
ibm.com/redbooks

Enabling Applications
for Grid Computing
with Globus

Bart Jacob
Luis Ferreira

Norbert Bieberstein
Candice Gilzean

Jean-Yves Girard
Roman Strachowski

Seong (Steve) Yu

Enable your applications for grid
computing

Utilize the Globus Toolkit

Programming hints, tips,
and examples

Front cover

Enabling Applications for Grid Computing with
Globus

June 2003

International Technical Support Organization

SG24-6936-00

© Copyright International Business Machines Corporation 2003. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (June 2003)

This edition applies to Version 2.2.4 of the Globus Toolkit.

Note: Before using this information and the product it supports, read the information in
“Notices” on page xi.

Contents

Figures . ix

Notices . xi
Trademarks . xii

Preface . xiii
The team that wrote this redbook. xiii
Become a published author . xvi
Comments welcome. xvi

Chapter 1. Introduction . 1
1.1 High-level overview of grid computing. 3

1.1.1 Types of grids . 3
1.2 Globus Project . 4

1.2.1 Globus Toolkit Version 2.2 . 5
1.2.2 OGSA and Globus Toolkit V3 . 5

1.3 Grid components: A high-level perspective. 6
1.3.1 Portal - User interface . 6
1.3.2 Security . 7
1.3.3 Broker . 8
1.3.4 Scheduler . 9
1.3.5 Data management. 9
1.3.6 Job and resource management . 10
1.3.7 Other . 11

1.4 Job flow in a grid environment. 11
1.5 Summary . 11

Chapter 2. Grid infrastructure considerations . 13
2.1 Grid infrastructure components . 14

2.1.1 Security . 14
2.1.2 Resource management . 17
2.1.3 Information services . 22
2.1.4 Data management. 25
2.1.5 Scheduler . 29
2.1.6 Load balancing . 31
2.1.7 Broker . 33
2.1.8 Inter-process communications (IPC). 33
2.1.9 Portal. 34

2.2 Non-functional requirements . 35
© Copyright IBM Corp. 2003. All rights reserved. iii

2.2.1 Performance . 36
2.2.2 Reliability . 37
2.2.3 Topology considerations . 38
2.2.4 Mixed platform environments . 40

2.3 Summary . 41

Chapter 3. Application architecture considerations 43
3.1 Jobs and grid applications. 45
3.2 Application flow in a grid . 45

3.2.1 Parallel flow. 46
3.2.2 Serial flow . 47
3.2.3 Networked flow . 49
3.2.4 Jobs and sub-jobs . 50

3.3 Job criteria. 51
3.3.1 Batch job . 51
3.3.2 Standard application . 52
3.3.3 Parallel applications . 52
3.3.4 Interactive jobs . 53

3.4 Programming language considerations. 53
3.5 Job dependencies on system environment . 54
3.6 Checkpoint and restart capability . 56
3.7 Job topology . 56
3.8 Passing of data input/output . 57
3.9 Transactions . 58
3.10 Data criteria . 58
3.11 Usability criteria . 59

3.11.1 Traditional usability requirements . 59
3.11.2 Usability requirements for grid solutions . 59

3.12 Non-functional criteria . 61
3.12.1 Software license considerations . 62
3.12.2 Grid application development . 66

3.13 Qualification scheme for grid applications. 68
3.13.1 Knock-out criteria for grid applications . 68
3.13.2 The grid application qualification scheme . 69

3.14 Summary . 69

Chapter 4. Data management considerations . 71
4.1 Data criteria . 73

4.1.1 Individual/separated data per job . 73
4.1.2 Shared data access . 74
4.1.3 Locking . 75
4.1.4 Temporary data spaces . 76
4.1.5 Size of data . 76
iv Enabling Applications for Grid Computing with Globus

4.1.6 Network bandwidth . 77
4.1.7 Time-sensitive data . 77
4.1.8 Data topology . 77
4.1.9 Data types . 79
4.1.10 Data volume and grid scalability . 80
4.1.11 Encrypted data . 84

4.2 Data management techniques and solutions . 85
4.2.1 Shared file system. 85
4.2.2 Databases . 86
4.2.3 Replication (distribution of files across a set of nodes) 86
4.2.4 Mirroring . 87
4.2.5 Caching . 87
4.2.6 Transfer agent . 88
4.2.7 Access Control System . 88
4.2.8 Peer-to-peer data transfer . 88
4.2.9 Sandboxing . 89
4.2.10 Data brokering. 90
4.2.11 Global file system approach . 90
4.2.12 SAN approach . 93
4.2.13 Distributed approach . 95
4.2.14 Database solutions for grids . 98
4.2.15 Data brokering. 100

4.3 Some data grid projects in the Globus community 102
4.3.1 EU DataGrid . 102
4.3.2 GriPhyn . 102
4.3.3 Particle Physics Data Grid . 103

4.4 Summary . 103

Chapter 5. Getting started with development in C/C++ 105
5.1 Overview of programming environment . 106

5.1.1 Globus libc APIs . 106
5.1.2 Makefile . 106
5.1.3 Globus module . 109
5.1.4 Callbacks. 109

5.2 Submitting a job. 110
5.2.1 Shells commands . 111
5.2.2 globusrun . 113
5.2.3 GSIssh . 114
5.2.4 Job submission skeleton for C/C++ applications 117
5.2.5 Simple broker . 124

5.3 Summary . 132

Chapter 6. Programming examples for Globus using Java. 133
 Contents v

6.1 CoGs . 134
6.2 GSI/Proxy . 134
6.3 GRAM . 138

6.3.1 GramJob . 138
6.3.2 GramJobListener. 138
6.3.3 GramException . 139

6.4 MDS . 140
6.4.1 Example of accessing MDS . 141

6.5 RSL . 145
6.5.1 Example using RSL. 145

6.6 GridFTP. 148
6.6.1 GridFTP basic third-party transfer . 149
6.6.2 GridFTP client-server . 151
6.6.3 URLCopy. 154

6.7 GASS . 155
6.7.1 Batch GASS example . 156
6.7.2 Interactive GASS example . 158

6.8 Summary . 161

Chapter 7. Using Globus Toolkit for data management. 163
7.1 Using a Globus Toolkit data grid with RSL . 165
7.2 Globus Toolkit data grid low-level API: globus_io 169

7.2.1 globus_io example . 172
7.2.2 Skeleton source code for creating a simple GSI socket 173

7.3 Global access to secondary storage . 178
7.3.1 Easy file transfer by using globus_gass_copy API 178
7.3.2 globus_gass_transfer API . 187
7.3.3 Using the globus_gass_server_ez API . 188
7.3.4 Using the globus-gass-server command. 192
7.3.5 Globus cache management . 192

7.4 GridFTP. 194
7.4.1 GridFTP examples . 195
7.4.2 Globus GridFTP APIs . 195

7.5 Replication. 208
7.5.1 Shell commands . 209
7.5.2 Replica example . 209
7.5.3 Installation . 211

7.6 Summary . 213

Chapter 8. Developing a portal . 215
8.1 Building a simple portal . 216
8.2 Integrating portal function with a grid application 232

8.2.1 Add methods to execute the Globus commands 232
vi Enabling Applications for Grid Computing with Globus

8.2.2 Putting it together . 236
8.3 Summary . 244

Chapter 9. Application examples . 245
9.1 Lottery simulation program . 246

9.1.1 Simulate a lottery using gsissh in a shell script. 246
9.1.2 Simulate a lottery using Globus commands 254

9.2 Small Blue example. 262
9.2.1 Gridification . 265
9.2.2 Implementation . 268
9.2.3 Compilation . 275
9.2.4 Execution . 276

9.3 Hello World example . 278
9.3.1 The Hello World application . 280
9.3.2 Dynamic libraries dependencies . 281
9.3.3 Starting the application by the resource provider 285
9.3.4 Compilation . 286
9.3.5 Execution . 287

9.4 Summary . 288

Chapter 10. Globus Toolkit V3.0. 289
10.1 Overview of changes from GT2 to GT3. 290

10.1.1 SOAP message security . 290
10.1.2 Creating grid services . 290
10.1.3 Security - proxies . 291
10.1.4 SOAP GSI plugin for C/C++ Web services 291

10.2 OGSI implementation . 291
10.3 Open Grid Service Architecture (OSGA). 292
10.4 Globus grid services . 293

10.4.1 Index Services. 293
10.4.2 Service data browser . 293
10.4.3 GRAM . 293
10.4.4 Reliable File Transfer Service (RFT). 296
10.4.5 Replica Location Service (RLS) . 296

10.5 Summary . 296

Appendix A. Grid qualification scheme . 297
A suggested grid application qualification scheme. 298

Appendix B. C/C++ source code for examples . 305
Globus API C++ wrappers . 306

ITSO_GASS_TRANSFER . 306
ITSO_GLOBUS_FTP_CLIENT . 311
ITSO_CB. 315
 Contents vii

ITSO_GRAM_JOB . 316
StartGASSServer() and StopGASSServer() . 324

ITSO broker . 327
SmallBlue example. 331
HelloWorld example . 341
Lottery example . 349
C/C++ simple examples . 355

gassserver.C . 355
Checking credentials . 357
Submitting a job . 358

Appendix C. Additional material . 365
Locating the Web material . 365
Using the Web material . 366

How to use the Web material . 366

Related publications . 367
IBM Redbooks . 367
Other publications . 367
Online resources . 369
How to get IBM Redbooks . 372

Index . 373
viii Enabling Applications for Grid Computing with Globus

Figures

1-1 Possible user view of grid . 7
1-2 Security in a grid environment . 8
1-3 Broker service . 8
1-4 Scheduler . 9
1-5 Data management . 10
1-6 GRAM . 10
2-1 MDS overview . 24
2-2 Standard file transfer . 27
2-3 Third-party file transfer . 27
2-4 Share job information for fault-tolerance . 32
2-5 Grid portal on an application server . 35
2-6 Grid topologies. 39
3-1 Parallel application flow . 47
3-2 Serial job flow. 48
3-3 Networked job flow. 49
3-4 Job with sub-jobs in a grid application . 50
4-1 Federated DBMS architecture . 75
4-2 Data topology of a grid. 78
4-3 Independently working jobs on disjunct data subsets 81
4-4 Static input data processed by jobs with changing parameters 82
4-5 All jobs works on the same data and write on the same data set 83
4-6 Jobs with individual input data writing output into one data store 84
4-7 Sandboxing . 89
4-8 Accessing Avaki Data Grid through NFS locally mounted file system . . 92
4-9 Avaki share mechanism. 93
4-10 Storage Tank architecture . 95
4-11 Replica logical view . 96
4-12 File replication in a data grid between two organizations 98
4-13 Federated databases . 99
5-1 GSI-enabled OpenSSH architecture . 114
5-2 Job submission using non-blocking calls . 118
5-3 Working with a broker . 125
5-4 GQ LDAP browser . 127
7-1 Data management interfaces. 164
7-2 File staging. 167
7-3 Using globus_io for secure communication . 172
7-4 GASS Copy example . 180
7-5 Replica example . 210
© Copyright IBM Corp. 2003. All rights reserved. ix

8-1 Sample grid portal login screen . 216
8-2 Simple grid portal welcome screen . 217
8-3 Simple grid portal application flow . 218
8-4 Simple grid portal login flow . 219
8-5 Simple grid portal application submit flow . 222
8-6 Simple grid portal application information and logout flow. 230
9-1 Lottery example . 247
9-2 Lottery example using Globus commands. 255
9-3 Problem suitable for Grid enablement . 263
9-4 Gridified SmallBlue . 266
9-5 How to transfer an object via GRAM and GASS 267
9-6 Cluster model . 279
9-7 Grid model . 280
9-8 Hello World example with dynamic library dependencies issues. 281
10-1 Globus Toolkit V3 job invocation . 294
x Enabling Applications for Grid Computing with Globus

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
© Copyright IBM Corp. 2003. All rights reserved. xi

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AFS®
AIX®
CICS®
DB2®
DB2 Connect™
DFS™

™

IBM®
ibm.com®
Lotus Notes®
Lotus®
Notes®
MQSeries®
Redbooks™

Redbooks (logo) ™
Sametime®
Storage Tank™
Tivoli®
WebSphere®
xSeries™

The following terms are trademarks of other companies:

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United
States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.
xii Enabling Applications for Grid Computing with Globus

Preface

This IBM® Redbook is the second in a planned series of redbooks addressing
grid computing. In the first redbook, Introduction to Grid Computing with Globus,
SG24-6895, grid concepts and the Globus Toolkit were introduced. In this
redbook, we build on those concepts to discuss enabling applications to run in
grid environments. Again, we focus on the open source Globus Toolkit.

In Chapters 1–4 of this publication, we look at various factors that should be
considered when contemplating creating or porting an application to a grid
environment. These factors include infrastructure considerations,
application-specific considerations, and data management considerations. As a
result, readers should come away with an appreciation for the applicability of a
grid environment to their particular application(s).

In the latter part of the book, we provide detailed information and examples of
using the Globus Toolkit to develop grid-enabled applications. We provide
examples both in C/C++ and in Java.

This is not intended to be a complete programmers guide or reference manual.
Instead we focus on many of the issues that an architect or developer needs to
be aware of when designing a grid-enabled application. The programming
samples provided in this publication provide the basic techniques required to get
you started in the exciting world of application development for grid
environments.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Austin Center.

Bart Jacob is a Senior Technical Staff Member at IBM Corp - International
Technical Support Organization, Austin Center. He has 23 years of experience
providing technical support across a variety of IBM products and technologies,
including communications, object-oriented software development, and systems
management. He has over10 years of experience at the ITSO, where he has
been writing IBM Redbooks™ and creating and teaching workshops around the
world on a variety of topics. He holds a Masters degree in Numerical Analysis
from Syracuse University.
© Copyright IBM Corp. 2003. All rights reserved. xiii

Luis Ferreira also known as “Luix”, is a Software Engineer at IBM Corporation -
International Technical Support Organization, Austin Center, working on Linux
and grid computing projects. He has 19 years of experience with UNIX-like
operating systems, and holds a MSc Degree in SystemS Engineering from
Universidade Federal do Rio de Janeiro in Brazil. Before joining the ITSO, Luis
worked at Tivoli® Systems as a Certified Tivoli Consultant, at IBM Brasil as a
Certified IT Specialist, and at Cobra Computadores as a Kernel Developer and
Software Designer.

Norbert Bieberstein is a Solution Development Manager at IBM Software
Group in EMEA, located in Düsseldorf, Germany, working with system
integrators and ISVs for about five years. He has also worked as an IT architect
at IBM's application architecture project office in Somers, New York, and, before
that, as a consultant for CASE and software engineering at IBM’s software
development labs. This work resulted in a book on CASE technology that was
published in Germany in 1993. He has organized several educational events for
IBMers, business partners, and customers on IBM SW products. In 1997 he
acted as the coordinating editor of the awarded IBM Systems Journal, 1/97
Edition. Before joining IBM in 1989, he worked as an application and system
developer for a software vendor of CIM/ERP systems. Norbert holds a Masters
degree in mathematics from the University of Technology Aachen, Germany, and
developed their evaluation systems for electron microscopes. He is currently
studying for an MBA at Henley Management School. He has written extensively
on application architecture considerations.

Candice Gilzean is a Software Engineer for the Grid Computing Initiative in
Austin, Texas. She has 2.5 years of experience for IBM Global Services. She
holds a BS degree in Computer Science with a minor in Math from Texas Tech
University. Her areas of expertise include Grid Computing, .Net programming,
and AIX®. She has written extensively on job flow, java cog, and Globus ToolKit
Version 3.

Jean-Yves Girard is an IT Specialist working in the Grid Design Center for
e-business on demand, IBM Server Group, located in France in Montpellier. He
has been with IBM for six years and has been involved with Grid Computing
since March 2002 and Linux solutions for three years. He holds a degree of
“élève ingénieur” from École Centrale Paris (France). His areas of expertise
include Linux operating system, HPC computing, Grid technologies, and Web
Services.

Roman Strachowski is an IT Specialist working in the Sales Operations Team,
IBM Sales & Distribution Group, located in Zurich, Switzerland. He has been with
IBM for five years and has been involved with Grid Computing since December
2002. Roman was working for two years in IBM ICAM as a system administrator.
After that he went to the Swiss Lotus® Notes® development team and, 1 year
xiv Enabling Applications for Grid Computing with Globus

ago joined the Sales Operations team as a developer. He holds a degree of
“Informatiker” from "GIBZ" in Switzerland. His areas of expertise include Java
Development, Lotus Notes Development & Administration, Lotus Sametime®
Development, Intelligent Agent Development, Linux operating system, Grid
technologies, and Web Services.

Seong (Steve) Yu is an Advisory Software Engineer on the WebSphere® Beta
team, IBM Software Group, in Austin,

Texas. He has been with IBM for 20 years, the last three years with the
WebSphere product. Steve led the development of a WebSphere V5 migration
guide redbook. He developed the original design and the prototype migration tool
for JSP and Servlet migration. Steve has a BS degree in Mathematics/Computer
Science from UCLA and an MS degree in Computer Science from CSU, and he
is currently pursuing a PhD in Computer Science at NSU, Ft. Lauderdale. His
current research interests include autonomic computing, machine learning, and
multi-agent systems.

Thanks to the following people for their contributions to this project:

Paul Bate
IBM Global Services Architecture and Technology Center of Excellence

Andreas Hermelink
Grid Computing WW Technical Sales Enablement, IBM Somers

Rob High
WebSphere Chief Architect and Distinguished Engineer, IBM Austin

Susan Malaika
IBM Senior Technical Staff Member, IBM Silicon Valley Lab

Jean-Pierre Prost
Grid Expert at the IBM Grid Design Center for eBusiness on Demand, IBM
Montpellier

Duane Quintern
IBM Global Services

Masanobu Takagi
Web Technologies, Technical Practice, Competency Management, IGS-Japan

Julie Czubik
International Technical Support Organization, Poughkeepsie Center
 Preface xv

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com®/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. JN9B Building 003 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493
xvi Enabling Applications for Grid Computing with Globus

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

Chapter 1. Introduction

Grid computing is gaining a lot of attention within the IT industry. Though it has
been used within the academic and scientific community for some time,
standards, enabling technologies, toolkits and products are becoming available
that allow businesses to utilize and reap the advantages of grid computing.

As with many emerging technologies, you will find almost as many definitions of
grid computing as the number of people you ask. However, one of the most used
toolkits for creating and managing a grid environment is the Globus Toolkit.
Therefore we will present most of our information and concepts within the context
of the Globus Toolkit.

Note that though most of our examples and testing were accomplished in a Linux
environment, grid computing in general implies support for multiple platforms and
platform transparency.

It is recommended that the first publication in this series, Introduction to Grid
Computing with Globus, SG24-6895, be used as a companion to this publication,
as many of the concepts and details of the Globus Toolkit provided in the first
book will not be duplicated here.

The first part of this book discusses considerations related to what kind of
applications are good candidates for grid environments. This discussion is based
on both grid characteristics and application characteristics. In later chapters, we
provide examples of using the Globus Toolkit to enable applications to run in a
grid environment. We also dedicate a large portion of this publication to

1

© Copyright IBM Corp. 2003. All rights reserved. 1

data-handling considerations. Though it is one thing to execute one or more
application components on various nodes within a grid, one must also consider
how the application will access and transfer data in an efficient and secure
manner.

Important: Though we are focusing on the Globus Toolkit for this publication,
it is important to note that there are other providers of solutions for grid
computing. Some of these build on top of the Globus Toolkit to provide key
services not directly addressed by Globus.

IBM has worked closely with these other vendors and sees their work as
strategic to the overall evolution of grid solutions. Though the products and
technologies that these vendors are developing are not necessarily addressed
in this publication, they are important and should be considered when building
a gird or enabling applications for a grid environment. Some of these vendors
include:

� Platform Computing: Provides a set of solutions to help connect, manage,
service, and optimize resources in a grid environment

http://www.platform.com

� Avaki: Solutions to address data access and integration

http://www.avaki.com

� DataSynapse: Supplies a CPU scavenging platform

http://www.datasynapse.com

� United Devices: Provides a grid application framework for CPU scavenging

http://www.ud.com
2 Enabling Applications for Grid Computing with Globus

http://www.platform.com
http://www.avaki.com
http://www.datasynapse.com
http://www.ud.com

1.1 High-level overview of grid computing
The most common description of grid computing includes an analogy to a power
grid. When you plug an appliance or other object requiring electrical power into a
receptacle, you expect that there is power of the correct voltage to be available,
but the actual source of that power is not known. Your local utility company
provides the interface into a complex network of generators and power sources
and provides you with (in most cases) an acceptable quality of service for your
energy demands. Rather than each house or neighborhood having to obtain and
maintain their own generator of electricity, the power grid infrastructure provides
a virtual generator. The generator is highly reliable and adapts to the power
needs of the consumers based on their demand.

The vision of grid computing is similar. Once the proper kind of infrastructure is in
place, a user will have access to a virtual computer that is reliable and adaptable
to the user’s needs. This virtual computer will consist of many diverse computing
resources, but these individual resources will not be visible to the user, just as the
consumer of electric power is unaware of how his electricity is being generated.

To reach this vision, there must be standards for grid computing that will allow a
secure and robust infrastructure to be built. Standards such as the Open Grid
Services Architecture (OGSA) and tools such as those provided by the Globus
Toolkit provide the necessary framework.

Initially, businesses will build their own infrastructures (what we might call
intra-grids), but over time, these grids will become interconnected. This
interconnection will be made possible by standards such as OGSA and the
analogy of grid computing to the power grid will become real.

1.1.1 Types of grids
Grid computing can be used in a variety of ways to address various kinds of
application requirements. Often, grids are categorized by the type of solutions
that they best address. The three primary types of grids are summarized below.
Of course, there are no hard boundaries between these grid types, and often
grids may be a combination of two or more of these. But as you consider
developing applications that may run in a grid environment, the type of grid
environment that you will be using will affect many of your decisions.

Computational
A computational grid is focused on setting aside resources specifically for
compute power. In this type of grid most of the machines are high-performance
servers.
 Chapter 1. Introduction 3

Scavenging
A scavenging grid is most commonly used with large numbers of desktop
machines. Machines are scavenged for available CPU cycles and other
resources. Owners of the desktop machines are usually given control of when
their resources are available to participate in the grid.

Data grid
A data grid is responsible for housing and providing access to data across
multiple organizations. Users are not concerned with where this data is located
as long as they have access to the data. For example, you may have two
universities doing life science research, each with unique data. A data grid would
allow them to share their data, manage the data, and manage security issues
such as who has access to what data.

Another common distributed computing model that is often associated with, or
confused with, grid computing is peer-to-peer computing. In fact, some consider
this another form of grid computing. For a more detailed analysis and
comparison of grid computing and peer-to-peer computing, refer to On Death,
Taxes, and the Convergence of Peer-to-Peer and Grid Computing, by Ian Foster,
Adriana Iamnitchi. This document can be found at:

http://people.cs.uchicago.edu/~anda/papers/foster_grid_vs_p2p.pdf

1.2 Globus Project
The Globus Project is a joint effort on the part of researchers and developers
from around the world that are focused on the concept of grid computing. It is
organized around four main activities:

� Research
� Software Tools
� Testbeds
� Applications

You can get more information about the Globus Project and their activities at:

http://www.globus.org

For this publication, we present most of our information in the context of the
Globus Toolkit. The Globus Toolkit provides software tools to make it easier to
build computational grids and grid-based applications. The Globus Toolkit is both
an open architecture and open source toolkit.

At the time of this writing, the current version of the Globus Toolkit is Version 2.2.
Version 3 of the toolkit is currently in alpha release and is expected to be
4 Enabling Applications for Grid Computing with Globus

http://people.cs.uchicago.edu/~anda/papers/foster_grid_vs_p2p.pdf
http://www.globus.org

available shortly. However, the examples and information we provide are mostly
based on the 2.2 version.

1.2.1 Globus Toolkit Version 2.2
The Globus Toolkit V2.2 provides:

� A set of basic facilities needed for grid computing:

– Security: Single sign-on, authentication, authorization, and secure data
transfer

– Resource Management: Remote job submission and management

– Data Management: Secure and robust data movement

– Information Services: Directory services of available resources and their
status.

� Application Programming Interfaces (APIs) to the above facilities

� C bindings (header files) needed to build and compile programs

In addition to the above, which are considered the core of the toolkit, other
components are also available that complement or build on top of these facilities.

For instance, Globus provides a rapid development kit known as Commodity Grid
(CoG), which supports technologies such as Java, Python, Web services,
CORBA, and so on.

The facilities provided by Globus can be used to build grids and grid-enabled
applications today. Many such environments have been built. However, when
building such an infrastructure that is suitable for use in business environments,
there are other considerations that have not been fully addressed by the Globus
Toolkit V2.2. For instance, services such as life-cycle management, accounting
and charge back systems, and other facilities may be desired or required.
Another consideration when building a grid environment today is the ability to
interconnect with other grids in the future. To enable the interconnection between
grids developed by different organizations that may be using different
technologies requires standards to be put in place and adopted.

1.2.2 OGSA and Globus Toolkit V3
The Open Grid Services Architecture (OGSA) is an evolving standard for which
there is much industry support. Globus Toolkit Version 3 will be the reference
implementation for OGSA.

OGSA addresses both issues we discussed in the previous section. First it
changes the programming model to one that supports the concept of the various
 Chapter 1. Introduction 5

facilities becoming available as Web services. This will provide multiple benefits,
including:

� A common and open standards-based set of ways to access various grid
services using standards such as SOAP, XML, and so on

� The ability to add and integrate additional services such as life cycle
management in a seamless manner

� A standard way to find, identify, and utilize new grid services as they become
available

In addition to benefits such as these, OGSA will provide for inter-operability
between grids that may have been built using different underlying toolkits.

As mentioned, Globus Toolkit Version 3 will be the reference implementation for
OGSA. Though the programming model will change, most of the actual APIs that
are available with Globus Toolkit V2.2 will remain the same. Therefore, work
done today to implement a grid environment and enable applications will not
necessarily be lost.

OGSA and OGSI
OGSA defines a standard for the overall structure and services to be provided in
grid environments. The Open Grid Services Interface (OGSI) specification is a
companion standard that defines the interfaces and protocols that will be used
between the various services in a grid environment. The OGSI is the standard
that will provide the inter-operability between grids designed using OGSA.

1.3 Grid components: A high-level perspective
In this section we describe at a high level the primary components of a grid
environment. Depending on the grid design and its expected use, some of these
components may or may not be required, and in some cases they may be
combined to form a hybrid component. However, understanding the roles of the
components as we describe them here will help you understand the
considerations for enabling applications as discussed throughout the rest of the
book.

1.3.1 Portal - User interface
Just as a consumer sees the power grid as a receptacle in the wall, likewise a
grid user should not see all of the complexities of the computing grid. Though the
user interface could come in many forms and be application specific, for the
purposes of our discussion let us think of it as a portal. Most users today
6 Enabling Applications for Grid Computing with Globus

understand the concept of a Web portal, where their browser provides a single
interface to access a wide variety of information sources.

A grid portal provides the interface for a user to launch applications that will
utilize the resources and services provided by the grid. From this perspective the
user sees the grid as a virtual computing resource just as the consumer of power
sees the receptacle as an interface to a virtual generator.

Figure 1-1 Possible user view of grid

The current Globus Toolkit does not provide any services or tools to generate a
portal, but this can be accomplished with tools such as WebSphere.

1.3.2 Security
A major requirement for grid computing is security. At the base of any grid
environment, there must be mechanisms to provide security including
authentication, authorization, data encryption, and so on. The Grid Security
Infrastructure (GSI) component of the Globus Toolkit provides robust security
mechanisms. The GSI includes an OpenSSL implementation. It also provides a
single sign-on mechanism, so once a user is authenticated, a proxy certificate is
created and used when performing actions within the grid.

When designing your grid environment, you may use the GSI sign-in to grant
access to the portal or you may have your own security for the portal. The portal
would then be responsible for signing into the grid, either using the user’s
credentials, or using a generic set of credentials for all authorized users of the
portal.

Portal

Virtual Computing
Resource .

.

.

 Chapter 1. Introduction 7

Figure 1-2 Security in a grid environment

1.3.3 Broker
Once authenticated, the user will be launching an application. Based on the
application, and possibly on other parameters provided by the user, the next step
is to identify the available and appropriate resources to utilize within the grid.
This task could be carried out by a broker function. Though there is no broker
implementation provided by Globus, there is an LDAP-based information service.
This service is called Grid Information Service (GIS), or more commonly the
Monitoring and Discovery Service (MDS). This service provides information
about the available resources within the grid and their statuses. A broker service
could be developed that utilizes MDS.

Figure 1-3 Broker service

Portal

Virtual Computing
Resource

GSI
Security

.

..

GSI
Security

Broker
MDS

Directory Service

Portal .
.
.

8 Enabling Applications for Grid Computing with Globus

1.3.4 Scheduler
Once the resources have been identified, the next logical step is to schedule the
individual jobs to run on them. If a set of standalone jobs are to be executed with
no interdependencies, then a specialized scheduler may not be required.
However, if it is desired to reserve a specific resource or to ensure that different
jobs within the application run concurrently (for instance, if they require
inter-process communication), then a job scheduler should be used to coordinate
the execution of the jobs.

The Globus Toolkit does not include such a scheduler, but there are several
schedulers available that have been tested with and can be utilized in a Globus
grid environment.

It should also be noted that there could be different levels of schedulers within a
grid environment. For instance, a cluster could be represented as a single
resource. The cluster may have its own scheduler to help manage the nodes it
contains. A higher level scheduler (sometimes called a meta scheduler) might be
used to schedule work to be done on a cluster, while the cluster’s scheduler
would handle the actual scheduling of work on the cluster’s individual nodes.

Figure 1-4 Scheduler

1.3.5 Data management
If any data (including application modules) must be moved or made accessible to
the nodes where an application’s jobs will execute, then there needs to be a
secure and reliable method for moving files and data to various nodes within the
grid. The Globus Toolkit contains a data management component that provides
such services. This component, known as Grid Access to Secondary Storage
(GASS), includes facilities such as GridFTP. GridFTP is built on top of the
standard FTP protocol, but adds additional functions and utilizes the GSI for user

GSI

Broker
MDS

Directory Service

Scheduler
Portal .

.

.

 Chapter 1. Introduction 9

authentication and authorization. Therefore, once a user has an authenticated
proxy certificate, she can utilize the GridFTP facility to move files without having
to go through a login process to every node involved. This facility provides third
party file transfer so that one node can initiate a file transfer between two other
nodes.

Figure 1-5 Data management

1.3.6 Job and resource management
With all of the other facilities we have just discussed in place, we now get to the
core set of services that help perform actual work in a grid environment. The Grid
Resource Allocation Manager (GRAM) provides the services to actually launch a
job on a particular resource, check on its status, and retrieve its results when it is
complete.

Figure 1-6 GRAM

GSI

Broker
MDS

Directory Service

Scheduler
Portal .

.

.GASS
Data
Mgmt

GSI

Broker
MDS

Directory Service

Scheduler
Portal .

.

.GASS
Data
Mgmt

GRAM
Job

Mgmt

Execute job, get
status/result
10 Enabling Applications for Grid Computing with Globus

1.3.7 Other
There are other facilities that may need to be included in your grid environment
and considered when designing and implementing your application. For
instance, inter-process communication and accounting/chargeback services are
two common facilities that are often required. We will not discuss these in detail
in this publication, but they are certainly important considerations.

1.4 Job flow in a grid environment
In the preceding section we provided a brief and high-level view of the primary
components of a grid environment. As you start thinking about enabling an
application for a grid environment, it is important to keep in mind these
components and how they relate and interact with one another.

Depending on your grid implementation and application requirements, there are
many ways in which these pieces can be put together to create a solution.

1.5 Summary
Grid computing is becoming a viable option in enterprises with the emergence
and maturation of key technologies and open standards such as OGSA and
OGSI.

In this chapter we have provided a high-level overview of the key facilities that
make up grid environments. In the next chapter we will describe these in more
detail and start describing the various considerations for enabling applications to
take advantage of grid environments.
 Chapter 1. Introduction 11

12 Enabling Applications for Grid Computing with Globus

Chapter 2. Grid infrastructure
considerations

A grid computing environment provides the virtual computing resource that will
be used to execute applications. As you are considering application design and
implementation, it is important to understand the infrastructure that makes up this
virtual computing environment.

When considering whether an application is a good candidate to execute in a
grid environment, one must first understand the basic structure of a grid, the
services that are and are not provided, and how this can affect the application.
Once you understand these considerations, you will have a better idea of what
facilities your application will need to use and how.

In the last chapter, we provided a high-level view of how a typical grid and the
required services might be structured and how a job and its related data might
flow through the grid.

In this chapter, we discuss various components and services in more detail and
highlight specific issues and considerations that you should be aware of as you
architect and develop your grid application.

2

© Copyright IBM Corp. 2003. All rights reserved. 13

2.1 Grid infrastructure components
This section describes the grid infrastructure components and how they map with
the Globus Toolkit. It will also address how each of the components can affect
the application architecture, design, and deployment.

The main components of a grid infrastructure are security, resource
management, information services, and data management.

Security is an important consideration in grid computing. Each grid resource may
have different security policies that need to be complied with. A single sign-on
authentication method is a necessity. A commonly agreed upon method of
negotiating authorization is also needed.

When a job is submitted, the grid resource manager is concerned with assigning
a resource to the job, monitoring its status, and returning its results.

For the grid resource manager to make informed decisions on resource
assignments, the grid resource manager needs to know what grid resources are
available, and their capacities and current utilization. This knowledge about the
grid resources is maintained and provided by Grid Information Service (GIS),
also known as the Monitoring and Discovery Service (MDS).

Data management is concerned with how jobs transfer data or access shared
storage.

Let us look at each of these components in more detail.

2.1.1 Security
Security is an important component in the grid computing environment. If you are
a user running jobs on a remote system, you care that the remote system is
secure to ensure that others do not gain access to your data.

If you are a resource provider that allows jobs to be executed on your systems,
you must be confident that those jobs cannot corrupt, interfere with, or access
other private data on your system.

Aside from these two perspectives, the grid environment is subject to any and all
other security concerns that exist in distributed computing environments.

The Globus Toolkit, at its base, has the Grid Security Infrastructure (GSI), which
provides many facilities to help manage the security requirements of the grid
environment.
14 Enabling Applications for Grid Computing with Globus

As you are developing applications targeted for a grid environment, you will want
to keep security in mind and utilize the facilities provided by GSI.

The security functions within the grid architecture are responsible for the
authentication, authorization, and secure communication between grid
resources.

Grid security infrastructure (GSI)
Let us see how GSI provides authentication, authorization, and secure
communications.

Authentication
GSI contains the infrastructure and facilities to provide a single sign-on
environment. Through the grid-proxy-init command or its related APIs, a
temporary proxy is created based on the user’s private key. This proxy provides
authentication and can be used to generate trusted sessions and allow a server
to decide on the user’s authorization.

A proxy must be created before a user can submit a job to be run or transfer data
through the Globus Toolkit facilities. Depending on the configuration of the
environment, a proxy may or may not be required to query the information
services database.

Other facilities are available outside of the Globus Toolkit, such as GSI-Enabled
OpenSSH, that utilize the same authentication mechanism to create secure
communications channels.

For more information on the GSI-Enabled OpenSSH, visit:

http://grid.ncsa.uiuc.edu/ssh/

Authorization
Authentication is just one piece of the security puzzle. The next step is
authorization. That is, once a user has been authenticated to the grid, what they
are authorized to do.

In GSI this is handled by mapping the authenticated user to a local user on the
system where a request has been received.

The proxy passed by the operation request (such as a request to run a job)
contains a distinguished name of the authenticated user. A file on the receiving
system is used to map that distinguished name to a local user.

Through this mechanism, either every user of the grid could have a user ID on
each system within the grid (which would be difficult to administer if the number
of systems in the grid becomes large and changes often), or users could be
 Chapter 2. Grid infrastructure considerations 15

http://grid.ncsa.uiuc.edu/ssh/

assigned to virtual groups. For example, all authenticated users from a particular
domain may be mapped to run under a common user ID on a particular resource.
This helps separate the individual user ID administration for clients from the user
administration that must be performed on the various resources that make up the
grid.

Grid secure communication
It is important to understand the communication functions within the Globus
Toolkit. By default, the underlying communication is based on the mutual
authentication of digital certificates and SSL/TLS.

To allow secure communication within the grid, the OpenSSL package is
installed as part of the Globus Toolkit. It is used to create an encrypted tunnel
using SSL/TSL between grid clients and servers.

The digital certificates that have been installed on the grid computers provide the
mutual authentication between the two parties. The SSL/TLS functions that
OpenSSL provides will encrypt all data transferred between grid systems. These
two functions together provide the basic security services of authentication and
confidentiality.

Other grid communication
If you cannot physically access your grid client or server, it may be necessary to
gain remote access to the grid. While your operating system’s default telnet
program works fine for remote access, the transmission of the data is in clear
text. That means that the data transmission would be vulnerable to someone
listening or sniffing the data on the network. While this vulnerability is low, it does
exist and needs to be dealt with.

To secure the remote communication between a client and grid server, the use of
Secure Shell (SSH) can be used. SSH will establish an encrypted session
between your client and the grid server. Using a tool such as the GSI-Enabled
OpenSSH, you get the benefits of the secure shell while also using the
authentication mechanism already in place with GSI.
16 Enabling Applications for Grid Computing with Globus

Application enablement considerations - Security
When designing grid-enabled applications, security concerns must be taken into
consideration. The following list provides a summary of some of these
considerations.

� Single sign-on: ID mapping across systems

GSI provides the authentication, authorization, and secure communications
as described above. However, the application designer needs to fully
understand the security administration and implications. For instance:

– Is it acceptable to have multiple users mapped to the same user ID on a
target system?

– Must special auditing be in place to understand who actually launched the
application?

– The application should be independent of the fact that different user ID
mappings may be used across the different resources in the grid.

� Multi-platform

Though the GSI is based on open and standardized software that will run on
multiple platforms, the underlying security mechanisms of various platforms
will not always be consistent. For instance, the security mechanisms for
reading, writing, and execution on traditional Unix or Linux-based systems is
different than for a Microsoft Windows environment. The application
developer should take into account the possible platforms on which the
application may execute.

� Utilize GSI

For any application-specific function that might also require authentication or
special authorization, the application should be designed to utilize GSI in
order to simplify development and the user’s experience by maintaining the
single sign-on paradigm.

� Data encryption

Though GSI, in conjunction with the data-management facilities covered later,
provides secure communication and encryption of data across the network,
the application designer should also take into account what happens to the
data after it has arrived at its destination. For instance, if sensitive data is
passed to a resource to be processed by a job and is written to the local disk
in a non-encrypted format, other users or applications may have access to
that data.

2.1.2 Resource management
The grid resource manager is concerned with resource assignments as jobs are
submitted. It acts as an abstract interface to the heterogeneous resources of the
 Chapter 2. Grid infrastructure considerations 17

grid. The resource management component provides the facilities to allocate a
job to a particular resource, provides a means to track the status of the job while
it is running and its completion information, and provides the capability to cancel
a job or otherwise manage it.

In Globus, the remote job submission is handled by the Globus Resource
Allocation Manager (GRAM).

Globus Resource Allocation Manager (GRAM)
When a job is submitted by a client, the request is sent to the remote host and
handled by a gatekeeper daemon. The gatekeeper creates a job manager to
start and monitor the job. When the job is finished, the job manager sends the
status information back to the client and terminates.

The GRAM subsystem consists of the following elements:

� The globusrun command and associated APIs
� Resource Specification Language (RSL)
� The gatekeeper daemon
� The job manager
� Dynamically-Updated Request Online Coallocator (DUROC)

Each of these elements are described briefly below.

The globusrun command
The globusrun command (or its equivalent API) submits a job to a resource
within the grid. This command is typically passed an RSL string (see below) that
specifies parameters and other properties required to successfully launch and
run the job.

Resource Specification Language (RSL)
RSL is a language used by clients to specify the job to be run. All job submission
requests are described in an RSL string that includes information such as the
executable file; its parameters; information about redirection of stdin, stdout, and
stderr; and so on. Basically it provides a standard way of specifying all of the
information required to execute a job, independent of the target environment. It is
then the responsibility of the job manager on the target system to parse the
information and launch the job in the appropriate way.

The syntax of RSL is very straightforward. Each statement is enclosed within
parenthesis. Comments are designated with parenthesis and asterisks, for
example, (* this is a comment *). Supported attributes include the following:

� rsl_substitution: Defines variables

� executable: The script or command to be run
18 Enabling Applications for Grid Computing with Globus

� arguments: Information or flags to be passed to the executable

� stdin: Specifies the remote URL and local file used for the executable

� stdout: Specifies the remote file to place standard output from the job

� stderr: Specifies the remote file to place standard error from the job

� queue: Specifies the queue to submit the job (requires a scheduler)

� count: Specifies the number of executions

� directory: Specifies the directory to run the job

� project: Specifies a project account for the job (requires a scheduler)

� dryRun: Verifies the RSL string but does not run the job

� maxMemory: Specifies the maximum amount of memory in MBs required for
the job

� minMemory: Specifies the minimum amount of memory in MBs required for
the job

� hostCount: Specifies the number of nodes in a cluster required for the job

� environment: Specifies environment variables that are required for the job

� jobType: Specifies the type of job single process, multi-process, mpi, or
condor

� maxTime: Specifies the maximum execution wall or cpu time for one
execution

� maxWallTime: Specifies the maximum walltime for one execution

� maxCpuTime: Specifies the maximum cpu time for one execution

� gramMyjob: Specifies the whether the gram myjob interface starts one
process/thread (independent) or more (collective)

The following examples show how RSL scripts are used with the globusrun
command. The following is a list of files included in this example:

� MyScript.sh: Shell script that executes the ls -al and ps -ef commands.

#!/bin/sh -x
ls -al
ps -ef

� MyTest.rsl: RSL script that calls the shell script /tmp/MySrcipt.sh. It runs the
script in the /tmp directory and stores the standard output of the script in
/tmp/temp. The contents are below.

& (rsl_substitution = (TOPDIR "/tmp"))(executable = $(TOPDIR)/MyScript.sh
) (directory=/tmp)(stdout=/tmp/temp)(count = 1)
 Chapter 2. Grid infrastructure considerations 19

� MyTest2.rsl: RSL script that executes the /bin/ps -ef command and stores
the standard output of the script in /tmp/temp2.

& (rsl_substitution = (EXECDIR "/bin"))(executable = $(EXECDIR)/ps)
(arguments=ef)(directory=/tmp)(stdout=/tmp/temp)(count = 1)

In Example 2-1, the globusrun command is used with MyTest.rsl to execute
MyTest.sh on the resource (system) t3. The output of the script stored in
/tmp/temp is then displayed using the Linux more command.

Example 2-1 Executing MyTest.sh with MyTest.rsl

[t3user@t3 guser]$ globusrun -r t3 -f MyTest.rsl
globus_gram_client_callback_allow successful
GRAM Job submission successful
GLOBUS_GRAM_PROTOCOL_JOB_STATE_ACTIVE
GLOBUS_GRAM_PROTOCOL_JOB_STATE_DONE
[t3user@t3 guser]$ more /tmp/temp
total 116
drwxrwxrwt 9 root root 4096 Mar 12 15:45 .
drwxr-xr-x 22 root root 4096 Feb 26 20:44 ..
drwxrwxrwt 2 root root 4096 Feb 26 20:45 .ICE-unix
-r--r--r-- 1 root root 11 Feb 26 20:45 .X0-lock
drwxrwxrwt 2 root root 4096 Feb 26 20:45 .X11-unix
drwxrwxrwt 2 xfs xfs 4096 Feb 26 20:45 .font-unix
-rw-r--r-- 1 t3user globus 0 Mar 10 11:57 17487_output
[t3user@t3 guser]$

In Example 2-2, MyTest2.rsl is used to display the currently executing processes
using the ps command.

Example 2-2 Executing ps -ef with MyTest.2.rsl

[t3user@t3 guser]$ globusrun -r t3 -f MyTest2.rsl
globus_gram_client_callback_allow successful
GRAM Job submission successful
GLOBUS_GRAM_PROTOCOL_JOB_STATE_ACTIVE
GLOBUS_GRAM_PROTOCOL_JOB_STATE_DONE
[t3user@t3 guser]$ more /tmp/temp2
UID PID PPID C STIME TTY TIME CMD
root 1 0 0 Feb26 ? 00:00:04 init
root 2 1 0 Feb26 ? 00:00:00 [keventd]
root 2 1 0 Feb26 ? 00:00:00 [keventd]
root 3 1 0 Feb26 ? 00:00:00 [kapmd]
root 4 1 0 Feb26 ? 00:00:00 [ksoftirqd_CPU0]
root 5 1 0 Feb26 ? 00:00:09 [kswapd]
root 6 1 0 Feb26 ? 00:00:00 [bdflush]
root 7 1 0 Feb26 ? 00:00:01 [kupdated]
root 8 1 0 Feb26 ? 00:00:00 [mdrecoveryd]
20 Enabling Applications for Grid Computing with Globus

root 12 1 0 Feb26 ? 00:00:20 [kjournald]
root 91 1 0 Feb26 ? 00:00:00 [khubd]
root 196 1 0 Feb26 ? 00:00:00 [kjournald]
[t3user@t3 guser]$

Although there is no way to directly run RSL scripts with the globus-job-run
command, the command utilizes RSL to execute jobs. By using the dumprsl
parameter, globus-job-run is a useful tool to build and understand RSL scripts.

Example 2-3 Using globus-job-run -dumprsl to generate RSL

[t3user@t3 guser]$ globus-job-run -dumprsl t3 /tmp/MyScript
 &(executable="/tmp/MyTest")
[t3user@t3 guesr]$

Gatekeeper
The gatekeeper daemon provides a secure communication mechanism between
clients and servers. The gatekeeper daemon is similar to the inetd daemon in
terms of functionality. However, the gatekeeper utilizes the security infrastructure
(GSI) to authenticate the user before launching the job. After authentication, the
gatekeeper initiates a job manager to launch the actual job and delegates the
authority to communicate with the client.

Job manager
The job manager is created by the gatekeeper daemon as part of the job
requesting process. It provides the interfaces that control the allocation of each
local resource. It may in turn utilize other services such as job schedulers. The
default implementation performs the following functions and forks a new process
to launch the job:

� Parses the RSL string passed by the client
� Allocates job requests to local resource managers
� Sends callbacks to clients, if necessary
� Receives status requests and cancel requests from clients
� Sends output results to clients using GASS, if requested

Dynamically-Updated Request Online Coallocator (DUROC)
The Dynamically-Updated Request Online Coallocator (DUROC) API allows
users to submit multiple jobs to multiple GRAMs with one command. DUROC
uses a coallocator to execute and manage these jobs over several resource
managers. To utilize the DUROC API you can use RSL (described above), the
API within a C program, or the globus-duroc command.

The RSL script that contains the DUROC syntax is parsed at the GRAM client
and allocated to different job managers.
 Chapter 2. Grid infrastructure considerations 21

Application enablement considerations - Resource Mgmt
There are several considerations for application architecture, design, and
deployment related to resource management.

In its simplest form GRAM is used by issuing a globusrun command to launch a
job on a specific system. However, in conjunction with MDS (usually through a
broker function), the application must ensure that the appropriate target
resource(s) are used. Some of the items to consider include:

� Choosing the appropriate resource

By working in conjunction with the broker, ensure that an appropriate target
resource is selected. This requires that the application accurately specifies
the required environment (operating system, processor, speed, memory, and
so on). The more the application developer can do to eliminate specific
dependencies, the better the chance that an available resource can be found
and that the job will complete.

� Multiple sub-jobs

If an application includes multiple jobs, the designer must understand (and
maybe reduce) their interdependencies. Otherwise, they will have to build
logic to handle items such as:

– Inter-process communication
– Sharing of data
– Concurrent job submissions

� Accessing job results

If a job returns a simple status or a small amount of output, the application
may be able to simply retrieve the data from stdout and stderr. However, the
capturing of that output will need to be correctly specified in the RSL string
that is passed to the globusrun command. If more complex results must be
retrieved, the GASS facility may need to be used by the application to transfer
data files.

� Job management

GRAM provides mechanisms to query the status of the job as well as perform
operations such as cancelling the job. The application may need to utilize
these capabilities to provide feedback to the user or to clean up or free up
resources when required. For instance, if one job within an application fails,
other jobs that may be dependent on it may need to be cancelled before
needlessly consuming resources that could be used by other jobs.

2.1.3 Information services
Information services is a vital component of the grid infrastructure. It maintains
knowledge about resource availability, capacity, and current utilization. Within
22 Enabling Applications for Grid Computing with Globus

any grid, both CPU and data resources will fluctuate, depending on their
availability to process and share data. As resources become free within the grid,
they can update their status within the grid information services. The client,
broker, and/or grid resource manager uses this information to make informed
decisions on resource assignments.

The information service is designed to provide:

� Efficient delivery of state information from a single source
� Common discovery and enquiry mechanisms across all grid entities

Information service providers are programs that provide information to the
directory about the state of resources. Examples of information that is gathered
includes:

� Static host information

Operating system name and version, processor vendor/model/version/
speed/cache size, number of processors, total physical memory, total virtual
memory, devices, service type/protocol/port

� Dynamic host information

Load average, queue entries, and so on

� Storage system information

Total disk space, free disk space, and so on

� Network information

Network bandwidth, latency, measured and predicted

� Highly dynamic information

Free physical memory, free virtual memory, free number of processors, and
so on

The Grid Information Service (GIS), also known as the Monitoring and Discovery
Service (MDS), provides the information services in Globus. The MDS uses the
Lightweight Directory Access Protocol (LDAP) as an interface to the resource
information.

Monitoring and Discovery Service (MDS)
MDS provides access to static and dynamic information of resources. Basically,
it contains the following components:

� Grid Resource Information Service (GRIS)
� Grid Index Information Service (GIIS)
� Information providers
� MDS client
 Chapter 2. Grid infrastructure considerations 23

Figure 2-1 represents a conceptual view of the MDS components. As illustrated,
the resource information is obtained by the information provider and it is passed
to GRIS. GRIS registers its local information with the GIIS, which can optionally
also register with another GIIS, and so on. MDS clients can query the resource
information directly from GRIS (for local resources) and/or a GIIS (for grid-wide
resources).

Figure 2-1 MDS overview

Grid Resource Information Service (GRIS)
GRIS is the repository of local resource information derived from information
providers. GRIS is able to register its information with a GIIS, but GRIS itself
does not receive registration requests. The local information maintained by GRIS
is updated when requested, and cached for a period of time known as the
time-to-live (TTL). If no request for the information is received by GRIS, the
information will time out and be deleted. If a later request for the information is
received, GRIS will call the relevant information provider(s) to retrieve the latest
information.

GIIS

GIIS

GRIS

Information
Provider

MDS Client

Host B

Host C

Resources

Host A

ldapsearch
ldapadd/delete/modify

slapd

LDAP base

RegisterRegister

Local resource
 information

Local resource
 information

Request and response
 of resource information

Request and response
 of resource information

Request and response
 of resource information
24 Enabling Applications for Grid Computing with Globus

Grid Index Information Service (GIIS)
GIIS is the repository that contains indexes of resource information registered by
the GRIS and other GIISs. It can be seen as a grid-wide information server. GIIS
has a hierarchical mechanism, like DNS, and each GIIS has its own name. This
means client users can specify the name of a GIIS node to search for
information.

Information providers
The information providers translate the properties and status of local resources
to the format defined in the schema and configuration files. In order to add your
own resource to be used by MDS, you must create specific information providers
to transfer the properties and status to GRIS.

MDS client
The MDS client is based on the LDAP client command, ldapsearch, or an
equivalent API. A search for information about resources in the grid environment
is initially performed by the MDS client.

Application enablement considerations - Information Services
Considerations related to information services include:

� It is important to fully understand the requirements for a specific job so that
the MDS query can be correctly formatted to return resources that are
appropriate.

� Ensure that the proper information is in MDS. There is a large amount of data
about the resources within the grid that is available by default within the MDS.
However, if your application requires special resources or information that is
not there by default, you may need to write your own information providers
and add the appropriate fields to the schema. This may allow your application
or broker to query for the existence of the particular resource/requirement.

� MDS can be accessed anonymously or through a GSI authenticated proxy.
Application developers will need to ensure that they pass an authenticated
proxy if required.

� Your grid environment may have multiple levels of GIIS. Depending on the
complexity of the environment and its topology, you want to ensure that you
are accessing an appropriate GIIS to search for the resources you require.

2.1.4 Data management
When building a grid, the most important asset within your grid is your data.
Within your design, you will have to determine your data requirements and how
you will move data around your infrastructure or otherwise access the required
data in a secure and efficient manner. Standardizing on a set of grid protocols
 Chapter 2. Grid infrastructure considerations 25

will allow you to communicate between any data source that is available within
your design.

You also have choices for building a federated database to create a virtual data
store or other options including Storage Area Networks, network file systems,
and dedicated storage servers.

Globus provides the GridFTP and Global Access to Secondary Storage (GASS)
data transfer utilities in the grid environment. In addition, a replica management
capability is provided to help manage and access replicas of a data set. These
facilities are briefly described below.

GridFTP
The GridFTP facility provides secure and reliable data transfer between grid
hosts. Its protocol extends the File Transfer Protocol (FTP) to provide additional
features including:

� Grid Security Infrastructure (GSI) and Kerberos support allows for both types
of authentication. The user can set various levels of data integrity and/or
confidentiality.

� Third-party data transfer allows a third party to transfer files between two
servers.

� Parallel data transfer using multiple TCP streams to improve the aggregate
bandwidth. It supports the normal file transfer between a client and a server. It
also supports the third-party data transfers between two servers.

� Striped data transfer that partitions data across multiple servers to further
improve aggregate bandwidth.

� Partial file transfer that allows the transfer of a portion of a file.

� Reliable data transfer that includes fault recovery methods for handling
transient network failures, server outages, and so on. The FTP standard
includes basic features for restarting failed transfer. The GridFTP protocol
exploits these features, and substantially extends them.

� Manual control of TCP buffer size allows achieving maximum bandwidth with
TCP/IP. The protocol also has support for automatic buffer size tuning.

� Integrated instrumentation. The protocol calls for restart and performance
markers to be sent back.

GridFTP server and client
Globus Toolkit provides the GridFTP server and GridFTP client, which are
implemented by the in.ftpd daemon and by the globus-url-copy command (and
related APIs), respectively. They support most of the features defined for the
GridFTP protocol.
26 Enabling Applications for Grid Computing with Globus

The GridFTP server and client support two types of file transfer: Standard and
third party. The standard file transfer is where a client sends or retrieves a file
to/from the remote machine, which runs the FTP server. An overview is shown in
Figure 2-3.

Figure 2-2 Standard file transfer

Third-party data transfer allows a third party to transfer files between two servers.

Figure 2-3 Third-party file transfer

Global Access to Secondary Storage (GASS)
GASS is used to transfer files between the GRAM client and the GRAM server.
GASS also provides libraries and utilities for the opening, closing, and
pre-fetching of data from datasets in the Globus environment. A cache
management API is also provided. It eliminates the need to manually log into
sites, transfer files, and install a distributed file system.

For further information, refer to the Globus GASS Web site:

http://www-fp.globus.org/gass/

GridFTP Client GridFTP Server

globus-url-copy in.ftpd

File File
transfer

control

GridFTP Client

globus-url-copy

in.ftpd

File File
transfer

GridFTP Server 1

in.ftpd

control control

GridFTP Server 2
 Chapter 2. Grid infrastructure considerations 27

http://www-fp.globus.org/gass/

Replica management
Another Globus facility for helping with data management is replica
management. In certain cases, especially with very large data sets, it makes
sense to maintain multiple replicas of all or portions of a data set that must be
accessed by multiple grid jobs. With replica management, you can store copies
of the most relevant portions of a data set on local storage for faster access.
Replica management is the process of keeping track of where portions of the
data set can be found.

Globus Replica Management integrates the Globus Replica Catalog (for keeping
track of replicated files) and GridFTP (for moving data), and provides replica
management capabilities for grids.

Application enablement considerations - Data management
Data management is concerned with collectively maximizing the use of the
limited storage space, networking bandwidth, and computing resources. The
following are some of the data management issues that need to be considered in
application design and implementation:

� Dataset size

For large datasets, it is not practical and may be impossible to move the data
to the system where the job will actually run. Using data replication or
otherwise copying a subset of the entire dataset to the target system may
provide a solution.

� Geographically distributed users, data, computing and storage resources

If your target grid is geographically distributed with limited network connection
speeds, you must take into account design considerations around slow or
limited data access.

� Data transfer over wide-area networks

Take into account the security, reliability, and performance issues when
moving data across the Internet or another WAN. Build the required logic to
handle situations when the data access may be slow or prevented.

� Scheduling of data transfers

There are at least two issues to consider here. One is the scheduling of data
transfers so that the data is at the appropriate location at the time that it is
needed. For instance, if a data transfer is going to take one hour and the data
is required by a job that must run at 2:00AM, then schedule the data transfer
in advance so that it is available by the time the job requires it.

You should also be aware of the number and size of any concurrent file
transfers to or from any one resource at the same time.
28 Enabling Applications for Grid Computing with Globus

� Data replica selection

If you are using the Globus Data Replication service, you will want to add the
logic to your application to handle selecting the appropriate replica, that is,
one that will contain the data that you need, while also providing the
performance requirements that you have.

2.1.5 Scheduler
The Globus Toolkit does not provide a job scheduler or meta-scheduler.
However, there are a number of job schedulers available that already are or can
be integrated with Globus. For instance, the Condor-G product utilizes the
Globus Toolkit and provides a scheduler designed for a grid environment.

Scheduling jobs and load balancing are important functions in the Grid.

Most grid systems include some sort of job-scheduling software. This software
locates a machine on which to run a grid job that has been submitted by a user.
In the simplest cases, it may just blindly assign jobs in a round-robin fashion to
the next machine matching the resource requirements. However, there are
advantages to using a more advanced scheduler.

Some schedulers implement a job-priority system. This is sometimes done by
using several job queues, each with a different priority. As grid machines become
available to execute jobs, the jobs are taken from the highest priority queues first.
Policies of various kinds are also implemented using schedulers. Policies can
include various kinds of constraints on jobs, users, and resources. For example,
there may be a policy that restricts grid jobs from executing at certain times of the
day.

Schedulers usually react to the immediate grid load. They use measurement
information about the current utilization of machines to determine which ones are
not busy before submitting a job. Schedulers can be organized in a hierarchy.
For example, a meta-scheduler may submit a job to a cluster scheduler or other
lower-level scheduler rather than to an individual machine.

More advanced schedulers will monitor the progress of scheduled jobs managing
the overall work-flow. If the jobs are lost due to system or network outages, a
good scheduler will automatically resubmit the job elsewhere. However, if a job
appears to be in an infinite loop and reaches a maximum timeout, then such jobs
should not be rescheduled. Typically, jobs have different kinds of completion
codes, some of which are suitable for resubmission and some of which are not.

Reserving resources on the grid in advance is accomplished with a reservation
system. It is more than a scheduler. It is first a calendar-based system for
reserving resources for specific time periods and preventing any others from
 Chapter 2. Grid infrastructure considerations 29

reserving the same resource at the same time. It also must be able to remove or
suspend jobs that may be running on any machine or resource when the
reservation period is reached.

Condor-G
The Condor software consists of two parts, a resource-management part and a
job-management part. The resource-management part keeps track of machine
availability for running the jobs and tries to best utilize them. The
job-management part submits new jobs to the system or put jobs on hold, keeps
track of the jobs, and provides information about the job queue and completed
jobs.

The machine with the resource-management part is referred to as the execution
machine. The machine with the job-submission part installed is referred to as the
submit machine. Each machine may have one or both parts. Condor-G provides
the job management part of Condor. It uses the Globus Toolkit to start the jobs
on the remote machine instead of the Condor protocols.

The benefits of using Condor-G include the ability to submit many jobs at the
same time into a queue and to monitor the life-cycle of the submitted jobs with a
built-in user interface. Condor-G provides notification of job completions and
failures, and maintains the Globus credentials that may expire during the job
execution. In addition, Condor-G is fault tolerant. The jobs submitted to
Condor-G and the information about them are kept in persistent storage to allow
the submission machine to be rebooted without losing the job or the job
information. Condor-G provides exactly-once-execution semantics. Condor-G
detects and intelligently handles cases such as the remote grid resource
crashing.

Condor makes use of Globus infrastructure components such as authentication,
remote program execution, and data transfer to utilize the grid resources. By
using the Globus protocols, the Condor system can access resources at multiple
remote sites. Condor-G uses the GRAM protocol for job submission and local
GASS servers for file transfer.

Application enablement considerations - Scheduler
When considering enabling an application for a grid environment, there are
several considerations related to scheduling. Some of these considerations
include:

� Data management: Ensuring data is available when the job is scheduled to
run. If data needs to be moved to the execution node, then data movement
may also need to be scheduled.

� Communication: Any inter-process communication between related jobs will
require that the jobs are scheduled to run concurrently.
30 Enabling Applications for Grid Computing with Globus

� Scheduler’s domain: In an environment with multiple schedulers, such as
those with meta schedulers, the complexities of coordinating concurrent jobs,
or ensuring certain jobs execute at a specific time, can become complex,
especially if there are different schedulers for different domains.

� Scheduling policy: Scheduling can be implemented with different orientations:

– Application oriented: Scheduling is optimized for best turn around time.

– System oriented: Optimized for maximum throughput. A job may not be
started immediately. It may be interrupted or preempted during execution.
It may be scheduled to run overnight.

� Grid information service: The interaction between the scheduler and the
information service can be complex. For instance, if the resource is found
through MDS before the job is actually scheduled, then there may be an
assumption that the current resource status will not change before execution
of the job. Or a more proactive mechanism could be used to predict possible
changes in the resource status so proactive scheduling decisions may be
made.

� Resource broker: Typically a resource broker must interface with the
scheduler.

2.1.6 Load balancing
Load balancing is concerned with the distribution of workload among the grid
resources in the system. Though the Globus Toolkit does not provide a
load-balancing function, under certain environments it is a desired service.

As the work is submitted to a grid job manager, the workload may be distributed
in a push model, pull model, or combined model. A simple implementation of a
push model could be built where the work is sent to grid resources in a
round-robin fashion. However, this model does not consider the job queue
lengths. If each grid resource is sent the same number of jobs, a long job queue
could build up in some slower machines or a long-running job could block others
from starting if not carefully monitored. One solution may be to use a weighted
round-robin scheme.

In the pull model, the grid resources take the jobs from a job queue. In this
model, synchronization and serialization of the job queue will be necessary to
coordinate the taking of jobs by multiple grid resources. Local and global job
queue strategies are also possible. In the local pull model strategy, each group of
grid resources is assigned to take jobs from a local job queue. In the global pull
model strategy, all the grid resources are assigned the same job queue. The
advantage of the local pull model is the ability to partition the grid resources. For
example, proximity to data, related jobs, or jobs of certain types requiring similar
resources may be controlled in this way.
 Chapter 2. Grid infrastructure considerations 31

A combination of the push and the pull models may remove some previous
concerns. The individual grid resources may decide when more work can be
taken, and send a request for work to a grid job server. New work is then sent by
the job server.

Failover conditions need to be considered in both of the load-balancing models.
The non-operational grid resources need to be detected, and no new work
should be sent to failed resources in the push model. In addition, all the
submitted jobs that did not complete need to be taken care of in both push and
pull models. All the uncompleted jobs in the failed host need to be either
redistributed or taken over by other operational hosts in the group. This may be
accomplished in one of two ways. In the simplest, the uncompleted jobs can be
resent to another operational grid resource in the push model, or simply added
back to the job queue in the pull model. In a more sophisticated approach,
multiple grid resources may share job information such as the jobs in the queue
and checkpoint information related to running jobs, as shown in Figure 2-4. In
both models, the operational grid resources can take over the uncompleted jobs
of a failed grid resource.

Figure 2-4 Share job information for fault-tolerance

Application-enablement considerations - Load balancing
When enabling applications for a grid environment, design issues related to load
balancing may need to be considered. Based on the load-balancing mechanism
that is in place (manual, push, pull, or some hybrid combination), the application
designer/developer needs to understand how this will affect the application, and

Grid Resource A

job queue

My work area

job checkpoint data

job queue

My neighbor’s work area

job checkpoint data

Grid Resource B

job queue

My work area

job checkpoint data

job queue

My neighbor’s work area

job checkpoint data

Grid Resource A

job queue

My work area

job checkpoint data

job queue

My neighbor’s work area

job checkpoint data

Grid Resource B

job queue

My work area

job checkpoint data

job queue

My neighbor’s work area

job checkpoint data
32 Enabling Applications for Grid Computing with Globus

specifically its performance and turn-around time. Applications with many
individual jobs that each may be affected or controlled by a load-balancing
system can benefit from the improved overall performance and throughput of the
grid, but may also require more complicated mechanisms to handle the
complexity of having its jobs delayed or moved to accommodate the overall grid.

2.1.7 Broker
As already described, the role of a broker in a grid environment can be very
important. It is a component that will likely need to be implemented in most grid
environments, though the implementation can vary from relatively simple to very
complex.

The basic role of a broker is to provide match-making services between a service
requester and a service provider. In the grid environment, the service requesters
will be the applications or the jobs submitted for execution, and the service
providers will be the grid resources.

With the advent of OGSA, the future service requester may be able to make
requests of a grid service or a Web service via a generic service broker. A
candidate for such a generic service broker may be IBM WebSphere Business
Connection, which is currently a Web services broker.

The Globus toolkit does not provide the broker function. It does, however,
provide the grid information services function through the Monitoring and
Discovery Service (MDS). The MDS may be queried to discover the properties of
the machines, computers, and networks such as the number of processors
available at this moment, what bandwidth is provided, and the type of storage
available.

Application enablement considerations - Broker
When designing an application for execution in a grid environment, it is important
to understand how resources will be discovered and allocated. It may be up to
the application to identify its resource requirements to the broker so that the
broker can ensure that the proper and appropriate resources are allocated to the
application.

2.1.8 Inter-process communications (IPC)
A grid system may include software to help jobs communicate with each other.
For example, an application may split itself into a large number of sub-jobs. Each
of these sub-jobs is a separate job in the grid. However, the application may
implement an algorithm that requires that the sub-jobs communicate some
information among them. The sub-jobs need to be able to locate other specific
 Chapter 2. Grid infrastructure considerations 33

sub-jobs, establish a communications connection with them, and send the
appropriate data. The open standard Message Passing Interface (MPI) and any
of several variations are often included as part of the grid system for just this kind
of communication.

MPICH-G2
MPICH-G2 is an implementation of MPI optimized for running on grids. It
combines easy secure job startup, excellent performance, data conversion, and
multi-protocol communication. However, when communicating over wide-area
networks, applications may encounter network congestion that severely impacts
the performance of the application.

Application-enablement considerations - IPC
There are many possible solutions for inter-process communication, of which
MPICH-G2 described above is just one. However, requiring inter-process
communication between jobs always increases the complexity of an application,
and when possible should be kept to a minimum. However, in large complex
applications, it often cannot be avoided. In these cases, understanding the IPC
mechanisms that are available and minimizing the effect of failed or slowed
communications can help ensure the overall success of the applications.

2.1.9 Portal
A grid portal may be constructed as a Web page interface to provide easy access
to grid applications. The Web user interface provides user authentication, job
submission, job monitoring, and results of the job.

The Web user interface and interaction of a grid portal may be provided using an
application server such as the WebSphere Application Server. See Figure 2-5 on
page 35.
34 Enabling Applications for Grid Computing with Globus

Figure 2-5 Grid portal on an application server

Application-enablement considerations - Portal
Whatever the user interface might be to your grid application, ease-of-use and
the requirements of the user must be taken into account. As with any user
interface, there are trade-offs between ease-of-use and the ability for advanced
users to provide additional input to the application or to specify run-time
parameters unique for a specific invocation of the job. By utilizing the GRAM
facilities in the Globus Toolkit, it is also possible to obtain job status and to allow
for job management such as cancelling a job in progress. When designing the
portal, the users requirements in these areas must be understood and
addressed.

Developing a portal for grid applications is described in more detail in Chapter 8,
“Developing a portal” on page 215.

2.2 Non-functional requirements
The following sections describe some additional considerations related to the
infrastructure. These considerations come under the heading of non-functional
as they do not relate to a specific functional unit of the grid, such as job
management, broker, and so on.

JSP/HTML

Servlet

Application Server

Globus API

Grid Portal
Web Browser on

User Machine

Start

Application_1
Application_2
Application_3

Job Status

Application_1 complete
Application_2 submitted

Grid Portal Sample
JSP/HTML

Servlet

Application Server

Globus API

Grid Portal
Web Browser on

User Machine

Start

Application_1
Application_2
Application_3

Job Status

Application_1 complete
Application_2 submitted

Grid Portal Sample

Start

Application_1
Application_2
Application_3

Job Status

Application_1 complete
Application_2 submitted

Grid Portal Sample
 Chapter 2. Grid infrastructure considerations 35

2.2.1 Performance
When considering enabling an application to execute in a grid environment, the
performance of the grid and the performance requirements of the application
must be considered. The service requester is interested in a quality of service
that includes acceptable turnaround time. Of course, if building a grid and one or
more applications that will be provided as a service on the grid, then the service
provider also has interest in maximizing the utilization and throughput of the
systems within the grid. The performance objectives of these two perspectives
are discussed below.

Resource provider’s perspective
The performance objective for a grid infrastructure is to achieve maximum
utilization of the various resources within the grid to achieve maximum
throughput. The resources may include but are not limited to CPU cycles,
memory, disk space, federated databases, or application processing. Workload
balancing and preemptive scheduling may be used to achieve the performance
objectives. Applications may be allowed to take advantage of multiple resources
by dividing the grid into smaller instances to have the work distributed throughout
the grid. The goal is to take advantage of the grid as a whole to improve the
application performance. The workload management can make sure that all
resources within the grid are actively servicing jobs or requests within the grid.

