this environment. Again, there are a variety of
management facilities and products provided by or available for Linux.

Telnet, rsh, and rlogin
Telnet is the way you can access someone else's computer, assuming they have
given you permission. More technically, Telnet is a user command and an
underlying TCP/IP protocol for accessing remote computers.

The rsh command lets you share processors and execute commands on remote
systems. With rsh, it is a simple to ask a command to run on any computer on
the network, for which you have access. You can have the command’s output
printed on your screen, directed to a local file, or directed to a remote file.

The rlogin command allows an authorized user to log on to other Linux
machines (hosts) on a network and to interact as if the user were physically at
the host computer. Once logged on to the host, the user can do anything that the
host has given permission for, such as read, edit, or delete files, and stop or start
process.

Secure Shell (SSH)
SSH is a protocol for creating a secure connection between two systems.
Common methods for remotely logging on to another system through a shell
(Telnet, rlogin, or rsh) or copying files between hosts (FTP or rcp) do not encrypt
data that is sent over the connection between the client and the server and
should be avoided. Instead, you should only connect to a remote host using a
secure shell or an encrypted virtual private network. Using secure methods to
remotely log on to other systems will decrease the security risks for both your
system and the remote system.

NetSaint Network Monitor
NetSaint is a program that monitors hosts and services on network. It has the
ability to e-mail or page you when a problem arises and when it gets resolved.
NetSaint is written in C and is designed to run under Linux, although it should
work under most other UNIX variants. It can run either as a normal process or as
a daemon, intermittently running checks on various services that you specify.
The actual service checks are performed by external plug-ins that return service
information to NetSaint.
130 Linux and Branch Banking

Webmin
Webmin is a Web-based interface for system administration for Linux. Using any
browser, you can set up user accounts, network services, file sharing and
printing, and so on. Webmin consists of a simple Web server and a number of
programs that directly update Linux system files.

IBM Tivoli systems management software
IBM Tivoli software provides a comprehensive and complementary set of
products that provide end-to-end management of IT environments. Enterprises
can use Tivoli applications to manage everything from the mainframe, middle-tier
servers to desktops and even PDAs.

Tivoli solutions are available for managing everything from the network
infrastructure to middleware to applications. They have embraced Linux as both a
platform to manage, as well as a platform on which to run the management
applications. They have product-specific modules for managing many of the key
software components required for an e-business, such as DB2, WebSphere, and
Domino, and they are managed in a platform-independent way.

The Tivoli products fall into four broad categories of systems management:

� Performance and Availability

� Configuration and Operations

� Security

� Storage Management

Through the integration of the various products, Tivoli helps you to deploy,
operate, secure and manage the performance and availability of your systems
and data across all major platforms, including Linux.

IBM Desktop On-Call
Desktop On-Call is a remote control software product that uses a unique
concept: you do not need to install software on the guest PC because you can
control the host PC from another PC with an ordinary Web browser using a Java
applet. It enables you to control your desktop PC remotely from virtually any PC
at any location in the world.

Desktop On-Call is very helpful in many situations for banks. You can access files
and other important applications. If you have a problem with an application
program on your desktop PC, you can fix it from a remote PC. When the host PC
is accessed through the Web browser, the Java applet program is dynamically
downloaded to a Web browser and draws an image of the host PC desktop. The
Java applet program then starts to communicate with the native daemon
program. This enables you to control your host PC from a remote location.
 Chapter 6. Linux-based products applicable to branch banking 131

IBM Director
IBM Director is a comprehensive workgroup hardware manager designed for use
with IBM xSeries servers, PCs, and notebooks.

Working with IBM Director, the Advanced System Management service
processors in xSeries servers are the key to hardware problem notification and
resolution. They provide the system administrator with complete remote
management of a system, independent of the server status. The processors
simulate a computer within a computer, keeping the server up and available for
your business-critical applications.

6.2 Summary
We have described a variety of Linux-based products and facilities that provide
the needed infrastructure for a branch banking environment. Most of these have
proven track records and provide the stability and performance you require.
Having all of these capabilities (and more) available to run in Linux environments
is helping drive the movement towards using Linux as a less expensive and
low-risk option for many banks and other companies.

As you develop your own solution architecture using IBM Patterns for e-business
as described in Chapter 5, “Applying IBM Patterns for e-business to branch
banking” on page 73, you can use the information provided in this chapter to start
identifying the product mappings required for your chosen Runtime pattern.
132 Linux and Branch Banking

Chapter 7. Scenario for a new branch
banking solution

In 2.5, “Common branch banking scenarios” on page 32, we describe some
common IT infrastructures for supporting current branch banking environments.
In this chapter, we describe some scenarios related to the branch banks of the
future. These scenarios are based on the trends we describe in Chapter 2,
“Branch banking environment” on page 11, Patterns for e-business, and on the
applicability and availability of Linux-based solutions for these environments.

