
Complex Text Layout (CTL) Addendum
For Revision 2.1 of Motif Programmer’s Reference , User’s Guide , Programmer’s Guide ,
and Style Guide

August 1997

Contents

Complex Text Layout (CTL) Addendum 1

Preface 4

Chapter 1 Addendum to Motif Programmer’s Reference (Revision
2.1) 5

1.1 XmDirection 5

1.1.1 Description 5

1.1.2 For More Information 5

1.2 XmStringDirection 5

1.2.1 Description 5

1.2.2 Related Information 6

1.3 XmRendition 6

1.3.1 Description 6

1.3.2 New Resources 6

1.3.3 Additional Behavior 7

1.4 XmText, XmTextField 7

1.4.1 Description 7

1.4.2 New Resources 8

1.4.3 Action Routines 8

1.4.4 Additional Behavior 9

1.4.5 Action Routines 9

1.5 XmTextFieldGetLayoutModifier 11

1.5.1 Purpose 11

1.5.2 Synopsis 11

1.5.3 Description 11

1.5.4 Return Value 11

1.5.5 Related Information 11

1.6 XmTextGetLayoutModifier 11

1.6.1 Purpose 11

1.6.2 Synopsis 12

1.6.3 Description 12

1.6.4 Return Value 12

1.6.5 Related Information 12

1.7 XmTextFieldSetLayoutModifier 12

1.7.1 Purpose 12

1.7.2 Synopsis 12

1.7.3 Description 12

1.7.4 Related Information 12

ii

1.8 XmTextSetLayoutModifier 12

1.8.1 Purpose 12

1.8.2 Synopsis 12

1.8.3 Description 13

1.8.4 Related Information 13

1.9 XmStringDirectionCreate 13

1.9.1 Description 13

1.9.2 Related Information 13

1.10 UIL 13

Chapter 2 Addendum to Motif User’s Guide (Revision 2.1) 14

2.1 Entering and Editing Text 14

Chapter 3 Addendum to Motif Programmer’s Guide (Revision
2.1) 16

3.1 Layout Direction 16

3.2 Creating a Rendition 17

3.2.1 Editing a Rendition 18

3.2.2 Related Information 19

3.3 Creating a Render Table in a Resource File 19

3.4 Creating a Render Table in an Application 19

3.5 Horizontal Tabs 20

3.6 Mouse Selection 21

3.7 Keyboard Selection 21

3.8 Text Resources and Geometry 22

Chapter 4 Addendum to Motif Style Guide (Revision 2.1) 23

4.1 Text Cursor 23

4.1.1 Description 23

4.1.2 Navigation 23

4.2 Displaying Text 23

4.2.1 Static Text Overview 25

4.2.2 Dynamic Text Overview 25

4.3 Definitions and Examples 26

4.3.1 Definitions 26

4.3.2 Text Insertion Examples 26

Figure 3–1 Tabbing Behavior 21

iii

Preface
Complex Text Layout (CTL) extensions enable Motif APIs to support languages whose writing
systems require complex transformations between logical and physical representations of text,
such as Arabic, Hebrew, and Thai. CTL Motif provides character shaping (such as ligatures,
diacritics, and symmetrical swapping), and segment ordering. To support languages such as
Arabic, a Motif API must include additional resources as described in Section 1.3.2.

The primary changes include:

• Widget behavior (see Section 1.4)

• New locales

• Runtime values of CTL-sensitive resources (see Section 1.4.2)

CTL Motif supports the complex text transformation of static and dynamic text widgets. It also
supports right-to-left text, left-to-right text, and a combination of both (for dynamic and static
text widgets), and tabbing for dynamic text widgets. Since text rendering is handled through the
rendition layer, other widget libraries can be easily extended to support CTL.

To leverage the new CTL features, users must have the Portable Layout Services (PLS) library
and the appropriate language engine. CTL uses PLS and the language engine to render text.
Users must also specify the corresponding locale.

Bidirectional text causes the standard Motif single cursor to behave incorrectly in some situations.
This sometimes leads to unintuitive behavior at boundaries (that is, where left-to-right and right-
to-left text meets). A dual or split cursor seems to be a plausible solution, and will be addressed
in a later CTL release.

4

1 Addendum to Motif Programmer’s Reference
(Revision 2.1)

1.1 XmDirection

1.1.1 Description
The XmNlayoutDirection resource1 controls object layout. It interacts with the orientation
value of theLayoutObject in the following manner.

First, when XmNlayoutDirection is specified asXmDEFAULT_DIRECTION, then the
widget’s layout direction is set at creation time from the governing pseudo-XOC. In the case of
dynamic text (XmText andXmTextField), the governing pseudo-XOC is the one (if any) that
is associated with theXmRendition used for the widget. In the case of static text (XmList ,
XmLabel , XmLabelG), the layout direction is set from the first compound string component
that specifies a direction. This specification happens in one of two ways:

• Directly, if the component is of typeXmSTRING_COMPONENT_LAYOUT_PUSHor Xm-
STRING_COMPONENT_DIRECTION, or

• Indirectly, if the component is of typeXmSTRING_COMPONENT_LOCALE_TEXT, Xm-
STRING_COMPONENT_WIDECHAR_TEXT, or XmSTRING_COMPONENT_TEXT, from the
component’s associatedXmRendition ’s associatedLayoutObject .

