
INSIDE THE IBM PCs 

Buses provide the base for the next-generation 
personal computer/workstation 

Com pari ng I B M ' s M ic ro 
C h an n e l  and Apple's NuBus 

The 32-bit bus has finally ar­
rived for the personal com­
puter in the form of Apple's  
Macintosh ll and IBM's Per­
sonal System/2. Central to 
each of these machines is a 
32-bit bus capable of high­
speed operations at the band­
width required for today 's  
16-megahertz processors. 

As you might expect,  
though, Apple and IBM have 
adopted dissimilar bus archi­
tectures. NuBus, developed by 
MIT and Texas Instruments, 
has been adapted by Apple as 

the Macintosh ll system bus. It 

supplements the Macintosh IT's 
private 68020 processor bus, 
and six slots open the micro­
computer for expansion. IBM, 
on the other hand, has re­
vamped the older IBM PC and 
AT bus to handle higher speeds 
and 32-bit processing. The new 
IBM bus, the Micro Channel, 
serves as both a CPU bus and a 
system bus. 

It's no accident that these 
new computers contain new 
bus architectures.  Today ' s 
new microcomputers require 
more than just increased pro­
cessor power and expanded 
memory. Investing in these 
products means committing to 
computing platforms that 
must be stable up to and perhaps through 
the mid-1990s. This requires a bus-based 
architecture capable of adapting to ex­
panding processing rates, coprocessing 
or multiprocessing, and adapting to new 
peripherals such as advanced graphics 
terminals. I'll examine the two buses with 
regard to these capabilities . 

Why a Bus? 
Why have a special bus at all? Most pro­
cessors actually define a bus structure of 
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address and data paths called a local, or 
CPU, bus. The reason for this is straight­
forward: to build generality into systems.  

A local bus is  structured to optimize 
the processor-to-memory bandwidth. It 
is therefore highly processor-dependent: 
It is tightly linked to its processor, mem­
ory, and specific support peripherals. 
The cost of this performance is a loss of 
flexibility. A local bus might be unable to 
take advantage of newer technologies if 
they differ significantly from the local 

bus's design. 
The existing IBM PC or AT 

buses are examples of an ex­
panded local bus.  An ex­
panded local bus is a local bus 
with extensions that provide a 
set of generalized signals. 
These additional signals offer 
a general architecture that is 
easy to interface with. Since 
they use many of the proces­
sor's signals, expanded local 
buses are still processor-spe­
cific. For example, the IBM 
PC and AT buses are designed 
around the Intel 80x8x micro­
processor architecture, and 
they have problems accommo­
dating large memory expan­
sions. The PC is limited to 1 

megabyte of RAM (the 640K­
byte limit is imposed by the 
layout of the PC BIOS), and 
the AT to 1 6  megabytes. 

Unlike local buses, system 
buses are designed to maxi­
mize hardware subsystem-to­
subsystem transfers. System 
buses offer a general protocol, 
or transfer method, for system 
CPUs or peripherals to inter­
change data. This is accom­
plished by treating the bus as a 
resource. To get control of the 
resource, a peripheral or pro­
cessor must request its use 
formally, in competition with 

others. With this general approach, you 
can add peripherals, special functions, 
and even full computer subsystems easily 
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to a system bus. The bus integrates hard­
ware, cards, and subsystems into one 
smoothly running machine, much as an 
operating system integrates applications 
programs. The more general the integrat­
ing mechanism, the easier it is to add 
functionality and avoid obsolescence. 
Moreover, these buses are processor-in­
dependent. For example, NuBus defines 
a generalized address space that requires 
no processor-specific signals for periph­
eral or 1/0 accesses. 

Overview of the Buses 
The new IBM Micro Channel has evolved 
from the earlier PC and AT buses. Like 
them, it is a CPU or local bus once re­
moved. As a local bus, it optimizes the 
host CPU-to-memory bandwidth, using a 
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special transfer method termed "matched 
memory cycles, "  which I'll discuss later. 
It is also a system bus, in that it is treated 
as a system resource. 

Taking an opposite tack, the Apple 
NuBus is a full system bus . It is indepen­
dent of the Macintosh IT's host processor; 
in fact, in the Mac IT the motherboard is 
treated as a NuBus slot. 

Both buses create a memory-mapped 
system. Each card or hardware entity is 
addressed within this bus address space. 
The 16-bit PS/2 systems, the Models 50 
and 60, address a 24-bit space, or 16  
megabytes; the PS/2 32-bit Model 80 and 
the Macintosh IT NuBus address a full 32-
bit space, or 4 gigabytes. Like its pre­
decessors, the Micro Channel also has a 
64K-byte 1/0 space. 