7

© Copyright IBM Corp. 2002. All rights reserved. 133

7.1 Scenario overview
The challenge is to provide an architectural road map for a branch banking
infrastructure that addresses today’s business challenges and the services of
tomorrow. So, the infrastructure of a new branch bank world must integrate with
all other channels and become a core part of those channels as well. As a
reminder, it must have the characteristics to support:

� A full range of services (self service to personal assistance)

� Advisor collaboration

� Wireless connectivity

� Drive-through traffic at the branch

� Increased focus on customer relationship management

Therefore, the goals for the overall solution include, but are not limited to, the
following:

� Converged network infrastructure

� Flexible, role-based components:

– Teller

– Platform officer

– Branch administration

� Enabled for collaboration

� Integrated with and enhancing the ATM channel

� Integration with the enterprise:

– Operational banking systems

– CRM

– Wealth management

A potential scenario in a branch banking environment with integrated channels
could be as follows:

1. A customer uses a mortgage calculator on the Web.

2. Later, the customer enters branch, makes a deposit, and receives a printed
receipt.

3. During the interaction with the teller, the teller extends an offer to the
customer to discuss mortgage refinancing with an expert (based on business
intelligence knowledge of the mortgage calculator usage on the Web).
134 Linux and Branch Banking

4. The customer makes an appointment for a meeting in the branch with a
financial expert (through remote conferencing) to begin in 15 minutes and
waits in the branch coffee shop until the time for appointment.

5. A concierge (notified on PDA) comes to get the customer when the expert is
ready.

6. The customer has a remote conference with a financial expert regarding
mortgage refinancing, using aggregation by portal to share customer
information. The customer expresses an interest in home improvement
(kitchen remodeling) and requests funds from refinancing to cover the
remodeling.

7. The customer completes a pre-filled loan application with the financial expert.

8. A few days later, the customer goes to a Web-based ATM and withdraws
cash.

9. The ATM informs the customer that the loan has been approved and offers to
schedule the loan closing in one of the following ways: choosing from a list of
available appointment times or requesting a customer service representative
call for loan closing.

10.The customer accepts the call-back option.

11.During the loan closing, a platform officer extends an offer for a discount on
home improvement services provided through a business partner and offers
to schedule a home visit by a remodeling representative, which the customer
accepts.

As outlined in Chapter 5, “Applying IBM Patterns for e-business to branch
banking” on page 73, we have basically touched all four business patterns.

Table 7-1 Matching examples to Patterns for e-business

Step Self Service Collaboration Aggregation Extended
Enterprise

1 x

2 x

3 x

4 x

5 x

6 x

7 x

8 x
 Chapter 7. Scenario for a new branch banking solution 135

7.2 Scenario solution
Having fully understood all functional and non-functional requirements and using
a methodology, such as Patterns for e-business, we might create an
infrastructure such as the one shown in Figure 7-1 on page 137.

We have created an integrated, multichannel, e-business-enabled application
framework that can be deployed to the branch. Business logic was moved off the
client and away from legacy applications toward an open standard, Java-based
infrastructure, ready to run on any platform supporting a browser and a Java
Virtual Machine, including devices such as Web-based ATMs.

All business logic resides in a component-based implementation that can easily
be hosted either centrally or distributed to regional or even branch servers for
speed, performance, or availability, based on network reliability and other
requirements. The new middle-tier contains the connectors to any back-end
system. There might be systems already in place today or systems that may be
created in the future. By using an architecture that supports pluggable
connectors, we have a flexible environment that can keep up with changing
requirements.

9 x

10 x

11 x

Step Self Service Collaboration Aggregation Extended
Enterprise
136 Linux and Branch Banking

Figure 7-1 Step 3: Create a new infrastructure

Having this overview of a branch-focused system in mind, we need to draw the
whole picture and allow all other channels to participate in the end-to-end
architecture.

Let’s focus a little more on the specific functions we need to support all business
requirements and all patterns we found earlier. The more complete infrastructure
might be as shown in Figure 7-2.

Figure 7-2 Future infrastructure outline

zOS

IMS
Transactions

A,B …

CICS
Transactions

… Y,Z

DB2
Databases

Core
Banking
Functions

Thin
Client
Teller

HTTP
Server

File
&

Print

Server-Side
Presentation

JSPs

Servlets

Web
Services

(HTTP, XML,
SOAP)

User
Admin

Business
Log ic

Access
to Data

and
FunctionEJB

A

EJB
B

EJB
Y

EJB
Z

…

UNIX, Linux, or zOS

Web Application
Server

Component Transaction
Server

J2EE
Connectors

IMS

CICS

DB2

Kiosk

ATM

Branch ServerDesktop zOS

IMS
Transactions

A,B …

CICS
Transactions

… Y,Z

DB2
Databases

Core
Banking
Functions

Thin
Client
Teller

HTTP
Server

File
&

Print

Server-Side
Presentation

JSPs

Servlets

Web
Services

(HTTP, XML,
SOAP)

User
Admin

Business
Log ic

Access
to Data

and
FunctionEJB

A

EJB
B

EJB
Y

EJB
Z

…

UNIX, Linux, or zOS

Web Application
Server

Component Transaction
Server

J2EE
Connectors

IMS

CICS

DB2

Kiosk

ATM

Branch ServerDesktop

Inte-
gration

ISV
Solutions

CRM

Customer
Solutions

Database

Database

Policy
Director

Application
Data

Enterprise
Data

App Server

Messaging

Teller Apps

Personalization

Portal

ISV Solutions

Clients

Channel Services and Presentation

Business Logic

CIS

Enterprise Security and System Management
User Identification, Risk Management, Policy Director, Software Distribution,

