
C++ Programmer’s Guide

Document Number 007-0704-070

C++ Programmer’s Guide
Document Number 007-0704-070

CONTRIBUTORS

Written by Douglas B. O’Morain
Illustrated by Douglas B. O’Morain
Edited by Christina Cary
Production by Derrald Vogt
Engineering contributions by Rune Dahl, David Henke, Stuart Liroff, Michey Mehta,

Roy Mittendorff, C. Murthy, Anil Pal, Andrew Palay, Krishna Sethuraman, Ravi
Shankar, Shankar Unni, and John Wilkinson

© Copyright 1994, Silicon Graphics, Inc.— All Rights Reserved
This document contains proprietary and confidential information of Silicon
Graphics, Inc. The contents of this document may not be disclosed to third parties,
copied, or duplicated in any form, in whole or in part, without the prior written
permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and/
or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

Silicon Graphics and IRIS are registered trademarks and IRIX, IRIS IM, IRIS ViewKit,
Graphics Library™, Indigo Magic, Indigo Magic Desktop, CASEVision,
CASEVision/WorkShop, and CASEVision/WorkShop Pro C++ are trademarks of
Silicon Graphics, Inc. Open Software Foundation, Motif, OSF, OSF/Motif are
trademarks of the Open Software Foundation, Inc. UNIX is a registered trademark in
the United States and other countries, licensed exclusively through X/Open
Company, Ltd. MIPSpro™ is a trademark of Silicon Graphics, Inc. Borland C++ is a
registered trademark of Borland International, Inc.

iii

Contents

About This Guide xiii
What This Guide Contains xiii
What You Should Know Before Reading This Guide xiv
Related Information xiv
Conventions Used in This Guide xv

1. Understanding the Silicon Graphics C++ Environment 1
Silicon Graphics C++ Environment 1

MIPSpro 6.0 Compilers 2
IRIS 5.3 Compilers 2

Comparing CC to cfront 3
Native Compiling 3
Simplifying Template Instantiation 4
Improving cfront-Compiled Code 4

Using the Compilers 4
64- Versus 32-Bit Compilation 5
CC Command Line 6
DCC Command Line 6
OCC Command Line 7
Sample Command Lines 7

cfront Compatibility 8
Compatibility Restrictions 8

C++ Libraries 10
Debugging 10

iv

Contents

2. Compiling, Linking, and Running C++ Programs 11
Compiling and Linking 11

Translators and Drivers 11
Compilation 12
Multi-Language Programs 15

Translator Options 15
Object File Tools 17

3. Interfaces 19
Using Other Language Libraries from C++ Programs 19
C Function Declarations in C++ Programs 20
Using C++ Libraries From C Programs 21

4. DCC: the Delta/C++ Compiler 23
DCC Enhancements 23

Resolving Object References at Link Time 24
Program Development 24
Smart Build 24
Support for New Versions of C++ Shared Libraries 25

Dynamic Classes 26
Using Dynamic Classes 26
Setting Classes to Be Dynamic 28

Using the delta_preload.h File 29
Enabling Dynamic Classes in a Hierarchy 31
Enabling Dynamic Classes in a Source File 31

Disabling Dynamic Classes 31
Dynamic Class Error Messages 32
Local Classes 34
Nested Classes 34

Class Library Modification Compatibility 34
Delta-Compatible Changes 34
Delta-Incompatible Changes 35

Running the Delta/C++ Compiler Tutorial 37

Contents

v

Porting Your Code to Delta/C++ 37
Changing Your Makefiles 38
Correcting Your Source Files 38

cfront Incompatibilities 38
DCC Limitations 39
Added DCC Warnings 39

DCC Limitations 39

5. Smart Build 43
Understanding Smart Build 43
Invoking the Smart Build Facility 44

Smart Build and DCC 44
Smart Build and NCC 45

Precompiled Header File Mechanism 46
Causes of Inefficiencies in the Precompiled Header Mechanism 47
Conditions for Not Building Precompiled Headers 48
Known Problems in the Precompiled Header Mechanism 49

Smart Build Known Problems 50

6. Code Examples 53
cfront Compatibility Examples 53

Terminating Comment Lines With a Backslash 54
Explicitly Declaring Member Functions 54
Deleting a Pointer to a const 55
Passing a Pointer to Volatile Data 56
Disambiguating Between a char* and a long 57
Rejecting Redundant Type Specifiers 57
Implicitly Converting a Pointer to a Pointer to a Different Class 58
Assigning a Comma Expression Ending in 0 to a Pointer 59

vi

Contents

Delta-Compatible Changes Examples 59
Adding Members to a Class 60
Reordering Members 61
Adding New Base Classes 61
Promoting Members 62
Overriding Functions 63

Delta-Incompatible Changes Examples 65
Changing Member Declarations 65

Changing the Values of Enumeration Constants 65
Adding or Removing Member Function Parameters 66
Changing Member Function Default Parameters 66

Adding Overloaded Functions to a Class 67
Overriding Functions 68

Base Class/Derived Class 68
Base Class/Global Object 69

Changing From Single to Multiple Inheritance 70
Moving Members to an Enclosing Class 71

7. Common Pitfalls 73
Problems Involving C Linkage 73
Problems With Order of Specification of Libraries 74

Contents

vii

8. Using Templates 77
CC -32 Template Instantiation 77

Automatic Instantiation 78
Meeting Instantiation Requirements 79
Automatic Instantiation Method 79
Details of Automatic Instantiation 80

Implicit Inclusion 81
Explicit Instantiation 82

Command Line Options for Template Instantiation 83
Command Line Instantiation Examples 84
Pragmas for Template Instantiation 87

Specialization 89
Building Shared Libraries and Archives 89
Limitations 89

CC -64 Template Instantiation 91
How to Transition From cfront 92

Mapping Template Options From cfront to CC -32 92
What to Do If You Use Object Files From cfront’s Repository 94
What to Do If You Use Multiple Repositories 94

Template Language Support 95

Glossary 99

Index 103

ix

List of Figures

Figure 1-1 Silicon Graphics C++ Environment 2
Figure 2-1 The Compilation Process 13
Figure 4-1 Using Classes 26
Figure 4-2 Library Class Use 27
Figure 4-3 Application Class Use 28
Figure 4-4 Directory Hierarchy for Dynamic Classes 30

xi

List of Examples

Example 4-1 Setting Dynamic Classes During Code Development 30
Example 5-1 Inefficiencies Due to Macro Dependencies 47
Example 5-2 file1.c 49
Example 5-3 file2.c 49
Example 6-1 Terminating Comment Lines With a Backslash 54
Example 6-2 Explicitly Declaring Member Functions 55
Example 6-3 Deleting a Pointer to a const 55
Example 6-4 Passing a Pointer to Volatile Data 56
Example 6-5 Disambiguating Between a char* and a long 57
Example 6-6 Rejecting Redundant Type Specifiers 58
Example 6-7 Converting a Pointer to a Class to an

Accessible Base Class 58
Example 6-8 Assigning a 0 to a Pointer 59
Example 6-9 Adding Members to a Class 60
Example 6-10 Reordering Members 61
Example 6-11 Adding New Base Classes 62
Example 6-12 Promoting Members 63
Example 6-13 Overriding Functions 64
Example 6-14 Changing the Values of Enumeration Constants (1) 65
Example 6-15 Changing the Values of Enumeration Constants (2) 66
Example 6-16 Adding or Removing Member Function Parameters 66
Example 6-17 Changing Member Function Default Parameters 67
Example 6-18 Adding Overloaded Functions to a Class 67
Example 6-19 Overriding Functions: Base Class/Derived Class 69
Example 6-20 Overriding Functions: Base Class/Global Object 70
Example 6-21 Changing From Single to Multiple Inheritance 71
Example 6-22 Moving Members to an Enclosing Class 72

xiii

About This Guide

This guide describes how to use the Silicon Graphics® C++ compiler
environment. It discusses the two native C++ compilers for producing 32-
and 64-bit objects, respectively. Some of the discussion involves cfront, the
C++ to C translator for the 5.2 (and earlier) versions of the operating system.

What This Guide Contains

This guide contains the following chapters:

• Chapter 1, “Understanding the Silicon Graphics C++ Environment,”
describes the Silicon Graphics C++ environment and the issue of cfront
compatibility.

• Chapter 2, “Compiling, Linking, and Running C++ Programs,”
describes how to compile, link, and run C++ programs in the Silicon
Graphics C++ environment.

• Chapter 3, “Interfaces,” contains information on linking C++ programs
with libraries written in C, and vice versa.

• Chapter 4, “DCC: the Delta/C++ Compiler,” describes DCC, the C++
compiler that allows you to use dynamic classes.

• Chapter 5, “Smart Build,” contains information on Smart Build, a
feature that allows DCC to automatically determine the nature of
changes in header files between compile runs, and to recompile only
what actually needs to be recompiled.

• Chapter 6, “Code Examples,” provides code examples for cfront
compatibility.

• Chapter 7, “Common Pitfalls,” discusses some common problems with
C++ libraries and how to diagnose and solve them.

xiv

About This Guide

• Chapter 8, “Using Templates,” discusses how C++ templates are used
in the Silicon Graphics C++ environment.

The glossary defines key terms for the Silicon Graphics C++ environment.

What You Should Know Before Reading This Guide

This guide assumes that you are familiar with C, C++, object-oriented
programming, shared libraries, and dynamic loading.

Related Information

The following manuals provide reference information about the Silicon
Graphics implementation of the C++ language.

• C++ Language System Overview contains an overview of newer language
features of C++. Most of the extensions take the form of removing
restrictions on what can be expressed in C++.

• C++ Language System Product Reference Manual contains a general
description of the C++ language.

• C++ Language System Library discusses the iostream support in the C++
library and describes a data-type complex that provides the basic
facilities for using complex arithmetic in C++.

The following manual provides related information that you may need
when using the Silicon Graphics C++ environment.

• MIPSpro Compiling and Performance Tuning discusses how to compile,
and tune the performance of programs written in the Silicon Graphics
development environment (C, Fortran, and C++).

• dbx User’s Guide discusses how to debug your code in the Silicon
Graphics development environment.

Conventions Used in This Guide

xv

Conventions Used in This Guide

These are the typographical and graphic conventions used in this guide:

• Bold—Functions, option flags, and classes

• Italics—Filenames, button names, field names, variables, emphasis,
glossary terms, and IRIX commands

• Regular—Menu and window names, data types, keywords, and text

• “Quoted”—Menu choices

• Fixed-width —Code examples and command syntax

• Bold fixed-width —User input. Nonprinting <keys> are bracketed

1

Chapter 1

1. Understanding the Silicon Graphics C++
Environment

This chapter describes the Silicon Graphics C++ compiler environment and
contains the following major sections:

• “Silicon Graphics C++ Environment” on page 1 discusses the different
Silicon Graphics C++ compilers for IRIX 6.0 and 5.3 systems.

• “Comparing CC to cfront” on page 3 compares the Silicon Graphics
C++ to other C++ environments.

• “Using the Compilers” on page 4 discusses the differences between the
32- and 64-bit versions of the Silicon Graphics compilers, shows the
command lines for the compilers, and gives some examples of typical
command lines.

• “cfront Compatibility” on page 8 discusses the restrictions on C++ code
that are enforced by the Silicon Graphics C++ environment, but were
not enforced by cfront.

• “C++ Libraries” on page 10 discusses the C++ libraries in the Silicon
Graphics C++ environment.

• “Debugging” on page 10 discusses the Silicon Graphics C++ debugging
environment.

Silicon Graphics C++ Environment

The Silicon Graphics C++ environment is available in two varieties, targeted
for IRIX 6.0 and 5.3 systems. The 6.0 32-bit compiler and the 5.3 compiler are
functionally identical. See Figure 1-1 for details.

2

Chapter 1: Understanding the Silicon Graphics C++ Environment

Figure 1-1 Silicon Graphics C++ Environment

Note: CC -64, the 64-bit version of the CC compiler, can only be run on
6.0-based systems.

MIPSpro 6.0 Compilers

As shown in Figure 1-1, there are 32- and a 64-bit versions of the C++
compiler for the IRIX 6.0 operating system. For completeness and
backwards-compatibility, the old Silicon Graphics C++ compiler (OCC),
based on cfront, is still available. The supported C++ compilers for the 6.0
system are listed below:

CC 64- and 32-bit native C++ compiler.

OCC 32-bit C++ compiler, based on C++ to C translation using
cfront.

On 64-bit hardware, CC generates 64-bit code by default (without using the
-64 extension explicitly), while on 32-bit hardware, it generates 32-bit code
by default.

IRIS 5.3 Compilers

There are also two versions of the C++ compiler for the 5.3 operating system:
CC and DCC. Again, for completeness and backwards-compatibility, the old
Silicon Graphics C++ compiler (OCC), based on cfront, is still made available.
The supported C++ compilers for the 5.3 system are listed below:

MIPSpro (6.0) IRIS (5.3)

64-bit version 32-bit version delta version
(CC -32 and OCC)(CC -64) (DCC)

Comparing CC to cfront

3

CC 32 bit native C++ compiler. Functionally identical to 6.0
32-bit CC.

DCC Delta/C++ compiler. The delta feature enables you to use
dynamic classes to minimize the need for recompilation
upon changing a class, thereby greatly increasing
productivity. For complete information on DCC, see
Chapter 4, “DCC: the Delta/C++ Compiler.”

Note: Most CC information in this guide applies to DCC as
well. The differences from CC are described in Chapter 4.

OCC 32-bit C++ compiler, based on C++ to C translation using
cfront.

For complete details on cfront compatibility, see “cfront Compatibility” on
page 8. For further details on the commands themselves, refer to the CC(1),
OCC(1), and DCC(1) reference pages.

Comparing CC to cfront

There are a number of advantages to using the new compilers instead of
cfront.

Native Compiling

CC is a native compiler that is a drop-in replacement for cfront. This is a
major advantage, as cfront first translates C++ code to C, and then compiles
the C code.

For instance, OCC (previously CC) runs cpp, then cfront (the C++ front end)
on the C++ source to produce C source code. Then the cc command is
invoked on the C code, which invokes cfe (the C front end). CC just runs
edgcpfe, the C++ front end, which does its own preprocessing.

Preprocessing, which is normally invoked as a separate process by OCC, is
built into the CC front end (edgcpfe). This eliminates the overhead of an entire
preprocessing step and the cost of launching a separate process.

4

Chapter 1: Understanding the Silicon Graphics C++ Environment

In addition, debugger support is much easier, since a native compiler can
generate a richer set of symbolic debugger information than cfront.

Simplifying Template Instantiation

Template instantiation in current C++ systems is frequently laborious. For
example, cfront saves information about each file it compiles in a special
directory and instantiates nothing during normal compilations. At link time,
it looks for entities that are referenced but not defined and whose names
indicate that they are template entities. cfront then consults the special
directory to find the file containing the source for the entity and compiles the
source to generate an object file containing object code for that entity. This
object code for instantiated objects is then combined with the “normal”
object code in the link step.

CC instantiates template functions within your source files. For initial
compilations, this makes no difference. For subsequent rebuilds, this
reduces the time required to instantiate templates during the link phase and
may prevent additional compilations, significantly improving compile-time
performance. (cfront builds each template function in a separate object file,
and the time required to compile each object file is significant.)

