
Fortran 77 Programmer’s Guide

Document Number 007-0711-060

Fortran 77 Programmer’s Guide
Document Number 007-0711-060

CONTRIBUTORS

Written by CJ Silverio, David Graves, and Chris Hogue
Edited by Janiece Carrico
Illustrated by Melissa Heinrich
Production by Gloria Ackley
Engineering contributions by Calvin Vu, Bron Nelson, and Deb Ryan

© Copyright 1992, 1994, Silicon Graphics, Inc.— All Rights Reserved
This document contains proprietary and confidential information of Silicon
Graphics, Inc. The contents of this document may not be disclosed to third parties,
copied, or duplicated in any form, in whole or in part, without the prior written
permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and/
or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights are reserved under the Copyright Laws of the
United States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline
Blvd., Mountain View, CA 94039-7311.

Silicon Graphics and IRIS are registered trademarks, and POWER Fortran
Accelerator, IRIS-4D, and IRIX are trademarks of Silicon Graphics, Inc. UNIX is a
registered trademark of UNIX System Laboratories. VMS and VAX are trademarks of
Digital Equipment Corporation.

iii

Contents

Introduction xi
Corequisite Publications xi
Organization of Information xii
Typographical Conventions xiii

1. Compiling, Linking, and Running Programs 1
Compiling and Linking 2

Drivers 2
Compilation 2
Compiling Multilanguage Programs 4
Linking Objects 5
Specifying Link Libraries 7

Driver Options 8
Debugging 16
Profiling 16
Optimizing 17
Performance 18

Object File Tools 18
Archiver 19
Run-Time Considerations 19

Invoking a Program 19
File Formats 20
Preconnected Files 21
File Positions 21
Unknown File Status 21
Run-Time Error Handling 22
Trap Handling 22

iv

Contents

2. Storage Mapping 23
Alignment, Size, and Value Ranges 24
Access of Misaligned Data 27

Accessing Small Amounts of Misaligned Data 27
Accessing Misaligned Data Without Modifying Source 28

3. Fortran Program Interfaces 29
Fortran/C Interface 30

Procedure and Function Declarations 30
Arguments 32
Array Handling 35
Accessing Common Blocks of Data 36

Fortran/C Wrapper Interface 38
The Wrapper Generator mkf2c 38
Using Fortran Character Variables as Parameters 39
Reduction of Parameters 40
Fortran Character Array Lengths 42
Using mkf2c and extcentry 43
Makefile Considerations 45

Fortran/Pascal Interface 46
Procedure and Function Declarations 46
Arguments 48
Execution-Time Considerations 50
Array Handling 50
Accessing Common Blocks of Data 52

v

4. System Functions and Subroutines 55
Library Functions 55
Intrinsic Subroutine Extensions 63

DATE 64
IDATE 65
ERRSNS 65
EXIT 66
TIME 66
MVBITS 66

Function Extensions 67
SECNDS 68
RAN 68

5. Fortran Enhancements for Multiprocessors 69
Overview 70
Parallel Loops 70
Writing Parallel Fortran 71

C$DOACROSS 71
C$& 77
C$ 77
C$MP_SCHEDTYPE, C$CHUNK 78
Nesting C$DOACROSS 78
Parallel Blocks 79

Analyzing Data Dependencies for Multiprocessing 79
Breaking Data Dependencies 85
Work Quantum 90
Cache Effects 93

Load Balancing 95

vi

Contents

Advanced Features 97
mp_block and mp_unblock 97
mp_setup, mp_create, and mp_destroy 98
mp_blocktime 98
mp_numthreads, mp_set_numthreads 99
mp_my_threadnum 99
Environment Variables: MP_SET_NUMTHREADS, MP_BLOCKTIME,
MP_SETUP 100
Environment Variables: MP_SCHEDTYPE, CHUNK 101
Environment Variable: MP_PROFILE 101
mp_setlock, mp_unsetlock, mp_barrier 102
Local COMMON Blocks 102
Compatibility With sproc 103

DOACROSS Implementation 104
Loop Transformation 104
Executing Spooled Routines 106

6. Compiling and Debugging Parallel Fortran 107
Compiling and Running 107

Using the –static Flag 108
Examples of Compiling 108

Profiling a Parallel Fortran Program 109
Debugging Parallel Fortran 110

General Debugging Hints 110
Multiprocess Debugging Session 113

Parallel Programming Exercise 119
First Pass 120
Regroup and Attack Again 127

A. Run-Time Error Messages 137

Index 145

vii

Figures

Figure 1-1 Compilation Process 3
Figure 1-2 Compiling Multilanguage Programs 5
Figure 1-3 Link Editing 6
Figure 3-1 Array Subscripts 36

ix

Tables

Table 1-1 Link Libraries 6
Table 1-2 Source Statement Settings for -col72 Option 10
Table 1-3 Source Statement Settings for -col120 Option 10
Table 1-4 Source Statement Settings for -extend_source Option 11
Table 1-5 Source Statement Settings for -noextend_source Option 13
Table 1-6 Optimizer Options 17
Table 1-7 Preconnected Files 21
Table 2-1 Size, Alignment, and Value Ranges of Data Types 24
Table 2-2 Valid Ranges for REAL and DOUBLE Data Types 25
Table 3-1 Main Routines 31
Table 3-2 Equivalent C and Fortran Function Declarations 31
Table 3-3 Equivalent Fortran and C Data Types 33
Table 3-4 Main Routines 46
Table 3-5 Function Declarations 47
Table 3-6 Equivalent Fortran and Pascal Data Types 48
Table 4-1 Summary of System Interface Library Routines 56
Table 4-2 Overview of System Subroutines 64
Table 4-3 Information Returned by ERRSNS 65
Table 4-4 Arguments to MVBITS 67
Table 4-5 Function Extensions 67
Table A-1 Run-Time Error Messages 138

xi

Introduction

This manual provides information on implementing Fortran 77 programs
using IRIX™ and the IRIS®-4D™ series workstation. This implementation
of Fortran 77 contains full American National Standard (ANSI)
Programming Language Institute Fortran (X3.9–1978). Extensions provide
full VMS Fortran compatibility to the extent possible without the VMS
operating system or VAX data representation. This implementation of
Fortran 77 also contains extensions that provide partial compatibility with
programs written in SVS Fortran and Fortran 66.

Fortran 77 is referred to as “Fortran” throughout this manual except where
distinctions between Fortran 77 and Fortran 66 are being specifically
discussed.

Corequisite Publications

Refer to the Fortran 77 Language Reference Manual for a description of the
Fortran language as implemented by the Silicon Graphics® IRIS-4D series
workstation.

Refer to the IRIS-4D Series Compiler Guide for information on the following
topics:

• an overview of the compiler system

• improving program performance by using the profiling and
optimization facilities of the compiler system

• the dump utilities, archiver, and other tools used to maintain Fortran
programs

xii

Introduction

Refer to the dbx Reference Manual for a detailed description of the debugger.
For information on interfaces to programs written in assembly language,
refer to the Assembly Language Programmer's Guide.

Organization of Information

This manual contains the following chapters and appendix:

• Chapter 1, “Compiling, Linking, and Running Programs,” gives an
overview of components of the compiler system, and describes how to
compile, link edit, and execute a Fortran program. It also describes
special considerations for programs running on IRIX systems, such as
file format and error handling.

• Chapter 2, “Storage Mapping,” describes how the Fortran compiler
implements size and value ranges for various data types and how they
are mapped to storage. It also describes how to access misaligned data.

• Chapter 3, “Fortran Program Interfaces,” provides reference and guide
information on writing programs in Fortran, C, and Pascal that can
communicate with each other. It also describes the process of
generating wrappers for C routines called by Fortran.

• Chapter 4, “System Functions and Subroutines,” describes functions
and subroutines that can be used with a program to communicate with
the IRIX operating system.

• Chapter 5, “Fortran Enhancements for Multiprocessors,” describes
programming directives for running Fortran programs in a
multiprocessor mode.

• Chapter 6, “Compiling and Debugging Parallel Fortran,” describes and
illustrates compilation and debugging techniques for running Fortran
programs in a multiprocessor mode.

• Appendix A, “Run-Time Error Messages,” lists the error messages that
can be generated during program execution.

Typographical Conventions

xiii

Typographical Conventions

The following conventions and symbols are used in the text to describe the
form of Fortran statements:

Bold Indicates literal command line options, filenames,
keywords, function/subroutine names, pathnames, and
directory names.

Italics Represents user-defined values. Replace the item in italics
with a legal value. Italics are also used for command names,
manual page names, and manual titles.

Courier Indicates command syntax, program listings, computer
output, and error messages.

Courier bold

Indicates user input.

[] Enclose optional command arguments.

() Surround arguments or are empty if the function has no
arguments following function/subroutine names.
Surround manual page section in which the command is
described following IRIX commands.

| Sseparates two or more optional items.

... Indicates that the preceding optional items can appear more
than once in succession.

IRIX shell prompt for the superuser.

% IRIX shell prompt for users other than superuser.

xiv

Introduction

Here are two examples illustrating the syntax conventions.

DIMENSION a(d) [,a(d)] …

indicates that the Fortran keyword DIMENSION must be written as shown,
that the user-defined entity a(d) is required, and that one or more of a(d) can
be optionally specified. Note that the pair of parentheses () enclosing d is
required.

{STATIC | AUTOMATIC} v [,v] …

indicates that either the STATIC or AUTOMATIC keyword must be written
as shown, that the user-defined entity v is required, and that one or more of
v items can be optionally specified.

1

Chapter 1

1. Compiling, Linking, and Running Programs

This chapter contains the following major sections:

• “Compiling and Linking” describes the compilation environment and
how to compile and link Fortran programs. This section also contains
examples that show how to create separate linkable objects written in
Fortran, C, Pascal, or other languages supported by the compiler
system and how to link them into an executable object program.

• “Driver Options” gives an overview of debugging, profiling,
optimizing, and other options provided with the Fortran f77 driver.

• “Object File Tools” briefly summarizes the capabilities of the odump,
stdump, nm, file, and size programs that provide listing and other
information on object files.

• “Archiver” summarizes the functions of the ar program that maintains
archive libraries.

• “Run-Time Considerations” describes how to invoke a Fortran
program, how the operating system treats files, and how to handle
run-time errors.

Also refer to the Fortran Release Notes for a list of compiler enhancements,
possible compiler errors, and instructions on how to circumvent them.

2

Chapter 1: Compiling, Linking, and Running Programs

Compiling and Linking

Drivers

Programs called drivers invoke the major components of the compiler
system: the Fortran compiler, the intermediate code optimizer, the code
generator, the assembler, and the link editor. The f77 command runs the
driver that causes your programs to be compiled, optimized, assembled, and
link edited.

The format of the f77 driver command is as follows:

f77 [option] … filename.f [option]

where

f77 invokes the various processing phases that compile,
optimize, assemble, and link edit the program.

option represents the driver options through which you provide
instructions to the processing phases. They can be
anywhere in the command line. These options are discussed
later in this chapter.

filename.f is the name of the file that contains the Fortran source
statements. The filename must always have the suffix .f, for
example, myprog.f.

Compilation

The driver command f77 can both compile and link edit a source module.
Figure 1-1 shows the primary drivers phases. It also shows their principal
inputs and outputs for the source modules more.f.

Compiling and Linking

3

Figure 1-1 Compilation Process

Note the following:

• The source file ends with the required suffixes .f or .F.

• The source file is passed through the C preprocessor, cpp, by default. cpp
does not accept C-style comments in Hollerith strings. The –nocpp
option skips the pass through cpp and therefore, allows C-style
comments in Hollerith strings. (See the –nocpp option in “Driver
Options” on page 8 for details.) In the example

% f77 myprog.f –nocpp

the file myprog.f will not be preprocessed by cpp.

• The driver produces a linkable object file when you specify the –c
driver option. This file has the same name as the source file, except with
the suffix .o. For example, the command line

% f77 more.f -c

produces the more.o file in the above example.

Fortran Front End

Optimizer

Code Generator

Assembler

Link Editor

(optional)

more.f

more.o

a.out

4

Chapter 1: Compiling, Linking, and Running Programs

• The default name of the executable object file is a.out. For example, the
command line

% f77 myprog.f

produces the executable object a.out.

• You can specify a name other than a.out for the executable object by
using the driver option –o name, where name is the name of the
executable object. For example, the command line

% f77 myprog.o -o myprog

link edits the object module myprog.o and produces an executable object
named myprog.

• The command line

% f77 myprog.f -o myprog

compiles and link edits the source module myprog.f and produces an
executable object named myprog.

Compiling Multilanguage Programs

The compiler system provides drivers for other languages, including C,
Pascal, COBOL, and PL/1. If one of these drivers is installed in your system,
you can compile and link your Fortran programs to the language supported
by the driver. (See the IRIX Series Compiler Guide for a list of available drivers
and the commands that invoke them; refer to Chapter 3 of this manual for
conventions you must follow in writing Fortran program interfaces to C and
Pascal programs.)

When your application has two or more source programs written in different
languages, you should compile each program module separately with the
appropriate driver and then link them in a separate step. Create objects
suitable for link editing by specifying the –c option, which stops the driver
immediately after the assembler phase. For example,

% cc -c main.c

% f77 -c rest.f

The two command lines shown above produce linkable objects named
main.o and rest.o, as illustrated in Figure 1-2.

Compiling and Linking

5

Figure 1-2 Compiling Multilanguage Programs

Linking Objects

You can use the f77 driver command to link edit separate objects into one
executable program when any one of the objects is compiled from a Fortran
source. The driver recognizes the .o suffix as the name of a file containing
object code suitable for link editing and immediately invokes the link editor.
The following command link edits the object created in the last example:

% f77 -o myprog main.o rest.o

You can also use the cc driver command, as shown below:

% cc -o myprog main.o rest.o -lF77 -lU77 -lI77 -lisam -lm

C Preprocessor

C Front End

Code Generator

Assembler

main.c

main.o

C Preprocessor

Fortran Front End

Code Generator

Assembler

rest.f

rest.o

6

Chapter 1: Compiling, Linking, and Running Programs

Figure 1-3 shows the flow of control for this link edit.

Figure 1-3 Link Editing

Both f77 and cc use the C link library by default. However, the cc driver
command does not know the names of the link libraries required by the
Fortran objects; therefore, you must specify them explicitly to the link editor
using the –l option as shown in the example. The characters following –l are
shorthand for link library files as shown in Table 1-1.

Table 1-1 Link Libraries

–l Link Library Contents

F77 /usr/lib/libF77.a Fortran intrinsic function library

I77 /usr/lib/libI77.a Fortran I/O library

I77_mp /usr/lib/libI77_mp.a Fortran multiprocessing I/O library

U77 /usr/lib/libU77.a Fortran IRIX interface library

isam /usr/lib/libisam.a Indexed sequential access method library

fgl /usr/lib/libfgl/a Fortran graphics library

m /usr/lib/libm.a Mathematics library

All

main.o rest.o

C Fortran

Link Editor

Compiling and Linking

7

See the section called “FILES” in the f77(1) manual page for a complete list
of the files used by the Fortran driver. Also refer to the ld(1) manual page for
information on specifying the –l option.

Specifying Link Libraries

You must explicitly load any required run-time libraries when compiling
multilanguage programs. For example, when you link a program written in
Fortran and some procedures written in Pascal, you must explicitly load the
Pascal library libp.a and the math library libm.a with the options –lp and –lm
(abbreviations for the libraries libp.a and libm.a). This procedure is
demonstrated in the next example.