Distributed Monitoring, Software and Hardware Inventory

Data
Center

WebSphere
Edge Server

Static
Content

Managed
Content

Regional
Center

InternetInternet

IntranetIntranet

Home
PC

Pervasive
Devices

TCP/IP

HTTP Server

App Server

Components

Customer Apps

ISV Apps

Server

ATMs

Brow ser

Java

3270 EM

Client

Branch

Inte-
gration

ISV
Solutions

CRM

Customer
Solutions

Database

Database

Policy
Director

Application
Data

Enterprise
Data

App Server

Messaging

Teller Apps

Personalization

Portal

ISV Solutions

Clients

Channel Services and Presentation

Business Logic

CIS

Enterprise Security and System Management
User Identification, Risk Management, Policy Director, Software Distribution,

Distributed Monitoring, Software and Hardware Inventory

Data
Center

WebSphere
Edge Server

Static
Content

Managed
Content

Regional
Center

InternetInternet

IntranetIntranet

Home
PC

Pervasive
Devices

TCP/IP

HTTP Server

App Server

Components

Customer Apps

ISV Apps

Server

ATMs

Brow ser

Java

3270 EM

Client

Branch
 Chapter 7. Scenario for a new branch banking solution 137

From this Runtime pattern, we would next perform a product mapping to the
functions shown in the figure. One possible product mapping is shown in
Figure 7-3.

Figure 7-3 Future infrastructure product mapping

Because one of our goals and assumptions was to evaluate Linux as a viable
platform to host some of these functions, we need to verify how much of this will
run in a Linux environment. Table 7-2 lists the products we have highlighted and
their supported platforms.

Table 7-2 Linux products overview

Product Linux Windows OS/2

Host On-Demand x x x

Java and browser x x x

HTTP server x x x

WebSphere x x (x)

WSBCC x x

MQSeries x x x

DWSBCC BT x x

Portal FSE x x

WBI

ISV
Solutions

CRM

Customer
Solutions

DB2 UDB

DB2 UDB

Tivoli Policy
Director

Application
Data

Enterprise
Data

WebSphere

MQSI MQWF

WSBCC BT BC

Personalization

Portal FSE

ISV Solutions

Clients

Channel Services and Presentation

Business Logic

CIS

Enterprise Security and System Management
User Identification, Risk Management, Policy Director, Software Distribution,

Distributed Monitoring, Software and Hardware Inventory

Data
Center

WebSphere
EdgeServer

Static
Content

Managed
Content

Regional
Center

InternetInternet

IntranetIntranet

Home
PC

Pervasive
Devices

Linux

HTTP Server

WebSphere

WSBCC

Customer Apps

ISV Apps

Server

ATMs

Browser

Java

HOD

Desktop

Branch

WBI

ISV
Solutions

CRM

Customer
Solutions

DB2 UDB

DB2 UDB

Tivoli Policy
Director

Application
Data

Enterprise
Data

WebSphere

MQSI MQWF

WSBCC BT BC

Personalization

Portal FSE

ISV Solutions

Clients

Channel Services and Presentation

Business Logic

CIS

Enterprise Security and System Management
User Identification, Risk Management, Policy Director, Software Distribution,

Distributed Monitoring, Software and Hardware Inventory

Data
Center

WebSphere
EdgeServer

Static
Content

Managed
Content

Regional
Center

InternetInternet

IntranetIntranet

Home
PC

Pervasive
Devices

Linux

HTTP Server

WebSphere

WSBCC

Customer Apps

ISV Apps

Server

ATMs

Browser

Java

HOD

Desktop

Branch
138 Linux and Branch Banking

It looks like we have a match! Of course, there are many considerations for
choosing the operating platform that will be use, but support for the required
infrastructure products and facilities is not an issue for Linux.

Given its price, performance, stability, and support by organizations, such as
IBM, Linux will play a key role in this environment.

7.3 Summary
The scenario outlined in this chapter describes, at a high-level, how one can use
the information presented earlier in this redbook to look at the branch banking
requirements and apply Patterns for e-business to drill down to the Runtime and
product mapping levels. In this simple, but representative, case, we have shown
how Linux can and should be considered as a viable and attractive alternative for
branch banking infrastructures.

WebSphere Business Integrator x x

Tivoli Policy Director x x

Product Linux Windows OS/2
 Chapter 7. Scenario for a new branch banking solution 139

140 Linux and Branch Banking

Appendix A. IBM Software for Linux

Linux is ready for your business!

It is no surprise that Linux is the world’s fastest-growing operating system: it is
open, stable, and easily scalable. IBM Software is also powerful, scalable, and
based on open standards, such as Java, XML, and Web services.

Following are some products from IBM that were available during the writing of
this redbook. To find the latest information about IBM Software for Linux, see:

http://www.ibm.com/software/linux/

This site is constantly changing as new and additional support for Linux is
provided by IBM Software.

DB2 for Linux
DB2 enables you to access, manage, and analyze all information across the
enterprise, whether your data resides on Linux, UNIX, Windows, or many other
platforms.

Linux is becoming a major platform for database and application servers. DB2 for
Linux gives you a robust, easy-to-manage database offering high performance,
stability, and reliability. Together, DB2 and Linux are the building blocks for
success in e-business.