Service requester’s perspective
The turnaround time of an application running on the grid could vary depending
on the type of grid resource used and the resource provider’s quality-of-service
agreement. For example, a quick turnaround may be achieved by submitting a
processing-intensive standalone batch job to a high-performance grid resource.
This assumes that the job is started immediately and that it is not preempted by
another job during execution. The same batch job may be scheduled to run
overnight when the resource demands are lower if a quick turnaround is not
required. The resource provider may charge different prices for these two types
of service.

If the application has many independent sub-jobs that can be scheduled for
parallel execution, the turnaround time could be improved appreciably by running
each sub-job on multiple grid hosts.

Turnaround time factors
This section discusses some of the factors that can impact the turnaround time of
applications run on the grid resources.
36 Enabling Applications for Grid Computing with Globus

Communication delays
Network speed and network latency can have significant impact to the
application performance if it requires communicating with another application
running on a remote machine. It is important to consider the proximity of the
communicating applications to one another and the network speed and latency.

Data access delays
The network bandwidth and speed will be the critical factors for applications that
need to access remote data. Proximity of the application to the data and the
network capacity/speed will be important considerations.

Lack of optimization of the application to the grid resource
Optimum application performance is usually achieved by proper tuning and
optimization on a particular operating system and hardware configuration. This
poses possible issues if an application is simply loaded on a new grid host and
run. This issue may be resolved if the service provider makes an arrangement
with the resource provider so that the application’s optimum configuration and
resource requirements are identified ahead of time and applied when the
application is run.

Contention for resource
Resource contention is always a problem when resources are shared. If
resource contention impacts performance significantly, alternate resources may
need to be introduced. For example, if a database is the source of contention,
then introducing a replica may be an answer. In addition, the network may need
to be divided to separate the traffic to the databases. Optimum sharing of the grid
hosts may be achieved by a proper scheduling algorithm and workload
balancing. For example, the shortest job first (SJF) batch job scheduling
algorithm may provide the best turnaround time.

Reliability
Failures in the grid resource and network can cause unforeseen delays. To
provide reliable job execution, the grid resource may apply various recovery
methods for different failures. For example, in the checkpoint-restart
environment, some amount of delay will be incurred each time a checkpoint is
taken. A much longer delay may be experienced if the server crashed and the
application was migrated to a new server to complete the run. In other instances,
the delay may take the entire time to recover from a failure such as network
outages.

2.2.2 Reliability
Reliability is always an issue in computing, and the grid environment is no
exception. The best method of approaching this difficult issue is to anticipate all
 Chapter 2. Grid infrastructure considerations 37

possible failures and provide a means to handle them. The best reliability is to be
surprise tolerant. The grid computing infrastructure must deal with host
interruptions and network interruptions. Below are some approaches to dealing
with such interruptions.

Checkpoint-restart
While a job is running, checkpoint images are taken at regular intervals. A
checkpoint contains a snapshot of the job states. If a machine crashes or fails
during the job execution, the job can be restarted on a new machine using the
most recent checkpoint image. In this way, a long-running job that runs for
months or even years can continue to run even though computers fail
occasionally.

Persistent storage
The relevant state of each submitted job is stored in persistent storage by a grid
manager to protect against local machine failure. When the local machine is
restarted after a failure, the stored job information is retrieved. The connection to
the job manager is reestablished.

Heartbeat monitoring
In a healthy heartbeat, a probing message is sent to a process and the process
responds. If the process fails to respond, an alternate process may be probed.
The alternate process can help to determine the status of the first process, and
even restart it. However, if the alternate process also fails to respond then we
assume that either the host machine has crashed or the network has failed. In
this case, the client must wait until the communication can be reestablished.

System management
Any design will require a basic set of systems management tools to help
determine availability and performance within the grid. A design without these
tools is limited in how much support and information can be given about the
health of the grid infrastructure. Alternate networks within a grid architecture can
be dedicated to perform these functions so as to not hamper the performance of
the grid.

2.2.3 Topology considerations
The distributed nature of grid computing makes spanning across geographies
and organizations inevitable. As an intra-grid topology is extended to an
inter-grid topology, the complexity increases. For example, the non-functional
and operational requirements such as security, directory services, reliability, and
performance become more complex. These considerations are discussed briefly
in the following sections.
38 Enabling Applications for Grid Computing with Globus

Figure 2-6 Grid topologies

Network topology
The network topology within the grid architecture can take on many different
shapes. The networking components can represent the LAN or campus
connectivity, or even WAN communication between the grid networks. The
network’s responsibility is to provide adequate bandwidth for any of the grid
systems. Like many other components within the infrastructure, the networking
can be customized to provide higher levels of availability, performance, or
security.

Grid systems are for the most part network intensive due to security and other
architectural limitations. For data grids in particular, which may have storage
resources spread across the enterprise network, an infrastructure that is
designed to handle a significant network load is critical to ensuring adequate
performance.

The application-enablement considerations should include strategies to minimize
network communication and to minimize the network latency. Assuming the
application has been designed with minimal network communication, there are a
number of ways to minimize the network latency. For example, a gigabit Ethernet

InternetInternet

Intragrid

Intergrid

InternetInternet

IntragridIntragrid

Intergrid
 Chapter 2. Grid infrastructure considerations 39

LAN could be used to support high-speed clustering or utilize high-speed Internet
backbone between remote networks.

Data topology
It would be desirable to assign executing jobs to machines nearest to the data
that these jobs require. This would reduce network traffic and possibly reduce
scalability limits.

Data requires storage space. The storage possibilities are endless within a grid
design. The storage needs to be secured, backed up, managed, and/or
replicated. Within a grid design, you want to make sure that your data is always
available to the resources that need it. Besides availability, you want to make
sure that your data is properly secured, as you would not want unauthorized
access to sensitive data. Lastly, you want more than decent performance for
access to your data. Obviously, some of this relies on the bandwidth and
distance to the data, but you will not want any I/O problems to slow down your
grid applications. For applications that are more disk intensive, or for a data grid,
more emphasis can be placed on storage resources, such as those providing
higher capacity, redundancy, or fault-tolerance.

2.2.4 Mixed platform environments
A grid environment is a collection of heterogeneous hosts with various operating
systems and software stacks. To execute an application, the grid infrastructure
needs to know the application’s prerequisites to find the matching grid host
environment. Below are some things that the grid infrastructure must be aware of
to ensure that applications can execute properly. It is equally as important for the
application developer to consider these factors in order to maximize the kinds
and numbers of environments on which the application will be able to execute.

Runtime considerations
The application’s runtime requirements and the grid host’s runtime environments
must match. As an example, below are some considerations for Java
applications. Similar requirements may exist for applications developed in other
applications.

Java Virtual Machine (JVM)
Applications written in the Java programming language require the Java Virtual
Machine (JVM). Java applications may be sensitive to the JVM version. To
address this sensitivity, the application needs to identify the JVM version as a
prerequisite. The prerequisite may specify the required JVM version or the
minimum JVM version.
40 Enabling Applications for Grid Computing with Globus

Java applications may be sensitive to the Java heap size. The Java application
needs to specify the minimum heap size as part of its prerequisite.

Java packages such as J2SE or J2EE may also need to be identified as part of
the prerequisites.

Availability of application across platforms (portability)
The executables of certain applications are platform specific. For example, an
application written in the C or C++ programming language needs to be
recompiled on the target platform before it can be run. The application could be
pre-compiled for each platform and the resulting executables marked for a target
platform. This will increase the number of qualifying grid host environments
where the application can run. The limitation of this method will be the
cost-effectiveness of porting the application to another platform.

Awareness of OS environment
The grid is a collection of heterogeneous computing resources. If the application
has certain dependencies or requirements specific to the operating system, the
application needs to verify that the correct environment is available and handle
issues related to the differing environments.

Output file formats
The knowledge of the output file format is necessary when the output of an
application running on one grid host is accessed by another application running
on a different grid host. The two grid hosts may have different platform
environments. XML may be considered as the data exchange format. XML has
now become popular not only as a markup language for data exchange, but also
as a data format for semi-structured data.

2.3 Summary
The functional components of a grid environment, as well as non-functional
considerations such as performance requirements or operating system
requirements, must be well understood when considering enabling an application
to execute in a grid environment. This chapter has touched on many of these
considerations.

In the next chapter, we look at the properties of an application itself to determine
whether it is a good candidate to be grid enabled.
 Chapter 2. Grid infrastructure considerations 41

42 Enabling Applications for Grid Computing with Globus

Chapter 3. Application architecture
considerations

In the previous chapters we have introduced grid computing, the Globus Toolkit
and its components, and some of the considerations that the infrastructure can
impose on a grid-enabled application.

In this chapter, we look at the characteristics of applications themselves. We
provide guidance for deciding whether a particular application is well suited to
run on a grid.

Often we find people assuming that for an application to gain advantage from a
grid environment, it must be highly parallel or otherwise able to take advantage
of parallel processing. In fact, some like to think of a grid as a distributed cluster.
Although such parallel applications certainly can take advantage of a grid, you
should not dismiss the use of grids for other types of applications as well. As
introduced in Chapter 1, “Introduction” on page 1, a grid can be thought of as a
virtual computing resource. Even a single threaded batch job could benefit from a
grid environment by being able to run on any of a set of systems in the grid,
taking advantage of unused cycles. A grid environment that can be used to
execute any of a variety of jobs across multiple resources, transparently to the
user, provides greater availability, reliability, and cost efficiencies than may exist
with dedicated servers.

3

© Copyright IBM Corp. 2003. All rights reserved. 43

Similarly the need for large amounts of data storage can also benefit from a grid.
Examples include thoroughly analyzing credit data for fraud detection,
bankruptcy warning mechanisms, or usage patterns of credit cards. Operations
on vast amounts of data by uniform calculations, such as the search for
identifiable sequences in the human genome database, are also well suited for
grid environments.

At some point, the question usually arises as to whether a problem should be
solved in a grid or whether other approaches like HPC, Storage Tanks, and so on
are sufficient. In order to decide on the best choice there are a number of
aspects to consider from various perspectives. This chapter provides some basic
ideas for dealing with the types of jobs and data in a grid.

This chapter also provides an overview of criteria that helps determine whether a
given application qualifies for a grid solution. These criteria are discussed in four
sections dealing with job/application, data, and usability and non-functional
perspectives. Together they allow a sufficient understanding of the complexity,
scope, and size of the grid application under consideration. It also allows the
project team to detect any show stoppers and to size the effort and requirements
needed to build the solution.
44 Enabling Applications for Grid Computing with Globus

3.1 Jobs and grid applications
In order to have a clearer understanding of the upcoming discussion, we
introduce the following terminology:

Grid Application A collection of work items to solve a certain problem or to
achieve desired results using a grid infrastructure. For
example, a grid application can be the simulation of
business scenarios, like stock market development, that
require a large amount of data as well as a high demand
for computing resources in order to calculate and handle
the large number of variables and their effects. For each
set of parameters a complex calculation can be executed.
The simulation of a large scale scenario then consists of a
larger number of such steps. In other words, a grid
application may consist of a number of jobs that together
fulfill the whole task.

Job Considered as a single unit of work within a grid
application. It is typically submitted for execution on the
grid, has defined input and output data, and execution
requirements in order to complete its task. A single job
can launch one or many processes on a specified node. It
can perform complex calculations on large amounts of
data or might be relatively simple in nature.

3.2 Application flow in a grid
In this section, we look at the overall flow of a grid-enabled application, which
may consist of multiple jobs. Traditional applications execute in a well known and
somewhat static environment with fixed assets. We need to look at the
considerations (and value) for having an application run in a grid environment
where resources are dynamically allocated based on actual needs.

If taking advantage of multiple resources concurrently in a grid, you must
consider whether the processing of the data can happen in parallel tasks or
whether it must be serialized and the consequences of one job waiting for input
data from another job. What may result is a network of processes that comprise
the application.

Application flow vs job flow
For the remainder of the book an application flow is the flow of work between the
jobs that make up the grid application. The internal flow of work within a job itself
is called job flow.
 Chapter 3. Application architecture considerations 45

Analyzing the type of flow within an application delivers the first determining
factor of suitability for a grid. This does not mean that a complex networked
application flow excludes implementation on a grid, nor does a simple flow type
determine an easy deployment on a grid. Rather, besides the flow types, the sum
of all qualifying factors allows for a good evaluation of how to enable an
application for a grid.

There are three basic types of application flow that can be identified:

� Parallel
� Serial
� Networked

The following sections discuss each of these in more detail.

3.2.1 Parallel flow
If an application consists of several jobs that can all be executed in parallel, a
grid may be very suitable for effective execution on dedicated nodes, especially
in the case when there is no or a very limited exchange of data among the jobs.

From an initial job a number of jobs are launched to execute on preselected or
dynamically assigned nodes within the grid. Each job may receive a discrete set
of data, and fulfills its computational task independently and delivers its output.
The output is collected by a final job or stored in a defined data store. Grid
services, such as a broker and/or scheduler, may be used to launch each job at
the best time and place within the grid.

Data producer and consumer
Jobs that produce output data are called producers, and jobs receiving input data
are called consumers. Instead of an active job as the final consumer of data,
there can be a defined data sink of any kind within the grid application. This could
be a database record, a data file, or a message queue that consumes the data.
46 Enabling Applications for Grid Computing with Globus

Figure 3-1 Parallel application flow

For a given problem or application it would be necessary to break it down into
independent units. To take advantage of parallel execution in a grid, it is
important to analyze tasks within an application to determine whether they can
be broken down into individual and atomic units of work that can be run as
individual jobs.

This parallel application flow type is well suited for deployment on a grid.
Significantly, this type of flow can occur when there are separate data sets per
job and none of the jobs need results from another job as input. For example, in
the case of a simulation application that is based on a large array of parameter
sets against which a specific algorithm is to be executed, a grid can help to
deliver results more quickly. A larger coverage of the data sphere is reached
when the jobs can run in parallel on as many suitable nodes as possible. Such a
job can be as complex as a sophisticated spreadsheet script or any
multidimensional mathematical formula of which each requires intense
computing.

3.2.2 Serial flow
In contrast to the parallel flow is the serial application flow. In this case there is a
single thread of job execution where each of the subsequent jobs has to wait for

A F

E

D

C

B

A F

E

D

C

B

 Chapter 3. Application architecture considerations 47

its predecessor to end and deliver output data as input to the next job. This
means any job is a consumer of its predecessor, the data producer.

In this case, the advantages of running in a grid environment are not based on
access to multiple systems in parallel, but rather on the ability to use any of
several appropriate and available resources. Note that each job does not
necessarily have to run on the same resource, so if a particular job requires
specialized resources, that can be accommodated, while the other jobs may run
on more standard and inexpensive resources. The ability for the jobs to run on
any of a number of resources also increases the application’s availability and
reliability. In addition, it may make the application inherently scalable by being
able to utilize larger and faster resources at any particular point in time.
Nevertheless when encountering such a situation it may be worthwhile to check
whether the single jobs are really dependent of each other, or whether due to its
nature they can be split into parallel executable units for submission on a grid.

Parallelization
Section 2.1 of Introduction to Grid Computing with Globus, SG24-6895, provides
certain thoughts about parallelization of jobs for grids. For example, when
dealing with mathematical calculations the commutative and associative laws
can be exploited.

In iterative scenarios (for example, convergent approximation calculations)
where the output of one job is required as input to the next job of the same kind,
a serial job flow is required to reach the desired result. For best performance
these kinds of processes might be executed on a single CPU or cluster, though
performance is not always the primary criteria. Cost and other factors must also
be considered, and once a grid environment is constructed such a job may be
more cost effective when run on a grid versus utilizing a dedicated cluster.

An application may consist of a large number of such calculations where the start
parameters are taken from a discrete set of values. Each resulting serial
application flow then could be launched in parallel on a grid in order to utilize
more resources. The serial flow A through D in Figure 3-2 is then replicated to A’
through D’, A” through D”, and so forth.

Figure 3-2 Serial job flow

A CB DA CB D
48 Enabling Applications for Grid Computing with Globus

In case it is not possible to completely convert a serial application flow into a
parallel one, a networked application flow may result.

3.2.3 Networked flow
In this case (perhaps the most common situation), complexity comes into play.

As shown in Figure 3-3, certain jobs within the application are executable in
parallel, but there are interdependences between them. In the example, jobs B
and C can be launched simultaneously, but they heavily exchange data with
each other. Job F cannot be launched before B and C have completed, whereas
job E or D can be launched upon completion of B or C respectively. Finally, job G
finally collects all output from the jobs D, E, and F, and its termination and results
then represent the completion of the grid application.

Loose coupling
For a grid, this means the need for a job flow management service to handle the
synchronization of the individual results. Loose coupling between the jobs avoids
high inter-process communication and reduces overhead in the grid.

Figure 3-3 Networked job flow

A

C

B

D

E

F GA

C

B

D

E

F G
 Chapter 3. Application architecture considerations 49

For such an application you will need to do more analysis to determine how best
to split the application into individual jobs, maximizing parallelism. It also adds
more dependencies on the grid infrastructure services such as schedulers and
brokers, but once that infrastructure is in place, the application can benefit from
the flexibility and utilization of the virtualized computing environment.

3.2.4 Jobs and sub-jobs
Another approach to ease the managing of jobs within a grid application is to
introduce a hierarchical system of sub-jobs. A job could utilize the services of the
grid environment to launch one or more sub-jobs. For this kind of environment an
application would be partitioned and designed in such a way that the higher-level
jobs could include the logic to obtain resources and launch sub-jobs in whatever
way is most optimal for the task at hand. This may provide some benefits for very
large applications to isolate and pass the control and management of certain
tasks to the individual components.

Figure 3-4 Job with sub-jobs in a grid application

As illustrated in Figure 3-4, in the shaded area named X, job A launches sub-jobs
B and C, which communicate with each other and will launch another sub-job, F.

For the grid application, everything within the shaded area X may be regarded as
one job, identified by job A. In this case the grid server or grid portal has to be

XA

C

B

D

E

F GXA

C

B

D

E

F GA

C

B

D

E

F G
50 Enabling Applications for Grid Computing with Globus

notified of either completion of the whole task under X in order to launch D and E
respectively, or an explicit communication is established to handle notifications
about partial completion of the tasks identified within job A by its sub-jobs B and
C in order to run jobs E and D, respectively, on their own schedules.

In the latter case the grid services can take advantage of the available resources
and gain the freedom to more efficiently distribute the workload. On the other
hand, it generates more management requirements for the grid services, which
can mean additional overhead. The grid architecture has to balance the
individual advantages under the framework given by the available infrastructure
and business needs.

3.3 Job criteria
A grid application consists of a number of jobs, which may often be executed in
parallel. In this section the special requirements for each of these jobs are
discussed.

A job as part of a grid application can theoretically be of any type: Batch,
standard application, parallel application, and/or interactive.

3.3.1 Batch job
Jobs in a grid environment could be a traditional batch job on a mainframe or a
program invoked via a command line interface in a Windows, Unix, or Linux
environment. Normally, arguments are passed to the program, which can
represent the data to process and parameter settings related to the job’s
execution.

Depending on its size and the network capacities, a batch job can be sent to the
node along with its arguments and remotely launched for execution. The job can
be a script for execution in a defined environment (for example, REXX, Java, or
Perl script), or an executable program that has few or no special requirements for
operating system versions, special DLLs to be linked to, JAR files to be in place
or any other special environmental conditions.

The client, portal, and/or broker may need to know the specific requirements for
the job so that the appropriate resource can be allocated.

The data for its computation are either transmitted as arguments or accessible by
the job, be it in local or remote storage or in a file that can also be sent across the
grid.
 Chapter 3. Application architecture considerations 51

A batch job, especially one with few environmental requirements, in general is
well suited for deployment in a grid environment.

3.3.2 Standard application
A grid environment can also be applicable to a standard application, like
spreadsheets or video rendering systems. For example, if extensive financial
calculations on many variations of similar input parameters are to be done, these
could be processed on one or more nodes within the grid. See the Excel Grid
example in Section 12.1 and “Zetagrid” in Section 11.4 of Introduction to Grid
Computing with Globus, SG24-6895.

Often such a standard application requires an installation procedure and cannot
be sent over the network to run simply as a batch job. However, a command line
interface provided can be remotely used on a grid for execution of the application
where it is installed.

In this case, the grid broker or grid portal needs to know the locations of the
application and the availability of the node. The locations of the applications on
the grid are relatively fixed, meaning in order to change it a new installation has
to be performed and the application may need to be registered with the grid
portal or grid server before it can be used.

New installations are mostly done manually as the applications often require
certain OS conditions and application settings, or very often when installing on
Windows a reboot needs to be executed. This makes a standard application in
many cases quite difficult to handle on a grid, but does not exclude them. As
advances in autonomic computing provide for self-provisioning, there will be less
restrictions in this area.

Using standard software as jobs within a grid could raise licensing issues, either
due to the desire to have the application installed on many different nodes in the
grid, or related to single-user versus multi-user license agreements. We discuss
more on licenses in a grid environment in 3.12.1, “Software license
considerations” on page 62.

3.3.3 Parallel applications
Applications that already have a parallel application flow, such as those that have
been designed to run in a cluster environment, may already be suited to run in a
grid environment. In order to allow a grid server or grid portal to take the most
advantage of these, there needs to be identifiable and accessible handles to the
inner functions/jobs of such a parallel application. If this is not the case, such an
application can only be handled as one unit, similar to a standard application.
However, it makes sense to include such an application in a grid if the overall
52 Enabling Applications for Grid Computing with Globus

task requires more than the resources available in a given cluster. This means
that the grid could include several clusters with copies of a parallel application.

3.3.4 Interactive jobs
Interaction with a grid application is most commonly done via the grid portal or
grid server interface. This implies that other than launching the job, there should
not be on-going interaction between the user and the job.

Of course, if we go back to our initial view of the gird as a virtual computing
resource, it is certainly feasible to think of an application requiring user
interaction to be launched on any appropriate resource within the grid as long as
a secure and reliable communications channel could be created and maintained
between the user and the resource. Though the GSI-Enabled SSH package is
available and could be used to create a secure session, the Globus Toolkit does
not provide any tools or guidance for supporting such an application.

There would be many considerations and issues involved in the development
and deployment of such an application within a grid environment. We will not
discuss this type of application within the grid context any further in this
publication.

3.4 Programming language considerations
Whenever an application is being developed, the question of the programming
language to be used arises. The grid environment may include additional
considerations.

Jobs that are made for high-performance computing are normally written in
languages such as C or Fortran. Those jobs whose individual execution time
does not play the most important role for the application, but whose contents and
tasks are of more importance, may be written in other languages such as Java,
or in scripting languages such as Perl.

Within a single grid application one might even consider writing various parts in
different languages depending on the requirements for the individual jobs and
available resources.

Some of the key considerations include:

� Portability to a variety of platforms

This includes binary compatibility where languages such as Java provide an
advantage, as a single binary can be executed on any platform supporting the
 Chapter 3. Application architecture considerations 53

Java Virtual Machine. Interpreted languages such as Perl also tend to be
portable, allowing the application to run no matter what the target platform.

Portability of source code can also be considered. For instance, one may
decide to develop an application using C, and then compile it multiple times
for a variety of target platforms. This will require additional work by the
infrastructure to ensure that appropriate executables are distributed to any
target resource.

� Run-time libraries/modules

Depending on the language and how the program is linked, there may be a
requirement for run-time libraries or other modules to be available. Again, the
successful running of an application will depend on these libraries being
available on, or moved to, the target resource.

� Interfaces to the grid infrastructure

If the job must interface with the grid infrastructure, such as the Globus
Toolkit, then the choice of language will depend on available bindings. For
example, Globus Toolkit V2.2 includes bindings for C. However, through the
CoG initiative, there are also APIs and bindings for Java, Perl and other
languages. Note that an application may not have to interface with the Globus
Toolkit directly, as it is more the responsibility of the infrastructure that is put
in place. That is, given an appropriate infrastructure, the application may be
developed such that it is independent of the grid-specific services.

One of the driving factors behind the OGSA initiative is to standardize on the way
that various services and components of the grid infrastructure interface with one
another. This provides programming language transparency between two
communicating programs.That is, a program written in C, for example, could
communicate with or through a service that is written in another language.

3.5 Job dependencies on system environment
As shown earlier, a grid application does not require a homogenous runtime
environment, but there are certain considerations to be made in order to plan for
the most beneficial deployment of it.

For any job in a grid application the following environmental factors may affect its
operation. When developing an application, one must consider these factors and
either design it to be as independent of these factors as possible, or understand
that any dependencies will need to be taken into account within the grid
infrastructure.

� Operating Systems version, service level, and OS parameter settings that are
necessary for execution of the job, as well its reliance on certain system
54 Enabling Applications for Grid Computing with Globus

services and auxiliary programs such as a registry. It is worthwhile to consider
whether the grid application will be capable of running its jobs on any node
with different operating systems or whether it will be restricted to a single
operating system.

� Memory size required by a job may limit the possible nodes on which it can
run. The available memory size depends not only on its physical presence at
a node, but also on how much the operating system is capable of granting at
run-time.

� DLLs that are to be linked for the execution of the job. They either need to be
available on the target resource or could possibly be transferred and made
available on the resource before the job is executed.

� Compiler settings play a role as compiler flags and locations may be different.
For example, subtle differences like bit ordering, and number of bytes used for
real and integer numbers may cause failures when a job is compiled on a
different node or operating system than the one it will eventually be executed
on.

� Runtime environment that has to be in place and ready to receive the job for
execution. For instance, the right JDK or interpreter versions may have to be
planned and in place.

� Application Server version and standard as well as its capacity may be
needed to be considered as well as access requirements and services to be
used.

� Other applications that are needed to properly run a job have to be in place
prior to deployment of the grid application. These applications can be
compilers, databases, system services such as the registry under Windows,
and so on.

� Hardware devices that are required for certain jobs to perform their tasks. For
example, requirements for storage, measurement devices, and other
peripherals must be considered when building the application and planning
the grid architecture.

When developing the grid application, these prerequisites need to be checked in
order to avoid too many restrictions for job execution. A large number of
restrictions could mean more complicated enablement as well as limiting the
number of possible nodes on which the job will be able to run. Therefore, it is
better to restrict such requirements during development of the application such
that jobs can run in as generic an environment as possible.
 Chapter 3. Application architecture considerations 55

3.6 Checkpoint and restart capability
A job within a grid application may be designed to be launched, perform its tasks,
and report back to the user or grid portal regarding its success or failure. In the
latter case the same job may be launched for a second time, if it has not changed
any persistent data prior to its error state. This process can be then repeated
until final successful completion. However, it may make sense that failures be
handled by the grid server to allow a more sophisticated way to get to job
completion.

By building checkpoint and restart capabilities into the job and making its state
available to other services within the grid, the job could be restarted where it
failed, even on a different node.

3.7 Job topology
For a grid application, there are various topology-related considerations. There
are certain architectural requirements covering the topology of jobs and data.

When designing the grid application architecture, some of the key items to
consider are:

� Where grid jobs have to or can run
� How to distribute and deploy them over a network
� How to package them with essential data
� Where to store the executables within the network
� How to determine a suitable node for executing the individual jobs

The following are some factors that should be included in the consideration of the
above items:

� Location of the data and its access conditions for the job

� Amount of data to be processed by the jobs

� Interfaces needed for any interaction with certain devices

� Inter-process communication needed for the job to complete its tasks

� Availability and performance values of the individual nodes at time of
execution

� Size of the job’s executable and its ability to be moved across the network

When developing grid-enabled applications you may not know anything about
the topology of the grid on which they will run. However, especially in the case of
an intra-grid that may be put in place to support a specific set of applications, this
information may be available to you. In such a case, you may want to structure
56 Enabling Applications for Grid Computing with Globus

your application and grid in such a way as to optimize the environment by
considering the location of the resources, the data, and the set of nodes that a
particular application might run on.

3.8 Passing of data input/output
As defined earlier, any job in the grid application needs to pass data in and out in
the sense of a data producer and a data consumer.

There are various ways to realize the passing of data input and output that are to
be considered during application architecture and design:

� Command line interface (CLI) can be a natural way for batch jobs and
standard applications to receive data. In this case, the data input normally will
not be complex in nature, but consists of certain arguments used as
parameters to control the internal flow of the job. Such CLIs can easily be
integrated in scripts executed at the system level or within a given interpreter.
The transfer of data to the job as a consumer happens immediately at launch
time. The amount of data will normally be small. For larger amounts of data
there can be arguments that specify the name of a data file or other data
source.

� Data store of any kind, such as data files in the file system (local or on a LAN
or WAN) or records in a database, a data warehouse or other storage system
that is available. These data stores can be used for input as well as output of
data given that the required access rights are granted to the job. The transfer
of data in can be done anytime before the job executes, and likewise the
output data could be read anytime after the job completes, therefore providing
flexibility for data movement operations.

� Message queues, like those provided by WebSphere MQSeries®, are well
suited to be used for asynchronous tasks within a grid application, especially
when guaranteed delivery of the data provided to the job and generated by
the job is of high importance. A job can access the data queues in various
ways, normally using specific APIs for putting or getting data as well as for
polling the queue for data waiting for processing. In an environment where
message queueing servers are already installed, this type of data passing
may be desirable.

� System return value, is a corresponding case to the CLI and normally a way a
batch job or any CLI invoked program will return data, or at least status
information about how the job ended. This indicates to the grid server or grid
portal the status of the individual job and requires appropriate management.
The resulting data of the job may be passed to a data store or message
queue for further processing or presentation.
 Chapter 3. Application architecture considerations 57

� Other APIs, when communicating with Web services, Web servers,
application servers, news tickers, measurement devices, or any other
external systems, the appropriate conditions for data passing in and out have
to be taken into consideration. In these cases, you may use HTTP, HTML,
XML, SOAP, or other high-level protocols or APIs.

As indicated, for a grid application there may not be only one way to pass data
for a job, but you may use any combinations of the described mechanisms. It is
advised to program grid jobs in such a way that the data sources and sinks are
generically handled for more flexible grid topologies. The optimal solution
depends on the environment and the requirements to be considered at the
architecture and design phase of the grid application.

3.9 Transactions
Handling of transactions in their strict definition of commit and roll-back is not yet
well suited for a common grid application. The OGSI does not cover these
services. However, a grid application may include subsystems or launch
transaction-aware operations to subsystems such as CICS®.

The handling of transactions within a grid application easily becomes quite
complex with the given definitions, and it needs to be carefully applied. The
added benefits of a grid application may be outweighed by the complexity while
implementing transactions.

The future development of the OGSA standard may include transaction handling
as a service, though at the moment there is no support.

3.10 Data criteria
Any application, at its core is processing data. This means that we must take a
closer look at data being used for and within a grid application. A detailed
discussion is provided in Chapter 4, “Data management considerations” on
page 71.

Data influences many aspects of application design and deployment and
determines whether a planned grid application can provide the expected benefits
over any other data solution.
58 Enabling Applications for Grid Computing with Globus

3.11 Usability criteria
While much of a grid computing solution is involved with infrastructure and
middle ware, it is still appropriate to consider aspects of the solution that relate to
usability.

3.11.1 Traditional usability requirements
Traditional usability requirements address features that facilitate ease-of-use
with the system. These features address interaction, display, and affective
attributes that provide users with an effective, responsive, and satisfactory
means to use the system. Hence, these features must be also be addressed
when developing a grid computing solution; in other words, this is “business as
usual” and continues to play an important part in establishing the requirements
for a grid solution.

Usability requirements are used to:

� Provide baseline guidance to the user interface developers on user interface
design.

� Establish performance standards for usability evaluations.

� Define test scenarios for usability test plans and usability testing.

Some of the typical usability requirements established for an IT solution play a
role and include:

� Tailorability: What requirements exist for the user to customize the interface
and its components to allow optimization based on work style, personal
preferences, experience level, locale, and national language?

� Efficiency: How will the application minimize task steps, simplify operations,
and allow end-user tasks to be completed quickly?

3.11.2 Usability requirements for grid solutions
Grid solutions must address usability requirements recognizing a variety of user
categories that may include:

� End users wishing to: Log in to the grid, submit applications to the grid, query
status, and view results

� Owners/users of donor machines

� Administrators and operators of the grid
 Chapter 3. Application architecture considerations 59

Consequently, the typical steps followed to identify these requirements for any
solution should continue to be followed when creating a grid solution. In addition,
the following items may influence the design of grid solutions.

Installation
Ease of installation should provide automatic installation by a non-technical
person rather than a systems programmer with the need to modify scripts,
recompile software, and so on. The install process should be equally
straightforward for host, management, and client nodes regardless of the
potentially heterogeneous nature of the nodes in terms of operating system or
configuration.

Unobtrusive criteria
Transparency and ease of use, as well job submission and control are not
obvious items, but are essential for a good grid design.

� The use of a grid should be transparent to the user. The grid portal should
isolate the user from the need to understand the makeup of the grid.

� Is documentation available or required for all categories of user including
executive level summaries on the nature and use of the grid, programmer and
administrative support staff? Where possible, the documentation should
provide demos and examples for use.

� Ease of resource enrollment after any installation steps should provide simple
configuration of grid parameters to enable the node and its resources to be a
participant on the grid. The administrator of the grid or user of a donor
machine should not require special privileges to enroll.

� Ease of job submission should alleviate the need for the user to understand
the makeup of the grid, search for available resources, or have to provide
complex parameters other than from the business nature of the application. It
may be appropriate to provide multiple channels for job submission including
command line (although this has not typically provided ease-of-use) and a
graphical user interface via the grid portal.

If the architectures of the grid resources are heterogeneous in nature, the
solution should provide automation to hide these complexities and provide
tools for compiling applications for multiple execution environments. This
could also be considered under portability requirements typically addressed
under the non-functional requirements.

� Ease of user and host access control should be provided from a single source
with appropriate security mechanisms.
60 Enabling Applications for Grid Computing with Globus

Informative and predictable aspects
Status of the grid must be readily available to continually show the status and
operation of the grid. This may include indicators showing grid load or utilization,
number of jobs running, number of jobs queued but not yet dispatched, status of
hosts, available resources, reserved resources, and perhaps highlighting
bottlenecks or trouble spots.

Since the makeup of the grid may be changing dynamically, predicting response
times becomes harder. The appropriate trade-offs should be discussed to
establish acceptable requirements with associated costs based on the needs of
the business.

Resilience and reliability
Some aspects for resilience and reliability of the grid application have already
been covered. In this section it is highlighted from the grid user perspective.

� Particular attention must be paid to the requirements for handling failures.
Failures should be handled gracefully. The nature of the application must be
understood to identify the correct handling of failures and to provide
automatic recovery/restart where possible. Appropriate user notification
should be included, recognizing that the actual user may not always be
connected to the grid. Consequently, asynchronous mechanisms for
feedback might need to be incorporated.

� The nature of applications that are suitable to run on the grid may provide a
level of tolerance to failure not typically found in traditional applications. An
example of this maybe in the “scavenging” scenario where the application as
a whole may be able to tolerate failure of one or more sub-jobs. Since jobs
are run on donor machines, the application is subject to the availability of
these machines, which are typically outside the application’s scope of control.
Consequently, the application must tolerate not receiving results from jobs
dispatched to these donor machines.

� Applications must be fully integrated with systems management tools to
report status and failures. In addition, requirements should be established for
how this information will be made available to the end user indicating the
status of their jobs.

� Consideration may also be given to providing intermediate results to an end
user when these can provide valid results.

3.12 Non-functional criteria
There are several non-functional requirements that influence grid application
architecture and have to be addressed up front.
 Chapter 3. Application architecture considerations 61

An important topic is licensing in a grid environment. Licensing covers software
licenses that are required for running the whole or parts of the grid application.

From the user perspective, performance plays a role. This is especially important
when opening the grid for broad use. This often means unpredictable workload
that needs to be taken care of during design of the application.

Finally, grid application development is a topic to be covered before code
development and implementation can be started.

3.12.1 Software license considerations
One question that commonly arises when discussing grid computing is that of
software license management. There are many products and solution designs
that can help with license management.

Commercial software licenses
It is important to discuss how to deal with software licenses that are used inside
the grid. Insufficient numbers of licenses may seriously hinder the expansion or
even exclude certain programs or applications from being used in a grid
environment.

The latter is the case if the grid wants to access personally licensed applications
on a personal computer, for example, in a scavenging mode use of single-user
licensed software. This cannot be done without violation of the license
agreement.

Different models
The range of license models for commercial software spans from all restrictive to
all permissive.

Between these two extremes there are numerous models in the middle ground,
where licenses are linked to a named user (personal license), a workgroup, a
single server, or a certain number of CPUs in a cluster, to a server farm, or linked
to a certain maximum number of concurrent users and others.

Software licenses are given with a one-time charge or on a monthly license fee
base. They can include updates or require purchase of new licenses. All this
varies from vendor to vendor, and from customer situation to customer situation
depending on individual agreements or other criteria.

Software licenses may allow for the migration of software from one server to
another or may be strictly bound to a certain CPU. Listing all possible software
licensing models could easily fill a book, but we cover a few below.
62 Enabling Applications for Grid Computing with Globus

Service Provider License Agreement
Subscriber Access Licenses (SALs) are offered by service providers, for
example, on a pay-per-use basis or as a flat rate for a certain maximum number
of access times per month/week/year.

IT service providers in turn may acquire software licenses from ISVs for use by
their customers, or they may simply host software, for which the end user will pay
directly to the providing ISV according to their agreed license model.

Open source licensing
Another complexity is added when a software product is built that contains or
requires open source software like the Globus Toolkit or Apache WebServer.
The open source model is based on the principle that anybody (an ISV or private
person) provides software to any interested parties, that can be modified,
customized, or improved by the recipient.

The modifying recipient in turn can offer this changed code to anybody, who
again can change it when needed. So there can be many developers in a loose
community participating in development and improvement of a given set of code.

In this case, licenses are not bound to binary executables but cover source code
as well. The following three licensing models for open source software are the
most common, though there are several more, which may need to be
investigated in any specific case.

BSD, MIT, Apache (all permissive licenses)
The license models for BSD, MIT, and Apache are all permissive, which means
that they allow for free distribution, modification, and license changes. Software
without copyright (public domain software) falls under this category as well.

For details on BSD licensing see:

http://www.opensource.org/licenses/bsd-license.php

For MIT licenses see:

http://www.opensource.org/licenses/mit-license.php

For the Apache Software License see:

http://www.opensource.org/licenses/apachepl.php
 Chapter 3. Application architecture considerations 63

http://www.opensource.org/licenses/bsd-license.php
http://www.opensource.org/licenses/apachepl.php
http://www.opensource.org/licenses/mit-license.php

LGPL (persistent license)
The Lesser General Public License (LGPL) allows free distribution of the
software, but restricts modifying it. All derivative work must be under the same
LGPL or GPL. The definition of this license type can be found at:

http://www.opensource.org/licenses/lgpl-license.php

GNU GPL, IBM Public License (persistent and viral license)
The GNU General Public License (GPL) as well the IBM Public License (PL)
shows a persistent and viral model, which means that it allows free distribution
and modifying, but all bundled and derivative work must be under GNU GPL as
well.

The GNU GPL can be found at either of the following Web sites:

http://www.gnu.org/copyleft/gpl.html
http://opensource.org/licenses/gpl-license.php

The IBM PL can be found at:

http://www.opensource.org/licenses/ibmpl.php

For Open Source Initiative (OSI) certified licenses and approvals visit:

http://opensource.org/docs/certification_mark.php

For the OSI portal simply go to:

http://www.opensource.org

There is a list of all approved open source licenses at the following Web site.
GPL, LGPL, BSD and MIT are the most commonly used so-called “classic”
licenses.

http://www.opensource.org/licenses/

License management tools
In order to manage most of these license models in a network there are a
number of license management tools available. These tools assure that all
software that is included in a network or a grid application is properly used
according to its license agreements.

Most of the license manager providers offer an SDK with APIs for various
programming languages. The span of license models covered by each product
varies. In the following some of the most often used tools are listed.

FLEXlm
In the Linux world there is foremost FLEXlm, which offers 11 core models and 11
advanced licensing models. The core models include: Node-locked, named-user,
64 Enabling Applications for Grid Computing with Globus

http://www.opensource.org/licenses/lgpl-license.php
http://www.opensource.org/licenses/ibmpl.php
http://opensource.org/licenses/gpl-license.php
http://opensource.org/docs/certification_mark.php
http://www.opensource.org
http://www.gnu.org/copyleft/gpl.html
http://www.opensource.org/licenses/

package, floating (concurrent) over network, time-lined, demo, enable/disable
product, upgrade versions and a few more.

The advanced licensing models span from capacity, over site license, license
sharing (user, groups, hosts), floating over list of hosts, high-water mark, linger
license, overdraft, and pay-per-use, to network segments and more.

The complete list of supported licensing can be found at the following Web site:

http://www.globetrotter.com/flexlm/lmmodels.sthm

More information about the use and advantages of this de facto standard of
electronic license management technology in the Linux world is available at:

http://www.globetrotter.com/flexlm/flexlm.shtm

Tivoli License Manager
IBM Tivoli License Manager is a software product that supports management of
licenses in a network. Due to its nature, it is possible to reflect most of the license
models being used in the industry. IBM Tivoli License Manager can reflect
various stages of use during a piece of software’s life time.

The IBM Redbook Introducing IBM Tivoli License Manager, SG24-6888,
provides examples of how to reflect IBM, Microsoft, Oracle, and other vendors’
license models in its management.

IBM Tivoli License Manager is integrated with WebSphere Application Server
and available for AIX, Solaris, and several Microsoft Windows platforms.

More details about the product are also given on the IBM Software Group Web
site at:

http://www.ibm.com/software/tivoli/products/license-mgr/

IBM License Use Management (LUM)
IBM License Use Management (LUM) in its current version 4.6.6 is designed for
technical software license management as it is deployed by most IBM use-based
software products. It is intended to be integrated with any vendor software in
order to control use-based licensing of the software.

LUM is available for all Windows platforms, AIX, HP-UX, Linux, IRIX, and Solaris.
It supports a wide range of C, C++, and Java development environments. It can
be used in networks with most of the available Web servers.

Software developers are enabled to reflect various use-based license models
while integrating LUM APIs in their software products. It can be used for
monitoring and controlling the use of software in networks.
 Chapter 3. Application architecture considerations 65

http://www.globetrotter.com/flexlm/flexlm.shtm
http://www.ibm.com/software/tivoli/products/license-mgr/
http://www.globetrotter.com/flexlm/lmmodels.sthm

More details are found on the IBM software group Web site at:

http://www.ibm.com/software/is/lum/

Platform Global License Broker
Among the various ISVs that offer grid software products, Platform shows a
special grid-oriented license management feature named Platform Global
License Broker.

This product runs on AIX, HP-UX, Compaq Alpha, and IRIX. It uses Globetrotter
FLEXlm 7.1 as described in “FLEXlm” on page 64. More details on Platform
Global License Broker is available on the Internet at:

http://www.platform.com/products/wm/glb/index.asp

General license management considerations
When designing and deploying grid-enabled applications it is important to
understand any licensing requirements for required runtime modules. If
designing a broker or utilizing MDS to identify possible target resources on which
to run the application, the existence or applicability of any required software
licenses should be taken into account.

3.12.2 Grid application development
In order to develop a grid application, the Globus Toolkit offers a broad range of
services that are becoming more comprehensive with the next version. Included
are commodity Grid Kits (CoG) for a number of programming languages and
models, such as Java, C/C++, Perl, Python, Web services, CORBA, and Matlab
(see http://www.globus.org/cog/ for details and updates).

Grid Computing Environment (GCE)
The Globus Toolkit, CoGs, and appropriate application development tools form a
Grid Computing Environment capable of supporting collaborative development of
grid applications. In context with the Globus initiative, various frameworks for
collaborative and special industry solutions, as well as a grid services flow
language are being worked on. For details and recent activities on Application
Development Environments (ADEs) for grids at Globus refer to:

http://www.globus.org/research/development-environments.html

Examples of using the Java CoG for grid application development are given in
Chapter 6, “Programming examples for Globus using Java” on page 133.

Grid-enabled Message Passing Interface (MPI)
A grid-enabled Message Passing Interface that fits with the Globus Toolkit is
provided by MPICH-G2. This implementation of the MPI standard allows the
66 Enabling Applications for Grid Computing with Globus

http://www.ibm.com/software/is/lum/
http://www.platform.com/products/wm/glb/index.asp
http://www.globus.org/research/development-environments.html
http://www.globus.org/cog/

coupling of multiple machines and provides automatic conversions of messages.
It addresses solutions that are distributed by nature as well those distributed by
design. For details and the latest updates see:

http://www.niu.edu/mpi/

Grid Application Development Software (GrADS)
An example for a distributed-by-design scenario is given by the Grid Application
Development Software project. The goal of this approach sponsored by the US
Department of Energy (DoE) is to simplify distributed heterogeneous computing
in the same way that the World Wide Web (WWW) simplified information sharing
over the Internet.

GrADS has been developed for various Unix versions (Solaris, HP-UX, Linux). It
is written in C/C++ and exploits LDAP. Several software projects are built on top
of it, including a Common Component Architecture (CCA) and XCAT.

The GrADS project explores the scientific and technical problems that occur
when applying grid technology for real applications in everyday life. Details on
GrADS are found at:

http://nhse2.cs.rise.edu/grads/

IBM Grid Toolbox
For grid application development with Globus, the CoGs can be used with
appropriate IDEs. IBM research offers the IBM Grid Toolbox as a set of
development tools for grid application development on AIX and Linux. It supports
most of the grid services (GRAM, GSI, MDS, GASS, simple CA, I/O, and so on)
as described in this publication. Details and download of the IBM Grid Toolbox
are available at:

http://www.alphaworks.ibm.com/tech/gridtoolbox

Grid Application Framework for Java
Another application development item recently offered by IBM research is the
Grid Application Framework for Java (GAF4J). It abstracts the interface to the
Globus Toolkit for Java programmers by introducing an abstraction layer on top
of Globus. Details and downloads are available at:

http://www.alphaworks.ibm.com/tech/GAF4J

Other tools
When searching the Internet for “grid application development” one finds a large
number of hits with most of them pointing to AD tool vendors who claim their
tools as being ready for supporting grid application development. Even so, any
comprehensive competitive analysis will not be up to date as it is published,
because the standards (OGSA) are still developing. Grid computing evolves in
 Chapter 3. Application architecture considerations 67

http://nhse2.cs.rise.edu/grads/
http://www.alphaworks.ibm.com/tech/gridtoolbox
http://www.alphaworks.ibm.com/tech/GAF4J
http://www.niu.edu/mpi/

various directions for different purposes, and the application development tools
market is constantly changing.

3.13 Qualification scheme for grid applications
In this section a usable format of a qualification scheme for grid applications is
provided. We also provide a criteria list that may be looked at as a knock-out list.
That is, it includes attributes of an application or its requirements that may inhibit
an application from being a good candidate for a grid environment.

The list may not be complete and depends on the local circumstances of
resources and infrastructure. The qualification scheme acts as a basis for
architecture and project planning for a grid application.

3.13.1 Knock-out criteria for grid applications
Earlier sections have discussed considerations for grid enabling an application
from the perspectives of infrastructure and application functionality. However, not
all applications lend themselves to successful or cost-effective deployment on a
grid. A number of criteria may make it very difficult, require extensive work effort,
or even prohibit grid-enabling an application. Criteria below may preclude
deploying an application to the grid without having to perform an extensive
analysis of the application.

Some facts such as temporary data spaces, data type conformity across all
nodes within the network, appropriate number of SW licences available in the
network for the grid application, higher bandwidth, or the degree of complexity of
the job flow can be solved, but have to be addressed up front in order to create a
reasonable grid application.

An application with a serial job flow can be submitted to a grid, but the benefits of
grid computing may not be realized, and the application may be adversely
affected due to grid management overhead. However, by exploiting the grid and
submitting the application to more powerful remote nodes it may very well
provide business value.

In this list of knock-out criteria the most critical items are named that most
certainly hinder or exclude an application from use on a grid:

1. High inter-process communication between jobs without high speed switch
connection (for example, MPI, in general, multi-threaded applications need to
be checked for their need of inter-process communication.

2. Strict job scheduling requirements depending on data provisioning by
uncontrolled data producers.
68 Enabling Applications for Grid Computing with Globus

3. Unresolved obstacles to establish sufficient bandwidth on the network.

4. Strongly limiting system environment dependencies for the jobs (see 3.5, “Job
dependencies on system environment” on page 54).

5. Requirements for safe business transactions (commit and roll-back) via a
grid. At the moment there are standards for secure transaction processing on
grids.

6. High inter-dependencies between the jobs, which expose complex job flow
management to the grid server and cause high rates of inter-process
communication.

7. Unsupported network protocols used by jobs may be prohibited to perform
their tasks due to firewall rules.

3.13.2 The grid application qualification scheme
The application architecture considerations and requirements of grid services
lead to a qualification scheme, which highlights the solution requirements and
criteria that impact building a grid application.

The scheme shown in Appendix A, “Grid qualification scheme” on page 297,
provides a summary of 35 criteria, of which most will apply to any grid
application, but not all. The criteria are to be seen in relation to each other and to
the individual situation of the project.

The scheme is intended for use at the analysis phase of a grid application
development project and allows the user to quickly detect and highlight the most
critical issues for the grid application to be built. It may also reveal any show
stoppers or identify more effort to be planned to solve a certain problem.

The scheme is provided as a tool that can be modified for specific use at a given
grid application project.

3.14 Summary
The approach to build a grid-enabled application either from scratch or based on
existing solutions adds a wide range of aspects for problem analysis, application
architecture, and design. This chapter has provided an overview of the issues to
consider for any grid application.

Some of these items may not apply for every project. Some aspects are familiar
from other application development projects and are not elaborated on in depth.
Others that are new aspects due to the nature of a grid application are provided
with greater detail.
 Chapter 3. Application architecture considerations 69

The grid qualification scheme in Appendix A, “Grid qualification scheme” on
page 297, represents a summary of most of the essential items to consider. It is
meant to be a base document to be used during the analysis phase of a grid
project.

In the next chapter, we discuss considerations specific to data management.
70 Enabling Applications for Grid Computing with Globus

Chapter 4. Data management
considerations

No matter what the application, it generally requires input data and will produce
output data. In a grid environment, the application may submit many jobs across
the grid and each of these jobs in turn will need access to input data and will
produce output.

One of the first things to consider when thinking about data management in a
grid environment is management of the input data and gathering of the output
data. If the input data is large and the nodes that will execute the individual jobs
are geographically removed from one another, then this may involve splitting the
input data into small sets that can be easily moved across the network assuming
the individual jobs need access to only a subset of the data.

The splitting of input data and the joining of output data from the jobs is often
handled by a wrapper around the job that handles the splitting dynamically when
the job is submitted and retrieves the individual data sets after each job has
completed.

The second aspect of data management is during the job execution by itself. The
job needs to access data that may not be available on local storage. Several
solutions are available:

� Data is stored on network-accessible devices and jobs work on the data
through the network.

4

© Copyright IBM Corp. 2003. All rights reserved. 71

� Data is transferred to the execution node before the job is executed such that
the job can access the data locally.
72 Enabling Applications for Grid Computing with Globus

4.1 Data criteria
Any application, at its core, is processing data. This means that we must take a
closer look at data being used for and within a grid application. The following
sections cover criteria related to handling data when deciding whether an
application is a good candidate for a grid.

Data influences many aspects of application design and deployment and
determines whether a planned grid application can provide the expected benefits
over any other data solution. As the grid can be dynamically set up and changed,
there are some special data-related considerations.

The following sections describe several considerations related to data in the grid,
such as the distribution and location of data in regard to accessing jobs and
when and how data is created and consumed by jobs.

4.1.1 Individual/separated data per job
Any job will work on a specified set of input data. The data sources and sinks can
be of various kinds. The following are some questions to be considered:

� Can the data be separated for individual use by a defined job?

It is important that each single job receives a well-defined set of input data
and has an equally well-defined place to leave its computing results.

� Is the data replicated in such a way that it is available at any time the
assigned job needs to run or rerun?

This means that we must be careful about changes to the data sets a grid job
has to work with. One way of solving it can be to establish certain local and
temporary data caches that live as long as the grid application runs. These
data caches are under the control of the grid server or grid portal. These
caches can act as data sources for more than one job, for example, if multiple
jobs use the same data but perform different actions. It may be especially
important if one job is launched redundantly, or the output of one job
determines the input for another job.

� Can a separatable data space be created for any job of the grid application?

A question of how to assure each job’s data does not interfere with any other
job or processes being executed anywhere on the grid.

� Are there interdependencies between jobs in a grid application that require
synchronization of the data?

This may require certain locks on data for read or write access. It also means
that we must consider how failures while producing data are to be solved
among any dependent jobs.
 Chapter 4. Data management considerations 73

4.1.2 Shared data access
Related to the separation of data for individual jobs is the question of sharing
data access with concurrent jobs and other processes within the network.
Access to data input and the data output of the jobs can be of various kinds. The
following considerations are kept generic so that they can be applied to the
actual cases appropriately.

During the planning and design of the grid application, you must consider
whether there are any restrictions on the access of databases, files, or other data
stores for either read or write. The installed policies need to be observed and,
depending on the task the job has to fulfill, sufficient access rights have to be
granted to the jobs.

Another topic is the availability of data in shared resources. It must be assured
that at run-time of the individual jobs the required data sources are available in
the appropriate form and at the expected service level.

Potential data access conflicts need to be identified up front and planned for. You
must ensure that individual jobs will not try to update the same record at the
same time, nor dead lock each other. Care has to be taken for situations of
concurrent access and resolution policies imposed.

Federated databases
If a job must handle large amounts of data in various different data stores, you
may want to consider the use of federated databases. They offer a single
interface to the application and are capable of accessing data in large
heterogeneous environments.

Federated databases have been developed in regards to data-intensive tasks in
the life sciences industry for drug discovery, genome search, and so on. In these
cases, the federated databases are the central core of a data grid installation.

Federated database systems own the knowledge about location (node,
database, table, record, for instance) and access methods (SQL, VSAM, or
others, perhaps privately defined methods) of connected data sources.
Therefore, a simplified interface to the user (a grid job or other client) requires
that the essential information for a request should not include the data source,
but rather use a discovery service to determine the relevant data source and
access method.
74 Enabling Applications for Grid Computing with Globus

Figure 4-1 Federated DBMS architecture

The use of such a federated database solution can also be considered as part of
a more general grid application, where the jobs access data by acting as clients
of a federated database.

Additionally, as shown in Figure 4-1, the use of Storage Tank™ technology for
large data store capacities can be included and managed by federated
databases.

IBM data management products for grid applications
There are several IBM products that support the federated database concept,
such as DB2® Federated Server, DB2 Data Joiner, DB2 Discovery Link, DB2
Relation Connect, DB2 Information Integration, and many more.

Additionally, there are several white papers, products, solution offerings, and
related material available from the IBM DB2 Web sites. Please see the following
Web site for more details and support:

http://www.ibm.com/software/data/

4.1.3 Locking
In a grid context locking is also important. Read/write locking is well understood
as in any other concurrency situation with databases and other data sources.
Read only locks for keeping accuracy of data sets should be considered, too.

Federated DBMS Architecture

Federated
DBMS

Web Services
Portal

OGSA
Grid
Services

Web Services
Gateway

Public Network

Client
Proxy

Grid
Client

Storage Tank Infrastructure

Oracle

Oracle

DB2

Documentum

Client
Firewall

Grid provider
Firewall 1

Grid provider
Firewall 2SOAP

over HTTPS

Pluggable,
'wrappered'
data sources

JDBC,
ODBC,
etc
 Chapter 4. Data management considerations 75

http://www.ibm.com/software/data/

4.1.4 Temporary data spaces
Within grid applications temporary data spaces are often needed. During
planning of the grid application the forms and amount of temporary data space
should be considered.

Points to consider include:

� Availability of sufficient data space for the amount of data a job or the
federated system requires. Also, caches managed by the grid server or grid
portal should be considered.

� OS-specific requirements for data spaces, data access, and management
need to be taken care of, especially if the job-specific data needs to be or can
be local to the job, or whether cross-system, network, or platform data access
has to be planned. The format, access, and locking of data can vary, if not
indirectly accessed.

� Local or shared file system-dependent requirements are to be considered to
assure for optimal runtime access.

� Memory for temporary data of a job can vary from system to system, as a
node may run several jobs in parallel and share the memory for many
processes. In order to allow the best performance and avoid unnecessary
data swapping, the memory requirements of the jobs are important to
understand. In the case of compiled executables, there may be different
memory needs depending on the compiler and operating system it is
compiled for.

4.1.5 Size of data
Knowing, separating, and compiling the amount of data within a grid application
is important. The total amount of data includes all data used for input and output
of all jobs within the grid application.

Note that this total amount of data may exceed the amount of data input and
output of the grid application, as there can be a series of sub-jobs that produce
data for consumption of other sub-jobs and so forth, until finally the resulting data
of the application are produced.

For permanent storage the grid user needs to be able to locate where in the grid
the required storage space is available. Other temporary data sets that may need
to be copied from or to the client also need to be considered.
76 Enabling Applications for Grid Computing with Globus

4.1.6 Network bandwidth
The amount of data that has to be transported over the network can be restricted
by available bandwidth. Less bandwidth requires a rather careful planning of the
expected data traffic within a grid application at runtime.

Compression and decompression techniques are useful to reduce the data
amount to be transported over the network. But in turn, it raises the issue of
consistent techniques on all involved nodes. This may exclude the utilization of
scavenging for a grid, if there are no agreed standards universally available.

The central question is: What bandwidth is needed to allow all required input and
output data of the jobs to be transported over the network?

4.1.7 Time-sensitive data
Another issue to be covered in this context is time-sensitive data. Some data
may have a certain lifetime, meaning its values are only valid during a defined
time period. The jobs in a grid application have to reflect this in order to operate
with valid data when executing.

Especially when using data caching or other replication techniques, the currency
of the data used by the jobs needs to be assured at any given point in time.

As discussed in 3.2.2, “Serial flow” on page 47, the order of data processing by
the individual jobs, especially the production of input data for subsequent jobs,
has to be observed.

4.1.8 Data topology
The issues discussed above about the size of the data, network bandwidth, and
time sensitivity of data determine the location of data or the topology of the data.

Depending on the job, the following data-related questions need to be
considered:

� Is it reasonable that each job or set of jobs accesses the data via a network?

� Does it make sense to transport a job or set of jobs to the data location?

� Is there any data access server (for example, implemented as a federated
database) that allows access by a job locally or remotely via the network?

� Are there time constraints for data transport over the network, for example, to
avoid busy hours and transport the data to the jobs in a batch job during
off-peak hours?
 Chapter 4. Data management considerations 77

� Is there a caching system available on the network to be exploited for serving
the same data to several consuming jobs?

� Is the data only available in a unique location for access, or are there replicas
that are closer to the executable within the grid?

These questions refer to input as well as output data of the jobs within the grid
application.

Data topology graph
In order to answer these questions a graphical representation can help, like the
one in Figure 4-2. This data topology graph lists all available nodes on one axis
and all the jobs of the application on the other axis. All required data stores are
then placed on the appropriate intersections.

Figure 4-2 Data topology of a grid

The example in Figure 4-2 reveals that job J2 has to access data of three
different data sources, which are located on different nodes in the network. In this
case it is necessary to check whether the data extract of each of the data
sources A, D, and F that is needed for job J2 can be sent over the network to the
node where job J2 is going to be executed.

Data Topology

A

A

B

B

C

D

D

E

F

F

Nodes N1 N2 N3 N4 N5Jo
bs

 J

1

J2

J3

J4

 J
5
78 Enabling Applications for Grid Computing with Globus

Depending on the nature of the data sources, the essential data for job J2 may
be extracted or replicated to be close to or on the job executing node. In case the
data cannot be separated and the data amount is large, it is necessary to check
whether the job can be split into individual jobs or sub-jobs to be executed close
to the data.

If this is not possible one might consider moving the data of A, D, and/or F to a
single node where job J2 can run.

The data topology graph helps to identify needs for data splitting and replication.

4.1.9 Data types
When considering writing jobs for a grid application that could run on any system
anywhere in the world, the question of data types, code pages, and trans-coding
arises. For example, when transferring a C-source file containing the following
statement written by a German programmer as:

{*argv[1]='\0'}

It may appear as:

æ*argvÆ1Å='Ø0'å

On a Danish system or as:

&|argv(1)/’=0’*

On an American system, where the compiler would not understand it. Therefore,
one should be aware of and take into account the type of data, its representation,
format, and standards for data exchange.

To name a few of the standards and variations that might be used or have to be
considered within the application:

� ASCII vs EBCDIC
� Single-byte vs double-byte character sets
� Unicode (UTF-8, -16, -32)
� Big endian vs little endian
� APIs and standards for data exchange

– SOAP
– MQ
– SQL
– HTML
– XML
– J2EE
– JDBC
– And more
 Chapter 4. Data management considerations 79

� Different multi-media formats for
– Images
– Animation
– Sound
– Fonts
– Archives
– And more

� Measurement units
– Metric vs non-metric
– Currencies
– And more

4.1.10 Data volume and grid scalability
The ability for a grid job to access the data it needs will affect the performance of
the application. When the data involved is either a large amount of data or a
subset of a very large data set, then moving the data set to the execution node is
not always feasible. Some of the considerations as to what is feasible include the
volume of the data to be handled, the bandwidth of the network, and logical
interdependences on the data between multiple jobs.

Data volume issues
In order to use a grid application, transparent access to its input and output data
is required. In most cases the relevant data is permanently located on remote
locations and the jobs are likely to process local copies. This access to the data
means a network cost and it must be carefully quantified.

Data volume and network bandwidth play an important role in determining the
scalability of a grid application.

Data splitting and separation
As indicated in 4.1.8, “Data topology” on page 77, the data topology
considerations may require the splitting, extraction, or replication of data from
involved data sources in order to allow the grid to properly function and perform.

There are two general cases that are suitable for higher scalability in a grid
application: Independent tasks per job and a static input file for all jobs.

Independent tasks
A suitable case for a grid-enabled application is when the application can be split
into several jobs that are able to work independently on a disjunct subset of the
input data. Each job produces its own output data and the gathering of all of the
results of the jobs provides the output result by itself. Figure 4-3 on page 81
illustrates this case.
80 Enabling Applications for Grid Computing with Globus

Figure 4-3 Independently working jobs on disjunct data subsets

This specific case can be easily integrated in a Globus grid environment.

The scalability of such a solution depends on the following criteria:

� Time required to transfer input data
� Processing time to prepare input data and generate the final data result

In this case the input data may be transported to the individual nodes on which
its corresponding job is to be run. Preloading of the data might be possible
depending on other criteria like timeliness of data or amount of the separated
data subsets in relation to the network bandwidth.

Static input files
Static input files is the other case that may be suited to using an application on a
grid. Figure 4-4 on page 82 illustrates how in this case each job repeatedly works
on the same static input data, but with different “parameters,” over a long period
of time.

pre-processing

post-processing

processing
 Chapter 4. Data management considerations 81

Figure 4-4 Static input data processed by jobs with changing parameters

In this case, the job can work on the same static input data several times but with
different parameters, for which it generates differing results.

A major improvement for the performance of the grid application may be derived
by transferring the input data ahead of time as close as possible to the compute
nodes.

Other cases of data separation
More unfavorable cases may appear when jobs have dependencies on each
other. The application flow may be carefully checked in order to determine the
level of parallelism to be reached.

The number of jobs that can be run simultaneously without dependences is
important in this context. In this section, a few cases are discussed in more detail
from the data perspective.

For independent jobs, there needs to be synchronization mechanisms in place to
handle the concurrent access to the data. The Globus Toolkit does not provide
any synchronization mechanisms to manage these dependencies and, therefore,
these cases need to be managed by the grid application developers. However,
Globus-core modules provide portable mutex, condition variables, and thread
implementations that help to implement such mechanisms.

Synchronizing access to one output file
This case is shown in Figure 4-5 on page 83. Here all jobs work with common
input data and generate their output to be stored in a common data store.
82 Enabling Applications for Grid Computing with Globus

Figure 4-5 All jobs works on the same data and write on the same data set

The output data generation implies that software is needed to provide
synchronization between the jobs. Another way to process this case is to let each
job generate individual output files, and then to run a post-processing program to
merge all these output files into the final result.

A similar case is illustrated in Figure 4-6 on page 84. Here each job has its
individual input data set, which it can consume. All jobs then produce output data
to be stored in a common data set. Like described above, the synchronization of
the output for the final result can be done through software designed for the task.
 Chapter 4. Data management considerations 83

Figure 4-6 Jobs with individual input data writing output into one data store

Hence, thorough evaluation of the input and output data for jobs in the grid
application is needed to properly qualify it. Also, one should weigh the available
data tools, such as federated databases, a data joiner, and related products, in
case the grid application to be built becomes more data oriented or the data to be
used shows a complex structure.

4.1.11 Encrypted data
Data encryption is mentioned in this context in order to complete this section of
this publication. A rather in-depth discussion of the topic is given in Introduction
to Grid Computing with Globus, SG24-6895.

At the architecture and design stage of a grid application project it is important to
cover the encryption issues that are required by the solution and the customer.
The subjects to consider are authentication, access control, data integrity, data
confidentiality, and key management. For a grid application this can be
addressed via a Public Key Infrastructure (PKI) or via the Grid Security
Infrastructure (GSI) as supported by Globus.

For a grid application, the Certificate Authority (CA) for public keys as well the
various encryption mechanisms (symmetric or asymmetric) can be used. During
the architecture and design phases, one needs to determine which CA and which
encryption mechanism to use.
84 Enabling Applications for Grid Computing with Globus

It has to be assured that the appropriate infrastructure is implemented and
reflected in the grid application to be built. Hence, this is a topic for the
qualification scheme (see 3.13.2, “The grid application qualification scheme” on
page 69) used at the early stages of a grid project.

4.2 Data management techniques and solutions
A grid can increase application performance by way of parallelism. This implies
that a big job must be divided into smaller ones. From a data point of view, it may
be necessary to split the input data and to gather the results after processing.
The two operations that occur respectively before and after the job submission
are called data pre-processing and data post-processing. The data splitting can
be triggered each time a job is submitted or it can done one time in advance.
Similarly, the data gathering and joining of results can be handled multiple ways,
depending in the requirements.

In the first case, the Globus Toolkit does not provide tools to perform the pre- and
post-processing tasks. Therefore, software will need to be developed to perform
the two tasks. Shell script and scripting languages like Perl or Python may be
appropriate to perform these tasks, depending on the type of data store and the
size of the data. It may be mandatory to use languages like C/C++, which
produce compiled executables to achieve acceptable performance.

In the second case, the data will remain distributed on different locations for all
jobs that will process this data. Therefore, users need to have a logical view of
this file distributed across a set of nodes. This logical view will be provided by a
catalog, whereas each storage node will store the different parts of the file. The
Globus Toolkit provides a framework to manage this case: It provides an LDAP
schema to implement the replica catalog, as well as a C/C++ API to access and
manage this information.

The user of a grid environment needs transparent access to its input and output
data. This data will most of the time be permanently located on remote locations
and the job will process local copies only. The transparent access to the data has
a network cost and it must be carefully qualified. Data access transparency also
requires that the storage resources be sufficient, and this also needs to be
qualified.

4.2.1 Shared file system
Sharing data across the compute nodes may sometimes be mandatory or may
appear as the simplest solution to permit a computation to be distributed. When
data are in plain files, network file systems are a convenient solution. The
question is not to choose between staging the data in and out or using a shared
 Chapter 4. Data management considerations 85

file system, but to find the appropriate data flow that will provide optimal
performance. Therefore, a mixed solution can be considered. For example, a
network file system could be shared across a cluster of compute nodes, and
input and output files would be staged in and out of the shared files system from
a permanent storage center.

Globus Toolkit does not provide a shared file system but can be used with any
available shared file system. Therefore, in 4.2.11, “Global file system approach”
on page 90, we describe in detail some shared file system solutions available
today or in the near future.

4.2.2 Databases
Data grids have generally focused on applications where data is stored in files.
However, databases have a central role in data storage, access, organization,
authorization, and so on for numerous applications.

Globus Toolkit 2.x provides no direct interface for relational or object databases
such as DB2, Oracle, and MySQL. However, a grid-enabled application could
certainly use any available API, such as SQL, to access these databases.
However, there are a few things to consider:

� The GSI authentication mechanisms cannot be used if a program needs to
connect to a database.

� The Globus Toolkit 2.x does not provide an API to manipulate databases.

� By default, there is no information on databases that can be retrieved from
the MDS. Nevertheless, you can create your own information provider. See:

http://www-unix.mcs.anl.gov/~slang/mds_iprovider_example/

The Database Access and Integration Services Working group (DAIS-WG
http://www.gridforum.org/6_DATA/dais.htm) is currently working on an
implementation for such a database service for the Globus Toolkit V3. Several
projects are currently working on related issues.

4.2.3 Replication (distribution of files across a set of nodes)
Data replication is an optimization technique well known in the distributed
systems and database communities as a means of achieving better access times
to data. Data replication is an optimization technique. The key concepts are:

� A registration operation that adds information about files on a physical
storage system to an existing location and logical collection entries. Hence,
new files can be made available to users by registering them in existing
locations and collection entries (lists of files).
86 Enabling Applications for Grid Computing with Globus

http://www-unix.mcs.anl.gov/~slang/mds_iprovider_example/
http://www.gridforum.org/6_DATA/dais.htm

� The replication operation copies a file to storage systems that are registered
as locations of the same logical collection and updates the destinations’
location entries to include the new files.

� The publishing operation takes a file from a storage system that is not
represented in the replica catalog, copies the file to a destination storage
system that is represented in the replica catalog, and updates the
corresponding location and logical collection entries.

4.2.4 Mirroring
For safety and performance reasons, data are usually mirrored across a set of
nodes. This way several access points are provided for jobs that need to process
this data and data, brokering can be used to determine which access point needs
to be used according to various criteria such as the subnet where the job is run,
or user identification. Mirroring consists of being able to synchronize data
manipulations that occur at different locations. The mirroring can be synchronous
or asynchronous (mirroring happens at certain time intervals).

The Globus Toolkit does not provide mirroring capabilities, but the European
DataGrid project and the Particle Physics Data Grid project developed the Grid
Data Mirroring Package on top of the Globus Toolkit.

