
INSIDE THE IBM PCs

Buses provide the base for the next-generation
personal computer/workstation

Com pari ng I B M ' s M ic ro
C h an n e l and Apple's NuBus

The 32-bit bus has finally ar­
rived for the personal com­
puter in the form of Apple's
Macintosh ll and IBM's Per­
sonal System/2. Central to
each of these machines is a
32-bit bus capable of high­
speed operations at the band­
width required for today 's
16-megahertz processors.

As you might expect,
though, Apple and IBM have
adopted dissimilar bus archi­
tectures. NuBus, developed by
MIT and Texas Instruments,
has been adapted by Apple as

the Macintosh ll system bus. It

supplements the Macintosh IT's
private 68020 processor bus,
and six slots open the micro­
computer for expansion. IBM,
on the other hand, has re­
vamped the older IBM PC and
AT bus to handle higher speeds
and 32-bit processing. The new
IBM bus, the Micro Channel,
serves as both a CPU bus and a
system bus.

It's no accident that these
new computers contain new
bus architectures. Today ' s
new microcomputers require
more than just increased pro­
cessor power and expanded
memory. Investing in these
products means committing to
computing platforms that
must be stable up to and perhaps through
the mid-1990s. This requires a bus-based
architecture capable of adapting to ex­
panding processing rates, coprocessing
or multiprocessing, and adapting to new
peripherals such as advanced graphics
terminals. I'll examine the two buses with
regard to these capabilities .

Why a Bus?
Why have a special bus at all? Most pro­
cessors actually define a bus structure of

Illustration: Dave Ridley © 1987

Ciro Cornejo and Raymond Lee

address and data paths called a local, or
CPU, bus. The reason for this is straight­
forward: to build generality into systems.

A local bus is structured to optimize
the processor-to-memory bandwidth. It
is therefore highly processor-dependent:
It is tightly linked to its processor, mem­
ory, and specific support peripherals.
The cost of this performance is a loss of
flexibility. A local bus might be unable to
take advantage of newer technologies if
they differ significantly from the local

bus's design.
The existing IBM PC or AT

buses are examples of an ex­
panded local bus. An ex­
panded local bus is a local bus
with extensions that provide a
set of generalized signals.
These additional signals offer
a general architecture that is
easy to interface with. Since
they use many of the proces­
sor's signals, expanded local
buses are still processor-spe­
cific. For example, the IBM
PC and AT buses are designed
around the Intel 80x8x micro­
processor architecture, and
they have problems accommo­
dating large memory expan­
sions. The PC is limited to 1

megabyte of RAM (the 640K­
byte limit is imposed by the
layout of the PC BIOS), and
the AT to 1 6 megabytes.

Unlike local buses, system
buses are designed to maxi­
mize hardware subsystem-to­
subsystem transfers. System
buses offer a general protocol,
or transfer method, for system
CPUs or peripherals to inter­
change data. This is accom­
plished by treating the bus as a
resource. To get control of the
resource, a peripheral or pro­
cessor must request its use
formally, in competition with

others. With this general approach, you
can add peripherals, special functions,
and even full computer subsystems easily

continued

Ciro Cornejo is an engineer with AST Re­
search (2121 Alton Ave. , Irvine, CA
92714). He was born in Chile, and his in­
terests are nature, computers, math, and
physics. Raymond Lee, a technical advi­
sor at AST Research, is interested in com­
puter architecture.

B Y T E 1987 Extra Edition • Inside the lliM PCs 83

to a system bus. The bus integrates hard­
ware, cards, and subsystems into one
smoothly running machine, much as an
operating system integrates applications
programs. The more general the integrat­
ing mechanism, the easier it is to add
functionality and avoid obsolescence.
Moreover, these buses are processor-in­
dependent. For example, NuBus defines
a generalized address space that requires
no processor-specific signals for periph­
eral or 1/0 accesses.

Overview of the Buses
The new IBM Micro Channel has evolved
from the earlier PC and AT buses. Like
them, it is a CPU or local bus once re­
moved. As a local bus, it optimizes the
host CPU-to-memory bandwidth, using a

MICRO CHANNEL VERSUS NUBUS

special transfer method termed "matched
memory cycles, " which I'll discuss later.
It is also a system bus, in that it is treated
as a system resource.

Taking an opposite tack, the Apple
NuBus is a full system bus . It is indepen­
dent of the Macintosh IT's host processor;
in fact, in the Mac IT the motherboard is
treated as a NuBus slot.