Second, ifXmNlayoutDirection is not specified asXmDEFAULT_DIRECTION, and the
XmNlayoutModifier @ls orientation value is not specified explicitly in the layout
modifier string, then theXmNlayoutDirection value is passed through to the XOC and its
LayoutObject .

If both XmNlayoutDirection and the XmNlayoutModifier @ls orientation
value are explicitly specified, then the behavior is mixed; theXmNlayoutDirection controls
widget object layout, and theXmNlayoutModifier @ls orientation value controls
layout transformations.

1.1.2 For More Information
For more information, seeCAE Specification: Portable Layout Services: Context-dependent and
Directional Text, The Open Group: Feb 1997; ISBN 1-85912-142-X; document number C616.

1.2 XmStringDirection

1.2.1 Description
XmStringDirection is the data type used to specify the direction in which the system
displays characters of a string. TheXmNlayoutDirection resource sets a default rendering
direction for any compound string (XmString) that does not have a component specifying
the direction of that string. Therefore, to set the layout direction, all that is required is
to set the appropriate value for theXmNlayoutDirection resource. It is not required

1 See section 11.3 of the MotifProgrammer’s Guide(Release 2.1) for an overview ofXmNlayoutDirection , and especially
for a description of the interaction betweenXmStringDirection andXmNlayoutDirection .

5

that you create compound strings with specific direction components. When the application
renders anXmString , it should look to see if the string was created with an explicit direction
(XmStringDirection). If there is no direction component, the application should check the
value of theXmNlayoutDirection resource for the current widget and use that value as the
default rendering direction for theXmString .

1.2.2 Related Information

See alsoXmRendition andXmDirection .

1.3 XmRendition

1.3.1 Description

1.3.2 New Resources

CTL adds the following new pseudo resources toXmRendition :

Name Class/Type Access Default Value

XmNfontType XmCFontType/XmFontType CSG XmAS_IS

XmNlayoutAttrObject XmClayoutAttrObject /String CG NULL

XmNlayoutModifier XmCLayoutModifier /String CSG NULL

XmNfontType

Specifies the type of the Rendition font object. For CTL, the value of this resource must
be theXmFONT_IS_XOCvalue. If it is not, then theXmNlayoutAttrObject and
XmNlayoutModifier resources are ignored.

When the value of this resource isXmFont_IS_XOC, and if theXmNfont resource is
not specified, then at create time the value of theXmNfontName resource will be con-
verted into an XOC object in either the locale specified by theXmNlayoutAttrObject
resource or the current locale. Furthermore, the value of theXmNlayoutModifier re-
source will be passed through to anyLayoutObject associated with the XOC.

XmNlayoutAttrObject

Specifies the layoutAttrObject argument to be used to create the Layout Object
associated with the XOC associated with thisXmRendition . Refer to the Layout
Servicesm_create_layout() specification for the syntax and semantics of this string.
(See the description ofXmNfontType above for an explanation of the interaction between
the Layout Modifier Orientation output value and theXmNlayoutDirection widget
resource).

XmNlayoutModifier

Specifies the layout values to be passed through to the Layout Object associated with the
XOC associated with thisXmRendition . For the syntax and semantics of this string,
seeCAE Specification.

6

Setting this resource viaXmRendition{Retrieve,Update} causes the string to
be passed through to the LayoutObject associated with the XOC associated with this
Rendition. This is the mechanism for configuring layout services dynamically. Note
that unpredictable behavior may result if theOrientation , Context , TypeOfText ,
TextShaping , or ShapeCharset are changed.

1.3.3 Additional Behavior
TheXmNlayoutModifier affects the layout behavior of the text associated with theXmRen-
dition . For example, if the layout default treatment of numerals isNUMERALS_NOMINAL,
the user can change toNUMERALS_NATIONALby settingXmNlayoutModifier to:

• @ls numerals=nominal:national , or

• @ls numerals=:national

The layout values can be classified into the following groups:

• Encoding description: TypeOfText , TextShaping , ShapeCharset (and locale
codeset)

TypeOfText is essentially segment ordering, and can be illustrated with opaque blocks. It
is usually not meaningful to modify these values dynamically through the Rendition object,
and will almost certainly result in unpredictable behavior.

• Layout behavior:Orientation , Context , ImplicitAlg , Swapping , Numerals

Orientation and Context should not be modified dynamically; it is safe to modify
ImplicitAlg , Swapping , andNumerals .

• Editing behavior:CheckMode

1.4 XmText , XmTextField

1.4.1 Description
Xm CTL extendsXmText and XmTextField by adding a parallel set of movement and
deletion actions that operate visually, patterned after the Motif 2.0CSText widget. The standard
Motif 2.1 Text andTextField do not distinguish between logical and physical order: “next“
and “forward“ mean “to the right,“ and “previous“ and “backward“ mean “to the left.“CSText ,
however, makes the proper distinction and defines a new set of actions with strictly physical
names (for example,left-character() , delete-right-word() , and so on). All of
these action routines are defined to be sensitive to theXmNlayoutDirection of the widget
and to call the appropriate “next-“ or “previous-“ action. The Xm CTL extensions are slightly
more complex thanCSText ’s in that they are sensitive not to the global orientation of the
widget, but to the specific directionality of the physical characters surrounding the cursor, as
determined by the pseudo-XOC (including neutral stabilization).

There is also a new resource to control selection policy, to provide a rendition tag, and to control
alignment.

The set of new Xm CTL actions is roughly the cross product of{Move,Delete,Kill} by
{Left,Right} by {Character,Word} , and is listed below.