4.2.5 Caching
Caching provides temporary storage on the execution nodes and avoids network
access during job execution. The primary purpose of the cache is efficiency.
Programs and any prerequisite modules that are required to invoke a job, as well
as input data, are good candidates to be stored locally on each execution node.
A suitable case is when a job needs to process the same data multiple times
(maybe each run with different parameters). However, using a cache is not the
only solution, and considerations such as transfer times and space requirements
should be taken into account.

The Globus Toolkit implements cache mechanisms for files only and not for data
files. Globus GASS cache provides a C API that provides for the manipulation of
the cache. The Globus Toolkit also provides the globus-gass-cache command to
manipulate the contents of a local or remote GASS cache.
 Chapter 4. Data management considerations 87

4.2.6 Transfer agent
The role of the transfer agent is to provide speed and reliability for files being
transferred. These files can be:

� Executables, scripts, or other modules representing the programs that will be
run remotely

� Job dependencies, for example, dynamic shared libraries

� Input files

� Output or results files

The Globus Toolkit uses the GridFTP protocol for all file transfers. This protocol
is detailed in “GridFTP” on page 194. File transfer is built on top of a client/server
architecture that implies that a GridFTP server must be running on the remote
node to be able to transfer a file to the remote host. The globus-io module and
Globus GASS subsystem transparently use the GridFTP protocol. Note that the
GSIssh transfer tool, gsiscp, does not use the GridFTP protocol, but uses the
same encrypted flow transfer used by openSSH (http://www.openssh.org).

4.2.7 Access Control System
There is no component in the Globus Toolkit that provides an enforcement of
Access Control List policies. Each administrator, by configuring the grid-mapfile
stored on its resources and file’s user access rights, can allow or disallow the
remote job execution on its resources under a certain user ID. It can only enforce
local policy.

A project still under development, the Community Authorization Service (CAS),
should provide such access control. The administrator of a resource server
grants permissions on a resource to the CAS server. The CAS server grants
fine-grained permissions on subsets of the resources to members of the
community. For more information, see the Community Authorization Service
(CAS) site:

http://www.globus.org/security/CAS/

4.2.8 Peer-to-peer data transfer
Peer-to-peer systems and applications are distributed systems without any
centralized control or hierarchical organization. Each node of the peer-to-peer
can be both client and server. For example, when a client begins to download a
file from a server, it allows other clients to start downloading the same file from its
own storage.
88 Enabling Applications for Grid Computing with Globus

http://www.openssh.org
http://www.globus.org/security/CAS/

There is no peer-to-peer solution currently provided by the Globus Toolkit.
However, a group at the Globus Forum is working on this domain (relation of
OGSA/Globus and Peer2Peer). A complete report should be provided for GGF8.
or more information, see the following Web site:

http://www.gridforum.org/4_GP/ogsap2p.htm

4.2.9 Sandboxing
For performance reasons, runtime files tend to be stored on the local storage
where the job will use them. Programs and data files are stored on a remote site
and copied to local disks when needed.

The performance of the LAN environment may be good enough so that a
network file system could provide the needed bandwidth, and therefore could
avoid the overload of data transfer. This becomes not true in a WAN
environment, or if the jobs need to work repeatedly on the same data sets.

A sandbox provides a temporary environment to process data on a remote
machine and limited access to the resources of the node. This way, the job
execution cannot interfere with normal processes running on this node. Data are
copied into this sandbox. The sandbox can be encrypted so that any other
applications normally running on the node could not access the job data.

Figure 4-7 Sandboxing

Globus Toolkit also provides globus-gass-cache commands to manipulate the
contents of a local or remote GASS cache. Each entry in a GASS cache consists
of a URL local file name, a list of tags, and a reference count for each tag. When
the last tag for a URL is removed, the local file is removed from the cache. The
cache directory is actually a directory located in the .globus/.gass-cache
directory of the user under which the job is executed. The GASS cache is

job

data space

• environment

• network

• system resource

sandbox
 Chapter 4. Data management considerations 89

http://www.gridforum.org/4_GP/ogsap2p.htm

transparently used during job invocation via GRAM: Files specified in the RSL
strings are put into the cache if they are referenced as URLs. See
“globus-gass-cache” on page 193 for a more complete description.

4.2.10 Data brokering
A storage broker may be used by applications to provide them with the
appropriate storage resources. It must provide the following capabilities:

� Searching for an appropriate data storage location. This means querying the
Replica Catalog for all physical locations and querying each physical location.

� Matching the resources according to the application needs.

� Accessing the data.

The Globus Toolkit 2 does not provide a storage broker engine. However, some
implementations have been written that use GRIS, GridFTP, and the Replica
Catalog available in the Globus Toolkit 2.2.

4.2.11 Global file system approach
A global file system can be easily integrated into a Grid solution based on the
Globus Toolkit. A global file system provides access to storage, and any
applications can use POSIX system calls to access files without the need of any
grid-specific APIs.

Several solutions exist today that will fit project expectations across various
criteria: Performance, cost, ease of deployment, and so on. However, they
should not be considered as the only alternative. Global file systems are usually
suitable for cluster needs (where a cluster is defined as a set of nodes
interconnected by a high-performance switch) or in LAN environment.
Nevertheless, Global file systems are often unique to one organization and
therefore cannot be easily shared by multiple organizations.

Network File System (NFS)
NFS is almost universally used in the Unix world and is the de facto standard for
data file sharing in a LAN environment. NFS V2 supports files up to a maximum
size of 2 GB. NFS V3 improves file transfer performance and gets rid of some of
the NFS V2 limitations (64-bit file support, write caching). NFS uses the udp
protocol, but can also use tcp protocol as it does by default under AIX.

NFS V4 is the emerging standard for UNIX file system access. It will be
supported in the AIX operating system and in the forthcoming Linux 2.6 kernel.
NFS V4 includes many of the features of AFS® and DFS™. NFS V4 uses strong
Kerberos V5 security and Low Infrastructure Public Key, and it should also
90 Enabling Applications for Grid Computing with Globus

perform on a WAN environment as well as it does on a LAN by using file caching
and minimizing the number of connections needed for read and write operations.

NFS V4 appears to be a good alternative to AFS and DFS file systems, and
could be used in a grid environment where a cost-effective, shared file system is
required.

For more information on NFS Version 4 Open Source Reference Implementation
see:

http://www.citi.umich.edu/projects/nfsv4

For NFS V4 for the ASCI project see:

http://www.citi.umich.edu/projects/asci

General Parallel File System
GPFS allows shared access to files that may span multiple disk drives on
multiple nodes. GPFS is currently supported for Linux and AIX operating
systems. A high-performance inter-connect switch such as Myrinet or a SP
switch is mandatory to achieve acceptable performance.

GPFS is installed on each node as a kernel extension and appears to jobs as just
another file system. This implies that the jobs only need to call normal I/O system
calls to access the files.

The GPFS advantages are:

� The jobs still use standard file system calls.

� The jobs can concurrently access files from different nodes with either read or
write I/O calls.

� Increases bandwidth of the file system by striping across multiple disks.

� Balances the load across all disks to maximize throughout.

� Supports large amounts of data.

As all nodes in a grid cannot be connected to the same high-performance
network, GPFS is not the ultimate solution for the grid but is a good solution
when local file sharing is requested on a local cluster that will process grid jobs.
GPFS is also a good candidate for the permanent storage of very large files that
need to be partially copied to other nodes on the grid by using the Globus Toolkit.
 Chapter 4. Data management considerations 91

http://www.citi.umich.edu/projects/asci
http://www.citi.umich.edu/projects/nfsv4

Avaki Data Grid solution
Avaki Data Grid provides a solution for sharing files across Wide Area Networks.
Its two main features are:

� It provides an NFS interface for applications that can therefore transparently
access files stored in the Avaki files system. For security reasons, the Avaki
Data Grid is usually mounted locally.

Figure 4-8 Accessing Avaki Data Grid through NFS locally mounted file system

� By creating an Avaki share, you can map local files on a node into the Avaki
Data Grid. This way, the files become available to all nodes connected to the
Avaki Data Grid. The synchronization between the local files and their Avaki
DataGrid copies occurs periodically, based on a configuration option. For
example, every three minutes.

Avaki Data Grid

job

NFS client

Avaki DataGrid
Access Server

job

NFS client

Avaki DataGrid
Access Server

job

NFS client

Avaki DataGrid
Access Server

job

NFS client

Avaki DataGrid
Access Server

job

NFS client

Avaki DataGrid
Access Server

job

NFS client

Avaki DataGrid
Access Server
92 Enabling Applications for Grid Computing with Globus

Figure 4-9 Avaki share mechanism

Avaki also provides complete user management and Access Control List
policies. For applications, Avaki maps Avaki user authorization with local
operating system user authorization. Avaki can also be tied into an existing
network user authentication system like LDAP so that information does not need
to be duplicated into a separate grid access control list.

For more information see:

http://www.avaki.com

4.2.12 SAN approach
Storage Area Networks (SAN) are well suited for high-bandwidth storage access.
When transferring large blocks, there is not much processing overhead on
servers since data is broken into a few large segments. Hence, SAN is effective
for large bursts of block data. It can be used when very large files (for example,
videos) have to be manipulated and shared at a level of reliability that no ordinary
network can support.

Avaki Data Grid

Avaki Share
Server

job

NFS client

Avaki DataGrid
Access Server

job

NFS client

Avaki DataGrid
Access Server

job

NFS client

Avaki DataGrid
Access Server

job

NFS client

Avaki DataGrid
Access Server

synchronization

local cache copy

logical view
 Chapter 4. Data management considerations 93

http://www.avaki.com

Storage Tank
IBM provides a complete storage management solution in a heterogeneous,
distributed environment. Storage Tank is designed to provide I/O performance
that is comparable to that of file systems built on bus-attached, high-performance
storage. In addition, it provides high availability, increased scalability, and
centralized, automated storage and data management.

Storage Tank uses Storage Area Network (SAN) technology that allows an
enterprise to connect thousands of devices, such as client and server machines
and mass storage subsystems, to a high-performance network. On a SAN,
heterogeneous clients can access large volumes of data directly from storage
devices using high-speed, low-latency connections. The Storage Tank
implementation is currently built on a Fibre Channel network. However, it could
also be built on any other high-speed network, such as Gigabit Ethernet (iSCSI),
for which network-attached storage devices have become available.

Storage Tank clients can access data directly from storage devices using the
high-bandwidth provided by a Fibre Channel or other high-speed network. Direct
data access eliminates server bottlenecks and provides the performance
necessary for data-intensive applications.

An installable file system (IFS) is installed on each IBM Storage Tank client. An
IFS directs requests for metadata and locks to an IBM Storage Tank server and
sends requests for data to storage devices on the SAN. Storage Tank clients can
access data directly from any storage device attached to the SAN.
94 Enabling Applications for Grid Computing with Globus

Figure 4-10 Storage Tank architecture

The Global File System (GFS)
GFS allows multiple servers on a Storage Area Network to have read and write
access to a single file system on shared SAN devices. GFS is IBM certified on its
xSeries™ servers only and for the Linux operating system.

GFS can support up to 256 nodes.

For more information see:

http://www.sistina.com/products_gfs.htm

4.2.13 Distributed approach
Another approach to managing data needs in a grid is to distribute the data
across the grid nodes through processes such as replication or mirroring. The
following sections describe these approaches in more detail.

Storage Area Network

Storage
Tank
Sever

Storage
Tank
Sever

Storage
Tank
Sever

meta data

Storage
Tank
Sever

Storage
Tank
Sever

Storage
Tank
Sever

meta data

Linux
client

AIX
client

Existing IP Network for Client/Server Communications (Storage Tank Protocol)

Fiber
Channel
Network

Shared Storage Data
Server Cluster for Load
Balancing, Fail-Over
Processing, Scalability
 Chapter 4. Data management considerations 95

http://www.sistina.com/products_gfs.htm

Replica Catalog
The Globus Toolkit Replica Catalog can keep track of multiple physical copies of
a single logical file by maintaining a mapping from logical file names to physical
locations. A replica is defined as a “managed copy of a file.”

The catalog contains three types of objects:

� The collections that are a group of logical names.

� The locations that contain information required to map between logical name
and the multiple locations of the associated replicas. Each location represents
a complete or partial copy of a logical collection on a storage system. The
location entry explicitly lists all files from the logical collection that are stored
on the specified physical storage system.

� The logical file entry that is an optional object to store attribute-value pairs for
each individual file. They are used to characterize each individual file. Logical
files have globally unique names that may have one or more physical
instances. The catalog may contain one logical entry in the Replica Catalog
for each logical file in a collection.

Figure 4-11 Replica logical view

Replica Catalog functions can be used directly by applications by using the
C/C++ APIs provided by Globus. They provide the following operations:

� Creation and deletion of collection, location, and logical file entries
� Insertion and removal of logical file names into collections and locations
� Listing of the contents of collections and locations
� A function to return all physical locations of a logical file

logical name

location A

location B

file 1
file 2

file 3
file 4

file 5

url: gsftp://m0/repo
protocol: gsiftp
list of files: file1, file2, file3

url: ftp://ftp.lab.itso-maya/com
protocol: ftp
list of files: file4, file5

list of files

size 185802
size 232802
size 3284802
size 1838602
size 187812
96 Enabling Applications for Grid Computing with Globus

Examples are provided in “Replication” on page 208 by using shells commands
provided by the Globus Toolkit 2.2.

Replica Location Service (RLS)
The Replica Location Service is a new component that appears in Globus Toolkit
2.4. This component maintains and provides access to information about the
physical locations of replicated data. This implementation was co-developed by
the Globus Project and Work Package 2 of the European DataGrid project. RLS
is intended to eventually replace the Globus Toolkit's Replica Catalog
component. For more information see:

http://www.globus.org/rls
http://www.isi.edu/~annc/RLS.html

Grid Data Mirroring Package (GDMP)
The GDMP is client-server software developed in C++ and built on top of the
Globus Toolkit 2 framework. Every request to a GDMP server is authenticated by
the Globus Security Infrastructure. It provides two things:

� a generic file replication tool to replicate files from one site to one or more
remote sites. A storage location is considered to be a disk space on a single
machine or several machines connected via a local area network and a
network file system.

� GDMP manages Replica Catalog entries for file replicas and therefore makes
the file visible to the grid. Registration of user data into the Replica Catalog is
also possible via the Globus Replica Catalog C/C++ API.

The concept is that data producer sites publish their set of newly created files to
a set of one or more consumer sites. The consumers will then be notified of new
files entered in the catalog of the subscribed server and can make copies of
required files, automatically updating the Replica Catalog if necessary.

GDMP C++ APIs for clients provide four main services:

� Subscribing to a remote site for obtaining information when new files are
created and made public

� Publishing new files and thus making them available and accessible to the
grid

Note 1: Files managed by GDMP should be considered as read-only by the
consumer.

Note 2: GDMP is not restricted to disk-to-disk file operation. It can deal with
files permanently stored in a Mass Storage System.
 Chapter 4. Data management considerations 97

http://www.globus.org/rls
http://www.isi.edu/~annc/RLS.html

� Obtaining a remote site’s file catalog for failure and recovery

� Transferring files from a remote location to the local site

Figure 4-12 File replication in a data grid between two organizations

GDMP is available at:

http://project-gdmp.web.cern.ch/project-gdmp

4.2.14 Database solutions for grids
As covered in 4.2.2, “Databases” on page 86, the Globus Toolkit V3 should
provide a set of services to access data stored in databases and several projects
that are ongoing, such as SpitFire in EU DataGrid and the UK Database Task
Force, can already be tested.

Until these solutions become ready, several commercial solutions can help to
enable database access in a grid application.

job

local
storage

Organization “maya”

Organization “tupi”

gridftp transfer

copied
locally

Storage Element

Site “tupi”

Storage Element

Site “maya”
98 Enabling Applications for Grid Computing with Globus

http://project-gdmp.web.cern.ch/project-gdmp

Federated databases
A federated database technology provides a unified access to diverse and
distributed relational databases. It provides transparency to heterogeneous data
sources by adding a layer between the databases and the application.

Figure 4-13 Federated databases

In a federated database, each data source is registered to the federated DBMS
along with its wrapper. A wrapper is a piece of code (dynamic library) loaded at
runtime by the federated database to access a specific data source. The
application developer only needs to use a common SQL API (like ODBC or
JDBC) in their applications and to access the federated database.

The developer also needs to explicitly specify the data source in the federated
query. Consequently, the application must be changed when new data sources
are added.

Currently, no federated databases use the Globus Toolkit 2.2 Security
Infrastructure (GSI) to authenticate or authorize the query. The application
developer needs to manage the authentication process to the database apart
from the Globus Security API.

IBM DB2 Connect™ provides a solution to transparently access remote legacy
systems using common database access APIs like ODBC and JDBC.

OGSA Database Access and Integration
The Open Grid Services Architecture Database Access and Integration
(OGSA-DAI) is a project conceived by the UK Database Task Force and is
working closely with the Global Grid Forum DAIS-WG and the Globus team.

DB2

Oracle

DB2
wrapper

Oracle
wrapper

federated
DBMS

local cache
catalog

SQL
 Chapter 4. Data management considerations 99

The project is in place to implement a general grid interface for accessing grid
data sources like relational database management systems and XML
repositories, through query languages like SQL, XPat, and XQuery. XQuery is a
new query language like SQL and under draft design in the W3C.

The software deliverables of the OGSA-DAI project will be made available to the
UK e-Science community and will also provide the basis of standards
recommendations on grid data services that are put forward to the Global Grid
Forum through the DAIS working group. For more information, see:

http://umbriel.dcs.gla.ac.uk/NeSC/general/projects/OGSA_DAI/

Spitfire
Spitfire is a project of the European DataGrid Project. It provides a grid-enabled
middleware service for access to relational databases, providing a uniform
service interface, data and security model, as well as network protocol. Spitfire
uses the Globus GSI authentication and thus can be easily integrated in an
existing Globus infrastructure. Spitfire is currently using MySQL and
PosrtGreSQL databases, and the Web services alpha release should be
available soon.

Currently it consists of the Spitfire Server module and the Spitfire Client libraries
and command line executables. Client-side APIs are provided for Java and C++
for the SOAP-enabled interfaces. The C++ client is auto generated from its
WSDL description using gSOAP, which is an open-source implementation
protocol. The gSOAP project is also used for the C implementation of the Globus
Toolkit V3. For more information see:

http://www.cs.fsu.edu/~engelen/soap.html

Three SOAP services are defined: A Base service for standard operations, an
Admin service for administrative access, and an Info service for information on
the database and its tables.

Spitfire is still a beta project. For more information, see:

http://spitfire.web.cern.ch/Spitfire/

4.2.15 Data brokering
One data brokering solution available today is the Storage Resource Broker.

Storage Resource Broker
The Storage Resource Broker (SRB) developed by the San Diego
SuperComputer Center is not part of the Globus Toolkit but can use its GSI PKI
authentication infrastructure. Consequently, an SRB and a Globus grid can
100 Enabling Applications for Grid Computing with Globus

http://umbriel.dcs.gla.ac.uk/NeSC/general/projects/OGSA_DAI/
http://www.cs.fsu.edu/~engelen/soap.html
http://spitfire.web.cern.ch/Spitfire/

coexist with the same set of users. SRB brings to Globus the ability of submitting
metadata queries that permits a transparent access to heterogeneous data
sources. The SRB API does not use the globus-io API, nor Globus gass, or
GridFTP.

The SRB is a middleware that provides a uniform interface for connecting to
heterogeneous data resources over a network and accessing replicated data
sets. SRB permits an application to transparently access logical storage
resources whatever their type may be. It easily manages data collection stored
on different storage systems but accessed by applications via a global name
space. It implements data brokering used by grid applications to retrieve their
data.

The SRB consists of three components:

� The metadata catalog (MCAT)
� SRB servers
� SRB clients

The MCAT is implemented using a relational database such as Oracle, DB2,
PostGresSQL, or Sybase. It maintains a Unix name space (file name, directories,
and subdirectories) and a mapping of each logical name to a set of physical
attributes and a physical handle for data access. The physical attributes include
the host name and the type of resource (Unix File system, HPSS archive,
database, and so on). The MCAT server handles requests from the SRB servers
that may be information queries as well as instructions for metadata creation and
update.

SRB, in conjunction with the Metadata Catalog (MCAT), provides a way to
access data sets and resources based on their attributes rather than their names
or physical locations.

Each data stored in SRB has a logical name that can be used as a handle for
data operation. The physical location of data is logically mapped to the data sets
that may reside on different storage systems. A server manages/brokers a set of
storage resources. The supported storage resources are: Mass Storage system
such as HPSS, UniTree, and DMF; and ADSM as file systems.

SRB provides an API for grid application developers in the following
programming languages: C/C++, Perl, Python, and Java. For management
purposes, SRB also provides a set of Unix shell commands as well as a GUI
application and a Web application.

SRB supports the GSI security infrastructure that permits the integration of the
SRB into the Globus Toolkit environment. (See
http://www.npaci.edu/DICE/security/index.html). The Authentication and
 Chapter 4. Data management considerations 101

http://www.npaci.edu/DICE/security/index.html

Integrity of Data library (libAID) needs to be installed to permit SRB to use GSI
authentication. LibAID provides an API to GSI. For more information, see the
following Web site:

http://www.npaci.edu/DICE/SRB/

4.3 Some data grid projects in the Globus community
Many data-centric grid projects in the research community are based on the
Globus Toolkit 2. They have developed various middleware to help handle the
data management considerations. Here is a short list of large data grid projects
whose middleware source codes are available.

4.3.1 EU DataGrid
The DataGrid project is a project funded by the European Union that aims to
enable access to geographically distributed data servers. It is based on the
Globus Toolkit 2.2 and therefore uses the Globus Data Grid framework: GridFTP
protocol and replica management.

This project implements a middleware layer between applications and the
Globus Toolkit 2.

The Grid Data Mirroring Package (GDMP) is a file replication tool that replicates
files from one site to another site. It can manage replica catalog entries for file
replicas. Note that all files are assumed to be read only. GDMP is a collaboration
between the EU DataGrid and the Particle Physics Data Grid Project (PPDG).
GDMP is described in detailed in “Grid Data Mirroring Package (GDMP)” on
page 97. For more information see:

http://www.eu-datagrid.org

4.3.2 GriPhyn
The GriPhyN Project is developing grid technologies for scientific and
engineering projects that must collect and analyze distributed, petabyte-scale
data sets. GriPhyN research will enable the development of Petascale Virtual
Data Grids (PVDGs) through its Virtual Data Toolkit (VDT). Virtual data means
that data does not necessarily have to be available in a persistent form but is
created on demand and then materialized when it is requested.
102 Enabling Applications for Grid Computing with Globus

http://www.npaci.edu/DICE/SRB/
http://www.eu-datagrid.org

The Virtual Data Toolkit (VDT) is a set of software that supports the needs of the
research groups and experiments involved in the Griphyn project. It contains two
types of software:

� Core grid software: Condor Scheduler, GDMP (REF), and the Globus Toolkit.
In future releases, VDT will use the NMI software (gsissh, kerberos/GSI
gateway, Condor-G).

� Software developed to work with virtual data: Chimera is the first software of
this kind.

The Chimera Virtual Data System (VDS) provides a catalog that can be used by
application environments to describe a set of application programs
("transformations"), and then track all the data files produced by executing those
applications ("derivations"). Chimera contains the mechanism to locate the
"recipe" to produce a given logical file, in the form of an abstract program
execution graph. These abstract graphs are then turned into an executable DAG
for the Condor DAGman meta-scheduler by the Pegasus planner, which is
bundled into the VDS code release. For more information, check the following
Web site:

http://www.griphyn.org/

4.3.3 Particle Physics Data Grid
The Particle Physics Data Grid collaboration was formed in 1999. The purpose of
this long-term project is to provide a data grid solution supporting the
data-intensive requirements of particle and nuclear physics.

PPDG is actively participating in the International Virtual Data Grid Laboratory
(iVDGL http://www.ivdgl.org) together with GriPhyN as a three-prong
approach to data grids for US physics experiments. PPDG focuses on file
replication and job scheduling. Also, it is working closely with complementary
data grid initiatives in Europe and beyond: Global Grid Forum, European
DataGrid, and as part of the HENP. For example, the Grid Data Mirroring
Package has been a mutual effort of EU DataGrid and PPDG. For more
information, check the following Web site:

http://www.ppdg.net/

4.4 Summary
A grid application must carefully take into account the topology of the data that
will be processed during the job execution. Data can be centralized or distributed
across the execution nodes. A mixed solution is usually the most appropriate,
and it highly depends on the existing infrastructure.
 Chapter 4. Data management considerations 103

http://www.griphyn.org/
http://www.ivdgl.org
http://www.ppdg.net/

There are several existing and evolving technologies that can be used to
manage and access data in a grid environment, and we have described a few
projects that have built tools on top of Globus to provide the required capabilities
for data-oriented grids.
104 Enabling Applications for Grid Computing with Globus

Chapter 5. Getting started with
development in C/C++

In this chapter, we will start looking at how these components are actually used,
both through the command line and through programs written to the Globus
APIs.

Since the Globus Toolkit ships with C bindings, we start out by providing some
information for C/C++ programmers that will help them better understand the
programming environment. We then provide some C/C++ examples of calling
Globus APIs. The examples we use are based on the GRAM module for
submitting jobs, and the MDS modules for finding resources.

5

© Copyright IBM Corp. 2003. All rights reserved. 105

5.1 Overview of programming environment
In the next three subsections we provide information about programming and
building C/C++ applications that utilize the Globus Toolkit. For more details, and
a list of all of the available APIs, please visit the Globus Web site.

5.1.1 Globus libc APIs
The Globus Toolkit 2.2 is a cross-platform development framework and allows
the application development of portable grid applications by using its API.

The globus-libc API provides a set of wrappers to several POSIX system calls.
The grid developer must use these wrappers to ensure thread-safety and
portability. The globus equivalents to the POSIX calls add the prefix globus_libc
to the function while prototypes remain identical. For example,
globus_libc_gethostname() should be used instead of gethostname(), or
globus_libc_malloc() instead of malloc().

Reference information is available at:

http://www.globus.org/common/globus_libc/functions.html

The globus-thread API provides system call wrappers for thread management.
These include:

� thread life-cycle management
� mutex life-cycle, locking management
� condition variables, signal management

This API must be used to manage all asynchronous or non-blocking Globus calls
and their associated callback functions. Usually a mutex and a condition variable
are associated for each non-blocking Globus function and its callback function.

For this publication, we created a sample C++ object ITSO_CB whose source
code is available in “ITSO_CB” on page 315. The method of this class actually
uses the globus-thread APIs and can be used as an example of how to do so.
This class is used in most of our examples.

Reference information for the thread-specific APIs is available at:

http://www.globus.org/common/threads/functions.html

5.1.2 Makefile
globus-makefile-header is the tool provided by the Globus Toolkit 2.2 to generate
platform- and installation-specific information. It has the same functionality as the
well-known autoconf tools.
106 Enabling Applications for Grid Computing with Globus

http://www.globus.org/common/globus_libc/functions.html
http://www.globus.org/common/threads/functions.html

The input parameters are:

� The flavor you want for your binary: gcc32, gcc32dbg for debugging
purposes, gcc32pthr for multi-thread binary. The flavor encapsulates
compile-time options for the modules you are building.

� The list of modules that are used in your application and that need to be
linked with your application are globus_io, globus_gss_assist,
globus_ftp_client, globus_ftp_control, globus_gram_job, globus_common,
globus_gram_client, and globus_gass_server_ez.

� the --static flag can be used to get a proper list of dependencies when using
static linking. Otherwise, the dependencies are printed in their shared library
form.

The output will be a list of pairs (VARIABLE = value) that can be used in a
Makefile as compiler and linker parameters. For example:

GLOBUS_CFLAGS = -D_FILE_OFFSET_BITS=64 -O -Wall
GLOBUS_INCLUDES = -I/usr/local/globus/include/gcc32
GLOBUS_LDFLAGS = -L/usr/local/globus/lib -L/usr/local/globus/lib
GLOBUS_PKG_LIBS = -lglobus_gram_client_gcc32 -lglobus_gass_server_ez_gcc32
-lglobus_ftp_client_gcc32 -lglobus_gram_protocol_gcc32
-lglobus_gass_transfer_gcc32 -lglobus_ftp_control_gcc32 -lglobus_io_gcc32
-lglobus_gss_assist_gcc32 -lglobus_gssapi_gsi_gcc32
-lglobus_gsi_proxy_core_gcc32 -lglobus_gsi_credential_gcc32
-lglobus_gsi_callback_gcc32 -lglobus_oldgaa_gcc32 -lglobus_gsi_sysconfig_gcc32
-lglobus_gsi_cert_utils_gcc32 -lglobus_openssl_error_gcc32
-lglobus_openssl_gcc32 -lglobus_proxy_ssl_gcc32 -lssl_gcc32 -lcrypto_gcc32
-lglobus_common_gcc32
GLOBUS_CPPFLAGS = -I/usr/local/globus/include -I/usr/local/globus/include/gcc32

These variables are built based on the local installation of the Globus Toolkit 2.2
and provide an easy way to know where the Globus header files or the Globus
libraries are located.

Consequently, the procedure to compile a Globus application is the following:

1. Generate an output file (globus_header in the example) that will set up all the
variables used later in the compile phase.

globus-makefile-header --flavor=gcc32 globus_io globus_gss_assist
globus_ftp_client globus_ftp_control globus_gram_job globus_common
globus_gram_client globus_gass_server_ez globus_openldap > globus_header

2. Add the following line in your Makefile to include this file:

include globus_header

3. Compile by using make.
 Chapter 5. Getting started with development in C/C++ 107

Example 5-1 Globus Makefile example

include globus_header

all: SmallBlueSlave SmallBlueMaster SmallBlue

%.o: %.C
g++ -c $(GLOBUS_CPPFLAGS) $< -o $@

SmallBlue:SmallBlue.o GAME.o
g++ -o $@ -g $^

SmallBlueSlave:SmallBlueSlave.o GAME.o
gcc -o $@ -g $^

SmallBlueMaster: GAME.o SmallBlueMaster.o itso_gram_job.o itso_cb.o
itso_globus_ftp_client.o itso_gassserver.o broker.o

g++ -g -o $@ $(GLOBUS_CPPFLAGS) $(GLOBUS_LDFLAGS) $^ $(GLOBUS_PKG_LIBS)

The application will be linked with Globus static libraries or Globus dynamic
libraries, depending on the kind of Globus installation you performed. You can
use the shell command ldd under Linux to check if your application is
dynamically linked to the Globus libraries located in $GLOBUS_LOCATION/lib.

Under Linux, if your application uses dynamically linked Globus libraries, then be
sure that:

� Either the LD_LIBPATH_PATH is properly set to $GLOBUS_LOCATION/lib
when you run your application

� Or $GLOBUS_LOCATION/lib is present in /etc/ld.so.conf

The list of main packages that are used in this publication are:

� globus_common used for all cross-platform C library wrappers
� globus_openldap for querying the MDS server
� globus_gass_server_ez to implement a simple GASS server
� globus_gass_transfer for GASS transfer
� globus_io for low-level I/O operation
� globus_gss_* for GSI security management
� globus_ftp_client, globus_ftp_control for gsiftp transfer
� globus_gram_job for job submission

Note: Sometimes the package may be not be available in all flavors.
globus-makefile-header will only tell you that the package you required does
not match the query, but will not inform you that it exists in another flavor.
108 Enabling Applications for Grid Computing with Globus

5.1.3 Globus module
In Globus Toolkit V2, each Globus function belongs to an API provided by a
specific Globus module. This module must be activated before any of the
functions can be used. The globus_module API provides functions to activate
and deactivate the modules:

� globus_module_activate() calls the activation function for the specified
module if that module is currently inactive.

� globus_module_deactivate() calls the deactivation functions for the specified
module if this is the last client using that module.

The function's return value is GLOBUS_SUCCESS if it was successful.

Example 5-2 Globus API module management

if (globus_module_activate(GLOBUS_GRAM_CLIENT_MODULE) != GLOBUS_SUCCESS)
{

cerr << " Cannot start GRAM module";
exit(2);

};
int rc=globus_module_activate(GLOBUS_FTP_CLIENT_MODULE);
globus_assert(rc == GLOBUS_SUCESS);
globus_module_deactivate_all();

In the broker in “Broker example” on page 127, the
GLOBUS_GRAM_CLIENT_MODULE is activated and deactivated in the broker
code. That may be an issue if it is called from a program that thinks that this
module is still active after its call. Segmentation faults usually occur when Globus
functions are called in a non-activated module. For more information see:

http://www.globus.org/common/activation/functions.html

5.1.4 Callbacks
A callback is a C function provided as a parameter to an asynchronous Globus
function that is invoked after the call of the function. The Globus call is
non-blocking, in that it does not wait for the operation to complete. Instead the
Globus call returns immediately. The callback will be invoked after the call in a
different thread. Consequently, a synchronization mechanism needs to be used
between the callback thread and the program thread that called the
asynchronous call so that the program knows when the callback has been made.

To ensure thread safety for the application, a mutex coupled with a condition
variable must be used for synchronization. The condition variable is used to send
a signal from the callback function to the main program, and the mutex is used
 Chapter 5. Getting started with development in C/C++ 109

http://www.globus.org/common/activation/functions.html

jointly with the condition variable to avoid deadlocks between the waiting thread
and the active thread:

� The thread in the main program that calls the asynchronous globus function
must call the following globus_thread functions to wait for the completion of
the operation:

globus_mutex_lock(&mutex);
while(done==GLOBUS_FALSE)

globus_cond_wait(&cond, &mutex);
globus_mutex_unlock(&mutex);

In this code, done is a boolean variable initialized to false or
GLOBUS_FALSE. done indicates the state of the operation.

� The callback function must call:

globus_mutex_lock(&mutex);
done = GLOBUS_TRUE;
globus_cond_signal(&cond);
globus_mutex_unlock(&mutex);

This mechanism is implemented in this publication via the ITSO_CB class
that embeds the done variable as an attribute. ITSO_CB (“ITSO_CB” on
page 315) provides the necessary methods:

– Wait() waits for the completion of the operation.

– setDone() sets the status of the operation to “done”. The done attribute is
actually set to true.

– IsDone() retrieves the state of the operation (done or not) and checks the
value of the done attribute.

– Continue() resets the value of the attribute done to false.

5.2 Submitting a job
Before showing programming examples, let us briefly review the options that are
available when a job is submitted. The easiest way to do this is to look at the
commands that are available. Once you understand the types of things you might
do from the command line, it will help you better understand what you must do
programmatically when writing your application.

Note: In the C/C++ publication examples, an ITSO_CB object, as well as a C
callback function that will call its setDone() method, must be provided to the
asynchronous globus functions. They take the ITSO_CB object as well as the
callback function pointer as arguments. The C function is declared as static,
and must be reentrant and is only used to call the ITSO_CB object methods.
110 Enabling Applications for Grid Computing with Globus

5.2.1 Shells commands
The Globus Toolkit provides several shell commands that can be easily invoked
by an application. In this case, the application may be a wrapper script that
launches one or more jobs. The commands that can be used to launch a job
include:

� globus-job-run

� globus-job-submit

� globusrun

� gsissh (not really a Globus job submission command, but provides a secure
shell capability using the Globus GSI infrastructure)

All these functions use the Grid Security Infrastructure. Therefore, it is mandatory
to always create a valid proxy before running these commands. The proxy can
be created with the grid-proxy-init command.

globus-job-run
globus-job-run is the simplest way to run a job. The syntax is:

globus-job-run <hostname> <program> <arguments>

The program must refer to the absolute path of the program. However, by using
the -s option, globus will automatically transfer the program to the host where it
will be executed:

Example 5-3 globus-job-run example

[globus@m0 globus]$ echo "echo Hello World" > MyProg;chmod +x MyProg
[globus@m0 globus]$ grid-proxy-init
Your identity: /O=Grid/O=Globus/OU=itso-maya.com/CN=m0user
Enter GRID pass phrase for this identity:
Creating proxy Done
Your proxy is valid until: Tue Mar 18 05:23:49 2003
[globus@m0 globus]$ globus-job-run t1 MyProg
GRAM Job failed because the executable does not exist (error code 5)
[globus@m0 globus]$ globus-job-run t1 -s MyProg
Hello World

The -: delimiter can be used to submit a multi-request query, as shown in
Example 5-4.

Example 5-4 multi-request query

globus@m0 globus]$ echo 'echo Hello $1 from $HOSTNAME' > MyProg;chmod +x MyProg
[globus@m0 globus]$ globus-job-run -args You -: a1 -s MyProg -: b1 -s MyProg -:
c1 -s MyProg
 Chapter 5. Getting started with development in C/C++ 111

Hello You from a1.itso-apache.com
Hello You from b1.itso-bororos.com
Hello You from c1.itso-cherokee.com

globus-job-submit
This shell command submits a job in the background so that you can submit a
job, log out of the system, and collect the results later. The job is managed via a
URL, also known as a job contact, created at job submission.

The syntax is the same as for globus-job-run except that the program must refer
to an absolute path and the -s option cannot be used.

Example 5-5 globus-job-submit example

[globus@m0 globus]$ globus-job-submit a1 /myjobs/LongRunningJob
https://a1.itso-apache.com:47573/22041/1047929562/

The job contact returned (the https... string in the example) can then be used
with the following commands:

� globus-job-status <job contact> to get the status of the job (pending,
active,done, failed, others)

� globus-job-get-ouput <job contact> to retrieve the output of the job

� globus-job-cancel <job contact> to cancel the job

� globus-job-clear <job contact> to clear the files produced by a job

Example 5-6 Retrieving information about a job

[globus@m0 globus]$ globus-job-status
https://a1.itso-apache.com:47573/22041/1047929562/
ACTIVE
[globus@m0 globus]$ globus-job-cancel
https://a1.itso-apache.com:47573/22041/1047929562/
Are you sure you want to cancel the job now (Y/N) ?
Y
Job canceled.
NOTE: You still need to clean files associated with the
job by running globus-job-clean <jobID>

[globus@m0 globus]$ globus-job-clean
https://a1.itso-apache.com:47573/22041/1047929562/

 WARNING: Cleaning a job means:
 - Kill the job if it still running, and
 - Remove the cached output on the remote resource
112 Enabling Applications for Grid Computing with Globus

 Are you sure you want to cleanup the job now (Y/N) ?
Y
Cleanup successful.

5.2.2 globusrun
All jobs in the Globus Toolkit 2.2 are submitted by using the RSL language. The
RSL language is described in 2.1.2, “Resource management” on page 17.
globusrun permits you to execute an RSL script.

The -s options starts up a GASS server that can be referenced in the RSL string
with the GLOBUSRUN_GASS_URL environment variable. This local GASS
server allows the data movement between the compute nodes and the
submission node where the globusrun command is issued.

The syntax for the globusrun command is:

globusrun -s -r <hostname> -f <RSL script file>
globusrun -s -r <hostname> ‘RSL script’

There is also a -b option (for batch mode) that makes the command return a job
contact URL that can be used with:

� globusrun -status <job contact> to check the status of a job
� globusrun -kill <job contact> to kill a job

Example 5-7 globusrun example

[globus@m0 globus]$ echo 'echo Hello $1 from $HOSTNAME' > MyProg;chmod +x
MyProg
[globus@m0 globus]$ globusrun -s -r a1
'&(executable=$(GLOBUSRUN_GASS_URL)'"$PWD"'/MyProg)(arguments=World)'
Hello World from a1.itso-apache.com

globus-job-run and globus-job-submit actually generate and execute RSL
scripts. By using the -dumprsl option, you can see the RSL that is generated and
used.

Example 5-8 globus-job-submit -dumprsl example

[globus@m0 globus]$ globus-job-submit -dumprsl a1 /bin/sleep 60
 &(executable="/bin/sleep")
 (arguments= "60")
 (stdout=x-gass-cache://$(GLOBUS_GRAM_JOB_CONTACT)stdout anExtraTag)
 (stderr=x-gass-cache://$(GLOBUS_GRAM_JOB_CONTACT)stderr anExtraTag)
 Chapter 5. Getting started with development in C/C++ 113

5.2.3 GSIssh
GSI-OpenSSH is a modified version of the OpenSSH client and server that adds
support for GSI authentication. GSIssh can be used to remotely create a shell on
a remote system to run shell scripts or to interactively issue shell commands, and
it also permits the transfer of files between systems without being prompted for a
password and a user ID. Nevertheless, a valid proxy must be created by using
the grid-proxy-init command.

The problem of unknown sshd host keys is handled as part of the GSIssh
protocol by hashing the sshd host key, signing the result with the GSI host
certificate on the sshd host, and sending this to the client. With this information
the client now has the means to verify that a host key belongs to the host it is
connecting to and detect an attacker in the middle.

The Grid Portal Development Kit (GPDK) provides a Java Bean that provides
GSIssh protocol facilities to a Java application used in a Web portal. For more
information see:

http://doesciencegrid.org/projects/GPDK/

Figure 5-1 GSI-enabled OpenSSH architecture

The installation procedure as well as a complete example is provided in “GSIssh
installation” on page 116.

GSI
openssh
server

gsissh

gsiscp

sftp

runs remote command

copy files

grid-init-proxy

generates

proxy credentials
proxy credentials
delegation
114 Enabling Applications for Grid Computing with Globus

http://doesciencegrid.org/projects/GPDK/

gsissh is used the same way as ssh. It cannot use Globus URLs; consequently,
files must be staged in and out using gsiscp or sftp. The executable must be
present on the remote host before execution. Below are a few examples.

Example 5-9 gsissh example

[globus@m0 globus]$ grid-proxy-init
Your identity: /O=Grid/O=Globus/OU=itso-maya.com/CN=m0user
Enter GRID pass phrase for this identity:
Creating proxy ...
.......... Done
Your proxy is valid until: Tue Mar 18 04:33:21 2003
[globus@m0 globus]$ gsissh t1 "date;hostname"
Mon Mar 17 10:33:33 CST 2003
t1.itso-tupi.com

The gsissh command also embeds and secures the X11 protocol that allows the
user to remotely run an application that will be displayed on the local X server.
This example runs the Linux monitoring software gkrellm on t1 but will display the
graphical interface on m0.

Example 5-10 Running a graphical application through gsissh

[globus@m0 globus]$gsissh t1 gkrellm

gsissh also supports proxy delegation. That means that once the GSI credentials
are created on one node, a user can log onto other nodes and, from there,
submit jobs that will use the same GSI credentials. In Example 5-11, a user
connects to t1 and from there can submit a job without the need to regenerate a
new Globus proxy.

Example 5-11 Proxy delegation support

on m0:
[globus@m0 globus]$ grid-proxy-init
Your identity: /O=Grid/O=Globus/OU=itso-maya.com/CN=m0user
Enter GRID pass phrase for this identity:
Creating proxy ...
.......... Done
Your proxy is valid until: Tue Mar 18 04:33:21 2003
[globus@m0 globus]$ gsissh t1.itso-tupi.com
Last login: Fri Mar 14 15:16:59 2003 from m0.itso-maya.com

on t1:
[globus@t1 globus]$ globus-job-run a1 -s /bin/hostname
a1.itso-apache.com
[globus@t1 globus]$ grid-proxy-info
subject : /O=Grid/O=Globus/OU=itso-maya.com/CN=m0user/CN=proxy/CN=proxy
 Chapter 5. Getting started with development in C/C++ 115

issuer : /O=Grid/O=Globus/OU=itso-maya.com/CN=m0user/CN=proxy
type : full
strength : 512 bits
timeleft : 11:19:34

For more information, see the followings links:

http://www.OpenSSH http://www.openssh.org
http://www.GSIopenssh http://www.nsf-middleware.org/NMIR2/

GSIssh installation
GSIssh middleware is developed by the National Science Foundation Initiative
and is not included in the Globus Toolkit. Therefore, it needs to be installed on
top of Globus Toolkit 2.2 and its installation requires the Globus Packaging
Technology (GPT).

It can be downloaded at the following site:

http://www.nsf-middleware.org/NMIR2/download.asp#GCSS

The installation instructions can be found at

http://www.nsf-middleware.org/documentation/NMI-R2/0/All/allserver_install.htm

GSIssh can be either installed by using a binary bundle (already compiled) or by
using a source bundle (that needs to be compiled on site). The installation
procedure is very well explained on the NMI Web site (see above).

The following steps summarize the installation procedure for GSIssh using the
source package in the case where the Globus Toolkit 2 has been already
installed.

1. Download the GSIssh package from the NMI Web site.

2. Set up your environment according your Globus Toolkit environment:

export GPT_LOCATION=/usr/local/globus
export GLOBUS_LOCATION=/usr/local/globus

3. Build the bundle using GPT's build command.

$GPT_LOCATION/sbin/gpt-build -static gsi_openssh-NMI-2.1-src_bundle.tar.gz
gcc32

4. Run any post-install setup scripts that require execution.

$GPT_LOCATION/sbin/gpt-postinstall

5. Use GPT's verify command to verify that all of the files were installed
properly.

$GPT_LOCATION/sbin/gpt-verify
116 Enabling Applications for Grid Computing with Globus

http://www.OpenSSH http://www.openssh.org
http://www.GSIopenssh http://www.nsf-middleware.org/NMIR2/
http://www.nsf-middleware.org/NMIR2/download.asp#GCSS
http://www.nsf-middleware.org/documentation/NMI-R2/0/All/allserver_install.htm

6. Install gsissh as a service.

cp /usr/local/globus/sbin/SXXsshd /etc/rc.d/init.d/gsissh
chkconfig --level 3 gsissh on
service gsissh start

5.2.4 Job submission skeleton for C/C++ applications
To submit a job in a C or C++ program, an RSL string describing the job must be
provided. The globus_gram_client API provides an easy API for job submission.
Two kinds of functions can be used:

� Blocking calls that wait for the completion of the jobs before returning

� Non-blocking or asynchronous calls that return immediately and call a
“callback” function when the operation has completed or to inform the main
program about the status of the asynchronous operation

Note: GSIssh can be installed concurrently with a non-gsi ssh server.
However, since they both default to using the same port, you have to
modify the port on which the GSIssh will listen for requests. To do this, edit
/etc/rc.d/init.d/gsissh and assign a value to SSHD_ARGS, for example,
SSHD_ARGS="-p 24", to listen on port 24.

You will then need to specify this port for all gsissh, gsiscp,and gsisftp
commands:

gsissh -p 24 g3.itso-guarani.com hostname
 Chapter 5. Getting started with development in C/C++ 117

Figure 5-2 Job submission using non-blocking calls

We only cover non-blocking calls in this chapter, as they are the more
complicated from a programming perspective, but often more desirable from an
application perspective. Non-blocking calls allow the application to submit
several jobs in parallel rather than wait for one job to finish before submitting the
next.

Job submission
The ITSO_GRAM_JOB class provided in “itso_gram_job.C” on page 321
provides an asynchronous implementation in C++ of a job submission. It is
derived from ITSO_CB. ITSO_GRAM_JOB wraps C Globus GRAM API
functions in its methods. Its implementation is based on the C example available
in “Submitting a job” on page 358.

The first step is to create the GRAM server on the execution node that will
monitor the status of the job and associate a callback with this job. This is

Note: The documentation of the globus_gram_client API is available at:

http://www-unix.globus.org/api/c/globus_gram_client/html/index.html

globus_gram_client_callback_allow()

invokes when job
state changesapplication

globus_gram_client_register_job_request()
job execution

job contact url

execution node hostname

Job description in RSL language

callback
function

callback_func

request_callback

callback contact url

provides

callback server

communicates
job status change
118 Enabling Applications for Grid Computing with Globus

http://www-unix.globus.org/api/c/globus_gram_client/html/index.html

achieved by calling the function globus_gram_client_callback_allow(). In the
Submit() method of the class ITSO_GRAM_JOB, we find:

globus_gram_client_callback_allow(itso_gram_job::callback_func,
 (void *) this,
 &callback_contact);

The ITSO_GRAM_JOB object, derived from ITSO_CB, is itself passed as an
argument so that the callback could invoke the method of this object via the ‘this’
pointer. It is associated, as well as the callback_function, with
globus_gram_client_callback_allow()to manage its asynchronous behavior.
&callback_contact is the job contact URL that will be set after this call. The
setDone(), setFailed() methods of the ITSO_GRAM_JOB object (implemented in
ITSO_CB) will permit the callback to modify the status of the job in the
application. Note that the status of the job in the application is independently
managed from the status of the job that is be obtained via the following globus
calls:

globus_gram_client_job_status() (blocking call)
globus_gram_client_resgister_job_status() (non-blocking call)

Here is an example of a callback to the globus_gram_client_callback_allow()
function. Note that callbacks have a well-defined prototype that depends on the
Globus functions they are associated with. The job contact URL is received as an
argument as well as the ITSO_GRAM_JOB object pointer.

Example 5-12 globus_gram_client_callback_allow() callback function

static void callback_func(void * user_callback_arg,
 char * job_contact,
 int state,
 int errorcode)
{

//The ITSO_GRAM_JOB object is retrieved in the callback via the first
//argument that allows to pass any kind of pointer to the callback.
//This is the second argument of the globus_gram_client_callback_allow()
//function

 ITSO_GRAM_JOB* Monitor = (ITSO_GRAM_JOB*) user_callback_arg;

 switch(state)
 {
 case GLOBUS_GRAM_PROTOCOL_JOB_STATE_STAGE_IN:
 cout << "Staging file in on: " << job_contact << endl;

break;
 case GLOBUS_GRAM_PROTOCOL_JOB_STATE_STAGE_OUT:

cout << "Staging file out on: " << job_contact << endl;
break;

 case GLOBUS_GRAM_PROTOCOL_JOB_STATE_PENDING:
break; /* Reports state change to the user */
 Chapter 5. Getting started with development in C/C++ 119

 case GLOBUS_GRAM_PROTOCOL_JOB_STATE_ACTIVE:
break; /* Reports state change to the user */

 case GLOBUS_GRAM_PROTOCOL_JOB_STATE_FAILED:
cerr << "Job Failed on: " << job_contact << endl;
Monitor->SetFailed();
Monitor->setDone();
break; /* Reports state change to the user */

 case GLOBUS_GRAM_PROTOCOL_JOB_STATE_DONE:
cout << "Job Finished on: " << job_contact << endl;
Monitor->setDone();
break; /* Reports state change to the user */

 }
}

The next step is to submit the job itself. This is achieved by calling the
globus_gram_client_register_job_request() function that is an asynchronous or
non-blocking call, that also needs (in our example) a C callback function and an
ITSO_CB object. The request_cb attribute of the class ITSO_GRAM_JOB will be
used for this purpose. The callback function used with
globus_gram_client_register_job_request() is request_callback(). See
“ITSO_GRAM_JOB” on page 316 for implementation details. It calls the method
SetRequestDone() of the ITSO_GRAM_JOB object that itself calls the setDone()
method of the ITSO_CB class through the request_cb attribute.

The RSL submission string is passed as an argument, as well as the host name
of the execution node, to globus_gram_client_register_job_request().
GLOBUS_GRAM_PROTOCOL_JOB_STATE_ALL specifies that we want to
monitor all states (done, failed, staging files). The ITSO_GRAM_JOB object itself
is passed as an argument ((void*) this). This way the callback can invoke its
SetRequestDone() method. See Example 5-14 on page 121.

Example 5-13 globus_gram_client_register_job_request call

int rc = globus_gram_client_register_job_request(res.c_str(),
 rsl.c_str(),
 GLOBUS_GRAM_PROTOCOL_JOB_STATE_ALL,
 callback_contact,
 GLOBUS_GRAM_CLIENT_NO_ATTR,
 itso_gram_job::request_callback,
 (void*) this);

Here is an example of a globus_gram_client_register_job_request() callback.
The callback is called whether the job has been submitted successfully or not.
120 Enabling Applications for Grid Computing with Globus

Example 5-14 globus_gram_client_register_job_request() callback

static void request_callback(void * user_callback_arg,
 globus_gram_protocol_error_t failure_code,
 const char * job_contact,
 globus_gram_protocol_job_state_t state,
 globus_gram_protocol_error_t errorcode) {
 ITSO_GRAM_JOB* Request = (ITSO_GRAM_JOB*) user_callback_arg;
 cout << "Contact on the server " << job_contact << endl;
 Request->SetRequestDone(job_contact);
}

The callback calls the SetRequestDone() method of the ITSO_GRAM_JOB object
that actually calls the setDone() method of the request_cb ITSO_CB object
associated with the function globus_gram_client_register_job_request().

The Submit() method of the ITSO_GRAM_JOB class implements the job
submission.

Example 5-15 GRAM job submission via an ITSO_GRAM_JOB object

bool ITSO_GRAM_JOB::Submit(string res, string rsl) {
 failed=false;
 globus_gram_client_callback_allow(itso_gram_job::callback_func,
 (void *) this,
 &callback_contact);
 int rc = globus_gram_client_register_job_request(

res.c_str(),
rsl.c_str(),

 GLOBUS_GRAM_PROTOCOL_JOB_STATE_ALL,
 callback_contact,

GLOBUS_GRAM_CLIENT_NO_ATTR,
 itso_gram_job::request_callback,
 (void*) this);

 if (rc != 0) /* if there is an error */
 {
 printf("TEST: gram error: %d - %s\n",
 rc,
 /* translate the error into english */
 globus_gram_client_error_string(rc));
 return true;
 }

else
return false;

};
 Chapter 5. Getting started with development in C/C++ 121

Checking if we can submit a job on a node
The function globus_gram_client_ping() can be used for diagnostic purposes to
check whether a host is available to run the job.

Example 5-16 CheckHost.C

#include “globus_gram_client.h”
#include <iostream>

int main(int argc, char ** argv)
{

 globus_module_activate(GLOBUS_GRAM_CLIENT_MODULE);

 cout << argv[1];
 if (!globus_gram_client_ping(argv[1]))

 cout << “ is okay “ << endl;
 else

 cout << “ cannot be used “ << endl;

 globus_module_deactivate(GLOBUS_GRAM_CLIENT_MODULE);
}

To compile the above program:

1. Generate the globus variables used in the Makefile.

globus-makefile-header --flavor gcc32 globus_gram_job > globus_header

2. Then use the following Makefile.

include globus_header
all: CheckNodes

%.o: %.C
g++ -g -c -I. $(GLOBUS_CPPFLAGS) $< -o $@

CheckNodes: CheckNodes.o
g++ -g -o $@ $(GLOBUS_CPPFLAGS) $(GLOBUS_LDFLAGS) $^

$(GLOBUS_PKG_LIBS)

3. Issue make to compile.

When this program executes, you will see results similar to the following:

[globus@m0 JYCode]$./CheckNodes a1.itso-tupi.com
a1.itso-tupi.com cannot be used
[globus@m0 JYCode]$./CheckNodes t1.itso-tupi.com
t1.itso-tupi.com is okay
122 Enabling Applications for Grid Computing with Globus

Job resubmission
In this example, by using ITSO_GRAM_JOB , we submit a job, check if it has
failed, and, if so, submit it again to another host.

One (simple) method is to get three nodes from the broker and submit the job to
the next node when it fails on the previous one.

The job state management is managed in the callback function shown in
Example 5-12 on page 119. We declare that we want to monitor all changes in
the state of the job (GLOBUS_GRAM_PROTOCOL_JOB_STATE_ALL option
passed to the globus_gram_client_register_job_request() function). Then the
callback modifies (or not) the status of the job via the SetFailed() method
provided by the ITSO_GRAM_JOB class.

The SureJob.C program is the implementation of such a job submission that
checks the state of the job after the Wait() method has returned, by using the
HasFailed() method. If failed, the job is submitted to the next host provided by the
broker.

HasFailed() simply checks the value of a boolean attribute of an
ITSO_GRAM_JOB object that becomes true when the job has failed. This
attribute is set to false by default, but can be modified in the callback function of
the globus_gram_client_callback_allow() function by calling the setFailed()
method of the ITSO_GRAM_JOB object when a failure is detected.

The broker returns a vector of hostnames via the GetLinuxNodes() call (see
“Broker example” on page 127 for more details). It internally tests if the user is
able to submit a job on the node with a globus ping before returning the vector of
host names. For various reasons the job may fail to execute on this node, and
SureJob.C provides a simple way to overcome this failure.

Example 5-17 SureJob.C

#include <string>
#include <vector>
#include <broker.h>
#include "globus_gram_client.h"
#include "itso_gram_job.h"

using namespace itso_broker;

int main(int argc, char ** argv)
{
 vector<string> Nodes;
 GetLinuxNodes(Nodes,3);

 // Quickly check if we can run a job
 Chapter 5. Getting started with development in C/C++ 123

 globus_module_activate(GLOBUS_GRAM_CLIENT_MODULE);

 ITSO_GRAM_JOB job;
 vector<string>::iterator i;
 for(i=Nodes.begin();i!=Nodes.end();++i) {

cout << "Try to submit on " << *i << endl;
job.Submit(*i,"&(executable=/bin/hostname)");
job.Wait();
if (!job.HasFailed())

break;
 };

 globus_module_deactivate(GLOBUS_GRAM_CLIENT_MODULE);
}

Here is the result when a1 and c2 are down.

[globus@m0 JYCode]$./SureJob
Try to submit on a1.itso-apache.com
Contact on the server https://a1.itso-apache.com:48181/27222/1047945694/
Job Failed on: https://a1.itso-apache.com:48181/27222/1047945694/
Try to submit on c2.itso-cherokee.com
Contact on the server https://c2.itso-cherokee.com:40304/20728/1047945691/
Job Failed on: https://c2.itso-cherokee.com:40304/20728/1047945691/
Try to submit on c1.itso-cherokee.com
Contact on the server https://c1.itso-cherokee.com:47993/25310/1047945698/
Job Finished on: https://c1.itso-cherokee.com:47993/25310/1047945698/

5.2.5 Simple broker
A user application should not have to care about locating the resources it needs.
It just needs to describe to a broker the kind of resources it will use to run the
applications: Operating systems, SMP, number of nodes, available applications,
available storage, and so on. This task needs to be done at the application level
via a component called a broker that can be implemented in the application itself,
or as a service that will be queried by the applications. The Globus Toolkit 2.2
does not provide a broker implementation, but it does provide the necessary
functions and framework to create one through the MDS component.

The broker software will communicate via the LDAP protocol in the Globus
Toolkit 2 with the GIIS and GRIS servers. The broker can be linked with other
information stored in databases or plain files that provide other information such
as customer service level agreement, resources topology, network problems,
and cost of service. This third-party data may influence the decisions of what
resource to use in conjunction with the technical information provided by default
with MDS.
124 Enabling Applications for Grid Computing with Globus

Figure 5-3 Working with a broker

Using Globus Toolkit tools
grid-info-search as well as ldapsearch are the shell tools used to query
information through the GIIS server. The -h option allows the user to specify a
specific host, usually the master GIIS server (on top in Figure 5-3), m0 in our lab
environment. The connection to the GIIS can be controlled through GSI security,
such that a valid proxy certificate needs to be generated before running either of
the two commands:

d1user@d1 d1user]$ grid-proxy-init
Your identity: /O=Grid/O=Globus/OU=itso-dakota.com/CN=d1user
Enter GRID pass phrase for this identity:
Creating proxy Done
Your proxy is valid until: Sat Mar 15 06:55:55 2003

An LDAP query implements sophisticated query operations that include:

� Logic operators: AND (&), OR (|), and NOT (!)
� Value operators: =, >=, <=, -= (for approximate matching)
 Chapter 5. Getting started with development in C/C++ 125

For example, here is a way to look up host names of the resources of all nodes
running Linux that use a Pentium processor with a CPU speed greater than 500
Mhz:

ldapsearch -x -p 2135 -h m0 -b "mds-vo-name=maya,o=grid" -s sub
'(&(Mds-Os-name=Linux)(Mds-Cpu-model=Pentium *)(Mds-Cpu-speedMHz>=500))'
Mds-Host-hn
version: 2

#
filter: (&(Mds-Os-name=Linux)(Mds-Cpu-model=Pentium
II*)(Mds-Cpu-speedMHz>=500))
requesting: Mds-Host-hn
#

a1.itso-apache.com, apache, maya, Grid
dn: Mds-Host-hn=a1.itso-apache.com,Mds-Vo-name=apache,Mds-Vo-name=maya,o=Grid
Mds-Host-hn: a1.itso-apache.com

t2.itso-tupi.com, tupi, maya, Grid
dn: Mds-Host-hn=t2.itso-tupi.com,Mds-Vo-name=tupi,Mds-Vo-name=maya,o=Grid
Mds-Host-hn: t2.itso-tupi.com

t1.itso-tupi.com, tupi, maya, Grid
dn: Mds-Host-hn=t1.itso-tupi.com,Mds-Vo-name=tupi,Mds-Vo-name=maya,o=Grid
Mds-Host-hn: t1.itso-tupi.com

The following command can be included in a program to retrieve the list of the
machines that match the criteria:

[d1user@d1 d1user]$ ldapsearch -x -p 2135 -h m0 -b "mds-vo-name=maya,o=grid" -s
sub '(&(Mds-Os-name=Linux)(Mds-Cpu-model=Pentium *)(Mds-Cpu-speedMHz>=500))'
Mds-Host-hn | awk '/Mds-Host-hn:/ { print $2 }' | xargs

t2.itso-tupi.com t1.itso-tupi.com a1.itso-apache.com

In the next example, we look for all machines that have a Pentium processor and
that either runs at a frequency greater than 500 Mhz, or has more than 5 Gb of
available diskspace.

ldapsearch -x -p 2135 -h m0 -b "mds-vo-name=maya,o=grid" -s sub
'(&(Mds-Os-name=Linux)(Mds-Cpu-model=Pentium*)(|(Mds-Cpu-speedMHz>=500)(Mds-Fs-
Total-sizeMB>=5000)))' Mds-Host-hn | awk '/Mds-Host-hn:/ { print $2 }' | xargs

a1.itso-apache.com a2.itso-apache.com b2.itso-bororos.com d2.itso-dakota.com
d1.itso-dakota.com t2.itso-tupi.com t3.itso-tupi.com t1.itso-tupi.com
t0.itso-tupi.com c2.itso-cherokee.com c1.itso-cherokee.com
126 Enabling Applications for Grid Computing with Globus

Graphical tools
There are a variety of GUI tools can be used to browse the Globus MDS server.
Under Linux, a graphical client named gq permits easy browsing. If not available
on your distribution, it can be downloaded from the following URL:

http://biot.com/gq/

Figure 5-4 GQ LDAP browser

Broker example
In our example, we use a basic broker that can be called via a function that takes
the number of required Linux nodes as a parameter and a vector of strings (as
defined in C++) that will contain the list of nodes when the function returns.

This simple broker checks the average CPU workload measured in a
fifteen-minute period of time, the number or processors, and the CPU speed. All
this information is available from the GIIS server for each host as
Mds-Cpu-Free-15mnX100, Mds-Cpu-Total-count, and Mds-Cpu-speedMHz
attributes, respectively. The broker multiplies the three attributes and performs a
quick sort to return the nodes that apparently are the best available. Each node is
checked with the function globus_gram_client_ping() to check if the node is
available.

The complete source code is available in “Broker.C” on page 327.
 Chapter 5. Getting started with development in C/C++ 127

http://biot.com/gq/

We use the LDAP API provided by the Globus Toolkit 2.2 to send the request to
the main GIIS server located on m0 in our lab environment. The definition is
statically defined in the program, but can be easily provided as a parameter to
the GetLinuxNodes() function if needed:

#define GRID_INFO_HOST "m0"
#define GRID_INFO_PORT "2135"
#define GRID_INFO_BASEDN "mds-vo-name=maya, o=grid"

In the function GetLinuxNodes(), the connection with MDS is managed by a
structure of type LDAP* initialized by the two calls, ldap_open() and
ldap_simple_bind_s(), for the connection.

Example 5-18 LDAP connection

 char * server = GRID_INFO_HOST;
 int port = atoi(GRID_INFO_PORT);
 char * base_dn = GRID_INFO_BASEDN;

 LDAP * ldap_server;
/* Open connection to LDAP server */

 if ((ldap_server = ldap_open(server, port)) == GLOBUS_NULL)
 {
 ldap_perror(ldap_server, "ldap_open");
 exit(1);
 }

 /* Bind to LDAP server */
 if (ldap_simple_bind_s(ldap_server, "", "") != LDAP_SUCCESS)
 {
 ldap_perror(ldap_server, "ldap_simple_bind_s");
 ldap_unbind(ldap_server);
 exit(1);
 }

We are only interested in the resources running the Linux operating system. This
can be expressed by the following LDAP query:

(&(Mds-Os-name=Linux)(Mds-Host-hn=*))

Then we can submit the query, as shown in Example 5-14 on page 121.

Example 5-19 Submitting the LDAP query

string filter= "(&(Mds-Os-name=Linux)(Mds-Host-hn=*))";
if (ldap_search_s(ldap_server, base_dn,
 LDAP_SCOPE_SUBTREE,
 const_cast<char*>(filter.c_str()), attrs, 0,
 &reply) != LDAP_SUCCESS)
 {
 ldap_perror(ldap_server, "ldap_search");
128 Enabling Applications for Grid Computing with Globus

 ldap_unbind(ldap_server);
 exit(1);
 }

The result of the query is a set of entries that match the query. Each entry is itself
a set of attributes and their values. The ldap_first_entry() and ldap_next_entry()
functions allow us to walk the list of entries. ldap_first_attribute() and
ldap_next_attribute() allow us to walk the attribute list, and ldap_get_values() is
used to return their value.

Example 5-20 Retrieving results from Globus MDS

LDAPMessage * reply;
LDAPMessage * entry;
vector<Host*> nodes;

for (entry = ldap_first_entry(ldap_server, reply);
entry != GLOBUS_NULL;
entry = ldap_next_entry(ldap_server, entry))
{

//cout << endl << ldap_get_dn(ldap_server, entry) << endl;
BerElement * ber;
char** values;
char * attr;
char * answer = GLOBUS_NULL;
string hostname;
int cpu;
for (attr = ldap_first_attribute(ldap_server,entry,&ber);

attr != NULL;
attr = ldap_next_attribute(ldap_server,entry,ber))
{

values = ldap_get_values(ldap_server, entry, attr);
answer = strdup(values[0]);
ldap_value_free(values);
if (strcmp("Mds-Host-hn",attr)==0)

hostname=answer;
if (strcmp("Mds-Cpu-Free-15minX100",attr)==0)

cpu=atoi(answer);
if (strcmp("Mds-Cpu-Total-count",attr)==0)

cpu_nb=atoi(answer);
if (strcmp("Mds-Cpu-speedMHz",attr)==0)

speed=atoi(answer);
//printf("%s %s\n", attr, answer);

}
// check if we can really use this node
if (!globus_gram_client_ping(hostname.c_str()))
 Chapter 5. Getting started with development in C/C++ 129

nodes.push_back(new Host(hostname,speed*cpu_nb*cpu/100));
};

Only valid nodes (that are available) are selected. The
globus_gram_client_ping() function from the globus_gram_client API is used for
this purpose. We also calculate a weight for each node, speed*cpu_nb*cpu/100.
The higher the weight is, the higher our ranking of the node will be. The broker
will return the best nodes first, as shown in Example 5-21.

Example 5-21 Check the host

if (!globus_gram_client_ping(hostname.c_str()))
 nodes.push_back(new Host(hostname,speed*cpu_nb*cpu/100));

In a real environment, the broker should take into account a variety of factors and
information. Not all of the information has to come from MDS. For instance, some
other factors that might affect the broker’s choice of resources could be:

� Service level agreements
� Time range of utilization
� Client location
� And many others

The broker finally proceeds to sort and set up the vector of strings that will be
returned to the calling function. This logic, as well as the LDAP query, can be
easily customized to meet any specific requirements, as shown in Example 5-22.

Example 5-22 Broker algorithm implementation

class Host {
string hostname;
long cpu;

public:
Host(string h,int c) : hostname(h), cpu(c) {};
~Host() { };
string getHostname() { return hostname; };
int getCpu() { return cpu; };

};

bool predica(Host* a, Host* b) {
 return (a->getCpu() > b->getCpu());
}
..................................

globus_module_activate(GLOBUS_GRAM_CLIENT_MODULE);
..................................

{ // for each entry do
values = ldap_get_values(ldap_server, entry, attr);
130 Enabling Applications for Grid Computing with Globus

answer = strdup(values[0]);
ldap_value_free(values);

if (strcmp("Mds-Host-hn",attr)==0)
hostname=answer;

if (strcmp("Mds-Cpu-Free-15minX100",attr)==0)
 cpu=atoi(answer);
if (strcmp("Mds-Cpu-Total-count",attr)==0)
 cpu_nb=atoi(answer);
if (strcmp("Mds-Cpu-speedMHz",attr)==0)
 speed=atoi(answer);
//printf("%s %s\n", attr, answer);

}
// check if we can really use this node
if (!globus_gram_client_ping(hostname.c_str()))

 nodes.push_back(new Host(hostname,speed*cpu_nb*cpu/100));

 };
sort(nodes.begin(),nodes.end(),predica);

 vector<Host*>::iterator i;
 for(i=nodes.begin();(n>0) && (i!=nodes.end());n--,i++){

 res.push_back((*i)->getHostname());
 //cout << (*i)->getHostname() << " " << (*i)->getCpu() << endl;

 delete *i;
 }
 for(;i!=nodes.end();++i)

 delete *i;

globus_module_deactivate(GLOBUS_GRAM_CLIENT_MODULE);

Example 5-23 is a quick example that uses the broker.C implementation. The
application takes the first argument as the number of required nodes running the
Linux operating system.

Example 5-23 Application using GetLinuxNodes() to get n nodes

#include <string>
#include <vector>
#include <broker.h>

using namespace itso_broker;

int main(int argc, char ** argv)
{
 vector<string> Y;

 GetLinuxNodes(Y,atoi(argv[1]));
 vector<string>::iterator i;
 for(i=Y.begin();i!=Y.end();++i)
 cout << *i << endl;
 Chapter 5. Getting started with development in C/C++ 131

}

Executing the program in our environment results in:

[globus@m0 GLOBUS]$./mds 6
c1.itso-cherokee.com
d2.itso-dakota.com
a1.itso-apache.com
t1.itso-tupi.com
c2.itso-cherokee.com
d1.itso-dakota.com

5.3 Summary
In this chapter, we have introduced the C/C++ programming environment for the
Globus Toolkit and provided several samples for submitting jobs and searching
for resources.