Improving cfront-Compiled Code

CC diagnoses several non-standard constructs quietly accepted by cfront,
and fixes many cfront defects. Use CC to avoid cfront compiler bugs and for
stricter adherence to C++ standards.

Note: Exception handling is not supported in CC. CC will optimize to -O2
only (-O2 and -O are equivalent). OCC supports no exception handling.

Using the Compilers

This section discusses how to use the Silicon Graphics compilers to compile
your C++ programs. It describes the differences between the 64- and 32-bit
versions of the compiler, describes the CC and OCC command lines (and
some of the more commonly used options), and contains some examples.

Using the Compilers

5

The default compiler depends on your hardware: on 64-bit systems, CC
defaults to -64 mode; on 32-bit systems, CC defaults to -32 mode. If you use
CC with options supported by OCC but not supported by standard CC, or
you use CC with the -use_cfront option, you invoke OCC.

64- Versus 32-Bit Compilation

The 64- and 32-bit versions of CC are both native compilers that are based on
the same front end. The CC -64 front end is fecc, which has 64-bit pointers,
addresses, and long ints. The CC -32 front end is edgpcfe, a front end with
32-bit pointers, addresses, and long ints.

Note: 64-bit objects are incompatible with 32-bit objects, and they cannot be
linked together. 64-bit objects can only be created on 6.0-based systems. You
can do this as follows:

• Specify the -64 option on the IRIX 6.0 command line to compile source
files for 64-bit objects. With -mips4, this is the default for the MIPSpro
compilers installed on an IRIX 6.x system

• Specify the -32 option on the IRIX 6.0 command line to compile source
files for 32-bit objects. With -mips1, this is the default for the MIPSpro
compilers installed on an IRIX 5.x system.

A compilation on an IRIS 5.3 (and later) system always produces 32-bit
objects. The compiler back-end (optimizer and code generator) is different in
-32 and -64 modes.

Some additional differences between the 64- and 32-bit version of CC are
listed below.

• CC -64 and CC -32 support different template instantiation options.

• The warning options used by the -woff option are different in CC -64
and CC -32.

Refer to MIPSpro Compiling, Debugging, and Performance Tuning for a more
complete discussion on how to set up the IRIX environment for -32 versus
-64 compilers. Refer to the MIPSpro Porting and Transition Guide for further
information on -64 compilers.

6

Chapter 1: Understanding the Silicon Graphics C++ Environment

CC Command Line

The command line for CC is shown below.

CC [option] . . . file . . .

CC compiles with many of the same options as cc(1). CC -64 is the default on
6.x (64-bit) systems, and CC -32 is the default on 5.x (32-bit) systems.

Note: cfront compatibility mode is disabled by default when you compile in
64-bit mode.

See the CC(1) reference page for more information.

DCC Command Line

The command line for DCC is

DCC [option] ... file ...

Note: DCC is supported only in IRIS 5.3 systems, and in 32-bit mode only.

DCC compiles with many of the same options as cc and CC. See the DCC(1)
reference page for supported and unsupported CC options.

By default, DCC does not enable dynamic classes. You can make your classes
dynamic

• selectively or for all classes defined in the current directory

• selectively or for all classes defined in the current hierarchy

• selectively or for all classes defined in the source code

For complete details on dynamic classes, see “Dynamic Classes” on page 26.

Using the Compilers

7

OCC Command Line

The command line for compiling with cfront is shown below.

OCC [option] . . . file . . .

You may also use the following command line:

CC -use_cfront [option] . . . file . . .

For complete information on all the options available with OCC, see the
OCC(1) reference page.

Sample Command Lines

Some typical C++ compiler command lines are given below.

• To suppress the loading phase of your compilation and compile only
one program, the command line is the following:

CC -c program

• To compile with full warning about questionable constructs, the
command line is the following:

CC -fullwarn program1 program2 . . .

• To compile with warning messages off, the command line is the
following:

CC -w program1 program2 . . .

• To compile in 64-bit mode with cfront compatibility enabled, the
command line is the following:

CC -64 -use_cfront program1 program2 . . .

• To compile in 32-bit mode with cfront compatibility disabled, the
command line is the following:

CC -32 +p program1 program2 . . .

• To compile with delta capability and the Smart Build facility, the
command line is

DCC -smart program1 program2 . . .

(For information on Smart Build, see “Smart Build,” in Chapter 4.)

8

Chapter 1: Understanding the Silicon Graphics C++ Environment

cfront Compatibility

The Silicon Graphics compilers (with the exception of OCC) force you to
adhere to C++ code standards more strictly than cfront does. Code that you
compiled successfully with cfront may not compile under the Silicon
Graphics C++ environment, even in cfront compatibility mode. You must
compile with OCC to get exact cfront compatibility. This section discusses
cfront compatibility restrictions when compiling with CC.

For examples of code that were valid under the cfront environment but are
invalid in the Silicon Graphics C++ environment, see “cfront Compatibility
Examples” on page 53. Specific examples are cited in the following list of
restrictions.

Compatibility Restrictions

In some cases, the Silicon Graphics C++ compilers are not backwards-
compatible with cfront because cfront has defects, behaves in a non-
deterministic manner, or fails to adhere to the standard. The C++
incompatibilities that cfront ignores but the Silicon Graphics compilers catch
are listed below:

• If a C++-style (//) comment line is terminated with a backslash, the
Silicon Graphics compiler will (correctly) continue the comment line
into the next source line. (cfront, which uses the standard UNIX cpp,
incorrectly terminates the comment at the end of the line.) See
Example 6-1.

• You must have an explicit declaration of a constructor or destructor in
the class if there is an explicit definition of it outside the class. See
Example 6-2.

• You may not delete a pointer to a const. See Example 6-3.

• You may not pass a pointer to volatile data to a function that is
expecting a pointer to non-volatile data. See Example 6-4.

• The Silicon Graphics compiler does not disambiguate between
overloaded functions with a char* and long parameter, respectively,
when called with an expression that is a 0 cast to a char type. See
Example 6-5.

cfront Compatibility

9

• You may not use redundant type specifiers. See Example 6-6.

• When in a conditional expression, the Silicon Graphics compiler does
not convert a pointer to a class to an accessible base class of that class.
See Example 6-7.

• You may not assign a 0 to a pointer, if the 0 is the right-expression of a
comma operator. See Example 6-8.

• You must not use the same identifier for more than one formal
argument in a function definition.

• The Silicon Graphics compiler will mangle member functions declared
as extern “C” differently from cfront. CC does not strip the type
signature when you are building the mangled name. If you try to do so,
you will see the following warning:

Mangling of classes within an extern “C” block does not
match cfront name mangling.

You may not be able to link code containing a call to such a function
with code containing the definition of the function that was compiled
with cfront.

• cfront incorrectly strips the “signed” keyword whenever it encounters a
signed declaration (for example, signed char), and mangles the
resulting name accordingly. The generated object file contains a
different name for member functions with parameters having this type.

The Silicon Graphics compiler does not do this, so if the definition of
such a member function is compiled with cfront, and a call to it is
compiled by the Silicon Graphics compiler, the code will not link. If you
try to do so, you will see the following warning:

Mangling of signed character does not match cfront name
mangling.

You must compile both the definition and the call with the Silicon
Graphics compiler. If you do not have access to the source file defining
the function, modify the declaration of the function in its header file by
removing the signed keyword, or replacing it with an unsigned
keyword.

cfront also removes declarations that include “const”.

10

Chapter 1: Understanding the Silicon Graphics C++ Environment

C++ Libraries

By default, all C++ programs link with the standard library libC.so. This
library contains all the iostream library functions, as well as the C++ storage
allocation functions ::new and ::delete.

Silicon Graphics also provides the complex arithmetic library libcomplex.a. If
you want to use this package you must explicitly link with this library. For
example,

CC complexapp.c++ –lcomplex

See the C++ Language System Library for more information on the complex and
iostream libraries.

Debugging

You can debug your C++ programs with the dbx debugger. For complete
information on dbx, see the dbx User’s Guide.

11

Chapter 2

2. Compiling, Linking, and Running C++
Programs

This chapter contains the following major sections:

• “Compiling and Linking” on page 11 describes the compilation
environment and how to compile and link C++ programs. Some
examples show how to create separate linkable objects in C++, C,
Fortran, or other languages, and how to link them into an executable
program.

• “Translator Options” on page 15 describes the command line options
that can be provided to the C++ translator.

• “Object File Tools” on page 17 briefly summarizes the capabilities of the
tools that provide symbol and other information on object files.

Compiling and Linking

This section discusses Silicon Graphics C++ compiling and linking.

Translators and Drivers

Programs called drivers invoke the major components of the compiler
system. Those components, their functions, and their place in the
compilation process are discussed in the following sections. The CC(1)
command invokes the driver that controls compilation of your C++ source
files. The syntax is as follows:

CC [options] filename.C [options] [filename2.C ...]

12

Chapter 2: Compiling, Linking, and Running C++ Programs

where:

 CC invokes the various processing phases that translate,
compile, optimize, assemble, and compile-time link the
program.

 options represents the driver options, which give instructions to the
processing phases. Options can appear anywhere in the
command line. The options interpreted by CC are discussed
in “Translator Options” on page 15 in this chapter.

 filename.C is the name of the file that contains the C++ source
statements. The filename must end with one of the
following acceptable suffixes: .C, .c++, .c, .cc, .cpp, .CPP, .cxx
or .CXX.

Compilation

The compilation process shown in Figure 2-1 is that of the C++ source file
foo.C, as it would be compiled by this command line:

CC –o foo foo.C

Compiling and Linking

13

Figure 2-1 The Compilation Process

foo.C

fecc
C++ preprocessor

be
Compiler back end, including

foo.olibC.so libc.so

ld
linker

foo

and front end

-64 Mode

optimizer and code generator

-32 Mode

foo.C

edgcpfe
C++ preprocessor

ugen, uopt, as1

foo.olibC.so libc.so

ld
linker

foo

and front end

ucode back end phases

foo.o

edg_prelink
Prelinker for template

instantiations

C++ patch

foo

link global constructors and destructors

14

Chapter 2: Compiling, Linking, and Running C++ Programs

The following steps further describe the stages of compilation:

1. You invoke CC on the source file, which ends with the suffix .C. The
other acceptable suffixes are .C, .c++, .c, .cc, .cpp, .CPP, .cxx or .CXX.

2. The source file then passes through the C++ preprocessor, which is built
into the C++ front end (fecc, edgpcfe).

3. The complete source is then processed by the C++ front end (fecc or
edgcpfe), which produces an intermediate representative from a
syntactic and semantic analysis of the source.

This stage may also produce a prelink (.ii) file, which contains
information about template instantiations.

4. The back end (be in -64 mode) generates optimized object code (foo.o).

5. If you want to stop the compilation at this phase, and produce object
code suitable for later linking, use the following command:

CC –c foo.c

The object file foo.o is the result.

6. edg_prelink processes the .ii files associated with the objects that will be
linked together. It then recompiles sources to force template
instantiation.

7. The object files are sent to the linker ld(1), which links the standard C++
library libC.so and the standard C library libc.so to the object file foo.o
and to any other object files that need to be linked to produce the
executable.

8. In -32 mode only, the executable object is sent to c++patch, which links it
with global constructors and destructors. If global objects with
constructors or destructors are present, the constructors need to be
called at run time before function main() is called, and the destructors
need to be called when the program exits. c++patch modifies the
executable (a.out) to insure that these constructors and destructors get
called.

Translator Options

15

Multi-Language Programs

C++ programs can be compiled and linked with programs written in other
languages, such as C, Fortran, and Pascal. When your application has two or
more source programs written in different languages, you should compile
each program module separately with the appropriate driver. Then you can
link them in a separate step. You can create objects suitable for linking by
specifying the –c option. For example:

CC –c main.c++
f77 –c module1.f
cc –c module2.c

The various compilers would produce three object files: main.o, module1.o,
and module2.o. Since the main module is written in C++, you should use the
CC command to link. Except for C, you must explicitly specify the link
libraries for the other languages with the –l options. For example, to link the
C++ main module with the Fortran submodule, you would use the
following command:

CC –o almostall main.o module1.o –lF77 –lI77 –lisam –lm

For further information on libraries for other languages, see the appropriate
programmer's guides. See also Chapter 3, “Interfaces,” in this guide for a
discussion of other topics important to writing multi-language programs.

For more information on C++ libraries, see “C++ Libraries” on page 10.

Translator Options

This section contains a summary of the most important CC translator
options. See the reference page for CC(1) for a complete description of all the
options. See ld(1) for a description of the linker options, and cc(1) for a
description of the options interpreted by the standard C compiler. See also
the information in MIPSpro Compiling, Debugging and Performance Tuning.

 –E Run only cpp(1) on the C++ source files and send the result
to standard output. This option is useful, for example, if you
want to see exactly which files were included in your
compilation.

 –c Produce object files only, suppressing the link phase.

16

Chapter 2: Compiling, Linking, and Running C++ Programs

 –o output Name the final output file output. For example,

CC –o foo foo.C

produces an executable called foo instead of the default
a.out. The command is shown below.

CC –c –o bar.o foo.C

produces an object file called bar.o instead of the default
foo.o.

 –n (-32 mode), -show0 (-64 mode)
Print commands generated by CC but do not execute them.

+v (-32 mode), -show (-64 mode)
Print commands as they are executed. Short for verbose
output.

 +d (-32 mode), -noinline (-64 mode)
Do not attempt inline substitution for calls to functions
declared as inline.

 +w (-32 mode), -fullwarn (-64 mode)
Warn about all questionable constructs. Without the +w
option, the translator issues warnings only about constructs
that are almost certainly problems.

 +p (-32 mode), Disallow all anachronistic constructs. Ordinarily, the
translator warns about anachronistic constructs. Under +p
(for pure), the translator will not compile code containing
anachronistic constructs, such as “assignment to this.” See
the USL C++ Language System Product Reference for a list of
anachronisms.

In -32 mode, +p also disables cfront compatibility mode,
enforcing a stricter, more standard language definition. In
-64 mode, by default anachronisms are disallowed and the
stricter definition is the default enforced.

-use_cfront (-32 mode)
Use OCC instead of CC.

-cfront (-64 mode)
Compile in cfront compatibility mode. This is the default in
-32 mode. The +pp option will disable cfront compatibility
mode.

Object File Tools

17

–nocpp Skip the preprocessing stage.

Object File Tools

For information on the object file tools available to you, consult the MIPS
Compiling and Performance Tuning Guide. The following tools are of special
interest to the C++ programmer:

 nm The nm tool can be used to print symbol table information
for object files and archive files.

 c++filt This C++-specific tool translates the internally coded
(mangled) names generated by the C++ translator into
names more easily recognized by the programmer. You can,
for example, pipe the output of stdump or nm into c++filt.
c++filt is installed in the directory /usr/lib/c++. For example,

nm a.out | /usr/lib/c++/c++filt

 libmangle.a The library /usr/lib/c++/libmangle.a provides a function
demangle(char *) that you can invoke from your own
program to output a readable form of a mangled name. This
is useful if you want to write your own tool for processing
the output of nm, for example. You need to include the
declaration

char * demangle(char *);

in your program, and link with the library

/usr/lib/c++/libmangle.a.

size The size tool prints information about the text, rdata, data,
sdata, bss, and sbss sections of the specific object or archive
file. The contents and format of section data are described in
Chapter 10 of the Assembly Language Programming Guide.

elfdump The elfdump tool lists the contents (including the symbol
table and header information) of an ELF-format object file.
See the elfdump(1) reference page for more information.

stdump The stdump tool outputs a file of intermediate-code
symbolic information to standard out. See the stdump(1)
reference page for more information.