Table 1: A comparison of the two buses. Not all bus signals are included. 

Utility signals 

Reset 
Clock 
Interrupt 
Audio 

Control signals 

Start bus cycle 
End bus cycle 
Cycle definition 
Burst control 
Address size 
Data size 

Matched memory cycl,e 
Signal returns 

Slot occupancy 

Address/data 

Address 
Data 

Arbitration 

. Request bus 
Arbitration lines 
Slot iD 

NuBus 

RESET* 
CLOCK *  
N MRQ* [Note 1 )  

START* 
ACK *  
TMO * ,  TM1 * 
[Note 3] 
[Note 4) [ 
TMO* TM1 * 
ADO* : AD1 *

' 

[Note S) 

ADO * through AD31 * 
ADO* through AD31 * 

RQST* 
ARBO * through ARB3 * 
100* through 103* 
[Note 6) 

Note 1 :  Separate line for each slot or card. 

Micro Channel 

-CHRESET 
osc 

-JR0 (3-7, 9-1 2, 1 4- 1 5) 
AUDIO, AUDIO GND 

AO-A31 , M/-10, MADE24 [Note 2) 
-CMD, or -MMC CMD 
M/-10, -SO, -S1 
-BURST, -TC 
-MADE 24 
-BEO through -BE3, TR32, -SBHE 
-CD OS 16 [Note 1 ) , 
-CD OS 32 [Note 1 )  
M MC, -MMCR 
CHRDY RTN, -OS 1 6  RTN, 
-OS 32 RTN 
-CD SFDBK 

AO through A31 
DO through 031 

-PREEMPT 
-ARBO through -ARB3, ARB/-GNT 
[Note ?) 

Note 2: For a memory refresh cycle, -REFRESH will also be used. 
Note 3: Although a burst mode is defined in N u Bus, it is not used in the Apple version of 

NuB us. 
Note 4:  All addresses on NuB us use 32 bits of address space. 
Note 5: The declaration ROM must respond to a read at the top of the slot space. 
Note 6: These lines are not bused. 
Note 7: 10 is stored on card but is not used for arbitration. A separate arbitration level is 

stored on the card when it is configured into the system. 
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Each bus entity can be. defined as a 
master or a slave. A master entity can re­
quest and get control of the bus. A master 
must own the bus to send or receive data 
from another target entity on the bus, 
which can be another master or a slave 
unit. A bus slave unit cannot own the bus, 
but it can request service through an in­
terrupt signal to one of the bus masters. 

The masters contend for ownership of 
the bus resource via an arbitration proto­
col, which I'll describe later. Both buses 
allow multiple masters. However, only 
the Apple NuBus provides mechanisms 
for true multiprocessing: bus and re­
source locks. Bus locking allows a pro­
cessor to lock a bus for exclusive access. 
With resource locking , a shared re­
source, such as RAM on a card with its 
own local processor, is locked so that the 
local processor can't access it. Both types 
of locks are necessary to prevent one pro­
cessor from interfering with or cor­
rupting memory that another processor is 
using. 

While the IBM Micro Channel does 
permit multiple masters, there is not 
much to be gained in going to multiple 
host processors . This is because the 
Micro Channel is also an extension of the 
CPU bus. Processor memory operations 
tie up the Micro Channel, making the bus 
a bottleneck for the concurrent operation 
of two host processors. It should be noted 
that IBM , for efficiency, allows the host 
processor to access system motherboard 
memory without passing through the 
Micro Channel bus. 

Also hindering multiprocessing on the 
Micro Channel is the absence of any di­
rect provisions for bus or resource lock­
ing, although the 80386 in the IBM PS/2 
Model 80 has hardware for bus locking. 
While not intended for true host-level 
multiprocessing, the Micro Channel does 
offer a general interface for drop-in co­
processing. The PS/2 host processors can 
be easily supplemented by powerful co­
processors, such as array and floating­
point processors, or AI compute engines . 

Timing the Critical Element 
As a logic designer once said, "There are 
three important aspects of a digital design 
that must be carefully monitored: timing, 
timing, and timing. "  This is still true, es­
pecially for computer and bus designs. 

Difficulties usually start when one 
block oflogic has to talk to another block, 
especially if they each rely on different 
clock signals. This requires that the sig­
nals be synchronized to be passed from 
one logic block to another. A transmit­
ting signal from a flip-flop strobed with 
one clock must be picked up and strobed 
into a receiving flip-flop using a second 
clock. The two clocks, transmitting an<!. 
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receiving, are asynchronous; no fixed re­
lationship exists between them. Thus, it 
can take one receiving clock period to 
synch up to the transmitting data. 

