
IBM

ibm.com/redbooks

Partitioning Implementations
for IBM Eserver p5 Servers

Nic Irving
Mathew Jenner

Arsi Kortesniemi

Discusses Advanced POWER Virtualization
and Micro-Partitioning technology

Describes virtualization on
IBM Eserver OpenPower systems

Includes information on dynamic
logical partitioning

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Partitioning Implementations for
IBM Eserver p5 Servers

February 2005

International Technical Support Organization

SG24-7039-02

© Copyright International Business Machines Corporation 2003, 2004, 2005. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Third Edition (February 2005)

This edition applies to IBM Sserver p5 servers for use with AIX 5L Version 5.3 (product number
5765-G03).

Note: Before using this information and the product it supports, read the information in
“Notices” on page xv.

Contents

Figures . ix

Tables . xi

Examples. xiii

Notices . xv
Trademarks . xvi

Preface . xvii
The team that wrote this redbook. xvii
Become a published author . xviii
Comments welcome. xix

Summary of changes . xxi
February 2005, Third Edition . xxi
October 2003, Second Edition . xxii
January 2003, First Edition. xxiii

Chapter 1. Logical partitioning primer . 1
1.1 An introduction to partitioning . 2

1.1.1 Basic types of partitioning . 3
1.1.2 Partition isolation and security . 3

1.2 Introduction to Micro-Partitioning and Virtualization 4
1.2.1 Micro-Partitioning . 4
1.2.2 Virtual Ethernet . 5
1.2.3 Virtual I/O Server. 5
1.2.4 Advanced POWER Virtualization technologies. 6
1.2.5 Advanced OpenPower Virtualization technologies 7
1.2.6 Obtaining the Virtual I/O Server and Partition Load Manager. 8

1.3 Partitioning on eServer p5 and OpenPower servers 10
1.4 IBM Hardware Management Console . 11
1.5 IBM ̂Information Center . 14
1.6 LPAR Validation Tool . 15
1.7 Operating system support . 16

1.7.1 AIX . 19
1.7.2 Linux . 22

Chapter 2. Partitioning implementation . 25
© Copyright IBM Corp. 2003, 2004, 2005. All rights reserved. iii

2.1 Partitioning enablers . 26
2.1.1 Hardware. 26
2.1.2 Firmware . 29

2.2 Partition resources . 32
2.2.1 Partition and system profiles . 33
2.2.2 Processors . 34
2.2.3 Memory . 36
2.2.4 Physical I/O slots. 40
2.2.5 Virtual I/O . 40
2.2.6 Minimum, desired, and maximum values . 41

2.3 Resource planning using LPAR Validation Tool . 42
2.3.1 System Selection dialog . 43
2.3.2 Memory Specification dialog . 45
2.3.3 LPAR Validation dialog . 46

2.4 I/O device assignment considerations. 46
2.4.1 Media devices . 47
2.4.2 Boot device considerations . 48
2.4.3 Network devices . 52
2.4.4 Graphics console . 52
2.4.5 High availability . 52

2.5 LPAR limitations and considerations. 53

Chapter 3. Basic partition management . 57
3.1 Hardware Management Console. 58

3.1.1 Managing I/O devices and slots . 59
3.1.2 Managing memory . 61
3.1.3 Managing processing power . 62
3.1.4 Scheduling movement of resources . 64

3.2 Advanced System Management Interface . 64
3.2.1 Accessing the ASMI using a Web browser . 65
3.2.2 Accessing the ASMI using the HMC . 65
3.2.3 Network configuration . 65
3.2.4 Service processor . 67
3.2.5 Power/Restart control . 67

3.3 Resetting a server . 69
3.3.1 EEH adapters and partitioning . 69
3.3.2 Restoring a server to factory settings . 70

3.4 Partition Load Manager . 71
3.4.1 Managing memory . 76
3.4.2 Managing processors . 76
3.4.3 Limitations and considerations . 77
3.4.4 Installing Partition Load Manager . 78
3.4.5 Querying partition status . 78
iv Partitioning Implementations for IBM Eserver p5 Servers

3.4.6 Managing memory resource requests. 79
3.4.7 Processor resources in a shared partition environment 81

Chapter 4. Virtualized resource management . 83
4.1 Micro-Partitioning technology . 84

4.1.1 Shared processor partitions . 84
4.1.2 Processing units of capacity . 86
4.1.3 Capped and uncapped mode . 88
4.1.4 Virtual processors . 89
4.1.5 Dedicated processors . 91
4.1.6 Capped and uncapped processing units. 93
4.1.7 Dynamic processor deallocation and sparing 96

4.2 Advanced Virtualization. 97
4.2.1 Virtual LAN . 98
4.2.2 VLAN communication by example . 99

4.3 Introduction to Virtual I/O Server . 104
4.3.1 Shared Ethernet Adapter . 105
4.3.2 Virtual SCSI. 111
4.3.3 Limitations and considerations . 116

4.4 Virtual I/O Server and virtualization configuration 117
4.4.1 Using the command line interface. 117
4.4.2 Managing hardware resources . 120
4.4.3 Installing Virtual I/O Server . 121
4.4.4 Basic configuration . 125
4.4.5 Ethernet adapter sharing. 126
4.4.6 Virtual SCSI disk . 131
4.4.7 Defining the Virtual SCSI Server adapter on the HMC 132
4.4.8 Defining the Virtual SCSI Client adapter on the HMC. 134
4.4.9 Creating the virtual target device on the Virtual I/O Server. 135
4.4.10 Limitations and considerations . 136

Chapter 5. Dynamic logical partitioning . 139
5.1 Dynamic logical partitioning overview . 140

5.1.1 Processor resources . 141
5.1.2 Dynamic partitioning for Virtual Ethernet devices 146
5.1.3 Dynamic partitioning for Virtual SCSI devices. 147
5.1.4 Capacity on Demand. 147

5.2 The process flow of a DLPAR operation . 148
5.3 Internal activity in a DLPAR event. 152

5.3.1 Internal activity for processors and memory in a DLPAR event . . . 152
5.3.2 Internal activity for I/O slots in a DLPAR event 154

5.4 DLPAR-safe and DLPAR-aware applications . 155
5.4.1 DLPAR-safe . 155
 Contents v

5.4.2 DLPAR-aware . 156
5.5 Integrating a DLPAR operation into the application 157

5.5.1 Three phases in a DLPAR event. 157
5.5.2 Event phase summary . 160

5.6 Script-based DLPAR event handling. 160
5.6.1 Script execution environment . 162
5.6.2 DLPAR script naming convention . 167

5.7 DLPAR script subcommands . 167
5.7.1 The scriptinfo subcommand . 169
5.7.2 The register subcommand . 172
5.7.3 The usage subcommand. 173
5.7.4 The checkrelease subcommand . 175
5.7.5 The prerelease subcommand . 176
5.7.6 The postrelease subcommand . 178
5.7.7 The undoprerelease subcommand . 179
5.7.8 The checkacquire subcommand . 180
5.7.9 The preacquire subcommand . 182
5.7.10 The postacquire subcommand . 183
5.7.11 The undopreacquire subcommand . 184

5.8 How to manage DLPAR scripts. 186
5.8.1 List registered DLPAR scripts . 186
5.8.2 Register a DLPAR script . 186
5.8.3 Uninstall a registered DLPAR script . 187
5.8.4 Change the script install path . 188
5.8.5 The drmgr command line options . 188
5.8.6 Sample output examples from a DLPAR script 190

5.9 API-based DLPAR event handling . 194
5.9.1 The dr_reconfig system call . 195
5.9.2 A sample code using the dr_reconfig system call 199
5.9.3 Sample output examples from a DLPAR-aware application 200
5.9.4 DLPAR-aware kernel extensions . 205

5.10 Error handling of DLPAR operations . 205
5.10.1 Possible causes of DLPAR operation failures. 205
5.10.2 Error analysis facilities . 207
5.10.3 AIX error log messages when DLPAR operations fail. 212

Chapter 6. The POWER Hypervisor . 217
6.1 Introduction . 218
6.2 Hypervisor support . 219
6.3 Hypervisor call functions . 221
6.4 Micro-Partitioning technology extensions . 227
6.5 Memory considerations . 227
6.6 Performance considerations . 229
vi Partitioning Implementations for IBM Eserver p5 Servers

Appendix A. Dynamic logical partitioning program templates 231
General information . 232
Perl template . 233
Korn shell template. 245
DLPAR-aware application using a signal handler . 257

How to compile and run the application . 257

Appendix B. Dynamic logical partitioning output samples. 273
Using the syslog facility . 274

CPU addition . 274
CPU removal . 275

Memory addition . 276
Memory removal . 277

Using the AIX system trace facility . 278
CPU addition trace output . 278
CPU removal trace output . 281
Memory addition trace output . 285
Memory removal trace output . 288

Using the AIX error log facility . 291

Abbreviations and acronyms . 295

Related publications . 301
IBM Redbooks . 301

IBM Redpapers . 301
IBM Whitepapers. 301

pSeries and eServer p5 publications . 302
LPAR Validation Tool . 302
Other publications . 302
Online resources . 303
How to get IBM Redbooks . 303

Index . 305
 Contents vii

viii Partitioning Implementations for IBM Eserver p5 Servers

Figures

1-1 Advanced POWER Virtualization feature. 7
1-2 HMC connection . 13
1-3 InfoCenter - Planning for AIX logical partitions 16
1-4 Mixed operating systems . 17
2-1 HMC panel to enable the Virtualization Engine Technologies 30
2-2 POWER hypervisor . 32
2-3 Partitions, partition profiles, and system profiles 34
2-4 Allow and disallow shared processor partition utilization authority 36
2-5 LPAR Validation Tool, creating a new partition 43
2-6 LPAR Validation Tool, System Selection dialog 44
2-7 LPAR Validation Tool, System Selection processor feature selection. . 44
2-8 LPAR Validation Tool, Memory Specifications dialog 45
2-9 LPAR Validation Tool, slot assignments . 46
3-1 Dual HMC configuration. 59
3-2 DLPAR Virtual Adapter menu . 60
3-3 Virtual Adapter capabilities . 61
3-4 Move memory resources - step 1 . 61
3-5 Move memory resources - step 2 . 62
3-6 Move processor resources. 63
3-7 Move processing units . 63
3-8 ASMI network configuration, powered on . 66
3-9 ASMI network configuration . 67
3-10 ASMI, Power On/Off System . 69
3-11 Partition Load Manager functionality . 72
3-12 Comparison of features of PLM and hypervisor. 73
3-13 PLM overview . 74
3-14 PLM resource distribution for partitions . 75
3-15 PLM, Show LPAR Statistics. 78
4-1 Create Logical Partition Profile - shared processors 85
4-2 Choose desired, minimum, and maximum processing units 87
4-3 Processing units of capacity . 88
4-4 Specify processing sharing mode and weight . 89
4-5 Specify number of virtual processors. 90
4-6 Create Logical Partition Profile, dedicated processors 91
4-7 Allow shared processor pool statistics access to a partition 92
4-8 Allow idle processors to be shared . 93
4-9 Distribution of capacity entitlement on virtual processors 94
4-10 Shared capped processor partition utilization . 95
© Copyright IBM Corp. 2003, 2004, 2005. All rights reserved. ix

4-11 Shared uncapped processor partition utilization 96
4-12 Example of a VLAN . 98
4-13 VLAN configuration . 100
4-14 logical view of an inter-partition VLAN . 102
4-15 Connection to external network using AIX routing 105
4-16 SEA configuration . 106
4-17 Multiple SEA configuration. 108
4-18 Link Aggregation (EtherChannel) pseudo device 110
4-19 Virtual SCSI architecture overview . 113
4-20 Logical Remote Direct Memory Access . 114
4-21 Virtual SCSI device relationship on Virtual I/O Server 115
4-22 Virtual SCSI device relationship on AIX client partition 116
4-23 Hardware Management Console - create Virtual I/O server 122
4-24 Activate I/O_Server_1 partition . 122
4-25 Selecting the profile . 123
4-26 Choosing SMS boot mode . 123
4-27 SMS menu . 124
4-28 Finished Virtual I/O Server installation. 125
4-29 Creating the trunk Virtual I/O Server . 127
4-30 Virtual Ethernet Adapter Properties panel . 128
4-31 Dynamically adding or removing virtual adapters to a partition 129
4-32 Example of an I/O server partition bridge . 130
4-33 Virtual SCSI Adapter Properties panel on the IO Server 132
4-34 Virtual SCSI Adapter Properties panel on the client partition 134
5-1 Dynamic Logical Partitioning Processor Resources 141
5-2 Add Processor Resources . 142
5-3 Advanced Processor Settings - Uncapped Mode 143
5-4 Remove Processing Units . 145
5-5 Move Processing Units . 146
5-6 Process flow of a DLPAR operation. 149
5-7 Three DLPAR phases of a DLPAR event . 158
5-8 A DLPAR script invoked by the drmgr command. 162
5-9 DLPAR operation failed message . 206
5-10 DLPAR operation failure detailed information 207
6-1 POWER Hypervisor on AIX 5L and Linux . 219
6-2 lparstat -H command output. 226
6-3 Logical Partition Profile Properties - current memory settings 228
6-4 lparstat -h 1 16 command output . 229
6-5 lparstat -i command output . 230
x Partitioning Implementations for IBM Eserver p5 Servers

Tables

1-1 eServer p5 and OpenPower servers . 10
1-2 Maximum number of processors, memory size, and partitions 10
1-3 Required Hardware Management Console . 12
1-4 Operating systems supported functions. 18
1-5 AIX - supported features . 19
2-1 Default memory block sizes . 39
2-2 Reasonable settings for shared processor partitions. 54
4-1 Micro-Partitioning technology overview on Sserver p5 systems 86
4-2 Interpartition of VLAN communication . 101
4-3 VLAN communication to external network . 101
4-4 Main differences between EC and LA aggregation 109
4-5 Limitations for logical storage management . 137
5-1 Applications that should be DLPAR-aware . 156
5-2 Considerations during each event phase. 160
5-3 General DLPAR environment variables . 164
5-4 Processor-specific DLPAR environment variables 165
5-5 Memory-specific DLPAR environment variables 166
5-6 General DLPAR output variables. 166
5-7 DLPAR script subcommands . 168
5-8 Required output name-value pairs for the scriptinfo subcommand . . . 170
5-9 Optional output name-value pairs for the scriptinfo subcommand. . . . 171
5-10 Required output name-value pair for the register subcommand 173
5-11 Required output name-value pair for the usage subcommand 174
5-12 The drmgr command line options . 189
5-13 The dr_reconfig flag parameters . 196
5-14 AIX error logs generated by DLPAR operations 211
5-15 General AIX error messages . 212
5-16 drmgr-specific AIX error messages . 212
5-17 DLPAR operation-specific AIX error messages 213
5-18 DLPAR resource-specific AIX error messages 214
6-1 Hypervisor calls . 223
© Copyright IBM Corp. 2003, 2004, 2005. All rights reserved. xi

xii Partitioning Implementations for IBM Eserver p5 Servers

Examples

4-1 $help command for an overview . 118
4-2 $help command for a specific command . 119
5-1 Registered sample DLPAR scripts. 171
5-2 Register a DLPAR script . 186
5-3 Sample output: 2 GB memory addition . 190
5-4 Sample output: 1 GB memory removal . 191
5-5 Sample output: 1 CPU addition . 192
5-6 Sample output: 2 CPU removal . 193
5-7 The dr_reconfig system call usage . 195
5-8 The dr_reconfig info parameter . 196
5-9 Sample output: 1 GB memory addition . 201
5-10 Sample output: 1 GB memory removal . 202
5-11 Sample output: 2 CPU addition . 203
5-12 Sample output: 1 CPU removal . 204
5-13 START Trace panel . 209
5-14 Generate a Trace Report panel . 210
A-1 DR_UNSAFE_PROCESS . 232
A-2 DLPAR script template: Perl . 233
A-3 DLPAR script template: Korn shell. 245
A-4 C language application with a signal handler. 257
B-1 Sample syslog output for a CPU addition request 274
B-2 Sample syslog output for a CPU removal request 275
B-3 Sample syslog output for a memory addition request 276
B-4 Sample syslog output for a memory removal request 277
B-5 Sample system trace output for a CPU addition request 278
B-6 Sample system trace output for a CPU removal request 281
B-7 Sample system trace output for a memory addition request 285
B-8 Sample system trace output for a memory removal request 288
B-9 Sample AIX error log entry: DR_MEM_UNSAFE_USE 291
B-10 Sample AIX error log entry: DR_DMA_MIGRATE_FAIL 292
B-11 Sample AIX error log entry: DR_DMA_MAPPAER_FAIL 293
© Copyright IBM Corp. 2003, 2004, 2005. All rights reserved. xiii

xiv Partitioning Implementations for IBM Eserver p5 Servers

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Any performance data contained herein was determined in a controlled environment. Therefore, the results
obtained in other operating environments may vary significantly. Some measurements may have been made
on development-level systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
© Copyright IBM Corp. 2003, 2004, 2005. All rights reserved. xv

any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Eserver®
Eserver®
Redbooks (logo) ™
ibm.com®
iSeries™
i5/OS™
pSeries®
zSeries®
AIX 5L™
AIX/L®

AIX®
AS/400®
Chipkill™
Electronic Service Agent™
Hypervisor™
HACMP™
IBM®
Micro-Partitioning™
OpenPower™
PowerPC Architecture™

PowerPC®
POWER™
POWER4™
POWER5™
Redbooks™
RS/6000®
S/370™
Versatile Storage Server™
Virtualization Engine™

The following terms are trademarks of other companies:

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks of others.
xvi Partitioning Implementations for IBM Eserver p5 Servers

Preface

This redbook provides a broad understanding of logical partitioning on the
IBM ̂p5 servers, focusing particularly on the increased function
available when these servers are combined with AIX® 5L™ Version 5.3 and
Advanced POWER™ Virtualization features. It also provides a discussion of
available Linux® support and IBM ̂OpenPower™ systems. This
redbook covers the following subject areas:

� Advanced POWER Virtualization
� Micro-Partitioning™ technology
� Virtual I/O

– Virtual SCSI
– Virtual Ethernet

� Dynamic logical partitioning implementation

The audience for this redbook are technical support specialists, customers, and
business partners.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization (ITSO), Austin
Center.

Nic Irving is a System Administrator at Computer Sciences Corporation in
Australia. He has nine years of experience in the AIX field. His areas of expertise
include SP, pSeries®, SAN, and clustering.

Mattew Jenner is a Technical Solutions Architect in Australia. He has 14 years of
experience in the Midrange UNIX® and mainframe fields. He has worked at
IBM® for eight years. His areas of expertise include the various software and
hardware components of the pSeries and RS/6000® product range. He has also
written about IBM ̂pSeries server consolidation.

Arsi Kortesniemi is an advisory IT specialist, and he works at IBM Systems and
Technology Group as Technical Sales Support in Finland. He has 12 years of
experience in the IT field and has worked at IBM for four years. His areas of
expertise include pSeries hardware, AIX, storage, and hardware architecture
planning. He has also practical experience in implementing pSeries dynamic
partitioning into various software and database environments.
© Copyright IBM Corp. 2003, 2004, 2005. All rights reserved. xvii

Thanks to the following people for their contributions to this project:

ITSO, Austin Center

Scott Vetter

IBM Austin

Nia Kelley, Luke Browning, Andy McLaughlin, Duke Paulsen, Carolyn Scherrer,
Jeffrey George, Bill Dempwolf

IBM Poughkeepsie

Christopher V Derobertis

IBM La Gaude, France

Bruno Blanchard

IBM Hannover, Germany

Peter Domberg

IBM Seoul, Korea

TaiJung Kim

IBM Beijing, China

Wei Ding

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners, or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html
xviii Partitioning Implementations for IBM Eserver p5 Servers

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks™ to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. JN9B Building 905
11501 Burnet Road
Austin, Texas 78758-3493
 Preface xix

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xx Partitioning Implementations for IBM Eserver p5 Servers

Summary of changes

This section describes the technical changes made in this edition of the book and
in previous editions. This edition may also include minor corrections and editorial
changes that are not identified.

Summary of Changes
for SG24-7039-02
for Partitioning Implementations for IBM Eserver p5 Servers
as created or updated on October 13, 2005.

February 2005, Third Edition
This revision reflects the addition, deletion, or modification of new and changed
information described below. With the popularity of LPAR, and the platforms now
managed by the HMC, this publication is now more focused on the p5 aspects of
LPAR.

New information
The following chapters are new:

� Chapter 3, “Basic partition management” on page 57
� Chapter 4, “Virtualized resource management” on page 83
� Chapter 6, “The POWER Hypervisor” on page 217

Changed information
The following chapters were rewritten to cover new features:

� Chapter 1, “Logical partitioning primer” on page 1
� Chapter 2, “Partitioning implementation” on page 25
� Previously Chapter 3, Chapter 5, “Dynamic logical partitioning” on page 139.
� Appendix A, “Dynamic logical partitioning program templates” on page 231
� Appendix B, “Dynamic logical partitioning output samples” on page 273.
© Copyright IBM Corp. 2003, 2004, 2005. All rights reserved. xxi

October 2003, Second Edition
This revision reflects the addition, deletion, or modification of new and changed
information described in the sections that follow.

New information
The following chapters are new:

� Chapter 10, “Dynamic reconfiguration using DLPAR scripts”
� Chapter 11, “Resource sets”
� Chapter 12, “Autonomic applications”
� Appendix D, “Using the Job Scheduling Console”
� Appendix E, “Advanced DLPAR script examples”
� Appendix F, “Autonomic application example”

Changed information
The following chapters were rewritten in order to cover new features,
enhancements, and usage examples provided by the latest products:

� Chapter 4, “HMC graphical user interface”
� Chapter 9, “DLPAR operation using a command line interface”

Unchanged information
The following chapters and appendixes are unchanged but were reviewed:

� Chapter 1, “Logical partitioning overview”
� Chapter 2, “Partitioning implementation on pSeries servers”
� Chapter 3, “Dynamic logical partitioning”
� Chapter 5, “Basic managed system operation tasks”
� Chapter 6, “Creating and managing partitions”
� Chapter 7, “Installing and migrating AIX in a partitioned environment”
� Chapter 8, “DLPAR operation using graphical user interface”
� Appendix A, “Test environment”
� Appendix B, “Dynamic logical partitioning program templates”
� Appendix C, “Dynamic logical partitioning output samples”
xxii Partitioning Implementations for IBM Eserver p5 Servers

January 2003, First Edition
The first version of this book was written by the following authors:

Keigo Matsubara, Akichika Ozeki, Erlander Lo, Deniz S. Erguvan, Jennifer Davis,
Theeraphong Thitayanun, Viraf Patel

The following list shows contributors for the first version of this book:

IBM Austin

Andy McLaughlin, Ann Wigginton, Bob Foster, Bob Minns, Carolyn Scherrer,
Christopher Chan, David Sheffield, Dave Willoughby, Duke Paulsen, Edward
Shvartsman, Jane Chilton, John O'Quin, John Purcell, Julie Craft, Kanisha Patel,
Larry Amy, Luke Browning, Mark Rogers, Michael Mall, Michael S. Williams,
Minh Nguyen, Paul B. Finley, Randy Swanberg, Richard Cutler, Steven Molis,
Susan Caunt, Trish Pierce, Truc Nguyen, and Walter Lipp

IBM Philadelphia

Rob Jackard

IBM Poughkeepsie

Michael Schmidt and Ron Goering
 Summary of changes xxiii

xxiv Partitioning Implementations for IBM Eserver p5 Servers

Chapter 1. Logical partitioning primer

This chapter introduces the concepts and terminology that are necessary to
understand the logical partitioning implementation on the IBM Sserver p5 and
OpenPower servers. It discusses the following topics:

� 1.1, “An introduction to partitioning” on page 2
� 1.2, “Introduction to Micro-Partitioning and Virtualization” on page 4
� 1.3, “Partitioning on eServer p5 and OpenPower servers” on page 10
� 1.4, “IBM Hardware Management Console” on page 11
� 1.5, “IBM ^ Information Center” on page 14
� 1.6, “LPAR Validation Tool” on page 15
� 1.7, “Operating system support” on page 16

If you are a system administrator who has responsibility for managing
partitioning-capable pSeries servers, it is imperative that you become familiar
with the aspects described in this chapter before you run the system in a logical
partitioned environment.

1

© Copyright IBM Corp. 2003, 2004. All rights reserved. 1

1.1 An introduction to partitioning
There is a strong demand for high-end systems that can provide greater
flexibility. In particular, system administrators want the ability to subdivide
high-end systems into smaller partitions that are capable of running a version of
an operating system or a specific set of application workloads.

IBM initially started work on partitioning in S/370™ mainframe systems in the
1970s. Since then, logical partitioning (LPAR) on IBM mainframes (now called
IBM ̂zSeries®) has evolved from a predominantly physical partitioning
scheme, based on hardware boundaries, to one that allows for virtual and shared
resources with dynamic load balancing. In 1999, IBM implemented LPAR support
on the AS/400® platform (now called iSeries™). In 2000, IBM announced the
ability to run the Linux operating system in an LPAR on a zSeries server, followed
by the pSeries and iSeries platforms.

Continuing the evolution of partitioning technology on pSeries servers, the
IBM ̂p5 and OpenPower extends its capabilities by further improving
flexibility in partition usage. There are now two types of partitions in the
IBM ̂p5 and OpenPower. Partitions can have dedicated processors, or
they can have virtualized processors from a single pool of shared physical
processors. Sharing a pool of virtualized processors is known as
Micro-Partitioning technology. Both types of partitions can coexist at the same
time in the same system.

Ethernet and SCSI I/O devices also have been virtualized enabling these
resources to be shared by multiple partitions. The advantages of this technology
include allocations of smaller resource units, more partitions, and higher, more
efficient resource utilization.

IBM ̂p5 and OpenPower systems have the ability to use Virtual
Ethernet and Virtual SCSI, although they can use the physical resources, if
desired, or a mix of the two.

For more information about virtualization of resources, refer to Chapter 4,
“Virtualized resource management” on page 83.
2 Partitioning Implementations for IBM Eserver p5 Servers

1.1.1 Basic types of partitioning
This publication refers to various partitioning mechanisms. The following are
some terms and definitions that this book uses:

� Building block

A collection of system resources, such as CPUs, memory, and I/O
connections. These may be physically packaged as a self-contained
symmetric multiprocessing (SMP) system (rack-mounted or desk-side) or as
boards within a larger multiprocessor system. There is no requirement for the
CPUs, memory, and I/O slots to occupy the same physical board within the
system, although they often do.

� Physical partition

One or more building blocks linked together by a high-speed interconnect.
Generally, the interconnect is used to form a single, coherent memory
address space. In a system that is only capable of physical partitioning, a
partition is a group of one or more building blocks that is configured to support
an operating system image. Other vendors may refer to physical partitions as
domains or nPartitions. The maximum number of physical processors in a
POWER5™ system at the time of the writing of this book is 64.

� Logical partition

A subset of logical resources that are capable of supporting an operating
system. A logical partition consists of CPUs, memory, and I/O slots that are a
subset of the pool of available resources within a system.

� Dedicated processor partition

A logical partition whose CPU resources are dedicated to the LPAR along
with the memory and I/O slots. CPU idle time cannot be used by other LPARs.

� Shared processor partition

Using Micro-Partitioning technology, physical processors are divided into
virtual processors that are shared in a pool between one or more LPARs. The
LPARs using the shared pool can be a mix of operating systems.

1.1.2 Partition isolation and security
From a functional point of view, applications run inside partitions in the same way
that they run on a stand-alone Sserver p5 and OpenPower server. There are no

Note: The major difference between partitioning types is the granularity and
flexibility that is available for allocating resources to an operating system
image. Logical partitions have finer granularities than physical partitions, while
Micro-Partitioning technology allows for even smaller allocations of resources.
 Chapter 1. Logical partitioning primer 3

issues when moving an application from a stand-alone server to a partition. The
design of a partitioning-capable server is such that one partition is isolated from
software that is running in the other partitions, including protection against
natural software defects and even deliberate software attempts to break the
partition barriers. It has the following security features:

� Protection against inter-partition data access

The design of partitioning-capable Sserver p5 and OpenPower servers
prevents any data access between partitions, other than using shared
networks. This design isolates the partitions against unauthorized access
across partition boundaries.

� Unexpected partition crash

A software failure within a partition should not cause any disruption to the
other partitions. Neither an application failure nor an operating system failure
inside a partition interferes with the operation of other partitions.

� Denial of service across shared resources

The design of partitioning-capable Sserver p5 and OpenPower servers
prevents partitions from making extensive use of a shared resource so that
other partitions using that resource become starved. This design means that
partitions sharing the same peripheral component interconnect (PCI) bridge
chips, for example, cannot occupy the bus indefinitely.

With partition isolation and security, you can consolidate applications safely
within partitions in partitioning-capable Sserver p5 and OpenPower servers
without compromising overall system security.

1.2 Introduction to Micro-Partitioning and Virtualization
The following sections introduce the basic concepts of Micro-Partitioning as well
as the Virtualization capabilities of the Sserver p5 and OpenPower servers. You
can find a more detailed discussion about using Sserver p5 servers and AIX 5L
Version 5.3 in Chapter 4, “Virtualized resource management” on page 83.

1.2.1 Micro-Partitioning
The Micro-Partitioning model offers a virtualization of system resources. In
POWER5 processor-based systems, physical resources are abstracted into
virtual resources that are available to partitions. This sharing method is the
primary feature of this new partitioning concept, and it happens transparently.

POWER5 Micro-Partitioning technology specifies processor capacity in
processing units. One processing unit represents 1% of one physical processor.
2 Partitioning Implementations for IBM Eserver p5 Servers

1.0 represents the power of one processor. A partition defined with 220
processing units is equivalent to the power of 2.2 physical processors. Creating a
partition using Micro-Partitioning technology, the minimum capacity is 10
processing units, or 1/10 of a physical processor. A maximum of 10 partitions for
each physical processor may be defined, but on a loaded system the practical
limit is less. The practical limit to the number of partitions is based on available
hardware and performance objectives.

Micro-Partitions can also be defined with capped and uncapped attributes. A
capped Micro-Partition is not allowed to exceed the defined capacity. A
configuration flag inside the Hardware Management Console (HMC) menus
determines whether the capacity is capped. An uncapped partition, however, is
allowed to consume additional capacity with fewer restrictions. Uncapped
partitions can be configured to the total idle capacity of the server or to a
percentage of the total idle capacity.

1.2.2 Virtual Ethernet
Virtual Ethernet enables inter-partition communications without a dedicated
physical network adapter. With this feature, you can define in-memory
point-to-point connection between partitions. These connections have the same
characteristics as a high-bandwidth Ethernet network and support multiple
networking protocols, such as IPv4, IPv6, and ICMP.

1.2.3 Virtual I/O Server
The Virtual I/O Server is a special-purpose partition that provides virtual I/O
resources to client partitions. The Virtual I/O Server owns the real resources that
are shared with other clients. With Virtual I/O technology, you can assign a
physical adapter to a partition to be shared by one or more partitions, enabling
clients to minimize their number of physical adapters. You can use the Virtual I/O
Server to reduce costs by eliminating the requirement that each partition has a
dedicated network adapter, disk adapter, and disk drive.

To ensure stable performance, it is preferable to use the Virtual I/O server in a
partition with dedicated resources.

The following sections discuss the two major functions that the Virtual I/O Server
provides.

Shared Ethernet Adapter
A Shared Ethernet Adapter (SEA) is a new service that acts as a Layer 2 network
switch to route network traffic from a Virtual Ethernet to a real network adapter.
The SEA must run in a Virtual I/O Server partition.
 Chapter 1. Logical partitioning primer 5

The advantage of the SEA is that partitions can communicate outside the system
without having a physical network adapter attached to the partition. Up to 18
VLANs can be shared on a single network interface. The amount of network
traffic will limit the number of client partitions that are served through a single
network interface.

Virtual SCSI
Access to real storage devices is implemented through the Virtual SCSI services,
a part of the Virtual I/O Server partition. Logical volumes that are created and
exported on the Virtual I/O Server partition are shown at the virtual storage client
partition as a SCSI disk. All current storage device types such as SAN, SCSI,
and RAID are supported.

The Virtual I/O server supports logical mirroring and RAID configurations. Logical
volumes created on RAID or JBOD configurations are bootable, and the number
of logical volumes is limited to the amount of storage available and architectural
limits of the Logical Volume Manager (LVM).

Resources removed from a partition are marked as free (free resources) and are
owned by the global firmware of system. You can consider these resources as
kept in the free resource pool. You can add free resources to any partition in a
system as long as the system has enough free resources.

1.2.4 Advanced POWER Virtualization technologies
This section provides information about the packaging information for the
Advanced POWER Virtualization feature available on Sserver p5 systems. A
more detailed description, including configuration, is provided in Chapter 4,
“Virtualized resource management” on page 83.

This feature is a combination of the hardware capability inherent in POWER5
servers and the following components, available together as a single-priced
feature:

� Firmware enablement for Micro-Partitioning technology

� Installation image for the Virtual I/O Server software which supports:

– SEA
– Virtual SCSI

� Partition Load Manager

Note: The Shared Ethernet Adapter and Virtual SCSI server functions are
provided in the Virtual I/O Server that is included in the Advanced POWER
Virtualization feature, an additional feature of Sserver p5 systems.
2 Partitioning Implementations for IBM Eserver p5 Servers

Simultaneous Multi Threading (SMT) is available on the base hardware and
requires no additional features. See 2.1.1, “Hardware” on page 26 for a
discussion about SMT.

Figure 1-1 shows a detailed overview of the different parts of the hardware order
that enable firmware and that include the software orders.

Figure 1-1 Advanced POWER Virtualization feature

1.2.5 Advanced OpenPower Virtualization technologies
The Advanced OpenPower Virtualization technologies are available on
IBM ̂OpenPower systems. The Advanced OpenPower Virtualization
technologies are a combination of hardware and software features that include
the following components and are available as separately priced options:

� Firmware enablement for the POWER Hypervisor™, which supports:

– LPAR
– Dynamic logical partitioning
– Micro-Partitioning

Note: Virtual Ethernet and partitioning are available without this feature when
the server is attached to an HMC.

 Virtual I/O-Server (VIO)
(I/O Appliance, VLAN & Virtual SCSI Server)

Virtual I/O-Server Software Maintenance

Advanced POW ER Virtualization Feature

Micro-Partitioning
Key enables both Micro-partitioning and Virtual IO-Server

Partition Load Manger (PLM)
PLM Software Maintenance

HW Order

CD in box

KEY

CD in box

 HW FC

Firmware

 SW
 Chapter 1. Logical partitioning primer 7

� Installation image for the Virtual I/O Server software, which supports:

– SEA
– Virtual SCSI server

When you order the hardware feature directly from an IBM marketing
representative and specify with the initial system order, the shipped firmware is
activated to support Micro-Partitioning and the Virtual I/O Server. For upgrades,
or any orders placed through IBM Business Partners, customers and IBM
Business Partners must follow the instructions included in the option kit to
receive an activation code that will enable the firmware.

These two technology offerings are ordered separately. While the Virtual I/O
Server is not required for the POWER Hypervisor to operate, the POWER
Hypervisor must be installed for Virtual I/O Server to function. While not required,
we highly recommend the Virtual I/O Server for use with the POWER Hypervisor
technology. It facilitates the sharing of physical I/O resources between logical
partitions and can significantly increase system use and capability.

You can find additional information about Advanced OpenPower Virtualization
technologies at:

http://www.ibm.com/servers/eserver/linux/power/features/virtualization.html

1.2.6 Obtaining the Virtual I/O Server and Partition Load Manager
Virtual I/O Server and Partition Load Manager (PLM) are licensed software
components of the Advanced POWER Virtualization feature. They contain one
charge unit per installed processor, including software maintenance. The initial
software license charge for Virtual I/O Server and PLM is included in the price of
the Advanced POWER Virtualization feature.

The related hardware features that include Virtual I/O Server and PLM are:

� 9110-510 (FC 7432)
� 9111-520 (FC 7940)
� 9113-550 (FC 7941)
� 9117-570 (FC 7942)
� 9119-590 (FC 7992)
� 9119-595 (FC 7992)
� 9123-710 (FC 1965)
� 9124-720 (FC 1965)

For each Virtual I/O Server license ordered, an order for one of the following
software maintenance agreement (SWMA) is also required:

� One-year (5771-VIO)
� Three-year (5773-VIO)
2 Partitioning Implementations for IBM Eserver p5 Servers

http://www.ibm.com/servers/eserver/linux/power/features/virtualization.html

The processor-based license enables you to install multiple Virtual I/O Server
partitions on a single server to provide redundancy and to spread the Virtual I/O
Server workload across multiple partitions.

Virtual I/O Server
The Virtual I/O Server resides in a POWER5 partition as a single-function
appliance, which is created using the HMC. The Virtual I/O Server installation
media ships with a POWER5 system configured with the Advanced POWER
Virtualization feature. It supports network install (NIMOL from HMC) or CD
installation, AIX 5L Version 5.3, SUSE LINUX Enterprise Server 9 for POWER,
and Red Hat Enterprise Linux AS for POWER Version 3 as Virtual I/O clients.

The Virtual I/O Server provides the Virtual SCSI server and Shared Ethernet
Adapter virtual I/O function to client Linux or AIX partitions. This Sserver p5
partition is not intended to run applications or for general user login.

Partition Load Manager
With PLM for AIX 5L, you can maximize the use of processor and memory
resources on POWER5 servers that support dynamic logical partitioning. Within
the constraints of a user-defined policy, resources are automatically moved to
partitions with a high demand from partitions with a lower demand. Thus, you can
fully use resources that would otherwise go unused.

PLM supports management of any dynamic LPAR that is running the following:

� AIX 5L Version 5.2 ML5200-04
� AIX 5L Version 5.3 or later

Features available in PLM are:

� Automated processor and memory reconfiguration
� Real-time partition configuration and load statistics
� Support for dedicated and shared processor partition groups
� Support for manual provisioning of resources
� Graphical user interface (Web-based System Manager)

For each Partition Load Manager V1.1 (5765-G31) license that you order, you
must also order one of the following SWMAs:

� One-year (5771-PLM)
� Three-year (5773-PLM)

Software maintenance for PLM is priced on a per-processor basis, by processor
group. Refer to 3.4, “Partition Load Manager” on page 71 for more detailed
information about PLM.
 Chapter 1. Logical partitioning primer 9

1.3 Partitioning on eServer p5 and OpenPower servers
Table 1-1 provides the Sserver p5 and OpenPower server product range
available at the time of the writing of this book.

Table 1-1 eServer p5 and OpenPower servers

Micro-Partitioning is supported across the entire POWER5 product line, from the
entry to the high-end systems. Table 1-2 shows the maximum number of logical
partitions and shared processor partitions that the different models support
(provided that enough boot devices are available).

Table 1-2 Maximum number of processors, memory size, and partitions

Official product model name Short product name M/T-MDL

IBM Sserver p5 Model 510 p5-510 9110-510

IBM Sserver p5 Model 520 p5-520 9111-520

IBM Sserver p5 Model 550 p5-550 9113-550

IBM Sserver p5 Model 570 p5-570 9117-570

IBM Sserver p5 Model 590 p5-590 9119-590

IBM Sserver p5 Model 595 p5-595 9119-595

IBM Sserver OpenPower 710 OpenPower 710 9123-710

IBM Sserver OpenPower 720 OpenPower 720 9124-720

Note: Hereafter, this book uses the short product names.

Short product
name

Max
number of
processors

Max
Memory
size

Max
number
of I/O
drawers

Dedicated
processor
partitions

Shared
processor
partitions

p5-510 2 32 GB 0 2 20

p5-520 2 32 GB 4 2 20

p5-550 4 64 GB 8 4 40

p5-570 16 512 GB 20 16 160

p5-590 32 1 TB 7 32 254

p5-595 64 2 TB 11 64 254
2 Partitioning Implementations for IBM Eserver p5 Servers

The maximums stated in Table 1-2 are supported by the hardware. However, the
practical limits based on production workloads can be significantly lower.

The logical partitioning concept and required tasks are basically similar on these
partitioning-capable Sserver p5 and OpenPower server models. However,
assigning I/O resources to partitions depends on the models, and there are
significant differences. For the hardware model-specific information about the I/O
resource assignments, see 2.4, “I/O device assignment considerations” on
page 46.

1.4 IBM Hardware Management Console
To configure and manage logical partitions on a Sserver p5 and OpenPower
server, you must have at least one Hardware Management Console (HMC). For
more information about the HMC, refer to 3.1, “Hardware Management Console”
on page 58.

Depending on the partitioning-capable server models, you can order the HMC as
a feature code or a separate orderable product, as shown in Table 1-3 on
page 12. The 7310 is for POWER5-based systems, and the 7315 is for
POWER4™-based systems.

OpenPower 710 2 32 GB 0 12 20

OpenPower 720 4 64 GB 2 4 40

Short product
name

Max
number of
processors

Max
Memory
size

Max
number
of I/O
drawers

Dedicated
processor
partitions

Shared
processor
partitions
 Chapter 1. Logical partitioning primer 11

Table 1-3 Required Hardware Management Console

The HMC provides a set of functions that is necessary to manage the systems.
The functions are LPAR, dynamic LPAR (DLPAR), Capacity on Demand without
reboot, inventory and microcode management, and remote power control
functions.

The HMC is a dedicated computer that provides a graphical user interface for
configuring and operating servers that are functioning either in non-partitioned or
in a full system partition. It is configured with a set of hardware management
applications for configuring and partitioning the server. One HMC is capable of
controlling multiple servers. At the time of the writing of this book, a maximum of
32 non-clustered servers and a maximum of 254 partitions are supported by one
HMC. You can also add a second HMC for redundancy (see Figure 1-2 on
page 13).

Short Product Name HMC Note

p5-595 7310-C04 or 7310-CR3 1

p5-590 7310-C04 or 7310-CR3 1

p5-570 7310-C04 or 7310-CR3 2

p5-550 7310-C04 or 7310-CR3 2

p5-520 7310-C04 or 7310-CR3 2

p5-510 7310-C04 or 7310-CR3 2

OpenPower 720 7310-C04 or 7310-CR3 2

OpenPower 710 7310-C04 or 7310-CR3 2

1. An HMC is required.
2. An HMC is required if the system is partitioned. The HMC is not required if the system
is running as a full system partition.

Note: It is not possible to connect POWER4 and POWER5 processor-based
systems to the same HMC simultaneously.
2 Partitioning Implementations for IBM Eserver p5 Servers

Figure 1-2 HMC connection

The HMC provides a set of functions that are necessary to manage partition
configurations by communicating with the service processor, as follows:

� LPR control

� Capacity on Demand resource control

� Creation or partition and system profiles

� Boot, start, and stop actions for the system or individual partitions

� Displaying system and partition status

In a non-partitionable system, the operator panel displays the LED codes. In a
partitioned system, the operator panel shows the word LPAR instead of any
partition LED codes. Therefore, all LED codes for system partitions are
displayed over the HMC.

� An imbedded DVD-RAM for creating and storing configuration backup
information

� Cluster support when combined with IBM Cluster Systems Management V1.4
or later

� Using a virtual console for each partition or controlled system

With this feature, you can access every partition over the trusted network
HMC connection to the server. This is a convenient feature when the partition
is not reachable across the public network.
 Chapter 1. Logical partitioning primer 13

� The HMC provides a Service Focal Point for the systems it controls. It is
connected to the service processor of the system using network connection
and must be connected to each partition using an Ethernet LAN for Service
Focal Point and to coordinate dynamic logical partitioning operations.

� The HMC provides tools for problem determination and service support, such
as call-home and error log notification through an analog phone line or
Ethernet.

1.5 IBM ̂Information Center
The IBM ̂Information Center provides a source of technical information
about IBM ̂p5 hardware. It offers technical documentation about how to
configure and optimize Sserver p5 and OpenPower servers.

With AIX 5L Version 5.3, the role of the IBM ̂and AIX Information Center
has been expanded to provide a standardized and central repository for all
relevant AIX and pSeries (prior to Sserver p5) manuals and documentation.
The two components which make up the AIX InfoCenter structure are the existing
InfoCenter Web portal and the AIX documentation CD. Both of these sources
contain the following:

� A message database that shows the meaning of error messages and, in
many cases, how to recover from the error. This database also provides
information for LED codes and error identifiers.

� How-to tips with step-by-step instructions for completing system administrator
and user tasks.

� FAQs for quick answers to common questions.

� The entire AIX software documentation library for Version 5.1, Version 5.2,
and Version 5.3. Each publication is available in PDF format, and abstracts
are provided for books for Version 5.2 and Version 5.3.

� Links to related documentation from IBM, including white papers, IBM
Redbooks, and technical reports on topics such as RS/6000, SP, and
HACMP™ for AIX. Release Notes and readme files are also available.

You can install the AIX Information Center application from the AIX
Documentation CD. You can install and use it on a local system, or you can install
it on a documentation server for intranet use.

Note: A partitioning-capable pSeries server that is managed by HMC is also
referred to as a managed system.
2 Partitioning Implementations for IBM Eserver p5 Servers

The IBM ̂hardware Information Center adds several new videos for
customer-installable features and customer-replaceable parts.

For the latest AIX and pSeries (other than Sserver p5 hardware) information,
refer to the AIX and pSeries Information Center at:

http://publib.boulder.ibm.com/pseries/en_US/infocenter/base

For the latest IBM ̂p5 hardware information, see:

http://publib.boulder.ibm.com/eserver/

1.6 LPAR Validation Tool
Another new functional role which has been incorporated into the Information
Center application is the ability to download new and useful tools. One example
is the LPAR Validation Tool (LVT) on the InfoCenter Web site:

http://www.ibm.com/servers/eserver/iseries/lpar/systemdesign.htm

The LVT assists you in the design of an LPAR system and provides an LPAR
validation report that reflects your system requirements while not exceeding
LPAR recommendations.

Figure 1-3 on page 16 shows one way to locate the LVT from inside the
InfoCenter. You can find a detailed discussion about the LVT in 2.3, “Resource
planning using LPAR Validation Tool” on page 42.

Note: The LVT is not a marketing configurator, nor is it intended to replace
one.
 Chapter 1. Logical partitioning primer 15

http://publib.boulder.ibm.com/pseries/en_US/infocenter/base
http://www.ibm.com/servers/eserver/iseries/lpar/systemdesign.htm
http://publib.boulder.ibm.com/eserver/

Figure 1-3 InfoCenter - Planning for AIX logical partitions

1.7 Operating system support
With the introduction of the POWER5 processor and the POWER hypervisor, the
ability of the supported operating systems to exploit the advancements in
hardware and firmware is critical in leveraging all of the benefits of the Sserver
p5 and OpenPower server. This section describes what new and existing
features are supported on each of the available operating systems.

AIX and Linux are supported operating systems that you can install on selected
Sserver p5 models. A version of Linux is available for OpenPower systems.
These operating systems operate as independent logical servers. However,
partitions share some system attributes, such as the system serial number,
system model, and processor feature code. All other system attributes can vary
among partitions.
2 Partitioning Implementations for IBM Eserver p5 Servers

A mixed environment between AIX 5L Version 5.2 and Version 5.3 and Linux
partitions on Sserver p5 servers is supported. Figure 1-4 shows a sample
configuration with mixed operating systems including different AIX versions. The
first five partitions use dedicated processors. The AIX 5L Version 5.2 partition is
not able to join the virtual I/O paths, but it provides all the known LPAR and
DLPAR features. It has to be configured with dedicated I/O adapters. The AIX 5L
Version 5.3 partitions using shared processors likewise can use dedicated
storage and dedicated networking.

Figure 1-4 Mixed operating systems

Note: Partitions using virtualized shared resources cannot perform DLPAR
operations with partitions that are assigned dedicated hardware resources.

Note: The Linux and i5/OS™ partitions are able to participate in selected
virtual I/O operations on the Sserver p5 servers that are mixed operating
environments.
 Chapter 1. Logical partitioning primer 17

Table 1-4 illustrates the available operating system supported functions on
Sserver p5 servers for partitions in a mixed operating system environment.

Table 1-4 Operating systems supported functions.

Function AIX 5.2 AIX 5.3 LInux SLES 9 Linux RHEL3 U3

Max 254 partitions N Y Y Y

Micro-Partitioning N Y Y Y

Capped and uncapped
parititions

N Y Y Y

Capacity on Demand

-processors Y Y Y Static

-memory Y Y Static Static

DLPAR

-processors Y Y Y N

-memory Y Y N N

-I/O Y Y Y N

POWER5 support

-base Y Y Y Y

-SMT N Y Y Y

Virtual SCSI server N Y N N

Virtual SCSI client N Y Y Y

Virtual LAN N Y Y Y

EEH Recovery Y Y N N

Large page support Y Y Y N

Concurrent diagnostics Y Y N N

PCI Hot Plug Y Y Y N

I/O drawer/tower
concurrent add/remove

N Y Y Y

Memory resilience N Y N N

Machine check handling Y Y Y Y
2 Partitioning Implementations for IBM Eserver p5 Servers

1.7.1 AIX
To coincide with the POWER5 processor and new Sserver p5 product range,
IBM released the AIX 5L Version 5.3 operating system to leverage the new
server’s 64-bit system and software architecture. This release supports new
IBM ̂p5 hardware systems, advanced POWER virtualization and
symmetric multi-threaded POWER5 processors for improved system
performance and utilization. AIX 5L Version 5.3 offers scalability for up to 64-way
systems.

In addition to the introduction of the Advanced POWER Virtualization features,
AIX 5L Version 5.3 also includes new system management tools, security
enhancements, support for NFS V4, POSIX Real-time, and the consolidation of
both the online and CD-ROM based AIX documentation into the InfoCenter
application.

Table 1-5 provides an overview of which advance POWER virtualization features
are available on both Sserver p5 supported AIX operating system platforms.

Table 1-5 AIX - supported features

Feature AIX 5L v5.2 ML4 AIX 5L v5.3

POWER4 support Yes Yes

POWER5 support Yes Yes

Dynamic LPAR -CPU Yes Yes

Dynamic LPAR - Memory Yes Yes

Dynamic LPAR -I/O Yes Yes

Micro-Partitioning technology No Yes

Virtual Ethernet No Yes

Virtual SCSI Client No Yes

>140 Partitions No Yes

Note: Advanced POWER Virtualization is a separate additional feature that
you need to order with a Sserver p5 server.
 Chapter 1. Logical partitioning primer 19

AIX 5L Version 5.2
In addition to all the enhancements and components provided in the former
releases, AIX 5L Version 5.2 provides many enhancements. This section
introduces briefly some of the enhancements that this book covers.

Fast reboot in a partitioned environment
Rebooting an operating system instance in a partition is much faster than a full
system reboot of a comparable conventional Sserver p5 system because less
hardware initialization is required.

Partition reboots are merely a re-establishment of the pSeries Open Firmware
operating system boot loader environment and, by nature, are very quick. A Full
System Partition reboot repeats all the hardware initialization phases of the
processors, caches, and memory. These phases are done by the service
processor, and the I/O drawers and I/O adapters are done by the system
firmware. When configuring all system resources in a single partition, hypervisor
remains resident in memory. This configuration enables the extremely rapid
re-establishment of the boot environment but requires the reservation of the first
physical memory block by the hypervisor.

Dynamic logical partitioning
Starting with AIX 5L Version 5.2, AIX supports DLPAR, which allows you to add
and remove resources dynamically without requiring a partition reboot. Both 32-
and 64-bit kernels running in a partition support the DLPAR function. DLPAR
provides the following features:

� Dynamic allocation and de-allocation of processors, memory, and PCI I/O
adapters.

� Capacity on Demand (CoD).

For a detailed explanation of DLPAR, see 5.1, “Dynamic logical partitioning
overview” on page 140.

Although POWER5 processor based pSeries servers support AIX 5L Version
5.2, it is not possible to run an AIX 5L Version 5.2 partition with
Micro-Partitioning, Virtual SCSI, Virtual Ethernet, or SEAs.

Note: AIX 5L Version 5.2 ML4 or later is required when using Sserver p5
servers.

Note: The 32-bit AIX kernel supports up to 96 GB of physical memory size
and 32-way processors, regardless of whether it is in a partition or it is running
as a full system partition.
2 Partitioning Implementations for IBM Eserver p5 Servers

AIX 5L Version 5.3
This section introduces the AIX 5L Version 5.3 enhancements that this book
discusses.

Micro-Partitioning
The system administrator defines the number of virtual processors that a
partition can use as well as the actual physical processor capacity. The system
administrator can define a partition with a processor capacity as small as 10
processor units. These 10 units represent 1/10 of a physical processor, and each
processor can be shared by up to 10 shared processor partitions.

Shared processor partitions need dedicated memory. However, the partition I/O
requirements can be supported through Virtual Ethernet and Virtual SCSI. Using
all virtualization features, 254 shared processor partitions are supported.

Virtual Ethernet
The development of Virtual Ethernet enables inter-partition communications
without the need of a dedicated physical network adapter. The system
administrator can define in-memory point-to-point connections between
partitions. These connections have the same characteristics as a high-bandwidth
Ethernet network and support multiple networking protocols, such as IPv4, IPv6,
and ICMP.

Shared Ethernet Adapter
The Shared Ethernet Adapter (SEA) is a bridge from a physical Ethernet adapter
to one or more Virtual Ethernet adapters. The adapter provides a secure route
for partition network traffic to an external Ethernet network. With Sserver p5
servers, you must order this service with the Virtual I/O Server partition feature.

Virtual SCSI
The Virtual SCSI feature was developed to maximize the available hardware
resources of the Sserver p5 servers. Because some Sserver p5 servers can
support up to 254 partitions within the one server, the demand placed on the PCI
slots and storage devices, either internal or attached, has increased significantly.

To meet these needs, the Virtual SCSI is designed to provide logical and physical
volumes. From the Virtual I/O Server, these logical volumes appear to be SCSI
disks on the client partition, giving the system administrator maximum flexibility in
configuring partitions. At the time of the writing of this book, Virtual SCSI

Note: The maximum number of virtualized Ethernet adapters supported on a
Sserver p5 AIX 5L Version 5.3 logical partition is 256.
 Chapter 1. Logical partitioning primer 21

supports Fibre Channel, parallel SCSI, and SCSI RAID devices using SCSI
protocol.

Virtual SCSI includes two additional services which also run on the Virtual I/O
Server: Reliable Command / Response Transport and Logical Remote DMA to
service I/O requests for an I/O client. With these services, the I/O client uses the
services of its own SCSI adapter.

1.7.2 Linux
With the release of the POWER5 processor based pSeries servers, the support
for logical partitions running the Linux operating system has continued with the
inclusion of the latest Sserver p5 and OpenPower server and virtualization
features. Both the SUSE Linux Enterprise Server 9 (SLES9) and Red Hat
Enterprise Linux 3 (RHEL3) distributions have been designed to take advantage
of the new POWER5 processor and virtualization features, such as
Micro-Partitioning, SMT, Virtual LAN, and Virtual SCSI client. The OpenPower
product line supports only Linux as an operating system.

Support for various virtualization features is dependent on the Linux Distribution
and Kernel version. At the time of the writing of this book, features such as
Micro-Partitioning, Simultaneous Multi-threading (available on SUSE Linux
Enterprise Server 9 only), Virtual Ethernet, and Virtual SCSI client are
supported.

Also, some of the other Sserver p5 and OpenPower server features that are
supported by SLES9 and RHEL3 are first failure data capture, double data rate
IBM Chipkill™ memory, error checking and correcting memory, Dynamic
Processor De-allocation, and hot-plug PCI slots, fans, and power.

For the latest updates to the SUSE or Red Hat Linux offering for POWER5
processor-based IBM Sservers, refer to:

http://www.redhat.com/software
http://www.suse.com
http://www.ibm.com/servers/eserver/linux/power/index.html
http://www.ibm.com/linux/whitepapers/

Note: Because there are numerous limitations and considerations when
implementing the new features, these features are covered in more detail in
Chapter 4, “Virtualized resource management” on page 83.

Note: One function not supported by Linux on Sserver p5 and OpenPower
servers is Dynamic Memory allocation or de-allocation.
2 Partitioning Implementations for IBM Eserver p5 Servers

http://www.redhat.com/software
http://www.suse.com
http://www.ibm.com/servers/eserver/linux/power/index.html
http://www.ibm.com/linux/whitepapers/

Another key pSeries server component that continues to mature on the Linux
operating systems is the increasing adoption of proven autonomic computing
technologies from IBM.

A full list of reliability, availability, and scalability features that are supported by
SLES9 and RHEL3 is available at:

http://www.ibm.com/servers/eserver/linux/power/whitepapers/linux_overview.pdf

Not all devices and features supported by the AIX operating system are
supported in logical partitions that are running the Linux operating system. You
can find information about external devices and features supported on Sserver
p5 server products at:

http://www.ibm.com/servers/eserver/pseries/hardware/factsfeatures.html
http://www-1.ibm.com/servers/eserver/pseries/linux
http://www.ibm.com/servers/eserver/pseries/linux/whitepapers/linux_pseries.html
 Chapter 1. Logical partitioning primer 23

http://www.ibm.com/servers/eserver/linux/power/whitepapers/linux_overview.pdf
http://www.ibm.com/servers/eserver/pseries/hardware/factsfeatures.html
http://www-1.ibm.com/servers/eserver/pseries/linux
http://www.ibm.com/servers/eserver/pseries/linux/whitepapers/linux_pseries.html

2 Partitioning Implementations for IBM Eserver p5 Servers

Chapter 2. Partitioning implementation

This chapter explains the partitioning implementation on Sserver p5 and
OpenPower servers and includes the following sections:

� 2.1, “Partitioning enablers” on page 26
� 2.2, “Partition resources” on page 32
� 2.3, “Resource planning using LPAR Validation Tool” on page 42
� 2.4, “I/O device assignment considerations” on page 46
� 2.5, “LPAR limitations and considerations” on page 53

2

© Copyright IBM Corp. 2003, 2004, 2005. All rights reserved. 25

2.1 Partitioning enablers
With the introduction of the Sserver p5 and OpenPower servers, the flexibility
and adaptability of the partitioned environment has increased significantly. Each
logical partition can now support both dedicated and virtualized server
resources, while maintaining the strict isolation of the assigned resources from
other partitions in the server. To achieve this flexibility, the hardware and firmware
system components work together to support the available partitioning
implementations on Sserver p5 and OpenPower servers.