19

Chapter 3

3. Interfaces

This chapter contains the following major sections:

• “Using Other Language Libraries from C++ Programs” on page 19
describes how to link the libraries from other languages into your C++
program.

• “C Function Declarations in C++ Programs” on page 20 describes how
to use declarations in the Silicon Graphics C++ environment.

• “Using C++ Libraries From C Programs” on page 21 describes how to
call C++ libraries from C programs.

Using Other Language Libraries from C++ Programs

Most C++ programmers want to be able to link with object files and libraries
written in languages other than C++, especially C. In order to do so, you
must include in your programs declarations for the functions you wish to
call. In most cases you can do this by simply including appropriate header
files with the #include directive. For the standard C header files supplied by
Silicon Graphics, using #include is all you need to do. For example, if you
are going to use C standard I/O, you must include the following line in your
source or header file:

#include <stdio.h>

To use the Graphics Library™, you must include the following line in your
source or header file:

#include <gl/gl.h>

20

Chapter 3: Interfaces

C Function Declarations in C++ Programs

If you want to call C functions from a C++ program, either directly or by file
inclusion, you must be sure the C++ program contains correctly prototypes
declarations for the functions, and that the function declarations are
recognizable by the C++ compiler as declaring functions whose definitions
are in C. These steps are necessary because C++ normally encodes (mangles)
function names to support overloading. The real name of a function declared
in a C++ program as void printf(char*, ...), for example, is printf__FPce. The
printf function in libc.so, however, is just called printf.

To allow a C++ program to call functions written in C, C++ provides linkage
specifications. To use the standard printf function, for example, you could
write the following code:

extern "C" {
 void printf(char *, ...);
}

You can include this code in the C++ source file that calls printf, or in a
header file that is included by the source file. The use of extern “C” tells the
translator that the function linkage should be done according to the
conventions used by the C programming language, in particular, with no
mangling. A function name declared in this way is said to have C linkage.

If you want to adapt an existing C header file or create a header file of your
own containing C function declarations, and you want to be able to include
it in either C or C++ programs, you can use the fact that __cplusplus (with
two underscores preceding it) is always defined for C++ compilations and is
always undefined otherwise. Thus, you can enclose C function declarations
with the following code:

#ifdef __cplusplus
extern "C" {
#endif

and

#ifdef __cplusplus
}
#endif

This scheme is used to create the Silicon Graphics C header files.

Using C++ Libraries From C Programs

21

Using C++ Libraries From C Programs

You may want to use libraries created by C++ from programs written in C.
One way to do this is to create interface functions written in C++ but
declared as having C linkage so they can be called from C programs.
Suppose, for example, that you have a C++ library that implements a symbol
table class. It might have a class declaration that looks like the sample from
table.h below:

class symtab {
 ...
public:
 symtab();
 void add_name(char *);
 int lookup(char *);
 ...
};

You might create an interface header file (called interface.h, for example) that
looks like the sample below:

extern "C" {
 void init_table(void);
 void add_name(char *);
 int lookup(char *);
 …
}

You would also create an interface program (called interface.c, for example)
that looks like the sample below:

#include "table.h" // class declaration for symtab
#include "interface.h"
static symtab * stab;
void init_table(void)
{
 stab = new symtab;
}

void add_name(char *name)
{
 stab->add_name(name);
}

22

Chapter 3: Interfaces

int lookup(char * name)
{
 return stab->lookup(name);
}

A problem often encountered in using C++ libraries from C programs is that
global objects defined in the library are not initialized if the main program is
not in C++. To overcome this problem, link your program using CC instead
of cc or ld. Linking using CC ensures that the linked executable will have its
C++ global objects correctly initialized on program start-up.

If your program (or DSO) includes C++ object files that have global objects
that need to be constructed at program start-up, link your program (or DSO)
using CC. (For information on DSOs, see “Dynamic Shared Objects” in the
MIPS Compiling and Performance Tuning Guide.)

23

Chapter 4

4. DCC: the Delta/C++ Compiler

This chapter describes DCC, the Delta/C++ compiler that allows you to use
dynamic classes. It contains the following sections:

• “DCC Enhancements”

• “Dynamic Classes”

• “Class Library Modification Compatibility”

• “Running the Delta/C++ Compiler Tutorial”

• “Porting Your Code to Delta/C++”

• “DCC Limitations”

DCC Enhancements

DCC, the Delta/C++ compiler, is a native compiler that contains a number
of enhancements over the standard Silicon Graphics C++ compilation
environment. DCC allows you the option of using dynamic classes and
modifying class libraries without client recompilation. DCC also contains a
few enhancements over CC, but the primary difference is the use of dynamic
classes. A dynamic class is a class whose layout and location are determined
at link time.

DCC and CC use the same compiler front end, and enforce many of the same
restrictions to approved C++ coding style that cfront overlooks. CC uses a
more conventional code generation style than DCC. DCC predefines the
_DELTA symbol during the preprocessor phase of compilation. DCC creates
the file delta_preload.h, which contains the _DELTA declaration.

Note: DCC- and CC-produced object files are compatible.

24

Chapter 4: DCC: the Delta/C++ Compiler

Resolving Object References at Link Time

Current C++ systems have been designed without considering the needs of
environments that make use of shared libraries or dynamic loading. If you
release a new compatible version of a library or dynamically loaded
component, you must recompile the portions of the system that make use of
the classes defined in the new component. This is because current C++
systems resolve all object references at compile time.

The Delta/C++ compiler is a runtime/linktime extension to C++ that allows
you to make compatible changes to class definitions with minimal
recompilation, minimal restrictions on the use of the language, and minimal
runtime overhead. Client applications linked against a shared library will
continue to run, without recompilation, even when a new, compatible
version of the shared library is released. Delta/C++ resolves all object
references at link time.

Program Development

DCC allows you to make changes to a system under active development
without having to recompile the entire system in order to test the change or
to continue development.

For example, in large systems, the cost of changing a class definition is often
prohibitive, not only to the developer making the change, but also to
developers using the change. You may have to rebuild the entire system.
Developers will frequently work around a problem instead of solving it. In
the end, few improvements are made to the base system.

The DCC extensions make it possible to recompile only a small set of files
and resume work.

Smart Build

Smart Build extends the Delta/C++ compiler to reduce build times for C++
sources significantly. Invoking the -smart flag works seamlessly with any
existing build environment (for example, make). Smart Build contains two
interdependent mechanisms: precompiled headers (available in DCC and
CC), and Smart Build itself, which uses these headers to calculate the

DCC Enhancements

25

differences between two versions of a header file. Smart Build keeps make
from recompiling all files that include a modified class definition.

For further information on Smart Build, see Chapter 5, “Smart Build.”

Support for New Versions of C++ Shared Libraries

DCC allows applications linked against a shared library to continue to work
when a new version of the library is installed. For example, consider a
typical scenario:

1. Silicon Graphics, Inc. ships several C++ shared libraries (DSOs).

2. A developer builds a client application linked against those libraries.

3. A consumer purchases the client application.

4. Silicon Graphics, Inc. ships new versions of the shared libraries.

To allow the new shared libraries to continue to work with existing
applications, developers often ship several versions of the shared libraries,
each bearing the version as part of their name (for example, lib/
Inventor.so.1.1, lib/Inventor.so.1.2). This practice has several disadvantages:

1. More disk space is required.

2. Less actual sharing occurs, because old client applications use the old
version of the shared library, and new client applications use the new
version.

3. Old client applications do not benefit from any improvements to the
new shared library (for example, performance enhancements or bug
fixes).

4. The producer of the shared library (for example, Silicon Graphics) has
to ensure that all versions of the shared library are shipped. Consumers
(users of the shared library) must also install all of the versions, since
there is no way for them to know when they will need a particular
library, and they would have to go back to their initial installation and
find the right library if they didn’t install all of the versions.

With DCC, new versions of C++ libraries can be shipped with the assurance
that they will work with existing client applications that were formerly
bound with older versions of the C++ libraries.

26

Chapter 4: DCC: the Delta/C++ Compiler

In addition, most library providers have to expose a private implementation
of your classes, because private members must be visible to the compiler in
order to lay out the class. DCC allows you to remove that portion of the class
definition and still have the code work correctly.

Dynamic Classes

DCC supports the use of dynamic classes. A dynamic class is one whose
layout and location are determined at link time. This gives you the ability to
make changes to libraries and applications without having to recompile
your entire code hierarchy. You may add members, base classes, promote
members, change the overrides, and reorder the members of a dynamic
class. (For a complete description of what is allowed under the Delta/C++
environment, see “Delta-Compatible Changes” on page 34.)

Note: DCC, by default, considers a class to be non-dynamic.

Using Dynamic Classes

As a developer, you use classes in three situations (see Figure 4-1 for a
graphical representation):

• classes that are imported from another library

• classes that are used internally only

• classes that are exported to a third party

Figure 4-1 Using Classes

Internal ExportImport

Dynamic Classes

27

When would it be best for you to use dynamic classes?

Import classes You would prefer these classes to be dynamic classes to help
you avoid having to do massive recompilations when you
must make changes to your code, but it is up to your library
provider.

Internal classes Use non-dynamic classes, unless you are doing code
development using -smart (see Chapter 5, “Smart Build”).

Export classes Use dynamic classes if you are planning to change them in
future releases, and want to avoid affecting users.

The amount of classes that you import, use internally, and export varies
depending on what type of code you are developing. For example, perhaps
you are a library developer; you would be importing a few classes, exporting
large numbers of classes, and using very few internal-only classes. See
Figure 4-2 for an illustration of this distribution.

Figure 4-2 Library Class Use

Import Export

Internal

28

Chapter 4: DCC: the Delta/C++ Compiler

Perhaps you are developing applications. In that case, you would be
importing some classes, exporting none, but using many internally, as
illustrated in Figure 4-3.

Figure 4-3 Application Class Use

Setting Classes to Be Dynamic

DCC makes classes dynamic in any of the ways listed below.

• You may make a class dynamic on a class-by-class basis with the
pragma dynamic_class.

• You may use the pragma this_directory_tree_is_dynamic to enable
dynamic classes for a given directory hierarchy. Any class that contains
a non-inline member function in that hierarchy will be dynamic (unless
you specifically make that class non-dynamic; see “Disabling Dynamic
Classes” on page 31).

• Any class that derives from a dynamic class is made dynamic.

• Any class that contains one or more instances of dynamic classes is
made dynamic.

Internal

Import

Dynamic Classes

29

Using the delta_preload.h File

When you execute DCC, the compiler first looks for a file named
delta_preload.h in the directory that contains the file you are trying to compile.
If DCC does not find delta_preload.h, it searches the parent directory. DCC
continues to search for a delta_preload.h file until one is found, or until it
reaches the root directory.

delta_preload.h ordinarily contains one of the following pragmas:

this_directory_tree_is_dynamic
instructs DCC to make any class that contains a non-inline
member function dynamic. The definition is located in a file
in the directory hierarchy headed by the directory in which
delta_preload.h is found.

this_directory_tree_is_not_dynamic
instructs DCC to make classes non-dynamic. The definition
is located in a file in the directory hierarchy headed by the
directory in which delta_preload.h is found.

Searching up the directory hierarchy for delta_preload.h makes it easier for
you to control when classes are dynamic for an entire project.

For example, in the directory hierarchy in Figure 4-4, you are compiling
/usr/app/src/appfile.c. If the only delta_preload.h file is found in /usr/app/src, and
it contains #pragma this_directory_tree_is_dynamic , then any class
definition that contains a non-inline member function and is located in a file
in /usr/app/src is marked as being dynamic.

A class definition that contains a non-inline member function and is located
in a file in /usr/app/include/incfile.h is not considered dynamic. If the
delta_preload.h file was moved to /usr/app, classes containing a non-inline
member function defined in files from the include directory are also
dynamic.

30

Chapter 4: DCC: the Delta/C++ Compiler

Figure 4-4 Directory Hierarchy for Dynamic Classes

The compiler searches for a delta_preload.h file for the source file being
compiled and any file that is included during the compilation. This makes it
possible for a library provider to make classes exported by that library
dynamic without affecting classes that come from the application or other
libraries.

You can do this by putting a delta_preload.h file that contains the
this_directory_tree_is_dynamic pragma in the top of the directory tree that
contains the include files for the library. For example, in Figure 4-4, putting
a delta_preload.h file in /usr/include/library would make any class dynamic, if
that class has a non-inline member function defined in a file in that directory
or any of its sub-directories.

When you are writing production code, you want classes to be non-dynamic
by default. During the development phase, you probably want the classes to
be dynamic. Using dynamic classes in conjunction with the smart build
feature of the compiler greatly decreases the turn-around time when you
make a change to a class definition. The best way to do this is to create a
delta_preload.h file that looks like that in Example 4-1.

Example 4-1 Setting Dynamic Classes During Code Development

#ifdef CODE_DEVELOPMENT
#pragma this_directory_tree_is_dynamic
#else

usr

include

src include

app

library

appfile.c incfile.h

Dynamic Classes

31

#pragma this_directory_tree_is_not_dynamic
#endif

You must put this file at the root of the application code source directory
(/usr/app in the directory hierarchy in Figure 4-4). Use the following options
during code development:

-DCODE_DEVELOPMENT -g -smart,/usr/app/HDRS

Do not use the first two options during a production build.

Enabling Dynamic Classes in a Hierarchy

You can specify all the classes defined in an entire hierarchy to be dynamic
by setting a #pragma in that directory’s delta_preload.h file, as shown in the
command below:

#pragma this_directory_tree_is_dynamic

The classes containing non-inline member functions defined in that
directory are dynamic.

Enabling Dynamic Classes in a Source File

You can specify a class to be dynamic with a pragma:

#pragma dynamic_class

You can define dynamic classes by lists of one or more in either the source
code itself or a header file.

Disabling Dynamic Classes

You can specify a class to be non-dynamic with a #pragma in several ways:

• You may define the #pragma

#pragma nondynamic_class <class>

where the #pragma appears before the class definition.

• You may define the #pragma

#pragma nondynamic_class “regular expression”

32

Chapter 4: DCC: the Delta/C++ Compiler

where the only classes affected are those that appear after the pragma,
and match those listed in the regular expression. (For more information
on regular expressions, see the regexp(5) reference page.)

• You may define the #pragma

#pragma nondynamic_class

without a name if it appears within a class definition.

A class that is non-dynamic may have to be implemented as a dynamic class
for various reasons (for example, the class contains a member or base class
that is dynamic). Such classes are called internal dynamic classes, and may
not be modified in future releases (that is, from a programmer’s perspective,
they are non-dynamic classes).

Note: You cannot apply the nondynamic_class pragma on a class that must
be internally dynamic.

The preprocessor automatically defines the __DELTA symbol when using
DCC; this allows you to conditionally compile Delta/C++-specific code
changes (such as the addition of pragmas).

Dynamic Class Error Messages

The following are programming errors you may encounter when you use
dynamic classes via the DCC extension.

