Commodore International Spare Parts GmbH Braunschweig, West Germany

SERVICE MANUAL

1930
 VGA COLOR MONITOR

AUGUST, 1990
PN-314255-01

INTERNATIONAL EDITION

COMMODORE "INTERNATIONAL EDITION" SERVICE MANUALS CONTAIN PART NUMBER INFORMATION WHICH MAY VARY ACCORDING TO COUNTRY. SOME PARTS MAY NOT BE AVAILABLE IN ALL COUNTRIES.

Commodore Business Machines, Inc. 1200 Wilson Drive, West Chester, Pennsylvania 19380 U.S.A.

Commodore makes no express or implied warranties with regard to the information contained herein. The information is made available solely on an as is basis, and the entire risk as to completeness, reliability, and accuracy is with the user. Commodore shall not be liable for any damages in connection with the use of the information contained herein. The listing of any available replacement part herein does not constitute in any case a recommendation, warranty or guaranty as to quality or suitability of such replacement part. Reproduction or use without express permission, of editorial or pictorial content, in any matter is prohibited.

This manual contains copyrighted and proprietary information. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of Commodore Electronics Limited.

Copyright © 1990 by Commodore Electronics Limited. All rights reserved.

Printed in U.S.A.

IMPORTANT SAFETY NOTICE

Proper service and repair is important to the safe, reliable operation of all NAPCEC Equipment. The service procedures recommended by NAPCEC and described in this service manual are effective methods of performing service operations. Some of these service operations require the use of tools specially designed for the purpose. The special tools should be used when and as recommended.

It is important to note that this manual contains various CAUTIONS and NOTICES which should be carefully read in order to minimize the risk of personal injury to service personnel. The possibility exists that improper service methods may damage the equipment. It also is important to understand that these CAUTIONS and NOTICES ARE NOT EXHAUSTIVE. NAPCEC could not possibly know, evaluate and advise the service trade of all conceivable ways in which service might be done or of the possible hazardous consequences of each way. Consequently, NAPCEC has not undertaken any such broad evaluation. Accordingly, a servicer who uses a service procedure or tool which is not recommended by NAPCEC must first satisfy himself thoroughly that neither his safety nor the safe operation of the equipment will be jeopardized by the service method selected.

WARNING

Critical components having special safety characteristics are identified with an S by the Ref. No. in the parts list and enclosed within a broken line* along with the safety symbol on the schematics or exploded views.

Use of substitute replacement parts which do not have the same specified safety characteristics may create shock, fire, or other hazards.

Under no circumstances should the original design be modified or altered without written permission from the N.A.P. Consumer Electronics Corp. NAPCEC assumes no liability, express or implied, arising out of any unauthorized modification of design. Servicer assumes all liability.

TABLE OF CONTENTS

TITLE PAGE
SAFETY PRECAUTIONS 1
GENERAL 1
SPECIFICATIONS 2
CONTROLS 2
MECHANICAL REPLACEMENT PARTS LIST 3
CUSTOMER ADJUSTMENTS 3
ADJUSTMENT PROCEDURES 5
INTERCONNECT WIRING DIAGRAM (EXPLODED VIEW) 8
SCHEMATIC NOTES 9
CHASSIS REMOVAL 9
WAVEFORMS 10
SCHEMATIC DIAGRAM (MAIN \& CRT SOCKET PANELS) 10
SCHEMATIC DIAGRAM (POWER SUPPLY) 11
P.C. BOARD (MAIN PANEL) 12
P.C. BOARD (CRT SOCKET PANEL) 13
P.C. BOARD (POWER SUPPLY PANEL) 14
REPLACEMENT PARTS LIST 15
SAFETY GUIDELINES 21
SCHEMATIC DIAGRAM (1930-B - CBM CASE COLOR MONITOR) 23
SAFETY NOTICEANY PERSON ATTEMPTING TO SERVICE THIS CHASSIS MUST FAMILIARIZE HIMSELFWITH THE CHASSIS AND BE AWARE OF THE NECESSARY SAFETY PRECAUTIONS TOBE USED WHEN SERVICING ELECTRONIC EQUIPMENT CONTAINING HIGH VOLTAGES.

```
                                    CAUTION
USE A SEPARATE ISOLATION TRANSFORMER FOR THIS UNIT WHEN SERVICING.
```


SAFETY PRECAUTIONS

Picture Tube Replacement

The primary source of X -radiation in this monitor is the picture tube. The picture tube utilized in this chassis is specially constructed to limit X-radiation emissions. For continued X-radiation protection, the replacement tube must be the same type as the original, including suffix letter, or N.A.P. Consumer Electronics corp. (NAPCEC) approved type.

Safety goggles must be worn when the picture tube is replaced.

Parts Replacement

Many electrical and mechanical parts in NAPCEC monitors have special safety-related characteristics. These characteristics are often not evident from visual inspection nor can the protection afforded by them necessarily be obtained by using replacement components rated for higher voltage, wattage, etc. The use of a substitute part which does not have the same safety characteristics as the NAPCEC recommended replacement parts shown in this service manual may create shock, fire or other hazards.

GENERAL

ESD 音

All ICs and many other semi-conductors are susceptible to electrostatic discharges (ESD). Careless handling during repair can reduce life drastically. When repairing, make sure that you are connected to the same potential as the mass of the set via a wrist wrap with resistance. Keep components and tools also at this potential.

To prevent ICs and transistors from being damaged, highvoltage flash-overs should be avoided. For checking the high voltage, a suitable meter should be used. The picture tube should be discharged only as indicated.

Be careful when measuring the EHT-section and the picture tube.
Use plastic instead of metal tools for adjusting. This is necessary to avoid a short-circuit or to avoid causing a circuit to become unstable.
Never replace components when the set is switched on.

Removing the chassis

- Remove the backcover
- Slide out the chassis
- After repair the connecting cables of the chassis should be fixed in the original way.

SPECIFICATIONS
 (subject to modification)

AC voltage
Power consumption at 120 V
EHT
Line frequency
Frame frequency
Band width
Picture tube (9CM082)
Picture tube (9CM062)
RESOLUTION

Sync. polarity		- pos $/$ neg
HOR.	VERT.	
Pos.	Neg.	-640 dots $\times 350$ lines
Neg.	Pos.	-640 dots $\times 400$ lines
Neg.	Neg.	-640 dots $\times 480$ lines

INPUT SPECs
$\begin{array}{ll}\text { RGB linear } & \text { - all colors } \\ \text { Sync TTL level } & \text { - pos/neg }\end{array}$
$-120 \mathrm{Vac}+/-10 \%-60 \mathrm{~Hz}$

- 85 Watts
- 24 KV
- 31480 Hz
$-60 \mathrm{~Hz} / 70 \mathrm{~Hz}$
- 18 MHz
- M34 JPS 77×69
- M34 JPM 70X69
- 640 dots $\times 400$ lines
- 640 dots X 480 lines

CONTROLS

Front	: Power on/off SK1 (incl. LED indicator) : Brightness (R558) : Contrast (R322) : Horizontal phase (centering) (R408) : Vertical centering (R524)
Rear	: Horizontal width (R541) : Vertical height (R513 for 480 lines)

INPUT SIGNAL CONNECTOR
15 PIN "D" SHELL CONNECTOR

1 - red	6 - red ground	11 - ground
2 - green	7 - green ground	$12-$ n.c.
3 - blue	8 - blue ground	13 - horizontal sync
4 - n.c.	9 - n.c.	14 - vertical sync
5 - self test	10 - ground	15 - n.c.

