
C++ Programmer’s Guide

Document Number 007-0704-110

C++ Programmer’s Guide
Document Number 007-0704-110

CONTRIBUTORS

Written by Douglas B. O’Morain and Renate Kempf
Illustrated by Douglas B. O’Morain
Production by Ruth Christian
Engineering contributions by Trevor Bechtel, Ashok Chandramouli, T.K. Lakshman,

Michey Mehta, C. Murthy, and John Wilkinson
St Peter’s Basilica image courtesy of ENEL SpA and InfoByte SpA. Disk Thrower

image courtesy of Xavier Berenguer, Animatica.

© Copyright 1995, 1996 Silicon Graphics, Inc.— All Rights Reserved
The contents of this document may not be copied or duplicated in any form, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

Silicon Graphics and IRIS are registered trademarks and IRIX, IRIS IM, IRIS ViewKit,
Graphics Library™, Indigo Magic, Indigo Magic Desktop, CASEVision,
CASEVision/WorkShop, and CASEVision/WorkShop Pro C++ MIPSpro™ are
trademarks of Silicon Graphics, Inc. Open Software Foundation, Motif, OSF,
OSF/Motif are trademarks of the Open Software Foundation, Inc. UNIX is a
registered trademark in the United States and other countries, licensed exclusively
through X/Open Company, Ltd. Borland C++ is a registered trademark of Borland
International, Inc.

iii

Contents

List of Examples vii

List of Figures ix

List of Tables xi

About This Guide xiii
What This Guide Contains xiii
What You Should Know Before Reading This Guide xiii
Related Information xiv
The Standard Template Library xiv
Conventions Used in This Guide xv

1. Understanding the Silicon Graphics C++ Environment 1
Silicon Graphics C++ Environment 1
New Features and ABI Changes in the 64-bit Compiler 2

Operators new[] and delete[] 3
Built-in bool Type 3
Built-in wchar_t Type 4
Assignment to ‘this’ 5
Exception Handling 5
Runtime Type Identification 7
Other ABI Changes 8

Using the Compilers 9
64- Versus 32-Bit Compilation 10
CC Command Line 11
Sample Command Lines 11

cfront Compatibility 12
C++ Libraries 12
Debugging 12

iv

Contents

2. Compiling, Linking, and Running C++ Programs 13
Compiling and Linking 13

Translators and Drivers 13
Compilation 14
Multi-Language Programs 17

Translator Options 17
Object File Tools 19

3. C++ Dialect Support 21
About the Front End 22
New Language Features 22
Non-implemented Language Features 24
Anachronisms Accepted 25
Extensions Accepted in Default Mode 26
Extensions Accepted in Cfront Compatibility Mode 27
Cfront Compatibility Restrictions 32

4. Common Pitfalls 33
Problems Involving C Linkage 33
Problems With Order of Specification of Libraries 34

5. Using Templates 37
Template Instantiation 37

Automatic Instantiation 38
Meeting Instantiation Requirements 38
Automatic Instantiation Method 39
Details of Automatic Instantiation 39

Implicit Inclusion 41
Explicit Instantiation 41

Command Line Options for Template Instantiation 42
Command Line Instantiation Examples 44
Pragmas for Template Instantiation 46

Specialization 48
Building Shared Libraries and Archives 48
Limitations 48

Contents

v

How to Transition From cfront 50
Mapping Template Options From cfront to CC 50
What to Do If You Use Object Files From cfront’s Repository 52
What to Do If You Use Multiple Repositories 52

Template Language Support 53

A. C and C++ Pragma Directives 57

Glossary 61

Index 63

vii

List of Examples

Example 1-1 Exception Handling 6
Example 1-2 Runtime Type Identification (RTTI) 8

ix

List of Figures

Figure 1-1 Silicon Graphics C++ Environment 2
Figure 2-1 The Compilation Process 15

xi

List of Tables

Table 1-1 32- and 64-bit Silicon Graphics Systems 9

xiii

About This Guide

This guide describes how to use the Silicon Graphics® C++ compiler environment. It
discusses the two native C++ compilers for producing 32- and n32/64-bit objects,
respectively.

What This Guide Contains

This guide contains the following chapters:

• Chapter 1, “Understanding the Silicon Graphics C++ Environment,” describes the
Silicon Graphics C++ environment and the issue of cfront compatibility.

• Chapter 2, “Compiling, Linking, and Running C++ Programs,” describes how to
compile, link, and run C++ programs in the Silicon Graphics C++ environment.

• Chapter 3, “C++ Dialect Support,” describes the C++ language supported by the
Silicon Graphics C++ compilers.

• Chapter 4, “Common Pitfalls,” discusses some common problems with C++
libraries and how to diagnose and solve them.

• Chapter 5, “Using Templates,” discusses how C++ templates are used in the Silicon
Graphics C++ environment.

• Appendix A, “C and C++ Pragma Directives,” discusses the C and C++ pragmas
available with the compilers.

The glossary defines key terms for the Silicon Graphics C++ environment.

What You Should Know Before Reading This Guide

This guide assumes that you are familiar with C, C++, object-oriented programming,
shared libraries, and dynamic loading.

xiv

About This Guide

Related Information

The following manuals provide reference information about the Silicon Graphics
implementation of the C++ language. Note that these manuals describe the cfront
compiler, and parts of the description of the C++ language are now obsolete.

• C++ Language System Overview contains an overview of newer language features of
C++. Most of the extensions take the form of removing restrictions on what can be
expressed in C++.

• C++ Language System Product Reference Manual contains a general description of the
C++ language.

• C++ Language System Library discusses the stream support in the C++ library and
describes a data-type complex that provides the basic facilities for using complex
arithmetic in C++.

The following manual provides related information that you may need when using the
Silicon Graphics C++ environment.

• MIPSpro Compiling and Performance Tuning discusses how to compile, and tune the
performance of programs written in the Silicon Graphics development environment
(C, Fortran, and C++).

• dbx User’s Guide discusses how to debug your code in the Silicon Graphics
development environment.

• The C Language Reference Manual contains information about C/C++
multiprocessing compiler directives in Chapter 11.

The Standard Template Library

The Standard Template Library (STL), is an extensible generic library of C++ algorithms
and data structures. It is part of the emerging ANSI/ISO C++ standard. The library is
shipped together with the C++ compiler. Documentation in html format is available via
the SGH home page (www.sgi.com).

About This Guide

xv

Conventions Used in This Guide

These are the typographical and graphic conventions used in this guide:

• Bold—Functions, option flags, and classes

• Italics—Filenames, button names, field names, variables, emphasis, glossary terms,
and IRIX commands

• Regular—Menu and window names, data types, keywords, and text

• “Quoted”—Menu choices

• Fixed-width —Code examples and command syntax

• Bold fixed-width —User input. Nonprinting <keys> are bracketed

1

Chapter 1

1. Understanding the Silicon Graphics C++ Environment

This chapter describes the Silicon Graphics C++ compiler environment and contains the
following major sections:

• “Silicon Graphics C++ Environment” on page 1 discusses the different Silicon
Graphics 7.0 C++ compilers for IRIX 6.x systems.

• “New Features and ABI Changes in the 64-bit Compiler” on page 2 describes the
new features and ABI changes that are available in the 6.2 and 7.0 versions of the
Silicon Graphics C++ compilers.

• “Using the Compilers” on page 9 discusses the differences between the 32- and
64-bit versions of the Silicon Graphics compilers, shows the command lines for the
compilers, and gives some examples of typical command lines.

• “cfront Compatibility” on page 12 discusses the restrictions on C++ code that are
enforced by the Silicon Graphics C++ environment, but were not enforced by cfront.

• “C++ Libraries” on page 12 discusses the C++ libraries in the Silicon Graphics C++
environment.

• “Debugging” on page 12 discusses the Silicon Graphics C++ debugging
environment.

Silicon Graphics C++ Environment

The Silicon Graphics 7.0 C++ environment is available in two varieties, targeted for IRIX
6.x systems. See Figure 1-1 for details.

2

Chapter 1: Understanding the Silicon Graphics C++ Environment

Figure 1-1 Silicon Graphics C++ Environment

As shown in Figure 1-1, there are 32- and a 64-bit versions of the C++ compiler for the
IRIX 6.x operating system. For ease of migration, the old Silicon Graphics C++ compiler
(OCC), based on cfront, is still available, although unsupported as of this release. The
supported C++ compilers for the 6.x system are listed below:

CC 32-bit native ucode C++ compiler (the same as CC -32)

CC -n32 32-bit native MIPSpro compiler (includes improved optimization)

CC -64 64-bit native MIPSpro compiler

OCC 32-bit C++ compiler, based on C++ to C translation using cfront.

On 64-bit hardware, CC generates 64-bit code by default (without using the -64 extension
explicitly), while on 32-bit hardware, it generates 32-bit code by default. Note that you
cannot mix object files compiled by different compilers.

New Features and ABI Changes in the 64-bit Compiler

Both the 64-bit and -n32 compilers have some new features. Some of these features were
first introduced in MipsPro 6.2, and the rest of these features were introduced in MipsPro
7.0. Exception Handling is available in the 32-bit compiler (CC -32), but the rest of these
new features are not available in the 32-bit compiler; you’ll have to protect the uses of
these new features with an #ifdef if you want your code to be portable across all Silicon
Graphics C++ compilers.

There is a new built in macro, __EDG_ABI_COMPATIBILITY_VERSION, which is
undefined in the default 32-bit compiler, but set to the integer value 229 in the -64 and
-n32 compilers. You can either use this macro to protect your use of new language
features described in this section, or you can create your own #ifdef.

MIPSpro (7.0)
32-bit MIPSpro version - CC -n32

32-bit cfront version - OCC

64-bit MIPSpro version - CC -64

32-bit ucode version - CC [-32]

New Features and ABI Changes in the 64-bit Compiler

3

Operators new[] and delete[]

The 64-bit compiler now implements the array variants of operator new and delete from
the most recent ANSI C++ drafts. All calls to allocate and deallocate arrays of objects
using new Classname[n] and delete[] Classname will go through operators new[]
and delete[] respectively, instead of operator new and operator delete.

This implies the following:

• If you override the global ::operator new() , you probably don’t have to do
anything; the default library ::operator new[]() simply turns around and calls
::operator new() to allocate memory.

(It is recommended that you also redefine ::operator new[]() if you redefine
::operator new() . The same also applies to operator delete.)

• If you define a placement operator new, such as,

operator new(size_t, other parameters);

You must define an additional operator new, such as,

operator new[](size_t, other parameters)

to be bound to calls of the form:

new(other parameters) Classname[n];

If you do not do this, the compiler issues an error about an appropriate operator
new not being declared.

• The same applies for class-specific operator new() and operator delete() : you
should also define a corresponding class-specific operator new[]() or operator

delete[]() in each case.

Note: You will have to protect these declarations under a macro like the one described
in the introduction to this section, or you will get compiler errors if you try to compile
with the default 32-bit compiler.

Built-in bool Type

There is now a built-in bool type in the -64 and -n32 compilers (but not in the -32
compiler). In addition, the keywords true and false are now keywords when bool is
supported as a built-in type, with the obvious values (bool equivalents of 1 and 0
respectively).