• DCC generates an internal description of a class layout. If this
description is not available when linking, you will see a linker error:

Delta Error: Could not find the class definition for
<class>. You possibly missed providing a definition for
the first virtual method or the first non-inlined method.

The class layout description is written to the appropriate object file.
(The file is the one that corresponds to the source file containing the
member function described in the error message.)

The usual source of this error is that you declared a constructor but
never provided a definition for it.

• When the DSO is linked into a program, the class description must be
available, or you will see a warning:

Dynamic Classes

33

Delta Warning: Could not find the class definition for
<class>

(For further information on DSOs, please see “Dynamic Shared
Objects” in the IRIX System Programming Guide.)

• When your code is expecting a member function to be defined, but the
definition was not found in the class definition, this message appears:

Delta Error: Missing the member function <function> in
<class>

There are two common reasons for this problem:

– You compiled with mismatched header files; that is, one source
included an older version of the class definition lacking a member
function added to the newer version of the same header.

– The class definition itself was missing, in which case either of the
first two messages appears.

To fix the problem, compile with the correct header files.

• If a class has base classes, then the class description will refer to them.
If, for some reason, one of the base class definitions could not be
calculated, then you will see an error:

Delta Error: invalid class <class>: derives from invalid
base classes

• If two classes have the same name, and they are linked into an
application or into a DSO, and the classes have a member function with
the same signature, the linker will issue a warning that the member
function is multiply defined. (The compiler cannot detect this
condition, only the linker can.)

If you make one or more of the classes dynamic when compiling with
DCC, then the likelihood of a member function colliding increases,
because dynamic classes always generate out-of-line constructors,
destructors, and assignment operators. When this happens, the linker,
when run under DCC, generates a warning:

Delta Warning: Multiple definitions of <class> - ignoring
new definition

34

Chapter 4: DCC: the Delta/C++ Compiler

Local Classes

Local classes are classes declared within functions. These classes may be
internally dynamic only. There is never any need for a local class to be
dynamic, since it cannot be accessed outside of the current compilation unit.

Nested Classes

Nested classes behave the same way as non-nested classes.

Class Library Modification Compatibility

DCC allows you to make various changes to a class library that are
backwards-compatible with applications compiled with older versions of
the library. You may make only these changes to dynamic classes.

Delta-Compatible Changes

The following changes to a class library are backwards-compatible with
applications compiled with older versions of the library. These are the delta-
compatible changes.

Member Extension
You may add member functions and variables to a class
without having to recompile any code that uses the class.
This is true for public, protected, and private members.

Class Extension Base classes may be added to a class. If you have virtual or
multiple inheritance, any class extension is possible. If you
do not have virtual or multiple inheritance, class extension
is limited in the following way:

• If the class is a root class, you may add only one base
class.

• If there are no virtual base classes, and you have single
inheritance, you can split a class into two classes.

Class Library Modification Compatibility

35

In either of these two cases, you can allow for future
multiple inheritance by setting a pragma:

#pragma allow_for_future_multiple_inheritance

Member Promotion
You may promote a member to a non-virtual base class. You
can move functionality from a derived class to a non-virtual
base class, so long as its type remains identical, and is not an
inline function.

Override Changing
You may add members that override those provided by
base classes (whether or not the classes are virtual).

Member Reordering
You may reorder members within a class. This has no effect
on the interface being provided by the class.

See “Delta-Compatible Changes Examples” on page 59 for examples.

Delta-Incompatible Changes

The following changes to a class library are not backwards-compatible with
applications compiled with older versions of the library. If any of the
following restrictions apply to your code, you must recompile. These are the
delta-incompatible changes.

• You cannot change the declaration of a member in any way (for
example, changing a type from short to long). This includes the types of
data members, function declarations, inline function bodies, typedef
declarations, and enumeration declarations. The full set of restrictions
is listed below.

– You may not change the values of enumeration constants.
However, you may add values to an existing enumeration
provided you do not modify the values of any of the existing
enumeration constants. See “Changing the Values of Enumeration
Constants” on page 65 for an example.

36

Chapter 4: DCC: the Delta/C++ Compiler

– You may not add or remove parameters from a member function,
and you cannot change the return type of a function. You may add
a default value to an existing parameter that did not already have
one. See “Adding or Removing Member Function Parameters” on
page 66 for an example.

– You may not change the default parameters of a member. See
“Changing Member Function Default Parameters” on page 66 for
an example.

• You may add an overloaded function to a class only if the function you
are adding cannot possibly be called by existing code. See “Adding
Overloaded Functions to a Class” on page 67 for an example.

• You may not override an inline function defined in a base class with a
new version of the function in a derived class. See “Base Class/Derived
Class” on page 68 for an example.

• You may not override a global object in a base class when any derived
classes reference that object. You also may not override functions with
default arguments. See “Base Class/Global Object” on page 69 for an
example.

• You may not change the class inheritance from single to multiple
inheritance when adding a base class. See “Changing From Single to
Multiple Inheritance” on page 70 for an example.

• You may not move members to an enclosing class. Delta/C++ allows
you to promote a member to a base class, or override a member from a
base class. However, you may not move a member to an enclosing
class, or hide a member from an enclosing class. See “Moving Members
to an Enclosing Class” on page 71 for an example.

• There are various restrictions on virtual functions, virtual base classes,
and static members:

– Virtual base classes may not be made non-virtual (and vice versa).

– Virtual functions may not be made non-virtual (and vice versa).

– Non-virtual functions may not be overridden by a virtual function.

– Members may be promoted only to a non-virtual base class.

Running the Delta/C++ Compiler Tutorial

37

– Static members may not be made non-static (and vice versa).

– Static members may not be overridden by non-static members (and
vice versa).

• You cannot make a class abstract by adding a pure virtual function.

• You may not move inline member functions from one class to another.

• If you define a class as a leftmost base class in the first release, it must
continue to be the leftmost base class in all future releases.

See “Delta-Incompatible Changes Examples” on page 65 for examples.

Running the Delta/C++ Compiler Tutorial

The Delta/C++ product comes with a tutorial located in the directory
/usr/demos/DeltaCC. To run this tutorial, you must follow these steps:

1. Enter the command cd /usr/demos/DeltaCC to move to the demos
directory.

2. Enter the command make delta to run a demonstration of Delta/C++.

This run tries to recompile only those files that we know are in need of
recompilation, and shows how the test program picks up these changes
without necessarily having to recompile the whole world.

Porting Your Code to Delta/C++

To port your cfront-compatible source code to the Delta/C++ environment,
you must follow these steps:

1. Change your makefiles to invoke DCC with options it will recognize.

2. Decide which of your classes will be dynamic. (You can define classes
as dynamic or not dynamic with the delta-preload.h file and pragmas.
See “Setting Classes to Be Dynamic” on page 28 for more information.)

3. Correct source code that is not accepted by DCC.

38

Chapter 4: DCC: the Delta/C++ Compiler

Changing Your Makefiles

To change your makefile you must

• Use DCC instead of CC (the cfront driver) when compiling.

• Use DCC to link an executable or DSO; invoking the linker (ld) directly
on C++ object files is not recommended.

• Remove any options (such as -float) that are no longer supported. See
the DCC(1) reference page for a list and description.

• Use the +w or -fullwarn option to get warnings about questionable
constructs.

• Enable SmartBuild with the -smart option. You may want to place all
precompiled header files into the same repository directory, so put -

smart , ILDUMPS in your Makefile. (ILDUMPS is a directory of your
choice.)

• Invoke the prelinker before running the ar command if you are building
an archive (a .a file) out of object files that use templates. See “Building
Shared Libraries and Archives” on page 89 for more information.

Correcting Your Source Files

When you move from cfront to DCC, there are several areas that may cause
you problems. These areas are cfront incompatibilities, DCC limitations, and
added DCC warnings.

cfront Incompatibilities

By default, DCC tries to accept everything that CC did, even if these are
sometimes illegal (and cfront simply doesn’t catch it). There are some things,
however, that DCC does not allow, and instead issues an error. For details,
see “Compatibility Restrictions” on page 8.

The functionality of the +p option with DCC is identical to that with CC.
However, you may want to use the +pp option instead. The +pp option
disables cfront compatibility as well as disabling anachronisms. The +pp
option enforces a strict interpretation of the current C++ language

DCC Limitations

39

specification. The errors and warnings generated, when addressed and
corrected, will give you more correct and reliable software.

DCC Limitations

Due to implementation constraints, DCC disallows certain constructs. See
“DCC Limitations” on page 39 for details.

Added DCC Warnings

DCC issues more warnings than cfront. While these should be addressed and
corrected if possible, you may want to use the -woff option for those
warnings you’re convinced are safe to ignore.

DCC Limitations

DCC has a few limitations when the _DELTA facility is enabled:

• Since the size of a dynamic class is no longer known at compile time,
calling sizeof for a dynamic class no longer yields a compile time
constant. In the following example, sizeof(myclass) cannot be used
as a constant to set the buffer size for char buf :

class myclass
{

public: void A();
int a;

};

void myclass::A() {}

char buf[sizeof(myclass)]; // \Gets error.

Taking the size of a dynamic class in an expression that is evaluated at
run time will compile and work.

• The size of a dynamic class cannot exceed 32767 bytes.

• Constructors, destructors, and assignment operators for dynamic
classes are always out of line.

• A union may not have a member that has a constructor. Since DCC
always ensures that all dynamic classes have a constructor, objects of

40

Chapter 4: DCC: the Delta/C++ Compiler

such classes may not be a member of a union. Suppose you have the
following code:

class dynamic {
public:

foo();
};

union xyz {
int x;
int y;
dynamic member; // Error 375.
xyz();

};

cfront accepts this code, but DCC generates the following error:

error(375): invalid union member -- class “dynamic” has a
disallowed member function
dynamic member; // Error 375.

^

• You cannot pass a dynamic class to a “... ” parameter. When the formal
parameter for a function is “... ”, the corresponding actual parameter
in a function call cannot be a dynamic object. A class object is passed to
a “... ” parameter “by value” (that is, no copy constructor is ever run),
but since we do not know the size of a dynamic object, it cannot be
passed by value on the stack.

Suppose you have the following code::

struct dynamic {
#pragma dynamic_class

dynamic();
};

dynamic object;

void f(int,...);

void main(){
f(5,object);

}

DCC Limitations

41

Compiling this code with DCC generates the error below.

“bug.c”, line 11: error(671): dynamic class cannot be
passed to a ... parameter f(5,object);

^

• _builtin_alignof is not a compile time constant. When you apply
_builtin_alignof to a dynamic class, the alignment of the class may
subsequently be changed by the addition of new data members. It is
illegal to use _builtin_alignof in contexts where a compile time constant
is needed.

For example, you cannot have the declaration of an array as in the code
sample below.

int x[__builtin_alignof(dynamic_class)];”

This restriction is similar to the restriction imposed on “sizeof”.

43

Chapter 5

5. Smart Build

This chapter describes Smart Build, a feature that allows the Delta/C++
compiler DCC to automatically determine the nature of changes in header
files between compile runs, and to recompile only what actually needs to be
recompiled, according to the Delta-compatibility rules.

Smart Build contains two interdependent mechanisms: precompiled
headers (available in DCC and CC), and Smart Build itself, which uses these
headers to calculate the differences between two versions of a header file.

This chapter contains the following sections:

• “Understanding Smart Build”

• “Invoking the Smart Build Facility”

• “Precompiled Header File Mechanism”

• “Smart Build Known Problems”

Understanding Smart Build

The Smart Build facility in the Delta/C++ compiler allows the compiler to
automatically determine the nature of changes to a header file, and
recompile only a compilation unit (that is, generate object code for it) if
necessary. (See the definition of Delta-compatible changes in the previous
chapters.)

Smart Build allows you to continue using your current build mechanisms of
choice (like make(1)), and still take advantage of Delta/C++’s benefits of
reduced recompilation. For example, make, on noticing that a header file has
changed, attempts to launch a recompile of every compilation unit that
includes that header file. Smart Build allows make to examine the exact
nature of the change, and generate new object code only when it is necessary.

44

Chapter 5: Smart Build

When the change is a Delta-compatible one, this allows the compiler to
terminate the compile for most compilation units at the early stages
(typically 1-2 seconds) and merely touch the object file, thus dramatically
speeding up the recompile.

To do this, the compiler builds binary precompiled files for each of the
header files used in the compilation—one for each source file. When a file is
modified, the compiler rebuilds the binary precompiled file, and can
compare it for differences against the previous version of the binary file.

Smart Build has two interdependent mechanisms: precompiled headers,
which are available both in DCC and NCC, and the Smart Build facility,
which uses these precompiled headers to calculate the differences between
two versions of a header file.

Invoking the Smart Build Facility

Smart Build can be used with both NCC and DCC. Smart Build skips
rebuilding more object files in DCC, but using it with NCC still gives you a
performance increase.

Smart Build and DCC

Invoke the Smart Build facility by adding the -smart option to the DCC
command line:

DCC -smart[,repository_dir] [options] . . . file . . .

repository_dir is the directory where the compiler keeps the precompiled
binary versions of the header files. The default is ./ILDUMPS. If the specified
directory does not exist, the compiler will attempt to create it with mkdir(2).

When a header file is touched in any way and a rebuild is performed—
usually using make(1)—the first invocation of the compiler (for the first
compilation unit recompiled by make(1)) performs the following functions:

• notices the modified header file,

• rebuilds the binary precompiled file

Invoking the Smart Build Facility

45

• computes the differences between this version of the binary file and the
previous version.

If any changes are not Delta-compatible, the compiler will generate new
object code for the compilation unit, otherwise it prints a message:

Remark(2): Smart Build: recompilation skipped

The compiler then touches the object file (so that make will not attempt to
repeatedly recompile the file in future invocations).

If you invoke the compiler in the same run of make(1) for the remaining
compilation units that also include this modified file, the compiler will

• see the new version of the binary precompiled file

• notice that the file has been rebuilt since the last time the object file for
this compilation unit was created

• examine the recorded changes from the previous version of the header
file

• see if any of the changes affect this compilation unit

If not, the compiler quickly prints the above message and touches the object
file, so that the compiler will generate new object file for this compilation
unit, too.

Smart Build and NCC

The greatest benefits of Smart Build are available with DCC, where the
compiler has a greater leeway to skip rebuilding object files if changes are
deemed to be Delta-compatible. However, it also benefits NCC to a
somewhat lesser extent.

When using Smart Build with NCC, most of the rules for compatible changes
do not apply. For instance, adding or reordering members in a class causes
any compilation unit using that class to get its object file rebuilt.

There is a small set of changes that are considered compatible:

• You may reformat or add comments without changing the order of the
declarations in a file.

46

Chapter 5: Smart Build

• You may add an extern variable or function declaration.

• You may add a type declaration.

If the compiler determines that the changes meet these criteria, it will skip
recompiling the compilation units that include that object file.

Precompiled Header File Mechanism

The precompiled header file mechanism used in the Smart Build facility has
some major advantages:

• It is fully automatic.

• The pre-compilation is done on a per-header file basis, so the users need
not modify their source in order to use this mechanism.

The mechanism is extremely sensitive to external factors like macro
definitions, especially if certain macros have different settings for different
compilation units, including the same header file.