A

© Copyright IBM Corp. 2002. All rights reserved. 141

http://www.ibm.com/software/linux/

Further information can be found about DB2 for Linux at:

http://www.ibm.com/software/data/db2/linux/

DB2 Universal Database products
The following are DB2 Universal Database products for Linux.

DB2 Universal Database Personal Edition
Provides a database management system for the desktop.

http://www.ibm.com/software/data/db2/udb/edition-pe.html

DB2 Universal Database Workgroup Edition
Multi-user database for applications and data for workgroups on PC-based
networks.

http://www.ibm.com/software/data/db2/udb/edition-we.html

DB2 Universal Database Enterprise Edition
Multi-user database for complex configurations and large databases.

http://www.ibm.com/software/data/db2/udb/edition-ee.html

DB2 Universal Database Enterprise-Extended Edition
High performance to support large databases, offering greater scalability in
clustered servers.

http://www.ibm.com/software/data/db2/udb/edition-eee.html

DB2 application development
The following are DB2 application development solutions for Linux.

DB2 Personal Developer’s Edition
Tools needed to develop desktop business tools and applications for DB2
Universal Database Personal Edition.

http://www.ibm.com/software/data/db2/udb/edition-pde.html

Note: All of the DB2 Universal Database products are available for IBM
xSeries and other Intel-based servers. In addition, DB2 Universal Database
Enterprise Edition is available for IBM zSeries.
142 Linux and Branch Banking

http://www.ibm.com/software/data/db2/linux/
http://www.ibm.com/software/data/db2/udb/edition-pe.html
http://www.ibm.com/software/data/db2/udb/edition-we.html
http://www.ibm.com/software/data/db2/udb/edition-ee.html
http://www.ibm.com/software/data/db2/udb/edition-eee.html
http://www.ibm.com/software/data/db2/udb/edition-pde.html

DB2 Universal Developer’s Edition
Tools for developing client/server applications for DB2 Universal Database on
any supported platform.

http://www.ibm.com/software/data/db2/udb/edition-ude.html

DB2 XML Extender
Provides new data types that allow customers to store XML documents in DB2
databases.

http://www.ibm.com/software/data/db2/extenders/xmlext/index.html

DB2 Net Search Extender
Adds fast full-text retrieval to DB2 applications.

http://www.ibm.com/software/data/db2/extenders/netsearch/index.html

DB2 Intelligent Miner Scoring
Enables users to do data mining in real-time applications with a simple SQL call.

http://www.ibm.com/software/data/iminer/scoring/index.html

Informix
The following is an Informix solution for Linux.

Informix Dynamic Server
Database on Linux for Informix applications. It is available on IBM xSeries and
other Intel-based servers.

http://www.ibm.com/software/data/informix/

Connectors
The following are connectors for Linux.

DB2 Connect
Provides a connection to DB2 systems and is available on IBM xSeries, zSeries,
and other Intel-based servers.

http://www.ibm.com/software/data/db2/db2connect/

IMS Connect
Provides a connection to IMS systems and is available on IBM zSeries.

http://www.ibm.com/software/data/db2imstools/imstools/imsconnect.html
 Appendix A. IBM Software for Linux 143

http://www.ibm.com/software/data/db2/udb/edition-ude.html
http://www.ibm.com/software/data/db2/extenders/xmlext/index.html
http://www.ibm.com/software/data/db2/extenders/netsearch/index.html
http://www.ibm.com/software/data/iminer/scoring/index.html
http://www.ibm.com/software/data/informix/
http://www.ibm.com/software/data/db2/db2connect/
http://www.ibm.com/software/data/db2imstools/imstools/imsconnect.html

CICS Transaction Gateway
Connection to transactions on CICS systems and is available on IBM zSeries.

http://www.ibm.com/software/ts/cics/ctg/index.html

WebSphere for Linux
IBM WebSphere for Linux can help propel your company into the next generation
of e-business. Based on open, industry-accepted standards, WebSphere makes
it easy to collaborate and strengthen relationships with customers, suppliers, and
trading partners. For more information, see:

http://www.ibm.com/websphere/

Application server
The following is an application server for Linux.

WebSphere Application Server V4.0 Advanced Edition
Adds support for full Java 2 Enterprise Edition (J2EE) and Web services (SOAP,
UDDI, WSDL). It is available on IBM xSeries, zSeries, and other Intel-based
servers.

http://www.ibm.com/software/webservers/appserv/version40.html

Application integration
The following are application integration solutions for Linux.

WebSphere MQ
Connects applications to each other. It connects almost everything to almost
anything, to form one efficient and coherent enterprise-wide or community-wide
system to streamline your processes and improve time to market. It is available
on IBM xSeries, zSeries, and other Intel-based servers.

http://www.ibm.com/software/ts/mqseries/messaging/

WebSphere MQ Everyplace
Extends WebSphere MQ to mobile workers using laptops, PDAs, and smart
phones. It is available on IBM xSeries and other Intel-based servers.

http://www.ibm.com/software/ts/mqseries/everyplace/
144 Linux and Branch Banking

http://www.ibm.com/software/ts/cics/ctg/index.html
http://www.ibm.com/websphere/
http://www.ibm.com/software/webservers/appserv/version40.html
http://www.ibm.com/software/ts/mqseries/messaging/
http://www.ibm.com/software/ts/mqseries/everyplace/

Industry solutions
The following are industry solutions for Linux.