VGA STANDARD

Horizontal frequency	Vertical frequency	H. Sync. polarity	V. Sync. polarity	Resolution (horizontal lines)
31.5 kHz	70 kHz	Positive (+)	Negative (-)	350
31.5 kHz	70 kHz	Negative (-)	Positive (+)	400
31.5 kHz	60 kHz	Negative (-)	Negative (-)	480

MECHANICAL/ELECTRICAL PARTS

Ref. Description
Front Cabinet
Rear Cabinet
Push Button On/Off
Cover for Controls
Pad (Table Protectors)
Lock for Cover
Adjust Rod
Slider Chassis
Pedestal
Holder Line Input Transformer
S Mains Cord
S Picture Tube (9CM082)
S Picture Tube (9СМ062)
Customer inst. Book (9CM082)
Customer Inst. Book (9CM062)
Foot Pedestal (9CM082)
Foot Pedestal (9CM062)
Degaussing Coil

Part. No.

1492150171 1492160058 1494200366 1491320305 4495200003 1491410003 1191000039 1493030033 1491080019 1491070126 4692020069 M34JPS77X69 M34JPM70X6؟ IB53790001 IB55180001 1491080019 1491030024 3691300012

CUSTOMER ADJUSTMENT

1. Connection

Connecting the monitor to the computer. The monitor is fitted with a 15 -pin D-shell connector.
b. Contrast can be adjusted with control (R322)
c. Brightness can be adjusted with control :ف̣:: (R558)

d. The image may be positioned horizontally with control (R408)
e. The image may be positioned vertically with control (R524)

f. You can adjust the image height with control (\ddagger
(R513 for 480 lines)
g. The image width can be ajusted with control \leftrightarrows (R541)

SERVICE ADJUSTMENTS

Adjustment notes:

Caution

1. Use an isolation transformer when applying power to the exposed chassis.
2. Line voltage maintained at $120 \mathrm{VAC}, 60 \mathrm{~Hz}$.
3. The unit should be allowed to warm up for at least 30 minutes prior to making any adjustments.
4. Voltages measured with respect to ground.

Adjustments

1. +120 Vdc supply voltage

- Contrast and brightness to minimum.
- Connect a voltmeter across C145 and turn on the monitor.
- Adjust R114 for a reading of 120 V on the meter.

2. Synchronization

Horizontal synchronization

- Inject a cross-hatch pattern and short R413/C415.
- Adjust R419 until the picture is straight.
- Remove the short-circuit

Vertical synchronization

- Turn off the vertical sync. by removing input signal.
- Adjust R504 for 47 Hz at pin 3 of IC501

3. Focus

Adjust the focus control for optimal focus.
4. Adjustment of picture geometry

- Inject a cross-hatch pattern and set brightness and contrast to the mechanical mid-position.

East-West correction

- Adjust R539 so that the vertical lines at the left-hand and the right-hand side are straight (480 lines).

Vertical linearity

- Adjust R516 so that a good linearity is obtained between upper and lower side of the picture (480 lines).
Horizontal amplitude
- Set the horizontal width to 240 mm with R541 (480 lines).

Horizontal position

- The horizontal centering can be adjusted with R441.
- Adjust R411 so that R408 allows as much shifting to the left as to the right (480 lines).

Vertical amplitude

- Adjust the vertical height to 180 mm with R513 (480 lines) (R507 for 400 lines and R509 for 350 lines).
- The vertical centering can be adjusted with R524.

Brightness presetting

- Set brightness to mechanical mid-position.
- Adjust R567 so that the voltage across C555 is 41 V
-5. VG2 adjustment and cut-off points in picture tube
- Adjust brightness to mechanical mid-position and adjust contrast to maximum.
- Adjust VG2 (SCREEN) to minimum.
- Adjust R726, R733 and R739 to mechanical mid-position.
- Inject a white pattern signal and adjust VG2 (SCREEN) until one color becomes visible.
- Set the pattern generator to purity with the color that was first visible.
- Readjust VG2 to just visible light.
- Adjust the 2 remaining colors with their corresponding purity color for the same light output using potentiometers R726, R733 or R739.
- Now return to white pattern signal and adjust potentiometers R726, R733 and R739 until an optimum background color is formed.
- Using potentiometers R328, R332 and R335 (with white pattern signal), adjust the background color so that at minimum brightness and maximum brightness the background color is the same.

SERVICE ADJUSTMENTS (Continued)

Note: The following adjustments need only be performed if the CRT has been replaced. Minor corrections for purity and convergence may be accomplished through. the use of the Purity and Convergence Assembly located on the neck of the CRT.

Color Purity adjustment (Refer to Figure 1)

1. Loosen the yoke clamp screw and slide the yoke back away from the rubber wedges.
2. Remove the rubber wedges (G) and slide the yoke forward until it rests firmly against the bell of the CRT.
3. Tighten the yoke clamp screw slightly so that the yoke can still be moved with some friction.
4. Place the multi-pole Purtiy and Convergence Assembly in the position shown in Figure 1.
5. Tighten screw (A) and turn securing ring (B) counterclockwise. Position the unit so that it faces in an East/West direction and degauss the instrument.
6. Turn on the power and inject a cross-hatch pattern signal. Allow a 10 minute warm-up period.
7. Roughly adjust the static convergence, using tabs C and D.
8. Set the Vertical Centering Control (R524) to its mechanical center. Disconnect R728 and R735 to turn off the green and blue guns.
9. Adjust the Two-pole purity rings (E) to center the red vertical and horizontal lines.
10. Inject a white pattern signal and move the deflection yoke to obtain a full red raster.
11. Turn on the green and blue guns by reconnecting R728 and R735. If a uniformly white raster does not appear, minor adjustments may be made by adjusting the purity rings (E).
12. Inject a cross-hatch pattern signal to ensure that the yoke is not tilted. If necessary rotate the yoke to obtain a level raster.
13. Tighten screw F and adjust $R 524$ for proper vertical centering. Proceed to the Static Convergence Adjustment.

Fig. 1

SERVICE ADJUSTMENTS (Continued)

Static Convergence Adjustment

1. Inject a cross-hatch pattern signal and allow a 10 minute warm-up period.
2. Turn off the green gun by disconnecting R728. Turn locking ring (B) counterclockwise.
3. Slowly spread, and if necessary, rotate the 4-pole magnetic rings (C) to converge red and blue lines at the center of the screen.
4. Reconnect R728 to turn on the green gun and disconnect R735 to turn off the blue gun.
5. Slowly spread, and if necessary, rotate the 6 -pole magnectic rings (D) to converge the red and green lines at the center of the screen.
6. Reconnect R735 to turn on the blue gun.
7. For optimum performance, repeat steps 1 through 6. Proceed to the Dynamic Convergence Adjustment.

Figure 2 - Tilt yoke up or down to converge Red and Blue vertical lines at 6 and 120^{\prime} clock positions, and Red and Blue horizontal lines at 3 and $9 o^{\prime}$ clock positions.

Dynamic Convergence Adjustment

1. Inject a cross-hatch pattern signai and turn off the green gun by disconnecting R728.
2. Tilt the yoke up and down to achieve the best convergence of the red and blue vertical lines at the 6 and 120 'clock and the red and blue horizontal lines at the 3 and $9 o^{\circ}$ clock positions (see Figure 2).
3. When the correct position has been found, place a rubber wedge between the yoke and CRT. If the yoke is tilted up, place wedge 1 as shown in in Figure 3a; if it is tilted down, place wedge 1 as shown in Figure 4 a.
4. Tilt the yoke to the left and right to find the point of best possible convergence of the red and blue lines at the edges, top, and bottom of the screen as shown in Figure 5.
5. When the correct position is located, place wedges 2 and 3 as shown in Figure 3b or 4b.
6. Remove wedge 1 and place it in the final position as shown in Figure 3c or 4c. Reconnect resistor R728 to turn on the green gun.

Figure 4a

Figure 5 - Tilt yoke left to right to converge Red and Blue horizontal lines at the 6 and 12 positions, and Red and Blue vertical lines at 3 and 90^{\prime} clock positions.