4

Chapter 1: Understanding the Silicon Graphics C++ Environment

To take advantage of this type in a fashion that is portable between -32 and -64/-n32, you
can declare a bool type for -32 as follows:

#ifndef _BOOL
/* bool not predefined */
typedef unsigned char bool;
static const bool false = 0;
static const bool true = 1;
#endif /* _BOOL */

The macro _BOOL is pre-#defined to be 1 when the bool keyword is supported.

Note: The -LANG:bool=off option in the -64/-n32 compiler can be used to disable built-in
bool, true and false (in case you have already used any of these identifiers in your
program), making it behave like the -32 compiler in this regard.

Built-in wchar_t Type

The type wchar_t is a keyword and built-in type in the -n32/-64 compilers. It is
analogous to the wchar_t type defined in stddef.h, and in fact, this file can be safely
included into an -n32/-64 compile, and will not interfere with the built-in wchar_t. When
the compiler supports wchar_t, it also defines a macro called _WCHAR_T; this allows
you to write code that is portable across both the -32 and the -64/-n32 compilers.

For instance, you can now read and write wchar_ts directly (and they won’t be read and
written as longs, but will actually be read and written as multi-byte characters in the
locale of the execution of the program).

Note: Since the built-in wchar_t is considered a distinct type (in other words, not a
synonym for int or long), there is a potential for problems. For example, consider if you
attempt to pass a built-in wchar_t to a function that is overloaded on other integral types,
but not specifically on wchar_t as follows:

extern void foo(int);
extern void foo(long);

wchar_t w;

foo(w);// OK in -32, ERROR in -n32/-64
The fix for this is to declare a variant for wchar_t, but only when
__EDG_ABI_COMPATIBILITY_VERSION >= 229:
extern void foo(int);

New Features and ABI Changes in the 64-bit Compiler

5

extern void foo(long);
#if __EDG_ABI_COMPATIBILITY_VERSION >= 229
extern void foo(wchar_t);
#endif

If you do not #ifdef it this way, then the -32 compiler will complain that foo(long) has
already been declared (since in -32, wchar_t is a synonym for long).

The option -LANG:wchar_t=off can be used to disable recognition of the wchar_t
keyword.

Assignment to ‘this’

You can no longer assign to this in a constructor to implement cfront v1.2-style
class-specific allocation. The allocator is always called directly by the caller before
entering the constructors.

Thus, constructors generated by the -n32/-64 compiler will never call operator new()
implicitly if you pass in a NULL pointer as the first argument.

The calls to operator delete(), however, are still embedded in the destructors themselves,
because this is necessary in order to support the two-argument form of operator delete().

Exception Handling

Exception handling is supported in the Silicon Graphics 7.0 compilers by default in the
n32/64-bit mode; it can be turned of by using the -LANG:exceptions=off option. It is also
supported in the -32 compiler by using the -exceptions flag. The exception handling
constructs of C++ permit the user to write code that detects an abnormal execution state
of the program and take appropriate action. For instance, if a garbage collector runs out
of memory to allocate, the routine may signal an exception which can be handled by
displaying an appropriate message and possibly increasing the allocatable heap size.

The Silicon Graphics C++ compilers provides mechanisms for catching (handling)
exceptions in a different scope than the scope where they were raised. The
implementation of exceptions ensures that for programs that do not throw exceptions
there is no appreciable performance penalty.

6

Chapter 1: Understanding the Silicon Graphics C++ Environment

The following example illustrates the basic syntactic constructs used in exception
handling: try, throw, and catch.

Example 1-1 Exception Handling

void allocator() {
........
if OutOfSpace()
 throw MemOverflowError();
........
}

main() {
.........
.........
try { // wrapper for code that may throw exceptions
mem * = allocator();
.........
}

catch (MemOverflowError) { // Exception Handler
 cout << “Exception during allocate”;
.......

}

The allocator function raises an exception if it runs out of space. In the main program, the
call to allocator is enclosed within a try block, a program region where exceptions may
be thrown. If indeed an exception is raised in the call to allocator, then control shifts to
the catch clause which catches the Memory Overflow error and does suitable error
handling.

New Features and ABI Changes in the 64-bit Compiler

7

The syntax of a try/catch block combination is as follows:

try {

}
catch (int) { // catch exceptions of one kind (int) thrown in the try
block above
....
}

catch(float) {// catch exceptions of another kind (float) thrown in
the try block above
...
}
catch(...) {// catch ALL exceptions
....
}

A try block can be followed by zero or more catch blocks. If during the execution of a try
block, no exceptions are raised then the control shifts to immediately after the last catch
block. If on the other hand an object of a certain type is thrown (in other words, an
exception is raised) during the execution of a try block, then the catch whose type
specification matches the type of the thrown object is chosen and control transfers to that
handler. The catch block catch(...) indicates that all exceptions are caught in this
block.

Runtime Type Identification

This feature is only available in the 7.0 -n32/-64 compilers. C++ provides static type
checking, which helps detect compile-time type errors. However, there are situations in
which the type of an object may only be known at runtime and it becomes necessary to
provide some form of type safety. Specifically, given an object of a base class, you may
wish to determine whether in fact it is an object of a specific derived class of that base
class. Consider the following example:

8

Chapter 1: Understanding the Silicon Graphics C++ Environment

Example 1-2 Runtime Type Identification (RTTI)

class base {
public:
 virtual ~base() {};
}
Class derived : base {
public:
 void ctor() {};
}

You may wish to write a function that takes as argument a pointer to base, and calls ctor
only if that pointer is in fact a pointer to derived. To do this you need a mechanism for
determining whether a pointer to a given base class is in fact a pointer to a derived class.
You can do this as follows using the dynamic-cast facility of C++:

f(base *pb) {
 if (derived *pd = dynamic_cast <derived *> (pb))
 pd -> ctor();
.....
}

The dynamic_cast <..> operation verifies that the pointer pb is actually pointing to an
object of derived class rather than of base class, otherwise dynamic_cast returns 0.

In addition to dynamic_cast, C++ also provides an operator typeid() which determines
the exact type of an object. This operator returns a reference to a structure typeinfo which
represents the type name of its argument.

Other ABI Changes

• The object layout has been modified somewhat between -32 and -n32, specifically
for classes that have virtual base classes inherited along more than one path. If you
have a dependency on the exact layout of such objects, this may cause you some
difficulties.

• The name mangling is different for -n32/-64 compilers; it is almost exactly the same
as for -32, except that the function designator F (as in foo__FUi) is G in the -n32/-64
mangled names (for example, foo__GUi).

If you have calls to mangled C++ names in your assembly, C or Fortran code, or you
do dynamic name lookups using dlsym on mangled C++ names, you will have to
take this into account.

Using the Compilers

9

• Virtual function tables (internal to the implementation) have been expanded in
-n32/-64, so that you can now actually have subobjects that are larger than 32KB,
and more than 32K virtual functions.

The limits are now 4GB for subobject sizes (both in -n32 and -64), and 4 billion
virtual functions (though we doubt you’d actually get anywhere near the latter
limit). Even the subobject size is an issue only if a class larger than 4GB is a
non-rightmost base class in a multiple-inheritance situation; for single-inheritance,
the base class sizes should not be limiting.

Using the Compilers

This section discusses how to use the Silicon Graphics compilers to compile your C++
programs. It describes the differences between the 64- and 32-bit versions of the compiler,
describes the CC and OCC command lines (and some of the more commonly used
options), and contains some examples.

The default compiler depends on your hardware: on 64-bit systems, CC defaults to -64
mode; on 32-bit systems, CC defaults to -32 mode. If you use CC with options supported
by OCC but not supported by standard CC, or you use CC with the -use_cfront option, you
invoke OCC. (For examples of 32- and 64-bit Silicon Graphics systems, see Table 1-1.)

Note: The -use_cfront option is ignored in -64 mode.

Table 1-1 32- and 64-bit Silicon Graphics Systems

32-bit Systems 64-bit Systems

Indy Challenge

Indigo Power Challenge

Indigo 2 Onyx

Crimson Power Onyx

Power Indigo 2

10

Chapter 1: Understanding the Silicon Graphics C++ Environment

64- Versus 32-Bit Compilation

CC -64 and CC -n32 are both native compilers that are based on the same front end, fecc.
fecc has 64-bit pointers, addresses, and long ints for CC -64, and 32-bit pointers,
addresses, and long ints for CC -n32. CC -32 has a different front end, edgcpfe, with 32-bit
pointers, addresses, and long ints.

The major difference between fecc and edgcpfe is code optimization—the code compiled
by fecc is much more highly optimized than that generated by edgcpfe. Note that fecc may
take longer to compile code than edgcpfe due to the increased optimization performed.

The default compilation mode for CC -64 and CC -n32 is -mips4. The default mode for CC
-32 is -mips2. To run -64 and -n32 executables on an R4x00 Silicon Graphics systems
(every system listed in Table 1-1 except the Power systems), you need to explicitly specify
-mips3.

Note: 64-bit objects are incompatible with 32-bit objects, and they cannot be linked
together. 64-bit objects can only be created on 6.x-based systems. You can do this as
follows:

• Specify the -64 option on the IRIX 6.x command line to compile source files for
64-bit objects. This is the default for the MIPSpro compilers installed on 64-bit IRIX
6.x systems.

• Specify the -32 option on the IRIX 6.x command line to compile source files for
32-bit objects. This is the default for the MIPSpro compilers installed on an 32-bit
IRIX 6.x systems.

The compiler back-end (optimizer and code generator) is different in -32 and -64 modes.

The warning options used by the -woff option are different between CC -64 and CC -32.

For information on the precompiled header mechanism, see MIPSpro Compiling and
Performance Tuning.

Refer to MIPSpro Compiling, Debugging, and Performance Tuning for a more complete
discussion on how to set up the IRIX environment for -32 versus -64 compilers. Refer to
the MIPSpro Porting and Transition Guide for further information on -64 compilers.

Using the Compilers

11

CC Command Line

The command line for CC is shown below.

CC [option] . . . file . . .

CC compiles with many of the same options as cc(1). CC -64 is the default on 6.x (64-bit)
systems, and CC -32 is the default on 5.x (32-bit) systems.

Note: cfront compatibility mode is disabled by default when you compile in 64-bit mode.

See the CC(1) reference page for more information.

Sample Command Lines

Some typical C++ compiler command lines are given below.

• To suppress the loading phase of your compilation and compile only one program,
the command line is the following:

CC -c program

• To compile with full warning about questionable constructs, the command line is
the following:

CC -fullwarn program1 program2 . . .

• To compile with warning messages off, the command line is the following:

CC -w program1 program2 . . .

• To compile in 64-bit mode with cfront compatibility enabled, the command line is
the following:

CC -64 -cfront program1 program2 . . .

• To compile in 32-bit mode with cfront compatibility disabled, the command line is
the following:

CC -32 +p program1 program2 . . .