2.1.1 Hardware
This section discusses the hardware components that support the available
partitioning environments on partitioning-capable pSeries servers.

POWER5 processor
As the next generation of dual-core 64-bit processors, the POWER5 continues to
incorporate IBM proven fabrication technologies such as silicon-on insulator and
copper interconnection. The newer design also includes increased processor
performance and an enhanced computing approach through improved
granularity by way of the Advanced POWER Virtualization technology features. In
addition to these characteristics, POWER5 provides the following functions to
support all of the available partitioned environments:

� POWER Hypervisor

The POWER5 processor supports a special form of instructions. These
instructions are exclusively used by new controlling firmware called the
POWER Hypervisor. The hypervisor performs the initialization and
configuration of the processors on partition activation. It provides privileged
and protected access to assigned partition hardware resources and enables
the use of Advanced POWER Virtualization features. The hypervisor receives
and responds to these requests using specialized hypervisor calls. The
hypervisor functions are discussed in “Firmware” on page 29.

Note: In the remainder of this book, when we refer to available partitioning
implementations, we include both dedicated and virtualized partitions in the
server environment.

Note: This book uses the term hypervisor to refer to the POWER Hypervisor.
26 Partitioning Implementations for IBM Eserver p5 Servers

� Simultaneous multi-threading (SMT)

SMT allows for better utilization and greater performance of a POWER5
processor by executing two separate threads simultaneously on an
SMT-enabled processor. These threads are switched if one of the threads
experiences a stalled or long latency event, such as memory miss or disk
data fetch. The SMT feature works with both dedicated and shared processor
resources and provides an estimated performance increase of 30%.

� Dynamic Power Management

To address one of the most important issues facing modern Complementary
Metal Oxide Semiconductor chip designs, the POWER5 processor has newly
embedded logic which reduces the amount of power that the processor
consumes. The techniques developed to achieve this reduction in power
usage were reducing switch power during idle clock cycles and a low-power
mode of operation, which causes both processor threads to be set to the
lowest possible priority.

Capacity on Demand
To enable customers to meet temporary, permanent, or unexpected computing
workloads, certain Sserver p5 servers provide a number of enhanced Capacity
on Demand methods, namely for processors. These include the following:

� Capacity Upgrade on Demand

With this feature, additional processors and memory are shipped with the
server and can be later activated in minimum increments of one.

� On/Off Capacity on Demand

If ordered, this feature allows you to temporarily activate a minimum of one
processor to meet peak system loads. With this feature, you must report your
on and off activity to IBM at least once a month.

� Reserve Capacity on Demand

This feature further enhances the micro-partition flexibility of the Sserver p5
servers, by allowing you to order a number of inactive processors, which are
placed in the shared processor pool as reserved processors. When the
assigned or available processor resources that are used in uncapped
partitions reaches 100%, additional processing days (normally a 24 hours
period) are subtracted from a pre-paid number of processor days.

Note: SMT is active on the POWER5 processor when combined with AIX 5L
Version 5.3 or SUSE Linux.
 Chapter 2. Partitioning implementation 27

� Trial Capacity on Demand

This option provides you with a one-time, no-cost processor activation for a
maximum period of 30 consecutive days. It is available as a complementary
service when access to Capacity on Demand resources is required
immediately.

There are basic rules which apply for each specific Sserver p5 server that
supports Capacity on Demand. For more information, refer to the technical
overview documentation for the individual server as shown in “Related
publications” on page 301.

Interrupt controller
The interrupt controller that manages the peripheral interrupt requests to the
processors works in a fashion similar to other pSeries SMP servers. In a
partitioned environment, the interrupt controller supports multiple global interrupt
queues, which can be individually programmed to send external interrupts only to
the set of processors that are allocated to a specific partition. Therefore, the
processors in a partition can only receive interrupt requests from devices inside
their partition.

PCI host bridges
The PCI host bridges control the PCI slots in the I/O drawers, as in conventional
Sserver p5 servers. The PCI host bridges use translation control entry (TCE)
tables for the I/O address to memory address translation in order to perform
direct memory access (DMA) transfers between memory and PCI adapters. The
TCE tables are allocated in the physical memory.

In a partitioned environment, the hypervisor controls the DMA addressing to the
partition memory for all I/O devices in all partitions. The hypervisor uses central
TCE tables for all I/O devices, which are located outside of the memory of the
partitions. The hypervisor can manage as many TCE tables as it needs. For
example, each PCI host bridge could have its own TCE table. The number of
TCEs needed, and thus the number of TCE tables, is a function of the number of
PCI host bridges and slots. The address mapping is protected on a per-adapter
basis. The PCI host bridges that are used in Sserver p5 and OpenPower
servers support the control of the PCI adapter DMA by the hypervisor.

Note: At the time of the writing of this book, only p5-550 and p5-570 systems
with a 2-way 1.65 GHz POWER5 and above processor card support the
Capacity Upgrade on Demand options. All p5-590 and p5-595 also support
these features.
28 Partitioning Implementations for IBM Eserver p5 Servers

The key point is that a logical partition is only given a window of TCEs per I/O slot
that are necessary to establish DMA mappings for the device in that slot. The
hypervisor controls TCE accesses by the operating system to ensure that they
are to a window owned by the partition.

Error handling
The basis of the Enhanced Error Handling function is to isolate and limit the
impact of hardware errors or failures to a single partition. To further enhance the
Reliability, Availability, and Serviceability capabilities, the POWER5 processor
has improved the following features:

� Most firmware updates enable the system to remain operational.

� Error checking and correcting has been extended to inter-chip connections for
the Fabric and Processor bus.

� Partial L2 cache de-allocation is possible.

� The number of L3 cache line deletes improved from two to ten for better
self-healing capability.

Service processor
All the Sserver p5 and OpenPower server models have an enhanced service
processor compared to existing pSeries models. The two major enhancements of
the Sserver p5 and OpenPower SP are:

� The Hardware Management Console (HMC) communicates with the physical
server using an Ethernet network

� The power control of the attached I/O subsystems occurs from the HMC using
system power control network connection(s).

2.1.2 Firmware
Support of partitioning on Sserver p5 and OpenPower servers requires the new
firmware-based hypervisor, partition Open Firmware, and Run-Time Abstraction
Service. See Figure 2-2 on page 32.

POWER Hypervisor
The hypervisor is a component of the global firmware. It owns the partitioning
model and the resources that are required to support this model. The hypervisor
enables the use of Virtual I/O Server and other Advanced POWER5
Virtualization features.

When the Advanced POWER Virtualization hardware feature is specified with the
initial system order, the firmware is shipped pre-activated to support
Micro-Partitioning technology and the Virtual I/O Server. For upgrade orders, a
 Chapter 2. Partitioning implementation 29

key is shipped to enable the firmware, similar to the Capacity Upgrade on
Demand key.

Figure 2-1 shows the HMC panel where the Virtualization Engine™ Technologies
are enabled.

Figure 2-1 HMC panel to enable the Virtualization Engine Technologies

In addition to the Page Frame Table and Translation Control Entry, the hypervisor
also handles the following system service calls:

� Virtual memory management
� Debugger support
� Virtual terminal support
� Processor register hypervisor resource access
� Dump support
� Debugger support
� Memory migration support
� Performance monitor support
� Virtualization I/O interrupts
� Micro-Partitioning scheduling
� Dynamic LPAR operations
30 Partitioning Implementations for IBM Eserver p5 Servers

The hypervisor is a callable, active, interrupt-driven service in Sserver p5 and
OpenPower systems. This differs from POWER4-based systems where the
hypervisor was a passive callable library.

The hypervisor resides outside of the partition system memory in the first
physical memory block at physical address zero. This first physical memory block
is not usable by any of the partition operating systems in a partitioned
environment.

Open Firmware
A Sserver p5 and OpenPower server has one instance of Open Firmware both
when in the partitioned environment and when running as a full system partition.
Open Firmware has access to all devices and data in the system. Open
Firmware is started when the system goes through a power-on reset. Open
Firmware, which runs in addition to the hypervisor in a partitioned environment,
runs in two modes: global and partition. Each mode of Open Firmware shares
the same firmware binary that is stored in the flash memory.

In a partitioned environment, Open Firmware runs on top of the global Open
Firmware instance. The partition Open Firmware is started when a partition is
activated. Each partition has its own instance of Open Firmware and has access
to all the devices assigned to that partition. However, each instance of Open
Firmware has no access to devices outside of the partition in which it runs.
Partition firmware resides within the partition memory and is replaced when AIX
takes control. Partition firmware is needed only for the time that is necessary to
load AIX into the partition system memory. The global firmware resides with the
hypervisor firmware in the first 256 MB of the physical memory.

The global Open Firmware environment includes the partition manager
component. That component is an application in the global Open Firmware that
establishes partitions and their corresponding resources (such as CPU, memory,
and I/O slots), which are defined in partition profiles. The partition manager
manages the operational partitioning transactions. It responds to commands
from the service processor external command interface that originate in the
application that is running on the HMC.

Note: For information about the hypervisor, see Chapter 6, “The POWER
Hypervisor” on page 217.
 Chapter 2. Partitioning implementation 31

To confirm the current firmware level, you can use the lscfg command as
follows:

lscfg -vp | grep -p 'Platform Firmware:'
Platform Firmware:
ROM Level.(alterable).......RH020930
Version.....................RS6K
System Info Specific.(YL)...U1.18-P1-H2/Y1
Physical Location: U1.18-P1-H2/Y1

This example shows firmware level RH020930.

Figure 2-2 shows the POWER hypervisor environment using Open Firmware.

Figure 2-2 POWER hypervisor

2.2 Partition resources
Logical partitioning allows you to assign dedicated processors or, when you use
the Micro-Partitioning feature of Sserver p5 and OpenPower systems, to assign
processing units to partitions. You can define a partition with a processor
capacity as small as 0.10 processing units, which represents 10 percent of a

Note: The firmware level shown in this example might be a different level from
that shown on your system.
32 Partitioning Implementations for IBM Eserver p5 Servers

physical processor. You can also assign physical memory and physical I/O
devices or virtual I/O-devices (SCSI or Ethernet) to partitions.

The following sections give an overview of resource assignments.

2.2.1 Partition and system profiles
The information about resources that are assigned to a partition is stored in a
partition profile. Each partition can have multiple partition profiles. By switching
from one partition profile to another, you can change how resources are
assigned. For example, you can assign relatively small resources to small online
transactions on weekdays and assign large resources to high-volume batch
transactions on weekends.

To change partition profiles, you must shut down the operating system instance
that is running in the partition and stop (deactivate) the partition. You can also
define a system profile (for administrative purposes) as an optional task. By
using a system profile, you can turn on multiple partitions in a specific order in
one operation.

There are two types of profiles: partition and system.

� Partition profile

A partition profile stores the information about the assigned resources for a
specific partition, such as processor, memory, physical I/O devices, and
virtual I/O devices (Ethernet, serial, and SCSI). Each partition must have a
unique name and at least one partition profile. A partition can have several
partition profiles, but it reads only one partition profile when it is started
(activated). You select a partition profile when you activate the partition.
Otherwise, the default partition profile is used. You can designate any
partition profile as the default partition profile. If there is only one partition
profile for a partition, it is always the default.

� System profile

A system profile provides a collection of partition profiles that should be
started at the same time. The partition profiles are activated in the order of the
list that is defined in the system profile.

Both types of profiles are stored in the non-volatile random access memory
(NVRAM) of the server. Although you can create many partition profiles and
system partition profiles, the actual number possible depends on your profile
configuration, because both types of profiles share the same memory area in the
NVRAM.

Figure 2-3 on page 34 summarizes the relationship among partitions, partition
profiles, and system profiles. In this figure, partition A has three partition profiles,
 Chapter 2. Partitioning implementation 33

B has one, and C has two. The default partition profile for each partition is
represented with a check mark. The system profile X is associated with partition
profiles A1, B1, and C2, and the system profile Y is associated with partition
profiles A1 and C1. Keep in mind the following points:

� You do not have to associate all the partition profiles with system profiles. In
this example, the partition profiles A2 and A3 are not associated with any
system profile.

� It is possible to associate a partition profile to multiple system profiles. In this
example, the partition profile A1 is associated with system profile X and Y.

Figure 2-3 Partitions, partition profiles, and system profiles

To create partition profiles and system profiles, use the IBM Hardware
Management Console for Sserver p5 and OpenPower systems.

2.2.2 Processors
Continuing the evolution of the partitioning technology on pSeries servers, the
POWER5 processor improves its flexibility in using partitions. There are two
types of partitions in Sserver p5 and OpenPower servers. Partitions can have
processors dedicated to them, or they can have their processors virtualized from

Partition profile A1

Partition profile A2

Partition profile A3

Partition profile B1

Partition profile C1

Partition profile C2

Partition A

Partition B

Partition C

FullSystemPartition

System profile X

Partition profile A1

Partition profile B1

Partition profile C2

System profile Y

Partition profile A1

Partition profile C1

Default partition profile
34 Partitioning Implementations for IBM Eserver p5 Servers

a pool of shared physical processors This is known as Micro-Partitioning
technology.With this technology, both types of partitions can coexist in the same
system at same time.

The concept of Micro-Partitioning technology allows the resource definition of a
partition to allocate fractions of processors to the partition. Physical processors
have been virtualized to enable these resources to be shared by multiple
partitions. There are several advantages associated with this technology,
including higher resource utilization and more partitions that can exist
concurrently. Micro-Partitioning technology is implemented on Sserver p5
servers with AIX 5L Version 5.3 or Linux operating system environments.

A dedicated processor partition, such as the partitions that are used on
POWER4 processor based servers, have an entire processor that is assigned to
a partition. These processors are owned by the partition where they are running
and are not shared with other partitions. Also, the amount of processing capacity
on the partition is limited by the total processing capacity of the number of
processors configured in that partition, and it cannot go over this capacity (unless
you add or move more processors from another partition to the partition that is
using a dynamic LPAR operation).

By default, a powered-off logical partition using dedicated processors will have its
processors available to the shared processing pool. When the processors are in
the shared processing pool, an uncapped partition that needs more processing
power can use the idle processing resources. However, when you turn on the
dedicated partition while the uncapped partition is using the processors, the
activated partition regains all of its processing resources. If you want to prevent
dedicated processors from being used in the shared processing pool, you can
disable this function using the logical partition profile properties panels on the
Hardware Management Console (see Figure 2-4 on page 36).
 Chapter 2. Partitioning implementation 35

Figure 2-4 Allow and disallow shared processor partition utilization authority

Micro-Partitioning technology differs from dedicated processor partitions in that
physical processors are abstracted into virtual processors which are then
assigned to partitions. These virtual processors have capacities ranging from 10
percent of a physical processor up to the entire processor. Therefore, a system
can have multiple partitions that share the same physical processor and that
divide the processing capacity among themselves.

2.2.3 Memory
When discussing memory, it is important to highlight that the new Sserver p5
and OpenPower servers and their associated virtualization features have
adopted an even more dynamic memory allocation policy than the previous
partition capable pSeries servers. Also, despite its increased flexibility, the
underlying fundamentals and mechanisms within a virtual or dedicated logical
environment has remained relatively static.
36 Partitioning Implementations for IBM Eserver p5 Servers

Because the word memory is overused in various contexts, we have provided
definitions of the following four terms regarding memory: virtual, physical, real,
and logical memory.

The term virtual memory is used in many operating system environments to
express the function that enables the operating system to act as though it were
equipped with a larger memory size than it physically has.

Because each process should be isolated from the other processes, each has its
own virtual memory address range, called the process address space. Each
process address space is classified into several memory regions named
segments. Each segment is again divided into small size memory regions,
named pages.

Because not all of the virtual memory can sit in the physical memory in the
system, only some portions of virtual memory are mapped to physical memory.
The rest of the virtual memory is divided by page size. Each page can be
mapped to a disk block in paging spaces or can reside in a block of files in the file
systems. This address translation is managed by the virtual memory manager
(VMM) of the operating system using hardware components, such as the
hardware page frame table and translation look-aside buffer.

The term real memory is often used to represent the physical memory, especially
when discussing the VMM functionality in the kernel. The modifier real comes
from the real addressing mode defined in some processor architectures
(including PowerPC®), where address translation is turned off. In a
non-partitioned environment, because there is a one-to-one relationship between
the real and physical memory, the difference between these two terms can be
ignored in most cases.

The physical address space must encompass all addressable hardware
components, such as memory cards, I/O ports, bus memory, and so on.
Depending on the hardware implementation and restrictions, address ranges
might need to be dispersed throughout the physical address space, which could
result in a discontinuous physical memory address space. For example, if a PCI
adapter device requires DMA, the device’s DMA address is mapped on the
specific physical memory address range by a PCI host bridge. Most VMMs of
modern operating systems are designed to handle non-contiguous physical
memory addresses. However, operating systems require a certain amount of
contiguous physical memory that can be addressed as translate-off, typically for
bootstrapping, in a non-partitioned environment.

In a partitioned environment, real and physical memories must be distinguished,
The physical memory address, which previously meant the real memory address,
is no longer used in that way because there is an extra level of addressing in a
partitioned environment.
 Chapter 2. Partitioning implementation 37

To support any operating system, including AIX and Linux, which requires real
mode code execution and the ability to present a real address space starting at
zero to each partition in the system, the logical memory concept is adopted.
Logical memory is an abstract representation that provides a contiguous memory
address to a partition. Multiple non-contiguous physical memory blocks are
mapped to provide a contiguous logical memory address space. The logical
address space provides the isolation and security of the partition operating
system from direct access to physical memory, allowing the hypervisor to police
valid logical address ranges assigned to the partition. The contiguous nature of
the logical address space is use more for simplifying the hypervisor’s
per-partition policing than it is used because it is an operating system
requirement. The operating system’s VMM handles the logical memory as
though it were physical memory in a non-partitioned environment.

In a partitioned environment, some of the physical memory areas are reserved
by several system functions to enable partitioning in the partioning-capable
pSeries server. You can assign unused physical memory to a partition. You do
not have to specify the precise address of the assigned physical memory in the
partition profile, because the system selects the resources automatically.

From the hardware perspective the minimum amount of physical memory for
each partition is 128 MB, but in most cases AIX needs 256 MB of memory. After
that, you can assign further physical memory to partitions in increments of
16 MB.

The AIX VMM manages the logical memory within a partition as it does the real
memory in a stand-alone pSeries server. The hypervisor and the POWER5
processor manage access to the physical memory.

Memory requirements for partitions depend on partition configuration, I/O
resources assigned, and applications used. Memory can be assigned in
increments of 16 MB, 32 MB, 64 MB, 128 MB, and 256 MB. The default memory
block size varies according to the amount of configurable memory in the system ,
as shown in Table 2-1 on page 39.

Important: For Sserver p5 and OpenPower systems, the size of the
minimum logical memory block has been reduced from 256 MB to 16 MB to
facilitate smaller partitions.
38 Partitioning Implementations for IBM Eserver p5 Servers

Table 2-1 Default memory block sizes

The default memory block size can be changed by using the Logical Memory
Block Size option in the Advanced System Management Interface. To change the
default memory block size, you must be a user with administrator authority, and
you must shut down and restart the managed system for the change to take
effect. If the minimum memory amount in any partition profile on the managed
system is less than the new default memory block size, you must also change the
minimum memory amount in the partition profile.

Depending on the overall memory in your system and the maximum memory
values that you choose for each partition, the server firmware must have enough
memory to perform logical partition tasks. Each partition has a Hardware Page
Table (HPT). The size of the HPT is based on an HPT ratio of 1/64 and is
determined by the maximum memory values that you establish for each partition.

Server firmware requires memory to support the logical partitions on the server.
The amount of memory that is required by the server firmware varies according
to several factors. Factors influencing server firmware memory requirements
include:

� Number of logical partitions
� Partition environments of the logical partitions
� Number of physical and virtual I/O devices used by the logical partitions
� Maximum memory values given to the logical partitions

Generally, you can estimate the amount of memory that is required by server
firmware to be approximately eight percent of the system installed memory. The
actual amount that is required will generally be less than eight percent. However,
there are some server models that require an absolute minimum amount of
memory for server firmware, regardless of the previously mentioned
considerations.

Amount of configurable memory Default memory block size

Less than 4 GB 16 MB

Greater than 4 GB, up to 8 GB 32 MB

Greater than 8 GB, up to 16 GB 64 MB

Greater than 16 GB, up to 32 GB 128 MB

Greater than 32 GB 256 MB
 Chapter 2. Partitioning implementation 39

When selecting the maximum memory values for each partition, consider the
following:

� That maximum values affect the HPT size for each partition

� The logical memory map size for each partition

� Using the LPAR Validation Tool to provide the actual memory that is used by
firmware

2.2.4 Physical I/O slots
Physical I/O devices are assignable to partitions on a PCI slot (physical PCI
connector) basis. It is not the PCI adapters in the PCI slots that are assigned as
partition resources, but the PCI slots into which the PCI adapters are plugged.

When using physical I/O devices to install an operating system, you have to
assign at least one, typically an SCSI adapter that is able to boot the operating
system, and an adapter to access the install media. Instead of physical I/O
devices, you can assign a virtual I/O device that behaves like a physical I/O
device.

Once installed, you need at least one physical device adapter that is connected
to the boot disk or disks. For application use and system management purposes,
you also have to assign at least one physical network adapter. You can allocate
physical slots in any I/O drawer on the system.

If you must add physical PCI slots into a running partition, you have two
possibilities:

1. You can run an DLPAR operation from HMC to add or to move an empty PCI
slot to the partition. After successful addition, you will use AIX PCI Hot Plug
Manager to add a PCI Hot Plug Adapter.

2. You can assign more PCI slots than required for the number of adapters in the
partition, even if these PCI slots are not populated with PCI adapters. This
provides you with the flexibility to add PCI adapters into the empty slots of an
active partition, using the PCI Hot Plug insertion and removal capability.

2.2.5 Virtual I/O
Virtual I/O allows the Sserver p5 and OpenPower servers to support more
partitions than it has slots for I/O devices by enabling the sharing of I/O adapters
between partitions.

Note: The Hardware Page Table is created based on the maximum values
that are defined on partition profile.
40 Partitioning Implementations for IBM Eserver p5 Servers

Virtual Ethernet enables a partition to communicate with other partitions without
the need for an Ethernet adapter. A shared Ethernet adapter, supported by the
Virtual I/O Server, allows a shared path to an external network.

Virtual SCSI enables a partition to access block-level storage that is not a
physical resource of that partition. With the Virtual SCSI design, the virtual
storage is backed by a logical volume on a portion of a disk or an entire physical
disk. These logical volumes appear to be the SCSI disks on the client partition,
which gives the system administrator maximum flexibility in configuring partitions.

Virtual SCSI support is provided by a service running in an I/O server that uses
two primitive functions:

� Reliable Command / Response Transport

� Logical Remote DMA to service I/O requests for an I/O client, such that, the
I/O client appears to enjoy the services of its own SCSI adapter

The term I/O server refers to platform partitions that are servers of requests, and
I/O client refers to platform partitions that are clients of requests, usually I/O
operations, that use the I/O server's I/O adapters. This allows a platform to have
more I/O clients than it may have I/O adapters, because the I/O clients share I/O
adapters using the I/O server.

2.2.6 Minimum, desired, and maximum values
In a partition profile, you need to specify three kinds of values for each resource.

For memory, you must specify minimum, desired, and maximum values.

For processor, you define whether you use dedicated or shared processors. If
you chose to use dedicated processor, you can specify minimum, desired, and
maximum values. For shared processors, you need to specify minimum, desired,
and maximum values for both processing units and virtual processors.

For physical and virtual I/O slots, you must specify the required and desired
values.

Note: If you define the maximum value of virtual processors as one, you
cannot obtain processing units over 1.00 to that partition without changing the
maximum value of virtual processors in that parition’s profile on HMC.
 Chapter 2. Partitioning implementation 41

If any of the three types of resources cannot satisfy the specified minimum and
required values, the activation of a partition fails. If the available resources satisfy
all the minimum and required values but do not satisfy the desired values, the
activated partition will get as many of the resources that are available.

The maximum value is used to limit the maximum processor and memory
resources when dynamic logical partitioning operations are performed on the
partition.

2.3 Resource planning using LPAR Validation Tool
The LPAR Validation Tool (LVT) is a tool that helps you to validate the resources
that are assigned to LPARs. The LVT was designed specifically for the latest
Sserver p5 servers. As partitioned environments grow increasingly more
complex, the LVT tool should be your first resource to determine how a system
can be effectively partitioned.

LVT is a Java™-based tool that is loaded on a Microsoft® Windows® 95 or above
workstation with at least 128 MB of free memory. Its footprint on disk, at the time
of the writing of this book, is about 47 MB. It includes an IBM Java Runtime
Environment 1.4. The installation adds an icon to the desktop.

For information, including user’s guide and download information, see:

http://www.ibm.com/servers/eserver/iseries/lpar/systemdesign.htm

During the development of this book, the LVT was receiving regular updates.
Installation only required a couple of minutes, with the most time devoted to
downloading the code. An update, available as a separate file, brings the base
code to the latest level and is significantly smaller in size.

Note: You cannot move or remove an I/O slot if it is defined as required on the
partition profile. First, you must change its state from required to desired. After
that, you must run the AIX rmdev command to remove the PCI slot from the
running operating system.

Note: The maximum memory value also affects the size of the partition page
table.

Note: At the time of the writing of this book, the LVT did not include the
OpenPower models.
42 Partitioning Implementations for IBM Eserver p5 Servers

http://www.ibm.com/servers/eserver/iseries/lpar/systemdesign.htm

2.3.1 System Selection dialog
After the tools are launched, you can create a new configuration or load an
existing one, as shown in Figure 2-5.

Figure 2-5 LPAR Validation Tool, creating a new partition

When you open a new configuration, you select the basic attributes of the
machine that you plan to validate, as shown in Figure 2-6 on page 44.
 Chapter 2. Partitioning implementation 43

Figure 2-6 LPAR Validation Tool, System Selection dialog

Hold your cursor over a field, and additional information is provided, as shown in
Figure 2-7.

Figure 2-7 LPAR Validation Tool, System Selection processor feature selection
44 Partitioning Implementations for IBM Eserver p5 Servers

2.3.2 Memory Specification dialog
After you complete the System Selection fields, you enter the memory
specifications for each of the logical partitions that you previously specified
(Figure 2-8).

Figure 2-8 LPAR Validation Tool, Memory Specifications dialog

As you enter the memory specifications, the unallocated memory and the
amount that is required by the hypervisor are shown. These values increase as
the number of virtual devices defined increase. Internal validation prevents
configurations that do not have enough resource.

This tool answers a common question in planning, “What is the memory usage of
the POWER Hypervisor.”
 Chapter 2. Partitioning implementation 45

2.3.3 LPAR Validation dialog
The final dialog enables you to assign features to the various slots defined, as
shown in Figure 2-9.

Figure 2-9 LPAR Validation Tool, slot assignments

From this screen, you can view a detailed report and select a validation engine to
point out any errors in the configuration. If changes to the memory configuration
are required, you can edit the configuration and change the values in error. When
the configuration has been validated without error, you can feel confident that the
resources that you selected will provide the configuration desired. At this point, if
you choose, you can configure the system in an ordering tool or through a
miscellaneous equipment specification upgrade of an existing machine, with the
additional resources that are required to handle a new LPAR configuration.

2.4 I/O device assignment considerations
With the introduction of the Advanced POWER Virtualization feature, the number
of available I/O options and scenarios has increased considerably. To ensure that
the maximum benefits from all available partition environments are gained from
the implementation or upgrade, you need a greater understanding of the
hardware I/O architectural platform.
46 Partitioning Implementations for IBM Eserver p5 Servers

The hardware limitations of each Sserver p5 and OpenPower server model also
influence aspects of the implementation or upgrade planning.

2.4.1 Media devices
If your installation media is removable media (for example CD-ROM, DVD-RAM,
or 4 mm tape), the corresponding devices should be configured. However, the
configuration of removable media devices depends on the hardware architecture
of Sserver p5 and OpenPower servers as described in this section.

p5-520 and p5-550, OpenPower 720
These servers, including rack-mounted and deskside models, support three
non-hot-swappable media bays which are used to accommodate additional
devices.

Two media bays only accept slim line media devices, such as IDE DVD-ROM
(FC 2640) or DVD-RAM (FC 5751) drives, and one half-height bay can be used
for a tape drive. However, there are several device-reassignment operations that
are required on the HMC in order to use these devices as the installation media
device on these models, if you use the servers in a dedicated partition
environment. You can also configure the following SCSI-attached tape devices
on these models:

� (FC 6120): 8 mm 80/160 GB tape drive
� (FC 6134): 8 mm 60/150 GB tape drive
� (FC 6258): 4 mm 36/72 GB tape drive

p5-570 (Rack-mounted model)
As the hardware design of this server is based on modular building blocks, each
Central Electronics Complex component supports two media bays which accept
the optional slim-line media devices, such as IDE DVD-ROM (feature code (FC
2640) or DVD-RAM (FC 5751) drives.

p5-590 and p5-595
These servers can be configured with an optional storage device enclosure
(FC 7212-102) which is can only be mounted in an 19-inch rack. This enclosure

Note: The maximum number of media devices in a fully configured p5-570 is
eight.
 Chapter 2. Partitioning implementation 47

contains two media bays, which can support any combination of the following
IDE or SCSI devices:

� (FC 1103): DVD-RAM drive
� (FC 1104): 8 mm VXA-2 tape drive
� (FC 1105): 4 mm DAT72 DDS-4 tape drive kit
� (FC 1106): DVD-ROM drive

Each of these servers can be configured with a USB diskette drive (FC 2591),
which can be supported on either an integrated or external USB adapter. A USB
adapter (FC 2738) is required for an external USB port connection.

If your installation media is in the network, one of the following network adapters
must be assigned to the partition:

� Ethernet
� Token ring

2.4.2 Boot device considerations
The following sections describe the boot device considerations for partitions.

Full system partition and dedicated partitions
When implementing either of these partitioning models, each partition requires
its own separate boot device. Therefore, you must assign at least one boot
device and a corresponding adapter per partition. The Sserver p5 and
OpenPower servers support boot devices connected with SCSI, SSA, and Fibre
Channel adapters. Boot over network is also available as an operating system
installation option.

p5-520
Both rack-mounted and deskside models support up to eight internal SCSI disk
drives which are housed in two 4-pack disk bays. In the base configuration, each
4-pack is connected to one of the two ports on the integrated SCSI controller. To
an LPAR, the entire SCSI controller (including all disks attached to both ports)
will be seen as P1-T10, and therefore can only be assigned to one active LPAR
at a time. To provide additional drives for a second LPAR, either virtual I/O or an
optional PCI SCSI adapter feature should be used. The internal disk drive bays

Note: One of the media bays must contain an optical drive.

Note: At the time of the writing of this book, media devices cannot be
virtualized.
48 Partitioning Implementations for IBM Eserver p5 Servers

can be used in two different modes, depending on whether the SCSI RAID
Enablement Card (FC 5709) is installed.

The other partitions must be assigned to the boot adapter and disk drive from the
following options:

� A boot adapter inserted in one of six PCI-X slots in the system. A bootable
external disk subsystem is connected to this adapter.

� A bootable SCSI adapter is inserted in the PCI-X slot 7, or two SCSI
adapters, one in PCI-X slot 5 and PCI-X slot 7 in a 7311-D20 I/O drawer
connected to the system. The adapter(s) is connected to one of a 6-pack of
disk bays of the drawer that houses the boot disk drive.

� A boot adapter inserted in one of seven PCI-X slots in a 7311-D20 I/O drawer
connected to the system. A bootable external disk subsystem is connected to
this adapter.

p5-550 and OpenPower 720
Both rack-mounted and desk-side models support up to eight internal SCSI disk
drives, which are housed in two 4-pack disk bays. To an LPAR, the entire SCSI
controller (including all disks attached to both ports) will be seen as P1-T10, and
therefore can only be assigned to one active LPAR at a time. To provide
additional drives for a second LPAR, either virtual I/O or an optional PCI SCSI
adapter feature should be used. Assigned to this boot adapter, a boot disk drive
must use one of the following options:

� A boot adapter inserted in one of five PCI-X slots in the system. The adapter
could then be connected to the second internal SCSI 4-pack in the system.

� A boot adapter inserted in one of five PCI-X slots in the system. A bootable
external disk subsystem is connected to this adapter.

� A bootable SCSI adapter (which can have various features) is inserted in the
PCI-X slot 7, or two SCSI adapters, one in PCI-X slot 5 and PCI-X slot 7 in a
7311-D20 I/O drawer connected to the system. The adapter(s) is connected
to one of a 6-pack of disk bays of drawer that houses the boot disk drive.

� A boot adapter inserted in one of seven PCI-X slots in a 7311-D20 I/O drawer
connected to the system. A bootable external disk subsystem is connected to
this adapter.

Note: The p5-520 models support up to four 7311-D20 I/O drawers.

Note: The p5-550 and OpenPower 720 models support up to eight 7311-D20
I/O drawers.
 Chapter 2. Partitioning implementation 49

p5-570
Each system drawer can contain up to six internal disks which are housed in one
split 6-pack disk drive bay. These disks are connected to two Ultra320 internal
SCSI controllers with dual ports, allowing each of the 3-packs to be assigned to a
unique partition. Additional partitions must be assigned to the boot adapter and
disk drive from the following options:

� A boot adapter inserted in one of five PCI-X slots in the system. A bootable
external disk subsystem is connected to this adapter.

� 7311-D10, this drawer supports five hot-plug 64-bit 133 MHz 3.3 V PCI-X
slots and one hot-plug 64-bit 33 MHz 5V PCI slot. All slots have the full length,
blind-swap cassette.

� 7311-D11, a boot adapter inserted in one of six PCI-X slots in this drawer
connected to the system. A bootable external disk subsystem can be
connected to this adapter. This drawer supports six hot-plug 64-bit 133 MHz
3.3V PCI-X slots, full length, enhanced blind cassette.

� 7311-D20, a bootable SCSI adapter (which can have various features) is
inserted in the PCI-X slot 7, or two SCSI adapters, one in PCI-X slot 5 and
PCI-X slot 7 in a 7311-D20 I/O drawer connected to the system. The
adapter(s) is connected to one of 6-pack disk bays of drawer that houses the
boot disk drive.

� A boot adapter inserted in one of seven PCI-X slots in a 7311-D20 I/O drawer
connected to the system. A bootable external disk subsystem is connected to
this adapter.

p5-590 and p5-595
Partitions must be assigned to the boot adapter and disk drive from the following
options:

� An internal disk drive inserted in one of the 4-pack disk bays on I/O drawer
and the SCSI controller on the drawer. The 7040-61D I/O drawer (FC 5791)
can have up to 16 internal SCSI disk drives in the four 4-pack disk bays. Each
of the disk bays is connected to a separate internal SCSI controller on the
drawer.

� A boot adapter inserted in one of 20 PCI-X slots in a 7040-61D I/O drawer8
connected to the system. A bootable external disk subsystem is connected to
this adapter.

You should select the adapter of the boot device from the PCI-X slot of the
system or the first I/O drawer if the system is running as a full system partition.

Note: The p5-570 model can support up to a total combination of 20
7311-D10, 7311-D11, and 7311-D20 I/O drawers.
50 Partitioning Implementations for IBM Eserver p5 Servers

The system locates the boot device faster. In a partitioned environment, the
placement of the boot adapter does not affect the boot speed of partition.

The following points apply to the p5-590 and p5-595 models:

� The p5-590 supports up to eight 7040-61D I/O drawers, and the p5-595
supports up to 12. The minimum hardware configurations of these models
require at least one I/O drawer.

� Existing 7040-61D I/O drawers may be attached to a p5-595 server as
additional I/O drawers. Each 16-way processor book includes six Remote
I/O-2 attachment cards for connection of the system I/O drawers.

� The parallel ports on these models are not supported in a partitioned
environment.

Virtual I/O server
The Virtual I/O server complements the Sserver p5 server’s Micro-Partitioning
technology. The need to meet adequately the flexible I/O requirements of up to
254 logical partitions has driven the development of the Virtual SCSI and Virtual
Ethernet. The following sections outlines what effect the Virtual I/O server has on
the boot device capabilities of partitions in the shared resource pool.

Virtual SCSI disks
Virtual SCSI facilitates the sharing of physical disk resources (I/O adapters and
devices) between the VIOS and the client partitions. Partitions must be assigned
a SCSI adapter and disk drive(s) as follows:

� One or more client SCSI adapter(s) from the available candidates on the
HMC.

� One or more logical volumes which appears as a real disk devices (hdisks).

For redundancy and high availability, consider mirroring AIX and Linux partition
operating system disks across multiple virtual disks.

Virtual Ethernet
When installing or maintaining partitions with a Virtual Ethernet adapter, the AIX
Network Installation Manager, Network Installation Manager on Linux, and
Cluster Server Manager application operate in the same manner as they would
with a dedicated Ethernet adapter assigned to the partition(s). Virtual Ethernet
does not require the Virtual I/O server.

Note: Once a virtual disk is assigned to a client partition, the Virtual I/O server
must be available before the client partitions are able to boot.
 Chapter 2. Partitioning implementation 51

2.4.3 Network devices
It is mandatory to assign a network adapter to each partition. In addition to
providing network access to client systems of a partition, the connection is also
needed to provide the capability to manage the operating system and the
applications in the partition remotely, either with a telnet session or a graphical
user interface, such as the Web-based System Manager. An Ethernet network
connection between partitions and the HMC must be available if you want to use
the following services:

� Service Agent
� Service Focal Point
� Inventory Scout
� Dynamic logical partitioning
� Partition Load Manager

These services communicate over the TCP/IP network between the partitions
and the HMC.

2.4.4 Graphics console
If you need direct console access to a partition without using the network, the
partition must be assigned a graphics console. A graphics console is available on
a partition by configuring the following features on the partition:

� A graphics adapter (FC 2849) with a graphics display

� A USB keyboard and mouse adapter (FC 2738) with a USB keyboard and a
USB mouse attached

Only one graphics console is supported per partition. The graphics console is
functional only when AIX is running. For any installation or service processor
support functions, you have to use the virtual terminal function on the HMC.

2.4.5 High availability
You should place redundant devices of a partition in separate I/O drawers, where
possible, for highest availability. For example, if two Fibre Channel adapters
support multipath I/O to one logical unit number, and if one path fails, the device
driver chooses another path using another adapter in another I/O drawer
automatically.

Some PCI adapters do not have enhanced error handling capabilities built in to
their device drivers. If these devices fail, the PCI host bridge in which they are
placed and the other adapters in this PCI host bridge are affected. Therefore, it is
strongly recommended that you place all adapters without enhanced error
52 Partitioning Implementations for IBM Eserver p5 Servers

handling capabilities on their own PCI host bridge and that you do not assign
these adapters on the same PCI host bridge to different partitions.

2.5 LPAR limitations and considerations
Consider the following limitations when implementing shared processor
partitions:

� The limitation for a shared processor partition is 0.1 processing units of a
physical processor. So, the number of shared processor partitions you can
create for a system depends mostly on the number of processors of a system.

� The system architecture is designed to support a maximum number of 254
partitions.

� In a partition, there is a maximum number of 64 virtual processors

� A mix of dedicated and shared processors within the same partition is not
supported.

� If you dynamically remove a virtual processor you cannot specify a particular
virtual CPU to be removed. The operating system will choose the virtual CPU
to be removed.

� Shared processors can make AIX affinity management less effective. AIX
continues to utilize affinity domain information as provided by firmware to
build associations of virtual processors to memory and continues to show
preference to re-dispatching a thread to the virtual CPU that it last ran on.

You should carefully consider the capacity requirements of online virtual
processors before choosing values for their attributes. Virtual processors have
dispatch latency, because they are scheduled. When a virtual processor is made
runnable, it is placed on a run queue by the hypervisor, where it waits until it is
dispatched. The time between these two events is referred to as dispatch latency.

The dispatch latency of a virtual processor depends on the partition entitlement
and the number of virtual processors that are online in the partition. The capacity
entitlement is equally divided amongst these online virtual processors, so the
number of online virtual processors impacts the length of each virtual processor's
dispatch. The smaller the dispatch cycle, the greater the dispatch latency.

At the time of the writing of this book, the worst case virtual processor dispatch
latency is 18 milliseconds, because the minimum dispatch cycle that is supported
at the virtual processor level is one millisecond. This latency is based on the
minimum partition entitlement of 1/10 of a physical processor and the 10
millisecond rotation period of the hypervisor's dispatch wheel. It can be easily
visualized by imagining that a virtual processor is scheduled in the first and last
 Chapter 2. Partitioning implementation 53

portions of two 10 millisecond intervals. In general, if these latencies are too
great, then clients may increase entitlement, minimize the number of online
virtual processors without reducing entitlement, or use dedicated processor
partitions.

In general, the value of the minimum, desired, and maximum virtual processor
attributes should parallel those of the minimum, desired, and maximum capacity
attributes in some fashion. A special allowance should be made for uncapped
partitions, because they are allowed to consume more than their entitlement.

If the partition is uncapped, then the administrator may want to define the desired
and maximum virtual processor attributes x percent above the corresponding
entitlement attributes. The exact percentage is installation specific, but 25 to 50
percent is a reasonable number.

Table 2-2 lists several reasonable settings of number of virtual processor,
processing units, and the capped and uncapped mode.

Table 2-2 Reasonable settings for shared processor partitions

a - Virtual processors
b - Processing units

Operating systems and applications that are running in shared partitions need
not be aware that they are sharing processors. However, overall system
performance can be significantly improved by minor operating system changes.
AIX 5L Version 5.3 provides support for optimizing overall system performance of
shared processor partitions.

In a shared partition, there is not a fixed relationship between the virtual
processor and the physical processor. The hypervisor tries to use a physical
processor with the same memory affinity as the virtual processor, but it is not
guaranteed. Virtual processors have the concept of a home physical processor. If
it cannot find a physical processor with the same memory affinity, then it
gradually broadens its search to include processors with weaker memory affinity,
until it finds one that it can use. As a consequence, memory affinity is expected to
be weaker in shared processor partitions.

Min VPsa Desired VPs Max VPs Min PUb Desired PU Max. PU Capped

1 2 4 0.1 2.0 4.0 Y

1 3 or 4 6 or 8 0.1 2.0 4.0 N

2 2 6 2.0 2.0 6.0 Y

2 3 or 4 8 or 10 2.0 2.0 6.0 N
54 Partitioning Implementations for IBM Eserver p5 Servers

Workload variability is also expected to be increased in shared partitions,
because there are latencies associated with the scheduling of virtual processors
and interrupts. SMT may also increase variability, because it adds another level
of resource sharing, which could lead to a situation where one thread interferes
with the forward progress of its sibling.

Therefore, if an application is cache sensitive or cannot tolerate variability, then it
should be deployed in a dedicated partition with SMT disabled. In dedicated
partitions, the entire processor is assigned to a partition. Processors are not
shared with other partitions, and they are not scheduled by the hypervisor.
Dedicated partitions must be explicitly created by the system administrator using
the HMC.

Processor and memory affinity data is only provided in dedicated partitions. In a
shared processor partition, all processors are considered to have the same
affinity. Affinity information is provided through RSET APIs, which contain
discovery and bind services.
 Chapter 2. Partitioning implementation 55

56 Partitioning Implementations for IBM Eserver p5 Servers

Chapter 3. Basic partition management

This chapter describes the tools used to configure and control Sserver p5
systems and includes the following sections:

� 3.1, “Hardware Management Console” on page 58
� 3.2, “Advanced System Management Interface” on page 64
� 3.3, “Resetting a server” on page 69
� 3.4, “Partition Load Manager” on page 71

3

© Copyright IBM Corp. 2003, 2004, 2005. All rights reserved. 57

3.1 Hardware Management Console
In order to configure and administer a partioning-capable pSeries server, you
must attach at least one IBM Hardware Management Console (HMC) for pSeries
to the system. You can find a general overview of HMC in 1.4, “IBM Hardware
Management Console” on page 11.

One HMC is capable of controlling multiple pSeries servers. At the time of the
writing of this book, a maximum of 32 non-clustered pSeries servers and a
maximum of 254 partitions are supported by one HMC. You can add a second
redundant HMC to the configuration.

You can add, remove, or move resources between partitions. When moving
resources in partitions, you can use the Resource Monitoring and Controlling
infrastructure to provide a secure and reliable connection channel between the
HMC and the partitions. This connection channel is configured automatically by
the HMC and by each AIX partition when the AIX partition is started. The HMC
uses the open network LAN connection for this connection channel.

POWER5 processor-based system HMCs require Ethernet connectivity.
Sufficient Ethernet adapters must be available to enable public and private
networks if you need both.

The 7310 Model C04 is a desktop model with one native 10/100/1000 Ethernet
port, two additional PCI slots for additional Ethernet adapters, two PCI-Express
slots, and six USB ports.

The 7310 Model CR3 is a 1U, 19-inch rack-mountable drawer that has two native
Ethernet ports, two additional PCI slots for additional Ethernet adapters, and
three USB ports.

When an HMC is connected to Sserver p5 systems, the p5-570 integrated
serial ports are disabled. If you need serial connections, for example for a
non-Ethernet HACMP heartbeat, you must provide an async adapter.

To extend this functionality, you can use:

� Another HMC for remote access. This remote HMC must have a network
connection to the HMC, which is connected to the servers (see Figure 3-1 on
page 59).

Note: It is not possible to connect POWER4 and POWER5 processor-based
systems to the same HMC simultaneously.
58 Partitioning Implementations for IBM Eserver p5 Servers

� An AIX 5L Web-based System Manager client to connect to the HMC over the
network or the Web-based System Manager PC client, which runs on a
Windows or Linux operating systems.

Figure 3-1 Dual HMC configuration

The resources that the HMC manipulates are I/O devices and slots, memory, and
processors.

This book does not discuss how to create a basic partition and the full range of
functions.

3.1.1 Managing I/O devices and slots
Logical partitions can have desired or required I/O devices or slots. When you
specify that an I/O device or slot is desired (or shared), either the I/O device or
slot is meant to be shared with other logical partitions or the I/O device or slot is
optional. When you specify that an I/O device or slot is required (or dedicated),
then you cannot activate the logical partition if the I/O device or slot is unavailable
or in use by another logical partition.
 Chapter 3. Basic partition management 59

In Figure 3-2 and Figure 3-3 on page 61, the virtual adapters are examined.

Figure 3-2 DLPAR Virtual Adapter menu

Note: If resources are moved dynamically, the configuration change is
temporary and is not reflected in the partition profile. Thus, all configuration
changes are lost the next time that you activate the partition profile. If you want
to save your new partition configuration, you must change the partition profile.
60 Partitioning Implementations for IBM Eserver p5 Servers

Figure 3-3 Virtual Adapter capabilities

3.1.2 Managing memory
Memory in each logical partition operates within its assigned minimum and
maximum values. The full amount of memory that you assign to a logical partition
might not be available for the partition's use. Static memory overhead that is
required to support the assigned maximum memory affects the reserved or
hidden memory amount. This static memory overhead also influences the
minimum memory size of a partition (see Figure 3-4 and Figure 3-5 on page 62).

Figure 3-4 Move memory resources - step 1
 Chapter 3. Basic partition management 61

Figure 3-5 Move memory resources - step 2

3.1.3 Managing processing power
The ability to move processor capacity dynamically becomes important when you
need to adjust to changing workloads. You can move processing capacity based
on the desired, minimum, and maximum values that you created for the profile.
The desired processing value that you establish is the amount of processing
resources that you get if you do not overcommit the processing capacity. The
minimum and maximum values enable you to establish a range within which you
can move the processors dynamically.

For both shared and dedicated processors, you can specify a minimum value that
is equal to the minimum amount of processing capacity that you need to support
the logical partition. The maximum value must be less than the amount of
processing capacity that is available on the system (see Figure 3-6 on page 63
and Figure 3-7 on page 63).
62 Partitioning Implementations for IBM Eserver p5 Servers

Figure 3-6 Move processor resources

Figure 3-7 Move processing units
 Chapter 3. Basic partition management 63

3.1.4 Scheduling movement of resources
You can schedule the dynamic movement of resources to and from logical
partitions that are running on your managed system. When this procedure is
completed, the managed system is set to perform the dynamic logical partitioning
task at the date and time that you specify. You can set the managed system to
add resources to a logical partition, remove resources from a logical partition, or
move resources from one logical partition to another.

You can schedule the movement of memory and of dedicated processors. (You
are not able to schedule the movement of shared processors.)

For more information about dynamic resources, see Chapter 5, “Dynamic logical
partitioning” on page 139.

3.2 Advanced System Management Interface
The Advanced System Management Interface (ASMI) is the interface to the
service processor that is required to perform general and administrator-level
service tasks, such as reading service processor error logs, reading vital product
data, setting up the service processor, and controlling the system power. You can
access the ASMI through a Web browser, an ASCII console, or the HMC.

This interface is accessible using a Web browser on a client system that is
connected to the service processor on an Ethernet network. You can also access
it using a terminal that is attached to a serial port on the server.

This section covers two important system management topics in detail: network
configuration and power/restart control.

With the system in power standby mode, or with an operating system in control of
the machine or controlling the related partition, the service processor is working
and checking the system for errors, ensuring the connection to the HMC for
manageability purposes.

When the system status is standby, the service processor provides a System
Management Interface (that you can access by pressing any key on an attached
serial console keyboard, or the ASMI using a Web browser on a client system
that is connected to the service processor on an Ethernet network.

The service processor and the ASMI are standard on all Sserver p5
processor-based hardware. Both system management interfaces require you to
enter the general or admin ID password. They also allow you to set flags that
affect the operation of the system according to the provided password (such as
auto power restart), to view information about the system (such as the error log
64 Partitioning Implementations for IBM Eserver p5 Servers

and virtual product data) and the network environment access setup, and to
control the system power.

3.2.1 Accessing the ASMI using a Web browser
The ASMI requires password authentication and provides a Web connection to
the service processor over the Ethernet using the secure sockets layer (SSL). To
establish an SSL connection, open your browser using https://.

Supported browsers are Netscape (version 7.1), Internet Explorer (version 6.0),
and Opera (version 7.23). Later versions of these browsers are not supported.
JavaScript and cookies must be enabled.

The browser-based ASMI is available during all phases of the system operation,
including initial program load (IPL) and run time. Some menu options are blocked
during the system IPL or run time to prevent usage or ownership conflicts if
corresponding resources are in use during that phase.

If accessed on a terminal, ASMI is only available if the system is powered off.

All requested input must be provided in English-language characters regardless
of the language selected to view the interface.

3.2.2 Accessing the ASMI using the HMC
To access the ASMI using the HMC, following these steps:

1. In the navigation area, expand the managed system with which you want to
work.

2. Expand Service Applications and click Service Focal Point.

3. In the content area, click Service Utilities.

4. From the Service Utilities window, select the managed system with which you
want to work.

5. From the Selected menu on the Service Utilities window, select Launch ASM
menu.

3.2.3 Network configuration
You can initialize network addresses and attributes for the managed system with
the ASMI using the following techniques:

� Dynamic configuration, using DHCP
� Manual configuration, if a specific address is required
 Chapter 3. Basic partition management 65

Figure 3-8 ASMI network configuration, powered on

Note: You can only use the ASMI to configure these network attributes when
the system is powered off (see Figure 3-8 and Figure 3-9).
66 Partitioning Implementations for IBM Eserver p5 Servers

Figure 3-9 ASMI network configuration

3.2.4 Service processor
The service processor has a permanent firmware boot side, or A side, and a
temporary firmware boot side, or B side. You should install new levels of firmware
on the temporary side first in order to test the update’s compatibility with your
applications. When the new level of firmware has been approved, you can copy it
to the permanent side.

With the system running, the service processor provides the ability to view and
change the power-on settings using the ASMI. Also, the surveillance function of
the service processor is monitoring the operating system to confirm that it is still
running and has not stalled.

3.2.5 Power/Restart control
You can start and shut down the system in addition to setting IPL options. In
ASMI, you can view and change the following IPL options:

� System boot speed

Fast or Slow. Fast boot results in skipped diagnostic tests and shorter
memory tests during the boot.
 Chapter 3. Basic partition management 67

� Firmware boot side for next boot

Permanent or Temporary. Firmware updates should be tested by booting from
the temporary side before being copied into the permanent side.

� System operating mode

Manual or Normal. Manual mode overrides various automatic power-on
functions, such as auto-power restart, and enables the power switch button.

� AIX/Linux partition mode boot (available only if the system is not managed by
the HMC)

Service mode boot from saved list. This is the preferred way to run concurrent
AIX diagnostics

Service mode boot from default list. This is the preferred way to run
stand-alone AIX diagnostics

� Boot to open firmware prompt

Boot to System Management Service (SMS) to further select the boot devices
or network boot options.

� Boot to server firmware

Select the state for the server firmware: Standby or Running. When the server
is in the server firmware standby state, partitions can be set up and activated.

Refer to Figure 3-10 on page 69 for an example of the power control modes.
68 Partitioning Implementations for IBM Eserver p5 Servers

Figure 3-10 ASMI, Power On/Off System

3.3 Resetting a server
If you need support for an adapter that does not use extended error handling
(EEH), and there is no possible solution to obtain EEH support for it or to provide
an alternative hardware solution, there might be no other choice than to reset
your server to the factory settings if the adapter is supported in this mode. This is
also the case if you no longer wish to manage a system with an HMC.

This section describes how to reset a server in both of these cases.

3.3.1 EEH adapters and partitioning
Currently, you can order POWER5-based systems only with adapters that
support EEH. Support of a non-EEH adapter (OEM adapter) is only possible
when the system has not been configured for partitioning. This is the case when
a new system is received, for example, and it is in full system partition which you

Note: The p5-590 and p5-595 must be managed by an HMC.
 Chapter 3. Basic partition management 69

plan to use without an HMC. EEH is disabled for that adapter upon system
initialization.

When the platform is prepared for partitioning or is partitioned, the hypervisor
prevents disabling EEH upon system initialization. Firmware in the partition
detects any non-EEH device drivers that are installed and that are not
configured. Therefore, all adapters in Sserver p5 systems must be EEH
capable in order to be used by a partition. This applies to I/O installed in I/O
drawers attached to a Sserver p5 system and I/O installed in planar adapter
slots found in Sserver p5 system units.

You do not need to actually create more than a single partition to put the platform
in a state where the hypervisor considers it to be partitioned. The platform
becomes partitioned (in general, but also in specific reference to EEH enabled by
default) as soon as you attach an HMC and perform any function that relates to
partitioning. Simple hardware service operations do not partition the platform, so
it is not simply connecting an HMC that has this affect. However, modifying any
platform attributes that are related to partitioning (such as booting under HMC
control to only PHYP standby and suppressing autoboot to the preinstalled
operating system partition) results in a partitioned platform, even if you do not
actually create additional partitions.

All Sserver p5 platform IO slots (Sacs and drawers) are managed the same
with respect to EEH. To return a system to a non-partitioned state, you must
perform a reset.

3.3.2 Restoring a server to factory settings
You can reset a server to the factory default settings. It is recommended that you
perform this task only when directed to do so by your service provider.

Resetting a server results in the loss of all system settings (such as the HMC
access and ASMI passwords, time of day, network configuration, and hardware
de configuration policies) that you may have set through user interfaces. Also,
you lose the system error logs and partition-related information.

To reset a server, your authority level must be one of the following:

� Administrator

Attention: Before resetting a server, make sure that you have manually
recorded all settings that you need to preserve. You can reset a server only if
the identical level of firmware exists on both the permanent firmware boot
side, also known as the P side, and the temporary firmware boot side, also
known as the T side.
70 Partitioning Implementations for IBM Eserver p5 Servers

� Authorized service provider

To restore server settings to factory settings, do the following:

1. On the ASMI Welcome pane, specify your user ID and password, and click
Log In.

2. In the navigation area, expand System Service Aids.

3. Select Factory Configuration.

4. Select the options that you want to restore to factory settings.

5. Click Continue. The service processor reboots.

3.4 Partition Load Manager
The Partition Load Manager (PLM) is a utility that can redistribute processors
and memory resources automatically between partitions that are running AIX 5L
Version 5.3. The PLM server monitors the processor and memory load in the
managed partitions using the AIX Resource Management and Control
subsystem. Based on an administrator defined policy, the PLM server
orchestrates the movement of processor and memory resources between the
partitions by communicating with the Resource Management and Control client
and the HMC.

The PLM software is part of the Advanced POWER Virtualization feature on
Sserver p5 servers and helps you maximize the dynamic utilization of
processor and memory resources of partitions.