% f77 main.o more.o rest.o -lp -lm

To find the Pascal library, the link editor replaces the –l with lib and adds an
.a after p. Then, it searches the /lib, /usr/lib, and /usr/local/lib directories for
this library. For a list of the libraries that a language uses, see the associated
driver manual page, cc(1), f77(1), or pc(1).

You may need to specify libraries when you use IRIX system packages that
are not part of a particular language. Most of the manual pages for these
packages list the required libraries. For example, the getwd(3B) subroutine
requires the BSD compatibility library libbsd.a. This library is specified as
follows:

% f77 main.o more.o rest.o -lbsd

To specify a library created with the archiver, type in the pathname of the
library as shown below.

% f77 main.o more.o rest.o libfft.a

Note: The link editor searches libraries in the order you specify. Therefore,
if you have a library (for example, libfft.a) that uses data or procedures from
–lp, you must specify libfft.a first.

8

Chapter 1: Compiling, Linking, and Running Programs

Driver Options

This section contains a summary of the Fortran–specific driver options. See
the f77(1) manual page for a complete description of the compiler options;
see the ld(1) manual page for a description of the link editor options.

–66 Compiles Fortran 66 source programs.

When used at compile time, the following four options generate various
degrees of misaligned data in common blocks. They then generate the code
to deal with the misalignment.

Note: When specified, these options can degrade program performance;
–align8 causes the greatest degree of degradation, and –align32 causes the
least.

–align8 Aligns objects larger than 8 bits on 8-bit boundaries. Using
this option will have the largest impact on performance.

–align16 Aligns objects larger than 16 bits on 16-bit boundaries;
16-bit objects must still be aligned on 16-bit boundaries
(MC68000-like alignment rules).

–align32 Aligns objects larger than 32 bits on 32-bit boundaries;
16-bit objects must still be aligned on 16-bit boundaries, and
32-bit objects must still be aligned on 32-bit boundaries.

–align64 Aligns objects larger than 64 bits on 64 bit boundaries.
Objects with size 64 bits or smaller must still be aligned on
the corresponding boundaries.

The current default alignment is 32 bits. This number may
be changed in the future to take advantage of the new 64-bit
architecture.

You must specify the appropriate alignment option in the
compilation of all modules that reference or define common
blocks with misaligned data. Failure to do so could cause
core dumps (if the trap handler is not used) or mismatched
common blocks.

Driver Options

9

To load the system libraries capable of handling misaligned
data, use the –L/usr/lib/align switch at load time. The trap
handler may be needed to handle misaligned data passed to
system libraries that are not included in the /usr/lib/align
directory (see fixade(3f) and unalign(3x)).

–backslash Allows the backslash character to be used as a normal
Fortran character instead of the beginning of an escape
sequence.

–C Generates code for run-time subscript range checking. The
default suppresses range checking. This option will not
cause the program to core dump; it will cause the program
to exit with a diagnostic message. For details on how to
produce a core dump, refer to the information on the
f77_dump_flag environment variable in Appendix A,
“Run-Time Error Messages.”

–check_bounds
Causes an error message to be issued at run time when the
value of an array subscript expression exceeds the bounds
declared for the array. This is equivalent to the –C option.

–chunk=integer
Has the same effect as putting a C$CHUNK=integer
directive at the beginning of the file. See Chapter 5, “Fortran
Enhancements for Multiprocessors,” and Chapter 6,
“Compiling and Debugging Parallel Fortran,” for details.

10

Chapter 1: Compiling, Linking, and Running Programs

–col72 Sets the source statement format as described in Table 1-2.

If the source statement contains fewer than 72 characters, no
blank padding occurs; the TAB-format facility is disabled.

This option provides the SVS Fortran 72-column option
mode.

–col120 Sets the source statement format as described in Table 1-3.

If the source statement contains fewer than 120 characters,
no blank padding occurs; the TAB-format facility is
disabled.

This option provides the SVS Fortran default mode.

–cpp Runs the C macro preprocessor cpp on all source files,
including those created by RATFOR, before compilation.
(This option is enabled by default.)

Table 1-2 Source Statement Settings for -col72 Option

Column Contents

1–5 Statement label

6 Continuation indicator

7–72 Statement body

73–end Ignored

Table 1-3 Source Statement Settings for -col120 Option

Column Contents

1-5 Statement label

6 Continuation indicator

7-120 Statement body

121-end Ignored

Driver Options

11

–d_lines Causes any lines with a D in column 1 to be compiled. By
default, the compiler treats all lines with a character in
column 1 as comment lines.

–expand_include
Expands all include statements in the Fortran source listing
file .L. This option is only applicable with the –listing
option.

–extend_source
Sets the source statement format as described in Table 1-4.

If the source statement contains fewer than 132 characters,
blanks are assumed at the end; the ability of TAB-formatted
lines to extend past column 132 is disabled.

This option provides VMS Fortran 132-column mode,
except that a warning, instead of a fatal error message, is
generated when text extends beyond column 132.

–E Runs only the C macro preprocessor on the files and sends
the results to standard output.

–F Calls the RATFOR preprocessor only and puts the output
in a .f file. Does not produce .o files.

–framepointer
Defines the frame pointer register for each subroutine in the
source file.

Table 1-4 Source Statement Settings for -extend_source Option

Column Contents

1–5 Statement label

6 Continuation indicator

7–132 Statement body

133–end Warning message issued

12

Chapter 1: Compiling, Linking, and Running Programs

–i2 All small integer constants become INTEGER*2. All
variables and functions implicitly or explicitly declared
type INTEGER or LOGICAL (without a size designator,
that is, *2, *4, and so on) will be INTEGER *2 or LOGICAL
*2, respectively.

–listing Produces the source listing file with .L suffix containing line
numbers, error messages, symbol table information, and
cross references.

–m If the generic function results do not determine the
precision of an integer-valued intrinsic function, the
compiler chooses the precisions that return INTEGER *2.
The default is INTEGER *4. Note that INTEGER *2 and
LOGICAL *2 quantities do not obey the Fortran standard
rules for storage location.

-m4 Applies the M4 macro preprocessor to source files to be
transformed with RATFOR. The driver puts the result in a
.p file. Unless you specify the –K option, the compiler
removes the .p file on completion. See the m4(1) manual
page for details.

–mp Enable the multiprocessing directives. See Chapter 5,
“Fortran Enhancements for Multiprocessors,” and
Chapter 6, “Compiling and Debugging Parallel Fortran,” of
this book, and the man page on f77(1) for further options
affecting multiprocessing compilation.

–mp_schedtype=type
Has the same effect as putting a C$MP_SCHEDTYPE= type
directive at the beginning of the file. The supported types
are simple, interleave, dynamic, gss, and runtime. See
Chapter 5, “Fortran Enhancements for Multiprocessors,”
and Chapter 6, “Compiling and Debugging Parallel
Fortran,” of this manual for more details.

–N[qxscnlC]nnn
nnn is a decimal number changing the default size of the
static tables in the compiler. See the f77(1) manual page for
details.

Driver Options

13

–nocpp Does not run the C preprocessor on the source files.
Specifying this option allows you to specify C-style
comments inside Hollerith strings. Use this option when
you want your program to strictly conform to the Fortran 77
standard.

–noexpopt Excludes floating point constant exponent optimization to
achieve the same precision as releases prior to 4D1-4.0.

–noextend_source
Sets the source statement format as described in Table 1-5.

If the source statement contains fewer than 72 characters,
blanks are assumed at the end; the ability of TAB-formatted
lines to extend past Column 72 is disabled.

This option provides VMS Fortran default mode.

–noi4 Same as –i2 option.

–nof77 Same as –onetrip switch except for the following:

• The syntax and behavior of EXTERNAL statements are
altered.

• The default value for the BLANK= clause in an OPEN
statement is ZERO.

• The default value for the STATUS= clause in an OPEN
statement is NEW.

–noisam Excludes the indexed sequential access library libisam.a
from being linked to the executable to reduce the size.

Table 1-5 Source Statement Settings for -noextend_source Option

Column Contents

1–5 Statement label

6 Continuation indicator

7–72 Statement body

73–end Ignored

14

Chapter 1: Compiling, Linking, and Running Programs

–old_rl Interprets the record length specifier for a direct
unformatted file as a number of bytes instead of a number
of words. This option provides backward compatibility
with 4D1-3.1 releases and earlier.

–onetrip Same as –1 option.

–1 Compiles DO loops so that they execute at least once if
reached. By default, DO loops are not executed if the upper
limit is smaller than the lower limit. Similar to the –nof77
option.

–P Runs only the C macro preprocessor and puts the result of
each source file into a corresponding .i file. The .i file cannot
contain # lines.

–pfa Run the pfa preprocessor to automatically discover,
parallelism in the source code. This also enables the
multiprocessing directives. There are two optional
arguments:

• –pfa list runs pfa and produces a listing file with suffix
.l explaining which loops were parallelized, and if not,
why not.

• –pfa keep runs pfa, produces the listing file, and also
keeps the transformed, multiprocessed Fortran
intermediate file in a file with suffix .a.

–Rflags flags is a valid option for RATFOR; the flags are given in the
ratfor(1) manual page.

The RATFOR input filename is filename.r. The resulting
output is placed in filename.f. You must specify the –K
option to retain the output file.

–r8 Uses REAL*8 and COMPLEX*16 as the defaults for real
and complex variables that are not explicitly declared with
a type size.

–static Local variables are saved in a static location, initialized to
zeros, and retain values between calls. This option overrides
the default –automatic option.

Driver Options

15

–trapeuv Sets unitialized local variables to 0xFFFA5A5A. This value
is treated as a floating point NaN and causes a floating point
trap.

–U Causes the compiler to differentiate upper- and lowercase
alphabetic characters. For example, the compiler considers
a and A as distinct characters. Note that this option causes
the compiler to recognize lowercase keywords only.
Therefore, lowercase keywords must be used in writing
case-sensitive programs (or in writing generic header files).

–u Turns off Fortran default data typing and any data typing
explicitly specified in an IMPLICIT statement. Forces the
explicit declaration of all data types.

–usefpidx Uses the floating point DO loop variable as the loop counter
instead of a separate integer counter to maintain backward
compatibility with releases before 4D1-4.0.

–vms_cc Uses VMS Fortran carriage control interpretation on unit 6.

–vms_endfile
Causes a VMS endfile record to be written when an
ENDFILE statement is executed, allows records to be
written after an endfile record and subsequent reading from
an input file after an endfile record is encountered.

–vms_library
Treats subprograms starting with LIB$, OTS$, and SMG$
as VMS run-time routines that accept a variable number of
arguments.

–vms_stdin Allows rereading from stdin after EOF has been
encountered.

–w Suppresses warning messages.

–w66 Suppresses Fortran 66 compatibility warning messages.

16

Chapter 1: Compiling, Linking, and Running Programs

Debugging

The compiler system provides a source-level, interactive debugger called
dbx that you can use to debug programs as they execute. With dbx you can
control program execution to set breakpoints, monitor what is happening,
modify values, and evaluate results. dbx keeps track of variables,
subprograms, subroutines, and data types in terms of the symbols used in
the source language. You can use this debugger to access the source text of
the program, to identify and reference program entities, and to detect errors
in the logic of the program.

Reference Information

For a complete list of –g driver options, see the f77(1) manual page. See the
dbx(1) manual page for information on the debugger. For a complete
description see the dbx Reference Manual.

Profiling

The compiler system permits the generation of profiled programs that, when
executed, provide operational statistics. This is done through driver option
–p (which provides pc sampling information) and the pixie and prof
programs.

A variety of options and methods of profiling are available. To learn more
about them, read Chapter 2 of the IRIX Series Compiler Guide, which
describes the advantages and methods of profiling. It also gives examples of
the various options and commands to achieve the desired results. See the
prof(1) manual page for detailed reference information.

Driver Options

17

Optimizing

The default optimizing option,–O1, causes the code generator and assembler
phases of compilation to improve the performance of your executable object.
You can prevent optimization by specifying –O0.

Table 1-6 summarizes the optimizing functions available.

The default option, –O1, causes the code generator and the assembler to
perform basic optimizations such as constant folding, common
subexpression elimination within individual statements, and common
subexpression elimination between statements.

The global optimizer, invoked with the –O2 option, is a single program that
improves the performance of an object program by transforming existing
code into more efficient coding sequences. Although the same optimizer
processes all compiler optimizations, it does distinguish between the
various languages supported by the compiler system programs to take
advantage of the different language semantics involved.

Table 1-6 Optimizer Options

Option Result

–O3 Performs all optimizations, including global register allocation. With
this option, a ucode object file is created for each Fortran source file and
left in a .u file. The newly created ucode object files, the ucode object
files specified on the command lines, the run-time startup routine,
and all of the run-time libraries are ucode linked. Optimization is done
globally on the resulting ucode linked file, and then it is linked as
normal, producing an a.out file. No .o file is left from the ucode linked
result. –c cannot be specified with –O3.

–O2 The global optimizer (uopt) phase executes. It performs optimization
only within the bounds of individual compilation units.

–O1 Default option. The code generator and the assembler perform basic
optimizations in a more limited scope.

–O0 No optimization.

18

Chapter 1: Compiling, Linking, and Running Programs

See the IRIX Series Compiler Guide for details on the optimization techniques
used by the compiler and tips on writing optimal code for optimizer
processing.

Performance

In addition to optimizing options, the compiler system provides other
options that can improve the performance of your programs:

• The –feedback and –cord options (see the f77(1) manual page) together
with the pixie(1) and prof(1) utilities, can be used to reduce possible
machine cache conflicts.

• The link editor –G num and –bestG num options control the size of the
global data area, which can produce significant performance
improvements. See Chapter 2 of the IRIX Series Compiler Guide and the
ld(1) manual page for more information.

• The –jmpopt option permits the link editor to fill certain instruction
delay slots not filled by the compiler front end. This option can improve
the performance of smaller programs not requiring extremely large
blocks of virtual memory. See ld(1) for more information.

Object File Tools

The following tools provide information on object files as indicated:

odump Lists headers, tables, and other selected parts of an object or
archive file. Chapters 10 and 11 of the Assembly Language
Programmer’s Guide describe the information provided.

stdump Lists intermediate-code symbolic information for object
files, executables, or symbolic information files.

nm Prints symbol table information for object and archive files.

file Lists the properties of program source, text, object, and
other files. This tool often erroneously recognizes command
files as C programs. It does not recognize Pascal or LISP
programs.

Archiver

19

size Prints information about the text, rdata, data, sdata, bss, and
sbss sections of the specified object or archive files. See
Chapter 10 of the Assembly Language Programmer’s Guide for
a description of the contents and format of section data.

For more information on these tools, see the odump(1), stdump(1), nm(1),
file(1), or size(1) manual pages.

Archiver

An archive library is a file that contains one or more routines in object (.o) file
format. The term object as used in this chapter refers to an .o file that is part
of an archive library file. When a program calls an object not explicitly
included in the program, the link editor ld looks for that object in an archive
library. The editor then loads only that object (not the whole library) and
links it with the calling program. The archiver (ar) creates and maintains
archive libraries and has the following main functions:

• Copying new objects into the library

• Replacing existing objects in the library

• Moving objects about the library

• Copying individual objects from the library into individual object files

See the ar(1) manual page for additional information on the archiver.

Run-Time Considerations

Invoking a Program

To run a Fortran program, invoke the executable object module produced by
the f77 command by entering the name of the module as a command. By
default, the name of the executable module is a.out. If you included the –o
filename option on the ld (or f77) command line, the executable object module
has the name that you specified.