SCHEMATIC NOTES

1. DC voltages and waveforms should be measured with respect to ground as close as possible to the point to be measured.
2. All voltages are positive $D C$ with respect to ground, be it the isolated ground (ground $\stackrel{\perp}{=}$) or the AC ground (ground \downarrow) and may vary due to normal production tolerances. Voltage sources are also nominal, with the exception of the 120 Vdc source which is set at the factory to be $+/-1 \mathrm{Vdc}$.
3. DC voltages and waveforms without brackets were measured under the following conditions:
A. Line voltage maintained at 120 Vac .60 Hz via an isolation transformer.
B. Contrast and brightness set at the mechanical mid-position (detent)
C. Using a color bar pattern from an RGB pattern generator (Network Technologies lincorporated Montest-A5D3 or equivalent). On a scan format of $31.5 \mathrm{kHz} . / 480$ line resolution.
4. DC voltages with brackets and waveforms with the suffix (A) and in a box were taken in the self test mode and in the same conditions as in steps $3 A$ and $3 B$.
5. For voltage, wattage or tolerance ratings of capacitors or resistors, refer to the electrical replacement parts list.
6. The CRT board is provided with printed spark gaps. Each spark gap is arranged between an electrode of the CRT and the aquadag coating.
7. During manufacture alternative semiconductors may be used. However the semiconductors specified in the parts list and circuit diagram can always be used as replacements.
8. Capacitance values are listed in microfarads (μ), nanofarads (n) and picofarads (p). ($0.001 \mu=1 \mu=1000 p$)
9. * = indicates component raised $1 / 4$ inch above the P.C.Board.

CHASSIS REMOVAL

With the back removed, all power disconnected and looking from the back.

1. Remove the bottom left CRT Screw with the Ground wire.
2. Remove the screw at the top of the Power Supply Panel with the ground wire.
3. Remove the screw above the AC power input plug.
4. Remove all cable and wire tie downs.
5. Unplug M102 and M110 from the Main Chassis.
6. Turn the back to the left. Start at the AC input plug and look to the right. Remove the first screw in the support bracket.
7. Now lift and pull the Main Chassis and the Power supply to the rear. Lay the Power supply to the left.
8. Remove the chassis rails and replug M102 to the Main Chassis.
To replace the the Main Chassis and Power Supply do the steps in reverse order.

CAUTION

USE A SEPARATE ISOLATION TRANSFORMER FOR THIS UNIT WHEN SERVICING.

WARNING

Critical components having special safety characteristics are identified with an S by the Ref. No. in the parts list and enclosed within a broken line* along with the safety symbol \mathbb{A} on the schematics or exploded views.

Use of substitute replacement parts which do not have the same specified safety characteristics may create shock, fire, or other hazards.

Under no circumstances should the original design be modified or altered without written permission from the N.A.P. Consumer Electronics Corp. NAPCEC assumes no liability, express or implied, arising out of any unauthorized modification of design. Servicer assumes all liability.

[^0]

POWER SUPPLY SCHEMATIC DIAGRAM

MAIN P.C. BOARD
(viewed from the component side)

PICTURE TUBE P.C. BOARD
(viewed from the component side)

POWER SUPPLY P.C. BOARD
(viewed from the component side)

9CM062/9CM082 REPLACEMENT PARTS LIST
To ensure optimum performance and reliability always use genuine factory replacement parts.

PART OF LED ASSY

Ref. Description

D175
Connector 2 pole
LED green

PARTS OF CHASSIS

MISCELLANEOUS
Ref. Description
micro connector 2 pole micro connector 8 pole socket 5 pole micro connector 10 pole connector 4 pole (dia 1.5) connector 4 pole (dia 2.35)

Ref. Description

 Capacitors| C171 | $47 \mu \mathrm{~F}, 160 \mathrm{~V}$, electrolytic | 2701741025 |
| :---: | :---: | :---: |
| C172 | $10 \mu \mathrm{~F}, 160 \mathrm{~V}$, electrolytic | 2796331000 |
| C173 | 470رF, 35V, electrolytic | 2701741019 |
| C174 | 470رF, 25V, electrolytic | 2701741018 |
| C175 | $10 \mu \mathrm{~F}, 25 \mathrm{~V}$, electrolytic | 2796141000 |
| C301 | $47 \mu \mathrm{~F}, 16 \mathrm{~V}$, electrolytic | 2701741016 |
| C302 | $47 \mu \mathrm{~F}, 16 \mathrm{~V}$, electrolytic | 2701741016 |
| C303 | $47 \mu \mathrm{~F}, 16 \mathrm{~V}$, electrolytic | 2701741016 |
| C311 | $100 \mu \mathrm{~F}, 16 \mathrm{~V}$, electrolytic | 2701741029 |
| C312 | $0.010 \mu \mathrm{~F}, 10 \%, 50 \mathrm{~V}$, ceramic | 2508331038 |
| C313 | 0.010 F , $10 \%, 50 \mathrm{~V}$, ceramic | 2508331038 |
| C314 | 47 $\mu \mathrm{F}, 16 \mathrm{~V}$, elelctrolytic | 2701741016 |
| C315 | 0.010 $\mathrm{F}, 10 \%, 50 \mathrm{~V}$, ceramic | 2508331038 |
| C316 | $47 \mu \mathrm{~F}, 16 \mathrm{~V}$, electrolytic | 2701741016 |
| C317 | $0.010 \mu \mathrm{~F}, 10 \%, 50 \mathrm{~V}$, ceramic | 2508331038 |
| C318 | $47 \mu \mathrm{~F}, 16 \mathrm{~V}$, electrolytic | 2701741016 |
| C319 | $10 \mu \mathrm{~F}, 16 \mathrm{~V}$, electrolytic | 2701741028 |
| C320 | 0.0010 $\mathrm{F}, 10 \%$, 50V, ceramic | 2508281029 |
| C321 | 0.022 $\mathrm{F}, 20 \%$, 50V, ceramic | 2508332238 |
| C326 | $4.7 \mu \mathrm{~F}, 25 \mathrm{~V}$, electrolytic | 2701741020 |
| C331 | 0.010 F , $10 \%, 50 \mathrm{~V}$, ceramic | 2508331038 |
| C332 | 0.010 F , $10 \%, 50 \mathrm{~V}$, ceramic | 2508331038 |
| C333 | 0.010 F F, 10\%, 50V, ceramic | 2508331038 |
| C334 | 0.010 F , 10\%, 50V, ceramic | 2508331038 |
| C335 | 0.010 $\mathrm{F}, 10 \%, 50 \mathrm{~V}$, ceramic | 2508331038 |
| C336 | 0.010 F , 10\%, 50V, ceramic | 2508331038 |
| C337 | 0.010 $\mathrm{F}, 10 \%, 50 \mathrm{~V}$, ceramic | 2508331038 |
| C338 | 2.2 $2 \mathrm{~F}, 63 \mathrm{~V}$, electrolytic | 2791202297 |
| C341 | 2.2 $2 \mathrm{~F}, 63 \mathrm{~V}$, electrolytic | 2791202297 |
| C343 | $2.2 \mu \mathrm{~F}, 63 \mathrm{~V}$, electrolytic | 2791202297 |
| C352 | 0.010 F F, 10\%, 50V, ceramic | 2508331038 |
| C353 | $100 \mu \mathrm{~F}, 16 \mathrm{~V}$, electrolytic | 2701741029 |
| C361 | 56pF, 5\%, 50V, ceramic | 2508415605 |
| C362 | 82pF, 5\%, 50V, ceramic | 2509040815 |
| C364 | 33pF, 5\%, 50V, ceramic | 2602320545 |
| C365 | 33pF, 5\%, 50V, ceramic | 2602320545 |
| C366 | 33pF, 5\%, 50V, ceramic | 2602320545 |
| C367 | 5.1pF, 10\%, 500V, ceramic | 2509041403 |
| C368 | 5.1pF, 10\%, 500V, ceramic | 2509041403 |
| | | |

Part. No.
4613990296
5392100470

Part. No.
1813930150
1814521282
1814521053
1814521446
1814521348
1814521052
Part. No.