PLM provides automated processor and memory resource management across
DLPAR capable logical partitions running AIX 5L. PLM allocates resources to
partitions on-demand, within the constraints of a user-defined policy. Partitions
with a high demand for resources are given resources from partitions with a
lower demand, improving the overall resource utilization of the system.
Resources that would otherwise be unused, if left allocated to a partition that was
not utilizing them, can now be used to meet resource demands of other partitions
in the same system. Figure 3-11 on page 72 shows how PLM functionality can
improve partition resource utilization.
 Chapter 3. Basic partition management 71

Figure 3-11 Partition Load Manager functionality

PLM uses a client-server model to report and manage resource utilization. The
clients, or managed partitions, notify the PLM server when resources are either
not used enough or are overused. Upon notification of one of these events, the
PLM server makes resource allocation decisions based on a user-defined
resource management policy. This policy determines how much of the available
resources are to be allocated to each partition.

PLM works much like any other system management software in that it allows
you to view the resources across your partitions, group those resources into
manageable chunks, allocate and reallocate those resources within or across the
groups, and maintain local logs of activity on the partitions.

PLM is a resource manager that assigns and moves resources based on defined
policies and utilization of the resources. PLM manages memory, both dedicated
processors and partitions, using Micro-Partitioning technology to readjust the
resources. This adds additional flexibility on top of the micro-partitions flexibility
that is added by the hypervisor.

PLM, however, has no knowledge about the importance of a workload running in
the partitions and cannot re-adjust priority based on the changes of types of
workloads. PLM does not manage Linux and i5/OS partitions. Figure 3-12 on
page 73 shows a comparison of features between PLM and the hypervisor.
72 Partitioning Implementations for IBM Eserver p5 Servers

Figure 3-12 Comparison of features of PLM and hypervisor

PLM is set up in a partition or on another system running AIX 5L Version 5.2 ML4
or AIX 5L Version 5.3. Linux for PLM and the clients is not available. You can
have other installed applications on the partition or system running PLM as well.
A single instance of PLM can only manage a single server.

To configure PLM, you can use the command line interface or the Web-based
System Manager for graphical setup.

Figure 3-13 on page 74 shows an overview of the components of PLM.

POWER4 PLM automates DLPAR adjustment for P4 install base X

POWER5 X X

AIX 5.2 PLM runs on AIX 5.2 on P4 and P5 systems (through PRPQ) X

AIX 5.3 X X

pLinux X

Dedicated PLM runs on AIX 5.2 and/or P4 systems X

Capped shared X

Uncapped shared X X

Virtual processor minimization for efficiency X

Virtual processor adjustment for physical processor growth X

Share-based X

Minimum and maximum entitlements X

Entitlement-based X X

Goal-based

Application/middleware instrumentation required

Multiple management domains on a single CEC X

Cross platform (CEC)

Simple administration X X

Centralized LPAR monitoring (PLM command provides usage stats) X

TOD-driven policy adjustment (PLM command supports new policy load based as TOD) X

Administration

Virtual Processor
Management

Physical Memory
Management

Management Policy

Management Domains

HW Support

OS Support

Physical Processor
Management

PLM Differentiation Capability PLM P5
PHYP
 Chapter 3. Basic partition management 73

Figure 3-13 PLM overview

The policy file defines managed partitions, their entitlements, and their
thresholds and organizes the partitions into groups. Every node managed by
PLM must be defined in the policy file along with several associated attribute
values:

� Optional maximum, minimum, and guaranteed resource values
� The relative priority or weight of the partition
� Upper and lower load thresholds for resource event notification

For each resource (processor and memory), the administrator specifies an upper
and a lower threshold for which a resource event should be generated. You can
also choose to manage only one resource.

Partitions that have reached an upper threshold become resource requesters.
Partitions that have reached a lower threshold become resource donors. When a
request for a resource is received, it is honored by taking resources from one of
three sources when the requester has not reached its maximum value:

� A pool of free, unallocated resources
� A resource donor
� A lower priority partition with excess resources over entitled amount
74 Partitioning Implementations for IBM Eserver p5 Servers

As long as there are resources available in the free pool, they are given to the
requester. If there are no resources in the free pool, the list of resource donors is
checked. If there is a resource donor, the resource is moved from the donor to
the requester. The amount of resource moved is the minimum of the delta values
for the two partitions, as specified by the policy. If there are no resource donors,
the list of excess users is checked.

When determining if resources can be taken from an excess user, the weight of
the partition is determined to define the priority. Higher priority partitions can take
resources from lower priority partitions. A partition's priority is defined as the ratio
of its excess to its weight, where excess is expressed with the formula (current
amount - desired amount) and weight is the policy-defined weight. A lower value
for this ratio represents a higher priority. Figure 3-14 shows an overview of the
process for partitions.

Figure 3-14 PLM resource distribution for partitions

In Figure 3-14, all partitions are capped partitions. LPAR3 is under heavy load
and over its high processor average threshold value becoming a requestor.
There are no free resources in the free pool and no donor partitions available.
PLM then checks the excess list to find a partition that has resources allocated
over its guaranteed value and with a lower priority. Calculating the priority, LPAR1
has the highest ratio number and therefore the lowest priority. PLM de-allocates
resources from LPAR1 and allocates them to LPAR3.
 Chapter 3. Basic partition management 75

If the request for a resource cannot be honored, it is queued and re-evaluated
when resources become available. A partition cannot fall below or rise above its
maximum definition for each resource.

The policy file, once loaded, is static and has no knowledge of the nature of the
workload on the managed partitions. A partition's priority does not change with
the arrival of high priority work. The priority of partitions can only be changed by
an action external to PLM by loading a new policy.

PLM handles memory and both types of processor partitions (dedicated and
shared processor). All the partitions in a group must be of the same processor
type.

3.4.1 Managing memory
PLM manages memory by moving logical memory blocks across partitions. To
determine when there is demand for memory, PLM uses two metrics:

� Utilization percentage (ratio of memory in use to available memory)
� The page replacement rate

For workloads that result in significant file caching, the memory utilization on AIX
can never fall below the specified lower threshold. With this type of workload, a
partition can never become a memory donor, even if the memory is not currently
being used.

In the absence of memory donors, PLM can only take memory from excess
users. Because the presence of memory donors cannot be guaranteed and is
unlikely with some workloads, memory management with PLM may only be
effective if there are excess users present. One way to ensure the presence of
excess users is to assign each managed partition a low guaranteed value, such
that it will always have more than its guaranteed amount. With this sort of policy,
PLM can redistribute memory to partitions based on their demand and priority.

3.4.2 Managing processors
For dedicated processor partitions, PLM moves physical processors, one at a
time, from partitions that are not using them to partitions that have demand for
them. This movement enables dedicated processor partitions that are running
AIX 5L Version 5.2 and AIX 5L Version 5.3 to better use their resources. If one
partition needs more processor capacity, PLM automatically moves processors
from a partition that has idle capacity.

For shared processor partitions, PLM manages the entitled capacity and the
number of virtual processors for capped or uncapped partitions. When a partition
has requested more processor capacity, PLM increases the entitled capacity for
76 Partitioning Implementations for IBM Eserver p5 Servers

the requesting partition if additional processor capacity is available. For
uncapped partitions, PLM can increase the number of virtual processors to
increase the partition's potential to consume processor resources under high
load conditions. Conversely, PLM also decreases entitled capacity and the
number of virtual processors under low-load conditions to more efficiently use
the underlying physical processors.

With the goal of maximizing a partition's and the system's ability to consume
available processor resources, the administrator now can:

1. Configure partitions that have high workload peaks as uncapped partitions
with a large number of virtual processors. This approach has the advantage
of allowing these partitions to consume more processor resource when it is
needed and available, with very low latency and no dynamic reconfiguration.
For example, consider a 16-way system that uses two highly loaded partitions
that are configured with eight virtual processors each, in which case, all
physical processors could have been fully used. The disadvantage of this
approach is that when these partitions are consuming at or below their
desired capacity, there is an overhead that is associated with the large
number of virtual processors defined.

2. Use PLM to vary the capacity and number of virtual processors for the
partitions. This approach has the advantages of allowing partitions to
consume all of the available processor resource on demand, and it maintains
a more optimal number of virtual processors. The disadvantage to this
approach is that since PLM performs dynamic reconfiguration operations to
shift capacity to and from partitions, there is a much higher latency for the
reallocation of resources. Though this approach offers the potential to more
fully use the available resource in some cases, it significantly increases the
latency for redistribution of available capacity under a dynamic workload,
because dynamic reconfiguration operations are required.

3.4.3 Limitations and considerations
Consider the following limitations when managing your system with PLM:

� You can use PLM in partitions that are running AIX 5L Version 5.2 ML4 or AIX
5L Version 5.3. Linux or i5OS support is not available.

� A single instance of PLM can only manage a single server. However, you can
run multiple instances of PLM on a single system, each managing a different
server.

� PLM cannot move I/O resources between partitions. Only processor and
memory resources can be managed by PLM.

� PLM requires HMC Release 3 Version 2.6 or higher on an HMC and a
Sserver p5 system.
 Chapter 3. Basic partition management 77

3.4.4 Installing Partition Load Manager
To install PLM, complete the following steps:

1. Mount the PLM CD to your system.

2. Using either the installp command or the smitty install_latest fastpath, install
the following filesets:

– plm.server
– plm.sysmgt

3. When PLM is installed, install and configure OpenSSH.

4. Run plmsetup for the managed partitions.

3.4.5 Querying partition status
Any user can run the xlplm command to obtain status information for running
instances of PLM. To query the status of all running instances of PLM, type the
following command:

xlplm -Q

A list of the instances that are running is displayed (see Figure 3-15). If there are
no instances running, no output is displayed.

Figure 3-15 PLM, Show LPAR Statistics

You can allocate resources to specific partitions and even reserve resources for
specific partitions regardless of when those partitions will use the resources. The
xlplm -R command allows you to reserve and allocate resources from a group of
managed partitions. Those resources that are reserved can be used to create a
78 Partitioning Implementations for IBM Eserver p5 Servers

new unmanaged partition or to make room for a new partition to enter the
managed group.

Reserved resources will not be allocated to any existing partition in a group
unless they are first released. If a previously offline partition comes online and
enters a managed group, any reserved resources within that group are removed
automatically from the collection of reserved resources, called the free pool, and
are assigned to the new partition. If the reserved resources are used instead to
create a new, unmanaged partition, they can be released back to the group after
the new partition has booted and can then be reclaimed automatically by the
managed group if they later become available and are needed.

The requested reservation amount is absolute, so a reserve command can result
in either a reserve or a release, depending on the current reservation amount.
The minimum allowed changes in the reservation amounts are:

� 1 MB for memory
� 1 processor unit for a dedicated processor group
� 0.01 processor unit for a share processor group

When you reserve resources, the free pool for the target group is first checked for
available resources. If the free pool has enough resources to satisfy the request,
the requested amount is removed from the free pool. If the free pool does not
have enough resources to satisfy the request, resources are taken from one or
more partitions with the lowest workload or the least need for the resources. A
reservation request fails if the requested amount is more than the minimum that
is allowed for the group.

3.4.6 Managing memory resource requests
The following is an example of how to use PLM to manage memory resource
requests. This example shows how PLM responds to memory resource requests
between two partitions:

The two partitions, LP0 and LP1, have these attributes:

LP0: Minimum = 1024 MB
Guaranteed = 1024 MB
Maximum = 4096 MB
Weight = 2
Current Entitlement = 1024 MB

LP1: Minimum = 1024 MB
Guaranteed = 1024 MB
Maximum = 4096 MB
Current Entitlement = 1024 MB
Weight = 1
 Chapter 3. Basic partition management 79

The total amount of memory that the PLM manages is 5120 MB. With each
partition's current memory allocation, shown as Current Entitlement = 1024 MB,
that leaves 3072 MB that the PLM assumes is unallocated and available.

If both partitions become loaded in terms of memory use, then events that
demand more memory resources are generated and sent to the PLM server. For
each event received, PLM tags the partition as a taker. At the same time, PLM
checks whether the partition is currently using more than its guaranteed amount.
If so, the partition is tagged as an excess user. Because there are available
resources, PLM satisfies the request immediately and allocates memory in the
amount of mem_increment (defined either in the PLM policy or by the internal
default value) to the partition from the available memory. After the available
memory is depleted, the new entitlement allocations are:

LP0: Current Entitlement = 2560 MB

LP1: Current Entitlement = 2560 MB

Even with the current allocations, the partitions continue to generate events that
demand more memory resources.

For each event, PLM continues to tag the partition as a taker and excess user
because the partition has more resources allocated than are shown as its
guaranteed entitlement. However, because there are no available resources, the
request is queued if there are no other resource donors or any other excess
users. When the request from the second partition is received, it is also marked
as a taker and an excess user. Because there is an excess user already queued,
PLM can satisfy the resource request.

Because both LP0 and LP1 are takers and excess users, PLM uses the weight
that is associated with each as the determining factor of how the extra
entitlement (the sum of the current entitlement for each partition minus the sum
of each partition's guaranteed allotment) will be distributed between the two
partitions.

In this example, of the extra 3072 MB, the LP0 partition should be allocated
2048 MB and the LP1 partition should be allocated 1024 MB. PLM assigns the
mem_incrememt MB of memory from the LP1 partition to the LP0 partition.

With constant memory requests from each partition, PLM eventually distributes
the memory so that current entitlements become the following:

LP0: Current Entitlement = 3072 MB

LP1: Current Entitlement = 2048 MB
80 Partitioning Implementations for IBM Eserver p5 Servers

3.4.7 Processor resources in a shared partition environment
The following example describes how PLM manages processor resources in a
shared partition environment. The two partitions are configured as follows:

LP0: Minimum = 0.1
Guaranteed = 0.5
Maximum = 2.0
Max entitlement per virtual processor = 0.8
Weight = 3
Current entitlement = 0.1
Current number of virtual processors = 1

LP1: Minimum = 0.1
Guaranteed = 0.5
Maximum = 2.0
Max entitlement per virtual processor = 0.8
Weight = 1
Current entitlement = 0.1
Current number of virtual processors = 1

The total amount of processor entitlement managed by PLM is 2.0. The amount
that is currently allocated to each partition, 0.1, leaves 1.8 of unallocated
processor entitlement that PLM can distribute.

If both partitions begin running processor-intensive jobs, they request more
processor entitlement by sending requests to PLM. PLM then tags the
demanding partitions as takers and as excess users if the current entitlement is
above its guaranteed value.

In addition to managing processor entitlement, PLM also manages the number of
virtual processors. When either partition's current entitlement exceeds 0.8, a
virtual processor is also added.

In this example, PLM assigns the available entitlement until the partitions reach
the following state:

LP0: Current entitlement = 1.0
Current number of virtual processors = 2

LP1: Current entitlement = 1.0
Current number of virtual processors = 2

If the partitions continue to demand more resource, then PLM redistributes the
assigned entitlement based on the weight and excess entitlement. In this
example, between the LP0 partition and the LP1 partition, the total excess
amount is 1.5. Because LP0 has a weight of 3 and LP1 has a weight of 1, PLM
removes processor entitlement from the LP1 partition and reassigns it to the LP0
 Chapter 3. Basic partition management 81

partition. If both partitions remain busy, then the resource allocation becomes the
following:

LP0: Current entitlement = 1.25
Current number of virtual processors = 2

LP1: Current entitlement = 0.75
Current number of virtual processors = 2
82 Partitioning Implementations for IBM Eserver p5 Servers

Chapter 4. Virtualized resource
management

This chapter provides detailed information about the new features and their
capabilities that are available in IBM ̂p5 servers. It discusses the
following topics:

� 4.1, “Micro-Partitioning technology” on page 84
� 4.2, “Advanced Virtualization” on page 97
� 4.3, “Introduction to Virtual I/O Server” on page 104
� 4.4, “Virtual I/O Server and virtualization configuration” on page 117

If you are a system administrator who has responsibility for configuration and
management of POWER5-based servers with these advanced capabilities, it is
imperative that you become familiar with the aspects that this chapter describes
before you run the system with these features enabled.

4

© Copyright IBM Corp. 2003, 2004, 2005. All rights reserved. 83

4.1 Micro-Partitioning technology
Micro-Partitioning technology allows the resource definition of a partition to
allocate fractions of processors to the partition. On POWER4 systems, all
partitions are considered dedicated. The processors that are assigned to a
partition can only be in whole multiples and only used by that partition. On
POWER5 systems, you can choose between dedicated processor partitions and
shared processor partitions using Micro-Partitioning technology. You can have
both dedicated and shared processor partitions running on the same system at
the same time. At the time of the writing of this book, you can have only one
shared processor pool per system.

Micro-Partitioning technology allows for increased overall use of system
resources by applying automatically only the required amount of processor
resources that each partition needs. Resources can also be defined as
increments greater than a single processor.

The hypervisor continually adjusts the amount of processor capacity that is
allocated to each shared processor partition and any excess capacity that is
unallocated based on current partition profiles within a shared pool. Tuning
parameters allow the administrator extensive control over the amount of
processor resources that each partition can use.

This section discusses the following topics of Micro-Partitioning technology:

� “Shared processor partitions” on page 84
� “Processing units of capacity” on page 86
� “Capped and uncapped mode” on page 88
� “Virtual processors” on page 89
� “Dedicated processors” on page 91
� “Capped and uncapped processing units” on page 93
� “Dynamic processor deallocation and sparing” on page 96

4.1.1 Shared processor partitions
The virtualization of processors enables the creation of a partitioning model
which is fundamentally different from the POWER4 systems where whole
processors are assigned to partitions and are owned by them. In the new model,
physical processors are abstracted into virtual processors that are then assigned
to partitions. However, the underlying physical processors are shared by these
partitions.

Virtual processor abstraction is implemented in the hardware and microcode.
From an operating system perspective, a virtual processor is indistinguishable
from a physical processor. The key benefit of implementing partitioning in the
84 Partitioning Implementations for IBM Eserver p5 Servers

hardware allows any operating system to run on POWER5 technology with little
or no changes. Optionally, for optimal performance, the operating system can be
enhanced to exploit shared processor pools more in-depth (for instance, by
voluntarily relinquishing processor cycles to the hardware when they are not
needed). AIX 5L Version 5.3 is the first version of AIX 5L that includes such
enhancements.

Figure 4-1 Create Logical Partition Profile - shared processors

Micro-Partitioning technology allows for multiple partitions to share one physical
processor. Partitions using Micro-Partitioning technology are referred to as
shared processor partitions.

A partition may be defined with a processor capacity as small as 10 processor
units. This represents 1/10 of a physical processor. Each processor can be
shared by up to 10 shared processor partitions. The shared processor partitions
are dispatched and time-sliced on the physical processors that are under control
of the hypervisor.

Micro-Partitioning technology is supported across the entire POWER5 product
line from the entry-level to the high-end systems. Table 4-1 on page 86 shows
the maximum number of logical partitions and shared processor partitions of the
different models.
 Chapter 4. Virtualized resource management 85

Table 4-1 Micro-Partitioning technology overview on Sserver p5 systems

Shared processor partitions still need dedicated memory, but the partition I/O
requirements can be supported through Virtual Ethernet and Virtual SCSI. Using
all virtualization features, up to 254 shared processor partitions are supported in
p5-590 and p5-595 systems.

The shared processor partitions are created and managed by the HMC. When
you start creating a partition, you have to choose between a shared processor
partition and a dedicated processor partition (see Figure 4-1 on page 85).

When setting up a partition, you have to define the resources that belong to the
partition, such as memory and IO resources. For shared processor partitions you
have to configure the following additional options:

� Minimum, desired, and maximum processing units of capacity.

� The processing sharing mode to capped or uncapped. If the partition is
uncapped, you must set its variable capacity weight also.

� Minimum, desired and maximum virtual processors.

4.1.2 Processing units of capacity
Processing capacity can be configured in fractions of 1/100 of a processor. The
minimum amount or processing capacity which has to be assigned to a partition
is 1/10 of a processor.

On the HMC, processing capacity is specified in terms of processing units. The
minimum capacity of 1/10 of a processor which has to be assigned to a partition
is specified as 0.1 processing units. To assign a processing capacity
representing 75% of a processor, 0.75 processing units are specified on the
HMC.

Sserver p5 servers p5-510 p5-520 p5-550 p5-570 p5-590 p5-595

Processors 2 2 4 16 32 64

Dedicated processor partitions 2 2 4 16 32 64

Shared processor partitions 10 20 40 160 254 254

Note: The maximums listed in Table 4-1 are supported by the hardware.
However, the practical limits based on production workload demands might be
significantly lower.
86 Partitioning Implementations for IBM Eserver p5 Servers

On a system with two processors a maximum of 2.0 processing units can be
assigned to partition. Processing units specified on the HMC are used to quantify
the minimum, desired, and maximum amount of processing capacity for a
partition (see Figure 4-2).

Figure 4-2 Choose desired, minimum, and maximum processing units

After a partition is activated, processing capacity is usually referred to as
capacity entitlement or entitled capacity. Figure 4-3 on page 88 shows a graphic
representation of the definitions of processor capacity.
 Chapter 4. Virtualized resource management 87

Figure 4-3 Processing units of capacity

4.1.3 Capped and uncapped mode
The next step in defining a shared processor partition is to define whether the
partition is running in a capped or uncapped mode (see Figure 4-4 on page 89).

Capped mode The processing units never exceed the assigned
processing capacity.

Uncapped mode The processing capacity can be exceeded when the
shared pool has available resources.

When a partition is running in an uncapped mode, you must specify the
uncapped weight of that partition.

If multiple uncapped logical partitions require idle processing units, the managed
system distributes idle processing units to the logical partitions in proportion to
each logical partition's uncapped weight. The higher the uncapped weight of a
logical partition, the more processing units the logical partition gets.

The uncapped weight must be a whole number from 0 to 255. The default
uncapped weight for uncapped logical partitions is 128. A partition's share is
computed by dividing its variable capacity weight by the sum of the variable
capacity weights for all uncapped partitions. If you set the uncapped weight at 0,
the managed system treats the logical partition as a capped logical partition. A
logical partition with an uncapped weight of 0 cannot use more processing units
than those that are committed to the logical partition.

Minimum Requirement
0.1 Processing Units

Processing Capacity
1 Physical Processor
1.0 Processing Units

0.5 Processing Units
0.4 Processing Units
88 Partitioning Implementations for IBM Eserver p5 Servers

Figure 4-4 Specify processing sharing mode and weight

4.1.4 Virtual processors
Virtual processors are the whole number of concurrent operations that the
operating system can use. The processing power can be conceptualized as
being spread equally across these virtual processors. Selecting the optimal
number of virtual processors depends on the workload in the partition. Some
partitions benefit from greater concurrence, where other partitions require
greater power.

By default, the number of processing units that you specify is rounded up to the
minimum number of virtual processors that are needed to satisfy the assigned
number of processing units. The default settings maintains a balance of virtual
processors to processor units. For example:

� If you specify 0.50 processing units, one virtual processor are assigned.
� If you specify 2.25 processing units, three virtual processors are assigned.

You also can use the advanced tab in your partitions profile to change the default
configuration and to assign more virtual processors (see Figure 4-5 on page 90).
 Chapter 4. Virtualized resource management 89

At the time of the writing of this book, the maximum number of virtual processors
per partition is 64.

A logical partition in the shared processing pool has at least as many virtual
processors as its assigned processing capacity. By making the number of virtual
processors too small, you limit the processing capacity of an uncapped partition.
If you have a partition with 0.50 processing units and 1 virtual processor, the
partition cannot exceed 1.00 processing units, because it can only run one job at
a time, which cannot exceed 1.00 processing units. However, if the same
partition with 0.50 processing units was assigned two virtual processors and
processing resources were available, the partition could use an additional 1.50
processing units.

Figure 4-5 Specify number of virtual processors
90 Partitioning Implementations for IBM Eserver p5 Servers

4.1.5 Dedicated processors
Dedicated processors are whole processors that are assigned to a single
partition. If you choose to assign dedicated processors to a logical partition, you
must assign at least one processor to that partition (see Figure 4-6).

Figure 4-6 Create Logical Partition Profile, dedicated processors

You cannot mix shared processors and dedicated processors in one partition.

By default, a powered-off logical partition using dedicated processors has its
processors available to the shared processing pool. When the processors are in
the shared processing pool, an uncapped partition that needs more processing
power can use the idle processing resources. However, when you power on the
dedicated partition while the uncapped partition is using the processors, the
activated partition regains all of its processing resources. If you want to allow this
partition the ability to collect shared pool statistics, you can do so under the
hardware tab (see Figure 4-7 on page 92).
 Chapter 4. Virtualized resource management 91

Figure 4-7 Allow shared processor pool statistics access to a partition

To set if a partition is to use resources from the shared processor pool, this is
done in the profile properties under the processors tab.
92 Partitioning Implementations for IBM Eserver p5 Servers

Figure 4-8 Allow idle processors to be shared

4.1.6 Capped and uncapped processing units
The hypervisor schedules shared processor partitions from a set of physical
processors that is called the shared processor pool. By definition, these
processors are not associated with dedicated partitions.

In shared partitions, there is no fixed relationship between virtual processors and
physical processors. The hypervisor can use any physical processor in the
shared processor pool when it schedules the virtual processor. By default, it
attempts to use the same physical processor, but this cannot always be
guaranteed. The hypervisor uses the concept of a home node for virtual
processors, enabling it to select the best available physical processor from a
memory affinity perspective for the virtual processor that is to be scheduled.

Note: You cannot disable the Allow idle processor to be shared function when
you create a partition. You need to open the properties for the created partition
and change it on the processor tab.
 Chapter 4. Virtualized resource management 93

Affinity scheduling is designed to preserve the content of memory caches, so
that the working data set of a job can be read or written in the shortest time
period possible. Affinity is actively managed by the hypervisor, because each
partition has a completely different context. Currently, there is one shared
processor pool, so all virtual processors are implicitly associated with the same
pool.

Figure 4-9 shows the relationship between two partitions using a shared
processor pool of a single physical processor. One partition has two virtual
processors, and the other, a single one. The figure also shows how the capacity
entitlement is evenly divided over the number of virtual processors.

When you set up a partition profile, you set up the desired, minimum, and
maximum values that you want for the profile. When a partition is started, the
system chooses the partition's entitled processor capacity from this specified
capacity range. The value that is chosen represents a commitment of capacity
that is reserved for the partition. This capacity cannot be used to start another
shared partition. Otherwise, capacity could be overcommitted.

Figure 4-9 Distribution of capacity entitlement on virtual processors

When starting a partition, preference is given to the desired value, but these
values cannot always be used, because there may not be enough unassigned
capacity in the system. In that case, a different value is chosen, which must be
greater than or equal to the minimum capacity attribute. Otherwise, the partition
cannot be started. The entitled processor capacity is distributed to the partitions

1 Physical Processor
1.0 Processing Units

0.5 Processing Units
0.4 Processing Units

LPAR 1 Capacity Entitlement 50

Virtual
Processor 1

25 25

Virtual
Processor 2

LPAR 2 Capacity Entitlement 40

Virtual
Processor 1

40
94 Partitioning Implementations for IBM Eserver p5 Servers

in sequence the partitions are started. For example a shared pool has 2.0
processing units available.

Partitions 1, 2, and 3 are activated in sequence

1. Partition 1 activated
Min. = 1.0, max = 2.0, desired = 1.5
Allocated capacity entitlement: 1.5

2. Partition 2 activated
Min. = 1.0, max = 2.0, desired = 1.0
Partition 2 does not start because the minimum capacity is not met

3. Partition 3 activated
Min. = 0.1, max = 1.0, desired = 0.8
Allocated capacity entitlement: 0.5

The maximum value is only used as an upper limit for dynamic operations.

Figure 4-10 shows the usage of a capped partition of the shared processor pool.
Partitions using the capped mode are not able to assign more processing
capacity from the shared processor pool than the capacity entitlement will allow.

Figure 4-10 Shared capped processor partition utilization

Maximum Processor Capacity

Entitled Processor CapacityProcessor
Capacity
Utilization LPAR Capacity Utilization

Pool Idle Capacity Available

Time

Minimum Processor Capacity

Ceded Capacity

Utilized Capacity
 Chapter 4. Virtualized resource management 95

Figure 4-11 on page 96 shows the usage of the shared processor pool by an
uncapped partition. The uncapped partition is able to assign idle processing
capacity if it needs more than the entitled capacity.

Figure 4-11 Shared uncapped processor partition utilization

4.1.7 Dynamic processor deallocation and sparing
Dynamic Processor Deallocation and Dynamic Processor Sparing is supported
in the shared processor pool.

If a physical processor reaches a failure threshold and needs to be taken offline
(guarded out), the hypervisor analyzes the system environment to determine
what action it should take to replace the processor resource. The options for
handling this condition can be one of the following:

� If there is a Capacity on Demand processor available, the hypervisor switches
the processor to the shared pool transparently, and no partition loss of
capacity results.

� If there is at least 1.0 unallocated processor capacity available, it can be used
to replace the capacity lost due to the failing processor.

If not enough unallocated resource exists, the hypervisor determines the
capacity that each partition must lose to eliminate the 1.00 processor units from
the shared pool. As soon as each partition varies off the processing capacity or

Maximum Processor Capacity

Processor
Capacity
Utilization

Pool Idle Capacity Available

Time

Entitled Processor Capacity

Minimum Processor Capacity

Utilized Capacity

Ceded Capacity
96 Partitioning Implementations for IBM Eserver p5 Servers

virtual processors, the failing processor is taken offline by the service processor
and the hypervisor.

The amount of capacity that each shared partition is requested to vary off is
proportional to the total amount of entitled capacity in the partition. This amount
is based on the amount of capacity that can be varied off, which is controlled by
the min capacity of the partition. The larger the difference between the current
entitled capacity of the partition and the minimum entitled capacity, the more the
partition will be asked to vary off.

4.2 Advanced Virtualization
With the usage of virtual partitions in POWER5-based servers, the number of
partitions that can be concurrently instantiated on a Sserver p5 server can be
greater than the number of physical I/O slots in the Central Electronic Complex
and its remote I/O drawers. For example, at the time of this publication, Sserver
p5 processor-based servers support 254 logical partitions, while p5-595 with
remote I/O drawers can have up to 240 I/O slots.

Typically, a small operating system instance needs at least one slot for a network
interface connector and one slot for a disk adapter (SCSI, Fibre Channel), while
more robust configuration often consist of two redundant network interface
connector adapters and two disk adapters.

To be able to connect enough I/O devices to each partition that is configured on a
Sserver p5 server, IBM introduced virtual I/O technology for POWER5-based
servers. Virtual I/O devices are an optional feature of a partition and can be used
on POWER5 based systems in conjunction with AIX 5L Version 5.3 or Linux.
Virtual I/O devices are intended as a complement to physical I/O adapters (also
known as dedicated or local I/O devices). A partition can have any combination
of local and virtual I/O adapters.

The generic term Virtual I/O relates to five different concepts:

� Three adapters: Virtual SCSI, Virtual Ethernet, and Virtual Serial

� A special AIX partition, called the Virtual I/O Server

� A mechanism to link virtual network devices to real devices, called Shared
Ethernet Adapter (SEA).

Note: Dynamic Memory allocation or de-allocation is not supported by Linux
on Sserver p5 servers.
 Chapter 4. Virtualized resource management 97

4.2.1 Virtual LAN
Virtual LAN (VLAN) is a technology used for establishing virtual network
segments on top of physical switch devices. If configured appropriately, a VLAN
definition can straddle multiple switches. Typically, a VLAN is a broadcast domain
that enables all nodes in the VLAN to communicate with each other without L3
routing or inter-VLAN bridging. In Figure 4-12, two VLANs (1 and 2) are defined
on three switches (A, B, and C). Although nodes C-1 and C-2 are physically
connected to the same switch C, traffic between the two nodes can be blocked.
To enable communication between VLAN 1 and 2, L3 routing or inter-VLAN
bridging should be established between them, typically by an L3 device.

Figure 4-12 Example of a VLAN

The use of VLAN provides increased LAN security and flexible network
deployment over traditional network devices. VLANs provide additional security
by allowing an administrator to block packets to a domain from a separate
98 Partitioning Implementations for IBM Eserver p5 Servers

domain on the same switch, therefore providing an additional control on what
LAN traffic is visible to specific Ethernet ports on the switch.

AIX virtual LAN support
Some of the various technologies for implementing VLANs include:

� Port-based VLAN
� Layer 2 VLAN
� Policy-based VLAN
� IEEE 802.1Q VLAN

VLAN support in AIX is based on the IEEE 802.1Q VLAN implementation. The
IEEE 802.1Q VLAN is achieved by adding a VLAN ID tag to an Ethernet frame,
and the Ethernet switches restrict the frames to ports that are authorized to
receive frames with that VLAN ID. Switches also restrict broadcasts to the logical
network by ensuring that a broadcast packet is delivered to all ports which are
configured to receive frames with the VLAN ID with which the broadcast frame
was tagged.

A port on a VLAN capable switch has a default Port virtual LAN ID (PVID) that
indicates the default VLAN to which the port belongs. The switch adds the PVID
tag to untagged packets that are received by that port. In addition to a PVID, a
port may belong to additional VLANs and have those VLAN IDs assigned to it
that indicates the additional VLANs to which the port belongs.

A port only accepts untagged packets or packets with a VLAN ID (PVID or
additional VIDs) tag of the VLANs to which the port belongs. A port configured in
the untagged mode is only allowed to have a PVID and receives untagged
packets or packets tagged with the PVID. The untagged port feature helps
systems that do not understand VLAN tagging to communicate with other
systems using standard Ethernet.

Each VLAN ID is associated with a separate Ethernet interface to the upper
layers (for example IP) and creates unique logical Ethernet adapter instances per
VLAN (for example ent1 or ent2).

You can configure multiple VLAN logical devices on a single system. Each VLAN
logical devices constitutes an additional Ethernet adapter instance. These logical
devices can be used to configure the same Ethernet IP interfaces as are used
with physical Ethernet adapters.

4.2.2 VLAN communication by example
This section discusses in more detail VLAN communication between partitions
and with external networks and uses the sample configuration that is shown in
 Chapter 4. Virtualized resource management 99

Figure 4-13 on page 100. The configuration uses four client partitions (Partition 1
through Partition 4) and one Virtual I/O Server. Each of the client partitions is
defined with one Virtual Ethernet adapter. The Virtual I/O Server has an SEA
which bridges traffic to the external network.

Figure 4-13 VLAN configuration

Interpartition communication
Partition 2 and Partition 4 use the PVID only, which means that:

� Only packets for the VLAN that is specified as PVID are received

� Packets sent are added a VLAN tag for the VLAN that is specified as PVID by
the Virtual Ethernet adapter

In addition to the PVID, the Virtual Ethernet adapters in Partition 1 and Partition 3
are also configured for VLAN 10 using a specific network interface (en1) that was
created with the smitty vlan command, which means that:

� Packets sent through network interfaces en1 are added a tag for VLAN 10 by
the network interface in AIX

� Only packets for VLAN 10 are received by the network interfaces en1

� Packets sent through en0 are tagged automatically for the VLAN that is
specified as PVID.
100 Partitioning Implementations for IBM Eserver p5 Servers

� Only packets for the VLAN that is specified as PVID are received by the
network interfaces en0

Table 4-2 on page 101 lists which client partitions can communicate with each
other and the network interfaces that they can use.

Table 4-2 Interpartition of VLAN communication

Communication with external networks
The SEA is configured with PVID 1 and VLAN 10. Untagged packets that are
received by the SEA are tagged for VLAN 1. Handling of outgoing traffic depends
on the VLAN tag of the outgoing packets. For example:

� Packets tagged with the VLAN which match the PVID of the SEA are
untagged before being sent out to the external network

� Packets tagged with a VLAN other than that of the PVID of the SEA are sent
out with the VLAN tag unmodified

In the example shown in Figure 4-13 on page 100, Partition 1 and Partition 2
have access to the external network through network interface en0 using VLAN
1. Because these packets are using the PVID, the SEA removes the VLAN tags
before sending the packets to the external network.

Partition 1 and Partition 3 have access to the external network using network
interface en1 and VLAN 10. Packets are sent out by the SEA with the VLAN tag.
Therefore, only VLAN-capable destination devices are able to receive the
packets. Table 4-3 lists this relationship.

Table 4-3 VLAN communication to external network

VLAN Partition / Network interface

1 Partition 1 / en0
Partition 2 / en0

2 Partition 3 / en0
Partition 4 / en0

10 Partition 1 / en1
Partition 3 / en1

VLAN Partition / Network interface

1 Partition 1 / en0
Partition 2 / en0

10 Partition 1 / en1
Partition 3 / en1
 Chapter 4. Virtualized resource management 101

Virtual Ethernet connections
Virtual Ethernet connections supported in POWER5 systems use VLAN
technology to ensure that the partitions can access only data that is directed to
them. The hypervisor provides a Virtual Ethernet switch function based on the
IEEE 802.1Q VLAN standard that allows partition communication within the
same server. The connections are based on an implementation that is internal to
the hypervisor that moves data between partitions. Figure 4-14 is an example of
an inter-partition VLAN.

Figure 4-14 logical view of an inter-partition VLAN

Virtual Ethernet adapter concepts
Partitions that communicate through a Virtual Ethernet channel need to have an
additional in-memory channel. This additional in-memory channel requires the
creation of an in-memory channel between partitions on the HMC. The kernel
creates a virtual device for each memory channel indicated by the firmware. The
AIX configuration manager creates the device special files. A unique media
access control (MAC) address is also generated when the Virtual Ethernet
device is created. You can assign a prefix value for the system so that the
generated MAC addresses in a system consists of a common system prefix plus
an algorithmically-generated unique part per adapter.
102 Partitioning Implementations for IBM Eserver p5 Servers

The Virtual Ethernet can also be used as a bootable device to allow such tasks
as operating system installations to be performed using network installation
management (NIM).

Performance considerations
The transmission speed of Virtual Ethernet adapters is in the range of 1 to 3
Gigabits per second, depending on the transmission (maximum transmission
unit) size. A partition can support up to 256 Virtual Ethernet adapters with each
Virtual Ethernet capable to be associated with up to 21 VLANs (20 VID and 1
PVID).

The Virtual Ethernet connections generally take up more processor time than a
local adapter to move a packet (DMA versus copy). For shared processor
partitions, performance is gated by the partition definitions (for example, entitled
capacity and number of processors). Small partitions communicating with each
other experience more packet latency due to partition context switching. In
general, high bandwidth applications should not be deployed in small shared
processor partitions. For dedicated partitions, throughput should be comparable
to a 1 Gigabit Ethernet for small packets providing much better performance than
1 Gigabit Ethernet for large packets. For large packets, the Virtual Ethernet
communication is copy bandwidth limited.

Benefits of virtual Ethernet
Due to the number of partitions possible on many systems being greater than the
number of I/O slots, Virtual Ethernet is a convenient and cost saving option to
enable partitions within a single system to communicate with one another
through a VLAN. The VLAN creates logical Ethernet connections between one or
more partitions and is designed to help avoid a failed or malfunctioning operating
system from being able to impact the communication between two functioning
operating systems. The Virtual Ethernet connections may also be bridged to an
external network to permit partitions without physical network adapters to
communicate outside of the server.

Dynamic partitioning for virtual Ethernet devices
Virtual Ethernet resources can be assigned and removed dynamically. On the
HMC, Virtual Ethernet target and server adapters can be assigned and removed
from a partition using dynamic logical partitioning. The mapping between
physical and virtual resources on the Virtual I/O Server can also be done
dynamically.

Limitations and considerations
The following are limitations that you should consider when implementing a
Virtual Ethernet:
 Chapter 4. Virtualized resource management 103

� A maximum of up to 256 Virtual Ethernet adapters are permitted per partition.

� Virtual Ethernet can be used in both shared and dedicated processor
partitions, provided that the partition is running AIX 5L Version 5.3 or Linux
with the 2.6 kernel or a kernel that supports virtualization.

� A mixture of Virtual Ethernet connections, real network adapters, or both are
permitted within a partition.

� Virtual Ethernet can only connect partitions within a single system.

� Virtual Ethernet requires a POWER5 system and an HMC to define the
Virtual Ethernet adapters.

Virtual Ethernet uses the system processors for all communication functions
instead of off loading to processors on network adapter cards. As a result there is
an increase in system processor load generated by the use of Virtual Ethernet.

4.3 Introduction to Virtual I/O Server
The Virtual I/O Server is an appliance that provides virtual storage and shared
Ethernet capability to client logical partitions on a POWER5 system. It allows a
physical adapter with attached disks on the Virtual I/O Server partition to be
shared by one or more partitions, enabling clients to consolidate and potentially
minimize the number of physical adapters.

The Virtual I/O Server is the link between the virtual and the real world. It can be
seen as an AIX-based appliance, and it is supported on POWER5 servers only.
The Virtual I/O Server runs in a special partition which cannot be used for
execution of application code.

It mainly provides two functions:

� Server component for Virtual SCSI devices (VSCI target)
� Support of shared Ethernet adapters for Virtual Ethernet

The Virtual I/O Server is shipped as a mksysb image. Although the Virtual I/O
Server is based in AIX5L Version 5.3, it is not accessible as a standard partition.
Administrative access to the I/O Server partition is only possible as user padmin,
not as id root. After login, user padmin gets a restricted shell, which is not
escapable, called the I/O Server command line interface.

The operating system of the Virtual I/O Server is hidden to simplify transitions to
later versions. Additionally, this product supports Linux and AIX 5L Version 5.3
client partitions. No specific operating system skill is required for administration
of the Virtual I/O Server.
104 Partitioning Implementations for IBM Eserver p5 Servers

4.3.1 Shared Ethernet Adapter
You can use a Shared Ethernet Adapter (SEA) to connect a physical Ethernet to
the Virtual Ethernet. An SEA also provides the possibility for several client
partitions to share one physical adapter.

Connecting a virtual Ethernet to external networks
There are two ways you can connect the Virtual Ethernet that enables the
communication between logical partitions on the same server to an external
network.

Enabling routing capabilities
By enabling the AIX routing capabilities (ipforwarding network option), one
partition with a physical Ethernet adapter connected to an external network can
act as router. Figure 4-15 shows a sample configuration. In this type of
configuration the partition that routes the traffic to the external work does not
necessarily have to be the Virtual I/O Server as in the figure. It could be any
partition with a connection to the outside world. The client partitions would have
their default route set to the partition which routes traffic to the external network.

Figure 4-15 Connection to external network using AIX routing

Using Shared Ethernet Adapter
Using SEA, you can connect internal and external VLANs using one physical
adapter. The SEA hosted in the Virtual I/O Server acts as a layer two switch
between the internal and external network.
 Chapter 4. Virtualized resource management 105

SEA is a new service that securely transports network traffic from a virtual
Ethernet to a real network adapter. The SEA service runs in the Virtual I/O
Server. It cannot be run in a general purpose AIX partition.

SEA requires the hypervisor component of POWER5 systems and therefore
cannot be used on POWER4 systems. It also cannot be used with AIX 5L
Version 5.2, because the device drivers for virtual Ethernet are only available for
AIX 5L Version 5.3 and Linux. Thus, there is no way to connect an AIX 5L Version
5.2 system to an SEA.

The SEA allows partitions to communicate outside the system without having to
dedicate a physical I/O slot and a physical network adapter to a client partition.
The SEA has the following characteristics:

� Virtual Ethernet MAC addresses that are visible to outside systems
� Broadcast and multicast are supported
� ARP and NDP can work across a shared Ethernet

To bridge network traffic between the Virtual Ethernet and external networks, the
Virtual I/O Server has to be configured with at least one physical Ethernet
adapter. One SEA can be shared by multiple VLANs, and multiple subnets can
connect using a single adapter on the Virtual I/O Server. Figure 4-16 shows a
configuration example. An SEA can include up to 16 Virtual Ethernet adapters
that share the physical access.

Figure 4-16 SEA configuration

A Virtual Ethernet adapter connected to the SEA must have the trunk flag set.
Once an Ethernet frame is sent from the Virtual Ethernet adapter on a client
partition to the hypervisor, the hypervisor searches for the destination MAC
106 Partitioning Implementations for IBM Eserver p5 Servers

address within the VLAN. If no such MAC address exists within the VLAN, it
forwards the frame to the trunk Virtual Ethernet adapter that is defined on the
same VLAN. The trunk virtual Ethernet adapter enables a layer two bridge to a
physical adapter.

The shared Ethernet directs packets based on the VLAN ID tags, based on
observing the packets that originate from the virtual adapters. One of the virtual
adapters in the SEA is designated as the default PVID adapter. Ethernet frames
without any VLAN ID tags are directed to this adapter and assigned the default
PVID.

When the shared Ethernet receives IP (or IPv6) packets that are larger than the
maximum transmission unit of the adapter that the packet is forwarded through,
either IP fragmentation is performed and the fragments are forwarded, or an
ICMP packet too big message is returned to the source when the packet cannot
be fragmented.

Theoretically, one adapter can act as the only contact with external networks for
all client partitions. Because the SEA is dependant on Virtual I/O, it consumes
processor time for all communications. An increased amount of processor load
can be generated by the use of Virtual Ethernet and SEA.

There are several different ways to configure physical and virtual Ethernet
adapters into SEAs to maximize throughput.

� Using Link Aggregation (EtherChannel), several physical network adapter can
be aggregated.

� Using several SEAs provides more queues and more performance. An
example for this configuration is shown in Figure 4-17 on page 108.

Other aspects to take into consideration are availability and the possibility of
connecting to different networks.
 Chapter 4. Virtualized resource management 107

Figure 4-17 Multiple SEA configuration

Using Link Aggregation to external networks
Link aggregation is network port aggregation technology that allows several
Ethernet adapters to be aggregated together to form a single pseudo Ethernet
device. You can use this technology to overcome the bandwidth limitation of a
single network adapter and to avoid bottlenecks when sharing one network
adapter among many client partitions.

For example, ent0 and ent1 can be aggregated to ent3. Interface en3 would then
be configured with an IP address. The system considers these aggregated
adapters as one adapter. Therefore, IP is configured as on any other Ethernet
adapter. In addition, all adapters in the link aggregation are given the same MAC
address, so that they are treated by remote systems as though they were one
adapter. The main benefit of link aggregation is that they have the network
bandwidth of all of their adapters in a single network presence. If an adapter fails,
the packets are sent automatically on the next available adapter without
disruption to existing user connections. The adapter is returned automatically to
service on the link aggregation when it recovers.

You can use EtherChannel (EC) or IEEE 802.3ad Link Aggregation (LA) to
aggregate network adapters. While EC is an AIX specific implementation of
adapter aggregation, LA follows the IEEE 802.3ad standard. Table 4-4 on
page 109 shows the main differences between EC and LA.
108 Partitioning Implementations for IBM Eserver p5 Servers

Table 4-4 Main differences between EC and LA aggregation

Using LA, if the switch supports the Link Aggregation Control Protocol, then no
special configuration of the switch ports is required. EC supports different packet
distribution modes making it possible to influence the load balancing of the
aggregated adapters. The remainder of this document uses the term Link
Aggregation because it is a more universally understood term.

Standard distribution mode selects the adapter for the outgoing packets by
algorithm. The adapter selection algorithm uses the last byte of the destination IP
address (for TCP/IP traffic) or MAC address (for ARP and other non-IP traffic).
Therefore, all packets to a specific IP-address will always go through the same
adapter. There are other adapter selection algorithms based on source,
destination, or a combination of source and destination ports that are available.
EC provides one further distribution mode called round robin. This mode rotates
through the adapters, giving each adapter one packet before repeating. The
packets may be sent out in a slightly different order than they were given to the
EC. This method makes the best use of its bandwidth, but consider that it also
introduces the potential for out-of-order packets at the receiving system. This risk
is particularly high when there are few, long-lived, streaming TCP connections.
When there are many such connections between a host pair, packets from
different connections could be intermingled, thereby decreasing the chance of
packets for the same connection arriving out-of-order.

To avoid the loss of network connectivity by switch failure, EC and LA can provide
a backup adapter. The backup adapter should be connected to a different switch
than the adapter of the aggregation. So, in case of switch failure the traffic can be
moved with no disruption of user connections to the backup adapter.

Figure 4-18 on page 110 shows the aggregation of three plus one adapters to a
single pseudo Ethernet device including a backup feature.

EtherChannel IEEE 802.3ad link aggregation

Requires switch configuration Little, if any, configuration of switch
required to form aggregation. Some initial
setup of the switch may be required.

Supports different packet distribution
modes

Supports only standard distribution mode

Note: Only outgoing packets are subject to the following discussion. Incoming
packets are distributed by the Ethernet switch.
 Chapter 4. Virtualized resource management 109

Figure 4-18 Link Aggregation (EtherChannel) pseudo device

Limitations and considerations
Consider the following limitations when implementing SEAs in the Virtual I/O
Server:

� Because SEA depends on virtual Ethernet which uses the system processors
for all communications functions, an increased amount of system processor
load can be generated by the use of Virtual Ethernet and SEA.

� One of the virtual adapters in the SEA on the Virtual I/O Server must be
defined as default adapter with a default PVID. This virtual adapter is
designated as the PVID adapter and Ethernet frames without any VLAN ID
tags are assigned the default PVID and directed to this adapter.

� Up to 16 virtual Ethernet adapters with 21 VLANs (20 VID and 1 PVID) on
each can be shared on a single physical network adapter. There is no limit on
the number of partitions that can attach to a VLAN. So, the theoretical limit is
very high. In practice, the amount of network traffic limits the number of clients
that can be served through a single adapter.

For performance information please to Advanced POWER Virtualization on
IBM ̂p5 Servers Architecture and Performance Considerations,
SG24-5768.
110 Partitioning Implementations for IBM Eserver p5 Servers

4.3.2 Virtual SCSI
This section discusses Virtual SCSI technology.

Introduction to Virtual SCSI technology
Virtual SCSI requires POWER5 hardware with the Advanced POWER
Virtualization feature activated. It provides Virtual SCSI support for AIX 5L
Version 5.3 and Linux.

The driving forces behind Virtual SCSI are:

� The advanced technological capabilities of today’s hardware and operating
systems such as POWER5 and IBM AIX 5L Version 5.3.

� The value proposition enabling on demand computing and server
consolidation. Virtual SCSI also provides a more economic I/O model by
using physical resources more efficiently through sharing.

At the time of the writing of this book, the virtualization features of the POWER5
platform support up to 254 partitions while the server hardware only provides up
to 240 I/O slots per machine. Each partition typically requiring one I/O slot for
disk attachment and another one for network attachment puts a constraint on the
number of partitions. To overcome these physical limitations, I/O resources have
to be shared. Virtual SCSI provides the means to do this for SCSI storage
devices.

Furthermore Virtual SCSI allows attachment of previously unsupported storage
solutions. As long as the Virtual I/O Server supports the attachment of a storage
resource, any client partition can access this storage by using Virtual SCSI
adapters. For example, you can run Linux in a logical partition of a POWER5
server to provide support for EMC storage devices on Linux.

A Linux client partition can access the EMC storage through a Virtual SCSI
adapter. Requests from the virtual adapters are mapped to the physical
resources in the Virtual I/O Server. Therefore, driver support for the physical
resources is needed only in the Virtual I/O Server.
 Chapter 4. Virtualized resource management 111

Partition access to virtual SCSI devices
Virtual SCSI is based on a client and server relationship. The Virtual I/O Server
owns the physical resources and acts as a server or, in SCSI terms, a target
device. The logical partitions access the virtual SCSI resources that are provided
by the Virtual I/O Server as clients.

The virtual I/O adapters are configured using an HMC. The provisioning of virtual
disk resources is provided by the Virtual I/O Server. Often the Virtual I/O Server
is also referred to as hosting partition and the client partitions, as hosted
partitions.

Physical disks owned by the Virtual I/O Server can either be exported and
assigned to a client partition as whole or can be partitioned into several logical
volumes. The logical volumes can then be assigned to different partitions.
Therefore, Virtual SCSI enables sharing of adapters as well as disk devices.

To make a physical or a logical volume available to a client partition it is assigned
to a Virtual SCSI server adapter in the Virtual I/O Server.

The client partition accesses its assigned disks through a Virtual SCSI Client
Adapter. The Virtual SCSI Client Adapter sees standard SCSI devices and LUNs
through this virtual adapter. The commands in the following example show how
the disks appear on an AIX client partition:

lsdev -Cc disk -s vscsi
hdisk2 Available Virtual SCSI Disk Drive

lscfg -vpl hdisk2
hdisk2 111.520.10DDEDC-V3-C5-T1-L810000000000 Virtual SCSI Disk Drive

Note: This publication refers to different terms for the various components that
are involved with Virtual SCSI. Depending on the context, these terms can
vary. With SCSI, usually the terms initiator and target are used. So, you might
see terms such as virtual SCSI initiator and virtual SCSI target. On the HMC,
the terms virtual SCSI server adapter and virtual SCSI client adapter are
used. Basically, these terms refer to the same thing. When describing the
client and server relationship between the partitions involved in Virtual SCSI,
the terms hosting partition (meaning the Virtual I/O Server) and hosted
partition (meaning the client partition) are used.

The terms Virtual I/O Server partition and Virtual I/O Server both refer to the
Virtual I/O Server. The terms are used interchangeably in this section.
112 Partitioning Implementations for IBM Eserver p5 Servers

In Figure 4-19, one physical disk is partitioned into two logical volumes inside the
Virtual I/O Server. Each of the two client partitions is assigned one logical volume
which it accesses through a virtual I/O adapter (Virtual SCSI Client Adapter).
Inside the partition the disk is seen as a normal hdisk.

Figure 4-19 Virtual SCSI architecture overview

SCSI Remote Direct Memory Access
The SCSI family of standards provides many different transport protocols that
define the rules for exchanging information between SCSI initiators and targets.
Virtual SCSI uses the SCSI RDMA Protocol, which defines the rules for
exchanging SCSI information in an environment where the SCSI initiators and
targets have the ability to directly transfer information between their respective
address spaces.

SCSI requests and responses are sent using the Virtual SCSI adapters that
communicate through the hypervisor. The actual data transfer, however, is done
directly between a data buffer in the client partition and the physical adapter in
the Virtual I/O Server by using the Logical Remote Direct Memory Access
(LRDMA) protocol.
 Chapter 4. Virtualized resource management 113

Figure 4-20 shows how the data transfer using LRDMA appears.

Figure 4-20 Logical Remote Direct Memory Access

AIX device configuration for virtual SCSI
The virtual I/O adapters are connected to a virtual host bridge that AIX treats
much like a PCI host bridge. It is represented in the object data model as a bus
device whose parent is sysplanar0. The virtual I/O adapters are represented as
adapter devices with the virtual host bridge as their parent.

On the Virtual I/O Server, each logical volume or physical volume that is exported
to a client partition is represented by a virtual target device that is a child of a
Virtual SCSI server adapter. On the client partition, the exported disks are visible
as normal hdisks. However, they are defined in subclass vscsi. They have a
virtual SCSI client adapter as parent.
114 Partitioning Implementations for IBM Eserver p5 Servers

Figure 4-21 and Figure 4-22 on page 116 show the relationship of the devices
used by AIX for Virtual SCSI and their physical counterparts.

Figure 4-21 Virtual SCSI device relationship on Virtual I/O Server
 Chapter 4. Virtualized resource management 115

Figure 4-22 Virtual SCSI device relationship on AIX client partition

Dynamic partitioning for virtual SCSI devices
Virtual SCSI resources can be assigned and removed dynamically. On the HMC,
Virtual SCSI target and server adapters can be assigned and removed from a
partition using dynamic logical partitioning. The mapping between physical and
virtual resources on the Virtual I/O Server can also be done dynamically.

4.3.3 Limitations and considerations
You should consider the following areas when implementing Virtual SCSI:

� At the time of the writing of this book, virtual SCSI supports Fibre Channel,
parallel SCSI, and SCSI RAID devices. Other protocols such as SSA or tape
and CD-ROM devices are not supported.

� Virtual SCSI itself does not have any limitations in terms of the number of
supported devices or adapters. At the time of writing, the Virtual I/O Server
supports a maximum of 1024 virtual I/O slots on an IBM Sserver p5 server.
A maximum of 256 virtual I/O slots can be assigned to a single partition.

� Every I/O slot needs some resources to be instantiated. Therefore, the size of
the Virtual I/O Server puts a limit to the number of virtual adapters that can be
configured. The SCSI protocol defines mandatory and optional commands.
While Virtual SCSI supports all the mandatory commands, not all optional
commands are supported.
116 Partitioning Implementations for IBM Eserver p5 Servers

� There are performance implications when using Virtual SCSI devices. It is
important to understand that associated with hypervisor calls, Virtual SCSI
uses additional processor cycles when processing I/O requests. Thus, when
putting heavy I/O load on Virtual SCSI devices, you use more processor
cycles. Provided that there is sufficient processing capacity available, the
performance of Virtual SCSI should be comparable to dedicated I/O devices.

� Suitable applications for Virtual SCSI include boot disks for the operating
system or Web servers which will typically cache a lot of data. When
designing a virtual I/O configuration, performance is an important aspect
which should be given careful consideration.

For a more in depth discussion of performance issues see Advanced POWER
Virtualization on IBM ̂p5 Servers Architecture and Performance
Considerations, SG24-5768.

4.4 Virtual I/O Server and virtualization configuration
This section provides the following information about the configuration and
operating environment of the Virtual I/O Server:

� Command line interface
� Hardware resources managed
� Virtual I/O Server software installation
� Basic configuration
� Ethernet adapter sharing
� Virtual SCSI disk
� Defining the Virtual SCSI Server Adapter on the HMC
� Defining the Virtual SCSI Client Adapter on the HMC
� Creating the virtual target device on the Virtual I/O Server
� Limitations and considerations

4.4.1 Using the command line interface
The Virtual I/O Server provides a restricted scriptable command line interface. All
aspects of Virtual I/O server administration are accomplished through the
command line interface, including:

� Device management (physical, virtual, logical volume manager)
� Network configuration
� Software installation and update
� Security
� User management
� Installation of OEM software
� Maintenance tasks
 Chapter 4. Virtualized resource management 117

For the initial log on to the Virtual I/O Server, use the user ID padmin, which is
the prime administrator. When logging in, you are prompted for a new password,
so there is no default password to remember.