20

Chapter 1: Compiling, Linking, and Running Programs

File Formats

Fortran supports five kinds of external files:

• sequential formatted

• sequential unformatted

• direct formatted

• direct unformatted

• key indexed file

The operating system implements other files as ordinary files and makes no
assumptions about their internal structure.

Fortran I/O is based on records. When a program opens a direct file or key
indexed file, the length of the records must be given. The Fortran I/O system
uses the length to make the file appear to be made up of records of the given
length. When the record length of a direct file is 1, the system treats the file
as ordinary system files (as byte strings, in which each byte is addressable).
A READ or WRITE request on such files consumes bytes until satisfied,
rather than restricting itself to a single record.

Because of special requirements, sequential unformatted files will probably
be read or written only by Fortran I/O statements. Each record is preceded
and followed by an integer containing the length of the record in bytes.

During a READ, Fortran I/O breaks sequential formatted files into records
by using each new line indicator as a record separator. The Fortran 77
standard does not define the required result after reading past the end of a
record; the I/O system treats the record as being extended by blanks. On
output, the I/O system writes a new line indicator at the end of each record.
If a user program also writes a new line indicator, the I/O system treats it as
a separate record.

Run-Time Considerations

21

Preconnected Files

Table 1-7 shows the standard preconnected files at program start.

All other units are also preconnected when execution begins. Unit n is
connected to a file named fort.n. These files need not exist, nor will they be
created unless their units are used without first executing an open. The
default connection is for sequentially formatted I/O.

File Positions

The Fortran 77 standard does not specify where OPEN should initially
position a file explicitly opened for sequential I/O. The I/O system positions
the file to start of file for both input and output. The execution of an OPEN
statement followed by a WRITE on an existing file causes the file to be
overwritten, erasing any data in the file. In a program called from a parent
process, units 0, 5, and 6 are positioned by the parent process.

Unknown File Status

When the parameter STATUS="UNKNOWN" is specified in an OPEN
statement, the following occurs:

• If the file does not already exist, it is created and positioned at start of
file.

• If the file exists, it is opened and positioned at the beginning of the file.

Table 1-7 Preconnected Files

Unit # Unit

5 Standard input

6 Standard output

0 Standard error

22

Chapter 1: Compiling, Linking, and Running Programs

Run-Time Error Handling

When the Fortran run-time system detects an error, the following action
takes place:

• A message describing the error is written to the standard error unit
(unit 0). See Appendix A, “Run-Time Error Messages,” for a list of the
error messages.

• A core file is produced if the f77_dump_flag environment variable is
set, as described in Appendix A, “Run-Time Error Messages.”. You can
use dbx or edge to inspect this file and determine the state of the
program at termination. For more information, see the dbx Reference
Manual and the edge(1) manual page.

To invoke dbx using the core file, enter the following:

% dbx binary-file core

where binary-file is the name of the object file output (the default is
a.out). For more information on dbx, see “Debugging” on page 16.

Trap Handling

The library libfpe.a provides two methods for handling floating point
exceptions: the subroutine handle_sigfpes and the environment variable
TRAP_FPE. Both methods provide mechanisms for handling and
classifying floating point exceptions, and for substituting new values. They
also provide mechanisms to count, trace, exit, or abort on enabled
exceptions. See the handle_sigfpes(3F) manual page for more information.

23

Chapter 2

2. Storage Mapping

This chapter contains two sections:

• “Alignment, Size, and Value Ranges” describes how the Fortran
compiler implements size and value ranges for various data types as
well as how data alignment occurs under normal conditions.

• “Access of Misaligned Data” describes two methods of accessing
misaligned data.

24

Chapter 2: Storage Mapping

Alignment, Size, and Value Ranges

Table 2-1 contains information about various data types.

a. Byte boundary divisible by two.

b. When –i2 option is used, type INTEGER would be equivalent to INTEGER*2.

c. Byte boundary divisible by four.

d. When –i2 option is used, type LOGICAL would be equivalent to LOGICAL*2.

e. Byte boundary divisible by eight.

Table 2-1 Size, Alignment, and Value Ranges of Data Types

Type Synonym Size Alignment Value Range

BYTE INTEGER*1 8 bits Byte –128…127

INTEGER*2 16 bits Half worda –32,768…32,
767

INTEGER INTEGER*4b 32 bits Wordc –231…231 –1

LOGICAL*1 8 bits Byte 0…1

LOGICAL*2 16 bits Half worda 0…1

LOGICAL LOGICAL*4d 32 bits Wordc 0…1

REAL REAL*4 32 bits Wordc See the first
note below

DOUBLE
PRECISION

REAL*8 64 bits Double worde See the first
note below

COMPLEX COMPLEX*8 64 bits Wordc

DOUBLE
COMPLEX

128 bits Double worde

CHARACTER 8 bits Byte –128…127

Alignment, Size, and Value Ranges

25

The following notes provide details on some of the items in Table 2-1.

• Table 2-2 lists the approximate valid ranges for REAL and DOUBLE.

Note: When the compiler encounters a REAL*16 declaration, it issues a
warning message. REAL*16 items are allocated 16 bytes of storage per
element, but only the first 8 bytes of each element are used. Those 8 bytes are
interpreted according to the format for REAL*8 floating numbers.

• When the compiler encounters a REAL*16 constant in a source
program, the compiler issues a warning message. The constant is
treated as a double precision (REAL*8) constant. REAL*16 constants
have the same form as double precision constants, except the exponent
indicator is Q instead of D.

• Table 2-1 states that DOUBLE PRECISION variables always align on a
double-word boundary. However, Fortran permits these variables to
align on a word boundary if a COMMON statement or equivalencing
requires it.

• Forcing INTEGER, LOCICAL, REAL, and COMPLEX variables to
align on a halfword boundary is not allowed, except as permitted by
the –align8, –align16, and –align32 command line options. See
Chapter 1, “Compiling, Linking, and Running Programs.”.

• A COMPLEX data item is an ordered pair of real numbers; a
double-complex data item is an ordered pair of double-precision
numbers. In each case, the first number represents the real part and the
second represents the imaginary part.

• LOGICAL data items denote only the logical values TRUE and FALSE
(written as .TRUE. or .FALSE.). However, to provide VMS
compatibility, LOGICAL*1 variables can be assigned all values in the
range –128 to 127.

Table 2-2 Valid Ranges for REAL and DOUBLE Data Types

Range REAL DOUBLE

Maximum 3.40282356 * 1038 1.7976931348623158 * 10 308

Minimum normalized 1.17549424 * 10 -38 2.2250738585072012 * 10 -308

Minimum denormalized 1.40129846 * 10 -46 2.2250738585072012 * 10 -308

26

Chapter 2: Storage Mapping

• You must explicitly declare an array in a DIMENSION declaration or
in a data type declaration. To support dimension, the compiler

– allows up to seven dimensions

– assigns a default of 1 to the lower bound if a lower bound is not
explicitly declared in the DIMENSION statement

– creates an array the size of its element type times the number of
elements

– stores arrays in column-major mode

• The following rules apply to shared blocks of data set up by the
COMMON statements:

– The compiler assigns data items in the same sequence as they
appear in the common statements defining the block. Data items
will be padded according to the alignment switches or the default
compiler. See “Access of Misaligned Data” on page 27 for more
information.

– You can allocate both character and noncharacter data in the same
common block.

– When a common block appears in multiple program units, the
compiler allocates the same size for that block in each unit, even
though the size required may differ (due to varying element names,
types, and ordering sequences) from unit to unit. The size allocated
corresponds to the maximum size required by the block among all
the program units except when a common block is defined by using
DATA statements, which initialize one or more of the common
block variables. In this case the common block is allocated the same
size as when it is defined.

Access of Misaligned Data

27

Access of Misaligned Data

The Fortran compiler allows misalignment of data if specified by the use of
special options.

As discussed in the previous section, the architecture of the IRIS-4D series
assumes a particular alignment of data. ANSI standard Fortran 77 cannot
violate the rules governing this alignment. Common extensions to the
dialect, particularly small integer types, allowing intermixing of character
and non-character data in COMMON and EQUIVALENCE statements and
mismatching the types of formal and actual parameters across a subroutine
interface, provide many opportunities for misalignment to occur.

Code using the extensions that compiled and executed correctly on other
systems with less stringent alignment requirements may fail during
compilation or execution on the IRIS-4D. This section describes a set of
options to the Fortran compilation system that allow the compilation and
execution of programs whose data may be misaligned. Be forewarned that
the execution of programs that use these options will be significantly slower
than the execution of a program with aligned data.

This section describes the two methods that can be used to create an
executable object file that accesses misaligned data.

Accessing Small Amounts of Misaligned Data

Use the first method if the number of instances of misaligned data access is
small or to provide information on the occurrence of such accesses so that
misalignment problems can be corrected at the source level.

This method catches and corrects bus errors due to misaligned accesses. This
ties the extent of program degradation to the frequency of these accesses.
This method also includes capabilities for producing a report of these
accesses to enable their correction.

28

Chapter 2: Storage Mapping

To use this method, keep the Fortran front end from padding data to force
alignment by compiling your program with one of two options to f77.

• Use the –align8 option if your program expects no restrictions on
alignment.

• Use the –align16 option if your program expects to be run on a machine
that requires half-word alignment.

You must also use the misalignment trap handler. This requires minor source
code changes to initialize the handler and the addition of the handler binary
to the link step (see the fixade(3f) man page).

Accessing Misaligned Data Without Modifying Source

Use the second method for programs with widespread misalignment or
whose source may not be modified.

In this method, a set of special instructions is substituted by the IRIS-4D
assembler for data accesses whose alignment cannot be guaranteed. The
generation of these more forgiving instructions may be opted for each source
file.

You can invoke this method by specifying of one of the alignment options
(–align8, –align16) to f77 when compiling any source file that references
misaligned data (see the f77(1) man page). If your program passes
misaligned data to system libraries, you might also need to link it with the
trap handler. See the fixade(3f) man page for more information.

29

Chapter 3

3. Fortran Program Interfaces

This chapter contains the following major sections:

• “Fortran/C Interface” describes the interface between Fortran routines
and routines written in C. It contains rules and gives examples for
making calls and passing arguments between the two languages.

• “Fortran/C Wrapper Interface” describes the process of generating
wrappers for C routines called by Fortran.

• “Fortran/Pascal Interface” describes the interface between Fortran
routines and routines written in Pascal. It contains rules and gives
examples for making calls and passing arguments between the two
languages.

You may need to refer to other sources of information as you read this
chapter.

• For information on storage mapping (how the variables of the various
languages appear in storage), refer to Chapter 1 for Fortran and to
Chapter 2 in the appropriate language programmer’s guide for other
languages.

• For information on the standard linkage conventions used by the
compiler in generating code, see Chapter 7 of the Assembly Language
Programmer’s Guide.

For information on built-in functions that provide access to non-Fortran
system functions and library routines, see Chapter 4 of this manual.

30

Chapter 3: Fortran Program Interfaces

Fortran/C Interface

When writing Fortran programs that call C functions, consider procedure
and function declaration conventions for both languages. Also, consider the
rules for argument passing, array handling, and accessing common blocks
of data.

Procedure and Function Declarations

This section discusses items to consider before calling C functions from
Fortran.

Names

When calling a Fortran subprogram from C, the C program must append an
underscore (_) to the name of the Fortran subprogram. For example, if the
name of the subprogram is matrix, then call it by the name matrix_. When
Fortran is calling a C function, the name of the C function must also end with
an underscore.

The Fortran compiler changes all its subprogram names to lowercase. Thus,
all of the following subprograms refer to the same function matrix when
interfacing with C:

subroutine MATRIX
subroutine Matrix
subroutine matrix

The exception to this rule is when the –u option to f77 is used. This option
causes case to be preserved.

Fortran/C Interface

31

Note that only one main routine is allowed per program. The main routine
can be written in either C or Fortran. Table 3-1 contains an example of a C
and a Fortran main routine.

Invocations

Invoke a Fortran subprogram as if it were an integer-valued function whose
value specifies which alternate return to use. Alternate return arguments
(statement labels) are not passed to the subprogram but cause an indexed
branch in the calling subprogram. If the subprogram is not a function and
has no entry points with alternate return arguments, the returned value is
undefined. The Fortran statement

call nret (*1,*2Ex,*3)

is treated exactly as if it were the computed goto

goto (1,2,3), nret()

A C function that calls a Fortran subprogram can usually ignore the return
value of a Fortran subroutine; however, the C function should not ignore the
return value of a Fortran function. Table 3-2 shows equivalent function and
subprogram declarations in C and Fortran programs.

Table 3-1 Main Routines

C Fortran

main () {
printf("hi!\n");
}

 write (6,10)
10 format ('hi!')
 end

Table 3-2 Equivalent C and Fortran Function Declarations

C Function Declaration Fortran Function Declaration

double dfort() double precision function dfort()

double rfort() real function rfort()

int ifort() integer function ifort()

int lfort logical function lfort()

32

Chapter 3: Fortran Program Interfaces

Note the following:

• Avoid calling Fortran functions of type FLOAT, COMPLEX, and
CHARACTER from C.

• You cannot write a C function so that it will return a COMPLEX value
to Fortran.

• A character-valued Fortran subprogram is equivalent to a C language
routine with two extra initial arguments: a data address and a length.
However, if the length is one, no extra argument is needed and the
single character result is returned as in a normal numeric function.

Thus

character*15 function g(…)

is equivalent to

char result [1];
long int length;
g_(result, length, …)
…

and could be invoked in C by

char chars[15]
g_(chars, 15, …);

and

character function h(…)

could be invoked in C by

char c, h();
c=h_(…);

Arguments

The following rules apply to arguments passed between Fortran and C:

• All explicit arguments must be passed by reference. All routines must
specify an address rather than a value. Thus, to pass constants or
expressions to Fortran, the C routine must first store their values into
variables and then pass the address of the variable. (The only exception
occurs when passing the length of a string from C to a Fortran
subroutine with a parameter of type CHARACTER.)

Fortran/C Interface

33

• When passing the address of a variable, the data representations of the
variable in the calling and called routines must correspond, as shown in
Table 3-3.

• Note that in Fortran, INTEGER and LOGICAL variables occupy 32 bits
of memory by default, but this can be changed by using the –i2 option.

• The Fortran compiler may add items not explicitly specified in the
source code to the argument list. The compiler adds the following items
under the conditions specified:

– destination address for character functions, when called

– length of a character variable, when an argument is the address of a
character variable

When a C function calls a Fortran routine, the C function must explicitly
specify these items in its argument list in the following order:

1. If the Fortran routine is a function that returns a character variable of
length greater than 1, specify the address and length of the resultant
character variable.

2. Specify normal arguments (addresses of arguments or functions).

a. The array length must also be passed, as discussed in the next section.

Table 3-3 Equivalent Fortran and C Data Types

Fortran C

integer*2 x short int x;

integer x long int x; or just int x;

logical x long int x; or just int x;

real x float x;

double precision x double x;

complex x struct{float real, imag;) x;

double complex x struct{double dreal,dimag;} x;

character*6 x char x[6] a

34

Chapter 3: Fortran Program Interfaces

3. Specify the length of each normal character parameter in the order it
appeared in the argument list. The length must be specified as a
constant value or INTEGER variable (that is, not an address).

The examples on the following pages illustrate these rules.

Example 1

This example shows how a C routine specifies the destination address of a
Fortran function (which is only implied in a Fortran program).