There are circumstances in which the compiler has to rebuild a header file (or
use the source header file) even if it has not changed:

• You use a macro in the header file with a different setting than when it
was last precompiled.

• The compiler detects a condition due to which it cannot build a
precompiled header file (usually an implementation compromise — see
“Conditions for Not Building Precompiled Headers” on page 48).

• There is an explicit directive in the header file that tells the compiler not
to precompile the header file.

Even if you have to rebuild object files (either if the changes are not
compatible, or object files are missing), the precompiled header mechanism
still provides a significant performance increase.

If you don’t have to rebuild precompiled headers for any other reasons (see
above), then you can expect to see about a 20% improvement in compilation
time.

Precompiled Header File Mechanism

47

Causes of Inefficiencies in the Precompiled Header
Mechanism

Most of these inefficiencies are due to macro dependencies. For example,
consider the code segment in Example 5-1.

Example 5-1 Inefficiencies Due to Macro Dependencies

#ifndef _SIZE_T_DEFINED
#define _SIZE_T_DEFINED 1

typedef unsigned int size_t;

#endif

Code such as this frequently appears in many of the system header files. (For
instance, you may have several files that need the definition of size_t, but you
do not necessarily want to include the whole of each others’ contents just to
get one definition.)

Inefficiencies occur if two files (for example, stdio.h and stdlib.h) satisfy the
following requirements:

• Both files include the same code segment.

• Both files are included in the given order in one compilation unit, and
in the opposite order in another.

This kind of situation creates the problems listed below.

• In the first compilation unit, the precompiled header files for stdio.h is
built on the condition that _SIZE_T_DEFINED was undefined on entry
(since the generated precompiled header should contain the definitions
of _SIZE_T_DEFINED and size_t).

• The precompiled file for stdlib.h is built on the pre-condition that the
macro was defined, and equal to the string “1” (so that the precompiled
file has definitions for neither of the two identifiers).

When the second compilation unit first includes stdlib.h, it notices that
_SIZE_T_DEFINED is undefined. The unit must then rebuild the
precompiled file for stdlib.h so that it can include the definitions for the two
identifiers (it has no idea that an include of stdio.h is forthcoming, as indeed

48

Chapter 5: Smart Build

it may not). Since it must not contain the definitions of the two identifiers,
the precompiled header file for stdio.h (which follows) must also be rebuilt.

To avoid this, you should put any such declarations in their own header files
(for example, a common one for such common declarations). You should
protect these declarations against multiple includes. Each header file that
needs a definition of any such common identifier should include this header
file.

You must try to minimize the use of #ifs and #ifdefs in header files, except
for the outermost multiple-include protection. This is especially important if
they are going to be given different values for different compilation units.

Conditions for Not Building Precompiled Headers

Under some conditions, the compiler cannot build a precompiled header
file. It builds a stub precompiled header file that records time-stamps and
other header information. If such a file is modified or even merely touched,
the compiler generates new object code for any compilation unit that
includes such a header file.

The factors that prevent the compiler from building a precompiled header
file are:

• The include file does not begin or end at file scope. For example, if a file
is #included inside a function. This is a problem, since both the file
being included and the file doing the #include are marked as
“nonprecompilable.”

• If you use templates and exceptions. This release does not implement
the mechanisms to represent templates and exception structures in a
precompiled header file. If a header file uses or defines a template (that
is, a mere direct mention of a template class or function), no
precompiled file is created for that header file. However, a reference to
an externally defined typedef that expands to a template class instance
is permissible.

• If you have a function with a default argument declared in one header
file and defined in another header file. The second header file is marked
as nonprecompilable.

Precompiled Header File Mechanism

49

• If you have a class in one header and in-line constructor or destructor
body in another. The second header file is marked as nonprecompilable.

• If you have a static data member declared in one header file and
defined in another. The second header file is marked as
nonprecompilable.

• If you have an access-adjustment declaration that refers to another
access-adjustment declaration in a different header file. The second
header file is marked as nonprecompilable.

• If you have explicitly disabled the generation of precompiled files. You
can do this with the code

#pragma do_not_precompile

You can use this as a workaround if you have compiler errors when
handling certain header files, but in general, it is not recommended.

Known Problems in the Precompiled Header Mechanism

• If you declare a macro in the top-level compilation unit before a
#include that modifies some keyword (or some other identifier never
before declared as a macro), the precompiled header mechanism may
not rebuild the header file.

For example, if you have declarations in two different files the compiler
fails to recognize that the macro defined in file2.c (that redefines int)
effectively invalidates all the precompiled headers that are included
below it. Consider the two examples below:

Example 5-2 file1.c

#include “hdr.h”

Example 5-3 file2.c

#define int long
#include “hdr.h”

50

Chapter 5: Smart Build

• If any of the following conditions are true, the compiler may abort.

– compilation units with templates

– the compiler automatically including the source files for the
template bodies without them being explicitly #included

– the -smart flag is specified

Smart Build Known Problems

This section describes problems in the Smart Build facility.

• Smart Build incorrectly skips recompilation when a macro overrides a
non-macro token (for example, a keyword). The precompiled version,
using the non-overridden token, will be used. For example, consider
the following code:

#define protected public
#include “somefile.h”
#undef protected

If the following conditions are true, Smart Build will fail to notice that
this new macro redefines some tokens in the include file and will not
rebuild the precompiled header file.

– The header file somefile.h has been previously seen in a build of
some other compilation unit (and has thus been already
precompiled into a binary file).

– The word protected has not been defined as a macro in any other
compilation unit.

You must compile the unit that contains this unusual #define without
the -smart option.

Smart Build Known Problems

51

• Smart Build occasionally skips a recompilation even though a Delta-
incompatible change has been made. If the following conditions are
true, Smart Build will not detect the change, and will not recompile the
changes.

– A derived class references a global variable

– A new version of a base class then defines a data member with the
same name (thus overriding the global — a Delta-incompatible
change that should force the derived class members to be
recompiled),

You must delete the object file and recompile to force Smart Build to
rebuild, which it will do correctly.

In most cases when Smart Build incorrectly skips a file that should have
been recompiled, the workaround is to remove the object file(s) and
recompile.

• When you build executable code from a single source file don’t use the -
c option, Smart Build may create an empty object file, causing the link
to fail. Consider the following command:

NCC -smart x.c -o x

The first compile will work. NCC will remove the x.o object file as part
of its normal operation.

When the second compile is done, SmartBuild will assume that the
source file doesn’t need to be recompiled and touches the object file,
creating an empty object file. The linker prints this message:

Remark(2): Smart Build: recompilation skipped

ld:
Can’t have archive/object only 0 bytes long: x.o

You must either omit the -smart flag, or compile and link in separate
steps, keeping the object file in your directory.

53

Chapter 6

6. Code Examples

This chapter contains C++ coding examples. It has the following major
sections:

• “cfront Compatibility Examples” on page 53 provides you with
examples of code that compiled with cfront, but are invalid in the
Silicon Graphics C++ environment.

• “Delta-Compatible Changes Examples”

• “Delta-Incompatible Changes Examples”

cfront Compatibility Examples

This section contains examples of cfront-compatible code that is illegal in the
Silicon Graphics C++ environment. (For a complete description of the cfront
compatibility issues, see “cfront Compatibility” on page 8.) The examples
covered are listed below:

• Terminating comment lines with a backslash

• Explicitly declaring member functions

• Using the same identifier for multiple arguments

• Deleting a pointer to a const

• Passing a pointer to volatile data

• Disambiguating between a char* and a long

• Rejecting redundant type specifiers

• Converting a pointer to a class to an accessible base class

• Assigning a 0 to a pointer

54

Chapter 6: Code Examples

Terminating Comment Lines With a Backslash

If you use a C++-style (//) comment line terminated with a backslash, CC
and DCC will (correctly) continue the comment line into the next source line.
OCC (which uses the UNIX® standard cpp) incorrectly terminates the
comment at the end of the line. This may cause hard-to-find bugs.

In Example 6-1, CC and DCC considers the two lines following the //
comment to be part of the comment, while cfront does not.

Example 6-1 Terminating Comment Lines With a Backslash

#include <stdio.h>

int macro() { return 0; }

// Continued comment...............\
#define macro() \

(printf(“FAIL: executed a comment!\n”), 1)

int main()
{

return macro();
}

cfront (incorrectly) calls the macro and DCC calls the function. You must
delete the backslash at the end of the comment line.

Explicitly Declaring Member Functions

You must have an explicit declaration of a member function in a class if there
is an explicit definition of it outside the class. cfront allows this, but CC and
DCC displays the following error message:

error(3414): defining an implicitly declared member function
is not allowed alpha::alpha(const alpha &other)

^

cfront Compatibility Examples

55

For example, the code in Example 6-2 will not compile.

Example 6-2 Explicitly Declaring Member Functions

class alpha
{
public:

virtual void func(); // Needed to get implicit constructor
long member; // No constructor, so not initialized

};

alpha::alpha(const alpha &other)
{

member = other.member + 1000;
}

You must explicitly declare the missing member function and provide the
default constructor.

Deleting a Pointer to a const

You may not delete a pointer to a const. (If the pointer is to a type other than
the class itself, cfront also issues an error message.) If you do so, the following
error message is displayed:

error(3352): a pointer to const may not be deleted
delete ptr; // Error 352.

^

For example, the code in Example 6-3 will not compile.

Example 6-3 Deleting a Pointer to a const

class Foo
{
public:

Foo();
Foo(int);
~Foo();

private:
int stuff;
const Foo* ptr;

};
Foo::~Foo()

56

Chapter 6: Code Examples

{
delete ptr; // Error 352.

}

You must cast the pointer to a non-const type.

Passing a Pointer to Volatile Data

You may not pass a pointer to volatile data to a function that is expecting a
pointer to non-volatile data. If you do so, the following error message is
displayed:

error(3252): argument of type “volatile mytype *” is
incompatible with parameter of type “mytype *”
f1(vol); // Error.

^

For example, the code in Example 6-4 will not compile.

Example 6-4 Passing a Pointer to Volatile Data

typedef struct
{

long i;
long j;

} mytype;

void f1(mytype*);
void f2(int*);

volatile mytype *vol;
volatile int *pvi;

int main()
{

f1(vol); // Error.
f2(pvi); // Error.
return 0;

}

One solution is to cast the actual expression to the type expected, though that
may result in incorrect code, as the data is no longer treated as volatile. A
better solution is to rewrite the function to accept volatile data.

cfront Compatibility Examples

57

Disambiguating Between a char* and a long

When calling an overloaded function with char* and long variables and
passing an integral constant 0 smaller than a long, you must explicitly cast
the argument to either a char* or a long. If you do not, the following error
message is displayed:

error(3390): more than one instance of constructor
“UndoEvent::UndoEvent” matches the argument list:
function func(char *)”
function func(long)”
func((Bool)False);

For example, the code in Example 6-5 will not compile.

Example 6-5 Disambiguating Between a char* and a long

void func(char *){}
void func(long){}

typedef unsigned char Bool;

int main()
{

func((Bool) 0); // Error 3390.
return 0;

}

You must use a cast to disambiguate which constructor is to be called.

Rejecting Redundant Type Specifiers

You may not use redundant type specifiers. If you do so, the following error
message is displayed:

error(3177): invalid combination of type specifiers
 unsigned unsigned int x; // Error
 ^

58

Chapter 6: Code Examples

For example, the code in Example 6-6 will not compile.

Example 6-6 Rejecting Redundant Type Specifiers

typedef const int Int;
. . .
const Int x; // Error

You must delete the redundant type specifier.

Note: A long long data type is supported.

Implicitly Converting a Pointer to a Pointer to a Different
Class

You cannot implicitly cast a pointer to a class to be a pointer to a different
class, except when the pointer becomes a pointer to a base-class of the
original class. Even when both classes inherit from a same base class, a
pointer to one of these classes cannot be implicitly cast to be a pointer to the
other class. If you try to do so, the following error message is displayed:

error(135): operand types are incompatible (“D1 *” and “D2
*”)

bp = i ? dp1 : dp2; // Error.
^

For example, the code in Example 6-7 will not compile.

Example 6-7 Converting a Pointer to a Class to an Accessible Base Class

struct base { };

struct D1 : public base { };
struct D2 : public base { };

int i = 906;
base* bp = (base*) 0;
D1* dp1 = (D1*) 1;
D2* dp2 = (D2*) 2;

void main(void)
{

bp = i ? dp1 : dp2; // Error.

Delta-Compatible Changes Examples

59

bp = i ? (base*)dp1 : (base*)dp2; // Work-around.
}

You must cast both the second and third expressions to the type of the
common base class.

Assigning a Comma Expression Ending in 0 to a Pointer

You cannot assign a comma expression with a rightmost expression of 0 to a
pointer. If you do, the following error message is displayed:

error(611): a value of type “int” cannot be assigned to
an entity of type “int *”
p = (0, 0); // Error.

^

For example, the code in Example 6-8 will not compile.

Example 6-8 Assigning a 0 to a Pointer
void main()
{

int* p;
p = (0, 0); // Error.

}

You must cast the entire comma expression to the type of the pointer being
assigned. You can do this by setting the macro WORKAROUND.

Delta-Compatible Changes Examples

This section contains examples that demonstrate the unique capabilities of
the DCC. (For a complete description of the cfront compatibility issues, see
“Delta-Compatible Changes” on page 34.) The examples covered are listed
below.

• Adding members to a class

• Adding new base classes

• Promoting members

60

Chapter 6: Code Examples

• Overriding functions

• Reordering members

These examples are for dynamic classes only. Non-dynamic classes (which is
the default) do not have this facility; all changes are delta-incompatible.

Adding Members to a Class

DCC allows you to add both member functions and variables to a class
without forcing the recompilation of any code that uses that class. This is
true for public, protected, and private members. For example, you have a
class Alpha defined as shown in the following code segment:

class Alpha
{

long a;
long A();
virtual long VA();

};

You are allowed to extend the members of Alpha without recompilation. A
typical extension is shown in Example 6-9.

Example 6-9 Adding Members to a Class

class Alpha
{
 long a;
 long a1;
 long A();
 virtual long VA();

virtual long VA1();
};

Delta-Compatible Changes Examples

61

Reordering Members

DCC allows you to reorder the members of a class. You can reorder the
member variables to make more efficient use of space or to group members
by their protection level. This reordering has no effect on the interface being
provided by the class. For example, consider the code sample shown below:

class Alpha
{

long a;
char c;
long a1;
short s;
long A();

};

You can reorder the members as shown in Example 6-10.

Example 6-10 Reordering Members

class Alpha
{
 long a;
 long a1;
 char c;
 short s;
 long A();
};

Adding New Base Classes

DCC allows you to add a new base class to a class that already exists. For
example, consider the code sample shown below:

class Alpha
{

long a;
long a1;
long A();
virtual long VA();
virtual long VA1();

};

62

Chapter 6: Code Examples

You are allowed to extend the classes without recompilation. A typical
extension is shown in Example 6-11.

Example 6-11 Adding New Base Classes

class Gamma
{
 long g;
 long G();
 virtual long VG();
}

class Alpha : public Gamma
{

long a;
long a1;
long A();
virtual long VA();
virtual long VA1();

};

Class Alpha now supports the additional functionality described in class
Gamma and still supports Alpha’s original interface.

