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Preface

This IBM® Redbook discusses performance measurement and tuning for Linux 
on IBM ^™ zSeries® and S/390®. It is intended to help system 
administrators responsible for deployment on Linux for zSeries understand the 
factors that influence system performance when running Linux as a z/VM® 
guest.

We consider performance measurement and tuning at both the z/VM and Linux 
level. Analysis of the memory, processor, DASD, and networking subsystems 
are provided. Whenever possible, we make tuning recommendations. 
Measurements are provided to help illustrate what effect tuning controls have on 
overall system performance. 

The system used in this writing the redbook is an IBM ^ zSeries 900 
(z900) running z/VM Version 4.3 in an LPAR. The Linux distributions used in this 
redbook include Red Hat Version 7.2 for zSeries (based on a Linux 2.4.9 kernel) 
and SuSE SLES7 (based on a Linux 2.4.7 kernel). With the exception of 4.2, 
“Exploiting the shared kernel” on page 37, the examples in this redbook use the 
Linux kernel as shipped by the distributor.

The z900 is configured for:

Main memory 3 GB

Expanded storage 256 MB

Minidisc cache (MDC) 512 MB

Total LPARs 15

Processors Two Integrated Facilities for Linux (IFLs) dedicated to 
the logical partition (LPAR)

The direct access storage device (DASD) storage used in producing this redbook 
are RAMAC® Virtual Array (RVA) units. 

The intent of this redbook is to provide guidance on measuring and optimizing 
performance using an existing zSeries configuration. The examples are intended 
to demonstrate how to make effective use of your zSeries investment. The 
workloads used are chosen to exercise a specific subsystem; any measurements 
provided should not be construed as a benchmark.
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In developing this redbook, we use two performance monitoring tools designed 
for z/VM and z/VM Linux guests:

� ESALPS by Velocity Software

� OMEGAMON for VM by Candle Corporation

Similar performance monitoring function is available from IBM using the IBM 
Performance Toolkit for VM (Virtual Machine), an optional priced feature of z/VM 
4.4 (5739-A03). This program can be used to monitor VM system performance 
and analyze bottlenecks. It can be used as a real-time performance monitor and 
also for analysis of history and trend files of accumulated performance data. As a 
real-time monitor, the toolkit provides displays of VM CPU, LPAR, channel, and 
I/O performance, as well as resource consumption, response times, and 
communication rates. When installed and configured for Linux monitoring (see 
Appendix C), the Performance Toolkit for VM can report Linux-specific 
performance data, including Apache request rates and size, and also Linux CPU 
utilization, Linux memory utilization, Linux network activity, and Linux file system 
usage.

ESALPS overview
ESALPS, the Linux Performance Suite, is a suite of products provided by 
Velocity Software. The products that make up the suite include:

� ESAMAP 
The VM Monitor Analysis Program, providing performance reports on all 
aspects of VM/ESA® and z/VM performance.

� ESAMON
The VM Real Time Monitor, providing real-time analysis of performance.

� ESATCP
The network and Linux data collection program.

� ESAWEB
A very fast VM-based Web server.

In addition to the four products, ESALPS provides a Web-based interface to view 
performance data through a Web browser and many control facilities. 
xii Linux on IBM  ̂zSeries and S/390: Performance Measurement and Tuning



Monitoring requirements
There are many requirements for data collection met by ESALPS. Data is 
provided for:

� Capacity planning
Long term data in the form of a performance database (PDB) is needed as 
input to long term capacity planning and trend analysis. Full historical data 
functions are provided with collection and many forms of data extraction tools. 

� Performance analysis
Trend data enables an analyst to detect performance changes in any of 
thousands of potential problem areas. The performance database allows 
analysts to determine what of many potential changes occurred in the 
system. Reporting on specific periods of time can be performed, enabling an 
in-depth performance analysis of performance problems.

� Real-time performance
Beyond the traditional “entry level” real-time performance reporting of the top 
users and system utilization, real-time performance analysis is provided for all 
subsystems, user activity, and Linux (and many other platforms) servers. 
Network data is also provided real time.

� Linux data
With the advent of virtual Linux server farms on z/VM, performance data is 
required.

Standard interfaces
ESALPS uses standard interfaces for all data collection. The advantage to using 
the standard interfaces provided is that when there are a multitude of releases 
and distributions available, the standard interfaces provide consistent data 
sources. Supported interfaces include:

� z/VM provides a “monitor interface” that has been available since 1988. Since 
then, this interface has provided a consistent view of performance of VM 
systems.

� Network performance is collected using simple network management protocol 
(SNMP), the standard for network management. 

� NETSNMP, an open source software package, provides host data for Linux 
and other platforms.

� VM application data interface is used by applications to insert data into the 
monitor stream consistent with the standard monitor interface. ESATCP uses 
this interface to ensure consistent data collection that allows full integration of 
Linux and VM data.
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Performance database
ESALPS provides both real-time data and historical data for in-depth analysis. 
The performance data is collected daily with a one minute granularity based on 
the monitor interval. A longer term archive is collected, usually with a granularity 
of 15 minutes. This performance database (PDB) includes VM data, Linux data, 
and network data. 

Real-time monitoring with ESAMON
ESAMON uses:

� Historical reporting
� Linux reporting
� Network reporting

Velocity Software has been in business since 1988 supporting the VM 
environment. With a focus on VM, and now z/VM, Velocity Software added 
TCP/IP network analysis and then Linux, Microsoft Windows NT, Sun, and other 
platforms to the product data collection facilities. 

OMEGAMON for VM
OMEGAMON for VM is a monitor for the z/VM operating system including 31- 
and 64-bit z/VM images. It includes an interactive component, a background 
collection component, and a historical reporting component called EPILOG.

The interactive OMEGAMON component consists of a 3270-based menu system 
displaying current data for many major areas of interest, further menus 
displaying historical data, many individual commands, the ability to issue VM 
commands, the ability to take actions when events occur, and the ability to create 
custom menus and displays. Also included is degradation analysis, which 
analyzes the reasons the system, a virtual machine, or a group of virtual 
machines is degraded and graphically displays the reasons.

The background collector is intended to run at all times. Its primary function is to 
record data to DASD for later historical reporting, but it also collects some data 
used by the interactive OMEGAMON user interface. Included with the collector 
are tools to enable archiving or combining data, or both, to tape or disk.

EPILOG consists of many predefined reports and graphs, including bottleneck 
reports, the ability to create custom reports, and the ability to export data in a 
format suitable for inclusion in spreadsheets or other data reduction or analysis 
tools.
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OMEGAMON XE for Linux
OMEGAMON XE for Linux is one of a family of Candle monitoring tools that 
share a common infrastructure and user interface. It reports current data 
interactively and includes a historical data collection facility.

The interactive user interface of OMEGAMON XE runs on a Windows 
workstation and shows information for many monitored systems (which can be 
any of the OMEGAMON XE family, not just Linux) in one place. (Data from 
multiple systems can be combined using Candle’s related OMEGAMON DE 

product.) The user interface consists of multiple workspaces, which are grouped 
in several predefined sets, or which can be user defined. OMEGAMON XE can 
take action or present advice, or both, when predefined or user-specified 
situations occur. Data can be displayed as annotated tables, charts, gauges, and 
so forth. Links from one workspace to another exist in the predefined workspaces 
and can be created by a user as required.

OMEGAMON XE can create historical data for many of the data attributes it 
collects. The user selects what data is to be recorded and how frequently. 
Historical data can be collected either on each individual system, or centrally, 
and can be periodically warehoused in a central database.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world 
working at the International Technical Support Organization, Poughkeepsie 
Center.

Gregory Geiselhart is a Project Leader for Linux on zSeries at the International 
Technical Support Organization, Poughkeepsie Center.

Laurent Dupin has worked on z/VM and Linux performance since he joined the 
EMEA zSeries Benchmark Center in Montpellier, France. He previously worked 
for 10 years as a z/OS® and Sysplex specialist for IBM Global Services, and 
became interested in Linux for zSeries during a two-year assignment at the 
Boeblingen Lab in 1999. 

Deon George is part of the IBM Software Group in Australia and has worked for 
IBM for five years. He has been working with Linux for 10 years and with Linux 
on S/390 for one year. He is a strong believer that Linux will be successful in the 
enterprise and will work hard to make sure that any technology solution can 
include Linux and also be successful. 
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Chapter 1. Virtualization and server 
consolidation

In this chapter, we discuss how to lower overall operating costs by running Linux 
as a z/VM guest. We examine sharing real hardware resources using the 
virtualization technology provided by z/VM. Then, we consider what can benefits 
can be expected from performance tuning. 

1
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1.1  Server consolidation and virtualization
If we compare the raw cycle speed of a zSeries CPU with an average Pentium 
processor, it is not hard to think that zSeries would have a disadvantage. In this 
redbook, we use as an example an IBM WebSphere® workload generated by the 
Trade 2 Benchmark. If that workload uses the full 100% of a modern PC for 24 
hours a day, the same workload would easily use an entire zSeries CPU for the 
whole day. Even though a zSeries machine has multiple CPUs, there will be 
many situations where it still is not economical to host such a workload on 
zSeries hardware. Fortunately, there are many other situations where using 
zSeries does make a lot of sense.

Consider the case where the workload does not use the machine for the full 24 
hours, but only for 12 hours. And imagine there is another similar workload using 
the same amount of resources, but during the other 12 hours of the day. In that 
situation, we can put both Linux systems on the same zSeries machine and let 
them use the CPU cycles they need. When multiple Linux systems run on the 
same zSeries machine, each Linux system is made to believe it has dedicated 
access to a defined portion of the zSeries machine. The zSeries hardware and 
z/VM take care of the smoke and mirrors without actually dedicating portions to 
that Linux system.

Each Linux system runs in its own virtual machine. The characteristics of that 
virtual machine (memory size, number of CPUs) define the hardware that Linux 
sees. The tuning controls in z/VM specify how real hardware resources are 
allocated to the virtual machine.

1.1.1  Virtualization of the CPU
CPU virtualization is accomplished by timesharing. Each Linux guest in turn 
gains access to a CPU for a period of time. After that, the real CPU is free to run 
the work of the other Linux system.

The cost of running both of these workloads on discrete servers is twice the cost 
for running only one of them, but with zSeries, we run both workloads for the 
price of one. Realistic business applications often even run far less than 50% of 
the time, so that allows you to run even more of these workloads on the same 
zSeries machine. The workload from these business applications is most likely 
also not in a single burst per day, but in multiple short ones over the day. Given a 
large enough number of servers and short enough intervals of workload, the 
chances of spreading the total CPU requirements over the full day become 
better.

Because the zSeries hardware is specifically designed to do timesharing, z/VM 
can switch between tasks in a very cost effective manner.
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1.1.2  Virtualization of memory
In addition to the CPU requirements discussed, the workload also has memory 
requirements. The amount of memory needed for the Linux system to run is the 
working set size. Virtualization of memory on z/VM is done through paging. The 
Linux systems take turns using the main memory of the machine. Paging 
volumes and expanded storage are used to hold the pages of the inactive Linux 
systems so that they can be brought in by z/VM when needed.

The challenge for z/VM is to be able to bring in the working set of a Linux system 
quickly enough that no time is wasted when a Linux system has work to do.

1.1.3  Levels of virtualization
The virtual machine provided by z/VM to run the Linux system is not the only 
virtualization that is done. The Linux system itself runs multiple processes, and 
the operating system allocates resources to each of these processes to allow 
them to get their work done. Some of the processes running on Linux run 
multiple tasks and allocate their resources to those tasks. And if the z/VM system 
runs in an logical partition (LPAR), z/VM also uses only part of the real hardware.

These multiple layers of virtualization make it hard for an operating system to find 
the best way to use the allocated resources. In many cases, tuning controls 
(knobs) are available guide the operating system in this. Especially when the 
operating system was not designed to run in a shared environment, some of the 
knobs turn out to have surprising negative side effects.

1.2  Sharing resources
When we say a resource is shared, this can have different meanings:

� Multiple virtual machines take turns using a resource. 
This is most obvious with sharing the CPU. z/VM dispatches virtual machines 
one after the other on the real processor; each virtual machine believes it 
“owns” the processor during its time slice. Main memory is also shared as 
private pages in the working set of each virtual machine are brought in and 
out of main memory as needed. Again, z/VM creates the illusion that a shared 
resource is owned by a virtual machine. This type of sharing is not free; there 
is an overhead in z/VM for switching back and forth between virtual machines. 
This overhead increases as more virtual machines compete for the CPU.
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� z/VM allows virtual machines to really share memory pages.
In this case, a portion of the virtual memory of the Linux virtual machine is 
mapped in such a way that multiple virtual machines point to the same page 
in real memory. In z/VM, this is done through named saved systems (NSS). It 
is possible to load the Linux kernel in an NSS and have each Linux virtual 
machine refer to those shared pages in memory, rather than require them to 
have that code in their private working set. There is no additional cost for 
z/VM when more virtual machines start to share the NSS. Note that not all 
memory sharing is through NSS. The virtual machines in z/VM also compete 
for main memory to hold their private working set. The NSS also holds only a 
small part of the working set of the Linux virtual machine.

1.2.1  Overcommitting resources
It is possible to overcommit your hardware resources. When you run eight virtual 
machines with a virtual machine size of 512 MB in a 2 GB z/VM system, you 
overcommit memory roughly with a factor of two. This works as long as the virtual 
machines do not require the allocated virtual storage at the same time.

Overcommitting resources is a good thing; we also do this in normal life. A 
restaurant, for example, could be seating 100 people and allow every customer 
to use the restrooms. The service can be provided with only a small number of 
restrooms. The same applies to a cinema, but that needs more restrooms per 
100 people because of the expected usage pattern. This shows how the 
“workload” affects the ability to share a hardware resource. This example also 
shows that partitioning your resources (separate restrooms for male and female 
guests) reduces your capacity if the ratio between the two different workloads is 
not constant. Other requirements such as service levels might require you to do 
so anyway.

When the contention on the shared resources gets higher, chances of queueing 
get larger. This is a consequence of sharing that can not be avoided. When a 
queue forms, the requesters are delayed in their access to the shared resources. 
Whether such a delay is acceptable depends on service levels and other choices 
you make.

Overcommitting is necessary to share a resource. Big problems normally arise 
when all resources in the system are being overcommitted.

1.2.2  Top speed versus mileage
Benchmarks traditionally deal with measuring the maximum throughput of an 
application. You will see references to the maximum number of transactions per 
second, the number of floating point operations per second, and the number of 
megabytes transferred per second. The maximum throughput of the system is 
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seldom a good indication of how well a business application runs. The main 
reason for measuring the maximum throughput is that it is relatively easy to do 
the measurements.

With multiple virtual machines on z/VM competing for resources, we care much 
more about the efficiency of the application. The metric for such a measurement 
is a relation between resources, such as megabytes transferred per 
CPU-second, or the number of CPU-seconds per transaction.

1.3  The art of tuning a system
A z/VM system offers many controls (tuning knobs) to influence the way 
resources are allocated to virtual machines. Very few of these controls in z/VM 
increase the amount of resources available. In most cases, the best that can be 
done is take away resources from one virtual machine and allocate them to 
another one where they are better used. Whether it is wise to take resources 
away from one virtual machine and give them to another normally depends on 
the workload of these virtual machines and the importance of that work.

Tuning rarely is a “one size fits all” approach. Instead, you will find that a system 
tuned for one type of workload performs poorly with another type of workload. 
This means you must understand the workload you want to run and be prepared 
to review your tuning when the workload changes.

1.3.1  What tuning does not do
It is important to understand you can not run more work than you can fit in the 
machine. If your zSeries machine has two CPUs and the workload you want to 
run consists of three Linux virtual machines running WebSphere where each of 
them runs a CPU for 100% all day, then it just will not fit. There is no z/VM tuning 
that will make it fit (but there might be issues with the application to make it use 
less than 100% all day).

When a zSeries machine has four CPUs and the workload consists of three 
Linux virtual machines that each use a CPU for 100% all day, there is little to 
tune. In this case, z/VM has sufficient resources to give each Linux virtual 
machine what it requires (though one might want to look into changes to the 
configuration that allow you to use all four CPUs and make things run faster).

1.3.2  Where tuning can help
So even when the different workloads add up to less than the total amount of 
resources available, you might find you are still unable to run the workload. The 
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reason for that might be that the system is short on another resource. In such a 
situation, proper tuning can make a difference.

Before tuning the system and workload, you need to understand what resource is 
the limiting factor in your configuration. Tuning changes tend to fall into one of 
these categories:

� Use less constrained resources
With a memory-constrained system, one option might be to reduce overall 
z/VM memory usage by reducing the virtual machine size of Linux guests. 

� Get a larger share of a constrained resource 
In the case of a memory-constrained system, this can mean reserving some 
memory pages for one particular Linux virtual machine, at the expense of all 
others.

� Increase total available resources
The most obvious approach is to buy more hardware. However, additional 
resources can be made available by stopping unneeded utility services. 

Be aware that tuning does not increase the total amount of system resources. It 
simply allows those resources to be used more effectively.

1.3.3  Exchange of resources
You can view tuning as the process of exchanging one resource for another. 
Changes to the configuration make an application use less of one resource, but 
more of the other. If you consider IT budget and staff hours as a resource as well, 
even the purchase of additional CPUs is an exchange of one resource for the 
other. When you tune your configuration to less of one resource, it should not be 
a surprise that it will use more of another resource.

Consider for example the WebSphere Performance Benchmark Sample 
workload (discussed in Appendix A, “WebSphere Performance Benchmark 
Sample workload” on page 155). This is a three-tier configuration with a 
front-end Web server, a WebSphere application, and a database back-end. You 
can choose to run each tier in its own virtual machine or run them all in the same 
virtual machine. Obviously, running three virtual machines increases some costs, 
because as you duplicate the Linux operating system and infrastructure, you 
have the additional cost of the communication between the virtual machines, and 
you duplicate items that otherwise could have been shared. However, by using 
three virtual machines, you can tune the resources given to each of these virtual 
machines. You can make the Web server very small so that it can be brought into 
memory easily and will run quickly. You can make the database virtual machine 
larger so that it can cache a lot of the data and thus avoid some of the I/O to disk. 
By using three different virtual machines, z/VM can dispatch them on real CPUs 
independently. So the WebSphere server might be able to use more CPU cycles 
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because it does not have to wait for the storage of the database server to be 
brought in.

By just recording the number of transactions per second on an unconstrained 
system, you will never see these subtle details. And indeed, in an unconstrained 
environment, it would be best to make everything as big as you can and drive it 
as hard as you can. In real life however, very few of us can afford an 
unconstrained environment.

1.3.4  Workload profile
Real business applications have a workload profile that varies over time. The 
simplest form of this is a server that shows one or more peaks during the day. A 
more complicated workload profile is when the application is CPU intensive 
during part of the day, and I/O intensive during another part. 

The most cost efficient approach to run many of these types of applications 
would be if we could adjust the capacity of the server during the day. While this 
might appear unrealistic, this actually is what we want z/VM to do. Portions of the 
virtual machine are brought into main memory to run. Inactive virtual machines 
are moved to paging space to make room.
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Chapter 2. z/VM memory and storage 
concepts

This chapter introduces the z/VM memory and storage subsystem. Topics 
include:

� The z/VM storage hierarchy 

� Guidelines for allocation of z/VM storage

� z/VM use of memory

� Virtual memory as seen by Linux guests

� Influencing z/VM memory management

� Paging and spooling

2
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2.1  The z/VM storage hierarchy
Both z/VM and Linux use what is known as virtual storage, or virtual memory. 
Because “storage” is also used to refer to media other than memory, this section 
uses the term “memory” to refer to electronic read-write memory, also known as 
RAM, in which programs and its data are kept while a program is running. Note 
that z/VM and Linux use different terms for the same thing: z/VM normally refers 
to memory as storage.

Briefly, virtual memory is a method of allowing more programs and data to share 
real (physical) memory at the same time than would otherwise be the case. At 
any given moment, a program can only be accessing a very small amount of 
memory; even over several seconds, a program is highly unlikely to access more 
than a fraction of the total memory it has assigned to it. Virtual memory systems 
use a mechanism called paging that tries to ensure that memory that is actively 
being used is in real memory, and memory that is not being actively used is 
temporarily saved to disk, and the real memory made available for other memory 
that is actively in use. In z/VM and Linux, memory is managed in 4 K pages.

The z/VM storage hierarchy uses three types of memory:

� Main memory
Often referred to as main storage, this memory is directly accessible by user 
programs. Programs execute in main memory. All I/O operations occur within 
main memory. The size of main memory is limited to the amount physical 
memory.

� Expanded storage 
Expanded storage exists in physical memory, but is addressable only as 
whole pages. Physical memory allocated as expanded storage reduces the 
size of the main memory. Expanded storage is optional, and its size is 
configurable. 

Expanded storage acts as a fast paging device. As demand for main memory 
increases, z/VM can page to expanded storage. Because it exists in physical 
memory, paging to expanded storage can be much faster than paging to 
direct access storage device (DASD).

� Paging space
Paging space resides on DASD. When paging demands exceed the capacity 
of expanded storage, z/VM uses paging space.

The relationship between the types of z/VM storage is depicted in Figure 2-1 on 
page 11.

Note: Expanded storage can also be used for minidisk cache (MDC).
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Figure 2-1   The relationship between the types of z/VM storage

The combination of main memory, expanded storage, and paging forms the 
z/VM virtual memory address space. As illustrated in Figure 2-1, pages move 
within z/VM virtual memory to accommodate demand:

� z/VM guests run in main memory.
When dispatched, guests execute in main memory. Not all guest pages need 
to reside in main memory when running. An inactive page can reside in 
expanded storage or in paging space, or in both.

� Paging occurs between main memory and expanded storage.
As demand for main memory increases, z/VM might move inactive guest 
pages to expanded storage. As those pages become active, z/VM moves 
them back to main memory.

� Paging also occurs between main memory and paging space.
If no expanded storage is configured, z/VM pages between main memory and 
paging space. If the paging demand exceeds the expanded storage capacity, 
z/VM pages to and from main memory and paging space.

z/VM Storage

CPU works directly on pages in main 
memory.

Pages can  move from main memory to 
expanded storage or paging space.

Pages move from expanded storage to 
paging space only through main memory.

Pages never move from paging space to 
expanded storage.

Paging space (DASD)

Expanded
storage 

Main memory

CPU(s)
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� Pages do not move directly between expanded storage and paging 
space.
Pages that move from expanded storage to paging space must first be 
brought to main memory.

2.2  Guidelines for allocation of z/VM storage
As discussed in 1.2.1, “Overcommitting resources” on page 4, overcommitted 
memory is a normal and desirable situation on z/VM. Memory overcommitment 
allows z/VM to provide more total server utilization (and therefore, a lower overall 
cost). The z/VM storage hierarchy is designed to optimize paging on an 
overcommitted system.

With 64-bit support, the question arises of whether there is a need for expanded 
storage (why not configure all physical memory as main memory instead). The 
general recommendation is to configure z/VM with expanded storage. 

Expanded storage often results in more consistent or better response time. 
Factors that suggest expanded storage improves response time include:

� Paging will likely occur in a z/VM system.
The logic for allocating all physical memory as main memory is that paging 
only occurs if there is a shortage of main memory, and therefore, expanded 
storage only increases this possibility, However, overcommitment of memory 
on z/VM is a normal and healthy practice. Therefore, it is better to prepare for 
paging than attempt to prevent it.

� z/VM paging algorithms are tuned for expanded storage.
Moving pages from expanded storage to paging storage is much more 
efficient than moving pages from main memory to paging storage.

� Parts of CP and its control blocks must reside below 2 GB.
Even with 64-bit support, parts of CP must still reside below the 2 GB line. 
Guest pages being referenced by CP for some operations (such as I/O) must 
reside below 2 GB. This can create contention for storage below 2 GB. 
Contention below 2 GB can be identified by observing paging-to-paging 
space at times when main memory above 2 GB is unused.

Note: When contention for memory below 2 GB is heavy, allocating 2 to 3 
GB of expanded storage might help. For most systems however, 2 to 3 GB 
of expanded storage is probably excessive.
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As a general estimate, start with expanded storage configured to be 25% of the 
physical memory allocated to z/VM. Systems with low contention below 2 GB can 
reduce this ratio. For more tips about storage configuration, see the VM 
Performance Tips page at:

http://www.vm.ibm.com/perf/tips/storconf.html

2.3  z/VM use of memory
Example 2-1 on page 14 shows a typical system storage map for a 64-bit z/VM 
system. 

Note: The part of VM that runs everything else is called CP, originally from the 
term Control Program. Wherever you see “CP,” it refers to the core operating 
system part of z/ VM.
 Chapter 2. z/VM memory and storage concepts 13
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Example 2-1   z/VM real storage map

________________ ZSMAP    CMS     OM/VM    V610.99 CMS  02/24/03 09:49:27    B 
> OMEGAMON for VM - Show layout of z/VM’s real storage                          
> S.C          Help PF1           Back PF3          Up PF7          Down PF8    
=============================================================================== 
>    REAL AND VIRTUAL STORAGE:  Enter a selection letter on the top line.       
                                                                                
>Primary:  A-DPA           B-Real storage   *-SYS storage    D-Paging   E-VDISK 
>Expanded: F-System info   G-Block paging   H-Page info      I-Paging   J-VDISK 
>General:  K-Shared segs   L-Frame table    M-Free by user   N-Free map         
=============================================================================== 
>                            SYSTEM STORAGE MAP                                 
                                                                                
 SYS   >> z/VM   V4 R3.0  SLU 0201                                              
+         CPU: 2064 #0C0ECB-1C0ECB                                              
 SMAP   Major Area    Size Minor Area    Size           Address Range           
+       ----------------------------------------------------------------------- 
+       Dynamic Area 1024M Dynam Paging 1024M 000000007FFFF000-00000000BFFFFFFF 
+       ----------------------------------------------------------------------- 
+       Fixed Stg      12M CP Frame Tbl   12M 000000007F3FF000-000000007FFFEFFF 
+       ----------------------------------------------------------------------- 
+       Dynamic Area 2031M Dynam Paging   36K 000000007F3F6000-000000007F3FEFFF 
+                          Trace Tbl 00  400K 000000007F392000-000000007F3F5FFF 
+                          Dynam Paging   36M 000000007CF98000-000000007F391FFF 
+                          Trace Tbl 01  300K 000000007CF4D000-000000007CF97FFF 
+                          Dynam Paging 1994M 0000000000539000-000000007CF4CFFF 
+       ----------------------------------------------------------------------- 
+       Fixed Stg     216K Chan Measure  216K 0000000000503000-0000000000538FFF 
+       ----------------------------------------------------------------------- 
+       Dynamic Area 2352K Dynam Paging 2352K 00000000002B7000-0000000000502FFF 
+       ----------------------------------------------------------------------- 
+       Fixed Stg    2780K CP Nucleus   2772K 0000000000002000-00000000002B6FFF 
+                          Prefix        8192 0000000000000000-0000000000001FFF 
+       ======================================================================= 
+       Total online 3072M                                                      
+       ======================================================================= 

The areas of memory labelled Dynam Paging are the dynamic paging area (DPA), 
the area memory used by VM for running guest operating systems such as 
Linux. The other areas are used by VM itself.

Memory pages in the DPA are eligible to be temporarily stored elsewhere when 
not actively used. If a page of memory is not located in DPA when required, a 
demand page-in operation is initiated. If no free page exists in the DPA, VM first 
pages out an inactive page. For efficiency, z/VM attempts to keep a pool of free 
memory to reduce the number of demand page-outs (it is more efficient to 
perform a sweep through memory and move several pages out at once). 
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Whenever a virtual machine moves from the dispatch list to the eligible list, its 
memory usage is examined. At that time, unused memory pages are trimmed 
from the virtual machine to reduce its memory footprint.

As shown in Example 2-1 on page 14, storage above 2 GB (0x7FFFFFFF) is 
entirely DPA. CP stores its control blocks and data below 2 GB. Do not assume 
that this situation will remain unchanged in future releases of z/VM, because 
limiting CP control blocks to addresses below 2 GB limits the abilities of z/VM. 
For example, the frame table for 512 GB of real memory would require the entire 
lower 2 GB, leaving no room for CP itself.

2.4  Virtual memory as seen by Linux guests
Virtual memory refers to the combination of main memory, expanded storage, 
and paging space. Linux guests running under z/VM see memory as a 
contiguous area extending from a low address of zero to a high address equal to 
the virtual machine size. However, these pages might not be contiguous in z/VM 
virtual memory, and might moved to accommodate demand. In fact, z/VM might 
move a Linux guest’s memory pages out of main memory without notifying the 
guest.

2.4.1  The double paging effect
z/VM memory management can lead to a situation referred to as double paging, 
an effect illustrated in Figure 2-2 on page 16.
 Chapter 2. z/VM memory and storage concepts 15



Figure 2-2   Illustrating the double paging effect

Figure 2-2 depicts memory pages used by a Linux guest. The event sequence 
leading to double paging is denoted by the numbered arrows:

1. Memory page B is paged out from z/VM main memory.
This memory page is mapped to a running Linux guest. After a period of 
inactivity, z/VM moves the page to expanded storage.

The page is now available for demand page-in. z/VM has stolen the page, but 
the Linux guest is unaware that the page-out occurred.

Note: In this example, we show the page-out occurring to expanded 
storage. If no expanded storage was available, the page-out would occur 
to paging space, an even more expensive operation.
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2. Memory page B is paged back into z/VM main memory in response to a 
page-out attempt by the Linux guest.
To alleviate a memory constraint, Linux identifies inactive pages (including 
page B) to move to its swap device. The Linux guest page faults when 
attempting to access page B. This, in turn, causes z/VM to page-in memory 
page B to satisfy that request.

3. Linux completes its page-out attempt by moving page B to its swap 
device.
After page B is paged back into main memory, Linux pages it out to its swap 
device. In the end, z/VM has moved pages back into main memory simply to 
allow Linux to move it out again.

Double page faults are not unique to Linux; z/OS running under z/VM can 
experience the same effect. It is a result of two parties attempting to manage 
memory. The solution is to ensure one party does not attempt to page:

� Make the Linux guest virtual machine size small enough for z/VM to 
keep in main memory.
Double paging might still occur if many smaller Linux guests compete for 
z/VM main memory.

� Make the virtual machine size large enough that Linux will not attempt 
to swap.
This can lead z/VM to frequently page fault. This can be improved by 
PAGEX/PFAULT, an asynchronous mechanism that allows z/VM to inform 
Linux that a requested memory page is not resident in z/VM main memory. 
On receiving this notification, Linux will attempt to dispatch another process.

2.4.2  Allocating memory to z/VM guests
z/VM virtual machines are assigned memory in the z/VM directory entry. Two 
values in the directory entry specify memory for each user:

� First is the size of the guest’s virtual machine when it logs on.

� Second is the maximum size to which the virtual machine can change itself 
after it has logged on.

If a guest changes its virtual machine size, the memory is reset, and the initial 
program load (IPL) occurs again. As a result, changing a virtual machine size is 
something usually done by a human user, not by an operating system running in 
a virtual machine.
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Table 2-1   Storage allocation activities

2.4.3  VDISKs
VDISKs are virtual disks, emulated disks that z/VM creates in virtual memory. 
Because they exist in main memory, VDISKs have very fast access times. 
Typical VDISK usage for Linux guests is a fast swap device (see Chapter 5, 
“Examining Linux swap device options” on page 47).

2.5  Influencing z/VM memory management
Several factors can influence how z/VM manages memory management. These 
include:

� Ensure paging DASD, and the paths to them are not very busy. 
This makes paging as fast as possible. Use multiple devices to permit 
overlapped I/O. Use dedicated full packs for paging DASD, and be sure to 
define enough so that you can do block paging.