Buses, like logic, define synchronous 
or asynchronous interactions. In a syn­
chronous bus, all interactions are defined 
in terms of a fixed bus clock or cycle. The 
bus clock edges define when data is valid 
and when to strobe it. Moreover ,  all 
transactions are in multiples of these bus 
cycles. The Apple NuBus is a synchro­
nous bus. 

Instead of relying on a fixed clock, an 
asynchronous bus is controlled by hand­
shaking signals. A command signal is 
sent to a target adapter or card that re­
sponds with an acknowledge signal upon 
completion of a data transfer. All bus tim­
ing is dependent on the signals them­
selves. The IBM Micro Channel is an 
asynchronous bus, although it supports 
certain synchronous transfers. 

Both the IBM Micro Channel and the 
Apple NuBus pass a common clock 
through the bus to minimize the synchro­
nization problem among bus entities . 
However, there is a clock mismatch be­
tween the Macintosh IT's local bus and 
NuBus, requiring synchronization before 
a transfer can occur. 

The Macintosh IT's 68020 runs with a 
15.7-MHz clock, while NuBus runs with 
a 10-MHz clock. Synchronization delays 
between these bus clocks is minimized by 
using high-frequency clock signals. The 
NuBus 10-MHz clock is divided down 
from a 40-MHz crystal; the 68020 15 .7-
MHz clock is divided down from a 3 1 .4-
MHz crystal. The cost of clock synchro­
nization is thus held to one clock period, 
either 25 or 3 1 .5 nanoseconds. Clock 
synchronization is accomplished through 
the application-specific integrated circuit 
(ASIC)-the "GLU" custom gate array 
on the Mac II motherboard-and the Nu­
Bus timing control logic. 

Synching up between the bus processes 
(i .e. , bus reads or writes) also exacts a 
time penalty. The requesting bus must . 
wait for the other bus to complete its cur­
rent transaction cycle before it can at­
tempt a transfer. All NuBus operations 
are defined with respect to its 10-MHz 
system clock. This clock has a 25 percent 
duty cycle: It is false (or high) for 75 ns 
and true (or low) for 25 ns. 

Normally, a transfer from NuB us to 
the local bus takes a full 68020 instruc­
tion cycle (about 400 to 500 ns) to synch 
up. Going the other way, a Macintosh II 

request can take a typical NuBus trans­
action of 2 bus cycles (about 200 ns) to 
synch. It must be noted that this type of 
delay is not out of the ordinary; it is 
the time penalty paid by the communica­
tions protocol between the CPU bus and 

Micro Channel Timing 
T he IBM Micro Channel is an asyn­

chronous bus. Handshake signals 
are used to initiate processes, signal 
availability of addresses and data, and 
completion of operations. It is the signal 
changes and the logic's response to them 
that drives this asynchronous bus. 

The keys to this cycle are the -ADL 
and -CMD lines that define when the ad­
dress is valid and when the data is valid. 
Their trailing edges can be used to 
strobe addresses and data as well. CD 
CHRDY is the mechanism for extending 
bus cycles. When this signal goes high, 
it triggers -CMD, which ends the bus 
cycle. See figure A for the sequence of a 
Micro Channel Basic Write cycle. Here 
is a short description of the sequence: 

1 .  The cycle begins with the address and 
definition lines (-SO, -S 1 ,  M/-10, 
MADE 24, TR32) defining the bus op­
eration (read; write, memory, or 1/0 
cycles), addressing mode (24-bit), and 
32-bit transfers. 

2 .  -ADL is asserted and defines a stable 
address. 
3. The addressed card responds by as­
serting -CD 1 6 ,  -CD 32 ,  and -CD 
SFDBK. -CD 16 is asserted for 16- and 
32-bit operations, -CD 32 for 32-bit op-

1 erations . The card asserts its -CD 
SFDBK line to acknowledge being ad­
dressed. CD CHRDY is deasserted to 
extend the cycle, if necessary. 
4. The data appears on the bus. 
5. The -CMD line is asserted, indicating 
that valid data is on the bus. -ADL is 
deasserted. 
6. If CD CHRDY was deasserted, the 
card drives CD CHRDY active after it 
has read the data. 
7. -CMD is deasserted, ending the bus 
cycle. 

Other masters can be contending for 
the bus ownership during the bus transac­
tion. For more details on the Micro Chan­
nel, see the article "The 32-bit Micro 
Channel" by John Shiell on page 59. 