WebSphere Business Components Composer
Provides a set of tools, Java components, and services that accelerate the
building of multichannel banking applications that access transactional systems.
Composer also enables branch transformation initiatives within retail banking,
including the construction of branch applications and teller systems.

http://www-3.ibm.com/software/webservers/components/

IBM Bank Teller Business Components
IBM Bank Teller Business Components provide a set of application enabling
components specialty tailored to allow rapid deployment of branch teller
transactions and solutions. Bank Teller Business Components are designed to
integrate seamlessly with Business Components Composer in the WebSphere
software branch transformation solution.

http://www-3.ibm.com/software/webservers/components/bankteller/

IBM Linux Technology Center Omni drivers
The Omni printer driver provides support for over 400 printers using the
Ghostscript framework. In addition, it provides a model for dynamically loading
printer drivers, creating new devices by editing device description files, and
simplifies new printer driver development by allowing for the subclassing of
previous device features.

http://oss.software.ibm.com/linux/

Development tool
The following is a development tool for Linux.

WebSphere Studio Application Developer
Provides customers with an integrated development environment for building,
testing, integrating, and deploying Java 2 Platform, Enterprise Edition (J2EE
platform) applications that rapidly grow and adapt to meet the most stringent
business demands.

http://www.ibm.com/software/ad/studioappdev
 Appendix A. IBM Software for Linux 145

http://www-3.ibm.com/software/webservers/components/
http://www-3.ibm.com/software/webservers/components/bankteller/
http://oss.software.ibm.com/linux/
http://www.ibm.com/software/ad/studioappdev

Presentation
The following are presentation solutions for Linux.

WebSphere Transcoding Publisher
Dynamically adapts Web content and optimizes it for delivery to pervasive
devices.

http://www.ibm.com/software/webservers/transcoding/

WebSphere Personalization
Customizes Web sites to suit the interests and needs of site visitors.

http://www.ibm.com/software/webservers/personalization/

Deployment
The following is a deployment solution for Linux.

WebSphere Edge Server
Provides an integrated solution for load balancing, static and dynamic caching,
application offload, content distribution, enhanced security, and transactional
Quality of Service, all under centralized administrative and application control.

http://www.ibm.com/software/webservers/edgeserver/

Integration
The following are integration solutions for Linux.

WebSphere Host On-Demand
Extends host applications to browsers and is available on IBM zSeries.

http://www.ibm.com/software/webservers/hostondemand/

IBM Screen Customizer
Provides graphical user interfaces for IBM zSeries and iSeries host screens. It is
available on IBM xSeries and other Intel-based servers.

http://www.ibm.com/software/network/screencustomizer/
146 Linux and Branch Banking

http://www.ibm.com/software/webservers/transcoding/
http://www.ibm.com/software/webservers/personalization/
http://www.ibm.com/software/webservers/edgeserver/
http://www.ibm.com/software/webservers/hostondemand/
http://www.ibm.com/software/network/screencustomizer/

Lotus Domino for Linux
A successful company’s most valuable assets are its people. Harness the
brainpower of your team with Web-enabled solutions that allow smart
collaboration between employees, customers, partners, and suppliers. Using
Lotus Domino for Linux, you can create a connected community with easy
access to ideas.

Additional information about Lotus products for Linux can be found at:

http://www.lotus.com/home.nsf/welcome/domino

Collaboration
The following is a collaboration solution for Linux.

Lotus Domino
Provides collaboration, messaging, group calendaring, discussion, and custom
applications. It is available on IBM xSeries and other Intel-based servers.

http://www.lotus.com/products/r5web.nsf/webhome/nr5serverhp-new

Workflow
The following is a workflow solution for Linux.

Lotus Workflow
Provides access to workflow management services and tools for Web
applications.

http://www.lotus.com/products/domworkflow.nsf

IBM Tivoli software
Tivoli solutions for Linux provide you with the tools you need to simplify the
management of your technology infrastructure. Using Autonomic Computing,
Tivoli automates mundane management tasks, freeing up your IT staff to focus
on the more important challenges facing your business.

Tivoli software is Linux friendly, providing your company with an array of
cross-platform management tools that cut costs, speed return on investment,
and improve IT responsiveness. The same tools and controls administrators use
today to manage existing systems are now extended to cover newer Linux
servers, integrating them with your current IT infrastructure.
 Appendix A. IBM Software for Linux 147

http://www.lotus.com/products/r5web.nsf/webhome/nr5serverhp-new
http://www.lotus.com/home.nsf/welcome/domino
http://www.lotus.com/home.nsf/welcome/domino
http://www.lotus.com/products/domworkflow.nsf

To explore the Tivoli product family, see:

http://www.tivoli.com/

Security
The following are security solutions for Linux.

IBM Tivoli Access Manager for e-business
Provides end-to-end security for e-business, including Web single signon,
distributed Web-based administration, and policy-based security. It is available
on IBM zSeries servers.

http://www.tivoli.com/products/index/access-mgr-e-bus/

IBM Tivoli Access Manager for Operating Systems
Provides end-to-end access control, application-level data protection, and
centralized security policy management for the IBM WebSphere MQ
environment. It is available on IBM xSeries and other Intel-based servers.

http://www.tivoli.com/products/index/access-mgr-operating-sys/

IBM Tivoli Identity Manager
Centrally coordinates the creation of user accounts and automates the workflow
for approval and the provisioning of resources.

http://www.tivoli.com/products/index/identity-mgr/

Storage
The following are storage solutions for Linux.