7

1.4.2 New Resources
The following new resources are added toXmText andXmTextField :

Name Class/Type Access Default Value

XmNrenditionTag XmCRenditionTag/XmRString CSG XmFONTLIST_DEFAULT_TAG

XmNalignment XmCAlignment/XmRAlignment CSG XmALIGNMENT_BEGINNING

XmNeditPolicy XmCEditPolicy/XmREditPol-

icy
CSG XmEDIT_LOGICAL

XmNrenditionTag

Specifies the rendition tag of theXmRendition (in the XmNrenderTable resource)
to be used for this widget.

XmNalignment

Specifies the text alignment to be used in the widget. OnlyXmALIGNMENT_ENDand
XmALIGNMENT_CENTERare supported.

XmNeditPolicy

Specifies the editing policy to be used for the widget, eitherXmEDIT_LOGICAL or
XmEDIT_VISUAL. In the case ofXmEDIT_VISUAL, selection, cursor movement, and
deletion will be in a visual style. Setting this resource also changes the translations for
the standard keyboard movement and deletion events either to the new “visual“ actions list
below or to the existing logical actions.

1.4.3 Action Routines
All of the actions in the following list query the orientation of the character(s) in the direction
specified. If the direction is left-to-right, they call the correspondingnext- /forward- or
previous- /backward- variants.

• delete-left-character()

• delete-left-word()

• delete-right-character()

• delete-right-word()

• kill-left-character()

• kill-left-word()

• kill-right-character()

• kill-right-word()

• left-character()

8

• left-word()

• right-character()

• right-word()

1.4.4 Additional Behavior

The actions determine the orientation of characters by using the Layout Services transformation
OutToInp and Property buffers (for the nesting level). The widget’s behavior is therefore
dependent on the locale-specific transformation. If the information in theOutToInp or,
especially,Property buffers is inaccurate, the widget may behave unexpectedly. Moreover, as
the locale-specific modules fall outside of the scope of this specification, bi-directional editing
behavior may differ from platform to platform for the same text, application, resource values,
andLayoutObject configuration.

The visual mode actions result in display cell-based behavior. The logical mode actions result in
logical character-based behavior. For example, thedelete-right-character() operation
will delete the input buffer characters that correspond to the display cell (that is, one input buffer
character wholeLayoutObject transformation “property“ byte “new cell indicator“ is 1, and
all of the succeeding characters whose “new cell indicator“2 is 0).

Likewise, for backward-character() , the insertion point will be moved backward one
character in the input buffer, and the cursor will be redrawn at the visual location corresponding
to the associated output buffer character. This means that several keystrokes will be required
to move across a composite display cell; the cursor will not actually change display location as
the insertion point moves across input buffer characters whose “new cell indicator“ is 0 (that is,
diacritics or ligature fragments).

This means deletion operates either from the logical/input buffer side, or from the display cell
level of the physical/output side. There is no mode for a strict, physical character-by-character
deletion, since there is no one-to-one correspondence between the input and output buffers. A
given physical character may represent only a fragment of a logical character, for example.

1.4.5 Action Routines

The XmText action routines are as follows:

left-character(extend)

If the XmNeditPolicy is XmEDIT_LOGICALand called without arguments, it moves
the insertion cursor back logically by a character. If the insertion cursor is at the beginning
of the line, it moves the insertion cursor to the logical last character of the previous line
if exists, otherwise the insertion cursor position doesn’t change.

If the XmNeditPolicy is XmEDIT_VISUAL, then the cursor moves to the left of cursor
position. If the insertion cursor is at the beginning of the line, then it moves to the end
character of the previous line if it exists.

If called with an argument ofextend , it moves the insertion cursor as in the case of no
argument and extends the current selection.

2 For more information on theProperty buffer, see the specification form_transform_layout() in CAE Specification.

9

The left-character() action produces calls to theXmNmotionVerifyCallback
procedures with the reason valueXmCR_MOVING_INSERT_CURSOR. If called with
an extend argument, this may produce calls to theXmNgainPrimaryCallback
procedures. See the callback description in the MotifProgrammer’s Referencefor more
information.

left-word(extend)

If the XmNeditPolicy is XmEDIT_LOGICALand is called without any arguments, and
the insertion cursor is at the logical starting of the word, it moves the insertion cursor to the
logical starting of the logical preceding word, if one exists, otherwise the insertion cursor
position doesn’t change. If the insertion cursor is in the word but not at the logical start
of the word, it moves the insertion cursor to the logical start of the word. If the insertion
cursor is at the logical start of the line, it moves the insertion cursor to the logical start of
logical last word in the previous line if one exists, otherwise the insertion cursor position
doesn’t change.

If the XmNeditPolicy is XmEDIT_VISUAL and is called without arguments, it moves
the insertion cursor to the first non-white space character after the first white space character
to the left or after the beginning of the line. If the insertion cursor is already at the beginning
of the word, it moves the insertion cursor to the beginning of the previous word. If the
insertion cursor is already at the beginning of the line, it moves to the starting of the last
word in the previous line.

If called with an argument ofextend , it moves the insertion cursor as in the case of no
argument and extends the current selection.

The left-word() action produces calls to theXmNmotionVerifyCallback
procedures with the reason valueXmCR_MOVING_INSERT_CURSOR. If it is called with
an extend argument, this may produce calls to theXmNgainPrimaryCallback
procedures. See the callback description in the MotifProgrammer’s Referencefor more
information.

right-character(extend)

If the XmNeditPolicy is XmEDIT_LOGICALand is called without any arguments, it
moves the insertion cursor logically forward by a character. If the insertion cursor is at
the logical end of the line, it moves the insertion cursor to the logical starting of the next
line, if one exists.