� Use expanded storage for paging. 
As discussed 2.2, “Guidelines for allocation of z/VM storage” on page 12, 
expanded storage can improve overall performance.

Activity Command or directory entry

Initial storage allocation USER directory entry

Maximum storage allowed USER directory entry

Change storage allocation DEFINE STORAGE command

Modify initial storage settings DIRMAINT commanda

a. The Directory Maintenance Facility (DirMaint™) must be enabled in order to
use DIRMAINT commands.

Display storage allocation QUERY VIRTUAL command

Important: We do not recommend using VDISKs for a Linux swap device if 
z/VM memory is constrained. The reason is that the page and segment tables 
that define the VDISK address space are not pageable. These tables take up 
8 KB per 1 MB of VDISK size. Instead, put the Linux swap device on a 
minidisk that has a cached controller.
18 Linux on IBM  ̂zSeries and S/390: Performance Measurement and Tuning



� Use shared segments. 
Typically, Conversational Monitor System (CMS) is run from a named saved 
system (NSS), but other operating systems can be too. The advantage is that 
only one copy of the operating system resides in storage accessible to all 
virtual machines. We discuss creation of a Linux NSS in 4.2, “Exploiting the 
shared kernel” on page 37.

� Adjust SRM controls. 
These control how z/VM manages virtual memory. System Resource 
Management (SRM) parameters are discussed in 6.4.1, “Global SRM 
controls” on page 89.

� Ensure system operation information records are properly retrieved and 
stored.
z/VM allows for collection of various accounting, error, and symptom records 
during operation. This data is stored in main memory until retrieved by 
designated virtual machines. A new installation of z/VM typically defines 
virtual machines that are automatically logged on at IPL:

– The DISKACNT virtual machine retrieves accounting records.

– The EREP virtual machine retrieves error records.

– The OPERSYMP virtual machine retrieves symptom records.

If these virtual machines stop retrieving the data, available system memory 
can greatly reduced. Further details on these information collection facilities 
can be found in z/VM V4R3.0 System Operation, SC24-6000.

� Use the CP SET RESERVED command to reserve pages for a guest. 
The CP SET RESERVED command reserves real storage pages to a virtual 
machine. 

� Using V=F or V=R.
These VM configurations allow main memory to be dedicated to a guest 
operating system; guest virtual machine memory pages reside permanently in 
main memory. The V=F option is only available if the hardware processor is 
IMLed in “basic” ESA/390 mode and not in LPAR mode.

Although these factors will influence virtual memory management, not all can be 
considered beneficial. In general, options that enable resource sharing are 
recommended for tuning overall system performance.

Important: There are limitations and restrictions associated with V=R and 
V=F. Both can adversely affect overall system performance.
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2.6  Paging and spooling
z/VM utilizes specially allocated DASD space for system storage that is available 
to all virtual machines running within that system. This DASD storage is owned 
and controlled by the system (CP) and has distinct uses.

As already discussed, paging DASD storage is utilized for virtual machine paging 
along with main memory and expanded storage. Paging needs to be as fast as 
possible; distributing paging DASD space across numerous devices and 
channels is suggested. Because the data in page storage is temporary, all the 
paging data is discarded when z/VM is shut down.

Spool space is used to store data that is common to all virtual machines. 
Because z/VM simulates an environment of independent operating systems, 
each of these virtual machines has a designated reader, punch, and printer, just 
like the computer systems of old. Data sent to a virtual machine will reside in the 
reader until deleted or “read” into a user’s minidisk, much like a mail in-box. Data 
that is created as output is directed to the virtual printer or to the virtual punch. 

Spool space is also used for executable data or systems stored for access of all 
virtual machines, such as NSS files. This creates a common location for system 
code, rather than each virtual machine requiring individual storage space. 
Because the contents of spool space is valid data, it is preserved across z/VM 
shutdowns and IPLs.

Along with DASD storage that is owned by specific virtual machines (better 
known as minidisks), z/VM allows for temporary minidisk space. This space can 
be allocated as needed by a virtual machine from the tdisk storage created on 
the system. This is meant to only hold data that is being processed or does not 
need to be is retained. When z/VM is shut down, all data in tdisk storage is 
discarded.

Note: While dedicated resources can be useful in some specific system 
designs, their use should be carefully considered before deployment. 
Dedicated virtual memory management options include:

� Using the CP SET RESERVED command.

� Using V=F or V=R.

This redbook concentrates on methods of resource sharing. Dedicated 
resources cannot be recommended.
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Chapter 3. Linux virtual memory 
concepts

In this chapter, we discuss how Linux uses virtual memory. We present Linux 
memory management concepts and consider how these concepts affect Linux 
guests running under z/VM. Topics include:

� Components of the Linux memory model

� Linux memory management

� Observing Linux memory usage

� Illustrating Linux aggressive caching

� Conclusions for sizing z/VM Linux guests
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3.1  Components of the Linux memory model
We begin examining Linux memory by looking at the components of memory 
allocation. 

3.1.1  Linux memory
Linux manages its memory without regard to the fact that it is running in a z/VM 
virtual machine. The Linux kernel uses an “always full” concept of memory 
management. It attempts to load as much information (applications, kernel, 
cache) into its perceived memory resources as possible. 

When Linux boots, one of its first tasks is the division and allocation of memory 
resources. Memory is divided into three main components:

� Kernel memory
Kernel memory is where the actual kernel code is loaded, and where memory 
is allocated for kernel-level operations. Kernel operations include:

– Scheduling
– Process management
– Signaling
– Device I/O (including both to disk and to network devices)
– Paging and swapping

� User memory
User memory is where all application code is loaded.

� Buffer and cache memory
The rest of the memory is used for caching both I/O and file system data. In 
the Linux 2.4 kernel, two types of caches are used: 

– Buffer cache
The buffer cache contains the buffers Linux uses during handling of I/O 
requests.

– File system cache
The file system cache contains data from the files in the Linux file system 
(including the actual content of the files themselves). Typically, the bulk of 
Linux caching is done in the file system cache. 

Buffer and file system cache are intended to speed overall system 
performance by reducing I/O operations (which are inherently slower than 
memory access).
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3.1.2  Linux swap space
Linux typically asks for the creation of a swap device during initial installation of a 
system. For periods of high memory demand, Linux will temporarily move less 
frequently accessed memory pages to its swap devices. The swapped memory 
pages then become available for use. When a memory page residing on a swap 
device is accessed, Linux moves it back into an available real memory page. 
Options for defining swap space for Linux on zSeries is discussed in Chapter 5, 
“Examining Linux swap device options” on page 47.

Swapping versus paging
Swapping is the process of moving an entire address space to a swap device. 
Paging is the process of moving pages of memory to a swap device. In the past, 
a swap device was used for swapping. Because of its inherent inefficiency 
(swapping requires frequent, expensive context switches), swapping has been 
replaced with paging. Although Linux utilizes a paging algorithm, the name swap 
device has been retained.

3.2  Linux memory management
Linux memory is divided into pages, and each page is 4096 bytes in size. It is the 
responsibility of the Linux memory manager to control usage of these pages. A 
counter is maintained for each page and is used to determine whether to keep 
the page in real memory.

Portions of memory are scanned periodically to check current page usage:

� When the virtual memory scanner locates pages that can be removed from 
main memory, a counter on those pages is decreased by dividing the counter 
value by 2 (an exponential decline). 

� When the scanner locates pages that should not be removed from memory 
(because the page was recently accessed), the page counter is increased by 
a constant value. 

Note: Linux uses an aggressive caching policy intended to reduce I/O when 
allocating main memory; the theory being that memory is better utilized as 
cache, rather than leaving it unused and available. This policy is illustrated in 
3.4, “Illustrating Linux aggressive caching” on page 30.

Note: Do not enable MDC on Linux swap minidisks. The read ratio is not high 
enough to overcome the write path length penalty.
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Eventually, less recently accessed pages acquire a lower counter value, and 
more recently accessed pages acquire a higher counter value. The counter value 
is used by the memory manager during page cleaning.

3.2.1  Page cleaning
Linux memory pages are cleaned up (swapped out) when:

� The kswapd kernel thread runs.
This thread wakes up once a second to check the number of free page 
frames. If the number is below a threshold, inactive pages are moved to a 
swap device.

In some Linux kernels, the kswapd thread also wakes up every five minutes 
to clean inactive pages from the buffer cache and inode cache.

� A process requests more memory than is currently available.
The kswapd thread runs if a memory request cannot be fulfilled from the 
available memory pool. Less recently accessed pages are moved to the swap 
device in order to free the required memory.

Thrashing occurs when not enough inactive pages are available to satisfy a 
memory request. In this case, Linux spends more time moving pages to and 
from the swapping device than running user processes.

Figure 3-1 on page 25 illustrates the effect of the Linux page cleaner.
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Figure 3-1   Illustrating the effect of page cleaning

In Figure 3-1, we see CPU utilization for an idle Linux guest plotted over time. 
The spike in CPU utilization at five minute intervals is due to the kswapd kernel 
thread performing its periodic memory cleanup.

3.3  Observing Linux memory usage
For a quick look at how Linux allocates memory, we use the Linux free -k 
command (the -k option reports memory size in kilobytes). Example 3-1 on 
page 26 illustrates the memory usage of a 128 MB virtual memory Linux guest.
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Example 3-1   Observing Linux memory usage using the free command

$ free -k
             total       used       free     shared    buffers     cached
Mem:        121276      50768      70508          0       4832      26944
-/+ buffers/cache:      18992     102284
Swap:            0          0          0

Important points to note in Example 3-1:

� The total memory (121276 kB) is less than the total virtual memory size 
allocated to the Linux guest (128000 kB). The difference (6724 kB) is the size 
allocated to the kernel.

� The total memory (121276 kB) is equal to used memory (50768 kB) plus free 
memory (70508 kB).

� The used memory (50768 kB) is equal to buffer (4832 kB) plus cached 
memory (26944 kB) plus used buffers/cache memory (18992 kB).

� The used buffers/cache memory (18992 kB) plus free buffers/cache memory 
(102284 kB) is equal to total memory (121276 kB).

� The free buffers/cache memory (102284 kB) is equal to free memory (70508 
kB) plus buffer memory (4832 kB) plus cache memory (26944 kB).

Although there is 102284 kB “free” memory available, Linux expects applications 
to use only 70% (70508 / 102284). Linux expects to use the remainder as 
buffer/cache memory.

3.3.1  Kernel memory usage at system boot
To examine kernel memory usage at system boot, we use the demsg command, 
as illustrated in Example 3-2.

Example 3-2   Memory usage by the kernel at system boot

$ demsg | less
.
.
Memory: 120188k/131072k available (1719k kernel code, 0k reserved, 843k data, 64k init)
Dentry-cache hash table entries: 16384 (order: 5, 131072 bytes)
Inode-cache hash table entries: 8192 (order: 4, 65536 bytes)
Mount-cache hash table entries: 2048 (order: 2, 16384 bytes)
Buffer-cache hash table entries: 8192 (order: 3, 32768 bytes)
Page-cache hash table entries: 32768 (order: 6, 262144 bytes)
.
.
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In this example, we see Linux allocates inode and buffer cache at system boot.

3.3.2  Detailed memory usage reported by /proc/meminfo
To examine memory in detail, we query the /proc/meminfo kernel driver, as 
shown in Example 3-3.

Example 3-3   Detailed analysis of Linux memory using /proc/meminfo

$ cat /proc/meminfo
         total:    used:    free:  shared: buffers:  cached:
Mem:  124186624 48365568 75821056        0  4104192 25628672
Swap:        0        0        0
MemTotal:       121276 kB
MemFree:         74044 kB
MemShared:           0 kB
Buffers:          4008 kB
Cached:          25028 kB
SwapCached:          0 kB
Active:          27600 kB
Inact_dirty:      1436 kB
Inact_clean:         0 kB
Inact_target:    32768 kB
HighTotal:           0 kB
HighFree:            0 kB
LowTotal:       121276 kB
LowFree:         74044 kB
SwapTotal:           0 kB
SwapFree:            0 kB

Explanations of the fields shown in Example 3-3 are as follows:

� MemTotal
The amount of RAM memory assigned to Linux, not including memory used 
by the kernel. In Example 3-3, Linux runs in a 128 MB virtual machine; 
however, only 121276 KB is available for user memory, buffers, and cache.

� MemFree
Reports the current amount of memory not in use by Linux.

� MemShared
This number is always zero in 2.4 kernels, because it is too expensive to 
actually calculate it. If calculated, it would report the sum of memory shared 
between processes.

� Buffers
Reports the size of memory allocated to I/O buffers. Buffers hold data 
accessed from block devices.
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� Cached
Reports the size of memory allocated to cache. Caches hold data accessed 
from files.

� SwapCached
Reports the size of cache memory swapped out to swap devices.

� Active
Reports the size of active memory pages (pages that are frequently 
accessed).

� Inact_dirty
Reports the size of dirty inactive memory pages:

– Inactive pages are less frequently accessed relative to active pages (and 
therefore are eligible for swapping should a memory shortage arise).

– Dirty pages are out of sync with respect to their backing store.

When memory is required, Linux chooses to steal Inact_clean pages before 
swapping Inact_dirty pages.

� Inact_clean
Reports the size of clean inactive memory pages. Because clean pages are in 
sync with respect to their backing store, Linux can reuse (steal) Inact_dirty 
pages without having to write the page to a swap device.

� Inact_target
From reviewing the kernel source code, this number is described as the 
“number of inactive pages we ought to have.” It is calculated as the sum of 
Active, Inact_dirty, and Inact_clean divided by 5. This is most likely an 
indication of when page cleaning should be performed.

� HighTotal
This value reports the amount of MemTotal not directly mapped into kernel 
space. Its value varies based on kernel level. On zSeries, this value is always 
zero because the kernel is loaded into its own distinct space (thus allowing a 
31-bit address space for user memory). Documentation can be found in the 
Debugging390.txt file in the kernel source documentation.

� HighFree
Reports the amount of MemFree not directly mapped into kernel space. The 
value varies based on the kernel level. Its value is zero on zSeries.

� LowTotal
Reports the amount of memory that is directly mapped into kernel space. The 
value varies based on the type of kernel used.

� LowFree
Reports the amount of free memory that is directly mapped into kernel space. 
The value varies based on the type of kernel used.
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� SwapTotal
Reports the amount of swap space available.

� SwapFree
Reports the amount of swap space not yet used.

Details about Linux Virtual Memory Management can be found at:

http://cs.uml.edu/~cgould
http://www.csn.ul.ie/~mel/projects/vm/guide/html/understand/

3.3.3  Using the vmstat command
The Linux vmstat command reports statistics about processes, memory, paging, 
I/O to block devices, and CPU usage. The command syntax is:

vmstat [delay [count]]

Where:

delay The delay (in seconds) between updates
count The number of updates

Example 3-4 illustrates the vmstat command output.

Example 3-4   Using the vmstat command

# vmstat 60 5
   procs                      memory      swap          io     system         cpu
 r  b  w   swpd   free   buff  cache   si   so    bi    bo   in    cs  us  sy  id
18  0  6  27260   1020     60    724 3889 4981  4057  4981    0   653  82  18   0
13  0 11  27228   2036     64    772 3802 4868  3970  4868    0   633  82  18   0
16  0  8  27228   1200     64    740 3713 4802  3868  4802    0   621  82  18   0
17  0  7  27228   1332     64    888 3719 4703  3874  4703    0   676  82  18   0
14  0 10  27236   1796     60    724 3741 4798  3900  4798    0   633  82  18   0
#

Statistics reported by the vmstat command are grouped by type:

� procs 
Process statistics are reported as the average number of processes in state:

r Number of processes waiting for run time

b Number of processes in uninterruptable sleep state

w Number of processes swapped out but otherwise runnable

� memory
Memory statistics are reported as the average amount of memory:

swpd Used memory size (KB)
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free Unused memory size (KB)

buff Memory allocated to buffer cache (KB)

cache Memory allocated to file system cache (KB)

� swap
Paging statistics report average paging rates to swap devices:

si Paging rate from swap device to memory (KB/s)

so Paging rate from memory to swap device (KB/s)

� io
I/O statistics report the average I/O rate to block devices:

bi Number of blocks sent to a block device (blocks/s)

bo Number of blocks received from a block device (blocks/s)

� system
System statistics report average system activity:

in Number of interrupts per second (including clock interrupts)

cs Number of context switches per second

� cpu
CPU statistics report average utilization (as a percentage) of the CPU:

us Time spent in user mode

sy Time spent in kernel mode

id Time spent idle

3.4  Illustrating Linux aggressive caching
To illustrate Linux aggressive caching, we compare the memory usage of two 
Linux guests, one running in a 64 MB virtual machine, the other in a 128 MB 
virtual machine. Each runs the Mstone workload over an eight minute interval 
(the Mstone workload is discussed in Appendix B, “Mstone workload generator” 
on page 159). In Figure 3-2 on page 31, we examine memory usage over time.

Note: Be aware that when running as a z/VM guest, the numbers reported by 
Linux utilities, such as vmstat, assume the guest owns 100% of the system 
resources. In reality, these resources are shared by all virtual machines 
running in the z/VM image. Linux resource counters report values relative to 
the virtual machine in which they operate.
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Figure 3-2   Linux memory usage in two Linux guests: 128 MB and 64 MB
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Comparing the two Linux guests, we see a similar memory usage pattern: In both 
cases, additional application memory is obtained at the expense of buffer and 
cache memory. Reducing the virtual machine size by 50% reduced average 
caching by 60%.

3.4.1  Choosing the correct virtual machine size
Figure 3-3 illustrates the effect of virtual memory size on performance.

Figure 3-3   Mstone performance for 32 MB, 64 MB, and 128 MB Linux guests
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3.5  Conclusions for sizing z/VM Linux guests
The Linux memory model has profound implications for Linux guests running 
under z/VM:

� z/VM memory is a shared resource.
Although aggressive caching reduces the likelihood of disk I/O in favor of 
memory access, the cost of caching must be considered: Cached pages in a 
Linux guest reduce the number of z/VM pages available to other z/VM guests.

� A large virtual memory address space requires more Linux kernel 
memory.
A larger virtual memory address space requires more kernel memory for 
Linux memory management.

When sizing the memory requirements for a Linux guest, choose the smallest 
memory footprint that has a minimal effect on performance. 

To reduce the penalty of occasional swapping that might occur in a smaller 
virtual machine, use fast swap devices, as discussed in Chapter 5, “Examining 
Linux swap device options” on page 47.

Important: Even though the 128 MB server does not require all that memory, 
it will eventually appear to use it all. Its memory cost is four times that of the 32 
MB server.

Tip: To determine the smallest memory footprint required, decrease the size 
of the Linux virtual machine to the point where swapping begins to occur 
under normal load conditions. At that point, slightly increase the virtual 
machine size to account for some additional load.
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Chapter 4. Tuning memory for z/VM 
Linux guests

In this chapter, we discuss tuning memory and storage for z/VM Linux guests. 
We make memory tuning recommendations and show how to use a shared Linux 
kernel to reduce memory usage. Topics include:

� Memory tuning recommendations

� Exploiting the shared kernel

4
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4.1  Memory tuning recommendations
Because storage is limited, every option should be taken to reduce storage 
requirements. To illustrate, if 100 servers each require 100 MB of memory (a 
conservative estimate), 10 GB of real storage would be required. For 500 
servers, the requirement would be 50 GB, pushing the limits of what is currently 
available. 

4.1.1  Reduce storage of idle servers
The cost of idle servers should be minimized. If the cost of an idle server is 100 
MB of real storage, any option to reduce this is important.

Apply the timer patch to Linux guests. The default Linux scheduler wakes up 100 
times per second. This does not allow idle servers to drop from queue, and VM 
will not be able to trim the working sets of the idle servers. Install the timer patch 
to reduce the storage of idle servers. The effect of the timer patch is examined in 
7.3, ”The Linux timer patch” on page 108.

4.1.2  Reduce operational machine sizes
There are several opportunities for reducing the size of operational storage:

� Eliminate unneeded processes.
This might sound intuitive, but it needs to be done. Processes such as cron 
should be eliminated when they do not perform useful functions. The impact 
of running unneeded processes is demonstrated in 7.2, ”The effect of idle 
servers on performance” on page 105.

� Divide large servers into smaller specialized servers.
Service machines can be tuned explicitly to perform a function. Linux servers 
running many applications do not have these controls and can be difficult to 
manage. Separating functions into smaller Linux guests can be done at little 
cost; this can make the servers easier to tailor.

Note: For z/VM V4.3 and earlier, Linux machines with queued direct 
input/output (QDIO) and channel-to-channel (CTC) devices (virtual as well as 
dedicated) do not drop from queue even with the timer patch applied. The PTF 
for APAR VM63282 is expected to resolve this problem. Until this PTF is 
applied, use of Inter-User Communications Vehicle (IUCV) connections is 
recommended for idle Linux guests running in a constrained environment. Be 
aware that this PTF is not a substitute for the timer patch: Without the patch, 
the PTF would be ineffective.
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� Reduce machine size.
Minimize the virtual machine size to the lowest possible amount. Choosing 
this amount requires research and testing. Because Linux will use all 
available storage, defining a smaller machine size reduces real storage 
requirements.

� Use a virtual disk for swap device.
Using a virtual disk as a swap device reduces the performance penalty of 
swapping.

4.1.3  Reduce infrastructure storage costs
Several opportunities for reducing infrastructure storage costs exist:

� Use DIAGNOSE driver for DASD and MDC record cache.
Using a record-level minidisk cache will reduce the amount of storage 
required for MDC. This requires the DIAGNOSE driver.

� Use shared storage.
Opportunities to share storage between many servers reduces real storage 
requirements by the amount of storage shared by each server. In 4.2, 
”Exploiting the shared kernel” on page 37, we show how to create a Named 
Saved System (NSS) for Linux.

4.2  Exploiting the shared kernel
We believe it is important for the scalability of Linux on z/VM to share the Linux 
kernel in NSS. However, although the ability to share the Linux kernel is part of 
the official S/390 Linux source tree, a compiled kernel that exploits this feature is 
not provided in the SuSE or Red Hat distributions.

To create a Linux NSS:

1. Compile the Linux kernel with the appropriate configuration options for NSS 
enabled.

2. Define a skeletal system data file (SDF) for the compiled kernel using the CP 
DEFSYS command.

Note: To create a Linux system that utilizes NSS support, you need to 
recompile the Linux kernel. Be aware that your distributor might not support 
systems running with a custom compiled kernel. Because this might be the 
case, NSS support should be considered experimental. Depending on the 
level of support required, this approach might not be appropriate for your 
installation.
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3. Save the NSS-enabled kernel into the SDF using the CP SAVESYS 
command.

The kernel configuration option CONFIG_SHARED_KERNEL is used to enable 
the kernel code and data in memory segments. This is necessary because the 
shared kernel code must be protected against updates from the Linux images 
that use that kernel. In S/390 architecture, protection is assigned on a segment 
basis (each segment is 1 MB in size).

As shown in the Linux memory map in Figure 4-1 on page 39, there is some 
unused address space between the R/O and R/W portions of memory.

Note: When Linux is running in dedicated memory (for example, on an Intel 
server or in a S/390 LPAR), this option would not be used; it would only waste 
some of the memory dedicated for use by that server. However, when running 
Linux in a virtual machine, there is very little cost involved with virtual memory 
that is never used. It does not have to be provided by z/VM either (the lost 
memory below 3 MB can be compensated for by giving the virtual machine 
slightly more memory).
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Figure 4-1   Linux memory map with shared kernel
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For NSS support, we need to enable the CONFIG_SHARED_KERNEL option. Using 
the make menuconfig command, this option can be enabled by selecting General 
Setup → VM shared kernel support. Example 4-1 shows the main screen with 
General Setup option.

Example 4-1   Main screen: make menuconfig

Code maturity level options  --->             
Loadable module support  --->                 
Processor type and features  --->             
General setup  --->                           
SCSI support  --->                            
Block device drivers  --->                    
Multi-device support (RAID and LVM)  --->     
Character device drivers  --->                
Network device drivers  --->                  
Miscellaneous  --->                           
Networking options  --->                      
File systems  --->                            
Kernel hacking  --->                          
---                                           
Load an Alternate Configuration File          
Save Configuration to an Alternate File       

In the General setup menu shown in Example 4-2 on page 41, select the VM 
shared kernel support option.
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Example 4-2   General setup: VM shared kernel support

[*] Fast IRQ handling                           
[*] Process warning machine checks              
[*] Use chscs for Common I/O                    
<M> QDIO support                                
[ ]    Performance statistics in /proc          
[*] Builtin IPL record support                  
(vm_reader) IPL method generated into head.S    
[*] Networking support                          
[*] System V IPC                                
[ ] BSD Process Accounting                      
[*] Sysctl support                              
<*> Kernel support for ELF binaries             
< > Kernel support for MISC binaries            
[ ] Show crashed user process info              
[*] Pseudo page fault support                   
[*] VM shared kernel support                    
[*] No HZ timer ticks in idle                   
[ ]   Idle HZ timer on by default               

One should not underestimate the cost of compiling the kernel. On a zSeries 
CPU, a complete build of the kernel may well use some 10 to 15 minutes of CPU 
time. If you worry about the cost of an idle Linux virtual machine, a trimmed down 
Linux image can run idle for more than a month on the amount of CPU cycles the 
kernel build takes.

4.2.2  Defining a skeletal system data file for the Linux NSS
We examine the generated System.map file (shown in Figure 4-1 on page 39) to 
identify the zero page, shared kernel code, and non-shared kernel data regions 
in the constructed kernel.

Important: At least with the Linux 2.4.7 kernel sources, you should run a make 
clean after you changed the CONFIG_SHARED_VM option. There appears to be a 
problem with the build process in that it does not pick up the change.
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Example 4-3   Portions of the System.map to determine NSS configuration

00000000 A _text                                1
00000298 t iplstart
00000800 T start
00010000 t startup
00010400 T _pstart
00011000 T _pend                                2 
00100000 T _stext                               3 
001000a8 t rest_init
001000fc t do_linuxrc

002d5918 A __stop___kallsyms
002d5918 A __stop___ksymtab                     4 
00300000 A _etext                               5 
00300000 d init_mmap
00300040 d init_fs
00300064 d init_files

00381700 d sockets_in_use
00381800 D softnet_data
00381900 D tcp_hashinfo
00382000 A __bss_start                          6 
00382000 b totalram_pages
00382004 b pseudo_wait_spinlock
00382008 b ext_int_pfault

We find the page range for each region based on the symbols that indicate the 
start and end of the region.

From the System.map file, we identify:

� The region extending from _text (1) to _pend (2) is the zero page area. Using 
addresses 0x00000000 and 0x00010fff, we find the page range is 0-10.

� The region extending from _stext (3) to the symbol immediately before 
_etext (__stop__ksymtab 4) is the shared kernel code. Using addresses 
0x00100000 and 0x002d5917, we find the page range is 100-2D5.

� The region extending from _etext (5) to _bss_start (6) is the non-shared 
kernel data. Using addresses 0x00300000 and 0x00381fff, we find the page 
range is 300-381.

Note: The address we use to locate the end of region is actually one byte past 
the end of the region. To compensate, we subtract one byte in the calculation. 
Because pages are 4 K in size, we calculate the page range by dropping the 
last three nibbles from the address.
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From these values, we construct the following DEFSYS command:

DEFSYS SUSE72 0-10 EW 100-2D5 SR 300-381 EW MINSIZE=24M MACHMODE XA,ESA

Parameters to the command are:

� SUSE72
The name to identify the NSS on IPL. By using different NSS names, you can 
have different versions of the kernel saved as NSS on a VM system. The IPL 
command identifies the NSS to be used by the virtual machine. Use this 
ability with care. Sharing is most efficient (both in memory and system 
administration) when many virtual machines share the same NSS.

� 0-10 EW
The page range for the zero page region. This region is copied to each virtual 
machine in “exclusive write” mode (EW).

� 100-2D5 SR
The page range for the shared kernel code. Each virtual machine uses a 
shared, read-only copy (SR).

� 300-381 EW
The page range for the private kernel data. Each virtual machine uses a 
“exclusive write” copy.

� MINSIZE=24M
The minimum virtual machine size to use the NSS (only to prevent an IPL in a 
virtual machine where it will not fit anyway).

� MACHMODE XA,ESA
The NSS can be IPLed in an XA or Enterprise Systems Architecture (ESA) 
virtual machine.

4.2.3  Saving the kernel in the Linux NSS
The NSS-enabled kernel is saved into the skeletal SDF using the SAVESYS 
command. As an example, we use the SAVELX EXEC script from the “How To 
Use VM Shared Kernel” Support page at:

http://www.vm.ibm.com/linux/linuxnss.html

We modify the script to use the DEFSYS command parameters specific to our 
kernel, as shown in Example 4-4 on page 44.

Note: The original values used for the DEFSYS command will work when 
creating the SDF. However, these values create a larger NSS than required 
(and therefore require more time to IPL).
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Example 4-4   SAVELX EXEC to save a Linux NSS

/* SAVELX EXEC */ 
/* get the system name and device to ipl */ 
parse arg lxname devnum 
lxname = strip(lxname) 
devnum = strip(devnum) 
/* figure out the line end character */ 
'pipe cp q term | var termout' 
parse var termout one myend three 
myend = strip(myend) 
/* figure out the storage size */ 'pipe cp q v stor | var storout' 
parse var storout one two storsize 
/* construct the defsys command */ 
DODEF = 'DEFSYS' lxname '0-10 EW 100-2D5 SR 300-381 EW MACHMODE XA,ESA' 
dodef = dodef 'MINSIZE=' || storsize 
say dodef 
/* define the saved system */ 
dodef 
/* arrange to stop the ipl processing at the appropriate spot, */ 
/* at which point a savesys will be issued */ 
SETSAVE = 'TRACE I R 010000 CMD SAVESYS' lxname 
setsave = setsave || myend 'TRACE END ALL' 
say setsave 
setsave 
doipl = 'i' devnum 
say doipl 
/* all set, issue the ipl */ 
doipl 
exit 

SAVELX EXEC requires two input parameters:

1. The name of the Linux NSS. In our example, we use the name SUSE72.

2. The DASD device on which the NSS-enabled kernel resides. This DASD 
device should be defined for each virtual machine using the Linux NSS.

Assuming the NSS-enabled kernel resides on virtual device 201, we save Linux 
using:

SAVELX SUSE72 201

4.2.4  Changing Linux images to use the shared kernel in NSS
To boot the Linux NSS in a virtual machine, issue the CP IPL command using the 
name of the Linux NSS. In our example, the NSS is named SUSE72:

IPL SUSE72
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Be aware that although the NSS-enabled kernel is not booted from DASD, DASD 
device numbers for virtual machines using the NSS must match the device 
numbers used when the NSS was created. For example, if the NSS-enabled 
kernel was created using a 201 disk as the root file system device, virtual 
machines using the NSS must define a 201 disk with a root Linux file system. 
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Chapter 5. Examining Linux swap 
device options

In this chapter, we examine options for setting up a Linux swap file. Topics 
include:

� Linux swapping

� Swapping with ECKD discipline

� Impact of page-cluster on MDC hit rate

� The FBA discipline

� The DIAGNOSE discipline

� Using DIAGNOSE I/O for VDISK

� Using multiple VDISKs for swapping

In 5.7, “Linux swap device recommendations” on page 72, we make some 
general recommendations for creating a Linux swap device. We note the DASD 
storage devices used are RAMAC Virtual Array (RVA) units, not newer 
generation IBM TotalStorage® Enterprise Storage Server® (ESS) units.