12

Chapter 1: Understanding the Silicon Graphics C++ Environment

cfront Compatibility

The Silicon Graphics compilers (with the exception of OCC) force you to adhere to C++
code standards more strictly than cfront does. Code that you compiled successfully with
cfront may not compile under the Silicon Graphics C++ environment, even in cfront
compatibility mode. You must compile with OCC to get exact cfront compatibility.
Chapter 3, “C++ Dialect Support” discusses details of the -cfront option, which enables
partial cfront compatibility.

C++ Libraries

By default, all C++ programs link with the standard library libC.so. This library contains
all the iostream library functions, as well as the C++ storage allocation functions ::new
and ::delete. All -n32/-64 programs will also link with the libCsup.so library, which
provides exception handling and Run-time Type Information support; this library is also used for
-32 links if -exceptions has been specified.

Silicon Graphics also provides the complex arithmetic library libcomplex.a. If you want to
use this package you must explicitly link with this library. For example,

CC complexapp.c++ –lcomplex

See the C++ Language System Library for more information on the complex and iostream
libraries.

Debugging

You can debug your C++ programs with the dbx or WorkShop debugger. For complete
information on dbx, see the dbx User’s Guide. For complete information on the WorkShop
debugger, see the Debugger User’s Guide.

13

Chapter 2

2. Compiling, Linking, and Running C++ Programs

This chapter contains the following major sections:

• “Compiling and Linking” describes the compilation environment and how to
compile and link C++ programs. Some examples show how to create separate
linkable objects in C++, C, Fortran, or other languages, and how to link them into an
executable program.

• “Translator Options” on page 17 describes the command line options that can be
provided to the C++ translator.

• “Object File Tools” on page 19 briefly summarizes the capabilities of the tools that
provide symbol and other information on object files.

Compiling and Linking

This section discusses Silicon Graphics C++ compiling and linking.

Translators and Drivers

Programs called drivers invoke the major components of the compiler system. Those
components, their functions, and their place in the compilation process are discussed in
the following sections. The CC(1) command invokes the driver that controls compilation
of your C++ source files. The syntax is as follows:

CC [options] filename.C [options] [filename2.C ...]

14

Chapter 2: Compiling, Linking, and Running C++ Programs

where:

 CC invokes the various processing phases that translate, compile, optimize,
assemble, and compile-time link the program.

 options represents the driver options, which give instructions to the processing
phases. Options can appear anywhere in the command line. The options
interpreted by CC are discussed in “Translator Options” on page 17 in
this chapter.

 filename.C is the name of the file that contains the C++ source statements. The
filename must end with one of the following acceptable suffixes: .C, .c++,
.c, .cc, .cpp, .CPP, .cxx or .CXX.

Compilation

The compilation process shown in Figure 2-1 is that of the C++ source file foo.C, as it
would be compiled by this command line:

CC –o foo foo.C

Compiling and Linking

15

Figure 2-1 The Compilation Process

foo.C

fecc
C++ preprocessor

be
Compiler back end, including

foo.olibC.so libc.so

ld
linker

foo

and front end

-64 and -n32 Mode

optimizer and code generator

-32 Mode

foo.C

edgcpfe
C++ preprocessor

ugen, uopt, as1

foo.olibC.so libc.so

ld
linker

foo

and front end

ucode back end phases

foo.o

edg_prelink
Prelinker for template

instantiations

C++ patch

foo

link global constructors and destructors

foo.o

edg_prelink
Prelinker for template

instantiations

Inliner

16

Chapter 2: Compiling, Linking, and Running C++ Programs

The following steps further describe the stages of compilation:

1. You invoke CC on the source file, which ends with the suffix .C. The other
acceptable suffixes are .C, .c++, .c, .cc, .cpp, .CPP, .cxx or .CXX.

2. The source file then passes through the C++ preprocessor, which is built into the
C++ front end (fecc, edgpcfe).

3. The complete source is then processed by the C++ front end (fecc or edgcpfe), which
produces an intermediate representative from a syntactic and semantic analysis of
the source.

This stage may also produce a prelink (.ii) file, which contains information about
template instantiations.

4. The back end (be in -n32/-64 mode) generates optimized object code (foo.o).

5. If you want to stop the compilation at this phase, and produce object code suitable
for later linking, use the following command:

CC –c foo.c

The object file foo.o is the result.

6. edg_prelink processes the .ii files associated with the objects that will be linked
together. It then recompiles sources to force template instantiation.

7. The object files are sent to the linker ld(1), which links the standard C++ library
libC.so and the standard C library libc.so to the object file foo.o and to any other object
files that need to be linked to produce the executable.

8. In -32 mode only, the executable object is sent to c++patch, which links it with global
constructors and destructors. If global objects with constructors or destructors are
present, the constructors need to be called at run time before function main() is
called, and the destructors need to be called when the program exits. c++patch
modifies the executable (a.out) to insure that these constructors and destructors get
called.

Translator Options

17

Multi-Language Programs

C++ programs can be compiled and linked with programs written in other languages,
such as C, Fortran, and Pascal. When your application has two or more source programs
written in different languages, you should compile each program module separately
with the appropriate driver. Then you can link them in a separate step. You can create
objects suitable for linking by specifying the –c option. For example:

CC –c main.c++
f77 –c module1.f
cc –c module2.c

The various compilers would produce three object files: main.o, module1.o, and module2.o.
Since the main module is written in C++, you should use the CC command to link. Except
for C, you must explicitly specify the link libraries for the other languages with the –l
options. For example, to link the C++ main module with the Fortran submodule, you
would use the following command:

CC –o almostall main.o module1.o –lF77 –lI77 –lisam –lm

It is best to use CC to link if any object file is generated by C++.

For more information on C++ libraries, see “C++ Libraries” in Chapter 1.

Translator Options

This section contains a summary of the most important CC translator options. See the
reference page for CC(1) for a complete description of all the options. See ld(1) for a
description of the linker options, and cc(1) for a description of the options interpreted by
the standard C compiler. See also the information in MIPSpro Compiling, Debugging and
Performance Tuning.

 –E Run only cpp(1) on the C++ source files and send the result to standard
output. This option is useful, for example, if you want to see exactly
which files were included in your compilation.

 –c Produce object files only, suppressing the link phase.

18

Chapter 2: Compiling, Linking, and Running C++ Programs

 –o output Name the final output file output. For example,

CC –o foo foo.C

produces an executable called foo instead of the default a.out. The
command is shown below.

CC –c –o bar.o foo.C

produces an object file called bar.o instead of the default foo.o.

 –n (-32 mode), -show0 (-n32/-64 mode)
Print commands generated by CC but do not execute them.

-show (-n32/-64 mode)
Print commands as they are executed. Short for verbose output.

 +d (-32 mode), -noinline (-n32/-64 mode)
Do not attempt inline substitution for calls to functions declared as
inline.

-fullwarn (-n32/-64 mode)
Warn about all questionable constructs. Without the +w option, the
translator issues warnings only about constructs that are almost
certainly problems.

 +p (-32 mode), Disallow all anachronistic constructs. Ordinarily, the translator warns
about anachronistic constructs. Under +p (for pure), the translator will
not compile code containing anachronistic constructs, such as
“assignment to this.” See the USL C++ Language System Product Reference
for a list of anachronisms.

In -32 mode, +p also disables cfront compatibility mode, enforcing a
stricter, more standard language definition. In -64 mode, by default
anachronisms are disallowed and the stricter definition is the default
enforced.

-use_cfront (-32 mode)
Use OCC instead of CC. Use with caution, since the use of this option is
being deprecated.

-cfront (-n32/-64 mode)
Compile in cfront compatibility mode. This is the default in -32 mode.
The +pp option will disable cfront compatibility mode.

-anach (-n32/-64 mode)
Allows anachronisms in -n32/-64 mode.

Object File Tools

19

–nocpp Skip the preprocessing stage.

-exceptions (-32 mode)
Enable exception handling constructs in the language. Code compiled
with and without exceptions cannot generally be mixed. See the -LANG
options for details. Note that code compiled with -exceptions in -32 mode
cannot be linked with code compiled with exception-handling on in the
-n32/-64 mode.

-LANG:...(-n32/-64 mode)
exceptions[=(ON|OFF)]: Enable exception handling constructs in the
language. Code with and without exception handling cannot generally
be mixed. Specifically, the scopes crossed between throwing and
catching an exception must all have been compiled with exceptions=ON.
Should be used with caution. (Default is ON.)

bool[=(ON|OFF)]: Enable the predefined bool data type, along with the
predefined values TRUE and FALSE. Should be used with caution only
to suppress this type in old code which defines bool itself. Because this
option changes the mangling of function names with bool parameters,
all files comprising a program should be compiled with consistent
options. (Default is ON.)

wchar_t[=(ON|OFF)]: Enable the predefined wchar_t data type. Should
be used with caution only to suppress this type in old code which
defines wchar_t itself. Because this option changes the mangling of
function names with wchar_t parameters, all files comprising a
program should be compiled with consistent options. (Default is ON.)

Object File Tools

For information on the object file tools available to you, consult the MIPS Compiling and
Performance Tuning Guide. The following tools are of special interest to the C++
programmer:

 nm The nm tool can be used to print symbol table information for object files
and archive files.

20

Chapter 2: Compiling, Linking, and Running C++ Programs

 c++filt This C++-specific tool translates the internally coded (mangled) names
generated by the C++ translator into names more easily recognized by
the programmer. You can, for example, pipe the output of stdump or nm
into c++filt. c++filt is installed in the directory /usr/lib/c++. For example,

nm a.out | /usr/lib/c++/c++filt

 libmangle.a The library /usr/lib/c++/libmangle.a provides a function demangle(char *)
that you can invoke from your own program to output a readable form
of a mangled name. This is useful if you want to write your own tool for
processing the output of nm, for example. You need to include the
declaration

char * demangle(char *);

in your program, and link with the library with the -lmangle option.

size The size tool prints information about the text, rdata, data, sdata, bss,
and sbss sections of the specific object or archive file. The contents and
format of section data are described in Chapter 10 of the Assembly
Language Programming Guide.

elfdump The elfdump tool lists the contents (including the symbol table and
header information) of an ELF-format object file. See the elfdump(1)
reference page for more information.

stdump The stdump tool outputs a file of intermediate-code symbolic
information to standard out for -32 executables only (for -n32 and -64,
use dwarfdump). See the stdump(1) reference page for more information.

21

Chapter 3

3. C++ Dialect Support

This chapter describes the C++ language implemented by the 7.0 compiler.

Note: This chapter applies to the -n32/-64 compiler only; the -32 compiler accepts an
older version of the C++ language.

This chapter contains the following major sections:

• “About the Front End” on page 22 contains background information on the Silicon
Graphics C++ front end.

• “New Language Features” on page 22 contains a list of features that are not in the
Annotated C++ Reference Manual (ARM), are listed in the X3J16/WG21 Working
Paper, and are supported in the Silicon Graphics C++ compiler.

• “Non-implemented Language Features” on page 24 contains a list of features that
are not in the ARM, are listed in the X3J16/WG21 Working Paper, and are not
supported in the Silicon Graphics C++ compiler.

• “Anachronisms Accepted” on page 25 contains a list of the anachronisms that are
supported in this compiler when the -anarch option is enabled.