In the next chapter, we will provide samples written in Java that touch most of the
components of the Globus Toolkit.

Note: Do not forget to modify the MDS attributes to suit your environment in
broker.C:

#define GRID_INFO_HOST "m0"
#define GRID_INFO_PORT "2135"
#define GRID_INFO_BASEDN "mds-vo-name=maya, o=grid"
132 Enabling Applications for Grid Computing with Globus

Chapter 6. Programming examples for
Globus using Java

In the previous chapter, some examples of using the Globus Toolkit with C
bindings were provided. In this chapter, we provide Java programming examples
for most of the services provided by the Globus Toolkit.

Though the Globus Toolkit is shipped with bindings that can be used with C or
C++, our examples here are based on Java. We have done this for a few
reasons. First, Java is a popular language that many of our readers may be able
to read well enough to understand the concepts we are conveying. Second,
future versions of the Globus Toolkit will likely ship with Java bindings, and it is
likely that more and more application development will utilize Java.

To use Java with the current Globus Toolkit, V2.2.4, you can use the Java
Commodity Kit (JavaCoG). More information on CoGs is available at:

http://www-unix.globus.org/cog/

Specifically, we recommend The Java CoG Kit User Manual, available at:

http://www.globus.org/cog/manual-user.pdf

This manual describes the Java CoG toolkit in detail, and describes its
installation, configuration, and usage. This chapter assumes that the reader is
familiar with the referenced manual.

6

© Copyright IBM Corp. 2003. All rights reserved. 133

http://www-unix.globus.org/cog/
http://www.globus.org/cog/manual-user.pdf

6.1 CoGs
Commodity Grid Kits is Globus’ way to integrate Globus tools into existing
platforms. CoG Kits allow users to provide Globus Toolkit functionality within
their code without calling scripts, or in some cases without having Globus
installed. There are several COGs available for GT2 development. CoGs are
currently available for Java, Python, CORBA, Perl, and Matlab.

The Java CoG Kit is the most complete of all the current CoG Kits. It is an
extension of the Java libraries and classes that provides Globus Toolkit
functionality. The most current version is 1.1 alpha and is compatible with GT2
and GT3. The examples in this chapter use JavaCoG Version 1.1a. JavaCoG
provides a pure Java implementation of the Globus features.

This chapter provides examples in Java for interfacing with the following Globus
components/functions:

� Proxy: Credential creation and destruction
� GRAM: Job submission and job monitoring
� MDS: Resource searching
� RSL: Resource specification and job execution
� GridFTP: Data management
� GASS: Data management

6.2 GSI/Proxy
The JavaCoG 1.1a Toolkit provides a sample application written in Java to create
a proxy. It has the same name as the standard Globus command line function,
grid-proxy-init.

This tool, by default, creates a proxy in a format that will be used in Globus
Toolkit V3, which is not compatible with Globus Toolkit V2. To create a proxy
valid for Globus Toolkit V2.2, the -old option must be set. This can be done by
simply passing -old as a parameter when executing the Java version of
grid-proxy-init.

In order to create a proxy from an application, the JavaCoG Kit must be installed
and configured. The proper configuration will provide correct paths to the
necessary files in the cog.properties file. The toolkit provides an easy way to
read the cog.properties file.
134 Enabling Applications for Grid Computing with Globus

Creating a proxy
This is a basic programming example that shows how to create a proxy
compatible with the Globus Toolkit V2.2.

The CoGProperties class provides an easy way to access the cog.properties file,
where all file locations are stored.

Example 6-1 Creating a proxy (1 of 3)

import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.OutputStream;
import java.security.PrivateKey;
import java.security.cert.X509Certificate;

import org.globus.common.CoGProperties;
import org.globus.gsi.CertUtil;
import org.globus.gsi.GSIConstants;
import org.globus.gsi.GlobusCredential;
import org.globus.gsi.OpenSSLKey;
import org.globus.gsi.bc.BouncyCastleCertProcessingFactory;
import org.globus.gsi.bc.BouncyCastleOpenSSLKey;
import org.globus.gsi.proxy.ext.ProxyCertInfo;
import org.globus.util.Util;

/**
 * GridProxy
 *
 * Used to create a proxy
 */
public class GridProxy {

X509Certificate certificate;
PrivateKey userKey = null;
GlobusCredential proxy = null;
ProxyCertInfo proxyCertInfo = null;
int bits = 512;
int lifetime = 3600 * 12;
int proxyType;

//Environment Setup
CoGProperties properties = CoGProperties.getDefault();

Important: The JavaCoG 1.1a provides support to both GT3 and GT2.2
proxies. By default, it will create a GT3 proxy. In order to create a GT2.2
proxy, the proxyType field must be set properly.
 Chapter 6. Programming examples for Globus using Java 135

String proxyFile = properties.getProxyFile();
String keyFile = properties.getUserKeyFile();
String certFile = properties.getUserCertFile();

The private key is encrypted in the keyfile. Using the OpenSSL libraries, we can
load the private key and decrypt by providing a password.

The CA public key can be loaded using the CertUtils class.

Example 6-2 Creating a proxy (2 of 3)

public void createProxy() throws Exception {
System.out.println("Entering createProxy()");

//loading certificate
System.out.println("Loading Certificate...");
certificate = CertUtil.loadCertificate(certFile);

String dn = certificate.getSubjectDN().getName();
System.out.println("Your identity: " + dn);

//loading key
System.out.println("Loading Key...");
OpenSSLKey sslkey = new BouncyCastleOpenSSLKey(keyFile);
if (sslkey.isEncrypted()) {

String pwd = null;
pwd = Util.getInput("Enter GRID pass phrase: ");
sslkey.decrypt(pwd);

}
userKey = sslkey.getPrivateKey();

In order to create the proxy, we will create a new certificate using our private key.
This certificate is marked to be a proxy and it has a lifetime. It is important to note
the proxyType variable, which can be used to generate a Globus Toolkit V3 or
V2.2 compatible proxy.

Example 6-3 Creating a proxy (3 of 3)

//signing
System.out.println("Signing...");

proxyType = GSIConstants.GSI_2_PROXY; //switch here between GT2/GT3

BouncyCastleCertProcessingFactory factory =
BouncyCastleCertProcessingFactory.getDefault();

proxy =
factory.createCredential(
136 Enabling Applications for Grid Computing with Globus

new X509Certificate[] { certificate },
userKey,
bits,
lifetime,
proxyType,
proxyCertInfo);

System.out.println(
"Your proxy is valid until "

+ proxy.getCertificateChain()[0].getNotAfter());

//file creation
System.out.println("Writing File...");
OutputStream out = null;
try {

out = new FileOutputStream(proxyFile);

// write the contents
proxy.save(out);

} catch (IOException e) {
System.err.println(

"Failed to save proxy to a file: " + e.getMessage());
System.exit(-1);

} finally {
if (out != null) {

try {
out.close();

} catch (Exception e) {
}

}
}

System.out.println("Exiting createProxy()");
}

Retrieving credentials from an existing proxy
In order to retrieve the credentials from an existing proxy to be used within the
application, the proxy file must be loaded. The proxy file can be located using the
cog.properties file or by just specifying the file name.

Example 6-4 Retrieving credentials

GlobusCredential gcred = new GlobusCredential("/tmp/x509up_u1101");
cred = new GlobusGSSCredentialImpl(gcred, GSSCredential.DEFAULT_LIFETIME);
 Chapter 6. Programming examples for Globus using Java 137

Destroying the proxy
As the proxy is actually a file, destroying the proxy is quite simple. The file can
just be deleted.

Example 6-5 Destroying a proxy

public void proxyDestroy() {

File file = null;
String proxyfile = CoGProperties.getDefault().getProxyFile();
if (proxyfile == null)

return;
file = new File(proxyfile);

Util.destroy(file);
}

6.3 GRAM
The Java CoG Kit provides two packages to access the GRAM API and run
Gram jobs:

� org.globus.gram
� org.globus.gram.internal

The org.globus.gram.internal package contains, as the name indicates, only
internal classes that are used by the main org.globus.gram package. The
org.globus.gram package provides the GRAM client API.

Inside org.globus.gram the most important basic classes are:

� GramJob - Class
� GramJobListener - Interface
� GramException - Exception

6.3.1 GramJob
This class represents a GRAM job you can submit to a gatekeeper. It also
provides methods to cancel the job, register and unregister a callback method,
and send signal commands.

6.3.2 GramJobListener
This interface is used to listen for a status change of a GRAM job.
138 Enabling Applications for Grid Computing with Globus

6.3.3 GramException
This class defines the exceptions thrown by a GRAM job.

GRAM example
This example will submit a simple job to a known resource manager. It shows the
simplest case, where all you need is an RSL string to execute and the resource
manager name. Note that the GRAMTest class implements the GramJobListener
interface. This way we get status updates on our job from the resource manager.
This example will create a new directory on the server called
/home/globus/testdir.

Example 6-6 GRAM example (1 of 2)

import org.globus.Gram;
import org.globus.GramJob;
import org.globus.GramJobListener;

/**
 * Basic GRAM example
 * This example submits a simple Gram Job
 */

public class GRAMTest implements GramJobListener {

//Method called by the listener when the job status changes
public void statusChanged(GramJob job) {

System.out.println(
"Job: "

+ job.getIDAsString()
+ " Status: "
+ job.getStatusAsString());

}

The first thing to do is to create the GRAM job using the RSL string as a
parameter. Job status listeners can be attached to the GRAM job to monitor the
job. The job is submitted to the resource manager by issuing job.request().

Example 6-7 GRAM example (2 of 2)

private void runJob() {
//RSL String to be executed
String rsl =

"&(executable=/bin/mkdir)(arguments=/home/globus/testdir)(count=1)";

Tip: If you want to check if you are allowed to submit a job to a specific
resource manager, the method Gram.ping(rmc) can be issued.
 Chapter 6. Programming examples for Globus using Java 139

//Resource Manager Contact
String rmc = "t2.itso-tupi.com";

//Instantiating the GramJob with the RSL
GramJob job = new GramJob(rsl);
job.addListener(this);

//Pinging resource contact to check if we are allowed to use it
try {

Gram.ping(rmc);
} catch (Exception e) {

System.out.println("Ping Failed: " + e.getMessage());
}

System.out.println("Requesting Job...");

try {
job.request(rmc);

} catch (Exception e) {
System.out.println("Error: "+ e.getMessage());

}

job.removeListener(this);
}

public static void main(String[] args) {

GRAMTest run = new GRAMTest();
run.runJob();

System.out.println("All Done.");
}

}

6.4 MDS
MDS gives users the ability to obtain vital information about the grid and grid
resources. It utilizes LDAP to execute queries. Users can retrieve this information
by using the grid-info-search command line tool. The JavaCog Kit Version
1.1a provides a Java version of grid-info-search that does not use MDS.
Because the MDS class itself is deprecated, users should use JNDI with LDAP
or the Netscape Directory SDK to access MDS functions with the JavaCog.
140 Enabling Applications for Grid Computing with Globus

6.4.1 Example of accessing MDS
Example 6-8 is a condensed version of the GridInfoSearch class provided in the
org.globus.tools package for the JavaCog Kit Version 1.1a. The
MyGridInfoSearch class uses GSI authentication. It uses JNDI to connect to the
LDAP server and searches for the object class specified by a variable. It is
important to note that when using this MyGridProxyInit class that you must have
a valid Globus proxy and your CLASSPATH must contain the location all of the
JavaCog jar files along with the current directory. Without having a valid Globus
proxy you will receive the error Failed to search: GSS-OWNYQ6NTEOAUVGWG.
Without having the proper CLASSPATH you will receive the error Failed to
search: SASL support not available: GSS-OWNYQ6NTEOAUVGWG.

Example 6-8 shows the import statements and variable declarations for the
MyGridInfoSearch class.

Example 6-8 GridInfoSearch example (1 of 4)

import java.util.Hashtable;
import java.util.Enumeration;
import java.net.InetAddress;
import java.net.UnknownHostException;

import javax.naming.Context;
import javax.naming.NamingEnumeration;
import javax.naming.NamingException;
import javax.naming.directory.Attribute;
import javax.naming.directory.SearchControls;
import javax.naming.directory.SearchResult;
import javax.naming.directory.Attributes;
import javax.naming.ldap.LdapContext;
import javax.naming.ldap.InitialLdapContext;

import org.globus.mds.gsi.common.GSIMechanism;

// we could add: aliasing, referral support
public class MyGridInfoSearch {

 //Default values
 private static final String version =

org.globus.common.Version.getVersion();

 private static final String DEFAULT_CTX =

"com.sun.jndi.ldap.LdapCtxFactory";

 private String hostname = "t3.itso-tupi.com";
 private int port = 2135;
 private String baseDN = "mds-vo-name=local, o=grid";
 Chapter 6. Programming examples for Globus using Java 141

 private int scope = SearchControls.SUBTREE_SCOPE;
 private int ldapVersion = 3;
 private int sizeLimit = 0;
 private int timeLimit = 0;
 private boolean ldapTrace = false;
 private String saslMech;

 private String bindDN;
 private String password;
 private String qop = "auth"; //could be auth, auth-int, auth-conf

public MyGridInfoSearch() {
 }

The org.globus.mds.gsi.common.GSIMechanism() method verifies that the GSI
security credentials are valid and sets the context. The search method below
performs two functions: Authentication and searching. It calls the method
GSIMechanism.

Example 6-9 GridInfoSearch example (2 of 4)

//Search the ldap server for the filter specified in the main function
private void search(String filter) {

Hashtable env = new Hashtable();

String url = "ldap://" + hostname + ":" + port;

env.put("java.naming.ldap.version", String.valueOf(ldapVersion));
env.put(Context.INITIAL_CONTEXT_FACTORY, DEFAULT_CTX);
env.put(Context.PROVIDER_URL, url);

if (bindDN != null) {
 env.put(Context.SECURITY_PRINCIPAL, bindDN);
}

//use GSI authentication from grid-proxy-init certificate
saslMech = GSIMechanism.NAME;
env.put("javax.security.sasl.client.pkgs",

"org.globus.mds.gsi.jndi");

 env.put(Context.SECURITY_AUTHENTICATION, saslMech);

 env.put("javax.security.sasl.qop", qop);

LdapContext ctx = null;
142 Enabling Applications for Grid Computing with Globus

//create a new ldap context to hold perform search on filter
try {

 ctx = new InitialLdapContext(env, null);

 SearchControls constraints = new SearchControls();

 constraints.setSearchScope(scope);
 constraints.setCountLimit(sizeLimit);
 constraints.setTimeLimit(timeLimit);

//store the results of the search in the results variable

 NamingEnumeration results = ctx.search(baseDN, filter, constraints);

 displayResults(results);

} catch (Exception e) {
 System.err.println("Failed to search: " + e.getMessage());

} finally {
 if (ctx != null) {

try { ctx.close(); } catch (Exception e) {}
 }
}

}

The above search() method uses the filter to perform an LDAP search. A hash
table is used to store all of the search information, such as the version of LDAP
to use, the type of security authentication to use, and the URL of the LDAP
server to query. The results returned from the search are stored in a results
variable, which is passed to the displayResults() method, shown in
Example 6-10.

Example 6-10 GridInfoSearch example (3 of 4)

// DISPLAY RESULTS OF SEARCH
private void displayResults(NamingEnumeration results)

throws NamingException {

if (results == null) return;

String dn;
String attribute;
Attributes attrs;
Attribute at;
SearchResult si;
 Chapter 6. Programming examples for Globus using Java 143

//use the results variable from search method and store them in a printable
//variable.

while (results.hasMoreElements()) {
 si = (SearchResult)results.next();
 attrs = si.getAttributes();

 if (si.getName().trim().length() == 0) {
dn = baseDN;

 } else {
dn = si.getName() + ", " + baseDN;

 }
 System.out.println("dn: " + dn);

 for (NamingEnumeration ae = attrs.getAll(); ae.hasMoreElements();) {
at = (Attribute)ae.next();

attribute = at.getID();

Enumeration vals = at.getAll();
while(vals.hasMoreElements()) {
 System.out.println(attribute + ": " + vals.nextElement());
}

 }
 System.out.println();
}

}

The displayResults() method above takes the information stored in the results
variable, parses it into separate attributes, and converts it to an enumeration type
so it can be printed.

Example 6-11 GridInfoSearch example (4 of 4)

//Create new instance of MyGridInfoSearch and use specified filter string
public static void main(String [] args) {

MyGridInfoSearch gridInfoSearch = new MyGridInfoSearch();
String filter = "(&(objectclass=MdsOs)(Mds-Os-name=Linux))";
System.out.println("Your search string is: " + filter);

gridInfoSearch.search(filter);

 }
}

The above code creates a new instance of MyGridInfoSearch and passes the
filter to the search method.
144 Enabling Applications for Grid Computing with Globus

6.5 RSL
We introduced RSL in 2.1.2, “Resource management” on page 17. Now we show
some programming examples that utilize RSL.

6.5.1 Example using RSL
Example 6-12 utilizes the org.globus.rsl package provided by the JavaCoG Kit to
parse and display the RSL string.

Example 6-12 RSL example (1 of 6)

mport org.globus.rsl.*;

import java.util.*;
import java.io.*;

import junit.framework.*;
import junit.extensions.*;

public class MyRSL {
public void MyRSL(){
}

public static void main(String[] args) {
RslAttributes attribs;
Map rslsubvars;

String myrslstring =
"&(executable=/bin/echo)(arguments=\"globusproject\")";

String myrslstring2 =
"&(rsl_substitution=(EXECDIR\"/bin\"))(executable=$(EXECDIR)/echo)
(arguments=\"www.globus.org\")";

 String myrslstring3 = "globusproject";
 String myrslstring4 = "arguments";
 String myrslstring5 = "/bin/ls";

try {
// print attributes
attribs = new RslAttributes(myrslstring);
System.out.println("Your rsl string is: "+ attribs.toRSL());
String result = attribs.getSingle("executable");
System.out.println("Your executable is: "+ result);
result = attribs.getSingle("arguments");
System.out.println("Your argument is: "+ result);
System.out.println("");
 Chapter 6. Programming examples for Globus using Java 145

The variable myrslstring contains the RSL string. The string is then stored as
type RslAttributes. The RslAttributes class allows parsing, modifying, and
deleting values in the string. The getSingle() method returns the value of a
specified attribute.

Example 6-13 RSL example (2 of 6)

//remove attributes
System.out.println("Your rsl string is: "+ attribs.toRSL());
attribs.remove(myrslstring4,myrslstring3);
result = attribs.getSingle("arguments");
System.out.println("After removing the argument "+ myrslstring3 + "

your rsl string is: ");
System.out.println("Your rsl string is: "+ attribs.toRSL());
System.out.println("");

Example 6-13 removes “globusproject” from the RSL string
&(executable=/bin/echo)(arguments=\"globusproject\"). The remove() method
finds the attribute in the string and removes the value “globusproject”. The
remaining string is printed to the screen.

Example 6-14 RSL example (3 of 6)

//add attributes
System.out.println("Your rsl string is: "+ attribs.toRSL());
attribs.add(myrslstring4,myrslstring5);
result = attribs.getSingle("arguments");
System.out.println("After adding the arguement "+ result + " your rsl

string is: ");
System.out.println(attribs.toRSL());
System.out.println("");

Example 6-14 adds a value of “www.globus.org” to the attribute argument. The
add() method finds the attribute and adds the value “www.globus.org”.

Example 6-15 RSL example (4 of 6)

/uses rsl substitution
attribs = new RslAttributes(myrslstring2);
System.out.println("Your rsl string is: "+ attribs.toRSL());
rslsubvars = attribs.getVariables("rsl_substitution");
 if (rslsubvars.containsKey("EXECDIR")){
 rslsubvars.get("EXECDIR");
 result = attribs.getSingle("executable");
 System.out.println("Your executable is: "+ result);
 System.out.println("");
 }
146 Enabling Applications for Grid Computing with Globus

Example 6-15 on page 146 uses rsl_substitution to create variables within the
RSL string. The getVariables() method gets all of the variables declared within
rsl_substitution, while the get() method gets the value for the specified variable.
In this case the value for the variable EXECDIR is “/bin”.

Example 6-16 RSL example (5 of 6)

//add new rsl string
ListRslNode rslTree = new ListRslNode(RslNode.AND);
NameOpValue nv = null;
List vals = null;

rslTree.add(new NameOpValue("executable",
 NameOpValue.EQ,
 "/bin/date"));

rslTree.add(new NameOpValue("maxMemory",
 NameOpValue.LTEQ,
 "5"));

rslTree.add(new NameOpValue("arguments",
 NameOpValue.EQ,
 new String [] {"+%H", "+%M", "%S "}));

nv = rslTree.getParam("EXECUTABLE");
System.out.println("The executable you have added is: "+ nv);

nv = rslTree.getParam("MAXMEMORY");
System.out.println("The memory you have added is: "+ nv);

nv = rslTree.getParam("ARGUMENTS");
System.out.println("The arguments you have added is: "+ nv);
System.out.println("");

Example 6-16 uses the ListRslNode class to create attributes. The add() method
creates a new RSL string. In this case the RSL string contains the executable,
/bin/date; the maxMemory, 5 MB; and arguments, +%H +%M +%S. These
values are then stored in NameOpValue.

Example 6-17 RSL example (6 of 6)

//remove attribute from string
ListRslNode node = null;
attribs = new RslAttributes(myrslstring2);
System.out.println("Your rsl string is: "+ attribs.toRSL());

try {
 node = (ListRslNode)RSLParser.parse(ListRslNode.class,

myrslstring2);
 Chapter 6. Programming examples for Globus using Java 147

 } catch(Exception e) {
 System.out.println("Cannot parse rsl string");
 }

nv = node.removeParam("arguments");
 vals = nv.getValues();
 System.out.println("Removing " + nv);
 System.out.println("Your string with the arguemnts removed: " +

node);

catch (Exception e) {
System.out.println("Cannot parse rsl string");

}
}

}

Example 6-17 on page 147 stores an RSL string as a ListRslNode and removes
the argument attribute from the string. The removeParam() method removes the
arguments attribute and all of its variables.

6.6 GridFTP
The JavaCoG Kit provides the org.globus.ftp package to perform FTP and
GridFTP operations. It is basically an implementation of the FTP and GridFTP
protocol.

The FTP client provides the following functionality:

� Client/server FTP file transfer
� Third-party file transfer
� Passive and active operation modes
� ASCII/IMAGE data types
� Stream transmission mode

The GridFTP client extends the FTP client by providing the following additional
capabilities:

� Extended block mode
� Parallel transfers
� Striped transfers
� Restart markers
� Performance markers

Packages
The following packages are available to be used with the Java CoG:

� org.globus.ftp (classes for direct use)
148 Enabling Applications for Grid Computing with Globus

� org.globus.ftp.vanilla (Vanilla FTP protocol)
� org.globus.ftp.extended (GridFTP protocol)
� org.globus.ftp.dc (data channel functionality)
� org.globus.ftp.exception (exceptions)

6.6.1 GridFTP basic third-party transfer
Example 6-18 demonstrates how to perform a third-party file transfer using
extended block mode and GSI security using the GridFTP protocol.

In order to transfer a file from one server to another we need to create a client on
each server. In order to change any FTP client settings like Mode or Security, the
issuer must authenticate to the FTP client using its credentials.

Example 6-18 GridFTP basic third-party transfer (1 of 4)

import org.apache.log4j.Level;
import org.apache.log4j.Logger;
import org.globus.ftp.DataChannelAuthentication;
import org.globus.ftp.GridFTPClient;
import org.globus.ftp.GridFTPSession;
import org.globus.gsi.GlobusCredential;
import org.globus.gsi.gssapi.GlobusGSSCredentialImpl;
import org.ietf.jgss.GSSCredential;

/**
 * GridFTPthird
 *
 * Performs a server to server GridFTP operation
 */
public class GridFTPthird {

private GridFTPClient sClient = null;//source FTPClient
private GridFTPClient dClient = null;//destination FTPClient
private GSSCredential cred = null;

In Example 6-19 we will read the credentials from the proxy file. For
authentication we need a GSSCredential object, so we have to change the
GlobusCredential object to GSSCredential. By doing that it is important to use
the DEFAULT_LIFETIME flag.

Example 6-19 GridFTP basic third-party transfer (2 of 4)

//Load credentials from proxy file
private void getCredentials() throws Exception {

GlobusCredential gcred = new GlobusCredential("/tmp/x509up_u1101");
System.out.println("GCRED: "+gcred.toString());
 Chapter 6. Programming examples for Globus using Java 149

cred = new GlobusGSSCredentialImpl(gcred,
GSSCredential.DEFAULT_LIFETIME);

}

When creating the GridFTPClient it is important to use the GridFTP port, which
defaults to 2811. Authentication is done using the authenticate() method, passing
the GSSCredentials. It is important to authenticate to the GridFTPClient first,
before setting or changing any other properties like transfer-type or mode.

Setting the client manually to active or passive is possible, but not required for
third-party transfers.

Example 6-20 GridFTP basic third-party transfer (3 of 4)

//Initializing the FTPClient on the source server
private void initSourceClient() throws Exception {

sClient = new GridFTPClient("t1.itso-tupi.com", 2811);

sClient.authenticate(cred);//authenticating
sClient.setProtectionBufferSize(16384);//buffersize
sClient.setType(GridFTPSession.TYPE_IMAGE);//transfertype
sClient.setMode(GridFTPSession.MODE_EBLOCK);//transfermode
sClient.setDataChannelAuthentication(DataChannelAuthentication.SELF);
sClient.setDataChannelProtection(GridFTPSession.PROTECTION_SAFE);

}
//Initializing the FTPClient on the destination server
private void initDestClient() throws Exception {

dClient = new GridFTPClient("t2.itso-tupi.com", 2811);
dClient.authenticate(cred);
dClient.setProtectionBufferSize(16384);
dClient.setType(GridFTPSession.TYPE_IMAGE);
dClient.setMode(GridFTPSession.MODE_EBLOCK);
dClient.setDataChannelAuthentication(DataChannelAuthentication.SELF);
dClient.setDataChannelProtection(GridFTPSession.PROTECTION_SAFE);

}

Finally we will start the transfer, defining the source and target files.

Example 6-21 GridFTP basic third-party transfer (4 of 4)

private void start() throws Exception {
System.out.println("Starting Transfer");
sClient.transfer(

"/etc/hosts",
dClient,
150 Enabling Applications for Grid Computing with Globus

"/tmp/ftpcopy.test",
false,
null);

System.out.println("Finished Transfer");
}
public static void main(String[] args) {

GridFTPthird ftp = new GridFTPthird();
try {

ftp.getCredentials();
ftp.initDestClient();
ftp.initSourceClient();
ftp.start();

} catch (Exception e) {
System.out.println("Error: " + e.getMessage());

}
}

}

6.6.2 GridFTP client-server
When transferring a file from a local client to a server or from a server to the
client, a local interface to the file storage must be supplied. The toolkit provides
two interfaces: DataSink for receiving a file, and ataSource for sending a file.

Example 6-22 GridFTP client-server example (1 of 6)

import org.globus.ftp.DataChannelAuthentication;
import org.globus.ftp.GridFTPClient;
import org.globus.ftp.GridFTPSession;
import org.globus.gsi.GlobusCredential;
import org.globus.gsi.gssapi.GlobusGSSCredentialImpl;
import org.ietf.jgss.GSSCredential;
import org.globus.ftp.*;
import java.io.*;

/**
 * GridFTPclient
 *
 * Treansfers a file from the client to the server
 */
public class GridFTPclient {

private GridFTPClient client = null; //Grid FTP Client
private GSSCredential cred = null; //Credentials

First we have to get the credentials from our proxy file.
 Chapter 6. Programming examples for Globus using Java 151

Example 6-23 GridFTP client-server example (2 of 6)

//Load credentials from proxy file
public void getCredentials() throws Exception {

GlobusCredential gcred = new GlobusCredential("/tmp/x509up_u1101");
System.out.println("GCRED: " + gcred.toString());
cred =

new GlobusGSSCredentialImpl(gcred, GSSCredential.DEFAULT_LIFETIME);
}

We create a GridFTPClient on the remote host, authenticate, and set the
parameters.

Example 6-24 GridFTP client-server example (3 of 6)

//Initializes the ftp client on given host
public void createFTPClient(String ftphost) throws Exception {

client = new GridFTPClient(ftphost, 2811);
client.authenticate(cred); //authenticating
client.setProtectionBufferSize(16384); //buffersize
client.setType(GridFTPSession.TYPE_IMAGE); //transfertype
client.setMode(GridFTPSession.MODE_EBLOCK); //transfermode
client.setDataChannelAuthentication(DataChannelAuthentication.SELF);
client.setDataChannelProtection(GridFTPSession.PROTECTION_SAFE);

}

To send a file to a server we have to provide an interface to our local file. This
can be done using the DataSource interface, as shown in Example 6-25, or using
the DataSourceStream. Note, however, that DataSourceStream does not work
with extended block mode. As we are using the extended block mode, we have
to use the DataSource interface.

Example 6-25 GridFTP client-server example (4 of 6)

public void ClientToServer(String localFileName, String remoteFileName)
throws Exception {

DataSource datasource = null;
datasource = new FileRandomIO(new

java.io.RandomAccessFile(localFileName, "rw"));

client.extendedPut(remoteFileName, datasource, null);
}

When receiving a file from a server we have to provide a local file interface to
write the data to. In this case it is the DataSink interface. Again, if extended block
mode is not used, the DataSinkStream can be used instead.
152 Enabling Applications for Grid Computing with Globus

Example 6-26 GridFTP client-server example (5 of 6)

public void ServerToClient(String localFileName, String remoteFileName)
throws Exception {
long size = client.getSize(remoteFileName);
DataSink sink = null;
sink = new FileRandomIO(new java.io.RandomAccessFile(localFileName,

"rw"));

//setting FTPClient to active so be able to send file
client.setLocalPassive();
client.setActive();

client.extendedGet(remoteFileName, size, sink, null);
}

If performance or progress monitoring is required, it can be easily implemented
using the MarkerListener interface. See the JavaCoG API description for more
information.

Example 6-27 GridFTP client-server example (6 of 6)

public static void main(String[] args) {

try{
//Initialize
GridFTPclient gftp = new GridFTPclient();

//get credentials
System.out.println("Getting Credentials");
gftp.getCredentials();

//get ftp client
System.out.println("Creating the FTP Client");
gftp.createFTPClient("d1.itso-dakota.com");

//perform client to server copy
System.out.println("Tranfering Client to Server");
gftp.ClientToServer("/tmp/d2-to-d1", "/tmp/d2-to-d1");

Attention: By default the GridFTPClient is passive, so it can receive files. As
we are going to use the same GridFTPClient to send data, we have to set it to
active, and our local to passive. This can be done using:

client.setLocalPassive();
client.setActive();

Note that the passive side must always be set first.
 Chapter 6. Programming examples for Globus using Java 153

//perform server to client copy
System.out.println("Transfering Server to Client");
gftp.ServerToClient("/tmp/d1-to-d2", "/tmp/d1-to-d2");

System.out.println("All Done");
}catch(Exception e){

System.out.println("Error: " + e.getMessage());
}

}
}

6.6.3 URLCopy
The URLCopy class provides a very easy way of transferring files. It understands
the GSIFTP, GASS, FTP, and FILE protocol.

Example 6-28 URLCopy example (1 of 2)

package test;

import org.globus.io.urlcopy.UrlCopy;
import org.globus.io.urlcopy.UrlCopyListener;
import org.globus.util.GlobusURL;
import org.globus.gsi.gssapi.auth.*;

/**
 * URLCopy
 *
 * Performs a copy based on the URLCopy package
 */
public class URLCopy implements UrlCopyListener{

public void transfer(int transferedBytes, int totalBytes){
System.out.println("Transferred "+transferedBytes+" of "+totalBytes + "

Bytes");
}
public void transferCompleted(){

System.out.println("Transfer Complete");
}
public void transferError(Exception e){

System.out.println("Error: "+e.getMessage());
}

All we need to do is to assign the URLCopy object properties like DestinationUrl
and SourceAuthorization. If the transfer is a third-party transfer, then the flag
must be set using ucopy.setUseThirdPartyCopy(true).
154 Enabling Applications for Grid Computing with Globus

Example 6-29 URLCopy example (2 of 2)

public void ucopy(){
try{
UrlCopy ucopy = new UrlCopy();
GlobusURL durl = new

GlobusURL("gsiftp://t2.itso-tupi.com//tmp/urlcopy");
GlobusURL surl = new GlobusURL("gsiftp://t1.itso-tupi.com//etc/hosts");
Authorization srcAuth = null;
Authorization dstAuth = null;

dstAuth = new
IdentityAuthorization("/O=Grid/O=Globus/CN=host/t2.itso-tupi.com");

srcAuth = new
IdentityAuthorization("/O=Grid/O=Globus/CN=host/t1.itso-tupi.com");

//ucopy.addUrlCopyListener(this);
ucopy.setDestinationUrl(durl);
ucopy.setSourceUrl(surl);
ucopy.setUseThirdPartyCopy(true);
ucopy.setSourceAuthorization(srcAuth);
ucopy.setDestinationAuthorization(dstAuth);
System.out.println("Start Copy()");
ucopy.copy();

System.out.println("All done");
}catch(Exception e){

System.out.println("Error: "+e.getMessage());
}

}
public static void main(String[] args) {

URLCopy u = new URLCopy();
u.ucopy();

}
}

6.7 GASS
The GASS API can be used to send or retrieve data, files, or application output.
When, for example, submitting a job in batch mode, the result of the job can be
picked up using the GASS API or any standard binary tool provided by the
Globus Toolkit. When using interactive job submission, the GASS API can be
used to retrieve the output of an application by redirecting standard out and
standard error to the client.
 Chapter 6. Programming examples for Globus using Java 155

These two examples will show how to submit a job and retrieve the results:

� GASS Batch
� GASS Interactive

6.7.1 Batch GASS example
The following examples are of batch GASS.

Example 6-30 Batch GASS example (1 of 4)

import org.globus.gram.Gram;
import org.globus.gram.GramJob;
import org.globus.gram.GramJobListener;
import org.globus.io.gass.server.GassServer;
import org.globus.util.deactivator.Deactivator;

/**
 * Example of using GRAM & GASS in batch mode
 *
 */
public class GASSBatch implements GramJobListener{

private GassServer gServer = null;
private String gURL = null;
private String JobID = null;

//To Start the GASS Server
private void startGassServer() {

try {
gServer = new GassServer(0);
gURL = gServer.getURL();

} catch (Exception e) {
System.out.println("GassServer Error" + e.getMessage());

}
gServer.registerDefaultDeactivator();

System.out.println("GassServer started...");
}

Starting the GASS server and getting the server URL will provide us with the
ability to retrieve data later. By registering the default deactivator we can destroy
the GASS server before we exit the program.

Example 6-31 Batch GASS example (2 of 4)

//Method called by the GRAMJobListener
public void statusChanged(GramJob job) {
156 Enabling Applications for Grid Computing with Globus

System.out.println(
"Job: "

+ job.getIDAsString()
+ " Status: "
+ job.getStatusAsString());

}
private synchronized void runJob() {

//RSL String to be executed
String RSL = "&(executable=/bin/ls)(directory=/bin)(arguments=-l)";
String gRSL = null;
//Resource Manager Contact
String rmc = "t2.itso-tupi.com";

gRSL =
RSL

+ "(stdout=x-gass-cache://$(GLOBUS_GRAM_JOB_CONTACT)stdout test)"
+ "(stderr=x-gass-cache://$(GLOBUS_GRAM_JOB_CONTACT)stderr test)";

//Instantiating the GramJob with the RSL
GramJob job = new GramJob(gRSL);
job.addListener(this);

Our RSL string that will execute an application needs to be modified, so the
standard out and error is written to the GASS server.

Example 6-32 Batch GASS example (3 of 4)

System.out.println("Requesting Job...");
try {

job.request(rmc);
} catch (Exception e) {

System.out.println("Error: " + e.getMessage());
}

}

We request the job and deactivate GASS using the deactivator when the job is
done.

Example 6-33 Batch GASS example (4 of 4)

public static void main(String[] args) {

System.out.println("Starting GRAM & GASS in Batch mode...");

GASSBatch run = new GASSBatch();
run.startGassServer();
 Chapter 6. Programming examples for Globus using Java 157

run.runJob();
System.out.println("Job Sumbitted Done.");
Deactivator.deactivateAll();

}
}

6.7.2 Interactive GASS example
In interactive mode we will reroute the output of the application to our client,
instead of storing it.

Example 6-34 Interactive GASS example (1 of 3)

import org.globus.gram.Gram;
import org.globus.gram.GramJob;
import org.globus.gram.GramJobListener;
import org.globus.io.gass.server.GassServer;
import org.globus.io.gass.server.JobOutputListener;
import org.globus.io.gass.server.JobOutputStream;
import org.globus.util.deactivator.Deactivator;

/**
 * Example of using GRAM & GASS in interactive mode
 *
 */
public class GASSInteractive implements GramJobListener, JobOutputListener {

private GassServer gServer = null;
private String gURL = null;
private JobOutputStream oStream = null; //OutputStream
private JobOutputStream eStream = null; //ErrorStream
private String JobID = null;

//To Start the GASS Server
private void startGassServer() {

try {
gServer = new GassServer(0);
gURL = gServer.getURL();

} catch (Exception e) {
System.out.println("GassServer Error" + e.getMessage());

}
gServer.registerDefaultDeactivator();

// job output vars
oStream = new JobOutputStream(this);
eStream = new JobOutputStream(this);
JobID = String.valueOf(System.currentTimeMillis());
158 Enabling Applications for Grid Computing with Globus

// register output listeners
gServer.registerJobOutputStream("out-" + JobID, oStream);
gServer.registerJobOutputStream("err-" + JobID, eStream);
System.out.println("GassServer started...");

}

We register listeners to the GASS server so that we can receive the output of the
application, and also know when the application is finished.

The method outputChanged() will provide the screen output of the application
line by line. In order to display it we can just reroute it to our screen.

The method outputClosed() tells us that there will be no more output from the
application.

Example 6-35 Interactive GASS example (2 of 3)

//Method called by the JobOutputListener
public void outputChanged(String output) {

System.out.println("JobOutput: " + output);
}
//Method called by the JobOutputListener
public void outputClosed() {

System.out.println("JobOutput: OutputClosed");
}
//Method called by the GRAMJobListener
public void statusChanged(GramJob job) {

System.out.println(
"Job: "

+ job.getIDAsString()
+ " Status: "
+ job.getStatusAsString());

if (job.getStatus() == GramJob.STATUS_DONE) {
synchronized (this) {

notify();
}

}
}

Again we enhance the RSL string so that the output will be rerouted to our client,
and finally we run the application.

Example 6-36 Interactive GASS example (3 of 3)

private synchronized void runJob() {
 Chapter 6. Programming examples for Globus using Java 159

//RSL String to be executed
String RSL = "&(executable=/bin/ls)(directory=/bin)(arguments=-l)";
String gRSL = null;

//Resource Manager Contact
String rmc = "t2.itso-tupi.com";

gRSL =
"&"

+ RSL.substring(0, RSL.indexOf('&'))
+ "(rsl_substitution=(GLOBUSRUN_GASS_URL "
+ gURL
+ "))"
+ RSL.substring(RSL.indexOf('&') + 1, RSL.length())
+ "(stdout=$(GLOBUSRUN_GASS_URL)/dev/stdout-"
+ JobID
+ ")"
+ "(stderr=$(GLOBUSRUN_GASS_URL)/dev/stderr-"
+ JobID
+ ")";

//Instantiating the GramJob with the RSL
GramJob job = new GramJob(gRSL);
job.addListener(this);

try {
Gram.ping(rmc);

} catch (Exception e) {
System.out.println("Ping Failed: " + e.getMessage());

}

System.out.println("Requesting Job...");
try {

job.request(rmc);

} catch (Exception e) {
System.out.println("Error: " + e.getMessage());

}
//wait for job completion
synchronized (this) {

try {
wait();

} catch (InterruptedException e) {
System.out.println("Error: " +e.getMessage());

}
}

}
public static void main(String[] args) {

System.out.println("Starting GRAM & GASS interactive...");
160 Enabling Applications for Grid Computing with Globus

GASSInteractive run = new GASSInteractive();
run.startGassServer();
run.runJob();
System.out.println("All Done.");
Deactivator.deactivateAll();

}
}

6.8 Summary
In this chapter we have provided several programming examples of using the
Java CoG to access the various services provided by the Globus Toolkit.

By using these examples and the sample code provided with the Java CoG,
readers can gain an understanding of the various Java classes provided by the
CoG and start utilizing them to create their own applications.
 Chapter 6. Programming examples for Globus using Java 161

162 Enabling Applications for Grid Computing with Globus

Chapter 7. Using Globus Toolkit for
data management

There are two major components for data management in the Globus Toolkit:

� Data transfer and access
� Data replication and management

For basic data transfer and access, the toolkit provides the Globus Access to
Secondary Storage (GASS) module, which allows applications to access remote
data by specifying a URL.

For high-performance and third-party data transfer and access, Globus Toolkit
Version 2 implements the GridFTP protocol. This protocol is based on the IETF
FTP protocol, and adds extensions for partial file transfer, striped/parallel file
segment transfer, TCP buffer control, progress monitoring, and extended restart.

7

© Copyright IBM Corp. 2003. All rights reserved. 163

Figure 7-1 Data management interfaces

Figure 7-1 provides a view of the various modules associated with data
management in the Globus Toolkit and how they relate to one another. These
modules are described in more detail throughout this chapter.

globus_gass_transfer globus_gass_ftp_client

globus_gass_copy

globus_gass_ftp_control

globus_replica_catalog

globus_io GSI PKI

globus_common

ldap client

globus_replica_manager

Globus Data Grid API
164 Enabling Applications for Grid Computing with Globus

7.1 Using a Globus Toolkit data grid with RSL
The Global Access to Secondary Storage is a simple, multi-protocol transfer
software integrated with GRAM. The purpose of GASS is to provide a simple way
to enable grid applications to securely stage and access data to and from remote
file servers using a simple protocol-independent API. GASS features can easily
be used via the RSL language describing the job submission.

By using URLs to specify file names, RSL permits jobs to work on remotely
stored files. GASS transparently manages the data movement. Using https:// or
http:// prefixes in a URL connects to a remote GASS server, and using gsiftp:// as
a prefix, connects to gsiftp servers.

All files specified as input parameters are copied to each node, so each node
works on its local copy. If multiple jobs output data to the same file, the data is
appended to the file.

Table 7-1 is a list of RSL attributes that are used to stage files in and out.

Table 7-1 Data movement RSL-specific attributes

Attributes Description

executable The name of the executable file to run on the remote machine. If
the value is a GASS URL, the file is transferred to the remote
GASS cache before executing the job and removed after the job
has terminated.

file_clean_up Specifies a list of files that will be removed after the job is
completed.

file_stage_in Specifies a list of ("remote URL" "local file") pairs that indicate
files to be staged to the nodes that will run the job.

file_stage_in_share
d

Specifies a list of ("remote URL" "local file") pairs that indicate
files to be staged into the cache. A symbolic link from the cache
to the "local file" path will be made.

file_stage_out Specifies a list of ("local file" "remote URL") pairs that indicate
files to be staged from the job to a GASS-compatible file server.

gass_cache Specifies location to override the GASS cache location
(~/.globus/.gass-cache by default).
 Chapter 7. Using Globus Toolkit for data management 165

remote_io_url Writes the given value (a URL base string) to a file, and adds the
path to that file to the environment through the
GLOBUS_REMOTE_IO_URL environment variable. If this is
specified as part of a job restart RSL, the job manager will
update the file's contents. This is intended for jobs that want to
access files via GASS, but the URL of the GASS server has
changed due to a GASS server restart.

stdin The name of the file to be used as standard input for the
executable on the remote machine. If the value is a GASS URL,
the file is transferred to the remote GASS cache before
executing the job, and removed after the job has terminated.

stdout The name of the remote file to store the standard output from the
job. If the value is a GASS URL, the standard output from the job
is transferred dynamically during the execution of the job.

stderr The name of the remote file to store the standard error from the
job. If the value is a GASS URL, the standard error from the job
is transferred dynamically during the execution of the job.

Attributes Description
166 Enabling Applications for Grid Computing with Globus

Figure 7-2 File staging

Let us consider an example where a program called MyProg generates an output
file named OutputFileGenerated on the execution node. This output file is
retrieved from the execution node and saved as /tmp/RetrievedFile on the
machine where the globusrun command was issued.

Example 7-1 Staging files out with RSL

globusrun -o -s -r t2 '&(executable=/bin/MyProg) (arguments=-l) (count=1)
(file_stage_out=(OutputFileGenerated $(GLOBUSRUN_GASS_URL)/tmp/RetrievedFile))'

$(GLOBUSRUN_GASS_URL) is automatically expanded to the URL of the local
GASS server started when globusrun is issued. This GASS server is started
locally by using the -s option, and is used when access to files stored on the
submission node is requested.

Example 7-2 on page 168 is a similar example, but the output file is put on a
GridFTP server running on b1.

GRAM
gatekeeper

GRAM
Job

Manager

job

GASS
Server

RSL string

GASS
client

GridFTP
Server

cache

Execution node

Applications

starts

submits

data movement
 Chapter 7. Using Globus Toolkit for data management 167

Example 7-2 Using GridFTP in RSL

globusrun -o -r t2 '&(executable=/bin/MyProg) (arguments=-l) (count=1)
(file_stage_out=(OutputFileGenerated gsiftp://b1/tmp/RetrievedFileOnb1))'

The file_stage_in directive performs the opposite task. It can move data from one
location to the execution node. In the following examples, the
FileCopiedOnTheExecutionNodes is copied into the home directory of the user
used for the job execution on the execution node and used by the Exec program.
The second example uses the local GASS server started by globusrun.

Example 7-3 Staging files in

globusrun -o -s -r a1 '&(executable=Exec) (arguments=-l) (count=1)
(file_stage_in=(gsiftp://m0/tmp/files_on_storage_server
FileCopiedOnTheExecutionNodes))'

globusrun -o -s -r t1 '&(executable=Exec) (arguments=-l) (count=1)
(file_stage_in=($(GLOBUSRUN_GASS_URL)/local_file_on_the_submission_node
FileCopiedOnTheExecutionNodes))'

You can use file_stage_in_shared to copy the file in the GASS cache directory.
Only a symbolic link to the file will be created.

Example 7-4 Example using file_stage_in_shared

[globus@m0 globus]$ globusrun -o -s -r a1 '&(executable=/bin/ls)
(arguments=-l) (count=1) (file_stage_in_shared=(gsiftp://m0/tmp/File NewFile))
(count=1)'
total 748
lrwxrwxrwx 1 muser mgroup 122 Mar 14 00:03 NewFile->
/home/muser/.globus/.gass_cache/local/md5/3b/66/18/bd493014532754516a612f2ac6/m
d5/cc/3f/1d/aae03be0ceb81e214e2a449ac3/data

If a file is already there, the job will fail.

Example 7-5 Example of failure

[globus@m0 globus]$ globusrun -o -s -r a1 '&(executable=/bin/ls)
(arguments=-l) (file_stage_in=(gsiftp://m0/tmp/O NewFile)) (count=1)'
GRAM Job failed because the job manager could not stage in a file (error code
135)

You can use file_clean_up to fix this problem and delete all files that were staged
during the job execution.
168 Enabling Applications for Grid Computing with Globus

7.2 Globus Toolkit data grid low-level API: globus_io
To use this API, you must activate the GLOBUS_IO module in your program:

globus_module_activate(GLOBUS_IO_MODULE)

The globus_io library was motivated by the desire to provide a uniform I/O
interface to stream and datagram style communications. It provides wrappers for
using TCP and UDP sockets and file I/O.

The Globus Toolkit 2.2 uses a specific handle to refer to a file. It is defined as
globus_io_handle_t.

Two functions are provided to retrieve I/O handles:

� globus_io_file_posix_convert(), which can convert a normal file descriptor into
a Globus Toolkit 2.2 handle

� globus_io_file_open(), which creates a Globus Toolkit 2.2 handle from a file
name

The Globus Toolkit 2.2 provides I/O functions that map the POSIX systems calls
and use the Globus Toolkit 2.2 file handle as a parameter instead of the file
descriptor.

� globus_io_read(), globus_io_write()
� globus_io_writev() for vectorized write operations

Globus Toolkit 2.2 provides an asynchronous or non-blocking I/O that uses a
callback mechanism. The callback is a function given as a parameter to the
globus_io calls that will be called when the operation has completed. By using
condition variables, the call back can alert the process that the operation has
completed.

� globus_io_register_read(),globus_io_register_write()
� globus_io_register_writev()

The Globus Toolkit 2.2 provides functions to manipulate socket attributes, and by
doing so extends the POSIX system sockets calls. In particular, it provides a set
of functions, globus_io_attr_*(), that are used to establish authentication and
authorization at the socket level (see Example 7-12 on page 173 and
Example 7-13 on page 176).

Note: The complete Globus IO API documentation is available from the
Globus project Web site at the following URL:

http://www-unix.globus.org/api/c-globus-2.2/globus_io/html/index.html
 Chapter 7. Using Globus Toolkit for data management 169

http://www-unix.globus.org/api/c-globus-2.2/globus_io/html/index.html

An Internet socket is described as a globus_io_handle_t structure in the
globus_io API. This handle is created when calling the followings Globus
functions:

� globus_io_tcp_create_listener()
� globus_io_tcp_accept(), globus_io_tcp_register_accept()
� globus_io_tcp_connect()

These functions are respectively equivalent to the listen(), accept(), and
connect() POSIX system calls. globus_io_tcp_register_accept() is the
asynchronous version of globus_io_tcp_accept().

The Globus API adds authorization, authentication, and encryption features to
the normal POSIX sockets via GSI and OpenSSL libraries. A handle of type
globus_io_secure_authorization_data_t is used to manipulate these additional
security attributes. It needs to be initialized via
globus_io_secure_authorization_data_initialize() before being used in other
functions.

� globus_io_attr_set_secure_authentication_mode() is used to determine
whether to call the GSSAPI security context establishment functions once a
socket connection is established. A credential handle is provided to the
function and needs to be initialized before it is used. See the getCredential()
function in Example 7-12 on page 173.

Example 7-6 Activating GSSAPI security on a socket communication

globus_io_attr_set_secure_authentication_mode(
&io_attr, //globus_io_handle_t
GLOBUS_IO_SECURE_AUTHENTICATION_MODE_GSSAPI, // use GSI
credential_handle));

� globus_io_attr_set_secure_authorization_mode() is used to determine what
security identities to authorize as the peer-to-security handshake that is done
when making an authenticated connection. The functions take both a
globus_io handle and a Globus secure attribute handle.

The mode is specified in the second argument.
GLOBUS_IO_SECURE_AUTHORIZATION_MODE_SELF authorizes any
connection with the same credentials as the local credentials used when
creating this handle.

For the complete list of available authorization modes, see

http://www-unix.globus.org/api/c-globus-2.2/globus_io/html/group__security.html
#a7

Example 7-7 globus_io_attr_set_secure_authorization_mode()

globus_io_attr_set_secure_authorization_mode(
170 Enabling Applications for Grid Computing with Globus

http://www-unix.globus.org/api/c-globus-2.2/globus_io/html/group__security.html#a7

 &io_attr, //globus_io_handle_t
 GLOBUS_IO_SECURE_AUTHORIZATION_MODE_SELF,
 &auth_data)

� globus_io_attr_set_secure_channel_mode() is used to determine if any data
wrapping should be done on the socket connection.
GLOBUS_IO_SECURE_CHANNEL_MODE_GSI_WRAP indicates that data
protection is provided, with support for GSI features, such as delegation.

Example 7-8 globus_io_attr_set_secure_channel_mode()

globus_io_attr_set_secure_channel_mode(
&io_attr, //globus_io_handle_t
GLOBUS_IO_SECURE_CHANNEL_MODE_GSI_WRAP);

� globus_io_attr_set_secure_protection_mode() is used to determine if any
data protection should be done on the socket connection. Use
GLOBUS_IO_SECURE_PROTECTION_MODE_PRIVATE for encrypted
messages, GLOBUS_IO_SECURE_PROTECTION_MODE_SAFE to only
check the message integrity, and
GLOBUS_IO_SECURE_PROTECTION_MODE_NONE for no protection.

Example 7-9 Encrypted sockets

globus_io_attr_set_secure_protection_mode(
&io_attr, //globus_io_handle_t
GLOBUS_IO_SECURE_PROTECTION_MODE_PRIVATE);

� globus_io_attr_set_secure_delegation_mode() is used to determine whether
the process' credentials should be delegated to the other side of the
connection. GLOBUS_IO_SECURE_DELEGATION_MODE_FULL_PROXY
delegates full credentials to the server.

Example 7-10 Delegation mode

globus_io_attr_set_secure_delegation_mode(
&io_attr, //globus_io_handle_t
GLOBUS_IO_SECURE_DELEGATION_MODE_FULL_PROXY);

� globus_io_attr_set_secure_proxy_mode() is used to determine whether the
process should accept limited proxy certificates for authentication. Use
GLOBUS_IO_SECURE_PROXY_MODE_MANY to accept any proxy as a
valid authentication.

Example 7-11 globus_io_set_secure_proxy_mode()

globus_io_attr_set_secure_proxy_mode(
&io_attr, //globus_io_handle_t
 Chapter 7. Using Globus Toolkit for data management 171

GLOBUS_IO_SECURE_PROXY_MODE_MANY);

7.2.1 globus_io example
In this example we establish a secure and authenticated communication
between two hosts by using the globus_io functions. We submit from host
m0.itso-maya.com a job (gsiclient2) to t2.itso-tupi.com that will try to
communicate with a server already running on m0.itso-maya.com (gsiserver2).
This process will print Hello World as soon as the message is received. The two
processes will use mutual authentication, which means that they need to run with
the same credentials on both hosts. By using the gatekeeper, the submitted job
will use the same credentials as the user that submitted the job. The
communication will be securely authenticated between the two hosts. The
communication is also encrypted: We use the
globus_io_attr_set_secure_protection_mode() call to activate encryption.

Figure 7-3 Using globus_io for secure communication

To compile the two programs:

1. First create the Makefile header with:

globus-makefile-header -flavor gcc32 globus_io globus_gss_assist >
globus_header

t2.itso-tupi.comm0.itso-maya.com

globus credentials

globus
credentials
delegation

gsiserver2 gsiclient2

Hello World

secured, authenticated

socket communication

submission

gatekeepker
172 Enabling Applications for Grid Computing with Globus

2. Use the following Makefile to compile:

include globus_header

all: gsi gsisocketclient gsisocketserver

gsisocketclient: gsisocketclient.C
g++ -g -o gsisocketclient $(GLOBUS_CPPFLAGS) $(GLOBUS_LDFLAGS)

gsisocketclient.C $(GLOBUS_PKG_LIBS)

gsisocketserver: gsisocketserver.C
g++ -g -o gsisocketserver $(GLOBUS_CPPFLAGS) $(GLOBUS_LDFLAGS)

gsisocketserver.C $(GLOBUS_PKG_LIBS)

3. Start the monitoring program on m0.itso-maya.com by issuing:

./gsisocketserver

4. Submit the job on t2.itso-tupi.com:

[globus@m0 globus]$ grid-proxy-init
Your identity: /O=Grid/O=Globus/OU=itso-maya.com/CN=globus
Enter GRID pass phrase for this identity:
Creating proxy ... Done
Your proxy is valid until: Mon Mar 3 23:37:23 2003
[globus@m0 globus]$ gsiscp gsiclient2 t2.itso-tupi.com:.
gsiclient2 100% |***************************************| 126
KB 00:00
[globus@m0 globus]$ globusrun -o -r t2
'&(executable=/home/globus/gsisocketclient)
(arguments=http://m0.itso-maya.com:10000)'
m0.itso-maya.com
10000
23

On the monitoring side you should see:

[globus@m0 globus]$./gsisocketserver
Hello world (secured) !@23

7.2.2 Skeleton source code for creating a simple GSI socket
Below we review the skeleton source code for creating a simple GSI socket.

Example 7-12 globus-io client - gsisocketclient.C

#include <iostream>
#include <globus_io.h>
#include “globus_gss_assist.h”
#include <string>

// macro to use a C++ string class as a char* parmeter in a C function
 Chapter 7. Using Globus Toolkit for data management 173

#define STR(a) const_cast<char*>(a.c_str())

//***
// This macro is defined for debugging reasons. It checks the status of the
// globus calls and displays the Globus error message
// The t variable needs to be defined before
// **
#define _(a) t=a;\

if (t!=GLOBUS_SUCCESS) {\
 cerr <<
globus_object_printable_to_string(globus_error_get(t));\
 }
// **

// **
// This function is used to check the validity of the local credentials
// probably generated by gatekeeper or gsi ssh server
// **
bool getCredential(gss_cred_id_t* credential_handle) {

OM_uint32 major_status;
OM_uint32 minor_status;

major_status = globus_gss_assist_acquire_cred(&minor_status,
 GSS_C_INITIATE, /* or GSS_C_ACCEPT */
 credential_handle);

 if (major_status != GSS_S_COMPLETE)
return false;

else
return true;

}

// **
// **
// Here is the main program: create a socket, connect to the server and say
Hello
// _() macro is used to check the error code of each Globus function and
// display the Globus Error message
// The first argument will be used to indicate the server to connect
// to, for example http://m0.itso-maya.com:10000
//

main(int argc, char** argv) {

//First thing to do, activate the module !
globus_module_activate(GLOBUS_IO_MODULE);

globus_io_attr_t io_attr;
globus_io_tcpattr_init(&io_attr);
174 Enabling Applications for Grid Computing with Globus

gss_cred_id_t credential_handle = GSS_C_NO_CREDENTIAL;
if (!getCredential(&credential_handle)) {

cerr << “you are not authenticated”;
exit(1);

}

globus_io_secure_authorization_data_t auth_data;
globus_io_secure_authorization_data_initialize (&auth_data);
globus_result_t t;
_(globus_io_attr_set_secure_authentication_mode(

 &io_attr,
 GLOBUS_IO_SECURE_AUTHENTICATION_MODE_GSSAPI, // use GSI
 credential_handle));

_(globus_io_attr_set_secure_authorization_mode(
 &io_attr,
 GLOBUS_IO_SECURE_AUTHORIZATION_MODE_SELF,
 &auth_data));

// We want encrypted communication !
// if not use GLOBUS_IO_SECURE_CHANNEL_MODE_CLEAR
_(globus_io_attr_set_secure_channel_mode(

&io_attr,
GLOBUS_IO_SECURE_CHANNEL_MODE_GSI_WRAP));

_(globus_io_attr_set_secure_protection_mode(
&io_attr,
GLOBUS_IO_SECURE_PROTECTION_MODE_PRIVATE)); //encryption

// will see later for the delegation
_(globus_io_attr_set_secure_delegation_mode(

&io_attr,
GLOBUS_IO_SECURE_DELEGATION_MODE_FULL_PROXY));

_(globus_io_attr_set_secure_proxy_mode(
 &io_attr,
 GLOBUS_IO_SECURE_PROXY_MODE_MANY));

// The first argument like http://m0.itso-tupi.com:10000 is
// parsed by using the globus_url_parse() function
globus_url_t parsed_url;
if (globus_url_parse(argv[1], &parsed_url)!=GLOBUS_SUCCESS) {

cerr << “invalid URL” << endl;
exit(1);

};

globus_io_handle_t connection;
// use globus_io_tcp_register_connect for
// asynchronous connect. Here, this is a blocking call
_(globus_io_tcp_connect(

parsed_url.host,
parsed_url.port,
&io_attr,
 Chapter 7. Using Globus Toolkit for data management 175

&connection));
cout << parsed_url.host << endl << parsed_url.port << endl;

globus_size_t n;
string msg(“Hello world (secured) !”);
_(globus_io_write(&connection,

(globus_byte_t*)STR(msg),
msg.length(),
&n));

cout << n <<endl;
};

Example 7-13 globus-io example server - gsisocketserver.C

#include <iostream>
#include <globus_io.h>
#include <globus_io.h>
#include “globus_gss_assist.h”

//***
// This macro is defined for debugging reasons. It checks the status of the
// globus calls and displays the Globus error message
// The t variable needs to be defined before
// **
#define _(a) t=a;\
 if (t!=GLOBUS_SUCCESS) {\
 cerr <<
globus_object_printable_to_string(globus_error_get(t));\
 exit(1);\
 }
//**
// This function is used to check the validity of the local credentials
// probably generated by the grid-proxy-init
bool getCredential(gss_cred_id_t* credential_handle) {

 OM_uint32 major_status;
 OM_uint32 minor_status;

 major_status = globus_gss_assist_acquire_cred(&minor_status,
 GSS_C_INITIATE, /* or GSS_C_ACCEPT */

 credential_handle);

 if (major_status != GSS_S_COMPLETE)
 return false;
 else
 return true;

}

//**
176 Enabling Applications for Grid Computing with Globus

// Main program: create a listen socket, receive the message and close the
socket
// _() macro is used to check the error code of each Globus function and
// display the Globus Error message
// **
main() {

//First thing to do, activate the module !
 globus_module_activate(GLOBUS_IO_MODULE);
 globus_result_t t;

 globus_io_attr_t io_attr;
 globus_io_tcpattr_init(&io_attr);

 gss_cred_id_t credential_handle = GSS_C_NO_CREDENTIAL;
 // Authenticate with the GSSAPI library

 if (!getCredential(&credential_handle)) {
 cerr << “you are not authenticated”;
 exit(1);
 };

 globus_io_secure_authorization_data_t auth_data;
globus_io_secure_authorization_data_initialize (&auth_data);
_(globus_io_attr_set_secure_authentication_mode(

&io_attr,
 GLOBUS_IO_SECURE_AUTHENTICATION_MODE_GSSAPI,

credential_handle));
 _(globus_io_attr_set_secure_authorization_mode(
 &io_attr,

 GLOBUS_IO_SECURE_AUTHORIZATION_MODE_SELF,
 &auth_data));
 // We want encrypted communication !
 // if not use GLOBUS_IO_SECURE_CHANNEL_MODE_CLEAR
 _(globus_io_attr_set_secure_channel_mode(
 &io_attr,
 GLOBUS_IO_SECURE_CHANNEL_MODE_GSI_WRAP));
 _(globus_io_attr_set_secure_protection_mode(
 &io_attr,
 GLOBUS_IO_SECURE_PROTECTION_MODE_PRIVATE)); //encryption
 // will see later for the delegation
 _(globus_io_attr_set_secure_delegation_mode(
 &io_attr,
 GLOBUS_IO_SECURE_DELEGATION_MODE_FULL_PROXY));

_(globus_io_attr_set_secure_proxy_mode(
&io_attr,
GLOBUS_IO_SECURE_PROXY_MODE_MANY));

unsigned short port=10000;
globus_io_handle_t handle;
_(globus_io_tcp_create_listener(
 Chapter 7. Using Globus Toolkit for data management 177

&port,
-1,
&io_attr,
&handle));

_(globus_io_tcp_listen(&handle));
globus_io_handle_t newhandle;
_(globus_io_tcp_accept(&handle,GLOBUS_NULL,&newhandle));
globus_size_t n;
char buf[500];
_(globus_io_read(&newhandle,

(globus_byte_t*)buf,
500,
5,
&n));

cout << buf << n << endl;
}

7.3 Global access to secondary storage
This section provides examples of using the GASS API.

7.3.1 Easy file transfer by using globus_gass_copy API
The Globus GASS Copy library is motivated by the desire to provide a uniform
interface to transfer files via different protocols.

The goals in doing this are to:

� Provide a robust way to describe and apply file transfer properties for a
variety of protocols: HTTP, FTP, and GSIFTP.

� Provide a service to support non-blocking file transfer and handle
asynchronous file and network events.

� Provide a simple and portable way to implement file transfers.

The example in “ITSO_GASS_TRANSFER” on page 306 provides a complete
implementation of a C++ class able to transfer files between two storage
locations that could transparently be: A local file, a GASS server, a GridFTP
server.

Note: The complete documentation for this API is available at:

http://www-unix.globus.org/api/c-globus-2.2/globus_gass_copy/html/index.html
178 Enabling Applications for Grid Computing with Globus

http://www-unix.globus.org/api/c-globus-2.2/globus_gass_copy/html/index.html

The Globus Toolkit 2.2 uses a handle of type globus_gass_copy_handle_t to
manage GASS copy. This handle is jointly used with three other specific handles
that help to define the characteristics of the GASS operation:

� A handle of type globus_gass_copy_attr_t used for each remote location
involved in the transfer (via gsiftp or http(s) protocol).

� A handle of type globus_gass_copy_handleattr_t used for the
globus_gass_copy_handle_t initialization.

� A handle of type globus_gass_transfer_requestattr_t (request handle) used
by the gass_transfer API to associate operations with a single file transfer
request. It is used in the globus_gass_copy_attr_set_gass() call that specifies
that we are using the GASS protocol for the transfer. This handle is also used
by the gass_transfer API to determine protocol properties. In the example we
specify binary transfer by calling
globus_gass_transfer_requestattr_set_file_mode().

All these handlers need to be initialized before by using a
globus_gass_copy_*_init() call specific to each handler.

The Globus Toolkit 2.2 provides the following functions to submit asynchronous
transfers from an application:

� globus_gass_copy_register_handle_to_url() to copy a local file to a remote
location.

� globus_gass_copy_register_url_to_handle() to copy a remote file locally.

� globus_gass_copy_register_url_to_url() to copy a remote file to a remote
location.

This function uses a callback function that will be called when the transfer has
been completed. The prototype of this function is defined by
globus_gass_copy_callback_t type. A synchronization mechanism, like condition
variables, must be used by the calling thread to be aware of the completion of the
transfer. See Example 7-4 on page 180.

Globus Toolkit 2.2 provides blocking calls that are equivalent to those listed
above:

� globus_gass_copy_handle_to_url() to copy a local file to a remote location
� globus_gass_copy_url_to_handle() to copy a remote file locally
� globus_gass_copy_url_to_url() to copy a remote file to a remote location

The globus_gass_copy_url_mode() function allows the caller to find out which
protocol will be used for a given URL.

globus_url_parse() determines the validity of a URL.
 Chapter 7. Using Globus Toolkit for data management 179

GAS Copy example
The best example is the globus-url-copy.c source code provided in the Globus
Toolkit 2.2. It is strongly advised to have a look at this source code to understand
how to use Globus Toolkit GASS calls.

This example shows how to copy a local file remotely via a GASS server. A
GASS server needs to be started on the remote location. Note that this example
is incomplete in the sense that it does not check any error codes returning from
the Globus calls. Consequently, any malformed URL can cause the program to
hang or fail miserably.

Figure 7-4 GASS Copy example

Example 7-14 gasscopy.C

#include “globus_common.h”
#include “globus_gass_copy.h”
#include <cstdlib>
#include <cstdio>
#include <iostream>
#include <cstring>

Note: The GASS Transfer API is defined in the header file
globus_gass_copy.h, and GLOBUS_GASS_COPY_MODULE must be
activated before calling any functions in this API.