5
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5.1  Linux swapping
Over time, a Linux system will use all the available memory. When it does not 
need the memory to run processes, it will use all excess memory to cache data 
from disk. The most obvious way to prevent this is not to give the virtual machine 
more memory than it needs. Unfortunately, this is not always possible; memory 
requirements vary over time as processes start and stop. Consequently, the 
virtual machine will be either too big or too small.

When the virtual machine is too small for the workload, Linux will start to swap. 
Pages from other processes are moved out and are stored on the Linux swap 
disks to make room for the pages of the process that need to run. If Linux swaps 
continuously, performance will be affected (this is what in z/VM would be called 
paging). Occasional swapping is not necessarily bad; the acceptable amount of 
swapping depends on the efficiency of the swapping mechanism.

To compare the efficiency of swap device types for Linux, we ran a number of 
hogmem processes in a 32 MB virtual machine. The hogmem program is very 
simple; the listing can be found in 5.8, “Program text for hogmem” on page 73. It 
allocates the specified amount of virtual memory for the process and then 
sequentially accesses each page. When the amount of memory allocated by 
hogmem exceeds the free memory in Linux, some other things will be swapped 
out by Linux. When we run enough hogmem programs in parallel and allocate 
more virtual memory than what Linux can free up for us, constant swapping will 
occur (which is bad in real life).

With three different driver disciplines in Linux, and two different types of disks, we 
have four out of six combinations to try, as illustrated in Table 5-1.

Table 5-1   Driver disciplines for Linux swap devices

The DIAGNOSE discipline of the Linux driver uses a high-level block I/O protocol 
(DIAG 250) to have CP perform the actual I/O operations when necessary. The 
measurements will show the benefit of this protocol over the defaults chosen by 
the driver. Before we go into detail about the DIAGNOSE discipline of the driver, 
we first set the baseline for our benchmark by measuring the extended count key 
data (ECKD) and fixed block architecture (FBA) discipline.

3390 VDISK

ECKD™ Default for 3390 N/A

FBA N/A Default for VDISK

DIAGNOSE MDC benefit Efficient
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When we IPL the kernel in a 32 MB virtual machine, the output of free, as shown 
in Example 5-1, suggests that more than half of that storage should be available 
for processes.

Example 5-1   Available memory in an idle 32 MB virtual machine

             total       used       free     shared    buffers     cached
Mem:         27748      15104      12644          0        576       7952
-/+ buffers/cache:       6576      21172
Swap:       143796          0     143796

The output shows that 12644 KB is not in use. Much of the buffers and cache 
could be reclaimed by Linux when necessary, so 21172 KB is close to what we 
can obtain without causing much swapping. 

After starting a 20 MB process, we reexamine memory usage in Example 5-2.

Example 5-2   Available memory when running a single 20 MB process

             total       used       free     shared    buffers     cached
Mem:         27748      25712       2036          0         48       1480
-/+ buffers/cache:      24184       3564
Swap:       143796      17192     126604

This shows that Linux did not give up all buffers and cache but decided to move 
some things to swap instead:

� Linux obtained 10 MB from the free pool, leaving 2036 KB available to satisfy 
sudden and urgent memory requests. 

� The remaining 10 MB was obtained from buffers/cache and by memory freed 
by swapping.

As shown in Example 5-3, vmstat reports very little swapping while the process 
runs.

Example 5-3   Monitoring swap activity

   procs                      memory    swap          io     system         cpu
 r  b  w   swpd   free   buff  cache  si  so    bi    bo   in    cs  us  sy  id
 1  0  0  23668   2036     28    828   2   2     5     2    0    11  99   1   0
 1  0  0  23668   2056     28    748  13   2    24     2    0    11  99   1   0
 1  0  0  23668   2052     36    748   0   0     1     0    0    10 100   0   0
 1  0  0  23668   2052     36    748   0   0     0     0    0    10  99   0   0

To cause some swapping, we must push a bit harder. If pushed hard enough, we 
can obtain a fairly constant swap rate that can be studied with the different 
measurement tools.
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5.2  Swapping with ECKD discipline
The output in Example 5-4 shows what happens when we increase the virtual 
memory to 21 MB. Because our program walks through the allocated memory 
sequentially, we force all pages from swap into memory, and out to swap again.

Example 5-4   Pushing Linux to swap 

   procs                      memory      swap          io     system         cpu
 r  b  w   swpd   free   buff  cache  si    so    bi    bo   in    cs  us  sy  id
 1  0  1  25464   1852     68   2304 482   686   528   687    0    66  40   1  59
 0  1  1  25564   2036     32    900 1972 1813  2052  1814    0   208   5   2  93
 0  1  0  25564   1912     48   1264 1844 1962  1993  1962    0   196   5   2  93
 0  1  1  25564   1960    132   2116 1796 1998  2051  2004    0   196   4   1  94
 0  1  0  25564   1840     48   1264 2042 2055  2171  2055    0   211   4   2  94
 0  1  1  25564   1836     48   1264 1951 1898  2079  1898    0   194   4   2  94
 0  1  0  25564   2000     36   1248 1780 2038  1907  2038    0   190   4   1  95
 1  0  1  25564   2036     40   1388 2070 1955  2218  1955    0   202   4   1  95
 0  1  0  25564   1828     48   1244 1750 2102  1879  2102    0   189   5   2  93
 0  1  0  25564   1696     36   1116 1810 1946  1932  1946    0   194   4   1  94

In Example 5-4, we note:

� Swap rate averages slightly less than 2 MB/s.
Swap rate is reported in columns si (memory swapped in from disk) and so 
(memory swapped out to disk). These values are reported in terms of the 
number of 1 KB blocks transferred.

� CPU utilization drops significantly once swapping begins.
CPU idle time (as reported in the id column) increases to 95% from its 
previous value of 0%. This is not because the process suddenly became 
more efficient; the process is simply suspended after a page fault.

Using only 5% of the CPU cycles in the previous example, we conclude that only 
5% as much work is accomplished: Throughput is reduced to 5% or less due to 
swapping.

Based on Linux measurements, we cannot determine if the 3 to 4 MB/s swap rate 
is high; instead, we use z/VM measurements to make that determination. 
Example 5-5 on page 51 shows the z/VM I/O rate attributed to the Linux guest.
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Example 5-5   Effect of MDC on Linux swapping

Screen: ESAUSR3  ITSO                           ESAMON V3.3  02/17 17:20-17:28 
1 of 2  User Resource Utilization - Part 2      USER RMHTUX02        2064 C0ECB
                                                                               
                         DASD MDisk Virt Cache I/O    <---Virtual Device---->
         UserID    DASD Block Cache Disk   Hit Prty   <----I/O Requests----->
Time     /Class     I/O   I/O  Hits  I/O   Pct Queued  Cons   U/R  CTCA Other
-------- -------- ----- ----- ----- ---- -----  ----- ----- ----- ----- -----
17:28:00 RMHTUX02  2884     0    73    0   2.5      0     0     0     0     0
17:27:00 RMHTUX02  2811     0    89    0   3.2      0     0     0     0     0
17:26:00 RMHTUX02  2825     0    66    0   2.3      0     0     0     0     0
17:25:00 RMHTUX02  2660     0   322    0  12.1      0     0     0     0     0
17:24:00 RMHTUX02  2646     0   495    0  18.7      0     0     0     0     0
17:23:00 RMHTUX02  3022     0   579    0  19.2      0     0     0     0     0
17:22:00 RMHTUX02  3040     0   537    0  17.7      0     0     0     0     0
17:21:00 RMHTUX02  3137     0   673    0  21.5      0     0     0     0     0

In Example 5-5, we note:

� The 4 MB/s swap rate translates to approximately 50 I/Os per second.
The DASD I/O rate is the total number of reads and writes. Therefore, the 4 
MB/s swap rate from Example 5-4 on page 50 translates to some 3000 I/Os 
per minute, or 50 I/Os per second (from the 17:22 to 17:23 interval). 

� Some 20% of swapping initially comes from the MDC.
Example 5-5 illustrates what happens when MDC is disabled for the swap 
device. We see the MDC hit ratio drop from 20% to just 2% (be aware that 
more recent intervals are shown toward the top of the listing). The 2% ratio 
can be attributed to the hits against the root file system that resides on a 
minidisk allocated on the same volume.

It might be somewhat surprising that MDC is not more effective in this case, even 
though only 21 MB of data is involved. When allocating pages on the swap disk, 
Linux tries to minimize seek distances. The effect for this workload is that the 
area of active pages sweeps over the total swap device. So from a cache 
point-of-view, the entire 140 MB of swap space is involved. 

Tip: It is normally not wise to allocate the swap device of the Linux virtual 
machine on the same volume that holds the data of that same virtual 
machine. If you allocate them on different volumes, you spread the I/O and 
can exploit multiple paths to the DASD controller.
 Chapter 5. Examining Linux swap device options 51



However, the VM MDC is a write-through cache. For write operations:

� If a track or block that exists in the cache is updated, the cache copy is first 
updated. The underlying storage media is then written before the I/O 
operation is declared complete. 

� If the data to be written is eligible for MDC, but does not currently exist in the 
cache, the data is written to the underlying storage media but is not added to 
the cache.

Data is only added the cache when it is read from disk, not written to disk. In this 
test, swapping does not reference the same page twice (a page is swapped in to 
update its content from disk, a new page is then swapped out). Any benefit 
derived from the MDC is due to the fact that the MDC is set for full track caching; 
an entire track is read from disk when even a single block is requested. For this 
case, swap pages that exist in the MDC were added when a page on the same 
track was swapped in.

Now that we have determined how much z/VM I/O can be attributed to the Linux 
guest, we next look at the device to determine how much more throughput is 
possible. Example 5-6 shows the I/O measurements for the logical volume 
containing the swap device. 

Example 5-6   Linux guest swapping though ECKD discipline of the driver

Screen: ESADSD2A ITSO                           ESAMON V3.3  02/17 17:10-17:13 
1 of 3  DASD Performance Analysis - Part 1      DEVICE 3752          2064 C0ECB
                                                                               
                                                                               
          Dev        Device %Dev <SSCH/sec-> <-----Response times (ms)--->     
Time      No. Serial Type   Busy   avg  peak  Resp  Serv  Pend  Disc  Conn     
-------- *--- ------ ------ ---- *---- ----- ----- ----- ----- ----- -----     
17:13:00 3752 LNXU4R 3390-3 94.1  50.6  50.6  18.6  18.6   0.2   1.2  17.2     
17:12:00 3752 LNXU4R 3390-3 95.9  51.0  51.0  18.8  18.8   0.2   1.3  17.4     
17:11:00 3752 LNXU4R 3390-3 95.5  50.5  50.5  19.3  18.9   0.3   1.3  17.3     

We see the same 50 I/O operations per second as noted in Example 5-5 on 
page 51; it appears there is little competition for the volume from other users. 
This I/O rate has driven the DASD to 95% utilization; there is little chance of 
driving it harder this way.

Note: As discussed in 3.1.2, “Linux swap space” on page 23, we recommend 
disabling MDC for Linux swap devices.
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5.2.1  Effect of the number of processes on Linux swapping
To get a better understanding of the relationship between the I/O rate and MDC 
hit ratio observed in Example 5-5 on page 51, we design another experiment. 
Once again, we use the hogmem program to stress Linux memory management. 
For this experiment, we run three tests:

Test 1 x 21 MB One hogmem process, using 21 MB of memory

Test 3 x 7 MB Three hogmem processes, each using 7 MB of memory

Test 21 x 1 MB Twenty-one hogmem processes, each using 1 MB of 
memory

For each test, we use a 200-cylinder disk used with the ECKD driver as a swap 
device. Table 5-2 shows some of the disk I/O characteristics for our three 
swapping experiments. 

Table 5-2   Disk I/O metrics for the three tests

One of the interesting differences is the reduced disk response time. Because 
the device utilization is close to 100%, there is a direct relation to the I/O rate as 
well. When we look at the Linux swap rate, there is no direct relation (if anything, 
the amount of data swapped by Linux decreases a bit where the I/O rate is 
almost four times higher). The first conclusion must be that the “size” of each 
DASD I/O in the Test 21 x 1 case apparently is less than of the Test 1 x 21.

Note: For a proper correlation of the I/O reported for the user and the device, 
your favorite performance monitor might offer an option to do seek analysis. 
This analysis can show the device I/O by minidisk. In our case, we use a 
simplistic test with little activity by other users; this makes it easy to draw 
conclusions.

Test 1 x 21 MB Test 3 x 7 MB Test 21 x 1 MB

Linux swap-in (KB/s) 1960 1927 1868

Linux swap-out (KB/s) 1940 1892 1605

DASD I/O rate (SSCH/s) 52.8 76.0 196

MDC hit ratio (%) 22.3 23.7 38.6

Device utilization (%) 95.1 99.5 99.2

Device response time (ms) 18.6 14.7 7.6
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Fortunately, VM provides options to study the I/O in more detail. During each 
test, we take a short I/O trace using the TRACE IO 200 CCW PRINTER 
command. This trace shows details for each I/O operation. The first part of one 
“channel program” generated by Linux is shown in Example 5-7. 

Example 5-7   Output of the TRACE IO command

-> 0020BDC0' SSCH  B2333000    004C1694    CC 0    SCH 0004    DEV 0200 
            CPA 00C68A90   PARM 004C1614    KEY 0  FPI C0  LPM F0        
VDEV 0200 CCW 63400010 00C68A70                                          
CCW    00C68A90  63400010 00C68A70   0000  63400010 ........             
 EXTENT                  80CC0000 00000000 00220009 0022000A             
CCW    00C68A98  47400010 00C68A80   0008  47400010 ........             
 LOCATE RECORD           0180000C 00220009 00210009 043B1000             
CCW    00C68AA0  85401000 00741000   0010  85441000 ........             
 IDAL                                      780A1000                      
 IDAL                                      780A1800                      
CCW    00C68AA8  85401000 0115C000   0018  85441000 ........             
 IDAL                                      429D2000                      
 IDAL                                      429D2800                      
CCW    00C68AB0  85401000 01D76000   0020  85441000 ........             
 IDAL                                      342D2000                      
 IDAL                                      342D2800 

Each channel program starts with a “define extent” and “locate record” channel 
command word (CCW). These two define the area on DASD where data is read 
or written. One CCW for each consecutive block read or written follows; the more 
blocks read or written in a single I/O, the longer the channel program gets.

For each test, we capture 50,000 records of trace information and use a set of 
CMS Pipelines filters to analyze the data. The easiest way to analyze the data is 
to compute average channel program length and the read/write ratio. These 
values are shown in Table 5-2 on page 53. 

Table 5-3   Start subchannel (SSCH) count and read/write ratio

When we look at Table 5-3, we see that, for example, the length of write channel 
programs changes much more than the length of read channel programs. This 
means the average length does not help us a lot.

Test case Channel programs Blocks

Read Write Read/write Read Write Read/write

Test 1 x 21 MB 562 119 4.7 7300 6666 1.1

Test 3 x 7 MB 708 267 2.6 6799 6595 1.0

Test 21 x 1 MB 1277 786 1.6 5933 5326 1.1
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From the same VM I/O traces, we can obtain even more detailed statistics, as 
shown in the graphs in Figure 5-1 on page 55.

Figure 5-1   Distribution of channel program length
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For the Test 1 x 21 test case, we see that swap-in typically is done either as 
single page I/O or with 16 pages in one I/O. For swap-out, the single page is 
popular, but more than half of the channel programs is for more than 16 pages 
(up to 128 pages per I/O).

With three processes running, we see more of the swap-in I/O gets shorter, and 
the peak at 16 pages per I/O for read starts to shrink. 

Another increase in the number of processes drastically changes the picture. 
With 21 processes, there are hardly any swap-in I/Os of 16 pages. Both read and 
write channel programs have been reduced to less than 8 pages.

Looking at the length of the channel programs, we can also explain the increased 
MDC hit ratio, as reported in Table 5-2 on page 53. The VM minidisk cache was 
configured in so called “full track mode,” which means that MDC reads the full 
track from disk when the virtual machine wants to read something from the track. 
Subsequent reads for data from that same track can then be satisfied from MDC. 
Because the Linux dasd driver has no knowledge about the 3390 track geometry 
(or rather, chooses to ignore that information) the Linux I/O is not aligned on 
tracks (as z/OS normally does). On average, MDC will, therefore, read half a 
track of data more on each read that Linux does. With the short channel 
programs, it will frequently happen that the next read can completely be satisfied 
from the excess data read with the previous I/O by MDC. This counts as an MDC 
hit. The shorter the channel programs, the higher the MDC hit rate.

With the I/O trace from Example 5-7 on page 54, we can also determine which 
disk blocks are read and written. The difference in reference pattern is very 
obvious from the graphs in Figure 5-2 on page 57.
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Figure 5-2   Swap device reference patterns
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The first graphs clearly show that activity “sweeps” over the device. When a 
block must be read from disk, there is little choice, but when a new block is 
written to disk, Linux can pick any free spot on disk (with swapping to disk, every 
block written is a new block). That new spot is allocated in a way that increases 
the chances for Linux to write and read many consecutive blocks in a single I/O. 
To minimize seek times, the algorithm apparently prefers to write blocks close to 
where the last block was read (and where the “arm” is currently positioned). For 
the first two reference graphs, there is still a pattern visible.

The last graph in Figure 5-2 on page 57 looks rather chaotic. This is probably 
caused by the high number of parallel processes that all cause pages to be 
swapped out and in. With such a high degree of multiprogramming, the allocation 
strategy that Linux uses does not make it likely that blocks are read in the same 
order as they were written.

On modern S/390 DASD, the seek times are not much of an issue anymore. This 
makes the allocation strategy that Linux uses counter productive. Because the 
dasd driver uses SSCH to do the I/O, MDC is unable to decide whether data in 
cache remains valid. MDC, therefore, invalidates the tracks that are affected by 
the write CCWs. So by writing on the same tracks as where the read activity is 
happening, MDC is made less efficient.

5.2.2  Impact of page-cluster on MDC hit rate
The page-cluster value determines how many additional pages Linux will swap in 
on a page fault (under the assumption the process will want the next pages as 
well). Page-clustering is controlled by the /proc/sys/vm/page-cluster 
pseudo-variable.

In Example 5-8 on page 59, we illustrate the effect of page-clustering. Before 
starting the test, page-cluster size is set to one:

# echo 1 > /proc/sys/vm/page-cluster

Between 19:19:00 and 19:20:00, the page-cluster size is set to four (its default 
value):

# echo 4 > /proc/sys/vm/page-cluster

Note: Swap activity as reported by vmstat showed no change during this 
period.
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Example 5-8   Changed page-cluster size and MDC hit rate

Screen: ESAUSR3  ITSO                           ESAMON V3.3  02/17 19:15-19:21 
1 of 2  User Resource Utilization - Part 2      USER RMHTUX02        2064 C0ECB
                                                                               
                         DASD MDisk Virt Cache I/O    <---Virtual Device---->  
         UserID    DASD Block Cache Disk   Hit Prty   <----I/O Requests----->  
Time     /Class     I/O   I/O  Hits  I/O   Pct Queued  Cons   U/R  CTCA Other  
-------- -------- ----- ----- ----- ---- -----  ----- ----- ----- ----- -----  
19:21:00 RMHTUX02  7809     0  3792    0  48.6      0     0     0     0     0  
19:20:00 RMHTUX02  7822     0  3770    0  48.2      0     3     0     0     0  
19:19:00 RMHTUX02 16199     0 10018    0  61.8      0     0     0     0     0  
19:18:00 RMHTUX02 15935     0  9881    0  62.0      0     0     0     0     0  
19:17:00 RMHTUX02 15737     0  9937    0  63.1      0     0     0     0     0  
19:16:00 RMHTUX02 16400     0 10245    0  62.5      0     0     0     0     0  

We note in Example 5-8:

� A higher DASD I/O rate and corresponding MDC cache hit ratio in the interval 
19:16:00 to 19:19:00. The page-clustering value in this interval is set to 1.

� The DASD I/O rate and MDC hit ratio decrease dramatically at 19:20:00. 
Beginning in this interval, the page-clustering value is returned to its default 
value of 4.

This test shows:

� When the page-cluster value is small, Linux does many short I/Os. 

� Entire tracks are read into the MDC, not simply pages.
The higher MDC hit ratio indicates that fetching an entire track from DASD 
anticipates subsequent I/O access to that DASD device.

5.3  The FBA discipline
Many people today suggest to use z/VM Virtual Disk (VDISK) as the swap device 
for Linux virtual machines. A VDISK is presented to the virtual machine as a fixed 
block architecture (FBA) DASD device (a virtual device of type 9336). Under the 
covers, the VDISK is an address space that lives in the z/VM main memory. The 
virtual machine issues I/O instructions against the device, and CP implements 
this by moving data between the virtual machine’s primary address space and 
the VDISK address space.
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5.3.1  Advantages of a VDISK swap device
The advantages of VDISK are that a very large swap area can be defined with 
very little expense. The VDISK is not allocated until the Linux server actually 
attempts to swap. Figure 5-3 illustrates the effect a 100 MB VDISK has on 
memory paging.

Figure 5-3   Paging with a 100 MB VDISK

The actual page cost of the VDISK amounted to 86 pages, of which 50 were 
paged out. When it was needed, more was allocated. This is much different than 
allocating a 100 MB real disk. Another large advantage of the virtual disk is that 
when the virtual disk is used, it becomes paged in and becomes a very fast “data 
in storage” type device.

Note: Ideally, one would expect that a real disk together with MDC could 
achieve the same effect. As shown in 5.2, “Swapping with ECKD discipline” on 
page 50, it does not work like that. MDC is a “write-through” cache, and the 
virtual I/O operation does not complete before the data is written to the real 
disk. Also, the data written to disk is not yet copied into MDC. Hence, MDC is 
only effective when data is read the second time after writing it.

Screen: ESAVDSK  Velocity Software, Inc.        ESAMON V2.2  03/15 12:14-
                                            <--pages-->  DASD    X-
                                            Resi- Lock-  Page Store
Time     Owner    Space Name                dent    ed  Slots  Blks
-------- -------- ------------------------  ----- ----- ----- -----
12:15:01 LINUX001 VDISK$LINUX001$0202$0009     36     0    50     0
12:16:01 LINUX001 VDISK$LINUX001$0202$0009     36     0    50     0
12:17:01 LINUX001 VDISK$LINUX001$0202$0009    173     0    50     0
12:18:01 LINUX001 VDISK$LINUX001$0202$0009    293     0    35     0
12:19:01 LINUX001 VDISK$LINUX001$0202$0009    293     0    35     0
…..
12:39:01 LINUX001 VDISK$LINUX001$0202$0009    259     0    35     0
12:40:01 LINUX001 VDISK$LINUX001$0202$0009    259     0    35     0
12:41:01 LINUX001 VDISK$LINUX001$0202$0009    207     0    86     0
12:42:01 LINUX001 VDISK$LINUX001$0202$0009    207     0    86     0
12:43:01 LINUX001 VDISK$LINUX001$0202$0009     13     0   280     0
12:44:01 LINUX001 VDISK$LINUX001$0202$0009     13     0   280     0
12:45:01 LINUX001 VDISK$LINUX001$0202$0009     13     0   280     0
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5.3.2  Enabling an FBA VDISK
Because a VDISK appears as an FBA device to Linux, the dasd driver uses the 
“FBA discipline” by default for both SuSE and Red Hat distributions. When 
booting Linux with a 64 MB VDISK, the console messages in Example 5-9 show 
the FBA discipline is registered for the device.

Example 5-9   Booting Linux with FBA discipline

dasd(fba):FBA  discipline initializing
dasd(fba):0207 on sch 4: 9336/10(CU:6310/80) 64MB at(512 B/blk)
dasdh:(nonl)/        : dasdh dasdh1
dasd(fba):We are interested in: Dev 9336/00 @ CU 6310/00
dasd(fba):We are interested in: Dev 3370/00 @ CU 3880/00
dasd:Registered FBA discipline successfully

Just as with the ECKD swap device, the VDISK must be initialized with the 
mkswap command before the swapon command can use the device. Because the 
contents of the VDISK are not preserved after logoff of the virtual machine (the 
data on VDISK is volatile), the mkswap command must be issued each time you 
start the virtual machine. 

There are at a few different ways to do this:

� Modify the init scripts in your Linux system to run the mkswap command early 
in the boot process. The disk can then be picked up automatically by the 
swapon command when Linux processes the /etc/fstab file. The swapon 
command can be issued manually if required.

� First IPL CMS in the Linux guest, and then use CMS tools to initialize the 
VDISK. This enables Linux to see the VDISK as a swap device just as if a 
mkswap command was already issued. If you need to use CMS to couple 
virtual channel-to-channels (CTCs), this may be a good option.

� Use some other virtual machine to link to all the VDISKs so that CP will retain 
them after the Linux guest is logged off. You still need some process to 
initialize the disks after a z/VM IPL. This approach is probably not very 
attractive because it will cause CP to retain more VDISKs than you need and 
put an additional burden on the paging subsystem.

The choice for initializing the disk in Linux or in CMS probably depends on the 
skills available and whether you are willing to change things in Linux. Neither the 
SuSE nor the Red Hat installers currently use VDISK as the swap device, but if 
you prepare the disk on CMS in advance, Linux will pick it up automatically.
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5.3.3  Swapping with FBA discipline
For the FBA VDISK, we did the same experiment as with the ECKD swap disk. 
Three hogmem processes were running, each allocating 7 MB of virtual storage 
(and we had to add one more for 1 MB to push it harder). Example 5-10 shows 
the reported swap rate from vmstat.

Example 5-10   The vmstat output of swapping to FBA disk

S vmstat 60|timestamp
18:49:00    procs                      memory      swap          io     system         cpu
          r  b  w   swpd   free   buff  cache   si   so    bi    bo   in    cs  us  sy  id
18:52:59 18  0  6  27260   1020     60    724 3889 4981  4057  4981    0   653  82  18   0
18:53:59 13  0 11  27228   2036     64    772 3802 4868  3970  4868    0   633  82  18   0
18:54:59 16  0  8  27228   1200     64    740 3713 4802  3868  4802    0   621  82  18   0
18:55:59 17  0  7  27228   1332     64    888 3719 4703  3874  4703    0   676  82  18   0
18:57:00 14  0 10  27236   1796     60    724 3741 4798  3900  4798    0   633  82  18   0
18:58:00 18  0  7  27232   1660     84    816 3635 4732  3786  4732    0   668  82  18   0
18:59:00 25  0  2  28316   1164     92   1264 4767 5422  4987  5424    0   833  79  21   0

We note the higher swap rate achieved for an FBA swap device in Example 5-10 
compared to the corresponding swap rate for an ECKD swap device in 
Example 5-4 on page 50. The results are summarized in Table 5-4.

Table 5-4   Comparing swap rates for ECKD and FBA swap devices

The higher rate for FBA is expected. There is no physical device; instead, 
swapping occurs to z/VM memory. 

Because no real device is involved, we can not look at device utilization. 
However, we can look at VDISK I/O rates, as shown in Example 5-11 on page 63. 

Note: Writing to the raw VDISK in CMS requires serious programming. We 
show in 5.4.2, “Swapping with DIAGNOSE discipline” on page 65 that the 
Linux dasd driver picks up a CMS RESERVEd disk as well. Such a disk can be 
handled with normal CMS utilities. The RSRVDISK EXEC, shown is 5.9, 
“Initializing a VDISK using CMS tools” on page 74, is an example of a script to 
initialize a VDISK.

ECKD swap device FBA swap device

Swap-in rate 1.5 MB/s 4 MB/s

Swap-out rate 1.8 MB/s 5 MB/s
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Example 5-11   VDISK I/O rate while swapping (FBA discipline)

Screen: ESAUSR3  ITSO                           ESAMON V3.3  02/22 18:43-18:59 
1 of 2  User Resource Utilization - Part 2      USER rmhtux02        2064 C0ECB
                                                                               
                         DASD MDisk Virt Cache I/O    <---Virtual Device---->  
         UserID    DASD Block Cache Disk   Hit Prty   <----I/O Requests----->  
Time     /Class     I/O   I/O  Hits  I/O   Pct Queued  Cons   U/R  CTCA Other  
-------- -------- ----- ----- ----- ---- -----  ----- ----- ----- ----- -----  
18:59:00 RMHTUX02 80388     0   837  79K   1.0      0     0     0     0     0  
18:58:00 RMHTUX02 64389     0   622  63K   1.0      0     0     0     0     0  
18:57:00 RMHTUX02 62614     0   534  62K   0.9      0     0     0     0     0  
18:56:00 RMHTUX02 60930     0   487  60K   0.8      0     0     0     0     0  
18:55:00 RMHTUX02 62138     0   474  61K   0.8      0     0     0     0     0  
18:54:00 RMHTUX02 60323     0   532  59K   0.9      0     0     0     0     0  
18:53:00 RMHTUX02 60866     0   518  60K   0.9      0     0     0     0     0  
18:52:00 RMHTUX02 59806     0   443  59K   0.7      0     0     0     0     0 

As explained in Example 5-5 on page 51, VDISK dose not use MDC. The 
reported MDC hits, therefore, apply to I/O other than the swap device (for 
example, to the root file system device). These I/O operations account for the 
difference in the DASD I/O and Virt Disk I/O columns. 

The reported VDISK I/O rate during the period of approximately 75 K per minute 
(1250 I/Os per second) translates to some 7 KB data transferred per I/O 
operation. 

Because of the rather short channel programs, the overhead of the swapping is 
rather high. This shows in the number of dispatches per second reported in 
Example 5-12 on page 64.
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Example 5-12   Number of dispatches while swapping

Screen: ESAPLDV  ITSO                           ESAMON V3.3  02/22 18:55-19:00 
1 of 2  Processor Local Dispatch Vector Activ   CPU ALL  USER rmhtux 2064 C0ECB
                                                                               
         <----Users----->   Tran       <VMDBK Moves/sec>   Dispatcher          
Time     Logged Actv In Q   /sec  CPU  Steals  To Master   Long Paths          
-------- ------ ---- *---  -----   --  ------  ---------   ----------          
19:00:00    148  127 77.0  136.6   01   868.8        0.0       5230.4          
                                   00     0.0        1.0       2590.9          
18:59:00    148  127 70.0  135.7   01  1093.0        0.0       5419.6          
                                   00     0.0        1.9       2121.2          
18:58:00    148  125 75.0  146.5   01   654.0        0.0       3632.7          
                                   00     0.0        1.2       3487.0          
18:57:00    148  127 76.0  139.2   01   303.8        0.0       2162.3          
                                   00     0.0        0.1       4949.6          
18:56:00    148  125 76.0  134.2   01   501.2        0.0       2720.3          
                                   00     0.0        0.7       4384.0          

5.4  The DIAGNOSE discipline
As shown in Table 5-1 on page 48, by default, the Linux dasd driver uses the 
ECKD and FBA disciplines. In the past, the DIAGNOSE discipline had some 
bugs, and its use was not encouraged. The kernels shipped by SuSE and Red 
Hat, therefore, do not have the DIAGNOSE discipline built-in the kernel.

5.4.1  Using DIAGNOSE I/O for 3390 DASD
In Example 5-13 on page 65, we show how to enable the DIAGNOSE discipline 
for a swap device.