Both buses create a memory-mapped
system. Each card or hardware entity is
addressed within this bus address space.
The 16-bit PS/2 systems, the Models 50
and 60, address a 24-bit space, or 16
megabytes; the PS/2 32-bit Model 80 and
the Macintosh IT NuBus address a full 32-
bit space, or 4 gigabytes. Like its pre­
decessors, the Micro Channel also has a
64K-byte 1/0 space.

Table 1: A comparison of the two buses. Not all bus signals are included.

Utility signals

Reset
Clock
Interrupt
Audio

Control signals

Start bus cycle
End bus cycle
Cycle definition
Burst control
Address size
Data size

Matched memory cycl,e
Signal returns

Slot occupancy

Address/data

Address
Data

Arbitration

. Request bus
Arbitration lines
Slot iD

NuBus

RESET*
CLOCK *
N MRQ* [Note 1)

START*
ACK *
TMO * , TM1 *
[Note 3]
[Note 4) [
TMO* TM1 *
ADO* : AD1 *

'

[Note S)

ADO * through AD31 *
ADO* through AD31 *

RQST*
ARBO * through ARB3 *
100* through 103*
[Note 6)

Note 1 : Separate line for each slot or card.

Micro Channel

-CHRESET
osc

-JR0 (3-7, 9-1 2, 1 4- 1 5)
AUDIO, AUDIO GND

AO-A31 , M/-10, MADE24 [Note 2)
-CMD, or -MMC CMD
M/-10, -SO, -S1
-BURST, -TC
-MADE 24
-BEO through -BE3, TR32, -SBHE
-CD OS 16 [Note 1) ,
-CD OS 32 [Note 1)
M MC, -MMCR
CHRDY RTN, -OS 1 6 RTN,
-OS 32 RTN
-CD SFDBK

AO through A31
DO through 031

-PREEMPT
-ARBO through -ARB3, ARB/-GNT
[Note ?)

Note 2: For a memory refresh cycle, -REFRESH will also be used.
Note 3: Although a burst mode is defined in N u Bus, it is not used in the Apple version of

NuB us.
Note 4: All addresses on NuB us use 32 bits of address space.
Note 5: The declaration ROM must respond to a read at the top of the slot space.
Note 6: These lines are not bused.
Note 7: 10 is stored on card but is not used for arbitration. A separate arbitration level is

stored on the card when it is configured into the system.

84 Inside the ffiM PCs • B Y T E 1987 Extra Edition

Each bus entity can be. defined as a
master or a slave. A master entity can re­
quest and get control of the bus. A master
must own the bus to send or receive data
from another target entity on the bus,
which can be another master or a slave
unit. A bus slave unit cannot own the bus,
but it can request service through an in­
terrupt signal to one of the bus masters.

The masters contend for ownership of
the bus resource via an arbitration proto­
col, which I'll describe later. Both buses
allow multiple masters. However, only
the Apple NuBus provides mechanisms
for true multiprocessing: bus and re­
source locks. Bus locking allows a pro­
cessor to lock a bus for exclusive access.
With resource locking , a shared re­
source, such as RAM on a card with its
own local processor, is locked so that the
local processor can't access it. Both types
of locks are necessary to prevent one pro­
cessor from interfering with or cor­
rupting memory that another processor is
using.

While the IBM Micro Channel does
permit multiple masters, there is not
much to be gained in going to multiple
host processors . This is because the
Micro Channel is also an extension of the
CPU bus. Processor memory operations
tie up the Micro Channel, making the bus
a bottleneck for the concurrent operation
of two host processors. It should be noted
that IBM , for efficiency, allows the host
processor to access system motherboard
memory without passing through the
Micro Channel bus.

Also hindering multiprocessing on the
Micro Channel is the absence of any di­
rect provisions for bus or resource lock­
ing, although the 80386 in the IBM PS/2
Model 80 has hardware for bus locking.
While not intended for true host-level
multiprocessing, the Micro Channel does
offer a general interface for drop-in co­
processing. The PS/2 host processors can
be easily supplemented by powerful co­
processors, such as array and floating­
point processors, or AI compute engines .

Timing the Critical Element
As a logic designer once said, "There are
three important aspects of a digital design
that must be carefully monitored: timing,
timing, and timing. " This is still true, es­
pecially for computer and bus designs.

Difficulties usually start when one
block oflogic has to talk to another block,
especially if they each rely on different
clock signals. This requires that the sig­
nals be synchronized to be passed from
one logic block to another. A transmit­
ting signal from a flip-flop strobed with
one clock must be picked up and strobed
into a receiving flip-flop using a second
clock. The two clocks, transmitting an<!.