• “Extensions Accepted in Default Mode” on page 26 contains a list of the extensions
that are accepted by the compiler by default.

• “Extensions Accepted in Cfront Compatibility Mode” on page 27 contains a list of
extensions that are accepted by the compiler in cfront compatibility mode.

• “Cfront Compatibility Restrictions” on page 32 contains a list of the constructs that
cfront supports but the Silicon Graphics compilers reject.

22

Chapter 3: C++ Dialect Support

About the Front End

The front end accepts the C++ language as defined by The Annotated C++ Reference
Manual (ARM) by Ellis and Stroustrup, Addison-Wesley, 1990, including templates,
exceptions, and the anachronisms discussed in this chapter.

The front end also has a cfront compatibility mode (enabled by the -cfront option), which
duplicates a number of features and bugs of cfront. Complete compatibility is not
guaranteed or intended—the mode is there to allow programmers who have unwittingly
used cfront features to continue to compile their existing code. By default, the front end
does not support cfront compatibility. See “Cfront Compatibility Restrictions” for details.

The command line option -anach enables anachronisms. By default, anachronisms are
disabled. See “Anachronisms Accepted” for details.

By default, the front end accepts certain extensions to the C++ language; these extensions
will be flagged as warnings if you use the -ansiW option, and as errors if you use the
-ansiE option. See “Extensions Accepted in Default Mode” for details.

New Language Features

The following features not in the ARM but in the X3J16/WG21 Working Paper are
accepted:

• The dependent statement of an if, while, do-while, or for is considered to be a
scope, and the restriction on having such a dependent statement be a declaration is
removed.

• The expression tested in an if, while, do-while, or for, as the first operand of a ?
operator, or as an operand of the &&, ||, or !| operators may have a
pointer-to-member type or a class type that can be converted to a
pointer-to-member type in addition to the scalar cases permitted by the ARM.

• Qualified names are allowed in elaborated type specifiers.

• Use of a global-scope qualifier in member references of the form x.::A::B and
p->::A::B is allowed.

• The precedence of the third operand of the ? operator is changed.

• If control reaches the end of the main() routine, and main() has an integral return
type, it is treated as if a return 0; statement were executed.

New Language Features

23

• Pointers to arrays with unknown bounds as parameter types are diagnosed as
errors.

• A functional-notation cast of the form A() can be used even if A is a class without a
(nontrivial) constructor. The temporary created gets the same default initialization
to zero as a static object of the class type.

• A cast can be used to select one out of a set of overloaded functions when taking the
address of a function.

• Template friend declarations are permitted in class definitions and class template
definitions.

• Type template parameters are permitted to have default arguments.

• Function templates may have non-type template parameters.

• A reference to const volatile cannot be bound to an rvalue.

• Qualification conversions, such as conversion from T** to T const * const * are
allowed.

• Digraphs are recognized.

• Operator keywords (for example, and, bitand, and so on) are recognized.

• Static data member declarations can be used to declare member constants.

• wchar_t is recognized as a keyword and a distinct type.

• bool is recognized.

• Runtime type identification (RTTI), including dynamic_cast and the typeid
operator, is implemented.

• Declarations in tested conditions (in if, switch, for, and while statements) are
supported.

• Array new and delete are implemented.

• New-style casts (static_cast, reinterpret_cast, and const_cast) are implemented.

24

Chapter 3: C++ Dialect Support

Non-implemented Language Features

The following features not in the ARM but in the X3J16/WG21 Working Paper are not
accepted:

• Virtual functions in derived classes may not return a type that is the derived-class
version of the type returned by the overridden function in the base class.

• enum types are not considered to be non-integral types.

• It is not possible to overload operators using functions that take enum types and no
class types.

• Definition of nested classes outside of the enclosing class is not allowed.

• The new lookup rules for member references of the form x.A::B and p->A::B are not
yet implemented.

• Classes are not assumed to always have constructors, and the distinction between
trivial and nontrivial constructors is not implemented.

• mutable is not implemented.

• Namespaces are not implemented.

• enum types cannot contain values larger than can be contained in an int.

• Type qualifiers are not retained on rvalues (in particular, on function return values).

• reinterpret_cast does not allow casting a pointer to member of one class to a pointer
to member of another class if the classes are unrelated.

• Explicit qualification of template functions is not implemented.

• Explicit instantiation of templates in the style of N0274/93-0067 is not
implemented.

• Member templates are not implemented.

• Name binding in templates in the style of N0288/93-0081 is not implemented.

• The scope of a variable declared in a for loop is still the whole surrounding scope,
not just the loop.

• In a reference of the form f()->g() , with g a static member function, f() is not
evaluated. This is as required by the ARM, but the Working Paper, requires that f()
be evaluated.

• (p->*pm) = 0 cannot yet be written as p->*pm = 0 (the syntax still matches the ARM
and cfront).

Anachronisms Accepted

25

• typename in templates is not implemented.

• Non-converting constructors are not implemented.

• Class name injection is not implemented.

• Overloading of function templates (partial specialization) is not implemented.

• Partial specialization of class templates is not implemented.

• Placement delete is not implemented.

• Putting a try catch around the initializers and body of a constructor is not
implemented.

• The notation :: template (and ->template, and so forth) is not implemented.

Anachronisms Accepted

The following anachronisms are accepted when anachronisms are enabled (via the -anach
option):

• overload is allowed in function declarations. It is accepted and ignored.

• Definitions are not required for static data members that can be initialized using
default initialization. The anachronism does not apply to static data members of
template classes; they must always be defined.

• The number of elements in an array may be specified in an array delete operation.
The value is ignored.

• A single operator++() and operator--() function can be used to overload both prefix
and postfix operations.

• The base class name may be omitted in a base class initializer if there is only one
immediate base class.

• A reference to a non-const type may be initialized from a value of a different type. A
temporary is created, it is initialized from the (converted) initial value, and the
reference is set to the temporary.

• A reference to a non-const class type may be initialized from an rvalue of the class
type or a derived class thereof. No additional temporary is used.

• A function with old-style parameter declarations is allowed and may participate in
function overloading as though it were prototyped. Default argument promotion is

26

Chapter 3: C++ Dialect Support

not applied to parameter types of such functions when the check for compatibility is
performed, so that the following declares the overloading of two functions named f:

int f(int);
int f(x) char x; { return x; }

Note: In C this code is legal but has a different meaning: a tentative declaration of f is
followed by its definition.

• A reference to a non-const class can be bound to a class rvalue of the same type or a
derived type thereof.

struct A {
 A(int);
 A operator=(A&);
 A operator+(const A&);
};
main () {
 A b(1);
 b = A(1) + A(2); // Allowed as anachronism
}

Extensions Accepted in Default Mode

The following extensions are accepted by default (they can be flagged as errors or
warnings by using -ansiE or -ansiW):

• A friend declaration for a class may omit the class keyword, as in the following:

class A {
 friend B; // Should be “friend class B”
};

• Constants of scalar type may be defined within classes, as in the following:

class A {
 const int size = 10;
 int a[size];
};

• In the declaration of a class member, a qualified name may be used, as in the
following:

struct A {
 int A::f(); // Should be int f();
};

Extensions Accepted in Cfront Compatibility Mode

27

• operator() functions may have default argument expressions. A warning is issued.

• The preprocessing symbol c_plusplus is defined in addition to the standard
__cplusplus.

• A pointer to a constant type can be deleted.

• An assignment operator declared in a derived class with a parameter type matching
one of its base classes is treated as a default assignment operator—that is, such a
declaration blocks the implicit generation of a copy assignment operator. (This is
cfront behavior that is known to be relied upon in at least one widely-used library.)
Here’s an example:

struct A { };
struct B : public A {
 B& operator=(A&);
};

By default, as well as in cfront-compatibility mode, there will be no implicit
declaration of B::operator=(const B&), whereas in strict-ANSI mode
B::operator=(A&) is not a copy assignment operator and B::operator=(const B&) is
implicitly declared.

Extensions Accepted in Cfront Compatibility Mode

The following extensions are accepted in cfront compatibility mode (via the -cfront
option):

• Type qualifiers on the this parameter may to be dropped in contexts such as the
following example:

struct A {
 void f() const;
};
void (A::*fp)() = &A::f;

This is actually a safe operation. A pointer to a const function may be put into a
pointer to non-const, because a call using the pointer is permitted to modify the
object and the function pointed to will actually not modify the object. The opposite
assignment would not be safe.

• Conversion operators specifying conversion to void are allowed.

28

Chapter 3: C++ Dialect Support

• A non-standard friend declaration may introduce a new type. A friend declaration
that omits the elaborated type specifier is allowed in default mode, but in cfront
mode the declaration is also allowed to introduce a new type name.

struct A {
 friend B;
};

• The third operator of the ? operator is a conditional expression instead of an
assignment expression as it is in the current X3J16/WG21 Working Paper.

• A reference to a pointer type may be initialized from a pointer value without use of
a temporary even when the reference pointer type has additional type qualifiers
above those present in the pointer value. For example,

int *p;
const int *&r = p; // No temporary used

• A reference may be initialized with a null.

• Because cfront does not check the accessibility of types, access errors for types are
issued as warnings instead of errors.

• When matching arguments of an overloaded function, a const variable with value
zero is not considered to be a null pointer constant.

• No warning is issued when an operator() function has default argument
expressions.

• An alternate form of declaring pointer-to-member-function variables is supported.
Consider the following code sample:

struct A {
 void f(int);
 static void f(int);
 typedef void A::T3(int); // nonstd typedef decl
 typedef void T2(int); // std typedef
};
typedef void A::T(int); // nonstd typedef decl
T* pmf = &A::f; // nonstd ptr-to-member decl
A::T2* pf = A::sf; // std ptr to static mem decl
A::T3* pmf2 = &A::f; // nonstd ptr-to-member decl

Extensions Accepted in Cfront Compatibility Mode

29

where T is construed to name a routine type for a non-static member function of
class A that takes an int argument and returns void; the use of such types is
restricted to nonstandard pointer-to-member declarations. The declarations of T
and pmf in combination are equivalent to a single standard pointer-to-member
declaration, such as in the following example:

void (A::* pmf)(int) = &A::f;

A nonstandard pointer-to-member declaration that appears outside a class
declaration, such as the declaration of T, is normally invalid and would cause an
error to be issued. However, for declarations that appear within a class declaration,
such as A::T3, this feature changes the meaning of a valid declaration. cfront version
2.1 accepts declarations, such as T, even when A is an incomplete type; so this case
is also excepted.

• Protected member access checking is not done when the address of a protected
member is taken. For example:

class B { protected: int i; };
class D : public B { void mf(); };
void D::mf() {
 int B::* pmi1 = &B::i; // error, OK in cfront mode
 int D::* pmi2 = &D::i; // OK
}

Note: Protected member access checking for other operations (in other words,
everything except taking a pointer-to-member address) is done in the normal
manner.