IBM Tivoli Storage Manager
Automates data backup and restore functions, supports a broad range of
platforms and storage devices, and centralizes storage management operations.

http://www.tivoli.com/products/index/storage-mgr/

IBM Tivoli Storage Manager Enterprise Edition
Delivers an integrated data-protection solution for large enterprises, including
LAN-free, SAN-enabled data transfers, hierarchical storage management, and
disaster recovery functions.

http://www.tivoli.com/products/index/storage-mgr-enterprise/
148 Linux and Branch Banking

http://www.tivoli.com/
http://www.tivoli.com/products/index/access-mgr-e-bus/
http://www.tivoli.com/products/index/access-mgr-operating-sys/
http://www.tivoli.com/products/index/identity-mgr/
http://www.tivoli.com/products/index/storage-mgr/
http://www.tivoli.com/products/index/storage-mgr-enterprise/

Performance and availability
The following are performance and availability solutions for Linux.

IBM Tivoli Enterprise Console
Provides a centralized point of control that keeps your IT staff in close and
efficient control of, and provides automated corrective actions to, events
happening across all systems and networks. It is available on IBM zSeries,
xSeries, and other Intel-based servers.

http://www.tivoli.com/products/index/enterprise-console/

IBM Tivoli Monitoring
Provides monitoring for essential system resources to detect bottlenecks and
potential problems and to automatically recover from critical situations. It is
available on IBM zSeries, xSeries, and other Intel-based servers.

http://www.tivoli.com/products/index/monitor/

Configuration and operations
The following are configuration and operations solutions for Linux.

IBM Tivoli Workload Scheduler
Automates, monitors, and controls the flow of work through your enterprise's
entire IT infrastructure on both local and remote systems. It is available on IBM
zSeries, xSeries, and other Intel-based servers.

http://www.tivoli.com/products/index/scheduler/

IBM Tivoli Workload Scheduler for Applications
Manages enterprise scheduling from a single point and integrates with solutions
such as mySAP.com. It is available on IBM xSeries and other Intel-based
servers.

http://www.tivoli.com/products/index/scheduler-apps/

IBM Tivoli Configuration Manager
Delivers an integrated solution for deploying software and for tracking hardware
and software configurations across an enterprise. It is available on IBM zSeries,
xSeries, and other Intel-based servers.

http://www.tivoli.com/products/index/config-mgr/
 Appendix A. IBM Software for Linux 149

http://www.tivoli.com/products/index/enterprise-console/
http://www.tivoli.com/products/index/monitor/
http://www.tivoli.com/products/index/scheduler/
http://www.tivoli.com/products/index/scheduler-apps/
http://www.tivoli.com/products/index/config-mgr/

150 Linux and Branch Banking

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 152.

� EJB Development with VisualAge for Java for WebSphere Application Server,
SG24-6144

� Enterprise Business Portals with IBM Tivoli Access Manager, SG24-6556

� IBM CBConnector Cookbook Collection: CBConnector Bank User Guide,
SG24-5121

� Network Computing Framework Component Guide, SG24-2119

Other resources
This publication is also relevant as a further information source:

� Patterns for e-business: A Strategy for Reuse, by Jonathan Adams, Srinivas
Koushik, Guru Vasudeva, George Galambos, IBM Press, 2001, ISBN
1931182027

Referenced Web sites
These Web sites are also relevant as further information sources:

� IBM Software - General

http://www.ibm.com/software/

� IBM Software - Linux

http://www.ibm.com/software/linux/

� IBM Linux Technology Center

http://oss.software.ibm.com/linux/

� Lotus Domino software

http://www.lotus.com/home.nsf/welcome/domino
© Copyright IBM Corp. 2002. All rights reserved. 151

http://www.ibm.com/software/
http://www.ibm.com/software/linux/
http://oss.software.ibm.com/linux/
http://www.lotus.com/home.nsf/welcome/domino

� IBM Tivoli Software

http://www.tivoli.com/

� Appache HTTP server project

http://httpd.apache.org/

� Appache Jakarta Project - Tomcat application server

http://jakarta.apache.org/tomcat/

� Eclipse open source project for an integrated development environment

http://www.eclipse.org/

� J/eXtensions for Financial Services (J/XFS)

http://www.jxfs.com/

� MySQL open source database project

http://www.mysql.com

� IBM Patterns for e-business

http://www.ibm.com/developerWorks/patterns/

� Red Hat Linux

http://www.redhat.com/apps/download/

� Samba open source file SMB and CIFS project

http://www.samba.org

How to get IBM Redbooks
You can order hardcopy Redbooks, as well as view, download, or search for
Redbooks at the following Web site:

ibm.com/redbooks

You can also download additional materials (code samples or diskette/CD-ROM
images) from that site.