If the XmNeditPolicy is XmEDIT_VISUAL, then the cursor moves to the right of
cursor position. If the insertion cursor is at the end of the line, it moves the insertion
cursor to the starting of the next line, if one exists.

If called with an argument ofextend , it moves the insertion cursor as in the case of no
argument and extends the current selection.

The right-character() action produces calls to theXmNmotionVerifyCall-
back procedures with the reason valueXmCR_MOVING_INSERT_CURSOR. If called
with extend argument, this may produce calls to theXmNgainPrimaryCallback
procedures. See the callback description in the MotifProgrammer’s Referencefor more
information.

right-word(extend)

10

If the XmNeditPolicy is XmEDIT_LOGICALand is called without any arguments, it
moves the insertion cursor to the logical starting of the logical succeeding word if one
exists, otherwise it moves to the logical end of the current word. If the insertion cursor is
at the logical end of the line or in the logical last word of the line, it moves the cursor to
the logical first word in the next line if one exists, otherwise it moves to the logical end
of the current word.

If the XmNeditPolicy is XmEDIT_VISUAL and is called without arguments, it moves
the insertion cursor to the first nonwhite space character after the first white space character
to the right or after the end of the line.

If called with an argument ofextend , it moves the insertion cursor as in the case of no
argument and extends the current selection.

The left-word() action produces calls to theXmNmotionVerifyCallback
procedures with the reason valueXmCR_MOVING_INSERT_CURSOR. If called with
extend argument, this may produce calls to theXmNgainPrimaryCallback
procedures. See the callback description in the MotifProgrammer’s Referencefor more
information.

1.5 XmTextFieldGetLayoutModifier

1.5.1 Purpose
A TextField function that returns the layout modifier string which reflects the state of the
layout object tied to its rendition.

1.5.2 Synopsis
#include String XmTextFieldGetLayoutModifier(Widget widget)

1.5.3 Description
XmTextFieldGetLayoutModifier accesses the value of the current layout object settings
of the rendition associated with the widget. When the layout object modifier values are changed
using a convenience function, theXmTextFieldGetLayoutModifier function will return
the complete state of the layout object, not just the changed values.

1.5.4 Return Value
Returns the layout object modifier values in a form of a String value.

1.5.5 Related Information

XmTextField

1.6 XmTextGetLayoutModifier

1.6.1 Purpose
A Text function that returns the layout modifier string which reflects the state of the layout
object tied to its rendition.

11

1.6.2 Synopsis

#include String XmTextGetLayoutModifier(Widget widget)

1.6.3 Description
XmTextGetLayoutModifier accesses the value of the current layout object settings of the
rendition associated with the widget. When the layout object modifier values are changed using
a convenience function, theXmTextGetLayoutModifier function will return the complete
state of the layout object, not just the changed values.

1.6.4 Return Value
Returns the layout object modifier values in the form of a String value.

1.6.5 Related Information

XmText

1.7 XmTextFieldSetLayoutModifier

1.7.1 Purpose
A TextField function that sets the layout modifier values, which would change the behavior
of the layout object tied to its rendition.

1.7.2 Synopsis

#include String XmTextFieldSetLayoutModifier(Widget widget)

1.7.3 Description
XmTextFieldSetLayoutModifier modifies the layout object settings of a rendition
associated with the widget. When the layout object modifier values are set using this convenience
function, only the attributes specified in the input parameter are changed; the rest of the attributes
are left untouched.

1.7.4 Related Information

XmTextField

1.8 XmTextSetLayoutModifier

1.8.1 Purpose
A Text function that sets the layout modifier values, which would change the behavior of the
layout object tied to its rendition.

1.8.2 Synopsis

#include String XmTextSetLayoutModifier(Widget widget)

12

1.8.3 Description
XmTextSetLayoutModifier modifies the layout object settings of a rendition associated
with the widget. When the layout object modifier values are set using this convenience function,
only the attributes specified in the input parameter are changed; the rest of the attributes are left
untouched.

1.8.4 Related Information

XmText

1.9 XmStringDirectionCreate

1.9.1 Description
XmStringDirectionCreate creates a compound string with a single component, a direction
with the given value. On the other hand, theXmNlayoutDirection resource sets a default
rendering direction for any compound string (XmString) that does not have a component
specifying the direction for that string. Therefore, to set the layout direction, all that is
required is to set the appropriate value for theXmNlayoutDirection resource. It is not
required to create compound strings with specific direction components. When the application
renders anXmString , it should look to see if the string was created with an explicit direction
(XmStringDirection). If there is no direction component, the application should check the
value of theXmNlayoutDirection resource for the current widget and use that value as the
default rendering direction for theXmString .

1.9.2 Related Information
See alsoXmRendition , XmDirection .

1.10 UIL

UIL Argument Name Argument Type

XmNlayoutAttrObject string

XmNlayoutModifier string

XmNrenditionTag string

XmNalignment integer

XmNeditPolicy integer

13

2 Addendum to Motif User’s Guide (Revision
2.1)
2.1 Entering and Editing Text
Text components use an insertion cursor to indicate where the text you are typing will be inserted.
When a Text component has the input focus, the insertion cursor is indicated by a blinking I-
beam cursor.