/tmp/TEST

job

register

/home/globus/OO

callback

Globus take care
of file transfer

calls
synchonize
with

t2.itso-tupi.comm0.itso-maya.com

GASS server
180 Enabling Applications for Grid Computing with Globus

/**
 * For a mote complete example
 * see globus-url-copy.c
 **/

//**
// GLOBUS_FILE is a class that acts as a wrapper to the globus_io_handle_t
// globus_io_handle_t is taken as a parameter to
globus_gass_copy_register_handle_to_url
// GLOBUS_URL is taken as a parameter to startTransfer() method of
// the GASS_TRANSFER class
//**
class GLOBUS_FILE {

globus_io_handle_t *io_handle;
int file_fd;

 public:
GLOBUS_FILE() {};
GLOBUS_FILE(char* filename) {

io_handle =(globus_io_handle_t *)
 globus_libc_malloc(sizeof(globus_io_handle_t));

file_fd=open(filename,O_RDONLY);
 /* Globus function that converts a file descriptor

 * into a globus_io_handle */
 globus_io_file_posix_convert(file_fd,
 GLOBUS_NULL,
 io_handle);
 };

~GLOBUS_FILE(){
close(file_fd);
globus_libc_free(io_handle);

}
globus_io_handle_t * get_globus_io_handle() {

return io_handle;
};

};

//**
// GLOBUS_URL is a class that acts as a wrapper to the globus_url_t
// globus_url_t is taken as a parameter to
// globus_gass_copy_register_handle_to_url
// GLOBUS_URL is taken as a parameter to startTransfer() method of
// the GASS_TRANSFER class
// setURL() allows to set up the URL as it is not set up in the constructor
// globus_url_parse() is used to check the syntax of the url
// globus_gass_copy_get_url_mode() determine the transfer mode
// http,https,gsiftp of the url. The type of this transfer mode
// is globus_gass_copy_url_mode_t
// getMode() returns this mode
// getScheme() returns the scheme (http/https)
 Chapter 7. Using Globus Toolkit for data management 181

// getURL() returns the string of the URL
//**
class GLOBUS_URL {

globus_url_t url;
globus_gass_copy_url_mode_t url_mode;
char* URL;
public:

GLOBUS_URL() {};
~GLOBUS_URL() {

free(URL);
};
bool setURL(char* destURL) {
 //check if this is a valid URL

if (globus_url_parse(destURL, &url) != GLOBUS_SUCCESS) {
 cerr << “can not parse destURL” << destURL << endl;

 return false;
}
//determine the transfer mode
if (globus_gass_copy_get_url_mode(destURL, &url_mode) !=

GLOBUS_SUCCESS) {
 cerr << “failed to determine mode for destURL” << destURL <<

endl;
 return false;
};
URL=strdup(destURL);
return true;

};
globus_gass_copy_url_mode_t getMode() {

return url_mode;
};
char* getScheme() {

return url.scheme;
}
char* getURL() {

return URL;
}

};

//**
// MONITOR implements the callback mechanism used in all the Globus
// asynchronous mechanism: a non blocking globus call register an operation
// and when this operation has been completed , this function is call.
// To implement this mechanism in C++, we need to use a static function
// that will a pointer to a MONITOR object as one argument. This function
// will then be able to call the callback method of this object (setDone()).
//
// The Class ITSO_CB will be used in all other examples. It is more complete
// an easier to use but hide the details.
//
182 Enabling Applications for Grid Computing with Globus

// The callback implies a synchronization mechanism between the calling thread
// and the callback. To ensure thread safety and portability we use globus
// function to manipulate the mutex the condition variable.
//
// The class attributes are a mutex of type globus_mutex_t and a
// condition variables of type globus_cond_t. The C function globus_mutex_*
// and globus_cond_* are used to manipulate them. They maps the POSIX calls.
//
// Other attributes are used to store information about the result of the ope
// ration (done or error).
//
// setDone() is called to indicate the operation has completed
// (globus_gass_copy_register_handle_to_url). It sends the signal via
// the condition variable
// Lock() and Unlock() locks and locks the mutex
// Wait() waits the signal on the condition variable
//**
class MONITOR {
 globus_mutex_t mutex;
 globus_cond_t cond;
 globus_object_t * err;

 globus_bool_t use_err;
 globus_bool_t done;
public:
 MONITOR() {

globus_mutex_init(&mutex, GLOBUS_NULL);
 globus_cond_init(&cond, GLOBUS_NULL);

done = GLOBUS_FALSE;
use_err = GLOBUS_FALSE;

 }
 ~MONITOR() {

 globus_mutex_destroy(&mutex);
 globus_cond_destroy(&mutex);

 };
 //-------------------
 void setError(globus_object_t* error) {

 use_err = GLOBUS_TRUE;
 err = globus_object_copy(error);

 };
 //-------------------
 void setDone() {
 globus_mutex_lock(&mutex);

 done = GLOBUS_TRUE;
 globus_cond_signal(&cond);
 globus_mutex_unlock(&mutex);

 }
 //-------------------
 void Wait() {
 Chapter 7. Using Globus Toolkit for data management 183

 globus_cond_wait(&cond, &mutex);
 };
 //-------------------
 void Lock() {

 globus_mutex_lock(&mutex);
 };
 //-------------------
 void UnLock() {

 globus_mutex_unlock(&mutex);
 };
 //-------------------
 bool IsDone() {

 return done;
 };

};

//***
// callback calls when the copy operation has finished
// globus_gass_copy_register_handle_to_url() takes this function as
// a parameter. In C++, a class method cannot be passed as
// a parameter to this function and we must use an intermediate
// C funtion that will call this method. Consequently
// the object is used as the callbback argument so that
// this C function knows which method it must call: monitor->setDone()
//***
static void
globus_l_url_copy_monitor_callback(

 void * callback_arg,
 globus_gass_copy_handle_t * handle,
 globus_object_t * error)

{
 MONITOR* monitor;

 globus_bool_t use_err = GLOBUS_FALSE;
 monitor = (MONITOR*) callback_arg;

 if (error != GLOBUS_SUCCESS)
 {

 cerr << “ url copy error:” <<
globus_object_printable_to_string(error) << endl;

 monitor->setError(error);
 }

 monitor->setDone();
 return;
} /* globus_l_url_copy_monitor_callback() */

//**
// This Class implements the transfer from one local file to a GASS
// url (http, https). The class ITSO_GASS_TRANSFER implements a more
// cmoplete set of transfer (source or destination can be either file,
184 Enabling Applications for Grid Computing with Globus

// http,https or gsiftp). See appendix 2 for its source or
// HelloWorld example for an example how to use it
// To use it you must call setDestination() to register your destination
// url.
// setBinaryMode() wraps the globus_gass_transfer_requestattr_set_file_mode()
// and is an example how to set up options that applies to the kind
// of transfer. These options are specific to the protocol
// startTransfer() wraps the call to globus_gass_copy_register_handle_to_url()
// that registers the asynchronous copy operation in the Globus API. The
// monitor object that manages the callback as well as the C function that
// will call the callback object are passed as an arguement.
//**
class GASS_TRANSFER {

globus_gass_copy_handle_t gass_copy_handle;
globus_gass_copy_handleattr_t gass_copy_handleattr;
globus_gass_transfer_requestattr_t*dest_gass_attr;
globus_gass_copy_attr_t dest_gass_copy_attr;
public:
GASS_TRANSFER() {

// handlers initialisation
// first the attributes
// then the gass copy handler
globus_gass_copy_handleattr_init(&gass_copy_handleattr);
globus_gass_copy_handle_init(&gass_copy_handle, &gass_copy_handleattr);

};
void setDestination(GLOBUS_URL& dest_url) {

 dest_gass_attr = (globus_gass_transfer_requestattr_t*)
globus_libc_malloc (sizeof(globus_gass_transfer_requestattr_t));

 globus_gass_transfer_requestattr_init(dest_gass_attr,
dest_url.getScheme());

// And We use GASS as transfer
globus_gass_copy_attr_init(&dest_gass_copy_attr);

 globus_gass_copy_attr_set_gass(&dest_gass_copy_attr, dest_gass_attr);
};
void setBinaryMode() {

globus_gass_transfer_requestattr_set_file_mode(
 dest_gass_attr,
 GLOBUS_GASS_TRANSFER_FILE_MODE_BINARY);

};
void startTransfer(GLOBUS_FILE& globus_source_file, GLOBUS_URL destURL,

MONITOR& monitor) {
globus_result_t result = globus_gass_copy_register_handle_to_url(

&gass_copy_handle,
 globus_source_file.get_globus_io_handle(),

 destURL.getURL(),
 &dest_gass_copy_attr,
 globus_l_url_copy_monitor_callback,
 (void *) &monitor);

};
 Chapter 7. Using Globus Toolkit for data management 185

};

//***
//
//
//***
main(int argc, char** argv) {

char * localFile=strdup(argv[1]);
char * destURL=strdup(argv[2]);
cout << localFile << endl << destURL << endl;

//Globus modules needs always to be activated
// return code not checked here
globus_module_activate(GLOBUS_GASS_COPY_MODULE);

// Callback activation to monitor data transfer
MONITOR monitor;

 /* convert file into a globus_io_handle */
GLOBUS_FILE globus_source_file(localFile);

 //check if this is a valid URL
GLOBUS_URL dest_url;
if (!dest_url.setURL(destURL))

exit(2);

// we do not manage gsiftp transfer ... not yet
// see ITSO_GASS_TRANSFER for that or globus-url-copy.c
if (dest_url.getMode() != GLOBUS_GASS_COPY_URL_MODE_GASS) {

cerr << “You can only use GASS copy” << endl;
exit(1);

}

GASS_TRANSFER transfer;
transfer.setDestination(dest_url);

//Use Binary mode !
transfer.setBinaryMode();

 transfer.startTransfer(globus_source_file, dest_url, monitor);

// Way to wait for a cond_signal by using a mutex and a condition
// variable. These three calls are included in the Wait() method
// of the ITSO_CB call but they still use a mutex and condition
// variable the same way.

 monitor.Lock();
//wait until it is finished !
186 Enabling Applications for Grid Computing with Globus

while(!monitor.IsDone())
 {
 monitor.Wait();
}
monitor.UnLock();

};

To compile this example uses the following commands:

g++ -I /usr/local/globus/include/gcc32 -L/usr/local/globus/lib -o gasscopy
gasscopy.C -lglobus_gass_copy_gcc32 -lglobus_common_gcc32

To run the program, you need to start a GASS server on the remote site, for
example:

[globus@m0 globus]$ grid-proxy-init
Your identity: /O=Grid/O=Globus/OU=itso-maya.com/CN=globus
Enter GRID pass phrase for this identity:
Creating proxy ... Done
Your proxy is valid until: Sat Mar 1 02:40:36 2003
[globus@m0 globus]$ globus-gass-server -p 5000
https://m0.itso-maya.com:5000

On the client side, to copy the file /tmp/TEST to m0.itso-maya.com by renaming it
to NEWTEST, issue:

[globus@t1 globus]$ grid-proxy-init
Your identity: /O=Grid/O=Globus/OU=itso-maya.com/CN=globus
Enter GRID pass phrase for this identity:
Creating proxy ... Done
Your proxy is valid until: Sat Mar 1 02:40:36 2003
[globus@t1 globus]$./gasscopy /tmp/TEST https://m0.itso-maya.com:5000/NEWTEST

On m0, you can check that NEWTEST appears in the target directory.

7.3.2 globus_gass_transfer API
The gass_transfer API is a core part of the GASS component of the Globus
Toolkit. It provides a way to implement both client and server components.

� Client-specific functions are provided to implement file get, put, and append
operations.

� Server-specific functions are provided to implement servers that service such
requests.

Note: If you use gsissh to connect from m0 to t1 after you issued
grid-proxy-init, you do not need to reiterate grid-proxy-init because gsissh
supports proxy delegation.
 Chapter 7. Using Globus Toolkit for data management 187

The GASS Transfer API is easily extendable to support different remote data
access protocols. The standard Globus distribution includes both client- and
server-side support for the http and https protocols. An application that requires
additional protocol support may add this through the protocol module interface.

globus_gass_transfer_request_t request handles are used by the gass_transfer
API to associate operations with a single file transfer request.

The GASS transfer library provides both blocking and non-blocking versions of
all its client functions.

7.3.3 Using the globus_gass_server_ez API
This API provides simple wrappers around the globus_gass_transfer API for
server functionality. By using a simple function, globus_gass_server_ez_init(),
you can start a GASS server that can perform the following functions:

� Write to local files with optional line buffering.
� Write to stdout and stderr.
� Shut down callback so the client can stop the server.

This API is used by the globusrun shell commands to embed a GASS server
within it.

The example in “gassserver.C” on page 355 implements a simple GASS server
and is an example of how to use this simple API.

The class ITSO_CB in “ITSO_CB” on page 315, and the function
callback_c_function are used to implement the callback mechanism invoked
when a client wants to shut down the GASS server. This mechanism is activated
by setting the options
GLOBUS_GASS_SERVER_EZ_CLIENT_SHUTDOWN_ENABLE when starting
the GASS server.

The examples in “StartGASSServer() and StopGASSServer()” on page 324
provide two functions that wrap the Globus calls.

Example 7-15 Using ITSO_CB class as a callback for globus_gass_server_ez_init()

ITSO_CB callback; //invoked when client wants to shutdown the server

void callback_c_function() {
callback.setDone();

main() {
......
server_ez_opts |= GLOBUS_GASS_SERVER_EZ_CLIENT_SHUTDOWN_ENABLE;
.....
188 Enabling Applications for Grid Computing with Globus

int err = globus_gass_server_ez_init(&listener,
 &attr,
 scheme,
 GLOBUS_NULL, //purpose unknown
 server_ez_opts,

 callback_c_function); //or GLOBUS_NULL otherwise
 //GLOBUS_NULL); //or GLOBUS_NULL otherwise

....
}

Various server options can be set, as shown in Example 7-16.

Example 7-16 Server options settings

// let s define options for our GASS server
unsigned long server_ez_opts=0UL;

//Files openfor writing will be written a line at a time
//so multiple writers can access them safely.
server_ez_opts |= GLOBUS_GASS_SERVER_EZ_LINE_BUFFER;

//URLs that have ~ character, will be expanded to the home
//directory of the user who is running the server
server_ez_opts |= GLOBUS_GASS_SERVER_EZ_TILDE_EXPAND;

//URLs that have ~user character, will be expanded to the home
//directory of the user on the server machine
server_ez_opts |= GLOBUS_GASS_SERVER_EZ_TILDE_USER_EXPAND;

//”get” requests will be fullfilled
server_ez_opts |= GLOBUS_GASS_SERVER_EZ_READ_ENABLE;

//”put” requests will be fullfilled
server_ez_opts |= GLOBUS_GASS_SERVER_EZ_WRITE_ENABLE;

// for put requets on /dev/stdout will be redirected to the standard
// output stream of the gass server
server_ez_opts |= GLOBUS_GASS_SERVER_EZ_STDOUT_ENABLE;

// for put requets on /dev/stderr will be redirected to the standard
// output stream of the gass server
server_ez_opts |= GLOBUS_GASS_SERVER_EZ_STDERR_ENABLE;

// “put requests” to the URL https://host/dev/globus_gass_client_shutdown
// will cause the callback function to be called. this allows
// the GASS client to communicate shutdown requests to the server
server_ez_opts |= GLOBUS_GASS_SERVER_EZ_CLIENT_SHUTDOWN_ENABLE;
 Chapter 7. Using Globus Toolkit for data management 189

Before starting the server with globus_gass_server_ez_init() a listener must be
created. This is the opportunity to:

� Define a port number on which the GASS server will listen.
� Select the protocol as secure or unsecure.

Example 7-17 Protocol selection or scheme

// Secure
char* scheme=”https”;
//unsecure
//char* scheme=”http”;

 globus_gass_transfer_listenerattr_t attr;
 globus_gass_transfer_listenerattr_init(&attr, scheme);

 //we want to listen on post 10000
globus_gass_transfer_listenerattr_set_port(&attr, 10000);

At this point the GASS server can be started. The
GLOBUS_GASS_SERVER_EZ_MODULE must already be activated. The Wait()
method of ITSO_CB uses a mutex/condition variable synchronization to ensure
thread safety.

GASS server example
Below is a GASS server example.

Example 7-18 Starting GASS server

#include “globus_common.h”
#include “globus_gass_server_ez.h”
#include <iostream>
#include “itso_cb.h”

main() {
// Never forget to activate GLOBUS module
globus_module_activate(GLOBUS_GASS_SERVER_EZ_MODULE);

......

//Now, we can start this gass server !
globus_gass_transfer_listener_t listener;
globus_gass_transfer_requestattr_t * reqattr = GLOBUS_NULL; //purpose

unknown

int err = globus_gass_server_ez_init(&listener,
 &attr,

 scheme,
190 Enabling Applications for Grid Computing with Globus

 GLOBUS_NULL, //purpose unknown
 server_ez_opts,

 callback_c_function); //or GLOBUS_NULL otherwise

if((err != GLOBUS_SUCCESS)) {
 cerr << “Error: initializing GASS (“ << err << “)” << endl;
 exit(1);
}

char * gass_server_url=globus_gass_transfer_listener_get_base_url(listener);
cout << “we are listening on “ << gass_server_url << endl;

//wait until it is finished !
/ /that means that the “put requests” to the URL
//https://host/dev/globus_gass_client_shutdown

//ITSO_CB implements the symchronization mechanism by using a mutex
//and a condition variable

 callback.Wait(); // shutdown callback

//stop everything
globus_gass_server_ez_shutdown(listener);
globus_module_deactivate(GLOBUS_GASS_SERVER_EZ_MODULE);

To compile this program issue, use the following Makefile:

#globus-makefile-header --flavor gcc32 globus_gass_server_ez globus_common
globus_gass_transfer globus_io globus_gass_copy > globus_header

include globus_header

all: gassserver

%.o: %.C
g++ -g -c $(GLOBUS_CPPFLAGS) $< -o $@

gassserver: gassserver.o itso_cb.o
g++ -g -o $@ $(GLOBUS_CPPFLAGS) $(GLOBUS_LDFLAGS) $^ $(GLOBUS_PKG_LIBS)

This program can be launched on one node (for example, m0.itso.maya.com),
and by using gasscopy from another node (for example, t2.itso-tupi.com), we will
be able to copy files, display files on m0, and even shut down the GASS server.

On m0.itso-maya.com:

./gassserver

On t2.itso-tupi.com:

./gasscopy FileToBeCopied https://m0.itso-maya.com:10000/FileCopied

./gasscopy FileToBeDisplayed https://m0.itso-maya.com:10000/dev/stdout

./gasscopy None https://m0.itso-maya.com:10000/dev/globus_gass_client_shutdown
 Chapter 7. Using Globus Toolkit for data management 191

7.3.4 Using the globus-gass-server command
globus-gass-server is a simple file server that can be used by any user when
necessary from a Unix shell. It uses the secure https protocol and GSI security
infrastructure.

The GASS server can be started with or without GSI security. The security mode
is controlled by the -i option that deactivates the GSSAPI security. This way the
server will use http protocol instead of https protocol.

The -c option allows a client to shut down the server by writing to
dev/globus_gass_client_shutdown. See the previous example.

The -o and -e options allow a client to write to standard output and standard
error.

The -r and -w options authorize a client to respectively read and write on the local
file system where the GASS server is running.

The -t option expands the tilde sign (~) in a URL expression to value of the user’s
home directory.

globus-gass-server example
On m0.itso-maya.com:

[globus@m0 globus]globus-gass-server -o -e -r -w p 10001

On t2.itso-tupi.com:

[globus@m0 globus]globus-url-copy file:///home/globus/FileToBeCopied
https://m0.itso.maya.com:10001/dev/stdout

You can see the contents of the FileToBeCopied file on m0.

7.3.5 Globus cache management
The globus-gass-cache API provides an interface for management of the GASS
cache.

Note: On both server and client side, you need to have the same credentials.
This is achieved when you submit a job via the gatekeeper that supports proxy
delegation or using gsissh.
192 Enabling Applications for Grid Computing with Globus

globus-gass-cache
The Globus Toolkit 2.2 provides command line tools (globus-gass-cache), as
well as a C API that can be used to perform operations on the cache. The
operations are:

� add: Add the URL to the cache if it is not there. If the URL is already in the
cache, increment its reference count.

� delete: Remove a reference to the URL with this tag; if there are no more
references, remove the cached file.

� cleanup-tag: Remove all references to this tag for the specified URL, or all
URLs (if no URL is specified).

� cleanup-url: Remove all tag references to this URL.

� list: List the contents of the cache.

The GASS cache is used when a job is submitted via the GRAM sub-system.
The count entry in the RSL parameters allows control of how long the program
will stay in the cache. When forgotten, the file will remain forever. A common
problem is to rerun a program in the cache after you have modified it locally:

&(executable=https://m0.itso-maya.com:20000/home/globus/Compile)

On the execution host, the binary will be tagged as
https://m0.itso-maya.com:20000/home/globus/Compile. If modified on m0, it will
not be modified on the cache. Consequently, the wrong program will be run on
m0. You can check the cache on the remote server with globus-gass-cache -list.
Use globus-gass-cache -clean-up to remove all the entries in the cache. The way
to avoid this problem is to use (count=1) in the RSL commands. Count specifies
that you only want to run the executable once.

Below is a set of examples to illustrate cache management using Globus Toolkit
shell commands.

Example 7-19 shows how to create a copy on t2.itso-tupi.com of the file
gsiclient2 stored on a GSIFTP server at t0.itso-tupi.com and request the file. The
file will be referred to with the tag itso.

Example 7-19 Adding a file to the cache

globus-gass-cache -add -t itso -r t2 gsiftp://t0/home/globus/gsiclient2

The file is not stored in the cache with the same file name. Use the
globus-gass-cache command to retrieve the file, as shown in Example 7-20.

Example 7-20 Retrieving a file in the cache

globus-gass-cache -list -r t2
 Chapter 7. Using Globus Toolkit for data management 193

URL: gsiftp://t0//home/globus/gsiclient2
 Tag:itso
globus-gass-cache -query -t itso -r t2 gsiftp://t0//home/globus/gsiclient2

It returns the name of the file in the cache.

/home/globus/.globus/.gass_cache/local/md5/4e/72/68/e57a109668e83f60927154d812/
md5/a6/78/0e/703376a3006db586eb24535315/data

You can then invoke it using globusrun, as shown in Example 7-21.

Example 7-21 Invoking a program from the cache

globusrun -o -r t2
'&(executable=/home/globus/.globus/.gass_cache/local/md5/4e/72/68/e57a109668e83
f60927154d812/md5/a6/78/0e/703376a3006db586eb24535315/data)
(arguments=https://g0.itso-tupi.com:10000)'

Files in the cache are usually referenced with a tag equal to a URL. You can use
the file name or the tag to remove the file from the cache. GASS refers to the
files in the cache with a tag equal to their URL.

The following command removes a single reference of tag itso from the specified
URL. If this is the only tag, then the file corresponding to the URL on the local
machine's cache will be removed.

globus-gass-cache -delete -t itso gsiftp://t0//home/globus/gsiclient2

The following removes a reference to the tag itso from all URLs in the local
cache:

globus-gass-cache -cleanup-tag -t itso

To remove all tags for the URL gsiftp://t0//home/globus/gsiclient2, and remove
the cached copy of that file:

globus-gass-cache -cleanup-tag gsiftp://t0//home/globus/gsiclient2

7.4 GridFTP
The Globus Toolkit 2.2 uses an efficient and robust protocol for data movement.
This protocol should be used whenever large files are involved instead of the http
and https protocols that can also be used with the GASS subsystem.

Note: $GRAM_JOB_CONTACT is the tag used for a job started from GRAM
and that uses GASS. All $GRAM_JOB_CONTACT tags are deleted when the
GRAM job manager completes.
194 Enabling Applications for Grid Computing with Globus

The Globus Toolkit 2.2 provides a GridFTP server based on wu-ftpd code and a
C API that can be used by applications to use GridFTP functionality. This
GridFTP server does not implement all the features of the GridFTP protocol. It
works only as a non-striped server even if it can inter-operate with other striped
servers.

All Globus Toolkit 2.2 shell commands can transparently use the GridFTP
protocol whenever the URL used for a file begins with gsiftp://.

7.4.1 GridFTP examples
The following example copies the jndi file located on m0.itso-maya.com to the
host g2.itso-guarani.com. Note that this command can be issued on a third
machine, such as t2.itso-tupi.com.

globus-url-copy gsiftp://m0/~/jndi-1_2_1.zip gsiftp://g2/~/jndi-1_2_1.zip

The following example executes on g2.itso-guarini.com a binary that is retrieved
from g1.itso-guarani.com. This command could be issued from t3.itso-tupi.com.

globus-job-run g2 gsiftp://g1/bin/hostname

A grid-enabled application needs to use the GridFTP API to be able to
transparently use Globus Toolkit 2 data grid features. This API is detailed in
Globus GridFTP APIs.

7.4.2 Globus GridFTP APIs
This section discusses the APIs that can be used with GridFTP.

Skeletons for C/C++ applications
globus_module_activate(GLOBUS_FTP_CLIENT_MODULE) must be called at
the beginning of the program to activate the globus_ftp_client module.

Within the globus_ftp_client API, all FTP operations require a handle parameter.
Only one FTP operation may be in progress at once per FTP handle. The type of
this handle is globus_ftp_client_handle_t, and must be initialized using
globus_ftp_client_handle_init().

The properties of the FTP connection can be configured using another handle of
type globus_ftp_client_handleattr_t that also must be initialized by using
globus_ftp_client_handleattr_init().

By using these two handles, a client can easily execute all of the usual FTP
commands:
 Chapter 7. Using Globus Toolkit for data management 195

� globus_ftp_client_put(), globus_ftp_client_get(),
globus_ftp_client_mkdir(), globus_ftp_client_rmdir(),
globus_ftp_client_list(), globus_ftp_client_delete(),
globus_ftp_client_verbose_list(), globus_ftp_client_move().

� globus_ftp_client_exists() tests the existence of a file of a directory.

� globus_ftp_client_modification_time() returns the modification time of a
file.

� globus_ftp_client_size() returns the size of the file.

The globus_ftp_client*get() functions only start a get file transfer from an FTP
server. If this function returns GLOBUS_SUCCESS, then the user may
immediately begin calling globus_ftp_client_read() to retrieve the data
associated with this URL.

Similarly, the globus_ftp_client*put() functions only start a put file transfer from
an FTP server. If this function returns GLOBUS_SUCCESS, then the user may
immediately begin calling globus_ftp_client_write() to write the data associated
with this URL.

Example 7-22 First example extracted from the Globus tutorial

/***
 * Globus Developers Tutorial: GridFTP Example - Simple Authenticated Put
 *
 * There are no handle or operation attributes used in this example.
 * This means the transfer runs using all defaults, which implies standard
 * FTP stream mode. Note that while this program shows proper usage of
 * the Globus GridFTP client library functions, it is not an example of
 * proper coding style. Much error checking has been left out and other
 * simplifications made to keep the program simple.
 ***/

#include <stdio.h>
#include "globus_ftp_client.h"

static globus_mutex_t lock;
static globus_cond_t cond;
static globus_bool_t done;

#define MAX_BUFFER_SIZE 2048
#define ERROR -1
#define SUCCESS 0

/**
 * done_cb: A pointer to this function is passed to the call to
 * globus_ftp_client_put (and all the other high level transfer
196 Enabling Applications for Grid Computing with Globus

 * operations). It is called when the transfer is completely
 * finished, i.e. both the data channel and control channel exchange.
 * Here it simply sets a global variable (done) to true so the main
 * program will exit the while loop.
 **/
static
void
done_cb(
 void * user_arg,
 globus_ftp_client_handle_t * handle,
 globus_object_t * err)
{
 char * tmpstr;

 if(err)
 {
 fprintf(stderr, "%s", globus_object_printable_to_string(err));
 }
 globus_mutex_lock(&lock);
 done = GLOBUS_TRUE;
 globus_cond_signal(&cond);
 globus_mutex_unlock(&lock);
 return;
}

/***
 * data_cb: A pointer to this function is passed to the call to
 * globus_ftp_client_register_write. It is called when the user supplied
 * buffer has been successfully transferred to the kernel. Note that does
 * not mean it has been successfully transmitted. In this simple version,
 * it justs reads the next block of data and calls register_write again.
 ***/
static
void
data_cb(
 void * user_arg,
 globus_ftp_client_handle_t * handle,
 globus_object_t * err,
 globus_byte_t * buffer,
 globus_size_t length,
 globus_off_t offset,
 globus_bool_t eof)
{
 if(err)
 {
 fprintf(stderr, "%s", globus_object_printable_to_string(err));
 }
 else
 {
 Chapter 7. Using Globus Toolkit for data management 197

 if(!eof)
 {
 FILE *fd = (FILE *) user_arg;
 int rc;
 rc = fread(buffer, 1, MAX_BUFFER_SIZE, fd);
 if (ferror(fd) != SUCCESS)
 {
 printf("Read error in function data_cb; errno = %d\n", errno);
 return;
 }
 globus_ftp_client_register_write(
 handle,
 buffer,
 rc,
 offset + length,
 feof(fd) != SUCCESS,
 data_cb,
 (void *) fd);
 } /* if(!eof) */
 } /* else */
 return;
} /* data_cb */

/**************************
 * Main Program
 *************************/

int main(int argc, char **argv)
{
 globus_ftp_client_handle_t handle;
 globus_byte_t buffer[MAX_BUFFER_SIZE];
 globus_size_t buffer_length = MAX_BUFFER_SIZE;
 globus_result_t result;
 char * src;
 char * dst;
 FILE * fd;

 /*************************************
 * Process the command line arguments
 *************************************/

 if (argc != 3)
 {
 printf("Usage: put local_file DST_URL\n");
 return(ERROR);
 }
 else
 {
198 Enabling Applications for Grid Computing with Globus

 src = argv[1];
 dst = argv[2];
 }

 /*********************************
 * Open the local source file
 *********************************/
 fd = fopen(src,"r");
 if(fd == NULL)
 {
 printf("Error opening local file: %s\n",src);
 return(ERROR);

 }

 /***
 * Initialize the module, and client handle
 * This has to be done EVERY time you use the client library
 * The mutex and cond are theoretically optional, but highly recommended
 * because they will make the code work correctly in a threaded build.
 *
 * NOTE: It is possible for each of the initialization calls below to
 * fail and we should be checking for errors. To keep the code simple
 * and clean we are not. See the error checking after the call to
 * globus_ftp_client_put for an example of how to handle errors in
 * the client library.
 ***/

 globus_module_activate(GLOBUS_FTP_CLIENT_MODULE);
 globus_mutex_init(&lock, GLOBUS_NULL);
 globus_cond_init(&cond, GLOBUS_NULL);
 globus_ftp_client_handle_init(&handle, GLOBUS_NULL);

 /**
 * globus_ftp_client_put starts the protocol exchange on the control
 * channel. Note that this does NOT start moving data over the data
 * channel
 ***/
 done = GLOBUS_FALSE;

 result = globus_ftp_client_put(&handle,
 dst,
 GLOBUS_NULL,
 GLOBUS_NULL,
 done_cb,
 0);
 if(result != GLOBUS_SUCCESS)
 {
 globus_object_t * err;
 Chapter 7. Using Globus Toolkit for data management 199

 err = globus_error_get(result);
 fprintf(stderr, "%s", globus_object_printable_to_string(err));
 done = GLOBUS_TRUE;
 }
 else
 {
 int rc;

 /**
 * This is where the data movement over the data channel is initiated.
 * You read a buffer, and call register_write. This is an asynch
 * call which returns immediately. When it is finished writing
 * the buffer, it calls the data callback (defined above) which
 * reads another buffer and calls register_write again.
 * The data callback will also indicate when you have hit eof
 * Note that eof on the data channel does not mean the control
 * channel protocol exchange is complete. This is indicated by
 * the done callback being called.
 ***/
 rc = fread(buffer, 1, MAX_BUFFER_SIZE, fd);
 globus_ftp_client_register_write(
 &handle,
 buffer,
 rc,
 0,
 feof(fd) != SUCCESS,
 data_cb,
 (void *) fd);
 }

 /***
 * The following is a standard thread construct. The while loop is
 * required because pthreads may wake up arbitrarily. In non-threaded
 * code, cond_wait becomes globus_poll and it sits in a loop using
 * CPU to wait for the callback. In a threaded build, cond_wait would
 * put the thread to sleep
 ***/
 globus_mutex_lock(&lock);
 while(!done)
 {
 globus_cond_wait(&cond, &lock);
 }
 globus_mutex_unlock(&lock);

 /**
 * Since done has been set to true, the done callback has been called.
 * The transfer is now completely finished (both control channel and
 * data channel). Now, Clean up and go home
 **/
200 Enabling Applications for Grid Computing with Globus

 globus_ftp_client_handle_destroy(&handle);
 globus_module_deactivate_all();

 return 0;
}

To compile the program:

gcc -I /usr/local/globus/include/gcc32 -L/usr/local/globus/lib -o
gridftpclient2 gridftpclient1.c -lglobus_ftp_client_gcc32

To use it:

[globus@m0 globus]$ grid-proxy-init
Your identity: /O=Grid/O=Globus/OU=itso-maya.com/CN=globus
Enter GRID pass phrase for this identity:
Creating proxy ... Done
Your proxy is valid until: Thu Mar 6 02:17:53 2003

[globus@m0 globus]$./gridftpclient1 LocalFile gsiftp://g2/tmp/RemoteFile

Partial transfer
All operations are asynchronous and require a callback function that will be
called when the operation has been completed. Mutex and condition variables
must be used to ensure thread safety.

GridFTP supports partial transfer. To do this, you need to use offsets that will
determine the beginning and the end of data that you want to transfer. The type
of the offset is globus_off_t.

The globus_ftp_client_partial_put() and globus_ftp_client_partial_get() are used
to execute the partial transfer.

The Globus FTP Client library provides the ability to start a file transfer from a
known location in the file. This is accomplished by passing a restart marker to
globus_ftp_client_get() and globus_ftp_client_put(). The type of this restart
marker is globus_ftp_client_restart_marker_t and must be initialized by calling
globus_ftp_client_restart_marker_init().

For a complete description of the globus_ftp_client API, see:

http://www--unix.globus.org/api/c/globus_ftp_client/html/index.html
 Chapter 7. Using Globus Toolkit for data management 201

http://www--unix.globus.org/api/c/globus_ftp_client/html/index.html

Parallelism
GridFTP supports two kind of transfers:

� Stream mode is a file transfer mode where all data is sent over a single TCP
socket, without any data framing. In stream mode, data will arrive in
sequential order. This mode is supported by nearly all FTP servers.

� Extended block mode is a file transfer mode where data can be sent over
multiple parallel connections and to multiple data storage nodes to provide a
high-performance data transfer. In extended block mode, data may arrive out
of order. ASCII type files are not supported in extended block mode.

Use globus_ftp_client_operationattr_set_mode() to select the mode. Note that
you will need a control handler of type globus_ftp_client_operationattr_t to define
this transfer mode, and it needs to be initialized before being used by the function
globus_ftp_client_operationattr_init().

Currently, only a "fixed" parallelism level is supported. This is interpreted by the
FTP server as the number of parallel data connections to be allowed for each
stripe of data. Use the globus_ftp_client_operationattr_set_parallelism() to set up
the parallelism.

You also need to define a layout that defines what regions of a file will be stored
on each stripe of a multiple-striped FTP server. You can do this by using the
function globus_ftp_client_operationattr_set_layout().

Example 7-23 Parallel transfer example extracted from Globus tutorial

/***
 * Globus Developers Tutorial: GridFTP Example - Authenticated Put w/ attrs
 *
 * Operation attributes are used in this example to set a parallelism of 4.
 * This means the transfer must run in extended block mode MODE E.
 * Note that while this program shows proper usage of
 * the Globus GridFTP client library functions, it is not an example of
 * proper coding style. Much error checking has been left out and other
 * simplifications made to keep the program simple.
 ***/

#include <stdio.h>
#include "globus_ftp_client.h"

static globus_mutex_t lock;
static globus_cond_t cond;
static globus_bool_t done;
int global_offset = 0;

#define MAX_BUFFER_SIZE (64*1024)
#define ERROR -1
202 Enabling Applications for Grid Computing with Globus

#define SUCCESS 0
#define PARALLELISM 4

/**
 * done_cb: A pointer to this function is passed to the call to
 * globus_ftp_client_put (and all the other high level transfer
 * operations). It is called when the transfer is completely
 * finished, i.e. both the data channel and control channel exchange.
 * Here it simply sets a global variable (done) to true so the main
 * program will exit the while loop.
 **/
static
void
done_cb(
 void * user_arg,
 globus_ftp_client_handle_t * handle,
 globus_object_t * err)
{
 char * tmpstr;

 if(err)
 {
 fprintf(stderr, "%s", globus_object_printable_to_string(err));
 }
 globus_mutex_lock(&lock);
 done = GLOBUS_TRUE;
 globus_cond_signal(&cond);
 globus_mutex_unlock(&lock);
 return;
}

/***
 * data_cb: A pointer to this function is passed to the call to
 * globus_ftp_client_register_write. It is called when the user supplied
 * buffer has been successfully transferred to the kernel. Note that does
 * not mean it has been successfully transmitted. In this simple version,
 * it justs reads the next block of data and calls register_write again.
 ***/
static
void
data_cb(
 void * user_arg,
 globus_ftp_client_handle_t * handle,
 globus_object_t * err,
 globus_byte_t * buffer,
 globus_size_t length,
 globus_off_t offset,
 globus_bool_t eof)
{

 Chapter 7. Using Globus Toolkit for data management 203

 if(err)
 {
 fprintf(stderr, "%s", globus_object_printable_to_string(err));
 }
 else
 {
 if(!eof)
 {
 FILE *fd = (FILE *) user_arg;
 int rc;
 rc = fread(buffer, 1, MAX_BUFFER_SIZE, fd);
 if (ferror(fd) != SUCCESS)
 {
 printf("Read error in function data_cb; errno = %d\n", errno);
 return;
 }
 globus_ftp_client_register_write(
 handle,
 buffer,
 rc,
 global_offset,
 feof(fd) != SUCCESS,
 data_cb,
 (void *) fd);
 global_offset += rc;
 } /* if(!eof) */
 else
 {
 globus_libc_free(buffer);
 }

 } /* else */
 return;
} /* data_cb */

/**************************
 * Main Program
 *************************/

int main(int argc, char **argv)
{
 globus_ftp_client_handle_t handle;
 globus_ftp_client_operationattr_t attr;
 globus_ftp_client_handleattr_t handle_attr;
 globus_byte_t * buffer;
 globus_result_t result;
 char * src;
 char * dst;
 FILE * fd;
204 Enabling Applications for Grid Computing with Globus

 globus_ftp_control_parallelism_t parallelism;
 globus_ftp_control_layout_t layout;
 int i;

 /*************************************
 * Process the command line arguments
 *************************************/

 if (argc != 3)
 {
 printf("Usage: ext-put local_file DST_URL\n");
 return(ERROR);
 }
 else
 {
 src = argv[1];
 dst = argv[2];
 }

 /*********************************
 * Open the local source file
 *********************************/
 fd = fopen(src,"r");
 if(fd == NULL)
 {
 printf("Error opening local file: %s\n",src);
 return(ERROR);

 }

 /***
 * Initialize the module, handleattr, operationattr, and client handle
 * This has to be done EVERY time you use the client library
 * (if you don't use attrs, you don't need to initialize them and can
 * pass NULL in the parameter list)
 * The mutex and cond are theoretically optional, but highly recommended
 * because they will make the code work correctly in a threaded build.
 *
 * NOTE: It is possible for each of the initialization calls below to
 * fail and we should be checking for errors. To keep the code simple
 * and clean we are not. See the error checking after the call to
 * globus_ftp_client_put for an example of how to handle errors in
 * the client library.
 ***/

 globus_module_activate(GLOBUS_FTP_CLIENT_MODULE);
 globus_mutex_init(&lock, GLOBUS_NULL);
 globus_cond_init(&cond, GLOBUS_NULL);
 globus_ftp_client_handleattr_init(&handle_attr);
 globus_ftp_client_operationattr_init(&attr);
 Chapter 7. Using Globus Toolkit for data management 205

 /**
 * Set any desired attributes, in this case we are using parallel streams
 **/

 parallelism.mode = GLOBUS_FTP_CONTROL_PARALLELISM_FIXED;
 parallelism.fixed.size = PARALLELISM;
 layout.mode = GLOBUS_FTP_CONTROL_STRIPING_BLOCKED_ROUND_ROBIN;
 layout.round_robin.block_size = 64*1024;
 globus_ftp_client_operationattr_set_mode(
 &attr,
 GLOBUS_FTP_CONTROL_MODE_EXTENDED_BLOCK);
 globus_ftp_client_operationattr_set_parallelism(&attr,
 ¶llelism);

 globus_ftp_client_operationattr_set_layout(&attr,
 &layout);

 globus_ftp_client_handle_init(&handle, &handle_attr);

 /**
 * globus_ftp_client_put starts the protocol exchange on the control
 * channel. Note that this does NOT start moving data over the data
 * channel
 ***/
 done = GLOBUS_FALSE;

 result = globus_ftp_client_put(&handle,
 dst,
 &attr,
 GLOBUS_NULL,
 done_cb,
 0);
 if(result != GLOBUS_SUCCESS)
 {
 globus_object_t * err;
 err = globus_error_get(result);
 fprintf(stderr, "%s", globus_object_printable_to_string(err));
 done = GLOBUS_TRUE;
 }
 else
 {
 int rc;

 /**
 * This is where the data movement over the data channel is initiated.
 * You read a buffer, and call register_write. This is an asynch
 * call which returns immediately. When it is finished writing
 * the buffer, it calls the data callback (defined above) which
206 Enabling Applications for Grid Computing with Globus

 * reads another buffer and calls register_write again.
 * The data callback will also indicate when you have hit eof
 * Note that eof on the data channel does not mean the control
 * channel protocol exchange is complete. This is indicated by
 * the done callback being called.
 *
 * NOTE: The for loop is present BECAUSE of the parallelism, but
 * it is not CAUSING the parallelism. The parallelism is hidden
 * inside the client library. This for loop simply insures that
 * we have sufficient buffers queued up so that we don't have
 * TCP steams sitting idle.
 ***/
 for (i = 0; i< 2 * PARALLELISM && feof(fd) == SUCCESS; i++)
 {
 buffer = malloc(MAX_BUFFER_SIZE);
 rc = fread(buffer, 1, MAX_BUFFER_SIZE, fd);
 globus_ftp_client_register_write(
 &handle,
 buffer,
 rc,
 global_offset,
 feof(fd) != SUCCESS,
 data_cb,
 (void *) fd);
 global_offset += rc;

 }

 }

 /***
 * The following is a standard thread construct. The while loop is
 * required because pthreads may wake up arbitrarily. In non-threaded
 * code, cond_wait becomes globus_poll and it sits in a loop using
 * CPU to wait for the callback. In a threaded build, cond_wait would
 * put the thread to sleep
 ***/
 globus_mutex_lock(&lock);
 while(!done)
 {
 globus_cond_wait(&cond, &lock);
 }
 globus_mutex_unlock(&lock);

 /**
 * Since done has been set to true, the done callback has been called.
 * The transfer is now completely finished (both control channel and
 * data channel). Now, Clean up and go home
 **/
 Chapter 7. Using Globus Toolkit for data management 207

 globus_ftp_client_handle_destroy(&handle);
 globus_module_deactivate_all();

 return 0;
}

To compile the program:

gcc -I /usr/local/globus/include/gcc32 -L/usr/local/globus/lib -o
gridftpclient2 gridftpclient2.c -lglobus_ftp_client_gcc32

To use it:

[globus@m0 globus]$ grid-proxy-init
Your identity: /O=Grid/O=Globus/OU=itso-maya.com/CN=globus
Enter GRID pass phrase for this identity:
Creating proxy ... Done
Your proxy is valid until: Thu Mar 6 02:17:53 2003
[globus@m0 globus]$./gridftpclient2 LocalFile gsiftp://g2/tmp/RemoteFile

Shells tools
globus-url-copy is the shell tool to use to transfer files from one location to
another. It takes two parameters that are the URLs for the specific file. The prefix
gsiftp://<hostname>/ is used to specify a GridFTP server.

The following example copies a file from the host m0 to the server a1:

globus-url-copy gsiftp://m0/tmp/FILE gsiftp://a1/~/tmp

The following example uses a GASS server started on host b0 and listening on
port 23213:

globus-url-copy https://b0:23213/home/globus/OtherFile gsiftp://a1/~/tmp

The following example uses a local file as a source file:

globus-url-copy file:///tmp/FILE gsiftp://a1/~/tmp

7.5 Replication
To utilize replication, a replication server needs to be installed. It consists of an
LDAP server. The Globus Toolkit 2.2 provides an LDAP server than can be used
for this purpose. See “Installation” on page 211. In the Globus Toolkit 2.2 the GSI
security infrastructure is not used to modify entries in the LDAP repository.
Consequently, a password and an LDAP administrator need to be defined for the
replica server. It will be used each time from the client side to perform write
operations to the LDAP tree.
208 Enabling Applications for Grid Computing with Globus

7.5.1 Shell commands
The Globus Toolkit 2.2 provides a single shell command for manipulating replica
catalog objects. The format of the command is:

globus-replica-catalog HOST OBJECT ACTION

Where:

� HOST specifies the logical collection in the replica catalog as well of the
information needed to connect to the LDAP server (a user and a password).
The Globus Toolkit V2.2 uses an LDAP directory so the URL for a collection
follows the format ldap://host:[port]/dn where dn is the distinguished name of
the collection. The HOST format is therefore:

-host <collection URL> -manager <manager DN> -password <file>

Two environment variables can be used to avoid typing the -host and
-manager option each time:

– GLOBUS_REPLICA_CATALOG_HOST for the logical collection
distinguished name.

– GLOBUS_REPLICA_CATALOG_MANAGER for the manager
distinguished name.

– file contains the password used during the connection.

� OBJECT indicates which entry in the replica catalog the command will act
upon:

– -collection for a collection that was specified in the -host option
– -location <name>
– -logicalfile <name>

� ACTION determines which operations will be executed on the entry. There
are four categories: Creation/deletion, attributes modifications, files names
manipulation in the logical collection file lists and location file lists, and finally
search operations. See the Globus documentation for more information.

7.5.2 Replica example
In the following example scenario, we propose to create a logical collection
called itsoCollection in the Replica Catalog created in “Installation” on page 211.
This collection consists of five files that are located on two different servers,
g0.itso-guarani.com and t0.itso-tupi.com. Three files are stored on
g0.itso-guarani.com, and two others are located on t0.itso-tupi.com. The two
locations host a GridFTP server.
 Chapter 7. Using Globus Toolkit for data management 209

Figure 7-5 Replica example

The steps are:

1. First, set up the environment:

export GLOBUS_REPLICA_CATALOG_HOST=”ldap://m0.itso-maya.com/lc=itso\
Collection,rc=test,dc=itso-maya,dc=com”
export GLOBUS_REPLICA_CATALOG_MANAGER=”cn=Manager,dc=itso-maya,dc=com”
echo ###### > password

2. Create the three file lists: One for the files in the collection, one for the files
located in g0.itso-guarani.com, and the last for the files stored on
t0.itso-tupi.com.

for i in file1 file2 file3 file4 file5;do echo $i >> FileList;done
for i in file1 file2 file3 ;do echo $i >> tupiFiles;done
for i in file4 file5;do echo $i >> guaraniFiles;done

3. Register the collection:

globus-replica-catalog -password password -collection -create FileList

4. Register the two locations and their file list:

globus-replica-catalog -password password -location “t0 Tupi Storage”
-create “gridftp://t0.itso-tupi.com/home/globus/storage/” tupiFiles

itsoCollection

tupi-location

guarani-location

file 1
file 2

file 3
file 4

file 5

url: gsiftp://t0/home/globus/storage
protocol: gsiftp
list of files: file1, file2, file3

url: gsiftp://g0/home/globus/storage
protocol: gsiftp
list of files: file4, file5

FileList
size 185802
size 232802
size 3284802
size 1838602
size 187812

tupiFiles guaraniFiles

file1
file2
file3

file4
file5
210 Enabling Applications for Grid Computing with Globus

globus-replica-catalog -password password -location “g0 Guarani Storage”
-create “gridftp://g0.itso-tupi.com/home/globus/storage/” guaraniFiles

5. Register each of the logical files with their size:

globus-replica-catalog -password password -logicalfile “file1” -create
100000
globus-replica-catalog -password password -logicalfile “file2” -create
200000
globus-replica-catalog -password password -logicalfile “file3” -create
300000
globus-replica-catalog -password password -logicalfile “file4” -create
400000
globus-replica-catalog -password password -logicalfile “file5” -create
500000

We can now perform a few requests:

1. Search for all locations that contain file4 and file5:

a. Create a file FilesToBeFound that contains the files we are looking for:

for i in file4 file5; do echo $i >> FilesToBeFound;done

b. Perform the request:

globus-replica-catalog -password password -collection -find-locations\
FilesToBeFound uc

Then you should receive the following output:

filename=file4
filename=file5
uc=gridftp://g0.itso-tupi.com/home/globus/storage

uc means URL Constructor and is the attribute used in the LDAP directory
to store the location URL.

2. Check the size attribute for the file file2:

globus-replica-catalog -password password -logicalfile “file2”\
-list-attributes size

You receive:

size=200000

7.5.3 Installation
The installation process is explained at:

http://www.globus.org/gt2/replica.html
 Chapter 7. Using Globus Toolkit for data management 211

http://www.globus.org/gt2/replica.html

It consists of the following steps:

1. Add a new schema that defines objects manipulated for replica management.
It can be downloaded from:

http://www.globus.org/gt2/replica.schema.txt

Copy this file to
$GLOBUS_LOCATION/etc/openldap/schema/replica.schema.

Edit $GLOBUS_LOCATION/etc/openldap/slapd.conf to reflect your site's
requirements (for all bolded entries).

See slapd.conf(5) for details on configuration options.
This file should NOT be world readable.
#
include /usr/local/globus/etc/openldap/schema/core.schema
include /usr/local/globus/etc/openldap/schema/replica.schema
pidfile /usr/local/globus/var/slapd.pid
argsfile /usr/local/globus/var/slapd.args

###
 # ldbm database definitions
 ###
database ldbm
 suffix "dc=itso-maya,dc=com"
 rootdn "cn=Manager, dc=itso-maya,dc=com "
 rootpw globus
 directory /usr/local/globus/var/openldap-ldbm
 index objectClass eq

Be sure to include the following two lines in the file near the top:

schemacheck off
include /usr/local/globus/etc/openldap/schemas/replica.schema

2. Start the LDAP daemon:

export LD_LIBRARY_PATH=$GLOBUS_LOCATION/etc
$GLOBUS_LOCATION/libexec/slapd -f $GLOBUS_LOCATION/etc/openldap/slapd.conf

3. The LDAP daemon sends a message to the syslogd daemon though the
local4 facility. Add the following line in /etc/syslogd.conf:

Local4.* /var/log/ldap.log

Issue service syslogd reload to enable LDAP error messages. For any
issues regarding the LDAP server, you can check /var/log/ldap.log to
determine what the problem might be.

4. Initialize the catalog.

a. Open a shell and issue:

. $GLOBUS_LOCATION/etc/globus-user-env.sh
212 Enabling Applications for Grid Computing with Globus

http://www.globus.org/gt2/replica.schema.txt

b. Create a file called root.ldif with the following contents:

dn: dc=itso-maya, dc=com
objectclass: top
objectclass: GlobusTop

c. Create a file called rc.ldif with the following contents:

dn: rc=test, dc=itso-maya, dc=com
objectclass: top
objectclass: GlobusReplicaCatalog
objectclass: GlobusTop
rc: test

d. Now run the following commands:

ldapadd -x -h m0.itso-maya,com -D "cn=Manager,dc=itso-maya,dc=com"
-w globus -f root.ldif

ldapadd -x -h m0.itso-maya,com -D "cn=Manager,dc=itso-maya,dc=com" -w
globus -f rc.ldif

ldapsearch -h ldap.server.com -b "dc=itso-maya.com" objectclass=*

You should see the following in the output:

dn: dc=itso-maya,dc=com
objectclass: top
objectclass: GlobusTop

dn: rc=test, dc=itso-maya,dc=com
objectclass: top
objectclass: GlobusReplicaCatalog
objectclass: GlobusTop

7.6 Summary
The Globus Toolkit 2.2 does not provide a complete data grid solution, but
provides all of the components of the infrastructure to efficiently build a secure
and robust data grid solution. Major data grid projects are based on or use the
Globus Toolkit and have developed data grid solutions suited to their needs.

Note: All bold statements are specific to your site and need to be replaced
where necessary.
 Chapter 7. Using Globus Toolkit for data management 213

The Globus Toolkit 2 provides two kinds of services regarding data grid needs:

� For data transfer and access:

– GASS, which is a simple, multi-protocol file transfer. It is tightly integrated
with GRAM

– GridFTP, which is a protocol and client-server software that provides
high-performance and reliable data transfer

� For data replication and management:

– Replica Catalog, which provides a catalog service for keeping track of
replicated data sets

– Replica Management, which provides services for creating and managing
replicated data sets

All these services should not be considered as a complete and integrated Data
Grid solution, but they provide APIs and components to application developers to
build a data grid solution that will fit their expectation and that will integrate easily
with their application.
214 Enabling Applications for Grid Computing with Globus

Chapter 8. Developing a portal

We have mentioned multiple times that the likely user interface to grid
applications will be through portals, specifically Web portals. This chapter shows
what such a portal might look like and provides the sample code required to
create it.

The assumption is that the grid-specific logic, such as job brokers, job
submission, and so on, has already been written and is available as Java or
C/C++ programs that can simply be called from this portal. A few examples of
integrating Globus calls with the grid portal are shown.

8

© Copyright IBM Corp. 2003. All rights reserved. 215

8.1 Building a simple portal
The simple grid portal has a login screen as shown in Figure 8-1.

Figure 8-1 Sample grid portal login screen

After the user has successfully authenticated with a user ID and password, the
welcome screen is presented, as shown in Figure 8-2 on page 217.

Userid:

Password:

syu

OK Cancel

Simple Grid Portal Demo

Userid:

Password:

syu

OK Cancel

Simple Grid Portal Demo
216 Enabling Applications for Grid Computing with Globus

Figure 8-2 Simple grid portal welcome screen

From the left portion of the welcome screen, the user is able to submit an
application by selecting a grid application from the list and clicking Submit Grid
Application. With the buttons on the top right portion of the screen, the user is
able to retrieve information about the grid application such as the status and the
run results. Clicking the Logout button shows the login screen again.

Let us see how this may be implemented by using an application server such as
WebSphere Application Server. Figure 8-3 on page 218 shows the high-level
view of a simple grid portal application flow.

WeatherSimulation
GeneProject
TestApplication

Submit Grid Application

DemoApplication

Select an application
below and click
Submit Grid
Application button.

Welcome to Simple Grid Portal Demo

This simple grid portal is a demonstration to
show how easily you can submit an application
to the grid for execution. In this demo you will
be able to:
� Submit your application to the grid
� Query your application status
� Query your results
You may now submit an application to the grid.
Please note: this portal is designed for
demonstration purposes only.

My Application Status My Application Results Logout

WeatherSimulation
GeneProject
TestApplication

Submit Grid Application

DemoApplication

Select an application
below and click
Submit Grid
Application button.

Welcome to Simple Grid Portal Demo

This simple grid portal is a demonstration to
show how easily you can submit an application
to the grid for execution. In this demo you will
be able to:
� Submit your application to the grid
� Query your application status
� Query your results
You may now submit an application to the grid.
Please note: this portal is designed for
demonstration purposes only.

My Application Status My Application Results Logout
 Chapter 8. Developing a portal 217

Figure 8-3 Simple grid portal application flow

The login.html produces the login screen, where the user enters the user ID and
password. The control is passed to the Login Servlet with the user ID and
password as input arguments. The user is authenticated by the servlet. If
successful, the user is presented with a welcome screen with the welcome.html
file. Otherwise, the user is presented with an unsuccessful login screen with the
unsuccessfulLogin.html file. See Figure 8-4 on page 219.

Login Servlet

Application Servlet

login.html

welcome.html

unsuccessful
Login.html

Submit
Weather

Simulation

Get
Application

Status

Get
Application

Result

Submit
Gene

Project

doPost

doPost

Submit
Test

Application

Submit
Demo

Application

Login Servlet

Application Servlet

login.html

welcome.html

unsuccessful
Login.html

Submit
Weather

Simulation

Get
Application

Status

Get
Application

Result

Submit
Gene

Project

doPost

doPost

Submit
Test

Application

Submit
Demo

Application
218 Enabling Applications for Grid Computing with Globus

Figure 8-4 Simple grid portal login flow

Example 8-1 shows sample script code for the login.html to display the sample
login screen.

Example 8-1 Sample login.html script

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<HTML>
<HEAD>
<META http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<META name="GENERATOR" content="IBM WebSphere Studio">
<META http-equiv="Content-Style-Type" content="text/css">
<LINK href="theme/Master.css" rel="stylesheet"

type="text/css">
<TITLE>login.html</TITLE>
</HEAD>
<BODY>
<FORM name="form" method="post" action="Login">
<TABLE border="1" width="662" height="296">

<TBODY>
<TR>

<TD width="136" height="68"></TD>
<TD width="518" height="68"></TD>

</TR>
<TR>

<TD width="136" height="224"></TD>
<TD width="518" height="224">

Tip: The login servlet is associated with login.html with the following
statement:

<FORM name="form" method="post" action="Login">

Login Servlet

login.html

welcome.html

unsuccessful
Login.html

doPost

Authenticated

Access
denied

Login Servlet

login.html

welcome.html

unsuccessful
Login.html

doPost

Authenticated

Access
denied
 Chapter 8. Developing a portal 219

<P>Userid: <INPUT type="text" name="userid" size="20"
maxlength="20"></P>

<P>Password: <INPUT type="password" name="password" size="20"
maxlength="20"></P>

<INPUT type="submit" name="loginOkay" value="Login"></TD>
</TR>

</TBODY>
</TABLE>
</FORM>
</BODY>
</HTML

Example 8-2 shows sample Login.java servlet code.

The arguments from the login.html are passed to the Login.java servlet through
the HttpServletRequest req parameter. When the authentication is successful,
the control is passed to wecome.html using a redirect command,
rd.forward(request, response).

Example 8-2 Sample Login.java servlet code

package com.ibm.itso.mygridportal.web;

import java.io.IOException;
import javax.servlet.ServletException;
import javax.servlet.*;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

/**
 * @version 1.0
 * @author
 */
public class Login extends HttpServlet {

/**
* @see javax.servlet.http.HttpServlet#void

(javax.servlet.http.HttpServletRequest, javax.servlet.http.HttpServletResponse)
*/
public void doGet(HttpServletRequest req, HttpServletResponse resp)

throws ServletException, IOException {
performTask(req, resp);

Tip: The class definition clause extends HttpServlet distinguishes a servlet.
Another distinguishing mark of a servlet is the input parameters
(HttpServletRequest req, HttpServletResponse res).
220 Enabling Applications for Grid Computing with Globus

}

/**
* @see javax.servlet.http.HttpServlet#void

(javax.servlet.http.HttpServletRequest, javax.servlet.http.HttpServletResponse)
*/
public void doPost(HttpServletRequest req, HttpServletResponse resp)

throws ServletException, IOException {
performTask(req, resp);

}
public void performTask(

HttpServletRequest request,
HttpServletResponse response)
throws ServletException {

/**
* Add your authentication code here
*/
/**
* If authentication successful
*/
System.out.println("Login: forwarding to welcome page");
try {

RequestDispatcher rd =
getServletContext().getRequestDispatcher("welcome.html");

rd.forward(request, response);
} catch (java.io.IOException e) {

System.out.println(e);
}
/**
* If authentication failed
*/
try {

RequestDispatcher rd =
getServletContext().getRequestDispatcher \

("unsuccessfulLogin.html");
rd.forward(request, response);

} catch (java.io.IOException e) {
System.out.println(e);

}
}

}

The file welcome.html produces the welcome screen. From here, the user may
select a grid application from the list and submit. Clicking Submit Grid
Application button sends control to the application servlet. The selected grid
application is identified in the servlet and appropriate routines are invoked as
shown in Figure 8-5 on page 222.
 Chapter 8. Developing a portal 221

Figure 8-5 Simple grid portal application submit flow

The welcome.html script is provided in Example 8-3 on page 223.

Tip: The application servlet is associated with welcome.html with following
statement:

<FORM name="form" method="post" action="Application">

Tip: The application selection list is produced by the nested statements:

<SELECT size="4" name="appselect">
<OPTION value="weather">WeatherSimulation</OPTION>
<OPTION value="gene">GeneProject</OPTION>
<OPTION value="test">TestApp</OPTION>
<OPTION value="demo" selected>DemoApp</OPTION>

</SELECT>

Application Servletwelcome.html

Submit
Weather

Simulation

Submit
Gene

ProjectdoPost

Submit
Test

Application

Submit
Demo

Application

Application Servletwelcome.html

Submit
Weather

Simulation

Submit
Gene

ProjectdoPost

Submit
Test

Application

Submit
Demo

Application
222 Enabling Applications for Grid Computing with Globus

Example 8-3 Simple grid portal welcome.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<HTML>
<HEAD>
<%@ page
language="java"
contentType="text/html; charset=ISO-8859-1"
pageEncoding="ISO-8859-1"
%>
<META http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<META name="GENERATOR" content="IBM WebSphere Studio">
<META http-equiv="Content-Style-Type" content="text/css">
<LINK href="theme/Master.css" rel="stylesheet"

type="text/css">
<TITLE>welcome.jsp</TITLE>
</HEAD>
<BODY>
<FORM name="form" method="post" action="Application">
<H1 align="center">Welcome to Grid Portal Demo</H1>
<TABLE border="1" width="718" height="262">

<TBODY>
<TR>

<TD width="209" height="37"></TD>
<TD width="501" height="37">
<TABLE border="1" width="474">

<TBODY>
<TR>

<TD width="20%"><INPUT type="submit" name="status"
value="My Application Status"></TD>

<TD width="20%"><INPUT type="submit" name="result"
value="My Application Results"></TD>

<TD width="20%"></TD>
<TD width="20%"></TD>
<TD width="20%"><INPUT type="submit" name="logout"

value="Logout"></TD>
</TR>

</TBODY>
</TABLE>
</TD>

</TR>
<TR>

<TD width="209" height="225" valign="top">
<P>Select an application and click Grid Application Application
button below.</P><SELECT size="4" name="appselect">

<OPTION value="weather">WeatherSimulation</OPTION>
<OPTION value="gene">GeneProject</OPTION>
<OPTION value="test">TestApp</OPTION>
<OPTION value="demo" selected>DemoApp</OPTION>
 Chapter 8. Developing a portal 223

</SELECT>

<INPUT type="submit" name="submit" value="Submit Grid

Application">

</TD>
<TD width="501" height="225">
<P>This grid portal is a demontration to show how easily you can

submit an application to the grid for execution. In this demo you will be able
to:

</P>

Submit your application to the grid
Query your application status
Query your results

<P>You may now submit an application to the grid.
Please note:
this portal is designed for demonstration purposes only.

</P>
</TD>

</TR>
</TBODY>

</TABLE>
</FORM>
</BODY>
</HTML>

The Application.java servlet code is shown in Example 8-4 on page 225.

Tip: Determine which application was selected:

private void submitApplication() {
if (appselect[0].equals("weather"))

submitWeather();
else if (appselect[0].equals("gene"))

submitGene();
else if (appselect[0].equals("test"))

submitTest();
else if (appselect[0].equals("demo"))

submitDemo();
else

invalidSelection();
}

224 Enabling Applications for Grid Computing with Globus

Example 8-4 Simple grid portal Application.java servlet code

// 5630-A23, 5630-A22, (C) Copyright IBM Corporation, 2003
// All rights reserved. Licensed Materials Property of IBM
// Note to US Government users: Documentation related to restricted rights
// Use, duplication or disclosure is subject to restrictions set forth in GSA
ADP Schedule with IBM Corp.
// This page may contain other proprietary notices and copyright information,
the terms of which must be observed and followed.
//
// This program may be used, executed, copied, modified and distributed
// without royalty for the purpose of developing, using,
// marketing, or distributing.
//
package com.ibm.itso.mygridportal.web;

import java.io.IOException;
import javax.servlet.*;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.*;
import java.util.*;

/**

Tip: Determine if the Submit Grid Application button was checked:

String[] submit;
String[] appselect;

try {
// Which button selected?
submit = req.getParameterValues("submit");
// Which application was selected?
appselect = req.getParameterValues("appselect");

if (submit != null && submit.length > 0)
submitApplication(); // submit Application.
...

else
invalidInput();

} catch (Throwable theException) {
// uncomment the following line when unexpected exceptions are

occuring to aid in debugging the problem
// theException.printStackTrace();
throw new ServletException(theException);

}

 Chapter 8. Developing a portal 225

 * @version 1.0
 * @author
 */
public class Application extends HttpServlet {

HttpServletRequest req; //request
HttpServletResponse res; //response
JSPBean jspbean = new JSPBean();
PrintWriter out;
String[] submit;
String[] getresult;
String[] getstatus;
String[] logout;
String[] appselect;
/**
* @see javax.servlet.http.HttpServlet#void

(javax.servlet.http.HttpServletRequest, javax.servlet.http.HttpServletResponse)
*/
public void doGet(HttpServletRequest req, HttpServletResponse resp)

throws ServletException, IOException {
performTask(req, resp);

}

/**
* @see javax.servlet.http.HttpServlet#void

(javax.servlet.http.HttpServletRequest, javax.servlet.http.HttpServletResponse)
*/
public void doPost(HttpServletRequest req, HttpServletResponse resp)

throws ServletException, IOException {
performTask(req, resp);

}

public void performTask(
HttpServletRequest request,
HttpServletResponse response)
throws ServletException {

req = request;
res = response;

res.setContentType("text/html");
res.setHeader("Pragma", "no-cache");
res.setHeader("Cache-control", "no-cache");
try {

out = res.getWriter();
} catch (IOException e) {

System.err.println("Application:getWriter:" + e);
}

// --- Read and validate user input, initialize. ---
226 Enabling Applications for Grid Computing with Globus

try {
// Which button selected?
submit = req.getParameterValues("submit");
getresult = req.getParameterValues("result");
getstatus = req.getParameterValues("status");
logout = req.getParameterValues("logout");

// Which application was selected?
appselect = req.getParameterValues("appselect");

if (submit != null && submit.length > 0)
submitApplication(); // submit Application.

else if (getresult != null && getresult.length > 0)
getResult(); // get run result.

else if (getstatus != null && getstatus.length > 0)
getStatus(); // get Application status.

else if (logout != null && logout.length > 0)
doLogout(); // logout.

else
invalidInput();

} catch (Throwable theException) {
// uncomment the following line when unexpected exceptions are

occuring to aid in debugging the problem
// theException.printStackTrace();
throw new ServletException(theException);

}

}

private void submitApplication() {
if (appselect[0].equals("weather"))

submitWeather();
else if (appselect[0].equals("gene"))

submitGene();
else if (appselect[0].equals("test"))

submitTest();
else if (appselect[0].equals("demo"))

submitDemo();
else

invalidSelection();
}

private void submitWeather() {
/**
* Add code to submit the weather application here
*/
}

private void submitGene() {
 Chapter 8. Developing a portal 227

/**
* Add code to submit the gene application here
*/
}

private void submitTest() {
/**
* Add code to submit the test application here
*/
}

private void submitDemo() {
/**
* Add code to submit the demo application here
*/
}

private void getResult() {
/**
* Add code to get the Application results here
*/
}

private void getStatus() {
/**
* Add code to get the Application status here
*/
}

private void doLogout() {
System.out.println("doLogout: forwarding to login page");
try {

RequestDispatcher rd =
getServletContext().getRequestDispatcher("login.html");

rd.forward(req, res);
} catch (javax.servlet.ServletException e) {

System.out.println(e);
} catch (java.io.IOException e) {

System.out.println(e);
}

}

private void invalidSelection() {
// Something was wrong with the client input
try {

RequestDispatcher rd =
getServletContext().getRequestDispatcher("invalidSelection.html");

rd.forward(req, res);
} catch (javax.servlet.ServletException e) {
228 Enabling Applications for Grid Computing with Globus

System.out.println(e);
} catch (java.io.IOException e) {

System.out.println(e);
}

}

private void invalidInput() {
// Something was wrong with the client input
try {

RequestDispatcher rd =
getServletContext().getRequestDispatcher("invalidInput.html");

rd.forward(req, res);
} catch (javax.servlet.ServletException e) {

System.out.println(e);
} catch (java.io.IOException e) {

System.out.println(e);
}

}

private void sendResult(String[] list) {
int size = list.length;
for (int i = 0; i < size; i++) {

String s = list[i];
out.println(s + "
");
//System.out.println("s=" + s); //trace

} //end for
}

}

From the welcome screen, the user may also request application status,
application results, and logout. Figure 8-6 on page 230 shows the flow. When the
user clicks My Application Status, My Application Results, or Logout, the
Application Servlet is called.
 Chapter 8. Developing a portal 229

Figure 8-6 Simple grid portal application information and logout flow

Tip: Determine which button is pressed from welcome.html:

<TD width="20%"><INPUT type="submit" name="status"
value="My Application Status"></TD>

<TD width="20%"><INPUT type="submit" name="data"
value="My Application Results"></TD>

<TD width="20%"></TD>
<TD width="20%"></TD>
<TD width="20%"><INPUT type="submit" name="logout"

value="Logout"></TD>

Application Servlet

login.html

welcome.html

Get
Application

Status

Get
Application

Result

doPost

logout

Application Servlet

login.html

welcome.html

Get
Application

Status

Get
Application

Result

doPost

logout
230 Enabling Applications for Grid Computing with Globus

Tip: Determine which button is pressed:

String[] getresult;
String[] getstatus;
String[] logout;

try {
// Which button selected?
getresult = req.getParameterValues("result");
getstatus = req.getParameterValues("status");
logout = req.getParameterValues("logout");

if (submit != null && submit.length > 0)
submitApplication(); // submit Application.

else if (getresult != null && getresult.length > 0)
getResult(); // get application run results.

else if (getstatus != null && getstatus.length > 0)
getStatus(); // get application status.

else if (logout != null && logout.length > 0)
doLogout(); // logout.

else
invalidInput();

} catch (Throwable theException) {
// uncomment the following line when unexpected exceptions are

occuring to aid in debugging the problem
// theException.printStackTrace();
throw new ServletException(theException);

}

Tip: How to redirect to an html page:

private void doLogout() {
try {

RequestDispatcher rd =
getServletContext().getRequestDispatcher("login.html");

rd.forward(req, res);
} catch (javax.servlet.ServletException e) {

System.out.println(e);
} catch (java.io.IOException e) {

System.out.println(e);
}

}

 Chapter 8. Developing a portal 231

8.2 Integrating portal function with a grid application
This section describes some techniques for integrating the portal with a
grid-enabled application.

8.2.1 Add methods to execute the Globus commands
The simplest and most obvious integration is to be able to launch or execute
Globus commands via the Web interface. From a Java servlet, you may need to
launch Globus commands written in C. Let us see how this is accomplished.

Running non-Java commands from Java code
Our portal code is written in Java. If the grid commands and the Globus
commands are also Java classes then this section can be skipped. There are
two possible ways to do this. One way is to use the Java native method, which
can be difficult to implement. The second way is to use the exec() method of the
Runtime class. This method is easier to implement and our choice used in the
sample code. Either option will lose platform independence.

The sample code in Example 8-5 shows how to execute the grid commands and
Globus commands from the Web portal Java code.

Example 8-5 Sample code to run non-Java commands from Web portal

public String[] doRun(String[] cmd) throws IOException {
ArrayList cmdOutput;
Process p;
InputStream cmdOut;
BufferedReader brOut;
InputStream cmdErr;
BufferedReader brErr;
String line;

Tip: The method of running non-Java commands from Java code is:

Proc p = Runtime.getRuntime().exec(cmd);

Tip: Below is the method of properly passing parameter inputs or
sub-commands to the non-Java command. The exec() method has trouble
handling a single string passed as one command. With the string array,
“/bin/su” , “-c”, and “subCmd” are treated separately and execute correctly.

String[] cmd = {"/bin/su", "-c", subCmd, "-", "m0user"};
cmdResult = doRun(cmd);
232 Enabling Applications for Grid Computing with Globus

cmdOutput = new ArrayList();

p = Runtime.getRuntime().exec(cmd);

cmdOut = p.getInputStream();
brOut = new BufferedReader(new InputStreamReader(cmdOut));

// get the command output
cmdOutput.clear();
while ((line = brOut.readLine()) != null)

cmdOutput.add(line);

cmdErr = p.getErrorStream();
brErr = new BufferedReader(new InputStreamReader(cmdErr));

// get error message
while ((line = brErr.readLine()) != null)

cmdOutput.add(line);

try {
p.waitFor();

} catch (InterruptedException e) {
System.out.println("Command "+cmd+" interrupted." + e);

}
return (String[]) cmdOutput.toArray(new String[0]);

}

Security
In the sample code in Example 8-6, the grid-proxy-init command is executed
to get a valid proxy. The “su -c command - userid” is used to switch to the
correct user to run the command.