MICRO CHANNEL VERSUS NUBUS

receiving, are asynchronous; no fixed re­
lationship exists between them. Thus, it
can take one receiving clock period to
synch up to the transmitting data.

Buses, like logic, define synchronous
or asynchronous interactions. In a syn­
chronous bus, all interactions are defined
in terms of a fixed bus clock or cycle. The
bus clock edges define when data is valid
and when to strobe it. Moreover , all
transactions are in multiples of these bus
cycles. The Apple NuBus is a synchro­
nous bus.

Instead of relying on a fixed clock, an
asynchronous bus is controlled by hand­
shaking signals. A command signal is
sent to a target adapter or card that re­
sponds with an acknowledge signal upon
completion of a data transfer. All bus tim­
ing is dependent on the signals them­
selves. The IBM Micro Channel is an
asynchronous bus, although it supports
certain synchronous transfers.

Both the IBM Micro Channel and the
Apple NuBus pass a common clock
through the bus to minimize the synchro­
nization problem among bus entities .
However, there is a clock mismatch be­
tween the Macintosh IT's local bus and
NuBus, requiring synchronization before
a transfer can occur.

The Macintosh IT's 68020 runs with a
15.7-MHz clock, while NuBus runs with
a 10-MHz clock. Synchronization delays
between these bus clocks is minimized by
using high-frequency clock signals. The
NuBus 10-MHz clock is divided down
from a 40-MHz crystal; the 68020 15 .7-
MHz clock is divided down from a 3 1 .4-
MHz crystal. The cost of clock synchro­
nization is thus held to one clock period,
either 25 or 3 1 .5 nanoseconds. Clock
synchronization is accomplished through
the application-specific integrated circuit
(ASIC)-the "GLU" custom gate array
on the Mac II motherboard-and the Nu­
Bus timing control logic.

Synching up between the bus processes
(i .e. , bus reads or writes) also exacts a
time penalty. The requesting bus must .
wait for the other bus to complete its cur­
rent transaction cycle before it can at­
tempt a transfer. All NuBus operations
are defined with respect to its 10-MHz
system clock. This clock has a 25 percent
duty cycle: It is false (or high) for 75 ns
and true (or low) for 25 ns.

Normally, a transfer from NuB us to
the local bus takes a full 68020 instruc­
tion cycle (about 400 to 500 ns) to synch
up. Going the other way, a Macintosh II

request can take a typical NuBus trans­
action of 2 bus cycles (about 200 ns) to
synch. It must be noted that this type of
delay is not out of the ordinary; it is
the time penalty paid by the communica­
tions protocol between the CPU bus and

Micro Channel Timing
T he IBM Micro Channel is an asyn­

chronous bus. Handshake signals
are used to initiate processes, signal
availability of addresses and data, and
completion of operations. It is the signal
changes and the logic's response to them
that drives this asynchronous bus.

The keys to this cycle are the -ADL
and -CMD lines that define when the ad­
dress is valid and when the data is valid.
Their trailing edges can be used to
strobe addresses and data as well. CD
CHRDY is the mechanism for extending
bus cycles. When this signal goes high,
it triggers -CMD, which ends the bus
cycle. See figure A for the sequence of a
Micro Channel Basic Write cycle. Here
is a short description of the sequence:

1 . The cycle begins with the address and
definition lines (-SO, -S 1 , M/-10,
MADE 24, TR32) defining the bus op­
eration (read; write, memory, or 1/0
cycles), addressing mode (24-bit), and
32-bit transfers.

2 . -ADL is asserted and defines a stable
address.
3. The addressed card responds by as­
serting -CD 1 6 , -CD 32 , and -CD
SFDBK. -CD 16 is asserted for 16- and
32-bit operations, -CD 32 for 32-bit op-

1 erations . The card asserts its -CD
SFDBK line to acknowledge being ad­
dressed. CD CHRDY is deasserted to
extend the cycle, if necessary.
4. The data appears on the bus.
5. The -CMD line is asserted, indicating
that valid data is on the bus. -ADL is
deasserted.
6. If CD CHRDY was deasserted, the
card drives CD CHRDY active after it
has read the data.
7. -CMD is deasserted, ending the bus
cycle.

Other masters can be contending for
the bus ownership during the bus transac­
tion. For more details on the Micro Chan­
nel, see the article "The 32-bit Micro
Channel" by John Shiell on page 59.