To Move the Insertion Cursor

1. Move the pointer to the position where you want to begin typing.

2. Click SELECT (the left mouse button).

The I beam insertion cursor will move to that location to let you know that you can begin
typing. If a Text component has a input focus, you can navigate through the text using the
keyboard. The left and right arrow keys move the insertion cursor by a character. The up
and down arrow keys move the insertion cursor by a line. Pressing Control and using the
left and right arrows navigates by words. Pressing Control and using the up and down arrow
keys navigates by paragraphs. Page Up, Page Down, Page Left or Control-Page Up, and
Page Right or Control-Page Down move the insertion cursor by pages.

To Select Text

Use any of the following methods to select text.

1. Press SELECT and drag over the region that you want to select.

2. Double-click SELECT in a word to select the word.

3. Click SELECT multiple times to select larger amounts of text as determined by the
application.

The text selected will be dictated by theXmNeditPolicy resource which can be set to
XmEDIT_VISUAL or XmEDIT_LOGICAL. If XmNeditPolicy is set toXmEDIT_VISUAL,
the selection can be a contiguous region of text, even if the text contains bi-directional text.
However, if it is set toXmEDIT_LOGICAL, the selection may not be contiguous because there
is no one-to-one correspondence between the display and the input characters in the buffer.

To deselect a region with the mouse, move the pointer anywhere outside of the selected region
and click SELECT.

To move the insertion cursor without changing the selection, move the pointer to the location
where you want to begin typing, hold down Control, and click SELECT.

Text components provide four ways to copy or move text within the same component or from
one component to another:

• clipboard transfer

• drag transfer

• primary transfer

• quick transfer

14

The text must be selected before copying or moving, and the selection is influenced by the
XmNeditPolicy resource.

To Use Clipboard Transfer

1. Select the text that you want to copy or move.

2. Press Control-Insert to copy the selection to the clipboard or Shift-Delete to cut it to the
clipboard.

3. Move the insertion cursor to the location where you want to insert the text.

4. Press Shift-Insert to paste the text in the new location.

During deletion and insertion, if the selection contains bi-directional
text, the text inserted may not be the original string.

For a discussion on drag transfer, primary transfer, and quick transfer, seeMotif User’s Guide.

To delete text within a Text component, use the Backspace or Delete keys. If text is selected,
either key will delete the selection. If there is no text selected, Backspace deletes the character
preceding the cursor if theXmNlayoutDirection is left-to-right, and deletes the character
following the cursor if theXmNlayoutDirection is right-to-left. Similarly, Delete deletes
the character following the cursor if theXmNlayoutDirection is left-to-right, and deletes
the character preceding the cursor if theXmNlayoutDirection is right-to-left.

15

3 Addendum to Motif Programmer’s Guide
(Revision 2.1)
3.1 Layout Direction
The direction of a compound string is stored so that the data structure will be equally
useful for describing text in left-to-right languages such as English, Spanish, French, and
German, as well as for text in right-to-left languages, such as Hebrew and Arabic. In Motif
applications, you can set the layout direction using theXmNlayoutDirection resource from
the VendorShell or MenuShell. Manager and Primitive widgets (as well as Gadgets) also have
an XmNlayoutDirection resource. The default value is inherited from the closest ancestor
that has the same resource.

In the case of anXmText widget, you need to specify the vertical direction as well. Setting the
layoutDirection to XmRIGHT_TO_LEFTwill result in the string direction from right-to-
left, but the cursor will move vertically down. If the vertical direction is important and top to
bottom is desired, be sure to specifyXmRIGHT_TO_LEFT_TOP_TO_BOTTOM, which specifies
that the components are laid out from right-to-left first and then top-to-bottom, and will result
in the desired behavior.

Furthermore, the behavior ofXmText and TextField widgets is influenced by theXm-
Nalignment andXmNlayoutModifier resources of theXmRendition . These resources,
in addition toXmNlayoutDirection , control the layout behavior of the Text widget. This
can be illustrated using the example below.

The input string used in the illustration is

The XmNlayoutModifier string @ls orientation= setting values for this illustration
are shown in the left column.

16

Layout Direction: XmLEFT_TO_RIGHT

XmALIGNMENT_BEGINNING XmALIGNMENT_END

@ls orientation=

@ls orientation=

ltr:ltr

rtl:rtl

Layout Direction: XmRIGHT_TO_LEFT

XmALIGNMENT_BEGINNING XmALIGNMENT_END

@ls orientation=

@ls orientation=

ltr:ltr

rtl:rtl

As the illustration shows,XmNAlignment dictates whether the text is flush-right or -left in
conjunction with the layout direction. On the other hand,XmNlayoutModifier breaks the
text into segments and arranges them left-to-right or right-to-left depending on the orientation
value. In other words, if theXmNlayoutDirection is XmRIGHT_TO_LEFT, and the
XmNAlignment value isXmALIGNMENT_BEGINNING, the string will be flush-right.