Note: You cannot change from single to multiple inheritance. See “Changing
From Single to Multiple Inheritance” on page 70 for more information.

Promoting Members

DCC allows you to move functionality from a derived class to a non-virtual
base class, so long as its type remains identical and is not an inline function.
For example, consider the code sample shown below:

class Gamma
{

long g;
long G();
virtual long VG();

}

class Alpha : public Gamma
{

long a;

Delta-Compatible Changes Examples

63

long a1;
long A();
virtual long VA();
virtual long VA1();

};

If Alpha is derived from Gamma, you are free to move some of the members
from Alpha into Gamma. The new version of Alpha still provides a
compatible interface. You won’t have to worry about how the functionality
of Alpha is provided, only that it is provided. For example, consider the code
sample shown below:

Example 6-12 Promoting Members

class Gamma
{
 long g;
 long a1;
 long G();
 virtual long VG();
 virtual long VA1();
}

class Alpha : public Gamma
{

long a;
long A();
virtual long VA();

};

a1 and VA1() have been promoted from Alpha to Gamma. You can release
the new versions of Alpha and Gamma without requiring the recompilation
of any code that uses either class.

Overriding Functions

DCC allows you to override a function or variable independent of whether
it is a member or virtual member of a class. For example, consider the code
sample shown below:

class Gamma
{

long g;

64

Chapter 6: Code Examples

long a1;
long G();
virtual long VG();
virtual long VA1();

}

class Alpha : public Gamma
{

long a;
long A();
virtual long VA();

};

You can change the overrides as shown in Example 6-13.

Example 6-13 Overriding Functions

class Gamma
{

long g;
long a1;
long G();
virtual long VG();
virtual long VA1();

}

class Alpha : public Gamma
{
 long a;
 long a1;
 long A();
 virtual long VA();
 long G();
 long VG();
};

A user of Alpha should be unconcerned whether Alpha overrides the
member function G() or the virtual member function VG() (originally
declared in Gamma). The function that is called when invoking G() on an
instance of Alpha changes, but the code still works.

Delta-Incompatible Changes Examples

65

Delta-Incompatible Changes Examples

This section contains examples of class modifications that are not supported
by DCC. (For a complete description of the unsupported incompatible
changes, see “Delta-Incompatible Changes” on page 35.) The examples
covered are listed below:

• Changing member declarations

• Adding overloaded functions to a class

• Overriding functions

• Changing from single to multiple inheritance

• Moving members to an enclosing class

Changing Member Declarations

You may not change the declaration of a member in any way (for example,
changing a type from short to long). This includes types of data members,
function declarations, inline function bodies, typedef declarations, and
enumeration declarations.

Changing the Values of Enumeration Constants

You may not change the values of enumeration constants. For example,
consider the code sample shown below:

enum color {
red,
blue

};

An incompatible change is shown in Example 6-14.

Example 6-14 Changing the Values of Enumeration Constants (1)

enum color {
 red,
 yellow,
 blue
};

66

Chapter 6: Code Examples

Another incompatible change is shown in Example 6-15.

Example 6-15 Changing the Values of Enumeration Constants (2)

enum color {
red = 4 ,
blue = 1

};

You may add values to an existing enumeration, provided you do not
modify the values of any of the existing enumeration constants.

Adding or Removing Member Function Parameters

You may not add or remove parameters from a member function, and you
may not change the return type of a function. For example, consider the code
sample shown below:

class Alpha {
void f(int x);

};

An incompatible change is shown in Example 6-16.

Example 6-16 Adding or Removing Member Function Parameters

class Alpha {
void f(int x , long y);

};

You may add a default value to an existing parameter that did not already
have one (such as int x = 906).

Changing Member Function Default Parameters

You may not change default parameters to member functions. For example,
consider the code sample shown below:

class Alpha {
void f(int x = 906);

};

Delta-Incompatible Changes Examples

67

An incompatible change is shown in Example 6-17.

Example 6-17 Changing Member Function Default Parameters

class Alpha {
void f(int x = 1);

};

Adding Overloaded Functions to a Class

You may add an overloaded function to a class only if the function you are
adding cannot possibly be called by existing code. For example, consider the
code sample shown below:

class Alpha
{

void F(int);
}

An incompatible change is shown in Example 6-18.

Example 6-18 Adding Overloaded Functions to a Class

class Alpha
{
 void F(int);
 void F(float);
}

Adding the function F(float) is an incompatible change, since an existing call
of F(1.0), which previously invoked F(int), would still do so. This is because
DCC determines the function’s signature at compile time. Only the location
of the function’s class is left unresolved until link time.

68

Chapter 6: Code Examples

Overriding Functions

There are two unacceptable incompatibilities when you want to override
functions:

• overriding a function defined in a base class with a new version in a
derived class

• overriding a global object in a base class when any derived classes
reference that object.

Base Class/Derived Class

You may not override an inline function defined in a base class with a new
version of the function in a derived class. For example, consider the code
sample shown below:

class Base
{

int test()
{

printf(“Base::test”);
}

};

class Derived : public Base
{
};

Derived Object;

main()
{

object.test();
}

object.test() invokes Base::test(), which is expanded inline.

Delta-Incompatible Changes Examples

69

Assuming these are dynamic classes, an incompatible change is shown in
Example 6-19.

Example 6-19 Overriding Functions: Base Class/Derived Class

class Base
{

int test()
{

printf(“Base::test”);
}

};

class Derived : public Base
{
 int test()
 {
 printf(“Derived::test”);
 }
};

Derived Object;

main()
{

object.test();
}

Unless main() is recompiled, it will continue to call Base::test().

Base Class/Global Object

A global object may not be overridden in a base class, when any derived
classes reference that object. For example, consider the code sample shown
below:

int global;

class Alpha
{
};

class Gamma : public Alpha
{

70

Chapter 6: Code Examples

public:
func();

};

int gamma::func()
{

return global;
}

An incompatible change is shown in Example 6-20.

Example 6-20 Overriding Functions: Base Class/Global Object

int global;

class Alpha
{
 int global;
};

int gamma::func()
{

return global;
}

Changing From Single to Multiple Inheritance

You may not add a base class if the derived class already has exactly one base
class. For example, consider the code sample shown below:

class Gamma
{

long g;
long G();
virtual long VG();

}

class Alpha : public Gamma
{

long a;
long A();
virtual long VA1();

};

Delta-Incompatible Changes Examples

71

An incompatible change is shown in Example 6-21.

Example 6-21 Changing From Single to Multiple Inheritance

class Gamma
{

long g;
long G();
virtual long VG();

}

class Beta
{

long b;
long B();
virtual long VB();

}

class Alpha : public Gamma , Beta
{

long a;
long A();
virtual long VA1();

};

You may add a base class if the derived class has zero, two, or more base
classes (in other words, it is already participating in multiple inheritance).

Moving Members to an Enclosing Class

You may not move a member to an enclosing class, or hide a member from
an enclosing class. For example, consider the code sample shown below:

struct outer {
static int s1;
outer();
struct inner {

static int s2;
inner();

};
};

72

Chapter 6: Code Examples

An incompatible change is shown in Example 6-22.

Example 6-22 Moving Members to an Enclosing Class

struct outer {
 static int s1;
 static int s2; // moved
 outer();
 struct inner {
 inner();
 static int s1; //new member
 };
};

s2 was moved to an enclosing class, and the new s1 in inner hides the s1 from
outer. Both of these changes are delta- incompatible, and you must recompile
your code.

73

Chapter 7

7. Common Pitfalls

This chapter contains the following major sections:

• “Problems Involving C Linkage” on page 73 discusses some problems
you may encounter when you link your C++ programs to the C
libraries.

• “Problems With Order of Specification of Libraries” on page 74
discusses some problems you may encounter when you order the
libraries on the command line.

Problems Involving C Linkage

One of the most common problems you may encounter occurs when you
link your C++ programs to C code (such as C libraries). This section contains
many of the most typical problems you run into in that situation.

• Unexpected undefined symbols. You may see the following error
message from the link-editor:

Unresolved: foo(int, char*)

The presence of the prototype in this message indicates that this is a
C++ function. Frequently this means not that the function foo is
undefined, but that it is defined in a C object file or library, and the C++
declaration is missing an extern “C” linkage specification.

74

Chapter 7: Common Pitfalls

• Inconsistent linkage. You may see the following error message from the
C++ front end (fecc):

“afile.c”, line 37: error (1311): linkage specification
is incomplete with previous foo (declared at line 17)

This means that two declarations for foo() were found with the same
prototype, the first outside an extern “C” specification and the second
inside. For example, you may have the following code, all in one
compilation unit:

void foo(int, char*);
......
extern "C" { void foo(int, char*); }

Frequently these two declarations come from different header files.

• A “Two ... with c linkage” error. For example, you may see the
following error message from the C++ front end (edgcpfe):

“afile.C”, line 37: error (3419): more than one instance
of overloaded function “foo” has “C” linkage.

This indicates that two declarations for foo() were found within extern
“C” specifications but with different prototypes. Typically this happens
when a function is declared in two header files with the wrong
prototype in one of them, or when a function already declared in an
included header file is redeclared incorrectly.

Problems With Order of Specification of Libraries

This section covers two typical problems you may encounter when you
specify the order of your libraries.

• Inability to use the Silicon Graphics fast malloc routines, malloc(3x).

A related problem occurs with a command such as the following:

CC foo.c++ -lmalloc

The command mysteriously fails to use the “fast” libmalloc.a versions of
malloc() and free(). Here again the order of libraries is

-lmalloc -lC -lc

Problems With Order of Specification of Libraries

75

At the time ld processes libmalloc.a, there are no undefined references to
malloc() and free() (unless explicitly referenced from foo.c++). Only
when new and delete are picked up from libC.a are malloc() and free()
required, and then it is too late: their references have already been
resolved from libc.a instead of libmalloc.a. Again, once the problem is
recognized, the solution is easy. Just change the command to the
following:

CC foo.c++ -lC -lmalloc

• Mixing stdio and iostreams.

If you mix iostream output using cout with stdio output using printf,
and you are not careful about flushing the output buffers, you may see
unexpected results. For example, consider the following program:

#include <stdio.h>
#include <ostream.h>
main() {
 cout << "cout1\n";
 printf("printf1\n");
 cout << "cout2\n";
 printf("printf2\n");
 }

This code produces the following output:

printf1
printf2
cout1
cout2

This is because cout and printf use distinct buffers, and insertion of a
newline into cout does not flush the buffer. To flush the buffer, you can
insert the manipulator flush into the stream in the following way:

cout << "cout1\n" << flush;

76

Chapter 7: Common Pitfalls

You can also use the manipulator endl to insert a newline and flush as
follows:

cout << "cout1" << endl;

On the other hand, consider the following program

main() {
 cout << "cout1 " << flush;
 printf("printf1 ");
 cout << "cout2 " << flush;
 }

This code produces the output

cout1 cout2 printf1

This is because the buffer for printf is not flushed until the program
terminates. Here you need to call fflush after the call to printf as
follows:

fflush(stdout);

This generates the following “expected” output:

cout1 printf1 cout2

If you wish to avoid explicitly flushing the buffer, you may insert the
following code before performing any input/output:

ios::sync_with_stdio();

77

Chapter 8

8. Using Templates

This chapter discusses the Silicon Graphics C++ implementation of
templates. It compares the Silicon Graphics implementation to those of the
Borland C++ and cfront compilers. It contains the following major sections:

• “CC -32 Template Instantiation” on page 77 describes how you perform
template instantiation in the 32-bit Silicon Graphics C++ environment.

• “CC -64 Template Instantiation” on page 91 describes how you perform
template instantiation in the 64-bit Silicon Graphics C++ environment.

• “How to Transition From cfront” on page 92 describes how a
programmer currently using the cfront template instantiation
mechanism can transition to the template instantiation scheme used by
the new Silicon Graphics C++ compilers.

• “Template Language Support” on page 95 describes how template
language is supported in the Silicon Graphics C++ environment.

cfront template support is discussed in the chapter “Automatic Template
Instantiation” in the C++ Language System Overview.

CC -32 Template Instantiation

This section describes the 32-bit implementation of templates.

The instantiation of a class template is always done as soon as it is needed in
a compilation. However, the instantiations of template functions, member
functions of template classes, and static data members of template classes
(hereafter referred to as template entities) are not necessarily done
immediately. The reasons for this are given below.

• You should have only one copy of each instantiated entity across all the
object files that make up a program. (This applies to entities with
external linkage.)

78

Chapter 8: Using Templates

• You may write a specialization of a template entity. (For example, you
can write a version of Stack<int>, or of just Stack<int>::push, that
replaces the template-generated version. Often, this kind of
specialization is a more efficient representation for a particular data
type.) When compiling a reference to a template entity, the compiler
does not know if a specialization for that entity will be provided in
another compilation. The compiler cannot do the instantiation
automatically in any source file that references it.

• You may not compile template functions that are not referenced. Such
functions might contain semantic errors that would prevent them from
being compiled. A reference to a template class should not
automatically instantiate all the member functions of that class.

Note: Certain template entities are always instantiated when used (for
example, inline functions).

If the compiler is responsible for doing all the instantiations automatically, it
can do so only on a program-wide basis. The compiler cannot make
decisions about instantiation of template entities until it has seen all the
source files that make up a complete program.

By default, CC -32 performs automatic instantiation at link time. It is also
possible for you to instantiate all necessary template entities at compile time
using the -ptused option. See “Explicit Instantiation” on page 82 for further
details.

Automatic Instantiation

Automatic instantiation enables you to compile source files to object code,
link them, run the resulting program, and never worry about how the
necessary instantiations are done.

CC -32 requires that for each instantiation you have a normal, top-level,
explicitly-compiled source file that contains both the definition of the
template entity and any types required for the particular instantiation.

CC -32 Template Instantiation

79

Meeting Instantiation Requirements

You can meet the instantiation requirements in several ways:

• You can have each header file that declares a template entity contain
either the definition of the entity or another file that contains the
definition.

• When the compiler sees a template declaration in a header file and
discovers a need to instantiate that entity, you can give it permission to
search for an associated definition file having the same base name and a
different suffix. The compiler implicitly includes that file at the end of
the compilation. This method allows most programs written using the
cfront convention to be compiled. See “Implicit Inclusion” on page 81.

• You can make sure that the files that define template entities also have
the definitions of all the available types, and add code or pragmas in
those files to request instantiation of the entities there.

Automatic Instantiation Method

1. The first time the source files of a program are compiled, no template
entities are instantiated. However, the generated object files contain
information about things that could have been instantiated in each
compilation.

2. When the object files are linked, a program called the prelinker is run. It
examines the object files, looking for references and definitions of
template entities, and for the added information about entities that
could be instantiated.

3. If the prelinker finds a reference to a template entity for which there is
no definition anywhere in the set of object files, it looks for a file that
indicates that it could instantiate that template entity. When it finds
such a file, it assigns the instantiation to it. The set of instantiations
assigned to a given file, say abc.C, is recorded in an associated .ii file (for
example, abc.ii). All .ii files are stored in a directory named ii_files
created below your object file directory.

4. The prelinker then executes the compiler again to recompile each file
for which the .ii file was changed. (The .ii file contains enough
information to allow the prelinker to determine which options should
be used to compile the same file.)