Restriction: For the Linux 2.4.7 kernel, the patches published on the IBM 
developerWorks® Linux for zSeries and S/390 home page are required to 
make the DIAGNOSE discipline work:

http://www-124.ibm.com/developerworks/oss/linux390/index.shtml
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Example 5-13   Persuading Linux to use the DIAGNOSE discipline for the swap disk

S cat /proc/dasd/devices
0200(ECKD) at ( 94:  0) is dasda:active at blocksize: 4096, 36000 blocks, 140 MB
0201(ECKD) at ( 94:  4) is dasdb:active at blocksize: 4096, 180000 blocks, 703 MB
0202(none) at ( 94:  8) is dasdc:unknown                                                    1 
0203(none) at ( 94: 12) is dasdd:unknown
$ echo set 200 off > /proc/dasd/devices                                                     2 
$ modprobe dasd_diag_mod                                                                    3 
$ cat /proc/dasd/devices
0200(DIAG) at ( 94:  0) is dasda:active at blocksize: 4096, 36000 blocks, 140 MB
0201(ECKD) at ( 94:  4) is dasdb:active at blocksize: 4096, 180000 blocks, 703 MB
0202(none) at ( 94:  8) is dasdc:unknown                                                    4 
0203(none) at ( 94: 12) is dasdd:unknown

The process involves:

1. The 0200 disk is initially under control of the ECKD discipline of the dasd 
driver. Before starting the Linux system, this disk was formatted with CMS 
and RESERVEd.

2. The echo command instructs the dasd driver to stop using the device.

3. The DIAGNOSE discipline module (dasd_diag_mod.o) is loaded.

4. As part of its initialization, the DIAGNOSE driver looks for any disks it can 
handle. Because the 0200 disk was removed from the ECKD driver in step 2, 
the DIAGNOSE driver finds the disk immediately on initialization. 

After loading the DIAGNOSE discipline module, the 0200 disk is under the 
control of the DIAGNOSE discipline, as seen in Example 5-14.

Example 5-14   Console messages when loading the DIAGNOSE discipline module

debug: unregistering dasda                                   
dasd(diag):DIAG discipline initializing                      
dasd(diag):/dev/dasda (0200): capacity (4kB blks): 144000kB  
dasda:CMS1/  SW0200(MDSK): dasda dasda1                     

5.4.2  Swapping with DIAGNOSE discipline
As with the other experiments, we also drive this system with three processes 
that allocate 7 MB each.
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Example 5-15   Swapping three processes to disk using the DIAGNOSE discipline

14:40:54    procs                      memory      swap          io     system         cpu
14:40:54  r  b  w   swpd   free   buff  cache    si  so    bi    bo   in    cs  us  sy  id
14:40:54  3  0  2  25808   2036     60    736 2961 3015  3166  3017    0   206  94   6   0
14:41:54  2  1  2  25808   2036     64    784 2940 3112  3124  3112    0   203  94   6   0
14:42:54  3  0  1  25808   2036     64    928 3114 3136  3300  3136    0   207  94   7   0
14:43:54  3  0  1  25808   2036     68    748 3114 3127  3298  3127    0   209  94   6   0
14:44:54  3  0  1  25808   2036     80   1092 2982 3087  3165  3087    0   202  93   7   0
14:45:55  3  0  1  25808   1992     72    784 2962 3100  3183  3101    0   208  93   7   0
14:46:55  4  1  1  25808   2016     60    776 1848 2531  2004  2531    0   150  94   6   0
14:47:55  3  0  1  25808   2036     60    724 3102 3129  3288  3130    0   210  93   7   0
14:48:56  2  1  1  25808   2036     64    852 3068 3099  3249  3099    0   207  94   6   0
14:49:56  3  0  1  25808   2036     68    864 3001 3086  3179  3086    0   203  94   6   0
14:50:56  2  1  1  25808   2036     60    724 3059 3155  3279  3157    0   210  93   7   0

The reason we achieve a higher swap rate than when using the ECKD discipline 
can be contributed mainly to the MDC hit rate observed in Example 5-16.

Example 5-16   MDC hit rate with three processes: Diagnose discipline

Screen: ESAUSR3  ITSO                           ESAMON V3.3  02/24 14:40-14:51 
1 of 2  User Resource Utilization - Part 2      USER rmhtux02        2064 C0ECB
                                                                               
                         DASD MDisk Virt Cache I/O    <---Virtual Device---->  
         UserID    DASD Block Cache Disk   Hit Prty   <----I/O Requests----->  
Time     /Class     I/O   I/O  Hits  I/O   Pct Queued  Cons   U/R  CTCA Other  
-------- -------- ----- ----- ----- ---- -----  ----- ----- ----- ----- -----  
14:51:00 RMHTUX02  8547  2850  5796    0  67.8      0     0     0     0     0  
14:50:00 RMHTUX02  8229  2787  5571    0  67.7      0     0     0     0     0  
14:49:00 RMHTUX02  8274  2694  5702    0  68.9      0     0     0     0     0  
14:48:00 RMHTUX02  8391  2802  5721    0  68.2      0     0     0     0     0  
14:47:00 RMHTUX02  6469  2783  3805    0  58.8      0     0     0     0     0  
14:46:00 RMHTUX02  8464  2844  5727    0  67.7      0     0     0     0     0  
14:45:00 RMHTUX02  8110  2744  5489    0  67.7      0     0     0     0     0  
14:44:00 RMHTUX02  8453  2709  5868    0  69.4      0     0     0     0     0  
14:43:00 RMHTUX02  8199  2661  5665    0  69.1      0     0     0     0     0  
14:42:00 RMHTUX02  8210  2791  5543    0  67.5      0     0     0     0     0  
14:41:00 RMHTUX02  8483  2769  5814    0  68.5      0     0     0     0     0  

Even with the higher MDC hit ratio, the device is still fully utilized, as shown in 
Example 5-17 on page 67.
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Example 5-17   Device utilization when swapping using the DIAGNOSE discipline

Screen: ESADSD6A ITSO                           ESAMON V3.3  02/24 14:40-14:51 
1 of 3  DASD Performance Analysis - Part 2      DEVICE 3752          2064 C0ECB
                                                                               
                                                                               
          Dev        Device %Dev  SSCH  Resp  Serv <-Seek--> Read  Access      
Time      No. Serial Type   Busy  /sec  Time  Time  Avg Non0  Pct Density      
-------- ---- ------ ------ ---- ----- ----- ----- ---- ---- ---- -------      
14:51:00 3752 LNXU4R 3390-3 85.0  49.1  18.7  17.3    0   23  0.0   17.31      
14:50:00 3752 LNXU4R 3390-3 84.0  47.2  17.8  17.8    0    7  0.0   16.64      
14:49:00 3752 LNXU4R 3390-3 82.2  45.0  20.1  18.3    0    7  0.0   15.84      
14:48:00 3752 LNXU4R 3390-3 81.8  46.8  18.2  17.5    0    7  0.0   16.47      
14:47:00 3752 LNXU4R 3390-3 68.8  47.2  14.6  14.6    0    7  0.0   16.63      
14:46:00 3752 LNXU4R 3390-3 84.0  48.5  19.1  17.3    0   17  0.0   17.07      
14:45:00 3752 LNXU4R 3390-3 81.9  45.8  18.6  17.9    0    6  0.0   16.16      
14:44:00 3752 LNXU4R 3390-3 82.3  45.2  18.2  18.2    0    7  0.0   15.91      
14:43:00 3752 LNXU4R 3390-3 84.0  45.2  20.4  18.6    0    7  0.0   15.92      
14:42:00 3752 LNXU4R 3390-3 81.7  46.6  17.9  17.5    0    8  0.0   16.41      
14:41:00 3752 LNXU4R 3390-3 83.5  47.3  18.7  17.6    0   15  0.0   16.67      

5.5  Using DIAGNOSE I/O for VDISK
The other option we have is use the DIAGNOSE discipline for a VDISK. After 
some debugging and reading the source code of the driver, we found that the 
DIAGNOSE discipline will only handle a VDISK when the CMS FORMAT is done 
with a block size of 512 bytes.

In Example 5-18 on page 68, we see the console messages when loading a 
device under the DIAGNOSE discipline.

Note: An effect that is not apparent from the proceeding example is the 
interactive response of the system. It is very bad. When typing a command, 
the echo of the input often takes seconds to show.

Note: Formatting with a 512 byte block size is not the default for the CMS 
FORMAT command. The small block size creates a lot of administrative 
overhead for the CMS file system. Using a small block size is not an obvious 
way to increase throughput.
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Example 5-18   Console messages when loading DIAGNOSE discipline for VDISK

dasd:/proc/dasd/devices: 'set 207 on'                      
dasd(diag):/dev/dasdh (0207): capacity (0kB blks): 65536kB 
dasdh:CMS1/  SWP207(MDSK): dasdh dasdh1                   

5.5.1  Enabling DIAGNOSE I/O for VDISK
In Example 5-19, we show how to enable DIAGNOSE I/O for a VDISK.

Example 5-19   Persuading Linux to use DIAGNOSE discipline for VDISK

$ cat /proc/dasd/devices
0200(DIAG) at ( 94:  0) is dasda:active at blocksize: 4096, 36000 blocks, 140 MB
0201(ECKD) at ( 94:  4) is dasdb:active at blocksize: 4096, 180000 blocks, 703 MB
0202(none) at ( 94:  8) is dasdc:unknown
0203(none) at ( 94: 12) is dasdd:unknown
0204(none) at ( 94: 16) is dasde:unknown
0205(ECKD) at ( 94: 20) is dasdf:active at blocksize: 4096, 5400 blocks, 21 MB
0206(none) at ( 94: 24) is dasdg:unknown
0207(DIAG) at ( 94: 28) is dasdh:active at blocksize: 512, 131072 blocks, 64 MB             1 
01cd(none) at ( 94: 32) is dasdi:unknown
$ mkswap /dev/dasdh1                                                                        2 
Setting up swapspace version 1, size = 66539520 bytes
$ swapon /dev/dasdh1                                                                        3 
$ swapoff /dev/dasda1                                                                       4 

The process involves:

1. We verify the 0207 disk is using the DIAGNOSE discipline.

2. The mkswap command writes the “swap signature” to the swap device.

3. The swapon command adds the device to the list of swap devices, thus 
enabling Linux to use the device.

4. Finally, the swapoff command removes the original swap device (disk 0200) 
from the list of active swap devices. This command can take a moment to 
complete as Linux migrates swapped pages from this device to the active 
/dev/dasdh1 device.

5.5.2  Swapping with DIAGNOSE I/O for VDISK
With the VDISK controlled by the DIAGNOSE discipline of the driver, we seem to 
be able to get a much higher swap rate. However, we need to run more 
processes in order to stress Linux memory management enough to show this. 
We examine the swap rate in Example 5-20 on page 69.
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Example 5-20   Swapping to VDISK through the DIAGNOSE discipline

r# vmstat 60|timestamp
19:54:00    procs                      memory        swap          io     system         cpu
19:54:00  r  b  w   swpd   free   buff  cache    si    so    bi    bo   in    cs  us  sy  id
19:54:00  1  0  0      0  16016    220   4472  1193  1158  1332  1159    0   256  44   3  53
19:55:00 18  0  3  25052   1720     44    720   330   501   413   505    0    65  85   2  13
19:56:00 18  0  7  25252   1712    112   1340   355   553   442   553    0    47  98   2   0
19:57:00 19  0  5  27228   1836     52    836  4458  5145  4698  5148    0   732  85  15   0
19:58:01 11  0 17  31624   1092     48    636 10278  8970 10631  8975    0  2010  74  26   0
19:59:01 12  0 18  31620   1028     56    752 10695  9449 10893  9449    0  2137  72  28   0
20:00:01  7  0 26  34328   2036    128   1764 12991 11472 13325 11478    0  2839  64  35   1
20:01:01 10  0 24  35952   1424     56    704 14398 12797 14701 12804    0  3311  60  39   1
20:02:01 10  0 25  38160   1072     52    580 18392 16289 18738 16292    0  4484  52  47   1
20:03:01 17  1 21  42468   1028     52    768 20113 17807 20461 17811    0  5089  47  52   1
20:04:01  7  0 40  51224   1020     32    572 26647 19170 27186 19177    0  6639  41  57   1
20:05:01  3  0 52  60040   1020     36    812 36314 18666 37115 18673    0  8729  35  63   2
20:06:01  4  0 50  60112   1016     32    724 43553 17260 44090 17262    0 10124  32  67   2

In Example 5-21 on page 70, we compare the VDISK swapping through the FBA 
driver to swapping through the DIAGNOSE driver. 

Note: This experiment shows a significantly higher swap-in rate than swap-out 
rate. On a stable system, one might expect each swap-out to be followed by a 
corresponding swap-in (and thus show equal rates). We believe the observed 
effect is due to multiple pages being brought in on a page fault, as discussed 
in 5.2.2, “Impact of page-cluster on MDC hit rate” on page 58. 

When contention is high enough, many of the swap-in pages are stolen by 
other processes before the requesting process can access them. Because the 
swap-in pages are fresh (they have not yet been modified), they are excellent 
candidates to be stolen by Linux.
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Example 5-21   Comparing FBA and DIAGNOSE discipline VDISK I/O rates

Screen: ESAUSR3  ITSO                           ESAMON V3.3  02/22 19:54-20:07
1 of 2  User Resource Utilization - Part 2      USER RMHTUX02        2064 C0ECB
                                                                              
                         DASD MDisk Virt Cache I/O    <---Virtual Device----> 
         UserID    DASD Block Cache Disk   Hit Prty   <----I/O Requests----->  
Time     /Class     I/O   I/O  Hits  I/O   Pct Queued  Cons   U/R  CTCA Other 
-------- -------- ----- ----- ----- ---- -----  ----- ----- ----- ----- ----- 
20:05:00 RMHTUX02  2717     0  2604 239K  95.8      0     0     0     0     0 
20:04:00 RMHTUX02  2133     0  2032 273K  95.3      0     0     0     0     0 
20:03:00 RMHTUX02  1763     0  1704 278K  96.7      0     0     0     0     0 

Screen: ESAUSR3  ITSO                           ESAMON V3.3  02/22 18:43-18:59
1 of 2  User Resource Utilization - Part 2      USER rmhtux02        2064 C0ECB
                                                                               
                         DASD MDisk Virt Cache I/O    <---Virtual Device----> 
         UserID    DASD Block Cache Disk   Hit Prty   <----I/O Requests-----> 
Time     /Class     I/O   I/O  Hits  I/O   Pct Queued  Cons   U/R  CTCA Other  
-------- -------- ----- ----- ----- ---- -----  ----- ----- ----- ----- -----  
18:59:00 RMHTUX02 80388     0   837  79K   1.0      0     0     0     0     0  
18:58:00 RMHTUX02 64389     0   622  63K   1.0      0     0     0     0     0  
18:57:00 RMHTUX02 62614     0   534  62K   0.9      0     0     0     0     0 

Note the dramatic differences reported in Virt Disk I/O (273 K for DIAGNOSE 
versus 63 K for FBA). The difference in DASD I/O is accounted for by the fact that 
VDISK I/O when using FBA is counted as DASD I/O. When using DIAGNOSE 
however, VDISK I/O is not counted as DASD I/O; the reported numbers are the 
result of other I/O performed against the root device (memory contention causes 
portions of code such as libraries to be dropped from memory and later loaded 
back from disk).

Even though swapping to VDISK does not involve real disks, it is not free. Each 
page swapped by Linux must be copied by CP from the primary address space 
of the Linux virtual machine into the VDISK address space. CPU utilization 
reported in Example 5-22 on page 71 shows a large portion of the CPU cycles 
for the virtual machine are spent by CP on behalf of the user (the T/V ratio is high 
with 1.5). 

Note: The top half of Example 5-21 shows VDISK I/O rates using the 
DIAGNOSE driver; the bottom half reports I/O rates using the FBA driver 
(copied from Example 5-11 on page 63 and shown here for clarity).

I/O rate using 
DIAGNOSE 
driver

I/O rate using 
FBA driver
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Example 5-22   A high T/V ratio during heavy swapping to VDISK

Screen: ESAUSR2  ITSO                           ESAMON V3.3  02/22 20:00-20:08 
1 of 3  User Resource Utilization               USER rmhtux02        2064 C0ECB
                                                                               
                  <---CPU time--> <--------Main Storage (pages)--------->      
         UserID   <(seconds)> T:V <Resident>  Lock <-----WSS----->             
Time     /Class   Total  Virt Rat Total Activ  -ed Total Actv  Avg Resrvd      
-------- -------- ----- ----- --- ----- ----- ---- ----- ---- ---- ------      
20:08:00 RMHTUX02 59.78 38.57 1.5  6611  6611    8  6611 6611 6611      0      
20:07:00 RMHTUX02 59.31 38.88 1.5  6611  6611    5  6611 6611 6611      0      
20:06:00 RMHTUX02 59.66 39.64 1.5  6611  6611    0  6611 6611 6611      0      
20:05:00 RMHTUX02 59.69 40.83 1.5  6611  6611    0  6611 6611 6611      0      
20:04:00 RMHTUX02 59.60 42.78 1.4  6611  6611    0  6611 6611 6611      0      
20:03:00 RMHTUX02 59.69 44.81 1.3  6611  6611    0  6611 6611 6611      0      
20:02:00 RMHTUX02 59.76 46.22 1.3  6611  6611    0  6611 6611 6611      0      
20:01:00 RMHTUX02 58.97 48.35 1.2  6611  6611    0  6611 6611 6611      0      

Again, what the numbers do not show is the interactive behavior of the system. 
Unlike the other configurations, we find that with the DIAGNOSE discipline of the 
dasd driver swapping to VDISK, the interactive response continues to be good. 
Even with the system swapping at 40 MB/s, the interactive response is good 
enough to be editing a file without getting annoyed.

5.6  Using multiple VDISKs for swapping
Some recommendations for swapping involve the use of multiple swap partitions. 
When multiple swap partitions with the same priority are used, Linux will 
effectively spread the I/O over multiple disks and can achieve a higher I/O rate. 
When using VDISKs however, this does not apply. There is very little queueing 
for the VDISK, and any further increase of swapping is unlikely to provide any 
benefit.

There is, however, a good case for using multiple swap disk devices with 
different priorities. If multiple swap devices with different priority are available, 
Linux will attempt to fill the one with highest priority before using the next device. 
The algorithms for allocating pages on swap devices in Linux cause the active 
area to “sweep” over the device (this reduces seek times on the device and 
increases the ability of Linux to build long I/O chains). 

This means that over time the entire swap device has been referenced. In the 
case of VDISK, this means that CP has to provide memory for the entire VDISK, 
even though the Linux virtual machine might only need a small portion of the 
VDISK at any given time. If memory contention is high enough, the contents of 
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the VDISK will be paged out by CP and must be brought back in when Linux next 
references that part of the VDISK.

If we give the Linux virtual machine two smaller VDISKs instead of one big 
VDISK and use them as swap device with different priorities, the “footprint” is 
effectively reduced by 50%.

5.7  Linux swap device recommendations
Excessive swapping in Linux is costly in both consumed CPU cycles and in 
response time. The best strategy is to reduce the amount of swapping that 
occurs in a Linux guest. Some general guidelines are:

� Size the Linux virtual machine to reduce the amount of Linux swapping.
The optimum virtual machine size is a trade-off between reducing overall 
z/VM memory usage and reducing swapping in a Linux guest. As discussed 
in 3.5, “Conclusions for sizing z/VM Linux guests” on page 33, reduce the 
virtual machine size of Linux guest to the point where swapping begins under 
normal load, and then add an additional amount to minimize Linux swapping.

� The amount of swap space to allocate depends on the memory 
requirements of your Linux guest.
The suggestion that swap space should be twice the memory size of a Linux 
machine should not apply to a z/VM Linux guest. If a Linux guest actually 
uses this much swap space, it probably indicates a larger virtual machine size 
should be allocated to the guest.

� Do not enable MDC on Linux swap minidisks.
As stated in 3.1.2, “Linux swap space” on page 23, the read ratio is not high 
enough to overcome the write overhead.

� Swapping to VDISK is faster than swapping to DASD.
In addition, when using a VDISK swap device, your z/VM performance 
management product can report swapping by a Linux guest. Be aware, 
however, that a VDISK is not recommended for z/VM memory-constrained 
systems, as discussed in 2.4.3, “VDISKs” on page 18.

� The DIAGNOSE driver provides faster VDISK access than the default 
FBA driver.
Although DIAGNOSE discipline is faster, it requires more work to setup. 
Consider using the DIAGNOSE discipline you are comfortable with the 
additional effort to manage it.
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� Consider multiple swap devices rather than a single, large VDISK swap 
device.
Using multiple swap devices with different priorities can alleviate stress on the 
VM paging system when compared to a single, large VDISK. As discussed in 
5.6, “Using multiple VDISKs for swapping” on page 71, a VDISK combined 
with a DASD swap device can provide a small, fast swap option (the VDISK) 
with spillover to a larger, slower DASD swap device.

5.8  Program text for hogmem
With hogmem, it is easy to run processes that allocate and use virtual memory. 
We use this to compare efficiency of the different swap devices in Linux. The 
program is shown in Example 5-23.

Example 5-23   Listing of hogmem.c

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <limits.h>
#include <signal.h>
#include <time.h>
#include <sys/times.h>

#define MB (1024 * 1024)

int nr, intsize, i, t;
clock_t st;
struct tms dummy;

void intr(int intnum)
{
    clock_t et = times(&dummy);

    printf("\nMemory speed: %.2f MB/sec\n", (2 * t * CLK_TCK * nr + (double) i 
* CLK_TCK * intsize / MB) / (et - st));
    exit(EXIT_SUCCESS);
}

int main(int argc, char **argv)
{
    int max, nr_times, *area, c;

    setbuf(stdout, 0);
    signal(SIGINT, intr);
    signal(SIGTERM, intr);
    intsize = sizeof(int);
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    if (argc < 2 || argc > 3) {
        fprintf(stderr, "Usage: hogmem <MB> [times]\n");
        exit(EXIT_FAILURE);
    }
    nr = atoi(argv[1]);
    if (argc == 3)
        nr_times = atoi(argv[2]);
    else
        nr_times = INT_MAX;
    area = malloc(nr * MB);
    max = nr * MB / intsize;
    st = times(&dummy);
    for (c = 0; c < nr_times; c++)
    {
        for (i = 0; i < max; i++)
            area[i]++;
        t++;
        putchar('.');
    }
    i = 0;
    intr(0);
    /* notreached */
    exit(EXIT_SUCCESS);
}

The program also reports a “memory bandwidth” in MB/s, but it should be clear 
that this has little value for Linux in a virtual machine.

5.9  Initializing a VDISK using CMS tools
The RSRVDISK EXEC, shown in Example 5-24 on page 75, can be used to 
initialize a VDISK in CMS before starting Linux. This is only sample code to 
illustrate what needs to be done. You should customize this script and call it from 
PROFILE EXEC.
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Example 5-24   RSRVDISK EXEC: Make a VDISK into CMS RESERVEd 

/* RSRVDISK EXEC     Format and Reserve a fresh VDISK                */
arg cuu .                                                                  
if cuu = '' then signal usage                                              
                                                                           
'PIPE (end \)',                                                            
  '\ command QUERY DISK',                                                  
  '| drop',                                                                
  '| spec 13 1',                      /* All used filemodes          */    
  '| strliteral /ABCDEFGHIJKLMNOPQRSTUVWXYZ/',                             
  '| fblock 1',                                                            
  '| sort',                                                                
  '| unique single',                                                       
  '| take 1',                                                              
  '| append strliteral /*/',          /* A default                   */    
  '| var fm'                                                               
                                                                           
if fm = '*' then call emsg 36, 'No free filemode found'                    
cuu = right(cuu,4,0)                                                       
                                                                           
queue '1'                                                             
queue 'SW'cuu                                                         
'FORMAT' cuu fm '( BLK 4K'                                            
queue '1'                                                             
'RESERVE' userid() 'SWAP'cuu fm                                       
'RELEASE' fm                                                          
                                                                      
return                                                                
                                                                      
emsg:                                                                 
  parse arg rc, txt                                                   
  say txt                                                             
  if rc ¬= 0 then exit rc                                             
return                                                                
                                                                      
usage: say 'SWAPDISK cuu'                                             

After running the program, start Linux and initialize the disk with the mkswap 
command. This does not undo the CMS formatting, but only causes Linux to 
write some blocks in the “payload” of the disk (the single CMS file created on the 
disk). Then, without running the swapon command, shut down the Linux guest 
and IPL CMS again. Example 5-25 on page 76 shows how to copy the modified 
blocks.
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Example 5-25   Copying the modified blocks from the RESERVEd disk

list * * K (date                                                                
FILENAME FILETYPE FM FORMAT LRECL       RECS     BLOCKS   DATE     TIME         
RMHTUX02 SWAP0207 K6 F       4096      16360      16360  2/21/03  5:21:36       
Ready; T=0.01/0.01 05:28:46                                                     
pipe diskrandom rmhtux02 swap0207 k number 1-16360 | strip trailing 00 | locate 
11 | > sample swap0207 a | chop 10 | cons 
         1                                                                      
Ready; T=1.39/1.59 05:30:10                                                     

The PIPE command in Example 5-25 creates a small file on the A disk to hold 
the modified blocks (and it shows only a single block was modified). This file can 
be used to prepare a fresh VDISK again:

list * * c                                                             
RMHTUX02 SWAP0207 C6                                                   
Ready; T=0.01/0.01 05:47:57                                            
pipe < sample swap0207 | pad 4106 00 | fileupdate rmhtux02 swap0207 c6 
Ready; T=0.01/0.01 05:48:18                                            

To Linux, that new VDISK, now looks just like the one that was prepared with the 
mkswap command before. If you would take the time to study the contents of the 
SAMPLE SWAP0207 file, you will find that it is easy to create the contents from 
scratch and even make it work for VDISKs of any size.

Tip: A similar process can be used if you want VDISK to hold temporary files 
for Linux. In this case, run the mke2fs command instead of the mkswap 
command against the device before you copy the payload from it. If 
necessary, you can also create directories (and even files) to have the disk in 
the correct state for when Linux boots.
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Chapter 6. CPU resources and the z/VM 
scheduler

In this chapter, we cover CPU resources and the z/VM scheduler. Topics include:

� Understanding LPAR weights and options

� The CP scheduler

� Virtual machine scheduling

� CP scheduler controls

� Analysis of the SET SRM LDUBUF control

� Virtual Machine Resource Manager

6

© Copyright IBM Corp. 2003. All rights reserved. 77



6.1  Understanding LPAR weights and options
There are two current trends:

� One is to consolidate multiple slower processors to much faster z/900s.

� The other is to separate workloads through the use of LPAR mode to avoid 
issues with the 2 GB line. 

This section should clarify some of the configuration options.

Example 6-1 shows a logical partition (LPAR) report. Because z/VM often 
operates in multiple LPAR environments, understanding LPAR options and their 
impacts on performance will help you configure your systems to meet your 
business requirements.

Example 6-1   LPAR report

Report: ESALPAR  Logical Partition Analysis       ITSO Residency ESAMAP 3.3.0 
Monitor initialized: on 2064 serial C0ECB First record analyzed: 01/30/03
--------------------------------------------------------------------------
         <--Complex--> <--Logical-> <--------Logical Processor---------->
         Phys Dispatch <-Partition> VCPU <%Assigned>          Cap-  Wait
Time     CPUs    Slice Name     No. Addr Total  Ovhd  Weight  ped   Comp 
-------- ---- -------- -------- --- ---- -----  ----  ------  ----  ---- 
18:00:00   13  Dynamic A12       12    0  22.3   0.4      10    No    No 
                                       1  35.7   0.4      10    No    No 
                                          ----  ---- 
                                    LPAR  58.0   0.8                   
                       A1         1    0   5.3   0.5     180    No    No
                                       1   5.3   0.5     180    No    No
                                         -----  ----
                                    LPAR  10.6   0.9                   
                       A2         2    0   5.2   0.5      10    No    No
                                       1   5.2   0.5      10    No    No
                                         -----  ----
                                   LPAR  10.5   0.9                   
                       A3         3    0   5.3   0.5     180    No    No
                                       1   5.3   0.5     180    No    No
                                         -----  ----
                                    LPAR  10.6   0.9                   
                       A4         4    0   1.5   0.2      10    No    No
                                       1   0.3   0.0      10    No    No
                                         -----  ----
                                    LPAR   1.8   0.2                   
                       A5         5    0   3.2   0.3      10    No    No
                                       1   3.0   0.3      10    No    No
                                       2   2.9   0.3      10    No    No
                                       3   2.8   0.3      10    No    No
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                                         -----  ----
                                    LPAR  11.8   1.2                   
                       A6         6    0   5.1   0.5      10    No    No
                                       1   5.2   0.5      10    No    No
                                         -----  ----
                                    LPAR  10.3   0.9                   
                       A7         7    0   9.2   0.5      10    No    No
                                       1   9.0   0.5      10    No    No
                                         -----  ----
                                    LPAR  18.3   1.0                   
                       A8         8    0   4.6   0.5      10    No    No
                                       1   4.8   0.5      10    No    No
                                         -----  ----
                                    LPAR   9.4   0.9                   
                       A9         9    0   4.5   0.5      10    No    No
                                       1   4.6   0.5      10    No    No
                                         -----  ----
                                    LPAR   9.1   0.9                   
                       A10       10    0   4.5   0.5      10    No    No
                                       1   4.5   0.5      10    No    No
                                         -----  ----
                                    LPAR   9.0   1.0                   
                       A11       11    0   5.7   0.5     180    No    No
                                       1   5.7   0.5     180    No    No
                                         -----  ----
                                    LPAR  11.4   0.9                   
                       C1        13    0 100.0   0.0     Ded    No   Yes
                                       1 100.0   0.0     Ded    No   Yes
                                         -----  ----
                                    LPAR 200.0   0.0                   
                       C2        14    0 100.0   0.0     Ded    No   Yes
                                       1 100.0   0.0     Ded    No   Yes
                                          -----  ----
                                    LPAR 200.0   0.0                   
                       C3        15    0 100.0   0.0     Ded    No   Yes
                                       1 100.0   0.0     Ded    No   Yes
                                         -----  ----
                                    LPAR 200.0   0.1   
            
System total logical partition busy:     770.7  10.8

In Example 6-1, the z/VM LPAR (A12) is listed first in the report. The report 
shows what z/VM considers its processor utilization to be. Assigned time is the 
time that a physical processor is assigned to a logical one. LPARs are prioritized 
by weights, which are explained in 6.1.2, “Converting weights to logical processor 
speed” on page 81.
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All of the assigned times and utilizations shown in this report are in absolute 
numbers (as are the numbers reported in both ESAMAP and ESAMON), 
meaning these values are percentages of one processor. There is never a case 
of a reported “percent of a percent,” where one of the “percents” is not provided. 
Therefore, the VM LPAR is shown as using 58% of a possible 200% (two 
processors).

Other values reported for the A12 LPAR include:

� Dispatch Slice (set to Dynamic)
� Capped (set to No)
� Wait completion (set to No)

These are discussed further in 6.1.4, “LPAR options” on page 82.

There are two forms of overhead reported: logical and physical. Logical 
overhead can be charged to the LPAR, whereas physical overhead can not. 
There is a correlation between the number of logical processors defined and the 
amount of physical overhead involved in time slicing the physical processor 
between the logical processors: The more logical processors, the higher the 
overhead.

This example should be almost a worst case example. In this example, the 
logical overhead was 10.8% of one processor, but the physical overhead, as 
shown in the next section, was 39.9%.

6.1.1  Physical LPAR overhead 
The overhead of managing the physical processors from Example 6-1 on 
page 78 is shown in Example 6-2 (the data comes from the same report as 
Example 6-1 on page 78). 