Upon logging into the I/O server, you are placed in a restricted Korn shell. The
restricted Korn shell works the same way as a regular Korn shell except users
cannot:

� Change the current working directory

� Set the value of the SHELL, ENV, or PATH variables

� Specify the path name of the command that contains a redirect output of a
command with a ‘>’, ‘>|’ , ‘<>’ or ‘>>’

As a result of these restrictions, you are not able to execute commands that are
not accessible to your PATH. In addition, these restrictions prevent you from
directly sending the output of the command to a file, requiring you to pipe the
output to the tee command instead.

After you have logged on, you can type help to get an overview of the supported
commands as shown in Example 4-1.

Example 4-1 $help command for an overview

$ help

Install Commands Physical Volume Commands Security Commands
 updateios lspv lsgcl
 lssw migratepv cleargcl
 ioslevel lsfailedlogin
 remote_management Logical Volume Command
 oem_setup_env lslv UserID Commands
 oem_platform_level mklv mkuser
 license extendlv rmuser
 rmlvcopy lsuser
LAN Commands rmlv passwd
 mktcpip mklvcopy chuser
 hostname
 cfglnagg
 netstat Volume Group Commands Maintenance Commands
 entstat lsvg chlang
 cfgnamesrv mkvg diagmenu
 traceroute chvg shutdown
 ping extendvg fsck
 optimizenet reducevg backupios
 lsnetsvc mirrorios savevgstruct
 unmirrorios restorevgstruct
Device Commands activatevg starttrace
 mkvdev deactivatevg stoptrace
118 Partitioning Implementations for IBM Eserver p5 Servers

 lsdev importvg cattracerpt
 lsmap exportvg bootlist
 chdev syncvg snap
 rmdev startsysdump
 cfgdev topas
 mkpath mount
 chpath unmount
 lspath showmount
 rmpath startnetsvc
 errlog
 stopnetsvc

To receive further help with these commands, you can use the help command as
shown in Example 4-2.

Example 4-2 $help command for a specific command

$ help errlog
Usage: errlog [-ls | -rm Days]

 Displays or clears the error log.

 -ls Displays information about errors in the error log file
 in a detailed format.

 -rm Deletes all entries from the error log older than the
 number of days specified by the Days parameter.

The Virtual I/O Server command line interface supports two execution modes:

� Traditional mode
� Interactive mode

The traditional mode is for single command execution. In this mode, you execute
one command at a time from the shell prompt. For example, to list all virtual
devices, enter the following:

#ioscli lsdev -virtual

To reduce the amount of typing that is required in traditional shell level mode, an
alias has been created for each sub-command. With the aliases set, you are not
required to type the ioscli command. For example, to list all devices of type
adapter, you can enter the following:

#lsdev -type adapter
 Chapter 4. Virtualized resource management 119

In interactive mode the user is presented with the ioscli command prompt by
executing the ioscli command without any sub-commands or arguments. From
this point on, ioscli commands are executed one after the other without having
to retype ioscli. For example, to enter interactive mode, enter:

#ioscli

Once in interactive mode, to list all virtual devices, enter:

#lsdev -virtual

External commands, such as grep or sed, cannot be executed from the
interactive mode command prompt. You must first exit interactive mode by
entering quit or exit.

4.4.2 Managing hardware resources
The optional Advanced POWER Virtualization feature that enables
Micro-Partitioning on a Sserver p5 server provides the Virtual I/O Server
installation CD. A logical partition with enough resources to share to other
partitions is required. Below is a list of minimum hardware requirements that
must be available to create the Virtual I/O Server:

POWER5 server The Virtual I/O capable machine.

HMC To create the partition and assign resources.

Storage adapter The server partition needs at least one storage adapter.

Physical disk If you want to share your disk with client partitions, you
need a disk that is large enough to make sufficient-sized
logical volumes.

Ethernet adapter If you want to route network traffic securely from a virtual
Ethernet to a real network adapter.

Memory At least 128 MB of memory.

Virtual I/O Server Version 1.1 is designed for selected configurations that include
specific models from IBM and other storage product vendors. Consult your IBM
representative or Business Partner for the latest information and included
configurations.
120 Partitioning Implementations for IBM Eserver p5 Servers

Virtual devices that are exported to client partitions by the Virtual I/O Server must
be attached through one of the following physical adapters:

� PCI 4-Channel Ultra3 SCSI RAID Adapter (FC 2498)
� PCI-X Dual Channel Ultra320 SCSI RAID Adapter (FC 5703)
� Dual Channel SCSI RAID Enablement Card (FC 5709)
� PCI-X Dual Channel Ultra320 SCSI Adapter (FC 5712)
� 2 Gigabit Fibre Channel PCI-X Adapter (FC 5716)
� 2 Gigabit Fibre Channel Adapter for 64-bit PCI Bus (FC 6228)
� 2 Gigabit Fibre Channel PCI-X Adapter (FC 6239)

We recommend that you plan carefully before you begin the configuration and
installation of your I/O Server and client partitions. Depending on the type of
workload and needs for an application, consider mixing virtual and physical
devices. For example, if your application benefits from fast disk access, then plan
a physical adapter that is dedicated to this partition.

Installation of the Virtual I/O Server partition is performed from a special mksysb
CD that is provided, at an additional charge, when you order the Advanced
POWER Virtualization feature. This CD contains dedicated software that is only
for the Virtual I/O Server operations. So, the Virtual I/O server software is only
supported in Virtual I/O Server partitions.

You can install the Virtual I/O Server from CD or using NIM on Linux from the
HMC. For more information about the installation of the Virtual I/O Server, refer to
4.4.3, “Installing Virtual I/O Server” on page 121.

The Virtual I/O Server supports the following operating systems as Virtual I/O
client:

� IBM AIX 5L Version 5.3
� SUSE LINUX Enterprise Server 9 for POWER
� Red Hat Enterprise Linux AS for POWER Version 3

4.4.3 Installing Virtual I/O Server
This section describes how to install Virtual I/O Server to the partition called
I/O_Server_1. These instructions assume that you are familiar with a basic AIX
installation.
 Chapter 4. Virtualized resource management 121

Figure 4-23 shows an example of an HMC-based Virtual I/O server creation.

Figure 4-23 Hardware Management Console - create Virtual I/O server

To install Virtual I/O Server, follow these steps:

1. Activate the I/O_Server_1 partition by right-clicking the partition name and
selecting Activate, as shown in Figure 4-24.

Figure 4-24 Activate I/O_Server_1 partition
122 Partitioning Implementations for IBM Eserver p5 Servers

2. Select the default profile that you used to create this server. Select Open a
terminal window or console session, and click (Advanced...), as shown in
Figure 4-25.

Figure 4-25 Selecting the profile

3. Choose SMS boot mode as shown in Figure 4-26. Click OK in this window to
return to the previous window. When at the previous window, click OK to
activate the partition and to launch a terminal window.

Figure 4-26 Choosing SMS boot mode
 Chapter 4. Virtualized resource management 123

4. Figure 4-27 shows a pSeries SMS menu. Proceed with the installation as you
would for an AIX installation, and choose CD as the installation device.

Figure 4-27 SMS menu
124 Partitioning Implementations for IBM Eserver p5 Servers

5. When the installation procedure has finished, use padmin for the username at
the login prompt. Choose a new password, and accept the license using the
license command at the prompt ($), as shown in Figure 4-28. You can use
the lspv command to show the available disks.

Figure 4-28 Finished Virtual I/O Server installation

The I/O_Server_1 partition is now ready for the further configurations.

4.4.4 Basic configuration
The Virtual I/O Server provides the Virtual SCSI and SEA Virtual I/O to client
partitions. You accomplish this configuration by assigning physical devices to the
Virtual I/O Server partition, and then by configuring virtual adapters on the clients
to allow communication between the client and the Virtual I/O Server.
 Chapter 4. Virtualized resource management 125

Using virtual I/O devices:

� Facilitates the sharing of physical resources between partitions on a
POWER5 system

� Provides Virtual SCSI and SEA function to client partitions

� Enables the creation of partitions without requiring additional physical I/O
resources

� Allows the creation of more partitions than I/O slots or physical devices with
the ability for partitions to have dedicated I/O, virtual I/O, or both

� Maximizes the utilization of physical resources on a POWER5 system

4.4.5 Ethernet adapter sharing
SEA enables the client partitions to communicate with other systems outside the
Central Electronic Complex without requiring physical Ethernet adapters in the
partitions. This communication is accomplished by sharing the physical Ethernet
adapters in the Virtual I/O Server partition.

VLANs that are bridged outside using a SEA, require a Virtual Ethernet adapter
to have the trunk adapter setting on. This Virtual Ethernet adapter is assigned to
the Virtual I/O Server partition using the HMC. The SEA setup commands are
then run on the Virtual I/O Server to create associations between the physical
and virtual adapters.

To configure a trunk Virtual Ethernet adapter on the HMC:

1. Right-click the partition profile of the Virtual I/O Server partition, and open the
properties of the profile.

2. Choose the Virtual I/O tab. The HMC panel to create a virtual adapter
appears, as shown in Figure 4-29 on page 127.
126 Partitioning Implementations for IBM Eserver p5 Servers

Figure 4-29 Creating the trunk Virtual I/O Server

3. Make sure that the value in the Number of virtual adapters field is higher than
the highest used Slot Number. To allow additional dynamically configured
adapters, choose a number where you can add more virtual adapters later.
This value is similar to the maximum value of the processor and memory
definition. To change it, you have to shutdown and reactivate the partition.

4. Select Ethernet in the Create Adapters panel, and then click (Create...). The
Virtual Ethernet Adapter Properties dialog box appears, as shown in
Figure 4-29.

The slot number that is used for this adapter identifies the virtual adapter
within the logical partition. The combination of the slot number and the logical
partition LAN ID uniquely identifies this slot within the managed system.
 Chapter 4. Virtualized resource management 127

Figure 4-30 Virtual Ethernet Adapter Properties panel

Each Virtual Ethernet adapter has assigned a Port virtual LAN ID (PVID) or a
virtual LAN ID (VID) number. Selecting the IEEE 802.1Q compatible adapter
option allows you to configure additional virtual LAN IDs. This allows the Virtual
Ethernet adapter to be part of additional VLANs as specified in the IEEE 802.1Q
network standard. Virtual Ethernet adapters can communicate with each other
only if they are assigned to the same PVID or VID number.

5. After you define a virtual adapter in a partition profile, you must shutdown and
reactivate the partition to make the adapter available. If a network connection
is already configured and your RMC connection is working correctly, you can
add the Virtual Ethernet adapter dynamically to the partition.

Important: Trunk adapter must be selected on each Virtual Ethernet adapter
that will be mapped to create an SEA.
128 Partitioning Implementations for IBM Eserver p5 Servers

6. Right-click the partition name, and choose Dynamic Logical Partitioning →
Virtual Adapter Resources → Add / Remove as shown in Figure 4-31.

Figure 4-31 Dynamically adding or removing virtual adapters to a partition

7. Run the cfgdev command from the command line interface of the Virtual I/O
Server to refresh the configuration from the operating system point of view.

8. Define the SEA on the Virtual I/O Server using the mkvdev command as
follows:

mkvdev -sea TargetDevice -vadapter VirtualEthernetAdapter ...
 -default DefaultVirtualEthernetAdapter
 -defaultid SEADefaultPVID [-attr Attributes=Value ...]

Important: If you want to keep your dynamic virtual adapter changes after you
reactivate the partition, you also have to add or remove the defined adapters
to the partition profile.
 Chapter 4. Virtualized resource management 129

Using the example in Figure 4-32, the target devices are the physical
adapters (for example, ent0 and ent1). The virtual devices are ent2, ent3, and
ent4, and the defaultid is the default PVID associated with the default virtual
Ethernet adapter.

Figure 4-32 Example of an I/O server partition bridge

9. Setup SEA using the following commands:

$mkvdev –sea ent0 –vadapter ent2 –default ent2 –defaultid 1
$mkvdev –sea ent1 –vadapter ent3 ent4 –default ent3 –defaultid 2

After running the mkvdev command, the system creates the SEA ent5.

In the second example, the physical Ethernet adapter is ent1. The mkvdev
command maps the virtual Ethernet adapter ent3 and ent4 to the physical
adapter. Additionally, ent3 is defined as a default adapter with the default
VLAN ID of 2. Untagged packets that are received by the SEA are tagged with
the VLAN 2 ID and are sent to the Virtual Ethernet adapter ent3.

10.Configure the ent5 interface with an IP address using the mktcpip command
as shown in the following:

mktcpip -hostname HostName -inetaddr Address -interface Interface
 [-start] [-netmask SubnetMask] [-cabletype CableType]
 [-gateway Gateway] [-nsrvaddr NameServerAddress
 [-nsrvdomain Domain]]

11.Set up the hostname and IP address for the SEA as shown in the following
example.

$ mktcpip -hostname p5_2ioserver1 -inetaddr 9.3.5.150 -interface en5
-netmask 255.255.255.0 -gateway 9.3.5.41

Important: To set up the SEA, all involved virtual and physical Ethernet
interfaces have to be unconfigured (down or detached).
130 Partitioning Implementations for IBM Eserver p5 Servers

4.4.6 Virtual SCSI disk
Virtual SCSI facilitates the sharing of physical disk resources (I/O adapters and
devices) between logical partitions. Virtual SCSI enables partitions to access
SCSI disk devices without requiring physical resources be allocated to the
partition. Partitions maintain a client/server relationship in the Virtual SCSI
environment. Partitions that contain Virtual SCSI devices are referred to as client
partitions while the partition that own the physical resources (adapters, devices)
is the Virtual I/O Server.

The Virtual SCSI disks are defined as logical volumes or as physical volumes in
the Virtual I/O Server. All standard conventional rules apply to the logical
volumes. The logical volumes appear as real devices (hdisks) in the client
partitions and can be used as a boot device and as a NIM target.

After a virtual disk is assigned to a client partition, the Virtual I/O Server must be
available before the client partitions are able to boot.

Defining volume groups and logical volumes
If you want to create a logical volume to assign to your client partition, use the
mklv command. To create the logical volume on a separate disk, you first have to
create a volume group and assign one or more disks using the mkvg command.

The basic syntax of the mkvg command to create a volume group on the Virtual
I/O Server is:

mkvg [-f] [-vg VolumeGroup] PhysicalVolume ...

The basic syntax of the mklv command to create a logical volume on the Virtual
I/O Server is:

mklv [-mirror] [-lv NewLogicalVolume | -prefix Prefix]
 VolumeGroup Size [PhysicalVolume ...]

To create a volume group and define the logical volume:

1. Create a volume group and assign a disk to this volume group using the mkvg
command as shown. In this example the name of the volume group is
rootvg_clients.

$ mkvg -f -vg rootvg_clients hdisk2
rootvg_clients

Restriction: Multiple subnets may connect externally using the same
Ethernet adapter; however, each subnet must be tagged with a different VLAN
ID.
 Chapter 4. Virtualized resource management 131

2. Define the logical volume which will be visible as a disk to the client partition.
The size of this logical volumes acts as the size of disks which will be
available to the client partition. Use the mklv command to create 2 GB size
logical volume called rootvg_dbsrv as follows:

$ mklv -lv rootvg_dbsrv rootvg_clients 2G
rootvg_dbsrv

4.4.7 Defining the Virtual SCSI Server adapter on the HMC
To define the Virtual SCSI Server adapter on the HMC:

1. On the Virtual I/O Server partition profile select the Virtual I/O tab to create a
Virtual SCSI Server adapter. Choose SCSI and click (Create...) to proceed.
The Virtual SCSI Adapter Properties dialog box opens, as shown in
Figure 4-33.

Figure 4-33 Virtual SCSI Adapter Properties panel on the IO Server
132 Partitioning Implementations for IBM Eserver p5 Servers

The slot number identifies the virtual adapter within the logical partition. The
combination of the slot number and the logical partition ID uniquely identify
this slot within the managed system.

This slot number does not refer to any physical hardware location on your
system. You can, therefore, assign slot numbers to virtual adapters in any way
that makes sense to you, provided that you follow these guidelines:

– You can use any slot number from 2 up to (but not including) the maximum
number of virtual adapters. Slots 0 and 1 are reserved for system-created
virtual adapters. By default, the system displays the lowest unused slot
number for this logical partition.

– You cannot use a slot number that was used for any other virtual adapter
on the same logical partition.

2. Select Server as the Adapter Type.

3. In the Connection Information area, define whether or not you want to allow
all partitions or only one dedicated partition to connect to this SCSI drive.

4. If the client partition is not defined yet, you can enter a unique Partition ID into
the Remote Partition field. Use this Partition ID when defining your client
partition. The HMC will assign this partition automatically as a client for virtual
SCSI resources. The Remote partition virtual slot number has to match with
the slot number defined for your client SCSI adapter on the client partition.

5. Click OK and the Virtual SCSI Server adapter is ready to be configured from
the command line interface of the Virtual I/O Server. When you define the
adapter in the partition profile you have to shutdown your partition and
reactivate it to make the adapter available or to use the dynamically
reconfiguration process.
 Chapter 4. Virtualized resource management 133

4.4.8 Defining the Virtual SCSI Client adapter on the HMC
The Virtual SCSI Client adapter is defined in the same panel in the client partition
profile. Figure 4-34 shows the client partition DB_Server definition for the Virtual
SCSI Client adapter.

Figure 4-34 Virtual SCSI Adapter Properties panel on the client partition

The Virtual SCSI Client adapter has Slot number 3 defined, which matches to the
Remote partition virtual slot number on the Virtual I/O Server partition.

The Adapter Type assigned on the client partition is Client.

In the Connection Information area, select the hosting I/O Server partition and fill
in the Remote partition virtual slot number. In this example, this is slot number
20.
134 Partitioning Implementations for IBM Eserver p5 Servers

4.4.9 Creating the virtual target device on the Virtual I/O Server
The basic command to map the Virtual SCSI with the logical volume or hdisk is
as follows:

mkvdev -vdev TargetDevice -vadapter VirtualSCSIServerAdapter
 [-dev DeviceName]

To create the virtual target device:

1. Run the lsdev -virtual command to make sure that the new virtual SCSI
adapter is available:

$ lsdev -virtual
name status description

ent2 Available Virtual I/O Ethernet Adapter (l-lan)
vhost0 Available Virtual SCSI Server Adapter
vhost1 Available Virtual SCSI Server Adapter
vhost2 Available Virtual SCSI Server Adapter
vsa0 Available LPAR Virtual Serial Adapter

2. Create a virtual target device, which maps the Virtual SCSI Server adapter
vhost0 to the logical volume rootvg_dbsrv that was created previously. When
you do not use the -dev flag, the default name of the Virtual Target Device
adapter is vtscsix. Run the mkvdev command as shown:

$ mkvdev -vdev rootvg_dbsrv -vadapter vhost0 -dev vdbsrv
vdbsrv Available

To map a physical volume to the Virtual SCSI Server Adapter use hdiskx
instead of the logical volume devices for the -vdev flag.

The lsdev command shows the newly created Virtual Target Device adapter.

$ lsdev -virtual
name status description

vhost0 Available Virtual SCSI Server Adapter
vsa0 Available LPAR Virtual Serial Adapter
vdbsrv Available Virtual Target Device - Logical Volume
 Chapter 4. Virtualized resource management 135

The lsmap command shows us the logical connections between newly
created devices, as follows:

$ lsmap -vadapter vhost0
SVSA Physloc Client
PartitionID
--------------- --

vhost0 U9111.520.10DDEEC-V1-C20 0x00000000

VTD vdbsrv
LUN 0x8100000000000000
Backing device rootvg_dbsrv
Physloc

The physical location is a combination of the slot number. In this example, 20
and the logical partition ID.

3. At this point the virtual device can be attached from the client partition. You
can activate the partition with the SMS menu and install the AIX operating
system on the virtual disk, or you can add an additional virtual disk using the
cfgmgr command.

The Client PartitionID is visible as soon the client partition is active.

4.4.10 Limitations and considerations
The Virtual I/O Server software is a dedicated software only for the Virtual I/O
Server operations, and there is no possibility to run other applications in the
Virtual I/O Server partition.

There is no option to get the Virtual I/O Server partition pre-installed on new
systems. At the time of the writing of this book, the preinstall manufacturing
process does not allow the Virtual I/O Server partition to be pre-installed.

The Virtual I/O Server should be properly configured with enough resources. The
most important are the processor resources. If a Virtual I/O Server has to host a
lot of resources to other partitions, you must ensure that enough processor
power is available.

Logical volume limitation
The Virtual I/O Server operating system allows you to define up to 1024 logical
volumes per volume group, but the actual number that you can define depends
on the total amount of physical storage that are defined for that volume group and
the size of the logical volumes you configure.
136 Partitioning Implementations for IBM Eserver p5 Servers

Table 4-5 shows the limitations for logical storage management.

Table 4-5 Limitations for logical storage management

Category Limit

Volume group 4096 per system

Physical volume 1024 per volume group

Physical partition 2097152 per volume group

Logical volume 4096 per volume group

Logical partition Based on physical partitions
 Chapter 4. Virtualized resource management 137

138 Partitioning Implementations for IBM Eserver p5 Servers

Chapter 5. Dynamic logical partitioning

A dynamic logical partition (DLPAR) allows you to add and remove the resources
that are associated with a partition dynamically without rebooting the partition.
This functionality was first supported by AIX 5L Version 5.2.

Advanced Virtualization and Micro-Partitioning technology provided a change
from the DLPAR perspective with finer granularity of system resources available
for DLPAR operations. This chapter provides an update of the DLPAR functions
with the introduction of the POWER5 systems and includes the following
sections:

� 5.1, “Dynamic logical partitioning overview” on page 140
� 5.2, “The process flow of a DLPAR operation” on page 148
� Table 5.3 on page 152
� 5.4, “DLPAR-safe and DLPAR-aware applications” on page 155
� 5.5, “Integrating a DLPAR operation into the application” on page 157
� 5.6, “Script-based DLPAR event handling” on page 160
� 5.7, “DLPAR script subcommands” on page 167
� 5.8, “How to manage DLPAR scripts” on page 186
� 5.9, “API-based DLPAR event handling” on page 194
� 5.10, “Error handling of DLPAR operations” on page 205

5

© Copyright IBM Corp. 2003, 2004, 2005. All rights reserved. 139

5.1 Dynamic logical partitioning overview
DLPAR was introduced with AIX 5L Version 5.2. A dynamic partition based on
AIX 5L Version 5.2 can consist of the following resource elements:

� A dedicated processor
� 256 MB memory region
� I/O adapter slot

Multiple resources can be placed under the exclusive control of a given logical
partition. DLPAR extends these capabilities by allowing this fine-grained resource
allocation to occur not only when activating a logical partition, but also while the
partitions are running. Individual processors, memory regions, and I/O adapter
slots can be released into a free pool, acquired from that free pool, or moved
directly from one partition to another.

On POWER5 with AIX 5L Version 5.3, however, a partition can consist of
dedicated processors, or virtual processors with a specific capacity entitlement
running in capped or uncapped mode, dedicated memory region, and virtual or
physical I/O adapter slots.

For dedicated and shared processor partitions, it is possible to:

� Add, move, or remove memory in a granularity of 16 MB regions dynamically
� Add, move, or remove physical I/O adapter slots dynamically
� Add, or remove virtual I/O adapter slots dynamically

For a dedicated processor partition, it is only possible to add, move, or remove
whole processors dynamically. When you remove a processor dynamically from
a dedicated partition on a system that uses shared processor partitions, it is then
assigned to the shared processor pool.

For shared processor partitions, it is also possible to:

� Remove, move, or add entitled shared processor capacity dynamically
� Change between capped and uncapped processing dynamically
� Change the weight of an uncapped partition dynamically
� Add, and remove virtual processors dynamically

The DLPAR operation for a shared processor refers to the additional processor
capacity which is expressed as a percentage, so 100 represents one physical
processor and 180 represents the 1.8 processors.
140 Partitioning Implementations for IBM Eserver p5 Servers

5.1.1 Processor resources
Figure 5-1 shows the panel for dynamic reconfiguration of processor resources
on the HMC. From this panel, you can choose to add, remove, or move your
resources. Select the partition that you want to change dynamically, and press
the right mouse button. Then choose Dynamic Logical Partitioning →
Processor Resources and choose the action that you want to perform.

Figure 5-1 Dynamic Logical Partitioning Processor Resources

From the Add Processor Resources panel shown in Figure 5-2 on page 142, you
can specify the processing units and the number of virtual processors that you
want to add to the selected partition. The limits for adding processing units and
virtual processors are the maximum values that are defined in the partition

Note: A single DLPAR operation can perform only one type of resource
change. You cannot add and remove memory to and from the same partition
in a single DLPAR operation. Also, you cannot move processor and memory
from a partition to another partition in a single DLPAR operation.
 Chapter 5. Dynamic logical partitioning 141

profile. This panel also allows you to add variable weight when the partition runs
in uncapped mode.

Figure 5-2 Add Processor Resources

Additionally, the Add Processor Resource panel allows you to change the
partition mode dynamically from uncapped to capped or vice versa. To show the
actual status of the partition, use the lparstat -i command from the AIX
command line interface of the partition, as shown in the following example:

lparstat -i
Node Name : applsrv
Partition Name : Apps_Server
Partition Number : 4
Type : Shared-SMT
Mode : Uncapped
Entitled Capacity : 0.30
Partition Group-ID : 32772
Shared Pool ID : 0
Online Virtual CPUs : 2
Maximum Virtual CPUs : 10
Minimum Virtual CPUs : 1
Online Memory : 512 MB
Maximum Memory : 1024 MB
Minimum Memory : 128 MB
Variable Capacity Weight : 128
142 Partitioning Implementations for IBM Eserver p5 Servers

Minimum Capacity : 0.20
Maximum Capacity : 1.00
Capacity Increment : 0.01
Maximum Dispatch Latency : 16999999
Maximum Physical CPUs in system : 2
Active Physical CPUs in system : 2
Active CPUs in Pool : -
Unallocated Capacity : 0.00
Physical CPU Percentage : 15.00%
Unallocated Weight : 0

Figure 5-3 shows how to change the mode of the partition from uncapped to
capped mode. Deselect Uncapped and click OK.

Figure 5-3 Advanced Processor Settings - Uncapped Mode
 Chapter 5. Dynamic logical partitioning 143

To verify this dynamic action, use the lparstat -i command on the selected
partition again. The partition mode changed from uncapped to capped.

lparstat -i
Node Name : applsrv
Partition Name : Apps_Server
Partition Number : 4
Type : Shared-SMT
Mode : Capped
Entitled Capacity : 0.30
Partition Group-ID : 32772
Shared Pool ID : 0
Online Virtual CPUs : 2
Maximum Virtual CPUs : 10
Minimum Virtual CPUs : 1
Online Memory : 512 MB
Maximum Memory : 1024 MB
Minimum Memory : 128 MB
Variable Capacity Weight : 128
Minimum Capacity : 0.20
Maximum Capacity : 1.00
Capacity Increment : 0.01
Maximum Dispatch Latency : 16999999
Maximum Physical CPUs in system : 2
Active Physical CPUs in system : 2
Active CPUs in Pool : -
Unallocated Capacity : 0.00
Physical CPU Percentage : 15.00%
Unallocated Weight : 0

Figure 5-4 on page 145 shows the Remove Processing Units panel that allows
you to remove processing units and virtual processors dynamically. The limit for
the removal of processing units and virtual processors is the minimum value
defined in the partition profile.

This panel also allows you to remove variable weight when the partition runs in
uncapped mode.
144 Partitioning Implementations for IBM Eserver p5 Servers

Figure 5-4 Remove Processing Units

When moving processing units, you have to select the partition from which you
want the processing units removed and choose the Move Processing Units panel
as shown in Figure 5-5 on page 146.
 Chapter 5. Dynamic logical partitioning 145

Figure 5-5 Move Processing Units

In the Processing units field, select the amount of processor capacity you want to
remove from the selected partition and move to the partition that you select from
the menu under Logical Partition. In this example, 0.7 processing units are
required to be moved to the Apps_Server partition.

You can also choose to move virtual processors to adjust the number of virtual
processors of your partition. This action does not actually move the virtual
processor but removes and adds the defined number of Virtual processors to the
chosen partitions.

5.1.2 Dynamic partitioning for Virtual Ethernet devices
You can assign and remove Virtual Ethernet resources dynamically. On the HMC,
you can assign and remove Virtual Ethernet target and server adapters from a
partition using DLPAR. You can also map between physical and virtual resources
on the Virtual I/O Server dynamically.
146 Partitioning Implementations for IBM Eserver p5 Servers

5.1.3 Dynamic partitioning for Virtual SCSI devices
You can assign and remove Virtual SCSI resources dynamically. On the HMC,
you can assign and remove Virtual SCSI target and server adapters from a
partition using dynamic logical partitioning. You can also map between physical
and virtual resources on the Virtual I/O Server dynamically.

5.1.4 Capacity on Demand
Capacity on Demand (CoD) adds operational and configuration flexibility for
IBM ̂p5 and pSeries systems. CoD is available in a variety of offerings
that allow you to pay when purchased, pay after activation, pay before activation,
or pay with a one-time cost.

When activating a processor featured for CoD on a system with defined shared
processor partitions, the activated processor is assigned automatically to the
shared processor pool. You can then decide to add the processor dynamically to
a dedicated processor partition or to add capacity entitlement dynamically to the
shared processor partitions.

When the system operates as a full system partition, the processor is added
automatically to the systems processor capacity.

To remove a CoD processor (for example, when using On/Off CoD, which
enables users to temporarily activate processors), you have to make sure that
there are enough processing units to deactivate the processor. You can remove
the needed capacity entitlement from the partitions dynamically.

A type of CoD is named Reserve CoD. It represents an autonomic way to
activate temporary capacity. Reserve CoD enables the user to place a quantity of
inactive processors into the server's shared processor pool, which then become
available to the pool's resource manager. When the server recognizes the
number of base (purchased and active) processors that are assigned across
uncapped partitions have been 100% utilized, and at least 10% of an additional
processor is needed, then a Processor Day (good for a 24 hour period) is
charged against the Reserve CoD account balance. Another Processor Day is
charged for each additional processor that is put into use based on the 10%
utilization rule. After the 24-hour period elapses and there is no longer a need for
the additional performance, no Processor Days are charged until the next
performance spike.

DLPAR supports the following dynamic resource changes in a partition without
requiring a partition reboot:

� Resource addition
� Resource removal
 Chapter 5. Dynamic logical partitioning 147

By achieving the resource changes in the following sequence on two partitions in
a system, the specified resource can be moved from a partition to another
partition:

1. Resource removal from a partition
2. Resource addition to another partition

This resource movement is implemented as single task on the HMC, although it
is actually composed of two separate tasks on two partitions internally.

Resources that are removed from a partition are marked free (free resources)
and are owned by the global firmware of system. These resources are kept in a
free resource pool. You can add free resources to any partition in a system as
long as the system has enough free resources.

5.2 The process flow of a DLPAR operation
A DLPAR operation initiated on the HMC is transferred to the target partition
through Resource Monitoring and Controlling (RMC). The request produces a
DLPAR event on the partition. After the event has completed, regardless of the
result from the event, a notification is returned to the HMC to mark the
completion of the DLPAR operation. Thus, a DLPAR operation is considered a
single transactional unit, and only one DLPAR operation is performed at a time.

A DLPAR operation is executed in the process flow is illustrated in Figure 5-6 on
page 149.

Note: A DLPAR operation can perform only one type of resource change. You
cannot add and remove memory to and from the same partition in a single
DLPAR operation. Also, you cannot move processor and memory from a
partition to another partition in a single DLPAR operation.
148 Partitioning Implementations for IBM Eserver p5 Servers

Figure 5-6 Process flow of a DLPAR operation

The following steps explain the process flow of a DPLAR operation:

1. The system administrator initiates a DLPAR operation request on the HMC
using either the graphical user interface or command line interface.

2. The requested DLPAR operation is verified on the HMC with the current
resource assignment to the partition and free resources on the managed
system before being transferred to the target partition. In other words, the
HMC provides the policy that determines whether a DLPAR operation request
is actually performed on the managed system. The policy is determined by
the partition profile. If the request is a resource addition, the HMC
communicates with the global firmware to allocate free resources to the target
partition through the service processor.

3. If enough free resources exist on the system, the HMC assigns the requested
resource to the specified partition, updates the partition’s object to reflect this
addition, and then creates associations between the partition and the
resource to be added.

B: DLPAR operation request via RMC from the HMC

IBM.DRM

RMC

Platform-dependent
device driver Kernel

RTAS

Global firmware / Hypervisor

CSP

Ethernet

AIX 5L Version

Managed system

HMC

Serial Line

drmgr

Platform-dependent
commands

C: DLPAR operation result from the partition

GUI or command

A: Resource query and allocate
requests to the CSP before
the DLPAR operation over
the serial line

D: Resource reclaim request
to the CSP after the DLPAR
operation over the serial line

5.2 Partition
 Chapter 5. Dynamic logical partitioning 149

4. After the requested DLPAR operation has been verified on the HMC, it will be
transferred to the target partition using RMC, which is an infrastructure
implemented on both the HMC and AIX partitions, as indicated as arrow B in
Figure 5-6 on page 149. The RMC is used to provide a secure and reliable
connection channel between the HMC and the partitions.

5. The request is delivered to the IBM.DRM resource manager running on the
partition, which is in charge of the DLPAR function in the RMC infrastructure
in AIX. As shown in the following example, the IBM.DRM resource manager is
running as the IBM.DRMd daemon process and included in the
devices.chrp.base.rte fileset on AIX 5L Version 5.2 or later:

lssrc -ls IBM.DRM
Subsystem : IBM.DRM
PID : 18758
Cluster Name : IW
Node Number : 1
Daemon start time : Wed Aug 21 16:44:12 CDT 2002

Information from malloc about memory use:
 Total Space : 0x003502c0 (3474112)
 Allocated Space: 0x0030b168 (3191144)
 Unused Space : 0x00043e40 (278080)
 Freeable Space : 0x00000000 (0)

Class Name(Id) : IBM.DRM(0x2b) Bound
ps -ef | head -1 ; ps -ef | grep DRMd | grep -v grep
 UID PID PPID C STIME TTY TIME CMD
 root 18758 10444 0 Aug 21 - 0:22 /usr/sbin/rsct/bin/IBM.DRMd
lslpp -w /usr/sbin/rsct/bin/IBM.DRMd
 File Fileset Type

 /usr/sbin/rsct/bin/IBM.DRMd
 devices.chrp.base.rte File

Note: The connection channel established by RMC only exists between
the HMC and the partition to where the DLPAR operation is targeted. There
are no connection paths required between partitions for DLPAR operation
purposes.

Note: The absence of the IBM.DRM resource manager in the lssrc -a
output does not always mean that the partition has not been configured
appropriately for the DLPAR. The resource manager is configured
automatically and started by RMC after the first partition reboot, if the
network configuration is correctly set up on the partition and the HMC.
150 Partitioning Implementations for IBM Eserver p5 Servers

6. The IBM.DRM resource manager invokes the drmgr command, which is an
platform-independent command designed as the focal point of the dynamic
logical partitioning support on AIX.

As shown in the following example, the drmgr command is installed in the
/usr/sbin directory provided by the bos.rte.methods fileset:

whence drmgr
/usr/sbin/drmgr
lslpp -w /usr/sbin/drmgr
 File Fileset Type

 /usr/sbin/drmgr bos.rte.methods File

7. The drmgr command invokes several platform-dependent commands
depending on the resource type (processor, memory, or I/O resource) and
request (resource addition or removal) in order to instruct the kernel to
process the actual resource change with necessary information.

8. The kernel does many tasks, as described in Table 5.3 on page 152.

9. After the DLPAR event has completed, regardless of the result, a notification
is returned to the HMC to mark the completion of the DLPAR operation,
indicated as arrow C in Figure 5-6 on page 149. The notification also includes
the exit code, standard out, and standard error from the drmgr command. The
system administrator who has initiated the DLPAR operation sees the exit
code and outputs on the HMC.

If the request is a resource removal, the HMC communicates with the global
firmware in order to reclaim resource(s) to the shared or dedicated free resource
pool from the source partition through the service processor indicated as arrow D
in Figure 5-6 on page 149. The HMC unassigns the resource from the partition
and updates the partition’s object to reflect this removal, and then removes
associations between the partition and the resource that was just removed.

A DLPAR operation can take noticeable time depending on the availability and
the capability to configure or deconfigure a specific resource.

Note: The drmgr command should not be invoked by the system
administrator in order to directly perform resource changes in a partition. It
must be invoked in the context explained here to do so. In “How to manage
DLPAR scripts” on page 186, another usage of the drmgr command is
provided.
 Chapter 5. Dynamic logical partitioning 151

5.3 Internal activity in a DLPAR event
The AIX kernel communicates with the partition firmware through Run-Time
Abstraction Services (RTAS). The partition firmware manages resources in the
partition). The resources are represented in the Open Firmware device tree that
serves as a common reference point for the operating system and firmware. The
RTAS operate on objects represented in this database.

Each AIX partition has a private copy of the Open Firmware device tree that
reflects the resources that are actually assigned to the partition and those that
might be in the future. Structurally, it is organized like a file system with
directories and files, where the files represent configured instances of resources,
and the directories provide the list of potential assignments. Each installed
resource is represented in this list and are individually called dynamic
reconfiguration connectors.

5.3.1 Internal activity for processors and memory in a DLPAR event
As described previously, the drmgr command handles all DLPAR operations by
calling the appropriate commands and controls the process of the reconfiguration
of resources.

The following briefly describes the kernel internal activity for processors and
memory in a DLPAR event.

1. The Object Data Manager (ODM) lock is taken to guarantee that the ODM,
Open Firmware device tree, and the kernel are automatically updated. This
step can fail if the ODM lock is held for a long time and the user indicates that
the DLPAR operation should have a time limit.

2. The platform-dependent command reads the Open Firmware device tree.

3. The platform-dependent command invokes the kernel to start the DLPAR
event. The following steps are taken:

a. Requesting validation.

b. Locking DLPAR event. Only one event can proceed at a time.

c. Saving request in global kernel DR structure that is used to pass
information to signal handlers, which runs asynchronously to the
platform-dependent command.

d. Starting check phase.

4. The check phase scripts are invoked.

5. The check phase signals are sent, conditional wait if signals were posted.
152 Partitioning Implementations for IBM Eserver p5 Servers

6. The check phase kernel extension callout. Callback routines of registered
kernel extensions are called.

The event might fail in steps 4, 5, or 6 if any check phase handler signals an
error. After the check phase has passed without an error, and the DLPAR
event is in the pre phase, all pre phase application handlers will be called,
even if they fail, and the actual resource change is attempted.

7. The kernel marks the start of the pre phase.

8. Pre-phase scripts are invoked.

9. Pre-phase signals are sent–conditional wait, if signals were posted.

10.The kernel marks the doit phase start. This is an internal phase where the
resource is either added to or removed from the kernel.

Steps 11-13 can be repeated depending on the request. Processor-based
requests never loop; only one shared or dedicated processor can be added or
removed at a time in one DLPAR operation. If more than one shared or
dedicated processor needs to be added or removed, the HMC invokes AIX
once for each processor.

Memory-based requests loop at the LMB level, which represent contiguous
from 16 MB segments of logical memory, until the entire user request has
been satisfied. The HMC remotely invokes AIX once for the complete memory
request.

11.This step is only taken if adding a resource. The Open Firmware device tree is
updated. The resource allocated, un-isolated, and the connector configured.
When un-isolating the resource, it is assigned to the partition, and ownership
is transferred from Open Firmware to AIX:

– For processors, the identity of the global and local interrupt service is
discovered.

– For memory, the logical address and size is discovered.

12.Invoke kernel to add or remove resource:

a. The callback functions of registered kernel extensions are called. Kernel
extensions are told the specific resource that is being removed or added.

b. The resources in the kernel are removed or added.

c. The kernel extension in post or posterror phase are invoked.

If steps a or b fail, the operation fails.

13.This step is only taken if removing a resource.

The Open Firmware device tree is updated. Resources are isolated and
unallocated for removal. The Open Firmware device tree must be kept
updated so that the configuration methods can determine the set of resources
that are actually configured and owned by the operating system.
 Chapter 5. Dynamic logical partitioning 153

14.Kernel marks post (or posterror) phase start depending on the success of the
previous steps.

15.Invoke configuration methods so that DLPAR-aware applications and
registered DLPAR scripts will see state change in the ODM.

16.The post scripts are invoked.

17.The post signals are sent to registered processes, conditional wait if signals
were posted.

18.The kernel clears the DLPAR event.

19.ODM locks are released.

5.3.2 Internal activity for I/O slots in a DLPAR event
Dynamic removal and addition of I/O adapters has been provided by AIX prior to
DLPAR support, utilizing the PCI adapter Hot Plug capability on the IBM RS/6000
and IBM pSeries server models. To allow for the dynamic addition and removal of
PCI I/O slots, AIX 5L Version 5.2 provided enhancements to the lsslot
command have been made.

PCI slots and integrated I/O devices can be listed using the new connector type
slot in the lsslot command, as shown in the following example:

lsslot -c slot
The output of this command looks similar to the following:
#Slot Description Device(s)
U1.5-P1-I1 DLPAR slot pci13 ent0
U1.5-P1-I2 DLPAR slot pci14 ent1
U1.5-P1-I3 DLPAR slot pci15
U1.5-P1-I4 DLPAR slot pci16
U1.5-P1-I5 DLPAR slot pci17 ent2
U1.5-P1/Z1 DLPAR slot pci18 scsi0

Before the I/O slot removal, you must delete the PCI adapter device and all its
child devices from AIX. Given that ent2 in the slot U1.5-P1-I5 in the previous
example is not used, the devices could be removed using the following command
as the root user on the partition.

rmdev -l pci17 -d -R

After the devices have been removed from AIX, the I/O slot can be removed from
the partition using the graphical user interface or command line interface on the
HMC.

Note: Any PCI slots defined as required are not eligible for the DLPAR
operation.
154 Partitioning Implementations for IBM Eserver p5 Servers

To let AIX recognize the dynamically added I/O slot and its children devices to a
partition, you must invoke the cfgmgr command as the root user on the partition.
To add the previously removed I/O slot from a partition, it first needs to be
reassigned to the partition using the HMC.

5.4 DLPAR-safe and DLPAR-aware applications
The dynamic logical partitioning function was first introduced on AIX 5L Version
5.2 and was designed and implemented to not impact the existing applications. In
fact, most applications are not affected by any DLPAR operations results.
Therefore, those applications are called DLPAR-safe applications.

There are two types of application classifications regarding DLPAR operations:

DLPAR-safe Applications that do not fail as a result of DLPAR
operations. The application’s performance can suffer
when resources are removed, or it cannot scale as
resources are added.

DLPAR-aware Applications that incorporate DLPAR operations that allow
the application to adjust its use of the system resources
equal to the actual capacity of the system. DLPAR-aware
applications are always DLPAR-safe.

5.4.1 DLPAR-safe
Although, most applications are DLPAR-safe without requiring any modification,
there are certain instances where programs might not be inherently DLPAR-safe.
There are two cases where DLPAR operations can introduce undesirable effects
in the application:

� Programs that are optimized for uni-processors can have problems when a
processor is added to the system resources.

� On programs that are indexed by processor numbers, the increased
processor number can cause the code to go down an unexpected code path
during its run-time checks.

In addition, applications that use uni-processor serialization techniques can
experience unexpected problems. In order to resolve these concerns, system
administrators and application developers need to be aware of how their
applications get the number of processors.
 Chapter 5. Dynamic logical partitioning 155

5.4.2 DLPAR-aware
DLPAR-aware applications adapt to system resource changes that are caused by
DLPAR operations. When these operations occur, the application recognizes the
resource change and accommodate accordingly.

You can use the following techniques to make applications DLPAR-aware:

� Consistently poll for system resource changes. Polling is not the
recommended way to accommodate for DLPAR operations, but it is valid for
systems that do not need to be tightly integrated with DLPAR. Because the
resource changes might not be discovered immediately, an application that
uses polling can have limited performance. Polling is not suitable for
applications that deploy processor bindings, because they represent hard
dependencies.

� Applications have other methods to react to the resource change caused by
DLPAR operations. See “Integrating a DLPAR operation into the application”
on page 157.

� Several applications should be made DLPAR-aware, because, they need to
scale with the system resources. These types of applications can increase
their performance by becoming DLPAR-aware. Table 5-1 lists some examples
of applications that should be made DLPAR-aware.

Table 5-1 Applications that should be DLPAR-aware

Note: These are only a few types of common applications affected by DLPAR
operations. The system administrator and application developer should be
sensitive to other types of programs that might need to scale with resource
changes.

Application type Reason

Database
applications

The application needs to scale with the system. For example,
the number of threads might need to scale with the number of
available processors, or the number of large pinned buffers
might need to scale with the available system memory.

Licence Managers Licenses are distributed based on the number of available
processors or the memory capacity.

Workload Managers Jobs are scheduled based on system resources, such as
available processors and memory.

Tools Certain tools might report processor and memory statistics or
rely on available resources.
156 Partitioning Implementations for IBM Eserver p5 Servers

5.5 Integrating a DLPAR operation into the application
The DLPAR operation can be integrated into the application using the following
methods:

� Script-based DLPAR event handling

If the application is controlled externally to use a specific number of threads or
to size its buffers, use this method. In order to facilitate this method, a new
command, drmgr, is provided. The drmgr command is the central focal point of
the DLPAR function of AIX. The following several sections discuss the drmgr
command and typical usage examples are provided in “How to manage
DLPAR scripts” on page 186.

See “Script-based DLPAR event handling” on page 160 for more information.

� API-based DLPAR event handling

If the application is directly aware of the system configuration, and the
application source code is available, use this method.

See “API-based DLPAR event handling” on page 194 for more information.

Applications can monitor and respond to various DLPAR events, such as a
memory addition or processor removal, by using these two methods. Although, at
the high-level, both methods share the same DLPAR events flow, several key
differences exist between these two methods.

One difference is that the script-based method externally reconfigures the
application once a DLPAR event takes place, while the API-based method can be
directly integrated into the application by registering a signal handler so that the
process can be notified with the SIGRECONFIG signal when the DLPAR event
occurs.

5.5.1 Three phases in a DLPAR event
A DLPAR event executes in three phases: check, pre, and post. Each phase is an
automatic execution unit and is executed in its entirety before the next phase is
started, preventing partial updates to the system. In the pre and post phases, the
state of the application is permitted to change. The operating system only acts
upon DLPAR requests between the pre and post phases to perform the actual
resource change.

Note: The DLPAR events of I/O resources do not notify applications.
 Chapter 5. Dynamic logical partitioning 157

Figure 5-7 illustrates the three phases and the order in which they occur for a
DLPAR event.

Figure 5-7 Three DLPAR phases of a DLPAR event

Check phase
The check phase usually occurs first. It is used to examine the resource’s state
and to determine if the application can tolerate a DLPAR event. It gives the script
or API a chance to fail the current DLPAR operation request without changing
any system state.

Note: If a dynamic processor deallocation occurs in a partition that is running
AIX 5L Version 5.2 or later, it is also treated as a processor removal DLPAR
event, and thus invokes these three phases.

No

Yes

Resource change

Post phase

Pre phase

Check phase

Success?

Force?
Yes

No

Only when DLPAR
operation is a
removal request
158 Partitioning Implementations for IBM Eserver p5 Servers

The check phase can be used in several situations, including the following:

� To determine if a processor cannot be removed because it still has threads
bound to it.

� By a licence manager to fail the integration of a new processor to the partition
because it does not have a valid licence to support the addition of a
processor.

� To maintain an application’s DLPAR safeness by restricting the effects of
DLPAR operations. For instance, if the application is optimized for a
uniprocessor environment, the check phase could prevent the application
from recognizing the addition of a processor, which could prevent the
application from executing an unexpected code path with the presence of
additional processors.

Pre phase
Before the actual resource change is made, the application is notified that a
resource change (addition or removal) is about to occur. The application is given
a chance to prepare for the DLPAR request in the pre phase.

When the application is expecting a resource removal, the DLPAR script or API
needs to carefully utilize this phase. This phase handles such things as
unbinding processors, detaching pinned shared memory segments, removing
plocks, and terminating the application if it does not support DLPAR or will be
broken by DLPAR requests.

Post phase
After a resource change has occurred, the application will have a chance to
respond to the DLPAR operation. The application can reconfigure itself in the
post phase in order to take advantage of the resource addition or to compensate
for the resource removal.

Note: In a resource removal DLPAR event, the check phase is skipped if the
force option is specified. In a resource addition DLPAR event, the check phase
is not skipped regardless of the force option value.

Note: If a DLPAR script exits with failure from the check phase, the DLPAR
event will not continue. Therefore, the resource change is not performed, and
the DLPAR script is not invoked in the pre and post phases.

Note: The actual resource change takes place between the pre and post
phases.
 Chapter 5. Dynamic logical partitioning 159

If resources are added, the DLPAR script or API could create new threads or
attach to pinned shared memory segments. On the other hand, if resources are
removed, the DLPAR scripts or API calls might delete threads for scalability.

5.5.2 Event phase summary
When a DLPAR request is made to change resource configurations in a partition,
the drmgr command notifies applications of the pending resource change.
Table 5-2 summarizes the phases of a DLPAR event and some important
considerations of what needs to be accomplished in each phase.

Table 5-2 Considerations during each event phase

5.6 Script-based DLPAR event handling
The script-based DLPAR event handling method is performed by several
components, as explained in the following (see Figure 5-8 on page 162):

1. A DLPAR operation request is initiated using either the graphical user
interface or command line interface on the HMC.

2. The request is transferred to the target partition through RMC. The IBM.DRM
resource manager on the partition receives this request.

3. The IBM.DRM resource manager invokes the drmgr command with the
necessary information that represents a DLPAR event.

Phase Considerations

Check � Can the application support the request?

� Are there licence restrictions?

� Can the system withstand this application failing?

Pre � Is it best to stop the application and then restart it after the DLPAR
operation?

� How can the application help facilitate a DLPAR removal or addition?

� What can the application eliminate or reduce when a resource is
removed? (that is, kill threads)

Post � Does the application need to be restarted after the DLPAR operation?

� How can the application take advantage of added resource? (that is, start
new threads)

� Did the operation complete? Was there a partial success?
160 Partitioning Implementations for IBM Eserver p5 Servers

4. The drmgr command invokes registered DLPAR scripts depending on the
resource type, processor, or memory that is specified by the DLPAR event.
The information about the registered DLPAR scripts is kept in the DLPAR
script database and fetched by the drmgr command.

5. The invoked DLPAR scripts perform necessary tasks that integrate the
DLPAR operation into the application.

The DLPAR scripts should satisfy the application’s demands when a DLPAR
event takes place so that the application can take the appropriate actions.
Therefore, DLPAR scripts are carefully developed and tested in order for the
applications’ DLPAR-awareness.

The DLPAR script can use the following commands in order to resolve the
application processes’ resource dependency:

ps To display bindprocessor attachments and plock system
call status at the process level.

bindprocessor To display online processors and make new attachments.

kill To send signals to processes.

ipcs To display pinned shared memory segments at the
process level.

lsrset To display processor sets.

lsclass To display Workload Manager (WLM) classes, which
might include processor sets.

chclass To change WLM class definitions.
 Chapter 5. Dynamic logical partitioning 161

Figure 5-8 A DLPAR script invoked by the drmgr command

5.6.1 Script execution environment
When DLPAR scripts are invoked by the drmgr command, it sets up the following
script execution environment. The required information to set up this environment
is taken from the DLPAR script database and the DLPAR event.

� The UID and GID of the execution process are set to the ones of the DLPAR
script.

� The current working directory is changed to /tmp.

� The PATH environment variable is set to /usr/bin:/etc:/usr/sbin.

� Two pipes are established between drmgr and the executing process so that
the process reads using the standard in from the drmgr command and writes
using the standard out to the drmgr command.

As illustrated in Figure 5-8, the execution environment defines the input and
output for the DLPAR script process.

DLPAR operation request through the
RMC from the HMC

dr_script database

Fetch registered
DLPAR script
information

Spawn

Spawn

Interact with

DLPAR script

drmgr

IBM.DRMd

Application

- additional cmd args

(environment values)

Output:

- name-value pairs (stdout)
- exit value

Input:

- name-value pairs

syslog facility

Debug information
162 Partitioning Implementations for IBM Eserver p5 Servers

When the DLPAR script is invoked, the DLPAR script process receives its input
using the following two ways:

� Additional command line arguments

When a DLPAR script is called, the drmgr command will invoke it as follows:

dr_application_script <sub-command> <additional_cmd_arg>

In addition to the subcommands, which are explained in “DLPAR script
subcommands” on page 167, additional command arguments can be passed
to the script.

� Environment variables with specified format

When a DLPAR script is called, the drmgr command passes several
environmental variables using a name-value pair format.

Environmental variables that start with DR_ are primarily used to send input
data to DLPAR scripts; therefore, they should be exclusively set aside for the
drmgr command.

There are three types of environment values:

– General environment values (see Table 5-3 on page 164)
– processor-specific environment values (Table 5-4 on page 165)
– Memory-specific environment values (Table 5-5 on page 166)

The DLPAR script process produces its output using the following two ways:

� Exit values

The script must return an exit value, either 0 (success) or 1 (failure). If the exit
value is 1, then the DR_ERROR name-value pair must be set to describe the
reason for failure, and the script must print it to the standard out.

� Standard out with specified format

The DLPAR scripts can write strings using a name-value pair format to the
standard out. The drmgr command will read them from the scripts. Strings that
start with DR_ are primarily used to send output data to the drmgr command
from the DLPAR scripts.

Note: These environment variables only exist during DLPAR events. If you
want to view these variable values, the script needs to be coded to write
these variables to the standard out using DR_LOG_* variables so that the
drmgr command can forward these output to the syslog facility (see
Table 5-4 on page 165).
 Chapter 5. Dynamic logical partitioning 163

Input (environment variables)
Table 5-3 shows general environment variables.

Table 5-3 General DLPAR environment variables

Note: The script should not print the following to the standard out:

� A string whose length is larger than 1024 characters.

� A string that contains new line characters.

� Any strings that are undefined in Table 5-6 on page 166, Table 5-9 on
page 171, Table 5-10 on page 173, and Table 5-11 on page 174.

Environment variable Description

DR_DETAIL_LEVEL=N This name-value pair instructs the script to produce the
specified level of detailed debug information sent to the
standard out. The value of N must be one of the following:

� 0 - None

� 1 - Min

� 2 - Medium/more

� 3 - Max

� 4 - Debug

DR_FORCE=emergency This name-value pair gives the emergency processing
request to the script. The value of emergency must be one
of the following:

� FALSE - Emergency processing is required.

� TRUE - Emergency processing is not required
(default).

Note: The DR_DETAIL_LEVEL=N environment value is set on the HMC. If
you use the graphical user interface, select Detail level in the DLPAR
operation panel. If you use the command line interface, use the -d option of
the chhwres command to set the value.
164 Partitioning Implementations for IBM Eserver p5 Servers

Table 5-4 shows processor-specific environment variables.

Table 5-4 Processor-specific DLPAR environment variables

Processor environment variables Description

DR_LCPUID=N The logical CPU ID of the processor that is
being added or removed. N is a decimal
number.

DR_BCPUID=N The bind CPU ID of the processor that is being
added or removed. N is a decimal number.

DR_CPU_CAPACITY=N Capacity is not expressed as a fraction in the
above parameters. Capacity is expressed as a
percentage, where 100 represents one
physical processor, and 180 represents the
power of 1.8 processors. The environment
variables DR_CPU_CAPACITY and
DR_VAR_WEIGHT represent the value of the
partition attribute before the request was made,
so the script will have to internally add or
subtract the delta to determine the result of the
request.

DR_CPU_CAPACITY_DELTA=N Capacity is not expressed as a fraction in the
above parameters. Capacity is expressed as a
percentage, where 100 represents one
physical processor, and 180 represents the
power of 1.8 processors. The environment
variables DR_CPU_CAPACITY and
DR_VAR_WEIGHT represent the value of the
partition attribute before the request was made,
so the script will have to internally add or
subtract the delta to determine the result of the
request.

DR_VAR_WEIGHT=N The environment variables
DR_CPU_CAPACITY and DR_VAR_WEIGHT
represent the value of the partition attribute
before the request was made, so the script will
have to internally add or subtract the delta to
determine the result of the request.

DR_VAR_WEIGHT_DELTA=N The environment variables
DR_CPU_CAPACITY and DR_VAR_WEIGHT
represent the value of the partition attribute
before the request was made, so the script will
have to internally add or subtract the delta to
determine the result of the request.
 Chapter 5. Dynamic logical partitioning 165

Table 5-5 shows the memory-specific environment variables.

Table 5-5 Memory-specific DLPAR environment variables

Output (standard out)
Table 5-6 shows general output variables. The DR_ERROR=failure_cause
name=variable pair is a mandatory output when the script exits with 1 (failure).

Table 5-6 General DLPAR output variables

Memory environment variables Description

DR_MEM_SIZE_REQUEST=N Size of memory requested in megabytes.
N is a decimal value.