2 3 4 5

I I I

6 7

Address M/-10

Made 24 TR 32

-Refresh
_ SO

_l I I
1

I

I I

I I

I I

I I
1 I I

I I I
- S1 rt-7- I I I I I I

I I I I I

- ADL I I I I I I

I I I I I I I

CD CHRDY

- CD OS 1 6/32

- CD SFDBK

DATA

- CMD

y
1
1

1
1

I I

I I

I I

I I

I I

I I

1 I
I

J

I

I I

I

Wait state t- I

I
I

H I

I

I

y I

I
I

Valid data I

y
Figure A: A Micro Channel Basic Write cycle.

the system bus.
The IBM Micro Channel is an asyn­

chronous bus, and all operations are
gauged by the transmitted and returned
signals. A common 14 .3-MHz clock,
OSC, is provided on the bus, eliminating
the problem of signal synching. More­
over, a delayed signal will be picked up

by the next clock, providing a built-in
safety net for bus operations.

Bus to Bus
To distinguish between the two sets of bus
signals, I'll stick to each bus's naming
conventions. NuBus active low signals

continued

B Y T E 1987 Extra Edition • Inside the ffiM PCs 85

are labeled as signaL..name*, while IBM
uses its own convention for labeling an
active low signal: -signaL..name.

The NuBus is a simple and elegant bus
that matches Apple' s minimalist ap­
proach toward hardware. The NuBus has
only 5 1 signals, including two parity sig­
nals not used by Apple. The IBM Micro
Channel has 77 and 1 1 1 signals for the
16- and 32-bit versions, respectively. All
Micro Channel signals are TTL-logic­
compatible. Table 1 compares signals be­
tween the NuBus and the Micro Channel,
and you can see a great deal of similarity
between the two buses. The arbitration
and utility signals almost match.

But there are differences. NuBus is
multiplexed, sharing data and address on
common lines, while the Micro Channel
is nonmultiplexed, providing lines for
both address and data. The IBM Micro
Channel defines a number of discrete in­
terrupts (-IRQ 3-7, 9-12, and 14- 1 5)
that can be shared among the boards. The
Apple implementation, on the other
hand, defines an interrupt (NMRQ*) per
slot that is fed separately into the Macin­
tosh II interrupt logic for processing.

The Micro Channel has a number of
signals for coordinating asynchronous
handshakes : The signals -ADL, -CMD,
and -MMC CMD provide the basic bus
handshake edges. Hardware signals are

MICRO CHANNEL VERSUS NUBUS

also used to delineate bus sizing (-BEO
through -BE3), 32-bit operation (-CD DS
32(n)), and 24-bit addressing (MADE
24). See the text box "Micro Channel
Timing" on page 85 for more information
on the bus cycles.

A special set of signals (-MMC,
-MMCR, and -MMR CMD) is used in
matched memory cycles to ensure fast
CPU-to-memory accesses for the 80386.
A matched memory cycle is started by the
target slave returning an -MMCR request
signal after being addressed by the sys­
tem CPU. The 80386 responds by driv­
ing the faster -MMCR CMD handshake
signal instead of the -CMD during a bus
cycle. Matched memory cycles provide a
bus read transaction in three clocks at 16
MHz, or 1 87 . 5 ns, while standard cycles
using the -CMD handshake signal run
four or more system clocks for a mini­
mum of 250 ns. Matched memory cycles
can be run with both 16- and 32-bit chan­
nel devices.

In contrast, the NuBus synchronous
operations are relatively simple, requir­
ing no special signals or exception pro­
cessing. NuBus timing, however, is more
stringent than the Micro Channel's, fit­
ting sending and strobing of signals and
data within 75 ns in the 100-ns clock
cycle. See the text box "Apple NuBus
Timing " below for more details on

NuBus bus cycles.
NuBus defines a byte/word structure

that matches the Intel 80x8x addressing
schemes (byte order 0, 1 , 2 , 3) , not the _

Macintosh's 68020 scheme (byte order 3,
2, 1, 0). The bus transceivers are wired to
map the data from NuBus order into the
Macintosh byte order. Bus sizing is han­
dled automatically; the bus handles byte
(8 bits) , half-word (16 bits) and word
(32-bits) sizes.

The NuBus specification defines a
block,- or burst mode, that can move up to
sixteen 32-bit words in a transaction, but
Apple has not implemented it in the Mac
II NuBus design. IBM, however, has im­
plemented a burst mode in the Micro
Channel in conjunction with direct mem­
ory access. This DMA' burst capability
allows large blocks of data to be moved
while minimizing bus overhead. In fact,
each peripheral on the channel can be
viewed as a PMA channel.