3.2 Creating a Rendition
The following code creates anXmLabel whose XmNlabelString is of the type Xm-
CHARSET_TEXT, using the Rendition whose tag is “ArabicShaped.” The Rendition is created
with an XmNlayoutAttrObject of “ar“ (corresponding to the locale name for the Arabic
locale) and a layout modifier string that specifies for the output buffer aNumerals value of
NUMERALS_CONTEXTUALand aShapeCharset value of “unicode-1.“

The locale-specific layout module will transform its input text (in this example encoded in ISO
8859-6) in an output buffer of physical characters encoded using the 16-bit Unicode 2.0 codeset.
Since an explicit layout locale has been specified, this text will be rendered properly independent
of the runtime locale setting.

int n;
Arg args[10];
Widget w;

XmString labelString;
XmRendition rendition;
XmStringTag renditionTag;

XmRenderTable renderTable;

/* alef lam baa noon taa - iso8859-6 */

labelString = XmStringGenerate("\307\344\310\346\312\", NULL
XmCHARSET_TEXT, "ArabicShaped");

17

w = XtVaCreateManagedWidget("a label", xmLabelWidgetClass, parent,
XmNlabelString, labelString,

XmNlabelType, XmSTRING,

NULL);

n = 0;

XtSetArg(args[n], XmNfontName, "-*-*-medium-r-normal-*-24-*-*-*-*-*-*-*");
n++;

XtSetArg(args[n], XmNfontType, XmFONT_IS_XOC); n++;

XtSetArg(args[n], XmNlayoutAttrObject, "ar"); n++;
XtSetArg(args[n], XmNlayoutModifier,

"@ls numerals=:contextual, shapecharset=iso8859-6"); n++;

renditionTag = (XmStringTag) "ArabicShaped";
rendition = XmRenditionCreate(w, renditionTag, args, n);

renderTable =
XmRenderTableAddRenditions(NULL, &rendition, 1, XmREPLACE_MERGE);

XtVaSetValues(w, XmNrenderTable, renderTable, NULL);

3.2.1 Editing a Rendition
The following code creates aTextField widget and aRenderTable with a single
Rendition . Note that both theXmNlayoutAttrObject and XmNlayoutModifier
pseudo resources have been left unspecified and will therefore default to NULL. This means
the LayoutObject associated with the Rendition will be the default locale’s, if one exists.

For this example to work properly, the locale must be set to one whose codeset is ISO 8859-6
and whose locale-specific layout module can support theIMPLICIT_BASIC algorithm. It then
modifies the Rendition’sLayoutObject ’s ImplicitAlg value via the Rendition’sXmN-
layoutModifier pseudo resource.

int n;
Arg args[10];
Widget w;

XmRendition rendition;
XmStringTag renditionTag;
XmRenderTable renderTable;

w = XmCreateTextField(parent, "text field", args, 0);

n = 0;
XtSetArg(args[n], XmNfontName, "-*-*-medium-r-normal-*-24-*-*-*-*-*-*-*");

n++;
XtSetArg(args[n], XmNfontType, XmFONT_IS_XOC); n++;

renditionTag = (XmStringTag) "ArabicShaped";
rendition = XmRenditionCreate(w, renditionTag, args, n);

renderTable =
XmRenderTableAddRenditions(NULL, &rendition, 1, XmREPLACE_MERGE);

XtVaSetValues(w, XmNrenderTable, renderTable, NULL);

18

....

n = 0;
XtSetArg(args[n], XmNlayoutModifier, "@ls implicitalg=basic");

n++;
XmRenditionUpdate(rendition, args, n);

3.2.2 Related Information
See alsoXmDirection , XmText .

3.3 Creating a Render Table in a Resource File
Renditions and render tables may be specified in resource files. For properly internationalized
application, in fact, this is the preferred method. When the render tables are specified in a file,
the program binaries are made independent of the particular needs of a given locale, and may
be easily customized to local needs.

Render tables are specified in resource files with the following syntax:re-
source_spec :[tag [, tag]*]

where tag is some string suitable for theXmNtag resource of a rendition.

This line creates an initial render table containing one or more renditions as specified. The
renditions are attached to the specified tags

resource_spec [*|.] rendition [*|.] resource_name : value

The following examples illustrate the CTL resources related toXmRendition that can be set
using resource files. ThefontType must be set toFONT_IS_XOCfor the layout object to
take effect. ThelayoutModifier specified using@ls is passed on to the layout object by
the rendition object.

For a complete list of resources that can be set on the layout object usinglayoutModifier ,
seeCAE Specification: Portable Layout Services: Context-dependent and Directional Text, The
Open Group: Feb 1997; ISBN 1-85912-142-X; document number C616.

*List.renderTable: variable
*List.renderTable.variable.fontType : FONT_IS_XOC
*List.renderTable.variable.layoutAttrObject : ar
*List.renderTable.variable.layoutModifier : @ls numerals=nominal:national, orientation=rtl:rtl
List.renderTable.variable.fontName : --*-medium-r-normal-*-24-*-*-*-*-*-*-*

3.4 Creating a Render Table in an Application
Before creating a render table, an application program must first have created at least one of the
renditions that will be part of the table. TheXmRenderTableAddRenditions function, as
its name implies, is also used to augment a render table with new renditions. To create a new
render table, call theXmRenderTableAddRenditions function with aNULL argument in
place of an existing render table.