DR_MEM_SIZE_COMPLETED=N Number of megabytes that were
successfully added or removed. N is a
decimal value.

DR_FREE_FRAMES=N Number of free frames currently in the
system. Each frame is a 4 KB page. N is a
32-bit hexadecimal value.

DR_PINNABLE_FRAMES=N Total number of pinnable frames currently
in the system. Each frame is a 4 KB page.
N is a 32-bit hexadecimal value.

DR_TOTAL_FRAMES=N Total number of frames in the system.
Each frame is a 4 KB page. N is a 32-bit
hexadecimal value.

Variable Description

DR_ERROR=failure_cause
(only if the script exits with 1)

This name-value pair describes the reason for
failure.

DR_LOG_ERR=message This name-value pair describes the information
message to be sent to the syslog facility with the
err (LOG_ERR) priority.

DR_LOG_WARNING=message This name-value pair describes the information
message to be sent to the syslog facility with the
warning (LOG_WARNING) priority.

DR_LOG_INFO=message This name-value pair describes the information
message to be sent to the syslog facility with the
info (LOG_INFO) priority.

DR_LOG_EMERG=message This name-value pair describes the information
message to be sent to the syslog facility with the
emerg (LOG_EMERG) priority.
166 Partitioning Implementations for IBM Eserver p5 Servers

5.6.2 DLPAR script naming convention
When developing a DLPAR script, you should follow a few simple naming
conventions. It is preferable to name the script using prefixes that describe the
vendor name and the subsystem that it controls.

For example, dr_ibm_wlm.pl would be a good name for a DLPAR Perl script that
was written by IBM to control the WLM assignments. WLM is a standard function
of AIX to prioritize multiple processes depending on the predefined attributes.

Another example is dr_sysadmin_wlm.pl. This name could be a DLPAR Perl
script provided by system administrator to control the WLM assignments.

5.7 DLPAR script subcommands
Every DLPAR script is required to accept all the subcommands found in Table 5-7
on page 168. This section provides detailed information for each subcommand.

DR_LOG_DEBUG=message This name-value pair describes the information
message to be sent to the syslog facility with the
debug (LOG_DEBUG) priority.

Note: Except for the DR_ERROR variable, the other variables are used to
send messages to the syslog facility.

Variable Description

Note: The prefix names for these subcommands (check, pre, and post)
coincide with the DLPAR phases that are explained in “Script-based DLPAR
event handling” on page 160.
 Chapter 5. Dynamic logical partitioning 167

Table 5-7 DLPAR script subcommands

Subcommand name Description

scriptinfo Identifies script-specific information. It must provide
the version, date, and vendor information. This
command is called when the script is installed.

register Identifies the resources managed by the script,
such as cpu or mem.

usage resource_name Returns a description of how the script plans to use
the named resources. It contains pertinent
information so that the user can determine whether
or not to install the script. Further, the command
describes the software capabilities of the
applications that are impacted.

checkrelease resource_name This subcommand is invoked when the drmgr
command initiates the release of the specified
resource. The script checks the resource
dependencies of the application and evaluate the
effects of resource removal on the application the
script is monitoring. The script can indicate that the
resource should not be removed if the application is
not DLPAR-aware or if the resource is critical for the
subsystem.

prerelease resource_name Before the removal of the specified resource, this
subcommand is invoked. The script uses this time
to remove any dependencies the application can
have on the resource. This command can
reconfigure, suspend, or terminate the application
such that the named resource can be released.

postrelease resource_name After the resource is removed successfully, this
subcommand is invoked. The script can perform
any necessary cleaning up, or it can restart the
application if it stopped the application in the
prerelease phase.

undoprerelease resource_name This subcommand is invoked if an error occurs
while the resource is being released. The script
takes the necessary steps to undo its prerelease
operations on the resource and the application. In
the case of a partial resource release, this
command reads the environment variables to
determine the level of success before the fail.
168 Partitioning Implementations for IBM Eserver p5 Servers

5.7.1 The scriptinfo subcommand
When a script is first installed, the script is invoked with the scriptinfo
subcommand by the drmgr command. The scriptinfo subcommand displays
useful information to identify the script, such as the developed date and the
vendor name for it, in order to let the drmgr command record appropriate
information in the DLPAR script database about the script. The scriptinfo
subcommand is also called by the drmgr command in the very early stage of a
DLPAR operation request.

When the script is invoked with the scriptinfo subcommand, it takes the following
syntax:

dr_application_script scriptinfo

Input to the scriptinfo subcommand
The scriptinfo subcommand takes the following input data:

� Additional command line arguments

None.

� Name-value pairs from environment variables

See Table 5-8 on page 170.

checkaquire resource_name This subcommand is invoked to determine if the
drmgr command can proceed with a resource
addition to the application.

preacquire resource_name This subcommand tells the application that a
resource will be available for use.

postacquire resource_name This subcommand informs the drmgr command that
the resource addition completed, and the script
allows the application to use the new resources. If
the application was stopped in the preacquire
phase, the application is restarted in this command.

undopreacquire resource_name This subcommand notifies the drmgr command that
the resource addition aborted or partially
completed. The script then makes the necessary
changes to undo anything it did in the preacquire
phase, or the script determines the level of success
of the DLPAR addition request by reading the
environment variables.

Subcommand name Description
 Chapter 5. Dynamic logical partitioning 169

Output from the scriptinfo subcommand
The scriptinfo subcommand produces the following output data.

� Exit value

The script must return an exit value, either 0 (success) or 1 (failure). If the exit
value is 1, the DR_ERROR name-value pair must be set to describe the
reason for failure, and the script must print it to the standard out.

� Name-value pairs to the standard output stream

Table 5-8 lists the name-value pairs that must be returned by the script when
it is invoked with the scriptinfo subcommand.

Table 5-8 Required output name-value pairs for the scriptinfo subcommand

In addition to Table 5-8, Table 5-9 on page 171 lists the optional name-value
pair that can be returned by the script when it is invoked with the scriptinfo
subcommand. If the script needs to have more processing time for its
execution, it prints the timeout value to the standard out explained in
Table 5-10 on page 173, so that the drmgr command can read the appropriate
timeout value for this script.

Required output pair Description

DR_VERSION=1 This name-value pair indicates the version level
of the script that specifies the compatibility level
of the DLPAR script with respect to the DLPAR
implementation version of AIX. On AIX 5L
Version 5.2, the version must be set to 1, which
indicates that the script is compatible with
DLPAR implementation Version 1.

DR_DATE=DDMMYYYY This name-value pair is the publication date of
the script. The format should be DDMMYYYY,
where DD=days, MM=months, and YYYY=year.
For example, a valid date would be 08102002,
which is October 8, 2002.

DR_SCRIPTINFO=description This name-value pair contains a description of
the script’s functionality. This string should be a
brief human-readable message.

DR_VENDOR=vendor_information This name-value pair indicates the vendor name
and related information. This string can also be
used to highlight the application represented by
the script.
170 Partitioning Implementations for IBM Eserver p5 Servers

Table 5-9 Optional output name-value pairs for the scriptinfo subcommand

Example
In Example 5-1, two sample DLPAR scripts are registered, dr_test.sh and
dr_test.pl. The emphasized lines in this example show the information recorded
in the DLPAR script database. The information was derived from the script output
with the scriptinfo subcommand upon the script registration (see Table 5-8 on
page 170).

Also, the two fields, Script Timeout and Admin Override Timeout, correspond to
the values specified by the DR_TIMEOUT value and the -w option, respectively
(see Table 5-9).

Example 5-1 Registered sample DLPAR scripts

drmgr -l
DR Install Root Directory: /usr/lib/dr/scripts/all
Syslog ID: DRMGR
--
/usr/lib/dr/scripts/all/dr_test.sh DLPAR ksh example script
 Vendor:IBM, Version:1, Date:10182002
 Script Timeout:10, Admin Override Timeout:0
 Resources Supported:

Resource Name: cpu Resource Usage: cpu binding for performance
Resource Name: mem Resource Usage: Shared(Pinned) memory for

app XYZ
--
/usr/lib/dr/scripts/all/dr_test.pl DLPAR Perl example script
 Vendor:IBM Corp., Version:1, Date:04192002
 Script Timeout:5, Admin Override Timeout:0
 Resources Supported:

Resource Name: cpu Resource Usage: Testing DLPAR on CPU removal
Resource Name: mem Resource Usage: Testing DLPAR on MEM removal

--

Optional output pair Description

DR_TIMEOUT=timeout_in_seconds This name-value pair indicates the timeout
value in seconds of all DLPAR operations done
in this script. The default timeout is 10 seconds.
This timeout can be overridden by the -w flag of
the drmgr command.
The drmgr command waits for the timeout
before it sends a SIGABRT to the script. After
waiting 1 more second for the script to
gracefully end, it will send a SIGKILL.
A value of zero (0) disables the timer.
 Chapter 5. Dynamic logical partitioning 171

5.7.2 The register subcommand
When the script is invoked with the register subcommand by the drmgr
command, the script is registered into the DLPAR script database. The register
subcommand also informs the drmgr command about the resource type
(processor or memory) that the script is designed to handle.

When the script is invoked with the register subcommand, it takes the following
syntax:

dr_application_script register

Input to the register subcommand
The register subcommand takes the following input data:

� Additional command line arguments

None.

� Name-value pairs from environment variables

See Table 5-10 on page 173.

Output from the register subcommand
The register subcommand produces the following output data:

� Exit value

The script must return an exit value, either 0 (success) or 1 (failure). If the exit
value is 1, the DR_ERROR name-value pair must be set to describe the
reason for failure, and the script must print it to the standard out.

� Name-value pairs to the standard output stream

Table 5-10 on page 173 lists the name-value pair that must be returned by the
script when it is invoked with the register subcommand.
172 Partitioning Implementations for IBM Eserver p5 Servers

Table 5-10 Required output name-value pair for the register subcommand

Optionally, the script can return the name-value pairs listed in Table 5-9 on
page 171.

Example
The emphasized fields in the following example are extracted from Example 5-1
on page 171. The fields show the information that is recorded in the DLPAR
script database. The information was derived from the script output with the
register subcommand upon the script registration (see Table 5-10).

Resources Supported:
Resource Name: cpu Resource Usage: Testing DLPAR on CPU removal
Resource Name: mem Resource Usage: Testing DLPAR on MEM removal

5.7.3 The usage subcommand
The main purpose of the usage subcommand is to tell you which resource type
(processor or memory) the script is designed to handle. The usage subcommand
is also called by the drmgr command in the very early stage of a DLPAR
operation request for information purposes only.

When the script is invoked with the usage subcommand, it takes the following
syntax:

dr_application_script usage <resource_type>

Required output pair Description

DR_RESOURCE=resource_name This string identifies the resource type that the
DLPAR script is designed to handle. The valid
resource type names are:

� cpu

� capacity = capacity changes to entitled
processor capacity

� var_weight = changes to the variable
capacity weight

� mem

If a script needs to handle both processor and
memory resource types, the script prints the
following two lines:
DR_RESOURCE=cpu
DR_RESOURCE=mem

Note: The resource types, capacity and var_weight, have been added to
support shared partitions and virtual processors in Sserver p5 servers.
 Chapter 5. Dynamic logical partitioning 173

Input to the usage subcommand
The usage subcommand takes the following input data:

� Additional command line arguments

The usage subcommand requires one additional command line argument that
tells the drmgr command which resource type (processor or memory) the
script is designed to handle. The valid values are cpu, capacity, var_weight, or
mem.

� Name-value pairs from environment variables

See Table 5-3 on page 164.

Output from the usage subcommand
The usage subcommand produces the following output data:

� Exit value

The script must return an exit value, either 0 (success) or 1 (failure). If the exit
value is 1, the DR_ERROR name-value pair must be set to describe the
reason for failure, and the script must print it to the standard out.

� Name-value pairs to the standard output stream

Table 5-11 lists the name-value pair that must be returned by the script when
it is invoked with the usage subcommand.

Table 5-11 Required output name-value pair for the usage subcommand

Optionally, the script can return the name-value pairs listed in Table 5-9 on
page 171.

Required output pair Description

DR_USAGE=usage_description This name-value pair contains a human-readable
string describing how the resource is used by the
associated application. This description should
indicate the impact on the application if that
resource is removed or added.
174 Partitioning Implementations for IBM Eserver p5 Servers

Example
The emphasized fields in the following example are extracted from Example 5-1
on page 171. The fields show the information recorded in the DLPAR script
database. The information was derived from the script output with the usage
subcommand upon the script registration (see Table 5-10 on page 173).

Resources Supported:
Resource Name: cpu Resource Usage: Testing DLPAR on CPU removal
Resource Name: mem Resource Usage: Testing DLPAR on MEM removal

5.7.4 The checkrelease subcommand
Before the specified resource type is removed, the script is invoked with the
checkrelease subcommand by the drmgr command. The resource is not actually
changed with this subcommand.

When the drmgr command invokes the script with the checkrelease
subcommand, the script determines the resource dependencies of the
application, evaluate the effects of resource removal on the application, and
indicate whether the resource can be successfully removed. If the resource
removal request affects the application, the script returns with an exit status of 1
to let the drmgr command know to not release the resource.

When the script is invoked with the checkrelease subcommand, it takes the
following syntax:

dr_application_script checkrelease <resource_type>

Input for the checkrelease subcommand
The checkrelease subcommand takes the following input data:

� Additional command line arguments

The checkrelease subcommand requires one additional command line
argument that tells the drmgr command which resource type (processor or
memory) the script is designed to handle. The valid values are cpu, capacity,
var_weight, or mem.

� Name-value pairs from environment variables

The checkrelease subcommand takes several required input name-value
pairs from environment values depending on the resource type that the script
is designed to handle:

– If the script is registered to handle processor, see Table 5-4 on page 165.
– If the script is registered to handle memory, see Table 5-5 on page 166.

The checkrelease subcommand can also take an optional input name-value
pair from the environment value shown in Table 5-3 on page 164.
 Chapter 5. Dynamic logical partitioning 175

Output for the checkrelease subcommand
The checkrelease subcommand produces the following output data:

� Exit value

The script must return an exit value, either 0 (success) or 1 (failure). If the exit
value is 1, the DR_ERROR name-value pair must be set to describe the
reason for failure, and the script must print it to the standard out.

� Name-value pairs to the standard output stream

Optionally, the script can return the name-value pairs listed in Table 5-9 on
page 171.

5.7.5 The prerelease subcommand
Before the specified resource type is actually released, the script is invoked with
the prerelease subcommand by the drmgr command. This is called after the
checkrelease subcommand.

When the drmgr command invokes the script with the prerelease subcommand,
the script interacts with the application, as briefly summarized in the following:

1. Informs the application about the resource removal event and lets the
application release the specified resource, for example, reconfigure, suspend,
or terminate the application process that uses the specified resource.

2. If the application has successfully released the specified resource, the script
exits with an exit status of 0 (success).

Note: If the DR_FORCE=TRUE environment value is passed to a script
with prerelease, the script interprets the force option as an order, so it
returns as soon as possible.

Note: When invoking scripts in the prerelease phase, the failure of a script
does not prevent the drmgr command from attempting to remove the
resource. The theory is that resource removal is safe. It can fail, but the
kernel is coded to cleanly remove resources, so there is no harm in trying.
The return code from each script is stored so that the drmgr command can
determine whether it needs to call it back. If a script fails in the prerelease
phase, it will not be called in the postrelease or undorelease phases.
176 Partitioning Implementations for IBM Eserver p5 Servers

3. Otherwise, there are two options:

– The script exits with an exit status of 0 (success) regardless of the
response from the application.

– The script exits with an exit status of 1 (failure).

When the script is invoked with the prerelease subcommand, it takes the
following syntax:

dr_application_script prerelease <resource_type>

Input for the prerelease subcommand
The prerelease subcommand takes the following input data:

� Additional command line arguments

The prerelease subcommand requires one additional command line
argument that tells the drmgr command which resource type (processor or
memory) the script is designed to handle. The valid values are cpu, capacity,
var_weight, or mem.

� Name-value pairs from environment variables

The prerelease subcommand takes several required input name-value pairs
from environment values depending on the resource type that the script is
designed to handle:

– If the script is registered to handle processor, see Table 5-4 on page 165.
– If the script is registered to handle memory, see Table 5-5 on page 166.

The prerelease subcommand can also take an optional input name-value
pair from the environment value shown in Table 5-3 on page 164.

Output for the prerelease subcommand
The prerelease subcommand produces the following output data:

� Exit value

The script must return an exit value, either 0 (success) or 1 (failure). If the exit
value is 1, the DR_ERROR name-value pair must be set to describe the
reason for failure, and the script must print it to the standard out.

Note: If the DR_FORCE=TRUE environment value is passed to a script
with the prerelease subcommand, the script returns as soon as possible.

Note: If the script exits with 1 (failure), the drmgr command will not perform
actual resource removal; however, it will invoke subsequent events
(postrelease and undoprerelease) against the specified resource.
 Chapter 5. Dynamic logical partitioning 177

� Name-value pairs to the standard output stream

Optionally, the script can return the name-value pairs listed in Table 5-6 on
page 166.

5.7.6 The postrelease subcommand
After the specified resource type has been released from the partition, the script
is invoked with the postrelease subcommand by the drmgr command. This is
called after the prerelease subcommand.

When the drmgr command invokes the script with the postrelease subcommand,
the script interacts with the application, including any necessary cleanup, for
example, restarting or resuming the application if it was quiesced in the
prerelease subcommand.

The script also takes appropriate actions if a partial success occurs. A partial
success occurs when a subset of the requested number of resources was
successfully removed. For example, the memory-related environment variables
are checked to determine if all the requested memory frames were removed.

When the script is invoked with the postrelease subcommand, it takes the
following syntax:

dr_application_script postrelease <resource_type>

Input for the postrelease subcommand
The postrelease subcommand takes the following input data:

� Additional command line arguments

The postrelease subcommand requires one additional command line
argument that tells the drmgr command which resource type (processor or
memory) the script is designed to handle. The valid values are cpu or mem.

� Name-value pairs from environment variables

The postrelease subcommand takes several required input name-value pairs
from environment values depending on the resource type that the script is
designed to handle:

– If the script is registered to handle processor, see Table 5-4 on page 165.
– If the script is registered to handle memory, see Table 5-5 on page 166.

The postrelease subcommand also can take an optional input name-value
pair from the environment value shown in Table 5-3 on page 164.

Note: The force option should be ignored.
178 Partitioning Implementations for IBM Eserver p5 Servers

Output for the postrelease subcommand
The postrelease subcommand produces the following output data:

� Exit value

The script must return an exit value, either 0 (success) or 1 (failure). If the exit
value is 1, the DR_ERROR name-value pair must be set to describe the
reason for failure, and the script must print it to the standard out.

� Name-value pairs to the standard output stream

Optionally, the script can return the name-value pairs listed in Table 5-9 on
page 171.

5.7.7 The undoprerelease subcommand
If the drmgr command fails to release the specified resource, it invokes the script
with the undoprerelease subcommand to recover any necessary clean-up tasks
that were done by the prerelease subcommand. The script undoes any actions
that were taken by the script in the prerelease subcommand.

When the script is invoked with the undoprerelease subcommand, it takes the
following syntax:

dr_application_script undoprerelease <resource_type>

Input for the undoprerelease subcommand
The undoprerelease subcommand takes the following input data:

� Additional command line arguments

The undoprerelease subcommand requires one additional command line
argument that tells the drmgr command which resource type (processor or
memory) the script is designed to handle. The valid values are cpu, capacity,
var_weight, or mem.

� Name-value pairs from environment variables

The undoprerelease subcommand takes several required input name-value
pairs from environment values depending on the resource type that the script
is designed to handle:

– If the script is registered to handle processor, see Table 5-4 on page 165.
– If the script is registered to handle memory, see Table 5-5 on page 166.

Note: If the specified resource has been removed successfully, the drmgr
command will not invoke the script with the undoprerelease subcommand.
 Chapter 5. Dynamic logical partitioning 179

The undoprerelease subcommand also can take an optional input
name-value pair from the environment value shown in Table 5-3 on page 164.

Output for the undoprerelease subcommand
The undoprerelease subcommand produces the following output data:

� Exit value

The script must return an exit value, either 0 (success) or 1 (failure). If the exit
value is 1, the DR_ERROR name-value pair must be set to describe the
reason for failure, and the script must print it to the standard out.

� Name-value pairs to the standard output stream

Optionally, the script can return the name-value pairs listed in Table 5-6 on
page 166.

5.7.8 The checkacquire subcommand
Before the specified resource type is added, the script is invoked with the
checkacquire subcommand by the drmgr command. The resource is not actually
changed with this subcommand.

When the drmgr command invokes the script with the checkacquire
subcommand, the script determines the resource dependencies of the
application, evaluates the effects of resource addition on the application, and
indicates whether the resource can be successfully added. For example, there
are some MP-unsafe applications. MP-unsafe applications are not tolerant with
multiple processors.

If the resource addition request affects the application, the script returns with an
exit status of 1 to let the drmgr command know to not add the resource.

When the script is invoked with the checkacquire subcommand, it takes the
following syntax:

dr_application_script checkacquire <resource_type>

Note: The force option should be ignored.

Note: Whether or not an application is MP-unsafe is an application design
issue, and independent of DLPAR functionality.
180 Partitioning Implementations for IBM Eserver p5 Servers

Input for the checkacquire subcommand
The checkaquire subcommand takes the following input data:

� Additional command line arguments

The checkacquire subcommand requires one additional command line
argument that tells the drmgr command which resource type (processor or
memory) the script is designed to handle. The valid values are cpu, capacity,
var_weight, or mem.

� Name-value pairs from environment variables

The checkacquire subcommand takes several required input name-value
pairs from environment values depending on the resource type that the script
is designed to handle:

– If the script is registered to handle processor, see Table 5-4 on page 165.
– If the script is registered to handle memory, see Table 5-5 on page 166.

The checkacquire subcommand also can take an optional input name-value
pair from the environment value shown in Table 5-3 on page 164.

Output for the checkacquire subcommand
The checkacquire subcommand produces the following output data:

� Exit value

The script must return an exit value, either 0 (success) or 1 (failure). If the exit
value is 1, the DR_ERROR name-value pair must be set to describe the
reason for failure, and the script must print it to the standard out.

� Name-value pairs to the standard output stream

Optionally, the script can return the name-value pairs listed in Table 5-6 on
page 166.

Note: The force option should be ignored.

Note: If the script exits with 1 (failure), the drmgr command will not add the
specified resource and will not invoke subsequent events (preacquire,
postacquire, and undopreacquire) against the specified resource (see
Table 5-6 on page 166).
 Chapter 5. Dynamic logical partitioning 181

5.7.9 The preacquire subcommand
Before the specified resource type is actually acquired, the script is invoked with
the preacquire subcommand by the drmgr command. This is called after the
checkacquire subcommand.

When the drmgr command invokes the script with the preacquire subcommand,
the script interacts with the application, for example, it informs the application
about the resource addition and lets the application acquire the specified
resource if it is DLPAR-aware.

When the script is invoked with the preacquire subcommand, it takes the
following syntax:

dr_application_script preacquire <resource_type>

Input for the preacquire subcommand
The preacquire subcommand takes the following input data:

� Additional command line arguments

The preacquire subcommand requires one additional command line
argument that tells the drmgr command which resource type (processor or
memory) the script is designed to handle. The valid values are cpu, capacity,
var_weight, or mem.

� Name-value pairs from environment variables

The preacquire subcommand takes several required input name-value pairs
from environment values depending on the resource type that the script is
designed to handle:

– If the script is registered to handle processor, see Table 5-4 on page 165.

– If the script is registered to handle memory, see Table 5-5 on page 166.

– The preacquire subcommand also can take an optional input name-value
pair from the environment value shown in Table 5-3 on page 164.

Note: Most applications are DLPAR-safe. If your application is DLPAR-safe,
but not DLPAR-aware, the script with the preacquire subcommand does not
have to do any processing.
182 Partitioning Implementations for IBM Eserver p5 Servers

Output for the preacquire subcommand
The preacquire subcommand produces the following output data:

� Exit value

The script must return an exit value, either 0 (success) or 1 (failure). If the exit
value is 1, the DR_ERROR name-value pair must be set to describe the
reason for failure, and the script must print it to the standard out.

� Name-value pairs to the standard output stream

Optionally, the script can return the name-value pairs listed in Table 5-6 on
page 166.

5.7.10 The postacquire subcommand
After the specified resource type has been added to the partition, the script is
invoked with the postacquire subcommand by the drmgr command. The script is
called after the preacquire subcommand.

When the drmgr command invokes the script with the postacquire subcommand,
the script interacts with the application, including any necessary cleanup, for
example, restarting or resuming the application if it was quiesced in the
preacquire subcommand.

The script also takes the appropriate actions if a partial success occurs. A partial
success occurs when a subset of the requested number of resources was
successfully added. For example, the memory-related environment variables
should be checked to determine if all of the requested memory frames were
added.

Note: When invoking scripts in the preacquire phase, the failure of a script
does not prevent the drmgr command from attempting to add the resource.
The theory is that resource addition is safe. It can fail, but the kernel is
coded to cleanly add resources, so there is no harm in trying. The return
code from each script is remembered so that the drmgr command can
determine whether it needs to call it back. If a script fails in the preacquire
phase, it will not be called in the postacquire or undoacquire phases.

Note: If the script exits with 1 (failure), the drmgr command will not perform
actual resource removal; however, it will invoke subsequent events
(postacquire and undopreacquire) against the specified resource.
 Chapter 5. Dynamic logical partitioning 183

When the script is invoked with the postacquire subcommand, it takes the
following syntax:

dr_application_script postacquire <resource_type>

Input for the postacquire subcommand
The postacquire subcommand takes the following input data:

� Additional command line arguments

The postacquire subcommand requires one additional command line
argument that tells the drmgr command which resource type (processor or
memory) the script is designed to handle. The valid values are cpu, capacity,
var_weight, or mem.

� Name-value pairs from environment variables

The postacquire subcommand takes several required input name-value pairs
from environment values depending on the resource type that the script is
designed to handle:

– If the script is registered to handle processor, see Table 5-4 on page 165.
– If the script is registered to handle memory, see Table 5-5 on page 166.

The postacquire subcommand also can take an optional input name-value
pair from the environment value shown in Table 5-6 on page 166.

Output for the postacquire subcommand
The postacquire subcommand produces the following output data:

� Exit value

The script must return an exit value, either 0 (success) or 1 (failure). If the exit
value is 1, the DR_ERROR name-value pair must be set to describe the
reason for failure, and the script must print it to the standard out.

– Name-value pairs to the standard output stream

Optionally, the script can return the name-value pairs listed in Table 5-6 on
page 166.

5.7.11 The undopreacquire subcommand
If the drmgr command fails to add the specified resource to the partition, it
invokes the script with the undopreacquire subcommand to recover any
necessary cleanup tasks that were done by the preacquire subcommand. The
script undoes any actions that were taken by the script in the preacquire
subcommand.

Note: The force option should be ignored.
184 Partitioning Implementations for IBM Eserver p5 Servers

When the script is invoked with the undopreacquire subcommand, it takes the
following syntax:

dr_application_script undopreacquire <resource_type>

Input for the undopreacquire subcommand
The undopreacquire subcommand takes the following input data:

� Additional command line arguments

The undopreacquire subcommand requires one additional command line
argument that tells the drmgr command which resource type (processor or
memory) the script is designed to handle. The valid values are cpu or mem.

� Name-value pairs from environment variables

The undopreacquire subcommand takes several required input name-value
pairs from environment values depending on the resource type that the script
is designed to handle:

– If the script is registered to handle processor, see Table 5-4 on page 165.
– If the script is registered to handle memory, see Table 5-5 on page 166.

The undopreacquire subcommand also can take an optional input
name-value pair from the environment value shown in Table 5-3 on page 164.

Output for the undopreacquire subcommand
The undopreacquire subcommand produces the following output data:

� Exit value

The script must return an exit value, either 0 (success) or 1 (failure). If the exit
value is 1, the DR_ERROR name-value pair must be set to describe the
reason for failure, and the script must print it to the standard out.

� Name-value pairs to the standard output stream

Optionally, the script can return the name-value pairs listed in Table 5-6 on
page 166.

Note: If the specified resource has been added successfully, the drmgr
command will not invoke the script with the undopreacquire subcommand.

Note: The force option should be ignored.
 Chapter 5. Dynamic logical partitioning 185

5.8 How to manage DLPAR scripts
The drmgr command must be used to manage DLPAR scripts. The function
provided by the drmgr command does the following:

� Lists the registered DLPAR scripts and shows their information.

� Registers or uninstalls DLPAR scripts in the DLPAR script database.

� Changes the script install directory path. The default directory is
/usr/lib/dr/scripts/all.

The following sections provide typical drmgr command usage examples.

5.8.1 List registered DLPAR scripts
To list registered DLPAR scripts and their information, type drmgr -l. If no scripts
are registered, it returns the following output:

drmgr -l
DR Install Root Directory: /usr/lib/dr/scripts/
Syslog ID: DRMGR

Example 5-1 on page 171 shows the example output of drmgr -l when DLPAR
scripts are already registered.

5.8.2 Register a DLPAR script
To register a DLPAR script, type drmgr -i script_file_name. The script is
copied into the script install path (the default value is /usr/lib/dr/scripts/all) and
registered in the DLPAR script database, as shown in Example 5-2.

Example 5-2 Register a DLPAR script

drmgr -l
DR Install Root Directory: /usr/lib/dr/scripts
Syslog ID: DRMGR
ls /usr/samples/dr/scripts/IBM_template.sh
/usr/samples/dr/scripts/IBM_template.sh

Note: The drmgr command is the only interface to manipulate the DLPAR
script database. To use the drmgr command, you need the root authority.

Note: The fileset bos.adt.samples must be installed to enable these functions
186 Partitioning Implementations for IBM Eserver p5 Servers

drmgr -i /usr/samples/dr/scripts/IBM_template.sh

DR script file /usr/samples/dr/scripts/IBM_template.sh installed successfully

drmgr -l
DR Install Root Directory: /usr/lib/dr/scripts
Syslog ID: DRMGR
--
/usr/lib/dr/scripts/all/IBM_template.sh AIX DR ksh example script
 Vendor:IBM, Version:1, Date:10182002
 Script Timeout:10, Admin Override Timeout:0
 Resources Supported:
 Resource Name: cpu Resource Usage: cpu binding for
performance
 Resource Name: mem Resource Usage: Shared(Pinned) memory
for app XYZ
--

ls /usr/lib/dr/scripts/all
IBM_template.sh

If the permission mode of the registered script is not appropriate, for example, no
executable bits are set, then drmgr -l will not list the registered script name,
even if the registration has been successfully completed. In this case, set the
appropriate permission mode on the script and register it with the overwrite
option -f, as shown in the following example:

drmgr -f /usr/samples/dr/scripts/IBM_template.sh

5.8.3 Uninstall a registered DLPAR script
To uninstall a registered DLPAR script, type drmgr -u script_file_name. The
script is unregistered from the DLPAR script database, as shown in the following
example:

drmgr -u IBM_template.sh

DR script file IBM_template.sh uninstalled successfully

drmgr -l
DR Install Root Directory: /usr/lib/dr/scripts
Syslog ID: DRMGR
 Chapter 5. Dynamic logical partitioning 187

The uninstalled script file name is renamed in the script install path, as shown in
the following example:

ls -l /usr/lib/dr/scripts/all
total 32
-rw-r--r-- 1 bin bin 13598 Jul 12 14:08 .IBM_template.sh

5.8.4 Change the script install path
To change the script install path, type drmgr -R new_dir. In the following
example, the script install path is changed to the newly created directory
/local/lpar21 from the default path /usr/lib/dr/scripts:

drmgr -l
DR Install Root Directory: /usr/lib/dr/scripts
Syslog ID: DRMGR

mkdir -p /local/`hostname`
drmgr -R /local/`hostname`
0930-022 DR script ROOT directory set to:/local/lpar2 successfully

drmgr -l
DR Install Root Directory: /local/lpar2
Syslog ID: DRMGR

5.8.5 The drmgr command line options
Table 5-12 on page 189 lists the drmgr command line options and their purpose.
For further information about the drmgr command, type man drmgr on the
command line prompt or refer to AIX 5L product documentation, which is
available at:

http://publib.boulder.ibm.com/infocenter/pseries/index.jsp?topic=/com.ibm.aix.d
oc/infocenter/base/aix53.htm

Note: A dot character is added in front of the original file name.

1 In this example, the hostname command returns the host name, lpar2 on one of our test partitions.

Note: If you have changed the script install path, scripts that are already
registered will not be referenced by the drmgr command.
188 Partitioning Implementations for IBM Eserver p5 Servers

http://techsupport.services.ibm.com/server/library
http://techsupport.services.ibm.com/server/library

Table 5-12 The drmgr command line options

Command option Brief description Detailed description

-i script_name

Other associated options:
[-D install_directory]
[-w timeout]
[-f]

Installs a DLPAR script
to the default or
specified directory.

The system administrator should use the -i flag
to install a DLPAR script. The script’s file name
is used as input.

Unless the -D flag is used, the scripts are
installed into the /usr/lib/dr/scripts/all/ directory
under the root install directory (see -R flag).

Permissions for the DLPAR script are the same
as the script_name file.

If a script with the same name is already
registered, the install will fail with a warning
unless the force option is used.

-w timeout Timeout value in
minutes.

This option is used in conjunction with the -i
option. The drmgr command will override the
timeout value specified by the LPAR script with
the new-user defined timeout value.

-f Forces an override. During the installation of a script, the -f option
can be set to force an override of a duplicate
DLPAR script name.

-u script_name

Other associated options:
[-D host_name]

Uninstalls a DLPAR
script.

The system administrator invokes this
command to uninstall a DLPAR script. The
script file name is provided as an input.
The user can specify the directory from where
the script should be removed by using the -D
option. If no directory is specified, the command
will try to remove the script from the all directory
under the root directory (see the -R option).
If the script is registered using the -D option, it
will only be invoked on a system with that host
name.
If no file is found, the command will return with
an error.

-R base_directory_path Sets the root directory
where the DLPAR
scripts are installed.

The default value is /usr/lib/dr/scripts/.
The installer looks at the all or hosts directory
under this root directory. (/usr/lib/dr/scripts/all/).

-d debug_level Sets the debug level. This option sets the DR_DEBUG environment
variable, which controls the level of debug
messages from the DLPAR scripts.
 Chapter 5. Dynamic logical partitioning 189

5.8.6 Sample output examples from a DLPAR script
Although, the syslog facility can be used to record debug information, the debug
information for the example DLPAR script was sent to /tmp/IBM_template.sh.dbg
for readability reasons.

After registering the DLPAR script written in Korn shell (see Example A-3 on
page 245), the following DLPAR operations on the HMC was initiated:

� 2 GB memory addition
� 1 GB memory removal
� 1 CPU addition
� 2 CPU removal

To perform a DLPAR operation using the graphical user interface on the HMC,
refer to 3.1, “Hardware Management Console” on page 58.

Sample output: 2 GB memory addition
Example 5-3 shows the sample output of a 2 GB memory addition DLPAR event.
Notice that there are three line blocks for the check, pre, and post phases.

Example 5-3 Sample output: 2 GB memory addition

-- start checkacquire phase --
DR_DRMGR_INFO=DRAF architecture Version 1
DR_FORCE=FALSE
DR_FREE_FRAMES=0x30a
DR_MEM_SIZE_COMPLETED=0x0
DR_MEM_SIZE_REQUEST=0x80000000
DR_PINNABLE_FRAMES=0x54a55
DR_TOTAL_FRAMES=0x80000
mem resources: 0x80000000
-- end checkacquire phase --
-- start preacquire phase --

-l Lists DLPAR scripts. This option lists the details of all DLPARR
scripts currently active on the system.

-b Rebuilds DLPAR script
database.

This option rebuilds the DLPAR script database
by parsing through the entire list of DLPAR
script install directories.

-S syslog_chan_id_str Specifies a syslog
channel.

This option enables the user to specify a
particular channel to which the syslog
messages have to be logged from the DLPAR
script by the drmgr command.

Command option Brief description Detailed description
190 Partitioning Implementations for IBM Eserver p5 Servers

DR_DRMGR_INFO=DRAF architecture Version 1
DR_FORCE=FALSE
DR_FREE_FRAMES=0x30a
DR_MEM_SIZE_COMPLETED=0x0
DR_MEM_SIZE_REQUEST=0x80000000
DR_PINNABLE_FRAMES=0x54a55
DR_TOTAL_FRAMES=0x80000
-- end preacquire phase --
-- start undopreacquire phase --
DR_DRMGR_INFO=DRAF architecture Version 1
DR_FORCE=FALSE
DR_FREE_FRAMES=0x30a
DR_MEM_SIZE_COMPLETED=0x800
DR_MEM_SIZE_REQUEST=0x80000000
DR_PINNABLE_FRAMES=0x54a55
DR_TOTAL_FRAMES=0x80000
-- end undopreacquire phase --

Before the DLPAR operation, the partition had 2 GB memory assigned, as shown
in the following example:

lsattr -El mem0
size 2048 Total amount of physical memory in Mbytes False
goodsize 2048 Amount of usable physical memory in Mbytes False

After the completion of the DLPAR operation, the memory size has been
increased to 4 GB, as shown in the following example:

lsattr -El mem0
size 4096 Total amount of physical memory in Mbytes False
goodsize 4096 Amount of usable physical memory in Mbytes False

Sample output: 1 GB memory removal
Example 5-4 shows the sample output of a 1 GB memory removal DLPAR event.
There are three line blocks for the check, pre, and post phases.

Example 5-4 Sample output: 1 GB memory removal

-- start checkrelease phase --
DR_DRMGR_INFO=DRAF architecture Version 1
DR_FORCE=FALSE
DR_FREE_FRAMES=0x7e2f5
DR_MEM_SIZE_COMPLETED=0x0
DR_MEM_SIZE_REQUEST=0x40000000
DR_PINNABLE_FRAMES=0xac3f3
DR_TOTAL_FRAMES=0x100000
-- end checkrelease phase --
-- start prerelease phase --
DR_DRMGR_INFO=DRAF architecture Version 1
 Chapter 5. Dynamic logical partitioning 191

DR_FORCE=FALSE
DR_FREE_FRAMES=0x7e2f5
DR_MEM_SIZE_COMPLETED=0x0
DR_MEM_SIZE_REQUEST=0x40000000
DR_PINNABLE_FRAMES=0xac3f3
DR_TOTAL_FRAMES=0x100000
-- end prerelease phase --
-- start postrelease phase --
DR_DRMGR_INFO=DRAF architecture Version 1
DR_FORCE=FALSE
DR_FREE_FRAMES=0x7e2f5
DR_MEM_SIZE_COMPLETED=0x400
DR_MEM_SIZE_REQUEST=0x40000000
DR_PINNABLE_FRAMES=0xac3f3
DR_TOTAL_FRAMES=0x100000
-- end postrelease phase --

Before the DLPAR operation, the partition had 4 GB memory assigned, as shown
in the following example:

lsattr -El mem0
size 4096 Total amount of physical memory in Mbytes False
goodsize 4096 Amount of usable physical memory in Mbytes False

After the completion of the DLPAR operation, the memory size has been
decreased to 3 GB, as shown in the following example:

lsattr -El mem0
size 3072 Total amount of physical memory in Mbytes False
goodsize 3072 Amount of usable physical memory in Mbytes False

Sample output: 1 CPU addition
Example 5-5 shows the sample output of a 1 CPU addition DLPAR event. You will
see there are three line blocks for the check, pre, and post phases for the CPU ID
2.

Example 5-5 Sample output: 1 CPU addition

-- start checkacquire phase --
DR_BCPUID=2
DR_DRMGR_INFO=DRAF architecture Version 1
DR_FORCE=FALSE
DR_LCPUID=2
cpu resources: logical 2, bind 2
-- end checkacquire phase --
-- start preacquire phase --
DR_BCPUID=2
DR_DRMGR_INFO=DRAF architecture Version 1
DR_FORCE=FALSE
192 Partitioning Implementations for IBM Eserver p5 Servers

DR_LCPUID=2
-- end preacquire phase --
-- start undopreacquire phase --
DR_BCPUID=2
DR_DRMGR_INFO=DRAF architecture Version 1
DR_FORCE=FALSE
DR_LCPUID=2
-- end undopreacquire phase --

Before the DLPAR operation, the partition had two processors assigned, as
shown in the following example:

lsdev -Cc processor -S Available
proc6 Available 00-06 Processor
proc7 Available 00-07 Processor

After the completion of the DLPAR operation, the number of active processors
has been increased to three, as shown in the following example:

lsdev -Cc processor -S Available
proc6 Available 00-06 Processor
proc20 Available 00-20 Processor
proc7 Available 00-07 Processor

Sample output: 2 CPU removal
Example 5-6 shows the sample output of a 2 CPU removal DLPAR event. There
are three line blocks for the check, pre, and post phases for each CPU (ID 2 and
ID3).

Example 5-6 Sample output: 2 CPU removal

-- start checkrelease phase --
DR_BCPUID=3
DR_DRMGR_INFO=DRAF architecture Version 1
DR_FORCE=FALSE
DR_LCPUID=3
-- end checkrelease phase --
-- start prerelease phase --
DR_BCPUID=3
DR_DRMGR_INFO=DRAF architecture Version 1
DR_FORCE=FALSE
DR_LCPUID=3
-- end prerelease phase --
-- start postrelease phase --
DR_BCPUID=3
DR_DRMGR_INFO=DRAF architecture Version 1
DR_FORCE=FALSE
DR_LCPUID=3
-- end postrelease phase --
 Chapter 5. Dynamic logical partitioning 193

-- start checkrelease phase --
DR_BCPUID=2
DR_DRMGR_INFO=DRAF architecture Version 1
DR_FORCE=FALSE
DR_LCPUID=2
-- end checkrelease phase --
-- start prerelease phase --
DR_BCPUID=2
DR_DRMGR_INFO=DRAF architecture Version 1
DR_FORCE=FALSE
DR_LCPUID=2
-- end prerelease phase --
-- start postrelease phase --
DR_BCPUID=2
DR_DRMGR_INFO=DRAF architecture Version 1
DR_FORCE=FALSE
DR_LCPUID=2
-- end postrelease phase --

Before the DLPAR operation, the partition had four processors assigned, as
shown in the following example:

lsdev -Cc processor -S Available
proc6 Available 00-06 Processor
proc20 Available 00-20 Processor
proc7 Available 00-07 Processor
proc21 Available 00-21 Processor

After the completion of the DLPAR operation, the number of active processes has
been decreased to two, as shown in the following example:

lsdev -Cc processor -S Available
proc6 Available 00-06 Processor
proc7 Available 00-07 Processor

5.9 API-based DLPAR event handling
The AIX 5L Version 5.3 operating system includes further enhancements to the
dr_reconfig() system call. The improvements are intended to exploit the
POWER5 processor and virtualization features when building or customizing
applications that respond to DLPAR events. Applications wanting to utilize all of
the new function will need to be modified to remain DLPAR-aware. Because
DLPAR-safe applications should not fail when a DLPAR event occurs, they
require no changes.

To properly write an application to recognize a DLPAR event, the application will
register a signal handler that calls dr_reconfig(). When a DLPAR event occurs,
194 Partitioning Implementations for IBM Eserver p5 Servers

the application receives SIGRECONFIG signals from the kernel in order to notify
the DLPAR event. The signal is sent twice (check and pre phases) before the
actual resource change (addition or removal), and sent once (post phase) after
the resource change.

In the latest release of DLPAR support, DLPAR events for I/O slots do not notify
applications using the dr_config() system call.

5.9.1 The dr_reconfig system call
The dr_reconfig() system call is provided to query the information of the current
DLPAR event. The system call must be called from a registered signal handler in
order for the application be notified from the kernel when a DLPAR event occurs.
The sigaction() system call is used to register a signal handler.

To use dr_reconfig() in your C language application, you need to add the
following compiler directive line that instructs the preprocessor to include the
/usr/include/sys/dr.h file:

#include <sys/dr.h>

Example 5-7 The dr_reconfig system call usage

int dr_reconfig(int flags, dr_info_t *info);

0 is returned for success; otherwise,
-1 is returned, and the errno is set to the appropriate value.

The dr_reconfig() system call takes two parameters. The flags determine what
the system call does. The info parameter is a structure that contains
DLPAR-specific data that the signal handler uses to process DLPAR events
accordingly. Table 5-13 on page 196 provides the supported flags.

Note: The SIGRECONFIG signal is also sent (along with the SIGCPUFAIL
signal for backward compatibility) in the case of a CPU Guard event.
Therefore, this API-based method can also be utilized by CPU Guard-aware
applications.
 Chapter 5. Dynamic logical partitioning 195

Table 5-13 The dr_reconfig flag parameters2

The other parameter is a pointer to a structure that hold DLPAR-specific
information. The signal handler must allocate space for the dr_info_t data
structure. The AIX kernel populates this data structure and return it to the signal
handler. In AIX 5L Version 5.3, additional handlers have been included. They are
outlined in Example 5-8, which shows the definition of the dr_info structure.

Example 5-8 The dr_reconfig info parameter

typedef struct dr_info {
/* The following fields are filled out for cpu based requests */
unsigned int ent_cap : 1; // entitled capacity change request
unsigned int var_wgt : 1; // variable weight change request
unsigned int splpar_capable : 1; // partition is Shared Processor Partition
capable
unsigned int splpar_shared : 1; // shared partition (1), dedicated (0)
unsigned int splpar_capped : 1; // shared partition is capped
unsigned int cap_constrained : 1; // capacity is constrained by PHYP
uint64_t capacity; // the current entitled capacity or

// variable capacity weight value
// depending on the bit fields
// ent_cap and var_wgt.

Int delta_cap; // delta entitled capacity or variable
// weight capacity that is to be added
// or removed.

} dr_info_t;

Flags Description

DR_QUERY This flag identifies the current DLPAR event. It also
identifies any actions, if any, that the application should
take to comply with the current DLPAR event.
Any pertinent information is returned in the second
parameter.

DR_EVENT_FAIL This flag fails the current DLPAR event. It requires root
authority.

DR_RECONFIG_DONE This flag is used in conjunction with the DR_QUERY flag.
The application notifies the kernel that the actions it took
to comply with the current DLPAR request are now
complete. The dr_info structure identifying the DLPAR
request that was returned earlier is passed as an input
parameter.

2 The DR_RECONFIG_DONE flag is available on AIX 5L Version 5.2 plus 5200-01 Recommended
Maintenance Level and later.
196 Partitioning Implementations for IBM Eserver p5 Servers

The bindproc and bindpset bits are only set if the request is to remove a
processor. If the bindproc is set, then the process has a bindprocessor()
attachment that must be resolved before the operation is allowed. If the bindpset
bit is set, the application has processor set attachment, which can be lifted by
calling the appropriate processor set interface.

The plock and pshm bits are only set if the DLPAR request is to remove memory
and the process has plock() memory or is attached to a pinned shared memory
segment. If the plock bit is set, the application calls plock() to unpin itself. If the
pshm bit is set, the application detaches its pinned memory segments. The
memory remove request might succeed, even if the pshm bit is set, as long as
there is enough pinnable memory in the partition. Therefore, an action might not
be required for the pshm bit to be set, but it is strongly recommended. The
sys_pinnable_frames field provides the necessary information if the system has
enough excess pinnable memory.

Programming implications of CPU DLPAR events
At boot time, processors are configured in the kernel. In AIX 5L, a processor is
identified by three different identifications, namely:

� The physical CPU ID, which is derived from the Open Firmware device tree
and used to communicate with RTAS.

� The logical CPU ID, which is a ppda-based3 index of online and offline
processors.

� The bind CPU ID, which is the index of online processors.

The logical and bind CPU IDs are consecutive and have no holes in the
numbering. No guarantee is given across boots that the processors will be
configured in the same order or even that the same processors will be used in a
partitioned environment at all.

At system startup, the logical and bind CPU IDs are both consecutive and have
no holes in the numbering; however, DLPAR operations can remove a processor
from the middle of the logical CPU list. The bind CPU IDs remain consecutive
because they refer only to online processors, so the kernel has to explicitly map
these IDs to logical CPU IDs (containing online and offline CPU IDs).

The range of logical CPU IDs is defined to be 0 to M-1, where M is the maximum
number of processors that can be activated within the partition. M is derived from
the Open Firmware device tree. The logical CPU IDs name both online and
offline processors. The rset4 APIs are predicated on the use of logical CPU IDs.

3 Per processor description area.
4 Resource set.
 Chapter 5. Dynamic logical partitioning 197

The range of bind CPU IDs is defined to be 0 to N-1; however, N is the current
number of online processors. The value of N changes as processors are added
and removed from the system by either DLPAR or CPU Guard. In general, new
processors are always added to the Nth position. Bind CPU IDs are used by the
system call bindprocessor and by the kernel service switch_cpu.

The number of potential processors can be determined by:

� _system_configuration.max_ncpus
� _system_configuration.original_ncpus
� var.v_ncpus_cfg
� sysconf(_SC_NPROCESSORS_CONF)

The number of online processors can be determined by:

� _system_configuration.ncpus
� var.v_ncpus
� sysconf(_SC_NPROCESSORS_ONLN)

The _system_configuration structure is defined in the
/usr/include/sys/systemcfg.h header file, and those members can be accessed
from your application, as shown in the following code fraction example:

#include <sys/systemcfg.h>
printf("_system_configuration.original_ncpus=%d\n"

, _system_configuration.original_ncpus);

The var structure is defined in the /usr/include/sys/var.h header file and
populated by the sysconfig system call. The following code fraction example
demonstrates how to retrieve var.v_ncpus:

#include <sys/types.h>
#include <sys/sysconfig.h>
#include <sys/var.h>
struct var myvar;
rc = sysconfig(SYS_GETPARMS, &myvar, sizeof(struct var));
if (rc == 0)

printf(“var.v_ncpus = %d\n”, myvar.v_ncpus);

The number of online processors can also be determined from the command
line. AIX provides the following commands:

� bindprocessor -q
� lsrset -a

As previously mentioned, AIX supports two programming models for processors:
the bindprocessor model that is based on bind CPU IDs and the rset API model
that is based on logical CPU IDs. Whenever a program implements any of these
programming models, it should be DLPAR-aware.
198 Partitioning Implementations for IBM Eserver p5 Servers

The following new interfaces (system calls and kernel services) are provided to
query bind and logical CPU IDs and the mapping between them:

� mycpu(): Returns bind CPU ID of the process
� my_lcpu(): Returns bind CPU ID of the process
� b2lcpu(): Returns the bind to logical CPU ID mapping
� l2bcpu(): Returns the logical to bind CPU ID mapping

5.9.2 A sample code using the dr_reconfig system call
A sample application was written in the C language using the dr_reconfig()
system call (see Example A-4 on page 257). Because the source code is long,
an excerpt of the most important part is provided with annotations from the
example.

Basically, this application does nothing voluntary, except for the signal handler
registration. It just does the busy loop in the while loop in main and waits until the
SIGRECONFIG signal is delivered. You must implement your application logic in
the while loop, specified by the comment Your application logic goes here.

The behavior of the application is briefly explained in the following:

1. Register a signal handler, dr_func(), in main (indicated as #A in the
comment). The signal handler is registered in order to react to the
SIGRECONFIG signal when it is delivered to the application process.

if ((rc = sigaction(SIGRECONFIG, &sigact, &sigact_save)) != 0) { /* #A */

2. Wait in the busy loop in main (#B) until the SIGRECONFIG signal is sent:

while (1) { /* #B */
;
/* your application logic goes here. */

}

3. After the SIGRECONFIG signal is delivered by the kernel, the signal handler,
dr_func(), is invoked.

4. The handler calls dr_reconfig() in order to query the dr_info structure data.
The dr_info structure is used to determine what DLPAR operation triggers this
signal (#C).

l_rc = dr_reconfig(DR_QUERY, &dr_info); /* #C */

Note: You must include the following preprocessor directive line to use the
dr_reconfig() system call:

#include <sys/dr.h>
 Chapter 5. Dynamic logical partitioning 199

5. The handler parses the dr_info structure to determine the DLPAR operation
type:

– If the dr_info.add member is set, this signal is triggered by a DLPAR
resource addition request (#D):

if (dr_info.add) { /* #D */

– If the dr_info.rem member is set, this signal is triggered by a DLPAR
resource removal request (#E):

if (dr_info.rem) { /* #E */

6. The handler again parses the dr_info structure to determine the DLPAR
resource type:

– If the dr_info.cpu member is set, this signal is triggered by a DLPAR CPU
resource addition or removal request (#F):

if (dr_info.cpu) { /* #F */

– If the dr_info.mem member is set, this signal is triggered by a DLPAR
memory resource addition or removal request (#G):

} else if (dr_info.mem) { /* #G */

7. Invoke the corresponding function based on the information determined:

– If the requested DLPAR resource type is CPU, call the function pointer
stored in the l_currentPhase->cpu_ptr array (#H):

l_rc = l_currentPhase->cpu_ptr(); /* #H */

– If the requested DLPAR resource type is memory, call the function pointer
stored in the l_currentPhase->mem_ptr array (#I):

l_rc = l_currentPhase->mem_ptr(); /* #I */

5.9.3 Sample output examples from a DLPAR-aware application
Although, the syslog facility can be used to record debug information, the
example application debug information was sent to /tmp/dr_api_template.C.dbg
for readability reasons.

After compiling the C source code (see Example A-4 on page 257), the
application was run and initiated several DLPAR operations on the HMC.

Note: You must modify the functions included in the definedPhase array
(#J) by adding your own logic in order to react against DLPAR operation
phases. The comment Perform actions here specifies the location where
you modify the functions.
200 Partitioning Implementations for IBM Eserver p5 Servers

The following several examples exhibit the internal behaviors of the following
DLPAR operations:

� 1 GB memory addition
� 1 GB memory removal
� 2 CPU addition
� 1 CPU removal

To perform a DLPAR operation using the graphical user interface on the HMC,
refer to 3.1, “Hardware Management Console” on page 58.

Sample output: 1 GB memory addition
Example 5-9 shows the sample output of a 1 GB memory addition DLPAR event.
There are three line blocks for the check, pre, and post phases.

Example 5-9 Sample output: 1 GB memory addition

---Start of Signal Handler---
An add request for

** check phase **
Resource is Memory.

requested memory size (in bytes) = 1073741824
system memory size = 2147483648
number of free frames in system = 29434
number of pinnable frams in system = 339916
total number of frames in system = 524288

*****Entered CheckedAcquire_mem*****
---end of signal handler---

---Start of Signal Handler---
An add request for

** pre phase **
Resource is Memory.

requested memory size (in bytes) = 1073741824
system memory size = 2147483648
number of free frames in system = 29434
number of pinnable frams in system = 339916
total number of frames in system = 524288

*****Entered PreeAcquire_mem*****
---end of signal handler---

---Start of Signal Handler---
An add request for

** post phase **
Resource is Memory.

requested memory size (in bytes) = 1073741824
system memory size = 2147483648
number of free frames in system = 284761
 Chapter 5. Dynamic logical partitioning 201

number of pinnable frams in system = 516763
total number of frames in system = 786432

*****Entered PostAcquire_mem*****
---end of signal handler---

Sample output: 1 GB memory removal
Example 5-10 shows the sample output of a 1 GB memory removal DLPAR
event. There are three line blocks for the check, pre, and post phases.

Example 5-10 Sample output: 1 GB memory removal

---Start of Signal Handler---
A remove request for

** check phase **
Resource is Memory.

requested memory size (in bytes) = 1073741824
system memory size = 3221225472
number of free frames in system = 284771
number of pinnable frams in system = 516763
total number of frames in system = 786432

*****Entered CheckeRelease_mem*****
---end of signal handler---

---Start of Signal Handler---
A remove request for

** pre phase **
Resource is Memory.

requested memory size (in bytes) = 1073741824
system memory size = 3221225472
number of free frames in system = 284770
number of pinnable frams in system = 516763
total number of frames in system = 786432

*****Entered PreRelease_mem*****
---end of signal handler---

---Start of Signal Handler---
A remove request for

** post phase **
Resource is Memory.

requested memory size (in bytes) = 1073741824
system memory size = 3221225472
number of free frames in system = 29043
number of pinnable frams in system = 339916
total number of frames in system = 524288

*****Entered PostReleasee_mem*****
---end of signal handler---
202 Partitioning Implementations for IBM Eserver p5 Servers

Sample output: 2 CPU addition
Example 5-11 shows the sample output of a 2 CPU addition DLPAR event. There
are three line blocks for the check, pre, and post phases for each processor
(CPU ID 2 or 3).

Example 5-11 Sample output: 2 CPU addition

---Start of Signal Handler---
An add request for

** check phase **
Resource is CPU .

logical CPU ID = 2
Bind CPU ID = 2

*****Entered CheckedAcquire_cpu*****
---end of signal handler---

---Start of Signal Handler---
An add request for

** pre phase **
Resource is CPU .

logical CPU ID = 2
Bind CPU ID = 2

*****Entered PreAcquire_cpu*****
---end of signal handler---

---Start of Signal Handler---
An add request for

** post phase **
Resource is CPU .

logical CPU ID = 2
Bind CPU ID = 2

*****Entered PostAcquire_cpu*****
---end of signal handler---

---Start of Signal Handler---
An add request for

** check phase **
Resource is CPU .

logical CPU ID = 3
Bind CPU ID = 3

*****Entered CheckedAcquire_cpu*****
---end of signal handler---

---Start of Signal Handler---
An add request for

** pre phase **
Resource is CPU .

logical CPU ID = 3
Bind CPU ID = 3
 Chapter 5. Dynamic logical partitioning 203

*****Entered PreAcquire_cpu*****
---end of signal handler---

---Start of Signal Handler---
An add request for

** post phase **
Resource is CPU .

logical CPU ID = 3
Bind CPU ID = 3

*****Entered PostAcquire_cpu*****
---end of signal handler---

Sample output: 1 CPU removal
Example 5-12 shows the sample output of a 1 CPU removal DLPAR event. There
are line three blocks for the check, pre, and post phases for the CPU ID 3.