2 3 4 5 
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6 7 
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Figure A: A Micro Channel Basic Write cycle. 

the system bus. 
The IBM Micro Channel is an asyn­

chronous bus, and all operations are 
gauged by the transmitted and returned 
signals.  A common 14 .3-MHz clock, 
OSC, is provided on the bus, eliminating 
the problem of signal synching. More­
over, a delayed signal will be picked up 

by the next clock, providing a built-in 
safety net for bus operations. 

Bus to Bus 
To distinguish between the two sets of bus 
signals, I'll stick to each bus's naming 
conventions. NuBus active low signals 

continued 
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are labeled as signaL..name*, while IBM 
uses its own convention for labeling an 
active low signal: -signaL..name. 

The NuBus is a simple and elegant bus 
that matches Apple' s  minimalist ap­
proach toward hardware. The NuBus has 
only 5 1  signals, including two parity sig­
nals not used by Apple. The IBM Micro 
Channel has 77 and 1 1 1  signals for the 
16- and 32-bit versions, respectively. All 
Micro Channel signals are TTL-logic­
compatible.  Table 1 compares signals be­
tween the NuBus and the Micro Channel, 
and you can see a great deal of similarity 
between the two buses. The arbitration 
and utility signals almost match. 

But there are differences. NuBus is 
multiplexed, sharing data and address on 
common lines, while the Micro Channel 
is nonmultiplexed, providing lines for 
both address and data. The IBM Micro 
Channel defines a number of discrete in­
terrupts (-IRQ 3-7, 9-12, and 14- 1 5) 
that can be shared among the boards. The 
Apple implementation, on the other 
hand, defines an interrupt (NMRQ*) per 
slot that is fed separately into the Macin­
tosh II interrupt logic for processing. 

The Micro Channel has a number of 
signals for coordinating asynchronous 
handshakes : The signals -ADL, -CMD, 
and -MMC CMD provide the basic bus 
handshake edges. Hardware signals are 
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also used to delineate bus sizing (-BEO 
through -BE3), 32-bit operation (-CD DS 
32(n)), and 24-bit addressing (MADE 
24). See the text box "Micro Channel 
Timing" on page 85 for more information 
on the bus cycles. 

A special set of signals (-MMC, 
-MMCR, and -MMR CMD) is  used in 
matched memory cycles to ensure fast 
CPU-to-memory accesses for the 80386. 
A matched memory cycle is started by the 
target slave returning an -MMCR request 
signal after being addressed by the sys­
tem CPU. The 80386 responds by driv­
ing the faster -MMCR CMD handshake 
signal instead of the -CMD during a bus 
cycle. Matched memory cycles provide a 
bus read transaction in three clocks at 16 
MHz, or 1 87 . 5  ns,  while standard cycles 
using the -CMD handshake signal run 
four or more system clocks for a mini­
mum of 250 ns. Matched memory cycles 
can be run with both 16- and 32-bit chan­
nel devices. 

In contrast, the NuBus synchronous 
operations are relatively simple, requir­
ing no special signals or exception pro­
cessing. NuBus timing, however, is more 
stringent than the Micro Channel's,  fit­
ting sending and strobing of signals and 
data within 75 ns in the 100-ns clock 
cycle. See the text box "Apple NuBus 
Timing " below for more details on 

NuBus bus cycles. 
NuBus defines a byte/word structure 

that matches the Intel 80x8x addressing 
schemes (byte order 0, 1 , 2 ,  3) , not the _ 

Macintosh's 68020 scheme (byte order 3, 
2,  1, 0). The bus transceivers are wired to 
map the data from NuBus order into the 
Macintosh byte order. Bus sizing is han­
dled automatically; the bus handles byte 
(8 bits) , half-word (16 bits) and word 
(32-bits) sizes. 

The NuBus specification defines a 
block,- or burst mode, that can move up to 
sixteen 32-bit words in a transaction, but 
Apple has not implemented it in the Mac 
II NuBus design. IBM, however, has im­
plemented a burst mode in the Micro 
Channel in conjunction with direct mem­
ory access. This DMA' burst capability 
allows large blocks of data to be moved 
while minimizing bus overhead. In fact, 
each peripheral on the channel can be 
viewed as a PMA channel. 