The following code creates a render table using a rendition created withXmNfontType set to
XmFONT_IS_XOC.

int n;
Arg args[10];

19

Widget w;
XmString labelString;
XmRendition rendition;
XmStringTag renditionTag;

XmRenderTable renderTable;

/* alef lam baa noon taa - iso8859-6 */

labelString = XmStringGenerate("\307\344\310\346\312\", NULL
XmCHARSET_TEXT, "ArabicShaped");

w = XtVaCreateManagedWidget("a label", xmLabelWidgetClass, parent,
XmNlabelString, labelString,

XmNlabelType, XmSTRING,

NULL);

n = 0;

XtSetArg(args[n], XmNfontName, "-*-*-medium-r-normal-*-24-*-*-*-*-*-*-*");
n++;

XtSetArg(args[n], XmNfontType, XmFONT_IS_XOC); n++;

XtSetArg(args[n], XmNlayoutAttrObject, "ar"); n++;
XtSetArg(args[n], XmNlayoutModifier,

"@ls numerals=nominal:contextual, shapecharset=iso8859-6"); n++;
renditionTag = (XmStringTag) "ArabicShaped";

rendition = XmRenditionCreate(w, renditionTag, args, n);

renderTable =

XmRenderTableAddRenditions(NULL, &rendition, 1, XmREPLACE);

XtVaSetValues(w, XmNrenderTable, renderTable, NULL);

3.5 Horizontal Tabs
To control the placement of text, a compound string can contain tab characters. To interpret
those characters on display, a widget will refer to the rendition in effect for that compound
string, where it will find a list of tab stops. However, the dynamic widgets (TextField and
XmText) do not use the tab resource of the rendition. Instead, they compute the tab width using
the formula of8*(width of character 0) .

The tab measurement is the distance from the left margin of the compound string display, or
from the right margin if the layout direction is right-to-left. It is important to note that regardless
of the directionality of the text (Arabic right-to-left or English left-to-right) the tab will insert
space to the right or left as specified by the layout direction (XmNlayoutDirection).

The text following a tab is always aligned at the tab stop, and the tab stop is calculated from the
start of the widget, which in turn is influenced byXmNlayoutDirection . The behavior of
the tabs and their interaction with directionality of the text and theXmNlayoutDirection
of the widget is illustrated in Figure 3–1,Tabbing Behavior.

The input for this illustration isabc\tdef\tgh .

20

Figure 3–1 Tabbing Behavior

Layout Direction: XmLEFT_TO_RIGHT

Layout Direction: XmRIGHT_TO_LEFT

3.6 Mouse Selection
The user makes a primary selection with SELECT (the left mouse button). Pressing SELECT
deselects any existing selection and moves the insertion cursor and the anchor to the position in
the text where the button is pressed. Dragging SELECT selects all text between the anchor and
the pointer position, deselecting any text outside the range.

The text selected is influenced by the resourceXmNeditPolicy , which can be
set to XmEDIT_LOGICAL or XmEDIT_VISUAL. If the XmNeditPolicy is set to
XmEDIT_LOGICAL, and if the text selected is bi-directional in nature, the selected text will
not be contiguous visually and will be a collection of segments. This is because the text in the
logical buffer does not have a one-to-one correspondence with the display.

As a result, the contiguous buffer of logical characters of bi-directional text when rendered will
not result in a continuous stream of characters. Conversely, when theXmNeditPolicy is set
to XmEDIT_VISUAL, the text selected may be contiguous visually but will be segmented in the
logical buffer. So the sequence of selection, deletion, and insertion of bi-directional text at the
same cursor point will not result in the same string.

3.7 Keyboard Selection
The selection operation available with the mouse is also available with keyboard. The
combination of Shift-arrow keys will allow the selection of text.

The text selected is influenced by the resourceXmNeditPolicy , which can be
set to XmEDIT_LOGICAL or XmEDIT_VISUAL. If the XmNeditPolicy is set to
XmEDIT_LOGICAL, and if the text selected is bi-directional in nature, the selected text will
not be contiguous visually and will be a collection of segments. This is because the text in

21

the logical buffer does not have one to one correspondence with the display, as a result, the
contiguous buffer of logical characters of bi-directional text when rendered will not result in a
continuous stream of characters.

Conversely, when theXmNeditPolicy is set toXmEDIT_VISUAL, the text selected may be
contiguous visually but will be segmented in the logical buffer. So the sequence of selection,
deletion, and insertion of bi-directional text at the same cursor point will not result in the same
string.

3.8 Text Resources and Geometry
Text has several resources that relate to geometry, including the following:

• The render tableXmNrenderTable that the widget uses to select a font or font set and
other attributes in which to display the text.

The Text and Textfield widgets can use only the font-related rendition resources,
such asXmNfontType , and can also specify the attributes of the layout object, such as
XmNlayoutAttrObject , usually a locale identifier, andXmNlayoutModifier , which
specifies the layout values to be passed through to the Layout Object associated with the
XOC associated with thisXmRendition .

• A resource (XmNwordWrap) that specifies whether lines are broken at word bounderies
when the text would be wider than the widget.

Breaking a line at a word boundary does not insert a new line into the text. In the case of
cursive languages like Arabic, if the word length is greater than the widget length, the word
is wrapped to the next line, but the first character in the next line is shaped independently of
the previous character in the logical buffer.

22

4 Addendum to Motif Style Guide (Revision 2.1)
4.1 Text Cursor

4.1.1 Description

A Text component should be used to display and enter text, and must be composed of an area
for displaying and entering text. The text can be either a single line or multiple lines. Text
must support bi-directional text and vertical text. In addition, the text should support both the
Visual and Logical edit policies. Selection, deletion, and cursor movement are affected by the
edit policy as well as the directionality of the text.

4.1.2 Navigation

•

Must move the location cursor left one character. If theXmNeditPolicy is
XmEDIT_LOGICALand the directionality of the text is right-to-left, the cursor will move
to the beginning of the next logical character on the left.

• !