Example 6-2   LPAR physical overhead

 Physical CPU Management time: 
       CPU   Percent  
       ---   -------  
         0     6.815
         1     4.968
         2     5.000
         3     6.735
         4     4.874
         5     6.513

Note: These reports show only standard processors (CPs); Integrated Facility 
for Linux (IFL) and Internal Coupling Facility (ICF) processors are not shown.
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         6     4.920
         9     0.007
        10     0.007
        11     0.007
        12     0.008
        13     0.007
        14     0.007
             _______
    Total:    39.870

From the report, we see there are seven shared physical processors (0-6); each 
with an overhead in the 5-6% range. The six dedicated processors (9-14) have 
less overhead. However, this does not imply processors should be dedicated to 
LPARs to reduce overhead. In this case, high overhead is caused by the large 
number of logical processors vying for time on the physical processors.

6.1.2  Converting weights to logical processor speed
An LPAR is granted control of processors based on time slices. Each LPAR gets 
time slices based on the weighting factor for the LPAR. To determine the weight 
of each logical processor, use the following calculation: 

1. Add up all the weights of the logical processors.
In Example 6-1 on page 78, there are 12 LPARs (A1-A11) sharing seven 
logical processors (0-6) based on weighting. Of the 12, three have a weighted 
share of 180 (LPARs A1, A3, and A11). The remainder have a weighted share 
of 10. Therefore, the total weight is 630.

2. Divide the weight of the “interesting LPAR” into the total.
This is the “logical share” of the physical complex allocated to the “interesting 
LPAR.” LPAR A12 running z/VM has a weight of 10. Dividing this by the total 
shares (630) yields a 1.6% share of the seven shared processors.

3. Divide the number of logical processors of the LPAR into the “logical 
share.”
This is the share of each logical processor that is directly relative to the 
maximum speed at which a logical processor will operate if capped. Thus, 
1.6% of seven processors is equivalent to about 10% of one processor 
( ). Divide this into the two logical processors used by our VM 
system in LPAR A12, and each processor would be allocated 5% of one 
processor.

Note: To reduce physical overhead, use fewer LPARs and fewer logical 
processors.

1.6 7× 11.2=
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With dynamic timeslicing, the LPAR weight is a guaranteed minimum, not a 
maximum allocation CPU resource. If all LPARs use their allotted share, this 
would be the amount of processing that could be performed. Normally (and in 
this case), very few of the LPARs had any activity. Thus, the A12 LPAR could get 
as much as 90% of each logical engine in its assigned time.

6.1.3  LPAR analysis example
For example, if the weight of an LPAR is 10, and the total weights of all LPARs is 
1000, then the LPAR is allocated 1% of the system. If the system consists of 10 
processors, the LPAR is allocated 10% of one physical processor. If the LPAR 
has two logical processors, each logical processor is allocated 5% of a physical 
processor. Thus, increasing the number of logical processors in a complex will 
decrease the relative speed of each logical processor in an LPAR.

6.1.4  LPAR options
LPAR shares can be defined as capped, meaning that their share of the physical 
system is capped to their given share. Given the situation of 1% allocated, this 
would be a very small amount of resource. If not capped, unused CPU resources 
are available to any LPAR that can utilize the resource based on given weights. 
Capped shares should never be used except in installations where a financial 
agreement exists to provide a specific speed of processor.

The time slice is either specific or dynamic. Specific time slices are rarely if ever 
used. The impact of having a specific time slice will likely mean erratic 
responsiveness from the processor subsystem. There does not seem to be any 
useful reason for using specific time slices.

Wait completion defines whether or not LPARs will either give up the processor 
when there is no remaining work, or keep it for the remaining time slice. With wait 
completion enabled, an LPAR will voluntarily relinquish the processor when its 
work is completed. This option may be useful for LPARs running as dedicated 
partitions.

Note: This calculation is always applicable, even when the LPAR runs at less 
than 100% capacity. If an LPAR does not use its allocation, the extra CPU 
cycles are reallocated based on existing weights defined to other uncapped 
LPARs requesting more CPU. However, capped LPARs cannot acquire more 
CPU cycles than their assigned weight, even if those cycles are available.
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6.1.5  Shared versus dedicated processors 
When there are multiple physical processors on a system to be utilized by many 
different logical partitions, there is the option of dedicating processors to an 
LPAR. In general, this is only used for two reasons:

� For benchmarks to reduce questionable impacts from other workloads.

� When the workload is steady enough to utilize the processors, and there are 
sufficient resources to justify dedicated processors.

To justify the cost of zSeries implementations, the objective should always be 
high utilization. High utilization leverages the value of the reliability, availability, 
and serviceability of the zSeries systems. Other platforms rarely operate at high 
utilizations. Dedicating physical resources such as processors to one LPAR has 
the potential for reducing the overall system utilization. Reducing system 
utilization reduces zSeries effectiveness and increases the cost per unit of work.

6.2  The CP scheduler
The CP scheduler function attempts to keep as many of the logged-on virtual 
machines as possible operating concurrently. It takes into account the availability 
of processing time, paging resources, and real storage (as compared to virtual 
machine requirements).

The CP scheduler uses two time slices in determining how long a virtual machine 
competes for access to the processor:

� Elapsed time slice
Virtual machines compete for use of the processor for the duration of the 
elapsed time slice. 

� Dispatch time slice
During its elapsed time slice, a virtual machine can only control the processor 
for a duration of its dispatch time slice. This is often referred to as the minor 
time slice.

When the dispatch time slice for a virtual machine expires, the scheduler 
readjusts its priority relative to other virtual machines competing for the 
processor. When its elapsed time slice expires, the scheduler drops the virtual 
machine from the set competing for the processor; the scheduler then attempts 
to add a virtual machine eligible for processor resources into the competing set.

Important: When running benchmarks, always use dedicated processors to 
reduce the impact of other workloads on the results.
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6.2.1  Transaction classification
For dispatching and scheduling, virtual machines are classified according to their 
transaction characteristics and resource requirements:

� Class 1
These virtual machines are designated as interactive tasks. 

� Class 2
These virtual machines are designated as non-interactive tasks.

� Class 3
These virtual machines are designated as resource-intensive tasks. 

A special class designation for virtual machines that require immediate access to 
processor resources. This class is referred to as Class 0.

For processor scheduling, started virtual machines reside on one of three lists:

� Dormant list

� Eligible list

� Dispatch list

6.2.2  The dormant list
The dormant list contains virtual machines with no immediate tasks that require 
processor servicing. As virtual machines require processor resources, they move 
to the eligible list.

6.2.3  The eligible list
The eligible list consists of virtual machines not currently being considered for 
dispatching due a system resource constraint (such as paging or storage). 
Virtual machines are kept in the eligible list when demand for system resource 
exceeds what is currently available. Virtual machines on the eligible list are 
classified according to their anticipated workloads requirements:

� E1
E1 refers to Class 1 virtual machines expected to perform short transactions. 
Upon entering the eligible list for the first time, virtual machines are classified 
E1.

� E2
E2 refers to Class 2 virtual machines expected to perform medium-length 
transactions. These virtual machines dropped to the eligible list after 
spending at least one elapsed time slice in E1 without completing processing.
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� E3
E3 refers to Class 3 virtual machines expected to perform long running 
transactions. E3 virtual machines spent at least two elapsed time slices on 
the eligible list without completing processing (at least one in E1 and one in 
E2).

Class 0 virtual machines do not wait in the eligible list for processor resources. 
Instead, they move immediately to the dispatch list. These are classified as E0 
virtual machines. We discuss E0 virtual machines in 6.4.2, “The CP QUICKDSP 
option” on page 94.

As processor resources become available, virtual machines are moved from the 
eligible list to the dispatch list. Classification on the eligible list influences the 
priority and elapsed time slice assigned to virtual machines when they move to 
the dispatch list. Priorities assigned to virtual machines are intended to:

� Slow down virtual machines that are resource intensive in favor of virtual 
machines that require less resources.

� Ensure virtual machines receive a designated portion of the processor (see 
6.4.3, “The CP SET SHARE command” on page 94).

� Control the amount and type of service based on virtual machine 
classification (E1, E2, or E3).

How the scheduler calculates priorities is discussed in 6.3.3, “Entering the 
dispatch list” on page 87.

6.2.4  The dispatch list
Virtual machines contending for processor time are placed on the dispatch list. 
Entries higher on this list are more likely to receive processor time. Virtual 
machines in the dispatch list retain the transaction classification assigned while 
waiting in the eligible list. Transaction classifications on the dispatch list are 
referred to as Q1, Q2, Q3, and Q0 (analogous to the E1, E2, E3, and E0 
classification on the eligible list).

6.3  Virtual machine scheduling
Figure 6-1 illustrates the state transitions involved in scheduling a virtual 
machine.

Note: E0 virtual machines on the eligible list are included in the count of Q0 
virtual machines displayed by the CP INDICATE LOAD command.
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Figure 6-1   CP scheduling: State transitions

6.3.1  Entering the dormant list
On logon, virtual machines are initially placed on the dormant list. Upon 
completing a transaction, virtual machines enter the dormant list from the 
dispatch list. 

Definition: Figure 6-1 shows VM definition blocks on the dispatch and eligible 
lists. VM definition blocks represent virtual processors allocated to a virtual 
machine. By default, every virtual machine has at least one definition block 
(the base). Definition blocks are discussed in 6.3.4, “Scheduling virtual 
processors” on page 88.
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A virtual machine can enter the dormant list from the dispatch if its elapsed time 
slice has expired and it is waiting for a resource (such as a demand page-in). 
When processor time is required, virtual machines are moved to the eligible list.

6.3.2  Entering the eligible list
On entry to the eligible list from the dormant list, virtual machines are normally 
classified as E1 (E0 virtual machines move directly to the dispatch list). Virtual 
machines can enter the eligible list from the dispatch list if they did not complete 
processing in their elapsed time slice. In this case, an E1 virtual machine drops 
to E2; E2 virtual machines drop to the E3; E3 virtual machines remain in E3.

6.3.3  Entering the dispatch list
In order to move from the eligible list to the dispatch list, a virtual machine must 
pass three tests:

� Storage test
The virtual machine’s working set must fit in real storage. We discuss this in 
“The STORBUF control” on page 90.

� Paging test
If the user is a loading user, there must be room in the loading user buffer. 
Loading users are discussed in “The LDUBUF control” on page 90.

� Processor test
There must be room in the dispatch buffer. The dispatch buffer size is 
discussed in “The DSPBUF control” on page 89.

A virtual machine on the dispatch list remains there for the duration of its elapsed 
elapsed time slice. Elapsed time slices are assigned to virtual machines as they 
enter the eligible list and are based on their transaction class.

CP assigns a initial elapsed time slice value of 1.2 seconds for E1 virtual 
machines during initialization. This value is dynamically adjusted during system 
operation: 

� As the number of virtual machines that complete processing in E1 increases, 
the size of the E1 elapsed time slice decreases.

� As the number of E2 virtual machines increases, the size of the E1 elapsed 
time slice increases.

� If the number of E1 virtual machines drops below a threshold, and the number 
of E3 virtual machines increases above a threshold, the size of the E1 
elapsed time slice increases.
 Chapter 6. CPU resources and the z/VM scheduler 87



The E1 elapsed time slice will always be a value between 50 ms and 16 seconds. 
E0, E2, and E3 elapsed time slices are assigned values 6, 8, and 48 times larger 
respectively than the E1 time slice. 

The dispatch time slice is computed at CP initialization. Its value can be queried 
using the QUERY SRM DSPSLICE command.

While on the dispatch list, a virtual machine runs for its designated elapsed time 
slice. If processing has not completed in that period, it is moved to back to the 
eligible queue (with a lower workload classification if not already in the E3 
queue).

6.3.4  Scheduling virtual processors
Additional VM definition blocks are created for each virtual processor defined to a 
virtual machine. These additional are linked to their respective base definition 
block. Both the base and any additional definition blocks cycle through the three 
scheduler lists. The base definition block owns the virtual storage and most 
virtual resources for the virtual machine. As the base and additional definition 
blocks move through the lists, the base is always in a list at least as high as any 
of its linked definition blocks.

This ensures the resource requirements of the virtual machine as a whole are 
considered when scheduling a VM definition block. However, processor time 
consumed by any additional definition blocks is measured independently of the 
base. This value is used when scheduling that block while on the dispatch list.

To illustrate, consider a virtual machine with two virtual processors (and two VM 
corresponding definition blocks), both of which start in the dormant list. If the 
additional definition block becomes dispatchable, both definition blocks (the base 
and the additional) move to the eligible list. After waiting in the eligible list, both 
definition blocks again move to the dispatch list and are given the same priority. 
As the additional definition block consumes resources however, its intermediate 
dispatch priority is calculated independently from the base block definition. We 
discuss virtual processors in more detail in 7.6, “Performance effect of virtual 
processors” on page 120.

Note: The hierarchy of lists is defined as (highest to lowest):

1. Dispatch list
2. Eligible list
3. Dormant list
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6.3.5  z/VM scheduling and the Linux timer patch
Linux servers that run a timer to do some small amount of work every 10 ms 
break the z/VM scheduler model. With the 10 ms timer interrupt, CP classifies a 
Linux virtual machine as a long-running task and assigns it to Q3. 

Using the “on-demand” timer patch available from the IBM developerWorks site 
corrects this situation. With this patch applied, Linux virtual machines are 
dispatched less frequently and are less resource intensive. This can reduce the 
number of Q3 servers competing for resources. Reducing the concurrent number 
of tasks competing for resources reduces the contention felt by the shorter tasks. 
We examine this effect in 7.3, “The Linux timer patch” on page 108.

6.4  CP scheduler controls
The CP scheduler can be influenced using two general types of controls:

� SRM controls globally influence the overall processor resources.

� Local controls influence how an individual virtual machine is regarded by the 
scheduler.

6.4.1  Global SRM controls
Overall z/VM processor resources can be tuned using the CP SET SRM 
command.

The DSPBUF control
The CP SET SRM DSPBUF command controls the number of users in the 
dispatch list. It permits you to overcommit or under-commit processor and I/O 
device resources. The command format is:

SET SRM DSPBUF i j k

Where:

i Specifies the number of dispatch list slots available for E1, E2, and 
E3 users.

j Specifies the number of dispatch list slots available for E2 and E3 
users.

k Specifies the number of dispatch list slots available for E3 users.

Note: Valid operand ranges are .32767 i j k 1≥ ≥ ≥ ≥
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For example:

SET SRM DSPBUF 35 30 18

This command allocates 35 slots on the dispatch list:

� Five are guaranteed to E1 users ( ).

� 30 are available to E2 and E3 users, 12 of which ( ) are guaranteed not 
to be occupied by E3 users.

� 18 are available to E3 users (although these may be occupied by E1 and E2 
users).

The LDUBUF control
The CP SET SRM LDUBUF command partitions the commitment of the system’s 
paging resources.

The command format is:

SET SRM LDUBUF i j k

Where:

i Specifies the percentage of system paging resources available to E1, 
E2, and E3 users.

j Specifies the percentage of system paging resources available to E2 
and E3 users.

k Specifies the percentage of system paging resources available to E3 
users.

The STORBUF control
The CP SET SRM STORBUF command partitions the commitment of real 
storage in terms of pages based on the transaction class (E1, E2, E3) of a user. 
This command enables you to overcommit or under-commit real storage. 

Important: The DSPBUF control is a risky knob! We do not recommend 
making adjustments to this control.

Definition: LDUBUF stands for loading user buffer. A loading user is a heavy 
user of paging resources and is expected to have a high paging rate. A loading 
user is defined as a user that takes five page faults within one time slice of 
work. Because a time slice is relatively very small, any user that takes five 
page faults within that time is totally consuming the equivalent of one paging 
device. Use the INDICATE QUEUES EXP command to display the current 
loading users.

35 30–

30 18–
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The command format is:

SET SRM STORBUF i j k

Where:

i Specifies the maximum percentage of system storage available to 
E1, E2, and E3 users.

j Specifies the maximum percentage of system storage available to E2 
and E3 users.

k Specifies the maximum percentage of system storage available to E3 
users.

Performance gains might be realized by overcommitting real storage when 
expanded storage is available. When you overcommit storage this way, a virtual 
machine’s working set is still computed as before, but the apparent real storage 
available to virtual machines who want to enter the dispatch list appears larger. 
Therefore, more virtual machines are allowed into the dispatch list. This might 
result in higher paging rates, but often the benefit of reducing the eligible list and 
moving users into the dispatch list will offset this increase.

The CP scheduler perceives storage requirement for virtual machines that do not 
drop from queue to be much larger than actual. Because the scheduler cannot 
determine the real storage requirements, in this case, raising the STORBUF 
control can improve system performance. This effectively disables the storage 
test discussed in 6.3.3, “Entering the dispatch list” on page 87.

Linux guests currently do not drop from queue due to:

� The effect of the Linux timer
(discussed in 7.3, “The Linux timer patch” on page 108)

� QDIO network devices
(discussed in 7.4, “QDIO and the dispatch queue” on page 112)

For Linux guests, setting the STORBUF control is an inexact science. There is 
little difference in a STORBUF value of 900, as opposed to a value of 300; in both 
cases, the storage test is likely disabled.

The MAXWSS control
The CP SET SRM MAXWSS command sets the maximum working set a normal 
user on the dispatch list is allowed to have. If the user’s working set size exceeds 

Note: Valid operand ranges are . The default values for 
STORBUF are 125%, 105%, and 95%, respectively.

999 i j k 0≥ ≥ ≥ ≥
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this percentage, that user is dropped back into the eligible list from the dispatch 
list. 

The command format is:

SET SRM MAXWSS m

Where:

m Specifies the maximum percentage of system pageable storage 
available to a user.

MAXWSS is intended to prevent large virtual machines from acquiring an 
inordinate amount of system memory at the expense of smaller users.

The DSPSLICE control
A virtual machine is assigned a dispatch time slice each time it is dispatched. 
The dispatch time slice is calculated at system initialization based on real 
processor speed and represents a fixed number of instructions processed. This 
value can be changed using the CP SET SRM DSPSLICE command:

SET SRM DSPSLICE min

Where:

min Specifies the minimum dispatching time slice (in milliseconds).

When a virtual machine is first dispatched, it runs until:

� Its minor time slice interval expires.
� It completes the workload and proceeds to wait for more work.
� It enters CP mode.
� An interrupt occurs.

When redispatched, the virtual machine is assigned a new dispatch time slice (if 
it relinquished the processor due to an interrupt, it is assigned the remaining 
portion of the previous dispatch time slice).

Note: In order for this parameter to work as intended, virtual machines must 
actually reside on the eligible list (that is to say, the scheduler must consider 
the system to be storage constrained based on the STORBUF settings).

Note: Valid dispatching time slice values are in the range .100 min 1≥ ≥
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When to use SRM controls
SRM controls can be used to ensure:

� Processor resources are utilized as much as possible.

� Thrashing situations do not occur.

� When performance is really bad (as will happen), some servers get 
preferential access to processor resources.

For example, if performance is very bad, you would still want TCP/IP (or perhaps 
a DNS server or security manager) to perform well. Thus, it is preferable to utilize 
the SRM controls properly and not overuse the QUICKDSP option. 

You should use STORBUF to over-allocate storage when virtual machines do 
not drop from queue. In this situation, the dispatching and scheduling algorithms 
become skewed. The true storage requirement is unknown, and proper 
scheduling is impossible. Installations found that when running many servers 
(even “idle servers” that never drop from queue), the perceived storage 
requirement is very high. Using high STORBUF values to “over-allocate” storage 
can improve this situation.

In an installation where the virtual machines do drop from queue, using 
STORBUF to over-allocate storage might not be appropriate. 

For this case, if there is expanded storage, the SET SRM XSTORE command 
should be set to at least 50%, or even to its maximum value.

In environments where there is considerable paging, paging should be controlled 
using the proper SET SRM LDUBUF command. The default LDUBUF in a paging 
environment allows the paging subsystem to be 100% consumed (see 6.5, 
“Analysis of the SET SRM LDUBUF control” on page 95). At the point where the 
paging subsystem is at 100% utilization, intuitively, there would not be much 
value at increasing the LDUBUF and allowing more users to consume paging 
resources.

Important: The QUICKDSP option should be used for machines that need to 
run when things are very bad. Set QUICKDSP to the select few that must 
absolutely perform well. 

Note: In order to drop from queue, Linux guests must run with the timer patch 
installed (see 6.3.5, “z/VM scheduling and the Linux timer patch” on page 89) 
and use an appropriate network architecture (see 7.4, “QDIO and the dispatch 
queue” on page 112).
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In 6.5, “Analysis of the SET SRM LDUBUF control” on page 95, we examine the 
operation of some SRM controls.

6.4.2  The CP QUICKDSP option
The SET QUICKDSP command does one thing only, but it does that very well. It 
should be used for service machines that are required when there are serious 
memory or processor constraints. 

The CP scheduler classifies virtual machines assigned the QUICKDSP option as 
E0 virtual machines. An E0 virtual machine is added immediately to the dispatch 
list whenever it has work to do, without waiting in the eligible list. The CP 
scheduler bypasses the normal storage, paging, and processor tests when 
moving E0 virtual machines from the eligible list to the dispatch list. 

6.4.3  The CP SET SHARE command
One of the most misunderstood (and most misused performance options) is the 
SHARE value of a virtual machine. The first choice of SHARE is to use 
ABSOLUTE or RELATIVE. The second choice is the size of the SHARE. 

The simplest way to decide which to use for a specific server is to answer the 
question: As more users log on to this system, should this service machine get 
more CPU or less?

� A relative share says this server should get a relative share of the processor, 
relative to all virtual machines in the dispatch and eligible lists. As more users 
log on, the share will drop. 

� Absolute shares remain fixed up to the point where the sum of the absolute 
shares is 100% or more, a rather confused state of configuration. 

Servers such as TCP/IP or even DNS servers might have a requirement that 
rises as the level of work increases. These servers should have ABSOLUTE 
shares. All other users should use RELATIVE.

Size of share is both a business decision and a performance decision. For 
example, if one server is assigned a very high share, which might be as much of 
the system as the rest combined, one would expect this server to be absolutely 
critical to your business. This server has the capability of taking resource 
whenever it needs it, and if this server starts looping, would easily consume all 
the resource allocated. 

A simple way of looking at share values: If there is heavy contention for the 
processor, what servers would you like to run. 
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TCP/IP is obvious, as are required services such as Domain Name System 
servers. TCP/IP and other such required servers should have absolute values 
that approach the CPU consumption that would be required at peak loads, never 
more than that.

6.5  Analysis of the SET SRM LDUBUF control
The purpose of the SET SRM LDUBUF command is to control thrashing. 
Thrashing is a situation where paging is at a point where less work is being 
accomplished because of contention for paging and storage devices. The 
following analysis shows some of the key points in evaluating the use of 
LDUBUF. 

When the loading capacity is evaluated by the scheduler, the number of paging 
devices is the “loading capacity.” Setting LDUBUF to the default of 100 85 65 
allows 100% of the total capacity (the number of paging devices) to be utilized. 
Thus, if there were seven paging devices, seven users that were considered 
“loading” would be allowed onto the dispatch list. Additional users would be 
delayed on the eligible list until one or more of the existing loading users either 
dropped from the list or obtained their working set in storage and stopped taking 
page faults. 

For this analysis, a benchmark was developed with 100 servers that would 
allocate storage, perform a function, and release the storage, typical of many 
Linux environments. What the measurements show is that LDUBUF at the 
default level will allow the total paging subsystem to be 100% consumed. 

6.5.1  Default setting analysis
Example 6-3 on page 96 shows CPU utilization and paging rates using the 
default settings for LDUBUF and STORBUF.

Note: The paging DASD devices are RAMAC Virtual Array (RVA) units.
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Example 6-3   CPU and paging with default LDUBUF/STORBUF settings

Report: ESASSUM      Subsystem Activity                            Velo 
Monitor initialized:                      on 2064 serial C0ECB     Firs 
----------------------------------------------------------------------- 
         <---Users---->  <Processor> Storage (MB) <-Paging--> <-----I/O 
         <-avg number->  Utilization Fixed Active <pages/sec> <-DASD--> 
Time       On Actv In Q  Total Virt.  User Resid. XStore DASD Rate Resp 
-------- ---- ---- ----  ----- ----- ----- ------ ------ ---- ---- ---- 
17:26:00  154  130 85.0    121    81 134.6 2874.7    523 5025  400 22.9 
17:27:00  154  133 71.0    106    60 132.7 2870.5    245 5027  408 22.4 
17:28:00  154  129 78.0     96    49 134.2 2870.1    225 5269  415 19.8 
17:29:00  154  129 74.0    161   127 133.4 2872.3    299 5546  540 15.4 
17:30:00  154  129 83.0    152   123 133.5 2871.0    302 5572  576 14.7 
17:31:00  154  129 82.0    108    87 134.7 2871.7    417 5431  599 13.7 
17:32:00  154  132 82.0    116   100 134.1 2875.1    445 5335  763 11.2 
17:33:00  154  128 81.0    115   100 134.2 2870.4    478 5241  858 10.2 
17:34:00  154  130 43.0    135   121 132.6 2877.8    615 4671  929  9.3 
17:35:00  154   87 59.0    109    99 132.4 2879.9   1006 3615  789  9.2 

The report shows CPU utilization varied from 96% to 161% with a paging rate to 
DASD of over 5000 pages/second. The paging to expanded storage was 
400-500 pages/second.

6.5.2  User queue analysis 
Example 6-4 on page 97 shows a queue analysis for a benchmark class of users 
named IUCVRO. These users normally drop from queue when idle, as they use 
the IUCV driver and have the timer patch applied (as discussed in 7.4, “QDIO 
and the dispatch queue” on page 112).
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Example 6-4   User queue analysis

Report: ESAUSRQ      User Queue and Load Analysis
Monitor initialized:                      on 2064
-------------------------------------------------
         <-----------User Load------------>      
UserID   Logged  Non-          Disc- Total  Tran 
/Class       on  Idle  Active  conn  InQue  /min 
-------- ------ ----- ------- ------ -----  ---- 
17:26:00  154.0     .   130.0      .  85.0  4590 
Hi-Freq:  154.0   130   130.0    144  93.2  4715 
 ***User Class Analysis***                       
*Servers   18.0     5     5.0     15   2.1  46.0 
*Keys       4.0     3     3.0      4   2.1  10.0 
*TheUsrs   14.0     5     5.0      8   2.0  79.0 
IUCVRO     99.0    99    99.0     99  67.9  4580 
REDHAT      9.0     9     9.0      9   9.0     0 
SUSE31      5.0     5     5.0      5   6.0     0 
SUSE64      5.0     4     4.0      4   4.0     0 

Note that at this peak time, of the 99 logged on, 99 are performing some amount 
of work each minute, making them all “active” and “Non-idle.” Out of the 99, on 
average 67.9 (68) are in queue. One other important note: Service machines that 
drop from queue are identified as having transactions. Note that the other Linux 
servers do not have transactions; they do not drop from queue.

6.5.3  DASD analysis
Example 6-5 on page 98 shows an analysis of direct access storage device 
(DASD) during the default run.
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Example 6-5   Analysis of paging devices

------------------------------------------------------
Report: ESADSD2      DASD Performance Analysis       
Monitor initialized:                      on 2064 ser
-----------------------------------------------------
                                                     
 Dev        Device <--SSCH--> <%DevBusy> <SSCH/sec-> 
 No. Serial Type   Total  ERP  Avg  Peak   avg  peak 
---- ------ ------ ------ ---  ---- ---- ----- ----- 
17:26:00                                             
***Top DASD by Device busy***     
1590 430PG5 3390-3   1864   0  98.5 98.5  31.1  31.1 
15D0 430PG6 3390-3   2051   0  98.5 98.5  34.2  34.2 
1551 430PG8 3390-3   1987   0  98.1 98.1  33.1  33.1 
1550 430PG4 3390-3   1915   0  98.1 98.1  31.9  31.9 
1511 430PG7 3390-3   1831   0  97.9 97.9  30.5  30.5 
3753 430PAG 3390-3   2848   0  97.9 97.9  47.5  47.5 
3B44 430PG2 3390-3   4058   0  97.4 97.4  67.6  67.6 
1512 LX1512 3390-3   1150   0  26.1 26.1  19.2  19.2 
1552 LX1552 3390-3   1217   0  24.5 24.5  20.3  20.3 
15D2 LX15D2 3390-3    828   0  20.9 20.9  13.8  13.8 
***End Top DASD by Device busy***                    

Notice the seven page devices that show up in the top 10 device list on the 
DASD Performance report. These devices are 98% busy and can not perform 
any additional work. It should be obvious that allowing more loading users into 
the queue will not accomplish any additional work. In this case, it would be better 
to keep some of these users on the eligible list.

Example 6-6 on page 99 shows an analysis of the channel subsystem.
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Example 6-6   Analysis of channel subsystem

Report: ESADSD1      DASD Configuration 
Monitor initialized:                    
Monitor period:        13080 seconds (  
----------------------------------------
 Dev Sys         Device    <CHPIDS OnLn>
 No. ID   Serial Type   SHR 01 02 03 04 
---- ---- ------ ------ --- -- -- -- -- 
1511 088D 430PG7 3390-3 NO  42 57 24 4B 
1512 088E LX1512 3390-3 NO  42 57 24 4B 
1550 08CC 430PG4 3390-3 NO  42 57 24 4B 
1551 08CD 430PG8 3390-3 NO  42 57 24 4B 
1552 08CE LX1552 3390-3 NO  42 57 24 4B 
1590 090C 430PG5 3390-3 NO  42 57 24 4B 
15D0 094C 430PG6 3390-3 NO  42 57 24 4B 
15D1 094D LX15D1 3390-3 NO  42 57 24 4B 
15D2 094E LX15D2 3390-3 NO  42 57 24 4B 
3750 0F0A 430RES 3390-3 NO  1B 27 32 3D 
3753 0F0D 430PAG 3390-3 NO  1B 27 32 3D 
3B44 12FE 430PG2 3390-3 NO  41 4C 36 56 

If adding page devices were an option, there should be sufficient channel 
capacity to support additional devices. In this DASD configuration, several paging 
devices share four channel paths (CHPIDs). Five paging devices share CHPIDs 
42, 57, 24, and 4B.

Now that we know what channel paths are being used, we evaluate the capacity 
of the channels being utilized in Example 6-7.
 Chapter 6. CPU resources and the z/VM scheduler 99



Example 6-7   Analysis of channel capacity

Report: ESACHAN      Channel Performance Ana
Monitor initialized:                      on
--------------------------------------------
         <Pct Channel>           <extended->
Time/     Utilization        CMG Utilization
CHPID     LPAR  Total  Shrd Type LPAR  TOTAL
--------  ----  -----  ---- ---- ----- -----
24           .   93.3  Yes     1  86.9  86.9
42           .   90.0  Yes     1  84.9  85.7
4B           .   85.0  Yes     1  85.6  85.7
57           .   93.3  Yes     1  88.4  89.0

There are different measurements provided by the monitor. This report shows 
three different values:

� The <Pct Channel> Utilization Total number is a sampled value. 
Sampling is performed by CP at the default high-frequency sample rate of 1 
sample/second. In this case, CP sampled the channels and found them about 
90% busy. 

� The <extended> reported values are provided by the I/O processor.
These measurement provide values at both the LPAR and TOTAL levels. If 
multiple LPARs were sharing channel paths, these values could be different 
(due to the amount of time the CHPIDs were in use by other LPARs). 

Because of the differences in data sources, there will be some differences. In this 
case, all values show the channel paths at above 85%. This is too high to support 
more devices and is a performance issue. To reduce this utilization, paging must 
be reduced or more channel paths utilized.

6.6  Virtual Machine Resource Manager
Virtual Machine Resource Manager (VMRM) is a new facility available in z/VM 
4.3. It runs in a service virtual machine (VMRMSVM) and dynamically manages 
the performance of workloads. VMRM uses a set of user-specified workload 
definitions and goals, compares these with the achieved performance, and 
makes adjustments accordingly. (It is conceptually somewhat similar to the 
Workload Manager used by z/OS.) The basic idea is to allow performance 
objectives to be set in a manner more closely aligned with business objectives 
than has been the case previously.