2701741025
2796331000
2701741018

2701741016
2701741016
16

250831038
2508331038
2701741016
250831038
2508331038
2701741016
2701741028
2508281029
2508332238
2508331038
2508331038
2508331038
2508331038
2508331038
2508331038
2791202297
2791202297
2508331038
29
5084505

2602320545

2509041403

2509041403

C371	.	2509041403
02	$10 \mu \mathrm{~F}, 16 \mathrm{~V}$, electrolytic	2701
04		2701741028
	0.010山F 10\% 50V ce	38
C407	0.02	2508332238
C408	100	
C413	0.0027 F , 10%, 50V, polyester	2509041381
C414	$0.0027 \mu \mathrm{~F}, 10 \%$, 50 V , polyester	2509041381
C415	$0.010 \mu \mathrm{~F}, 10 \%$, 100V, polyester	54
C4	0.010 FF, 10\%, 50V, ceramic	2508331038
C417	$100 \mu \mathrm{~F}, 16 \mathrm{~V}$, electrolytic	270
18	0.0033 μ F, 5%, 50V, poly	260
C421	0.0047 $\mu \mathrm{F}, 20 \%, 50 \mathrm{~V}$, ceramic	2508304728
C422	$1 \mu \mathrm{~F}, 50 \mathrm{~V}$, electrolytic	2701741015
C423	0.1 1 F, 10\%, 100V, polyester	2508141049
24	0.010, F, 20\%, 400V, poly	250
C	27pF, 5\%, 500V, ceramic	25090
C426	$0.22 \mu \mathrm{~F}, 10 \%$, 100V, polyester	2508142249
C427	$2.2 \mu \mathrm{~F}, 63 \mathrm{~V}$, electrolytic	2791202297
C428	$22 \mu \mathrm{~F}, 35 \mathrm{~V}$, electrolytic	9
29	100pF, 10\%, 2KV, cera	2509041404
C431	0.0039 $\mathrm{F}, 5 \%$, 1.6KV, polyester	2602320837
C432	$0.013 \mu \mathrm{~F}, 5 \%, 400 \mathrm{~V}$, polyester	2509040290
C433	220pF, 10\%, 2KV, ceramic	2602320844
C434	$10 \mu \mathrm{~F}, 160 \mathrm{~V}$, electrolytic	2796331000
35	0.22 $\mu \mathrm{F}, 10 \%$, 25	26
C	$0.56 \mu \mathrm{~F}, 10 \%$, 250V, polyester	2596135649
C437	$6.8 \mu \mathrm{~F}, 50 \mathrm{~V}$, bi-polar	2701741027
C438	470pF, 10\%, 500V, ceramic	2602320845
C439	0.047 $\mu \mathrm{F}, 10 \%$, 250V, polyester	2508154739
41	$220 \mu \mathrm{~F}, 16 \mathrm{~V}$, electroly	2701741017
15	0.010 F , $20 \%, 400 \mathrm{~V}$, polyester	2509581039
C448	0.047 μ F, 10\%, 250V, polyester	2508154739
C449	$1 \mu \mathrm{~F}, 50 \mathrm{~V}$, electrolytic	2701741015
C501	$0.001 \mu \mathrm{~F}, 10 \%, 50 \mathrm{~V}$, ceramic	2508281029
C502	0.001	29
C503	$0.010 \mu \mathrm{~F}, 10 \%, 100 \mathrm{~V}$, polyeste	2509041054
C505	0.33 F , 10\%, 63V, polyester	2508143349
C514	$0.10 \mu \mathrm{~F}, 10 \%, 100 \mathrm{~V}$, polyester	2508141049
C515	$0.10 \mu \mathrm{~F}, 10 \%$, 100V, polyester	2508141049
C519	$220 \mu \mathrm{~F}, 35 \mathrm{~V}$, electroly	2602320854
C521	1000 F , 35V, electrolytic	2701741022
C528	$0.22 \mu \mathrm{~F}, 10 \%$, 100V, polyester	2508142249
C531	$2200 \mu \mathrm{~F}, 16 \mathrm{~V}$, electrolytic	2701741030
C533	$47 \mu \mathrm{~F}, 16 \mathrm{~V}$, electrolytic	2701741016
C	$100 \mu \mathrm{~F}, 16 \mathrm{~V}$, ele	2701741029
C538	$0.33 \mu \mathrm{~F}, 10 \%$, 63V, polyester	2508143349
C541	$100 \mu \mathrm{~F}, 35 \mathrm{~V}$, electrolytic	2509041326
C543	$0.0033 \mu \mathrm{~F}, 10 \%$, 50 V , ceramic	2602320850
C548	100pF, $10 \%, 50 \mathrm{~V}$, ceramic	2508311019
	$0.22 \mu \mathrm{~F}, 10 \%, 100 \mathrm{~V}$, polyester	2508142249
C555	$1 \mu \mathrm{~F}, 160 \mathrm{~V}$, electrolytic	2701741021
C556	$10 \mu \mathrm{~F}, 160 \mathrm{~V}$, electrolytic	2796331000
C557	0.1μ F.. 20%, 250V, polyester	2508881049
C558	470pF, 10\%, 500V, cerami,	26023208

9CM062/9CM082 REPLACEMENT PARTS LIST (Continued)

Ref. Resis (All ar	Description tors $5 \%, 0.2 \mathrm{~W}$ met	Part. No. erwise specif
R175	1kת, 0.33W	2302861022
R301	758	2394027505
R302	75Ω	2394027505
R303	75Ω	2394027505
R304	$10 \mathrm{k} \Omega$	2394011035
R305	10k Ω	2394011035
R306	10k Ω	2394011035
R307	10k Ω	2394011035
R308	$10 \mathrm{k} \Omega$	2394011035
R309	10k Ω	2394011035
R311	330Ω	2302123315
R312	330Ω	2302123315
R313	330Ω	2302123315
R314	22k $\Omega, 0.33 \mathrm{~W}$	2302822235
R315	82k $\Omega, 0.33 \mathrm{~W}$	2394038235
R317	15k $\Omega, 0.33 \mathrm{~W}$	2302821535
R318	$15 \mathrm{k} \Omega, 0.33 \mathrm{~W}$	2302821535
R319	$9.1 \mathrm{k} \Omega, 0.33 \mathrm{~W}$	2394049125
S R320	4.78	2302684785
R321	6.8k, 0.33 W	2302126825
R322	$10 \mathrm{k} \Omega$, potm	2291070004
R323	10k, 0.33 W	2302821035
R324	15k $\Omega, 0.33 \mathrm{~W}$	2302821535
R325	$1 \mathrm{k} \Omega$, 0.33W	2302861022
R326	15k $\Omega, 0.33 \mathrm{~W}$	2302821535
R327	$1.2 \mathrm{k} \Omega$	2302041225
R328	$1 \mathrm{k} \Omega$, potm	2204291267
R329	$1.2 \mathrm{k} \Omega$	2392041225
R331	$1.2 \mathrm{k} \Omega$	2392041225
R332	$1 \mathrm{k} \Omega$, potm	2204291267
R333	$1.2 \mathrm{k} \Omega$	2392041225
R334	$1.2 \mathrm{k} \Omega$	2392041225
R335	$1 \mathrm{k} \Omega$, potm	2204291267
R336	$1.2 \mathrm{k} \Omega$	2392041225
R337	470kR, 0.33W	2302124745
R338	4308	2394024315
R339	$82 \mathrm{k} \Omega$	2394028235
R341	430 ${ }^{\text {a }}$	2394024315
R342	82k Ω	2394028235
R343	430 ${ }^{\text {a }}$	2394024315
R344	82k Ω	2394028235
R345	10Ω	2394011005
R346	10Ω	2394011005
R347	10Ω	2394011005
R348	3308, 0.33W	2303203315
R349	3308, 0.33W	2303203315
R351	3308, 0.33W	2303203315
S R352	4.78	2302684785
R353	478	2392044705
R354	478	2392044705
R355	478	2392044705
R356	22k $\Omega, 0.33 \mathrm{~W}$	2302822235
R357	56Ω	2394045605
R358	56Ω	2394045605
R359	56Ω	2394045605
R361	68Ω	2394026805
R362	68Ω	2394026805
R364	33Ω	2392043305
R365	338	2392043305
R366	33Ω	2392043305