80

Chapter 8: Using Templates

5. When the compiler compiles a file, it reads the .ii file for that file and
obeys the instantiation requests therein. It produces a new object file
containing the requested template entities (and all the other things that
were already in the object file).

6. The prelinker repeats steps 3-5 until there are no more instantiations to
be adjusted.

7. The object files are linked.

Details of Automatic Instantiation

Once the program has been linked correctly, the .ii files contain a complete
set of instantiation assignments. From then on, whenever source files are
recompiled, the compiler will consult the .ii files and do the indicated
instantiations as it does the normal compilations. Except in cases where the
set of required instantiations changes, the prelink step will find that all the
necessary instantiations are present in the object files and that no
instantiation assignment adjustments need be done. This is true even if the
entire program is recompiled.

If you provide a specialization of a template entity somewhere in the
program, the specialization will be seen as a definition by the prelinker. Since
that definition satisfies whatever references there might be to that entity, the
prelinker will see no need to request an instantiation of the entity. If the
programmer adds a specialization to a program that has previously been
compiled, the prelinker will notice that too and remove the assignment of
the instantiation from the proper .ii file.

The .ii files should not, in general, require any manual intervention. The only
exception is if the conditions below are all met.

• A definition is changed in such a way that some instantiation no longer
compiles (it generates errors).

• A specialization is simultaneously added in another file

• The first file is recompiled before the specialization file and is
generating errors.

The .ii file for the file generating the errors must be deleted manually to
allow the prelinker to regenerate it.

CC -32 Template Instantiation

81

If the prelinker changes an instantiation assignment, it will issue a message:

C++ prelinker: f__10A__pt__2_iFv assigned to file test.o
C++ prelinker: executing: usr/lib/DCC/edg-prelink -c test.c

The name in the message is the mangled name of the entity. These messages
are printed if you use the -ptv option.

The automatic instantiation scheme can coexist with partial explicit control
of instantiation by the programmer, through the use of pragmas or
command-line specification of the instantiation mode.

The automatic instantiation mode can be disabled by using the -no_prelink
option.

If automatic instantiation is turned off,

• the extra information about template entities that could be instantiated
in a file is not put into the object file

• the .ii file is not updated with the command line

• the prelinker is not invoked

Implicit Inclusion

For the best results, you must include all the template implementation files
in your source files. Since most cfront users do not do this, the compiler
attempts to find unincluded template bodies automatically. For example,
suppose that the following conditions are all true.

• template entity ABC::f is declared in file xyz.h

• an instantiation of ABC::f is required in a compilation

• no definition of ABC::f appears in the source code processed by the
compilation

In this case, the compiler looks to see if the source file xyz.n exists. (By
default, the list of suffixes tried for n is .c, .C, .cpp, .CPP, .cxx, .CXX, and .cc.)
If so, the compiler processes it as if it were included at the end of the main
source file.

82

Chapter 8: Using Templates

Implicit inclusion works well alongside automatic instantiation, but the two
are independent. They can be enabled or disabled independently, and
implicit inclusion is still useful when automatic instantiation is not done.
Implicit inclusion can be disabled with the -no_auto_include option.

Explicit Instantiation

CC -32instantiates all templates at compile time if you use the -ptused option.
The compiler produces larger object files because it stores duplicate
instantiations in the object files. The duplicate copies are removed by the
linker, and do not exist in the final executables.

The CC -32 template instantiation mechanism also correctly handles static
data members when you use the -ptused option. Static data members that
need to be dynamically initialized may be instantiated in multiple
compilation units. However, the dynamic initialization takes place only
once. This is implemented by using a flag which is set the first time a static
data member is initialized. This flag prevents further attempts to initialize it
dynamically.

The -ptused option is acceptable for most small- or medium-sized
applications. There are some drawbacks listed below:

• Instantiating everything produces large object files.

• Although duplicate code is removed, the associated debug information
is not removed, producing large executables.

• If you change a template body, you must recompile every file that
contains an instantiation of this body. (The easiest way to do this is for
you to use make in conjunction with the -MDupdate option. See the
DCC(1) reference page and “Limitations” on page 89 for more
information.)

• If you plan on specializing a template function instantiation, you may
have to set #pragma do_not_instantiate if it is likely that the
compiler-generated instantiation will contain syntax errors.

• Data is not removed, so there are multiple copies of static data
members.

CC -32 Template Instantiation

83

You can exercise finer control over exactly what is instantiated in each object
file by using pragmas and command-line options.

Command Line Options for Template Instantiation

You may use command-line options to control the instantiation behavior of
the compiler. These options are divided into sets of related options, as shown
below. You use one option from each category; options from the same
category are not used together. (For example, you do not use -ptnone in
conjunction with -ptused.)

• -ptnone (the default), -ptused, and -ptall

• -prelink (the default) and -no_prelink

• -auto_include, -no_auto_include

• -ptv

The command line options are listed below.

-ptnone None of the template entities are instantiated. If automatic
instantiation is on (in other words, -prelink), any template
entities that the prelinker instructs the compiler to
instantiate are instantiated.

-ptused Any template entities used in this compilation unit are
instantiated. This includes all static members that have
template definitions. If you specify -ptused, automatic
instantiation is turned off by default. If you enable
automatic instantiation explicitly (with -prelink), any
additional template entities that the prelinker instructs the
compiler to instantiate are also instantiated.

-ptall Any template entities declared or referenced in the current
compilation unit are instantiated. For each fully instantiated
template class, all its member functions and static data
members are instantiated whether or not they are used.

Nonmember template functions are instantiated even if the
only reference was a declaration. If you use -ptall,
automatic instantiation is turned off by default. If you
enable automatic instantiation explicitly (with -prelink), any
additional template entities that the prelinker instructs the
compiler to instantiate are also instantiated.

84

Chapter 8: Using Templates

-prelink Instructs the compiler to output information from the object
file and an associated .ii file to help the prelinker determine
which files should be responsible for instantiating the
various template entities referenced in a set of object files.

When -prelink is on, the compiler reads an associated .ii file
to determine if any template entities should be
instantiated. When -prelink is on and a link is being
performed, the driver calls a “template prelinker.” If the
prelinker detects missing template entities, they are
assigned to files (by updating the associated .ii file), and the
prelinker recompiles the necessary source files.

-no_prelink Instructs the compiler to not read a .ii file to determine
which template entities should be instantiated. The
compiler will not store any information in the object file
about which template entities could be instantiated. This
option also directs the driver not to invoke the template
prelinker at link time.

This is the default mode if -ptused or -ptall are specified.

-auto_include Instructs the compiler to implicitly include template
definition files if such definitions are needed. (See “Implicit
Inclusion” on page 81.)

-no_auto_include
Disables implicit inclusion of template implementation
files. (See “Implicit Inclusion” on page 81.)

-ptv Puts the template prelinker in verbose mode; when a
template entity is assigned to a particular source file, the
name of the template entity and source file is printed.

Note: In the case where a single file is compiled and linked, the compiler
uses the -ptused option to suppress automatic instantiation.

Command Line Instantiation Examples

This section provides you with combinations of command line instantiation
that you may want to use, along with an explanation of what these
combinations would do, and what you might use them for.

CC -32 Template Instantiation

85

Although there are many possible combinations of options, the most
common are listed below:

-ptnone -prelink -auto_include

This is the default mode, which is suitable for most
applications. On the first build of an application, the
prelinker determines which source files should instantiate
the necessary template entities. On subsequent rebuilds, the
compiler automatically instantiates the template entities.

-ptused This mode is suitable for small- and medium-sized
applications. No prelinker pass is necessary. All referenced
template entities are instantiated at compile time, and the
linker removes duplicate functions. Dynamically initialized
static data members are also handled correctly (by using a
runtime guard to prevent duplicate initialization of such
members).

-ptused -prelink

Use this combination when you have an archive or dynamic
shared object (DSO) that has not been prelinked.

When a DSO is built, it is automatically prelinked. When
an archive is built, we recommend that you run the
prelinker on the object files before archiving them.
However, there are cases where a programmer may choose
not to do so.

For example, if an application is linked using multiple
internal DSOs or archives, then you may choose not to
prelink each DSO or archive, since that may create multiple
instances of some template entities. When building an
application using such archives or DSOs, you should use
-prelink at compile time, even if the application is being
built using -ptused. This is because the object files must
contain not only instances of templates instances
referenced in the compilation units, but also instances of
template entities referenced in archives and DSOs.

-ptall -no_prelink

Use this combination when you are building a library of
instantiated templates.

86

Chapter 8: Using Templates

For example, consider if you have a “stack” template class
containing various member functions. You may choose to
provide instantiated versions of these functions for various
common types (for example, int, float, and so on) and the
easiest way of instantiating all member functions of a
template is to use -ptall.

-ptnone -no_prelink

Use this combination if you are using template entities that
are pre-instantiated.

For example, suppose you are using templates, but know
that all of your referenced template entities have already
been pre-instantiated in a library such as described in the
previous example. In this case, you do not need any
templates instantiated at compile time, and you should
turn off automatic instantiation.

-auto_include

Use this option if you are using template implementation
files that are not explicitly included.

Most source code written for cfront style compilers does not
usually include template implementation files, because the
cfront prelinker does this automatically. The -auto_include
option is the default mode, because you want to compile
cfront style code, but still instantiate templates at compile
time (which implies finding template implementation files
automatically).

-no_auto_include

Use this option if you are using template implementation
files that are explicitly included.

Source code written for compilers such as Borland/C++
includes all necessary template implementation files. Such
source code should be compiled with the -no_auto_include
option.

-ptnone -no_prelink

Use this combination if all your template instantiation is
done through the use of pragmas.

By using these options, you guarantee that nothing will be
instantiated unless an explicit pragma is provided.

CC -32 Template Instantiation

87

Pragmas for Template Instantiation

You can use pragmas to control the instantiation of individual or sets of
template entities. There are three instantiation pragmas:

instantiate Causes a specified entity to be instantiated.

do_not_instantiate
Suppresses the instantiation of a specified entity. Typically
used to suppress the instantiation of an entity for which a
specific definition is supplied.

can_instantiate Allows (but does not force) a specified entity to be
instantiated in the current compilation. You can use it in
conjunction with automatic instantiation to indicate
potential sites for instantiation if the template entity turns
out to be required.

The arguments to the instantiation pragma may be

• a template class name, such as A<int>

• a member function name, such as A<int>::f

• a static data member name, such as A<int>::i

• a member function declaration, such as void A<int>::f(int, char)

• a template function declaration, such as char* f(int, float)

A pragma directive in which the argument is a template class name (for
example, A<int>) is the same as repeating the pragma for each member
function and static data member declared in the class.

When you instantiate an entire class, you may exclude a given member
function or static data member using the do_not_instantiate pragma. See
the example below:

#pragma instantiate A<int>
#pragma do_not_instantiate A<int>::f

88

Chapter 8: Using Templates

You must present the template definition of a template entity in the
compilation for an instantiation to occur. (You can also find the template
entity with implicit inclusion.) If you request an instantiation by using the
instantiate pragma and no template definition is available or a specific
definition is provided, you will receive a link-time error. For example:

template <class T> void f1(T);
template <class T> void g1(T);
void f1(int) {}
void main()
{

int i;
double d;
f1(i);
f1(d);
g1(i);
g1(d);

}
#pragma instantiate void f1(int)
#pragma instantiate void g1(int)

f1(double) and g1(double) are not instantiated (because no bodies were
supplied) but no errors are produced during the compilation. If no bodies
are supplied at link time, you will receive a linker error.

You can use a member function name (for example, A<int>::f) as a pragma
argument only if it refers to a single user-defined member function. (In other
words, not an overloaded function.) Compiler-generated functions are not
considered, so a name may refer to a user-defined constructor even if a
compiler-generated copy constructor of the same name exists.

You can instantiate overloaded member functions by providing the
complete member function declaration. See the example below:

#pragma instantiate char* A<int>::f(int, char*)

The argument to an instantiation pragma may not be a compiler-generated
function, an inline function, or a pure virtual function.

CC -32 Template Instantiation

89

Specialization

CC -32 supports specialization. In template instantiation, you specialize when
you define a specific version of a function or static data member.

Because the compiler instantiates everything at compile time when the
-ptused option is specified, a specialization is not seen until link time. The
linker and runtime loader select the specialization over any non-specialized
versions of the function or static data member.

See “Pragmas for Template Instantiation” on page 87 for information on
how to suppress the instantiation of a function. You may find this useful if
you intend to provide a specialization in another object file and the non-
specialized version cannot be instantiated.

Building Shared Libraries and Archives

When you build a shared library or archive, you should usually instantiate
any template instances that could be needed.

The prelinker is automatically run when building a shared library, but it
must be run manually when building an archive. Follow the steps below to
build your archive.

1. Enter the command /usr/lib/DCC/edg_prelink a.o b.o

This instantiates any templates needed by these object files.

2. Enter the command ar cr libtest.a a.o b.o to build the archive.

Limitations

There are some limitations on template instantiation in the Silicon Graphics
C++ environment:

• A template specialization that exists in an archive may fail to be
selected.

If you define a specialization within an object file that exists in an
archive, and that object file does not satisfy any references (other than
the reference to the specialization), then the object file is not selected.

90

Chapter 8: Using Templates

Any function generated from a template that appears before the archive
will be used, although a specialization should take precedence over a
generated function.

The following conditions have to be present for the bug to occur:

– A template member needs to be specialized.

– The specialization must live in an archive element.

– A non-specialization of the template member must live in an object
file seen by the linker. For a non-specialization to live in an object
file, -ptused must have been specified (in other words, not the
default mode).

– Nothing else that exists in the archive element is referenced; that is,
the specialization is probably the only thing in the object file.

You can use either of the following two workarounds:

– Force the archive element to be loaded by defining some dummy
global within it, and passing the -u option to the linker to force an
undefined reference to the dummy global.

– Use a .so (that is, a dynamic shared object) instead of an archive.
The runtime loader will correctly select specializations from
dynamic shared objects.

• There is no link time mechanism to detect changes in template
implementation files or to re-instantiate those template bodies that are
out of date when you use the -ptused option.

Since Makefiles usually makes object files dependent on the .h files
where templates are defined, make may not enable you to rebuild the
right set of object files if you modify a template implementation file. To
make sure you rebuild all files that instantiate a given template when
the template body changes, you must follow the steps below.

1. Use the -MDupdate option at compile time to update a dependency
file (usually called Makedepend). The compiler lists dependencies
for all applicable #include files, including template implementation
files that are implicitly included.

2. Make sure that your Makefile includes this dependency file. See the
DCC(1) and make reference pages for more information on how to
include files within a Makefile.

CC -64 Template Instantiation

91

• The only object files that the prelinker can recompile are object files that
have not been renamed after they were originally compiled. In
particular, the following limitations apply:

– The prelinker cannot recompile any object file that exists in an
archive, since putting an object file in an archive is equivalent to
renaming it. It is recommended that you run the prelinker on object
files before putting them in an archive. A similar restriction applies
to dynamic shared objects (see “Building Shared Libraries and
Archives” on page 89).

– The prelinker cannot compile an object file if it was renamed after
being compiled. For example, consider the following command
line:

yacc gram.y CC -32 -c y.tab.c mv y.tab.o object.o

The prelinker does not know how to recompile object.o. If object.o
contains unresolved template references that will not be satisfied by
any other objects, you must use the -ptused option when compiling,
or explicitly invoke the prelinker on the object file before moving it.