VMRM is only effective in a constrained environment because it works by 
prioritizing workloads in order to enhance their access to resources, and 
accordingly restricts other work’s access to those resources. If the z/VM system 
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is not constrained, VMRM can’t enhance access to resources because they are 
readily available anyway.

A workload is a collection of one or more virtual machines that are to be treated 
as an entity for the purpose of performance management. Each workload has 
certain goals defined for it. These goals are for DASD and CPU utilization. A 
workload can have a DASD goal, a CPU goal, or both. A goal represents the 
relative importance of a workload for the particular installation. Configuration 
changes can be made at any time, but require the VMRM service machine to be 
stopped and restarted to make them effective.

VMRM uses CP MONITOR data to determine the level of activity in the system 
and whether or not workloads are meeting the defined goals. VMRM allows 
some latitude, 5%, in making this determination (this helps avoid overreaction 
when a workload is near its goals).

Every minute (the default) VMRM examines the system and workloads and picks 
a workload that is failing to meet its goals. If it finds one, it then uses the CP SET 
SHARE and CP SET IOPRIORITY commands to adjust the workload to give it 
more access to the resource or resources for which the goal or goals were not 
met. VMRM remembers which workloads it adjusted recently and does not alter 
them again for a while. Instead, it might choose another workload to adjust at the 
next interval.

VMRM cannot adjust users with fixed CPU or I/O priorities. If you have defined 
users with absolute or hard limited SHARE, or absolute I/O priority, this will have 
to be changed for VMRM to manage them. This also allows specific users that 
otherwise would be treated as part of a workload to be effectively excluded from 
it, but it would normally be more sensible not to define such a user as part of a 
workload in the first place.

6.6.1  Implications of VMRM
Because VMRM sits there adjusting performance parameters at frequent 
intervals, it is able to adjust to changing conditions. As the workload on the z/VM 
system changes over the course of a day, VMRM can make adjustments to the 
defined (and running) workloads in order to try to make them meet the goals 
defined for them. (It cannot ensure workloads meet their goals because it cannot 
create resources out of thin air.)

Because VMRM adjusts z/VM tuning parameters, it might conflict with manual 
efforts to tune z/VM. In particular manual use of the CP SET SHARE and CP 
SET IOPRIORITY commands is likely to cause problems, or at least unclear 
results.
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Support for I/O priority queueing was added to z/VM to support VMRM. This is 
probably as significant as the addition of VMRM itself.

CP SET IOPRIORITY and the associated directory statement were added to 
z/VM to support VMRM. However, these can also be used for manual tuning 
instead.

Because VMRM uses CP MONITOR data, it might be affected by other users of 
the CP MONITOR data, and vice versa. As is always the case when more than 
one thing uses CP MONITOR data, some care in setup is required.

As a result of its dynamic nature, VMRM makes benchmarking difficult. 
Benchmarking typically requires repeatable conditions, and the continual 
adjustments of VMRM make repeatable conditions unlikely.

VMRM is not directly influenced by memory usage and has no direct effect on 
memory usage.

6.6.2  Further information about VMRM
For further information about VMRM, refer to z/VM V4R3.0 Performance, 
SC24-5999. VMRM concepts are introduced in z/VM, VSE, and Linux Technical 
Conference foils: z/VM Resource Management, by Christine Casey, available at:

http://www.vm.ibm.com:2003/pdfs/V612up.pdf
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Chapter 7. Tuning processor 
performance for z/VM Linux 
guests

This chapter discusses tuning processor performance for Linux guests. Topics 
include:

� Processor tuning recommendations

� The effect of idle servers on performance

� The Linux timer patch

� QDIO and the dispatch queue

� Infrastructure cost

� Performance effect of virtual processors
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7.1  Processor tuning recommendations
CPU time is limited to the number available processors. Steps should be taken to 
reduce processor requirements:

� Eliminate unnecessary Linux services.
Default Linux guest installations typically start services that probably are not 
used. These services consume CPU cycles even if no useful work is 
performed. Remove unneeded services from the Linux startup sequence.

� Remove unneeded cron-initiated tasks.
Look for and remove unneeded tasks started by cron.

� Reduce processor usage by idle Linux guests.
Ensure idle Linux guest do not consume unnecessary processor resources. 
Thing to consider are:

– Install the timer patch.
Waking the Linux scheduler 100 times per second wastes processor 
resources.

– Eliminate “are you there” pings.
Do not ping an idle guest simply to verify that it is alive.

– Do not measure performance on idle guests.
Measuring an idle guest costs processor resources.

� Consider infrastructure processing requirements.
Consider the cost of various infrastructure configurations, such as:

– Router configuration
Routing costs are discussed in Chapter 9, “Measuring the cost of OSA, 
Linux, and z/VM networking” on page 143.

– Installation and cloning costs
See 7.5.2, “Installing new systems” on page 115 for a comparison of cost 
of installing Linux guests.

� Prioritize workloads.
When there are processor constraints, use share options to determine what 
work gets done.

More performance tips can be found on at Velocity Software’s Web site at:

http://linuxvm.com

7.1.1  Processor performance on a constrained system
When the processor is constrained, the other resources will be underutilized. 
There is not much point in tuning other subsystems when the processor is 
already overcommitted. When the processor is constrained, all options to reduce 
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processor requirements should be evaluated. We discuss some options in 7.6, 
“Performance effect of virtual processors” on page 120.

7.2  The effect of idle servers on performance
In a shared resource environment, there is no room for unnecessary processes. 
Servers that run cron jobs for historical reasons should be redesigned. 

Under z/VM, as a shared resource environment, it is not optimal to wake up 
servers to make sure the servers are active, or to monitor them to query current 
activity. In this environment, the virtual machines will be tailored for optimal 
performance and having unneeded interrupts or work being performed detracts 
from resources available for productive work. 

In a virtual environment, one of the most expensive use of resources is waking 
up an idle server simply to perform a trivial task. It is important to apply the Linux 
timer patch in order to reduce resource usage by idle Linux guests (see 6.3.5, 
“z/VM scheduling and the Linux timer patch” on page 89).

Pinging a server to see if it is alive keeps the server active. This uses resources 
that are likely better utilized by other servers performing real work. This expense 
should always be monitored and minimized. 

Two common mistakes made in a virtual server infrastructure is to ping 
applications to ensure they are “alive” and to monitor the performance of the 
virtual servers. When idle, the servers would normally not take significant 
amounts of either storage or processor resource. But when either the 
applications are pinged or the servers are monitored, the server must have 
resident storage to provide the appropriate positive responses. A better 
approach in this virtual environment for monitoring is to utilize the existing and 
mostly free (in terms of resource requirements) VM monitor.

By default, most Linux distributions start several services that might not be 
needed. To illustrate the cost of these services, we show the CPU usage and 
DASD I/Os in Figure 7-1 on page 106.
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Figure 7-1   The effect of unneeded daemons on CPU and DASD usage
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Services that might be considered unnecessary in a Linux guest include:

� sendmail
If receiving or delivering mail is not required on the Linux guest, consider 
stopping the sendmail server.

� anacron, atd, and cron
These daemons are responsible initiating tasks at regular intervals. If no 
useful tasks are automatically scheduled, stop these services.

� autofs, nfs, nfslock, and portmap
The autofs daemon is responsible for automatically mounting file systems; nfs 
and nfslock provide Network File System (NFS) support; portmap provides 
Remote Procedure Call (RPC) services required by NFS.

� lpd and xfs
Printing services are provided by the lpd daemon; xfs provides X-Windows 
fonts.

� inetd/xinetd
The inetd (or the replacement xinetd) daemon manages Internet services 
such as FTP and Telnet.

7.2.1  Network Time Protocol daemon
Linux on z/VM has some problems with keeping track of time. There are two 
reasons for this:

� We believe there is a bug in the kernel that causes the Linux daytime to 
drift in periods of high activity. 
This should be fixed, but it might need some time to convince people of the 
exact cause. The “on-demand timer” patch was reworked for the 2.4.17 
kernel; we are not sure whether this kernel exhibits the same problem.

� Although the zSeries time-of-day (TOD) clock does not drift much, many 
people set the clock manually at IPL (using a watch as reference). 
This is not an exact way to set the clock, and the effect is that the z/VM time 
has a constant offset to the official time. Even if Linux would use the TOD 
clock to tell time, it would be different from external guests using NTP for it. 
This might impact distributed applications (for example, because time stamps 
on shared files are wrong).

A suggestion has been to fix both of these issues by running ntpd on each Linux 
guest. This will talk to NTP servers and adjust the Linux clock continuously to 
keep it synchronized to the rest of the world. The disadvantage of this approach 
is that it is very expensive to do so. A process wakes up every second to adjust 
the clock, and this keeps the server busy all the time.
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If the first problem was fixed, all we need is something to set the time initially 
when the guest is IPLed. We must be able to use the z/VM command SET VTOD 
for this to synchronize the virtual TOD clock of a Linux guest with the virtual TOD 
clock of one other virtual machine that synchronized (once after IPL) with NTP 
servers outside. 

7.3  The Linux timer patch
Traditionally, the Linux kernel keeps track of time using a timer that interrupts the 
kernel at a constant rate. On each interrupt, the global variable “jiffies” is 
incremented and various queues inspected for work. On dedicated hardware, 
this has a minimal performance effect. However, when running Linux running on 
z/VM, this is not a good idea. 

Although this method of keeping track of time may not be the most efficient, the 
biggest problem for Linux on z/VM is that the Linux guest uses a little bit of CPU 
cycles every 10 ms. This causes the z/VM scheduler to keep the guest “in queue” 
(and therefore, unused memory pages in the Linux virtual machine cannot be 
trimmed, as discussed in 2.3, “z/VM use of memory” on page 13). With many 
Linux guests holding on to their working sets, z/VM memory will fill up rather 
quickly.

This problem is addressed with the so called “on-demand timer” patch that can 
be downloaded from the IBM developerWorks Linux for zSeries and S/390 home 
page:

http://www-124.ibm.com/developerworks/oss/linux390/index.shtml

This patch does away with the 10 ms timer tick and sets the timer to pop only 
when the kernel needs to wake up. Even though this does not make a real “zero 
load idle Linux guest,” the periods between two timer ticks are normally long 
enough for z/VM to recognize the guest as idle (and start taking measures to trim 
memory pages).

The VM/RTM output in Example 7-1 on page 109 shows two virtual machines:

� RMHTUX01 runs a kernel with the timer patch applied.

Note: We did not have time to implement this solution, so we can only 
speculate on what performance improvement it might yield.

Note: With the 2.4.19 kernel (as used in SuSE SLES 8), the on-demand timer 
is part of the main source. It is enabled by writing to the 
/proc/sys/kernel/hz_timer pseudo variable.
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� LNXR09 runs an unpatched kernel. 

The %CPU column shows the Linux machine with the on-demand timer uses less 
CPU resources.

Example 7-1   Two Linux guests, one with timer patch applied

<USERID> %CPU %CP %EM ISEC PAG  WSS  RES   UR PGES SHARE VMSIZE TYP,CHR,STAT
                                                                            
LNXR09    .62 .06 .56  .20 .00  28K  34K   .0    0   100   128M VUX,DSC,DISP
RMHTUX01  .01 .00 .01  .00 .00  23K  24K   .0    0   100   128M VUX,DSC,DISP

Even though saving CPU resources is very welcome, the real big benefit of the 
changed timer behavior is that z/VM is able to recognize that the virtual machine 
as idle. When a virtual machine does not consume resources for more than 300 
ms, the z/VM scheduler assumes that a transaction has ended and that the 
virtual machine went into a long-term wait. At that point, z/VM will start to page 
out some of the working set of the idle virtual machine when main memory is 
constrained. When the virtual machine becomes busy again (even if only after a 
second or less), the page fault handling will page in necessary portions of the 
virtual machine’s memory. This reduces the footprint of the idle Linux virtual 
machine.

When a Linux guest with the on-demand timer still uses a lot of CPU time when 
idle, that is normally caused by some process or kernel thread requesting 
frequent wakeup calls. In some cases, these frequent wakeup calls are part of 
the application design, and in other cases, it is simply a bug.

Note: Even with the on-demand timer, an idle Linux virtual machine is still 
reported as active by VM because it wakes up frequently. Be careful when 
using the terms “idle” and “active” in this context. The idle Linux machine 
probably behaves more like an interactive CMS user.

Important: In the Linux 2.4.7 kernel, a bug in ReiserFS causes the virtual 
machine to wake up every 50 ms. Even though this is not as bad 10 ms, it is 
not long enough for z/VM to recognize transactions. We believe it is safe to 
assume this is a bug, because later kernels cause the ReiserFS thread to 
wake up every five seconds. We can argue whether a wakeup every five 
seconds is the best way to implement that particular function, but the damage 
is certainly less than with 50 ms.
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7.3.1  Analyzing the timer ticks
When the on-demand timer patch is applied to the kernel, the number of timer 
interrupts goes down. In some systems, the number of timer interrupts stays 
rather high. If the cause is not obvious, you can look at the number of timer ticks 
and the process requesting them.

A simple way to count the number of timer ticks is to run a TRACE EXT in the 
Linux virtual machine for a fixed period of time and look at the output. 
Example 7-2 illustrates a program executed from a privileged user ID (class C) to 
count timer ticks.

Example 7-2   Sample program (COUNTEXT EXEC) to count timer ticks

/* COUNTEXT EXEC     Trace timer interrupts to count them           */  
arg uid ; if uid = '' then exit 24                                      
cmd = 'CP SEND CP' uid                                                  
                                                                        
cmd 'SPOOL PRT PURGE'                                                   
'CP SLEEP 1 SEC'                                                        
cmd 'TRACE EXT 1004 PRINTER RUN'                                        
'CP SLEEP 60 SEC'                                                       
cmd 'SPOOL PRT' userid() 'CLOSE'                                        
'CP SLEEP 1 SEC'                                                        
cmd 'TRACE END ALL'                                                     

The SLEEP command in the program lets the target Linux virtual machine run for 
60 seconds and closes the printer spool file after that time. We execute the script 
in Example 7-3.

Example 7-3   Executing COUNTEXT EXEC

countext rmhtux02
RDR FILE 0180 SENT FROM RMHTUX02 PRT WAS 0018 RECS 0083 CPY

The spool file arrival message indicates TRACE wrote 83 records to the spool file 
in the one minute interval the script was sleeping. Expect this number to vary 
between tests.

When the number of timer ticks is higher than expected, we trace the process 
requesting the wakeup calls. A good address to trace is the entry point of the 
schedule_timeout() function in the kernel. You can its address from the current 
System.map file on your system. Alternatively, you can use /proc/ksyms, as 
shown in Example 7-4 on page 111.
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Example 7-4   Determining the address of schedule_timeout

# cat /proc/ksyms | grep schedule_timeout
0010ae74 schedule_timeout

Start the trace from the 3270 console; if you use the hcp command through a 
Telnet session, you create work on the Linux guest that obscures the 
measurements. The following CP TRACE command prints the value of current 
on entry to the schedule_timeout() function:

#CP TRACE I R 10AE74.2 TERM RUN CMD D C40.4

Example 7-5 shows the trace output.

Example 7-5   Tracing the value of current at entry to schedule_timeout()

-> 0010AE74' STM   908FF020 >> 005C3EB8    CC 0           
V00000C40  005C4000                            06 L00000C40
 -> 0010AE74' STM   908FF020 >> 01F49E30    CC 0           
V00000C40  01F4A000                            06 L00000C40
 -> 0010AE74' STM   908FF020 >> 005C3EB8    CC 0           
V00000C40  005C4000                            06 L00000C40
 -> 0010AE74' STM   908FF020 >> 005C3EB8    CC 0           
V00000C40  005C4000                            06 L00000C40

Using the sort stage of CMS Pipelines, a simple pipe gives the breakdown per 
process for our one-minute interval. Using grep against the output of ps -ef, we 
identify the process name.

We can further enhance the trace to show which timer the process sets. From the 
source code and the generated S/390 assembler instructions, we find that 
register R2 contains the length of the requested delay in jiffies. Using this 
information, we are able to produce Table 7-1 on page 112 to identify which 
processes are responsible for generating timer ticks.

Tip: The current variable identifies the process running when the call to 
schedule_timeout() is made. The task_struct for the process is located 8192 
(0x2000) bytes before current. The process identifier (PID) is located at offset 
0x70 into the task_struct.
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Table 7-1   Breakdown of one minute Linux timers

As seen in the table, the kswapd kernel process causes Linux to wake up every 
second. This kernel thread monitors the Linux memory usage, waking up every 
second to adjust counters and checking if memory pages need to be swapped 
out (as discussed in 3.2.1, “Page cleaning” on page 24). One could argue that on 
an idle system, there is little reason for the daemon to wake up because nothing 
has changed in the system.

The nscd processes requesting wakeup calls every two to 15 seconds stand out 
(nscd caches user and group information; however, this is not needed when 
using flat files in /etc directory of a local disk). This process is started in the 
default SuSE installation. We had not removed it from the startup sequence. 

7.4  QDIO and the dispatch queue
We found that some Linux guests stay in the dispatch queue (Q3, in fact) even 
with the “demand timer” active (see 7.3, “The Linux timer patch” on page 108). 
The VM/RTM output shown in Example 7-6 on page 113 shows two virtual 
machines (RMHTUX01 and RMHTUX02) with the timer patch applied. For 
comparison, the LNXR09 Linux guest does not have the timer patch.

Address Jiffies Count PID

005C4000 100 60 5 [kswapd]

005EC000 500 12 1 init

01F4A000 201 30 173 /usr/sbin/nscd

01F46000 1501 4 174 /usr/sbin/nscd

01F7C000 1501 4 167 /usr/sbin/nscd

0201A000 6001 1 153 /usr/sbin/cron

02024000 2147483647 2 139 /sbin/slogd

03FFE000 500 12 8 [kupdated]

Note: The work done at each wakeup call is minimal. For the 113 wakeup 
calls per minute, our system uses 110 ms of CPU time, or approximately 0.1% 
of a single CPU. When we stopped the nscd daemons, the number of timer 
interrupts went down to 87 per minute. CPU usage dropped to 20 ms per 
minute, or 0.02% of a CPU.
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Example 7-6   Three Linux guests, two with the timer patch applied

<USERID> %CPU %CP %EM ISEC PAG  WSS  RES   UR PGES SHARE VMSIZE TYP,CHR,STAT
                                                                            
LNXR09    .62 .06 .56  .20 .00  28K  34K   .0    0   100   128M VUX,DSC,DISP
RMHTUX01  .01 .00 .01  .00 .00  23K  24K   .0    0   100   128M VUX,DSC,DISP
RMHTUX02  .01 .00 .01  .00 .00  17K  17K   .0    0   100   128M VUX,IAB,DISP

The %CPU column shows that the Linux guests with the on-demand timer indeed 
use far less CPU resources. 

The IAB status for RMHTUX02 indicates a difference from RMHTUX01 (although 
both have the on-demand timer patch). z/VM considers RMHTUX02 to be an 
interactive user. In Example 7-7, the output of an INDICATE QUEUES command 
confirms RMHTUX01 is in Q3 while RMHTUX02 is not.

Example 7-7   INDICATE QUEUES showing timer patch guest in Q3

CP IND QUEUE                                                                  
RSCS          Q3 PS  00001224/00001223 RMHTUX01      Q3 PS  00023149/00022411 
LNXR06        Q3 PS  00007003/00005923 LNXR04        Q3 PS  00007008/00005976 
...
LNXR05        Q3 PS  00007008/00005880 LNXR02        Q3 PS  00007015/00005851 
VCOLLECT      Q0 PS  00000910/00000889 ESATCP        Q2 PS  00000584/00000583 
RMHTUX02      Q1 PS  00017115/00017094 

The RMHTUX01 guest seems to stay in the queue all the time. Because the 
scheduler considers a guest idle after 300 ms of inactivity, this indicates that 
RMHTUX01 recorded at least 200 timer ticks in a minute interval. Further study 
reveals the guest consumed some 130 ms of CPU time in that one minute 
interval. This makes it unlikely the timer is keeping the guest in the queue.

The difference between the two virtual machines is that RMHTUX01 owns a 
queued direct input/output (QDIO) network device, while RMHTUX02 is 
connected through IUCV. 

After discussion with z/VM Development, we concluded CP did not drop the 
RMHTUX01 virtual machine from queue because a read I/O event was awaiting 

Note: The fact that RMHTUX02 shows up in the queue is purely coincidental. 
A Linux guest with the on-demand timer is expected to be frequently dropped 
from queue by the scheduler.

Note: In 7.3.1, “Analyzing the timer ticks” on page 110, we demonstrate how 
to use the TRACE command to observe timer ticks.
 Chapter 7. Tuning processor performance for z/VM Linux guests 113



completion on two of its three QDIO devices. A virtual machine normally remains 
in queue during active I/O (on the expectation that the I/O will complete shortly). 
In the case of QDIO, the outstanding I/O is not an actual pending read operation. 
Instead, it is simply part of the protocol. The same situation applies to virtual CTC 
connections (where an outstanding “read” on one end allows the other end to 
send data). 

APAR VM63282 has been opened to fix this situation in z/VM. We have tested an 
experimental version of the fix and confirmed that it does indeed allow CP to drop 
virtual machines from queue. This is confirmed by the output of the CP 
INDICATE command shown in Example 7-8. Here, 100 Linux guests with the 
on-demand timer patch applied are connected to a z/VM Guest LAN.

Example 7-8   Dropping QDIO virtual machines from queue

CP IND                                                 
AVGPROC-003% 02                                        
XSTORE-000000/SEC MIGRATE-0000/SEC                     
MDC READS-000001/SEC WRITES-000001/SEC HIT RATIO-090%  
STORAGE-052% PAGING-0001/SEC STEAL-000%                
Q0-00000(00000)                           DORMANT-00094
Q1-00020(00000)           E1-00000(00000)              
Q2-00003(00000) EXPAN-002 E2-00000(00000)              
Q3-00014(00000) EXPAN-002 E3-00000(00000)              
                                                       
PROC 0000-004%          PROC 0001-002%                 
                                                       
LIMITED-00000 

Even though these 100 guests wake up every second to perform memory 
management housekeeping, only 20 on average remain in queue. This allows 
CP to steal idle pages from those guests as memory becomes constrained. 

7.5  Infrastructure cost
Some of the resources used on z/VM to run Linux virtual machines can be seen 
as infrastructure cost: The resources used to run these utility services are not 
available for use by Linux virtual machines to run business applications. This 

Note: Before applying the fix, these virtual machines all showed up in Q3 and 
E3.

Note: CP steals idle memory pages from virtual machines in queue. However, 
it steals pages more aggressively when virtual machines drop from queue.
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does not mean that these utility services are not necessary, however it does 
mean that it is often worthwhile to review those services and see whether 
savings can be realized.

7.5.1  Formatting disks
The zSeries DASD must be formatted for Linux to use it. The dasdfmt program 
supplied with the Linux distributions can be used for that. Formatting of a 3390-3 
volume on RVA takes about 15 minutes elapsed time. As we expected, formatting 
a disk takes only a very small amount of CPU cycles, about six seconds for a 
3390-3 volume.

The real cost for formatting disks comes from the working set of the virtual 
machine. When you run dasdfmt in the same virtual machine that you just used 
for compiling the kernel, the entire working set of the virtual machine is kept in 
storage during the formatting.

CMS also requires that disks are formatted before use and uses the CMS 
FORMAT command to do so. Both Linux and CMS normally format the 3390 
tracks with 4 K blocks. The difference between Linux and CMS format is minimal. 
Although using CMS to format the disk uses even less CPU cycles (about 1.6 
seconds), the big difference is in the working set of the virtual machine. CMS 
FORMAT runs with 518 pages, so approximately 0.5 MB-hours for a single 
volume (1.6% of what Linux uses for the same task).

7.5.2  Installing new systems
There are many different ways to install Linux systems. New systems can be 
“cloned” from an existing “golden image,” or you can do a fresh install for each 
system. For a fresh install, you can IPL from disk, from tape, or from the virtual 
card reader. The packages can be loaded from a local disk or from a remote FTP 
or NFS server. This is true when installing Linux on discrete servers, as well as 

Note: Using the formula , we can derive a measure of the 
relative “cost” of memory usage. Using this calculation, we can express the 
cost of formatting a 3390-3 volume in a 128 MB Linux guest as 32 MB-hours.

Note: While it is tempting to view ECKD formatting as the equivalent of a 
“low-level format” as used on some PC disks, this is not completely correct. 
With ECKD, you can format and write in a single operation. If you plan to put 
data on these disks immediately after formatting, you can save a lot of 
resources by combining these steps. Clearly, you can not use Linux tools to 
do so, because Linux requires the disk to be formatted separately first.

Memory Time×
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when you install Linux in a virtual machine (though with Linux on z/VM you have 
some extra options to automate the install process).

When installing Linux on discrete machines, the thing that matters most is to get 
the job done with minimal effort (and in the least amount of time). With Linux on 
zSeries things are a bit different because the virtual machines share resources. 
The resources used for the installation of a new Linux system can not be used by 
other Linux virtual machines running the business applications. Unless your 
z/VM system has plenty of unused resources, you probably should also 
concentrate on doing the install using the least amount of resources.

We compared five ways to install a new Linux system on z/VM:

� RDR + FTP + Router
The virtual machine is connected through IUCV to a VM TCP/IP stack as the 
virtual router. It IPLs from the virtual reader and installs the RPM packages 
through FTP.

� RDR + FTP
Similar to the first method, but in this case, the Linux virtual machine has its 
own OSA device. This avoids the cost in the VM TCP/IP virtual router.

� QuickStart
A single (R/O) minidisk is used that holds the starter system and a copy of the 
RPM packages. The minidisk is IPLed to get the ramdisk system (instead of 
IPL from virtual reader). The minidisk is then mounted in the ramdisk system 
to install the packages (which avoids the network traffic and FTP server cost).

� Breeder
A separate Linux virtual machine (the Breeder) is used. The Breeder does a 
R/W link to the target minidisks of the new system and makes a copy of a 
preinstalled system onto the target minidisks. After the file system is copied, 
the “personalization” is done (host name and IP address, for example). This 
method also avoids the unzipping of the RPM packages.

� GUI + FTP + Router
With SuSE SLES 8, there is a working X-Windows version of YaST. Even 
though this is a different installer and kernel version, we include it in the 
measurements to show some of the differences between the install methods.

Note: The QuickStart install method should not be confused with Red Hat 
Kickstart. Kickstart automates installation by obtaining installation parameters 
from a configuration file; no user prompting is required. The biggest savings, if 
any, are in elapsed time for the install, and therefore, also in the memory 
usage. For SuSE, there are options such as Auto-YaST and Alice, but the 
versions we have seen still lacked some of the install options that are 
essential for Linux on zSeries.
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For each of the four tests, we installed the same minimal set of packages, just 
enough to get a working Linux system. The 130 packages in this set are 
approximately 140 MB worth of RPM files to be loaded. When unpacked during 
the install, this results in 200 MB worth of data on the root device.

The Breeder install process is a home-grown installation process that we used. 
Even though the numbers are not immediately applicable to your own installation, 
we believe it is a representative measurement for what people are doing with 
various cloning approaches and DDR copies of minidisks.

Elapsed time comparison
In Figure 7-2, we show the elapsed time for the five installation methods. 
Because each install process uses some manual steps (navigation though YaST 
screens) this is not easy to measure. To get an idea of the elapsed time, we 
recorded the CPU usage per minute and discarded the intervals where the Linux 
system used little more than the idle load.

Figure 7-2   Elapsed time for installation using different methods

The Breeder method is clearly the fastest. This should not be a big surprise 
because it avoids some steps that are known to be relatively slow on zSeries. It is 
a bit surprising to see that taking out the virtual router does not make the second 
method faster. The reason for this is that the VM TCP/IP stack is more efficient in 
driving the OSA device (an OSA-2 Token Ring in this case) than the Linux LCS 
driver. We believe this difference can be attributed to the use of Diagnose98 in 
the VM TCP/IP stack.
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CPU time comparison
Probably more important than the elapsed time is the CPU time used for the 
installation. The total CPU cost, as well as the breakdown of the cost per virtual 
machine, is shown in Figure 7-3. 

Figure 7-3   CPU time used to install a system

The Breeder method uses less CPU cycles because it avoids the cost 
decompressing the RPM packages. The differences between the other methods 
are less obvious. For the installs that use an FTP server, the cost of the FTP 
server are roughly the same. The main difference between the first two methods 
must be attributed to the more efficient LCS device driver in VM TCP/IP. The GUI 
method of installation uses a lot more CPU cycles because of the X-Windows 
applications and the additional network traffic (the CPU portion for TCP/IP is 
slightly larger).

If the installation was done on a more CPU-constrained system, the larger 
demand for CPU cycles would have immediately translated into longer elapsed 
time as well.

DASD I/O comparison
Another cost item to look at is DASD I/O. Because the QuickStart method copies 
the RPM packages from disk instead of receiving them through the network, we 
expect a larger DASD I/O rate (but far less than double because RPM packages 
are compressed). This is confirmed by the graph in Figure 7-4 on page 119. 
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Figure 7-4   DASD I/O to install a system

It is not clear whether the difference between the two FTP methods is significant, 
but it is not unlikely that a Linux program will do more I/O for the same work when 
it takes longer to complete (see 8.5.1, “Parameters for bdflush” on page 137).

The increased amount of DASD I/O for the Breeder installation is significant. The 
Breeder uses an uncompressed copy of the file system to install on the target 
disks (this saves a lot of CPU time). The drawback of that approach is that we do 
more I/O while saving CPU cycles. This is a very obvious example of the 
trade-off you make when tuning a system. When you need to install a lot of 
systems in a short time, z/VM minidisk cache will do you a lot of good. It might 
even be attractive to make the Breeder Linux virtual machine big enough to hold 
the entire image of the target disk in buffer cache.
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Note: Because the Breeder first copies the target disk and then applies the 
personalization, it is possible to build a stock of copied target disks. The only 
thing left would be personalization after the host name and IP address are 
known. The stock could be replenished during the night or some other time 
when sufficient resources are available to do so. It would also be possible to 
have a CMS service machine combine the formatting with copying the image 
(see 7.5.1, “Formatting disks” on page 115).

The CLONEDISK support added to DirMaint with APAR VM63122 is also 
meant to offer some interesting options in this area. Unfortunately, the PTF for 
this APAR only became available at the end of the writing of this book, so we 
were not able to experiment with this new code.
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Memory usage comparison
The final cost factor for installing Linux systems is memory utilization. While we 
do not have full numbers on the working set of the virtual machines during the 
install process, for Linux virtual machines, it is normally good enough to multiply 
the virtual machine size with the elapsed time. For the ramdisk installation 
system, the virtual machine size needed is approximately 128 MB.

For the graph in Figure 7-5, we included part of the memory usage of the FTP 
server and the TCP/IP stack where applicable

Figure 7-5   Memory usage for installation of a system

Conclusion
Considerable savings can be made by using an efficient installation process. This 
will be an important issue if you create a lot of Linux systems or when you want to 
deliver new systems very quickly.

7.6  Performance effect of virtual processors
Assigning virtual processors to a Linux virtual machine can be an effective 
means of matching zSeries resources to anticipated workload. Overall 
throughput can be affected by the number processors assigned to a Linux virtual 
machine.
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7.6.1  Assigning virtual processors to a Linux guest
CP shares all real processors defined to an z/VM LPAR. All virtual machines 
appear to have at least one processor (referred to as the base virtual processor). 
Additional virtual processors can added to a virtual machine using the CP 
DEFINE CPU command. As shown in Figure 7-6, virtual processors share real 
processor resources.