When accessed by the DMA control­
ler, a card can assert -BURST, guaran­
teeing bus ownership for block transfers.
Thereafter, data is transferred using only
the -CMD signal to define data valid for
both the read and write stages. The block
transfer ends when the card deasserts the
-BURST line for the last cycle. For pre­
defined transfers, the DMA controller

continued

Apple NuBus Timing
T he Apple NuBus is a synchronous

bus; all operations are defined with
respect to its basic clock cycle. The
clock runs at 10 MHz, with a 100-ns pe­
riod and a 25 percent duty cycle, Two
edges of the clock serve the bus. The ris­
ing edge at the start of the period is the
driving edge, strobing signals and ad­
dress onto the bus, and the falling edge,
75 ns later, is the sampling edge for tak­

ing information off the bus.
Bus transactions are made up of bus

cycles or clock periods. A transaction
can be a single cycle or multiple cycles,
especially if a slower peripheral is in­
volved. Delays are added by inserting
additional bus cycles. The timing dia­
gram in figure B shows the basic write
transaction, which consists of a START
cycle, any intervening bus cycles, and an
ACK cycle. Here is the sequence:

1 . START* is asserted, indicating the
start of a bus transaction. The master
places addresses on the AD3 1 * through
ADO* lines; and the TMO*, TM 1 * lines
define the type of transaction. .
2. All cards read the addresses. The

slave is identified by the address.
3. The master drives the data onto the
AD3 1 * through ADO* lines.
4. The slave reads the data off the bus.
5. The slave asserts ACK* to signal the
end of the transaction and places the ap­
propriate status codes onto TMO* and
TM 1*.
6 . The master releases the AD3 1 *

2 3

CLK*

I

I

Address

4

through ADO* lines, and the slave re­
leases the ACK* and status lines.

Other masters can be competing for the
bus during the bus transaction.

For more information on NuBus, see
"The Apple Macintosh II" by Gregg
Williams and Tom Thompson in the
April BYTE.

5 6
I I

L__J-L_J-
1 I

ADx* --< >K : : Data ! � L-------��
I I I

TMx* --< Mode

START* \

ACK*

) �--------...--11 1 K Status code :>--
I

1: I I

I I

I I

�---;��------�v--

Figure B: A Nubus write cycle.

86 Inside the IDM PCs • B Y T E 1987 Extra Edition

marks the last cycle by asserting the
terminal count line (-TC).

A DMA controller can transfer 64K
bytes of data between a peripheral and
memory, the same as in an ffiM PC. The
PS/2 DMA controller can handle 24-bit
read and write addresses, unlike the PC's
20-bit address limit. Unfortunately, this
DMA capability is limited to transfers of
8- or 16-bit data.

Bus Address Space
Both the NuBus and the Micro Channel
map bus addresses into a full bus address
space that includes system memory and
ROM, setup ROM, and device buffer
space. Analogous to a CPU bus, these
buses provide access to locations in that
space.

The ffiM implementation maps into a
16-megabyte or a 4-gigabyte address
space. The bus address space is the same
as the CPU address space. In this respect,
the Micro Channel acts as a local CPU
bus. The system board RAM , either
512K bytes or 640K bytes, starts at 00000

MICRO CHANNEL VERSUS NUBUS

hexadecimal. The 128K-byte video RAM
and channel ROM are mapped into the
lower address pages. Topping off the
memory space at EOOOOh through
FFFFFh is the 128K bytes of system
board ROM or RAM, depending upon
how the computer's resources have been
allocated. RAM memory mappings
above address FFFFFh are managed in 1 -
megabyte chunks . See figure 1 for a
memory map of an mM PS/2 Model 80.
Bits in a memory-encoding register and a
split-address register determine how and
where memory will be allocated.

Bus memory space for Apple NuBus
implementation doesn't match the Mac­
intosh II ' s 68020 processor address
space. The upper one-sixteenth, or 256
megabytes, of the NuBus 4-gigabyte ad­
dress space is called the slot space. This
slot space is divided into 16 sections, one
for each NuBus slot, and each slot owns
16 megabytes of the space. The top of
each slot address space is reserved for a
slot-declaration ROM that is accessed at
that address. The slot a card occupies on

System board ROM
FFFF FFFF

t----------i FFFE 0000

....
Unused

r

001 0 0000 + SBR +

Used as system
CR + 384K or 51 2K
board RAM if enable

split bit = o.
Unused if enabl e split bit = 1 .