When accessed by the DMA control­
ler, a card can assert -BURST, guaran­
teeing bus ownership for block transfers. 
Thereafter, data is transferred using only 
the -CMD signal to define data valid for 
both the read and write stages. The block 
transfer ends when the card deasserts the 
-BURST line for the last cycle. For pre­
defined transfers, the DMA controller 

continued 

Apple NuBus Timing 
T he Apple NuBus is a synchronous 

bus; all operations are defined with 
respect to its basic clock cycle. The 
clock runs at 10 MHz, with a 100-ns pe­
riod and a 25 percent duty cycle, Two 
edges of the clock serve the bus. The ris­
ing edge at the start of the period is the 
driving edge, strobing signals and ad­
dress onto the bus, and the falling edge, 
75 ns later, is the sampling edge for tak­

ing information off the bus. 
Bus transactions are made up of bus 

cycles or clock periods. A transaction 
can be a single cycle or multiple cycles, 
especially if a slower peripheral is in­
volved. Delays are added by inserting 
additional bus cycles. The timing dia­
gram in figure B shows the basic write 
transaction, which consists of a START 
cycle, any intervening bus cycles, and an 
ACK cycle. Here is the sequence: 

1 .  START* is asserted, indicating the 
start of a bus transaction. The master 
places addresses on the AD3 1 * through 
ADO* lines; and the TMO*, TM 1 * lines 
define the type of transaction. . 
2. All cards read the addresses. The 

slave is identified by the address. 
3. The master drives the data onto the 
AD3 1 * through ADO* lines. 
4. The slave reads the data off the bus. 
5. The slave asserts ACK* to signal the 
end of the transaction and places the ap­
propriate status codes onto TMO* and 
TM 1*. 
6 .  The master releases the AD3 1 * 

2 3 

CLK* 

I 

I 

Address 

4 

through ADO* lines, and the slave re­
leases the ACK* and status lines. 

Other masters can be competing for the 
bus during the bus transaction. 

For more information on NuBus, see 
"The Apple Macintosh II" by Gregg 
Williams and Tom Thompson in the 
April BYTE. 

5 6 
I I 

L__J-L_J-
1 I 

ADx* --< >K : : Data ! � L-------�� 
I I I 

TMx* --< Mode 

START* \ 

ACK* 

) �--------...--11 1 K Status code :>--
I 

1: I I 

I I 

I I 

�---;��------�v--

Figure B: A Nubus write cycle. 
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marks the last cycle by asserting the 
terminal count line (-TC).  

A DMA controller can transfer 64K 
bytes of data between a peripheral and 
memory, the same as in an ffiM PC. The 
PS/2 DMA controller can handle 24-bit 
read and write addresses, unlike the PC's 
20-bit address limit. Unfortunately, this 
DMA capability is limited to transfers of 
8- or 16-bit data. 

Bus Address Space 
Both the NuBus and the Micro Channel 
map bus addresses into a full bus address 
space that includes system memory and 
ROM, setup ROM, and device buffer 
space. Analogous to a CPU bus, these 
buses provide access to locations in that 
space. 

The ffiM implementation maps into a 
16-megabyte or a 4-gigabyte address 
space. The bus address space is the same 
as the CPU address space. In this respect, 
the Micro Channel acts as a local CPU 
bus. The system board RAM , either 
512K bytes or 640K bytes, starts at 00000 
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hexadecimal. The 128K-byte video RAM 
and channel ROM are mapped into the 
lower address pages. Topping off the 
memory space at EOOOOh through 
FFFFFh is the 128K bytes of system 
board ROM or RAM, depending upon 
how the computer's resources have been 
allocated. RAM memory mappings 
above address FFFFFh are managed in 1 -
megabyte chunks . See figure 1 for a 
memory map of an mM PS/2 Model 80. 
Bits in a memory-encoding register and a 
split-address register determine how and 
where memory will be allocated. 

Bus memory space for Apple NuBus 
implementation doesn't match the Mac­
intosh II ' s  68020 processor address 
space. The upper one-sixteenth, or 256 
megabytes, of the NuBus 4-gigabyte ad­
dress space is called the slot space. This 
slot space is divided into 16 sections, one 
for each NuBus slot, and each slot owns 
16 megabytes of the space. The top of 
each slot address space is reserved for a 
slot-declaration ROM that is accessed at 
that address. The slot a card occupies on 

System board ROM 
FFFF FFFF 

t----------i FFFE 0000 

.... 
Unused 

r 

001 0  0000 + SBR + 

Used as system 
CR + 384K or 51 2K 
board RAM if enable 

split bit = o. 
Unused if enabl e split bit = 1 . 

System board RAM RAM size is 384 K bytes if 640 bit = 0, 
0 bit = 1 .  