• The destructor of a derived class may implicitly call the private destructor of a base
class. In default mode this is an error but in cfront mode it is reduced to a warning.
For example:

class A {
 ~A();
};
class B : public A {
 ~B();
};
B::~B(){} // Error except in cfront mode

• When disambiguation requires deciding whether something is a parameter
declaration or an argument expression, the pattern type-name-or-keyword (identifier...)
is treated as an argument. For example:

class A { A(); };
double d;

30

Chapter 3: C++ Dialect Support

A x(int(d));
A(x2);

By default int(d) is interpreted as a parameter declaration (with redundant
parentheses), and x is a function; but in cfront-compatibility mode int(d) is an
argument and x is a variable.

The declaration A(x2); is also misinterpreted by cfront. It should be interpreted as
the declaration of an object named x2, but in cfront mode is interpreted as a function
style cast of x2 to the type A.

Similarly, the declaration

int xyz(int());

declares a function named xyz, that takes a parameter of type “function taking no
arguments and returning an int.” In cfront mode this is interpreted as a declaration
of an object that is initialized with the value int() (which evaluates to zero).

• A named bit-field may have a size of zero. The declaration is treated as though no
name had been declared.

• Plain bit fields (in other words, bit fields declared with type int) are always
unsigned.

• The name given in an elaborated type specifier is permitted to be a typedef name
that is the synonym for a class name, for example:

typedef class A T;
class T *pa; // No error in cfront mode

• No warning is issued on duplicate size and sign specifiers.

short short int i; // No warning in cfront mode

• Virtual function table pointer update code is not generated in destructors for base
classes of classes without virtual functions, even if the base class virtual functions
might be overridden in a further-derived class. For example:

struct A {
 virtual void f() {}
 A() {}
 ~A() {}
};
struct B : public A {
 B() {}
 ~B() {f();} // Should call A::f according to ARM 12.7
};
struct C : public B {

Extensions Accepted in Cfront Compatibility Mode

31

 void f() {}
} c;

In cfront compatibility mode, B::~B calls C::f.

• An extra comma is allowed after the last argument in an argument list, as for
example in

f(1, 2,);

• A constant pointer-to-member-function may be cast to a pointer-to-function. A
warning is issued.

struct A {int f();};
main () {
 int (*p)();
 p = (int (*)())A::f; // Okay, with warning
}

• Arguments of class types that allow bitwise copy construction but also have
destructors are passed by value (in other words, like C structures), and the
destructor is not called on the “copy.” In normal mode, the class object is copied into
a temporary, the address of the temporary is passed as the argument, and the
destructor is called on the temporary after the call returns.

Note: Because the argument is passed differently (by value instead of by address),
code like this compiled in cfront mode is not calling-sequence compatible with the
same code compiled in normal mode. In practice, this is not much of a problem, since
classes that allow bitwise copying usually do not have destructors.

• A union member may be declared to have the type of a class for which the user has
defined an assignment operator (as long as the class has no constructor or
destructor). A warning is issued.

• When an unnamed class appears in a typedef declaration, the typedef name may
appear as the class name in an elaborated type specifier. For example:

typedef struct { int i, j; } S;
struct S x; // No error in cfront mode

• A typedef name may be used in an explicit destructor call. For example:

struct A { ~A(); };
typedef A B;
int main() {
 A *a;
 a->~B(); // Permitted in cfront mode
}

32

Chapter 3: C++ Dialect Support

Cfront Compatibility Restrictions

Even when you specify the -cfront option, the Silicon Graphics C++ compilers are not
completely backwards-compatible with cfront. The source constructs that cfront ignores
but the Silicon Graphics compilers reject are listed below:

• Assignment to this in constructors and destructors is not allowed.

• If a C++-style (//) comment line is terminated with a backslash, the Silicon
Graphics compiler will (correctly) continue the comment line into the next source
line. (cfront, which uses the standard UNIX cpp, incorrectly terminates the comment
at the end of the line.)

• You must have an explicit declaration of a constructor or destructor in the class if
there is an explicit definition of it outside the class.

• You may not delete a pointer to a const.

• You may not pass a pointer to volatile data to a function that is expecting a pointer
to non-volatile data.

• The Silicon Graphics compiler does not disambiguate between overloaded
functions with a char* and long parameter, respectively, when called with an
expression that is a 0 cast to a char type.

• You may not use redundant type specifiers.

• When in a conditional expression, the Silicon Graphics compiler does not convert a
pointer to a class to an accessible base class of that class.

• You may not assign a comma-expression ending in a literal constant expression “0”
to a pointer; the “0” will be treated as an int.

• You must not use the same identifier for more than one formal argument in a
function definition.

• The Silicon Graphics compiler will mangle member functions declared as extern “C”
differently from cfront. CC does not strip the type signature when you are building
the mangled name. If you try to do so, you will see the following warning:

Mangling of classes within an extern “C” block does not match
cfront name mangling.

You may not be able to link code containing a call to such a function with code
containing the definition of the function that was compiled with cfront.

33

Chapter 4

4. Common Pitfalls

This chapter contains the following major sections:

• “Problems Involving C Linkage” discusses some problems you may encounter
when you link your C++ programs to the C libraries.

• “Problems With Order of Specification of Libraries” on page 34 discusses some
problems you may encounter when you order the libraries on the command line.

Problems Involving C Linkage

One of the most common problems you may encounter occurs when you link your C++
programs to C code (such as C libraries). This section contains many of the most typical
problems you run into in that situation.

• Unexpected undefined symbols. You may see the following error message from the
link-editor:

Unresolved: foo(int, char*)

The presence of the prototype in this message indicates that this is a C++ function.
Frequently this means not that the function foo is undefined, but that it is defined in
a C object file or library, and the C++ declaration is missing an extern “C” linkage
specification.

• Inconsistent linkage. You may see the following error message from the C++ front
end (fecc):

“afile.c”, line 37: error (1311): linkage specification is
incomplete with previous foo (declared at line 17)

This means that two declarations for foo() were found with the same prototype, the
first outside an extern “C” specification and the second inside. For example, you
may have the following code, all in one compilation unit:

void foo(int, char*);
......
extern "C" { void foo(int, char*); }

34

Chapter 4: Common Pitfalls

Frequently these two declarations come from different header files.

• A “Too much C linkage” error. For example, you may see the following error
message from the C++ front end (edgcpfe):

“afile.C”, line 37: error (3419): more than one instance of
overloaded function “foo” has “C” linkage.

This indicates that two declarations for foo() were found within extern “C”
specifications but with different prototypes. Typically this happens when a function
is declared in two header files with the wrong prototype in one of them, or when a
function already declared in an included header file is redeclared incorrectly.

Problems With Order of Specification of Libraries

This section covers two typical problems you may encounter when you specify the order
of your libraries.

• Inability to use the Silicon Graphics fast malloc routines, malloc(3x).

A related problem occurs with a command such as the following:

CC foo.c++ -lmalloc

The command mysteriously fails to use the “fast” libmalloc.a versions of malloc()
and free(). Here again the order of libraries is

-lmalloc -lC -lc

At the time ld processes libmalloc.a, there are no undefined references to malloc()
and free() (unless explicitly referenced from foo.c++). Only when new and delete
are picked up from libC.a are malloc() and free() required, and then it is too late:
their references have already been resolved from libc.a instead of libmalloc.a. Again,
once the problem is recognized, the solution is easy. Just change the command to the
following:

CC foo.c++ -lC -lmalloc

• Mixing stdio and iostreams.

If you mix iostream output using cout with stdio output using printf, and you are
not careful about flushing the output buffers, you may see unexpected results. For
example, consider the following program:

#include <stdio.h>
#include <ostream.h>
main() {

Problems With Order of Specification of Libraries

35

 cout << "cout1\n";
 printf("printf1\n");
 cout << "cout2\n";
 printf("printf2\n");
 }

This code produces the following output:

printf1
printf2
cout1
cout2

This is because cout and printf use distinct buffers, and insertion of a newline into
cout does not flush the buffer. To flush the buffer, you can insert the manipulator
flush into the stream in the following way:

cout << "cout1\n" << flush;

You can also use the manipulator endl to insert a newline and flush as follows:

cout << "cout1" << endl;

On the other hand, consider the following program

main() {
 cout << "cout1 " << flush;
 printf("printf1 ");
 cout << "cout2 " << flush;
 }

This code produces the output

cout1 cout2 printf1

This is because the buffer for printf is not flushed until the program terminates.
Here you need to call fflush after the call to printf as follows:

fflush(stdout);

This generates the following “expected” output:

cout1 printf1 cout2

If you wish to avoid explicitly flushing the buffer, you may insert the following code
before performing any input/output:

ios::sync_with_stdio();

37

Chapter 5

5. Using Templates

This chapter discusses the Silicon Graphics C++ implementation of templates. It
compares the Silicon Graphics implementation to those of the Borland C++ and cfront
compilers. It contains the following major sections:

• “Template Instantiation” describes how to perform template instantiation in the
Silicon Graphics C++ environment.

• “How to Transition From cfront” on page 50 describes how a programmer currently
using the cfront template instantiation mechanism can transition to the template
instantiation scheme used by the new Silicon Graphics C++ compilers.

• “Template Language Support” on page 53 describes the language features for
templates supported in the Silicon Graphics C++ environment, but not in cfront.

Template Instantiation

The instantiation of a class template is always done as soon as it is needed in a
compilation. However, the instantiations of template functions, member functions of
template classes, and static data members of template classes (hereafter referred to as
template entities) are not necessarily done immediately. The reasons for this are given
below.

• You should have only one copy of each instantiated entity across all the object files
that make up a program. (This applies to entities with external linkage.)

• You may write a specialization of a template entity. (For example, you can write a
version of Stack<int>, or of just Stack<int>::push, that replaces the
template-generated version. Often, this kind of specialization is a more efficient
representation for a particular data type.) When compiling a reference to a template
entity, the compiler does not know if a specialization for that entity will be provided
in another compilation. The compiler cannot do the instantiation automatically in
any source file that references it.

38

Chapter 5: Using Templates

• You may not compile template functions that are not referenced. Such functions
might contain semantic errors that would prevent them from being compiled. A
reference to a template class should not automatically instantiate all the member
functions of that class.

Note: Certain template entities are always instantiated when used (for example, inline
functions).

If the compiler is responsible for doing all the instantiations automatically, it can do so
only on a program-wide basis. The compiler cannot make decisions about instantiation
of template entities until it has seen all the source files that make up a complete program.

By default, CC performs automatic instantiation at link time. It is also possible for you to
instantiate all necessary template entities at compile time using the -ptused option. See
“Explicit Instantiation” on page 41 for further details.

Automatic Instantiation

Automatic instantiation enables you to compile source files to object code, link them, run
the resulting program, and never worry about how the necessary instantiations are done.

CC requires that for each instantiation you have a normal, top-level, explicitly-compiled
source file that contains both the definition of the template entity and any types required
for the particular instantiation.

Meeting Instantiation Requirements

You can meet the instantiation requirements in several ways:

• You can have each header file that declares a template entity contain either the
definition of the entity or another file that contains the definition.

• When the compiler sees a template declaration in a header file and discovers a need
to instantiate that entity, you can give it permission to search for an associated
definition file having the same base name and a different suffix. The compiler
implicitly includes that file at the end of the compilation. This method allows most
programs written using the cfront convention to be compiled. See “Implicit
Inclusion” on page 41.