System board RAM RAM size is 384 K bytes if 640 bit = 0,
0 bit = 1 .

Channel RAM

System board RAM

System board RAM or ROM

Channel ROM

System board video RAM

System board RAM (or unused)

System board RAM

512K bytes if 64

001 0 0000 + SBR +

001 0 0000 + SBR

001 0 0000
OOOF FFFF
OOOE 0000
0000 FFFF
oooc oooo
0008 FFFF
OOOA OOOO
0009 FFFF
0008 0000
0007 FFFF

0000 0000

CR

System ROM if ROM
enable bit = 1 .
System RAM if ROM
enable bit = 0.

Used,as system board
RAM if 640 bit = 0.
Unused if 640 bit = 1 .

Figure 1 : The PS/2 Model 80 memory map. The memory arrangement is
determined by the contents of the memory-encoding and split-address registers. SBR
is system board RAM; CR is channel RAM. System board RAM and channel RAM

are allocated in]-megabyte chunks above address FFFFFh, with the exception of the
split-system RAM. The system ROM at addresses £()()()() through FFFFF is a copy
of the system ROM at addresses FFFE()()()() through FFFFFFFF.

88 Inside the ffiM PCs • B Y T E 1987 Extra Edition

NuBus determines its slot identification,
which in turn determines its arbitration
level and its location in the slot address
space.

NuBus defines 1 6 slots, but the Macin­
tosh II provides six. The six slots have
IDs of9h through Eh. Slot 0 is the Mac II
motherboard, and slot F (which does not
have a physical slot) is reserved. One slot
becomes the video buffer for the ma­
chine, depending upon which slot the
video card is placed in. Slots 1 through 8
are unused, because no room exists in the
24-bit address space for them. For this
reason, the existing slots are limited to 1
megabyte of slot space instead of 1 6
megabytes.

Apple ' s implementation of NuBus
allows a slot to own a "superslot" space
of256 megabytes, as well as its 16-mega­
byte slot space at the top of NuBus mem­
ory . We won't discuss superslots further,
since they aren't accessible by the Mac II,
although you should note that other cards
on NuBus could use these areas. See fig­
ure 2 for a detailed look at the Macintosh
II memory map and its arrangement in
the NuBus address space.

The 24-bit address space for the Mac­
intosh II starts at Oh with 8 megabytes of
RAM, followed by 1 megabyte of ROM,
then 6 megabytes of slot space, and
topped by a 1 -megabyte region of mem­
ory-mapped 110 devices. The Mac II's
24-bit address space is mapped into the
32-bit NuBus address space by placing
the RAM, ROM, and I/0 areas at the bot­
tom of the NuBus address space. How­
ever, from the NuBus side, the Mac II's
ROM appears at addresses F0800000h to
FOFFFFFFh, and the 110 area maps to
FOOOOOOOh through F07FFFFFh.

Under this scheme, the maximum
RAM that can be accessed on the local
bus is 8 megabytes, using 1 -megabyte sin­
gle in-line memory modules (SIMMs).
The Mac II's motherboard RAM can be
expanded to 128 megabytes if and when
higher-density SIMMs are available.
However, you can add more RAM to the
system through the NuBus slots, and ven­
dors are now supplying NuBus memory
cards.

The Macintosh II is currently re­
stricted to 24-bit addressing or 16 mega­
bytes when running with the current
operating system. An Apple Unix imple­
mentation (A/UX) is in the works that
will handle 32-bit addressing and re­
quires a memory-management unit for
virtual-memory processing.

Bus Ownership
Both buses use arbitration to allocate
ownership of the bus to a single master
when several masters request use of the

continued

/

MICRO CHANNEL VERSUS NUBUS

bus . Arbitration typically takes place
concurrently with bus transactions on
both buses, but the Micro Channel allows
a system configuration that restricts arbi­
tration to nonconcurrent operation.

NuBus arbitrations take two full bus
cycles, or 200 ns, to select the next bus
owner. On the Micro Channel, arbitra­
tions typically take 300 ns.

Each bus uses distributed arbitration to
select the next bus owner; that is, logic on
each card outputs the arbitration level on
four arbitration lines (either ARBO*
through ARB 3 * , or -ARBO through
-ARB3) and determines the winner of
each arbitration contest based on the sig­
nals on these lines. The arbitration level
is determined in NuBus by the card's slot
ID, with 0 being the lowest priority and
Fh being the highest. For the Micro
Channel, the arbitration level is stored on
the card when it is configured into the

1 6 megabytes

-FxFF FFFF ...