Example 8-6 Sample code to run grid-proxy-init from Web portal

public String[] doProxy() {
String[] cmdResult = null;
String subCmd = "echo m0user | grid-proxy-init -pwstdin";
try {

String[] cmd = {"/bin/su", "-c", subCmd, "-", "m0user"};
cmdResult = doRun(cmd);

}
catch (IOException e) {

System.out.println("doProxy: "+e);
}

return cmdResult;
}

 Chapter 8. Developing a portal 233

Submit grid application for execution
Example 8-7 shows sample code to submit a job to the grid for execution. The
“mdsHost” is a fully qualified host name where the application will be submitted.
A valid grid host may be found from the output of the grid-info-search
command. The “-stage” parameter is required if the application resides on the
submission machine and not on the execution machine. The jobId is returned
after successful submission, as shown in the tip below.

Example 8-7 Sample code to submit a job from Web portal

public String doSubmit(String mdsHost) {
String[] cmdResult = null;
String subCmd = "globus-job-submit "+mdsHost+" -stage

/home/m0user/test.sh";
try {

String[] cmd = {"/bin/su", "-c", subCmd, "-", "m0user"};
cmdResult = doRun(cmd);

}
catch (IOException e) {

System.out.println("doSubmit: "+e);
}
return cmdResult[0];

}

Get application status
The sample code in Example 8-8 shows how to retrieve the job status. The job ID
obtained from the job submission is input to the doGetStatus() method. When the
job is running, the job status ACTIVE is returned. When the job completes, the job
status DONE is returned.

Example 8-8 Sample code to get job status from Web portal

public String doGetStatus(String jobId) {
String[] cmdResult = null;
String subCmd = "globus-job-status "+jobId;
try {

String[] cmd = {"/bin/su", "-c", subCmd, "-", "m0user"};
cmdResult = doRun(cmd);

}
catch (IOException e) {

System.out.println("doGetStatus: "+e);

Tip: The job ID is returned by the globus-job-submit command, as shown
below. This job ID will be used to get the status and run the result, as shown in
the next section.

https://a1.itso-apache.com:41418/2772/1049325984/
234 Enabling Applications for Grid Computing with Globus

}
return cmdResult[0];

}

Get application run results
The sample code to get the run result is shown in Example 8-9. The job ID
obtained at job submission is used as input. The run results are cached after the
job completes and returns.

Example 8-9 Sample code to get job output from Web portal

public String[] doGetResult(String jobId) {
String[] cmdResult = null;
String subCmd = "globus-job-get-output "+jobId;
try {

String[] cmd2 = {"/bin/su", "-c", subCmd, "-", "m0user"};
cmdResult = doRun(cmd2);

}
catch (IOException e) {

System.out.println("doGetResult: "+e);
}

return cmdResult;
}

Cancel or clean a job
Use globus-job-cancel jobId to kill a running job. The job ID is obtained when
the job is submitted. The cached output from the job is not removed.

Use globus-job-clean jobId to kill a job if it is running and to remove the
cached output on the execution machine.

Repository of job ids for submitted applications
Example 8-10 on page 236 shows a class that could be used as a container for
job IDs for all submitted applications.

Tip: It is a good idea to periodically clean up the cache. Globus does not clean
up the cached output files. It will be a good idea to set up a routine
administrative procedure to periodically clean up the cache with the command
rm globus_gass_cache_* in the .globus/.gass_cache directory on the
execution machine.
 Chapter 8. Developing a portal 235

Example 8-10 Container for submitted job IDs

import java.util.*;

public class JSPBean {

private ArrayList jobIds;

public JSPBean() {
jobIds = new ArrayList();

}

public void addJobId(String id) {
jobIds.add(id);

}

public String[] getJobIds() {
return (String[])jobIds.toArray(new String[0]);

}
}

8.2.2 Putting it together
Example 8-11 includes the complete source code for the portal as has been
described throughout this chapter.

Example 8-11 Complete source code for grid portal sample

package com.ibm.itso.mygridportal.web;

import java.io.IOException;
import javax.servlet.*;
import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.*;
import java.util.*;

/**
 * @version 1.0
 * @author
 */
public class Application extends HttpServlet {

HttpServletRequest req; //request
HttpServletResponse res; //response
236 Enabling Applications for Grid Computing with Globus

String mdsHost = "a1.itso-apache.com";
String testApp = "/home/m0user/test.sh";
JSPBean jspBean = new JSPBean();
PrintWriter out;
String[] run;
String[] getresult;
String[] getstatus;
String[] logout;
String[] appselect;
/**
* @see javax.servlet.http.HttpServlet#void

(javax.servlet.http.HttpServletRequest, javax.servlet.http.HttpServletResponse)
*/
public void doGet(HttpServletRequest req, HttpServletResponse resp)

throws ServletException, IOException {
performTask(req, resp);

}

/**
* @see javax.servlet.http.HttpServlet#void

(javax.servlet.http.HttpServletRequest, javax.servlet.http.HttpServletResponse)
*/
public void doPost(HttpServletRequest req, HttpServletResponse resp)

throws ServletException, IOException {
performTask(req, resp);

}

public void performTask(
HttpServletRequest request,
HttpServletResponse response)
throws ServletException {

req = request;
res = response;

res.setContentType("text/html");
res.setHeader("Pragma", "no-cache");
res.setHeader("Cache-control", "no-cache");
try {

out = res.getWriter();
} catch (IOException e) {

System.err.println("Job:getWriter:" + e);
}

// --- Read and validate user input, initialize. ---
try {

// Which button selected?
run = req.getParameterValues("run");
getresult = req.getParameterValues("data");
 Chapter 8. Developing a portal 237

getstatus = req.getParameterValues("status");
logout = req.getParameterValues("logout");

// Which application was selected?
appselect = req.getParameterValues("appselect");

if (run != null && run.length > 0)
submitApplication(); // submit job.

else if (getresult != null && getresult.length > 0)
getResult(); // get run result.

else if (getstatus != null && getstatus.length > 0)
getStatus(); // get job status.

else if (logout != null && logout.length > 0)
doLogout(); // logout.

else
invalidInput();

} catch (Throwable theException) {
// uncomment the following line when unexpected exceptions are

occuring to aid in debugging the problem
// theException.printStackTrace();
throw new ServletException(theException);

}

}

private void submitApplication() {
if (appselect[0].equals("weather"))

submitWeather();
else if (appselect[0].equals("gene"))

submitGene();
else if (appselect[0].equals("test"))

submitTest();
else if (appselect[0].equals("demo"))

submitDemo();
else

invalidSelection();
}

private void submitWeather() {
String title = "Submit weather application";
out.println("<html>");
out.println("<head>");
out.println("<title>" + title + "</title>");
out.println("</head>");
out.println("<body bgcolor=\"#cfd09d\" text=\"#000099\">");
out.println("<h1 align=\"center\">" + title + "</h1>");
out.println("</body>");
out.println("</html>");

}

238 Enabling Applications for Grid Computing with Globus

private void submitGene() {
String title = "Submit gene application";
out.println("<html>");
out.println("<head>");
out.println("<title>" + title + "</title>");
out.println("</head>");
out.println("<body bgcolor=\"#cfd09d\" text=\"#000099\">");
out.println("<h1 align=\"center\">" + title + "</h1>");
out.println("</body>");
out.println("</html>");

}

private void submitTest() {
String title = "Submit test application";
out.println("<html>");
out.println("<head>");
out.println("<title>" + title + "</title>");
out.println("</head>");
out.println("<body bgcolor=\"#cfd09d\" text=\"#000099\">");
out.println("<h1 align=\"center\">" + title + "</h1>");
sendResult(doProxy());
jspBean.addJobId(doSubmit(mdsHost, testApp));
out.println("</body>");
out.println("</html>");

}

private void submitDemo() {
String title = "Submit Demo application";
out.println("<html>");
out.println("<head>");
out.println("<title>" + title + "</title>");
out.println("</head>");
out.println("<body bgcolor=\"#cfd09d\" text=\"#000099\">");
out.println("<h1 align=\"center\">" + title + "</h1>");
out.println("</body>");
out.println("</html>");

}

private void getStatus() {
String[] myJobIds;
String title = "Grid Job Status";
out.println("<html>");
out.println("<head>");
out.println("<title>" + title + "</title>");
out.println("</head>");
out.println("<body bgcolor=\"#cfd09d\" text=\"#000099\">");
out.println("<h1 align=\"center\">" + title + "</h1>");
myJobIds = jspBean.getJobIds();
 Chapter 8. Developing a portal 239

int size = myJobIds.length;
if (size > 0) {

out.println("<table border=1>");
 out.println("<tr>");
 out.print("<td>Job Id</td>");
 out.println("<td>Job Status</td>");
 out.println("</tr>");

for (int i = 0; i < size; i++) {
String myJobId = myJobIds[i];
out.println("<tr>");
out.print("<td>" + myJobId + "</td>");
out.println("<td>" + doGetStatus(myJobId) + "</td>");
out.println("</tr>");

}
out.println("</table>");

}

out.println("</body>");
out.println("</html>");

}

private void getResult() {
String[] myJobIds;
String title = "Grid Application Run Result";
out.println("<html>");
out.println("<head>");
out.println("<title>" + title + "</title>");
out.println("</head>");
out.println("<body bgcolor=\"#cfd09d\" text=\"#000099\">");
out.println("<h1 align=\"center\">" + title + "</h1>");
myJobIds = jspBean.getJobIds();

int size = myJobIds.length;
if (size > 0) {

out.println("<table border=1>");
 out.println("<tr>");
 out.print("<td>Job Id</td>");
 out.println("<td>Job Results</td>");
 out.println("</tr>");

for (int i = 0; i < size; i++) {
String myJobId = myJobIds[i];
out.println("<tr>");
out.print("<td>" + myJobId + "</td>");
out.println("<td>");
sendResult(doGetResult(myJobId));
out.println("</td>");
out.println("</tr>");

}

240 Enabling Applications for Grid Computing with Globus

out.println("</table>");
}

out.println("</body>");
out.println("</html>");

}

private void doLogout() {
System.out.println("doLogout: forwarding to login page");
try {

RequestDispatcher rd =
getServletContext().getRequestDispatcher("login.html");

rd.forward(req, res);
} catch (javax.servlet.ServletException e) {

System.out.println(e);
} catch (java.io.IOException e) {

System.out.println(e);
}

}

private void invalidSelection() {
// Something was wrong with the client input
System.out.println("invalid selection");
String title = "Invalid selection";
out.println("<html>");
out.println("<head>");
out.println("<title>" + title + "</title>");
out.println("</head>");
out.println("<body bgcolor=\"#cfd09d\" text=\"#000099\">");
out.println("<h1 align=\"center\">" + title + "</h1>");
out.println("</body>");
out.println("</html>");

}

private void invalidInput() {
// Something was wrong with the client input
System.out.println("invalid input");
String title = "Invalid Input";

out.println("<html>");
out.println("<head>");
out.println("<title>" + title + "</title>");
out.println("</head>");
out.println("<body bgcolor=\"#cfd09d\" text=\"#000099\">");
out.println("<h1 align=\"center\">" + title + "</h1>");
out.println("</body>");
out.println("</html>");

}
private void sendResult(String[] list) {
 Chapter 8. Developing a portal 241

int size = list.length;
for (int i = 0; i < size; i++) {

String s = list[i];
out.println(s + "
");
//System.out.println("s=" + s); //trace

} //end for
}
public String[] doProxy() {

String[] cmdResult = null;
String subCmd = "echo m0user | grid-proxy-init -pwstdin";
try {

String[] cmd = { "/bin/su", "-c", subCmd, "-", "m0user" };
cmdResult = doRun(cmd);

} catch (IOException e) {
System.out.println("doProxy: " + e);

}
return cmdResult;

}
public String doSubmit(String mdsHost, String appName) {

String[] cmdResult = null;
String subCmd =

"globus-job-submit " + mdsHost + " -stage " + appName;
try {

String[] cmd = { "/bin/su", "-c", subCmd, "-", "m0user" };
cmdResult = doRun(cmd);

} catch (IOException e) {
System.out.println("doSubmit: " + e);

}
return cmdResult[0];

}
public String doGetStatus(String jobId) {

String[] cmdResult = null;
String subCmd = "globus-job-status " + jobId;
try {

String[] cmd = { "/bin/su", "-c", subCmd, "-", "m0user" };
cmdResult = doRun(cmd);

} catch (IOException e) {
System.out.println("doGetStatus: " + e);

}
return cmdResult[0];

}
public String[] doGetResult(String jobId) {

String[] cmdResult = null;
String subCmd = "globus-job-get-output " + jobId;
try {

String[] cmd2 = { "/bin/su", "-c", subCmd, "-", "m0user" };
cmdResult = doRun(cmd2);

} catch (IOException e) {
System.out.println("doGetResult: " + e);
242 Enabling Applications for Grid Computing with Globus

}
return cmdResult;

}
public String[] doRun(String[] cmd) throws IOException {

ArrayList cmdOutput;
Process p;
InputStream cmdOut;
BufferedReader brOut;
InputStream cmdErr;
BufferedReader brErr;
String line;

cmdOutput = new ArrayList();

p = Runtime.getRuntime().exec(cmd);

cmdOut = p.getInputStream();
brOut = new BufferedReader(new InputStreamReader(cmdOut));

// get the command output
cmdOutput.clear();
while ((line = brOut.readLine()) != null)

cmdOutput.add(line);

cmdErr = p.getErrorStream();
brErr = new BufferedReader(new InputStreamReader(cmdErr));

// get error message
while ((line = brErr.readLine()) != null)

cmdOutput.add(line);

try {
p.waitFor();

} catch (InterruptedException e) {
System.out.println("Command " + cmd + " interrupted." + e);

}

return (String[]) cmdOutput.toArray(new String[0]);

}
}

 Chapter 8. Developing a portal 243

8.3 Summary
This chapter has provided examples and tips for creating a Web portal that cold
be used as an interface for a grid environment. It is meant as a sample on which
readers can build a more robust implementation that meet their specific needs.
244 Enabling Applications for Grid Computing with Globus

Chapter 9. Application examples

This chapter provides several examples of simple applications that have been
enabled to run in a grid environment. These samples provide many examples of
techniques and help solidify concepts that may be useful to the application
developer. They are provided as programming examples that may be useful to
readers in developing more sophisticated applications for their businesses.

9

© Copyright IBM Corp. 2003. All rights reserved. 245

9.1 Lottery simulation program
The first application simply utilizes the GSI-OpenSSH module. Many people will
not consider it a true grid application, as it does not use most of the facilities
provided by the Globus Toolkit, and their is little ability to manage the application
and control its environment. However, it is an example of the power of using the
GSI and GSI-OpenSSH packages to allow multiple systems to work together to
provide a solution.

After presenting the GSI-OpenSSH version of the program we then provide a
true grid-enabled version that does utilize the Globus Toolkit facilities.

9.1.1 Simulate a lottery using gsissh in a shell script
GSI-OpenSSH is a modified version of the OpenSSH client and server that adds
support for GSI authentication. GSIssh can of course be used to remotely create
a shell on a remote system to run shell scripts or to interactively issue shell
commands but it also permits the transfer of files between systems without being
prompted for a password and a user ID.

GSIssh installs the following tools in $GLOBUS_LOCATION/bin:

� gsissh is used to either securely connect to a remote host or to securely
execute a program on a remote host.

� gsiscp is used to securely copy files or directories onto a remote host.

� sftp is used to securely copy files or directories onto a remote host. sftp is
not related to gsiftp. It is a different protocol that provides encryption and the
same commands as the FTP protocol.

gsiscp and sftp do not perform as well as GridFTP, but they can easily be used
in a shell script to transfer files from one location to another.

The purpose of this example is to simulate a large number of draws of a lottery
and to check if a winning combination was drawn. Each draw consists of eight
numbers between one and 60 inclusive.

Note: Be careful to use host names for which certificates have been issued;
otherwise, you will get the following kind of error messages if you try to use the
IP address instead of the host name:

21569: gss_init_context failed
(/O=Grid/O=Globus/CN=host/g3.itso-guarani.com) in the context, and the
target name (/CN=host/192.168.0.203)
246 Enabling Applications for Grid Computing with Globus

The program GenerateDraws whose source code GenerateDraws.C is available
in “Lottery example” on page 349 is used to generate random draws. It takes one
argument, the number of draws that it needs to simulate (1000000, for example).
This program is executed on n nodes by using the GSIssh tools.

[globus@m0 other]$./GenerateDraws 10
3 29 33 39 41 46 54 55
3 6 7 10 16 22 35 50
4 13 20 26 36 47 48 49
8 12 17 22 26 36 50 57
6 20 25 28 32 40 51 55
1 2 9 17 24 45 49 60
12 15 19 20 39 50 59 60
1 4 8 13 29 49 52 57
3 7 14 29 36 43 52 58
6 8 15 18 20 22 27 45

GenerateDraws also creates a file named Monitor on the execution node. This file
is copied to the submission nodes every five seconds. Monitor contains the
percentage of random draws completed and permits the monitoring of the whole
application.

Figure 9-1 Lottery example

Submit 1 2 20 31 12 23

draw

Monitor

draw

Monitor

draw

Monitor

Monitor.1

Monitor.2

Monitor.n

…

node 1

node 2

node n
 Chapter 9. Application examples 247

The Submit script is used to submit the jobs to the grid. We use the grep
command to check the output of the GenerateDraws program and to detect if the
draw we played is a winner.

Example 9-1 Submit script

#the script takes the tested draw as a parameter
#example: ./Submit 3 4 5 32 34 43
n=100000
NodesNumber=10

#temporary working directory on the execution nodes
TMP=.$HOSTNAME

i=0
#the loop variable is used is all the “for” loops
#the format is 1 2 3 4 n
loop=””
use here the broker developped for the publication
see chapter 8 (mds executable)
for node in $(mds $NodesNumber | xargs)
do

Nodes[$i]=$node
loop=${loop}” “${i}
i=$(($i + 1))

done

echo The number of draws tested is $n
a=$*
#sort the numbers in the specified draw
2 45 23 12 32 43 becomes 2 12 23 32 43 45 so that we could use
grep to test this draw and the ouput of the draw programs.
param=$(echo $a | tr “ “ “\n” | sort -n | xargs)

parrarell transfer of the draw executable
we submit jobs in the background, get their process id
and uses the wait command to wait for their completion
this method is also used for the jobs submission
echo Transferring executable files
for i in $loop
do
 gsissh -p 24 ${Nodes[$i]} “[-d $TMP] || mkdir $TMP” &
 ProcessID[$i]=$!
done
for i in $loop
do
 wait ${ProcessID[$i]}
248 Enabling Applications for Grid Computing with Globus

 gsiscp -P 24 GenerateDraws ${Nodes[$i]}:$TMP &
 ProcessID[$i]=$!
done
for i in $loop
do
 wait ${ProcessID[$i]}
 gsissh -p 24 ${Nodes[$i]} “chmod +x ./$TMP/GenerateDraws” &
 ProcessID[$i]=$!
done
#file should be made executable
#on all the execution nodes
echo Jobs submission to the grid
for i in $loop
do
 wait ${ProcessID[$i]}
 echo ${Nodes[$i]}
 EXE=”cd $TMP;./GenerateDraws $n | grep “‘”’$param’” && echo GOT IT on
$HOSTNAME’
 gsissh -p 24 ${Nodes[$i]} “$EXE” &
 ProcessID[$i]=$!
done

#for monitoring, we copy locally the Monitor files
created on each compute nodes. This file content the
percentage of tested draws. Each files is suffixes by
the nodes number. $statusnum is actually the sum of all
the percentage (Monitor files) devided by 100. When it
equals the number of nodes, that means that we have finished
echo Monitoring
statussum=0
while (($statussum != $NodesNumber))
do

echo
sleep 5 #we poll every 5 seconds
statussum=0
for i in $loop
do
 gsiscp -q -P 24 ${Nodes[$i]}:$TMP/Monitor Monitor.$i
 status=$(cat Monitor.$i)
 statussum=$(($status + $statussum))
 echo ${Nodes[$i]}:Monitor $(cat Monitor.$i) %
done
statussum=$(($statussum / 100))

done
#cleanup the tmp directory
for i in $loop
do
 wait ${ProcessID[$i]}
 gsissh -p 24 ${Nodes[$i]} “rm -fr ./.$TMP” &
 Chapter 9. Application examples 249

 ProcessID[$i]=$!
done

Submit uses the broker (mds program) described in “Broker example” on
page 127 to get the host names that it will submit the jobs to by using gsissh:

for n in $(mds $NodesNumber | xargs)
do

Nodes[$i]=$n
i=$(($i + 1))

done

The number of draws per node is determined by the variable n and the number of
jobs by the variable NodesNumber:

n=100000
NodesNumber=10

Sandboxing
Each execution host uses a sandbox directory in each execution node. This
directory is created in the local home directory of the user under which the job is
executed. This directory is configured by the $TMP variable set up as
.<execution hostname>:

TMP=.$HOSTNAME
gsissh ${Nodes[$i]} “[-d $TMP] || mkdir $TMP” &

All file copies and remote execution use the TMP variable in their relative path
name to refer to the remote files. This way, each client machine can submit a job
without conflicting with another client:

gsissh ${Nodes[$i]} “chmod +x ./$TMP/GenerateDraws” &
ProcessID[$i]=$!
gsiscp GenerateDraws ${Nodes[$i]}:$TMP &
ProcessID[$i]=$!

For more granularity, TMP could also use the process ID of the Submit script:

TMP=.$HOSTNAME/$$

Shell script callback
As we cannot use a callback mechanism in a shell script. We start each
command in the background. Therefore, they become non-blocking operations
and all commands can be submitted simultaneously.

gsiscp GenerateDraws ${Nodes[$i]}:$TMP &
gsissh ${Nodes[$i]} "chmod +x ./$TMP/GenerateDraws" &
250 Enabling Applications for Grid Computing with Globus

The wait command is used to wait for their completion and acts like a (simple)
callback

wait ${ProcessID[$i]}

Job submission
GenerateDraws needs to be copied to each execution node. Each execution
node must have the GSIssh server up and running. gsiscp is used to transfer the
files and gsissh is used to remotely execute the chmod +x command, as shown in
Example 9-2.

Example 9-2 Job submission using gsissh

for i in $loop
do

gsiscp GenerateDraws ${Nodes[$i]}:$TMP &
ProcessID[$i]=$!

done

for i in $loop
do

wait ${ProcessID[$i]}
gsissh -p 24 ${Nodes[$i]} "chmod +x ./$TMP/GenerateDraws" &
ProcessID[$i]=$!

done
for i in $loop
do

EXE="cd $TMP;./GenerateDraws $n | grep "'"'$param'" && echo GOT IT on\
$HOSTNAME'

gsissh -p 24 ${Nodes[$i]} "$EXE" &
ProcessID[$i]=$!

done
for i in $loop
do
 wait ${ProcessID[$i]}
done

Monitoring
The monitoring of each job is managed by the Submit script, which reads the
content of each file Monitor created by the GenerateDraws executable on each
execution node:

for monitoring, we copy locally the Monitor files
created on each compute nodes. This file content the
percentage of tested draws. Each files is suffixes by
the nodes number. $statusnum is actually the sum of all
the percentage (Monitor files) devided by 100. When it
equals the number of nodes, that means that we have finished
 Chapter 9. Application examples 251

echo Monitoring
statussum=0
while (($statussum != $NodesNumber))
do

echo
sleep 5 #we poll every 5 seconds
statussum=0
for i in $loop
do
 gsiscp -q -P 24 ${Nodes[$i]}:$TMP/Monitor Monitor.$i
 status=$(cat Monitor.$i)
 statussum=$(($status + $statussum))
 echo ${Nodes[$i]}:Monitor $(cat Monitor.$i) %
done
statussum=$(($statussum / 100))

done

How to run it
To use this program we need a valid proxy.

echo password | grid-proxy-init -pwstdin
Your identity: /O=Grid/O=Globus/OU=itso-maya.com/CN=globus
Enter GRID pass phrase for this identity:
Creating proxy Done
Your proxy is valid until: Thu Feb 27 06:19:17 2003

The option -pwstdin permits us to create a proxy without being prompted for a
password. This way, the proxy creation can be integrated in the Submit script if
needed.

You also need to compile the GenerateDraws.C program and be sure that the
GSIssh server is up and running in all nodes. See “Installation” on page 211 for
more information.

Let us perform the test on six numbers instead of eight to have a better chance to
win:

[globus@m0 other]$./Submit 1 4 10 15 20 34
The number of draws tested is 100000
Transferring executable files
GenerateDraws 100% |*******************************| 52775 00:00
GenerateDraws 100% |*******************************| 52775 00:00

Note: When connecting to a host for the first time, ssh needs to retrieve its
public host key. To bypass this request, you can add the following option to
the configuration file $GLOBUS_LOCATION/etc/ssh/ssh_config.

StrictHostKeyChecking no
252 Enabling Applications for Grid Computing with Globus

GenerateDraws 100% |*******************************| 52775 00:00
GenerateDraws 100% |*******************************| 52775 00:00
GenerateDraws 100% |*******************************| 52775 00:00
GenerateDraws 100% |*******************************| 52775 00:00
GenerateDraws 100% |*******************************| 52775 00:00
GenerateDraws 100% |*******************************| 52775 00:00
GenerateDraws 100% |*******************************| 52775 00:00
GenerateDraws 100% |*******************************| 52775 00:00
Jobs submission to the grid
d2.itso-apache.com
a1.itso-cherokee.com
c2.itso-cherokee.com
c1.itso-cherokee.com
t1.itso-tupi.com
t3.itso-tupi.com
d1.itso-apache.com
a2.itso-apache.com
b2.itso-bororos.com
t2.itso-tupi.com
Monitoring

d2.itso-dakota.com:Monitor 37 %
a1.itso-apache.com:Monitor 46 %
c2.itso-cherokee.com:Monitor 41 %
c1.itso-cherokee.com:Monitor 41 %
t1.itso-tupi.com:Monitor 51 %
t3.itso-tupi.com:Monitor 43 %
d1.itso-dakota.com:Monitor 47 %
a2.itso-apache.com:Monitor 49 %
b2.itso-bororos.com:Monitor 40 %
t2.itso-tupi.com:Monitor 55 %

1 4 10 15 20 34 47 57
GOT IT on a1.itso-apache.com
d2.itso-dakota.com:Monitor 97 %
a1.itso-apache.com:Monitor 100 %
c2.itso-cherokee.com:Monitor 100 %
c1.itso-cherokee.com:Monitor 100 %
t1.itso-tupi.com:Monitor 100 %
t3.itso-tupi.com:Monitor 99 %
d1.itso-dakota.com:Monitor 100 %
a2.itso-apache.com:Monitor 100 %
b2.itso-bororos.com:Monitor 84 %
t2.itso-tupi.com:Monitor 100 %
 Chapter 9. Application examples 253

9.1.2 Simulate a lottery using Globus commands
We propose to implement the previous example by using Globus Toolkit 2.2
commands:

� globusrun will be used to submit the job. The type of the job will be a
multi-request query.

� globus-url-copy will be used to copy the Monitor file from the execution
nodes to the submission nodes.

� globus-gass-server will start a GASS server on the execution nodes that will
be used to copy the Monitor file generated by GenerateDrawsGlobus and used
to monitor the status of the job.

All the programs used in the previous example are slightly modified but are still
used for the same purpose. The modified versions for this example are renamed
with the suffix Globus; for example, SubmitGlobus is the submission script and
GenerateDrawsGlobus is the program generating random numbers. See
“GenerateDrawsGlobus.C” on page 352 and “SubmitGlobus script” on page 353.

The sample broker developed in “ITSO broker” on page 327 will be used as in
the previous example to obtain execution host names.
254 Enabling Applications for Grid Computing with Globus

Figure 9-2 Lottery example using Globus commands

Submitting the jobs
The tag ressourceManagerContact will be used for the RSL string to specify a
multi-request query. Each resourceManagerContact indicates one execution
node. The structure of the query is:

+ (&(resourceManagerContact=”host1”)(executable=))
(&(resourceManagerContact=”host2”)(executable=))
(&(resourceManagerContact=”host3”)(executable=))

globusrun is a blocking shell command that will wait for the completion of the
jobs. Consequently, we run globusrun in the background so that the submission
script (SubmitGlobus in this example) can continue running and acts as a
non-blocking command. The wait command can be used to wait for the
completion of this command. However, in the example it is not really required.

Example 9-3 Building a multi-request query for globusrun

echo Jobs submission to the grid
rsl="+"
for i in $loop

Submit 1 2 20 31 12 23

draw

Monitor

draw

Monitor

draw

Monitor

Monitor.1

Monitor.2

Monitor.n

…

node 1

node 2

node n

gassserver

gassserver

gassserver

draw.sh

draw.sh

draw.sh

globusrun
gassserver
 Chapter 9. Application examples 255

do
 echo ${Nodes[$i]}
 rsl=${rsl}"(&(resourceManagerContact=\"${Nodes[$i]}\")"
 rsl=${rsl}"(executable=\$(GLOBUSRUN_GASS_URL)$PWD/GenerateDrawsGlobus.sh)

(arguments=$TMP $n \"$param\")
(subjobStartType=loose-barrier)
(file_stage_in=(\$(GLOBUSRUN_GASS_URL)$PWD/GenerateDrawsGlobus

GenerateDrawsGlobus.$TMP))
(file_clean_up=GenerateDrawsGlobus.$TMP)
(environment=(LD_LIBRARY_PATH \$(GLOBUS_LOCATION)/lib)))"

done
echo $rsl
#start the commands in the background to be non-blocking
globusrun -s -o "$rsl" &

Job submission
The script GenerateDrawsGlobus.sh is used to invoke GenerateDrawsGlobus
and to perform the simulation on each execution node.

Example 9-4 GenerateDrawsGlobus.sh

#First argument is the hostname
#Second arguement is the number of draws to simulate
#third argument is the draw to test (“1 21 32 12 24 43 45”)
chmod +x ~/GenerateDrawsGlobus.$1
~/GenerateDrawsGlobus.$1 $1 $2 | grep “$3” && echo GOT IT on $HOSTNAME

GenerateDrawsGlobus.sh is used as an intermediary to start the computation
instead of directly invoking GenerateDrawsGlobus. It is needed because it
performs three actions that cannot be described in one RSL string:

� It make GenerateDrawsGlobus executable.
� It invokes GenerateDrawsGlobus.
� It pipes the GenerateDrawsGlobus output through grep.

We use the local GASS server that is started with globusrun and the -s option, to
perform the movement of the executables GenerateDrawsGlobus.sh and
GenerateDrawsGlobus. Both files are staged in the execution nodes (see the
SubmitGlobus script):

(executable=\$(GLOBUSRUN_GASS_URL)$PWD/GenerateDrawsGlobus.sh)
(file_stage_in=(\$(GLOBUSRUN_GASS_URL)$PWD/GenerateDrawsGlobus

GenerateDrawsGlobus.$TMP)

Note: (subjobStartType=loose-barrier) must be used in the RSL commands to
avoid premature ending of the sub-jobs that do not terminate at the same time
as the others because they run slower.
256 Enabling Applications for Grid Computing with Globus

TMP is used for the same reason, as in the previous example, to avoid conflicts
between jobs submitted from different nodes so that they do not work on the
same files. TMP equals $HOSTNAME, actually the submission node host name.
The process ID of the SubmitGlobus script could be used to add more granularity
and avoid conflicts between jobs submitted from the same host and from
different users or with different parameters.

If one good result is found, the stdout output is redirected locally from the
execution node to the submission node, and will appear during the execution.

GenerateDrawsGlobus generates random draws. It is slightly different from the
previous GenerateDraws program in that it writes the Monitor file under a
different file name: Monitor.<submission node hostname>.

filename="Monitor.";
filename.append(argv[1]);
OutputFileMonitor.open(filename.c_str());

The <submission node hostname> is actually passed as a parameter (see
“GenerateDrawsGlobus.C” on page 352) by the GenerateDrawsGlobus.sh that
itself receives these parameters from the RSL command:

In the SubmitGlobus script
(executable=GenerateDraws.sh)(arguments=$TMP $n \"$param\")
In GenerateDraws.sh script:
~/GenerateDrawsGlobus.$1 $1 $2 | grep “$3” && echo GOT IT on $HOSTNAME

For a job submitted from m0.itso-maya.com to t1.itso-tupi.com, the RSL string is:

&(resourceManagerContact="c1.itso-cherokee.com")
(executable=$(GLOBUSRUN_GASS_URL)/home/globus/JYCode/other/GenerateDrawsGlobus.
sh)
(arguments=m0.itso-maya.com 300000 "2 3 6 7 8 20 45 55")
(subjobStartType=loose-barrier)
(file_stage_in=($(GLOBUSRUN_GASS_URL)/home/globus/JYCode/other/GenerateDrawsGlo
bus GenerateDrawsGlobus.m0.itso-maya.com))
(file_clean_up=GenerateDrawsGlobus.m0.itso-maya.com)
(environment=(LD_LIBRARY_PATH $(GLOBUS_LOCATION)/lib)))G

GASS servers on the execution nodes
A GASS server is started on all execution nodes. We use globusrun to start this
server. The command globusrun is submitted in the background so that it is
non-blocking in the script. The URL of the GASS server is written in the file
gass-server.# in the current directory, where # is an index used in the script to
refer to the execution nodes.

Example 9-5 Starting a remote GASS server using globusrun

for i in $loop
 Chapter 9. Application examples 257

do
 rsl='&(executable=$(GLOBUS_LOCATION)/bin/globus-gass-server)(arguments=-c -t
-r)(environment=(LD_LIBRARY_PATH
$(GLOBUS_LOCATION)/lib))(file_clean_up=Monitor.'"$TMP)"
 globusrun -o -r ${Nodes[$i]} "$rsl" > gass-server.$i &
done

As the GASS server is not started immediately, we test the size of the file
gass-server.# before trying to communicate with this server. This size will
actually remain null as long as the GASS server started remotely, and has not
returned the URL on which it will listen.

if [-s gass-server.$i]
then

contact=$(cat gass-server.$i)
globus-url-copy $contact/~/Monitor.$TMP file://$PWD/Monitor.$i
status=$(cat Monitor.$i)
statussum=$(($status + $statussum))
echo ${Nodes[$i]}:Monitor $(cat Monitor.$i) %

fi

Finally, the GASS servers are shut down at the end of the script by using
globus-gass-server-shutdown, as shown in Example 9-6.

Example 9-6 Shutting down the remote GASS servers

for i in $loop
do

contact=$(cat gass-server.$i)
globus-gass-server-shutdown $contact

done

Monitoring
globus-url-copy is used to copy the Monitor files created by
GenerateDrawsGlobus. The Monitor files are not redirected to the submission
node via GASS because GenerateDrawsGlobus keeps writing in the file and that
would cause a lot of network traffic.

Example 9-7 Monitoring

echo Monitoring
rm -f Monitor.*
statussum=0
while (($statussum != $NodesNumber))
do

echo
sleep 5 #we poll every 5 seconds
statussum=0
258 Enabling Applications for Grid Computing with Globus

for i in $loop
do
 if [-s gass-server.$i]
 then

 contact=$(cat gass-server.$i)
 globus-url-copy $contact/~/Monitor.$TMP file://$PWD/Monitor.$i
 status=$(cat Monitor.$i)
 statussum=$(($status + $statussum))
 echo ${Nodes[$i]}:Monitor $(cat Monitor.$i) %
 fi
done
statussum=$(($statussum / 100))

done

Because the remote GASS server may not have started yet, we check the size of
the gass-server.$i file. If empty, that means that no URL has been returned yet
and therefore the GASS server has not yet started.

As in Example 9-7 on page 258, the for loop scans the content of each Monitor.$i
copied from each execution host and displays them every five seconds.

Implementation
Below we discuss the implementation.

Example 9-8 SubmitGlobus script

#the script takes the tested draw as parameter
#example: ./Submit 3 4 5 32 34 43
n=300000
NodesNumber=8

#temporary filename used by by GenerateDrawsGlobus
#to monitor the job
#we can also use the process id to increase the granularity
TMP=$HOSTNAME

i=0
#the loop variable is used is all the “for” loops
#the format is 1 2 3 4 n
loop=””
use here the broker developped for the publication
see chapter 8 (mds executable)
for node in $(mds $NodesNumber | xargs)
do

Nodes[$i]=$node
loop=${loop}” “${i}
i=$(($i + 1))

done
 Chapter 9. Application examples 259

echo The number of draws tested is $n
a=$*
#sort the numbers in the specified draw
2 45 23 12 32 43 becomes 2 12 23 32 43 45 so that we could use
grep to test this draw and the ouput of the draw programs.
param=$(echo $a | tr “ “ “\n” | sort -n | xargs)

#Start the gass server on each nodes
clean up the Monitoring file when leaving
for i in $loop
do
 rsl=’&(executable=$(GLOBUS_LOCATION)/bin/globus-gass-server)(arguments=-c -t
-r)(environment=(LD_LIBRARY_PATH
$(GLOBUS_LOCATION)/lib))(file_clean_up=Monitor.’”$TMP)”
 globusrun -o -r ${Nodes[$i]} “$rsl” > gass-server.$i &
done
#file should be made executable
#on all the execution nodes
echo Jobs submission to the grid
rsl=”+”
for i in $loop
do
 echo ${Nodes[$i]}
 rsl=${rsl}”(&(resourceManagerContact=\”${Nodes[$i]}\”)”

rsl=${rsl}”(executable=\$(GLOBUSRUN_GASS_URL)$PWD/GenerateDrawsGlobus.sh)(argum
ents=$TMP $n
\”$param\”)(subjobStartType=loose-barrier)(file_stage_in=(\$(GLOBUSRUN_GASS_URL
)$PWD/GenerateDrawsGlobus
GenerateDrawsGlobus.$TMP))(file_clean_up=GenerateDrawsGlobus.$TMP)(environment=
(LD_LIBRARY_PATH \$(GLOBUS_LOCATION)/lib)))”
done
echo $rsl
globusrun -s -o “$rsl” &
#for monitoring, we copy locally the Monitor files
created on each compute nodes. This file content the
percentage of tested draws. Each files is suffixes by
the nodes number. $statusnum is actually the sum of all
the percentage (Monitor files) devided by 100. When it
equals the number of nodes, that means that we have finished

echo Monitoring
rm -f Monitor.*
statussum=0
while (($statussum != $NodesNumber))
do

echo
260 Enabling Applications for Grid Computing with Globus

sleep 5 #we poll every 5 seconds
statussum=0
for i in $loop
do
 if [-s gass-server.$i]
 then

 contact=$(cat gass-server.$i)
 globus-url-copy $contact/~/Monitor.$TMP file://$PWD/Monitor.$i
 status=$(cat Monitor.$i)
 statussum=$(($status + $statussum))
 echo ${Nodes[$i]}:Monitor $(cat Monitor.$i) %
 fi
done
statussum=$(($statussum / 100))

done

#Stop the gassserver
for i in $loop
do

contact=$(cat gass-server.$i)
globus-gass-server-shutdown $contact

done

mds is the broker executable described in “Broker example” on page 127. It must
be in the PATH because it is invoked by the SubmitGlobus script.

For a a short computation on three nodes the result is:

[globus@m0 other]$./SubmitGlobus 2 3 45 6 7 8 20
The number of draws tested is 100000
Jobs submission to the grid
d2.itso-dakota.com
c2.itso-cherokee.com
c1.itso-cherokee.com
+(&(resourceManagerContact="d2.itso-dakota.com")(executable=$(GLOBUSRUN_GASS_UR
L)/home/globus/JYCode/other/GenerateDrawsGlobus.sh)(arguments=m0.itso-maya.com
100000 "2 3 6 7 8 20 45") (subjobStartType=loose-barrier)
(file_stage_in=($(GLOBUSRUN_GASS_URL)/home/globus/JYCode/other/GenerateDrawsGlo
bus GenerateDrawsGlobus.m0.itso-maya.com))
(file_clean_up=GenerateDrawsGlobus.m0.itso-maya.com)
(environment=(LD_LIBRARY_PATH $(GLOBUS_LOCATION)/lib)))
(&(resourceManagerContact="c2.itso-cherokee.com")
(executable=$(GLOBUSRUN_GASS_URL)/home/globus/JYCode/other/GenerateDrawsGlobus.
sh) (arguments=m0.itso-maya.com 100000 "2 3 6 7 8 20 45")
(subjobStartType=loose-barrier)
(file_stage_in=($(GLOBUSRUN_GASS_URL)/home/globus/JYCode/other/GenerateDrawsGlo
bus GenerateDrawsGlobus.m0.itso-maya.com))
(file_clean_up=GenerateDrawsGlobus.m0.itso-maya.com)
(environment=(LD_LIBRARY_PATH $(GLOBUS_LOCATION)/lib)))
 Chapter 9. Application examples 261

(&(resourceManagerContact="c1.itso-cherokee.com")
(executable=$(GLOBUSRUN_GASS_URL)/home/globus/JYCode/other/GenerateDrawsGlobus.
sh) (arguments=m0.itso-maya.com 100000 "2 3 6 7 8 20 45")
(subjobStartType=loose-barrier)
(file_stage_in=($(GLOBUSRUN_GASS_URL)/home/globus/JYCode/other/GenerateDrawsGlo
bus GenerateDrawsGlobus.m0.itso-maya.com))
(file_clean_up=GenerateDrawsGlobus.m0.itso-maya.com)
(environment=(LD_LIBRARY_PATH $(GLOBUS_LOCATION)/lib)))
Monitoring

d2.itso-dakota.com:Monitor 71 %
c2.itso-cherokee.com:Monitor 66 %
c1.itso-cherokee.com:Monitor 61 %

d2.itso-dakota.com:Monitor 100 %
c2.itso-cherokee.com:Monitor 100 %
c1.itso-cherokee.com:Monitor 96 %

d2.itso-dakota.com:Monitor 100 %
c2.itso-cherokee.com:Monitor 100 %
c1.itso-cherokee.com:Monitor 100 %

9.2 Small Blue example
This example shows an example of how to distribute a function across a Grid
infrastructure based on the Globus Toolkit 2.2. Note that for readability reasons,
not all the needed error checking is done for every Globus Toolkit 2.2 API call.

The purpose of the game (called Puissance 4, in French) is to align four chips to
win. In this example, a simple artificial intelligence machine plays against a
human.

The artificial intelligence is implemented in the GAME.C program available in
“GAME Class” on page 337 and works in the following ways:

� It evaluates the value of each position from the first column to the eighth.

� For each position, it also evaluates the next positions that the adversary could
possibly play and reevaluates its tested position accordingly.

� When all positions are evaluated, the best move is chosen.

The standalone or non-gridified version of the game is available in “SmallBlue.C
(standalone version)” on page 331. The algorithm as well as the GAME class is
not studied in the publication. The GAME class provides methods to display the
262 Enabling Applications for Grid Computing with Globus

game, to check if someone has won, to play the position decided by the players,
and to test if a player can play a specific column.

Figure 9-3 Problem suitable for Grid enablement

In the extract of the SmallBlue.C (Example 9-9 on page 264) source code, we
can see that:

� The evaluation of a position is performed via the Simulate() function called
from the main() program.

� The SmallBlue application uses the object Current of type GAME to store the
game data. This data is used to perform the evaluation of a position. The
evaluation of a position is performed in the function Simulate() that takes two
parameters: The tested position and the game data. Simulate()returns the
value of the evaluation. This function is called for each column in main().

� The Value() method of the GAME class is used to evaluate the value of a
position. It takes the tested column as a parameter as well as the player
(BLACK/WHITE) who is playing the column. This method is called in
Simulate().

1 32 4 5 76 8

white ?

position 1
position 2
position 3
position 4
position 5
position 6
position 7
position 8

black

next

white

next
 Chapter 9. Application examples 263

Example 9-9 Standalone version

int Simulate(GAME newgame, int col) {
int l=0,s;
int start=newgame.Value(col,WHITE);
newgame.Play(col,WHITE);
l=0;
for(int k=1;k!=XSIZE+1;k++) {

s=newgame.Value(k,BLACK);
if (s>l)

l=s;
};
start-=l;
return start;

}

main() {
//*************************** Start ****************************/
GAME Current(XSIZE,YSIZE);
int s,l,k,toplay;
char c[2];
while (true) {

Current.Display();
do {

cout << "?";
cin >> c;
c[1]='\0';
l=atoi(c);

} while ((l<1) || (l>XSIZE) || !Current.CanPlay(l));
Current.Play(l,BLACK);
if (Current.HasWon(l,BLACK)) {

Current.Display();
exit(1);

};
//*************************** Simulation *****************************/

l=-100000;
for(k=1;k!=XSIZE+1;k++) {

if (Current.CanPlay(k)) {
//*************************** call Simulate *****************************/

s=Simulate(Current,k);
if (s>l) {

l=s;
toplay=k;

};
};

};
if (l==-100000) {

cout << "NULL" << endl;
exit(1);
264 Enabling Applications for Grid Computing with Globus

};
Current.Play(toplay,WHITE);
if (Current.HasWon(toplay,WHITE)) {

Current.Display();
exit(1);

};
};

};

The purpose of this example is to gridify the application by executing the
Simulate() function on a remote host:

� Each evaluation of a tested column can be executed independently.

� Each evaluation modifies the game data when simulating an attempt so each
job needs to have its own copy of the game. This behavior is also present in
the function Simulate() where a new object GAME called newgame is created
specifically for the evaluation, and used to store successive tested positions.
Therefore, the game data must be replicated on all execution nodes.

9.2.1 Gridification
To gridify this application, we will use two programs:

� One called SmallBlueMaster that will submit the job, gather the results, and
be the interface with the human player

� One called SmallBlueSlave that will perform the simulation and returns the
result to SmallBlueMaster

The source code for these two programs is available in “SmallBlueMaster.C” on
page 332 and “SmallBlueSlave.C” on page 336.
 Chapter 9. Application examples 265

Figure 9-4 Gridified SmallBlue

One problem is that the simulate() function uses two variables and returns one
value that needs to be passed to and retrieved from a remote host. We cannot
use inter-process communications between the nodes.

A solution is to serialize objects by storing the instance value on disk and use the
Globus Toolkit 2.2 data movement functions:

� By using GRAM and GASS systems. The Current object will be serialized to
disk and transferred to each remote host. The tested position will be passed
as an argument to SmallBlueslave, which will load the current value and
therefore will recreate the same environment that exists in SmallBlueMaster.

� By using the GRAM and GASS subsystems, all the results of the execution
nodes will be output to the same file, eval, on the master node.

Communication is accomplished:

1. By a local GASS server started on the master node and listening on port
10000

2. By the GASS servers started on each execution node by the GRAM, which
will map standard input and output to remote files

- asks each node to evaluate a position
- gather the results and decides

perform the Simulate() function
returns the value

smallblueslave

smallbluemaster
266 Enabling Applications for Grid Computing with Globus

The following RSL command describes this process:

&(executable=smallblueslave) (arguments=<tested column>)
(stdout=https://<masternode>:10000/<localdir>/eval)
(stdin=https://<masternode>:10000/<localdir>/GAME) (count=1)"

Figure 9-5 How to transfer an object via GRAM and GASS

The local GASS server started by SmallBlueMaster transparently provides
access to the eval and GAME file to the remote execution nodes via GRAM and
the associated GASS server. It arbitrarily listens on port 10000. Two functions,
StartGASSServer() and StopGASSServer(), wrap the Globus Toolkit 2.2 API
calls to start and stop the local GASS server. The source code of these functions
is available in “itso_gass_server.C” on page 325.

We can see in the SmallBlueSlave code source that it reads and writes only on
standard input and output channels (via cin and cout standard iostream objects).
It will nevertheless transparently work on remotely stored files thanks to the stdin
and stdout keywords in the RSL job description language:

(stdout=https://<masternode>:10000/<localdir>/eval)
(stdin=https://<masternode>:10000/<localdir>/GAME)

Current

Current

eval

local
GASS
server

GRAM
server

smallblueslave

smallbluemaster

column tested

GASS
server

can read each value for each position
and takes the best one.
 Chapter 9. Application examples 267

Where:

� stdin is mapped to the GAME file located on the master node and generated
by the call to the method ToDisk() of the object Current (object serialization).
Another way to proceed would be to use Globus sockets to transfer the
serialized object without the need of intermediate files.

� stdout is mapped to the eval file located on the master node. SmallBlueSlave
will write the value of a tested position to this file. All the nodes write to eval so
all output will be appended to this file.

SmallBlueSlave also needs a parameter (the tested column) that will be passed
as a parameter to the program via the (arguments=)expression of the RSL job
submission string. Then SmallBlueSlave uses argv[1] to retrieve this parameter.

Finally, we will use the GridFTP protocol (as an example), to transfer the
SmallBlueSlave executable to a remote host. The transfer is achieved via the
ITSO_GLOBUS_FTP_CLIENT class and its transfer() method. The source code
is available in “itso_globus_ftp_client.C” on page 313.

9.2.2 Implementation
We will use three C++ classes that wrap Globus C calls:

� ITSO_CB will be used as generic callback type for all globus functions that
need a callback. Note that these objects are always called from a static C
function whose one argument is the object itself. ITSO_CB implements the
mutex, condition variables synchronization mechanism always used with the
Globus Toolkit 2 non-blocking or asynchronous functions. ITSO_GRAM_JOB
and ITSO_GLOBUS_FTP_CLIENT both derive from ITSO_CB. See
“ITSO_CB” on page 315 and its explanation in “Callbacks” on page 109.

� ITSO_GRAM_JOB will be used to submit a job. See “ITSO_GRAM_JOB” on
page 316.

� ITSO_GLOBUS_FTP_CLIENT, which is a wrapper class to the C globus
client ftp functions, will perform a transfer from a file stored in a storage server
to a remote URL. See “ITSO_GLOBUS_FTP_CLIENT” on page 311.

The complete source code of the two programs is available in “SmallBlue
example” on page 331.

StartGASSServer() and StopGASSServer() are the two functions respectively
used to start and stop the local GASS server that will retrieve the result of the
evaluation nodes. The source code is provided in “StartGASSServer() and
StopGASSServer()” on page 324
268 Enabling Applications for Grid Computing with Globus

To copy the file SmallBlue in parallel to each remote host, we use the GridFTP
protocol via the ITSO_GLOBUS_FTP_CLIENT:

vector<ITSO_GLOBUS_FTP_CLIENT*> transfer;
globus_module_activate(GLOBUS_FTP_CLIENT_MODULE);
string dst;
for(i=0;i!=8;i++) {

cout << node[i] << endl;
dst="gsiftp://"+node[i]+"/~/SmallBlueSlave";
transfer.push_back(new ITSO_GLOBUS_FTP_CLIENT("SmallBlueSlave",

const_cast<char*>(dst.c_str())));
};
for(i=0;i!=8;i++)

transfer[i]->StartTransfer();
for(i=0;i!=8;i++)

transfer[i]->Wait();
globus_module_deactivate(GLOBUS_FTP_CLIENT_MODULE);

We also need to make SmallBlue executable on the remote hosts because the
file copied by GridFTP is copied as a plain file and not as an executable.

for(i=0;i!=8;i++) {
rsl_req = "&(executable=/bin/chmod) (count=1) (arguments= \"+x\"

SmallBlueSlave)";
if (job[i]->Submit(node[i],rsl_req))

exit(1);
}
for(i=0;i!=8;i++)

job[i]->Wait();

Example 9-10 SmallBlue Gridfication - Initialization - SmallBlueMaster.C

main() {
//Start a GASS server locally that will listen on 10000 port
//all the results of the evualtion. We will stop it at the end
//It cannot be defined as a standalone class because the static callback
//does not take any argument. So it is impossible afterwards in the
//callback to refer to the object.
StartGASSServer(10000);

// ITSO_GRAM_CLIENT does not start the module
// lets do it
if (globus_module_activate(GLOBUS_GRAM_CLIENT_MODULE) != GLOBUS_SUCCESS)
{

cerr << " Cannot start GRAM module";
exit(2);

};

// the game
GAME Current(XSIZE,YSIZE);
 Chapter 9. Application examples 269

// used to temporary store columns positions, evaluation results
int s,l,k,toplay;
// used to store human inputs
char c[2];

// The node vector should be initialized with the value of the nodes
// what is missing here is the globus calls to the globus MDS server
// to get these values. So for the exercise, you can use grid-info-search
// to find 8 hosts on which you can submit your queries.
vector<string> node;

// ask the broker to find 8 nodes
itso_broker::GetLinuxNodes(node,8);

// variable used in all for loops
int i;

// Here we want test the existence of the file as there is
// no such checking in the ITSO_GLOBUS_FTP_CLIENT class
FILE* fd = fopen("SmallBlueSlave","r");

 if(fd == NULL)
{
 printf("Error opening local smallblueslave");
 exit(2);
}
else {

//that fine, lets go for FTP
// we can close fd descriptor because a new one
// will be opened for each ITSO_GLOBUS_FTP_CLIENT object
fclose(fd);
// the ITSO_CB callback object is used to determine
// when the transfer has been completed
vector<ITSO_GLOBUS_FTP_CLIENT*> transfer;
//never forget to activate the Globus module you want to use
globus_module_activate(GLOBUS_FTP_CLIENT_MODULE);

// 8 transfer, let create 8 locks
string dst;
for(i=0;i!=8;i++) {

cout << node[i] << endl;
dst="gsiftp://"+node[i]+"/~/SmallBlueSlave";
transfer.push_back(new

ITSO_GLOBUS_FTP_CLIENT("SmallBlueSlave",const_cast<char*>(dst.c_str())));
};
// Let s begin the transfer in parallel (in asynchronous mode)
for(i=0;i!=8;i++)

transfer[i]->StartTransfer();
// Let wait for the end of all of them
for(i=0;i!=8;i++)
270 Enabling Applications for Grid Computing with Globus

transfer[i]->Wait();
globus_module_deactivate(GLOBUS_FTP_CLIENT_MODULE);

};

// get the hostname using the globus shell function
// instead of POSIX system calls.
char hostname[MAXHOSTNAMELEN];
globus_libc_gethostname(hostname, MAXHOSTNAMELEN);

// used to store the RSL commands.
string rsl_req;

//create all the jobs objects that will be used to submit the
//requests to the nodes. We use a vector to store them.
vector<ITSO_GRAM_JOB*> job;
for(i=0;i!=8;i++) {

job.push_back(new ITSO_GRAM_JOB);
};

// By using gridftp SmallBlueSlave is copied onto the rmeote hosts
// as a plain file. needs to chmod +x to make it executable
// otherwise the job submission will fail
cout << "chmod +x on the remote hosts to make SmallBlueSlave executable" <<

endl;
for(i=0;i!=8;i++) {

rsl_req = "&(executable=/bin/chmod) (count=1) (arguments= \"+x\"
SmallBlueSlave)";

if (job[i]->Submit(node[i],rsl_req))
exit(1);

}
for(i=0;i!=8;i++)

job[i]->Wait();
//finished stop everything
StopGASSServer();

}

The game between the two players is run in an infinite loop in which we
repeatedly:

� Serialize the current game:

Current.ToDisk("GAME");

� Submit the calculation of the value for each column:

unlink("eval"); //remove the eval file
for(i=0;i!=8;i++) {

cout << "submission on " << node[i] << endl;;
char tmpc[2];
sprintf(tmpc,"%d",i);
 Chapter 9. Application examples 271

// build the RSL commands
rsl_req = "&(executable=SmallBlueSlave) (arguments=";
rsl_req+= tmpc[0];
rsl_req+= ") (stdout=https://";
rsl_req +=hostname;
rsl_req +=":10000";
rsl_req +=get_current_dir_name();
rsl_req +="/eval) (stdin=https://";
rsl_req +=hostname;
rsl_req +=":10000";
rsl_req +=get_current_dir_name();
rsl_req +="/GAME) (count=1)";
// submit it to the GRAM
if (Current.CanPlay(i))

if (job[i]->Submit(node[i],rsl_req))
exit(1);

};
// And Wait
for(i=0;i!=8;i++)

if (Current.CanPlay(i))
job[i]->Wait();

� Retrieve the results:

ifstream results("eval");
while (!results.eof()) {

results >> k >> s;
// get the best one
if (s>l) {

l=s; // store its value
toplay=k; //remember the column to play

};
};
results.close();

Finally, we exit the loop when one of the two players has won, by using the
HasWon() method of the Current object:

if (Current.HasWon(l,BLACK)) {
Current.Display();
break;

Example 9-11 SmallBlue Gridification - SmallBlueMaster.C

..
while (true) {

Current.Display();
do {

cout << "?";
cin >> c;
c[1]='\0';
272 Enabling Applications for Grid Computing with Globus

l=atoi(c);
} while ((l<1) || (l>XSIZE) || !Current.CanPlay(l));
Current.Play(l,BLACK);
if (Current.HasWon(l,BLACK)) {

Current.Display();
break;

};
// Serialize to disk the Current variable
// so that it could be used by the GRAM
// subsystem and transferred on the remote execution
// nodes
Current.ToDisk("GAME");

Current.Display();
cout << endl;

// remove eval file for each new jobs submission
// otherwise results will be appended to the same files
unlink("eval");

for(i=0;i!=8;i++) {
cout << "submission on " << node[i] << endl;;
char tmpc[2];
sprintf(tmpc,"%d",i);
// build the RSL commands
rsl_req = "&(executable=SmallBlueSlave) (arguments=";
rsl_req+= tmpc[0];
rsl_req+= ") (stdout=https://";
rsl_req +=hostname;
rsl_req +=":10001";
rsl_req +=get_current_dir_name();
rsl_req +="/eval) (stdin=https://";
rsl_req +=hostname;
rsl_req +=":10001";
rsl_req +=get_current_dir_name();
rsl_req +="/GAME) (count=1)";
// submit it to the GRAM
if (Current.CanPlay(i))

if (job[i]->Submit(node[i],rsl_req))
exit(1);

};
// And Wait
for(i=0;i!=8;i++)

if (Current.CanPlay(i))
job[i]->Wait();

// worse case :-)
l=-100000;
 Chapter 9. Application examples 273

//Here we are reading the eval files. All the jobs
//has been completed so we should have all the results
//in the eval file
ifstream results("eval");
while (!results.eof()) {

results >> k >> s;
// get the best one
if (s>l) {

l=s; // store its value
toplay=k; //remember the column to play

};
};
results.close();

// nothing in the file, that means we cannot play
// so it is NULL
if (l==-100000) {

cout << "NULL" << endl;
break;

};

// AI plays here and checks if it won
Current.Play(toplay,WHITE);
if (Current.HasWon(toplay,WHITE)) {

Current.Display();
break;

};
};

..

The slave code is small. GAME.C implements the game artificial intelligence.

The slave begins to read the serialized object from standard input (actually
mapped to GAME file on the master node):

Current.FromDisk();

Then the slave only tests the eight positions that can be played by the adversary.
It writes the result of the evaluation to standard output. The GASS server started
by GRAM actually maps this standard output to the file eval on the submission
node.

Example 9-12 SmallBlueSlave.C

#include <iostream>
using namespace std;
#include “GAME.C”

main(int arc, char** argv) {
274 Enabling Applications for Grid Computing with Globus

GAME Current(XSIZE,YSIZE);
//load the Current object from the disk
//this object was copied from the submission node
Current.FromDisk();
//which column should we simulate ?
int col=atoi(argv[1]);
int start=Current.Value(col,WHITE);
Current.Play(col,WHITE);

int l=0,s,k;
for(k=1;k!=XSIZE+1;k++) {

s=Current.Value(k,BLACK);
if (s>l)

l=s;
};
start-=l;

// send back the information to the server
cout << col << “ “ << start << endl;

};

9.2.3 Compilation
First generate the appropriate globus makefile header that will be later included
in the Makefile. Use globus-makefile-header and specify all the needed globus
modules.

globus-makefile-header --flavor=gcc32 globus_io globus_gss_assist
globus_ftp_client globus_ftp_control globus_gram_job globus_common
globus_gram_client globus_gass_server_ez > globus_header

Compile with the following Makefile:

make -f MakefileSmallBlue

Example 9-13 MakefileSmallBlue

globus-makefile-header --flavor=gcc32 globus_io globus_gss_assist
globus_ftp_client globus_ftp_control globus_gram_job globus_common
globus_gram_client globus_gass_server_ez > globus_header

include globus_header

all: SmallBlueSlave SmallBlueMaster SmallBlue

%.o: %.C
g++ -c $(GLOBUS_CPPFLAGS) $< -o $@
 Chapter 9. Application examples 275

SmallBlue:SmallBlue.o GAME.o
g++ -o $@ -g $^

SmallBlueSlave:SmallBlueSlave.o GAME.o
g++ -o $@ -g $^

SmallBlueMaster: GAME.o SmallBlueMaster.o itso_gram_job.o itso_cb.o
itso_globus_ftp_client.o itso_gass_server.o

g++ -g -o $@ $(GLOBUS_CPPFLAGS) $(GLOBUS_LDFLAGS) $^ $(GLOBUS_PKG_LIBS)

9.2.4 Execution
Issue grid-proxy-init to acquire a valid credential in the grid.

Start SmallBlueMaster and enter the column number you want to play:

[globus@m0 JYCode]$./SmallBlueMaster
we are listening on https://m0.itso-maya.com:10000
chmod +x on the remote hosts to make SmallBlueSlave executable
Contact on the server https://t1.itso-tupi.com:34475/16083/1047519201/
Contact on the server https://t2.itso-tupi.com:33326/6614/1047519203/
Contact on the server https://t0.itso-tupi.com:58412/7839/1047519203/
Contact on the server https://t3.itso-tupi.com:55107/29288/1047519236/
Contact on the server https://t2.itso-tupi.com:33328/6615/1047519203/
Job Finished on: https://t1.itso-tupi.com:34475/16083/1047519201/
Contact on the server https://t0.itso-tupi.com:58414/7840/1047519203/
Contact on the server https://t1.itso-tupi.com:34478/16085/1047519201/
Contact on the server https://t3.itso-tupi.com:55110/29289/1047519237/
Job Finished on: https://t2.itso-tupi.com:33328/6615/1047519203/
Job Finished on: https://t2.itso-tupi.com:33326/6614/1047519203/
Job Finished on: https://t1.itso-tupi.com:34478/16085/1047519201/
Job Finished on: https://t0.itso-tupi.com:58412/7839/1047519203/
Job Finished on: https://t0.itso-tupi.com:58414/7840/1047519203/
Job Finished on: https://t3.itso-tupi.com:55107/29288/1047519236/
Job Finished on: https://t3.itso-tupi.com:55110/29289/1047519237/

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
276 Enabling Applications for Grid Computing with Globus

 12345678?3

| |
| |
| |
| |
| |
| |
| |
| |
| |
I
 12345678
submission on t0
submission on t1
submission on t2
submission on t3
submission on t0
submission on t1
submission on t2
submission on t3
Contact on the server https://t2.itso-tupi.com:33335/6644/1047519211/
Contact on the server https://t1.itso-tupi.com:34489/16114/1047519209/
Contact on the server https://t0.itso-tupi.com:58421/7869/1047519211/
Staging file in on: https://t2.itso-tupi.com:33335/6644/1047519211/
Staging file in on: https://t1.itso-tupi.com:34489/16114/1047519209/
Staging file in on: https://t0.itso-tupi.com:58421/7869/1047519211/
Contact on the server https://t2.itso-tupi.com:33339/6645/1047519211/
Contact on the server https://t1.itso-tupi.com:34485/16113/1047519208/
Contact on the server https://t0.itso-tupi.com:58424/7870/1047519211/
Staging file in on: https://t1.itso-tupi.com:34485/16113/1047519208/
Staging file in on: https://t2.itso-tupi.com:33339/6645/1047519211/
Contact on the server https://t3.itso-tupi.com:55121/29325/1047519244/
Staging file in on: https://t0.itso-tupi.com:58424/7870/1047519211/
Staging file in on: https://t3.itso-tupi.com:55121/29325/1047519244/
Contact on the server https://t3.itso-tupi.com:55117/29324/1047519244/
Staging file in on: https://t3.itso-tupi.com:55117/29324/1047519244/
Job Finished on: https://t2.itso-tupi.com:33335/6644/1047519211/
Job Finished on: https://t1.itso-tupi.com:34485/16113/1047519208/
Job Finished on: https://t2.itso-tupi.com:33339/6645/1047519211/
Job Finished on: https://t0.itso-tupi.com:58424/7870/1047519211/
Job Finished on: https://t1.itso-tupi.com:34489/16114/1047519209/
Job Finished on: https://t0.itso-tupi.com:58421/7869/1047519211/
Job Finished on: https://t3.itso-tupi.com:55121/29325/1047519244/
Job Finished on: https://t3.itso-tupi.com:55117/29324/1047519244/
 Chapter 9. Application examples 277

| |
| |
| |
| |
| |
| |
| |
| |
| |
IO
 12345678?

9.3 Hello World example
Let us consider the following cases of client-server applications or Web
applications:

� Video streaming
� Game serving
� File downloading
� Etc.

A classical approach for providing a scalable solution is to distribute the
application workload across a set of distributed servers that run the same
application: An edge server or network dispatcher or front-end server is the entry
point for the application but does not run the application itself. The other servers
located on the same LAN handle the workload and answer the client application
or client browser.
278 Enabling Applications for Grid Computing with Globus

Figure 9-6 Cluster model

A grid approach extends the concept of clustering by enabling the deployment of
servers not only on the same LAN but on a WAN infrastructure. The edge server
becomes a broker server that will start the applications on remote servers to
handle the workload. The broker can use different criteria to manage this
workload:

Use the server located at the nearest location from the client.
Use servers according a certain service level agreement with the customer.
Use new servers provided by a resource provider for a limited period of time.
Use a server that has a better network bandwidth.

edge server

servers farm

app

app

app

app
app

app

app

app
 Chapter 9. Application examples 279

Figure 9-7 Grid model

This extended approach underlines several issues that are managed by the
Globus Toolkit 2.2:

� With GSI, the Globus Toolkit 2.2 provides the secure infrastructure needed
for an application to be spread across different locations.

� With GridFTP, the Globus Toolkit 2.2 provides a subsystem to easily,
efficiently, and securely move data necessary for the applications.

� With GRAM and GASS, the Globus Toolkit 2.2 provides mechanisms to
easily and securely start remote applications on distributed resources.

9.3.1 The Hello World application
Let us consider a basic example for such an application. A front-end server waits
for client requests. When connected, the client is given back a ticket and an
application server IP address of where to connect. The application answers
hello world! when the client connects to it. The application is started on the
“application servers” by the front-end server.
280 Enabling Applications for Grid Computing with Globus

The executable for the client is HelloClient and takes the front-end server host
name as a parameter. The source code is provided in “HelloWorld example” on
page 341.

The executable for the server itself is HelloServer. The source code is provided
in “HelloWorld example” on page 341.

The executable for the front-end server is HelloFrontEnd and starts HelloServer
remotely. The source code is provided in “HelloWorld example” on page 341.

Figure 9-8 Hello World example with dynamic library dependencies issues

9.3.2 Dynamic libraries dependencies
In this example, the application depends on a dynamic library (GNU
CommonC++ http://www.gnu.org/software/commonc++/) that is not installed by
default on the remote servers. To solve this issue, the front-end server installs at
startup, the dynamic library on the remote server by compiling it on this server.
This is an interesting solution to avoid runtime issues like libc or libstdc++
dependencies or other library dependencies that Common C++ depends on. This

libCommonC++

central storage

transfer

submit library compilation
launch the HelloServer application

submit
transfer

front end
server

libCommonC++
sources

application

receive a ticket
and an IP

hello

HelloClient

HelloServerHelloFrontEnd
 Chapter 9. Application examples 281

http://www.gnu.org/software/commonc++/

library can also be recompiled on different architectures with only the copy of the
source code to store.

We store the source copy of the library on a storage server (m0 in the example).
The script Compile is used to compile the library and install it.

Example 9-14 Compile script

##################################
we need to run this script to load
all correct environment variables.
The configure script will failed
otherwise
##################################
. ~/.bash_profile

tar -zxf commoncpp2-1.0.8.tar.gz
[-d tmp] || mkdir tmp
cd commoncpp2-1.0.8
##
We use $HOME instead of ~ here because
make install will failed to create
directory otherwise
##
./configure --prefix=$HOME/tmp && make install
#######################
#Stay clean
#######################
rm -fr commoncpp2-1.0.8

The dynamic library is installed in ~/tmp/lib on the remote host. We use the
LD_LIBRARY_PATH variable under the Linux operating system to specify the
location of the dynamic libraries to the HelloServer executable. This way, we are
not intrusive to the remote system (we do not have to be root and install a binary
on the system) and this library will not affect applications other than ours.

LD_LIBRARY_PATH is set automatically during the GRAM invocation by using
an environment declaration in the RSL string:

&(executable=https://m0.itso-maya.com:20000/home/globus/HelloServer)
(environment=(LD_LIBRARY_PATH $(HOME)/tmp/lib)) (count=1)
(arguments=1804289383 t0)

The CommonC++ library source is stored locally in /tmp in m0. We use the
ITSO_GASS_TRANSFER class to transfer the file from one GridFTP server to
the remote server. The code for the ITSO_GASS_TRANSFER class is provided
in “ITSO_GASS_TRANSFER” on page 306 and is based on the
globus-url-copy.c code of the Globus Toolkit 2.2. This class provides the member
282 Enabling Applications for Grid Computing with Globus

transfer() between two objects of type GLOBUS_URL. GLOBUS_URL is defined
in “ITSO_GASS_TRANSFER” on page 306 and is just a C++ wrapper to the
globus_url_t C type. The member setURL() sets up the object by providing a
valid URL like gsiftp://m0/tmp/test.

The Transfer() method is a C++ wrapper around the Globus asynchronous call to
transfer the file from the first URL to the second. It is non-blocking and the
program must call the method Wait() to wait for the completion of the transfer.

GRAM is used to submit the compilation of the GNU CommonC++ library and the
application startup. The library is transferred and installed remotely from a
remote storage server (m0 in the source code example) to the application node
(t0 in the source code example) in the tmp directory created in the home
directory of the user under which the Compile script is executed.

A GASS server is started locally on the front-end server and listens on port
20000. It used to copy the script Compile and the executable HelloServer from
the front-end server to the application server.