Figure 7-6   Virtual processors in a virtual machine

In the figure, Linux guest LNXS02 has access to two physical IFLs. However, 
because it is a virtual uniprocessor, only one IFL may run at a time. Linux guest 
LNXS04 is defined to have two virtual processors; each virtual processor utilizes 
the physical IFLs in the LPAR. For details about how to configure virtual 
processors to a z/VM guest, consult z/VM V4R3.0 Virtual Machine Operation, 
SC24-6036.

7.6.2  Measuring the effect of virtual processors
Adding virtual processors to a virtual machine can improve performance for 
processor-constrained workloads. To examine the effects of defining virtual 
processors to a Linux guest, we consider the WebSphere Performance 
Benchmark Sample workload (discussed in Appendix A, “WebSphere 
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Performance Benchmark Sample workload” on page 155). Using WebSphere 
Performance Benchmark Sample in a three-tier configuration, we determine the 
relative cost in terms of processor resources for each component of the 
workload: 

� The WebSphere Application Server
� The HTTP server
� The DB2® server

In Figure 7-7, we examine the effect varying the number of virtual processors has 
on CPU utilization. In this scenario, two IFLs are dedicated to the z/VM LPAR. 
The Linux guests running the IBM HTTP and DB2 servers both run with a single 
virtual processor (the default). The number of virtual processors allocated to the 
WebSphere guest is varied from one up to four.

Figure 7-7   Measuring the effect of virtual processors on CPU utilization

From Figure 7-7, we see this workload is processor constrained. With one virtual 
processor, the guest running WebSphere consumes more than 95% of a single 

Note: We run each component in its own virtual machine and measure the 
processor resources expended during a simulation running five concurrent 
clients. The processor time spent by each virtual machine is attributed to the 
WebSphere Performance Benchmark Sample component running in the 
respective z/VM guest.
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real processor. When two virtual processors are allocated to the guest, processor 
utilization increases to 143%. Note that increasing the number of virtual 
processors beyond the number of real processors does not increase the CPU 
utilization for the WebSphere guest. 

Using the average response time and average CPU time utilization, we derive the 
cost of adding virtual processors. Using the reported transaction rate and 
measured average CPU time expended in each Linux guest, we calculate the 
average cost of a WebSphere Performance Benchmark Sample transaction 
(measured in milliseconds per transaction) in Figure 7-8.

Figure 7-8   Measuring the cost of adding virtual processors

In Figure 7-8, we see that when the number of virtual processors matches the 
number of real processors, the average transaction cost decreases slightly. More 
importantly, the average transaction rate increases significantly. Note however, 
that as the number of virtual processors is increased beyond the number of real 
processors (two in this case), the overall transaction rate decreases, and the cost 
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per transaction increases. This is due to the additional scheduling overhead 
incurred by CP.

When a Linux guest runs a processor-constrained workload, we recommend:

� Defining the same number of virtual processors to the guest virtual machine 
as the number of real processors available to the LPAR.

� Never defining more virtual processors to the guest virtual machine than the 
number of real processors available to the LPAR.
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Chapter 8. Tuning DASD performance 
for z/VM Linux guests

This chapter describes direct access storage device (DASD) tuning for z/VM 
Linux guests. Topics include:

� Factors that influence DASD I/O

� Using VM DIAGNOSE I/O

� Comparing Diagnose and ECKD I/O

� Comparing ESCON and FICON performance

� Data caching and bdflush

8
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8.1  Factors that influence DASD I/O
When evaluating DASD I/O performance, overall response time consists of 
several components, as depicted in Figure 8-1.

Figure 8-1   Components of overall DASD response time

These components are:

� Queue time
Queue time is a result of multiple users simultaneously accessing a device. If 
the device is busy servicing an I/O request, additional I/O requests wait in the 
queue. The length of time an I/O request waits is the queue time. This 
component is the most variable, and under heavy load, can be the most 
serious. High queue times can indicate operating system contention, or a high 
device service time (as I/O requests take longer to complete, requests for 
service from other users can cause queuing for heavily used devices).

� Connect time
Connect time is the actual time to transfer the data on the channel, normally 
less than 2 ms for a 4 K block of data.
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� Pending time
Pending time is the time required to start an I/O operation. Normally, this 
amounts to less than 1 ms. High pending time reflects contention on the I/O 
path. This might be due to contention on the channel, on the control unit, or 
on the DASD device. 

� Disconnect time
Disconnect time is the time required by the control unit to access the data. 
This includes rotational delays, seek delays, cache management, and 
processing time inside the control unit. Disconnect time is normally less than 
2 to 3 ms on cache controllers.

� Service time
Service time is the sum of pending, connect, and disconnect times.

� Response time
Response time is the sum of queue and service times.

8.1.1  General DASD I/O recommendations
In general, to optimize I/O performance, use more parallelism when possible. 

Use more, smaller disks
I/O operations to a single physical disk are serialized. Therefore, when defining 
the disk layout within the storage controller, smaller unit types (such as a 3390 
Model 3) are preferable to the larger 3390 Model 9. The storage capacity of a 
3390-9 is equivalent to three 3390-3 units. However, three simultaneous I/O 
operations are possible using the 3390-3 configuration, while only one is 
possible for the 3390-9.

Spread data over several units
With Logical Volume Manager (LVM) data striping and software RAID emulation 
(RAID 0), a single logical disk is mapped to several physical disks. This allows 
the system to initiate up to as many simultaneous I/O operations as physical 
disks. However, be aware that the actual number of parallel operations is also 
limited by the number of channels (CHPIDs) involved. To avoid contention, place 
each stripe on its own CHPID. When striping, contention can also occur at the 
control unit, or at the DASD unit. Ensure that the disks are distributed to different 
control units and define the minidisks on separate DASD units.

Figure 8-2 on page 128 illustrates how LVM can increase I/O performance.

Note: Tests performed by the Boeblingen lab indicate optimal stripes are 32 K 
and 64 K in size.
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Figure 8-2   Using LVM for parallel DASD access

Using LVM, data is stripped across multiple physical DASD devices. DASD 
accesses can proceed in parallel. In 8.4.2, “Measuring ESCON and FICON for 
multiple DASD devices” on page 136, we measure the performance gained by 
using LVM.

Reduce contention points
Contention for I/O resources can occur at several points in the I/O path:

� DASD contention
Multiple virtual machines can experience DASD contention when 
simultaneously accessing data on the same DASD device.

� Control unit contention
Contention can occur when two or more DASD devices share a common 
control unit.

� Channel contention
Contention can occur during simultaneously access of control unit or DASD 
devices sharing the same channel.
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Use the z/VM minidisk cache (MDC)
The minidisk cache can be effective in reducing I/O requirements. There are 
different options for the MDC configuration that will impact the DASD subsystem 
differently.

8.2  Using VM DIAGNOSE I/O
DIAGNOSE I/O is a high-level protocol that allows a virtual machine to access 
blocks on its minidisks with less overhead than pure S/390 channel programs 
with Start Subchannel (SSCH).

To use Diagnose I/O, a minidisk must be CMS formatted and reserved using the 
following commands:

FORMAT 203 D
RESERVE LINUX DIAG D

The 203 minidisk is formatted with a default block size of 4 K and accessed as a 
D disk. All available space is then reserved to a file called LINUX DIAG (the file 
name is unimportant).

Recent SuSE kernels are built with the DIAGNOSE module 
(CONFIG_DASD_DIAG). However, the option to load it automatically whenever 
a DIAGNOSE device is available (CONFIG_DASD_AUTO_DIAG) is not set. Such 
a disk will be picked up at IPL time by the ECKD driver, as shown in Example 8-1 
for device 203.

Tip: If using DirMaint, you can request the disk to be CMS formatted by z/VM 
in the background, using the DIRM AMD command:

DIRM FOR SUSE24 AMD 203 3390 1 1500 LXVOL1 BLKSIZE 4096 LABEL LXDIAG

This allocates minidisk 203 for guest SUSE24 on DASD volume LXVOL1. The 
minidisk is allocated starting at cylinder 1 and sized to be 1500 cylinders. The 
minidisk is labelled LXDIAG and formatted in 4 K blocks.

Remember to RESERVE the minidisk after issuing the DIRM command.
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Example 8-1   IPL with the default ECKD discipline

# cat /proc/dasd/devices
0201(ECKD) at ( 94:  0) is dasda:active at blocksize: 4096, 36000 blocks, 140 MB
0202(ECKD) at ( 94:  4) is dasdb:active at blocksize: 4096, 564840 blocks, 2206 MB
0203(ECKD) at ( 94:  8) is dasdc:active at blocksize: 4096, 14040 blocks, 54 MB

To pick-up a disk with the DIAGNOSE discipline, do one of the following:

� Recompile the kernel after having selected the two DIAGNOSE-related 
options Support for DIAG access to CMS reserved Disks and Automatic 
activation of DIAG module.

� Or pick the device manually:

a. Disable the device using the command:

echo "set device range=203 off" >> /proc/dasd/devices

b. Load the DIAGNOSE driver using the command:

modprobe dasd_diag_mod

c. Enable the device back:

echo "set device range=203 on" >> /proc/dasd/devices”

DASD device 203 is accessed with DIAGNOSE I/O, as seen in Example 8-2.

Example 8-2   Accessing the 203 DASD device with DIAGNOSE discipline

0201(ECKD) at ( 94:  0) is dasda:active at blocksize: 4096, 36000 blocks, 140 MB
0202(ECKD) at ( 94:  4) is dasdb:active at blocksize: 4096, 564840 blocks, 2206 MB
0203(DIAG) at ( 94:  8) is dasdc:active at blocksize: 4096, 14040 blocks, 54 MB 

8.3  Comparing Diagnose and ECKD I/O 
Bonnie is a well-known open source disk and file system benchmark. It is 
included in most of the distributions, or can be obtained from the following 
address:

http://www.textuality.com/bonnie/

Bonnie is usually not very well suited for zSeries platform, because it is single 
threaded and does a lot of character I/O testing. But we just wanted an easy tool 
to generate I/Os so that we could compare the behaviors of ECKD and 
DIAGNOSE disciplines. We used a modified version of Bonnie that allows us to 
explicitly specify which kind of testing we want to perform. 
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Using a SuSE SLES8 guest with 128 MB of memory, we ran Bonnie against 
different disks configurations. The test scenario is as follows:

1. Write a 1500 MB file (block sequential I/O).

2. Read the 1500 MB file (block sequential I/O).

3. Bonnie creates four child processes. Each child then executes 4000 seeks to 
random locations in the file. On 10% of the seeks, the block is read, modified, 
and rewritten to the file.

The results for a test against an ECKD device are reported in Example 8-3.

Example 8-3   DASD performance analysis for ECKD

Screen: ESADSD2  ITSO                           ESAMON V3.3  02/25 12:38-12:44 
1 of 3  DASD Performance Analysis - Part 1      USER lnxz02  DEVICE  2064 C0ECB
                                                                                
                                                                                
           Dev        Device %Dev <SSCH/sec-> <-----Response times (ms)--->     
 Time      No. Serial Type   Busy   avg  peak  Resp  Serv  Pend  Disc  Conn     
 -------- *--- ------ ------ ---- *---- ----- ----- ----- ----- ----- -----     
 12:44:00 670E LX670E 3390-3 55.5  74.0  74.0   7.5   7.5   0.2   0.0   7.2     
 12:43:00 670E LX670E 3390-3 97.8  26.3  26.3  37.2  37.2   0.3   0.1  36.9     
 12:42:00 670E LX670E 3390-3 96.5  24.4  24.4  39.5  39.5   0.3   0.6  38.6     
 12:41:00 670E LX670E 3390-3 99.2  19.6  19.6  50.7  50.7   0.3   2.9  47.5     
 12:40:00 670E LX670E 3390-3 99.4  19.5  19.5  50.8  50.8   0.3   2.7  47.8     
 12:39:00 670E LX670E 3390-3 55.7  11.1  11.1  50.3  50.3   0.3   2.0  48.1     

Although the very high response time of 50 ms would be worrying in real life, it is 
to be expected here. Bonnie is made for stressing the disk. 

A more interesting result is the large percentage of response time expended in 
connect time (the effective time spent transferring data on the channel). This 
indicates I/Os are not delayed by waits. Rather, each I/O operation is transferring 
a lot of data, which takes some time. Not much can be done to improve the 
response time of the disk apart of buying newer, faster disks. We could improve 
the application response time by spreading the data over several disks.

Then, we ran the same test using DIAGNOSE I/O and compared the behavior in 
Example 8-4 on page 132.

Note: In this analysis (as in all others in this book), DASD devices reside on 
RAMAC Virtual Array (RVA) units.
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Example 8-4   DASD performance analysis for DIAGNOSE

Screen: ESADSD2  ITSO                           ESAMON V3.3  02/25 13:27-13:33  
1 of 3  DASD Performance Analysis - Part 1      USER lnxz02 DEVICE 6 2064 C0ECB 
                                                                                 
                                                                                 
           Dev        Device %Dev <SSCH/sec-> <-----Response times (ms)--->      
 Time      No. Serial Type   Busy   avg  peak  Resp  Serv  Pend  Disc  Conn      
 -------- *--- ------ ------ ---- *---- ----- ----- ----- ----- ----- -----      
 13:33:00 6612 LX6612 3390-3 75.8  95.3  95.3  10.7   7.9   0.2   0.0   7.7      
 13:32:00 6612 LX6612 3390-3 89.8  43.7  43.7  31.2  20.5   0.3   0.1  20.2      
 13:31:00 6612 LX6612 3390-3 98.3  45.3  45.3  33.9  21.7   0.3   0.1  21.3      
 13:30:00 6612 LX6612 3390-3 99.7  38.2  38.2  40.5  26.1   0.3   0.9  24.9      
 13:29:00 6612 LX6612 3390-3  101  39.5  39.5  39.5  25.6   0.3   0.4  24.9      
 13:28:00 6612 LX6612 3390-3 42.3  16.4  16.4  42.1  25.8   0.3   0.5  25.0      

From this screen, we notice that:

� More I/O operations are performed, but the average duration is shorter. 
The Start SubChannel (SSCH) column reports the number of I/O operations. 
The average I/O duration is derived from the service time (Serv) column. This 
result is beneficial for shared environment. I/O resources are held for less 
time, and therefore, more available for other guests.

� DASD response times are better than with ECKD.
Although the measured DIAGNOSE response time is about 10 ms less than 
ECKD response time, very little can be inferred from the result: 

– The response time is better, because an average DIAGNOSE I/O 
operation transfers less data than ECKD.

– More total I/O operations are performed with DIAGNOSE in order to 
transfer the same amount of data.

Although the majority of service time is due to connect time, it is only part of the 
total response time: Response time = queue time + service time. Queue time 
measurements against the DIAGNOSE disk are shown in Example 8-5 on 
page 133.
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Example 8-5   DASD performance analysis for DIAGNOSE queue time

Screen: ESADSD2  ITSO                           ESAMON V3.3  02/25 13:27-13:33 
2 of 3  DASD Performance Analysis - Part 1      USER lnxz02   DEVICE 2064 C0ECB
                                                                               
                                                                               
          Dev        Device %Dev <SSCH/sec-> <--Queueing-->                    
Time      No. Serial Type   Busy   avg  peak DASD Cntl  THR                    
-------- *--- ------ ------ ---- *---- ----- ---- ---- ----                    
13:33:00 6612 LX6612 3390-3 75.8  95.3  95.3  2.8  0.0  0.0                    
13:32:00 6612 LX6612 3390-3 89.8  43.7  43.7 10.7  0.0  0.0                    
13:31:00 6612 LX6612 3390-3 98.3  45.3  45.3 12.1  0.0  0.0                    
13:30:00 6612 LX6612 3390-3 99.7  38.2  38.2 14.4  0.0  0.0                    
13:29:00 6612 LX6612 3390-3  101  39.5  39.5 13.9  0.0  0.0                    
13:28:00 6612 LX6612 3390-3 42.3  16.4  16.4 16.3  0.0  0.0 

We observe some contention for the disk in the operating system: 

� DIAGNOSE generates more, shorter I/Os.

� The four Bonnie child processes running in parallel compete for access to the 
same disk.

From this approach, it is difficult to clearly understand which of these methods is 
best suited for Linux under z/VM. Because Bonnie is stressing the disk, in both 
cases, we note the device is busy more than 95% of the time in the middle of the 
run. This leaves no room for other potential users to access the disk.

8.4  Comparing ESCON and FICON performance
Enterprise Systems Connection, ESCON®, and the newer Fibre Connection, 
FICON™, provide I/O connectivity based on fiber optic technology. Table 8-1 on 
page 134 compares some of their capabilities.
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Table 8-1   Comparing ESCON and FICON capabilities

From a performance perspective, the higher data transfer rate and number of 
concurrent I/O operations distinguish FICON from ESCON. 

Using the configurations illustrated in Figure 8-2 on page 128, we measure the 
throughput rate of ESCON and FICON channels. Tests are run using the 
standard dasd.o device driver accessing a single DASD device and using LVM 
parallel access to multiple DASD devices.

Measurements are taken using Bonnie (discussed in 8.3, “Comparing Diagnose 
and ECKD I/O” on page 130) running on a z900 LPAR with an Enterprise 
Storage Server (ESS) disk attachment. Tests are run against a SuSE SLES7 
distribution running in 31-bit mode.

ESCON FICON (native mode)

Maximum data transfer rate 17 MB/s 100 MB/s

Date transfer mode Half duplex Full duplex

Maximum distance 3 kma

a. 43 km using repeater

20 kmb

b. 100 km using repeater

Data droop At 9 km No

CTC function Separate Integrated

Concurrent I/O operations 1 Up to 32

Note: For a complete comparison of the capabilities of ESCON and FICON, 
consult IBM ^ zSeries Connectivity Handbook, SG24-5444, available 
at:

http://www.ibm.com/redbooks/abstracts/sg245444.html

For details about ESCON, consult Enterprise Systems Connection (ESCON) 
Implementation Guide, SG24-4662, available at:

http://www.ibm.com/redbooks/abstracts/sg244662.html

FICON is discussed in FICON Native Implementation and Reference Guide, 
SG24-6266, available at:

http://www.ibm.com/redbooks/abstracts/sg246266.html
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8.4.1  Measuring ESCON and FICON for a single DASD device
In Figure 8-3, we measure the performance of ESCON and FICON when reading 
and writing to a single DASD device.

Figure 8-3   ESCON and FICON performance: Single DASD device

Figure 8-3 illustrates a 35% performance improvement for write operations using 
FICON over ESCON. For read operations, the performance gain is 125%. We 
also note:

� The transfer rate for FICON is well below its theoretical maximum.
Although the ESCON transfer rate of 12 MB/s approaches its theoretical limit, 
the FICON 26 MB/s read transfer rate is significantly less than the 100 MB/s 
limit. The limitation in this case is not the channel but rather the DASD device 
itself. To achieve a higher throughput, we need to access multiple DASD 
devices in parallel.
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Note: To maximize FICON performance, use LVM for data stripping to 
increase parallel DASD access. The performance improvements are 
shown in 8.4.2, “Measuring ESCON and FICON for multiple DASD 
devices” on page 136.
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� The FICON transfer rate differs substantially between reads and writes.
To ensure data integrity in the event of a power failure, the ESS server uses 
nonvolatile storage. This difference is accounted for by the longer write 
access time to that storage.

8.4.2  Measuring ESCON and FICON for multiple DASD devices
LVM striping enables us to increase the number of parallel I/O operations to 
DASD devices. In Figure 8-2 on page 128, we examine the effect of parallel 
access on data transfer rate. In this scenario, Bonnie read scenarios are run 
using multiple DASD devices combined in a single logical volume. The number of 
DASD devices is varied from one to eight. Results are compared using eight 
ESCON and four FICON channels.

Figure 8-4   ESCON and FICON performance: Multiple DASD devices

Both ESCON and FICON benefit from the increased parallelism provide by LVM. 
In general, FICON provides twice the data transfer rate (using half the number 
channels) as ESCON.
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8.5  Data caching and bdflush
Having its roots in discrete servers with relatively slow I/O and inexpensive 
memory, Linux attempts to use memory to avoid disk I/O (see 3.4, “Illustrating 
Linux aggressive caching” on page 30). One way Linux attempts to avoid I/O is to 
initially buffer all application output in memory. It then uses an asynchronous 
process bdflush (or kupdated thread in other releases) to write that data out to 
disk. This allows for more efficient I/O, helps to keep temporary files away from 
the disk completely, and allows the operating system to pace I/O in a way that 
does not impact interactive work on the system.

8.5.1  Parameters for bdflush
To demonstrate the effect of “lazy write,” we run dt to write a file slowly (with 64 
KB/s) and monitor the disk I/O with vmstat. 

The results of this experiment are shown in the graph in Figure 8-5 on page 138. 

Note: In this section, we look at the behavior of bdflush. By adjusting its 
instrumentation, we examine the effect on data caching. However, we can 
draw no conclusions about what the optimal bdflush parameter settings are for 
Linux on zSeries. 

Note: The Data Test (dt) program is a utility to verify operation of peripheral 
devices. Its syntax and operation is similar to the dd command. Details can be 
found at:

http://www.bit-net.com/~rmiller/dt.html
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Figure 8-5   Effect of lazy write on slowly writing a file

During the first 35 seconds of the test, there is little to see, except for the small 
peaks of 64 KB each. Because no data is being written to disk, we must conclude 
that Linux memory is filling with blocks of data that is to be written to disk (the 
“dirty data”). After 35 seconds, we see a small amount of data written to disk 
every five seconds.

The explanation for this strange behavior lies in the default parameters for 
bdflush. These parameters are controlled through /proc/sys/vm/bdflush. You cat 
the entry to see the current values:

# cat /proc/sys/vm/bdflush
30       64      64      256     500     3000    60      0       0

The parameters can be changed by writing a line with the appropriate values into 
the bdflush entry.
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Note: Some people suggest the meaning of these parameters can be found in 
the Documentation directory of your kernel source. When we tried to make 
sense of the values and the effect of changes, we found the vm.txt file is 
apparently out-of-date. The real meaning (and defaults) come out of fs/buffer.c 
instead. Be aware that next kernel releases will change this again.
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Table 8-2   Parameters for bdflush (with Linux 2.4.7)

With the description and default values for the parameters, we can understand 
the graph in Figure 8-5 on page 138:

interval Specifies bdflush is to wake up every five seconds.

age_buffer Specifies that a buffer is to be written to disk only when it is older 
than 30 seconds.

The first data blocks are written to disk only after 35 seconds. When bdflush 
wakes up five seconds later, it finds another 320 KB of dirty buffers old enough to 
write to disk. During the entire test, some 2 MB worth of data is waiting to be 
written to disk. 

For the next experiment, we change age_buffer to 10 seconds. The graph in 
Figure 8-6 on page 140 confirms what we expect: 

� Data is first written to disk after 15 seconds.

� Every five seconds afterward, another 320 KB is written to disk.

Field Default Description

nfract 30 Percentage of buffer dirty required to activate bdflush

ndirty 64 Maximum number of buffers to write out per wake-cycle

nrefill 64 Number of clean buffers to obtain each time refill is called

unused 256

interval 5 * HZ Delay (in jiffies) between kupdate flushes

age_buffer 30 * HZ Time for normal buffer to age before flushing

nfract_sync 60 Percentage of buffer cache dirty required to activate bdflush 
synchronously
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Figure 8-6   Effect of age_buffer=10 on bdflush

It might appear to be a good thing to write the data to disk sooner, but we also 
find more data is written to disk. We suspect this is due to the same data being 
written more than once during the test.

Another available tuning method is to increase the interval between flush cycles. 
When we increase the interval from 5 to 10 seconds, bdflush indeed wakes up 
every 10 seconds and writes twice the amount of data to disk during each cycle.

Unlike the VM minidisk cache, which uses a write-through cache (as discussed 
on page 52), Linux utilizes a store-in cache; written data is retained in cache. 
This is a logical choice, because the data is already buffered in memory before 
writing it. Much of the cost of the cache is already incurred by the time the data 
goes to disk. 

The effect of buffering only appears when observing the system for a longer 
period of time. We look at cache growth in Figure 8-7 on page 141.
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Figure 8-7   Growth of buffer cache while writing a file

The graph shows the cache growing from an initial 5 MB to 20 MB (where it 
remains). When that point is reached, the oldest blocks are dropped from cache, 
and memory pages are reused for new data.

The test used here writes a file sequentially, and then reads the file (again 
sequentially from beginning to end). Due to the both the size of the file and the 
manner in which the cache is filled when writing the file, the cache offers no 
benefit when reading the file:

� When reading the file from the beginning, only the last portion of the file 
remains in the buffer cache from the write phase.

� The portions of the file remaining in the buffer cache from the write phase are 
evicted to make room for newly read data before the read phase can reuse 
them.

One side effect of increasing age_buffer is that the maximum amount of dirty 
data held in memory changes as well: When bdflush waits longer before writing 
data, more dirty data accumulates in memory. This relationship holds only when 
data is written at a constant rate. To unconditionally limit the amount of dirty data 
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in memory, use the nfract parameter (the default is to allow 30% of the buffer to 
be dirty).

Linux on IBM ^ zSeries and S/390: ISP/ASP Solutions, SG24-6299 
states that the channel programs Linux uses to write out data through bdflush are 
not always very effective with Linux on z/VM:

� The dirty pages are left in memory for some time (default 30 seconds) 
before bdflush starts to write them to disk.
This is attractive for temporary files that are discarded before bdflush picks 
the data up. It completely avoids I/O. However, with Linux on z/VM, it is 
undesirable to wake up a virtual machine every 30 seconds to write buffer 
cache data:

– If there is sufficient contention, z/VM may have already paged these dirty 
pages.

– In this was the case, z/VM would first have to page the data back in order 
for Linux to perform I/O.

� The channel programs used by bdflush can grow very long, such as 500 
KB per I/O.
While this is efficient for reducing the number of I/O operations, with Linux on 
z/VM it can be counterproductive:

– To start I/O, CP must first lock all Linux memory pages involved in the 
operation. This can cause contention.

– Memory pages involved in the I/O operation might have to brought back 
from paging storage if they were updated long time ago.
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Chapter 9. Measuring the cost of OSA, 
Linux, and z/VM networking

In this chapter, we look at the relative cost of various networking and routing 
options when running Linux as a z/VM guest. Topics include:

� Comparing the CPU time cost of routing

� The effect of bandwidth on routing costs

� QDIO optimizations for z/VM

� Memory costs associated with QDIO

� Comparing CPU cost by network type

9
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9.1  Comparing the CPU time cost of routing
To determine the relative cost of various routing options, we use the WebSphere 
Performance Benchmark Sample workload in the network configurations 
depicted in Figure 9-1. Details about WebSphere Performance Benchmark 
Sample can be found in Appendix A, “WebSphere Performance Benchmark 
Sample workload” on page 155.

Figure 9-1   Three configurations to measure the cost of routing
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We compare the CPU cost for:

� Routing using an Open Systems Adapter (OSA) direct connection

� Routing using a z/VM Linux guest

� Routing using the z/VM TCP/IP stack

In each configuration, we use WebSphere Performance Benchmark Sample in a 
three-tier configuration. Components are connected using a HiperSockets 
network (172.22.10.0). Clients connect through an OSA-Express interface 
connected to a private external network (192.168.2.0).

We establish a common metric to be used when comparing the three routing 
configurations: the average number of WebSphere Performance Benchmark 
Sample transactions completed in one CPU second. To calculate this value, we 
initiate a workload using five simulated clients on the 192.168.2.0 network. We 
note the reported average transaction rate seen by the clients, as well as the 
CPU time used by the router guest and the HTTP client. Example 9-1 shows the 
CPU time consumed by the HTTP server for the OSA direct routing configuration.

Example 9-1   CPU time used by the HTTP server (OSA direct routing)

Screen: ESAUSR2  ITSO                           ESAMON V3.3  02/19 12:51-12:56
 1 of 3  User Resource Utilization               USER lnxs02          2064 
C0ECB
                                                                                
                   <---CPU time--> <--------Main Storage (pages)---------> 
          UserID   <(seconds)> T:V <Resident>  Lock <-----WSS----->
 Time     /Class   Total  Virt Rat Total Activ  -ed Total Actv  Avg Resrvd 
 -------- -------- ----- ----- --- ----- ----- ---- ----- ---- ---- ------ 
 12:56:00 LNXS02   19.63 11.42 1.7  9807  9807 2482  6981 6981 6981      0 
 12:55:00 LNXS02   18.21  9.80 1.9  9807  9807 2574  6981 6981 6981      0 
 12:54:00 LNXS02   18.07  9.70 1.9  9804  9804 3047  6981 6981 6981      0 
 12:53:00 LNXS02   18.10  9.62 1.9  9804  9804 2974  6981 6981 6981      0 
 12:52:00 LNXS02   18.00  9.62 1.9  9804  9804 2401  6628 6628 6628      0 

Average CPU time used over the interval is 18.4 CPU-seconds/minute. The 
reported transaction rate over the period is 35.4 transactions/second.

Note: To estimate routing cost, we use the average CPU time (in 
milliseconds) required for a transaction. In this case, we define a transaction to 
be an HTTP request and response from the WebSphere Performance 
Benchmark Sample server. Using the reported average transaction and the 
CPU cost for each WebSphere Performance Benchmark Sample component, 
we calculate routing cost from the average CPU time measured for a one 
minute interval and reported transaction rate. 
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Results for each routing configurations are summarized in Table 9-1. 

Table 9-1   Summary of CPU cost for routing (OSA direct, Linux, z/VM)

The results reveal:

� The Linux router offers the highest transaction rate.
The reported transaction rate for the Linux router is approximately 50% higher 
than the z/VM router. 

� Cost for an OSA direct connection is least expensive at 8.7 
CPU-ms/transaction. 
This result is expected. Although the CPU time spent by the HTTP server is 
greater, no additional CPU time is consumed for a router virtual machine.

� On average, the cost of a Linux router is approximately the same as the 
cost of an HTTP server when using a z/VM router.
Although there are may be good reasons for using a Linux router (such as 
firewall capability and network packet filtering), there is a measurable cost.

� The cost of a z/VM router is about 15% less than the cost of a Linux 
router.
The figures indicate z/VM might have some QDIO network optimization not 
available to Linux guests. We examine this in 9.3, “QDIO optimizations for 
z/VM” on page 150.

9.2  The effect of bandwidth on routing costs
Using the Iperf tool, we examine bandwidth effects on the routing. 

Router Transaction
ratea

a. Transactions/second.

Router
CPU timeb

b. CPU-second/minute.

HTTP
CPU timeb

Total
CPU timeb

Costc

c. CPU-ms/transaction.

OSA direct 35.4 d

d. The OSA direct configuration incurs no CPU cost for a guest router.

18.4 18.4 8.7

Linux router 39.2 12.0 13.3 25.3 10.8

z/VM router 25.9 4.0 10.2 14.2 9.2

Note: Iperf is a utility for measuring TCP and UDP bandwidth performance. 
Details can be found at:

http://dast.nlanr.net/Projects/Iperf/
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Although Iperf supports both TCP and UDP traffic, be aware that the Iperf 
measurements made in this redbook utilize UDP datagrams. Using the Linux 
Traffic Control program, tc, we were unable to limit TCP bandwidth only up to 5 
Mbit/s. When attempting to limit TCP bandwidth to 10 Mbit/s, Iperf push network 
load to 94 Mbit/s. However using UDP, Iperf is able to limit network traffic over 
the full range of bandwidths.

We compare routing using a Linux guest to a z/VM, as shown in Figure 9-2.