Channel RAM 

System board RAM 

System board RAM or ROM 

Channel ROM 

System board video RAM 

System board RAM (or unused) 

System board RAM 

512K bytes if 64 

001 0 0000 + SBR + 

001 0  0000 + SBR 

001 0 0000 
OOOF FFFF 
OOOE 0000 
0000 FFFF 
oooc oooo 
0008 FFFF 
OOOA OOOO 
0009 FFFF 
0008 0000 
0007 FFFF 

0000 0000 

CR 

System ROM if ROM 
enable bit = 1 . 
System RAM if ROM 
enable bit = 0. 

Used,as system board 
RAM if 640 bit = 0. 
Unused if 640 bit = 1 .  

Figure 1 :  The PS/2 Model 80 memory map. The memory arrangement is 
determined by the contents of the memory-encoding and split-address registers. SBR 
is system board RAM; CR is channel RAM. System board RAM and channel RAM 

are allocated in ]-megabyte chunks above address FFFFFh, with the exception of the 
split-system RAM. The system ROM at addresses £()()()() through FFFFF is a copy 
of the system ROM at addresses FFFE()()()() through FFFFFFFF. 
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NuBus determines its slot identification, 
which in turn determines its arbitration 
level and its location in the slot address 
space. 

NuBus defines 1 6  slots, but the Macin­
tosh II provides six. The six slots have 
IDs of9h through Eh. Slot 0 is the Mac II 
motherboard, and slot F (which does not 
have a physical slot) is reserved. One slot 
becomes the video buffer for the ma­
chine, depending upon which slot the 
video card is placed in. Slots 1 through 8 
are unused, because no room exists in the 
24-bit address space for them. For this 
reason, the existing slots are limited to 1 
megabyte of slot space instead of 1 6  
megabytes. 

Apple ' s  implementation of NuBus 
allows a slot to own a "superslot" space 
of256 megabytes, as well as its 16-mega­
byte slot space at the top of NuBus mem­
ory . We won't discuss superslots further, 
since they aren't accessible by the Mac II, 
although you should note that other cards 
on NuBus could use these areas. See fig­
ure 2 for a detailed look at the Macintosh 
II memory map and its arrangement in 
the NuBus address space. 

The 24-bit address space for the Mac­
intosh II starts at Oh with 8 megabytes of 
RAM, followed by 1 megabyte of ROM, 
then 6 megabytes of slot space, and 
topped by a 1 -megabyte region of mem­
ory-mapped 110 devices. The Mac II's 
24-bit address space is mapped into the 
32-bit NuBus address space by placing 
the RAM, ROM, and I/0 areas at the bot­
tom of the NuBus address space. How­
ever, from the NuBus side, the Mac II's 
ROM appears at addresses F0800000h to 
FOFFFFFFh, and the 110 area maps to 
FOOOOOOOh through F07FFFFFh. 

Under this scheme, the maximum 
RAM that can be accessed on the local 
bus is 8 megabytes,  using 1 -megabyte sin­
gle in-line memory modules (SIMMs). 
The Mac II's motherboard RAM can be 
expanded to 128 megabytes if and when 
higher-density SIMMs are available. 
However, you can add more RAM to the 
system through the NuBus slots, and ven­
dors are now supplying NuBus memory 
cards. 

The Macintosh II is currently re­
stricted to 24-bit addressing or 16 mega­
bytes when running with the current 
operating system. An Apple Unix imple­
mentation (A/UX) is in the works that 
will handle 32-bit addressing and re­
quires a memory-management unit for 
virtual-memory processing. 

Bus Ownership 
Both buses use arbitration to allocate 
ownership of the bus to a single master 
when several masters request use of the 

continued 
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bus . Arbitration typically takes place 
concurrently with bus transactions on 
both buses, but the Micro Channel allows 
a system configuration that restricts arbi­
tration to nonconcurrent operation. 

NuBus arbitrations take two full bus 
cycles, or 200 ns, to select the next bus 
owner. On the Micro Channel, arbitra­
tions typically take 300 ns. 

Each bus uses distributed arbitration to 
select the next bus owner; that is, logic on 
each card outputs the arbitration level on 
four arbitration lines (either ARBO* 
through ARB 3 * ,  or -ARBO through 
-ARB3) and determines the winner of 
each arbitration contest based on the sig­
nals on these lines. The arbitration level 
is determined in NuBus by the card's slot 
ID, with 0 being the lowest priority and 
Fh being the highest. For the Micro 
Channel, the arbitration level is stored on 
the card when it is configured into the 

1 6  megabytes 

-FxFF FFFF ... 