Example 9-15 CommonC++ library copy and compilation - HelloFrontEnd.C

main() {
// We start here the GASS server that will be used:
// - to transfer the Compile script to the application nodes
// to perform the library compilation
// - to transfer the HelloServer used on the remote hosts to
// manage clients requests
// The GASS server arbitraly listens on port 20000
StartGASSServer(20000);
// get the hostname using the globus function
globus_libc_gethostname(hostname, MAXHOSTNAMELEN);

// ITSO_GRAM_CLIENT does not start the module
// lets do it
if (globus_module_activate(GLOBUS_GRAM_CLIENT_MODULE) != GLOBUS_SUCCESS)
{

cerr << " Cannot start GRAM module";
exit(2);

};

string node;

// we use a fixed address for this simple example but
// nodes=getNodes(SLA, MDS, Workload, ...) in a more complex example
// we should get here the list of nodes where the application is
// supposed to run.
node = "t0";
 Chapter 9. Application examples 283

// variable used in all for loops
int i;

// Here we want test the existence of the file as there is
// no such checking in the ITSO_GLOBUS_FTP_CLIENT class
FILE* fd = fopen("commoncpp2-1.0.8.tar.gz","r");

 if(fd == NULL)
{
 printf("Error opening commoncpp2-1.0.8.tar.gz file");
 exit(2);
}
else

 {
//that fine, lets go for FTP
// we can close fd descriptor because a new one
// will be opened for each ITSO_GLOBUS_FTP_CLIENT object
fclose(fd);
//never forget to activate the Globus module you want to use
globus_module_activate(GLOBUS_GASS_COPY_MODULE);
//**
// In this section we perform the transfer of the dynamic library
// to the "application server".
// We use the ITSO_GLOBUS_FTP_CLIENT class to do the task
// Note that we use the local directory to perform the task.
// In a real case example, a storage server would be used
// instead of a local directory =>
// globus-url-copy gsiftp://storage_server/commoncpp2-1.0.8.tar.gz
// gsiftp://application_server/commoncpp2-1.0.8.tar.gz
//**
GLOBUS_URL source,destination;
source.setURL("gsiftp://m0/tmp/commoncpp2-1.0.8.tar.gz");

string dst;
dst="gsiftp://"+node+"/~/commoncpp2-1.0.8.tar.gz";
destination.setURL(dst);
globus_module_activate(GLOBUS_GASS_COPY_MODULE);
ITSO_GASS_TRANSFER transfer;
transfer.Transfer(source,destination);
globus_module_deactivate(GLOBUS_GASS_COPY_MODULE);

//**
// In this section we submit the compilation of the
// dynamic libray. The script Compile that must be in the
// current directory is transferred to the remote host
// and executed. The result is the installation
// of the CommonC++ toolkit in the tmp directory of the
// user under which the script was executed.
// (globus in the lab environement of the redbook)
//**
284 Enabling Applications for Grid Computing with Globus

// used to store the RSL commands.
string rsl_req;

ITSO_GRAM_JOB job;

cout << "library compilation on " << node << endl;;
rsl_req = "&(executable=https://";
rsl_req +=hostname;
rsl_req += ":20000";
rsl_req +=get_current_dir_name();

 rsl_req += "/Compile) (count=1)";
// submit it to the GRAM
cout << rsl_req << endl;
//job.Submit(node,rsl_req);
//job.Wait();
//**

// ticket=getTicket(time, IP address, SLA, ...) in a
// real production case
ticket=random();

// node=getNodes(SLA, MDS, Workload, Application Type, ...)
// in a real production case
node="t0";

9.3.3 Starting the application by the resource provider
The front-end server also submits another job to start HelloServer on the
application server. HelloServer listens on port 4097 and uses the ticket to
authenticate the connection. In the example, the ticket is fixed at the application
startup, but for a real production environment other parameters like time, IP
address, public/private keys, and so on, may be taken into account to securely
authenticate a connection from a client.

The server is arbitrarily started on node t0. Other parameters like MDS
information, service level agreements with the customer, workload, resources
provider agreements, and such can be used here to determine where the
application should be started.

Example 9-16 Front-end server starts the HelloServer on remote node - HelloFrontEnd.C

// ticket=getTicket(time, IP address, SLA, ...) in a
// real production case
ticket=random();

// node=getNodes(SLA, MDS, Workload, Application Type, ...)
// in a real production case
 Chapter 9. Application examples 285

node="t0";

ITSO_GRAM_JOB job2;

cout << "start app server on " << node << endl;;
rsl_req = "&(executable=https://";
rsl_req +=hostname;
rsl_req += ":20000";
rsl_req +=get_current_dir_name();
rsl_req += "/HelloServer) (environment=(LD_LIBRARY_PATH $(HOME)/tmp/lib)

) (count=1) (arguments=";
char tmpstr[20];
sprintf(tmpstr,"%ld ",ticket);
rsl_req += tmpstr;
rsl_req += node;
rsl_req += ")";
// submit it to the GRAM
cout << rsl_req << endl;
job2.Submit(node,rsl_req);
job2.Wait();

9.3.4 Compilation
All programs (HelloServer.C, HelloClient.C, and HelloFrontEnd.C) use the class
provided by the GNU Common C++ library (thread, sockets management). They
are not covered in this publication and are only used to quickly develop the
examples. Consequently, the header files located in /usr/local/include/cc++2 and
the libraries -lccgnu2 -lpthread -dl must be used during the compilation phase.
The library is a prerequisite to run these examples.

1. First, use globus-make-header to generate a file (globus_header) in which
variables are set to appropriate values. globus_header will be included in the
Makefile.

globus-makefile-header --flavor=gcc32 globus_io globus_gss_assist
globus_ftp_client globus_ftp_control globus_gram_job globus_common
globus_gram_client globus_gass_server_ez > globus_header

2. Use the Makefile shown in Example 9-17 to compile the program.

Example 9-17 Second example Makefile

include globus_header

all: HelloServer HelloClient HelloFrontEnd

%.o: %.C
g++ -c $(GLOBUS_CPPFLAGS) $< -o $@
286 Enabling Applications for Grid Computing with Globus

HelloServer: HelloServer.C
g++ -g -I/usr/local/include/cc++2 -L/usr/local/lib -o $@ $^ -lccgnu2

-lpthread -ldl

HelloClient: HelloClient.C
g++ -g -I/usr/local/include/cc++2 -L/usr/local/lib -o $@ $^ -lccgnu2

-lpthread -ldl

HelloFrontEnd: HelloFrontEnd.o itso_gram_job.o itso_cb.o itso_gass_copy.o
itso_gass_server.o

g++ -o $@ -I/usr/local/include/cc++2 -L/usr/local/lib $(GLOBUS_CPPFLAGS)
$(GLOBUS_LDFLAGS) $^ $(GLOBUS_PKG_LIBS) -lccgnu2 -lpthread -ldl

Then use make all to obtain the three executables.

9.3.5 Execution
In this publication example, the storage server is m0, which also acts as the
front-end server. The source file for GNU Common C++ classes is stored in
/tmp/commoncpp2-1.0.8.tar.gz on m0. t0 is the application server. You must
generate a valid proxy with grid-proxy-init before running the test.

On m0, start the Hello front-end server:

[globus@m0 globus]$./HelloFrontEnd
we are listening on https://m0.itso-maya.com:20000
library compilation on t0
&(executable=https://m0.itso-maya.com:20000/home/globus/JYCode/Compile)
(count=1)
start app server on t0
&(executable=https://m0.itso-maya.com:20000/home/globus/JYCode/HelloServer)
(environment=(LD_LIBRARY_PATH $(HOME)/tmp/lib)) (count=1)
(arguments=1804289383 t0)
Contact on the server https://t0.itso-tupi.com:57701/3673/1047501872/
Staging file in on: https://t0.itso-tupi.com:57701/3673/1047501872/
Job Finished on: https://t0.itso-tupi.com:57701/3673/1047501872/
binding for: m0.itso-maya.com:4096

You can now start the client from another node. You do not need to generate a
valid proxy.

[john@a0 john]$./HelloClient m0
Ticket:1804289383
Hostname:t0
Hello World !

On m0, you should see the connection request. The connection is actually
handled by the application server t0.
 Chapter 9. Application examples 287

accepting from: m0.itso-maya.com:54642
creating session client object

9.4 Summary
This chapter has described three different application examples that
demonstrate various techniques and concepts of the Globus Toolkit and related
capabilities. These samples were purposely kept simple, in that they did not
include a lot of error checking or other logic that should be included in a robust
business application.
288 Enabling Applications for Grid Computing with Globus

Chapter 10. Globus Toolkit V3.0

This publication is primarily based on Globus Toolkit V2.2. However, by the time
you read this, Globus Toolkit Version 3 will likely be available, at least as beta
code.

Though many of the considerations and APIs we have discussed will not change
with Globus Toolkit V3, there will be significant changes to the structure of the
toolkit and the grid environment itself brought about by the new toolkit and
OGSA.

Though many details are not yet available, this chapter is intended to provide a
short preview of what might be ahead in Globus Toolkit V3.

10
© Copyright IBM Corp. 2003. All rights reserved. 289

10.1 Overview of changes from GT2 to GT3
GT3 is based on OGSI to support the industry standardization of grid protocols. It
contains services and features available in GT2, but also allows users to create
new services. Some existing features that will be provided include GSI, GRAM,
GridFTP, and Information Services. The major difference in the functionality
between the two toolkits is that the interface to these features has become an
OGSI service. In Globus Toolkit V2, all services were independent of each other;
however, in Globus Toolkit V3 all services can be accessed with common
interfaces, making it much simpler to develop applications that access these
components. Globus Toolkit V3 will also have a more consistent way to obtain
information about services, and the need for a GRIS is removed. Each service in
GT3 will act as its own GRIS. The data returned from the service will be stored in
XML format, whereas in GT2 it is stored in LDIF format. Modification to GT2’s
MDS service is required to use it with GT3 because of the format difference.

10.1.1 SOAP message security
Grid services must be built on a Grid Security Infrastructure (GSI). Globus Toolkit
V2 used the Secure Socket Layer (SSL) protocol for its authentication and
message protection. The Globus Toolkit 3 implements a version of the Web
Services SecureConversation protocol. This allows for GSI's SSL-based
authentication to take place over standard Web Services SOAP messages,
which in turn allows for the use of the W3C Web Services Security specifications
for message protection: XML-Encryption and XML-Signature.

10.1.2 Creating grid services
One of the main advantages GT3 provides over GT2 is the ability to develop
Web services for your grid application. Grid services can be written in C, Java,
Python, and so on. However, the client to the grid service must be written in a
language that provides bindings to WDSL. GT3 provides Java APIs for
programming OGSA services. More information on creating grid services and
clients in Java can be found at:

http://www-unix.globus.org/ogsa/docs/alpha3/java_programmers_guide.html

C can be used to write clients to grid services. However, there is currently not an
adequate WDSL-to-C compiler. More information on OGSA client-side C
implementations can be found at:

http://www-unix.globus.org/ogsa/docs/alpha2/c_users_guide.html
290 Enabling Applications for Grid Computing with Globus

http://www-unix.globus.org/ogsa/docs/alpha3/java_programmers_guide.html
http://www-unix.globus.org/ogsa/docs/alpha2/c_users_guide.html

10.1.3 Security - proxies
The new implementation of the GSI libraries (GSI-3) will accept proxy certificates
in either GT 2.2 or GT 3.0 proxy certificate formats. The proxy certificate format
has been updated to bring it into compliance with the latest proxy certificate draft
specification in the Global Grid Forum. This code allows GT 2.2 and 2.4 proxy
certificates to be used to authenticate with GT 3.0 services, offering a
backwards-compatible migration path from GT 2.2 to GT 3.0.

10.1.4 SOAP GSI plugin for C/C++ Web services
The gSOAP C++ Web services platform is being extended to work with OGSA
services and to provide a full interoperability between C/C++ and Java Web
services using GSI. A GSI module is used by gSOAP to support the Globus
Toolkit 3 security mechanism. This module is tracking with the OGSI evolution
and currently supports httpg binding as delegation for job submission.

The gSOAP plugin is available from the following Web site:

http://sara.unile.it/~cafaro/gsi-plugin.html

The gSOAP toolkit provides a SOAP-to-C/C++ language binding for the
development of SOAP Web services and clients. It is used in the C
implementation of the Globus Toolkit 3 to implement the SOAP protocol. The
gSOAP stub and skeleton compiler for C and C++ was developed by Robert van
Engelen of Florida State University. See the following Web site for more
information.

http://gsoap2.sourceforge.net

10.2 OGSI implementation
Open Grid Service Infrastructure (OGSI) addresses detailed specifications of the
interfaces that a service must implement in order to fit into the OGSA framework.

The OGSA architecture and OGSI infrastructure provides a common framework
for grid services, so developing new OGSI-compliant services (or specialized
versions of existing services) is quite straightforward. Every OGSI-compliant
service can be used and managed via common interfaces, so building systems
and applications with OGSI-compliant services is much easier.

OGSI software provides mandatory Grid service features, such as service
invocation, lifetime management, a service data interface, and security
interfaces, that ensure a fundamental level of interoperability among all grid
services.
 Chapter 10. Globus Toolkit V3.0 291

http://sara.unile.it/~cafaro/gsi-plugin.html
http://gsoap2.sourceforge.net

10.3 Open Grid Service Architecture (OSGA)
OGSA draws on the same infrastructure as used in Web services: XML, SOAP,
WSDL, and WSIL. However, there are some important conceptual and practical
extensions that arise from the need to address a dynamic grid environment
providing mechanisms to create and discover customized service instances with
controlled, fault-resilient, and secure management of distributed atomic or
collective services, often with a long-lived state.

Four important concepts in OGSA are:

� Naming: Each grid service instance is globally, uniquely, and for all time
named by a Grid Service Handle (GSH).

� Factories: Create new grid service instances and maintain a group of service
data elements that can be queried. Factories play the role of a gatekeeper or
xinet daemons for grid services. A factory will also have an associated
registry to keep track of these instances and enable discovery. The OGSA
defines registries as places to store various kinds of information about grid
resources.

� Instances: The GSH is just a minimal name in the form of a URI and does not
carry enough information to allow a client to communicate directly with the
service instance. Instead, a GSH must be mapped to a Grid Service
Reference (GSR) via the registry.

� Stateful: A grid service instance has a state. A process can be initiated via a
method call on a service port type and its state checked at a later time using
the GSR.

A GSR contains all information that a client may require to communicate with the
service via one or more protocols. While a GSH is valid for the entire lifetime of
the grid service instance, a GSR may become invalid, therefore requiring a client
to use the mapping service to acquire a new GSR appropriate to a particular
binding using the GSH.

A GSR is encoded using WSDL, so that a WSDL document should be the
minimal information required to fully describe how to reach the particular grid
service instance.

Globus Toolkit V3 is roughly the Globus Toolkit 2 that uses OGSA architecture to
make its components available via Web services.
292 Enabling Applications for Grid Computing with Globus

10.4 Globus grid services
The following sections describe a few of the services that will be available with
Globus Toolkit V3. Again, this is early information, and may change before
general availability. It is presented here to provide the reader with a flavor of what
the services in Globus Toolkit V3 will look like.

10.4.1 Index Services
Index Services is like the MDS feature in GT2. It provides information about the
grid services in XML format. Unlike GT2, there is no need for a GRIS because
each service has a set of information associated with itself. This information is
stored in a standard way, making it easy to retrieve and understand the service
data. Each service is required to report common service data and any additional
data is optional, allowing users to get a standard set of information from any grid
service.

10.4.2 Service data browser
This allows users to view the details of the grid services available and the Web
Server Description Language of those services, within a GUI.

10.4.3 GRAM
With the Globus Toolkit V3, users will submit jobs by the way of Web services.
The GRAM architecture will be rendered by OGSA via five services:

� The Master Managed Job Factory Service (MMJFS) that is responsible for
exposing the virtual GRAM service to the outside world. The Master uses the
Service Data Aggregator to collect and populate local Service Data Elements,
which represent local scheduler data (freenodes, totalnodes) and general
host information (host, cpu type, host OS).

� The Managed Job Factory Service (MJFS) that is responsible for starting a
new MJS instance. It exposes only a single Service Data Element, which is
an array of Grid Services Handles of all active MJS instances.

� The Managed Job Service (MJS) that is an OGSA service that can submit a
job to a local scheduler, monitor its status, and send notifications. The MJS
starts two File Streaming Factory Services for stdout and the stderr of the job.
Their GSHs are stored in the MFS Service Data Element.

A Service Data Element (SDE) is an XML element containing information
about a service that is identified by name and type, which may contain any
XML information and that may be queried or subscribed.
 Chapter 10. Globus Toolkit V3.0 293

� The File Stream Factory Service that is responsible for creating new
instances of a File Stream Service.

� The File Stream Service that is an OGSA service that given a destination
URL will a stream from the local file the factory was created to stream (stdout
or stderr) to the destination URL.

Figure 10-1 Globus Toolkit V3 job invocation

The user then signs this request with her GSI proxy credentials and sends the
signed request to the Master Managed Job Factory Service (MMJFS) on the
resource that provides a function similar to the Globus Toolkit 2 gatekeeper. The
MMJFS still determines the local account in which the job should be run by using
a grid-mapfile, as for the Globus Toolkit 2.

Grid Resource Identity Mapper (GRIM) is a setuid program that accesses the
local host credentials and from them generates a proxy for the Local Managed
Job Factory Service (LMJFS). This proxy credential has embedded in it the
user's grid identity, local account name, and local policy about the user.

LMJFS invokes a Managed Job Service (MJS) with the request and returns the
address of the MJS to the user. The user then connects to the MJS.

The Globus Toolkit V3 RSL language will be described in XML format even if the
functionality remains similar to Globus Toolkit 2. The Managed Job Service will
translate it into scheduler-specific language.

Master Managed
Job Factory

Service

user proxy

MJS

Client

Resource

grid-mapfile

job

Local
Managed JFS host

credentials

GRIM

credentials
294 Enabling Applications for Grid Computing with Globus

Example 10-1 Globus Toolkit V3 RSL example

<rsl: rsl <!--- insert GRAM RSL Namespace ---><gram:job>
 <gram:executable>
 <rsl:pathElement path="/bin/ls"/>
 </gram:executable>
 <gram:directory>
 <rsl:pathElement path="/tmp"/>
 </gram:directory>
 <gram:arguments>
 <gram:argument>-l</gram:argument>
 <gram:argument>-a</gram:argument>
 </gram:arguments>
 </gram:job>
</rsl:rsl>

Managed Job Factory portType
The Managed Job Factory Service defines an OGSI/WSDL interface for
submitting, monitoring, and controlling a job. It is used by a GRAM client to
submit a job.

The CreateService operation of the Managed Job Factory portType prepares a
job for submission. It takes as input parameter RSL xml document specifying the
job to be run and returns the Grid Service Reference (GSR) to MJS as an output
parameter that is a WSDL definition of the MJS instance.

The Service Data Element of the Managed Job Factory portType lists the GSHs
of MJS instances.

Managed Job portType
The Start operation submits a job.

The MJS will clean up everything when the job is destroyed: It cleans up
directories, files, Gass cache, and so on.

The Service Data Elements include:

� Job status
� GSH to File Stream Factory Service for job’s stdout
� GSH to File Stream Factory Service for job’s stderr

File Stream Factory portType
The CreateService operation prepares to stream a job’s stdout or stderr to a
destination URL. The input parameter is the destination URL and the output
parameter returns the GSH.
 Chapter 10. Globus Toolkit V3.0 295

The StartStreaming operation starts the streaming to the destination URL.

GRAM Client Interface
Both a C and Java API will be provided in the Globus Toolkit V3 to communicate
with the Master Job Service.

An API translator will be also provided in the Globus Toolkit V3 for the Globus C
API, the Java and Python Cog Kit, that will translate the Globus Toolkit 2 RSL
format into the Globus Toolkit V3 RSL format based on XML.

10.4.4 Reliable File Transfer Service (RFT)
This is an OGSA-based service that provides interfaces for controlling and
monitoring third-party file transfers using GridFTP servers. It is similar to the GT2
globus-url-copy tool.

10.4.5 Replica Location Service (RLS)
Large sites often replicate data to provide quick and easy access to data.
Distributing replicas of the data reduces data access latency. RLS maintains a
registry of information about where replica data resides and makes it easy to find
data locations.

10.5 Summary
Fundamentally, the Globus Toolkit V3 will be a Web service-based variation of
Globus Toolkit 2. All components like GRAM and GridFTP will remain. But the
infrastructure will change to use Web services. Globus Toolkit V3 implements
Java wrappers to the Globus Toolkit 2 components and implements new
functionality.

RSL and proxy certificate formats are slightly modified to adopt some new
standards, but some tools or translators are provided for an easy migration from
the Globus Toolkit 2 to the Globus Toolkit V3.

The Globus Toolkit V3 will provide an implementation both in Java and in C, and
a client API will be provided in C, Java, and Python.

Applications developed with Globus Toolkit 2 should be easily portable to Globus
Toolkit V3.
296 Enabling Applications for Grid Computing with Globus

Appendix A. Grid qualification scheme

In this appendix, criteria are presented that may be used as a starting point to
determine the suitability of a grid environment for an application.

The criteria are intended to address the two main aspects of architecture,
functional and operational, as identified in the article “A standard for architecture
description” (see bibliography).

A

Note: Please note that this is not an exhaustive list, but rather presents a
summary from the considerations presented in the earlier chapters of this
publication. The reader is urged to take into account the specifics of the
people, process, and technologies being considered, and to recognize that a
full evaluation may require evaluation of a combination of these criteria rather
than considering each criteria in isolation.
© Copyright IBM Corp. 2003. All rights reserved. 297

A suggested grid application qualification scheme
The architecture considerations for a grid application lead to a qualification
298 Enabling Applications for Grid Computing with Globus

Table A-1 Qualification scheme for grid applications

Qualification criteria Weight factors (H-M-L) Com-
ment
show-
stoppers
-special
care
-base
values

Item Range
(low to high
efforts)

Import-
ance

Effort Skills Re-
sources

1 Job flow Parallel ->
networked ->
serial

2 #
different
jobs

Single job ->
multiple jobs

3 Sub-jobs
depth

No subjobs ->
deeply staged
subjobs

4 Job
types

Batch -> simple
-> parallel
application jobs
-> EJBs based
jobs -> complex
jobs

5 OS
depend-
ent

Independent ->
strongly
depending

6 Memory
size
needed
per job

Small -> large

7 DLL in
place

Standard DLLs
-> specific DLLs

8 Compiler
settings

No compiler ->
standard settings
-> special
settings
 Appendix A. Grid qualification scheme 299

10 Runtime
environ-
ment

None required ->
standard runtime
-> special
runtime required

11 Applica-
tion
server

None required ->
simple
beans/JSP ->
EJB -> specific
needs

12 Foreign
applica-
tion

None required ->
standard
applications ->
special
settings/installa-
tion

14 Hardware
depend-
ent

None ->
standard IT
devices ->
special IT
devices ->
special other
devices

15 Redund-
ant job
execution

Not required ->
heavily
depending on

16 Scaveng-
ing grid

All jobs
individualized for
scavenging ->
not suitable for
scavenging

Qualification criteria Weight factors (H-M-L) Com-
ment
show-
stoppers
-special
care
-base
values

Item Range
(low to high
efforts)

Import-
ance

Effort Skills Re-
sources
300 Enabling Applications for Grid Computing with Globus

17 Job data
I/O

Command line
parameter ->
message queue
-> data file ->
database -> APIs

18 Shared
data
access

RO files -> RO
DBMS -> RW
files -> RW
DBMS

19 Temp-
orary data
space

Small -> nearly
unlimited (check
out concurrent
jobs on each
node)

20 Network
bandwidth

Small -> high
speed network
LAN -> WAN

21 Time-
sensitive
data

Data always
valid -> time
depending data
values

22 Data type:
Character
sets

Commonly
available
unicode in SBCS
network ->
different unicode
in DBCS ->
inconformity of
character codes
on network

Qualification criteria Weight factors (H-M-L) Com-
ment
show-
stoppers
-special
care
-base
values

Item Range
(low to high
efforts)

Import-
ance

Effort Skills Re-
sources
 Appendix A. Grid qualification scheme 301

23 Data type:
Multi-
media
formats

Uniform use of
set of multimedia
formats -> mixed
use of formats

24 Data
encryp-
tion

Uniform use of
encryption
techniques
available ->
varying use of
encryption
techniques on
network

25 Security
policy

Commonly
agreed on
among all grid
users ->
discrepancies
between
involved parties

26 Time con-
straints

No time
restrictions apply
-> strong need
for timely
execution and
data provisioning

27 Migration
needs

Grid in fixed
environment->
grid application
based on
common
standard -> grid
likely to migrate
on different
platforms

Qualification criteria Weight factors (H-M-L) Com-
ment
show-
stoppers
-special
care
-base
values

Item Range
(low to high
efforts)

Import-
ance

Effort Skills Re-
sources
302 Enabling Applications for Grid Computing with Globus

28 Data
separable
per job

Data easily
separable ->
some solvable
data
interdependenc-
ies -> data
inseparable

29 Amount of
data

Small amount of
I/O data per job
-> large amount
of data handled
by single jobs

30 Job
topology

Simple job
topology
(job-node-data)
-> complex job
topology

31 Data
topology

Simple data
topology
(data-job-node)
-> complex data
topology

32 Network
scalability

High upper limit
in scalability
graph -> low
upper limit

33 Software
licensing

All permissive ->
all restrictive

Qualification criteria Weight factors (H-M-L) Com-
ment
show-
stoppers
-special
care
-base
values

Item Range
(low to high
efforts)

Import-
ance

Effort Skills Re-
sources
 Appendix A. Grid qualification scheme 303

34 Billing
service

Not required ->
simple direct
billing -> complex
billing including
thrid parties

35 Single
user
interface

Not required ->
standard UI ->
integrated
common UI

Qualification criteria Weight factors (H-M-L) Com-
ment
show-
stoppers
-special
care
-base
values

Item Range
(low to high
efforts)

Import-
ance

Effort Skills Re-
sources
304 Enabling Applications for Grid Computing with Globus

Appendix B. C/C++ source code for
examples

This appendix contains C/C++ source code for various modules that were
referenced throughout this publication. It should be noted that this source code is
provided as is. Though it was compiled and executed in our specific
environment, it has not been thoroughly tested and is meant to provide guidance
and examples of how to accomplish certain tasks.

B

© Copyright IBM Corp. 2003. All rights reserved. 305

Globus API C++ wrappers
The following examples show some C++ wrappers for some common Globus
services.

ITSO_GASS_TRANSFER
This class provides methods to easily transfer a file from one location to another.
The GLOBUS_FILE class is use to refer to a locally stored file, and
GLOBUS_URL is used to refer to a remotely stored file that can be reached by
either http, https, or gsiftp protocol.

The method setURL() of the GLOBUS_URL class is used to define the URL.

The method Transfer() of the ITSO_GASS_TRANSFER class executes the
transfer, and the two arguments are respectively the source file and the
destination file. The two arguments can either be of GLOBUS_FILE or
GLOBUS_URL type.

The Transfer() is non-blocking, so the Wait() method should be called later in the
code to wait for the completion of the transfer.

itso_gass_copy.h
#ifndef ITSO_GASS_COPY_H
#define ITSO_GASS_COPY_H
#include “globus_common.h”
#include “globus_gass_copy.h”
#include “itso_cb.h”
#include <cstdlib>
#include <cstdio>
#include <iostream>
#include <cstring>
#include <string>

class GLOBUS_FILE {
globus_io_handle_t *io_handle;
int file_fd;

 public:
GLOBUS_FILE();
GLOBUS_FILE(char*);
~GLOBUS_FILE();
globus_io_handle_t * GLOBUS_FILE::get_globus_io_handle();

};

class GLOBUS_URL {
306 Enabling Applications for Grid Computing with Globus

globus_url_t url;
globus_gass_copy_url_mode_t url_mode;
char* URL;
public:

GLOBUS_URL();
~GLOBUS_URL();
bool setURL(char* destURL);
bool setURL(string destURL);
globus_gass_copy_url_mode_t getMode();
char* getScheme();
char* getURL();

};

class ITSO_GASS_TRANSFER_EXCEPTION { };

class ITSO_GASS_TRANSFER : public ITSO_CB {
globus_gass_copy_handle_t gass_copy_handle;
globus_gass_copy_handleattr_t gass_copy_handleattr;
globus_gass_transfer_requestattr_t*dest_gass_attr;
globus_gass_copy_attr_t dest_gass_copy_attr;
globus_gass_transfer_requestattr_t*source_gass_attr;
globus_gass_copy_attr_t source_gass_copy_attr;
globus_gass_copy_url_mode_t source_url_mode;
globus_gass_copy_url_mode_t dest_url_mode;
globus_ftp_client_operationattr_t*dest_ftp_attr;
globus_ftp_client_operationattr_t*source_ftp_attr;
void setSource(GLOBUS_URL&);
void setDestination(GLOBUS_URL&);
public:
ITSO_GASS_TRANSFER();
~ITSO_GASS_TRANSFER();
void Transfer(GLOBUS_FILE& , GLOBUS_URL&);
void Transfer(GLOBUS_URL&,GLOBUS_FILE&);
void Transfer(GLOBUS_URL& ,GLOBUS_URL&);

};

#endif

itso_gass_copy.C
/**
 * For a more complete example
 * see globus-url-copy.c
 **/
#include “itso_gass_copy.h”

GLOBUS_FILE::GLOBUS_FILE() {};
GLOBUS_FILE::GLOBUS_FILE(char* filename) {
 Appendix B. C/C++ source code for examples 307

io_handle =(globus_io_handle_t *)
globus_libc_malloc(sizeof(globus_io_handle_t));

file_fd=open(filename,O_RDONLY);
 /* convert file into a globus_io_handle */
 globus_io_file_posix_convert(file_fd,
 GLOBUS_NULL,
 io_handle);
};

GLOBUS_FILE::~GLOBUS_FILE(){
close(file_fd);
globus_libc_free(io_handle);

};

globus_io_handle_t * GLOBUS_FILE::get_globus_io_handle() {
return io_handle;

};

GLOBUS_URL::GLOBUS_URL() {};
GLOBUS_URL::~GLOBUS_URL() {

free(URL);
};
bool GLOBUS_URL::setURL(char* destURL) {
 //check if this is a valid URL

if (globus_url_parse(destURL, &url) != GLOBUS_SUCCESS) {
 cerr << “can not parse destURL” << destURL << endl;

 return false;
}
//determine the transfer mode
if (globus_gass_copy_get_url_mode(destURL, &url_mode) != GLOBUS_SUCCESS) {

 cerr << “failed to determine mode fmeor destURL” << destURL << endl;
 return false;
};
URL=strdup(destURL);
return true;

};

bool GLOBUS_URL::setURL(string url) {
return setURL(const_cast<char*>(url.c_str()));

}

globus_gass_copy_url_mode_t GLOBUS_URL::getMode() {
return url_mode;

};

char* GLOBUS_URL::getScheme() {
return url.scheme;

}

308 Enabling Applications for Grid Computing with Globus

char* GLOBUS_URL::getURL() {
return URL;

}

//***
//
//***
namespace itso_gass_copy {
static void
url_copy_callback(

 void * callback_arg,
 globus_gass_copy_handle_t * handle,
 globus_object_t * error)

{
 globus_bool_t use_err = GLOBUS_FALSE;

 ITSO_CB* monitor = (ITSO_CB*) callback_arg;

 if (error != GLOBUS_SUCCESS)
 {

 cerr << “ url copy error:” <<
globus_object_printable_to_string(error) << endl;

 //monitor->setError(error);
 }

 monitor->setDone();
 return;
};
}

ITSO_GASS_TRANSFER::ITSO_GASS_TRANSFER() {
// handlers initialisation
// first the attributes
// then the handler
globus_gass_copy_handleattr_init(&gass_copy_handleattr);
globus_gass_copy_handle_init(&gass_copy_handle, &gass_copy_handleattr);

};

ITSO_GASS_TRANSFER::~ITSO_GASS_TRANSFER() {
globus_gass_copy_handle_destroy(&gass_copy_handle);
if (source_url_mode == GLOBUS_GASS_COPY_URL_MODE_FTP)

globus_libc_free(source_ftp_attr);
if (dest_url_mode == GLOBUS_GASS_COPY_URL_MODE_FTP)

globus_libc_free(dest_ftp_attr);
if (source_url_mode == GLOBUS_GASS_COPY_URL_MODE_GASS)

globus_libc_free(source_gass_attr);
if (dest_url_mode == GLOBUS_GASS_COPY_URL_MODE_GASS)

globus_libc_free(dest_gass_attr);
}

void ITSO_GASS_TRANSFER::setSource(GLOBUS_URL& source_url) {
 Appendix B. C/C++ source code for examples 309

globus_gass_copy_attr_init(&source_gass_copy_attr);
source_url_mode=source_url.getMode();
if (source_url_mode == GLOBUS_GASS_COPY_URL_MODE_FTP) {

source_ftp_attr = (globus_ftp_client_operationattr_t*)
globus_libc_malloc (sizeof(globus_ftp_client_operationattr_t));

globus_ftp_client_operationattr_init(source_ftp_attr);
globus_gass_copy_attr_set_ftp(&source_gass_copy_attr,

source_ftp_attr);
}
else if (source_url_mode == GLOBUS_GASS_COPY_URL_MODE_GASS) {

source_gass_attr = (globus_gass_transfer_requestattr_t*)
globus_libc_malloc (sizeof(globus_gass_transfer_requestattr_t));

globus_gass_transfer_requestattr_init(source_gass_attr,source_url.getScheme());
 globus_gass_copy_attr_set_gass(&source_gass_copy_attr,
source_gass_attr);

globus_gass_transfer_requestattr_set_file_mode(
 source_gass_attr,
 GLOBUS_GASS_TRANSFER_FILE_MODE_BINARY);

globus_gass_copy_attr_set_gass(&source_gass_copy_attr,
 source_gass_attr);

};
};

void ITSO_GASS_TRANSFER::setDestination(GLOBUS_URL& dest_url) {
globus_gass_copy_attr_init(&dest_gass_copy_attr);
dest_url_mode=dest_url.getMode();
if (dest_url_mode == GLOBUS_GASS_COPY_URL_MODE_FTP) {

dest_ftp_attr = (globus_ftp_client_operationattr_t*)globus_libc_malloc
(sizeof(globus_ftp_client_operationattr_t));

globus_ftp_client_operationattr_init(dest_ftp_attr);
globus_gass_copy_attr_set_ftp(&dest_gass_copy_attr,

dest_ftp_attr);
}
else if (dest_url_mode == GLOBUS_GASS_COPY_URL_MODE_GASS) {

dest_gass_attr = (globus_gass_transfer_requestattr_t*)globus_libc_malloc
(sizeof(globus_gass_transfer_requestattr_t));
 globus_gass_transfer_requestattr_init(dest_gass_attr,
dest_url.getScheme());
 globus_gass_copy_attr_set_gass(&dest_gass_copy_attr, dest_gass_attr);

globus_gass_transfer_requestattr_set_file_mode(
 dest_gass_attr,
 GLOBUS_GASS_TRANSFER_FILE_MODE_BINARY);

globus_gass_copy_attr_set_gass(&dest_gass_copy_attr,
 dest_gass_attr);

};
310 Enabling Applications for Grid Computing with Globus

};

void ITSO_GASS_TRANSFER::Transfer(GLOBUS_FILE& globus_source_file, GLOBUS_URL&
destURL) {

setDestination(destURL);
globus_result_t result = globus_gass_copy_register_handle_to_url(

&gass_copy_handle,
 globus_source_file.get_globus_io_handle(),
 destURL.getURL(),
 &dest_gass_copy_attr,

itso_gass_copy::url_copy_callback,
 (void *) this);
};

void ITSO_GASS_TRANSFER::Transfer(GLOBUS_URL& sourceURL,GLOBUS_FILE&
globus_dest_file) {

setSource(sourceURL);
globus_result_t result = globus_gass_copy_register_url_to_handle(

&gass_copy_handle,
sourceURL.getURL(),

 &source_gass_copy_attr,
 globus_dest_file.get_globus_io_handle(),

itso_gass_copy::url_copy_callback,
 (void *) this);
};

void ITSO_GASS_TRANSFER::Transfer(GLOBUS_URL& sourceURL,GLOBUS_URL& destURL) {
setSource(destURL);
setDestination(destURL);

globus_result_t result = globus_gass_copy_register_url_to_url(
 &gass_copy_handle,
 sourceURL.getURL(),
 &source_gass_copy_attr,
 destURL.getURL(),
 &dest_gass_copy_attr,

itso_gass_copy::url_copy_callback,
 (void *) this);
};

ITSO_GLOBUS_FTP_CLIENT
A wrapper for GridFTP capabilities.

itso_globus_ftp_client.h
#ifndef ITSO_ITSO_GLOBUS_FTP_CLIENT_H
#define ITSO_ITSO_GLOBUS_FTP_CLIENT_H
#include <cstdio>
 Appendix B. C/C++ source code for examples 311

#include <iostream>
#include “globus_ftp_client.h”
#include “itso_cb.h”

#define _(a) r=a;\
 if (r!=GLOBUS_SUCCESS) {\

cerr << globus_object_printable_to_string(globus_error_get(r));\
exit(1);\

 }

#define MAX_BUFFER_SIZE 2048
#define SUCCESS 0

//***

class ITSO_GLOBUS_FTP_CLIENT : public ITSO_CB {
FILE* fd;

 globus_byte_t buffer[MAX_BUFFER_SIZE];
globus_ftp_client_handle_t handle;
public:

 ITSO_GLOBUS_FTP_CLIENT(char*,char*);
~ITSO_GLOBUS_FTP_CLIENT();
void StartTransfer();
void Transfer(globus_byte_t*, globus_size_t&,globus_off_t&);

};
#endif
#ifndef ITSO_ITSO_GLOBUS_FTP_CLIENT_H
#define ITSO_ITSO_GLOBUS_FTP_CLIENT_H
#include <cstdio>
#include <iostream>
#include “globus_ftp_client.h”
#include “itso_cb.h”

#define _(a) r=a;\
 if (r!=GLOBUS_SUCCESS) {\

cerr << globus_object_printable_to_string(globus_error_get(r));\
exit(1);\

 }

#define MAX_BUFFER_SIZE 2048
#define SUCCESS 0

//***
class ITSO_GLOBUS_FTP_CLIENT : public ITSO_CB {

FILE* fd;
 globus_byte_t buffer[MAX_BUFFER_SIZE];

globus_ftp_client_handle_t handle;
312 Enabling Applications for Grid Computing with Globus

public:
 ITSO_GLOBUS_FTP_CLIENT(char*,char*);

~ITSO_GLOBUS_FTP_CLIENT();
void StartTransfer();
void Transfer(globus_byte_t*, globus_size_t&,globus_off_t&);

};
#endif

itso_globus_ftp_client.C
#include “itso_globus_ftp_client.h”

namespace itso_globus_ftp_client {
static
void
done_cb(
 void* user_arg,
 globus_ftp_client_handle_t * handle,
 globus_object_t * err)
{
 ITSO_CB* f=(ITSO_CB*) user_arg;
if(err)
 {
 cerr << globus_object_printable_to_string(err);
 };
 f->setDone();
 return;
};

static
void
data_cb(
 void * user_arg,
 globus_ftp_client_handle_t * handle,
 globus_object_t * err,
 globus_byte_t * buffer,
 globus_size_t length,
 globus_off_t offset,
 globus_bool_t eof)
{
 ITSO_GLOBUS_FTP_CLIENT* l = (ITSO_GLOBUS_FTP_CLIENT*) user_arg;

 if(err)
 {
 fprintf(stderr, “%s”, globus_object_printable_to_string(err));
 }
 else
 {
 if(!eof)
 Appendix B. C/C++ source code for examples 313

l->Transfer(
 buffer,
 length,
 offset

);
 } /* else */
 return;
} /* data_cb */
};

ITSO_GLOBUS_FTP_CLIENT::ITSO_GLOBUS_FTP_CLIENT(char* f,char* dst) {
fd = fopen(f,”r”);

 globus_ftp_client_handle_init(&handle, GLOBUS_NULL);
globus_result_t r;

 globus_ftp_client_put(
&handle,
dst,
GLOBUS_NULL,
GLOBUS_NULL,

 itso_globus_ftp_client::done_cb,
this);

};
ITSO_GLOBUS_FTP_CLIENT::~ITSO_GLOBUS_FTP_CLIENT() {

fclose(fd);
 globus_ftp_client_handle_destroy(&handle);

};
void ITSO_GLOBUS_FTP_CLIENT::StartTransfer() {
 int rc;

 rc = fread(buffer, 1, MAX_BUFFER_SIZE, fd);
 globus_ftp_client_register_write(

 &handle,
 buffer,

 rc,
 0,

 feof(fd) != SUCCESS,
 itso_globus_ftp_client::data_cb,

 (void*) this);
};

void ITSO_GLOBUS_FTP_CLIENT::Transfer(
 globus_byte_t* buffer,
 globus_size_t& length,
 globus_off_t& offset

)
{

int rc;
 rc = fread(buffer, 1, MAX_BUFFER_SIZE, fd);
 if (ferror(fd) != SUCCESS)
 {
314 Enabling Applications for Grid Computing with Globus

 printf(“Read error in function data_cb; errno = %d\n”, errno);
 return;
 }
 globus_ftp_client_register_write(
 &handle,
 buffer,
 rc,
 offset + length,
 feof(fd) != SUCCESS,

 itso_globus_ftp_client::data_cb,
 (void *) this);
};

ITSO_CB
Below is a sample callback mechanism.

itso_cb.h
#ifndef ITSO_CB_H
#define ITSO_CB_H
#include <cstdio>
#include <iostream>
#include <globus_common.h>

class ITSO_CB {
 globus_mutex_t mutex;

globus_cond_t cond;
globus_bool_t done;

 public:
ITSO_CB() {

 globus_mutex_init(&mutex, GLOBUS_NULL);
 globus_cond_init(&cond, GLOBUS_NULL);

done = GLOBUS_FALSE ;
};
~ITSO_CB() {

 globus_mutex_destroy(&mutex);
 globus_cond_destroy(&cond);

};
globus_bool_t IsDone();

 void setDone();
 void Continue();

virtual void Wait();
};
#endif

itso_cb.C
#include "itso_cb.h"
 Appendix B. C/C++ source code for examples 315

globus_bool_t ITSO_CB::IsDone() { return done; };

void ITSO_CB::setDone() {
 globus_mutex_lock(&mutex);
 done = GLOBUS_TRUE;

 globus_cond_signal(&cond);
 globus_mutex_unlock(&mutex);

 }

void ITSO_CB::Continue() {
 globus_mutex_lock(&mutex);
 done = GLOBUS_FALSE;

 globus_mutex_unlock(&mutex);
 }

void ITSO_CB::Wait() {
globus_mutex_lock(&mutex);

 while(!IsDone())
 globus_cond_wait(&cond, &mutex);

globus_mutex_unlock(&mutex);
};

ITSO_GRAM_JOB
This class provides methods to easily submit a job to a Globus grid. It works in an
asynchronous way:

� The Submit() method takes a host name and the RSL string to submit the job
and returns immediately.

� The Wait() method waits for the completion of the job.

The class is derived from ITSO_CB and provides the following methods to check
the status of the job:

� IsDone() to check the status of the job (finished or not).

� HasFailed() to check if the GRAM submission has failed. Note that this
method will not detect if the executable aborted during execution or if it
hangs.

The class can be used several times to submit different jobs with either a
different host name or a different RSL string. Use the Continue() method to be
able to use the Submit() method again.

itso_gram_job.h
#ifndef ITSO_GRAM_JOB_H
#define ITSO_GRAM_JOB_H
316 Enabling Applications for Grid Computing with Globus

#include <cstdio>
#include <string>
#include "globus_gram_client.h"
#include "itso_cb.h"

class ITSO_GRAM_JOB : public ITSO_CB {
char* job_contact;

 char* callback_contact; /* This is the identifier for
 * globus_gram_job_request

 */
bool failed;// used to check if a job has failed

 public:
ITSO_GRAM_JOB();
~ITSO_GRAM_JOB();
bool Submit(string,string);
void Cancel();
void SetJobContact(const char*);
void Wait();
void SetFailed();
bool HasFailed();

};
#endif

itso_gram_jobs_callback.h
#ifndef ITSO_GRAM_JOBS_CALLBACK_H
#define ITSO_GRAM_JOBS_CALLBACK_H
#include <cstdio>
#include <string>
#include <map>
#include "globus_gram_client.h"
#include "itso_cb.h"

class ITSO_GRAM_JOBS_CALLBACK;
class ITSO_GRAM_JOB;

class ITSO_GRAM_JOBS_CALLBACK {
globus_mutex_t JobsTableMutex;
char* callback_contact; /* This is the identifier for

 * the callback, returned by
 * globus_gram_job_request

 */
map<string,ITSO_GRAM_JOB*> JobsTable;
void Lock();
void UnLock();

 public:
ITSO_GRAM_JOBS_CALLBACK();
~ITSO_GRAM_JOBS_CALLBACK();
 Appendix B. C/C++ source code for examples 317

void Add(string,ITSO_GRAM_JOB*);
void Remove(char*);
char* GetURL();
ITSO_GRAM_JOB*GetJob(char*);

};

class ITSO_GRAM_JOB : public ITSO_CB {
char* jobcontact;
bool failed;
ITSO_GRAM_JOBS_CALLBACK* callback;

 public:
ITSO_GRAM_JOB(ITSO_GRAM_JOBS_CALLBACK* f) :

failed(false),jobcontact(NULL),callback(f) {};
~ITSO_GRAM_JOB() {};
bool Submit(string,string);
void Cancel();
void SetJobContact(char*);
void Wait();
void SetFailed();
bool HasFailed();

};
#endif

itso_gram_jobs_callback.C
#include "itso_gram_jobs_callback.h"

namespace itso_gram_jobs {
static void callback_func(void * user_callback_arg,
 char * job_contact,
 int state,
 int errorcode)
{
 ITSO_GRAM_JOBS_CALLBACK* Monitor = (ITSO_GRAM_JOBS_CALLBACK*)
user_callback_arg;

 ITSO_GRAM_JOB* job = Monitor->GetJob(job_contact);

 switch(state)
 {
 case GLOBUS_GRAM_PROTOCOL_JOB_STATE_STAGE_IN:

cout << "Staging file in on: " << job_contact << endl;
break;

 case GLOBUS_GRAM_PROTOCOL_JOB_STATE_STAGE_OUT:
cout << "Staging file out on: " << job_contact << endl;
break;

 case GLOBUS_GRAM_PROTOCOL_JOB_STATE_PENDING:
break; /* Reports state change to the user */
318 Enabling Applications for Grid Computing with Globus

 case GLOBUS_GRAM_PROTOCOL_JOB_STATE_ACTIVE:
break; /* Reports state change to the user */

 case GLOBUS_GRAM_PROTOCOL_JOB_STATE_FAILED:

Monitor->Remove(job_contact);
job->SetFailed();
job->setDone();
cerr << "Job Failed on: " << job_contact << endl;
break; /* Reports state change to the user */

 case GLOBUS_GRAM_PROTOCOL_JOB_STATE_DONE:
cout << "Job Finished on: " << job_contact << endl;
Monitor->Remove(job_contact);
job->setDone();
break; /* Reports state change to the user */

 }
}
static void request_callback(void * user_callback_arg,
 globus_gram_protocol_error_t failure_code,
 const char * job_contact,
 globus_gram_protocol_job_state_t state,
 globus_gram_protocol_error_t errorcode) {
 ITSO_GRAM_JOB* Request = (ITSO_GRAM_JOB*) user_callback_arg;
 cout << "Contact on the server " << job_contact << endl;

 if (failure_code==0) {
 Request->SetJobContact(const_cast<char*>(job_contact));
 }
 else {
 cout << "Error during the code submission" << endl << "Error Code:" <<
failure_code << endl;

Request->setDone();
Request->SetFailed();

 }
}
}

void ITSO_GRAM_JOB::SetJobContact(char* c) {
 jobcontact=c;
 callback->Add(c,this);
};

bool ITSO_GRAM_JOB::Submit(string res, string rsl) {
 failed=false;
 int rc = globus_gram_client_register_job_request(res.c_str(),
 rsl.c_str(),

 GLOBUS_GRAM_PROTOCOL_JOB_STATE_ALL,
 callback->GetURL(),

 GLOBUS_GRAM_CLIENT_NO_ATTR,
 Appendix B. C/C++ source code for examples 319

 itso_gram_jobs::request_callback,
 (void*) this);

 if (rc != 0) /* if there is an error */
 {
 printf("TEST: gram error: %d - %s\n",
 rc,
 /* translate the error into english */
 globus_gram_client_error_string(rc));
 return true;
 }
 else {

return false;
 };
};

void ITSO_GRAM_JOB::Wait() {
ITSO_CB::Wait();

 /* Free up the resources of the job_contact, as the job is over, and
 * the contact is now useless.
 */

if (jobcontact!=NULL) {
 globus_gram_client_job_contact_free(jobcontact);

jobcontact=NULL;
};
Continue();

};

void ITSO_GRAM_JOB::Cancel() {
 int rc;
 printf("\tTEST: sending cancel to job manager...\n");

 if ((rc = globus_gram_client_job_cancel(jobcontact)) != 0)
 {
 printf("\tTEST: Failed to cancel job.\n");
 printf("\tTEST: gram error: %d - %s\n",
 rc,
 globus_gram_client_error_string(rc));
 }
 else
 {
 printf("\tTEST: job cancel was successful.\n");
 }
};

void ITSO_GRAM_JOB::SetFailed() {
failed=true;

};
320 Enabling Applications for Grid Computing with Globus

bool ITSO_GRAM_JOB::HasFailed() {
return failed;

};

ITSO_GRAM_JOBS_CALLBACK::ITSO_GRAM_JOBS_CALLBACK() {
globus_mutex_init(&JobsTableMutex, ITSO_NULL);

 globus_gram_client_callback_allow(
 itso_gram_jobs::callback_func,

 (void *) this,
 &callback_contact);
 cout << "Gram contact " << callback_contact << endl;
};

char* ITSO_GRAM_JOBS_CALLBACK::GetURL() {
return callback_contact;

}

ITSO_GRAM_JOB* ITSO_GRAM_JOBS_CALLBACK::GetJob(char* s) {
return JobsTable[s];

}

ITSO_GRAM_JOBS_CALLBACK::~ITSO_GRAM_JOBS_CALLBACK() {
cout << callback_contact << " destroyed" << endl;
globus_gram_client_callback_disallow(callback_contact);
globus_free(callback_contact);
globus_mutex_destroy(&JobsTableMutex);

};

void ITSO_GRAM_JOBS_CALLBACK::Add(string jobcontact,ITSO_GRAM_JOB* job) {
Lock();
JobsTable[jobcontact]=job;
UnLock();

};

void ITSO_GRAM_JOBS_CALLBACK::Remove(char* jobcontact){
Lock();
JobsTable.erase(jobcontact);
UnLock();

};

void ITSO_GRAM_JOBS_CALLBACK::Lock() { globus_mutex_lock(&JobsTableMutex); };
void ITSO_GRAM_JOBS_CALLBACK::UnLock() { globus_mutex_unlock(&JobsTableMutex);
};

itso_gram_job.C
#include “itso_gram_job.h”

namespace itso_gram_job {
 Appendix B. C/C++ source code for examples 321

static void callback_func(void * user_callback_arg,
 char * job_contact,
 int state,
 int errorcode)
{
 ITSO_GRAM_JOB* Monitor = (ITSO_GRAM_JOB*) user_callback_arg;

 switch(state)
 {
 case GLOBUS_GRAM_PROTOCOL_JOB_STATE_STAGE_IN:

cout << “Staging file in on: “ << job_contact << endl;
 break;

 case GLOBUS_GRAM_PROTOCOL_JOB_STATE_STAGE_OUT:
cout << “Staging file out on: “ << job_contact << endl;

 break;
 case GLOBUS_GRAM_PROTOCOL_JOB_STATE_PENDING:

break; /* Reports state change to the user */

 case GLOBUS_GRAM_PROTOCOL_JOB_STATE_ACTIVE:
break; /* Reports state change to the user */

 case GLOBUS_GRAM_PROTOCOL_JOB_STATE_FAILED:

cerr << “Job Failed on: “ << job_contact << endl;
Monitor->SetFailed();
Monitor->setDone();
break; /* Reports state change to the user */

 case GLOBUS_GRAM_PROTOCOL_JOB_STATE_DONE:
cout << “Job Finished on: “ << job_contact << endl;
Monitor->setDone();
break; /* Reports state change to the user */

 }
}

static void request_callback(void * user_callback_arg,
globus_gram_protocol_error_t failure_code,
const char * job_contact,
globus_gram_protocol_job_state_t state,
globus_gram_protocol_error_t errorcode)

{
ITO_GRAM_JOB* Request = (ITSO_GRAM_JOB*) user_callback_arg;
cout << “Contact on the server “ << job_contact << endl;

 Request->SetRequestDone(job_contact);
}
}

ITSO_GRAM_JOB::ITSO_GRAM_JOB() {
};
322 Enabling Applications for Grid Computing with Globus

ITSO_GRAM_JOB::~ITSO_GRAM_JOB() {
};

void ITSO_GRAM_JOB::SetRequestDone(const char* j) {
job_contact = const_cast<char*>(j);
request_cb.setDone();

}

void ITSO_GRAM_JOB::Submit(string res, string rsl) {
 failed=false;
 globus_gram_client_callback_allow(itso_gram_job::callback_func,
 (void *) this,
 &callback_contact);
 int rc = globus_gram_client_register_job_request(res.c_str(),

rsl.c_str(),
 GLOBUS_GRAM_PROTOCOL_JOB_STATE_ALL,

 callback_contact,
GLOBUS_GRAM_CLIENT_NO_ATTR,
itso_gram_job::request_callback,

 (void*) this);
 if (rc != 0) /* if there is an error */
 {
 printf(“TEST: gram error: %d - %s\n”,
 rc,
 /* translate the error into english */
 globus_gram_client_error_string(rc));
 return;
 }
};

void ITSO_GRAM_JOB::Wait() {
request_cb.Wait();
ITSO_CB::Wait();

 /* Free up the resources of the job_contact, as the job is over, and
 * the contact is now useless.
 */
 globus_gram_client_job_contact_free(job_contact);

request_cb.Continue();
ITSO_CB::Continue();

};

void ITSO_GRAM_JOB::Cancel() {
 int rc;
 printf(“\tTEST: sending cancel to job manager...\n”);

 if ((rc = globus_gram_client_job_cancel(job_contact)) != 0)
 {
 printf(“\tTEST: Failed to cancel job.\n”);
 printf(“\tTEST: gram error: %d - %s\n”,
 Appendix B. C/C++ source code for examples 323

 rc,
 globus_gram_client_error_string(rc));
 }
 else
 {
 printf(“\tTEST: job cancel was successful.\n”);
 }
};

void ITSO_GRAM_JOB::SetFailed() {
failed=true;

}

bool ITSO_GRAM_JOB::HasFailed() {
return failed;

}

StartGASSServer() and StopGASSServer()
These two functions provide an easy way to start and stop a local GASS server.
The StartGASSServer takes one argument (the port number on which the GASS
server must listen on).

As the callback function used for globus_gass_server_ez_init() does not take
any argument, an object cannot be passed to the callbacks. Consequently, if the
application needs to start two local GASS servers, two different callback
functions must be used and globus_gass_server_ez_init() must be called twice
with a different callback each time.

itso_gass_server.h
#ifndef ITSO_GASS_SERVER_H
#define ITSO_GASS_SERVER_H

#include <unistd.h>
#include “globus_common.h”
#include “globus_gass_server_ez.h”
#include <iostream>

namespace itso_gass_server {

void StartGASSServer(int);

void StopGASSServer();

};

#endif
324 Enabling Applications for Grid Computing with Globus

itso_gass_server.C
#include “itso_gass_server.h”

namespace itso_gass_server {

globus_mutex_t mutex;
globus_cond_t cond;
bool done;
globus_gass_transfer_listener_t GassServerListener;

void callback_c_function() {
 globus_mutex_lock(&mutex);
 done = true;
 globus_cond_signal(&cond);
}

void StartGASSServer(int port=10000) {
// Never forget to activate GLOBUS module
globus_module_activate(GLOBUS_GASS_SERVER_EZ_MODULE);

// let s define options for our GASS server
unsigned long server_ez_opts=0UL;

//Files openfor writing will be written a line at a time
//so multiple writers can access them safely.
server_ez_opts |= GLOBUS_GASS_SERVER_EZ_LINE_BUFFER;

//URLs that have ~ character, will be expanded to the home
//directory of the user who is running the server
server_ez_opts |= GLOBUS_GASS_SERVER_EZ_TILDE_EXPAND;

//URLs that have ~user character, will be expanded to the home
//directory of the user on the server machine
server_ez_opts |= GLOBUS_GASS_SERVER_EZ_TILDE_USER_EXPAND;

//”get” requests will be fullfilled
server_ez_opts |= GLOBUS_GASS_SERVER_EZ_READ_ENABLE;

//”put” requests will be fullfilled
server_ez_opts |= GLOBUS_GASS_SERVER_EZ_WRITE_ENABLE;

// for put requets on /dev/stdout will be redirected to the standard
// output stream of the gass server
server_ez_opts |= GLOBUS_GASS_SERVER_EZ_STDOUT_ENABLE;

// for put requets on /dev/stderr will be redirected to the standard
// output stream of the gass server
server_ez_opts |= GLOBUS_GASS_SERVER_EZ_STDERR_ENABLE;
 Appendix B. C/C++ source code for examples 325

// “put requests” to the URL https://host/dev/globus_gass_client_shutdown
// will cause the callback function to be called. this allows
// the GASS client to communicate shutdown requests to the server
server_ez_opts |= GLOBUS_GASS_SERVER_EZ_CLIENT_SHUTDOWN_ENABLE;

// Secure
char* scheme=”https”;
//unsecure
//char* scheme=”http”;

 globus_gass_transfer_listenerattr_t attr;
 globus_gass_transfer_listenerattr_init(&attr, scheme);

 //we want to listen on post 10000
globus_gass_transfer_listenerattr_set_port(&attr, port);

//Now, we can start this gass server !
 globus_gass_transfer_requestattr_t * reqattr = GLOBUS_NULL;
//purpose unknown

 globus_mutex_init(&mutex, GLOBUS_NULL);
 globus_cond_init(&cond, GLOBUS_NULL);
 done = false;

int err = globus_gass_server_ez_init(&GassServerListener,
 &attr,
 scheme,
 GLOBUS_NULL, //purpose unknown
 server_ez_opts,

 callback_c_function); //or GLOBUS_NULL otherwise
 //GLOBUS_NULL); //or GLOBUS_NULL otherwise

if((err != GLOBUS_SUCCESS)) {
 cerr << “Error: initializing GASS (“ << err << “)” << endl;
 exit(1);
}

 char *
gass_server_url=globus_gass_transfer_listener_get_base_url(GassServerListener);

cout << “we are listening on “ << gass_server_url << endl;

};

void StopGASSServer() {
globus_gass_server_ez_shutdown(GassServerListener);
globus_module_deactivate(GLOBUS_GASS_SERVER_EZ_MODULE);

};

};
326 Enabling Applications for Grid Computing with Globus

ITSO broker
This is a simple implementation of a broker via the GetLinuxNodes() function.
The function takes an integer as the number of required nodes and returns a
vector of strings containing the host names.

The broker checks the status of the nodes by using the Globus ping function
provided by the globus GRAM module API. Consequently, the function activates
and deactivates the Globus GRAM module.

The algorithm takes into account the CPU speed, the number of processors, and
the CPU workload, and returns the best nodes available. Only Linux nodes are
returned.

Broker.h
#ifndef ITSO_BROKER_H
#define ITSO_BROKER_H
/* gris_search.c */
#include “globus_common.h”
/* LDAP stuff */
#include “lber.h”
#include “ldap.h”
#include <string>
#include <vector>
#include <list>
#include <algorithm>

/* note this should be the GIIS server, but it could be the
 GRIS server if you are only talking to a local machine
 remember the port numbers are different */

#define GRID_INFO_HOST “m0”
#define GRID_INFO_PORT “2135”
#define GRID_INFO_BASEDN “mds-vo-name=maya, o=grid”

namespace itso_broker {

void GetLinuxNodes(vector<string>& res,int n);
}
#endif

Broker.C
/* gris_search.c */
#include “globus_common.h”
#include “globus_gram_client.h”
/* LDAP stuff */
 Appendix B. C/C++ source code for examples 327

#include “lber.h”
#include “ldap.h”
#include <string>
#include <vector>
#include <algorithm>

/* note this should be the GIIS server, but it could be the
 GRIS server if you are only talking to a local machine
 remember the port numbers are different */

#define GRID_INFO_HOST “m0”
#define GRID_INFO_PORT “2135”
#define GRID_INFO_BASEDN “mds-vo-name=maya, o=grid”

//***
// This is a basic implementation of a broker. It checks all available
// Linux nodes and teir CPU usage. Use GetLinuxNodes(). The first
// parameter is a vector of strings that will contain the list of ost
// in returns. The second parameter is the number of nodes requested.
//
// The most interesting part are the ldap calls and the way to proceed
// to retrieve information from the MDS server using OpenLdap C API.
//
// other interesting implementation can couple LDAP information with
// other info in a DB for example that Time zone of the execution host,
// location, service level aggrement with the requester and the
// resources provider ...
//***

namespace itso_broker {

class Host {
string hostname;
longcpu;
public:
Host(string h,int c) : hostname(h), cpu(c) {};
~Host() { };
string getHostname() { return hostname; };
int getCpu() { return cpu; };

};

bool predica(Host* a, Host* b) {
 return (a->getCpu() > b->getCpu());
}

void GetLinuxNodes(vector<string>& res,int n)
{
 LDAP * ldap_server;
 LDAPMessage * reply;
328 Enabling Applications for Grid Computing with Globus

 LDAPMessage * entry;
 char * attrs[1];
 char * server = GRID_INFO_HOST;
 int port = atoi(GRID_INFO_PORT);
 char * base_dn = GRID_INFO_BASEDN;

 /* list of attributes that we want included in the search result */
 attrs[0] = GLOBUS_NULL;

 globus_module_activate(GLOBUS_GRAM_CLIENT_MODULE);
 /* Open connection to LDAP server */
 if ((ldap_server = ldap_open(server, port)) == GLOBUS_NULL)
 {
 ldap_perror(ldap_server, “ldap_open”);
 exit(1);
 }

 /* Bind to LDAP server */
 if (ldap_simple_bind_s(ldap_server, ““, ““) != LDAP_SUCCESS)
 {
 ldap_perror(ldap_server, “ldap_simple_bind_s”);
 ldap_unbind(ldap_server);
 exit(1);
 }

 /* do the search to find all the Linux available nodes*/
 //string filter= “(objectClass=MdsComputer)(Mds-Os-name=Linux)”;
 string filter= “(&(Mds-Os-name=Linux)(Mds-Host-hn=*))”;

 if (ldap_search_s(ldap_server, base_dn,
 LDAP_SCOPE_SUBTREE,
 const_cast<char*>(filter.c_str()), attrs, 0,
 &reply) != LDAP_SUCCESS)
 {
 ldap_perror(ldap_server, “ldap_search”);
 ldap_unbind(ldap_server);
 exit(1);
 }
 vector<Host*> nodes;

 /* go through the entries returned by the LDAP server. for each
 entry, we must search for the right attribute and then get the
 value associated with it */
 for (entry = ldap_first_entry(ldap_server, reply);
 entry != GLOBUS_NULL;
 entry = ldap_next_entry(ldap_server, entry))
 {

// cout << endl << ldap_get_dn(ldap_server, entry) << endl;
 Appendix B. C/C++ source code for examples 329

 BerElement * ber;
 char** values;
 char * attr;
 char * answer = GLOBUS_NULL;

string hostname;
int cpu;
int cpu_nb;
long speed;

 for (attr = ldap_first_attribute(ldap_server,entry,&ber);
 attr != NULL;
 attr = ldap_next_attribute(ldap_server,entry,ber))

{
 values = ldap_get_values(ldap_server, entry, attr);
 answer = strdup(values[0]);
 ldap_value_free(values);

 if (strcmp(“Mds-Host-hn”,attr)==0)
hostname=answer;

 if (strcmp(“Mds-Cpu-Free-15minX100”,attr)==0)
 cpu=atoi(answer);

 if (strcmp(“Mds-Cpu-Total-count”,attr)==0)
 cpu_nb=atoi(answer);

 if (strcmp(“Mds-Cpu-speedMHz”,attr)==0)
 speed=atoi(answer);

 // printf(“%s %s\n”, attr, answer);

 }

// check if we can really use this node
if (!globus_gram_client_ping(hostname.c_str()))

 nodes.push_back(new Host(hostname,speed*cpu_nb*cpu/100));

 };
 sort(nodes.begin(),nodes.end(),predica);
 vector<Host*>::iterator i;
 for(i=nodes.begin();(n>0) && (i!=nodes.end());n--,i++){

 res.push_back((*i)->getHostname());
// cout << (*i)->getHostname() << “ “ << (*i)->getCpu() << endl;
 delete *i;

 }
 for(;i!=nodes.end();++i)

 delete *i;

 ldap_unbind(ldap_server);
 globus_module_deactivate(GLOBUS_GRAM_CLIENT_MODULE);

} /* get_ldap_attribute */
}

330 Enabling Applications for Grid Computing with Globus

SmallBlue example
This is a sample game playing program.