Template Instantiation

39

• You can make sure that the files that define template entities also have the
definitions of all the available types, and add code or pragmas in those files to
request instantiation of the entities there.

Automatic Instantiation Method

1. The first time the source files of a program are compiled, no template entities are
instantiated. However, the generated object files contain information about things
that could have been instantiated in each compilation.

2. When the object files are linked, a program called the prelinker is run. It examines
the object files, looking for references and definitions of template entities, and for
the added information about entities that could be instantiated.

3. If the prelinker finds a reference to a template entity for which there is no definition
anywhere in the set of object files, it looks for a file that indicates that it could
instantiate that template entity. When it finds such a file, it assigns the instantiation
to it. The set of instantiations assigned to a given file, say abc.C, is recorded in an
associated .ii file (for example, abc.ii). All .ii files are stored in a directory named
ii_files created within your object file directory.

4. The prelinker then executes the compiler again to recompile each file for which the
.ii file was changed. (The .ii file contains enough information to allow the prelinker
to determine which options should be used to compile the same file.)

5. When the compiler compiles a file, it reads the .ii file for that file and obeys the
instantiation requests therein. It produces a new object file containing the requested
template entities (and all the other things that were already in the object file).

6. The prelinker repeats steps 3-5 until there are no more instantiations to be adjusted.

7. The object files are linked.

Details of Automatic Instantiation

Once the program has been linked correctly, the .ii files contain a complete set of
instantiation assignments. From then on, whenever source files are recompiled, the
compiler will consult the .ii files and do the indicated instantiations as it does the normal
compilations. Except in cases where the set of required instantiations changes, the
prelink step will find that all the necessary instantiations are present in the object files
and that no instantiation assignment adjustments need be done. This is true even if the
entire program is recompiled.

40

Chapter 5: Using Templates

If you provide a specialization of a template entity somewhere in the program, the
specialization will be seen as a definition by the prelinker. Since that definition satisfies
whatever references there might be to that entity, the prelinker will see no need to request
an instantiation of the entity. If the programmer adds a specialization to a program that
has previously been compiled, the prelinker will notice that too and remove the
assignment of the instantiation from the proper .ii file.

The .ii files should not, in general, require any manual intervention. The only exception
is if the conditions below are all met.

• A definition is changed in such a way that some instantiation no longer compiles (it
generates errors).

• A specialization is simultaneously added in another file

• The first file is recompiled before the specialization file and is generating errors.

The .ii file for the file generating the errors must be deleted manually to allow the
prelinker to regenerate it.

If the prelinker changes an instantiation assignment, it will issue a message:

C++ prelinker: f__10A__pt__2_iFv assigned to file test.o
C++ prelinker: executing: usr/lib/DCC/edg-prelink -c test.c

The name in the message is the mangled name of the entity. These messages are printed
if you use the -ptv option.

The automatic instantiation scheme can coexist with partial explicit control of
instantiation by the programmer, through the use of pragmas or command-line
specification of the instantiation mode.

The automatic instantiation mode can be disabled by using the -no_prelink option.

If automatic instantiation is turned off,

• the extra information about template entities that could be instantiated in a file is
not put into the object file

• the .ii file is not updated with the command line

• the prelinker is not invoked

Template Instantiation

41

Implicit Inclusion

For the best results, you must include all the template implementation files in your
source files. Since most cfront users do not do this, the compiler attempts to find
unincluded template bodies automatically. For example, suppose that the following
conditions are all true.

• template entity ABC::f is declared in file xyz.h

• an instantiation of ABC::f is required in a compilation

• no definition of ABC::f appears in the source code processed by the compilation

In this case, the compiler looks to see if the source file xyz.n exists. (By default, the list of
suffixes tried for n is .c, .C, .cpp, .CPP, .cxx, .CXX, and .cc.) If so, the compiler processes it
as if it were included at the end of the main source file.

Implicit inclusion works well alongside automatic instantiation, but the two are
independent. They can be enabled or disabled independently, and implicit inclusion is
still useful when automatic instantiation is not done. Implicit inclusion can be disabled
with the -no_auto_include option.

Explicit Instantiation

CC instantiates all templates at compile time if you use the -ptused option. The compiler
produces larger object files because it stores duplicate instantiations in the object files.
Since duplicate copies may not be removed by the linker, and may exist in the final
executables, the use of the -ptused is being deprecated.

The CC template instantiation mechanism also correctly handles static data members
when you use the -ptused option. Static data members that need to be dynamically
initialized may be instantiated in multiple compilation units. However, the dynamic
initialization takes place only once. This is implemented by using a flag which is set the
first time a static data member is initialized. This flag prevents further attempts to
initialize it dynamically.

The -ptused option is acceptable for most small- or medium-sized applications. There are
some drawbacks listed below:

• Instantiating everything produces large object files.

42

Chapter 5: Using Templates

• Although duplicate code is removed, the associated debug information is not
removed, producing large executables.

• If you change a template body, you must recompile every file that contains an
instantiation of this body. (The easiest way to do this is for you to use make in
conjunction with the -MDupdate option. See the CC(1) reference page and
“Limitations” on page 48 for more information.)

• If you plan on specializing a template function instantiation, you may have to set
#pragma do_not_instantiate if it is likely that the compiler-generated
instantiation will contain syntax errors.

• Data is not removed, so there are multiple copies of static data members.

You can exercise finer control over exactly what is instantiated in each object file by using
pragmas and command-line options.

Command Line Options for Template Instantiation

You may use command-line options to control the instantiation behavior of the compiler.
These options are divided into sets of related options, as shown below. You use one
option from each category; options from the same category are not used together. (For
example, you do not use -ptnone in conjunction with -ptused.)

• -ptnone (the default), -ptused, and -ptall

• -prelink (the default) and -no_prelink

• -auto_include, -no_auto_include

• -ptv

The command line options are listed below.

-ptnone None of the template entities are instantiated. If automatic instantiation
is on (in other words, -prelink), any template entities that the prelinker
instructs the compiler to instantiate are instantiated.

-ptused Any template entities used in this compilation unit are instantiated. This
includes all static members that have template definitions. If you specify
-ptused, automatic instantiation is turned off by default. If you enable
automatic instantiation explicitly (with -prelink), any additional
template entities that the prelinker instructs the compiler to instantiate
are also instantiated. The use of this option is being deprecated in the
new compilers.

Template Instantiation

43

-ptall Any template entities declared or referenced in the current compilation
unit are instantiated. For each fully instantiated template class, all its
member functions and static data members are instantiated whether or
not they are used. The use of this option is being deprecated in the new
compilers.

Nonmember template functions are instantiated even if the only
reference was a declaration. If you use -ptall, automatic instantiation is
turned off by default. If you enable automatic instantiation explicitly
(with -prelink), any additional template entities that the prelinker
instructs the compiler to instantiate are also instantiated.

-prelink Instructs the compiler to output information from the object file and an
associated .ii file to help the prelinker determine which files should be
responsible for instantiating the various template entities referenced in
a set of object files.

When -prelink is on, the compiler reads an associated .ii file to determine
if any template entities should be instantiated. When -prelink is on and a
link is being performed, the driver calls a “template prelinker.” If the
prelinker detects missing template entities, they are assigned to files (by
updating the associated .ii file), and the prelinker recompiles the
necessary source files.

-no_prelink Instructs the compiler to not read a .ii file to determine which template
entities should be instantiated. The compiler will not store any
information in the object file about which template entities could be
instantiated. This option also directs the driver not to invoke the
template prelinker at link time.

This is the default mode if -ptused or -ptall are specified.

-auto_include Instructs the compiler to implicitly include template definition files if
such definitions are needed. (See “Implicit Inclusion” on page 41.)

-no_auto_include
Disables implicit inclusion of template implementation files. (See
“Implicit Inclusion” on page 41.)

-ptv Puts the template prelinker in verbose mode; when a template entity is
assigned to a particular source file, the name of the template entity and
source file is printed.

Note: In the case where a single file is compiled and linked, the compiler uses the -ptused
option to suppress automatic instantiation.

44

Chapter 5: Using Templates

Command Line Instantiation Examples

This section provides you with combinations of command line instantiation that you
may want to use, along with an explanation of what these combinations would do, and
what you might use them for.

Although there are many possible combinations of options, the most common are listed
below:

-ptnone -prelink -auto_include

This is the default mode, which is suitable for most applications. On the
first build of an application, the prelinker determines which source files
should instantiate the necessary template entities. On subsequent
rebuilds, the compiler automatically instantiates the template entities.

-ptused This mode is suitable for small- and medium-sized applications. No
prelinker pass is necessary. All referenced template entities are
instantiated at compile time; the use of this option is being deprecated.
Dynamically initialized static data members are also handled correctly
(by using a runtime guard to prevent duplicate initialization of such
members).

-ptused -prelink

Use this combination when you have an archive or dynamic shared
object (DSO) that has not been prelinked.

When a DSO is built, it is automatically prelinked. When an archive is
built, we recommend that you run the prelinker on the object files
before archiving them. However, there are cases where a programmer
may choose not to do so.

For example, if an application is linked using multiple internal DSOs or
archives, then you may choose not to prelink each DSO or archive, since
that may create multiple instances of some template entities. When
building an application using such archives or DSOs, you should use
-prelink at compile time, even if the application is being built using
-ptused. This is because the object files must contain not only instances
of templates instances referenced in the compilation units, but also
instances of template entities referenced in archives and DSOs.

Template Instantiation

45

-ptall -no_prelink

Use this combination when you are building a library of instantiated
templates.

For example, consider if you have a “stack” template class containing
various member functions. You may choose to provide instantiated
versions of these functions for various common types (for example, int,
float, and so on) and the easiest way of instantiating all member
functions of a template is to use -ptall.

-ptnone -no_prelink

Use this combination if you are using template entities that are
pre-instantiated.

For example, suppose you are using templates, but know that all of
your referenced template entities have already been pre-instantiated in
a library such as described in the previous example. In this case, you do
not need any templates instantiated at compile time, and you should
turn off automatic instantiation.

-auto_include Use this option if you are using template implementation files that are
not explicitly included.

Most source code written for cfront style compilers does not usually
include template implementation files, because the cfront prelinker does
this automatically. The -auto_include option is the default mode, because
you want to compile cfront style code, but still instantiate templates at
compile time (which implies finding template implementation files
automatically).

-no_auto_include

Use this option if you are using template implementation files that are
explicitly included.

Source code written for compilers such as Borland/C++ includes all
necessary template implementation files. Such source code should be
compiled with the -no_auto_include option.

-ptnone -no_prelink

Use this combination if all your template instantiation is done through
the use of pragmas.

By using these options, you guarantee that nothing will be instantiated
unless an explicit pragma is provided.

46

Chapter 5: Using Templates

Pragmas for Template Instantiation

You can use pragmas to control the instantiation of individual or sets of template entities.
There are three instantiation pragmas:

instantiate Causes a specified entity to be instantiated.

do_not_instantiate
Suppresses the instantiation of a specified entity. Typically used to
suppress the instantiation of an entity for which a specific definition is
supplied.

can_instantiate
Allows (but does not force) a specified entity to be instantiated in the
current compilation. You can use it in conjunction with automatic
instantiation to indicate potential sites for instantiation if the template
entity turns out to be required.