IBM Redbooks collections
Redbooks are also available on CD-ROMs. Click the CD-ROMs button on the
Redbooks Web site for information about all the CD-ROMs offered, as well as
updates and formats.
152 Linux and Branch Banking152 Linux and Branch Banking

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.tivoli.com/
http://httpd.apache.org/
http://jakarta.apache.org/tomcat/
http://www.eclipse.org/
http://www.jxfs.com/
http://www.mysql.com
http://www.ibm.com/developerWorks/patterns/
http://www.redhat.com/apps/download/
http://www.samba.org

Index

A
Access Integration pattern 68, 83
Account Access pattern 70
account information 39
Adobe Acrobat Reader 5
Agent pattern 87, 104
alternative delivery channels 13
ANSI 3
Apache 119
application and technology portfolio 80
application availability 8
Application Integration pattern 68
application management 57
Application pattern 64, 71, 86
application server 41
architecture objectives and principles 46
As-Is Host pattern 87, 94
ATM 16, 27
availability 59

B
back-end application tier 71
back-end components 42
benefits and risks 6
branch

banking environment 11
banking transformation 15
clients 81
employees 27
requirements 45
scenarios 32
server components 40
servers 26, 81
software strategy 17
structure 24
technology challenges 14
transformation strategies 15

builders 20
business analytics 23, 42
Business and Integration pattern relationships 77
business context 51, 75, 77
Business pattern 64
buyers 20
© Copyright IBM Corp. 2002. All rights reserved.
Buy-Side Hub pattern 71

C
capacity 59
change cases 61
CICS Transaction Gateway 94
client/server 26
clusters 8
collaboration 68
Collaboration pattern 82
communications 26
Communications Server 35, 120
component definitions 37
component diagram 36
component model 36
Composite pattern 64, 84, 112
configuration management 57
core business processing 23
core transaction systems 42
cost control 1
cost of operation 58
cost-related objectives 46
customer information 39
customer information file 36
customer loyalty scenario 105
customer requirements 76
Customized Presentation to Host pattern 87, 94

D
data mining 23
data warehouse 23
database server 42
database services 41
data-focused 84
DB2 5–6, 35
DB2 Connect Enterprise Edition for Linux 94
DB2 UDB EE 91, 97, 100, 103
Decomposition pattern 87, 101
desktop components 37
device support services 83
Directly Integrated Single Channel pattern 87, 91
distributed processing scenario 34
DNS 119
 153

Domino 5–6

E
e-banking scenario 108
e-business technologies 18
e-Learning 17
Electronic Commerce pattern 70
electronic journal 39
eNetworks Communications Server 94
enterprise integration 24
enterprise security systems 43
Eontec 112
Extended Enterprise 68
Extended Enterprise pattern 83

F
fat client 18
file and print services 40
financial transactions 39
firewall 119
FTP 118
functional requirements 55

G
GNU software license 2

H
Host Access Transformation Server (HATS) 97
host-centric scenario 32
host-centric with local applications scenario 33
HTTP 119

I
IBM Access Manager for e-business 91, 94, 97,
100, 103
IBM and Linux 4
IBM Developer Kit for Linux 91, 94, 97, 100, 103
IBM HTTP Server 91, 94, 97, 100, 103
IETF 3
implementation-related objectives 47
IMS Connector for Java (runtime classes) 94
Information Aggregation pattern 68, 82
integrated customer information 42
integrated customer view 22
Integration pattern 64, 68
introduction 1
ISO 3

IT context 75, 79

J
J/XFS 5
JavaServer Pages 47

L
layered asset model 66
layered assets 71
Linus Torvalds 2
Linux

business use 6
client 5
server 4, 91, 94, 97, 100, 103

Linux kernel 2
Lotus Domino 5–6
Lotus Notes 19
Lotus SmartSuite 19
LPAR 4

M
mainframe 26
management costs 7
messaging server 42
Microsoft Office 19
middle-tier components 41
migrating 8
minimum operating requirements 3
Mozilla 5
MQSeries 35
multichannel 17, 21

N
Netscape 5
Network Computing Architecture 48
network services 40, 118
NFS 118
NIS 118
non-functional requirements 58

O
office productivity 40
open source development 6
Open Source Eclipse program 5
OpenOffice 5
operational considerations 55
OS/2 13
154 Linux and Branch Banking

OS/390 4

P
pattern selection 82
Patterns for e-business 63
performance 57, 59
peripheral support 38
personalization services 83
platform functions 39
platform systems 25
Portal pattern 70
Posix 2
presentation services 38, 83
presentation tier 71
preserve investment 46
process-focused 84
product mappings 64, 71
programming-related objectives 49
pSeries 4

Q
Quality of Service 15, 87

R
RAS 55
Redbooks Web site 152

Contact us xiv
reduce costs 46
reduced risk 50
reliability 59
replaceable components 48
Router pattern 87, 98
Runtime pattern 64, 71, 86

S
scalability 59
security 38, 43, 56, 60
Security and Administration 83
Self-Service pattern 68, 82
Sell-Side Hub pattern 70
server functions 26
shells 2
speed to market 15, 87
Stand-Alone Single Channel pattern 87–88
standards 3, 47, 61
StarOffice 5
store and forward 41

system context 54
system management 26, 41–42, 57, 60
system monitoring 57

T
tasks 52
teller 16
teller functions 39
teller systems 25
time to market 50
total cost of ownership 14, 87
Trading Exchange pattern 70
transformation strategies 81

U
user interactions 75
user management 38, 40, 61
using Patterns for e-business 74

V
vendor accountability 7

W
W3C 3
Web application tier 71
WebSphere 5–6

Application Server AE 91, 94, 97, 100, 103
Application Server EE 103
Edge Server 91, 94, 97, 100, 103
Host Access Transformation Server 120
Host On-Demand 120
Host Publisher (As-Is Host) 97
MQ 100, 103
MQ classes for Java 100, 103
MQ Integrator 100, 103

WebSphere Business Component Composer 49
WSBCC 112

X
XFree86 2
xSeries 4

Z
z/OS 4
 Index 155

156 Linux and Branch Banking

Linux and Branch Banking

®

SG24-6909-00 ISBN 0738428337

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Linux and Branch
Banking

Branch banking
transformation
trends

An IBM Patterns for
e-business approach

The vital role of Linux

The banking industry is undergoing a major transformation to
e-business, supporting a multichannel model for its delivery
of services. As part of this transformation, there is a major
focus on the branch IT infrastructure.