Example 5-12 Sample output: 1 CPU removal

---Start of Signal Handler---
A remove request for

** check phase **
Resource is CPU .

logical CPU ID = 3
Bind CPU ID = 3

*****Entered CheckRelease_cpu*****
---end of signal handler---

---Start of Signal Handler---
A remove request for

** pre phase **
Resource is CPU .

logical CPU ID = 3
Bind CPU ID = 3

*****Entered PreRelease_cpu*****
---end of signal handler---

---Start of Signal Handler---
A remove request for

** post phase **
Resource is CPU .

logical CPU ID = 3
Bind CPU ID = 3

*****Entered PostRelease_cpu*****
---end of signal handler---
204 Partitioning Implementations for IBM Eserver p5 Servers

5.9.4 DLPAR-aware kernel extensions
Like applications, most kernel extensions are DLPAR-safe by default. However,
some are sensitive to the system configuration and might need to be registered
with the kernel in order to be notified of DLPAR events.

To register and unregister from the kernel in order to be notified in the case of
DLPAR events, the following kernel services are available:

� reconfig_register

� reconfig_unregister

� reconfig_complete

The reconfig_register and reconfig_unregister services have had events added
to support the following shared processors functions:

� Capacity addition and removal

� Virtual processor add and remove is supported by pre-existing CPU add and
remove

5.10 Error handling of DLPAR operations
Knowing what errors the drmgr command can return is fundamental to creating a
comprehensive DLPAR script or DLPAR-aware application. This section covers
the methods AIX provides to help perform error analysis on failed DLPAR
operations. It also discusses some actions that should be taken when an error
occurs.

5.10.1 Possible causes of DLPAR operation failures
A DLPAR operation request can fail for various reasons. The most common of
these is that the resource is busy, or that there are not enough system resources
currently available to complete the request. In these cases, the resource is left in
a normal state as though the DLPAR event never happened.

The following are possible causes of DLPAR operation failures:

� The primary cause of processor removal failure is processor bindings. The
operating system cannot ignore processor bindings and carry on DLPAR
operations or applications might not continue to operate properly. To ensure
that this does not occur, release the binding, establish a new one, or
terminate the application. The processors that are impacted is a function of
the type of binding that is used.
 Chapter 5. Dynamic logical partitioning 205

� The primary cause of memory removal failure is that there is not enough
pinned memory available in the system to complete the request. This is a
system-level issue and is not necessarily the result of a specific application. If
a page in the memory region to be removed has a pinned page, its contents
must be migrated to another pinned page, while automatically maintaining its
virtual to physical mappings. The failure occurs when there is not enough
pinnable memory in the system to accommodate the migration of the pinned
data in the region that is being removed. To ensure that this does not occur,
lower the level of pinned memory in the system. This can be accomplished by
destroying pinned shared memory segments, terminating programs that
implement the plock system call, or removing the plock on the program.

� The primary cause of PCI slot removal failure is that the adapters in the slot
are busy. Note that device dependencies are not tracked. For example, the
device dependency might extend from a slot to one of the following: an
adapter, a device, a volume group, a logical volume, a file system, or a file. In
this case, resolve the dependencies manually by stopping the relevant
applications, unmounting file systems, varying off volume groups, and
unconfiguring the device drivers associated with the adapters in the target
slot.

If an error occurs in a DLPAR operation, the error message dialog box shown in
Figure 5-9 appears on the HMC.

Figure 5-9 DLPAR operation failed message

The HMC also displays the information message dialog box, as shown in
Figure 5-10 on page 207.
206 Partitioning Implementations for IBM Eserver p5 Servers

Figure 5-10 DLPAR operation failure detailed information

5.10.2 Error analysis facilities
AIX provides the following facilities to help isolate DLPAR operation failures:

� The syslog facility
� AIX system trace facility
� AIX error log facility
� Kernel debugger

You can also use these facilities if a script or DLPAR-aware application fails.
Moreover, by learning how to use these facilities, you can modify your programs
to handle some of the possible errors automatically.

The syslog facility
The syslog facility is another useful tool to help isolate DLPAR-related errors. You
can use it to keep a record of the progress of DLPAR events. The syslog entries
come with a time stamp to indicate when all the DLPAR events occurred.

On AIX, the syslog facility is not enabled by default. To enable recording DLPAR
events using syslog, do the following:

1. Edit the /etc/syslog.conf file as the root user.

2. Add the required syslog entries to the end of the file.

For example, add the following:

*.debug /var/adm/syslog.log rotate size 10k

Note: If the registered DLPAR scripts have bugs, they are also the cause of
failure. You must carefully code the scripts and test them on a test partition
before the deployment on the production partition.
 Chapter 5. Dynamic logical partitioning 207

This directive line instructs the syslog facility to log all messages of priority
debug (LOG_DEBUG) and above to the /var/adm/syslog.log file. The
/var/adm/syslog.log file is automatically rotated to limit the maximum file size
to 10 KB.

3. Create the file explicitly:

touch /var/adm/syslog.log

4. Restart the syslogd subsystem:

stopsrc -s syslogd
startsrc -s syslogd

In Appendix B, “Dynamic logical partitioning output samples” on page 273, the
following syslog output examples are included:

� Sample syslog output for a processor addition request
� Sample syslog output for a memory addition request
� Sample syslog output for a memory removal request

When you register your DLPAR scripts, if you explicitly specify a channel ID string
other than the default value DRMGR by using drmgr -S, you can quickly search
the corresponding information that is produced by your DLPAR scripts. The
default channel ID, DRMGR, is shown in several syslog output examples.

AIX system trace facility
The AIX system trace facility is a tool that can trace many kernel internal
activities by specifying trace hook IDs. In case of processor- and memory-related
DLPAR events, the trace hook ID is 38F. After capturing the trace of DLPAR
events, you can generate a trace report in order to examine the results.

To use AIX system trace facility in order to capture DLPAR events, do the
following as the root user:

1. Start the trace:

trace -a -j 38f

2. Perform the desired DLPAR operations.

3. Stop the trace:

trcstop

4. Analyze the trace:

trcrpt
208 Partitioning Implementations for IBM Eserver p5 Servers

You can also use SMIT to do the same activities (you need the root authority):

1. Invoke smit and select the following panels, and then press Enter:

Problem Determination
Trace

START Trace

2. Type 38F in the ADDITIONAL event IDs to trace field, as shown in
Example 5-13, and then press Enter.

Example 5-13 START Trace panel

START Trace

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

 [Entry Fields]
 EVENT GROUPS to trace [] +
 ADDITIONAL event IDs to trace [38F] +
 Event Groups to EXCLUDE from trace [] +
 Event IDs to EXCLUDE from trace [] +
 Trace MODE [alternate] +
 STOP when log file full? [no] +
 LOG FILE [/var/adm/ras/trcfile]
 SAVE PREVIOUS log file? [no] +
 Omit PS/NM/LOCK HEADER to log file? [yes] +
 Omit DATE-SYSTEM HEADER to log file? [no] +
 Run in INTERACTIVE mode? [no] +
 Trace BUFFER SIZE in bytes [131072] #
 LOG FILE SIZE in bytes [1310720] #
 Buffer Allocation [automatic] +

3. Perform the desired DLPAR operations.

4. Invoke smit and select the following panels, and then press Enter:

Problem Determination
Trace

STOP Trace

5. Invoke smit, select the following panels, select 1 filename (defaults stdout),
and then press Enter:

Problem Determination
Trace

Generate a Trace Report
 Chapter 5. Dynamic logical partitioning 209

6. Select the following values in the smit panel shown in Example 5-14, and then
press Enter:

Show PROCESS IDs for each event? yes
Show THREAD IDs for each event? yes

Example 5-14 Generate a Trace Report panel

Generate a Trace Report

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

 [Entry Fields]
 Show exec PATHNAMES for each event? [yes] +
 Show PROCESS IDs for each event? [yes] +
 Show THREAD IDs for each event? [yes] +
 Show CURRENT SYSTEM CALL for each event? [yes] +
 Time CALCULATIONS for report [elapsed only] +
 Event Groups to INCLUDE in report [] +
 IDs of events to INCLUDE in report [] +X
 Event Groups to EXCLUDE from report [] +
 ID's of events to EXCLUDE from report [] +X
 STARTING time []
 ENDING time []
 LOG FILE to create report from [/var/adm/ras/trcfile]
 FILE NAME for trace report (default is stdout) []

For more information, see Appendix B, “Dynamic logical partitioning output
samples” on page 273.

AIX error log facility
The drmgr command can generate error log messages in the few cases involving
kernel, kernel extensions, or platform failures that have been caused by a DLPAR
event. Table 5-14 on page 211 shows a list of the possible errors that could be
found in the system error log.
210 Partitioning Implementations for IBM Eserver p5 Servers

Table 5-14 AIX error logs generated by DLPAR operations

Error log entry Description

DR_SCRIPT_MSG Application script error or related messages,
or both.
Entry incudes failing script name and DLPAR
phase where the error occurred.

DR_RECONFIG_HANDLER_MSG Kernel extension reconfiguration handler
error.
Entry includes failing handler’s registration
name.

DR_MEM_UNSAFE_USE Non-DLPAR aware kernel extension’s use of
physical memory is not valid. The result is that
the affected memory is not available for
DLPAR removal. The entry includes:

� The affected logical memory address

� An address corresponding to the kernel
extension’s load module

� The kernel extension load module’s path
name

DR_DMA_MEM_MIGRATE_FAIL Memory removal failure due to DMA activity.
The affected LMB had active DMA mappings
that could not be migrated by the platform.
The entry includes:

� The logical memory address within the
LMB

� Hypervisor migration return code

� Logical bus number of the slot owning the
DMA mapping

� The DMA address

DR_DMA_MEM_MAPPER_FAIL Memory removal failure due to a kernel
extension responsible for controlling DMA
mappings error. The entry includes:

� DMA mapper handler return code

� An address corresponding to the DMA
mapper’s kernel extension load module

� The DMA mapper’s kernel extension load
module’s path name
 Chapter 5. Dynamic logical partitioning 211

Kernel debugger
The AIX kernel debugger (KDB) helps isolate DLPAR operation errors. KDB can
be especially useful to diagnose errors found in the kernel extensions. For further
information about the use of KDB, refer to AIX 5L Version 5.3 Technical
Reference: Kernel and Subsystems, available at:

http://techsupport.services.ibm.com/server/library

5.10.3 AIX error log messages when DLPAR operations fail
Several different AIX error messages can be generated when a DLPAR event
failure occurs. These error messages and the action that should be taken are
listed. The following tables show all the AIX error messages in relation to DLPAR
operations.

Table 5-15 indicates general error messages that can be displayed when a
DLPAR event failure occurs and the recommended actions to take.

Table 5-15 General AIX error messages

Table 5-16 describes the possible errors that can be generated by the drmgr
command.

Table 5-16 drmgr-specific AIX error messages

Error message Recommended action

You must have root authority to run
this command.

Log in as the root user.

Failed to set the ODM data. Contact an IBM service representative.

Consult AIX error log for more
information.

Open the AIX error log and look for error
log entries with the DR_ prefix.

Resource identifier out of range. Consult AIX syslog and HMC logs.

Error message Recommended action

Error building the DLPAR script
information.

Check system resources, such as free
space in the /var file system. If the problem
persists, contact an IBM service
representative.

Aborting DLPAR operation due to Check
Phase failure.

Examine the AIX syslog. Contact the
script/application owner.
212 Partitioning Implementations for IBM Eserver p5 Servers

http://techsupport.services.ibm.com/server/library

While a DLPAR operation is taking place, an error can occur. Table 5-17 indicates
some of these error messages caused by AIX during a DLPAR operation.

Table 5-17 DLPAR operation-specific AIX error messages

Error: Specified DLPAR script file
already exists in the destination
directory.

Examine the AIX syslog. Contact the
script/application owner to change the
script name. Use the force flag (drmgr -f)
to overwrite the pre-existing script.

Error: Specified DLPAR script file
does not exist in directory.

File could not be found for uninstallation.
Check the file name specified.

The DLPAR operation is not supported. The machine or configuration does not
support that operation. Upgrade the
system firmware or operating system
software, or both.

Invalid parameter. Contact an IBM service representative.

Error message Recommended action

DLPAR operation failed because of
timeout.

Increase the timeout value, or try again
later. Also, try the DLPAR operation
without a timeout specified.

DLPAR operation failed. Kernel busy
with another DLPAR operation.

Only perform one DLPAR operation at a
time. Try again later.

DLPAR operation failed due to kernel
error.

Examine the AIX syslog or contact an IBM
service representative, or both.

The DLPAR operation could not be
supported by one or more kernel
extensions.

Find the corresponding AIX error log entry
DR_RECONFIG_HANDLER_MSG and
contact the kernel extension owner.

DLPAR operation failed since resource
is already online.

Examine the AIX syslog and HMC log.

DLPAR operation timed out. Increase the timeout, or try again later.
Also, try initiating the DLPAR operation
without a timeout specified.

Error message Recommended action
 Chapter 5. Dynamic logical partitioning 213

Finally, there are several DLPAR errors resulting from resource events.
Table 5-18 displays these types of errors.

Table 5-18 DLPAR resource-specific AIX error messages

Error message Recommended action

The specified connector type is
invalid, or there is no dynamic
reconfiguration support for
connectors of this type on this
system.

Examine the AIX syslog and HMC log.

Insufficient resource to complete
operation.

Try again later. Free up resources and try
again.

CPU could not be started. Examine the AIX syslog and HMC log.

Memory could not be released. DLPAR
operation failed since a kernel
extension controlling DMA mappings
could not support the operation.

Examine the AIX error log and look for the
DR_DMA_MAPPER_FAIL entry. The
logical memory block or address of the
message should correspond to the logical
memory address in the error log entry. The
LR value in the error log is an address
within the failing kernel extension. The
Module Name in the error log is the path
name of the kernel extension load module.
Unconfigure the kernel extension and
retry. Contact the kernel extension owner.

Resource could not be found for the
DLPAR operation.

Examine the AIX syslog and HMC log.

Resource is busy and cannot be
released.

Examine the AIX syslog. Quiesce activity
using the resource and try again.

Memory in use by a non DLPAR-safe
kernel extension and hence cannot be
released.

Examine the AIX error log and look for the
DR_MEM_UNSAFE_USE entry. The
logical memory block or address in the
message should correspond to the logical
memory address in the error log. The LR
value in the error log is an address within
the owning kernel extension. The Module
Name in the error log is the path name of
the kernel extension load module.
Unconfigure the kernel extension and
retry. Contact the kernel extension owner.
214 Partitioning Implementations for IBM Eserver p5 Servers

Memory could not be released because
system does not contain enough
resources for optimal pinned memory
and large page memory ratios.

Reduce pinned or large page memory
requirements, or both, and try again.

Error message Recommended action
 Chapter 5. Dynamic logical partitioning 215

216 Partitioning Implementations for IBM Eserver p5 Servers

Chapter 6. The POWER Hypervisor

The technology behind the shared processor on Sserver p5 systems is
provided by a piece of firmware known as the POWER Hypervisor (referred to in
this document simply as “hypervisor”). The enhanced layered code structure of
the hypervisor resides in flash memory on the Service Processor. This firmware
performs the initialization and configuration of the POWER5 processor, as well
as the virtualization support required to run up to 140 partitions concurrently on
the IBM ̂p5 servers.

6

© Copyright IBM Corp. 2003, 2004, 2005. All rights reserved. 217

6.1 Introduction
The hypervisor supports many advanced functions when compared to the
previous version of the hypervisor, including sharing of processors, virtual I/O,
high-speed communications between partitions using Virtual LAN, concurrent
maintenance and allows for multiple operating systems to run on the single
system. AIX 5L, Linux, and i5/OS are supported.

With support for dynamic resource movement across multiple environments,
customers can move processors, memory and I/O between partitions on the
system as they move workloads between the three environments.

The hypervisor is the underlying control mechanism that resides below the
operating systems. The hypervisor owns all system resources and creates
partitions by allocating these resources and sharing them.

The layers above the hypervisor are different for each supported operating
system. The Sserver p5 systems use the new hypervisor for support of the
Micro-Partitioning technology model. The POWER4 Hypervisor processor-based
systems worked on a demand basis, as the result of machine interrupts and
callbacks to the operating system. The new hypervisor operates continuously in
the background.

For the AIX 5L and Linux operating systems, the layer above the hypervisor are
similar but the contents are characterized by each operating system. The layers
of code supporting AIX 5L and Linux consist of System Firmware and Run-Time
Abstraction Services (RTAS).

System firmware is composed of low level firmware that is code that performs
server unique I/O configurations and the Open Firmware which contains the boot
time drivers, boot manager, and the device drivers required to initialize the PCI
adapters and attached devices. RTAS consist of code that supplies platform
dependent accesses and can be called from the operating system. These calls
are passed to the hypervisor that handles all I/O interrupts.

The role of RTAS versus Open Firmware is very important to understand. Open
Firmware and RTAS are both platform-specific firmware and both are tailored by
the platform developer to manipulate the specific platform hardware. However,
RTAS is intended to present to access platform hardware features on behalf of
the operating system, while Open Firmware need not be present when the
operating system, is running. This frees Open Firmware’s memory to be used by
applications. RTAS is small enough to painlessly coexist with the operating
system and applications.
218 Partitioning Implementations for IBM Eserver p5 Servers

Figure 6-1 POWER Hypervisor on AIX 5L and Linux

For i5/OS, Technology Independent Machine Interface and the layers above the
hypervisor are still in place. System Licensed Internal Code, however, is changed
and enabled for interfacing with the hypervisor. The hypervisor code is based on
the iSeries Partition Licensed Internal Code code that is enhanced for use with
the IBM Eserver® i5 hardware and that is now part of the hypervisor.

6.2 Hypervisor support
The POWER5 processor supports a special set of instructions which are
exclusively used by the hypervisor. If an operating system instance in a partition
requires access to hardware, it first invokes the hypervisor by using hypervisor
calls. The hypervisor allows privileged access to the operating system for
dedicated hardware facilities and includes protection for those facilities in the
processor and memory locations.

Attention: All Sserver p5 based servers require the use of the hypervisor. A
system administrator can configure the system as a single, partition that
includes all the resources on the system, but cannot run in SMP mode without
the hypervisor as they could with POWER4 systems. A Sserver p5 based
server is always partition capable.

P O W E R H Y P E R V IS O R

64 -b it H A R D W A R E P L A T F O R M

SE
R

VI
C

E
PR

O
C

ES
SO

R G L O B A L O P E N
F IR M W A R E /
P A R T IT IO N
M A N A G E R

L O C A L O F R T A S

A IX 5L / L IN U X
H M C

P O W E R H Y P E R V IS O R

64 -b it H A R D W A R E P L A T F O R M

SE
R

VI
C

E
PR

O
C

ES
SO

R G L O B A L O P E N
F IR M W A R E /
P A R T IT IO N
M A N A G E R

L O C A L O F R T A S

A IX 5L / L IN U X
H M C
 Chapter 6. The POWER Hypervisor 219

The introduction of shared processors has not fundamentally changed with the
introduction of Virtualization and Micro-Partitioning technology. New virtual
processor objects and hypervisor calls have been added to support shared
processor partitions. Actually, the existing physical processor objects have just
been refined, so as not to include physical characteristics of the processor, since
there is not fixed relationship between a virtual processor and the physical
processor that actualizes it. These new hypervisor calls are intended to support
the scheduling heuristic of minimizing idle time.

The hypervisor is entered by the way of three interrupts:

� System Reset Interrupt

The hypervisor code saves all processor state by saving the contents of the
processor’s registers (multiplexing the use of this resource with the operating
system). The processor’s stack and data are found by processing the
Processor Identification Register (PIR). The PIR is a read only register.
During power-on reset, PIR is set to a unique value for each processor in a
multi-processor system.

� Machine Check Interrupt

The hypervisor code saves all processor state by saving the contents of the
processor’s registers (multiplexing the use of this resource with the operating
system). The processor’s stack and data are found by processing the PIR.

The hypervisor investigates the cause of the machine check. The cause can
either be a recoverable event on the current processor or one of the other
processors in the logical partition. Also the hypervisor must determine if the
machine check has corrupted its own internal state by looking at the
footprints, if any, that were left in the PIR processor data area of the errant
processor.

� System (hypervisor) Call Interrupt

The hypervisor call (hcall) interrupt is a special variety of the sc (system call)
instruction. The parameters to the hcall() are passed in registers using the
POWERPC Application Binary Interface (ABI) definitions. This ABI specifies
an interface for compiled application programs to system software. In contrast
to the PowerPC ABI, pass by reference parameters are avoided to or from
hcall(). This minimizes the address translation problem parameters passed by
reference would cause because address translation is disabled automatically
when interrupts are invoked. Input parameters can be indexes. Output
parameters can be passed in the registers and require special in-line
assembler code on the part of the caller. The first parameter in the hypervisor
call function table to hcall() is the function token. The assignment of function
token is designed such that a single mask operation can be used to validate
the value to be within the range of a reasonable size branch table. Entries
within the branch table can handle unimplemented code points. And some of
220 Partitioning Implementations for IBM Eserver p5 Servers

the hcall() functions indicate if the system is partitioned, and which ones are
available. The Open Firmware property is provided in the /rtas node of the
partition’s device tree. The property is present if the system is partitioned
while its value specifies which function sets are implemented by a given
implementation. If the system implements any hcall() of a function set it
implements the entire function set. Additionally, certain values of the Open
Firmware property indicate that the system supports a given architecture
extension to a standard hcall().

The hypervisor routines are optimized for execution speed. In some rare cases,
locks will have to be taken, and short wait loops will be required due to specific
hardware designs. However, if a needed resource is truly busy, or processing is
required by an agent, the hypervisor returns to the caller, either to have the
function retried or continued at a later time. The performance class establishes
specific performance against specific hcall() function.

6.3 Hypervisor call functions
The hypervisor provides the following functions:

� Page Frame Table

Page Frame Table (PFT) access is called using 64-bit linkage conventions.
The hypervisor PFT access functions carefully update a Page Table Entry
(PTE) with at least 64-bit store operations since an invalid update sequence
could result in machine check. The hypervisor protects check-stop conditions
by allocating certain PTE bits for PTE locks and reserve for operating system
assumes that the PTE is in use.

For logical addressing, an additional level of virtual addresses translation is
managed by the hypervisor. The operating system is not allowed to use the
physical address for its memory this includes main storage, memory-mapped
I/O (MMIO) space, and NVRAM. The operating system sees main storage as
regions of contiguous logical memory. Each logical region is mapped by the
hypervisor into a corresponding block of contiguous physical memory on a
specific node. All regions on a specific system are the same size though
different systems with different amount of memory can have different region
sizes since they are the quantum of memory allocation to partitions. That is,
partitions are granted memory in region size chunks and if a partition’s
operating system gives up memory, it is in units of a full region.
 Chapter 6. The POWER Hypervisor 221

� Translation Control Entry

Translation Control Entry (TCE) access hcall() and take as a parameters in
the Logical I/O Bus Number which is the logical bus number value derived
from the property that are associated with the particular I/O adapter. TCE is
responsible for the I/O address to memory address translation in order to
perform direct memory access (DMA) transfers between memory and PCI
adapters. The TCE tables are allocated in the physical memory.

� Processor Register Hypervisor Resource Access

Processor Register Hypervisor Resource Access provides controlled in the
write access services.

� Debugger Support

Debugger support provides the capability for the real mode debugger to get to
its asynchronous port and beyond the real mode limit register without turning
on virtual address translation.

� Virtual Terminal Support

The hypervisor provides console access to every logical partition without a
physical device assigned. The console emulates a vt320 terminal that can be
used to access partition system using the Hardware Management Console
(HMC). Some functions are limited, and the performance cannot be
guaranteed because of the limited bandwidth of the connection between the
HMC and the managed system. A partition’s device tree that contains one or
more nodes notifying that this has been assigned to one or more virtual
terminal client adapters. The unit address of the node is used by the partition
to map the virtual device(s) to the operating system’s corresponding logical
representations and notify the partition that the virtual adapter is a Vterm
client adapter. The node’s interrupts property specifies the interrupt source
number that has been assigned to the client Vterm I/O adapter for receive
data.

� Dump Support

Dump support allows the operating system to dump hypervisor data areas in
support of field problem diagnostics. The hcall-dump function set contains the
H_HYPERVISOR_DATA hcall(). This hcall() is enabled or disabled (default
disabled) with the HMC.

� Memory Migration Support

The Memory Migration Support hcall() was provided to assist the operating
system in the memory migration process. It is the responsibility of the
operating system not to change the DMA mappings referenced by the
translation buffer. Failure of the operating system to serialize relative to the
logical bus numbers might result DMA data corruption within the caller’s
partition.
222 Partitioning Implementations for IBM Eserver p5 Servers

� Performance Monitor Support

The performance registers are saved when a virtual processor yields or is
preempted. They are restored when the state of the virtual processor is
restored on the hardware. A bit in one of the performance monitor registers
enables the partition to specify whether the performance monitor registers
count when a hypervisor call (except yield) is made (MSR[HV]=1). When a
virtual processor yields or is preempted, the performance monitor registers do
count. This allows a partition to query the hypervisor to appropriate
information regarding hypervisor code and data addresses.

Table 6-1 provides a list of hypervisor calls.

Table 6-1 Hypervisor calls

Note: This table is not intended to be a programming reference. Therefore,
these calls can change in future levels of firmware. However, the definitions
can provide a better understanding of the mechanics within the hypervisor.

Hypervisor call Definition

H_REGISTER_VPA This hcall() provides a data area registered with
the Hypervisor by the operating system for each
virtual processor. The Virtual Processor Area
(VPA) is the control area which contains
information used by Hypervisor and the operating
system in cooperation with each other.

H_CEDE This hcall() is to have the virtual processor, which
has no useful work to do, enter a wait state ceding
its processor capacity to other virtual processor
until some useful work appears, signaled either
through an interrupt or a H_PROD hcall().

H_CONFER This hcall() allows a virtual processor to give its
cycles to one or all other virtual processors in its
partition.

H_PROD This hcall() makes the specific virtual processor
runnable.

H_ENTER This hcall() adds an entry into the page frame
table. PTE high and low order bytes of the page
table contains the new entry.

H_PUT_TCE This hcall() provides mapping of a single 4096
byte page into the specified TCE.
 Chapter 6. The POWER Hypervisor 223

H_READ This hcall() returns the contents of a specific PTE
in GPR4 and GPR5.

H_REMOVE This hcall() is for invalidating an entry in the page
table.

H_BULK_REMOVE This hcall() is for invalidating up to four entries in
the page table.

H_GET_PPP This hcall() returns the partition’s performance
parameters.

H_SET_PPP This hcall() allows the partition to modify its
entitled processor capacity percentage and
variable processor capacity weight within limits.

H_CLEAR_MODE This hcall() clears the modified bit in the specific
PTE. The second double word of the old PTE is
returned in GPR4.

H_CLEAR_REF This hcall() clears the reference bit in the specific
PTE from the partition’s node PFT.

H_PROTECT This hcall() sets the page protects bits in the
specific PTE.

H_EOI This hcall() incorporates the interrupt reset
function when specifying an interrupt source
number associated with an interpartition logical
I/O adapter.

H_IPI This hcall() generates an interprocessor interrupt.

H_CPPR This hcall() sets the processor’s current interrupt
priority.

H_MIGRATE_DMA This hcall() is extended to serialize the sending of
a logical LAN message to allow for migration of
TCE mapped DMA pages.

H_PUT_RTCE This hcall() maps the number of contiguous TCEs
in an RTCE to the same number of contiguous I/O
adapter TCEs.

H_PAGE_INIT This hcall() initializes pages in real mode either to
zero or to the copied contents of another page.

H_GET_TCE This standard hcall() s used to manage the
interpartition logical LAN adapters’s I/O
translations.

Hypervisor call Definition
224 Partitioning Implementations for IBM Eserver p5 Servers

H_COPY_RDMA This hcall() copies data from an RTCE table
mapped buffer in one partition to an RTCE table
mapped buffer in another partition, with the length
of the transfer being specified by the transfer
length parameter in the hcall().

H_SEND_CRQ This hcall() sends one 16 byte message to the
partner partition’s registered Command /
Response Queue (CRQ). The CRQ facility
provides ordered delivery of messages between
authorized partitions.

H_SEND_LOGICAL_LAN This hcall() sends a logical LAN message.

H_ADD_LOGICAL_LAN_BUF This hcall() adds receive buffers to the logical LAN
receive buffer pool.

H_PIC This hcall() returns the summation of the physical
processor pool’s idle cycles.

H_XIRR This hcall() is extended to report the virtual
interrupt source number associated with virtual
interrupts associated with an interpartition logical
LAN I/O adapter.

H_POLL_PENDING This hcall() provides the operating system with the
ability to perform background administrative
functions and the implementation with indication of
pending work so that it can more intelligently
manage the use of hardware resources.

H_PURR This hcall() is a new resource provided for
Micro-Partitioning and SMT. It provides an actual
count of ticks that the shared resource has used
on a per virtual processor or per SMT thread
basis. In the case of Micro-Partitioning, the virtual
processor’s Processor Utilization Resource
Register (PURR) begins incrementing when the
virtual processor is dispatched onto a physical
processor. Therefore, comparisons of elapsed
PURR with elapsed Timebase provides an
indication of how much of the physical processor a
virtual processor is getting. The PURR will also
count Hypervisor calls made by the partition, with
the exception of H_CEDE and H_CONFER. For
improved accuracy, the existing hcall() time
stamping should be converted to use PURR
instead of timebase.

Hypervisor call Definition
 Chapter 6. The POWER Hypervisor 225

The lparstat command in AIX 5L Version 5.3 with -H flag displays the partition
data with detailed breakdown of hypervisor time by call type, as shown in
Figure 6-2.

Figure 6-2 lparstat -H command output
226 Partitioning Implementations for IBM Eserver p5 Servers

6.4 Micro-Partitioning technology extensions
A new virtual processor is dispatched on a physical processor when one of the
following conditions happens:

� The physical processor is idle and a virtual processor was made ready to run
(interrupt or process).

� The old virtual processor exhausted its time slice (HDERC interrupt).

� The old virtual processor ceded or conferred its cycles.

When one of the above conditions occurs, the hypervisor, by default, records all
the virtual processor architected state including the Time Base and Decrementer
values and sets the hypervisor timer services to wake the virtual processor per
the setting of the decrementer. The virtual processor’s Processor Utilization
Resource Register (PURR) value for this dispatch is computed. The Virtual
Processor Area (VPA) dispatch count is incremented (such that the result is odd).
Then the hypervisor selects a new virtual processor to dispatch on the physical
processor using an implemented dependent algorithm having the following
characteristics listed in priority order:

1. The virtual processor is ready to run (has not ceded or conferred its cycles or
exhausted its time slice).

2. Ready-to-run virtual processors are dispatched prior to waiting in excess of
their maximum specified latency.

3. Of the non-latency critical virtual processors ready to run, select the virtual
processor that is most likely to have its working set in the physical processor’s
cache or for other reasons will run most efficiently on the physical processor.

If no virtual processor is ready to run at this time, start accumulating the Pool Idle
Count of the total number of idle processor cycles in the physical processor pool.

6.5 Memory considerations
POWER5 processors use memory to temporarily hold information. Memory
requirements for partitions depend on partition configuration, I/O resources
assigned, and applications used. Memory can be assigned in increments of
16 MB.

Depending on the overall memory in your system and the maximum memory
values you choose for each partition, the server firmware must have enough
memory to perform logical partition tasks. each partition has a Hardware Page
Table (HPT). The size of the HPT is based on an HPT ratio and determined by
 Chapter 6. The POWER Hypervisor 227

the maximum memory values you establish for each partition. The HPT ratio is
1/64.

When selecting the maximum memory values for each partition, consider the
following:

� Maximum values affect the HPT size for each partition.
� The logical memory map size of each partition.

When you create a logical partition on your managed system, the managed
system reserves an amount of memory to manage the logical partition. Some of
this physical partition is used for hypervisor page table translation support. The
current memory available for partition usage in the HMC is the amount of
memory that is currently available to the logical partitions on the managed
system, see Figure 6-3. This is the amount of active memory on your managed
system minus the estimated memory needed by the managed system to manage
the logical partitions currently defined on your system. Therefore, the amount in
this field decreases for each additional logical partition you create.

When you are assessing changing performance conditions across system
reboots, it is important to know that memory allocations might change based on
the availability of the underlying resources. Memory is allocated by the system
across the system. Applications in partitions cannot determine where memory
has been physically allocated.

Figure 6-3 Logical Partition Profile Properties - current memory settings
228 Partitioning Implementations for IBM Eserver p5 Servers

6.6 Performance considerations
The hypervisor does use a small percentage of the system processor and
memory resources. This is associated with virtual memory management and is
used for the hypervisor dispatcher, virtual processor data structures (including
save areas for virtual processor) and for queuing up of interrupts. This is
dependant on most workloads, and page-mapping activity. Partitioning can
actually help performance in some cases for applications that do not scale well
on large SMP systems by enforcing strong separation between workloads
running in the separate partitions.

The output of lparstat with -h flag displays the percentage spent in hypervisor
(%hypv) and the number of hcalls. Notice that in the example output shown in
Figure 6-4, the %hypv in relation to entitlement capacity is only around 1% of the
system resources. This percentage shows that the hypervisor consumes a small
amount of the processor during this sample.

Figure 6-4 lparstat -h 1 16 command output

To provide input to the capacity planning and quality of service tools, the
hypervisor reports to an operating system certain statistics, these include the
number of virtual processor that are online, minimum processor capacity that the
operating system can expect (the operating system can cede any unused
capacity back to the system), the maximum processor capacity that the partition
will grant to the operating system, the portion of spare capacity (up to the
maximum) that the operating system will be granted, variable capacity weight,
and the latency to a dispatch by an hcall(). The output of the lparstat command
 Chapter 6. The POWER Hypervisor 229

with the -i flag, shown in Figure 6-5, reports the logical partition related
information.

Figure 6-5 lparstat -i command output
230 Partitioning Implementations for IBM Eserver p5 Servers

Appendix A. Dynamic logical partitioning
program templates

This appendix provides the following sample dynamic logical partitioning
(DLPAR) program templates:

� “Perl template” on page 233
� “Korn shell template” on page 245
� “DLPAR-aware application using a signal handler” on page 257

These templates are provided as samples to integrate DLPAR operations into
your applications.

A

© Copyright IBM Corp. 2003, 2004, 2005. All rights reserved. 231

General information
If you can access the source code of your application, see the last template
example to make your applications DLPAR-aware.

If not, you can choose your favorite programming language from Perl, Korn shell,
and the C language in order to integrate DLPAR operations into your
applications. The first two templates are slightly modified from the files originally
installed in the /usr/samples/dr/scripts directory on AIX 5L Version 5.2 to add a
debug output facility and insert comments for readability. The original template
files are included in the bos.adt.samples fileset, as shown in the following
example:

lslpp -w /usr/samples/dr/scripts/IBM_template.*
 File Fileset Type
 --
 /usr/samples/dr/scripts/IBM_template.c bos.adt.samples File
 /usr/samples/dr/scripts/IBM_template.pl bos.adt.samples File
 /usr/samples/dr/scripts/IBM_template.sh bos.adt.samples File
lslpp -L bos.adt.samples
 Fileset Level State Type Description (Uninstaller)
 --
 bos.adt.samples 5.2.0.0 C F Base Operating System
Samples

Example: A-1 DR_UNSAFE_PROCESS

LABEL: DR_UNSAFE_PROCESS
IDENTIFIER: 0E2A04B4

Date/Time: Fri Nov 15 11:04:17 CST
Sequence Number: 114
Machine Id: 0021768A4C00
Node Id: lpar01
Class: S
Type: INFO
Resource Name: SYSPROC

Description
DR Unsafe application

Detail Data
Process ID
30499421762355200

Note: Some scripts in the /usr/samples/dr/scripts directory are provided to
demonstrate error situations. For example, IBM_XYZ_fail_dr_2.sh generates
the AIX error log shown in Example A-1 in a CPU removal DLPAR event. You
should carefully read the readme file in this directory before registering these
scripts.
232 Partitioning Implementations for IBM Eserver p5 Servers

Perl template
Example A-2 provides the Perl version of the DLPAR script template. System
administrators can use it as a starting point when integrating DLPAR operations
into your applications.

The script is added a file handle, DBG, to be used to print debug information to
the debug file, /tmp/IBM_template.pl.dbg. The debug information is very helpful
when you have to debug your DLPAR script, because the script should not print
any undefined name-value pairs to the standard out.

To display the debug information sent to the file, enter the following command:

$ tail -f /tmp/IBM_template.pl.dbg

Example: A-2 DLPAR script template: Perl

#!/usr/bin/perl

(C) COPYRIGHT International Business Machines Corp. 2000, 2002
All Rights Reserved
Licensed Materials - Property of IBM
#
US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
#
FILE NAME: IBM_template.pl
#
FILE DESCRIPTION:
This perl script will provide a template for DLPAR script developers
to develop their custom perl scripts.
#
It is the basic test script. It implements all the commands of DLPAR
script and for all them returns success. It identifies itself with
distinct details.

#--
GLOBAL OBJECTS
#--

This hash contains the required commands specified in the DRAF.
The values assigned to each command is irrelevant. The script
converts the text into a number for quick accessing
%DR_script_commands = (
 scriptinfo => 1,
 register => 2,
 usage => 3,
 checkrelease => 4,
 prerelease => 5,
 Appendix A. Dynamic logical partitioning program templates 233

 postrelease => 6,
 undoprerelease => 7,
 checkacquire => 8,
 preacquire => 9,
 postacquire => 10,
 undopreacquire => 11
);
This hash contains data used by the scriptinfo command. It lists
required information about the script
%SCRIPT_DATA = (
 SCRIPT_INFO => “AIX “,
 SCRIPT_VERSION => “1”,
 SCRIPT_VENDOR => “IBM Corp.”,
 SCRIPT_TIMEOUT => 5
);
This hash contains the resources for which the script will register.
In this case, this script wants to register for DR operations that
involve memory and cpu events.
%REGISTER_DATA = (
 CPU_RESOURCE => “cpu”,
 MEM_RESOURCE => “mem”
);
This hash contains usage descriptions for each possible resource.
%USAGE_DATA = (
 CPU_USAGE => “Testing DLPAR on CPU resource”,
 MEM_USAGE => “Testing DLPAR on MEM resource”
);

#--
Helper Functions
#--

#==
Name: str_to_cmd
#
Description: converts a string to a command value
#
Input: command string
#
Output: logically mapped command value
#
Return Code: None
#==
sub str_to_cmd {

 $s_cmd = $_[0];
 $DR_script_commands{$s_cmd};
}

234 Partitioning Implementations for IBM Eserver p5 Servers

#--
Required DRAF commands
#--

#==
Name: process_scriptinfo
#
Description: returns information about the script
#
Input: none
#
Output: name-value pairs
#
Return Code: 0 = success
1 = failure
#==
sub process_scriptinfo {

 print “DR_SCRIPTINFO=$SCRIPT_DATA{SCRIPT_INFO}\n”;
 print “DR_VERSION=$SCRIPT_DATA{SCRIPT_VERSION}\n”;
 print “DR_DATE=19042002\n”;
 print “DR_VENDOR=$SCRIPT_DATA{SCRIPT_VENDOR}\n”;
 print “DR_TIMEOUT=$SCRIPT_DATA{SCRIPT_TIMEOUT}\n”;

 0;
}

#==
Name: process_scriptinfo
#
Description: returns information about the script
#
Input: none
#
Output: name-value pairs
#
Return Code: 0 = success
1 = failure
#==
sub process_register {

 foreach $key (keys %REGISTER_DATA){
 print “DR_RESOURCE=$REGISTER_DATA{$key}\n”;
 }
 0;
}

#==
 Appendix A. Dynamic logical partitioning program templates 235

Name: process_usage
#
Description: returns usage information about the script
#
Input: resource
#
Output: name-value pairs
#
Return Code: 0 = success
1 = failure
#==
sub process_usage {

 $l_rc = 0;
 $res = $_[0];

 USE_SWITCH: {
 if ($res eq $REGISTER_DATA{CPU_RESOURCE}) {
 print “DR_USAGE=$USAGE_DATA{CPU_USAGE}\n”;
 last USE_SWITCH;
 }
 if ($res eq $REGISTER_DATA{MEM_RESOURCE}) {
 print “DR_USAGE=$USAGE_DATA{MEM_USAGE}\n”;
 last USE_SWITCH;
 }
 print “DR_ERROR=script does not use resource $res\n”;
 $l_rc = 1;
 }
 return $l_rc;
}

#==
Name: process_checkrelease
#
Description: verifies a resource can be removed without compromises
the application.
#
Input: resource
#
Output: Any DR_ERROR=description or DR_LOG_DEBUG=description variables
#
Return Code: 0 = success
1 = failure
#==
sub process_checkrelease {

 $l_rc = 0;
 $res = $_[0];
236 Partitioning Implementations for IBM Eserver p5 Servers

 print DBG “-- start checkrelease phase --\n”;
 foreach $key (sort keys %ENV) {
 if ($key =~ /^DR_/) {
 print DBG $key, ‘=’, $ENV{$key}, “\n”;
 }
 }

 USE_SWITCH: {
 if ($res eq $REGISTER_DATA{CPU_RESOURCE}) {
 # perform all cpu related checks here and determine
 # if resource remove can proceed.
 last USE_SWITCH;
 }
 if ($res eq $REGISTER_DATA{MEM_RESOURCE}) {
 # perform all memu related checks here and determine
 # if resource remove can proceed.
 last USE_SWITCH;
 }
 print “DR_ERROR=script does not use resource $res\n”;
 $l_rc = 1;
 }

 print DBG “-- end checkrelease phase --\n”;

 return $l_rc;
}

#==
Name: process_prerelease
#
Description: Prepares for the resource to be removed
#
Input: resource
#
Output: Any DR_ERROR=description or DR_LOG_DEBUG=description variables
#
Return Code: 0 = success
1 = failure
#==
sub process_prerelease {

 $l_rc = 0;
 $res = $_[0];

 print DBG “-- start prerelease phase --\n”;
 foreach $key (sort keys %ENV) {
 if ($key =~ /^DR_/) {
 print DBG $key, ‘=’, $ENV{$key}, “\n”;
 }
 Appendix A. Dynamic logical partitioning program templates 237

 }

 # before we allow DR manager to proceed, we can do any prerelease
 # actions here. For instance, we could send a signal from here
 # and wait for the application to take some action.

 # resource specific actions
 USE_SWITCH: {
 if ($res eq $REGISTER_DATA{CPU_RESOURCE}) {
 # release any cpu bindings, etc. here if the resource
 # is being used by the application.
 last USE_SWITCH;
 }
 if ($res eq $REGISTER_DATA{MEM_RESOURCE}) {
 # release any application hold over memory, etc, that
 # is being removed.
 last USE_SWITCH;
 }
 print “DR_ERROR=script does not use resource $res\n”;
 $l_rc = 1;
 }

 print DBG “-- end prerelease phase --\n”;

 return $l_rc;
}

#==
Name: process_undoprerelease
#
Description: Invoked to undo any changes done by the prerelease
command.
#
Input: resource
#
Output: Any DR_ERROR=description or DR_LOG_DEBUG=description variables
#
Return Code: 0 = success
1 = failure
#==
sub process_undoprerelease {

 $l_rc = 0;
 $res = $_[0];
 # perform any actions here which were performed in the prerelease
 # command.

 print DBG “-- start undoprerelease phase --\n”;
 foreach $key (sort keys %ENV) {
238 Partitioning Implementations for IBM Eserver p5 Servers

 if ($key =~ /^DR_/) {
 print DBG $key, ‘=’, $ENV{$key}, “\n”;
 }
 }

 # resource specific actions
 USE_SWITCH: {
 if ($res eq $REGISTER_DATA{CPU_RESOURCE}) {
 # undo cpu related changes done by the prerelease cmd
 last USE_SWITCH;
 }
 if ($res eq $REGISTER_DATA{MEM_RESOURCE}) {
 # undo mem related changes done by the prerelease cmd
 last USE_SWITCH;
 }
 print “DR_ERROR=script does not use resource $res\n”;
 $l_rc = 1;
 }

 print DBG “-- end undoprerelease phase --\n”;

 return $l_rc;
}

#==
Name: process_postrelease
#
Description: After the resource is removed, this command makes
necessary adjustments
#
Input: resource
#
Output: Any DR_ERROR=description or DR_LOG_DEBUG=description variables
#
Return Code: 0 = success
1 = failure
#==
sub process_postrelease {

 $l_rc = 0;
 $res = $_[0];

 # reacquire any resource released during prerelease
 # activate any applications quieced during prerelease.

 print DBG “-- start postrelease phase --\n”;
 foreach $key (sort keys %ENV) {
 if ($key =~ /^DR_/) {
 print DBG $key, ‘=’, $ENV{$key}, “\n”;
 Appendix A. Dynamic logical partitioning program templates 239

 }
 }

 # resource specific actions
 USE_SWITCH: {
 if ($res eq $REGISTER_DATA{CPU_RESOURCE}) {
 # perform cpu related actions.
 last USE_SWITCH;
 }
 if ($res eq $REGISTER_DATA{MEM_RESOURCE}) {
 # perform mem related actions.
 last USE_SWITCH;
 }
 print “DR_ERROR=script does not use resource $res\n”;
 $l_rc = 1;
 }

 print DBG “-- end postrelease phase --\n”;
 return $l_rc;
}

#==
Name: process_checkacquire
#
Description: verifies a resource can be added withouth
compromising the application or system.
#
Input: resource
#
Output: Any DR_ERROR=description or DR_LOG_DEBUG=description variables
#
Return Code: 0 = success
1 = failure
#==
sub process_checkacquire {

 $l_rc = 0;
 $res = $_[0];

 print DBG “-- start checkacquire phase --\n”;
 foreach $key (sort keys %ENV) {
 if ($key =~ /^DR_/) {
 print DBG $key, ‘=’, $ENV{$key}, “\n”;
 }
 }

 # resource specific actions
 USE_SWITCH: {
 if ($res eq $REGISTER_DATA{CPU_RESOURCE}) {
240 Partitioning Implementations for IBM Eserver p5 Servers

 # perform all cpu related checks here and determine
 # if resource addition can proceed.
 print DBG “cpu resources: logical $ENV{DR_LCPUID}, bind $ENV{DR_BCPUID}\n”;
 if ($END{DR_LCPUID} eq 2) {
 $l_rc = 1;
 }
 last USE_SWITCH;
 }
 if ($res eq $REGISTER_DATA{MEM_RESOURCE}) {
 # perform all mem related checks here and determine
 # if resource addition can proceed.
 print DBG “mem resources: $ENV{DR_MEM_SIZE_REQUEST}\n”;
 last USE_SWITCH;
 }
 print “DR_ERROR=script does not use resource $res\n”;
 $l_rc = 1;
 }

 print DBG “-- end checkacquire phase --\n”;
 return $l_rc;
}

#==
Name: process_preacquire
#
Description: prepares application before the resource is added
#
Input: resource
#
Output: Any DR_ERROR=description or DR_LOG_DEBUG=description variables
#
Return Code: 0 = success
1 = failure
#==
sub process_preacquire {

 $l_rc = 0;
 $res = $_[0];

 print DBG “-- start preacquire phase --\n”;
 foreach $key (sort keys %ENV) {
 if ($key =~ /^DR_/) {
 print DBG $key, ‘=’, $ENV{$key}, “\n”;
 }
 }

 # resource specific actions
 USE_SWITCH: {
 if ($res eq $REGISTER_DATA{CPU_RESOURCE}) {
 Appendix A. Dynamic logical partitioning program templates 241

 # Prepare application for cpu additions.
 last USE_SWITCH;
 }
 if ($res eq $REGISTER_DATA{MEM_RESOURCE}) {
 # Prepare application for memory additions.
 last USE_SWITCH;
 }
 print “DR_ERROR=script does not use resource $res\n”;
 $l_rc = 1;
 }

 print DBG “-- end preacquire phase --\n”;

 return $l_rc;
}

#==
Name: process_undopreacquire
#
Description: If a failure occues, this will undo any changes made by
the preacquire command.
#
Input: resource
#
Output: Any DR_ERROR=description or DR_LOG_DEBUG=description variables
#
Return Code: 0 = success
1 = failure
#==
sub process_undopreacquire {

 $l_rc = 0;
 $res = $_[0];

 print DBG “-- start undopreacquire phase --\n”;
 foreach $key (sort keys %ENV) {
 if ($key =~ /^DR_/) {
 print DBG $key, ‘=’, $ENV{$key}, “\n”;
 }
 }

 # resource specific actions
 USE_SWITCH: {
 if ($res eq $REGISTER_DATA{CPU_RESOURCE}) {
 # undo cpu actions taken in the preacquire command.
 last USE_SWITCH;
 }
 if ($res eq $REGISTER_DATA{MEM_RESOURCE}) {
 # undo mem actions taken in the preacquire command.
242 Partitioning Implementations for IBM Eserver p5 Servers

 last USE_SWITCH;
 }
 print “DR_ERROR=script does not use resource $res\n”;
 $l_rc = 1;
 }

 print DBG “-- end undopreacquire phase --\n”;

 return $l_rc;
}

#==
Name: process_postacquire
#
Description: After a resource has been added, this will perform any
necessary actions.
#
Input: resource
#
Output: Any DR_ERROR=description or DR_LOG_DEBUG=description variables
#
Return Code: 0 = success
1 = failure
#==
sub process_postacquire {

 $l_rc = 0;
 $res = $_[0];

 print DBG “-- start undopreacquire phase --\n”;
 foreach $key (sort keys %ENV) {
 if ($key =~ /^DR_/) {
 print DBG $key, ‘=’, $ENV{$key}, “\n”;
 }
 }

 # resource specific actions
 USE_SWITCH: {
 if ($res eq $REGISTER_DATA{CPU_RESOURCE}) {
 # Perform actions to allow the application to adjust to a
 # cpu addition such as adding more threads, etc.
 last USE_SWITCH;
 }
 if ($res eq $REGISTER_DATA{MEM_RESOURCE}) {
 # Perform actions to allow the application to adjust to a
 # memory addition such as increasing memory areas reserved
 # for application, etc.
 last USE_SWITCH;
 }
 Appendix A. Dynamic logical partitioning program templates 243

 print “DR_ERROR=script does not use resource $res\n”;
 $l_rc = 1;
 }

 print DBG “-- end undopreacquire phase --\n”;

 return $l_rc;
}

#--
Main Program
#--

because we should only write the specified name-value
pairs in the DRAF, we should print debug information
to a file.
open (DBG, “>>/tmp/IBM_template.pl.dbg”);

This block processes the command line inputs.
ARG_SWITCH: {
 if ($#ARGV == -1) { $rc = -1; last ARG_SWITCH; }
 if ($#ARGV == 0) { $command_str = $ARGV[0] ; last ARG_SWITCH; }
 if ($#ARGV == 1) { $command_str = $ARGV[0]; $res_name = $ARGV[1]; last ARG_SWITCH; }
 $rc = -2;
}

Convert the string to a command.
$command = str_to_cmd $command_str;

#This block invokes the proper function to handle the command
CMD_SWITCH: {
 if ($command == ‘’) {$rc = 10; print “DR_ERROR=command not supported\n”; last CMD_SWITCH }
 if ($command == 1) {$rc = process_scriptinfo; last CMD_SWITCH }
 if ($command == 2) {$rc = process_register; last CMD_SWITCH }
 if ($command == 3) {$rc = process_usage $res_name; last CMD_SWITCH }
 if ($command == 4) {$rc = process_checkrelease $res_name; last CMD_SWITCH }
 if ($command == 5) {$rc = process_prerelease $res_name; last CMD_SWITCH }
 if ($command == 6) {$rc = process_postrelease $res_name; last CMD_SWITCH }
 if ($command == 7) {$rc = process_undoprerelease $res_name; last CMD_SWITCH }
 if ($command == 8) {$rc = process_checkacquire $res_name; last CMD_SWITCH }
 if ($command == 9) {$rc = process_preacquire $res_name; last CMD_SWITCH }
 if ($command == 10) {$rc = process_postacquire $res_name; last CMD_SWITCH }
 if ($command == 11) {$rc = process_undopreacquire $res_name; last CMD_SWITCH }
}

close the debug file handle
close(DBG);
exit status generated from command processing
$rc;
244 Partitioning Implementations for IBM Eserver p5 Servers

Korn shell template
Example A-3 provides the Korn shell version of the DLPAR script template.
System administrators can use it as a starting point when integrating DLPAR
operations into your applications.

The script sends debug information to the debug file,
/tmp/<script_file_name>.dbg. The debug information is very helpful when you
have to debug your DLPAR script, because the script should not print any
undefined name-value pairs to the standard out.