Figure 9-2   Measuring the bandwidth effect on routing cost using Iperf

In the configurations, the Iperf server runs on a Linux guest connected to the 
router over an internal network (172.22.10.0). The Iperf client runs on a private 
Ethernet network (192.168.2.0) and access the router through an OSA-Express 
interface. Each router runs in a 64 MB virtual machine with one defined virtual 
CPU.

To calculate the effect of bandwidth on routing costs, we use Iperf to drive a 
network load and measure the CPU time consumed by the router. We use the 
average data transfer rate reported by Iperf and the measured CPU consumption 
to derive cost in terms of MB per CPU-second.

Using Iperf, network loads can be varied by both consumed network bandwidth 
and by packet size. To study the effects, we run scenarios that:

� Vary consumed network bandwidth
Scenarios are run with network bandwidth limited to 1 Mbit/s, 25 Mbit/s, 50 
Mbit/s, 75 Mbit/s, and 100 Mbit/s using a 600 byte UDP packet size.

� Vary UDP packet size
The UDP packet size is increased to 1470 bytes, and the scenarios are run 
again at the selected network bandwidths.
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� Vary network type
We compare the CPU cost for three types of zSeries networks:

– HiperSockets
– Inter-User Communications Vehicle (IUCV)
– z/VM Guest LAN

Router CPU costs are calculated by dividing the total CPU-ms used by the total 
data transferred. Results are reported both for virtual CPU time and for CPU time 
spent in CP.

Figure 9-3 on page 149 compares the cost of a Linux router to a z/VM router for 
varying bandwidths operating on 600 byte UDP packets. CPU costs are broken 
down for virtual and CP time.

Note: Virtual CPU time is the actual amount of processing time expended by 
the z/VM guest. CP time is the amount processor time used by CP acting on 
behalf of the z/VM guest.
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Figure 9-3   Comparing bandwidth effect on z/VM and Linux routing
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Figure 9-3 on page 149 illustrates that the CPU cost of a z/VM router is 
significantly less than a Linux guest router, independent of both bandwidth and 
UDP packet size. A substantial portion of the additional cost of the Linux router is 
the CPU time spent in CP processing.

9.3  QDIO optimizations for z/VM
The data presented in Figure 9-3 on page 149 is in accord with the conclusion 
that a z/VM router is more cost effective than a Linux guest router (at least when 
using OSA-Express interface). We note the routing costs decrease as bandwidth 
increases, independent of data packet size. 

Interestingly, the Linux router spends more than half of its processing time in CP. 
This can be accounted for by z/VM optimization employed when using QDIO:

� Use of DIAGNOSE 98
z/VM uses the VM DIAGNOSE 98 system service to manage storage for 
Queued Direct Input Output (QDIO) buffers. This service allows a virtual 
machine to lock and unlock memory pages. Therefore, the z/VM TCP/IP 
virtual machine avoids VM hypervisor overhead (and therefore CP processing 
time) by communicating directly with the QDIO interface.

� Packing datagrams in the QDIO buffer
z/VM has prior knowledge of pending packets destined for QDIO interfaces. 
The z/VM TCP/IP utilizes this to pack many datagrams into a single network 
payload (and thereby save CPU cycles when delivering the packed payload to 
the interface). 

These optimizations are available to z/VM on any QDIO interface, OSA or 
HiperSockets.

Traffic packaging on a QDIO interface can be observed. In Example 9-2 on 
page 151, we use the ifconfig command to examine the number of packets 
received at the Iperf server’s HiperSockets interface.

Note: Take note of the change in y-axis scale between the two charts.

Note: Traffic packing can occur with packets destined for all IP 
destinations when using an OSA interface. However, only traffic destined 
to a single IP address can be packaged when using HiperSockets.
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Example 9-2   Counting packets received at the Iperf server

hsi1      Link encap:Ethernet  HWaddr 00:00:00:00:00:00
          inet addr:172.22.10.10  Mask:255.255.255.0
          inet6 addr: fe80::200:ff:fe00:0/10 Scope:Link
          UP RUNNING NOARP MULTICAST  MTU:16384  Metric:1
          RX packets:3296073 errors:0 dropped:0 overruns:0 frame:0
          TX packets:1799129 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:100
          RX bytes:1267423148 (1208.7 Mb)  TX bytes:151174713 (144.1 Mb)
          Interrupt:3 

The RX packets value reports the number of received packets. In Example 9-3, 
we use the CP QUERY VIRTUAL OSA command to count the number of packets 
received by the router from the OSA-Express interface.

Example 9-3   Counting packets received on the OSA-Express interface

OSA  F002 ON OSA   7345 SUBCHANNEL = 0005
     F002 QDIO ACTIVE
     F002 INP + 01 IOCNT = 03160430 ADP = 106 PROG = 000 UNAVAIL = 022
     F002 OUT + 01 IOCNT = 01799105  ADP = 000 PROG = 128 UNAVAIL = 000
     F002 OUT + 02 IOCNT = 00000000  ADP = 000 PROG = 000 UNAVAIL = 128
     F002 OUT + 03 IOCNT = 00000000  ADP = 000 PROG = 000 UNAVAIL = 128
     F002 OUT - 04 IOCNT = 00000023  ADP = 001 PROG = 000 UNAVAIL = 127 

The INP IOCNT value reports the number of received packets.

The QDIO packing effect can be measured by calculating the ratio of packets 
received on the OSA-Express interface to the number of packets received on the 
Iperf server HiperSockets interface. In Figure 9-4 on page 152, we show how the 
packing factor varies by bandwidth using a 600 byte UDP payload.

Tip: z/VM help for the CP QUERY VIRTUAL OSA command says:

IOCNT = nnnnnnnn
specifies the number of data transfers that have completed since the
QDIO data queue was last activated by the program. CP increments the
IOCNT each time a QDIO data buffer changes from an adapter-owned
state to a program-owned state. 
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Figure 9-4   Measuring the QDIO packet packing effect

We see the Linux router performs no packing. Its packing factor remains one for 
all bandwidths. Using a z/VM router, the QDIO packing increases to almost four.

9.4  Memory costs associated with QDIO
Be aware, by default, the Linux QDIO device driver reserves approximately 8 MB 
of memory for each QDIO device, memory that needs to be locked in real 
memory below the 2 GB address line. This cost should taken into account when 
running many Linux guest (particularly if each guest uses multiple QDIO 
devices). For example, the requirement for 50 Linux guests sharing an OSA 
adapter translates to 400 MB of z/VM memory.

It is possible to change the QDIO device driver memory size. For details, see 
Linux for zSeries and S/390 Device Drivers and Installation Commands, 
LNUX-1303. Lowering the memory requirement will lower the MTU for the 
device.
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9.5  Comparing CPU cost by network type
In Figure 9-5, we calculate cost of routing for various network types:

� HiperSockets
� IUCV
� z/VM Guest LAN

The comparison is based on Iperf measurements performed on the configuration 
illustrated in Figure 9-2 on page 147. In this case, a Linux router is used, and the 
172.22.10.0 network is varied according to the type under consideration.

Figure 9-5   CPU cost comparison by network type

The graph illustrates that while the CPU cost of IUCV is slightly higher than 
HiperSockets and z/VM Guest LAN at low bandwidth, IUCV becomes less 
expensive at higher bandwidths. We also note the CPU cost of z/VM Guest LAN 
is essentially equal to the cost of HiperSockets.

Hint: To conserve memory below 2 GB, consider using a single router (Linux 
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much lower memory requirements.
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Appendix A. WebSphere Performance 
Benchmark Sample 
workload

This appendix describes the WebSphere Performance Benchmark Sample 
(WPBS) workload.

A
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WebSphere Performance Benchmark Sample
WebSphere Performance Benchmark Sample (WPBS), commonly referred to as 
the Trade 2 application, is a sample J2EE benchmark application for IBM 
WebSphere Application Server. The application simulates a stock trading 
application. WebSphere Performance Benchmark Sample is available to 
download for free at:

http://www-3.ibm.com/software/webservers/appserv/wpbs_download.html

WebSphere Performance Benchmark Sample provides a suite of workloads for 
characterizing performance of the IBM WebSphere Application Server. In this 
redbook, we use the WebSphere Performance Benchmark Sample to generate 
workloads that are analyzed in terms of their impact on system performance. 
Figure A-1 illustrates a logical view of the WebSphere Performance Benchmark 
Sample application.

Figure A-1   Components of an IBM WebSphere Application Server deployment

The three main WebSphere Performance Benchmark Sample components are:

� The IBM HTTP server 
The HTTP server accepts client requests and delivers static content (HTML 
pages, images, and stylesheets). Dynamic requests are forwarded to the 
WebSphere Application Server through a server plugin.

� The IBM WebSphere Application Server
The WebSphere Application Server creates dynamic content using 
JavaServer Pages (JSP) and Java Servlets. Pages are generated from data 
extracted from a DB2 database.

� The DB2 database
The DB2 database contains relational tables regarding simulated customer 
accounts and stock transactions.
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WebSphere Performance Benchmark Sample 
deployment options

Several options are available when deploying the WebSphere Performance 
Benchmark Sample application on Linux for zSeries:

� All components can run in a single Linux guest.
We refer to this as a single-tier deployment.

� Each component can run in a dedicated Linux guest.
We refer to this as a three-tier deployment.

These two deployment options are depicted in Figure A-2.

Figure A-2   WPBS deployment: Three-tier versus single-tier

In this book, the WebSphere Performance Benchmark Sample is used as a 
workload generator for Linux running as a z/VM guest. In this case, we primarily 
use the three-tier deployment option. This enables us to adjust the virtual 
machine size of each Linux guest more accurately based on the task that guest 
performs. In addition, when measuring utilization, the three-tier deployment 
option allows us to attribute specific resources usage to a specific task.
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Note: For a complete description of deployment options for WebSphere 
Application Server, consult WebSphere Application Server V4 for Linux, 
Implementation and Deployment Guide, REDP0405, available at:

http://www.ibm.com/redbooks/abstracts/redp0405.html
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Appendix B. Mstone workload generator

This appendix describes the Mstone workload generator. Topics discussed 
include:

� Mstone overview

� Operation of the Mstone workload

� Configuring the Mstone client

� Configuring the example.com domain

� Populating the LDAP database

B
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Mstone overview
Mstone is a performance measurement tool available from the Mozilla project:

http://www.mozilla.org/projects/mstone

Originally known as Mailstone, Mstone can be used for capacity planning and 
testing network mail servers. The Mailstone user guide can be found at:

http://docs.sun.com/source/816-6036-10/index.html

Using Mstone, workloads can be generated on mail servers from multiple client 
machines. Test scenarios that employ multiple mail protocols and multiple 
simulated mail clients can be used to observe server response under heavy load. 
Although originally intended to test mail server performance, Mstone has 
features that make it suitable for overall system performance analysis. The 
Mstone configuration used in this book is shown in Figure B-1.

Figure B-1   Mstone workload configuration
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The configuration consists of:

� Mstone clients 
Mstone clients (hosts RedHat1 and RedHat2) are used to generate mail 
messages destined to users in the example.com domain. The RedHat1 and 
RedHat2 Linux hosts reside on a private network routed to the example.com 
domain through an OSA-Express interface.

� Linux router
The example.com network is implemented as a HiperSockets network. 
Routing to and from the 192.168.20 private network is managed by a z/VM 
Linux guest (host LNXR09) configured with IP forwarding enabled.

� Combined DNS and LDAP server
Host name resolution on the example.com network is managed by a DNS 
server running on the LNXR10 z/VM Linux guest. The OpenLDAP server 
resolves where specific user accounts reside in the example.com domain.

� Sendmail servers
Messages are routed to the intended recipients in the example.com domain 
by the sendmail server running on hosts LNXR01 through LNXR07. 

Each sendmail host in the example.com domain services 1000 users. The 
distribution of users across the sendmail hosts is shown in Table B-1.

Table B-1   Distribution of users to sendmail hosts

Sendmail host name User distribution

LNXR01 itso-user0 through itso-user999

LNXR02 itso-user1000 through itso-user1999

LNXR03 itso-user2000 through itso-user2999

LNXR04 itso-user3000 through itso-user3999

LNXR05 itso-user4000 through itso-user4999

LNXR06 itso-user5000 through itso-user5999

LNXR07 itso-user6000 through itso-user6999
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Operation of the Mstone workload
The flow of the Mstone workload is illustrated in Figure B-2 on page 162.

Figure B-2   Mstone workload flow

The operation proceeds as follows:

1. Mstone creates a message to a randomly chosen example.com 
recipient.
The Mstone script randomly selects an intended recipient in the range 
itso-user0 through itso-user6999. The message is then sent to the local 
sendmail server (on host RedHat1 in the example) for delivery. Sendmail 
configuration for the Mstone clients is discussed in “Configuring the Mstone 
client” on page 164.

2. The local sendmail server queries the example.com DNS server for the 
MX records required to deliver the message.
The Mstone client machines are configured to use the example.com DNS 
server (LNXR10) for host name resolution. When queried for MX records, 
DNS responds with the list of MX records that specify the mail exchange 
servers for the example.com domain (LNX01 through LNXR07). 

The first record in the list is selected by the DNS server in a round-robin 
fashion. This ensures messages are routed to a specific example.com 
sendmail server in a relatively equal manner.

LDAP

Mstone

DNS

mailbox mailbox

sendmail
(LNXR02)

sendmail
(LNXR01)

1

2
3

5

4

6

sendmail
(RedHat1)
162 Linux on IBM  ̂zSeries and S/390: Performance Measurement and Tuning



3. The local sendmail server forwards the message to the first mail 
exchange server identified by DNS.
The local sendmail server selects the specific mail exchanger server by 
proceeding through the MX record list in sequential order. The message is 
delivered to the first available sendmail server.

Sendmail configuration for the example.com domain is discussed in 
“Configuring the example.com domain” on page 164.

4. The selected example.com mail exchange server queries LDAP to 
determine where the recipient’s mailbox resides.
Upon receipt of an incoming message, the specific example.com mail 
exchange server first queries LDAP with the intended recipient’s e-mail 
address. LDAP responds with the host name on which that recipient’s mailbox 
can be found. If the recipient’s mailbox is defined locally, sendmail delivers 
the message to that user and processing is complete.

5. If the recipient’s mailbox is defined on another host, sendmail forwards 
the message to that host’s mail exchange server.
In the event the recipient’s mailbox is defined on another host, sendmail 
forwards the message to mail exchange server on that host.

LDAP routing in sendmail
As shown is Figure B-2 on page 162, the sendmail servers are configured to use 
LDAP when routing messages to real users. The choice of LDAP as a sendmail 
router has several advantages:

� Sendmail recipients can be defined without creating user IDs on the Linux 
hosts.

� The LDAP server adds an additional workload that can be studied and tuned 
in performance analysis.

Configuring sendmail to use LDAP routing is covered in “Configuring the 
example.com domain” on page 164. Additional information about LDAP routing 
for sendmail can be found at:

http://www.sendmail.org/m4/ldap_routing.html

Note: If the first mail exchange server in the list is unavailable (for 
example, that server is down), the local sendmail server attempts to deliver 
to the next mail exchange server in the list.
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Configuring the Mstone client
To configure the Mstone client:

1. Install and start the sendmail server.
For Red Hat Linux installations, the default sendmail configuration is 
sufficient.

2. Point the DNS host to the example.com DNS server.
Configure the resolver to point to the DNS server for the example.com 
domain. Add the following to the /etc/resolv.conf file:

search example.com
nameserver 172.22.10.22

Configuring the example.com domain
To configure the example.com domain for Mstone workloads, the sendmail, 
LDAP, and DNS server must be configured.

To enable sendmail for LDAP routing, we change the sendmail m4 configuration 
file (/etc/mail.sendmail.mc), as shown in Example B-1 on page 165.
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Example: B-1   The sendmail configuration file: /etc/mail/sendmail.mc

divert(-1)
include(`/usr/share/sendmail-cf/m4/cf.m4')
VERSIONID(`linux setup for Red Hat Linux')dnl
OSTYPE(`linux')
define(`confDEF_USER_ID',``8:12'')dnl
define(`confDOMAIN_NAME', `lnxr01.example.com')dnl
undefine(`UUCP_RELAY')dnl
undefine(`BITNET_RELAY')dnl
define(`confAUTO_REBUILD')dnl
define(`confTO_CONNECT', `1m')dnl
define(`confTRY_NULL_MX_LIST',true)dnl
define(`confDONT_PROBE_INTERFACES',true)dnl
define(`PROCMAIL_MAILER_PATH',`/usr/bin/procmail')dnl
define(`ALIAS_FILE', 
`ldap: -1 -v rfc822MailMember -k "(&(objectClass=nisMailAlias)(uid=%0))"') 1 
define(`UUCP_MAILER_MAX', `2000000')dnl
define(`confUSERDB_SPEC', `/etc/mail/userdb.db')dnl
define(`confPRIVACY_FLAGS', `authwarnings,novrfy,noexpn,restrictqrun')dnl
define(`confLDAP_DEFAULT_SPEC',`-h 172.22.10.22 -b "o=My Organization Name,c=US"') 2 
FEATURE(`no_default_msa',`dnl')dnl
FEATURE(`smrsh',`/usr/sbin/smrsh')dnl
FEATURE(`mailertable',`hash -o /etc/mail/mailertable.db')dnl
FEATURE(`virtusertable',`hash -o /etc/mail/virtusertable.db')dnl
FEATURE(redirect)dnl
FEATURE(always_add_domain)dnl
FEATURE(use_cw_file)dnl
FEATURE(use_ct_file)dnl
FEATURE(local_procmail,`',`procmail -t -Y -a $h -d $u')dnl
FEATURE(`access_db',`hash -o /etc/mail/access.db')dnl
FEATURE(`blacklist_recipients')dnl
EXPOSED_USER(`root')dnl
DAEMON_OPTIONS(`Port=smtp,Addr=0.0.0.0, Name=MTA')
FEATURE(`accept_unresolvable_domains')dnl
FEATURE(`relay_entire_domain')dnl
LDAPROUTE_DOMAIN(`example.com') 3 
FEATURE(`ldap_routing', 
ldap -1 -v mailHost -k `"(&(objectClass=inetLocalMailRecipient) (mail=%0))"',
ldap -1 -v mailRoutingAddress -k `"(&(objectClass=inetorgperson) (mail=%0))"',
passthru)dnl 4 
MAILER(smtp)dnl
MAILER(procmail)dnl

Configuration options are explained as follows:

1. The ALIAS_FILE directive instructs sendmail to convert a recipient name to a 
real user name using an LDAP query.
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2. Identifies the LDAP server to use for mail routing (172.22.10.22) and provides 
the suffix attribute ("o=My Organization Name,c=US") to append to LDAP 
queries.

3. Specifies that messages to users in the example.com domain are to be 
routed using LDAP.

4. Enables LDAP routing.

To generate a new sendmail configuration file, use the command:

m4 /etc/mail/sendmail.mc > /etc/sendmail.cf

Then restart the sendmail server. 

The OpenLDAP server configuration file is shown in Example B-2.

Example: B-2   The OpenLDAP configuration file: /etc/openldap/slapd.conf

include/etc/openldap/schema/core.schema
include/etc/openldap/schema/cosine.schema
include/etc/openldap/schema/inetorgperson.schema
include/etc/openldap/schema/nis.schema
include/etc/openldap/schema/redhat/autofs.schema
include/etc/openldap/schema/redhat/kerberosobject.schema
include/etc/openldap/schema/misc.schema

#######################################################################
# ldbm database definitions
#######################################################################

loglevel0
databaseldbm
cachesize7500
dbcachesize600000
suffix "o=My Organization Name,c=US"
rootdn "cn=Manager,o=My Organization Name,c=US"
rootpw secret

directory/var/lib/ldap
# Indices to maintain
indexobjectClass,uid,uidNumber,gidNumber,memberUideq
indexcn,mail,surname,givennameeq,subinitial

Example B-3 on page 167 shows a partial listing of the /etc/named.conf DNS 
configuration file. The DNS server is defined to be authoritative for the example 
zone as indicated by the type master option.
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Example: B-3   DNS configuration for zone example.com: /etc/named.conf

.

.
zone "example.com" {
        type master;
        notify yes;
        file "db.com.example";
};
.
.

The /var/named/db.example.conf file shown in Example B-4 defines the 
example.com zone.

Example: B-4   The forward DNS zone configuration:/var/named/db.example.com

$TTL 86400
@               IN      SOA     lnxr10.example.com. root.example.com. (
                2003011816 86400 7200 604800 86400 )
                IN      NS      lnxr10

IN      MX      10 lnxr07
                IN      MX      10 lnxr06
                IN      MX      10 lnxr05
                IN      MX      10 lnxr04
                IN      MX      10 lnxr03
                IN      MX      10 lnxr02
                IN      MX      10 lnxr01

lnxr01 IN A 172.22.10.13
lnxr02 IN A 172.22.10.14
lnxr03 IN A 172.22.10.15
lnxr04 IN A 172.22.10.16
lnxr05 IN A 172.22.10.17
lnxr06 IN A 172.22.10.18
lnxr07 IN A 172.22.10.19
lnxr08 IN A 172.22.10.20
lnxr09 IN A 172.22.10.21
lnxr10 IN A 172.22.10.22

Example B-5 illustrates round-robin balancing when querying mail exchange 
records.
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Example: B-5   Round-robin DNS mail exchange

$ host -t mx example.com 172.22.10.22
Using domain server:
Name: 172.22.10.22
Address: 172.22.10.22#53
Aliases: 

example.com mail is handled by 10 lnxr04.example.com.
example.com mail is handled by 10 lnxr05.example.com.
example.com mail is handled by 10 lnxr06.example.com.
example.com mail is handled by 10 lnxr07.example.com.
example.com mail is handled by 10 lnxr01.example.com.
example.com mail is handled by 10 lnxr02.example.com.
example.com mail is handled by 10 lnxr03.example.com.
$ host -t mx example.com 172.22.10.22
Using domain server:
Name: 172.22.10.22
Address: 172.22.10.22#53
Aliases: 

example.com mail is handled by 10 lnxr01.example.com.
example.com mail is handled by 10 lnxr02.example.com.
example.com mail is handled by 10 lnxr03.example.com.
example.com mail is handled by 10 lnxr04.example.com.
example.com mail is handled by 10 lnxr05.example.com.
example.com mail is handled by 10 lnxr06.example.com.
example.com mail is handled by 10 lnxr07.example.com.

Populating the LDAP database
To populate the LDAP database, we add sendmail users using an LDAP Data 
Interchange Format (LDIF) import file. A portion of the LDIF definition is shown in 
Example B-6 on page 169.
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Example: B-6   The LDIF definition of LDAP sendmail users: users.ldif

dn: uid=itso-user0, o=My Organization Name,c=US 1 
userpassword: pwd
givenname: itso-user0
sn: itso-user0
cn: itso-user0
uid: itso-user0
uidNumber: 1000
gidNumber: 1000
mail: itso-user0@example.com
mailhost: lnxr01.example.com
homeDirectory: /home/user/itso-user0
objectclass: top
objectclass: person
objectclass: organizationalPerson
objectclass: inetOrgPerson
objectclass: inetLocalMailRecipient
objectclass: posixAccount

dn: uid=allusers, o=My Organization Name,c=US 2 
userpassword: pwd
givenname: allusers
sn: allusers
cn: allusers
uid: allusers
mail: allusers@example.com
rfc822MailMember: itso-user0@example.com
objectclass: top
objectclass: person
objectclass: organizationalPerson
objectclass: inetOrgPerson
objectclass: nisMailAlias

For each user, we add distinguished name (DN) entries:

1. A DN entry for the user in the form itso-usern

This entry defines a real sendmail user. As part of the definition, the user is 
assigned to a specific mailhost (in this case, lnxr01.example.com).

2. A DN entry for the user allusers

Each user is added to the allusers alias. Mail addresses to 
allusers@example.com is delivered to every sendmail user (itso-user0 
through itso-user6999).

To add the users to the LDAP database, use the command:

ldifadd -D “cn=Manager,o=My Organization Name,c=US” -W -x -f users.ldif
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Appendix C. Performance Toolkit for VM

This appendix describes some of the Linux monitoring features available with the 
IBM Performance Toolkit for VM.

C
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Linux monitoring with the Performance Toolkit for VM
Retrieval and display of Linux internal performance data is based on the Linux 
DDS server interface, originally written for use with the Resource Management 
Facility (RMF™) PM. To monitor Linux internal performance, the following 
components are required:

� The toolkit must be installed, configured, and active.
Performance Toolkit for VM, an optional feature of z/VM V4.4 (5739-A03).

� DDS interface must be installed and active; for further information, access:

http://www.ibm.com/servers/eserver/zseries/zos/rmf/rmfhtmls/pmweb/pmlin.htm

� Performance data must be collected, stored, and managed on the Linux 
system.

After these are active, specific information that can be provided includes:

� Linux system details:

–  Processes created per second

– Context switches per second

– Apache:

• Requests per second

• Bytes per request

• Busy threads

• Idle threads

• 404 error rate

� For each Linux system:

– Linux CPU utilization, both user and kernel

– CPU utilization by processor

– CPU utilization by process

� For each Linux system:

– Linux memory utilization

– Total memory size 

– Memory in use 

– Memory use by process
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� For each Linux system:

– Linux network activity

– Packets received and sent per second

– Bytes received and sent per second

– Receive and send error rates

� For each Linux system:

– Linux file system usage

– I/O request rates, response times

– File system size, including megabytes free, percent used, and percent free

Additional, specific details about the installation and use of the toolkit are 
included in z/VM: Performance Toolkit, SC24-6062.
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acronyms
CCW channel command word

CHPID channel-path identifier

CMS Conversational Monitor 
System

CP Control Program

CP Central Processor

CTC Channel-to-channel

DASD direct access storage device

DNS Domain Name System

DPA dynamic paging area

ECKD extended count key data

ESCON Enterprise Systems 
Connection

ESS Enterprise Storage Server

FBA fixed block architecture

FCP Fibre Channel Protocol

FICON Fibre Connection

FTP File Transfer Protocol

IBM International Business 
Machines Corporation

ICF Internal Coupling Facility

IFL Integrated Facility for Linux

IML Initial Machine Load

IQDIO Internal Queued Direct Input 
Output

ITSO International Technical 
Support Organization

IUCV Inter-User Communications 
Vehicle

LAN local area network

LDAP Lightweight Directory Access 
Protocol

LPAR logical partition

LVM Logical Volume Manager

Abbreviations and 
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MDC minidisk cache

NSS named saved system

OSA Open Systems Adapter

PAV Parallel Access Volume

QDIO Queued Direct Input Output

RAID redundant array of 
independent disks

RAMAC RAID Architecture with 
Multi-Level Adaptive Cache

RDR Reader

RVA RAMAC Virtual Array

SCSI small computer system 
interface

SNMP simple network management 
protocol

SSCH Start Subchannel

WPBS WebSphere Performance 
Benchmark Sample
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Related publications

The publications listed in this section are considered particularly suitable for a 
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks” 
on page 180.

� Linux for S/390, SG24-4987

http://www.ibm.com/redbooks/abstracts/sg244987.html

� Linux for IBM ^ zSeries and S/390: Distributions, SG24-6264

http://www.ibm.com/redbooks/abstracts/sg246264.html

� Linux on IBM ^ zSeries and S/390: ISP/ASP Solutions, SG24-6299

http://www.ibm.com/redbooks/abstracts/sg246299.html

� Linux on IBM ^ zSeries and S/390: Large Scale Linux Deployment, 
SG24-6824

http://www.ibm.com/redbooks/abstracts/sg246824.html

� Linux on IBM ^ zSeries and S/390: System Management, SG24-6820

http://www.ibm.com/redbooks/abstracts/sg246820.html

� Tuning IBM ^ xSeries Servers for Performance, SG24-5287

http://www.ibm.com/redbooks/abstracts/sg245287.html

� WebSphere Application Server V4 for Linux, Implementation and Deployment 
Guide, REDP0405

http://www.ibm.com/redbooks/abstracts/redp0405.html

� Enterprise Systems Connection (ESCON) Implementation Guide, SG24-4662

http://www.ibm.com/redbooks/abstracts/sg244662.html

� FICON Native Implementation and Reference Guide, SG24-6266 

http://www.ibm.com/redbooks/abstracts/sg246266.html

� IBM ^ zSeries Connectivity Handbook, SG24-5444

http://www.ibm.com/redbooks/abstracts/sg245444.html
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� Getting Started with zSeries Fibre Channel Protocol, REDP0205

http://www.ibm.com/redbooks/abstracts/redp0205.html

� Linux on IBM ^ zSeries and S/390: TCP/IP Broadcast on z/VM Guest 
LAN, REDP3596

http://www.ibm.com/redbooks/abstracts/redp3596.html

� Implementing Fibre Channel Attachment on the ESS, SG24-6113

http://www.ibm.com/redbooks/abstracts/sg246113.html

Other resources
These publications are also relevant as further information sources:

� z/VM V4R3.0 Performance, SC24-5999

� z/VM V4R3.0 CP Planning and Administration, SC24-6043

� z/VM V4R3.0 Virtual Machine Operation, SC24-6036

� z/VM V4R3.0 System Operation, SC24-6000

� z/VM V4R3.0 Running Guest Operating Systems, SC24-5997

� z/VM V4R3.0 CP Command and Utility Reference, SC24-6008

� z/VM: Performance Toolkit, SC24-6062

� Linux for zSeries and S/390 Device Drivers and Installation Commands, 
LNUX-1303

Referenced Web sites
These Web sites are also relevant as further information sources:

� z/VM Performance Resources

http://www.vm.ibm.com/perf/

� IBM developerWorks Linux for zSeries and S/390 home page

http://www-124.ibm.com/developerworks/oss/linux390/index.shtml

� Velocity Software performance tips

http://linuxvm.com

� Linux for S/390 home page

http://linuxvm.org

� Samba dbench Benchmarking Tool

http://samba.org/ftp/tridge/dbench/
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� IBM WebSphere Performance Benchmark Sample (Trade 2)

http://www.ibm.com/software/webservers/appserv/wpbs_download.html

� Page replacement in Linux 2.4 memory management by Rik van Riel

http://www.surriel.com/lectures/linux24-vm.html

� Chris Gould's Linux Kernel Architecture and Other OS Links

http://cs.uml.edu/~cgould

� Understanding the Linux Virtual Memory Manager by Mel Gorman

http://www.csn.ul.ie/~mel/projects/vm/guide/html/understand/

� The Linux memory management home page 

http://linux-mm.org/

� Performance considerations for Linux guests

http://www.vm.ibm.com/perf/tips/linuxper.html

� Configuring processor storage

http://www.vm.ibm.com/perf/tips/storconf.html

� How to use VM shared kernel support

http://www.vm.ibm.com/linux/linuxnss.html

� z/VM, VSE, and Linux Technical Conference foils: z/VM Resource 
Management, by Christine Casey

http://www.vm.ibm.com:2003/pdfs/V612up.pdf

� Bonnie benchmark home page

http://www.textuality.com/bonnie/

� Data Test program (dt) home page

http://www.bit-net.com/~rmiller/dt.html

� Iperf TCP and UDP bandwidth measurement tool

http://dast.nlanr.net/Projects/Iperf/

� The Mstone performance tool

http://www.mozilla.org/projects/mstone

� Mailstone utility documentation

http://docs.sun.com/source/816-6036-10/index.html

� LDAP routing for sendmail

http://www.sendmail.org/m4/ldap_routing.html
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This IBM Redbook examines performance measurement and 
tuning for running Linux as a z/VM guest on IBM ^ 
zSeries and S/390 machines. This publication is intended for 
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deploying Linux servers running under z/VM. We examine 
performance concepts and identify tuning parameters that 
influence system performance. Using examples, we investigate 
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