The arguments to the instantiation pragma may be

• a template class name, such as A<int>

• a member function name, such as A<int>::f

• a static data member name, such as A<int>::i

• a member function declaration, such as void A<int>::f(int, char)

• a template function declaration, such as char* f(int, float)

A pragma directive in which the argument is a template class name (for example,
A<int>) is the same as repeating the pragma for each member function and static data
member declared in the class.

When you instantiate an entire class, you may exclude a given member function or static
data member using the do_not_instantiate pragma. See the example below:

#pragma instantiate A<int>
#pragma do_not_instantiate A<int>::f

Template Instantiation

47

You must present the template definition of a template entity in the compilation for an
instantiation to occur. (You can also find the template entity with implicit inclusion.) If
you request an instantiation by using the instantiate pragma and no template definition
is available or a specific definition is provided, you will receive a link-time error. For
example:

template <class T> void f1(T);
template <class T> void g1(T);
void f1(int) {}
void main()
{

int i;
double d;
f1(i);
f1(d);
g1(i);
g1(d);

}
#pragma instantiate void f1(int)
#pragma instantiate void g1(int)

f1(double) and g1(double) are not instantiated (because no bodies were supplied) but no
errors are produced during the compilation. If no bodies are supplied at link time, you
will receive a linker error.

You can use a member function name (for example, A<int>::f) as a pragma argument
only if it refers to a single user-defined member function. (In other words, not an
overloaded function.) Compiler-generated functions are not considered, so a name may
refer to a user-defined constructor even if a compiler-generated copy constructor of the
same name exists.

You can instantiate overloaded member functions by providing the complete member
function declaration. See the example below:

#pragma instantiate char* A<int>::f(int, char*)

The argument to an instantiation pragma may not be a compiler-generated function, an
inline function, or a pure virtual function.

48

Chapter 5: Using Templates

Specialization

CC supports specialization. In template instantiation, you specialize when you define a
specific version of a function or static data member.

Because the compiler instantiates everything at compile time when the -ptused option is
specified, a specialization is not seen until link time. The linker and runtime loader select
the specialization over any non-specialized versions of the function or static data
member.

See “Pragmas for Template Instantiation” on page 46 for information on how to suppress
the instantiation of a function. You may find this useful if you intend to provide a
specialization in another object file and the non-specialized version cannot be
instantiated.

Building Shared Libraries and Archives

When you build a shared library or archive, you should usually instantiate any template
instances that could be needed.

The prelinker is automatically run when building a shared library, but it must be run
manually when building an archive. Follow the steps below to build your archive.

1. Enter the command /usr/lib/DCC/edg_prelink a.o b.o

This instantiates any templates needed by these object files.

2. Enter the command ar cr libtest.a a.o b.o to build the archive.

Limitations

There are some limitations on template instantiation in the Silicon Graphics C++
environment:

• A template specialization that exists in an archive may fail to be selected.

If you define a specialization within an object file that exists in an archive, and that
object file does not satisfy any references (other than the reference to the
specialization), then the object file is not selected. Any function generated from a
template that appears before the archive will be used, although a specialization
should take precedence over a generated function.

Template Instantiation

49

The following conditions have to be present for the bug to occur:

– A template member needs to be specialized.

– The specialization must live in an archive element.

– A non-specialization of the template member must live in an object file seen by
the linker. For a non-specialization to live in an object file, -ptused must have
been specified (in other words, not the default mode).

– Nothing else that exists in the archive element is referenced; that is, the
specialization is probably the only thing in the object file.

You can use either of the following two workarounds:

– Force the archive element to be loaded by defining some dummy global within
it, and passing the -u option to the linker to force an undefined reference to the
dummy global.

– Use a .so (that is, a dynamic shared object) instead of an archive. The runtime
loader will correctly select specializations from dynamic shared objects.

• There is no link time mechanism to detect changes in template implementation files
or to re-instantiate those template bodies that are out of date when you use the
-ptused option.

Since Makefiles usually makes object files dependent on the .h files where templates
are defined, make may not enable you to rebuild the right set of object files if you
modify a template implementation file. To make sure you rebuild all files that
instantiate a given template when the template body changes, you must follow the
steps below.

1. Use the -MDupdate option at compile time to update a dependency file (usually
called Makedepend). The compiler lists dependencies for all applicable #include
files, including template implementation files that are implicitly included.

2. Make sure that your Makefile includes this dependency file. See the CC(1) and
make reference pages for more information on how to include files within a
Makefile.

50

Chapter 5: Using Templates

• The only object files that the prelinker can recompile are object files that have not
been renamed after they were originally compiled. In particular, the following
limitations apply:

– The prelinker cannot recompile any object file that exists in an archive, since
putting an object file in an archive is equivalent to renaming it. It is
recommended that you run the prelinker on object files before putting them in
an archive. A similar restriction applies to dynamic shared objects (see
“Building Shared Libraries and Archives” on page 48).

– The prelinker cannot compile an object file if it was renamed after being
compiled. For example, consider the following command line:

yacc gram.y CC -c y.tab.c mv y.tab.o object.o

The prelinker does not know how to recompile object.o. If object.o contains
unresolved template references that will not be satisfied by any other objects,
you must use the -ptused option when compiling, or explicitly invoke the
prelinker on the object file before moving it.

How to Transition From cfront

If you have compiled your source code with cfront, you may have to modify your build
scripts to ensure that your templates are instantiated properly. This section discusses
how to transition templates from cfront to the Silicon Graphics environment.

Mapping Template Options From cfront to CC

The cfront template-related options, their meaning, and the equivalent CC options are
listed below:

-pta Instantiates a whole template class rather than only those members that
are needed. If you use automatic instantiation, there is no equivalent
option for CC. If you use explicit instantiation, the -ptall option performs
roughly the same action.

-pte suffix Uses suffix as the standard source suffix instead of .c. There is currently
no equivalent CC option. CC always looks for the following suffixes
when looking for a template body to implicitly include: .c, .C, .cpp, .CPP,
.cxx, .CXX, .cc, .c++.

How to Transition From cfront

51

-ptn Changes the default instantiation behavior for one-file programs to that
of larger programs, where instantiation is broken out separately and the
repository updated. One-file programs normally have instantiation
optimized so that instantiation is done into the application object itself.
There is currently no equivalent CC option.

One way of approximating this behavior is to compile your file with -c,
and then link it, instead of compiling and linking in a single step.
Another method is to create an empty dummy file, and compile/link
your original file and the new dummy file in a single step. For example,
you can use the following command line:

CC file.c dummy.c

-ptrpathname Specifies a repository, with ./ptrepository as the default. If several
repositories are given, only the first is writable, and the default
repository is ignored unless explicitly named. There is no equivalent
option for CC. The cfront “repositories” contain two kinds of
information:

• information about where types and templates are defined

• object files containing template instantiations

The CC template instantiation mechanism does not use separate object
files for template instantiations; all necessary template instantiations
are performed in files that are part of the application (or library) being
built. Information about which templates are capable of being
instantiated by each file are embedded in the object file itself. This
means that no repositories are needed. See “What to Do If You Use
Object Files From cfront’s Repository” and “What to Do If You Use
Multiple Repositories” on page 52 for further information.

-pts Splits instantiations into separate object files, with one function per
object (including overloaded functions), and all class static data and
virtual functions grouped into a single object. There is no equivalent CC
option. You can exercise fine-grained control over exactly which
templates are instantiated in each file by using the instantiation pragmas
described in “Pragmas for Template Instantiation” on page 46.

-ptv Turns on verbose or verify mode, which displays each phase of
instantiation as it occurs, together with the elapsed time in seconds that
phase took to complete. You should use this option if you are new to
templates. Verbose mode displays the reason an instantiation is done
and the exact CC command used. The -ptv option is also supported by

52

Chapter 5: Using Templates

CC, and provides verbose information about the operation of the
prelinker. The prelinker indicates which template instantiations are
being assigned to which files, and which files are being recompiled.

What to Do If You Use Object Files From cfront’s Repository

If you are used to the cfront template instantiation mechanism you may sometimes
explicitly reference object files in the repository. This is often done when building an
archive or a shared library. The general idea is to link a fake main program with a set of
object files so as to populate the repository with the necessary template instantiations.
The object files that were linked, along with the object files in the repository, are stored in
an archive, or linked into a shared library.

cfront users do this to build an archive or library which has no unresolved template
references. CC users who wish to build archives and shared libraries where all template
references have been resolved can do the following:

• If you are building a shared library, the CC driver will automatically run the
prelinker on the set of object files being linked into the shared libraries. No further
action is necessary on the part of the programmer.

• If an archive is being built, the prelinker needs to be run explicitly on the object files,
before invoking ar. See “Building Shared Libraries and Archives” on page 48 for
information on how to do this.

What to Do If You Use Multiple Repositories

If you use the cfront template instantiation mechanism, you may sometimes use multiple
repositories. For example, you may have an application which consists of multiple
libraries. Each library is built in its own directory, and has its own repository. When you
build the library, template functions are not instantiated. When the application is linked
against these libraries, the necessary templates are instantiated at link time. The
repositories provide enough information about where to find the necessary template
declarations and implementations.

Template Language Support

53

CC does not use repositories, and you can use various strategies when linking a set of
object files against a set of libraries that contain references to uninstantiated template
functions. Some examples are given below:

• If it is possible that all uninstantiated template functions can be instantiated in the
object files being linked into the application, the prelinker will do so automatically.
However, it is possible that a library uses a template internally, which is never used
by the object files being linked into the application. Such templates are not
instantiated by the prelinker, resulting in undefined symbols.

• A better strategy is to prelink each library when it is built, so that the main program
is not burdened with having to perform these instantiations. One problem occurs if
multiple libraries use the same template functions: if each library is prelinked,
multiple copies of such functions will be generated. Removal of duplicate functions
takes place only in .o and .a files; shared libraries cannot have any duplicate code
removed.

Template Language Support

The language support for templates in the Silicon Graphics C++ environment is more
extensive than for cfront. Some of the additional template language constructs supported
by the Silicon Graphics C++ environment are listed below:

• You may use nested classes, typedefs, and enums in class templates, including
variant typedefs and enums. (A variant member type depends on the template
parameters in some way.)

• You may use floating point numbers, pointers to members, and more flexible
specifications of constant addresses.

• You may use default arguments for class template non-type parameters. For
example:

template <int I = 1> class A {};

• You may allow a non-type template parameter to have another template parameter
as its type. For example:

template <class T, T t> class A {
public:

T a;
A(T init_val = t) { a = init_val; }

};

54

Chapter 5: Using Templates

• You may use what are essentially template classes instantiated with the template
parameters of other class or function templates.

template <class T, int I> struct A {
static T b[I];

};

template <class T> void f(A<T,10> x) {}
template <class T> void f(A<T, 3> x) {}

void main()
{

A<int,10> m;
A<int,3> n;
int i = f(m);
int j = f(n);

}

The function template would be considered tagged twice by cfront, and the code
calls tagged ambiguous by the Borland/C++ compiler.