To display the debug information sent to the file, enter the following command:

$ tail -f /tmp/<script_file_name>.dbg

Example: A-3 DLPAR script template: Korn shell

#! /usr/bin/ksh
(C) COPYRIGHT International Business Machines Corp. 2000, 2002
All Rights Reserved
Licensed Materials - Property of IBM

US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
#
#
DLPAR aware Application developers will modify this script to
develop a DLPAR script to suit their application's needs of control
vis-a-vis Dynamic Reconfiguration(DLPAR) Operations.
#

FILE NAME: IBM_template.sh
#
FILE DESCRIPTION:
This is an example template shell DLPAR script file for
Dynamic Reconfiguration Application Framework of AIX.
This template file just prints the various inputs
from drmgr.
#
Note that DLPAR script file should adher to the guildelines
related to AIX Dynamic Reconfiguration. Some of the
issues to be considered while chaagng this script file
are:
1. Output name=value pairs only to stdout
as per the DRAF guidelines. Refer to
Manuals related to DLPAR for more details.
2. Return 0 upon success, 10 if the command
 Appendix A. Dynamic logical partitioning program templates 245

is not implemented, else return any other
return code (1 to 9, 11 to 255)
3. Use DRAF defined environment variables and
input parameters for processing the
command.
4. To debug the script file, one can use
the method shown in this template file.
#
RETURN VALUE DESCRIPTION:
0 Successful
10 Command not implemented
Else Error
#
################################# dbg #######################################
#
NAME: dbg()
#
DESCRIPTION: Write the debug message to debug file
#
INPUT:
Message to write to debug file
#
OUTPUT:
Message echoed to the debug file.
#
RETURN VALUE DESCRIPTION:
None
#
##

dbg()
{

echo $1 >> ${DBG_FILE_NAME}
}

############################## process_scriptinfo ############################
#
NAME: process_scriptinfo()
#
DESCRIPTION: Process 'scriptinfo' command from drmgr
#
INPUT:
The various environment variables set by drmgr
#
OUTPUT:
Output name=value pairs to stdout
Various pieces of information about the DLPAR script.
#
RETURN VALUE DESCRIPTION:
246 Partitioning Implementations for IBM Eserver p5 Servers

0 : success
Else failure.
#
##

process_scriptinfo()
{

echo "DR_SCRIPTINFO=AIX DR ksh example script"
echo "DR_VERSION=1"
echo "DR_DATE=18102002"
echo "DR_VENDOR=IBM"
echo "DR_TIMEOUT=10"
return 0

}

############################## process_register ############################
#
NAME: process_register()
#
DESCRIPTION: Process 'register' command from drmgr
#
INPUT:
The various environment variables set by drmgr
#
OUTPUT:
Output name=value pairs to stdout
List of all the resources supported by this DLPAR script.
#
RETURN VALUE DESCRIPTION:
0 : success
Else failure.
#
##

process_register()
{

echo "DR_RESOURCE=cpu"
echo "DR_RESOURCE=mem"
return 0

}

############################## process_usage ############################
#
NAME: process_usage()
#
DESCRIPTION: Process 'usage' command from drmgr
#
INPUT:
The various environment variables set by drmgr
 Appendix A. Dynamic logical partitioning program templates 247

resource name input variable
#
OUTPUT:
Output name=value pairs to stdout
Writes the how this resource is being used by the application
associated with this DLPAR script.
#
RETURN VALUE DESCRIPTION:
0 : success
Else failure.
#
##

process_usage()
{

case "$1" in
"cpu")
echo "DR_USAGE=cpu binding for performance"
;;
"mem")
echo "DR_USAGE=Shared(Pinned) memory for app XYZ"
;;
*)
echo "DR_ERROR=Script does not use Resource $1"
;;

esac
return 0

}

############################## process_checkrelease ##########################
#
NAME: process_checkrelease()
#
DESCRIPTION: Process 'checkrelease' command from drmgr
#
INPUT:
The various environment variables set by drmgr
resource name input variable
#
OUTPUT:
Any debug information using DR debug name=value pairs
such as DR_LOG_DEBUG="..."
Any error message in the form of DR_ERROR name=value pair
#
#
RETURN VALUE DESCRIPTION:
0 : success
10 : Command not implemented for this resource.
Else DLPAR operatin is not ok with the DLPAR script/associated app.
248 Partitioning Implementations for IBM Eserver p5 Servers

#
##

process_checkrelease()
{

case "$1" in
"cpu")
dbg "Resource : cpu"
Do all the cpu related checks here and determine
whether DLPAR remove can proceed.
;;
"mem")
dbg "Resource : mem"
Do all the memory related checks here and determine
whether DLPAR remove can proceed.
;;
*)
echo "DR_ERROR=Script does not support Resource $1"
;;

esac

return 0
}

############################## process_prerelease ############################
#
NAME: process_prerelease()
#
DESCRIPTION: Process 'prerelease' command from drmgr
#
INPUT:
The various environment variables set by drmgr
resource name input variable
#
OUTPUT:
Any debug information using DR debug name=value pairs
such as DR_LOG_DEBUG="..."
Any error message in the form of DR_ERROR name=value pair
#
#
RETURN VALUE DESCRIPTION:
0 : success
10 : Command not implemented for this resource.
Else DLPAR script/associated application could not release the resource
for DLPAR operation.
#
##
process_prerelease()
{

 Appendix A. Dynamic logical partitioning program templates 249

Do any pre release actions here. One could send a signal
from here and wait for application do the necessary.
Return from here only after the desired actions have
taken place.
case "$1" in

"cpu")
bg "Resource : cpu"
Release any cpu bindings etc here if the
resource being released is used by the app.
;;
"mem")
dbg "Resource : mem"
Release application hold over any memory
that is being removed.
;;
*)
echo "DR_ERROR=Script does not support Resource $1"
;;

esac

return 0
}

############################## process_postrelease ############################
#
NAME: process_postrelease()
#
DESCRIPTION: Process 'postrelease' command from drmgr
#
INPUT:
The various environment variables set by drmgr
resource name input variable
#
OUTPUT:
Any debug information using DR debug name=value pairs
such as DR_LOG_DEBUG="..."
Any error message in the form of DR_ERROR name=value pair
#
#
RETURN VALUE DESCRIPTION:
0 : success
10 : Command not implemented for this resource.
Else DLPAR script/associated application could not post DLPAR operations.
#
##
process_postrelease()
{

Reacquire any resource release during prerelease.
activate any apps quieced during prerelease.
250 Partitioning Implementations for IBM Eserver p5 Servers

case "$1" in
"cpu")
dbg "Resource : cpu"
;;
"mem")
dbg "Resource : mem"
;;
*)
echo "DR_ERROR=Script does not support Resource $1"
;;

esac

return 0
}

############################## process_undoprerelease #########################
#
NAME: process_undoprerelease()
#
DESCRIPTION: Process 'process_undoprerelease' command from drmgr
#
INPUT:
The various environment variables set by drmgr
resource name input variable
#
OUTPUT:
Any debug information using DR debug name=value pairs
such as DR_LOG_DEBUG="..."
Any error message in the form of DR_ERROR name=value pair
#
#
RETURN VALUE DESCRIPTION:
0 : success
10 : Command not implemented for this resource.
Else DLPAR script/associated application failed undorelease
#
##
process_undoprerelease()
{

DLPAR operation was aborted/failed. Hence undo any
changes done during prerelease for this resource
and the application associated with the DLPAR script.
case "$1" in

"cpu")
dbg "Resource : cpu"
;;
"mem")
dbg "Resource : mem"
 Appendix A. Dynamic logical partitioning program templates 251

;;
*)
echo "DR_ERROR=Script does not support Resource $1"
;;

esac
return 0

}

############################## process_checkacquire #########################
#
NAME: process_checkacquire()
#
DESCRIPTION: Process 'process_checkacquire' command from drmgr
#
INPUT:
The various environment variables set by drmgr
resource name input variable
#
OUTPUT:
Any debug information using DR debug name=value pairs
such as DR_LOG_DEBUG="..."
Any error message in the form of DR_ERROR name=value pair
#
#
RETURN VALUE DESCRIPTION:
0 : success
10 : Command not implemented for this resource.
Else DLPAR script/associated application does want this resource.
#
##
process_checkacquire()
{

Do any checks prior to resource addition.
case "$1" in

"cpu")
dbg "Resource : cpu"
;;
"mem")
dbg "Resource : mem"
;;
*)
echo "DR_ERROR=Script does not support Resource $1"
;;

esac
return 0

}
############################## process_preacquire #########################
#
NAME: process_preacquire()
252 Partitioning Implementations for IBM Eserver p5 Servers

#
DESCRIPTION: Process 'process_preacquire' command from drmgr
#
INPUT:
The various environment variables set by drmgr
resource name input variable
#
OUTPUT:
Any debug information using DR debug name=value pairs
such as DR_LOG_DEBUG="..."
Any error message in the form of DR_ERROR name=value pair
#
#
RETURN VALUE DESCRIPTION:
0 : success
10 : Command not implemented for this resource.
Else DLPAR script/associated application preacquire failed.
#
##
process_preacquire()
{
 # Do all the necessary work prior to resource addition.
 case "$1" in
 "cpu")
 dbg "Resource : cpu"
 ;;
 "mem")
 dbg "Resource : mem"
 ;;
 *)
 echo "DR_ERROR=Script does not support Resource $1"
 ;;
 esac
 return 0
}

############################## process_undopreacquire #########################
#
NAME: process_undopreacquire()
#
DESCRIPTION: Process 'process_undopreacquire' command from drmgr
#
INPUT:
The various environment variables set by drmgr
resource name input variable
#
OUTPUT:
Any debug information using DR debug name=value pairs
such as DR_LOG_DEBUG="..."
 Appendix A. Dynamic logical partitioning program templates 253

Any error message in the form of DR_ERROR name=value pair
#
#
RETURN VALUE DESCRIPTION:
0 : success
10 : Command not implemented for this resource.
Else DLPAR script/associated application undopreacquire failed.
#
##
process_undopreacquire()
{

DLPAR operation has failed. So undo any activities done during
preacquire
case "$1" in

"cpu")
dbg "Resource : cpu"
;;
"mem")
dbg "Resource : mem"
;;
*)
echo "DR_ERROR=Script does not support Resource $1"
;;

esac
return 0

}
############################## process_postacquire #########################
#
NAME: process_postacquire()
#
DESCRIPTION: Process 'process_postacquire' command from drmgr
#
INPUT:
The various environment variables set by drmgr
resource name input variable
#
OUTPUT:
Any debug information using DR debug name=value pairs
such as DR_LOG_DEBUG="..."
Any error message in the form of DR_ERROR name=value pair
#
#
RETURN VALUE DESCRIPTION:
0 : success
10 : Command not implemented for this resource.
Else DLPAR script/associated application postacquire failed.
#
##
process_postacquire()
254 Partitioning Implementations for IBM Eserver p5 Servers

{
execute any actions required after the DLPAR add operation.
Egs: Increase the number of threads for the application
Increase memory areas reserved for application etc.
case "$1" in

"cpu")
dbg "Resource : cpu"
;;
"mem")
dbg "Resource : mem"
;;
*)
echo "DR_ERROR=Script does not support Resource $1"
;;

esac
return 0

}

###
MAIN SCRIPT STARTS HERE
###

script_file_name=`basename $0`
DBG_FILE_NAME=/tmp/${script_file_name}.dbg

date_and_time=`date`
dbg "------ DLPAR Script start at $date_and_time -------"

if [$# -eq 0]; then
Atleast the command must be part of the invocation
dbg "No command passed to the DLPAR script"
echo "DR_ERROR=Script Usage Error"
exit 1

fi

Note down the command
command=$1
ret_code=0

dbg "command issued: $1"
case "$1" in

scriptinfo)
process_scriptinfo
ret_code=$?
;;
register)
process_register
ret_code=$?
;;
 Appendix A. Dynamic logical partitioning program templates 255

usage)
process_usage $2
ret_code=$?
;;
checkrelease)
process_checkrelease $2
ret_code=$?
;;
prerelease)
process_prerelease $2
ret_code=$?
;;
postrelease)
process_postrelease $2
ret_code=$?
;;
undoprerelease)
process_undoprerelease $2
ret_code=$?
;;
checkacquire)
process_checkacquire $2
ret_code=$?
;;
preacquire)
process_preacquire $2
ret_code=$?
;;
undopreacquire)
process_undopreacquire $2
ret_code=$?
;;
postacquire)
process_postacquire $2
ret_code=$?
;;
*)
dbg "unknown command: $1 issued"
ret_code=10
;;
esac

dbg "SCRIPT exiting with return code : $ret_code"

dbg "................DLPAR Script end "

return $ret_code
256 Partitioning Implementations for IBM Eserver p5 Servers

DLPAR-aware application using a signal handler
If you can access the source code of your application, you can modify your
application by adding a signal handler that reacts to the SIGRECONFIG signal
so that the application is made DLPAR-aware. The SIGRECONFIG signal is
delivered to the application process upon DLPAR events.

How to compile and run the application
Before running this application, you must compile the C source code by
executing the following command1:

$ cc -o DLPAR_appl DLPAR_appl.c

In this command:

DLPAR_appl Is the application program name to be executed

DLPAR_appl.c Is the file name of C program source code

To run this application, enter DLPAR_appl at the command line prompt. To stop it,
type Control-C at the command line prompt where you have invoked it.

The application process sends debug information to the
/tmp/dr_api_template.C.dbg file. To display the debug information sent to the file,
enter the following:

$ tail -f /tmp/dr_api_template.C.dbg

Example: A-4 C language application with a signal handler

#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <errno.h>
#include <sys/dr.h>

/*===*/
/* Prototypes */
/*===*/
void perror_msg(char *func_name, int errno_old, const int line_num);
void dr_func(int arg);
int checkAcquire_mem(void);
int checkAcquire_cpu(void);
int preAcquire_mem(void);
int preAcquire_cpu(void);
int postAcquire_mem(void);
int postAcquire_cpu(void);

1 This example requires that the C compiler is installed and available on your AIX system.
 Appendix A. Dynamic logical partitioning program templates 257

int postAcquireError_mem(void);
int postAcquireError_cpu(void);
int checkRelease_mem(void);
int checkRelease_cpu(void);
int preRelease_mem(void);
int preRelease_cpu(void);
int postRelease_mem(void);
int postRelease_cpu(void);
int postReleaseError_mem(void);
int postReleaseError_cpu(void);

/*===*/
/* Globals */
/*===*/
extern int errno;
dr_info_t dr_info;
char msg_buf[BUFSIZ];
FILE * l_dbgFd;

typedef struct {
int (*mem_ptr)(void);
int (*cpu_ptr)(void);

} phases_t;

phases_t definedPhase[] = { /* #J */
{ &checkAcquire_mem, &checkAcquire_cpu },
{ &preAcquire_mem, &preAcquire_cpu },
{ &postAcquire_mem, &postAcquire_cpu },
{ &postAcquireError_mem, &postAcquireError_cpu },
{ &checkRelease_mem, &checkRelease_cpu },
{ &preRelease_mem, &preRelease_cpu },
{ &postRelease_mem, &postRelease_cpu },
{ &postReleaseError_mem, &postReleaseError_cpu }

};

#define CHECK_ACQUIRE &definedPhase[0];
#define PRE_ACQUIRE &definedPhase[1];
#define POST_ACQUIRE &definedPhase[2];
#define POST_ACQUIRE_ERROR &definedPhase[3];
#define CHECK_RELEASE &definedPhase[4];
#define PRE_RELEASE &definedPhase[5];
#define POST_RELEASE &definedPhase[6];
#define POST_RELEASE_ERROR &definedPhase[7];

#define DR_API_SUCCESS 0
#define DR_API_FAIL 1

/*===*/
/* Helper Functions */
258 Partitioning Implementations for IBM Eserver p5 Servers

/*===*/

/*===*/
/* Description: Handles any unexected errors */
/* */
/* Output: none */
/* Inputs: function name */
/* errno */
/* linenumber */
/*===*/
void
perror_msg(char *func_name, int errno_old, const int line_num)
{

sprintf(msg_buf
, “%s failed with errno = %d at line (%d).\n”
, func_name, errno_old, line_num);

perror(msg_buf);

return;
}

/*===*/
/* Description: Memory Check Acquire phase */
/* */
/* This function should ensure that a memory addition will not */
/* disrupt the application, before the actual DR event occurs. */
/* */
/* Output: integer value indicating status of DR operation */
/* Values: DR_API_SUCCESS */
/* Input: None */
/*===*/
int checkAcquire_mem(void)
{

int l_rc = DR_API_SUCCESS;

fprintf(l_dbgFd, “*****Entered CheckedAcquire_mem*****\n”);

/* Check for plock’d memory */
if (dr_info.plock) {

fprintf(l_dbgFd, “\t-- process has plock()’ed memory --\n”);
l_rc = DR_API_FAIL;

}
/* check for pinned memory */
if (dr_info.pshm) {

fprintf(l_dbgFd, “\t-- process has pinned shared memory --\n”);
l_rc = DR_API_FAIL;

}

return l_rc;
 Appendix A. Dynamic logical partitioning program templates 259

}

/*===*/
/* Description: CPU check acquire phase */
/* This function should ensure that a cpu addition will not */
/* disrupt the application, before the actual DR event takes place*/
/* */
/* Output: integer value indicating status of DR operation */
/* Values: DR_API_SUCCESS */
/* DR_API_FAIL */
/* Inputs: None */
/*===*/
int checkAcquire_cpu(void)
{

int l_rc = DR_API_SUCCESS;

fprintf(l_dbgFd, “*****Entered CheckedAcquire_cpu*****\n”);

/* check for processor dependencies */
if (dr_info.bindproc) {

fprintf(l_dbgFd, “\t-- process has bindprocessor() dependency --\n”);
l_rc = DR_API_FAIL;

}
if (dr_info.softpset) {

fprintf(l_dbgFd, “\t-- process has soft pset() dependency --\n”);
l_rc = DR_API_FAIL;

}
if (dr_info.hardpset) {

fprintf(l_dbgFd, “\t-- process has hard pset() dependency --\n”);
l_rc = DR_API_FAIL;

}

return l_rc;
}

/*===*/
/* Mem pre acquire phase */
/* */
/* Detailed Description: */
/* This function should ensure that the necessary steps are taken */
/* to prepare the application for a memory addition. If need be, */
/* the application should be halted. */
/* */
/* Output: integer value indicating status of DR operation */
/* Values: DR_API_SUCCESS */
/* DR_API_FAIL */
/* Inputs: None */
/*===*/
int preAcquire_mem(void)
260 Partitioning Implementations for IBM Eserver p5 Servers

{
int l_rc = DR_API_SUCCESS;

fprintf(l_dbgFd, “*****Entered PreeAcquire_mem*****\n”);

/* Perform actions here. */

return l_rc;
}

/*===*/
/* CPU pre acquire phase */
/* */
/* Detailed Description: */
/* This function should ensure that the necessary steps are taken */
/* to prepare the application for a cpu addition. If need be, */
/* the application should be stopped. */
/* */
/* Output: integer value indicating status of DR operation */
/* Values: DR_API_SUCCESS */
/* DR_API_FAIL */
/* Inputs: None */
/*===*/
int preAcquire_cpu(void)
{

int l_rc = DR_API_SUCCESS;

fprintf(l_dbgFd, “*****Entered PreAcquire_cpu*****\n”);

/* Perform actions here */

return l_rc;
}

/*===*/
/* Mem post acquire phase */
/* */
/* Detailed Description: */
/* After a memory addition has taken place, this function should */
/* perform any actions to clean up the DR operation and allow the */
/* application to use the new resources. If the application was */
/* stopped, it should be restarted here. */
/* */
/* Output: integer value indicating status of DR operation */
/* Values: DR_API_SUCCESS */
/* DR_API_FAIL */
/* Inputs: None */
/*===*/
int postAcquire_mem(void)
 Appendix A. Dynamic logical partitioning program templates 261

{
int l_rc = DR_API_SUCCESS;

fprintf(l_dbgFd, “*****Entered PostAcquire_mem*****\n”);

/* Perform actions here */

return l_rc;
}

/*===*/
/* CPU post acquire phase */
/* */
/* Detailed Description: */
/* After a cpu addition, this function allows the application */
/* access to the new resources. If the application was stopped, */
/* iy should be restarted here. */
/* */
/* Output: integer value indicating status of DR operation */
/* Values: DR_API_SUCCESS */
/* DR_API_FAIL */
/* Inputs: None */
/*===*/
int postAcquire_cpu(void)
{

int l_rc = DR_API_SUCCESS;

fprintf(l_dbgFd, “*****Entered PostAcquire_cpu*****\n”);

/* Perform actions here */

return l_rc;
}

/*===*/
/* Handles post acquire Error phase for mem */
/* */
/* Detailed Description: */
/* If an error should occur, this phase should handle undoing the */
/* preacquire actions taken for mem rmovals. */
/* */
/* Output: integer value indicating status of DR operation */
/* Values: DR_API_SUCCESS */
/* DR_API_FAIL */
/* Inputs: None */
/*===*/
int postAcquireError_mem(void)
{

int l_rc = DR_API_SUCCESS;
262 Partitioning Implementations for IBM Eserver p5 Servers

fprintf(l_dbgFd, “*****Entered PostAcquireError_mem*****\n”);

/* Perform actions here */

return l_rc;
}

/*===*/
/* Handles post acquire Error phase for cpu */
/* */
/* Detailed Description: */
/* If an error should occur, this phase should handle undoing the */
/* preacquire actions taken for cpu rmovals. */
/* */
/* Output: integer value indicating status of DR operation */
/* Values: DR_API_SUCCESS */
/* DR_API_FAIL */
/* Inputs: None */
/*===*/
int postAcquireError_cpu(void)
{

int l_rc = DR_API_SUCCESS;

fprintf(l_dbgFd, “*****Entered PostAcquireError_cpu*****\n”);

/* Perform actions here */

return l_rc;
}

/*===*/
/* Mem check release phase */
/* */
/* Detailed Description: */
/* This should check to make sure the application can tolerate a */
/* memory removal. If not, this should terminate the DR operation*/
/* */
/* Output: integer value indicating status of DR operation */
/* Values: DR_API_SUCCESS */
/* DR_API_FAIL */
/* Inputs: None */
/*===*/
int checkRelease_mem(void)
{

int l_rc = DR_API_SUCCESS;

 fprintf(l_dbgFd, “*****Entered CheckeRelease_mem*****\n”);
 Appendix A. Dynamic logical partitioning program templates 263

/* Check for memory issues */
if (dr_info.plock) {

fprintf(l_dbgFd, “\t-- process has plock()’ed memory --\n”);
l_rc = DR_API_FAIL;

}
if (dr_info.pshm) {

fprintf(l_dbgFd, “\t-- process has pinned shared memory --\n”);
l_rc = DR_API_FAIL;

}
return l_rc;

}

/*===*/
/* Handles post release Error phase for cpu */
/* */
/* Detailed Description: */
/* If an error should occur, this phase should handle undoing the */
/* prerelease actions taken for cpu rmovals. */
/* */
/* Output: integer value indicating status of DR operation */
/* Values: DR_API_SUCCESS */
/* l DR_API_FAIL */
/* Inputs: None */
/*===*/
int checkRelease_cpu(void)
{

int l_rc = DR_API_SUCCESS;

fprintf(l_dbgFd, “*****Entered CheckRelease_cpu*****\n”);

/* Check for processor dependencies */
if (dr_info.bindproc) {

fprintf(l_dbgFd, “\t-- process has bindprocessor() dependency --\n”);
l_rc = DR_API_FAIL;

}
if (dr_info.softpset) {

fprintf(l_dbgFd, “\t-- process has soft pset() dependency --\n”);
l_rc = DR_API_FAIL;

}
if (dr_info.hardpset) {

fprintf(l_dbgFd, “\t-- process has hard pset() dependency --\n”);
l_rc = DR_API_FAIL;

}
return l_rc;

}

/*===*/
/* Mem pre release phase */
264 Partitioning Implementations for IBM Eserver p5 Servers

/* */
/* Detailed Description: */
/* This function should prepare the application for memory */
/* resources being removed. */
/* */
/* Output: integer value indicating status of DR operation */
/* Values: DR_API_SUCCESS */
/* DR_API_FAIL */
/* Inputs: None */
/*===*/
int preRelease_mem(void)
{

int l_rc = DR_API_SUCCESS;

fprintf(l_dbgFd, “*****Entered PreRelease_mem*****\n”);

/* Perform actions here */

return l_rc;
}

/*===*/
/* Cpu pre release phase */
/* */
/* Detailed Description: */
/* This should prepare the application for cpu resources being */
/* removed. */
/* */
/* Output: integer value indicating status of DR operation */
/* Values: DR_API_SUCCESS */
/* DR_API_FAIL */
/* Inputs: None */
/*===*/
int preRelease_cpu(void)
{

int l_rc = DR_API_SUCCESS;

fprintf(l_dbgFd, “*****Entered PreRelease_cpu*****\n”);

/* Perform actions here */

return l_rc;
}

/*===*/
/* Mem post release phase */
/* */
/* Detailed Description: */
/* After the memory resources are removed, this function should */
 Appendix A. Dynamic logical partitioning program templates 265

/* take care of cleaning up any DR modifications made and allow */
/* the application to continue running. */
/* */
/* Output: integer value indicating status of DR operation */
/* Values: DR_API_SUCCESS */
/* DR_API_FAIL */
/* Inputs: None */
/*===*/
int postRelease_mem(void)
{

int l_rc = DR_API_SUCCESS;

fprintf(l_dbgFd, “*****Entered PostReleasee_mem*****\n”);

/* Perform actions here */

return l_rc;
}

/*===*/
/* Cpu post release phase */
/* */
/* Detailed Description: */
/* After cpu resources are removed, this function should handle */
/* the application so that it can continue after the DR operation.*/
/* */
/* Output: integer value indicating status of DR operation */
/* Values: DR_API_SUCCESS */
/* Values: DR_API_FAIL */
/* Inputs: None */
/*===*/
int postRelease_cpu(void)
{

int l_rc = DR_API_SUCCESS;

fprintf(l_dbgFd, “*****Entered PostRelease_cpu*****\n”);

/* Perform actions here */

return l_rc;
}

/*===*/
/* Handles post release Error phase for mem */
/* */
/* Detailed Description: */
/* If an error should occur, this phase should handle undoing the */
/* prerelease actions taken for mem rmovals. */
/* */
266 Partitioning Implementations for IBM Eserver p5 Servers

/* Output: integer value indicating status of DR operation */
/* Values: DR_API_SUCCESS */
/* DR_API_FAIL */
/* Inputs: None */
/*===*/
int postReleaseError_mem(void)
{

int l_rc = DR_API_SUCCESS;

fprintf(l_dbgFd, “*****Entered PostReleaseError_mem*****\n”);

/* Perform actions here */

return l_rc;
}

/*===*/
/* Handles post release Error phase for cpu */
/* */
/* Detailed Description: */
/* If an error should occur, this phase should handle undoing the */
/* prerelease actions taken for cpu rmovals. */
/* */
/* Output: integer value indicating status of DR operation */
/* Values: DR_API_SUCCESS */
/* DR_API_FAIL */
/* Inputs: None */
/*===*/
 int postReleaseError_cpu(void)
{

int l_rc = DR_API_SUCCESS;

fprintf(l_dbgFd, “*****Entered PostReleaseError_cpu*****\n”);

/* Perform actions here */

return l_rc;
}

/*===*/
/* Functions */
/*===*/

/*===*/
/* SIGRECONFIG signal handler */
/* */
/* Detailed Description: */
/* This will handle the signal, when a DR event occurs. The main */
/* information is communicated through a dr_info_t data structure.*/
 Appendix A. Dynamic logical partitioning program templates 267

/* This will take care of parsing the data structure and taking */
/* appropriate actions. */
/* */
/* Output: None */
/* Input: argument, not used for compatability */
/*===*/
void
dr_func(int arg)
{

int l_rc= DR_API_SUCCESS;
phases_t *l_currentPhase;

/* #1 create debug output file stream */
l_dbgFd = fopen(“/tmp/dr_api_template.C.dbg”, “a”); /* open for appending */
if (l_dbgFd == NULL) {

perror_msg(“NULL file descriptor”, errno, __LINE__);
exit(1);

}

fprintf (l_dbgFd, “---Start of Signal Handler---\n”);

l_rc = dr_reconfig(DR_QUERY, &dr_info); /* #C */
if (l_rc != 0) {

perror_msg(“dr_reconfig()”, errno, __LINE__);
exit(1);

}

/* #2 determine type of operation and phase. */

/* addition operations */
if (dr_info.add) { /* #D */

fprintf(l_dbgFd, “An add request\n “);

/* now determine which acquire phase we are in. */
if (dr_info.check) {

fprintf(l_dbgFd, “\t** check phase **\n”);
l_currentPhase = CHECK_ACQUIRE;

} else if (dr_info.pre) {
fprintf(l_dbgFd, “\t** pre phase **\n”);
l_currentPhase = PRE_ACQUIRE;

} else if (dr_info.post) {
fprintf(l_dbgFd, “\t** post phase **\n”);
l_currentPhase = POST_ACQUIRE;

} else if (dr_info.posterror) {
fprintf(l_dbgFd, “\t** error phase **\n”);
l_currentPhase = POST_ACQUIRE_ERROR;

}
}
/* remove operations. */
268 Partitioning Implementations for IBM Eserver p5 Servers

if (dr_info.rem) { /* #E */
fprintf(l_dbgFd, “A remove request\n “);

/* now determine which remove phase we are in. */
if (dr_info.check) {

fprintf(l_dbgFd, “\t** check phase **\n”);
l_currentPhase = CHECK_RELEASE;

} else if (dr_info.pre) {
fprintf(l_dbgFd, “\t** pre phase **\n”);
l_currentPhase = PRE_RELEASE;

} else if (dr_info.post) {
fprintf(l_dbgFd, “\t** post phase **\n”);

l_currentPhase = POST_RELEASE;
} else if (dr_info.posterror) {

fprintf(l_dbgFd, “\t** error phase **\n”);
l_currentPhase = POST_RELEASE_ERROR;

}
}

/* #3 invoke the command associated with the resource. */

/* cpu resource. */
if (dr_info.cpu) { /* #F */

fprintf(l_dbgFd, “Resource is CPU .\n”);
fprintf(l_dbgFd, “\tlogical CPU ID = %d\n\tBind CPU ID = %d\n”

, dr_info.lcpu, dr_info.bcpu);

/* invoke the command to process a cpu DR event */
l_rc = l_currentPhase->cpu_ptr(); /* #H */

/* memory resource. */
} else if (dr_info.mem) { /* #G */

fprintf(l_dbgFd, “Resource is Memory.\n”);
fprintf(l_dbgFd, “\trequested memory size (in bytes) = %lld\n”

, dr_info.req_memsz_change);
fprintf(l_dbgFd, “\tsystem memory size = %lld\n”, dr_info.sys_memsz);
fprintf(l_dbgFd, “\tnumber of free frames in system = %lld\n”

, dr_info.sys_free_frames);
fprintf(l_dbgFd, “\tnumber of pinnable frams in system = %lld\n”

, dr_info.sys_pinnable_frames);
fprintf(l_dbgFd, “\ttotal number of frames in system = %lld\n”

, dr_info.sys_total_frames);

/* invoke the command to process a mem DR event */
l_rc = l_currentPhase->mem_ptr(); /* #I */

/* unknown resource. */
} else {

fprintf(l_dbgFd, “Unknown resource type.\n”);
 Appendix A. Dynamic logical partitioning program templates 269

}

/* Check the return code of the DLPAR operation handler. */
if (l_rc == DR_API_FAIL) {

fprintf(l_dbgFd, “DLPAR OPERATION failed!\n”);

/* Let the DR manager know we have to fail the DLPAR operation. */
l_rc = dr_reconfig(DR_EVENT_FAIL, &dr_info);
if (l_rc != 0) {

perror_msg(“dr_reconfig()”, errno, __LINE__);
exit(1);

}
}

fprintf(l_dbgFd, “---end of signal handler.---\n\n”);
fclose(l_dbgFd);

}

/*===*/
/* Main application */
/*===*/

/*===*/
/* Some Applicaiton that is registered for DR signals */
/* */
/* Detailed Description: */
/* This is a sample program that registers the signal handler */
/* function that will response to the SIGRECONFIG signal. */
/* */
/* Output: None */
/* Inputs: None */
/*===*/
int
main(int argc, char *argv[], char *envp[])
{

int rc;
struct sigaction sigact_save, sigact;

/* Start: register this application for a DR signal. */
if ((rc = sigemptyset(&sigact.sa_mask)) != 0) {

perror_msg(“sigemptyset()”, errno, __LINE__);
exit(1);

}
if ((rc = sigemptyset(&sigact_save.sa_mask)) != 0) {

perror_msg(“sigemptyset()”, errno, __LINE__);
exit(1);

}

/* register the signal handler function dr_func. */
270 Partitioning Implementations for IBM Eserver p5 Servers

sigact.sa_handler = dr_func;
sigact.sa_flags |= SA_SIGINFO;

if ((rc = sigaction(SIGRECONFIG, &sigact, &sigact_save)) != 0) { /* #A */
perror_msg(“sigaction()”, errno, __LINE__);
exit(1);

}
/* Finish: registered the signal handler. */

while (1) { /* #B */
;
/* your applicaiton logic goes here. */

}

exit(0);

}

 Appendix A. Dynamic logical partitioning program templates 271

272 Partitioning Implementations for IBM Eserver p5 Servers

Appendix B. Dynamic logical partitioning
output samples

This appendix provides sample outputs from several debug facilities to be used
with dynamic logical partitioning (DLPAR) events. It describes three debug
facilities:

� CPU addition
� Memory addition
� Using the AIX error log facility

You can use these facilities to analyze the problem if a DLPAR operation request
fails. When writing a DLPAR script or DLPAR-aware application, if the problem
persists, then testing the application in a test partition can also help isolate the
problem.

By familiarizing yourself with these facilities, you can quickly determine the root
cause of a DLPAR operation failure.

B

© Copyright IBM Corp. 2003, 2004, 2005. All rights reserved. 273

Using the syslog facility
The syslog facility records the activity of DLPAR operations when it is configured,
as explained in “The syslog facility” on page 207.

CPU addition
Example B-1 shows a sample syslog output when a CPU addition DLPAR
operation is successfully performed.

Example: B-1 Sample syslog output for a CPU addition request

Jul 27 16:49:51 thimblelp4 syslogd: restart
Jul 27 16:50:25 thimblelp4 DRMGR: ==== Start: CPU addition operation ====
Jul 27 16:50:25 thimblelp4 DRMGR: Cpu: 0x1002 has been unisolated and allocated
Jul 27 16:50:25 thimblelp4 DRMGR: Starting CHECK phase for cpu Add operation.
Jul 27 16:50:25 thimblelp4 DRMGR: Phase CHECK started for scripts,kernel extensions and
applications.
Jul 27 16:50:25 thimblelp4 DRMGR: Starting CHECK phase for Scripts.
Jul 27 16:50:25 thimblelp4 DRMGR: Completed the phase for Scripts.
Jul 27 16:50:26 thimblelp4 DRMGR: Starting the phase for kernel extensions.
Jul 27 16:50:26 thimblelp4 DRMGR: Completed the phase for kernel extensions.
Jul 27 16:50:26 thimblelp4 DRMGR: Starting the phase for application signal handlers.
Jul 27 16:50:26 thimblelp4 DRMGR: Completed the phase for kernel extensions.
Jul 27 16:50:26 thimblelp4 DRMGR: Starting PRE phase.
Jul 27 16:50:26 thimblelp4 DRMGR: Phase PRE started for scripts,kernel extensions and
applications.
Jul 27 16:50:26 thimblelp4 DRMGR: Starting PRE phase for scripts.
Jul 27 16:50:26 thimblelp4 DRMGR: Completed the phase for Scripts.
Jul 27 16:50:26 thimblelp4 DRMGR: Starting the phase for application signal handlers.
Jul 27 16:50:26 thimblelp4 DRMGR: Completed the phase for kernel extensions.
Jul 27 16:50:27 thimblelp4 DRMGR: kernel operations complete
Jul 27 16:50:27 thimblelp4 DRMGR: firmware operations complete
Jul 27 16:50:27 thimblelp4 DRMGR: ODM update complete
Jul 27 16:50:27 thimblelp4 DRMGR: Starting POST phase.
Jul 27 16:50:27 thimblelp4 DRMGR: Phase POST started for scripts,kernel extensions and
applications.
Jul 27 16:50:27 thimblelp4 DRMGR: Starting the phase for application signal handlers.
Jul 27 16:50:27 thimblelp4 DRMGR: Completed the phase for kernel extensions.
Jul 27 16:50:27 thimblelp4 DRMGR: Starting POST phase for scripts.
Jul 27 16:50:27 thimblelp4 DRMGR: Completed the phase for Scripts.
Jul 27 16:50:27 thimblelp4 DRMGR: ~~~~ End: CPU addition operation ~~~~
274 Partitioning Implementations for IBM Eserver p5 Servers

CPU removal
Example B-2 shows a sample syslog output when a CPU removal DLPAR
operation is successfully performed.

Example: B-2 Sample syslog output for a CPU removal request

Jul 27 16:47:58 thimblelp4 syslogd: restart
Jul 27 16:48:08 thimblelp4 DRMGR: ==== Start: CPU Removal operation ====
Jul 27 16:48:08 thimblelp4 DRMGR: Starting CHECK phase for cpu Remove operation.
Jul 27 16:48:08 thimblelp4 DRMGR: Phase CHECK started for scripts,kernel extensions and
applications.
Jul 27 16:48:08 thimblelp4 DRMGR: Starting CHECK phase for Scripts.
Jul 27 16:48:08 thimblelp4 DRMGR: Completed the phase for Scripts.
Jul 27 16:48:08 thimblelp4 DRMGR: Starting the phase for kernel extensions.
Jul 27 16:48:08 thimblelp4 DRMGR: Completed the phase for kernel extensions.
Jul 27 16:48:08 thimblelp4 DRMGR: Starting the phase for application signal handlers.
Jul 27 16:48:08 thimblelp4 DRMGR: Completed the phase for kernel extensions.
Jul 27 16:48:08 thimblelp4 DRMGR: Starting PRE phase.
Jul 27 16:48:08 thimblelp4 DRMGR: Phase PRE started for scripts,kernel extensions and
applications.
Jul 27 16:48:08 thimblelp4 DRMGR: Starting PRE phase for scripts.
Jul 27 16:48:08 thimblelp4 DRMGR: Completed the phase for Scripts.
Jul 27 16:48:08 thimblelp4 DRMGR: Starting the phase for application signal handlers.
Jul 27 16:48:08 thimblelp4 DRMGR: Completed the phase for kernel extensions.
Jul 27 16:48:08 thimblelp4 DRMGR: kernel operations complete
Jul 27 16:48:08 thimblelp4 DRMGR: Cpu: 0x1002 has been isolated and unallocated
Jul 27 16:48:08 thimblelp4 DRMGR: Firmware operations complete
Jul 27 16:48:09 thimblelp4 DRMGR: ODM update complete
Jul 27 16:48:09 thimblelp4 DRMGR: Starting POST phase.
Jul 27 16:48:09 thimblelp4 DRMGR: Phase POST started for scripts,kernel extensions and
applications.
Jul 27 16:48:09 thimblelp4 DRMGR: Starting the phase for application signal handlers.
Jul 27 16:48:09 thimblelp4 DRMGR: Completed the phase for kernel extensions.
Jul 27 16:48:09 thimblelp4 DRMGR: Starting POST phase for scripts.
Jul 27 16:48:09 thimblelp4 DRMGR: Completed the phase for Scripts.
Jul 27 16:48:09 thimblelp4 DRMGR: ~~~~ End: CPU Removal operation ~~~~
 Appendix B. Dynamic logical partitioning output samples 275

Memory addition
Example B-3 shows a sample syslog output when a memory addition DLPAR
operation is successfully performed.

Example: B-3 Sample syslog output for a memory addition request

Jul 27 16:49:51 thimblelp4 syslogd: restart
Jul 27 16:51:34 thimblelp4 DRMGR: ==== Start: MEM Addition operation ====
Jul 27 16:51:34 thimblelp4 DRMGR: Configured LMB addr: 0x0
Jul 27 16:51:34 thimblelp4 DRMGR: Total Megabytes to add is 0
Jul 27 16:51:34 thimblelp4 DRMGR: Starting CHECK phase for mem Add operation.
Jul 27 16:51:34 thimblelp4 DRMGR: Phase CHECK started for scripts,kernel extensions and
applications.
Jul 27 16:51:34 thimblelp4 DRMGR: Starting CHECK phase for Scripts.
Jul 27 16:51:34 thimblelp4 DRMGR: Completed the phase for Scripts.
Jul 27 16:51:34 thimblelp4 DRMGR: Starting the phase for kernel extensions.
Jul 27 16:51:34 thimblelp4 DRMGR: Completed the phase for kernel extensions.
Jul 27 16:51:34 thimblelp4 DRMGR: Starting the phase for application signal handlers.
Jul 27 16:51:34 thimblelp4 DRMGR: Completed the phase for kernel extensions.
Jul 27 16:51:34 thimblelp4 DRMGR: Starting PRE phase.
Jul 27 16:51:34 thimblelp4 DRMGR: Phase PRE started for scripts,kernel extensions and
applications.
Jul 27 16:51:34 thimblelp4 DRMGR: Starting PRE phase for scripts.
Jul 27 16:51:34 thimblelp4 DRMGR: Completed the phase for Scripts.
Jul 27 16:51:34 thimblelp4 DRMGR: Starting the phase for application signal handlers.
Jul 27 16:51:34 thimblelp4 DRMGR: Completed the phase for kernel extensions.
Jul 27 16:51:35 thimblelp4 DRMGR: ODM operations complete
Jul 27 16:51:35 thimblelp4 DRMGR: Starting POST phase.
Jul 27 16:51:35 thimblelp4 DRMGR: Phase POST started for scripts,kernel extensions and
applications.
Jul 27 16:51:35 thimblelp4 DRMGR: Starting the phase for application signal handlers.
Jul 27 16:51:35 thimblelp4 DRMGR: Completed the phase for kernel extensions.
Jul 27 16:51:35 thimblelp4 DRMGR: Starting POST phase for scripts.
Jul 27 16:51:35 thimblelp4 DRMGR: Completed the phase for Scripts.
Jul 27 16:51:35 thimblelp4 DRMGR: ~~~~ End: DR operation ~~~~
276 Partitioning Implementations for IBM Eserver p5 Servers

Memory removal
Example B-4 shows a sample syslog output when a memory removal DLPAR
operation is successfully performed.

Example: B-4 Sample syslog output for a memory removal request

Jul 27 16:49:51 thimblelp4 syslogd: restart
Jul 27 16:51:07 thimblelp4 DRMGR: ==== Start: MEM Removal operation ====
Jul 27 16:51:07 thimblelp4 DRMGR: Starting CHECK phase for mem Remove operation.
Jul 27 16:51:07 thimblelp4 DRMGR: Phase CHECK started for scripts,kernel extensions and
applications.
Jul 27 16:51:07 thimblelp4 DRMGR: Starting CHECK phase for Scripts.
Jul 27 16:51:07 thimblelp4 DRMGR: Completed the phase for Scripts.
Jul 27 16:51:07 thimblelp4 DRMGR: Starting the phase for kernel extensions.
Jul 27 16:51:07 thimblelp4 DRMGR: Completed the phase for kernel extensions.
Jul 27 16:51:07 thimblelp4 DRMGR: Starting the phase for application signal handlers.
Jul 27 16:51:07 thimblelp4 DRMGR: Completed the phase for kernel extensions.
Jul 27 16:51:07 thimblelp4 DRMGR: Starting PRE phase.
Jul 27 16:51:07 thimblelp4 DRMGR: Phase PRE started for scripts,kernel extensions and
applications.
Jul 27 16:51:07 thimblelp4 DRMGR: Starting PRE phase for scripts.
Jul 27 16:51:07 thimblelp4 DRMGR: Completed the phase for Scripts.
Jul 27 16:51:07 thimblelp4 DRMGR: Starting the phase for application signal handlers.
Jul 27 16:51:07 thimblelp4 DRMGR: Completed the phase for kernel extensions.
Jul 27 16:51:08 thimblelp4 DRMGR: LMB index:0xf has been sucessfully removed
Jul 27 16:51:08 thimblelp4 DRMGR: Firmware operations complete
Jul 27 16:51:08 thimblelp4 DRMGR: ODM operations complete
Jul 27 16:51:08 thimblelp4 DRMGR: Starting POST phase.
Jul 27 16:51:08 thimblelp4 DRMGR: Phase POST started for scripts,kernel extensions and
applications.
Jul 27 16:51:08 thimblelp4 DRMGR: Starting the phase for application signal handlers.
Jul 27 16:51:08 thimblelp4 DRMGR: Completed the phase for kernel extensions.
Jul 27 16:51:08 thimblelp4 DRMGR: Starting POST phase for scripts.
Jul 27 16:51:08 thimblelp4 DRMGR: Completed the phase for Scripts.
Jul 27 16:51:08 thimblelp4 DRMGR: ~~~~ End: DR operation ~~~~
 Appendix B. Dynamic logical partitioning output samples 277

Using the AIX system trace facility
The AIX system trace facility records the detailed activity of DLPAR operations
when it is configured, as explained in “AIX system trace facility” on page 208.

CPU addition trace output
Example B-5 shows a sample system trace output when a CPU addition DLPAR
operation is successfully performed.

Example: B-5 Sample system trace output for a CPU addition request

ID ELAPSED_SEC DELTA_MSEC APPL SYSCALL KERNEL INTERRUPT

001 0.000000000 0.000000 TRACE ON channel 0
 Mon Sep 23 11:40:52 2002
38F 73.305720033 73305.720033 DYNAMIC RECONFIG: Dr_register: DR
Operation: 0000000000000008 FORCE Option: 0000
38F 73.305723429 0.003396 DYNAMIC RECONFIG: get_user_data: DR
Operation: 0000000000000008 input data: 000000002FF21EF8
38F 73.305725392 0.001963 DYNAMIC RECONFIG: Addcpu_validate: DR
Phase: 0000 Input: F00000002FF3A4D8
38F 73.305727203 0.001811 DYNAMIC RECONFIG: Register_dr_event: DR
Operation: 40000000
38F 73.305729377 0.002174 DYNAMIC RECONFIG: dr_callout: DR Callout
index: 0003 DR Phase: 0001
38F 73.305729602 0.000225 DYNAMIC RECONFIG: Addcpu_validate: DR
Phase: 0001 Input: 0000000000FB73C0
38F 73.306332726 0.603124 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0002
Flags: 0001 Timeout in secs: 0000 Input: 0000000000000000
38F 73.306334115 0.001389 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0002 Flags: 0001
38F 73.306334355 0.000240 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0001 Requested Phase: 0002 Flags: 0001
38F 73.306336885 0.002530 DYNAMIC RECONFIG: Run_notify: Perform DR
Check/Pre/Post/Posterror Phases
38F 73.306337096 0.000211 DYNAMIC RECONFIG: dr_callout: DR Callout
index: 0003 DR Phase: 0002
38F 73.306538971 0.201875 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0002
Flags: 0004 Timeout in secs: 003C Input: 0000000000000000
38F 73.306539560 0.000589 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0002 Flags: 0004
38F 73.306539800 0.000240 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0002 Requested Phase: 0002 Flags: 0004

Note: The trace hook ID for DLPAR operations is 38F.
278 Partitioning Implementations for IBM Eserver p5 Servers

38F 73.306545297 0.005497 DYNAMIC RECONFIG: Run_notify: Perform DR
Check/Pre/Post/Posterror Phases
38F 73.306546257 0.000960 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
action: 0001
38F 73.308395576 1.849319 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
Number of reconfig handlers waiting for: 0000
38F 73.308396070 0.000494 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
All reconfig handlers completed, Status: 0000
38F 73.308536626 0.140556 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0002
Flags: 0002 Timeout in secs: 0000 Input: 0000000000000000
38F 73.308537287 0.000661 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0002 Flags: 0002
38F 73.308537527 0.000240 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0002 Requested Phase: 0002 Flags: 0002
38F 73.308538189 0.000662 DYNAMIC RECONFIG: Run_notify: Perform DR
Check/Pre/Post/Posterror Phases
38F 73.308538414 0.000225 DYNAMIC RECONFIG: dr_send_signal: Posting
signal (003A) to all processes catching
38F 73.308730538 0.192124 DYNAMIC RECONFIG: Dr_reconfig: Flags: 0001
DR Info: 000000002FF22610 DR Operation: 0008 DR Phase: 0002
38F 73.308737235 0.006697 DYNAMIC RECONFIG: dr_send_signal: Number of
processes posted: 0001
38F 83.309400202 10000.662967 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0003
Flags: 0001 Timeout in secs: 0000 Input: 0000000000000000
38F 83.309402034 0.001832 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0003 Flags: 0001
38F 83.309402260 0.000226 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0002 Requested Phase: 0003 Flags: 0001
38F 83.309404165 0.001905 DYNAMIC RECONFIG: Run_notify: Perform DR
Check/Pre/Post/Posterror Phases
38F 83.309404703 0.000538 DYNAMIC RECONFIG: dr_callout: DR Callout
index: 0003 DR Phase: 0003
38F 83.309406957 0.002254 DYNAMIC RECONFIG: Addcpu_pre: Logical CPU
coming online: 0002
38F 83.309607727 0.200770 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0003
Flags: 0002 Timeout in secs: 0000 Input: 0000000000000000
38F 83.309608258 0.000531 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0003 Flags: 0002
38F 83.309608483 0.000225 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0003 Requested Phase: 0003 Flags: 0002
38F 83.309608825 0.000342 DYNAMIC RECONFIG: Run_notify: Perform DR
Check/Pre/Post/Posterror Phases
38F 83.309610301 0.001476 DYNAMIC RECONFIG: dr_send_signal: Posting
signal (003A) to all processes catching
38F 83.309738306 0.128005 DYNAMIC RECONFIG: Dr_reconfig: Flags: 0001
DR Info: 000000002FF22610 DR Operation: 0008 DR Phase: 0003
38F 83.309751780 0.013474 DYNAMIC RECONFIG: dr_send_signal: Number of
processes posted: 0001
 Appendix B. Dynamic logical partitioning output samples 279

38F 93.310361840 10000.610060 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0005
Flags: 0001 Timeout in secs: 0000 Input: 0000000000000000
38F 93.310363963 0.002123 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0005 Flags: 0001
38F 93.310364254 0.000291 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0003 Requested Phase: 0005 Flags: 0001
38F 93.310365163 0.000909 DYNAMIC RECONFIG: Kernel_notify: Perform DR
Kernel Phase
38F 93.310365454 0.000291 DYNAMIC RECONFIG: dr_callout: DR Callout
index: 0003 DR Phase: 0005
38F 93.310367432 0.001978 DYNAMIC RECONFIG: Addcpu_doit: Logical CPU:
0002 Physical ID: 0015
38F 93.310371860 0.004428 DYNAMIC RECONFIG: Register_dr_event: DR
Operation: 80000008
38F 93.310372747 0.000887 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
action: 0002
38F 93.310394779 0.022032 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
Number of reconfig handlers waiting for: 0000
38F 93.310395245 0.000466 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
All reconfig handlers completed, Status: 0000
38F 93.310416484 0.021239 DYNAMIC RECONFIG: Call MPC freeze handler
01
38F 93.310445504 0.029020 DYNAMIC RECONFIG: Start_bs_proc: Starting a
new cpu: Physical ID: 0015 Gserver: 00000000000000FF Server: 0000000000000015
38F 93.991532779 681.087275 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
action: 0004
38F 93.991536952 0.004173 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
Number of reconfig handlers waiting for: 0000
38F 93.991537709 0.000757 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
All reconfig handlers completed, Status: 0000
38F 93.991556098 0.018389 DYNAMIC RECONFIG: Unregister_dr_event: DR
Operation: 80000008
38F 94.015313247 23.757149 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0006
Flags: 0001 Timeout in secs: 0000 Input: 0000000000000000
38F 94.015314549 0.001302 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0006 Flags: 0001
38F 94.015314905 0.000356 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0005 Requested Phase: 0006 Flags: 0001
38F 94.015315930 0.001025 DYNAMIC RECONFIG: Run_notify: Perform DR
Check/Pre/Post/Posterror Phases
38F 94.015316366 0.000436 DYNAMIC RECONFIG: dr_callout: DR Callout
index: 0003 DR Phase: 0006
38F 94.015382834 0.066468 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0006
Flags: 0002 Timeout in secs: 0000 Input: 0000000000000000
38F 94.015383336 0.000502 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0006 Flags: 0002
38F 94.015383561 0.000225 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0006 Requested Phase: 0006 Flags: 0002
280 Partitioning Implementations for IBM Eserver p5 Servers

38F 94.015383903 0.000342 DYNAMIC RECONFIG: Run_notify: Perform DR
Check/Pre/Post/Posterror Phases
38F 94.015384768 0.000865 DYNAMIC RECONFIG: dr_send_signal: Posting
signal (003A) to all processes catching
38F 94.015521608 0.136840 DYNAMIC RECONFIG: Dr_reconfig: Flags: 0001
DR Info: 000000002FF22610 DR Operation: 0008 DR Phase: 0006
38F 94.015556140 0.034532 DYNAMIC RECONFIG: dr_send_signal: Number of
processes posted: 0001
38F 104.016466326 10000.910186 DYNAMIC RECONFIG: Dr_unregister:
Unregistering DR operation
38F 104.016468027 0.001701 DYNAMIC RECONFIG: dr_callout: DR Callout
index: 0003 DR Phase: 0009
38F 104.016468507 0.000480 DYNAMIC RECONFIG: Clearing DR Kernel
Data...
38F 104.016470936 0.002429 DYNAMIC RECONFIG: Unregister_dr_event: DR
Operation: 40000000
002 322.179517597 218163.046661 TRACE OFF channel 0000 Mon Sep 23 11:46:14
2002

CPU removal trace output
Example B-6 shows a sample system trace output when a CPU removal DLPAR
operation is successfully performed.

Example: B-6 Sample system trace output for a CPU removal request

D ELAPSED_SEC DELTA_MSEC APPL SYSCALL KERNEL INTERRUPT

001 0.000000000 0.000000 TRACE ON channel 0
 Sat Jul 27 17:22:09 2002
38F 8.210889322 8210.889322 DYNAMIC RECONFIG: Dr_register: DR
Operation: 0000000000000004 FORCE Option: 0000
38F 8.210890417 0.001095 DYNAMIC RECONFIG: get_user_data: DR
Operation: 0000000000000004 input data: 000000002FF22AF0
38F 8.210892128 0.001711 DYNAMIC RECONFIG: Rmcpu_validate: DR Phase:
0000 CPU id: 0001 CPU Type: 0002
38F 8.210892971 0.000843 DYNAMIC RECONFIG: Register_dr_event: DR
Operation: 40000000
38F 8.210896029 0.003058 DYNAMIC RECONFIG: dr_callout: DR Callout
index: 0002 DR Phase: 0001
38F 8.210896238 0.000209 DYNAMIC RECONFIG: Rmcpu_validate: DR Phase:
0001 CPU id: 0001 CPU Type: 0002
38F 8.212724871 1.828633 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0002
Flags: 0001 Timeout in secs: 0000 Input: 0000000000000000
38F 8.212725498 0.000627 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0002 Flags: 0001
38F 8.212726175 0.000677 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0001 Requested Phase: 0002 Flags: 0001
 Appendix B. Dynamic logical partitioning output samples 281

38F 8.212728618 0.002443 DYNAMIC RECONFIG: Run_notify: Perform DR
Check/Pre/Post/Posterror Phases
38F 8.212728821 0.000203 DYNAMIC RECONFIG: dr_callout: DR Callout
index: 0002 DR Phase: 0002
38F 8.212836663 0.107842 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0002
Flags: 0004 Timeout in secs: 003C Input: 0000000000000000
38F 8.212837119 0.000456 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0002 Flags: 0004
38F 8.212837322 0.000203 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0002 Requested Phase: 0002 Flags: 0004
38F 8.212842109 0.004787 DYNAMIC RECONFIG: Run_notify: Perform DR
Check/Pre/Post/Posterror Phases
38F 8.212842392 0.000283 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
action: 0010
38F 8.212843444 0.001052 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
Number of reconfig handlers waiting for: 0000
38F 8.212844231 0.000787 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
All reconfig handlers completed, Status: 0000
38F 8.212914941 0.070710 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0002
Flags: 0002 Timeout in secs: 0000 Input: 0000000000000000
38F 8.212915409 0.000468 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0002 Flags: 0002
38F 8.212915605 0.000196 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0002 Requested Phase: 0002 Flags: 0002
38F 8.212915858 0.000253 DYNAMIC RECONFIG: Run_notify: Perform DR
Check/Pre/Post/Posterror Phases
38F 8.212916116 0.000258 DYNAMIC RECONFIG: dr_send_signal: Posting
signal (003A) to all processes catching
38F 8.212995181 0.079065 DYNAMIC RECONFIG: dr_send_signal: Number of
processes posted: 0000
38F 8.213781181 0.786000 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0003
Flags: 0001 Timeout in secs: 0000 Input: 0000000000000000
38F 8.213781637 0.000456 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0003 Flags: 0001
38F 8.213781858 0.000221 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0002 Requested Phase: 0003 Flags: 0001
38F 8.213782153 0.000295 DYNAMIC RECONFIG: Run_notify: Perform DR
Check/Pre/Post/Posterror Phases
38F 8.213782332 0.000179 DYNAMIC RECONFIG: dr_callout: DR Callout
index: 0002 DR Phase: 0003
38F 8.213783243 0.000911 DYNAMIC RECONFIG: Rmcpu_pre: DR Phase: 0003
Logical CPU id: 0001
38F 8.213980321 0.197078 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0003
Flags: 0002 Timeout in secs: 0000 Input: 0000000000000000
38F 8.213980795 0.000474 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0003 Flags: 0002
38F 8.213980992 0.000197 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0003 Requested Phase: 0003 Flags: 0002
282 Partitioning Implementations for IBM Eserver p5 Servers

38F 8.213981262 0.000270 DYNAMIC RECONFIG: Run_notify: Perform DR
Check/Pre/Post/Posterror Phases
38F 8.213981515 0.000253 DYNAMIC RECONFIG: dr_send_signal: Posting
signal (003A) to all processes catching
38F 8.214019626 0.038111 DYNAMIC RECONFIG: dr_send_signal: Number of
processes posted: 0000
38F 8.214186223 0.166597 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0005
Flags: 0001 Timeout in secs: 0000 Input: 0000000000000000
38F 8.214186709 0.000486 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0005 Flags: 0001
38F 8.214187109 0.000400 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0003 Requested Phase: 0005 Flags: 0001
38F 8.214187429 0.000320 DYNAMIC RECONFIG: Kernel_notify: Perform DR
Kernel Phase
38F 8.214187601 0.000172 DYNAMIC RECONFIG: dr_callout: DR Callout
index: 0002 DR Phase: 0005
38F 8.214189318 0.001717 DYNAMIC RECONFIG: Rmcpu_doit: DR Phase:
0005 CPU Guard Operation: 0000
38F 8.214192929 0.003611 DYNAMIC RECONFIG: Register_dr_event: DR
Operation: 80000004
38F 8.214193618 0.000689 DYNAMIC RECONFIG: Rmcpu_doit: Controlling
LCPU: 0000 Highest Bind cpuid: 0001
38F 8.214213369 0.019751 DYNAMIC RECONFIG: Rmcpu_doit: Invoke HA
Handlers...
38F 8.218559640 4.346271 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
action: 0020
38F 8.218561874 0.002234 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
Number of reconfig handlers waiting for: 0000
38F 8.218562286 0.000412 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
All reconfig handlers completed, Status: 0000
38F 8.218562489 0.000203 DYNAMIC RECONFIG: Migrating all
PROCESSOR_CLASS_ANY work from the cpu being removed
38F 8.218778851 0.216362 DYNAMIC RECONFIG: Initializing/Rerouting
the Interrupts... From Physical CPU: 0013 To Physical CPU: 0011 Phase: 0001 Flags: 0001
38F 8.218966349 0.187498 DYNAMIC RECONFIG: Rmcpu_doit: Disable
Decrementer...
38F 8.218980956 0.014607 DYNAMIC RECONFIG: Call MPC remove handler
01
38F 8.218982174 0.001218 DYNAMIC RECONFIG: Initializing/Rerouting
the Interrupts... From Physical CPU: 0013 To Physical CPU: 0011 Phase: 0002 Flags: 0002
38F 8.218982470 0.000296 DYNAMIC RECONFIG: Rmcpu_doit: Enable
Decrementer...
38F 8.225044879 6.062409 DYNAMIC RECONFIG: DR: Stopping logical CPU:
0001
38F 8.226081506 1.036627 DYNAMIC RECONFIG: Updating System
Topology...
38F 8.226114591 0.033085 DYNAMIC RECONFIG: Move_threads: Moving
threads from logical cpu 0001 to 0000
 Appendix B. Dynamic logical partitioning output samples 283

38F 8.226234647 0.120056 DYNAMIC RECONFIG: migrate_watchdogs: From
LCPU: 0001 To LCPU: 0000
38F 8.226243790 0.009143 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
action: 0040
38F 8.226244399 0.000609 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
Number of reconfig handlers waiting for: 0000
38F 8.226244916 0.000517 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
All reconfig handlers completed, Status: 0000
38F 8.226245137 0.000221 DYNAMIC RECONFIG: Rmcpu_doit: DR CPU
Removal: CPU Guard: 0000 Status: 0000
38F 8.226245839 0.000702 DYNAMIC RECONFIG: Unregister_dr_event: DR
Operation: 80000004
38F 8.407728629 181.482790 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0006
Flags: 0001 Timeout in secs: 0000 Input: 0000000000000000
38F 8.407729373 0.000744 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0006 Flags: 0001
38F 8.407729650 0.000277 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0005 Requested Phase: 0006 Flags: 0001
38F 8.407731693 0.002043 DYNAMIC RECONFIG: Run_notify: Perform DR
Check/Pre/Post/Posterror Phases
38F 8.407731878 0.000185 DYNAMIC RECONFIG: dr_callout: DR Callout
index: 0002 DR Phase: 0006
38F 8.407907882 0.176004 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0006
Flags: 0002 Timeout in secs: 0000 Input: 0000000000000000
38F 8.407908350 0.000468 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0006 Flags: 0002
38F 8.407908553 0.000203 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0006 Requested Phase: 0006 Flags: 0002
38F 8.407908848 0.000295 DYNAMIC RECONFIG: Run_notify: Perform DR
Check/Pre/Post/Posterror Phases
38F 8.407909297 0.000449 DYNAMIC RECONFIG: dr_send_signal: Posting
signal (003A) to all processes catching
38F 8.407989156 0.079859 DYNAMIC RECONFIG: dr_send_signal: Number of
processes posted: 0000
38F 8.409821659 1.832503 DYNAMIC RECONFIG: Dr_unregister:
Unregistering DR operation
38F 8.409823339 0.001680 DYNAMIC RECONFIG: dr_callout: DR Callout
index: 0002 DR Phase: 0009
38F 8.409823727 0.000388 DYNAMIC RECONFIG: Clearing DR Kernel
Data...
38F 8.409826052 0.002325 DYNAMIC RECONFIG: Unregister_dr_event: DR
Operation: 40000000
002 10.460418340 2050.592288 TRACE OFF channel 0000 Sat Jul 27 17:22:19
2002
284 Partitioning Implementations for IBM Eserver p5 Servers

Memory addition trace output
Example B-7 shows a sample system trace output when a memory addition
DLPAR operation is successfully performed.