Fortran

C Fortran call to SAM, a routine written
C in Fortran

 EXTERNAL F
 CHARACTER*7 S
 INTEGER B(3)
 …
 CALL SAM (F, B(2), S)

C

/* C call to SAM, a routine written in Fortran */
/* We pass in the function pointer for the */
/* Fortran SUBROUTINE F */

char s[7];
int b[3];
extern void sam_(void (*)(), int *, char*);
 /* Fortran subroutine SAM */
extern void f_(); /* Fortran subroutine F */
…
sam_(F, &B[1], S); /* We pass in pointer to Fortran F */
 /* for Fortran call-by-reference */

Example 2

This example shows how a C routine must specify the length of a character
string (which is only implied in a Fortran call).

Fortran/C Interface

35

Fortran

C Fortran call to F, a function written
C in Fortran

 EXTERNAL F
 CHARACTER*10 F, G
 G = F()

C

/* C call to SAM, a routine written in Fortran */
/* which returns a string. */

CHAR S[10];
. . .
f_(S, 10);

The function F, written in Fortran

C function F, written in Fortran

 CHARACTER*10 FUNCTION F()
 F = ‘0123456789’
 RETURN
 END

Array Handling

Fortran stores arrays in column-major order with the leftmost subscript
varying the fastest. C, however, stores arrays in the opposite arrangement
(row-major order), with the rightmost subscripts varying the fastest.

Here is how the layout of the Fortran array looks:

integer t (2,3)
t(1,1), t(2,1), t(1,2), t(2,2), t(1,3), t(2,3)

Here is how the layout of the C array looks:

int t [2] [3]
t[0][0], t[0][1], t[0][2], t[1][0], t[1][0], t[1][1],t[1][2]

Note that the default for the lower bound of an array in Fortran is 1, where
the default in C is 0.

36

Chapter 3: Fortran Program Interfaces

When a C routine uses an array passed by a Fortran subprogram, the
dimensions of the array and the use of the subscripts must be interchanged,
as shown in Figure 3-1.

Figure 3-1 Array Subscripts

The Fortran caller prints out the value 99. Note the following:

• Because arrays are stored in column-major order in Fortran and row-
major order in C, the dimension and subscript specifications are
reversed.

• Because the lower-bound default is 1 for Fortran and 0 for C, 1 must be
subtracted from the indexes in the C routine. Also, because Fortran
passes parameters by reference, *j and *p are pointers in the C routine.

Accessing Common Blocks of Data

The following rules apply to accessing common blocks of data:

• Fortran common blocks must be declared by common statements; C
can use any global variable. Note that the common block name in C
(sam_) must end with an underscore.

• Data types in Fortran and C programs must match unless you want
equivalencing. If so, you must adhere to the alignment restrictions for
the data types described in Chapter 2.

Fortran caller

 integer a(2,3)
 call p (a, 1, 3)
 write (6, 10) a(1, 3)
10 format (1x, I6)
 stop
 end

C called routine

void
p_(a, i, j)
int *i, *j, a[3] [3]
{ a[*j-1] [*i-1] = 99;
}

A.

 B.
 j and i are pointers to integers.

Dimensions and subscripts are reversed.

1 is subtracted from the indices.

Fortran/C Interface

37

• If the same common block is of unequal length, the largest size is used
to allocate space.

• Unnamed common blocks are given the name _BLNK_.

The following examples show C and Fortran routines that access common
blocks of data.

Fortran

subroutine sam()
common /r/ i, r
i = 786
r = 3.2
return
end

C

struct S {int i; float j;}r_;
main () {
sam_() ;
printf(“%d %f\n”,r_.i,r_.j);
}

The C routine prints out 786 and 3.2.

38

Chapter 3: Fortran Program Interfaces

Fortran/C Wrapper Interface

This section describes the process of generating wrappers for C routines
called by Fortran. If you want to call existing C routines (which use value
parameters rather than reference parameters) from Fortran, these wrappers
convert the parameters during the call.

The program mkf2c provides an alternate interface for C routines called by
Fortran.

Fortran routines called by C must use the method described in “Fortran/C
Wrapper Interface” on page 38.

The Wrapper Generator mkf2c

The mkf2c program uses C data-type declarations for parameters to generate
the correct assembly language interface. In generating a Fortran-callable
entry point for an existing C-callable function, the C function is passed
through mkf2c, and mkf2c adds additional entry points. Native language
entry points are not altered.

Use these rules with mkf2c:

• Each function given to mkf2c must have the standard C function syntax.

• The function body must exist but can be empty. Function names are
transformed as necessary in the output.

A simple case of using a function as input to mkf2c is

func()

{}

Here, the function func has no parameters. If mkf2c is used to produce a
Fortran-to-C wrapper, the Fortran entry is func_. The wrapper func_ simply
calls the C routine func().

–

Fortran/C Wrapper Interface

39

Here is another example:

simplefunc (a)
int a;
{}

In this example, the function simplefunc has one argument, a. The argument
is of type int. For this function, mkf2c produces three items: a Fortran entry,
simple, and two pieces of code. The first piece of code dereferences the
address of a, which was passed by Fortran. The second passes the resulting
int to C. It then calls the C routine simplefunc().

Using Fortran Character Variables as Parameters

You can specify the length of a character variable passed as a parameter to
Fortran either at compilation or at run time. The length is determined by the
declaration of the parameter in the Fortran routine. If the declaration
contains a length, the passed length must match the declaration. For
example, in the following declaration, the length of the string is declared to
be 10 characters:

character*10 string

The passed length must be 10 in order to match the declaration.

When this next declaration is used, the passed length is taken for operations
performed on the variable inside the routine:

character*(*) string

The length can be retrieved by use of the Fortran intrinsic function LEN.
Substring operations may cause Fortran run-time errors if they do not check
this passed length.

Arrays of character variables are treated by Fortran as simple byte arrays,
with no alignment of elements. The length of the individual elements is
determined by the length passed at run time. For instance, the array sarray()
can be declared in this manner:

character*(*) sarray()

40

Chapter 3: Fortran Program Interfaces

This length is necessary to compute the indexes of the array elements. The
program mkf2c has special constructs for dealing with the lengths of Fortran
character variables.

Reduction of Parameters

The program mkf2c reduces each parameter to one of seven simple objects.
The following list explains each object.

64-bit value The quantity is loaded indirectly from the passed address,
and the result is passed to C. Parameters with the C type
double (or long float) are reduced to 64-bit values by
converting the 32-bit Fortran REAL parameter to double
precision (see below).

32-bit value mkf2c uses the passed address to retrieve a 32-bit data value,
which is passed to C. Parameters with C types int and long
are reduced to 32-bit values. Any parameter with an
unspecified type is assumed to be int. If the –f option is
specified, parameters with the C type float are reduced to
32-bit values.

16-bit value A 16-bit value is loaded using the passed address. The value
is either extended (if type is signed in the function
parameter list) or masked (if type is unsigned) and passed
to C. Any parameter whose C type is short is reduced to a
16-bit value.

8-bit value The char type in C corresponds to the CHARACTER*1 type
in Fortran 77. (There is no mechanism to pass integer*1
variables to C. A pointer to the value can be passed by
declaring the parameter as int*.) By default the character
value is loaded as an unsigned quantity and passed to C. If
the –signed option has been specified when invoking mkf2c,
the character value is sign extended before being passed to
C.

character string A copy is made of the Fortran character variable, and it is
null terminated, and passed as a character pointer to C. Any
modifications that C makes to the string will not affect the
corresponding character variable in the Fortran routine.

Fortran/C Wrapper Interface

41

character array When using mkf2c to call C from Fortran, the address of the
Fortran character variable is passed. This character array
can be modified by C. It is not guaranteed to be null
terminated. The length of the Fortran character variable is
treated differently (as discussed in the next section).

pointer The value found on the stack is treated as a pointer and is
passed without alteration. Any array or pointer that is not
of type char, any parameter with multiple levels of
indirection, or any indirect array is assumed to be of type
pointer. If the type of a parameter is specified but is not one
of the standard C types, mkf2c will pass it as a pointer.

Below is an example of a C specification for a function:

test (i,s,c,ptr1,ar1,u,f,d,d1,str1,str2,str3)
short s;
unsigned char c;
int *ptr1;
char *ptr2[];
short ar1[];
sometype u;
float f;
long float d, *d1;
char *str1;
char str2[],str3[30];
{
 /* The C function body CAN go here. Nothing
 except the opening and closing braces are
 necessary */

If this function were passed to mkf2c, the parameters would be transformed
as follows:

• PTR1, PTR2, AR1, D1, and U would be passed as simple pointers.

• mkf2c would complain about not understanding the type SOMETYPE
but, by default, would assume it to be of type POINTER.

42

Chapter 3: Fortran Program Interfaces

• S, C, and D would be passed as values of length 16 bits, 64 bits, and 8
bits, respectively. F would be converted to a 64-bit DOUBLE before
being passed, unless the –f option had been specified. If the –f option
had been specified, F would be passed as a 32-bit value. Because the
type of I is not specified, it would be assumed to be INT and would
also be passed as a 32-bit value. Storing values in any of these
parameters would not have any effect on the original Fortran data.

Fortran Character Array Lengths

When the wrapper generator is used, a character variable that is specified as
char* in the C parameter list is copied and null terminated. C may thus
determine the length of the string by the use of the standard C function
strlen.

If a character variable is specified as a character array in the C parameter list,
the address of the character variable is passed, making it impossible for C to
determine its length, as it is not null terminated. When the call occurs, the
wrapper code receives this length from Fortran. For those C functions
needing this information, the wrapper passes it by extending the C
parameter list.

For example, if the C function header is specified as follows

func1 (carr1,i,str,j,carr2)
char carr1[],*str,carr2[];
int i, j;
{}

mkf2c will pass a total of seven parameters to C. The sixth parameter will be
the length of the Fortran character variable corresponding to carr1, and the
seventh will be the length of carr2. The C function func1() must use the
varargs macros to retrieve these hidden parameters. mkf2c will ignore the

Fortran/C Wrapper Interface

43

varargs macro va_alist appearing at the end of the parameter name list and
its counterpart va_alist appearing at the end of the parameter type list. In the
case above, use of these macros would produce the function header

#include "varargs.h"
func1 (carr1,i,str,j,carr2,va_alist)
char carr1[], *str, carr2[];
int i, j;
va_dcl
{}

The C routine could retrieve the lengths of carr1 and carr2, placing them in
the local variables carr1_len and carr2_len by the following code fragment:

va_list ap;
int carr1_len, carr2_len;
va_start(ap);
carr1_len = va_arg (ap, int)
carr2_len = va_arg (ap, int)

Using mkf2c and extcentry

mkf2c understands only a limited subset of the C grammar. This subset
includes common C syntax for function entry point, C-style comments, and
function bodies. However, it cannot understand constructs such as typedefs,
external function declarations, or C preprocessor directives.

To ensure that only those constructs understood by mkf2c are included in
wrapper input, you need to place special comments around each function
for which Fortran-to-C wrappers are to be generated (see example below).

Once these special comments, /* CENTRY */ and /* ENDCENTRY */, are
placed around the code, use the program excentry(1) before mkf2c to generate
the input file for mkf2c.

44

Chapter 3: Fortran Program Interfaces

To illustrate the use of extcentry, the C file foo.c is shown below. It contains the
function foo, which is to be made Fortran callable.

typedef unsigned short grunt [4];
struct {
 long 1,11;
 char *str;
} bar;
main ()
{
 int kappa =7;
 foo (kappa,bar.str);
}
/* CENTRY */
foo (integer, cstring)
int integer;
char *cstring;
{
 if (integer==1) printf(“%s”,cstring);
} /* ENDCENTRY */

The special comments /* CENTRY */ and /* ENDCENTRY */ surround the
section that is to be made Fortran callable. To generate the assembly
language wrapper foowrp.s from the above file foo.c, use the following set
of commands:

% extcentry foo.c foowrp.fc

% mkf2c foowrp.fc foowrp.s

The programs mkf2c and extcentry are found in the directory /usr/bin on your
workstation.

Fortran/C Wrapper Interface

45

Makefile Considerations

make(1) contains default rules to help automate the control of wrapper
generation. The following example of a makefile illustrates the use of these
rules. In the example, an executable object file is created from the files main.f
(a Fortran main program) and callc.c:

test: main.o callc.o
 f77 -o test main.o callc.o
callc.o: callc.fc
clean:
 rm -f *.o test *.fc

In this program, main calls a C routine in callc.c. The extension .fc has been
adopted for Fortran-to-call-C wrapper source files. The wrappers created
from callc.fc will be assembled and combined with the binary created from
callc.c. Also, the dependency of callc.o on callc.fc will cause callc.fc to be
recreated from callc.c whenever the C source file changes. (The programmer
is responsible for placing the special comments for extcentry in the C source
as required.)

Note: Options to mkf2c can be specified when make is invoked by setting the
make variable F2CFLAGS. Also, do not create a .fc file for the modules that
need wrappers created. These files are both created and removed by make in
response to the file.o:file.fc dependency.

The makefile above will control the generation of wrappers and Fortran
objects. You can add modules to the executable object file in one of the
following ways:

• If the file is a native C file whose routines are not to be called from
Fortran using a wrapper interface, or if it is a native Fortran file, add the
.o specification of the final make target and dependencies.

• If the file is a C file containing routines to be called from Fortran using a
wrapper interface, the comments for extcentry must be placed in the C
source, and the .o file placed in the target list. In addition, the
dependency of the .o file on the .fc file must be placed in the makefile.
This dependency is illustrated in the example makefile above where
callf.o depends on callf.fc.

46

Chapter 3: Fortran Program Interfaces

Fortran/Pascal Interface

This section discusses items you should consider when writing a call
between Fortran and Pascal.

Procedure and Function Declarations

This section explains procedure and function declaration considerations.

Names

In calling a Fortran program from Pascal, you must place an underscore (_)
as a suffix to routine names and data names.

To call Fortran from Pascal or vice versa, specify an underscore (_) as the
suffix of the name of the Fortran or Pascal routine being called. For example,
if the routine is called matrix, then call it by the name matrix_.

In Pascal, always declare the external Fortran subprogram or function with
VAR parameters.

Note that only one main routine is allowed per program. The main routine
can be written either in Pascal or Fortran. Table 3-4 contains an example of a
Pascal and a Fortran main routine.

Table 3-4 Main Routines

Pascal Fortran

program p; write (6,10)

begin 10 format ('hi!')

 writeln ('hi!'); stop

end. end

Fortran/Pascal Interface

47

Invocation

If you have alternate return labels, you can invoke a Fortran subprogram as
if it were an integer-valued function whose value specifies which alternate
return to use. Alternate return arguments (statement labels) are not passed
to the function but cause an indexed branch in the calling subprogram. If the
subprogram is not a function and has no entry points with alternate return
arguments, the returned value is undefined.

The Fortran statement

call nret (*1,*2,*3)

is treated exactly as if it were the computed goto

goto (1,2,3), nret()

A Pascal function that calls a Fortran subroutine can usually ignore the
return value. Table 3-5 shows equivalent function declarations in Pascal and
Fortran.

Fortran has a built-in data type COMPLEX that does not exist in Pascal.
Therefore, there is no compatible way of returning these values from Pascal.

A character-valued Fortran function is equivalent to a Pascal language
routine with two initial extra arguments: a data address and a length.

Table 3-5 Function Declarations

Pascal Fortran

function dfort_(): double;
function rfort_(): real;
function ifort_(): integer;

double precision function dfort()
real function rfort()
integer function ifort()

48

Chapter 3: Fortran Program Interfaces

The following Fortran statement

character*15 function g (…)

is equivalent to the Pascal code

type string = array [1..15];
var
 length: integer;
 a: array[1..15] of char;
procedure g_(var a:string;length:integer;…); external;

and could be invoked by the Pascal line

g_ (a, 15);

Arguments

The following rules apply to argument specifications in both Fortran and
Pascal programs:

• All arguments must be passed by reference. That is, the argument must
specify an address rather than a value. Thus, to pass constants or
expressions, their values must first be stored into variables and then the
addresses of the variables passed.