Must move the location cursor right one character. If the edit policy is logical and the
directionality of the text is right-to-left, the cursor will move to the beginning of the next
logical character on the right.

• Control!

In a Text component used generally to hold multiple words, must move the location cursor
to the right by one word. That is, Control! must place the location cursor before the first
character that is not a space, tab, or newline character. However, if the edit policy is logical
and the directionality of the text is right-to-left, the cursor will move to the beginning of the
next logical word on the right.

• Control

In a Text component used generally to hold multiple words, must move the location cursor
to the left by one word. That is, Control must place the location cursor before the first
character that is not a space, tab, or newline character. However, if the edit policy is logical
and the directionality of the text is right-to-left, the cursor will move to the beginning of the
next logical word on the left.

4.2 Displaying Text
The CTL extension (Xm CTL) allows Motif to support languages like Arabic, Hebrew, and
Thai, whose script and writing systems require complex transformations between the logical and
physical representations of text. Specifically, Xm CTL supports character shaping (positional
variant selection, ligation, diacritics, symmetrical swapping, and national numerals) and segment
reordering.

The only impact Xm CTL has on the Motif API is the introduction of a few new resources and
resource values. Its primary public interface changes are to widget behaviors and depend on the

23

locale in use, the runtime values of CTL-sensitive resources, and of course, the text content that
requires layout services.

For static text (XmString , XmLabel , XmLabelGadget , andXmList), all of the Xm CTL
functionality is added via the Motif 2.0+ Rendition/RenderTable abstraction. For dynamic text
(XmText and XmTextField), Xm CTL requires some further enhancement of the widgets
themselves. The new dynamic text behaviors that will be most visible to the user are those
dealing with bi-directional text.

Specifically, Xm CTL supports the following complex-language shaping and reordering features
provided by underlying locale-dependent PLS1 module transformations:

• positional variation

• ligation (many-to-one) and character composition (one-to-many)

• diacritics

• bi-directionality

• symmetrical swapping

• numeral shaping

• string validation

The following illustrates these features.

1 Xm CTL is built on top of the X/Open Portable Layout Service (“PLS“) specification. For more information, seeCAE
Specification: Portable Layout Services: Context-dependent and Directional Text.

24

4.2.1 Static Text Overview

For static text, the only relevant Xm CTL extensions are those pertaining toXmDirection
and XmRendition . By setting theXmNlayoutAttrObject and XmNlayoutModifier
pseudo resources, theLayoutObject can be configured as needed. Note that it is not a
requirement that all text components of a givenXmString be in the same locale, since different
Rendition’s in the RenderTable can have different locales and charsets, and therefore different
LayoutObject s.

SharingLayoutObject s is achieved by sharing the RenderTable or Rendition, as is also the
case with the CDE/Motif 1XmFontList or XmFontListEntry objects (now deprecated).
There is no Shell-level cache ofLayoutObject s to be shared among descendant widgets in
the same way as input method sharing using theXmNinputPolicy resource.

4.2.2 Dynamic Text Overview

The dynamic text widgetsXmText andXmTextField also rely on extensions toXmDirec-
tion andXmRendition alluded to in the previous section. In addition, control over the visual
or logical “editing mode“ of the widget is provided by a new set of routines that enable visual
mode, and a new resource. (CDE/Motif.next is by default logical in its documented behavior.)

As described in the previous section, the dynamic widgets depend on the configuration of the
LayoutObject to produce meaningful behavior. As far as the public interfaces to CDE/
Motif.next are concerned, the layout transformation output buffer will be seen on the screen,

25

and the input buffer will be the content of the widget for all other purposes, including the
programmatic setting of selections or cursor/insertion positions.

4.3 Definitions and Examples
This section contains definitions of new terms and examples of text insertion.

4.3.1 Definitions
Insertion Point

The location where typed text is inserted. Note that this refers to the position in the input
buffer.

Cursor Position

The location where the cursor is displayed. The cursor position always indicates the
insertion point. Note that this is the pixel position on the screen.

4.3.2 Text Insertion Examples
In the following example of the English text “abcdef,” the cursor position in the input buffer is
“Insertion point : 3.” The cursor position is between “b” and “c,” and can be seen as ending
the pixel position of “b” or starting pixel of “c;” both are the same.

Motif has two options available when drawing the cursor:

• Draw the cursor at the ending pixel of the character “b,” or

• Draw the cursor at the starting pixel of the character “c”

For unidirectional text like plain English or plain Arabic, the cursor positions for both coincide,
whereas for bi-directional text they need not. The following example makes this distinction clear.
The lowercase characters are English and the uppercase characters are Arabic (abCD), which
are shown next to the equivalent English characters. The cursor position in the input buffer is
“Insertion point : 3” because of the right to left characteristics of the segment “AB.”

Note that the pixel position after “b” is no longer the same as the pixel position before “C.”
If Motif displays the cursor at the end of the English character (after “b”), then the following
behavior would occur.

If the user pressed the Delete key with the cursor following “b,” the result would be:

26

Input Buffer:abD

Screen Output : abD

Insertion Point: 3

Cursor Position: after “b”

In other words, the deleted character is not visually nearest the cursor.

The cursor at the starting pixel position of “C” would appear as follows:

If the user typed an English character (for example, “e”), the text would display as follows:

In other words, the typed character is inserted far away from the cursor, which appears non-
intuitive.

The problems described in this section could be resolved if dual or split cursors were
implemented. This solution may be examined for the next version.

27