Declaration ROM 

Slot x · 

FxFO 0000 
FxEF FFFF 

FxOO 0000 
� 

Macintosh I I  
NuBus slot 

1 6  megabytes 

FF FFFF 
1/0 FO 0000 

EF FFFF 
Slots 

90 0000 
SF FFFF 

ROM 
80 0000 
7F FFFF 

RAM 

00 0000 

Macintosh I I  
24-bit physical 
address space 

system. The highest priority a card can 
have is level 0, and the lowest is Fh. See 
table 2 for a comparison of the arbitration 
levels. The Micro Channel also has a 
Central Arbitration Control Point, which 
is some logic on the PS/2 motherboard, 
that controls the start and winner of an ar­
bitration contest. 

To compete for ownership, the master 
asserts its request line (RQST* for Nu­
Bus, -PREEMPT for Micro Channel) . 
For the Micro Channel, the Central Arbi­
tration Control Point drives the ARB/ 
-GNT line to the arbitrate state, allowing 
the arbitration contest to begin. Each 
master then places its arbitration level 
onto the 4-bit arbitration bus. If a com­
peting master has output a higher level, 
the master will cease to compete for own­
ership for the next bus transaction. It 
will, however, hold its asserted request 
line to compete for the following bus 

� 
4 gigabytes 

FFFF FFFF 
� Slot space 

FOOD 0000 
EFFF FFFF 

Super slots 

9000 0000 
BFFF FFFF 

Unused 

6000 0000 

1/0 5FFF FFFF 
4FFF FFFF 

r 
ROM 

5000 0000 
4000 0000 
3FFF FFFF 

I RAM 

0000 0000 

Macintosh I I  

32-bit physical 
address space 

,. 

... 

transaction. On NuBus, at this point, the 
winner of the contest owns the bus. On 
the Micro Channel, the Central Arbitra­
tion Control Point lowers the ARB/-GNT 
line to the -GNT state, allowing the 
winner to own the bus. 

Bbth buses ensure fairness by pre­
venting a higher-priority-level card or 
channel from continuously withholding 
ownership of the bus from lower-priority­
level entities. Card or channel logic pre­
vents the card just serviced from request­
ing bus ownership until all pending 
requests are honored. In a sense, there 
are no arbitration priority levels for Nu­
Bus cards, since the NuBus strictly en­
forces fair bus access .  However, for spe­
cial cases, a channel can be configured 
on the Micro Channel without fairness to 
ensure continued ownership of the bus. 

The NuBus has explicit mechanisms 
continued 

256 megabytes slot F 

FFFF FFFF� 
Unused FFOO FFFF 

FEFF FFFF 

FxFF FFFF 

Slot x 
FxOO 0000 

F900 0000 
FBFF FFFF 

Unused 

F1 00 0000 

Slot O FOFF FFFF 
FOOD 0000 

Slot space 

Note: The NuBus address space is identical 

to the Mac II 32-bit physical address 
space, with the following exceptions: 
ROM address space: 

FOBO 0000-FOFF FFFF 
110 address space: 

FOOD 0000-FO?F FFFF 

Figure 2: The Macintosh II memory map. The memory in the superslot space and 15 megabytes of the slot space are not 
available to the Macintosh II, but NuBus cards can access these regions. 
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for continued bus and resource owner­
ship. Using an attention cycle (START* 
and ACK* both asserted), a master can 
request continuing bus ownership. It can 
also request a resource lock. A resource 
such as a memory card can be locked, 
denying access to any other master. 

Both locks are extremely useful for 
multiprocessing; they allow a processor 
to do an uninterrupted test and set, as well 
as control access to a critical resource. 
For example, the Macintosh II mother­
board uses bus locking to lock out the 
NuBus for critical local processing, in­
cluding disk transfers and interrupt 
·processing. 

Card Configuration 
Both the IBM Micro Channel and the 
Apple NuBus define high-level mecha­
nisms to integrate cards or devices into 
the bus system. This eliminates the need 
for jumpers or switches to set either a 
card's interrupt level or its address space, 
which is the cause of a lot of bus prob­
lems on typical microcomputer systems. 

The Micro Channel's Programmable 
Option Select (POS) eliminates switches 
from the system board and adapters by re­
placing them with programmable regis­
ters . Automatic configuration routines 
store the POS data into a battery-powered 
CMOS memory for system configuration 
and operations. The configuration util­
ities rely on adapter description files that 
contain the configuration data for a card. 
Configuration files define system opera-

tion, including system memory maps, 
video-processing options, and the indi­
vidual adapter configurations. 