Declaration ROM

Slot x ·

FxFO 0000
FxEF FFFF

FxOO 0000
�

Macintosh I I
NuBus slot

1 6 megabytes

FF FFFF
1/0 FO 0000

EF FFFF
Slots

90 0000
SF FFFF

ROM
80 0000
7F FFFF

RAM

00 0000

Macintosh I I
24-bit physical
address space

system. The highest priority a card can
have is level 0, and the lowest is Fh. See
table 2 for a comparison of the arbitration
levels. The Micro Channel also has a
Central Arbitration Control Point, which
is some logic on the PS/2 motherboard,
that controls the start and winner of an ar­
bitration contest.

To compete for ownership, the master
asserts its request line (RQST* for Nu­
Bus, -PREEMPT for Micro Channel) .
For the Micro Channel, the Central Arbi­
tration Control Point drives the ARB/
-GNT line to the arbitrate state, allowing
the arbitration contest to begin. Each
master then places its arbitration level
onto the 4-bit arbitration bus. If a com­
peting master has output a higher level,
the master will cease to compete for own­
ership for the next bus transaction. It
will, however, hold its asserted request
line to compete for the following bus

�
4 gigabytes

FFFF FFFF
� Slot space

FOOD 0000
EFFF FFFF

Super slots

9000 0000
BFFF FFFF

Unused

6000 0000

1/0 5FFF FFFF
4FFF FFFF

r
ROM

5000 0000
4000 0000
3FFF FFFF

I RAM

0000 0000

Macintosh I I

32-bit physical
address space

,.

...

transaction. On NuBus, at this point, the
winner of the contest owns the bus. On
the Micro Channel, the Central Arbitra­
tion Control Point lowers the ARB/-GNT
line to the -GNT state, allowing the
winner to own the bus.

Bbth buses ensure fairness by pre­
venting a higher-priority-level card or
channel from continuously withholding
ownership of the bus from lower-priority­
level entities. Card or channel logic pre­
vents the card just serviced from request­
ing bus ownership until all pending
requests are honored. In a sense, there
are no arbitration priority levels for Nu­
Bus cards, since the NuBus strictly en­
forces fair bus access . However, for spe­
cial cases, a channel can be configured
on the Micro Channel without fairness to
ensure continued ownership of the bus.

The NuBus has explicit mechanisms
continued

256 megabytes slot F

FFFF FFFF�
Unused FFOO FFFF

FEFF FFFF

FxFF FFFF

Slot x
FxOO 0000

F900 0000
FBFF FFFF

Unused

F1 00 0000

Slot O FOFF FFFF
FOOD 0000

Slot space

Note: The NuBus address space is identical

to the Mac II 32-bit physical address
space, with the following exceptions:
ROM address space:

FOBO 0000-FOFF FFFF
110 address space:

FOOD 0000-FO?F FFFF

Figure 2: The Macintosh II memory map. The memory in the superslot space and 15 megabytes of the slot space are not
available to the Macintosh II, but NuBus cards can access these regions.

90 Inside the mM PCs • B Y T E 1987 Extra Edition

MICRO CHANNEL VERSUS NUBUS

for continued bus and resource owner­
ship. Using an attention cycle (START*
and ACK* both asserted), a master can
request continuing bus ownership. It can
also request a resource lock. A resource
such as a memory card can be locked,
denying access to any other master.

Both locks are extremely useful for
multiprocessing; they allow a processor
to do an uninterrupted test and set, as well
as control access to a critical resource.
For example, the Macintosh II mother­
board uses bus locking to lock out the
NuBus for critical local processing, in­
cluding disk transfers and interrupt
·processing.

Card Configuration
Both the IBM Micro Channel and the
Apple NuBus define high-level mecha­
nisms to integrate cards or devices into
the bus system. This eliminates the need
for jumpers or switches to set either a
card's interrupt level or its address space,
which is the cause of a lot of bus prob­
lems on typical microcomputer systems.

The Micro Channel's Programmable
Option Select (POS) eliminates switches
from the system board and adapters by re­
placing them with programmable regis­
ters . Automatic configuration routines
store the POS data into a battery-powered
CMOS memory for system configuration
and operations. The configuration util­
ities rely on adapter description files that
contain the configuration data for a card.
Configuration files define system opera-

tion, including system memory maps,
video-processing options, and the indi­
vidual adapter configurations.