R368	22k $\Omega, 033 \mathrm{~W}$	2302822235
R369	1M Ω, 0.5W, 5\%	2394041055
R401	1 k , 0.33 W	2302861022
R402	470, 0.33 W	2302124715
R403	$1 \mathrm{k} \Omega, 0.33 \mathrm{~W}$	2302861022
R404	470, 0.33W	2302124715
R406	1kת, 0.33W	2302861022
R407	120^, 1W, 5\%	2394051215
R408	10kS, potm	2291070003
R409	10k $\Omega, 0.33 \mathrm{~W}$	2302821035
R410	$3.9 \mathrm{k} \Omega, 0.33 \mathrm{~W}$	2302123922
R411	$5 \mathrm{k} \Omega$, potm	2204291273
R412	22k, 1\%	2390990028
R413	1.5k $\Omega, 0.33 \mathrm{~W}$	2302890466
R415	1.3k, 0.33 W	2394041325
S R416	180^, 2W, 5\%	2394061815
R417	2.2k $\Omega, 0.33 \mathrm{~W}$	2302122225
R418	13k $2,0.33 \mathrm{~W}$	2394031335
R419	2.2k Ω, potm	2204692222
R420	680, 0.33 W	2302126815
R421	150k $\Omega, 0.33 \mathrm{~W}$	2394041545
R422	$3.3 \mathrm{k} \Omega, 0.33 \mathrm{~W}$	2302823325
R423	22k $\Omega, 0.33 \mathrm{~W}$	2302822235
R424	2208, 0.33W	2394262215
S R425	4.78	2302684785
S R426	1k Ω, 2W, 5\%	2394061025
S R427	2.2R, 5W, 5\%	2499090002
R428	68, 0.5W	2302126805
S R429	2.2ת, 5W, 5\%	2499090002
R431	$2 \mathrm{k} \Omega, 0.5 \mathrm{~W}$	2302122025
R432	$2 \mathrm{k} \Omega, 0.5 \mathrm{~W}$	2302122025
R433	100k $\Omega, 0.33 \mathrm{~W}$	2394041045
R434	$1 \mathrm{k} \Omega, 0.5 \mathrm{~W}$	2394041025
R435	27k $2,0.33 \mathrm{~W}$	2302122735
R436	100k $\Omega, 0.33 \mathrm{~W}$	2394041045
R347	$1 \mathrm{k} \Omega, 0.33 \mathrm{~W}$	2302861022
R348	1 k , 0,33W	2302861022
S R439	1.5R	2302681585
R441	100ת, potm	2291070002
S R442	82,, 1 W	2392058205
S R443	82ת, 1W	2392058205
S R445	100Ω	2302681015
$R 446$	120k, 1%	2390990029
R447	18k ${ }^{\text {c, 1\% }}$	2390990030
R448	4.3kת, 1\%	2390990031
R449	100Ω	2302121015
R501	100k $\Omega, 0.33 \mathrm{~W}$	2394041045
R502	100k $2,0.33 \mathrm{~W}$	2394041045
R503	10, 0.33W	2303201005
R504	5 k , potm	2203874722
R505	$4.7 \mathrm{k} \Omega$	2394044795
R506	$4.3 \mathrm{k} \Omega$	2394024325
R507	470k Ω, potm	2204291268
R508	680k	2394026845
R509	$470 \mathrm{k} \Omega$, potm	2204291268
S R511	220k Ω	2302861273
R512	150k, , 0.33W	2394041545
R513	250k , potm	2291010104
R514	560k, 0.33 W	2302125645
R516	100k Ω, potm	2204291269

9CM062/9CM082 REPLACEMENT PARTS LIST (Continued)

Ref. Resistors (continued)	Part. No.	
R517	$56 \mathrm{k} \Omega, 0.33 \mathrm{~W}$	
S R518	2.2Ω	2303205635
R519	$4.7 \mathrm{k} \Omega, 0.33 \mathrm{~W}$	2302682285
R521	$1.8 \mathrm{k} \Omega, 0.33 \mathrm{~W}$	2302124725
R522	$150 \Omega, 1 \mathrm{~W}$	2302121825
R524	$10 \mathrm{k} \Omega$, potm	2302931515
R525	$3.9 \mathrm{k} \Omega, 0.33 \mathrm{~W}$	2291070003
R526	$150 \Omega, 1 \mathrm{~W}$	2302123922
R528	$2.6 \Omega, 0.33 \mathrm{~W}$	2302931515
R529 $330 \Omega, 0.5 \mathrm{~W}$	2392042295	
R531	$4.7 \mathrm{k} \Omega, 0.33 \mathrm{~W}$	2303203315
R532	$1.8 \mathrm{k} \Omega, 0.33 \mathrm{~W}$	2302124725
R533	$120 \Omega, 0.33 \mathrm{~W}$	2302121825
S R534	$4 \mathrm{k} \Omega, 0.33 \mathrm{~W}$	2302121215
R535	$10 \mathrm{k} \Omega, 0.33 \mathrm{~W}$	2302124735
R536	$2.2 \mathrm{k} \Omega, 0.33 \mathrm{~W}$	2302821035
R537	$4.7 \mathrm{k} \Omega, 0.33 \mathrm{~W}$	2302122225
R538	$1 \mathrm{kK} \Omega, 0.33 \mathrm{~W}$	2302821535
R539	$10 \mathrm{k} \Omega$, potm	2204291270
R541	$10 \mathrm{k} \Omega$, potm	2291010086

Ref. Description Resistors

R542 $4.7 \mathrm{k} \Omega, 0.33 \mathrm{~W}$
R543 270k $\Omega, 0.33 \mathrm{~W}$
R544 1.2k $\Omega, 0.33 \mathrm{~W}$
R545 100k $\Omega, 0.33 \mathrm{~W}$
R546 1M $\Omega, 0.33 \mathrm{~W}$
R547 560k $\Omega, 0.33 \mathrm{~W}$
R548 $2.7 \mathrm{k} \Omega, 0.33 \mathrm{~W}$
S R549 2.7Ω
R551 22k $\Omega, 0.33 \mathrm{~W}$
R552 $4.7 \mathrm{k} \Omega, 0.33 \mathrm{~W}$
R553 $5.6 \mathrm{k} \Omega, 0.5 \mathrm{~W}$
R554 8.2k $\Omega, 0.5 \mathrm{~W}$
R555 47k $\Omega, 0.33 \mathrm{~W}$
S R556 1.5 Ω
R557 56k $\Omega, 0.33 \mathrm{~W}$
R558 47k Ω, potm
R559 68k $\Omega, 0.33 \mathrm{~W}$
R562 10M $\Omega, 0.33 \mathrm{~W}$
R563 4.7M $\Omega, 0.33 \mathrm{~W}$
S R564 1.2 ${ }^{1}$, 1 W
R566 1k $\Omega, 0.33 \mathrm{~W}$
R567 47k Ω, potm

Ref. Description
Coils and transformers
S319 coil $6.8 \mu \mathrm{H}$
S T401 hor. drive transf
S T402 line outp. transf
S427 coil $5 \mu \mathrm{H}$
S432 linearity coil
S434 coil $200 \mu \mathrm{H}$
S436 coil 12 mH

Part. No.