• When passing the address of a variable, the data representations of the
variable in the calling and called routines must correspond, as shown in
Table 3-6.

Table 3-6 Equivalent Fortran and Pascal Data Types

Pascal Fortran

integer integer*4, integer, logical

cardinal, char, boolean, character

enumeration

real real

double double precision

procedure subroutine

Fortran/Pascal Interface

49

• Note that Fortran requires that each INTEGER, LOGICAL, and REAL
variable occupy 32 bits of memory.

• Functions of type INTEGER, REAL, or DOUBLE PRECISION are
interchangeable between Fortran and Pascal and require no special
considerations.

• The Fortran compiler may add items not explicitly specified in the
source code to the argument list. The compiler adds the following items
under the conditions specified:

– destination address for character functions, when called

– length of character strings, when an argument is the address of a
character string

When a Pascal program calls a Fortran subprogram, the Pascal program
must explicitly specify these items in its argument list in the following order:

1. Destination address of character function.

2. Normal arguments (addresses of arguments or functions).

3. Length of character strings. The length must be specified as an absolute
value or INTEGER variable. The next two examples illustrate these
rules.

record
 r:real;
 i:real;
end;

 complex

record
 r:double;
 i:double;
end;

double complex

Table 3-6 (continued) Equivalent Fortran and Pascal Data Types

Pascal Fortran

50

Chapter 3: Fortran Program Interfaces

Example

The following example shows how a Pascal routine must specify the length
of a character string (which is only implied in a Fortran call).

Fortran call to SAM

C SAM IS A ROUTINE WRITTEN IN FORTRAN

 EXTERNAL F
 CHARACTER*7 S
 INTEGER B(3)
 …
 CALL SAM (F, B(1), S) <– Length of S is implicit.

Pascal call to SAM

PROCEDURE F_; EXTERNAL;

S: ARRAY[1..7] OF CHAR;
B: ARRAY[1..3] OF INTEGER;
 …
SAM_ (F, B[1], S, 7); <– Length of S is explicit.

Execution-Time Considerations

Pascal checks certain variables for errors at execution time, whereas Fortran
does not. For example, in a Pascal program, when a reference to an array
exceeds its bounds, the error is flagged (if run-time checks are not
suppressed). Use the f77 –c option if you want a Fortran program to detect
similar errors when you pass data to it from a Pascal program.

Array Handling

Fortran stores arrays in column-major order, where the leftmost subscripts
vary the fastest. Pascal, however, stores arrays in row-major order, with the
rightmost subscript varying the fastest. Also, the default lower bound for
arrays in Fortran is 1. Pascal has no default; the lower bound must be
explicitly specified. Here is an example of the various layouts:

Fortran/Pascal Interface

51

Fortran

integer t (2,3)
t(1,1), t(2,1), t(1,2), t(2,2), t(1,3), t(2,3)

Pascal

var t: array[1..2,1..3] of integer;
t[1,1], t[1,2], t[1,3], t[2,1], t[2,2], t[2,3]

When a Pascal routine uses an array passed by a Fortran program, the
dimensions of the array and the use of the subscripts must be interchanged.
The example below shows the Pascal code that interchanges the subscripts.

In the following example, the Fortran routine calls the Pascal procedure p,
receives the value 99, and prints it out.

Fortran

 INTEGER A(2,3)
 CALL P (A, 1, 3)
 WRITE (6,10) A(1,3)
10 FORMAT (1X, I9)
 STOP
 END

Pascal

TYPE ARRY = ARRAY [1..3,1..2];
PROCEDURE P_(VAR A:ARRY; VAR I,J:INTEGER);

BEGIN
 A[I,J] := 99;
END;

In the next example, the Pascal routine passes the character string
“0123456789” to the Fortran subroutine S_, which prints it out and then
returns to the calling program.

52

Chapter 3: Fortran Program Interfaces

Pascal

TYPE STRING = ARRAY[1..10] OF CHAR;
PROCEDURE S_(VAR A: STRING; I: INTEGER); EXTERNAL;
/* Note the underbar */
PROGRAM TEST;
VAR
 R: STRING;
BEGIN
 R:= “0123456789”;
 S_(R,10);
END.

Fortran

 SUBROUTING S(C)
 CHARACTER*10 C
 WRITE (6,10) C
10 FORMAT (6,10) C
 RETURN
 END

Accessing Common Blocks of Data

The following rules apply to accessing common blocks of data:

• Fortran common blocks must be declared by common statements; Pascal
can use any global variable. Note that the common block name in
Pascal (sam_) must end with an underscore.

• Data types in the Fortran and Pascal programs must match unless you
want implicit equivalencing. If so, adhere to the alignment restrictions
for the data types described in Chapter 2, “Storage Mapping.”

• If the same common block is of unequal length, the largest size is used
to allocate space.

• Unnamed common blocks are given the name _BLNK_, where _ is the
underscore character.

Fortran/Pascal Interface

53

Example

The following examples show Fortran and Pascal routines that access
common blocks of data.

Pascal

VAR
A_: RECORD
 I : INTEGER;
 R : REAL;
END;
PROCEDURE SAM_;
 EXTERNAL;
PROGRAM S;

BEGIN
A_.I := 4;
A_.R := 5.3;
SAM_;
END.

Fortran

 SUBROUTINE SAM()
 COMMON /A/I,R
 WRITE (6,10) i,r
10 FORMAT (1x,I5,F5.2)
 RETURN
 END

The Fortran routine prints out 4 and 5.30.

55

Chapter 4

4. System Functions and Subroutines

This chapter describes extensions to Fortran 77 that are related to the IRIX
compiler and operating system.

• “Library Functions” summarizes the Fortran run-time library
functions.

• “Intrinsic Subroutine Extensions” describes the extensions to the
Fortran intrinsic subroutines.

• “Function Extensions” describes the extensions to the Fortran
functions.

Library Functions

The Fortran library functions provide an interface from Fortran programs to
the system in the same way that the C library provides for C programs. The
compiler automatically loads an interface routine when it processes the
associated call.

56

Chapter 4: System Functions and Subroutines

Table 4-1 summarizes the functions in the Fortran run-time library.

Table 4-1 Summary of System Interface Library Routines

Function Purpose

abort abnormal termination

access determine accessibility of a file

acct enable/disable process accounting

alarm execute a subroutine after a specified time

barrier perform barrier operations

blockproc block processes

brk change data segment space allocation

chdir change default directory

chmod change mode of a file

chown change owner

chroot change root directory for a command

close close a file descriptor

creat create or rewrite a file

ctime return system time

dtime return elapsed execution time

dup duplicate an open file descriptor

etime return elapsed execution time

exit terminate process with status

fcntl file control

fdate return date and time in an ASCII string

fgetc get a character from a logical unit

fork create a copy of this process

fputc write a character to a Fortran logical unit

Library Functions

57

free_barrier free barrier

fseek reposition a file on a logical unit

fstat get file status

ftell reposition a file on a logical unit

gerror get system error messages

getarg return command line arguments

getc get a character from a logical unit

getcwd get pathname of current working directory

getdents read directory entries

getegid get effective group ID

gethostid get unique identifier of current host

getenv get value of environment variables

geteuid get effective user ID

getgid get user or group ID of the caller

gethostname get current host ID

getlog get user’s login name

getpgrp get process group ID

getpid get process ID

getppid get parent process ID

getsockopt get options on sockets

getuid get user or group ID of caller

gmtime return system time

iargc return command line arguments

idate return date or time in numerical form

Table 4-1 (continued) Summary of System Interface Library Routines

Function Purpose

58

Chapter 4: System Functions and Subroutines

ierrno get system error messages

ioctl control device

isatty determine if unit is associated with tty

itime return date or time in numerical form

kill send a signal to a process

link make a link to an existing file

loc return the address of an object

lseek move read/write file pointer

lstat get file status

ltime return system time

m_fork create parallel processes

m_get_myid get task ID

m_get_numprocs get number of subtasks

m_kill_procs kill process

m_lock set global lock

m_next return value of counter

m_park_procs suspend child processes

m_rcle_procs resume child processes

m_set_procs set number of subtasks

m_sync synchronize all threads

m_unlock unset a global lock

mkdir make a directory

mknod make a directory/file

mount mount a filesystem

Table 4-1 (continued) Summary of System Interface Library Routines

Function Purpose

Library Functions

59

new_barrier initialize a barrier structure

nice lower priority of a process

open open a file

oserror get/set system error

pause suspend process until signal

perror get system error messages

pipe create an interprocess channel

plock lock process, test, or data in memory

prctl control processes

profil execution-time profile

ptrace process trace

putc write a character to a Fortran logical unit

putenv set environment variable

qsort quick sort

read read from a file descriptor

readlink read value of symbolic link

rename change the name of a file

rmdir remove a directory

sbrk change data segment space allocation

schedctl call to scheduler control

send send a message to a socket

setblockproccnt set semaphore count

setgid set group ID

sethostid set current host ID

Table 4-1 (continued) Summary of System Interface Library Routines

Function Purpose

60

Chapter 4: System Functions and Subroutines

setoserror set system error

setpgrp set process group ID

setsockopt set options on sockets

setuid set user ID

sginap put process to sleep

shmat attach shared memory

shmdt detach shared memory

sighold raise priority and hold signal

sigignore ignore signal

signal change the action for a signal

sigpause suspend until receive signal

sigrelse release signal and lower priority

sigset specify system signal handling

sleep suspend execution for an interval

socket create an endpoint for communication TCP

sproc create a new share group process

stat get file status

stime set time

symlink make symbolic link

sync update superblock

sysmp control multiprocessing

system issue a shell command

taskblock block tasks

taskcreate create a new task

Table 4-1 (continued) Summary of System Interface Library Routines

Function Purpose

Library Functions

61

taskctl control task

taskdestroy kill task

tasksetblockcnt set task semaphore count

taskunblock unblock task

timea return system time

ttynam find name of terminal port

uadmin administrative control

ulimit get and set user limits

umask get and set file creation mask

umount dismount a file system

unblockproc unblock processes

unlink remove a directory entry

uscalloc shared memory allocator

uscas compare and swap operator

usclosepollsema detach file descriptor from a pollable semaphore

usconfig semaphore and lock configuration operations

uscpsema acquire a semaphore

uscsetlock unconditionally set lock

usctlsema semaphore control operations

usdumplock dump lock information

usdumpsema dump semaphore information

usfree user shared memory allocation

usfreelock free a lock

usfreepollsema free a pollable semaphore

Table 4-1 (continued) Summary of System Interface Library Routines

Function Purpose

62

Chapter 4: System Functions and Subroutines

usfreesema free a semaphore

usgetinfo exchange information through an arena

usinit semaphore and lock initialize routine

usinitlock initialize a lock

usinitsema initialize a semaphore

usmalloc allocate shared memory

usmallopt control allocation algorithm

usnewlock allocate and initialize a lock

usnewpollsema allocate and initialize a pollable semaphore

usnewsema allocate and initialize a semaphore

usopenpollsem attach a file descriptor to a pollable semaphore

uspsema acquire a semaphore

usputinfo exchange information through an arena

usrealloc user share memory allocation

ussetlock set lock

ustest lock test lock

ustestsema return value of semaphore

ustrace trace

usunsetlock unset lock

usvsema free a resource to a semaphore

uswsetlock set lock

wait wait for a process to terminate

write write to a file

Table 4-1 (continued) Summary of System Interface Library Routines

Function Purpose

Intrinsic Subroutine Extensions

63

You can display information on a function with the man command:

% man function

Intrinsic Subroutine Extensions

This section describes the intrinsic subroutines that are extensions to Fortran
77. The rules for using the intrinsic subroutines are

• The subroutine names are specially recognized by the compiler. A
user-written subroutine with the same name as a system subroutine
must be declared in an EXTERNAL statement in the calling
subprogram.

• Using a user-written subroutine with the same name as a system
subroutine in one subprogram does not preclude using the actual
system subroutine in a different subprogram.

• To pass the name of a system subroutine as an argument to another
subprogram, the name of the system subroutine must be declared in an
INTRINSIC statement in the calling subprogram.

• When a system subroutine name is passed as an argument to another
subprogram, the call to the system subroutine via the formal parameter
name in the receiving subprogram must use the primary calling
sequence for the subprogram (when there is more than one possible
calling sequence).

a. The library function time can be invoked only if it is declared in an external statement.
Otherwise, it will be misinterpreted as the VMS-compatible intrinsic subroutine time.

64

Chapter 4: System Functions and Subroutines

Table 4-2 gives an overview of the system subroutines and their function;
they are described in detail in the sections following the table.

DATE

The DATE routine returns the current date as set by the system; the format
is as follows:

CALL DATE (buf)

where buf is a variable, array, array element, or character substring nine
bytes long. After the call, buf contains an ASCII variable in the format
dd-mmm-yy, where dd is the date in digits, mmm is the month in alphabetic
characters, and yy is the year in digits.

Table 4-2 Overview of System Subroutines

Subroutine Information Returned

DATE Current date as nine-byte string in ASCII representation

IDATE Current month, day, and year, each represented by a separate integer

ERRSNS Description of the most recent error

EXIT Terminates program execution

TIME Current time in hours, minutes, and seconds as an eight-byte string in
ASCII representation

MVBITS Moves a bit field to a different storage location

Intrinsic Subroutine Extensions

65

IDATE

The IDATE routine returns the current date as three integer values
representing the month, date, and year; the format is as follows:

CALL IDATE (m, d, y)

where m, d, and y are either INTEGER*4 or INTEGER*2 values representing
the current month, day and year. For example, the values of m, d and y on
August 10, 1989, are

m = 8
d = 10
y = 89

ERRSNS

The ERRSNS routine returns information about the most recent program
error; the format is as follows:

CALL ERRSNS (arg1, arg2, arg3, arg4, arg5)

The arguments (arg1, arg2, and so on) can be either INTEGER*4 or
INTEGER*2 variables. On return from ERRSNS, the arguments contain the
information shown in Table 4-3.

Although only arg1 and agr4 return relevant information, arg2, arg3, and arg5
are always required.

Table 4-3 Information Returned by ERRSNS

Argument Contents

arg1 IRIX global variable errno, which is then reset to zero after the call

arg2 Zero

arg3 Zero

arg4 Logical unit number of the file that was being processed when the
error occurred

arg5 Zero

66

Chapter 4: System Functions and Subroutines

EXIT

The EXIT routine causes normal program termination and optionally
returns an exit-status code; the format is as follows:

CALL EXIT (status)

where status is an INTEGER*4 or INTEGER*2 argument containing a status
code.

TIME

The TIME routine returns the current time in hours, minutes, and seconds;
the format is as follows:

CALL TIME (clock)

where clock is a variable, array, array element, or character substring; it must
be eight bytes long. After execution, clock contains the time in the format
hh:mm:ss, where hh, mm, and ss are numerical values representing the hour,
the minute, and the second.

MVBITS

The MVBITS routine transfers a bit field from one storage location to
another; the format is as follows:

CALL MVBITS (source,sbit,length,destination,dbit)

Function Extensions

67

Table 4-4 defines the arguments. Arguments can be declared as INTEGER*2
or INTEGER*4.

Function Extensions

Table 4-5 gives an overview of the functions added as extensions of Fortran
77.

These functions are described in detail in the following sections.