In this very competitive environment, banks are looking for
solutions that are cost effective, provide a high quality of
service, and allow them to speed new products and services
to market. In addition, they need to have a flexible and open
environment in order to absorb the inevitable changes that
occur over time.

At the same time, Linux is gaining popularity and credibility as
a robust and stable operating environment for many
business-critical functions.

This IBM Redbook surveys the current trends in branch
banking, describes in detail an IBM Patterns for e-business
approach to designing the branch infrastructure of the future,
and provides the reader with an understanding of how and
where Linux can play a key role in branch banking
infrastructures.

Back cover

	Front cover
	Contents
	Figures
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Chapter 1. An introduction to Linux
	1.1 What is Linux
	1.1.1 Standards
	1.1.2 Minimum operating requirements

	1.2 IBM and Linux
	1.2.1 Linux as a server
	1.2.2 Linux as a client

	1.3 Linux in a business environment
	1.3.1 Business use
	1.3.2 Benefits and risks

	1.4 Summary

	Chapter 2. Branch banking environment
	2.1 The state of branch banking
	2.1.1 Branch banking trends

	2.2 Branch technology challenges
	2.2.1 Total cost of ownership
	2.2.2 Quality of Service
	2.2.3 Speed to market

	2.3 Branch transformation strategies
	2.3.1 Branch software strategy overview
	2.3.2 Multichannel context

	2.4 Branch structure
	2.4.1 Branch systems
	2.4.2 Employees

	2.5 Common branch banking scenarios
	2.5.1 Host-centric scenario
	2.5.2 Host-centric with local applications scenario
	2.5.3 Distributed processing scenario

	2.6 Component model for branch banking
	2.6.1 Component diagram
	2.6.2 Component definitions

	2.7 Summary

	Chapter 3. Branch banking requirements
	3.1 Solution architecture objectives and principles
	3.1.1 Cost-related objectives
	3.1.2 Implementation-related objectives
	3.1.3 Programming-related objectives

	3.2 Business context
	3.3 System context
	3.4 Functional requirements
	3.4.1 Operational considerations

	3.5 Non-functional requirements
	3.5.1 Cost of operation
	3.5.2 Capacity, performance, and scalability
	3.5.3 Reliability and availability
	3.5.4 Security
	3.5.5 System management
	3.5.6 User and desktop management
	3.5.7 IT standards and existing IT infrastructure
	3.5.8 Geographic constraints

	3.6 Change cases
	3.7 Summary

	Chapter 4. IBM Patterns for e-business overview
	4.1 Introduction to Patterns for e-business
	4.2 The Patterns for e-business layered asset model
	4.2.1 How to use Patterns for e-business

	4.3 Summary

	Chapter 5. Applying IBM Patterns for e-business to branch banking
	5.1 Starting to use Patterns for e-business
	5.1.1 Describing the problem or problems we want to solve
	5.1.2 The solution or solutions alternatives
	5.1.3 Gathering and summarizing requirements and drivers

	5.2 Business context
	5.3 IT context
	5.3.1 Application and technology portfolio
	5.3.2 Transformation strategies

	5.4 Pattern selection
	5.4.1 Selecting Business and Integration patterns
	5.4.2 Composite pattern
	5.4.3 Application and Runtime patterns
	5.4.4 Customer loyalty in the financial services industry
	5.4.5 Composite pattern: e-Bank
	5.4.6 WSBCC and Eontec

	5.5 Summary

	Chapter 6. Linux-based products applicable to branch banking
	6.1 Linux in branch banking environments
	6.1.1 Network services
	6.1.2 User management and security
	6.1.3 File and print services
	6.1.4 Store and forward
	6.1.5 Database services
	6.1.6 Application servers
	6.1.7 Messaging servers
	6.1.8 Systems management

	6.2 Summary

	Chapter 7. Scenario for a new branch banking solution
	7.1 Scenario overview
	7.2 Scenario solution
	7.3 Summary

	Appendix A. IBM Software for Linux
	DB2 for Linux
	DB2 Universal Database products
	DB2 application development
	Informix
	Connectors

	WebSphere for Linux
	Application server
	Application integration
	Industry solutions
	Development tool
	Presentation
	Deployment
	Integration

	Lotus Domino for Linux
	Collaboration
	Workflow

	IBM Tivoli software
	Security
	Storage
	Performance and availability
	Configuration and operations

	Related publications
	IBM Redbooks
	Other resources

	Referenced Web sites
	How to get IBM Redbooks
	IBM Redbooks collections

	Index
	Back cover