Example: B-7 Sample system trace output for a memory addition request

ID ELAPSED_SEC DELTA_MSEC APPL SYSCALL KERNEL INTERRUPT

001 0.000000000 0.000000 TRACE ON channel 0
 Sat Jul 27 17:21:13 2002
38F 5.368745028 5368.745028 DYNAMIC RECONFIG: Dr_register: DR
Operation: 0000000000000002 FORCE Option: 0000
38F 5.368746271 0.001243 DYNAMIC RECONFIG: get_user_data: DR
Operation: 0000000000000002 input data: 000000002FF22988
38F 5.368748763 0.002492 DYNAMIC RECONFIG: Register_dr_event: DR
Operation: 40000000
38F 5.368751162 0.002399 DYNAMIC RECONFIG: dr_callout: DR Callout
index: 0001 DR Phase: 0001
38F 5.370106721 1.355559 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0002
Flags: 0001 Timeout in secs: 0000 Input: 0000000000000000
38F 5.370107638 0.000917 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0002 Flags: 0001
38F 5.370108136 0.000498 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0001 Requested Phase: 0002 Flags: 0001
38F 5.370110819 0.002683 DYNAMIC RECONFIG: Run_notify: Perform DR
Check/Pre/Post/Posterror Phases
38F 5.370111003 0.000184 DYNAMIC RECONFIG: dr_callout: DR Callout
index: 0001 DR Phase: 0002
38F 5.370229053 0.118050 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0002
Flags: 0004 Timeout in secs: 003C Input: 0000000000000000
38F 5.370229515 0.000462 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0002 Flags: 0004
38F 5.370229724 0.000209 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0002 Requested Phase: 0002 Flags: 0004
38F 5.370232068 0.002344 DYNAMIC RECONFIG: Run_notify: Perform DR
Check/Pre/Post/Posterror Phases
38F 5.370232345 0.000277 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
action: 0100
38F 5.370234357 0.002012 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
Number of reconfig handlers waiting for: 0000
38F 5.370234806 0.000449 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
All reconfig handlers completed, Status: 0000
38F 5.370313004 0.078198 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0002
Flags: 0002 Timeout in secs: 0000 Input: 0000000000000000
38F 5.370313490 0.000486 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0002 Flags: 0002
38F 5.370313705 0.000215 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0002 Requested Phase: 0002 Flags: 0002
 Appendix B. Dynamic logical partitioning output samples 285

38F 5.370314013 0.000308 DYNAMIC RECONFIG: Run_notify: Perform DR
Check/Pre/Post/Posterror Phases
38F 5.370314241 0.000228 DYNAMIC RECONFIG: dr_send_signal: Posting
signal (003A) to all processes catching
38F 5.370385443 0.071202 DYNAMIC RECONFIG: dr_send_signal: Number of
processes posted: 0000
38F 5.371572355 1.186912 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0003
Flags: 0001 Timeout in secs: 0000 Input: 0000000000000000
38F 5.371572823 0.000468 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0003 Flags: 0001
38F 5.371573063 0.000240 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0002 Requested Phase: 0003 Flags: 0001
38F 5.371573352 0.000289 DYNAMIC RECONFIG: Run_notify: Perform DR
Check/Pre/Post/Posterror Phases
38F 5.371573555 0.000203 DYNAMIC RECONFIG: dr_callout: DR Callout
index: 0001 DR Phase: 0003
38F 5.371688418 0.114863 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0003
Flags: 0002 Timeout in secs: 0000 Input: 0000000000000000
38F 5.371688892 0.000474 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0003 Flags: 0002
38F 5.371689199 0.000307 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0003 Requested Phase: 0003 Flags: 0002
38F 5.371689446 0.000247 DYNAMIC RECONFIG: Run_notify: Perform DR
Check/Pre/Post/Posterror Phases
38F 5.371689679 0.000233 DYNAMIC RECONFIG: dr_send_signal: Posting
signal (003A) to all processes catching
38F 5.371726129 0.036450 DYNAMIC RECONFIG: dr_send_signal: Number of
processes posted: 0000
38F 5.373202390 1.476261 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0005
Flags: 0009 Timeout in secs: 0000 Input: 000000002FF22988
38F 5.373202857 0.000467 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0005 Flags: 0009
38F 5.373203134 0.000277 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0003 Requested Phase: 0005 Flags: 0009
38F 5.373203430 0.000296 DYNAMIC RECONFIG: get_user_data: DR
Operation: 0000000000000002 input data: 000000002FF22988
38F 5.373203774 0.000344 DYNAMIC RECONFIG: dr_callout: DR Callout
index: 0001 DR Phase: 0004
38F 5.373204199 0.000425 DYNAMIC RECONFIG: Kernel_notify: Perform DR
Kernel Phase
38F 5.373204359 0.000160 DYNAMIC RECONFIG: dr_callout: DR Callout
index: 0001 DR Phase: 0005
38F 5.373205799 0.001440 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
action: 0200
38F 5.373206199 0.000400 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
Number of reconfig handlers waiting for: 0000
38F 5.373206666 0.000467 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
All reconfig handlers completed, Status: 0000
286 Partitioning Implementations for IBM Eserver p5 Servers

38F 5.373212290 0.005624 DYNAMIC RECONFIG: Register_dr_event: DR
Operation: 80000002
38F 5.432293377 59.081087 DYNAMIC RECONFIG: Unregister_dr_event: DR
Operation: 80000002
38F 5.432298927 0.005550 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
action: 0400
38F 5.432309307 0.010380 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
Number of reconfig handlers waiting for: 0000
38F 5.432309707 0.000400 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
All reconfig handlers completed, Status: 0000
38F 5.533246164 100.936457 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0006
Flags: 0001 Timeout in secs: 0000 Input: 0000000000000000
38F 5.533247161 0.000997 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0006 Flags: 0001
38F 5.533248219 0.001058 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0005 Requested Phase: 0006 Flags: 0001
38F 5.533250176 0.001957 DYNAMIC RECONFIG: Run_notify: Perform DR
Check/Pre/Post/Posterror Phases
38F 5.533250348 0.000172 DYNAMIC RECONFIG: dr_callout: DR Callout
index: 0001 DR Phase: 0006
38F 5.533429817 0.179469 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0006
Flags: 0002 Timeout in secs: 0000 Input: 0000000000000000
38F 5.533430291 0.000474 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0006 Flags: 0002
38F 5.533430518 0.000227 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0006 Requested Phase: 0006 Flags: 0002
38F 5.533430789 0.000271 DYNAMIC RECONFIG: Run_notify: Perform DR
Check/Pre/Post/Posterror Phases
38F 5.533431349 0.000560 DYNAMIC RECONFIG: dr_send_signal: Posting
signal (003A) to all processes catching
38F 5.533512937 0.081588 DYNAMIC RECONFIG: dr_send_signal: Number of
processes posted: 0000
38F 5.535515956 2.003019 DYNAMIC RECONFIG: Dr_unregister:
Unregistering DR operation
38F 5.535517217 0.001261 DYNAMIC RECONFIG: dr_callout: DR Callout
index: 0001 DR Phase: 0009
38F 5.535517777 0.000560 DYNAMIC RECONFIG: Clearing DR Kernel
Data...
38F 5.535520023 0.002246 DYNAMIC RECONFIG: Unregister_dr_event: DR
Operation: 40000000
38F 5.548827288 13.307265 DYNAMIC RECONFIG: HA_proc: Checking with
Kernel for BAD CPU: Input: 0001 Event: 0000000000000001 Retry: 0000000000000000
002 7.719713425 2170.886137 TRACE OFF channel 0000 Sat Jul 27 17:21:21
2002
 Appendix B. Dynamic logical partitioning output samples 287

Memory removal trace output
Example B-8 shows a sample system trace output when a memory removal
DLPAR operation is successfully performed.

Example: B-8 Sample system trace output for a memory removal request

ID ELAPSED_SEC DELTA_MSEC APPL SYSCALL KERNEL INTERRUPT

001 0.000000000 0.000000 TRACE ON channel 0
 Sat Jul 27 17:20:16 2002
38F 7.821123474 7821.123474 DYNAMIC RECONFIG: Dr_register: DR
Operation: 0000000000000001 FORCE Option: 0000
38F 7.821125437 0.001963 DYNAMIC RECONFIG: get_user_data: DR
Operation: 0000000000000001 input data: 000000002FF22970
38F 7.821127517 0.002080 DYNAMIC RECONFIG: Register_dr_event: DR
Operation: 40000000
38F 7.821128637 0.001120 DYNAMIC RECONFIG: dr_callout: DR Callout
index: 0000 DR Phase: 0001
38F 7.822487468 1.358831 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0002
Flags: 0001 Timeout in secs: 0000 Input: 0000000000000000
38F 7.822488219 0.000751 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0002 Flags: 0001
38F 7.822488601 0.000382 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0001 Requested Phase: 0002 Flags: 0001
38F 7.822489610 0.001009 DYNAMIC RECONFIG: Run_notify: Perform DR
Check/Pre/Post/Posterror Phases
38F 7.822489813 0.000203 DYNAMIC RECONFIG: dr_callout: DR Callout
index: 0000 DR Phase: 0002
38F 7.822603894 0.114081 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0002
Flags: 0004 Timeout in secs: 003C Input: 0000000000000000
38F 7.822604356 0.000462 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0002 Flags: 0004
38F 7.822604534 0.000178 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0002 Requested Phase: 0002 Flags: 0004
38F 7.822608060 0.003526 DYNAMIC RECONFIG: Run_notify: Perform DR
Check/Pre/Post/Posterror Phases
38F 7.822608417 0.000357 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
action: 1000
38F 7.822610244 0.001827 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
Number of reconfig handlers waiting for: 0000
38F 7.822610736 0.000492 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
All reconfig handlers completed, Status: 0000
38F 7.822686190 0.075454 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0002
Flags: 0002 Timeout in secs: 0000 Input: 0000000000000000
38F 7.822687070 0.000880 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0002 Flags: 0002
38F 7.822687316 0.000246 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0002 Requested Phase: 0002 Flags: 0002
288 Partitioning Implementations for IBM Eserver p5 Servers

38F 7.822687629 0.000313 DYNAMIC RECONFIG: Run_notify: Perform DR
Check/Pre/Post/Posterror Phases
38F 7.822687863 0.000234 DYNAMIC RECONFIG: dr_send_signal: Posting
signal (003A) to all processes catching
38F 7.822772761 0.084898 DYNAMIC RECONFIG: dr_send_signal: Number of
processes posted: 0000
38F 7.824002622 1.229861 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0003
Flags: 0001 Timeout in secs: 0000 Input: 0000000000000000
38F 7.824003040 0.000418 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0003 Flags: 0001
38F 7.824003268 0.000228 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0002 Requested Phase: 0003 Flags: 0001
38F 7.824003612 0.000344 DYNAMIC RECONFIG: Run_notify: Perform DR
Check/Pre/Post/Posterror Phases
38F 7.824003858 0.000246 DYNAMIC RECONFIG: dr_callout: DR Callout
index: 0000 DR Phase: 0003
38F 7.824117669 0.113811 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0003
Flags: 0002 Timeout in secs: 0000 Input: 0000000000000000
38F 7.824118088 0.000419 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0003 Flags: 0002
38F 7.824118328 0.000240 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0003 Requested Phase: 0003 Flags: 0002
38F 7.824118592 0.000264 DYNAMIC RECONFIG: Run_notify: Perform DR
Check/Pre/Post/Posterror Phases
38F 7.824118832 0.000240 DYNAMIC RECONFIG: dr_send_signal: Posting
signal (003A) to all processes catching
38F 7.824154322 0.035490 DYNAMIC RECONFIG: dr_send_signal: Number of
processes posted: 0000
38F 7.825608291 1.453969 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0005
Flags: 0009 Timeout in secs: 0000 Input: 000000002FF22970
38F 7.825608752 0.000461 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0005 Flags: 0009
38F 7.825608961 0.000209 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0003 Requested Phase: 0005 Flags: 0009
38F 7.825609287 0.000326 DYNAMIC RECONFIG: get_user_data: DR
Operation: 0000000000000001 input data: 000000002FF22970
38F 7.825609632 0.000345 DYNAMIC RECONFIG: dr_callout: DR Callout
index: 0000 DR Phase: 0004
38F 7.825610013 0.000381 DYNAMIC RECONFIG: Kernel_notify: Perform DR
Kernel Phase
38F 7.825610167 0.000154 DYNAMIC RECONFIG: dr_callout: DR Callout
index: 0000 DR Phase: 0005
38F 7.825611625 0.001458 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
action: 2000
38F 7.825617182 0.005557 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
Number of reconfig handlers waiting for: 0000
38F 7.825617643 0.000461 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
All reconfig handlers completed, Status: 0000
 Appendix B. Dynamic logical partitioning output samples 289

38F 7.825622836 0.005193 DYNAMIC RECONFIG: Register_dr_event: DR
Operation: 80000001
38F 7.909427355 83.804519 DYNAMIC RECONFIG: Unregister_dr_event: DR
Operation: 80000001
38F 7.909764006 0.336651 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
action: 4000
38F 7.909765157 0.001151 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
Number of reconfig handlers waiting for: 0000
38F 7.909765551 0.000394 DYNAMIC RECONFIG: Invoke Reconfig Handlers:
All reconfig handlers completed, Status: 0000
38F 9.184001504 1274.235953 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0006
Flags: 0001 Timeout in secs: 0000 Input: 0000000000000000
38F 9.184002919 0.001415 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0006 Flags: 0001
38F 9.184003412 0.000493 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0005 Requested Phase: 0006 Flags: 0001
38F 9.184007042 0.003630 DYNAMIC RECONFIG: Run_notify: Perform DR
Check/Pre/Post/Posterror Phases
38F 9.184007214 0.000172 DYNAMIC RECONFIG: dr_callout: DR Callout
index: 0000 DR Phase: 0006
38F 9.184189925 0.182711 DYNAMIC RECONFIG: Dr_notify: DR Phase: 0006
Flags: 0002 Timeout in secs: 0000 Input: 0000000000000000
38F 9.184190528 0.000603 DYNAMIC RECONFIG: Validate_notify: DR
Phase: 0006 Flags: 0002
38F 9.184190756 0.000228 DYNAMIC RECONFIG: validate_phase: Current
Phase: 0006 Requested Phase: 0006 Flags: 0002
38F 9.184191051 0.000295 DYNAMIC RECONFIG: Run_notify: Perform DR
Check/Pre/Post/Posterror Phases
38F 9.184192196 0.001145 DYNAMIC RECONFIG: dr_send_signal: Posting
signal (003A) to all processes catching
38F 9.184340075 0.147879 DYNAMIC RECONFIG: dr_send_signal: Number of
processes posted: 0000
38F 9.186468805 2.128730 DYNAMIC RECONFIG: Dr_unregister:
Unregistering DR operation
38F 9.186471334 0.002529 DYNAMIC RECONFIG: dr_callout: DR Callout
index: 0000 DR Phase: 0009
38F 9.186472743 0.001409 DYNAMIC RECONFIG: Clearing DR Kernel
Data...
38F 9.186475444 0.002701 DYNAMIC RECONFIG: Unregister_dr_event: DR
Operation: 40000000
38F 9.201400247 14.924803 DYNAMIC RECONFIG: HA_proc: Checking with
Kernel for BAD CPU: Input: 0001 Event: 0000000000000001 Retry: 0000000000000000
002 11.867866488 2666.466241 TRACE OFF channel 0000 Sat Jul 27 17:20:28
2002
290 Partitioning Implementations for IBM Eserver p5 Servers

Using the AIX error log facility
AIX generates an error log entry when a DLPAR operation fails due to a kernel,
kernel extension, or other platform failures. The following examples provide
sample error log entries:

� Example B-9

� Example B-10 on page 292

� Example B-11 on page 293

See Table 5-14 on page 211 for further detailed information about these error log
entries.

Example: B-9 Sample AIX error log entry: DR_MEM_UNSAFE_USE

LABEL: DR_MEM_UNSAFE_USE
IDENTIFIER: 12337A8D

Date/Time: Fri May 24 07:47:39 CDT
Sequence Number: 637
Machine Id: 003579124C00
Node Id: thimblelp4
Class: S
Type: TEMP
Resource Name: DR_KER_MEM

Description
Affected memory not available for DR removal

Probable Causes
Kernel extension not DR aware

Failure Causes
Memory marked as non removable

Recommended Actions
Contact kernel extension owner

Detail Data
Return Code
 114
Memory Address
0000 0000 6927 2000
LR Value
0000 0000 0010 30DC
Module Name
/usr/lib/drivers/testmod
 Appendix B. Dynamic logical partitioning output samples 291

Example: B-10 Sample AIX error log entry: DR_DMA_MIGRATE_FAIL

LABEL: DR_DMA_MIGRATE_FAIL
IDENTIFIER: 4DA8FE60

Date/Time: Fri May 24 04:10:29 CDT
Sequence Number: 622
Machine Id: 003579124C00
Node Id: thimblelp4
Class: S
Type: TEMP
Resource Name: DR_KER_MEM

Description
Memory related DR operation failed

Probable Causes
DMA activity to memory being removed

Failure Causes
DMA specific memory migration failed

Recommended Actions
Quiesce the device causing DMA to the memory

Detail Data
Return Code
 0 2
Memory Address
0000 0003 FF11 1000
Hypervisor return code
 -2
LIOBN
0000 0008
DMA Address
0000 0000 0000 0000 0080 C000
292 Partitioning Implementations for IBM Eserver p5 Servers

Example: B-11 Sample AIX error log entry: DR_DMA_MAPPAER_FAIL

LABEL: DR_DMA_MAPPER_FAIL
IDENTIFIER: 268DA6A3

Date/Time: Fri May 24 04:10:29 CDT
Sequence Number: 621
Machine Id: 003579124C00
Node Id: thimblelp4
Class: S
Type: TEMP
Resource Name: DR_KER_MEM

Description
Memory related DR operation failed

Probable Causes
DMA Mapper DR handler failure

Failure Causes
DMA specific memory mapper failed

Recommended Actions
Try DR operation on other memory resources

Detail Data
Return Code
 4 -16
Memory Address
0000 0000 4096 A000
Handler Address
0000 0000 01F2 A1A4
Module Name
/usr/lib/drivers/pci_busdd
 Appendix B. Dynamic logical partitioning output samples 293

294 Partitioning Implementations for IBM Eserver p5 Servers

acronyms
ABI Application Binary Interface

ACL Access Control List

AIO Asynchronous I/O

AIX Advanced Interactive
Executive

ANSI American National Standards
Institute

APAR Authorized Program Analysis
Report

API Application Programming
Interface

ARP Address Resolution Protocol

ASCII American National Standards
Code for Information
Interchange

ASMI Advanced Systems
Management Interface

ASR Address Space Register

BOOTP Boot Protocol

BOS Base Operating System

BPF Berkeley Packet Filter

BSC Binary Synchronous
Communications

BSD Berkeley Software Distribution

CD Compact Disk

CD-R CD Recordable

CD-ROM Compact Disk-Read Only
Memory

CDT Central Daylight Time

CE Customer Engineer

CEC Central Electronics Complex

CGE Common Graphics
Environment

CHRP Common Hardware
Reference Platform

Abbreviations and
© Copyright IBM Corp. 2003, 2004, 2005. All rights res
CLIO/S Client Input/Output Sockets

CLVM Concurrent LVM

CMD Command

CMOS Complimentary Metal-Oxide
Semiconductor

CMP Certificate Management
Protocol

CPU Central Processing Unit

CSM Cluster Systems
Management

CSR Customer Service
Representative

CSS Communication Subsystems
Support

CST Central Standard Time

CSU Customer Set-Up

CUoD Capacity Upgrade on
Demand

CWS Control Workstation

DASD Direct Access Storage Device

DAT Digital Audio Tape

DCM Dual Chip Module

DCUoD Dynamic Capacity Upgrade
on Demand

DDR Double Data Rate

DDS Digital Data Storage

DES Data Encryption Standard

DHCP Dynamic Host Configuration
Protocol

DIMM Dual In-Line Memory Module

DLPAR Dynamic LPAR

DMA Direct Memory Access

DVD Digital Versatile Disk

EC Engineering Change
erved. 295

ECC Error Checking and
Correcting

EEH Extended Error Handling

EEPROM Electrically Erasable
Programmable Read Only
Memory

EFI Extensible Firmware Interface

ENV Environment

FAQ Frequently Asked Questions

FC Fibre Channel

FCAL Fibre Channel Arbitrated Loop

FCC Federal Communication
Commission

FCP Fibre Channel Protocol

FDDI Fiber Distributed Data
Interface

FDPR Feedback Directed Program
Restructuring

FFDC First Failure Data Capture

FTP File Transfer Protocol

GB Gigabyte

GID Group ID

GPFS General Parallel File System

GUI Graphical User Interface

HACMP High Availability Cluster Multi
Processing

HMC Hardware Management
Console

HMT Hardware Multithreading

HostRM Host Resource Manager

HPT Hardware Page Table

I/O Input/Output

IBM International Business
Machines

ICMP Internet Control Message
Protocol

ID Identification

IDE Integrated Device Electronics

IEEE Institute of Electrical and
Electronics Engineers

IOCTL I/O Control

IOCLI I/O Command Line Interface

IP Internetwork Protocol (OSI)

IPL Initial Program Load

IPSec IP Security

ITSO International Technical
Support Organization

JBOD Just a Bunch of Disks

KB Kilobyte

KDB Kernel Debugger

L1 Level 1

L2 Level 2

L3 Level 3

LACP Link Aggregation Control
Protocol

LAN Local Area Network

LED Light Emitting Diode

LMB Logical Memory Block

LP Logical Partition

LPAR Logical Partition

LRDMA Logical Remote Direct
Memory Access

LUN Logical Unit Number

LV Logical Volume

LVCB Logical Volume Control Block

LVD Low Voltage Differential

LVM Logical Volume Manager

LVT LPAR Validation Tool

MAC Media Access Control

MPC-3 Multimedia PC-3

MTU Maximum Transmission Unit

NDP Neighbor Discovery Protocol

NFS Network File System

NIC Numeric Intensive Computing
296 Partitioning Implementations for IBM Eserver p5 Servers

NIM Network Installation
Management

NIMOL NIM on Linux

NVRAM Non-Volatile Random Access
Memory

OS Operating System

ODM Object Data Model

OEM Original Equipment
Manufacture

PCI Peripheral Component
Interconnect

PCI-X Peripheral Component
Interconnect at 133 MHz

PFT Page Frame Table

PHB Processor Host Bridges

PHYP POWER Hypervisor

PIC Pool Idle Count

PID Process ID

PIR Processor Identification
Register

PLIC Partition Licensed Internal
Code

PLM Partition Load Manager

PMB Physical Memory Block

PMTU Path MTU

POSIX Portable Operating Interface
for Computing Environments

POST Power-On Self-test

POWER Performance Optimization
with Enhanced Risc
(Architecture)

PTE Page Table Entry

PURR Processor Utilization
Resource Register

PV Physical Volume

PVID Physical Volume Identifier

QoS Quality of Service

RAID Redundant Array of
Independent Disks

RAM Random Access Memory

RAN Remote Asynchronous Node

RAS Reliability, Availability, and
Serviceability

RDISC ICMP Router Discovery

RDP Router Discovery Protocol

RFC Request for Comments

RIO Remote I/O

RIP Routing Information Protocol

RIPL Remote Initial Program Load

RISC Reduced Instruction-Set
Computer

RMC Resource Monitoring and
Control

ROLTP Relative Online Transaction
Processing

RPA RS/6000 Platform
Architecture

RPC Remote Procedure Call

RPL Remote Program Loader

RPM Redhat Package Manager

RSC RISC Single Chip

RSCT Reliable Scalable Cluster
Technology

RSE Register Stack Engine

RSVP Resource Reservation
Protocol

RTC Real-Time Clock

RVSD Recoverable Virtual Shared
Disk

SA Secure Association

SACK Selective Acknowledgments

SAN Storage Area Network

SAR Solutions Assurance Review

SASL Simple Authentication and
Security Layer

SBCS Single-Byte Character
Support
 Abbreviations and acronyms 297

ScaLAPACK Scalable Linear Algebra
Package

SCB Segment Control Block

SCSI Small Computer System
Interface

SCSI-SE SCSI-Single Ended

SDK Software Development Kit

SDLC Synchronous Data Link
Control

SDR System Data Repository

SDRAM Synchronous Dynamic
Random Access Memory

SE Single Ended

SEPBU Scalable Electrical Power
Base Unit

SGI Silicon Graphics Incorporated

SGID Set Group ID

SHLAP Shared Library Assistant
Process

SID Segment ID

SIT Simple Internet Transition

SKIP Simple Key Management for
IP

SLB Segment Lookaside Buffer

SLIH Second Level Interrupt
Handler

SLIP Serial Line Internet Protocol

SLR1 Single-Channel Linear
Recording 1

SM Session Management

SMB Server Message Block

SMIT System Management
Interface Tool

SMP Symmetric Multiprocessor

SMS System Management
Services

SNG Secured Network Gateway

SNIA Storage Networking Industry
Association

SNMP Simple Network Management
Protocol

SOI Silicon-on-Insulator

SP IBM RS/6000 Scalable
POWER parallel Systems

SP Service Processor

SPCN System Power Control
Network

SPEC System Performance
Evaluation Cooperative

SPI Security Parameter Index

SPM System Performance
Measurement

SPOT Shared Product Object Tree

SPS SP Switch

SPS-8 Eight-Port SP Switch

SRC System Resource Controller

SRN Service Request Number

SSA Serial Storage Architecture

SSC System Support Controller

SSL Secure Socket Layer

STFDU Store Float Double with
Update

STP Shielded Twisted Pair

SUID Set User ID

SUP Software Update Protocol

SVC Switch Virtual Circuit

SVC Supervisor or System Call

SWVPD Software Vital Product Data

SYNC Synchronization

TCB Trusted Computing Base

TCE Translate Control Entry

Tcl Tool Command Language

TCP/IP Transmission Control
Protocol/Internet Protocol

TCQ Tagged Command Queuing

TGT Ticket Granting Ticket
298 Partitioning Implementations for IBM Eserver p5 Servers

TLB Translation Lookaside Buffer

TLS Transport Layer Security

TOS Type Of Service

TPC Transaction Processing
Council

TPP Toward Peak Performance

TSE Text Search Engine

TSE Text Search Engine

TTL Time To Live

UCS Universal Coded Character
Set

UDB EEE Universal Database and
Enterprise Extended Edition

UDF Universal Disk Format

UDI Uniform Device Interface

UIL User Interface Language

ULS Universal Language Support

UNI Universal Network Interface

UP Uniprocessor

USB Universal Serial Bus

USLA User-Space Loader Assistant

UTF UCS Transformation Format

UTM Uniform Transfer Model

UTP Unshielded Twisted Pair

UUCP UNIX-to-UNIX
Communication Protocol

VACM View-based Access Control
Model

VESA Video Electronics Standards
Association

VFB Virtual Frame Buffer

VG Volume Group

VGDA Volume Group Descriptor
Area

VGSA Volume Group Status Area

VHDCI Very High Density Cable
Interconnect

VIPA Virtual IP Address

VLAN Virtual Local Area Network

VMM Virtual Memory Manager

VP Virtual Processor

VPD Vital Product Data

VPN Virtual Private Network

VSD Virtual Shared Disk

VSM Visual System Manager

VSS Versatile Storage Server™

VT Visualization Tool

WAN Wide Area Network

WBEM Web-based Enterprise
Management

WLM Workload Manager

WTE Web Traffic Express

XCOFF Extended Common Object
File Format

XIE X Image Extension

XIM X Input Method

XKB X Keyboard Extension

XLF XL Fortran

XML Extended Markup Language

XOM X Output Method

XPM X Pixmap

XSSO Open Single Sign-on Service

XTF Extended Distance Feature

XVFB X Virtual Frame Buffer
 Abbreviations and acronyms 299

300 Partitioning Implementations for IBM Eserver p5 Servers

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information about ordering these publications, see “How to get IBM
Redbooks” on page 303.

� Advanced POWER Virtualization on IBM Eserver p5 servers: Installation
and Basic configuration, SG24-7940

� Advanced POWER Virtualization on IBM Eserver p5 Servers: Architecture
and Performance Considerations, SG24-5768

� IBM Eserver p5-590 and p5-595 System Handbook, SG24-9119

� A Practical Guide for Resource Monitoring and Control, SG24-6615

� Linux Applications on pSeries, SG24-6033

� Managing AIX Server Farms, SG24-6606

IBM Redpapers
IBM Redpapers are available in softcopy only.

� IBM Eserverr p5 520 Technical Overview and Introduction, REDP-9111

� IBM Eserver p5 550 Technical Overview and Introduction, REDP-9113

� IBM Eserver p5 570 Technical Overview and Introduction, REDP-9117

� IBM Eserver OpenPower 720 Technical Overview and Introduction,
REDP-1965

IBM Whitepapers
The IBM white paper, Dynamic logical partitioning in pSeries servers, is available
at the following address.

http://www.ibm.com/servers/eserver/pseries/hardware/whitepapers/dlpar.pdf
© Copyright IBM Corp. 2003, 2004, 2005. All rights reserved. 301

http://www.ibm.com/servers/eserver/pseries/hardware/whitepapers/dlpar.pdf

pSeries and eServer p5 publications
The IBM Eserver Information Center provides a source of technical information
about IBM Eserver hardware, offering technical documentation to help
configure and optimize POWER5 and OpenPower servers.

With AIX 5L Version 5.3, the role of the Information Center has been expanded to
provide a standardized and central repository for all relevant AIX and pSeries
manuals and documentation.

The AIX Information Center application can be installed from the AIX
Documentation CD. It can be installed and used on a local system or installed on
a documentation server for intranet use.

For the latest AIX and pSeries information, refer to the AIX Information Center
web site at:

http://publib.boulder.ibm.com/infocenter/pseries/index.jsp

For the latest IBM Eserver information, refer to the Information Center Web site
at:

http://publib.boulder.ibm.com/eserver/

LPAR Validation Tool
The LPAR Validation Tool is available to assist you in the design of an LPAR
system and to provide a validation report. It is intended for professionals
experienced in hardware configuration.

http://www.ibm.com/servers/eserver/iseries/lpar/systemdesign.htm

Other publications
These publications are also relevant as further information sources:

� The PowerPC Architecture, IBM, Morgan Kaufmann Publishers, Inc., ISBN
1-55860-316-6 PB
302 Partitioning Implementations for IBM Eserver p5 Servers

http://publib.boulder.ibm.com/infocenter/pseries/index.jsp
http://www.ibm.com/servers/eserver/iseries/lpar/systemdesign.htm
http://publib.boulder.ibm.com/eserver/

Online resources
These Web sites and URLs are also relevant as further information sources:

� AIX toolkit for Linux applications

http://www.ibm.com/servers/aix/products/aixos/linux/download.html

� IBM Eserver pSeries & RS/6000 Microcode Updates

http://techsupport.services.ibm.com/server/mdownload

� IBM Eserver pSeries Support Hardware Management Console

https://techsupport.services.ibm.com/server/hmc?fetch=home.html

� Electronic Service Agent for pSeries and RS/6000 User’s Guide

ftp://service.software.ibm.com/aix/service_agent_code/AIX/svcUG.pdf

� Electronic Service Agent for pSeries HMC User’s Guide

ftp://service.software.ibm.com/aix/service_agent_code/HMC/HMCSAUG.pdf

� Microcode Discovery Service

http://techsupport.services.ibm.com/server/aix.invscoutMDS

� OpenSSH Web site

http://www.openssh.com

� VPD Capture Service

http://techsupport.services.ibm.com/server/aix.invscoutVPD

� OpenPower virtualization

http://www.ibm.com/servers/eserver/linux/power/features/virtualization.html

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks
 Related publications 303

http://www.ibm.com/servers/aix/products/aixos/linux/download.html
http://techsupport.services.ibm.com/server/mdownload
https://techsupport.services.ibm.com/server/hmc?fetch=home.html
ftp://service.software.ibm.com/aix/service_agent_code/AIX/svcUG.pdf
ftp://service.software.ibm.com/aix/service_agent_code/HMC/HMCSAUG.pdf
http://www.ibm.com/servers/eserver/linux/power/features/virtualization.html
http://techsupport.services.ibm.com/server/aix.invscoutMDS
http://www.openssh.com
http://techsupport.services.ibm.com/server/aix.invscoutVPD
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/

304 Partitioning Implementations for IBM Eserver p5 Servers

Index

Symbols
/usr/lib/dr/scripts/all 186
/usr/samples/dr/scripts 232
/usr/sbin 151
/var/adm/syslog.log 207
_system_configuration.max_ncpus 198
_system_configuration.ncpus 198

A
adapter sharing 127
Admin Override Timeout 171
Advanced Systems Management Interface (ASMI)

description 64
HMC access 65
network configuration 65
power control 67
power off warning 66
service processor 67
web access 65

advanced virtualization
feature code FC 7942 6
feature description 6

AIX error log facility 210, 291
AIX error log messages, DLPAR 212
AIX system trace facility 208
AIX Version 5.3

lparstat command 144, 226, 229
allow idle processor to be shared 93
API-based DLPAR event handling 157
ARP, Virtual Ethernet 106
ASMI 64

B
bind CPU ID 197
bindprocessor 161, 198
Boot devices 48
building block 3
busy loop 199

C
Capacity on Demand 147
capped mode 88
© Copyright IBM Corp. 2003, 2004, 2005. All rights res
CD-ROM support, vSCSI 116
cfgdev, command 129
cfgmgr 155
channel ID string 208
chclass, command 161
command line interface, Virtual I/O Server 117
commands 155

cfgdev 129
chclass 161
chhwres 164
drmgr 151, 157, 160, 162–163, 171, 173–180,
186, 188
help 118
kill 161
lsdev 135
lsrset 161, 198
lssrc 150
mklv 131
mktcpip 130
mkvdev 129, 135
mkvg 131
ps 161
rmdev 154
smit 209–210
virtual I/O server

help 118
whence 151

communication with external networks 101
cpu script 168, 173
current working directory 162

D
database applications 156
Decrementer 227
dedicated memory 21, 86
dedicated processor partitions 35, 86
dedicated processors 91
default channel ID, DRMGR 208
default partition profile 33
detaching pinned shared memory segments 159
detail level 164
DLPAR

safeness 159
erved. 305

DLPAR event
check phase 152
post phase 154
pre phase 153
specific information 196

DLPAR operation 148
failed message 206
failure detailed information 207

DLPAR script 161
database 161
naming convention 167

DLPAR script input
additional command line arguments 163
environment variables with specified format 163

DLPAR script output
Exit values 163
standard out with specified format 163

DLPAR-aware 155–156
kernel extensions 205

DLPAR-safe 155
DR_ prefix 163
DR_BCPUID 165
DR_DATE 170
DR_DETAIL_LEVEL 164
DR_DMA_MEM_MAPPER_FAIL 211
DR_DMA_MEM_MIGRATE_FAIL 211
DR_ERROR 166
DR_EVENT_FAIL 196
DR_FORCE 164
DR_FREE_FRAMES 166
dr_ibm_wlm.pl 167
dr_info

add member 200
cpu member 200
mem member 200
rem member 200

dr_info_t 196
DR_LCPUID 165
DR_LOG_DEBUG 167
DR_LOG_EMERG 166
DR_LOG_ERR 166
DR_LOG_INFO 166
DR_LOG_WARNING 166
DR_MEM_SIZE_COMPLETED 166
DR_MEM_SIZE_REQUEST 166
DR_MEM_UNSAFE_USE 211
DR_PINNABLE_FRAMES 166
DR_QUERY 196
dr_reconfig 195, 199

DR_RECONFIG_HANDLER_MSG 211
DR_RESOURCE 173
DR_SCRIPT_MSG 211
DR_SCRIPTINFO 170
dr_sysadmin_wlm.pl 167
DR_TIMEOUT 171
DR_TOTAL_FRAMES 166
DR_USAGE 174
DR_VENDOR 170
DR_VERSION 170
drmgr 163
drmgr, command 151, 157, 160, 162–163, 171,
173–180, 186, 188
dynamic partitioning

virtual SCSI 116, 147
weight 144

dynamic processor deallocation 158
dynamic reconfiguration connectors 152

E
emergency processing 164
environment values

CPU specific 163
General 163
Memory specific 163

error analysis facilities 207
EtherChannel

overview 108
round robin 109

Ethernet
adapter sharing 109, 126, 131

Ethernet adapter on the HMC 127
external networks 105

Event phase summary 160
execution process 162
external networks 105, 108

routing 105

F
feature code

1103 - DVD-RAM drive 48
1104 - 8mm VXA-2 tape drive 48
1105 - 4mm DDS4 tape drive kit 48
1106 - DVD-ROM drive 48
1965 - OpenPower 710 VIO/PLM 8
1965 - OpenPower 720 VIO/PLM 8
2498 - PCI Ultra3 RAID adapter 121
2591 - USB diskette drive 48
306 Partitioning Implementations for IBM Eserver p5 Servers

2640 - IDE DVD-ROM drive 47
2738 - USB adapter 48
2738 - USB keyboard and mouse adapter 52
2849 - graphics adapter 52
5703 - PCI-X Ultra320 RAID adapter 121
5709 - Dual Channel RAID enablement card
121
5709 - SCSI RAID enablement card 49
5712 - PCI-X Ultra320 SCSI adapter 121
5716 - 2 GB FC PCI-X adapter 121
5751 - IDE DVD-RAM drive 47
5791 - 7040-61D I/O drawer 50
6120 - 8mm 80/160 GB tape drive 47
6134 - 8mm 60/150GB tape drive 47
6228 - 2 GB FC PCI-X adapter - 64-bit 121
6239 - 2 GB FC PCI-X adapter 121
6258 - 4mm 36/72 GB tape drive 47
7310-C04 - desktop HMC 12
7310-CR3 - rack-mount HMC 12
7432 - p5 510 VIO/PLM 8
7940 - p5 520 VIO/PLM 8
7941 - p5 550 VIO/PLM 8
7942 - advanced virtualization 6
7942 - p5 570 VIO/PLM 8
7992 - p5 590 VIO/PLM 8
7992 - p5 595 VIO/PLM 8

fileset
bos.adt.samples 232
bos.rte.methods 151
devices.chrp.base.rte 150

free frames 166

G
GID 162
granularity 3

H
hardware management console, HMC

ASMI access 65
desktop HMC, feature code FC 7310-C04 12
functions 59
I/O devices and slots 59
memory configuration 61
overview 58
rack-mount HMC, feature code FC 7310-CR3
12
restrictions 58
scheduling 64

hardware page table, HPT 227
hardware resources

virtual I/O Server 120
hosted partition 112
hosting partition 112
hypervisor, POWER hypervisor

call functions 221–225
description 219
extensions 227
introduction 29
memory considerations 227
support 219
system resources 229

I
I/O Server Command Line Interface (IOCLI) 104
i5/OS 219
IBM.DRMd daemon process 150
IEEE 802.1Q VLAN 99
Information Center 14
initiator, vSCSI 112
in-memory channel 102
installation, Virtual I/O Server 121
Internal activity in a DLPAR event

CPUs and memory 152
I/O slots 154

IP fragmentation 107
ipcs 161
ipforwarding 105
iSeries Partition Licensed Internal Code (PLIC) 219

K
KDB 212
kernel debugger 212
kernel extensions 153
kernel service

switch_cpu 198

L
Licence Managers 156
licensed software components 8
limitations and considerations 116, 136

Shared Ethernet Adapter 110
virtual Ethernet 103
virtual SCSI, vSCSI 116

Linux 218
list registered DLPAR scripts 186
 Index 307

LMB, logical memory block 153
minimum size 38

LOG_DEBUG 167
LOG_EMERG 166
LOG_ERR 166
LOG_INFO 166
LOG_WARNING 166
logical CPU ID 197
logical memory block, LMB 153

minimum size 38
logical partition 3
logical volume

define 131
limitations 136

lparstat command 144, 226, 229
LRDMA,Logical Remote Direct Memory Access
113
lsclass 161
lsdev, command 135
lslpp 151
lsslot 154
lssrc, command 150
LVT (LPAR Validation Tool) 15

M
MAC address 102, 107
man 188
media devices

4mm 36/72 GB tape drive, FC 6258 47
8mm 60/150GB tape drive, FC 6134 47
8mm 80/160 GB tape drive, FC 6120 47
IDE DVD-RAM, FC 5751 47
IDE DVD-ROM, FC 2640 47

mem 168, 173
Micro-Partitioning 35

dedicated memory 21, 86
dedicated processor partitions 35, 86
dedicated processors 91
Firmware enablement 6
introduction 84
overview 86
processing capacity 86
processing units 86
shared processor partition 84
virtual processors 89

mklv, command 131
mktcpip, command 130
mkvdev, command 129, 135

mkvg, command 131
MP-unsafe application 180

N
NDP, virtual Ethernet 106
NIMOL, NIM on Linux 9
number of online CPUs 198
number of potential CPUs 198
NVRAM 33

O
ODM 152

ODM lock 152
Open Firmware 218

device tree 152
OpenPower 710

capabilities 11
VIO/PLM feature code 8

OpenPower 720 47
7311-D20 support 49
boot devices 49
redpaper 301
VIO/PLM feature code 8

optional name-value pair 170

P
p5 510

VIO/PLM feature code 8
p5 520

7311-D20 support 49
boot devices 48
capabilities 10
I/O device assignment considerations 47
redpaper 301
VIO/PLM feature code 8

p5 550
7311-D20 support 49
boot devices 49
capabilities 10
I/O device assignment considerations 47
redpaper 301
VIO/PLM feature code 8

p5 570
7311-D10 support 50
7311-D11 support 50
7311-D20 support 50
boot devices 50
308 Partitioning Implementations for IBM Eserver p5 Servers

capabilities 10
I/O device assignment considerations 47
redpaper 301
VIO/PLM feature code 8

p5 590
7040-61D support 51
boot devices 50
capabilities 10
I/O device assignment considerations 47
systems handbook 301
VIO/PLM feature code 8
virtualization support 86

p5 595
7040-61D support 51
boot devices 50
capabilities 10
I/O device assignment considerations 47
systems handbook 301
VIO/PLM feature code 8
virtualization support 86

partition
isolation 3
physical 3
profile 33, 149
resources 32

I/O slots 40
memory 36
processors 34

system profiles 33
Partition Load Manager, PLM

components 8
description 71–72, 74–76
feature 6
installation 78
operation 78–79, 81
ordering 6
software license charge 8
support 9

partitioning capabilities 83
PATH environment variable 162
PCI adapter Hot Plug capability 154
PCI host bridges 28
Per processor description area 197
performance considerations

EtherChannel 108
hypervisor 229
virtual Ethernet 103
virtual SCSI 117

performance monitor support 223

physical CPU ID 197
pinnable frames 166
pipe 162
platform-dependent commands 151
platform-independent command 151
PLM 78–79

Partition Load Manager 6, 8–9, 71–72, 74–76,
78–79, 81

polling 156
Port virtual LAN ID, PVID 99
possible causes of DLPAR failures 205
post phase 159
POWER Hypervisor 218–230

debugger support 222
dump support 222
extensions for Micro-Partitioning 227
Machine Check Interrupt 220
memory migration support 222
performance monitor support 223
System (Hypervisor) Call Interrupt 220
System Reset Interrupt 220
table of calls 223
virtual terminal support 222

POWER5
Decrementer 227
Time Base register 227

ppda, per-processor description area 197
pre phase 159
processing

capacity 86
units 86

product names, short 10
programming implications of CPU DLPAR events
197
ps, command 161
PVID, Port virtual LAN ID 99

R
RDMA, Remote Direct Memory Access 113
reconfig_complete 205
reconfig_register 205
reconfig_unregister 205
Redbooks Web site 303

Contact us xix
register a DLPAR script 186
Remote Direct Memory Access, RDMA 113
removing plocks 159
resource manager
 Index 309

IBM.DRM 150, 160
resource monitoring and controlling, RMC 148, 160
resource set 197
resource value

Desired 41
Maximum 41
Minimum 41
Required 41

restricted Korn shell 118
RMC 150
rmdev, command 154
root authority 196
RS/6000 154
rset 197
Run-Time Abstraction Services (RTAS) 218

S
sample code using dr_reconfig 199
Script Timeout 171
script-based DLPAR event handling 157
SCSI RDMA 113
secure and reliable connection channel 150
server adapter, vSCSI 112
Shared Ethernet Adapter

limitations and considerations 110
shared Ethernet Adapter 105
shared Ethernet adapter 105

external networks 105
shared Ethernet adapters overview 21
shared processing pool 90
shared processor partition 84
sigaction 195, 199
signal

SIGABRT 171
SIGKILL 171

signal handler
dr_func() 199
registration 199

SIGRECONFIG 199
Simultaneous multi-threading (SMT) 27
smit, command 209–210
SMT 7
software license charge 8
SSA support

virtual SCSI, vSCSI 116
standard in 162
standard out 162
subcommand

checkacquire 180
checkaquire 169
checkrelease 168, 175
postacquire 169, 183
postrelease 168, 178
preacquire 169, 182
prerelease 168, 176
register 168, 172
scriptinfo 168–169
undopreacquire 169, 184
undoprerelease 168, 179
usage 168, 173

sysconf(_SC_NPROCESSORS_CONF) 198
sysconf(_SC_NPROCESSORS_ONLN) 198
sysconfig 198
syslog facility 167, 207
syslog keyword

rotate 207
syslog priority

debug 167
emerg 166
err 166
info 166
warning 166

System Licensed Internal Code (SLIC) 219
System profile 33

T
tagged packets 99
tape support

virtual SCSI, vSCSI 116
target, vSCSI 112
Technology Independent Machine Interface (TIMI)
219
three phases in a DLPAR event 157
Time Base 227
timeout value 171
Total number of frames 166
trace hook ID 209
Translation Control Entry (TCE) 222
trunk flag 106
trunk Virtual Ethernet adapter 126

U
UID 162
unbinding processors 159
uncapped mode 88
uninstall a registered DLPAR script 187
310 Partitioning Implementations for IBM Eserver p5 Servers

uniprocessor 155
untagged packets 99
using AIX system trace facility 278
using syslog facility 274

V
virtual Ethernet

ARP 106
benefits 103
broadcast 106
communication with external networks 101
interpartition communication 100
limitations and considerations 103
multicast 106
NDP 106
packaging 7
performance considerations 103

virtual Ethernet adapter
boot device 103
concepts 102
in-memory channel 102
MAC address 102
transmission speed 103
trunk flag 106

virtual host bridge 114
virtual I/O Server

adapter sharing 109, 126, 131
capabilities 125
command line interface, 117
hardware resources 120
hosted partition 112
hosting partition 112
installation 121
introduction 104
limitations and considerations 136
ordering 6
restricted Korn shell 118
software license charge 8

virtual I/O server
2 GB FC PCI-X adapter 121
2 GB FC PCI-X adapter - 64-bit 121
Dual Channel RAID enablement card 121
PCI Ultra3 RAID adapter 121
PCI-X Ultra320 RAID adapter 121
PCI-X Ultra320 SCSI adapter 121

virtual LAN
AIX support 99
description 98

overview 98
virtual processor 89, 227

move 146
reasonable settings 54

virtual SCSI, vSCSI
CD-ROM support 116
client adapter, vSCSI 112
define client adapter 134
define disk 131
define server adapter 132
description 40
device configuration 114
dynamic partitioning 116, 147
hosting partition 112
initiator 112
introduction 111
limitations and considerations 116
overview 21
performance considerations 117
server adapter 112
SSA support 116
tape support 116
target 112

virtual target device, create 135
virtualization

media device restriction 48
virtualized Ethernet 21
volume group, define 131

W
weight, uncapped 88
Workload Manager 156
 Index 311

312 Partitioning Implementations for IBM Eserver p5 Servers

(0.5” spine)
0.475”<

->
0.875”

250 <
->

 459 pages

Partitioning Im
plem

entations for IBM
E

s
e
r
v
e
r p5 Servers

®

SG24-7039-02 ISBN 0738492140

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Partitioning Implementations
for IBM Eserver p5 Servers
Discusses Advanced
POWER Virtualization
and Micro-Partitioning
technology

Describes virtualization
on IBM Eserver
OpenPower systems

Includes information on
dynamic logical
partitioning

This redbook provides a broad understanding of logical
partitioning on the IBM ̂p5 servers, focusing
particularly on the increased function available when these
servers are combined with AIX 5L Version 5.3 and Advanced
POWER Virtualization features. It also provides a discussion of
available Linux support and IBM ̂OpenPower
systems. This redbook covers the following subject areas:

• Advanced POWER Virtualization
• Micro-Partitioning technology
• Virtual I/O
• Dynamic logical partitioning implementation

The audience for this redbook are technical support
specialists, customers, and business partners.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Figures
	Tables
	Examples
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Summary of changes
	February 2005, Third Edition
	October 2003, Second Edition
	January 2003, First Edition

	Chapter 1. Logical partitioning primer
	1.1 An introduction to partitioning
	1.1.1 Basic types of partitioning
	1.1.2 Partition isolation and security

	1.2 Introduction to Micro-Partitioning and Virtualization
	1.2.1 Micro-Partitioning
	1.2.2 Virtual Ethernet
	1.2.3 Virtual I/O Server
	1.2.4 Advanced POWER Virtualization technologies
	1.2.5 Advanced OpenPower Virtualization technologies
	1.2.6 Obtaining the Virtual I/O Server and Partition Load Manager

	1.3 Partitioning on eServer p5 and OpenPower servers
	1.4 IBM Hardware Management Console
	1.5 IBM ^ Information Center
	1.6 LPAR Validation Tool
	1.7 Operating system support
	1.7.1 AIX
	1.7.2 Linux

	Chapter 2. Partitioning implementation
	2.1 Partitioning enablers
	2.1.1 Hardware
	2.1.2 Firmware

	2.2 Partition resources
	2.2.1 Partition and system profiles
	2.2.2 Processors
	2.2.3 Memory
	2.2.4 Physical I/O slots
	2.2.5 Virtual I/O
	2.2.6 Minimum, desired, and maximum values

	2.3 Resource planning using LPAR Validation Tool
	2.3.1 System Selection dialog
	2.3.2 Memory Specification dialog
	2.3.3 LPAR Validation dialog

	2.4 I/O device assignment considerations
	2.4.1 Media devices
	2.4.2 Boot device considerations
	2.4.3 Network devices
	2.4.4 Graphics console
	2.4.5 High availability

	2.5 LPAR limitations and considerations

	Chapter 3. Basic partition management
	3.1 Hardware Management Console
	3.1.1 Managing I/O devices and slots
	3.1.2 Managing memory
	3.1.3 Managing processing power
	3.1.4 Scheduling movement of resources

	3.2 Advanced System Management Interface
	3.2.1 Accessing the ASMI using a Web browser
	3.2.2 Accessing the ASMI using the HMC
	3.2.3 Network configuration
	3.2.4 Service processor
	3.2.5 Power/Restart control

	3.3 Resetting a server
	3.3.1 EEH adapters and partitioning
	3.3.2 Restoring a server to factory settings

	3.4 Partition Load Manager
	3.4.1 Managing memory
	3.4.2 Managing processors
	3.4.3 Limitations and considerations
	3.4.4 Installing Partition Load Manager
	3.4.5 Querying partition status
	3.4.6 Managing memory resource requests
	3.4.7 Processor resources in a shared partition environment

	Chapter 4. Virtualized resource management
	4.1 Micro-Partitioning technology
	4.1.1 Shared processor partitions
	4.1.2 Processing units of capacity
	4.1.3 Capped and uncapped mode
	4.1.4 Virtual processors
	4.1.5 Dedicated processors
	4.1.6 Capped and uncapped processing units
	4.1.7 Dynamic processor deallocation and sparing

	4.2 Advanced Virtualization
	4.2.1 Virtual LAN
	4.2.2 VLAN communication by example

	4.3 Introduction to Virtual I/O Server
	4.3.1 Shared Ethernet Adapter
	4.3.2 Virtual SCSI
	4.3.3 Limitations and considerations

	4.4 Virtual I/O Server and virtualization configuration
	4.4.1 Using the command line interface
	4.4.2 Managing hardware resources
	4.4.3 Installing Virtual I/O Server
	4.4.4 Basic configuration
	4.4.5 Ethernet adapter sharing
	4.4.6 Virtual SCSI disk
	4.4.7 Defining the Virtual SCSI Server adapter on the HMC
	4.4.8 Defining the Virtual SCSI Client adapter on the HMC
	4.4.9 Creating the virtual target device on the Virtual I/O Server
	4.4.10 Limitations and considerations

	Chapter 5. Dynamic logical partitioning
	5.1 Dynamic logical partitioning overview
	5.1.1 Processor resources
	5.1.2 Dynamic partitioning for Virtual Ethernet devices
	5.1.3 Dynamic partitioning for Virtual SCSI devices
	5.1.4 Capacity on Demand

	5.2 The process flow of a DLPAR operation
	5.3 Internal activity in a DLPAR event
	5.3.1 Internal activity for processors and memory in a DLPAR event
	5.3.2 Internal activity for I/O slots in a DLPAR event

	5.4 DLPAR-safe and DLPAR-aware applications
	5.4.1 DLPAR-safe
	5.4.2 DLPAR-aware

	5.5 Integrating a DLPAR operation into the application
	5.5.1 Three phases in a DLPAR event
	5.5.2 Event phase summary

	5.6 Script-based DLPAR event handling
	5.6.1 Script execution environment
	5.6.2 DLPAR script naming convention

	5.7 DLPAR script subcommands
	5.7.1 The scriptinfo subcommand
	5.7.2 The register subcommand
	5.7.3 The usage subcommand
	5.7.4 The checkrelease subcommand
	5.7.5 The prerelease subcommand
	5.7.6 The postrelease subcommand
	5.7.7 The undoprerelease subcommand
	5.7.8 The checkacquire subcommand
	5.7.9 The preacquire subcommand
	5.7.10 The postacquire subcommand
	5.7.11 The undopreacquire subcommand

	5.8 How to manage DLPAR scripts
	5.8.1 List registered DLPAR scripts
	5.8.2 Register a DLPAR script
	5.8.3 Uninstall a registered DLPAR script
	5.8.4 Change the script install path
	5.8.5 The drmgr command line options
	5.8.6 Sample output examples from a DLPAR script

	5.9 API-based DLPAR event handling
	5.9.1 The dr_reconfig system call
	5.9.2 A sample code using the dr_reconfig system call
	5.9.3 Sample output examples from a DLPAR-aware application
	5.9.4 DLPAR-aware kernel extensions

	5.10 Error handling of DLPAR operations
	5.10.1 Possible causes of DLPAR operation failures
	5.10.2 Error analysis facilities
	5.10.3 AIX error log messages when DLPAR operations fail

	Chapter 6. The POWER Hypervisor
	6.1 Introduction
	6.2 Hypervisor support
	6.3 Hypervisor call functions
	6.4 Micro-Partitioning technology extensions
	6.5 Memory considerations
	6.6 Performance considerations

	Appendix A. Dynamic logical partitioning program templates
	General information
	Perl template
	Korn shell template
	DLPAR-aware application using a signal handler
	How to compile and run the application

	Appendix B. Dynamic logical partitioning output samples
	Using the syslog facility
	CPU addition

	CPU removal
	Memory addition
	Memory removal

	Using the AIX system trace facility
	CPU addition trace output
	CPU removal trace output
	Memory addition trace output
	Memory removal trace output

	Using the AIX error log facility

	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	IBM Redpapers
	IBM Whitepapers

	pSeries and eServer p5 publications
	LPAR Validation Tool
	Other publications
	Online resources
	How to get IBM Redbooks

	Index
	Back cover