Table 4-4 Arguments to MVBITS

Argument Type Contents

source Integer variable or array element Source location of bit field to be
transferred

sbit Integer expression First bit position in the field to be
transferred from source.

length Integer expression Length of the field to be transferred
from source.

destination Integer variable or array element Destination location of the bit field

dbit Integer expression First bit in destination to which the
field is transferred

Table 4-5 Function Extensions

Function Information Returned

SECNDS Elapsed time as a floating point value in seconds. This is an
intrinsic routine.

RAN The next number from a sequence of pseudo-random numbers.
This is not an intrinsic routine.

68

Chapter 4: System Functions and Subroutines

SECNDS

SECNDS is an intrinsic routine that returns the number of seconds since
midnight, minus the value of the passed arguments; the format is as follows:

s = SECNDS(n)

After execution, s contains the number of seconds past midnight less the
value specified by n. Both s and n are single-precision, floating point values.

RAN

The RAN routine generates a random number; the format is as follows:

v = RAN(s)

The argument s is an INTEGER*4 variable or array element; s serves as a
seed in determining the next random number and should initially be set to
a large, odd integer value. This permits the computation of multiple random
number series by supplying different variable names as the seed argument
to RAN.

Note: Because RAN modifies the argument s, calling the function with a
constant can cause a core dump.

69

Chapter 5

5. Fortran Enhancements for Multiprocessors

This chapter contains these sections:

• “Overview” provides an overview of this chapter.

• “Parallel Loops” discusses the concept of parallel DO loops.

• “Writing Parallel Fortran” explains how to use compiler directives to
generate code that can be run in parallel.

• “Analyzing Data Dependencies for Multiprocessing” describes how to
analyze DO loops to determine whether they can be parallelized.

• “Breaking Data Dependencies” explains how to rewrite DO loops that
contain data dependencies so that some or all of the loop can be run in
parallel.

• “Work Quantum” describes how to determine whether the work
performed in a loop is greater than the overhead associated with
multiprocessing the loop.

• “Cache Effects” explains how to write loops that account for the effect
of the cache.

• “Advanced Features” describes features that override multiprocessing
defaults and customize parallelism.

• “DOACROSS Implementation” discusses how multiprocessing is
implemented in a DOACROSS routine.

70

Chapter 5: Fortran Enhancements for Multiprocessors

Overview

The Silicon Graphics Fortran compiler allows you to apply the capabilities
of a Silicon Graphics multiprocessor workstation to the execution of a single
job. By coding a few simple directives, the compiler splits the job into
concurrently executing pieces, thereby decreasing the run time of the job.

This chapter discusses techniques for analyzing your program and
converting it to multiprocessing operations. Chapter 6, “Compiling and
Debugging Parallel Fortran,” gives compilation and debugging instructions
for parallel processing.

Parallel Loops

The model of parallelism used focuses on the Fortran DO loop. The compiler
executes different iterations of the DO loop in parallel on multiple
processors. For example, using the SIMPLE scheduling method, a DO loop
consisting of 200 iterations will run on a machine with four processors. The
first 50 iterations run on one processor, the next 50 on another, and so on. The
multiprocessing code adjusts itself at run time to the number of processors
actually present on the machine. Thus, if the above 200-iteration loop was
moved to a machine with only two processors, it would be divided into two
blocks of 100 iterations each, without any need to recompile or relink. In fact,
multiprocessing code can even be run on single-processor machines. The
above loop would be divided into one block of 200 iterations. This allows
code to be developed on a single-processor Silicon Graphics IRIS-4D Series
workstation or Personal IRIS™, and later run on an IRIS POWER Series
multiprocessor.

The processes that participate in the parallel execution of a task are arranged
in a master/slave organization. The original process is the master. It creates
zero or more slaves to assist. When a parallel DO loop is encountered, the
master asks the slaves for help. When the loop is complete, the slaves wait
on the master, and the master resumes normal execution. The master process
and each of the slave processes are called a thread of execution or simply a
thread. By default, the number of threads is set equal to the number of
processors on the particular machine. If you want, you can override the
default and explicitly control the number of threads of execution used by a
Fortran job.

Writing Parallel Fortran

71

For multiprocessing to work correctly, the iterations of the loop must not
depend on each other; each iteration must stand alone and produce the same
answer regardless of whether any other iteration of the loop is executed. Not
all DO loops have this property, and loops without it cannot be correctly
executed in parallel. However, any of the loops encountered in practice fit
this model. Further, many loops that cannot be run in parallel in their
original form can be rewritten to run wholly or partially in parallel.

To provide compatibility for existing parallel programs, Silicon Graphics has
chosen to adopt the syntax for parallelism used by Sequent Computer
Corporation. This syntax takes the form of compiler directives embedded in
comments. These fairly high level directives provide a convenient method
for you to describe a parallel loop, while leaving the details to the Fortran
compiler. For advanced users, there are a number of special routines that
permit more direct control over the parallel execution. (Refer to “Advanced
Features” on page 97 for more information.)

Writing Parallel Fortran

The Fortran compiler accepts directives that cause it to generate code that
can be run in parallel. The compiler directives look like Fortran comments:
they begin with a C in column one. If multiprocessing is not turned on, these
statements are treated as comments. This allows the identical source to be
compiled with a single-processing compiler or by Fortran without the
multiprocessing option. The directives are distinguished by having a $ as the
second character. There are six directives that are supported:
C$DOACROSS, C$&, C$, C$MP_SCHEDTYPE, C$CHUNK, and
C$COPYIN. The C$COPYIN directive is described in “Local COMMON
Blocks” on page 102. This section describes the others.

C$DOACROSS

The essential compiler directive is C$DOACROSS. This directs the compiler
to generate special code to run iterations of the DO loop in parallel. The
C$DOACROSS statement applies only to the next statement (which must
be a DO loop).

72

Chapter 5: Fortran Enhancements for Multiprocessors

The C$DOACROSS directive has the form

C$DOACROSS [clause [, clause]…]

where a clause is one of the following:

SHARE (variable list)
LOCAL (variable list)
LASTLOCAL (variable list)
REDUCTION (scalar variable list)
IF (logical expression)

CHUNK=integer expression
MP_SCHEDTYPE=schedule type

The meaning of each clause is discussed below. All of these clauses are
optional.

SHARE, LOCAL, LASTLOCAL

These are lists of variables as discussed in the “Analyzing Data
Dependencies for Multiprocessing” on page 79. A variable may appear in
only one of these lists. To make the task of writing these lists easier, there are
several defaults. The loop-iteration variable is LASTLOCAL by default. All
other variables are SHARE by default.

LOCAL is a little faster than LASTLOCAL, so if you do not need the final
value, it is good practice to put the DO loop index variable into the LOCAL
list, although this is not required.

Only variables can appear in these lists. In particular, COMMON blocks
cannot appear in a LOCAL list (but see the discussion of local COMMON
blocks in “Advanced Features” on page 97). The SHARE, LOCAL, and
LASTLOCAL lists give only the names of the variables. If any member of the
list is an array, it is listed without any subscripts.

Note: There is a minor flaw in the way unlisted variables default to SHARE.
There must be at least one reference to the variable in a nonparallel region or
at least one appearance of that variable in the SHARE list of some loop. If
not, the compiler will complain that the variable in the multiprocessed loop
has not been previously referenced.

Writing Parallel Fortran

73

REDUCTION

The REDUCTION clause lists those variables involved in a reduction
operation. The meaning and use of reductions are discussed in Example 4 of
“Breaking Data Dependencies” on page 85. An element of the REDUCTION
list must be an individual variable (also called a scalar variable) and may not
be an array. However, it may be an individual element of an array. In this
case, it would appear in the list with the proper subscripts.

It is possible for one element of an array to be used in a reduction operation,
while other elements of the array are used in other ways. To allow for this, if
an element of an array appears in the REDUCTION list, it is legal for that
array also to appear in the SHARE list.

There are four types of reduction supported: sum(+), product(*), min(), and
max(). Note that min(max) reductions must use the min(max) functions in
order to be recognized correctly.

The compiler makes some simple checks to confirm that the reduction
expression is legal. The compiler does not, however, check all statements in
the DO loop for illegal reductions. It is up to the programmer to assure legal
use of the reduction variable.

IF

The IF clause gives a logical expression that is evaluated just before the loop
is executed. If the expression is TRUE, the loop is executed in parallel. If the
expression is FALSE, the loop is executed serially. Typically, the expression
tests the number of times the loop will execute to be sure that there is enough
work in the loop to amortize the overhead of parallel execution. Currently,
the break-even point is about 400 CPU clocks of work, which normally
translates to about 100 floating point operations.

MP_SCHEDTYPE, CHUNK

These options affect the way the work in the loop is scheduled among the
participating tasks. They do not affect the correctness of the loop. They are
useful for tuning the performance of critical loops. See “Load Balancing” on
page 95 for more details.

74

Chapter 5: Fortran Enhancements for Multiprocessors

Four methods of scheduling the iterations are supported. A single program
may use any or all of them as it finds appropriate.

The simple method (MP_SCHEDTYPE=SIMPLE) divides the iterations
among the processes by dividing them into contiguous pieces and assigning
one piece to each process.

The interleave scheduling method (MP_SCHEDTYPE=INTERLEAVE)
breaks the iterations up into pieces of the size specified by the CHUNK
option, and execution of those pieces is interleaved among the processes. For
example, if there are four processes and CHUNK=2, then the first process
will execute iterations 1–2, 9–10, 17–18, …; the second process will execute
iterations 3–4, 11–12, 19–20,…; and so on. Although this is more complex
than the simple method, it is still a fixed schedule with only a single
scheduling decision.

In dynamic scheduling (MP_SCHEDTYPE=DYNAMIC) the iterations are
broken into CHUNK-sized pieces. As each process finishes a piece, it enters
a critical section to grab the next available piece. This gives good load
balancing at the price of higher overhead.

The fourth method is a variation of the guided self-scheduling algorithm
(MP_SCHEDTYPE=GSS). Here, the piece size is varied depending on the
number of iterations remaining. By parceling out relatively large pieces to
start with and relatively small pieces toward the end, the hope is to achieve
good load balancing while reducing the number of entries into the critical
section.

In addition to these four methods, the user may specify the scheduling
method at run time (MP_SCHEDTYPE=RUNTIME). Here, the scheduling
routine examines values in the user’s run-time environment and uses that
information to select one of the four methods. See “Advanced Features” on
page 97 for more details.

If both the MP_SCHEDTYPE and CHUNK clauses are omitted, SIMPLE
scheduling is assumed. If MP_SCHEDTYPE is set to INTERLEAVE or
DYNAMIC and the CHUNK clause are omitted, CHUNK=1 is assumed. If
MP_SCHEDTYPE is set to one of the other values, CHUNK is ignored. If the
MP_SCHEDTYPE clause is omitted, but CHUNK is set, then
MP_SCHEDTYPE=DYNAMIC is assumed.

Writing Parallel Fortran

75

Example 1

The code fragment

 DO 10 I = 1, 100
 A(I) = B(I)
10 CONTINUE

could be multiprocessed with the directive

C$DOACROSS LOCAL(I), SHARE(A, B)
 DO 10 I = 1, 100
 A(I) = B(I)
10 CONTINUE

Here, the defaults are sufficient, provided A and B are mentioned in a
nonparallel region or in another SHARE list. The following then works:

C$DOACROSS
 DO 10 I = 1, 100
 A(I) = B(I)
10 CONTINUE

Example 2

 DO 10 I = 1, N
 X = SQRT(A(I))
 B(I) = X*C(I) + X*D(I)
10 CONTINUE

You can be fully explicit:

C$DOACROSS LOCAL(I, X), share(A, B, C, D, N)
 DO 10 I = 1, N
 X = SQRT(A(I))
 B(I) = X*C(I) + X*D(I)
10 CONTINUE

or you can use the defaults

C$DOACROSS LOCAL(X)
 DO 10 I = 1, N
 X = SQRT(A(I))
 B(I) = X*C(I) + X*D(I)
10 CONTINUE

76

Chapter 5: Fortran Enhancements for Multiprocessors

See Example 5 in “Analyzing Data Dependencies for Multiprocessing” on
page 79 for more information on this example.

Example 3

 DO 10 I = M, K, N
 X = D(I)**2
 Y = X + X
 DO 20 J = I, MAX
 A(I,J) = A(I,J) + B(I,J) * C(I,J) * X + Y
20 CONTINUE
10 CONTINUE

 PRINT*, I, X

Here, the final values of I and X are needed after the loop completes. A
correct directive is

C$DOACROSS LOCAL(Y,J), LASTLOCAL(I,X), SHARE(M,K,N,ITOP,A,B,C,D)
 DO 10 I = M, K, N
 X = D(I)**2
 Y = X + X
 DO 20 J = I, ITOP
 A(I,J) = A(I,J) + B(I,J) * C(I,J) *X + Y
20 CONTINUE
10 CONTINUE

 PRINT*, I, X

or you could use the defaults

C$DOACROSS LOCAL(Y,J), LASTLOCAL(X)
 DO 10 I = M, K, N
 X = D(I)**2
 Y = X + X
 DO 20 J = I, MAX
 A(I,J) = A(I,J) + B(I,J) * C(I,J) *X + Y
20 CONTINUE
10 CONTINUE
 PRINT*, I, X

Writing Parallel Fortran

77

I is a loop index variable for the C$DOACROSS loop, so it is LASTLOCAL
by default. However, even though J is a loop index variable, it is not the loop
index of the loop being multiprocessed and has no special status. If it is not
declared, it is given the normal default of SHARE, which would be wrong.

C$&

Occasionally, the clauses in the C$DOACROSS directive are longer than one
line. The C$& directive is used to continue the directive onto multiple lines.

C$DOACROSS share(ALPHA, BETA, GAMMA, DELTA,
C$& EPSILON, OMEGA), LASTLOCAL(I,J, K, L, M, N),
C$& LOCAL(XXX1, XXX2, XXX3, XXX4, XXX5, XXX6, XXX7,
C$& XXX8, XXX9)

C$

The C$ directive is considered a comment line except when multiprocessing.
A line beginning with C$ is treated as a conditionally compiled Fortran
statement. The rest of the line contains a standard Fortran statement. The
statement is compiled only if multiprocessing is turned on. In this case, the
C and $ are treated as if they are blanks. They can be used to insert
debugging statements, or an experienced user can use them to insert
arbitrary code into the multiprocessed version.

C$ PRINT 10
C$ 10 FORMAT('BEGIN MULTIPROCESSED LOOP')

C$DOACROSS LOCAL(Ii), SHARE(A,B)
 DO I = 1, 100
 CALL COMPUTE(A, B, I)
 END DO

78

Chapter 5: Fortran Enhancements for Multiprocessors

C$MP_SCHEDTYPE, C$CHUNK

The C$MP_SCHEDTYPE=schedule_type directive acts as an implicit
MP_SCHEDTYPE clause. A DOACROSS directive that does not have an
explicit MP_SCHEDTYPE clause is given the value specified in the
directive, rather than the normal default. If the DOACROSS does have an
explicit clause, then the explicit value is used.

The C$CHUNK=integer_expression directive affects the CHUNK clause of a
DOACROSS in the same way that the C$MP_SCHEDTYPE directive
affects the MP_SCHEDTYPE clause. Both directives are in effect from the
place they occur in the source until another corresponding directive is
encountered or the end of the procedure is reached.

These directives are mostly intended for users of Silicon Graphics POWER
Fortran Accelerator™ (PFA). The DOACROSS directives supplied by PFA
do not have MP_SCHEDTYPE or CHUNK clauses. These directives
provide a method of specifying what kind of scheduling option is desired
and allowing PFA to supply the DOACROSS directive. These directives are
not PFA-specific, however, and can be used by any multiprocessing Fortran
programmer.