SmallBlue.C (standalone version)
#include <string>
#include <iostream>
#include<fstream>

using namespace std;

#include”GAME.C”

int Simulate(GAME newgame, int col) {
int l=0,s;
int start=newgame.Value(col,WHITE);
newgame.Play(col,WHITE);

// newgame.Inverse();
l=0;
for(int k=1;k!=XSIZE+1;k++) {

s=newgame.Value(k,BLACK);
if (s>l)

l=s;
};
start-=l;
return start;

}

main() {
GAME Current(XSIZE,YSIZE);
int s,l,k,toplay;
char c[2];
while (true) {

Current.Display();
do {

cout << “?”;
cin >> c;
c[1]=’\0’;
l=atoi(c);

} while ((l<1) || (l>XSIZE) || !Current.CanPlay(l));
Current.Play(l,BLACK);
if (Current.HasWon(l,BLACK)) {

Current.Display();
exit(1);

};
l=-100000;
for(k=1;k!=XSIZE+1;k++) {

if (Current.CanPlay(k)) {
 Appendix B. C/C++ source code for examples 331

s=Simulate(Current,k);
if (s>l) {

l=s;
toplay=k;

};
};

};
if (l==-100000) {

cout << “NULL” << endl;
exit(1);

};
Current.Play(toplay,WHITE);
if (Current.HasWon(toplay,WHITE)) {

Current.Display();
exit(1);

};
};

};

SmallBlueMaster.C
#define _GNU_SOURCE // mandatory to use get_current_dir_name
#include <unistd.h>
#include "globus_common.h"
#include "globus_gass_server_ez.h"
#include "itso_gram_jobs_callback.h"
#include "itso_globus_ftp_client.h"
#include <vector>
#include <iostream>
#include "broker.h"
#include "itso_gass_server.h"
#include "GAME.C"

using namespace itso_gass_server;
using namespace std;

main() {
//Start a GASS server locally that will listen on 10000 port
//all the results of the evualtion. We will stop it at the end
//It cannot be defined as a standalone class because the static callback
//does not take any argument. So it is impossible afterwards in the
//callback to refer to the object.
StartGASSServer(10001);

// ITSO_GRAM_CLIENT does not start the module
// lets do it
if (globus_module_activate(GLOBUS_GRAM_CLIENT_MODULE) != GLOBUS_SUCCESS)
{

cerr << " Cannot start GRAM module";
332 Enabling Applications for Grid Computing with Globus

exit(2);
};

// the game
GAME Current(XSIZE,YSIZE);
// used to temporary store columns positions, evaluation results
int s,l,k,toplay;
// used to store human inputs
char c[2];

// The node vector should be initialized with the value of the nodes
// what is missing here is the globus calls to the globus MDS server
// to get these values. So for the exercise, you can use grid-info-search
// to find 8 hosts on which you can submit your queries.
vector<string> node;

// ask the broker to find 8 nodes
itso_broker::GetLinuxNodes(node,8);

// variable used in all for loops
int i;

// Here we want test the existence of the file as there is
// no such checking in the ITSO_GLOBUS_FTP_CLIENT class
FILE* fd = fopen("SmallBlueSlave","r");

 if(fd == NULL)
{
 printf("Error opening local smallblueslave");
 exit(2);
}
else {

//that fine, lets go for FTP
// we can close fd descriptor because a new one
// will be opened for each ITSO_GLOBUS_FTP_CLIENT object
fclose(fd);
// the ITSO_CB callback object is used to determine
// when the transfer has been completed
vector<ITSO_GLOBUS_FTP_CLIENT*> transfer;
//never forget to activate the Globus module you want to use
globus_module_activate(GLOBUS_FTP_CLIENT_MODULE);

// 8 transfer, let create 8 locks
string dst;
for(i=0;i!=8;i++) {

cout << node[i] << endl;
dst="gsiftp://"+node[i]+"/~/SmallBlueSlave";
transfer.push_back(new

ITSO_GLOBUS_FTP_CLIENT("SmallBlueSlave",const_cast<char*>(dst.c_str())));
};
 Appendix B. C/C++ source code for examples 333

// Let s begin the transfer in parallel (in asynchronous mode)
for(i=0;i!=8;i++)

transfer[i]->StartTransfer();
// Let wait for the end of all of them
for(i=0;i!=8;i++)

transfer[i]->Wait();
globus_module_deactivate(GLOBUS_FTP_CLIENT_MODULE);

};

// get the hostname using the globus shell function
// instead of POSIX system calls.
char hostname[MAXHOSTNAMELEN];
globus_libc_gethostname(hostname, MAXHOSTNAMELEN);

// used to store the RSL commands.
string rsl_req;

//Start the GRAM callback server
ITSO_GRAM_JOBS_CALLBACK callback_server;
//create all the jobs objects that will be used to submit the
//requests to the nodes. We use a vector to store them.
vector<ITSO_GRAM_JOB*> job;
for(i=0;i!=8;i++) {

job.push_back(new ITSO_GRAM_JOB(&callback_server));
};

// By using gridftp SmallBlueSlave is copied onto the rmeote hosts
// as a plain file. needs to chmod +x to make it executable
// otherwise the job submission will fail
cout << "chmod +x on the remote hosts to make SmallBlueSlave executable" <<

endl;
for(i=0;i!=8;i++) {

rsl_req = "&(executable=/bin/chmod) (count=1) (arguments= \"+x\"
SmallBlueSlave)";

if (job[i]->Submit(node[i],rsl_req))
exit(1);

}
for(i=0;i!=8;i++)

job[i]->Wait();

while (true) {
Current.Display();
do {

cout << "?";
cin >> c;
c[1]='\0';
l=atoi(c);

} while ((l<1) || (l>XSIZE) || !Current.CanPlay(l));
334 Enabling Applications for Grid Computing with Globus

Current.Play(l,BLACK);
if (Current.HasWon(l,BLACK)) {

Current.Display();
break;

};
// Serialize to disk the Current variable
// so that it could be used by the GRAM
// subsystem and transferred on the remote execution
// nodes
Current.ToDisk("GAME");

Current.Display();
cout << endl;

// remove eval file for each new jobs submission
// otherwise results will be appended to the same files
unlink("eval");

for(i=0;i!=8;i++) {
cout << "submission on " << node[i] << endl;;
char tmpc[2];
sprintf(tmpc,"%d",i);
// build the RSL commands
rsl_req = "&(executable=SmallBlueSlave) (arguments=";
rsl_req+= tmpc[0];
rsl_req+= ") (stdout=https://";
rsl_req +=hostname;
rsl_req +=":10001";
rsl_req +=get_current_dir_name();
rsl_req +="/eval) (stdin=https://";
rsl_req +=hostname;
rsl_req +=":10001";
rsl_req +=get_current_dir_name();
rsl_req +="/GAME) (count=1)";
// submit it to the GRAM
if (Current.CanPlay(i))

if (job[i]->Submit(node[i],rsl_req))
exit(1);

};
// And Wait
for(i=0;i!=8;i++)

if (Current.CanPlay(i))
job[i]->Wait();

// worse case :-)
l=-100000;

//Here we are reading the eval files. All the jobs
//has been completed so we should have all the results
 Appendix B. C/C++ source code for examples 335

//in the eval file
ifstream results("eval");
while (!results.eof()) {

results >> k >> s;
// get the best one
if (s>l) {

l=s; // store its value
toplay=k; //remember the column to play

};
};
results.close();

// nothing in the file, that means we cannot play
// so it is NULL
if (l==-100000) {

cout << "NULL" << endl;
break;

};

// AI plays here and checks if it won
Current.Play(toplay,WHITE);
if (Current.HasWon(toplay,WHITE)) {

Current.Display();
break;

};
};

//finished stop everything
StopGASSServer();

}

SmallBlueSlave.C
#include <iostream>

using namespace std;
#include “GAME.C”

main(int arc, char** argv) {
GAME Current(XSIZE,YSIZE);
Current.FromDisk();
//which column should we simulate ?
int col=atoi(argv[1]);
int start=Current.Value(col,WHITE);
Current.Play(col,WHITE);

int l=0,s,k;
for(k=1;k!=XSIZE+1;k++) {

s=Current.Value(k,BLACK);
336 Enabling Applications for Grid Computing with Globus

if (s>l)
l=s;

};
start-=l;

// send back the information to the server
cout << col << “ “ << start << endl;

};

GAME Class
#include <string>
#include <iostream>
#include<fstream>
#define HOWMANY 4
#define WHITE 1
#define BLACK HOWMANY+1
#define XSIZE 8
#define YSIZE 10

using namespace std;

class GAME {
char* data;
int xsize;
int ysize;
int get(int& i,int& j) {

return data[i-1+(j-1)*xsize];
};
int get1(int& i) { return data[i-1];};
void set(int& i,int& j,int who) { data[i-1+(j-1)*xsize]=(char)who; };
int available(int col) {

if (get1(col)!=0)
return 0;

int j;
for(j=ysize;get(col,j)!=0;--j) {};
return j;

};
bool test(int i,int j,int& col, int& line,int& player) {

int k,x,y;
for(int decalage=0;decalage!=HOWMANY;decalage++) {

int r=0;
for(k=HOWMANY-1;k!=-1;k--) {

x=i*(k-decalage)+col;
y=line+j*(k-decalage);
if ((x<1) || (x>xsize) || (y>ysize) || (y<1)) {

break;
};
 Appendix B. C/C++ source code for examples 337

if (player==get(x,y))
r+=1;

};
if (r==HOWMANY)

return true;
};
return false;

};
int calculate(int i,int j,int& col, int& line) {

int res=0,k=0,x,y;
for(int decalage=0;decalage!=HOWMANY;decalage++) {

int r=0;
for(k=HOWMANY-1;k!=-1;k--) {

x=i*(k-decalage)+col;
y=line+j*(k-decalage);
if ((x<1) || (x>xsize) || (y>ysize) || (y<1)) {

r=0;
break;

};
r+=get(x,y);

};
// Special
if (r==HOWMANY) {

r+=2000;
}
else if (r==HOWMANY*(BLACK)) {

r+=1000; }
res+=r;

};
return res;

};
public:

GAME(GAME& newgame) {
xsize=newgame.getxsize();
ysize=newgame.getysize();
data=(char*)calloc(xsize*ysize,1);
memcpy(data,newgame.getData(),xsize*ysize);

}
GAME(int x,int y)
: xsize(x),ysize(y)
{

data=(char*)calloc(x*y,1);
};
~GAME() {
 free(data);
};
char* getData() { return data;};
int getxsize() { return xsize;};
int getysize() { return ysize;};
338 Enabling Applications for Grid Computing with Globus

void ToDisk(string filename) {
ofstream out(filename.c_str());
int j,i;
for(j=1;j<=ysize;++j)
 for(i=1;i<=xsize;++i)

out << get(i,j) << “ “;
out.close();

};
void FromDisk() {

int j,i,valeur;
for(j=1;j<=ysize;++j)
 for(i=1;i<=xsize;++i) {

cin >> valeur;
 set(i,j,valeur);
 };

};
void Inverse() {

int i,j;
for(j=1;j<=ysize;++j)
 for(i=1;i<=xsize;++i)

if (get(i,j)==WHITE)
set(i,j,BLACK);

 else if (get(i,j)==BLACK)
set(i,j,WHITE);

};
void Display() {

int j,i;
cout << endl << endl;
cout << “----------”;
cout << endl;
for(j=1;j<=ysize;++j) {
 cout << “|” ;
 for(i=1;i<=xsize;++i)

if (get(i,j)==WHITE)
cout << ‘O’;

 else if (get(i,j)==BLACK)
cout << ‘I’;

else
cout << ‘ ‘;

 cout << “|” ;
cout << endl;

};
cout << “----------” << endl;
cout << “ 12345678”;

};
bool Play(int col,int who) {

int j;
if (get1(col)!=0)
 Appendix B. C/C++ source code for examples 339

{
cout << “NO !!!!!!!!!!!!”;
cout << col; exit(1);

};
for(j=ysize;get(col,j)!=0;--j) {};
set(col,j,who);

};
GAME& operator=(GAME& G2) {

memcpy(data,G2.getData(),xsize*ysize);
};
bool CanPlay(int& col) {

if (get1(col)!=0)
return false;

return true;
};
bool HasWon(int col, int player) {

int line;
bool res=false;
line=available(col);
line++;
res|=test(-1,0,col,line,player);
res|=test(-1,-1,col,line,player);
res|=test(0,-1,col,line,player);
res|=test(1,-1,col,line,player);
return res;

};
int Value(int col, int player) {

int line;

if ((line=available(col))==0)
return 0;

set(col,line,player);

int res=0;
res+=calculate(-1,0,col,line);
res+=calculate(-1,-1,col,line);
res+=calculate(0,-1,col,line);
res+=calculate(1,-1,col,line);
set(col,line,0);
return res;

};
};

Makefile
#globus-makefile-header --flavor=gcc32 globus_io globus_gss_assist
globus_ftp_client globus_ftp_control globus_gram_job globus_common
globus_gram_client globus_gass_server_ez > globus_header
340 Enabling Applications for Grid Computing with Globus

include globus_header

all: SmallBlueSlave SmallBlueMaster SmallBlue

%.o: %.C
g++ -c $(GLOBUS_CPPFLAGS) $< -o $@

SmallBlue:SmallBlue.o GAME.o
g++ -o $@ -g $^

SmallBlueSlave:SmallBlueSlave.o GAME.o
g++ -o $@ -g $^

SmallBlueMaster: GAME.C SmallBlueMaster.C itso_gram_jobs_callback.C itso_cb.C
itso_globus_ftp_client.C itso_gass_server.C broker.C

g++ -g -o $@ $(GLOBUS_CPPFLAGS) $(GLOBUS_LDFLAGS) $^ $(GLOBUS_PKG_LIBS)
-lldap_gcc32pthr

HelloWorld example
Below is a sample HelloWorld program.

HelloFrontEnd.C
#define _GNU_SOURCE // mandatory to use get_current_dir_name
#include <unistd.h>
#include “globus_common.h”
#include “itso_gram_job.h”
#include “itso_gass_copy.h”
#include <iostream>
#include <fstream>
#include “itso_gass_server.C”
#include <cc++/socket.h>
#include <cstdlib>

#ifdef CCXX_NAMESPACES
using namespace std;
using namespace ost;
#endif

// static variables used by the FrontEndServer threads.
// They are initialized at startup and readonly.
// Note that for a real production case, ticket will probably
// variable. A locking mechanism with mutex needs to be
// used.
static char hostname[MAXHOSTNAMELEN];
static long ticket;
 Appendix B. C/C++ source code for examples 341

//**
// We use here the GNU Common C++ classes to implement the
// basic server that will listen onb port 4096 to manages client
// request and redirects them on the application server
// The Server class is derived from TCPSocket class
// Each client Session object (Thread) is from class TCPSession
// The member run() is executed for each acceped connection.
// and http://www.gnu.org/software/commonc++/docs/refman/html/classes.html
// for details
//**
//**
class GridApp : public TCPSocket
{
protected:
 bool onAccept(const InetHostAddress &ia, tpport_t port);

public:
 GridApp(InetAddress &ia);
};

GridApp::GridApp(InetAddress &ia) : TCPSocket(ia, 4096) {};

bool GridApp::onAccept(const InetHostAddress &ia, tpport_t port)
{
 cout << “accepting from: “ << ia.getHostname() << “:” << port << endl;;
 return true;
}

class GridAppSession : public TCPSession
{
private:
 void run(void);
 void final(void);

public:
 GridAppSession(TCPSocket &server);
};

GridAppSession::GridAppSession(TCPSocket &server) :
TCPSession(server)
{
 cout << “creating session client object” << endl;
};

void GridAppSession::run(void)
{

string node;
342 Enabling Applications for Grid Computing with Globus

node = “t0”;
// node = getNode(MDS, SLA, Workload, ...) in a real production
// case. For simplicity here, we use a fixed address.

 InetAddress addr = getPeer();
 *tcp() << “welcome to “ << addr.getHostname() << endl;
 *tcp() << “ticket: “ << ticket << endl;
 *tcp() << “hostname: “ << node << endl;

endSocket();
}

void GridAppSession::final(void)
{
 delete this;
}

//**
main() {

// We start here the GASS server that will be used:
// - to transfer the Compile script to the application nodes
// to perform the library compilation
// - to transfer the HelloServer used on the remote hosts to
// manage clients requests
// The GASS server arbitraly listens on port 20000
StartGASSServer(20000);
// get the hostname using the globus function
globus_libc_gethostname(hostname, MAXHOSTNAMELEN);

// ITSO_GRAM_CLIENT does not start the module
// lets do it
if (globus_module_activate(GLOBUS_GRAM_CLIENT_MODULE) != GLOBUS_SUCCESS)
{

cerr << “ Cannot start GRAM module”;
exit(2);

};

string node;

// we use a fixed address for this simple example but
// nodes=getNodes(SLA, MDS, Workload, ...) in a more complex example
// we should get here the list of nodes where the application is
// supposed to run.
node = “t0”;

// variable used in all for loops
int i;

// Here we want test the existence of the file as there is
// no such checking in the ITSO_GLOBUS_FTP_CLIENT class
 Appendix B. C/C++ source code for examples 343

FILE* fd = fopen(“commoncpp2-1.0.8.tar.gz”,”r”);
 if(fd == NULL)

{
 printf(“Error opening commoncpp2-1.0.8.tar.gz file”);
 exit(2);
}
else

 {
//that fine, lets go for FTP
// we can close fd descriptor because a new one
// will be opened for each ITSO_GLOBUS_FTP_CLIENT object
fclose(fd);
//never forget to activate the Globus module you want to use
globus_module_activate(GLOBUS_GASS_COPY_MODULE);
//**
// In this section we perform the transfer of the dynamic library
// to the “application server”.
// We use the ITSO_GLOBUS_FTP_CLIENT class to do the task
// Note that we use the local directory to perform the task.
// In a real case example, a storage server would be used
// instead of a local directory =>
// globus-url-copy gsiftp://storage_server/commoncpp2-1.0.8.tar.gz
// gsiftp://application_server/commoncpp2-1.0.8.tar.gz
//**
GLOBUS_URL source,destination;

 source.setURL(“gsiftp://m0/tmp/commoncpp2-1.0.8.tar.gz”);

 string dst;
 dst=”gsiftp://”+node+”/~/commoncpp2-1.0.8.tar.gz”;
 destination.setURL(dst);

 globus_module_activate(GLOBUS_GASS_COPY_MODULE);
 ITSO_GASS_TRANSFER transfer;
 transfer.Transfer(source,destination);

transfer.Wait();
 globus_module_deactivate(GLOBUS_GASS_COPY_MODULE);

//**
// In this section we submit the compilation of the
// dynamic libray. The script Compile that must be in the
// current directory is transferred to the remote host
// and executed. The result is the installation
// of the CommonC++ toolkit in the tmp directory of the
// user under which the script was executed.
// (globus in the lab environement of the redbook)
//**
// used to store the RSL commands.
string rsl_req;
344 Enabling Applications for Grid Computing with Globus

ITSO_GRAM_JOB job;

cout << “library compilation on “ << node << endl;;
rsl_req = “&(executable=https://”;
rsl_req +=hostname;
rsl_req += “:20000”;
rsl_req +=get_current_dir_name();

 rsl_req += “/Compile) (count=1)”;
// submit it to the GRAM
cout << rsl_req << endl;
//job.Submit(node,rsl_req);
//job.Wait();
//**

// ticket=getTicket(time, IP address, SLA, ...) in a
// real production case
ticket=random();

// node=getNodes(SLA, MDS, Workload, Application Type, ...)
// in a real production case
node=”t0”;

ITSO_GRAM_JOB job2;

cout << “start app server on “ << node << endl;;
rsl_req = “&(executable=https://”;
rsl_req +=hostname;
rsl_req += “:20000”;
rsl_req +=get_current_dir_name();
rsl_req += “/HelloServer) (environment=(LD_LIBRARY_PATH $(HOME)/tmp/lib)

) (count=1) (arguments=”;
char tmpstr[20];
sprintf(tmpstr,”%ld “,ticket);
rsl_req += tmpstr;
rsl_req += node;
rsl_req += “)”;
// submit it to the GRAM
cout << rsl_req << endl;
job2.Submit(node,rsl_req);
job2.Wait();

// Front End server startup
// We use the GNU CommonC++ classes to implement a
// very basic server. See below for explanation
// and

http://www.gnu.org/software/commonc++/docs/refman/html/classes.html
// for details
GridAppSession *tcp;
 Appendix B. C/C++ source code for examples 345

 BroadcastAddress addr;
 addr = “localhost”;

 cout << “binding for: “ << addr.getHostname() << “:” << 4096 <<
endl;

 GridApp server(addr);

 while(server.isPendingConnection(300000)) // the server runs for
 // a limited period of time

 {
 tcp = new GridAppSession(server);
 tcp->detach(); // the new thread is daemonize to manage

 // the client connection
};

};

// Stop the GASS server when exiting the program
StopGASSServer();

}

HelloServer.C
#include <cc++/socket.h>
#include <cstdlib>

#ifdef CCXX_NAMESPACES
using namespace std;
using namespace ost;
#endif

class GridApp : public TCPSocket
{
public:
 GridApp(InetAddress &ia);

void end();
};

GridApp::GridApp(InetAddress &ia) : TCPSocket(ia, 4097) {};

void GridApp::end() { endSocket(); };

int main(int argc,char** argv)
{
tcpstream tcp;

 long ticket;
 ticket=atol(argv[1]);

 InetAddress addr;
346 Enabling Applications for Grid Computing with Globus

 addr = argv[2];
 cout << “addr: “ << addr << “:” << 4097 << endl;
 GridApp server(addr);

 long i;
 // daemonize
 long l =fork();
 if (l>0)

 exit(0); // parent exits here
 while(server.isPendingConnection(300000))

 {
 tcp.open(server);
 if(tcp.isPending(Socket::pendingInput, 2000))
 {
 tcp >> i;
 cout << “user entered “ << i << ticket << endl;

 if (i!=ticket)
 tcp << “Bad ticket” << endl;

 else
 tcp << “Hello World !”;

 }
 cout << “exiting now” << endl;
 tcp.close();

 };
};

HelloClient.C
#include <cc++/socket.h>
#include <string>
using namespace std;
using namespace ost;
// g++ -g -I/usr/include/cc++2 -L/usr/lib -o S Ser2.C -lccgnu2 -lpthread -ldl

class GridApp : public TCPStream {
char line[200];

public:
GridApp(InetHostAddress &ia) : TCPStream(ia, 4097) {};
char* readline() {

tcp()->getline(line,200);
return line;

}
};

int main(int argc,char** argv) {
InetHostAddress FrontEndServerAddress,AppServerAddress;
FrontEndServerAddress=argv[1];

TCPStream str(FrontEndServerAddress,4096);
 Appendix B. C/C++ source code for examples 347

string hostname,ticket;
 str >> ticket;
 str >> ticket;
 str >> ticket;
 str >> ticket;
 str >> ticket;

cout << “Ticket:” << ticket << endl;
 str >> hostname;
 str >> hostname;
 str >> hostname;

cout << “Hostname:” << hostname << endl;

AppServerAddress=hostname.c_str();
GridApp App(AppServerAddress);

App << ticket << endl;

cout << App.readline();

};

Makefile
globus-makefile-header --flavor=gcc32 globus_io globus_gass_copy
globus_gss_assist globus_ftp_client globus_ftp_control globus_gram_job
globus_common globus_gram_client globus_gass_server_ez > globus_header

include globus_header

all: HelloServer HelloClient HelloFrontEnd

%.o: %.C
g++ -c $(GLOBUS_CPPFLAGS) $< -o $@

HelloServer: HelloServer.C
g++ -g -I/usr/local/include/cc++2 -L/usr/local/lib -o $@ $^ -lccgnu2

-lpthread -ldl

HelloClient: HelloClient.C
g++ -g -I/usr/local/include/cc++2 -L/usr/local/lib -o $@ $^ -lccgnu2

-lpthread -ldl

HelloFrontEnd: HelloFrontEnd.C itso_gram_job.C itso_cb.C itso_gass_copy.C
itso_gass_server.C

g++ -o $@ -I/usr/local/include/cc++2 -L/usr/local/lib $(GLOBUS_CPPFLAGS)
$(GLOBUS_LDFLAGS) $^ $(GLOBUS_PKG_LIBS) -lccgnu2 -lpthread -ldl
348 Enabling Applications for Grid Computing with Globus

Lottery example
Below is a sample for emulating a lottery. To compile GenerateDraws.C issue:

g++ -o GenerateDraws -O 3 GenerateDraws.C

GenerateDraws.C
#include <cstdlib>
#include <unistd.h>
#include <list>
#include <algorithm>
#include <fstream>

int GetARandomNumberBetween1And60() {
returnrandom()/(RAND_MAX/60)+1;

};

void initrandom(unsigned seed){
#define RANDSIZE 256
static char randstate[RANDSIZE];
initstate(seed, randstate, RANDSIZE);

}

main(int argc,char ** argv) {
initrandom(getpid()); // seeding for a new sequence of pseudo-random

integers
// let generate 8 number between 1 and 60
list<long int> Series;
long int n;
long long DrawNumber,InitialDrawNumber;
ofstream OutputFileMonitor;
OutputFileMonitor.open(“Monitor”);

DrawNumber=atoll(argv[1]);
InitialDrawNumber=DrawNumber;

do {
 int i;

Series.clear();
for(i=8;i;i--) {

//find 8 different number between 1 and 60
do

n=GetARandomNumberBetween1And60();
while (find(Series.begin(),Series.end(),n)!=Series.end());
Series.push_front(n);

};

//let display the result
 Appendix B. C/C++ source code for examples 349

Series.sort();
list<long int>::iterator j;
for(j=Series.begin();j!=Series.end();++j)

cout << *j << “ “;
cout << endl;

OutputFileMonitor.seekp(1,ios::beg);
OutputFileMonitor <<

100*(InitialDrawNumber-DrawNumber)/InitialDrawNumber;
} while (--DrawNumber);

OutputFileMonitor.seekp(1,ios::beg);
OutputFileMonitor << “100”;
OutputFileMonitor.close();

}

Submit script
#the script takes the tested draw as parameter
#example: ./Submit 3 4 5 32 34 43
n=1000000
NodesNumber=12

#temporary working directory on the execution nodes
TMP=.$HOSTNAME

i=0
#the loop variable is used is all the “for” loops
#the format is 1 2 3 4 n
loop=””
use here the broker developped for the redbook
see chapter 8 (mds executable)
for node in $(mds $NodesNumber | xargs)
do

Nodes[$i]=$node
loop=${loop}” “${i}
i=$(($i + 1))

done

echo The number of draws tested is $n
a=$*
#sort the numbers in the specified draw
2 45 23 12 32 43 becomes 2 12 23 32 43 45 so that we could use
grep to test this draw and the ouput of the draw programs.
param=$(echo $a | tr “ “ “\n” | sort -n | xargs)

parrarell transfer of the draw executable
we submit jobs in the background, get their process id
and uses the wait command to wait for their completion
350 Enabling Applications for Grid Computing with Globus

this method is also used for the jobs submission
echo Transferring executable files
for i in $loop
do
 gsissh -p 24 ${Nodes[$i]} “[-d $TMP] || mkdir $TMP” &
 ProcessID[$i]=$!
done
for i in $loop
do
 wait ${ProcessID[$i]}
 gsiscp -P 24 GenerateDraws ${Nodes[$i]}:$TMP &
 ProcessID[$i]=$!
done
for i in $loop
do
 wait ${ProcessID[$i]}
 gsissh -p 24 ${Nodes[$i]} “chmod +x ./$TMP/GenerateDraws” &
 ProcessID[$i]=$!
done
#file should be made executable
#on all the execution nodes
echo Jobs submission to the grid
for i in $loop
do
 wait ${ProcessID[$i]}
 echo ${Nodes[$i]}
 EXE=”cd $TMP;./GenerateDraws $n | grep “‘”’$param’” && echo GOT IT on
$HOSTNAME’
 gsissh -p 24 ${Nodes[$i]} “$EXE” &
 ProcessID[$i]=$!
done

#for monitoring, we copy locally the Monitor files
created on each compute nodes. This file content the
percentage of tested draws. Each files is suffixes by
the nodes number. $statusnum is actually the sum of all
the percentage (Monitor files) devided by 100. When it
equals the number of nodes, that means that we have finished
echo Monitoring
statussum=0
while (($statussum != $NodesNumber))
do

echo
sleep 5 #we poll every 5 seconds
statussum=0
for i in $loop
do
 gsiscp -q -P 24 ${Nodes[$i]}:$TMP/Monitor Monitor.$i
 status=$(cat Monitor.$i)
 Appendix B. C/C++ source code for examples 351

 statussum=$(($status + $statussum))
 echo ${Nodes[$i]}:Monitor $(cat Monitor.$i) %
done
statussum=$(($statussum / 100))

done
#cleanup the tmp directory
for i in $loop
do
 wait ${ProcessID[$i]}
 gsissh -p 24 ${Nodes[$i]} “rm -fr ./.$TMP” &
 ProcessID[$i]=$!
done

GenerateDrawsGlobus.C
To compile this program, just issue:

g++ -o GenerateDrawsGlobus GenerateDrawsGlobus.C

#include <cstdlib>
#include <unistd.h>
#include <list>
#include <algorithm>
#include <string>
#include <fstream>

int GetARandomNumberBetween1And60() {
returnrandom()/(RAND_MAX/60)+1;

};

void initrandom(unsigned seed){
#define RANDSIZE 256
static char randstate[RANDSIZE];
initstate(seed, randstate, RANDSIZE);

}

// the first argument is the hostname provided by SubmitGlobus script
// the second argument is the number of draws that must be generated
main(int argc,char ** argv) {

initrandom(getpid()); // seeding for a new sequence of pseudo-random
integers

// let generate 8 number between 1 and 60
list<long int> Series;
long int n;
long long DrawNumber,InitialDrawNumber;
ofstream OutputFileMonitor;
string filename;
filename=”Monitor.”;
filename.append(argv[1]);
OutputFileMonitor.open(filename.c_str());
352 Enabling Applications for Grid Computing with Globus

DrawNumber=atoll(argv[2]);
InitialDrawNumber=DrawNumber;

do {
 int i;

Series.clear();
for(i=8;i;i--) {

//find 8 different number between 1 and 60
do

n=GetARandomNumberBetween1And60();
while (find(Series.begin(),Series.end(),n)!=Series.end());
Series.push_front(n);

};
//let display the result
Series.sort();
list<long int>::iterator j;
for(j=Series.begin();j!=Series.end();++j)

cout << *j << “ “;
cout << endl;

OutputFileMonitor.seekp(1,ios::beg);
OutputFileMonitor <<

100*(InitialDrawNumber-DrawNumber)/InitialDrawNumber;
} while (--DrawNumber);

OutputFileMonitor.seekp(1,ios::beg);
OutputFileMonitor << “100”;
OutputFileMonitor.close();

}

SubmitGlobus script
#the script takes the tested draw as parameter
#example: ./Submit 3 4 5 32 34 43
n=10000000
NodesNumber=8

#temporary filename used by by GenerateDrawsGlobus
#to monitor the job
#we can also use the process id to increase the granularity
TMP=$HOSTNAME

i=0
#the loop variable is used is all the “for” loops
#the format is 1 2 3 4 n
loop=””
use here the broker developped for the redbook
see chapter 8 (mds executable)
 Appendix B. C/C++ source code for examples 353

for node in $(mds $NodesNumber | xargs)
do

Nodes[$i]=$node
loop=${loop}” “${i}
i=$(($i + 1))

done

echo The number of draws tested is $n
a=$*
#sort the numbers in the specified draw
2 45 23 12 32 43 becomes 2 12 23 32 43 45 so that we could use
grep to test this draw and the ouput of the draw programs.
param=$(echo $a | tr “ “ “\n” | sort -n | xargs)

#Start the gass server on each nodes
clean up the Monitoring file when leaving
for i in $loop
do
 rsl=’&(executable=$(GLOBUS_LOCATION)/bin/globus-gass-server)(arguments=-c -t
-r)(environment=(LD_LIBRARY_PATH
$(GLOBUS_LOCATION)/lib))(file_clean_up=Monitor.’”$TMP)”
 globusrun -o -r ${Nodes[$i]} “$rsl” > gass-server.$i &
done
#file should be made executable
#on all the execution nodes
echo Jobs submission to the grid
rsl=”+”
for i in $loop
do
 echo ${Nodes[$i]}
 rsl=${rsl}”(&(resourceManagerContact=\”${Nodes[$i]}\”)”

rsl=${rsl}”(executable=\$(GLOBUSRUN_GASS_URL)$PWD/GenerateDrawsGlobus.sh)(argum
ents=$TMP $n
\”$param\”)(subjobStartType=loose-barrier)(file_stage_in=(\$(GLOBUSRUN_GASS_URL
)$PWD/GenerateDrawsGlobus
GenerateDrawsGlobus.$TMP))(file_clean_up=GenerateDrawsGlobus.$TMP)(environment=
(LD_LIBRARY_PATH \$(GLOBUS_LOCATION)/lib)))”
done
echo $rsl
globusrun -s -o “$rsl” &
#for monitoring, we copy locally the Monitor files
created on each compute nodes. This file content the
percentage of tested draws. Each files is suffixes by
the nodes number. $statusnum is actually the sum of all
the percentage (Monitor files) devided by 100. When it
equals the number of nodes, that means that we have finished

echo Monitoring
354 Enabling Applications for Grid Computing with Globus

rm -f Monitor.*
statussum=0
while (($statussum != $NodesNumber))
do

echo
sleep 5 #we poll every 5 seconds
statussum=0
for i in $loop
do
 if [-s gass-server.$i]
 then

 contact=$(cat gass-server.$i)
 globus-url-copy $contact/~/Monitor.$TMP file://$PWD/Monitor.$i
 status=$(cat Monitor.$i)
 statussum=$(($status + $statussum))
 echo ${Nodes[$i]}:Monitor $(cat Monitor.$i) %
 fi
done
statussum=$(($statussum / 100))

done

#Stop the gassserver
for i in $loop
do

contact=$(cat gass-server.$i)
globus-gass-server-shutdown $contact

done

C/C++ simple examples
Below are more simple examples.

gassserver.C
#include “globus_common.h”
#include “globus_gass_server_ez.h”
#include <iostream>
#include “itso_cb.h”

ITSO_CB callback; //invoked when client wants to shutdown the server

void callback_c_function() {
callback.setDone();

}

main() {
 Appendix B. C/C++ source code for examples 355

// Never forget to activate GLOBUS module
globus_module_activate(GLOBUS_GASS_SERVER_EZ_MODULE);

// let s define options for our GASS server
unsigned long server_ez_opts=0UL;

//Files openfor writing will be written a line at a time
//so multiple writers can access them safely.
server_ez_opts |= GLOBUS_GASS_SERVER_EZ_LINE_BUFFER;

//URLs that have ~ character, will be expanded to the home
//directory of the user who is running the server
server_ez_opts |= GLOBUS_GASS_SERVER_EZ_TILDE_EXPAND;

//URLs that have ~user character, will be expanded to the home
//directory of the user on the server machine
server_ez_opts |= GLOBUS_GASS_SERVER_EZ_TILDE_USER_EXPAND;

//”get” requests will be fullfilled
server_ez_opts |= GLOBUS_GASS_SERVER_EZ_READ_ENABLE;

//”put” requests will be fullfilled
server_ez_opts |= GLOBUS_GASS_SERVER_EZ_WRITE_ENABLE;

// for put requets on /dev/stdout will be redirected to the standard
// output stream of the gass server
server_ez_opts |= GLOBUS_GASS_SERVER_EZ_STDOUT_ENABLE;

// for put requets on /dev/stderr will be redirected to the standard
// output stream of the gass server
server_ez_opts |= GLOBUS_GASS_SERVER_EZ_STDERR_ENABLE;

// “put requests” to the URL https://host/dev/globus_gass_client_shutdown
// will cause the callback function to be called. this allows
// the GASS client to communicate shutdown requests to the server
server_ez_opts |= GLOBUS_GASS_SERVER_EZ_CLIENT_SHUTDOWN_ENABLE;

// Secure
char* scheme=”https”;
//unsecure
//char* scheme=”http”;

 globus_gass_transfer_listenerattr_t attr;
 globus_gass_transfer_listenerattr_init(&attr, scheme);

 //we want to listen on post 10000
globus_gass_transfer_listenerattr_set_port(&attr, 10000);

//Now, we can start this gass server !
 globus_gass_transfer_listener_t listener;
356 Enabling Applications for Grid Computing with Globus

 globus_gass_transfer_requestattr_t * reqattr = GLOBUS_NULL;
//purpose unknown

int err = globus_gass_server_ez_init(&listener,
 &attr,
 scheme,
 GLOBUS_NULL, //purpose unknown
 server_ez_opts,

 callback_c_function); //or GLOBUS_NULL otherwise
 //GLOBUS_NULL); //or GLOBUS_NULL otherwise

if((err != GLOBUS_SUCCESS)) {
 cerr << “Error: initializing GASS (“ << err << “)” << endl;
 exit(1);
}

 char *
gass_server_url=globus_gass_transfer_listener_get_base_url(listener);

cout << “we are listening on “ << gass_server_url << endl;

 //wait until it is finished !
//that means that the “put requests” to the URL

https://host/dev/globus_gass_client_shutdown
//ITSO_CB implements the symchronization mechanism by using a mutex
//and a condition variable

 callback.Wait(); // shutdown callback

//stop everything
globus_gass_server_ez_shutdown(listener);
globus_module_deactivate(GLOBUS_GASS_SERVER_EZ_MODULE);

}

Checking credentials
Here is a quick example of how to check if your credentials are valid in a C or
C++ program. These credentials are generated via the globus-proxy-init shell
command.

#include “globus_gss_assist.h”
#include <iostream>
main() {

gss_cred_id_t credential_handle = GSS_C_NO_CREDENTIAL;

OM_uint32 major_status;
OM_uint32 minor_status;

major_status = globus_gss_assist_acquire_cred(&minor_status,
 GSS_C_INITIATE, /* or GSS_C_ACCEPT */
 &credential_handle);
 Appendix B. C/C++ source code for examples 357

 if (major_status != GSS_S_COMPLETE)
cout << “unable to authenticate !” << endl;

else
cout << “that s fine” << endl;

}

Submitting a job
Here is a small C example that provides a skeleton for submitting a job in a C
program. The examples in this publication use the ITSO_GRAM_JOB C++ class,
which is basically a C++ wrapper to this C skeleton.

#include <stdio.h>
#include “globus_gram_client.h”
#include <globus_gram_protocol_constants.h>

/* It is the function used when the remote
 * Job Manager needs to contact your local program to inform it
 * about the status of the remote program. It is passed along
 * with the the job_request to the remote computer
 */

static void callback_func(void * user_callback_arg,
 char * job_contact,
 int state,
 int errorcode);

/* Setting up the GRAM monitor. The monitor will stall
 * this program until the remote program is terminated,
 * either through failure or naturally. Without the monitor,
 * this program would submit the job, and end before the job
 * completed. The monitor works with a lock. Only one function
 * may access the Done flag at a time, so in order to access it,
 * the gram must set a lock on the monitor variable, so that
 * nothing else may access it, then change it, and finally
 * unlock it. This is seen later in the code.
 */

/* This whole structure is the monitor */

typedef struct
{
 globus_mutex_t mutex;
 globus_cond_t cond;
 globus_bool_t done;
} my_monitor_t;

/***
358 Enabling Applications for Grid Computing with Globus

 Main Code
***/

int main(int argc, char ** argv)
{
 int callback_fd;
 int job_state_mask;
 int rc; /* The return value of the request function.
 * If successful, it should be 0 */

 char * callback_contact; /* This is the identifier for
 * the callback, returned by
 * globus_gram_job_request
 */

char * job_contact; /* This is the identifier for the job,
 * returned by globus_gram_job_request
 */

char * rm_contact;
char * specification;
globus_bool_t done;
my_monitor_t Monitor;

 /* Retrieve relevant parameters from the command line */

 if (argc!= 3 && argc != 4 && argc != 5)
 {
 /* invalid parameters passed */
 printf(“Usage: %s <rm_contact> <specification> “
 “<job_state_mask> <-debug>\n”,
 argv[0]);
 exit(1);
 }

if ((rc = globus_module_activate(GLOBUS_GRAM_CLIENT_MODULE))
!= GLOBUS_SUCCESS)
{
printf(“\tERROR: gram module activation failed\n”);
exit(1);
}

rm_contact = (char *)globus_malloc(strlen(argv[1])+1);
strcpy(rm_contact, argv[1]);
specification = (char *)globus_malloc(strlen(argv[2])+1);
strcpy(specification, argv[2]);
if (argc > 3)

job_state_mask = atoi(argv[3]);
else
 Appendix B. C/C++ source code for examples 359

job_state_mask = GLOBUS_GRAM_PROTOCOL_JOB_STATE_ALL;

/* Initialize the monitor function to look for callbacks. It
 * initializes the locking mechanism, and then the condition
 * variable
 */
globus_mutex_init(&Monitor.mutex, (globus_mutexattr_t *) NULL);
globus_cond_init(&Monitor.cond, (globus_condattr_t *) NULL);

/* entering the monitor and clearing the flag. Locking the
 * Monitor to prevent anything else from changing the value of
 * Monitor.done
 */
globus_mutex_lock(&Monitor.mutex);

/* Change the value of Monitor.done to false, initializing it */
Monitor.done = GLOBUS_FALSE;

/* Releasing the lock on the monitor, letting anything else access it */
globus_mutex_unlock(&Monitor.mutex);

/* Setting up the communications port for returning the callback.
 * You pass it the callback function. The callback_contact is the
 * callback identifier returned by the function
 */

 globus_gram_client_callback_allow(callback_func,
 (void *) &Monitor,
 &callback_contact);

 printf(“\n\tTEST: submitting to resource manager...\n”);

 /* Send the GRAM request. The rm_contact, specification, and
 * job_state_mask were retrieved earlier from the command line
 * The callback_contact was just returned by
 * globus_gram_client_callback_allow. The job_request is returned by
 * this function
 */

 rc = globus_gram_client_job_request(rm_contact,
specification,
job_state_mask,
callback_contact,
&job_contact);

 if (rc != 0) /* if there is an error */
 {
 printf(“TEST: gram error: %d - %s\n”,
 rc,
360 Enabling Applications for Grid Computing with Globus

 /* translate the error into english */
 globus_gram_client_error_string(rc));
 exit(1);
 }

#ifdef CANCEL
 sleep(3);
 printf(“\tTEST: sending cancel to job manager...\n”);

 if ((rc = globus_gram_client_job_cancel(job_contact)) != 0)
 {
 printf(“\tTEST: Failed to cancel job.\n”);
 printf(“\tTEST: gram error: %d - %s\n”,
 rc,
 globus_gram_client_error_string(rc));
 return(1);
 }
 else
 {
 printf(“\tTEST: job cancel was successful.\n”);
 }
#endif

/* Wait until there is a callback saying there was a termination, either
 * successful or failed. We lock the Monitor again so as to ensure that
 * no one else tampers with it. Then we wait until the condition is
 * signaled by the callback_function. When it is signaled, and
 * Monitor.done is set to GRAM_TRUE - (these two things always happen
 * in conjunction in our callback_func) Then we unlock the monitor and
 * continue the program.
 */

 globus_mutex_lock(&Monitor.mutex);
 while (!Monitor.done)
 {
 /* Within the cond_wait function, it unlocks the monitor,
 * allowing the callback_func to take the lock. When it gets a
 * cond_signal, it re-locks the monitor, and returns to this
 * program. But DO NOT unlock the monitor yourself- use the
 * globus_gram_cond_wait function, as it insures safe
 * unlocking.
 */
 globus_cond_wait(&Monitor.cond, &Monitor.mutex);
 } /* endwhile */

 globus_mutex_unlock(&Monitor.mutex);

 /* Remove Monitor. Given that we are done with our monitor, (it has
 * already held the program until the job completed) we can now dispose
 Appendix B. C/C++ source code for examples 361

 * of it. We destroy both the mutex and the condition. This frees up any
 * space it may have occupied.
 */

 globus_mutex_destroy(&Monitor.mutex);
 globus_cond_destroy(&Monitor.cond);

 /* Free up the resources of the job_contact, as the job is over, and
 * the contact is now useless.
 */
 globus_gram_client_job_contact_free(job_contact);

 /* Deactivate GRAM */
 globus_module_deactivate(GLOBUS_GRAM_CLIENT_MODULE);
}
/**
 * This is the callback function, as per the definition. We can write
 * whatever we want into the function, but remember that the
 * cond_signal must be triggered and Monitor.done must also be set to
 * true to exit the waiting loop in the main code. The function is called
 * from the job manager, which provides values for state and errorcode
 */

void callback_func(void * user_callback_arg,
 char * job_contact,
 int state,
 int errorcode)
{
 my_monitor_t * Monitor = (my_monitor_t *) user_callback_arg;

 switch(state)
 {
 case GLOBUS_GRAM_PROTOCOL_JOB_STATE_PENDING:

printf(“\tTEST: Got GLOBUS_GRAM_PROTOCOL_JOB_STATE_PENDING”
 “ from job manager\n”);

break; /* Reports state change to the user */

 case GLOBUS_GRAM_PROTOCOL_JOB_STATE_ACTIVE:
 printf(“\tTEST: Got GLOBUS_GRAM_PROTOCOL_JOB_STATE_ACTIVE”

 “ from job manager\n”);
break; /* Reports state change to the user */

 case GLOBUS_GRAM_PROTOCOL_JOB_STATE_FAILED:

printf(“\tTEST: Got GLOBUS_GRAM_PROTOCOL_JOB_STATE_FAILED”
 “ from job manager\n”);

globus_mutex_lock(&Monitor->mutex);
Monitor->done = GLOBUS_TRUE;
globus_cond_signal(&Monitor->cond);
globus_mutex_unlock(&Monitor->mutex);
362 Enabling Applications for Grid Computing with Globus

break; /* Reports state change to the user */
case GLOBUS_GRAM_PROTOCOL_JOB_STATE_DONE:

printf(“\tTEST: Got GLOBUS_GRAM_PROTOCOL_JOB_STATE_DONE”
 “ from job manager\n”);

globus_mutex_lock(&Monitor->mutex);
Monitor->done = GLOBUS_TRUE;
globus_cond_signal(&Monitor->cond);
globus_mutex_unlock(&Monitor->mutex);
break; /* Reports state change to the user */

 }
}

 Appendix B. C/C++ source code for examples 363

364 Enabling Applications for Grid Computing with Globus

Appendix C. Additional material

This redbook refers to additional material that can be downloaded from the
Internet as described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246936

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number, SG243936.

C

© Copyright IBM Corp. 2003. All rights reserved. 365

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

Using the Web material
The additional Web material that accompanies this redbook includes the
following files:

File name Description

README.6936 A sort desrciption of the following files

3936Samp.zip A zip file including various source files from examples in
this publication

3936Samp.tar A tar file including the same contents as the above zip file

How to use the Web material
Create a subdirectory (folder) on your workstation, and unzip or untar the
contents of the Web material zip/tar file into this folder.
366 Enabling Applications for Grid Computing with Globus

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 372. Note that some of the documents referenced here may be available
in softcopy only.

� Introducing IBM Tivoli License Manager, SG24-6888

� Introduction to Grid Computing with Globus, SG24-6895

� Fundamentals of Grid Computing, REDP3613

Other publications
These publications are also relevant as further information sources:

� The Java CoG Kit User Manaul, Gregor von Laszewski, Beulah Alunkal,
Kaitzar Amin, Jarek Gawor, Mihael Hategan, Sandeep Nijsure. Available at:

http://www.globus.org/cog/manual-user.pdf

� Network Security Essentials: Application and Standards. Stallings, W. (2000).
Prentice-Hall Inc.

� A standard for architecture description, by R. Youngs, D. Redmond-Pyle, P.
Spaas and E. Kahan. IBM Systems Journal, Volume 38, Number 1, 1999
Enterprise Solutions Structure available at:

http://www.research.ibm.com/journal/sj/381/youngs.html

� On Death, Taxes, and the Convergence of Peer-toPeer and Grid Computing,
by Ian Foster, Adriana Iamnitchi:

http://people.cs.uchicago.edu/~anda/papers/foster_grid_vs_p2p.pdf

� Foster, et al, The Grid: Blueprint for a New Computing Infrastructure, Morgan
Kaufmann, 1999, ISBN 1558604758

� The Anatomy of the Grid: Enabling Scalable Virtual Organizations, found at:

http://www.globus.org/research/papers/anatomy.pdf
© Copyright IBM Corp. 2003. All rights reserved. 367

http://www.globus.org/cog/manual-user.pdf
http://people.cs.uchicago.edu/~anda/papers/foster_grid_vs_p2p.pdf
http://www.research.ibm.com/journal/sj/381/youngs.html
http://www.globus.org/research/papers/anatomy.pdf

� A Brief Introduction to Grid Technology, found at:

http://www.bo.infn.it/alice/introgrd/introgrd/

� Computational Grids, found at:

http://www.globus.org/research/papers/chapter2.pdf

� The Globus Project: A Status Report, found at:

ftp://ftp.globus.org/pub/globus/papers/globus-hcw98.pdf

� GridFTP Update January 2002, found at:

http://www.globus.org/datagrid/deliverables/GridFTP-Overview-200201.pdf

� Grid Service Specification, found at:

http://www.gridforum.org/ogsi-wg/drafts/GS_Spec_draft03_2002-07-17.pdf

� Internet Draft GridFTP: Protocol Extensions to FTP for the Grid, found at:

http://www-fp.mcs.anl.gov/dsl/GridFTP-Protocol-RFC-Draft.pdf

� Internet Draft Internet X.509 Public Key Infrastructure Proxy Certificate
Profile, found at:

http://www.ietf.org/internet-drafts/draft-ietf-pkix-proxy-03.txt

� MDS 2.2 User's Guide, found at:

http://www.globus.org/mds/mdsusersguide.pdf

� The Open Grid Services Architecture and Data Grids, found at:

http://aspen.ucs.indiana.edu/CCPEwebresource/c600gridkunszt/c600FINAL

� GridServices_DataGridv3.pdf The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems Integration, found at:

http://www.globus.org/research/papers/ogsa.pdf

� A Resource Management Architecture for Metacomputing Systems, found at:

ftp://ftp.globus.org/pub/globus/papers/gram97.pdf

� RFC 3280 Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile, found at:

http://www.ietf.org/rfc/rfc3280.txt

� Web Services Conceptual Architecture (WSCA 1.0), found at:

http://www.ibm.com/software/solutions/webservices/pdf/WSCA.pdf

� Web Service Description Language (WSDL) 1.1, found at:

http://www.w3.org/TR/wsdl
368 Enabling Applications for Grid Computing with Globus

http://www.bo.infn.it/alice/introgrd/introgrd/
http://www.globus.org/research/papers/chapter2.pdf
ftp://ftp.globus.org/pub/globus/papers/globus-hcw98.pdf
http://www.globus.org/datagrid/deliverables/GridFTP-Overview-200201.pdf
http://www.gridforum.org/ogsi-wg/drafts/GS_Spec_draft03_2002-07-17.pdf
http://www-fp.mcs.anl.gov/dsl/GridFTP-Protocol-RFC-Draft.pdf
http://www.ietf.org/internet-drafts/draft-ietf-pkix-proxy-03.txt
http://www.globus.org/mds/mdsusersguide.pdf
http://aspen.ucs.indiana.edu/CCPEwebresource/c600gridkunszt/c600FINAL
http://www.globus.org/research/papers/ogsa.pdf
http://www.ietf.org/rfc/rfc3280.txt
http://www.w3.org/TR/wsdl
http://www.ibm.com/software/solutions/webservices/pdf/WSCA.pdf

� A Security Architecture for Computational Grids. I. Foster, C. Kesselman, G.
Tsudik, S. Tuecke. Proc. 5th ACM Conference on Computer and
Communications Security Conference, pp. 83-92, 1998.

ftp://ftp.globus.org/pub/globus/papers/security.pdf

� Managing Security in High-Performance Distributed Computing. I. Foster, N.
T. Karonis, C. Kesselman, S. Tuecke. Cluster Computing, 1(1):95-107, 1998.

ftp://ftp.globus.org/pub/globus/papers/cc-security.pdf

Online resources
These Web sites and URLs are also relevant as further information sources:

� Globus

http://www.globus.org

� GSI-Enabled OpenSSH, visit

http://grid.ncsa.uiuc.edu/ssh/

� Globus GASS

http://www-fp.globus.org/gass/

� BSD Licensing

http://www.opensource.org/licenses/bsd-license.php

� MIT Licensing

http://opensource.org/licenses/gpl-license.php

� Apache Software license

http://www.opensource.org/licenses/apachepl.php

� Open source Initiative license information

http://opensource.org/docs/certification_mark.php

� Lesser General Public License

http://www.opensource.org/licenses/lgpl-license.php

� GNU Public License

http://www.gnu.org/copyleft/gpl.html

� IBM Public License

http://www.opensource.org/licenses/ibmpl.php.

� FLEXlm supported license models

http://www.globetrotter.com/flexlm/lmmodels.sthm
 Related publications 369

ftp://ftp.globus.org/pub/globus/papers/security.pdf
ftp://ftp.globus.org/pub/globus/papers/cc-security.pdf
http://www.globus.org
http://grid.ncsa.uiuc.edu/ssh/
http://www-fp.globus.org/gass/
http://www.opensource.org/licenses/bsd-license.php
http://opensource.org/licenses/gpl-license.php
http://www.opensource.org/licenses/apachepl.php
http://opensource.org/docs/certification_mark.php
http://www.opensource.org/licenses/lgpl-license.php
http://www.gnu.org/copyleft/gpl.html
http://www.opensource.org/licenses/ibmpl.php.
http://www.globetrotter.com/flexlm/lmmodels.sthm

� FLEXlm general information

http://www.globetrotter.com/flexlm/flexlm.shtm

� Tivoli License Manager

http://www.ibm.com/software/tivoli/products/license-mgr/

� IBM License Use Management

http://www.ibm.com/software/is/lum/

� Platofrm Global License Broker

http://www.platform.com/products/wm/glb/index.asp

� Globus Commodity Grid toolkts (CoGs)

http://www.globus.org/cog/

� Grid Computing Environment (GCE)

http://www.globus.org/research/development-environments.html

� Grid Enabled MPI

http://www.niu.edu/mpi/

� Grid Application Development software (GrADS)

http://nhse2.cs.rise.edu/grads/

� IBM Grid Toolbox

http://www.alphaworks.ibm.com/tech/gridtoolbox

� Grid Application Framework for Java

http://www.alphaworks.ibm.com/tech/GAF4J

� IBM Data Management products

http://www.ibm.com/software/data/

� Database Access and Integration Services Working group

http://www.gridforum.org/6_DATA/dais.htm

� MDS information provider example

http://www-unix.mcs.anl.gov/~slang/mds_iprovider_example/

� OpenSSH

http://www.openssh.org

� NFS Version 4 Open Source Reference Implementation

http://www.citi.umich.edu/projects/nfsv4

� Avaki

http://www.avaki.com
370 Enabling Applications for Grid Computing with Globus

http://www.globetrotter.com/flexlm/flexlm.shtm
http://www.ibm.com/software/tivoli/products/license-mgr/
http://www.ibm.com/software/is/lum/
http://www.platform.com/products/wm/glb/index.asp
http://www.globus.org/cog/
http://www.globus.org/research/development-environments.html
http://www.niu.edu/mpi/
http://nhse2.cs.rise.edu/grads/
http://www.alphaworks.ibm.com/tech/gridtoolbox
http://www.alphaworks.ibm.com/tech/GAF4J
http://www.ibm.com/software/data/
http://www.gridforum.org/6_DATA/dais.htm
http://www-unix.mcs.anl.gov/~slang/mds_iprovider_example/
http://www.openssh.org
http://www.citi.umich.edu/projects/nfsv4
http://www.avaki.com

� Global File System

http://www.sistina.com/products_gfs.htm

� Replica Location Service

http://www.globus.org/rls

� Replica Location Service

http://www.globus.org/rls

� GDMP

http://project-gdmp.web.cern.ch/project-gdmp

� OGSA-DAI

http://umbriel.dcs.gla.ac.uk/NeSC/general/projects/OGSA_DAI/

� gSOAP

http://www.cs.fsu.edu/~engelen/soap.html

� Spitfire project

http://spitfire.web.cern.ch/Spitfire/

� Storage Resource Broker

http://www.npaci.edu/DICE/SRB/

� European Union data grid

http://www.eu-datagrid.org

� Griphyn Project

http://www.griphyn.org/

� Particle Physics Data Grid

http://www.ppdg.net/

� Grid Portal Development Kit

http://doesciencegrid.org/projects/GPDK/

� GSI-OpenSSH

http://www.nsf-middleware.org/NMIR2/

� Grid Portal Development Kit

http://doesciencegrid.org/projects/GPDK/

� CommonC++

http://www.gnu.org/software/commonc++/

� gSOAP Plugin

http://gsoap2.sourceforge.net
 Related publications 371

http://www.sistina.com/products_gfs.htm
http://www.globus.org/rls
http://www.globus.org/rls
http://project-gdmp.web.cern.ch/project-gdmp
http://umbriel.dcs.gla.ac.uk/NeSC/general/projects/OGSA_DAI/
http://www.cs.fsu.edu/~engelen/soap.html
http://spitfire.web.cern.ch/Spitfire/
http://www.npaci.edu/DICE/SRB/
http://www.eu-datagrid.org
http://www.griphyn.org/
http://www.ppdg.net/
http://doesciencegrid.org/projects/GPDK/
http://www.nsf-middleware.org/NMIR2/
http://doesciencegrid.org/projects/GPDK/
http://www.gnu.org/software/commonc++/
http://gsoap2.sourceforge.net

� Platform Computing

http://www.platform.com

� DataSynapse

http://www.datasynapse.com

� United Devices

http://www.ud.com

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks
372 Enabling Applications for Grid Computing with Globus

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.platform.com
http://www.datasynapse.com
http://www.ud.com

Index

A
Access Control System 88
accounting 5, 11
all permissive license 63
Apache 63
application architecture considerations 43
application development 66
Application Development Environments 66
application flow 45, 52
Application Programming Interfaces 5
application server 55
application status 234
asynchronous calls 117
authentication 14–15
authorization 14–15
Avaki 92

B
bandwidth 77
blocking calls 117
broker 8, 23, 33, 123–124

considerations 33
broker example 127, 327
browing MDS with a GUI 127
BSD 63

C
C bindings 5
C considerations 53
C++ 105
C++ examples 305
C/C++ 66
caching 87
callback 109, 250, 315
cancel job 235
CAS 88
CCA 67
Certificate Authority 84
CertUtils 136
chargeback 5, 11
checkpoint-restart 38, 56
Chimera 103
© Copyright IBM Corp. 2003. All rights reserved.
CICS 58
CoG 5, 54, 66
cog.properties file 135
CoGs 134
command line interface 57
Common Component Architecture 67
CommonC++ library 282
Community Authorization Service 88
comodity grid kit (CoG) 66
compiler settings 55
computational grids 3
condition variables 106
Condor-G 29–30
consumers 46
CORBA 5, 66
credentials 7, 137

D
data caches 73
data encryption 17, 84
data grid 4, 39–40
data input/output 57
data management 5, 9, 14, 25, 75, 163

considerations 28
data producer and consumer 46
data store 57
data topology 40
data topology graph 78
data types 79
Database Access and Integration (DAI) 99
Database Access and Integration Services 86
DFS 91
digital certificates 16
distinguished name 15
distributed by design 67
distributed by nature 67
DLLs 55
dumprsl 21, 113
DUROC 18, 21
dynamic libraries depedencies 281
Dynamically-Updated Request Online Coallocator

see DUROC
 373

E
encrypted sockets 171
European DataGrid Project 102
extended block mode 202

F
factories 292
Federated Databases 99
federated databases 74
file staging 167
flavors 107
FLEXlm 64

G
GAF4J 67
GASS 26–27, 134, 163, 178, 257

API 155, 178
example - Java 155
server 113

gatekeeper 18, 21
GCE 66
General Public License 64
GFS 95
GIIS 23, 25, 125
GIS 14, 23
Globus cache management 192
Globus common 106
Globus module 109
Globus Project 4
Globus Toolkit

contents 5
overview 4
Version 2.2 4
Version 3 4–5, 289

globus_gass_server_ez API 188
globus_gass_transfer API 187
globus_gram_client API 118
globus_io 169
globus_module_activate 109
globus_module_deactivate 109
globus-job-run 21, 111
globus-job-submit 112
globus-makefile-header 108
globusrun 18–19, 113
globus-url-copy 26
GPFS 91
GPL 64
GrADS 67

GRAM 18, 27, 105, 134, 138, 290
GRAM example - Java 139
Graphical Tools 127
grid

components 6
computational 3
data 4
infrastructure considerations 13
overview 3
scavenging 4
types 3

Grid Access to Secondary Storage
see GASS

Grid Application Development Software 67
Grid Application Examples 246
Grid Application Framework for Java 67
grid applications 45
Grid File Transfer Protocol

see GridFTP
Grid Index Information Service

see GIIS
Grid Information Service

see GIS
Grid Resource Allocation Manager

see GRAM
Grid Resource Information Service

see GRIS
Grid Security Infrastructure

see GSI
grid types

data grid 40
GridFTP 9, 26, 134, 195, 290

client-server 151
example - Java 148

grid-info-search 125
grid-proxy-init 15, 134
GriPhyn Project 102
GRIS 24–25
GSI 7, 14–15, 26, 170, 290
GSI socket 173
GSI-Enabled OpenSSH 15–16, 53, 246, 369
gSOAP 291

H
hardware devices 55
header files 107
heartbeat monitoring 38
Hello World example 278, 341
374 Enabling Applications for Grid Computing with Globus

HTML 58
HTTP 58

I
IBM Grid Toolbox 67
ID administration 16
ID mapping 17
index service 293
information providers 23, 25
information services 5, 14, 22, 290

considerations 25
infrastructure components 14
infrastructure considerations 13
instances 292
interactive jobs 53
interconnect 5
inter-process communication 22, 33, 56
intra-grids 3
introduction 1
ITSO broker example 327
ITSO_CB 268
ITSO_CB (callback) example 315
ITSO_GASS Transfer example 306
ITSO_GLOBUS_FTP_CLIENT example 311
ITSO_GRAM_JOB 118
ITSO_GRAM_JOB example 316
ITSO_GRAM_JOB object 119

J
Java 5, 53, 66, 133, 232
JavaCoG 133
JNDI 141
job 45
job criteria 51
job dependencies 54
job flow 11, 45
job management 10, 22
job manager 18, 21
job scheduler 9
job submission 117–118, 123, 251
job topology 56
jobs 45
JVM 40

K
Kerberos 26
knock-out criteria 68

L
LD_LIBRARY_PATH 260, 282
LDAP 8, 23, 67, 128, 143
LDAP query 125
ldapsearch 25, 125–126
ldd command 108
LDIF 290
Lesser General Public License 64
LGPL 64
libc 106
libraries 108
license agreement 62
License Broker 66
license management 64
License Manager 65
license models 62
License Use Management 65
life-cycle management 5–6
load balancing 31

considerations 32
locking 75
locking management 106
loose coupling 49
Lottery example 349

M
Makefile 106
Makefile example 108
MCAT 101
MDS 8, 14, 22, 25, 33, 105, 134
MDS example - Java 141
memory size 55
Message Passing Interface 66
message queues 57
meta scheduler 9
metadata 94, 101
mirroring 87
MIT 63
mixed platform environments 40
modules 107
Monitoring and Discovery Service

see MDS
MPI 66
MPICH-G2 34, 66
mutex 109, 201
mutex life-cycle 106
 Index 375

N
naming 292
Network File System

see NFS
network file systems 26
network topology 39
networked flow 46, 49
NFS 91
non-blocking calls 117
non-functional requirements 35

O
OGSA 3, 5, 11, 33, 54
OGSI 6, 11, 58, 290
Open Grid Service Architecture 292
Open Grid Services Architecturer

see OGSA
open source licensing 63
open source software 63
OpenSSH 15
OpenSSL 7, 16, 170
operating systems 54
OSI 64
overview of grid 3

P
pache 63
parallel application flow 46–47
parallel applications 52
parallelism 82, 202
parallelization 48
partial file transfer 26, 201
Particle Physics Data Grid 103
peer to peer 88
peer-to-peer computing 4
performance 36
Perl 53, 66
persistent license 64
persistent storage 38
Petascale Virtual Data Grid 102
ping 122
Platform Global License Broker 66
Platform Globsal License Broker 66
portal 6, 34, 215

considerations 35
integration with application 232

portal example 216
portal login flow 219

portal security 233
portType 295
POSIX 169
power grid 3
producers 46
programming environment 106
programming language considerations 53
programming model 5
proxy 15, 134
proxy certificate 7
proxyType variable 136
Public Key Infrastructure 84
Puissance 4 262
Python 5, 66

Q
qualification scheme 69, 298

R
Redbooks Web site 372

Contact us xvi
reliability 37
reliable data transfer 26
Reliable File Transfer Service 296
Replica Catalog 96
Replica Location Service 97, 296
replica management 28, 208
replica management installation 211
replication 86
resource management 5, 10, 14, 17

considerations 22
resources

grid-wide 24
local 24

RSL 18, 113, 120, 134, 139, 145, 165
example - Java 145
for data management 165

runtime considerations 40
runtime environment 55

S
SAL 63
sandbox 89, 250
scavenging grids 4
scheduler 9, 21, 29

considerations 30
secure communication 16
376 Enabling Applications for Grid Computing with Globus

Secure Socket Layer 16
security 5, 7, 14

considerations 17
serial flow 46–47
service data browser 293
service provider license agreement 63
service providers 63
servlet 218
shared data access 74
signal management 106
single sign-on 14, 17
Small Blue example 262, 331
SOAP 6, 58
SOAP message security 290
software license 62
Spitfire 100
SRB 101
SSL/TSL 16
StartGASSServer example 324
StopGASSServer example 324
Storage Area Networks 26
Storage Resource Broker 100
storage servers 26
Storage Tank 94
stream mode 202
striped data transfer 26
subjobs 22, 50
submitting a Job 110
Subscriber Access Licenses 63
system management 38
system return value 57

T
temporary data spaces 76
third-party file transfer 26, 149
thread life cycle management 106
thread-safety 109
time sensitive data 77
Tivoli License Manager 65
topology considerations 38
transaction 58
transfer agent 88
types of grids 3

U
URLCopy 154
usability requirements 59

V
viral license 64
virtual computer 3
Virtual Data Toolkit 103

W
web services 5, 66
WebSphere 7, 33–34
wrapper script 111
WSDL 292

X
XML 6, 58
 Index 377

378 Enabling Applications for Grid Computing with Globus

Enabling Applications for Grid Com
puting w

ith Globus

®

SG24-6936-00 ISBN 0738453331

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Enabling Applications
for Grid Computing
with Globus

Enable your
applications for grid
computing

Utilize the Globus
Toolkit

Programming hints,
tips, and examples

This IBM Redbook, a follow-on to Introduction to Grid
Computing with Globus, SG24-6895, discusses the issues
and considerations for enabling an application to run in a grid
environment. Programming examples are provided based on
the Globus Toolkit V2.2.

The first part of this publication addresses various
considerations related to grid-enabling an application, from
the perspective of the infrastructure, the application, and the
data requirements.

The second part of this publication provides many
programming examples in C/C++ and Java to help solidify the
concepts of grid computing and the types of programming
tasks that must be handled when developing an application
intended to run in a grid environment

Back cover

	Front cover
	Contents
	Figures
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Chapter 1. Introduction
	1.1 High-level overview of grid computing
	1.1.1 Types of grids

	1.2 Globus Project
	1.2.1 Globus Toolkit Version 2.2
	1.2.2 OGSA and Globus Toolkit V3

	1.3 Grid components: A high-level perspective
	1.3.1 Portal - User interface
	1.3.2 Security
	1.3.3 Broker
	1.3.4 Scheduler
	1.3.5 Data management
	1.3.6 Job and resource management
	1.3.7 Other

	1.4 Job flow in a grid environment
	1.5 Summary

	Chapter 2. Grid infrastructure considerations
	2.1 Grid infrastructure components
	2.1.1 Security
	2.1.2 Resource management
	2.1.3 Information services
	2.1.4 Data management
	2.1.5 Scheduler
	2.1.6 Load balancing
	2.1.7 Broker
	2.1.8 Inter-process communications (IPC)
	2.1.9 Portal

	2.2 Non-functional requirements
	2.2.1 Performance
	2.2.2 Reliability
	2.2.3 Topology considerations
	2.2.4 Mixed platform environments

	2.3 Summary

	Chapter 3. Application architecture considerations
	3.1 Jobs and grid applications
	3.2 Application flow in a grid
	3.2.1 Parallel flow
	3.2.2 Serial flow
	3.2.3 Networked flow
	3.2.4 Jobs and sub-jobs

	3.3 Job criteria
	3.3.1 Batch job
	3.3.2 Standard application
	3.3.3 Parallel applications
	3.3.4 Interactive jobs

	3.4 Programming language considerations
	3.5 Job dependencies on system environment
	3.6 Checkpoint and restart capability
	3.7 Job topology
	3.8 Passing of data input/output
	3.9 Transactions
	3.10 Data criteria
	3.11 Usability criteria
	3.11.1 Traditional usability requirements
	3.11.2 Usability requirements for grid solutions

	3.12 Non-functional criteria
	3.12.1 Software license considerations
	3.12.2 Grid application development

	3.13 Qualification scheme for grid applications
	3.13.1 Knock-out criteria for grid applications
	3.13.2 The grid application qualification scheme

	3.14 Summary

	Chapter 4. Data management considerations
	4.1 Data criteria
	4.1.1 Individual/separated data per job
	4.1.2 Shared data access
	4.1.3 Locking
	4.1.4 Temporary data spaces
	4.1.5 Size of data
	4.1.6 Network bandwidth
	4.1.7 Time-sensitive data
	4.1.8 Data topology
	4.1.9 Data types
	4.1.10 Data volume and grid scalability
	4.1.11 Encrypted data

	4.2 Data management techniques and solutions
	4.2.1 Shared file system
	4.2.2 Databases
	4.2.3 Replication (distribution of files across a set of nodes)
	4.2.4 Mirroring
	4.2.5 Caching
	4.2.6 Transfer agent
	4.2.7 Access Control System
	4.2.8 Peer-to-peer data transfer
	4.2.9 Sandboxing
	4.2.10 Data brokering
	4.2.11 Global file system approach
	4.2.12 SAN approach
	4.2.13 Distributed approach
	4.2.14 Database solutions for grids
	4.2.15 Data brokering

	4.3 Some data grid projects in the Globus community
	4.3.1 EU DataGrid
	4.3.2 GriPhyn
	4.3.3 Particle Physics Data Grid

	4.4 Summary

	Chapter 5. Getting started with development in C/C++
	5.1 Overview of programming environment
	5.1.1 Globus libc APIs
	5.1.2 Makefile
	5.1.3 Globus module
	5.1.4 Callbacks

	5.2 Submitting a job
	5.2.1 Shells commands
	5.2.2 globusrun
	5.2.3 GSIssh
	5.2.4 Job submission skeleton for C/C++ applications
	5.2.5 Simple broker

	5.3 Summary

	Chapter 6. Programming examples for Globus using Java
	6.1 CoGs
	6.2 GSI/Proxy
	6.3 GRAM
	6.3.1 GramJob
	6.3.2 GramJobListener
	6.3.3 GramException

	6.4 MDS
	6.4.1 Example of accessing MDS

	6.5 RSL
	6.5.1 Example using RSL

	6.6 GridFTP
	6.6.1 GridFTP basic third-party transfer
	6.6.2 GridFTP client-server
	6.6.3 URLCopy

	6.7 GASS
	6.7.1 Batch GASS example
	6.7.2 Interactive GASS example

	6.8 Summary

	Chapter 7. Using Globus Toolkit for data management
	7.1 Using a Globus Toolkit data grid with RSL
	7.2 Globus Toolkit data grid low-level API: globus_io
	7.2.1 globus_io example
	7.2.2 Skeleton source code for creating a simple GSI socket

	7.3 Global access to secondary storage
	7.3.1 Easy file transfer by using globus_gass_copy API
	7.3.2 globus_gass_transfer API
	7.3.3 Using the globus_gass_server_ez API
	7.3.4 Using the globus-gass-server command
	7.3.5 Globus cache management

	7.4 GridFTP
	7.4.1 GridFTP examples
	7.4.2 Globus GridFTP APIs

	7.5 Replication
	7.5.1 Shell commands
	7.5.2 Replica example
	7.5.3 Installation

	7.6 Summary

	Chapter 8. Developing a portal
	8.1 Building a simple portal
	8.2 Integrating portal function with a grid application
	8.2.1 Add methods to execute the Globus commands
	8.2.2 Putting it together

	8.3 Summary

	Chapter 9. Application examples
	9.1 Lottery simulation program
	9.1.1 Simulate a lottery using gsissh in a shell script
	9.1.2 Simulate a lottery using Globus commands

	9.2 Small Blue example
	9.2.1 Gridification
	9.2.2 Implementation
	9.2.3 Compilation
	9.2.4 Execution

	9.3 Hello World example
	9.3.1 The Hello World application
	9.3.2 Dynamic libraries dependencies
	9.3.3 Starting the application by the resource provider
	9.3.4 Compilation
	9.3.5 Execution

	9.4 Summary

	Chapter 10. Globus Toolkit V3.0
	10.1 Overview of changes from GT2 to GT3
	10.1.1 SOAP message security
	10.1.2 Creating grid services
	10.1.3 Security - proxies
	10.1.4 SOAP GSI plugin for C/C++ Web services

	10.2 OGSI implementation
	10.3 Open Grid Service Architecture (OSGA)
	10.4 Globus grid services
	10.4.1 Index Services
	10.4.2 Service data browser
	10.4.3 GRAM
	10.4.4 Reliable File Transfer Service (RFT)
	10.4.5 Replica Location Service (RLS)

	10.5 Summary

	Appendix A. Grid qualification scheme
	A suggested grid application qualification scheme

	Appendix B. C/C++ source code for examples
	Globus API C++ wrappers
	ITSO_GASS_TRANSFER
	ITSO_GLOBUS_FTP_CLIENT
	ITSO_CB
	ITSO_GRAM_JOB
	StartGASSServer() and StopGASSServer()

	ITSO broker
	SmallBlue example
	HelloWorld example
	Lottery example
	C/C++ simple examples
	gassserver.C
	Checking credentials
	Submitting a job

	Appendix C. Additional material
	Locating the Web material
	Using the Web material
	How to use the Web material

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks

	Index
	Back cover