2302124725
2394032745
2302121225
2394041045
2394041055
2302125645
2302822725
2302890464
2302822235
2302124725
2302225625
2302128225
2302124735
2302681585
2302205635
2291070006
2302826835
2302121065
2302124755
2394051295
2302861022
2291010048

Part. No.

3618136899
3091000218
2290000032
3618271774
3691150001
3618271770
3618271771

Ref.	Description	Part. No.
Diodes		
		5301811001
D326	diode	5301811001
D327	diode	5301811001
D353	diode	5301811001
D354	diode	5301811001
D355	diode	5301811001
D368	diode	5302390242
D407	zener diode 5.1V	5301811001
D424	diode	5301711002
D426	diode	5391500200
D427	diode	5302261002
D431	diode	5302390244
D432	diode	5391510050
D438	diode	5302681002
D445	diode	5302250180
D447	zener diode 18V	5301811001
D505	diode	5301811001
D506	diode	5301711002
D559	diode	5301711002
D528	diode	5301711002
D534	diode	5390140249
D539	zener diode 2.4V	5301711002
D553	diode	5302681002
D554	diode	5391500450
D556	diode	5390255109
D557	zener diode 51V	

Ref.	Description Transistors	Part. No.
TS311	NPN, driver	6103700001
TS312	NPN, diver	6103700001
TS313	NPN, driver	6103700001
TS317	PNP, driver	6103720002
TS345	NPN, driver	6190004470
TS346	NPN, driver	6190004470
TS347	NPN, driver	6190004470
TS353	NPN, output	6190102330
TS354	NPN, output	6190102330
TS355	NPN, output	6190102330
TS356	NPN, driver	6104350002
TS425	NPN, driver	6105350003
TS428	NPN, output	6104400109
TS436	NPN, driver	6105000004
TS447	NPN, driver	6103700001
TS448	PNP, driver	$610372 C 002$
TS501	NPN, driver	6104350002
TS502	NPN, driver	619010148002
TS521	PNP, output	6103680002
TS524	NPN, output	6190102320
TS536	PNP, driver	6190102320
TS537	PNP, driver	6104350002
TS538	NPN, output	6103720002
TS545	PNP, driver	6190005570
TS546	NPN, output	6105350003

9CM062/9CM082 REPLACEMENT PARTS LIST (Continued)

Ref. Description Integrated circuits

IC102	Voltage stabilizer
IC301	RGB interface
IC401	Exclusive OR
IC402	Multivibrator
IC403	Horizontal sync.
IC501	Vertical sync.

PARTS OF POWER SUPPLY

Ref. Description Miscellaneous	
	Power supply complete
	Power switch
	Power socket
	Connector 2 pole
S VL101	Connector 5 pole
Fuse 3A/250V	

Ref. Description
Capacitors
S C102 0.22 $\mu \mathrm{F} .20 \%$. 250V. polyester S C103 $0.0022 \mu \mathrm{~F} .125 \mathrm{~V}$. ceramic
S C104 $0.0022 \mu \mathrm{~F} .125 \mathrm{~V}$. ceramic C106 $0.047 \mu \mathrm{~F} .20 \%$. 400V. polyester C107 $0.0022 \mu \mathrm{~F} .10 \%$. 1 KV . ceramic C108 $0.0022 \mu \mathrm{~F} .10 \%$. 1 KV . ceramic C109 $0.0022 \mu \mathrm{~F} .10 \%$. 1 KV . ceramic C110 $0.0022 \mu \mathrm{~F} .10 \%$. 1 KV . ceramic C111 0.22 $\mu \mathrm{F} .10 \%$. 250V. polyester C112 $220 \mu \mathrm{~F} .200 \mathrm{~V}$. electrolytic
C116 47 μ F. 16V. electrolytic C117 $0.010 \mu \mathrm{~F}, 20 \%$. 50 V , ceramic C122 $1 \mu \mathrm{~F}, 50 \mathrm{~V}$. electrolytic C124 $0.013 \mu \mathrm{~F}, 5 \%$. 100V. polyester C129 $0.33 \mu \mathrm{~F} .10 \%$, 63 V . polyester C132 $0.0047 \mu \mathrm{~F} .10 \%$. 630V, polyester C133 $0.047 \mu \mathrm{~F} .20 \%$. 400V. polyester C141 220pF. 10\%, 500V, ceramic C142 220pF. 10\%, 500V, ceramic C143 220pF. 10\%. 500V, ceramic C144 220pF. 10\%, 500V, ceramic C145 $47 \mu \mathrm{~F}, 160 \mathrm{~V}$, electrolytic C146 $100 \mu \mathrm{~F}$. 100 V . electrolytic C147 $470 \mu \mathrm{~F}, 35 \mathrm{~V}$, electrolytic C148 $470 \mu \mathrm{~F}, 25 \mathrm{~V}$, electrolytic C152 $0.022 \mu \mathrm{~F}, 5 \%, 400 \mathrm{~V}$. polyester

Part. No.

6192140331
6123300516 6123300517 6123300426 6123300518
6123300423

Part. No.

7044251878 1606780548 1813930250 1814521280 1814521053 1813900214

Part. No.

2602320841 2598230002 2598230002 2509041325 2509041035 2509041035 2509041035 2509041035 2602320543 2701392220
2701741016 2602320530 2701741015 2602320834 2508143349 2509040712 2509041325 2602320546 2602320546 2602320546 2602320546 2701741025 2791261017 2701741019 2701741018 2509582239

Ref. Description

Part. No.
Resistors
(all are 5% metal film unless otherwise specified)

R103	$2.2 \Omega .7 \mathrm{~W} .10 \%$	2401440096
R104	10Ω. dual ptc	2302890465
R111	$47 \mathrm{k} \Omega .0 .33 \mathrm{~W}$	2302124735
R112	$47 \mathrm{k} \Omega .0 .5 \mathrm{~W}$	2302124735
R113	$3 \mathrm{k} \Omega .0 .5 \mathrm{~W}$	2303223025
R114	$1 \mathrm{k} \Omega$. potm	2204291267
R115	$4.3 \mathrm{k} \Omega .0 .5 \mathrm{~W}$	2392044325
R116	$4.3 \mathrm{k} \Omega .0 .5 \mathrm{~W}$	2392044325
R117	$390 \Omega .0 .5 \mathrm{~W}$	2394163915
R119	$9.1 \mathrm{k} \Omega .0 .5 \mathrm{~W}$	2394049215
R121 $110 \mathrm{k} \Omega .0 .5 \mathrm{~W}$	2392041145	
R122	$120 \Omega .0 .33 \mathrm{~W}$	2302121215
R125	$270 \Omega .0 .33 \mathrm{~W}$	239204122715
R126	$18 \Omega .0 .33 \mathrm{~W}$	2302123922
R127	$3.9 \mathrm{k} \Omega .0 .33 \mathrm{~W}$	2302123922
R128	$3.9 \mathrm{k} \Omega .0 .33 \mathrm{~W}$	239405305
R129	$30 \Omega .1 \mathrm{~W}$	2302890472
R133	$22 \mathrm{k} \Omega .5 \mathrm{~W}$	2392041895
R136	$18 \Omega .0 .5 \mathrm{~W}$	2394053305
R137	$33 \Omega .1 \mathrm{~W}$	2394041045
R146	$100 \mathrm{k} \Omega .0 .5 \mathrm{~W}$	2302861022
R152	$1 \mathrm{k} \Omega .0 .33 \mathrm{~W}$	