It is also possible to invoke this functionality from the command line during
a compile. The –mp_schedtype=schedule_type and –chunk= integer
command line options have the effect of implicitly putting the
corresponding directive(s) as the first lines in the file.

Nesting C$DOACROSS

The Fortran compiler does not support direct nesting of C$DOACROSS
loops. For example, the following is illegal and generates a compilation
error:

C$DOACROSS LOCAL(I)
 DO I = 1, N
C$DOACROSS LOCAL(J)
 DO J = 1, N
 A(I,J) = B(I,J)
 END DO
 END DO

Analyzing Data Dependencies for Multiprocessing

79

However, to simplify separate compilation, a different form of nesting is
allowed. A routine that uses C$DOACROSS can be called from within a
multiprocessed region. This can be useful if a single routine is called from
several different places: sometimes from within a multiprocessed region,
sometimes not. Nesting does not increase the parallelism. When the first
C$DOACROSS loop is encountered, that loop is run in parallel. If while in
the parallel loop a call is made to a routine that itself has a C$DOACROSS,
this subsequent loop is executed serially.

Parallel Blocks

The Silicon Graphics Fortran compiler supports parallel execution of DO
loops only. However, another kind of parallelism frequently occurs: different
blocks of code independent of one another can be executed simultaneously.
As a simple example,

CALL MAKE1(A, B, C, D)
CALL MAKE2(E, F, G, H)

If you know that these two routines do not interfere with each other, you can
call them simultaneously. The following example shows how to use DO
loops to execute parallel blocks of code.

C$DOACROSS LOCAL(I), MP_SCHEDTYPE=SIMPLE
 DO I = 1, 2
 IF (I .EQ. 1) THEN
 CALL MAKE1(A, B, C, D)
 ELSEIF (I .EQ. 2) THEN
 CALL MAKE2(E, F, G, H)
 END IF
 END DO

Analyzing Data Dependencies for Multiprocessing

The essential condition required to parallelize a loop correctly is that each
iteration of the loop must be independent of all other iterations. If a loop
meets this condition, then the order in which the iterations of the loop
execute is not important. They can be executed backward or even at the same
time, and the answer is still the same. This property is captured by the notion
of data independence. For a loop to be data-independent, no iterations of the

80

Chapter 5: Fortran Enhancements for Multiprocessors

loop can write a value into a memory location that is read or written by any
other iteration of that loop. It is also all right if the same iteration reads
and/or writes a memory location repeatedly as long as no others do; it is all
right if many iterations read the same location, as long as none of them write
to it. In a Fortran program, memory locations are represented by variable
names. So, to determine if a particular loop can be run in parallel, examine
the way variables are used in the loop. Because data dependence occurs only
when memory locations are modified, pay particular attention to variables
that appear on the left-hand side of assignment statements. If a variable is
not modified, there is no data dependence associated with it.

The Fortran compiler supports four kinds of variable usage within a parallel
loop: SHARE, LOCAL, LASTLOCAL, and REDUCTION. If a variable is
declared as SHARE, all iterations of the loop use the same copy. If a variable
is declared as LOCAL, each iteration is given its own uninitialized copy. A
variable is declared SHARE if it is only read (not written) within the loop or
if it is an array where each iteration of the loop uses a different element of the
array. A variable can be LOCAL if its value does not depend on any other
iteration and if its value is used only within a single iteration. In effect the
LOCAL variable is just temporary; a new copy can be created in each loop
iteration without changing the final answer. As a special case, if only the
very last value of a variable computed on the very last iteration is used
outside the loop (but would otherwise qualify as a LOCAL variable), the
loop can be multiprocessed by declaring the variable to be LASTLOCAL.
The use of REDUCTION variables is discussed later.

It is often difficult to analyze loops for data dependence information. Each
use of each variable must be examined to see if it fulfills the criteria for
LOCAL, LASTLOCAL, SHARE, or REDUCTION. If all the variables
conform, the loop can be parallelized. If not, the loop cannot be parallelized
as it stands, but possibly can be rewritten into an equivalent parallel form.
(See “Breaking Data Dependencies” on page 85 for information on rewriting
code in parallel form.)

An alternative to analyzing variable usage by hand is to use PFA. This
optional software package is a Fortran preprocessor that analyzes loops for
data dependence. If it can determine that a loop is data-independent, it
automatically inserts the required compiler directives (see “Writing Parallel
Fortran” on page 71). If PFA cannot determine the loop to be independent, it
produces a listing file detailing where the problems lie.

Analyzing Data Dependencies for Multiprocessing

81

The rest of this section is devoted to analyzing sample loops, some parallel
and some not parallel.

Example 1: Simple Independence

 DO 10 I = 1,N

10 A(I) = X + B(I)*C(I)

In this example, each iteration writes to a different location in A, and none
of the variables appearing on the right-hand side is ever written to, only read
from. This loop can be correctly run in parallel. All the variables are SHARE
except for I, which is either LOCAL or LASTLOCAL, depending on
whether the last value of I is used later in the code.

Example 2: Data Dependence

 DO 20 I = 2,N

20 A(I) = B(I) - A(I-1)

This fragment contains A(I) on the left-hand side and A(I-1) on the right.
This means that one iteration of the loop writes to a location in A and that
the next iteration reads from that same location. Because different iterations
of the loop read and write the same memory location, this loop cannot be run
in parallel.

Example 3: Stride Not 1

 DO 20 I = 2,N,2

20 A(I) = B(I) - A(I-1)

This example looks like the previous example. The difference is that the
stride of the DO loop is now two rather than one. Now A(I) references every
other element of A, and A(I-1) references exactly those elements of A that are
not referenced by A(I). None of the data locations on the right-hand side is
ever the same as any of the data locations written to on the left-hand side.
The data are disjoint, so there is no dependence. The loop can be run in
parallel. Arrays A and B can be declared SHARE, while variable I should be
declared LOCAL or LASTLOCAL.

82

Chapter 5: Fortran Enhancements for Multiprocessors

Example 4: Local Variable

DO I = 1, N
 X = A(I)*A(I) + B(I)
 B(I) = X + B(I)*X
END DO

In this loop, each iteration of the loop reads and writes the variable X.
However, no loop iteration ever needs the value of X from any other
iteration. X is used as a temporary variable; its value does not survive from
one iteration to the next. This loop can be parallelized by declaring X to be a
LOCAL variable within the loop. Note that B(I) is both read and written by
the loop. This is not a problem because each iteration has a different value
for I, so each iteration uses a different B(I). The same B(I) is allowed to be
read and written as long as it is done by the same iteration of the loop. The
loop can be run in parallel. Arrays A andB can be declared SHARE, while
variable I should be declared LOCAL or LASTLOCAL.

Example 5: Function Call

 DO 10 I = 1, N
 X = SQRT(A(I))
 B(I) = X*C(I) + X*D(I)
10 CONTINUE

The value of X in any iteration of the loop is independent of the value of X in
any other iteration, so X can be made a LOCAL variable. The loop can be run
in parallel. Arrays A, B, C, and D can be declared SHARE, while variable I
should be declared LOCAL or LASTLOCAL.

The interesting feature of this loop is that it invokes an external routine, sqrt.
It is possible to use functions and/or subroutines (intrinsic or user defined)
within a parallel loop. However, make sure that the various parallel
invocations of the routine do not interfere with one another. In particular,
sqrt returns a value that depends only on its input argument, that does not
modify global data, andthat does not use static storage. We say that sqrt has
no side effects.

All the Fortran intrinsic functions listed in Appendix A of the Fortran 77
Language Reference Manual have no side effects and can safely be part of a
parallel loop. For the most part, the Fortran library functions and VMS
intrinsic subroutine extensions (listed in Chapter 4, “System Functions and

Analyzing Data Dependencies for Multiprocessing

83

Subroutines,”) cannot safely be included in a parallel loop. In particular,
rand is not safe for multiprocessing. For user-written routines, it is the
responsibility of the user to ensure that the routines can be correctly
multiprocessed.

Caution: Routines called within a parallel loop cannot be compiled with the
–static flag.

Example 6: Rewritable Data Dependence

INDX = 0
DO I = 1, N
 INDX = INDX + I
 A(I) = B(I) + C(INDX)
END DO

Here, the value of INDX survives the loop iteration and is carried into the
next iteration. This loop cannot be parallelized as it is written. Making INDX
a LOCAL variable does not work; you need the value of INDX computed in
the previous iteration. It is possible to rewrite this loop to make it parallel
(see Example 1 in “Breaking Data Dependencies” on page 85).

Example 7: Exit Branch

 DO I = 1, N
 IF (A(I) .LT. EPSILON) GOTO 320
 A(I) = A(I) * B(I)
 END DO

 320 CONTINUE

This loop contains an exit branch; that is, under certain conditions the flow
of control suddenly exits the loop. The Fortran compiler cannot parallelize
loops containing exit branches.

Example 8: Complicated Independence

DO I = K+1, 2*K
 W(I) = W(I) + B(I,K) * W(I-K)
END DO

84

Chapter 5: Fortran Enhancements for Multiprocessors

At first glance, this loop looks like it cannot be run in parallel because it uses
both W(I) and W(I-K). Closer inspection reveals that because the value of I
varies between K+1 and 2*K, then I-K goes from 1 to K. This means that the
W(I-K) term varies from W(1) up to W(K), while the W(I) term varies from
W(K+1) up to W(2*K). So W(I-K) in any iteration of the loop is never the
same memory location as W(I) in any other iterations. Because there is no
data overlap, there are no data dependencies. This loop can be run in
parallel. Elements W, B, and K can be declared SHARE, while variable I
should be declared LOCAL or LASTLOCAL.

This example points out a general rule: the more complex the expression
used to index an array, the harder it is to analyze. If the arrays in a loop are
indexed only by the loop index variable, the analysis is usually
straightforward though tedious. Fortunately, in practice most array indexing
expressions are simple.

Example 9: Inconsequential Data Dependence

INDEX = SELECT(N)
DO I = 1, N
 A(I) = A(INDEX)
END DO

There is a data dependence in this loop because it is possible that at some
point I will be the same as INDEX, so there will be a data location that is
being read and written by different iterations of the loop. In this particular
special case, you can simply ignore it. You know that when I and INDEX are
equal, the value written into A(I) is exactly the same as the value that is
already there. The fact that some iterations of the loop will read the value
before it is written and some after it is written is not important because they
will all get the same value. Therefore, this loop can be parallelized. Array A
can be declared SHARE, while variable I should be declared LOCAL or
LASTLOCAL.

Example 10: Local Array

DO I = 1, N
 D(1) = A(I,1) - A(J,1)
 D(2) = A(I,2) - A(J,2)
 D(3) = A(I,3) - A(J,3)
 TOTAL_DISTANCE(I,J) = SQRT(D(1)**2 + D(2)**2 + D(3)**2)
END DO

Breaking Data Dependencies

85

In this fragment, each iteration of the loop uses the same locations in the D
array. However, closer inspection reveals that the entire D array is being
used as a temporary. This can be multiprocessed by declaring D to be
LOCAL. The Fortran compiler allows arrays (even multidimensional arrays)
to be LOCAL variables with one restriction: the size of the array must be
known at compile time. The dimension bounds must be constants; the
LOCAL array cannot have been declared using a variable or the asterisk
syntax.

Therefore, this loop can be parallelized. Arrays TOTAL_DISTANCE and A
can be declared SHARE, while array D and variable I should be declared
LOCAL or LASTLOCAL.

Breaking Data Dependencies

Many loops that have data dependencies can be rewritten so that some or all
of the loop can be run in parallel. The essential idea is to locate the
statement(s) in the loop that cannot be made parallel and try to find another
way to express it that does not depend on any other iteration of the loop. If
this fails, try to pull the statements out of the loop and into a separate loop,
allowing the remainder of the original loop to be run in parallel.

The first step is to analyze the loop to discover the data dependencies (see
“Writing Parallel Fortran” on page 71). Once the problem areas are
identified, various techniques can be used to rewrite the code to break the
dependence. Sometimes the dependencies in a loop cannot be broken, and
you must either accept the serial execution rate or try to discover a new
parallel method of solving the problem. The rest of this section is devoted to
a series of “cookbook” examples on how to deal with commonly occurring
situations. These are by no means exhaustive but cover many situations that
happen in practice.

Example 1: Loop Carried Value

INDX = 0
DO I = 1, N

INDX = INDX + I
A(I) = B(I) + C(INDX)

END DO

86

Chapter 5: Fortran Enhancements for Multiprocessors

This is the same as Example 6 in “Writing Parallel Fortran” on page 71. Here,
INDX has its value carried from iteration to iteration. However, it is possible
to compute the appropriate value for INDX without making reference to any
previous value:

C$DOACROSS LOCAL (I, INDX)
 DO I = 1, N
 INDX = (I*(I+1))/2
 A(I) = B(I) + C(INDX)
 END DO

In this loop, the value of INDX is computed without using any values
computed on any other iteration. INDX can correctly be made a LOCAL
variable, and the loop can now be multiprocessed.

Example 2: Indirect Indexing

 DO 100 I = 1, N
 IX = INDEXX(I)
 IY = INDEXY(I)
 XFORCE(I) = XFORCE(I) + NEWXFORCE(IX)
 YFORCE(I) = YFORCE(I) + NEWYFORCE(IY)
 IXX = IXOFFSET(IX)
 IYY = IYOFFSET(IY)
 TOTAL(IXX, IYY) = TOTAL(IXX, IYY) + EPSILON
100 CONTINUE

It is the final statement that causes problems. The indexes IXX and IYY are
computed in a complex way and depend on the values from the IXOFFSET
and IYOFFSET arrays. We do not know if TOTAL (IXX,IYY) in one iteration
of the loop will always be different from TOTAL (IXX,IYY) in every other
iteration of the loop.

We can pull the statement out into its own separate loop by expanding IXX
and IYY into arrays to hold intermediate values:

Breaking Data Dependencies

87

C$DOACROSS LOCAL(IX, IY, I)
 DO I = 1, N
 IX = INDEXX(I)
 IY = INDEXY(I)
 XFORCE(I) = XFORCE(I) + NEWXFORCE(IX)
 YFORCE(I) = YFORCE(I) + NEWYFORCE(IY)
 IXX(I) = IXOFFSET(IX)
 IYY(I) = IYOFFSET(IY)
 END DO

 DO 100 I = 1, N
 TOTAL(IXX(I),IYY(I)) = TOTAL(IXX(I), IYY(I)) + EPSILON
100 CONTINUE

Here, IXX and IYY have been turned into arrays to hold all the values
computed by the first loop. The first loop (containing most of the work) can
now be run in parallel. Only the second loop must still be run serially.

Before we leave this example, note that, if we were certain that the value for
IXX was always different in every iteration of the loop, then the original loop
could be run in parallel. It could also be run in parallel if IYY was always
different. If IXX (or IYY) is always different in every iteration, then
TOTAL(IXX,IYY) is never the same location in any iteration of the loop, and
so there is no data conflict.

This sort of knowledge is, of course, program-specific and should always be
used with great care. It may be true for a particular data set, but to run the
original code in parallel as it stands, you need to be sure it will always be true
for all possible input data sets.

Example 3: Recurrence

DO I = 1,N
 X(I) = X(I-1) + Y(I)
END DO

This is an example of recurrence, which exists when a value computed in one
iteration is immediately used by another iteration. There is no good way of
running this loop in parallel. If this type of construct appears in a critical
loop, try pulling the statement(s) out of the loop as in the previous example.
Sometimes another loop encloses the recurrence; in that case, try to
parallelize the outer loop.