CC -64 Template Instantiation

The instantiation method for CC -64 is somewhat different from that of CC -
32. CC -64 currently does not support automatic template instantiation. The
CC -32 options for template instantiation are not recognized by CC -64;
instead, it behaves as if the options -ptused -no_prelink -no_auto_include had
been selected. That is, the following is true:

• Any template entities used in a compilation unit are instantiated. This
works much as the -ptused option, described in “Command Line
Options for Template Instantiation” on page 83.

• Pragmas to control the instantiation are supported.

• There is no implicit inclusion of template definition files.

• If you plan on specializing a template function instantiation, you must
set #pragma do_not_instantiate if it is likely that the compiler-
generated instantiation will contain syntax errors.

92

Chapter 8: Using Templates

• The prelink mechanism is not supported.

• The associated .ii files are not created or used.

How to Transition From cfront

If you have compiled your source code with cfront, you may have to modify
your build scripts to ensure that your templates are instantiated properly.
This section discusses how to transition templates from cfront to the Silicon
Graphics environment.

Mapping Template Options From cfront to CC -32

The cfront template-related options, their meaning, and the equivalent CC -
32 options are listed below:

-pta Instantiates a whole template class rather than only those
members that are needed. If you use automatic
instantiation, there is no equivalent option for CC -32. If you
use explicit instantiation, the -ptall option performs roughly
the same action.

-pte suffix Uses suffix as the standard source suffix instead of .c. There
is currently no equivalent CC -32 option. CC -32 always
looks for the following suffixes when looking for a template
body to implicitly include: .c, .C, .cpp, .CPP, .cxx, .CXX, .cc,
.c++.

-ptn Changes the default instantiation behavior for one-file
programs to that of larger programs, where instantiation is
broken out separately and the repository updated. One-file
programs normally have instantiation optimized so that
instantiation is done into the application object itself. There
is currently no equivalent CC -32 option.

How to Transition From cfront

93

One way of approximating this behavior is to compile your
file with -c, and then link it, instead of compiling and
linking in a single step. Another method is to create an
empty dummy file, and compile/link your original file and
the new dummy file in a single step. For example, you can
use the following command line:

CC -32 file.c dummy.c

-ptrpathname Specifies a repository, with ./ptrepository as the default. If
several repositories are given, only the first is writable, and
the default repository is ignored unless explicitly named.
There is no equivalent option for CC -32. The cfront
“repositories” contain two kinds of information:

• information about where types and templates are
defined

• object files containing template instantiations

The CC -32 template instantiation mechanism does not use
separate object files for template instantiations; all
necessary template instantiations are performed in files
that are part of the application (or library) being built.
Information about which templates are capable of being
instantiated by each file are embedded in the object file
itself. This means that no repositories are needed. See
“What to Do If You Use Object Files From cfront’s
Repository” and “What to Do If You Use Multiple
Repositories” on page 94 for further information.

-pts Splits instantiations into separate object files, with one
function per object (including overloaded functions), and
all class static data and virtual functions grouped into a
single object. There is no equivalent CC -32 option. You can
exercise fine-grained control over exactly which templates
are instantiated in each file by using the instantiation
pragmas described in “Pragmas for Template Instantiation”
on page 87.

-ptv Turns on verbose or verify mode, which displays each
phase of instantiation as it occurs, together with the elapsed
time in seconds that phase took to complete. You should use
this option if you are new to templates. Verbose mode
displays the reason an instantiation is done and the exact

94

Chapter 8: Using Templates

CC command used. The -ptv option is also supported by CC
-32, and provides verbose information about the operation
of the prelinker. The prelinker indicates which template
instantiations are being assigned to which files, and which
files are being recompiled.

What to Do If You Use Object Files From cfront’s
Repository

If you are used to the cfront template instantiation mechanism you may
sometimes explicitly reference object files in the repository. This is often
done when building an archive or a shared library. The general idea is to link
a fake main program with a set of object files so as to populate the repository
with the necessary template instantiations. The object files that were linked,
along with the object files in the repository, are stored in an archive, or linked
into a shared library.

cfront users do this to build an archive or library which has no unresolved
template references. CC -32 users who wish to build archives and shared
libraries where all template references have been resolved can do the
following:

• If you are building a shared library, the CC -32 driver will automatically
run the prelinker on the set of object files being linked into the shared
libraries. No further action is necessary on the part of the programmer.

• If an archive is being built, the prelinker needs to be run explicitly on
the object files, before invoking ar. See “Building Shared Libraries and
Archives” on page 89 for information on how to do this.

What to Do If You Use Multiple Repositories

If you use the cfront template instantiation mechanism, you may sometimes
use multiple repositories. For example, you may have an application which
consists of multiple libraries. Each library is built in its own directory, and
has its own repository. When you build the library, template functions are
not instantiated. When the application is linked against these libraries, the
necessary templates are instantiated at link time. The repositories provide
enough information about where to find the necessary template declarations
and implementations.

Template Language Support

95

CC -32 does not use repositories, and you can use various strategies when
linking a set of object files against a set of libraries that contain references to
uninstantiated template functions. Some examples are given below:

• If it is possible that all uninstantiated template functions can be
instantiated in the object files being linked into the application, the
prelinker will do so automatically. However, it is possible that a library
uses a template internally, which is never used by the object files being
linked into the application. Such templates are not instantiated by the
prelinker, resulting in undefined symbols.

• A better strategy is to prelink each library when it is built, so that the
main program is not burdened with having to perform these
instantiations. One problem occurs if multiple libraries use the same
template functions: if each library is prelinked, multiple copies of such
functions will be generated. Removal of duplicate functions takes place
only in .o and .a files; shared libraries cannot have any duplicate code
removed.

Template Language Support

The language support for templates in the Silicon Graphics C++
environment is more extensive than for cfront. Some of the additional
template language constructs supported by the Silicon Graphics C++
environment are listed below:

• You may use nested classes, typedefs, and enums in class templates,
including variant typedefs and enums. (A variant member type
depends on the template parameters in some way.)

• You may use floating point numbers, pointers to members, and more
flexible specifications of constant addresses.

• You may use default arguments for class template non-type
parameters. For example:

template <int I = 1> class A {};

96

Chapter 8: Using Templates

• You may allow a non-type template parameter to have another
template parameter as its type. For example:

template <class T, T t> class A {
public:

T a;
A(T init_val = t) { a = init_val; }

};

• You may use what are essentially template classes instantiated with the
template parameters of other class or function templates.

template <class T, int I> struct A {
static T b[I];

};

template <class T> void f(A<T,10> x) {}
template <class T> void f(A<T, 3> x) {}

void main()
{

A<int,10> m;
A<int,3> n;
int i = f(m);
int j = f(n);

}

The function template would be considered tagged twice by cfront, and
the code calls tagged ambiguous by the Borland/C++ compiler.

• You may use circular template references. For example:

template <class T> class B;
template <class T> class C;

template <class T> class A { B<T> *b; };
template <class T> class B { C<T> *c; };
template <class T> class C { A<T> *a; };

A<int> a;

cfront generates an error on this code.

• CC is more consistent than other C++ compilers about where a class
template name must be followed by template arguments. For example:

template <class T> struct X {
X();

Template Language Support

97

~X();
X*x;
int X::* x2;
void f();
void g(){ X x;}

};

struct X<char> {
X();
~X(); // Borland error
X*x; // Borland error
int X::* x2; // Borland error
void f();
void g(){ X x;} // Borland error };

template <class T> void X<T>::f()
{

X x; // cfront error }

void X<char>::f()
{

X x; // cfront & Borland error
}

X<int> x;
X<char> xc;

cfront allows X to be used as a type name in the inline body of g but not
in the out-of-line body of f. Borland/C++ uses one set of rules for class
templates and a different set of rules for specializations. With CC, you
may use X in all of the cases shown.

• You may use forward declarations of class specializations.

• You may use nested classes as type arguments of class templates.

• You may use default arguments for all types of function templates,
including arguments based on template parameter types. For example:

template <class T> void f(T t, int i = 1) {}
template <class T> void f(T t, T i = 1) {}

99

Glossary

Terms shown in italics indicate glossary items, as well as buttons, file names,
and conventions.

access

The degree of privilege to a member of a class: public, private, or protected.

base class

Parent of a class.

class extension

Adding base classes to a class.

data

In C++, data member of a class. A variable that contains state information for
a class. A field of a class that is not a method.

database

Compiler-generated static analysis set of data built from a fileset in the static
analyzer.

delta-compatible changes

Modifications to a class that may be made without requiring recompilation
of any client code.

dynamic classes

Classes whose layout and location are determined at link time.

instantiate

In C++, to declare an object of type classname. The result is an instance or an
object.

100

Glossary

internal dynamic class

A class that is dynamic because it inherits or contains a dynamic class.

mangle

Encoding a function name to support overloading.

member function

C++ function that is a member of a class or structure data type. Also known
as a method.

members

Either or both data and methods belonging to a class (class members).

member extension

Adding member functions and variables to a class.

member promotion

Promoting a member to a non-virtual base class.

member reordering

Reordering members within a class.

method

C++ function that is a member of a class or structure data type. Also known
as a member function.

override changing

Adding members that override those provided by base classes (whether or
not the classes are virtual).

private

In C++, access to the class member is restricted to the class in which it is
defined, friend classes, or friend functions.

protected

In C++, access to the class member is restricted to the class (and all derived
classes) in which it is defined, friend classes, and friend functions.

101

Glossary

public

In C++, access is open to any method or function.

Smart Build

An option to the compiler where only those files that must be recompiled are
recompiled.

specialization

In template instantiation, defining a specific version of a function or static
data member.

templates

A description of a class or function that is a model for a family of related
classes or functions.

103

Index

Symbols

_DELTA
declaration, 23

A

accessible base, converting a pointer to a class to, 58
adding base classes, 61
adding member functions parameters, 66
adding members to a class, 60
adding overloaded functions to a class, 67

B

base classes, adding, 61

C

C++ compilers
5.2 and later versions, 2
6.0 versions, 2
64 vs. 32 bit, 5
using, 4

C++ environment, 1
C++ libraries

in C programs, 21
c++patch, 14
CC -64

command line, 6
template instantiation, 91

CC command, options, 15
C compiler, 14
Cfront

compatibility examples, 53
compatibility with Delta/C++, 8
incompatibilities, 38
porting to Delta/C++, 37
unsupported incompatibilities, 8

Cfront, improvements over, 4
cfront template transition, 92
C functions, 20
changes, delta-compatible, 34, 59
changes, incompatible, 65
changing enumeration constant values, 65
changing member declarations, 65
changing member function default parameters, 66
char and long, disambiguating, 57
classes, local, 34
classes, nested, 34
class extension, 34
class libraries

class extension, 34
delta-compatible changes, 34
incompatible changes, 35
member extension, 34
member promotion, 35
member reordering, 35
modification, 34

104

Index

override changing, 35
class members, adding, 60
C linkage, 21
C linkage, problems with, 73
command lines

CC -64, 6
OCC, 7
samples, 7

comment lines, terminating, 54
compiler, 14
compilers

64 vs. 32 bit, 5
using, 4

compiling, 11, 12
complex arithmetic library, 10
constant, deleting a pointer to, 55
contents of guide, xiii
conventions, font, for manual, xv

D

DCC
command line, 6
enhancements over standard C++ compilers, 23
examples, 53
limitations, 39
program development, 24
Smart Build with, 44
support for new C++ shared libraries, 25
warnings, added, 39

debugging, 10
Delta/C++

Cfront compatibility with, 8
Cfront unsupported incompatibilities, 8
comparing to other environments, 3
native compiling, 3
porting from Cfront, 37
running the tutorial, 37

template implementation, 77
Delta/C++ examples, 53
delta-compatible changes, 34
delta-compatible changes examples, 59
documentation, recommended reading, xiv
dynamic classes, 6

definition of, 26
disabling, 31
error messages, 32
setting, 28
using, 26

E

enumeration constants, changing values, 65
examples

Cfront compatibility, 53
delta-compatible changes, 59
incompatible changes, 65

explicitly declaring member functions, 54
extern C, 20

F

fast malloc, 74
font conventions, for manual, xv
functions, overriding, 63, 68

G

global constructors, 14
guide contents, xiii

105

Index

H

header files, 19
header files, pre-compiled, 46

I

implicit inclusion, 81
include files, 19
inclusion, implicit, 81
incompatible changes, 35
incompatible changes examples, 65
instantiation

automatic, details of, 80
automatic method of, 79
requirements, 79

instantiation, command-line options, 83
instantiation, simplifying, 4
instantiation, template, 82
iostream library, 10
iostreams, 75

L

ld, 14
libraries, 10, 15

in C programs, 21
libraries, problems with order of specification, 74
limitations, DCC, 39
linkage, 21

problems with, 74
linkage, problems with C, 73
link editor, 14
linking, 11, 15

resolving object references, 24
to other languages, 19

link libraries, 15
loader, 14
local classes, 34
long and char, disambiguating, 57

M

makefiles, changing, 38
malloc, 75
mangling, 20
member declarations, changing, 65
member extension, 34
member function parameters

adding, 66
changing defaults, 66
removing, 66

member functions
explicitly declaring, 54

member promotion, 35
member reordering, 35
members, promoting, 62
members, reordering, 61
multi-language programs, 15

N

native compiler, 3
NCC, 23

mapping template options from cfront, 92
Smart Build with, 45

nested classes, 34

O

object files, 11

106

Index

C, 19
linking, 15
tools, 17

object references, resolving, 24
OCC

command line, 7
options, translator, 15
overloaded functions, adding to a class, 67
override changing, 35
overriding functions, 63, 68

derived class, with a, 68
global objects, 69

P

pointer, assigning 0 to, 59
pointer, passing to volatile data, 56
pointer to a class, converting to accessible base, 58
pointer to a constant, deleting, 55
pragmas

for template instantiation, 87
pre-compiled header files, 46

known problems, 49
pre-compiled header files, inefficiencies in, 47
pre-compiled header files, not building, 48
promoting members, 62
ptrepository, object files in, 94

R

rejecting redundant type specifiers, 57
related information, xiv
removing member function parameters, 66
reordering members, 61
repositories, multiple template, 94

S

shared libraries, building, 89
shared libraries, support for new, 25
Smart Build, 43

DCC with, 44
invoking, 44
known problems, 50
NCC with, 45
pre-compiled header files, 46
understanding, 43

source file, suffix, 14
source files, correcting, 38
specialization, 89
standard header files, 19
stdio, 75
symbols unexpected undefined, 73

T

template instantiation
archives, 89
shared libraries, 89
simplifying, 4

templates, 77
automatic instantiation, 78
CC -64 instations, 91
command-line instantiation, 83
instantiation, 82, 87
instantiation examples, 84
language support, 95
mapping cfront to NCC options, 92
multiple repositories, 94
object files in cfronts ptrepository, 94
restrictions, 89
specialization, 89
transitioning from cfront, 92

terminating comment lines, 54

107

Index

tools, object files, 17
translator options, 15
troubleshooting, 73
type specifiers, rejecting redundant, 57

U

unexpected undefined symbols, 73

V

volatile data, passing a pointer to, 56

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-0704-070.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 415-965-0964

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