• You may use circular template references. For example:

template <class T> class B;
template <class T> class C;

template <class T> class A { B<T> *b; };
template <class T> class B { C<T> *c; };
template <class T> class C { A<T> *a; };

A<int> a;

cfront generates an error on this code.

• CC is more consistent than other C++ compilers about where a class template name
must be followed by template arguments. For example:

template <class T> struct X {
X();
~X();
X*x;
int X::* x2;
void f();
void g(){ X x;}

};

struct X<char> {

Template Language Support

55

X();
~X(); // Borland error
X*x; // Borland error
int X::* x2; // Borland error
void f();
void g(){ X x;} // Borland error };

template <class T> void X<T>::f()
{

X x; // cfront error }

void X<char>::f()
{

X x; // cfront & Borland error
}

X<int> x;
X<char> xc;

cfront allows X to be used as a type name in the inline body of g but not in the
out-of-line body of f. Borland/C++ uses one set of rules for class templates and a
different set of rules for specializations. With CC, you may use X in all of the cases
shown.

• You may use forward declarations of class specializations.

• You may use nested classes as type arguments of class templates.

• You may use default arguments for all types of function templates, including
arguments based on template parameter types. For example:

template <class T> void f(T t, int i = 1) {}
template <class T> void f(T t, T i = 1) {}

57

Appendix A

A. C and C++ Pragma Directives

This appendix discusses the behavior of each recognized #pragma directive available for
C and C++ in the Silicon Graphics environment. The pragmas are the following:

#pragma weak weak_symbol = strong_symbol
The weak_symbol is an alias that denotes the same function or data object
denoted by the strong_symbol, unless a defining declaration for the
weak_symbol is encountered at static link time. If encountered, the
defining declaration preempts the weak denotation.

You must define the strong_symbol within the same compilation unit in
which the pragma occurs. You should also declare the weak_symbol with
extern linkage in the same compilation unit. The extern declaration of
the weak symbol is not required, unless the symbol is referenced within
the compilation unit, but Silicon Graphics recommends it for
type-checking purposes. The weak and strong symbols must be
declared with compatible types. When the strong symbol is a data
object, its declaration must be initialized.

Weak extern declarations are typically used to export non-ANSI C
symbols from a library without polluting the ANSI C name-space. As
an example, libc may export a weak symbol read(), which aliases a
strong symbol _read(), where _read() is used in the implementation of
the exported symbol fread(). You can either use the exported (weak)
version of read(), or define your own version of read() thereby
preempting the weak denotation of this symbol. This will not alter the
definition of fread(), since it only depends on the (strong) symbol
_read(), which is outside the ANSI C name-space.

Note: #pragma weak is not supported in -32.

#pragma once This pragma has no effect in –32 mode, but will ensure idempotent
include files in –64 mode (i.e. that an include file is included at most once
in one compilation unit). Silicon Graphics recommends enclosing the
contents of an include file afile.h with an #ifdef directive similar to:

#ifndef afile_INCLUDED
#define afile_INCLUDED

58

Appendix A: C and C++ Pragma Directives

<contents of afile.h>
#endif

#pragma pack(n)
This pragma controls the layout of structure offsets, such that the
strictest alignment for any structure member will be n bytes, where n is
0, 1, 2, 4, 8, or 16. When n is 0, the compiler returns to default alignment
for any subsequent struct definitions.

A struct type defined in the scope of a #pragma pack(n) has at most an
alignment of n bytes, and the packed characteristics of the type apply
wherever the type is used, even outside the scope of the pragma in
which the type was declared. The scope of a #pragma pack ends with
the next #pragma pack, hence this pragma does not nest: There is no
way to “return” from one instance of the pragma to a lexically earlier
instance of the pragma.

A structure declaration must be subjected to identical instances of a
#pragma pack in all files, or else misaligned memory accesses and
erroneous struct member dereferencing may ensue.

Silicon Graphics strongly discourages the use of #pragma pack, since it
is a nonportable feature and the semantics of this pragma may change
in future compiler releases. Note that references to fields in #packed
structs may be less efficient than references to fields in unpacked
structs.

#pragma intrinsic(a_function)
This pragma allows certain preselected functions from math.h, stdio.h,
and string.h to be inlined at a call-site for execution efficiency. The
#pragma intrinsic has no effect on functions other than the preselected
ones. Exactly which functions may be inlined, how they are inlined, and
under what circumstances inlining occurs is implementation defined
and may vary from one release of the compilers to the next. The inlining
of intrinsics may violate some aspect of the ANSI C standard (e.g., the
errno setting for math.h functions). All intrinsics are activated through
pragmas in the respective standard header files and only when the
preprocessor symbol __INLINE_INTRINSICS is defined and the
appropriate include files are included. __INLINE_INTRINSICS is
predefined by default only in –cckr and –xansi mode.

59

#pragma hdrstop
If –pch is on, #pragma hdrstop indicates the point at which the
precompiled header mechanism snapshots the headers. If –pch is off,
#pragma hdrstop is ignored. See the Compiling and Performance Tuning
Guide for details on the precompiled header mechanism.

#pragma instantiate declaration
Causes a specified instance of a template declaration to be immediately
instantiated at that spot. For example:

#pragma instantiate void List<int>::push(int)

The declaration needs to be a complete declaration of a function or a
static data member, exactly as if you would have specified it for a
specialization of the template.

#pragma do_not_instantiate declaration
The opposite of #pragma instantiate: if the compiler sees this pragma, it
will not instantiate the specific declaration in this compilation unit, even
if you use that instance in your code.

The MIPSpro compilers also silently recognize many commonly used pragmas; however,
they have no effect. Some of these include:

#pragma no side effects(a_function)
Tells the compiler that a call to a function of the given name does not
cause any modifications to objects accessible outside the function body.
Such information can be useful for optimization and parallelization
purposes.

#pragma ident version
Adds a .comment section in the object file and puts the revision string
inside it.

#pragma int_to_unsigned identifier
Identifies identifier as a function whose type was int in a previous
releases of the compilation system, but whose type is unsigned int in the
MIPSpro compiler release. The declaration of the identifier must
precede the pragma:

unsigned int strlen(const char*);
#pragma int_to_unsigned strlen

This declaration makes it possible for the compiler to identify where the
changed type may affect the evaluation of expressions.

61

Glossary

Terms shown in italics indicate glossary items, as well as buttons, file names, and
conventions.

access

The degree of privilege to a member of a class: public, private, or protected.

ARM

Acronym for The Annotated C++ Reference Manual (ARM) by Ellis and Stroustrup.

base class

Parent of a class.

data

In C++, data member of a class. A variable that contains state information for a class. A
field of a class that is not a method.

database

Compiler-generated static analysis set of data built from a fileset in the static analyzer.

instantiate

In C++, to declare an object of type classname. The result is an instance or an object.

mangle

Encoding a function name to support overloading.

member function

C++ function that is a member of a class or structure data type. Also known as a method.

members

Either or both data and methods belonging to a class (class members).

62

Glossary

method

C++ function that is a member of a class or structure data type. Also known as a member
function.

private

In C++, access to the class member is restricted to the class in which it is defined, friend
classes, or friend functions.

protected

In C++, access to the class member is restricted to the class (and all derived classes) in
which it is defined, friend classes, and friend functions.

public

In C++, access is open to any method or function.

specialization

In template instantiation, defining a specific version of a function or static data member.

templates

A description of a class or function that is a model for a family of related classes or
functions.

63

Index

Symbols

#pragma hdrstop, 59
#pragma ident version, 59
#pragma int_to_unsigned identifier, 59
#pragma intrinsic, 58
#pragma no_side_effect, 59
#pragma once, 57
#pragma pack, 58
#pragma weak, 57

Numbers

64-bit mode
pragmas, 59

A

ABI, 64-bit changes, 2
ABI changes, 2
ABI changes, other, 8
accepted anachronisms, 25
anachronisms, accepted, 25
ANSI C, 57
assignment to this, 5

B

bool, 3
built-in bool type, 3
built-in w_char_t type, 4

C

C++ compilers
6.0 versions, 2
64 vs. 32 bit, 10
using, 9

C++ environment, 1
c++patch, 16
catch, 6
CC -64

command line, 11
CC command, options, 17
C compiler, 16
Cfront

compatibility with Delta/C++, 12
cfront, compatibility restrictions, 32
cfront template transition, 50
changes, 64-bit ABI, 2
C linkage, problems with, 33
command lines

CC -64, 11
samples, 11

compatibility restrictions, cfront, 32

64

Index

compiler, 16
compilers

64 vs. 32 bit, 10
using, 9

compiling, 13, 14
compiling, and linking, 13
complex arithmetic library, 12
contents of guide, xiii
conventions, font, for manual, xv

D

debugging, 12
delete, operator, 3
Delta/C++

Cfront compatibility with, 12
dialect support, C++, 21
documentation, recommended reading, xiii

E

exception handling, 5
catch, 6
throw, 6
try, 6

exctensions
accepted default, 26

export
non-ANSI, 57

extensions
accepted cfront, 27
cfront accepted, 27
default accepted, 26

extern declarations, 57

F

fast malloc, 34
features

new language, 22
non-implemented, 24

features, new, 2
font conventions, for manual, xv
front end

about, 22

G

global constructors, 16
guide contents, xiii

H

handling, exception, 5

I

implicit inclusion, 41
inclusion, implicit, 41
INLINE_INTRINSICS, 58
instantiation

automatic, details of, 39
automatic method of, 39
requirements, 38

instantiation, command-line options, 42
instantiation, template, 41
iostream library, 12
iostreams, 34

65

Index

L

language, new features, 22
ld, 16
libraries, 12, 17
libraries, problems with order of specification, 34
linkage

problems with, 33
linkage, problems with C, 33
link editor, 16
linking, 13, 17
linking, and compiling, 13
link libraries, 17
loader, 16

M

malloc, 34
multi-language programs, 17

N

NCC
mapping template options from cfront, 50

new, operator, 3

O

object files, 13
linking, 17
tools, 19

operators new and delete, 3
options, translator, 17

P

pragmas, 57
for template instantiation, 46
ignored, 59

ptrepository, object files in, 52

R

related information, xiv
repositories, multiple template, 52
RTTI, 7
runtime type identification, 7

S

shared libraries, building, 48
source file, suffix, 16
specialization, 48
stdio, 34
symbols unexpected undefined, 33

T

template instantiation
archives, 48
shared libraries, 48

templates
automatic instantiation, 38
command-line instantiation, 42
instantiation, 41, 46
instantiation examples, 44
introduction to instantiation, 37
language support, 53
mapping cfront to NCC options, 50
multiple repositories, 52

66

Index

object files in cfronts ptrepository, 52
restrictions, 48
specialization, 48
transitioning from cfront, 50

this, assignment to, 5
throw, 6
tools, object files, 19
translator options, 17
troubleshooting, 33
try, 6
type identification, runtime, 7

U

unexpected undefined symbols, 33

W

wchar_t, 4
weak_signal=strong_symbol, 57

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-0704-110.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 415-965-0964

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