At boot-up, the PS/2 Model 80 first
validates the contents of the POS memory
by examining a check character stored
there. If the memory passes this test, the
system then selects a card using the -CD
SETUP lines. The card responds with its
ID number. The system then loads the ap­
propriate configuration data from CMOS
memory into the card, as determined by
the card's ID. This data sets the card's ar­
bitration level and fairness, the address
range of the card's 110 ROM, and the 1/0

address range. Cards that fail to config­
ure properly are disabled by the system.

The Macintosh II relies on a slot man­
ager to configure and maintain NuBus
cards. Each card is required to have a spe­
cial declaration ROM that holds the card­
specific configuration information. In­
formation in the declaration ROM in­
cludes byte lanes (which bytes of the
NuBus data path are used), a test pattern,
a revision level, a ROM cyclic redundan­
cy check for validating the contents of the
declaration ROM, and a resource direc­
tory. The resource directory points to
various resource lists, such as the device
icon, the device boot record, and the
driver directory, which in turn points to
blocks of code for the driver. The slot
manager reads the declaration code at
boot-up to configure the card into the sys­
tem and installs any drivers or interrupt
routines into system memory. The slot

Table 2: The priority levels for the two buses and their device assignments.
The priority levels are programmed into Micro Channel cards when they are
configured into the system; NuBus priorities depend upon the slot the card is in.

Arbitration
level

(Micro Channel)

Micro Channel Apple NuBus

Device
Value assignment

Device
Value assignment

Highest - 2 Memory refresh
- 1 N M I

0 DMA channel 0 0
1 DMA channel 1 1
2 DMA channel 2 2

3 DMA channel 3 3
4 DMA channel 4 4

5 DMA channel 5 5

6 DMA channel 6 6

7 DMA channel 7 7

8 Reserved 8
9 Reserved 9
A Reserved A
B Reserved B
c Reserved c

D Reserved D
E Reserved E

Lowest F System CPU F

92 Inside the ffiM PCs • B Y T E 1987 Extra Edition

Motherboard
No slot
No slot
No slot
No slot
No slot
No slot
No slot
No slot
Slot 9
Slot A
Slot B
Slat e
Slot D
Slot E

Reserved

Arbitration
level

(NuBus)

Lowest

Highest

manager can also recognize a card as a
boatable device and transfer control to
the card when the system starts up: A
card that fails to configure properly will
be ignored, or a system error is posted.

A Future with a Past
As you can see, both buses break new
ground to optimize bus. performance and
minimize the user's effort to add a new
card to the system. However, these buses
must also deal with their past: providing
compatibility with the existing market of
software and hardware.

IBM faced the dilemma of maintaining
compatibility with existing AT bus cards
and limiting bus throughput to about 8
MHz, or redesigning the bus to optimize
throughput at the expense of hardware
compatibility. Looking toward a future of
higher-speed processors and computing
needs that require the handling of vast
amounts of data, IBM chose to redesign
the bus. However, the Micro Channel is ,
in a sense, still a CPU bus; throughput is
optimized, since few bus clocks are lost
synchronizing dissimilar components in
the system. Its asynchronous nature
allows future cards, operating at those
higher speeds, to be installed with little to
no change to the PS/2 system, while bus
operations on NuBus are bound to its 10-
MHz clock.

However, since the Micro Channel is a
CPU bus, it's difficult to allow for multi­
ple processors on the bus without inter­
fering with the 80386's operation. Nu­
Bus, being a system bus, readily allows
other processors to operate on it. Cards
on NuBus can communicate and share
data with one another without interfering
with operations on the Mac II's local bus.
In fact, AST Research offers a NuBus
card that is essentially an IBM PC AT
that runs independently in the Macintosh
II but can share data with the 68020 CPU
when necessary. Finally, the slot man­
ager in the Mac II allows a NuBus card to
be a boot device. You could drop a Nu­
Bus card with the next-generation CPU
into a Mac II and let it take control of the
machine-the ultimate in hardware ex­
pandability.

Both machines still have some of their
past built into them. A look at the mem­
ory maps shows that both systems were
designed to be compatible with their cur­
rent operating systems, while providing a
gateway to the next generation of soft­
ware. The Macintosh II is the first ma­
chine in the Macintosh line to have slots,
so Apple at least did not have to confront
the problem of bus compatibility . But
there's a certain irony in the fact that
Apple must migrate from a 24-bit to a 32-
bit operating system, similar to what IBM
faces in the move to OS/2. •

	2012_08_21_17_00_07
	2012_08_21_17_00_08
	2012_08_21_17_00_10
	2012_08_21_17_00_11
	2012_08_21_17_00_13
	2012_08_21_17_00_16
	2012_08_21_17_00_18