Ref. Description Coils and transformers

S T101 mains transformer	3091000269
S S102 line choke ac	3693400009
S131 coil $10 \mu \mathrm{H}$	3618271360
S136 coil $2 \mu \mathrm{H}$	5699000032
S141 coil $180 \mu \mathrm{H}$	3618271580
S142 coil $180 \mu \mathrm{H}$	3618271580
S143 coil $100 \mu \mathrm{H}$	3618271361
S144 coil $100 \mu \mathrm{H}$	3618271361

9CM062/9CM082 REPLACEMENT PARTS LIST (Continued)

Ref. Diodes	Description	Part. No.	Capacitors		Part. No.
D107	diode	5302551001	C701	$0.010 \mu \mathrm{~F} .10 \%$. 50 V . ceramic	2508331038
D108	diode	5302551001	C702	$47 \mu \mathrm{~F} .16 \mathrm{~V}$. electrolytic	2701741016
D109	diode	5302551001	C703	10 1 F. 160V. electrolytic	2796331000
D110	diode	5302551001	C705	$0.010 \mu \mathrm{~F} .20 \% .500 \mathrm{~V}$. ceramic	2509040919
D111	zener diode 24 V	5302250240	C706	$10 \mu \mathrm{~F} .160 \mathrm{~V}$. electrolytic	2796331000
D112	diode	5301811001	C707	0.010 $\mu \mathrm{F} .20 \%$. 500V. ceramic	2509040919
D115	zener diode 6.2V	5301570629	C708	$10 \mu \mathrm{~F} .160 \mathrm{~V}$. electrolytic	2796331000
D121	diode	5301811001	C709	$0.010 \mu \mathrm{~F} .20 \% .500 \mathrm{~V}$. ceramic	2509040919
D125	diode	5301811001	C711	$10 \mu \mathrm{~F} .160 \mathrm{~V}$. electrolytic	2796331000
D126	diode	5301811001	C718	0.010 FF. 20%. 500 V . ceramic	2509040919
D127	diode	5301811001	C719	0.010 1 F. 20%. 500 V . ceramic	2509040919
D128	zener diode 9.1V	5301990919	C720	$0.010 \mu \mathrm{~F} .20 \% .500 \mathrm{~V}$. ceramic	2509040919
D129	zener diode 2.4 V	5390140249	C722	$0.47 \mu \mathrm{~F} .10 \%$. 100 V . polyester	2508144749
D131	diode	5301811001	C726	470pF. 10%. 500 V . ceramic	2602320845
D133	diode	5391500200	C728	0.47 $\mu \mathrm{F} .20 \% .100 \mathrm{~V}$. polyester	2508144749
D136	diode	5391500200	C733	470pF. 10%. 500 V . ceramic	2602320845
D137	diode	5391500430	C735	$0.47 \mu \mathrm{~F} .20 \% .100 \mathrm{~V}$. polyester	2508144749
D141	diode	5391500200	C739	470pF. 10%. 500 V . ceramic	2602320845
D142	diode	5391500200	C741	$0.010 \mu \mathrm{~F} .20{ }^{\circ} \mathrm{o}$. 500 V . ceramic	2509040919
D143	diode	5391500200	C742	$22 \mu \mathrm{~F} .160 \mathrm{~V}$. electrolytic	2790332207
D144	diode	5391500200	C743	$0.0022 \mu \mathrm{~F} .10 \%$. 500 V . ceramic	2598280004
D152	zener diode 16V	5390990690	C744	$0.0022 \mu \mathrm{~F} .10 \%$. 500 V . ceramic	2598280004
D165	diode	5301811001	C745	$0.0033 \mu \mathrm{~F} .500 \mathrm{~V}$. ceramic	2598280005
			C746	470pF. 10%. 2 KV . ceramic	2602320547
			C751	$39 \mathrm{pF} .5 \%$. 50 V . ceramic	2509040928
Ret. Transist		Part. No.	C752	$39 \mathrm{pF} .5 \%$. 50 V . ceramic	2509040928
	Description tors and Integrated Circuits		C753	39pF. 5%. 50V. ceramic	2509040928

PARTS OF PICTURE TUBE PANEL

Ref. Description
Miscellaneous

	Picture tube panel complete	7092500210
	Connector 1 pole	1814521279
	Micro connector 8 pole	1814521282
	Connector 6 pole	1814521281
	CRT socket	5490400043
	Connector 1 pole	1814521445
S SG701	spark gap	1895000003
S SG702	spark gap	1895000003
S SG703	spark gao	1895000003

9CM062/9CM082 REPLACEMENT PARTS LIST (Continued)

Ref.	Description	Part. No.	Ref.	Description	Part. No.
Resistors (all are 5% metal film unless otherwise specified)			Coils		
R701	680ת. 0.33W	2302126815	S706	coil $2.2 \mu \mathrm{H}$	3618272028
S R702	2.2Ω	2302682285	S711	coil $2.2 \mu \mathrm{H}$	3618272028
S R703	2.2Ω	2302682285	S715	coil $2.2 \mu \mathrm{H}$	3618272028
S R704	2.2Ω	2302682285	S742	coil $7.5 \mu \mathrm{H}$	3290000013
S R705	$1 \mathrm{k} \Omega .3 \mathrm{~W}$	2394071025			
$\begin{aligned} & \text { R707 } \\ & \text { R708 } \end{aligned}$	$\begin{aligned} & 10 \Omega .0 .2 \mathrm{~W} \\ & 33 \Omega .0 .2 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 2394011005 \\ & 2392043305 \end{aligned}$			
S R709	1 k . 3 W	2394071025	Ref.	Description	Part. No.
R712	108. 0.2 W	2394011005	Diodes	Description	
R713	338.0.2W	2392043305			
S713R714R716R717R722R723	$1 \mathrm{k} \Omega$. 3 W 10ת. 0.2W 43ת. 0.2W 2208. 0.5 W $330 \mathrm{k} \Omega$. 0.2 W	$\begin{aligned} & 2394071025 \\ & 2394011005 \\ & 2394024305 \\ & 2394042215 \\ & 2302123342 \end{aligned}$	$\begin{aligned} & \text { D701 } \\ & \text { D706 } \\ & \text { D708 } \\ & \text { D709 } \\ & \text { D711 } \end{aligned}$	zener diode 8.2V diode	5302390245
					5301811001
				diode	5301711002
				diode	5301711002
				diode	5301811001
R724	100ks. 0.2 W	2394041045	D715	diode	5301811001
R725	22kת. 0.2 W	2394042235	D722	diode	5302681002
R726	100k Ω, potm	2204291272	D723	diode	5302681002
R727	300k $\Omega, 0.2 \mathrm{~W}$	2302123042	D728	diode	5302681002
R728	2208, 0.5W	2394042215	D729	diode	5302681002
R729	330k $2,0.2 \mathrm{~W}$	2302123342	D735	diode	5302681002
R731	$100 \mathrm{k} \Omega, 0.2 \mathrm{~W}$	2394041045	D736	diode	5302681002
R732	22kS, 0.2W	2394042235	D742	diode	5302681002
R733	100k Ω, potm	2204291272			
R734	300k』. 0.2 W	2302123042			
R735	220ת. 0.5W	2394042215			
R736	330k Ω. 0.2 W	2302123342	Ref.	Description	Part. No.
R737	100kS. 0.2W	2394041045	Transist		
R738	22kS. 0.2 W	2394042235			
R739	100k Ω. potm	2204291272	TS705	NPN, output	6104150001
R741	300k Ω, 0.2W	2302123042	TS706	PNP, output	5302390241
R742	$1.5 \mathrm{k} \Omega .0 .5 \mathrm{~W}$	2394041525	TS707	PNP. driver	5302390253
R743	$15 \mathrm{k} \Omega, 0.5 \mathrm{~W}$	2394041535	TS709	NPN. output	6104150001
R751	8.28. 0.5 W	2392048295	TS711	PNP. output	5302390241
R752	8.2ת.0.5W	2392048295	TS712	PNP. driver	5302390253
R753	8.28, 0.5W	2392048295	TS714	NPN, output	6104150001
			TS715	PNP, output	5302390241
			TS716	PNP. driver	5302390253
			TS722	PNP, driver	5302390241
			TS735	PNP, driver	5302390241

WARNING

Critical components having special safety characteristics are identified with an S by the Ref. No. in the parts list and enclosed within a broken line* along with the safety symbol \boldsymbol{A} on the schematics or exploded views.