At boot-up, the PS/2 Model 80 first 
validates the contents of the POS memory 
by examining a check character stored 
there. If the memory passes this test, the 
system then selects a card using the -CD 
SETUP lines. The card responds with its 
ID number. The system then loads the ap­
propriate configuration data from CMOS 
memory into the card, as determined by 
the card's ID. This data sets the card's  ar­
bitration level and fairness, the address 
range of the card's 110 ROM, and the 1/0 

address range. Cards that fail to config­
ure properly are disabled by the system. 

The Macintosh II relies on a slot man­
ager to configure and maintain NuBus 
cards. Each card is required to have a spe­
cial declaration ROM that holds the card­
specific configuration information. In­
formation in the declaration ROM in­
cludes byte lanes (which bytes of the 
NuBus data path are used), a test pattern, 
a revision level, a ROM cyclic redundan­
cy check for validating the contents of the 
declaration ROM, and a resource direc­
tory. The resource directory points to 
various resource lists, such as the device 
icon, the device boot record, and the 
driver directory, which in turn points to 
blocks of code for the driver. The slot 
manager reads the declaration code at 
boot-up to configure the card into the sys­
tem and installs any drivers or interrupt 
routines into system memory. The slot 

Table 2: The priority levels for the two buses and their device assignments. 
The priority levels are programmed into Micro Channel cards when they are 
configured into the system; NuBus priorities depend upon the slot the card is in. 

Arbitration 
level 

(Micro Channel) 

Micro Channel Apple NuBus 

Device 
Value assignment 

Device 
Value assignment 

Highest - 2  Memory refresh 
- 1  N M I  

0 DMA channel 0 0 
1 DMA channel 1 1 
2 DMA channel 2 2 

3 DMA channel 3 3 
4 DMA channel 4 4 

5 DMA channel 5 5 

6 DMA channel 6 6 

7 DMA channel 7 7 

8 Reserved 8 
9 Reserved 9 
A Reserved A 
B Reserved B 
c Reserved c 

D Reserved D 
E Reserved E 

Lowest F System CPU F 
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Motherboard 
No slot 
No slot 
No slot 
No slot 
No slot 
No slot 
No slot 
No slot 
Slot 9 
Slot A 
Slot B 
Slat e 
Slot D 
Slot E 

Reserved 

Arbitration 
level 

(NuBus) 

Lowest 

Highest 

manager can also recognize a card as a 
boatable device and transfer control to 
the card when the system starts up: A 
card that fails to configure properly will 
be ignored, or a system error is posted. 

A Future with a Past 
As you can see, both buses break new 
ground to optimize bus. performance and 
minimize the user's effort to add a new 
card to the system. However, these buses 
must also deal with their past: providing 
compatibility with the existing market of 
software and hardware. 

IBM faced the dilemma of maintaining 
compatibility with existing AT bus cards 
and limiting bus throughput to about 8 
MHz, or redesigning the bus to optimize 
throughput at the expense of hardware 
compatibility. Looking toward a future of 
higher-speed processors and computing 
needs that require the handling of vast 
amounts of data, IBM chose to redesign 
the bus. However, the Micro Channel is , 
in a sense, still a CPU bus; throughput is 
optimized, since few bus clocks are lost 
synchronizing dissimilar components in 
the system. Its asynchronous nature 
allows future cards, operating at those 
higher speeds, to be installed with little to 
no change to the PS/2 system, while bus 
operations on NuBus are bound to its 10-
MHz clock. 

However, since the Micro Channel is a 
CPU bus, it's difficult to allow for multi­
ple processors on the bus without inter­
fering with the 80386's operation. Nu­
Bus, being a system bus, readily allows 
other processors to operate on it. Cards 
on NuBus can communicate and share 
data with one another without interfering 
with operations on the Mac II's local bus. 
In fact, AST Research offers a NuBus 
card that is essentially an IBM PC AT 
that runs independently in the Macintosh 
II but can share data with the 68020 CPU 
when necessary. Finally, the slot man­
ager in the Mac II allows a NuBus card to 
be a boot device. You could drop a Nu­
Bus card with the next-generation CPU 
into a Mac II and let it take control of the 
machine-the ultimate in hardware ex­
pandability. 

Both machines still have some of their 
past built into them. A look at the mem­
ory maps shows that both systems were 
designed to be compatible with their cur­
rent operating systems, while providing a 
gateway to the next generation of soft­
ware. The Macintosh II is the first ma­
chine in the Macintosh line to have slots, 
so Apple at least did not have to confront 
the problem of bus compatibility . But 
there's a certain irony in the fact that 
Apple must migrate from a 24-bit to a 32-
bit operating system, similar to what IBM 
faces in the move to OS/2. • 
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