Use of substitute replacement parts which do not have the same specified safety characteristics may create shock, fire, or other hazards.

Under no circumstances should the original design be modified or altered without written permission from the N.A.P. Consumer Electronics Corp. NAPCEC assumes no liability, express or implied, arising out of any unauthorized modification of design. Servicer assumes all liability.

[^1]
NAPCEC SAFETY GUIDELINES FOR THE PROFESSIONAL SERVICE TECHNICIAN

Safety Checks

After the original service problem has been corrected, a complete safety check should be made. Be sure to check over the entire set, not just the areas where you have worked. Some previous servicer may have left an unsafe condition, which could be unknowingly passed on to your customer. Be sure to check all of the following:

Fire and Shock Hazard

1. Be sure all components are positioned in such as way as to avoid the possibility of adjacent component shorts. This is especially important on those chassis which are transported to and from the service shop.
2. Never release a repaired receiver unless all protective devices such as insulators, barriers, covers, strain reliefs, and other hardware have been installed according to the original design.
3. Soldering and wiring must be inspected to locate possible cold solder joints, solder splashes, sharp solder points, frayed leads, pinched leads, or damaged insulation (including ac cord). Be certain to remove loose solder balls and all other loose foreign particles.
4. Check across-the-line components and other components for physical evidence of damage or deterioration and replace if necessary. Follow original layout, lead length and dress.
5. No lead or component should touch a receiving tube or a resistor rated at 1 watt or more. Lead tension around protruding metal surfaces or edges must be avoided.
6. Critical components having special safety characteristics are identified with an S by the Ref. No. in the parts list and enclosed within a broken line* along with the safety symbol $\mathbf{\Delta}$ on the schematics. Replacement parts without the same safety characteristics may create shock, fire or other hazards.
7. When servicing any receiver, always use a separate isolation transformer for the chassis. Failure to use a separate isolation transformer may expose you to possible shock hazard, and may cause damage to servicing instruments.
8. Many receivers use a polarized line cord (one wide pin on the plug). Defeating this safety
device may create a potential hazard to the servicer and the user. Extension cords which do not incorporate the polarizing feature should never be used.
9. After re-assembly of the set, always perform an ac leakage test or resistance test from the line cord to all exposed metal parts of the cabinet. Also, check all metal control shafts (with knobs removed), antenna terminals, handles, screws, etc. to be sure the set is safe to operate without danger of electrical shock.
*Broken line: \qquad

Implosion

1. All picture tubes used in current model receivers are equipped with an integral implosion system. Care should always be used, and safety glasses worn, whenever handling any picture tube. Avoid scratching or otherwise damaging the picture tube during installation.
2. Use only replacement tubes as specified by the manufacturer.

X-radiation

1. Be sure procedures and instructions to all your service personnel cover the subject of X radiation. Potential sources of X-rays in TV receivers are the picture tube and the high voltage circuits. The basic precaution which must be exercised is to keep the HV at the factory recommended level.
2. To avoid possible exposure to X-radiation and electrical shock, only the manufacturer's specified anode connectors must be used.
3. It is essential that the service technician has available at all times an accurate HV meter. The calibration of this meter should be checked periodically against a reference standard.
4. When the HV circuitry is operating properly there is no possibility of an X-radiation problem. High voltage should always be kept at the manufacturer's rated value-no higher-for optimum performance. Every time a color set is serviced, the brightness should be run up and down while monitoring the HV with a meter to be certain that the HV does not exceed the
specified value and that it is regulated correctly. We suggest that you and your service technicians review test procedures so that HV and HV regulation are always checked as a standard servicing procedure, and the reason for this prudent routine be clearly understood by everyone. It is important to use an accurate and reliable HV meter. It is recommended that the HV reading be recorded on each customers' invoice, which will demonstrate a proper concern for the customers' safety.
5. When troubleshooting and making test measurements in a receiver with a problem of excessive high voltage, reduce the line voltage by means of a Variac to bring the HV into acceptable limits while troubleshooting. Do not operate the chassis longer than necessary to locate the cause of the excessive HV.
6. New type picture tubes are specifically designed to withstand higher operating voltages without creating undesirable X -radiation. It is strongly recommended that any shop test fixture which is to be used with the new higher voltage chassis be equipped with one of the new type tubes designed for this service. Addition of a permanently connected HV meter to the shop test fixture is advisable. The CRT types used in these new sets should never be replaced with any other types, as this may result in excessive X -radiation.
7. It is essential to use the specified picture tube to avoid a possible X-radiation problem.
8. Most TV receivers contain some type of emergency "Hold Down" circuit to prevent HV from rising to excessive levels in the presence of a failure mode. These various circuits should be understood by all technicians servicing them, especially since many hold down circuits are inoperative as long as the receiver performs normally.

Leakage Current Cold Check

1. Unplug the ac line cord and connect a jumper between the two prongs of the plug.
2. Turn on the power switch.
3. Measure the resistance value between the jumpered ac plug and all exposed cabinet parts of the receiver, such as screw heads, antennas and control shafts. When the exposed metallic part has a return path to the chassis, the reading should be between 1 megohm and 5.2 megohms. When the exposed metal does not have a return path to the chassis, the reading must be infinity. Remove the jumper from the ac line cord.

Leajkage Current Hot Check

1. Do not use an isolation transformer for this test. Plug the completely re-assembled receiver directly into the ac outlet.
2. Connect a 1.5 k ohm, 10 watt resistor paralleled by a 0.15 uF . capacitor between each exposed metallic cabinet part and a good earth ground such as a water pipe, as shown above.
3. Use an ac voltmeter with at least 5000 ohms/volt sensitivity to measure the potential across the resistor.
4. The potential at any point should not exceed 0.75 volts. A leakage current tester may be used to make this test; leakage current must not exceed 0.5 milliamps. If a measurement is outside the limits specified, there is a possibility of shock hazard. The receiver should be repaired and re-checked before returning it to the customer.
5. Repeat the above procedure with the ac plug reversed. (Note: An ac adapter is necessary when a polarized plug is used. Do not defeat the polarizing feature of the plug.)

Picture Tube Replacement

The primary source of X-radiation in this television is the picture tube. The picture tube utilized in this chassis is specially constructed to limit X-radiation emissions. For continued X-radiation protection, the replacement tube must be the same type as the original, including suffix letter, or an N.A.P. Consumer Electronics Corp. (NAPCEC) approved type.

Parts Replacement

Many electrical and mechanical parts in NAPCEC television sets have special safety-related characteristics. These characteristics are often not evident from visual inspection nor can the protection afforded by them necessarily be obtained by using replacement components rated for higher voltage, wattage, etc. The use of a substitute part which does not have the same safety characteristics as the NAPCEC recommended replacement part shown in this service manual may create shock, fire or other hazards.

[^0]: *Broken line: __ . __ . _ . _ .

[^1]: *Broken line: __ • _ • _ • _ •