88

Chapter 5: Fortran Enhancements for Multiprocessors

Example 4: Sum Reduction

 sum = 0.0
 amax = a(1)
 amin = a(1)
c$doacross local(1), REDUCTION(asum, AMAX, AMIN)
 do i = 1,N
 asum = asum + a(i)
 if (a(i) .gt. amax) then
 imin = a(i)
 else if (a(i) .lt. amin) then
 imin = a(i)
 end if
 end do

This operation is known as a reduction. Reductions occur when an array of
values are combined and reduced into a single value. This example is a sum
reduction because the combining operation is addition. Here, the value of
sum is carried from one loop iteration to the next, so this loop cannot be
multiprocessed. However, because this loop simply sums the elements of
a(i), we can rewrite the loop to accumulate multiple, independent subtotals.

Then we can do much of the work in parallel:

 NUM_THREADS = MP_NUMTHREADS()
C
C IPIECE_SIZE = N/NUM_THREADS ROUNDED UP
C
 IPIECE_SIZE = (N + (NUM_THREADS -1)) / NUM_THREADS
 DO K = 1, NUM_THREADS
 PARTIAL_SUM(K) = 0.0
C
C THE FIRST THREAD DOES 1 THROUGH IPIECE_SIZE, THE
C SECOND DOES IPIECE_SIZE + 1 THROUGH 2*IPIECE_SIZE,
C ETC. IF N IS NOT EVENLY DIVISIBLE BY NUM_THREADS,
C THE LAST PIECE NEEDS TO TAKE THIS INTO ACCOUNT,
C HENCE THE "MIN" EXPRESSION.
C
 DO I =K*IPIECE_SIZE -IPIECE_SIZE +1, MIN(K*IPIECE_SIZE,N)
 PARTIAL_SUM(K) = PARTIAL_SUM(K) + A(I)
 END DO
 END DO
C
C NOW ADD UP THE PARTIAL SUMS
 SUM = 0.0

Breaking Data Dependencies

89

 DO I = 1, NUM_THREADS
 SUM = SUM + PARTIAL_SUM(I)
 END DO

The outer K loop can be run in parallel. In this method, the array pieces for
the partial sums are contiguous, resulting in good cache utilization and
performance.

This is an important and common transformation, and so automatic support
is provided by the REDUCTION clause:

 SUM = 0.0
C$DOACROSS LOCAL (I), REDUCTION (SUM)
 DO 10 I = 1, N
 SUM = SUM + A(I)
10 CONTINUE

This has essentially the same meaning as the much longer and more
confusing code above. It is an important example to study because the idea
of adding an extra dimension to an array to permit parallel computation,
and then combining the partial results, is an important technique for trying
to break data dependencies. This idea occurs over and over in various
contexts and disguises.

Note that reduction transformations such as this are not strictly correct.
Because computer arithmetic has limited precision, when you sum the
values together in a different order, as was done here, the round-off errors
accumulate slightly differently. It is likely that the final answer will be
slightly different from the original loop. Most of the time the difference is
irrelevant, but it can be significant, so some caution is in order.

This example is a sum reduction because the operator is plus (+). The Fortran
compiler supports three other types of reduction operations:

1. product: p = p*a(i)

2. mm: m = mm(m,a(i))

3. max: m = max(m,a(i))

90

Chapter 5: Fortran Enhancements for Multiprocessors

For example,

c$doacross local(1), REDUCTION(asum, AMAX, AMIN)
 do i = 1,N
 big_sum = big_sum + a(i)
 big_prod = big_prod * a(i)
 big_min = min(big_min, a(i))
 big_max = max(big_max, a(i)
 end do

One further reduction is noteworthy.

 DO I = 1, N
 TOTAL = 0.0
 DO J = 1, M
 TOTAL = TOTAL + A(J)
 END DO
 B(I) = C(I) * TOTAL
 END DO

Initially, it may look as if the reduction in the inner loop needs to be rewritten
in a parallel form. However, look at the outer I loop. Although TOTAL
cannot be made a LOCAL variable in the inner loop, it fulfills the criteria for
a LOCAL variable in the outer loop: the value of TOTAL in each iteration of
the outer loop does not depend on the value of TOTAL in any other iteration
of the outer loop. Thus, you do not have to rewrite the loop; you can
parallelize this reduction on the outer I loop, making TOTAL and J local
variables.

Work Quantum

A certain amount of overhead is associated with multiprocessing a loop. If
the work occurring in the loop is small, the loop can actually run slower by
multiprocessing than by single processing. To avoid this, make the amount
of work inside the multiprocessed region as large as possible.

Work Quantum

91

Example 1: Loop Interchange

DO K = 1, N
 DO I = 1, N
 DO J = 1, N
 A(I,J) = A(I,J) + B(I,K) * C(K,J)
 END DO
 END DO
END DO

Here you have several choices: parallelize the J loop or the I loop. You cannot
parallelize the K loop because different iterations of the K loop will all try to
read and write the same values of A(I,J). Try to parallelize the outermost DO
loop possible, because it encloses the most work. In this example, that is the
I loop. For this example, use the technique called loop interchange. Although
the parallelizable loops are not the outermost ones, you can reorder the loops
to make one of them outermost.

Thus, loop interchange would produce

C$DOACROSS LOCAL(I, J, K)
 DO I = 1, N
 DO K = 1, N
 DO J = 1, N
 A(I,J) = A(I,J) + B(I,K) * C(K,J)
 END DO
 END DO
 END DO

Now the parallelizable loop encloses more work and will show better
performance. In practice, relatively few loops can be reordered in this way.
However, it does occasionally happen that several loops in a nest of loops are
candidates for parallelization. In such a case, it is usually best to parallelize
the outermost one.

Occasionally, the only loop available to be parallelized has a fairly small
amount of work. It may be worthwhile to force certain loops to run without
parallelism or to select between a parallel version and a serial version, on
the basis of the length of the loop.

92

Chapter 5: Fortran Enhancements for Multiprocessors

Example 2: Conditional Parallelism

 J = (N/4) * 4
 DO I = J+1, N
 A(I) = A(I) + X*B(I)
 END DO
 DO I = 1, J, 4
 A(I) = A(I) + X*B(I)
 A(I+1) = A(I+1) + X*B(I+1)
 A(I+2) = A(I+2) + X*B(I+2)
 A(I+3) = A(I+3) + X*B(I+3)
 END DO

Here you are using loop unrolling of order four to improve speed. For the
first loop, the number of iterations is always fewer than four, so this loop
does not do enough work to justify running it in parallel. The second loop is
worthwhile to parallelize if N is big enough. To overcome the parallel loop
overhead, N needs to be around 50.

An optimized version would use the IF clause on the DOACROSS directive:

 J = (N/4) * 4
 DO I = J+1, N
 A(I) = A(I) + X*B(I)
 END DO

C$DOACROSS IF (J.GE.50), LOCAL(I)
 DO I = 1, J, 4
 A(I) = A(I) + X*B(I)
 A(I+1) = A(I+1) + X*B(I+1)
 A(I+2) = A(I+2) + X*B(I+2)
 A(I+3) = A(I+3) + X*B(I+3)
 END DO
 ENDIF

Cache Effects

93

Cache Effects

It is good policy to write loops that take the effect of the cache into account,
with or without parallelism. The technique for the best cache performance is
also quite simple: make the loop step through the array in the same way that
the array is laid out in memory. For Fortran, this means stepping through the
array without any gaps and with the leftmost subscript varying the fastest.

Note that this optimization does not depend on multiprocessing, nor is it
required in order for multiprocessing to work correctly. However,
multiprocessing can affect how the cache is used, so it is worthwhile to
understand.

Example 1: Matrix Multiply

DO I = 1, N
 DO K = 1, N
 DO J = 1, N
 A(I,J) = A(I,J) + B(I,K) * C(K,J)
 END DO
 END DO
END DO

This is the same as Example 1 in “Work Quantum” on page 90. To get the best
cache performance, the I loop should be innermost. At the same time, to get
the best multiprocessing performance, the outermost loop should be
parallelized. For this example, you can interchange the I and J loops, and get
the best of both optimizations:

C$DOACROSS LOCAL(I, J, K)
 DO J = 1, N
 DO K = 1, N
 DO I = 1, N
 A(I,J) = A(I,J) + B(I,K) * C(K,J)
 END DO
 END DO
 END DO

94

Chapter 5: Fortran Enhancements for Multiprocessors

Example 2: Trade-Offs

Sometimes you must choose between the possible optimizations and their
costs. Look at the following code segment:

DO J = 1, N
 DO I = 1, M
 A(I) = A(I) + B(J)*C(I,J)
 END DO
END DO

This loop can be parallelized on I but not on J. You could interchange the
loops to put I on the outside, thus getting a bigger work quantum.

C$DOACROSS LOCAL(I,J)
 DO I = 1, M
 DO J = 1, N
 A(I) = A(I) + B(J)*C(I,J)
 END DO
 END DO

However, putting J on the inside means that you will step through the C
array in the wrong direction; the leftmost subscript should be the one that
varies the fastest. It is possible to parallelize the I loop where it stands:

 DO J = 1, N
C$DOACROSS LOCAL(I)
 DO I = 1, M
 A(I) = A(I) + B(J)*C(I,J)
 END DO
 END DO

but M needs to be large for the work quantum to show any improvement. In
this particular example, A(I) is used to do a sum reduction, and it is possible
to use the reduction techniques shown in Example 4 of “Breaking Data
Dependencies” on page 85 to rewrite this in a parallel form. (Recall that there
is no support for an entire array as a member of the REDUCTION clause on
a DOACROSS.) However, that involves converting array A from a
one-dimensional array to a two-dimensional array to hold the partial sums;
this is analogous to the way we converted the scalar summation variable
into an array of partial sums.

Cache Effects

95

If A is large, however, that may take more memory than you can spare.

 NUM = MP_NUMTHREADS()
 IPIECE = (N + (NUM-1)) / NUM

C$DOACROSS LOCAL(K,J,I)
 DO K = 1, NUM
 DO J = K*IPIECE - IPIECE + 1, MIN(N, K*IPIECE)
 DO I = 1, M
 PARTIAL_A(I,K) = PARTIAL_A(I,K) + B(J)*C(I,J)
 END DO
 END DO
 END DO

C$DOACROSS LOCAL (I,K)
 DO I = 1, M
 DO K = 1, NUM
 A(I) = A(I) + PARTIAL_A(I,K)
 END DO
 END DO

You must trade off the various possible optimizations to find the
combination that is right for the particular job.

Load Balancing

When the Fortran compiler divides a loop into pieces, by default it uses the
simple method of separating the iterations into contiguous blocks of equal
size for each process. It can happen that some iterations take significantly
longer to complete than other iterations. At the end of a parallel region, the
program waits for all processes to complete their tasks. If the work is not
divided evenly, time is wasted waiting for the slowest process to finish.

Example:

DO I = 1, N
 DO J = 1, I
 A(J, I) = A(J, I) + B(J)*C(I)
 END DO
END DO

96

Chapter 5: Fortran Enhancements for Multiprocessors

This can be parallelized on the I loop. Because the inner loop goes from 1 to
I, the first block of iterations of the outer loop will end long before the last
block of iterations of the outer loop.

In this example, this is easy to see and predictable, so you can change the
program:

 NUM_THREADS = MP_NUMTHREADS()
C$DOACROSS LOCAL(I, J, K)
 DO K = 1, NUM_THREADS
 DO I = K, N, NUM_THREADS
 DO J = 1, I
 A(J, I) = A(J, I) + B(J)*C(I)
 END DO
 END DO
 END DO

In this rewritten version, instead of breaking up the I loop into contiguous
blocks, break it into interleaved blocks. Thus, each execution thread receives
some small values of I and some large values of I, giving a better balance of
work between the threads. Interleaving usually, but not always, helps cure a
load balancing problem.

This desirable transformation is provided to do this automatically by using
the MP_SCHEDTYPE clause.

C$DOACROSS LOCAL (I,J), MP_SCHEDTYPE=INTERLEAVE
 DO 20 I = 1, N
 DO 10 J = 1, I
 A (J,I) = A(J,I) + B(J)*C(J)
10 CONTINUE
20 CONTINUE

This has the same meaning as the rewritten form above.

Note that this can cause poor cache performance because you are no longer
stepping through the array at stride 1. This can be somewhat improved by
adding a CHUNK clause. CHUNK= 4 or 8 is often a good choice of value.
Each small chunk will have stride 1 to improve cache performance, while the
chunks are interleaved to improve load balancing.

Advanced Features

97

The way that iterations are assigned to processes is known as scheduling.
Interleaving is one possible schedule. Both interleaving and the “simple”
scheduling methods are examples of fixed schedules; the iterations are
assigned to processes by a single decision made when the loop is entered.
For more complex loops, it may be desirable to use DYNAMIC or GSS
schedules.

 Comparing the output from pixie or from pc-sample profiling allows you to
see how well the load is being balanced so you can compare the different
methods of dividing the load. Refer to the discussion of the
MP_SCHEDTYPE clause in “C$DOACROSS” on page 71 for more
information.

Even when the load is perfectly balanced, iterations may still take varying
amounts of time to finish because of random factors. One process may have
to read the disk, another may be interrupted to let a different program run,
and so on. Because of these unpredictable events, the time spent waiting for
all processes to complete can be several hundred cycles, even with near
perfect balance.

Advanced Features

A number of features are provided so that sophisticated users can override
the multiprocessing defaults and customize the parallelism to their
particular applications. This section provides a brief explanation of these
features.

mp_block and mp_unblock

mp_block(3f) puts the slave threads into a blocked state using the system
call blockproc(2). The slave threads stay blocked until a call is made to
mp_unblock(3f). These routines are useful if the job has bursts of parallelism
separated by long stretches of single processing, as with an interactive
program. You can block the slave processes so they consume CPU cycles
only as needed, thus freeing the machine for other users. The Fortran system
automatically unblocks the slaves on entering a parallel region should you
neglect to do so.

98

Chapter 5: Fortran Enhancements for Multiprocessors

mp_setup, mp_create, and mp_destroy

The mp_setup(3f), mp_create(3f), and mp_destroy(3f) subroutine calls
create and destroy threads of execution. This can be useful if the job has only
one parallel portion or if the parallel parts are widely scattered. When you
destroy the extra execution threads, they cannot consume system resources;
they must be re-created when needed. Use of these routines is discouraged
because they degrade performance; the mp_block and mp_unblock
routines can be used in almost all cases.

mp_setup takes no arguments. It creates the default number of processes as
defined by previous calls to mp_set_numthreads, by the environment
variable MP_SET_NUMTHREADS, or by the number of CPUs on the
current hardware platform. mp_setup is called automatically when the first
parallel loop is entered in order to initialize the slave threads.

mp_create takes a single integer argument, the total number of execution
threads desired. Note that the total number of threads includes the master
thread. Thus, mp_create(n) creates one thread less than the value of its
argument. mp_destroy takes no arguments; it destroys all the slave
execution threads, leaving the master untouched.

When the slave threads die, they generate a SIGCLD signal. If your program
has changed the signal handler to catch SIGCLD, it must be prepared to deal
with this signal when mp_destroy is executed. This signal also occurs when
the program exits; mp_destroy is called as part of normal cleanup when a
parallel Fortran job terminates.

mp_blocktime

The Fortran slave threads spin wait until there is work to do. This makes
them immediately available when a parallel region is reached. However, this
consumes CPU resources. After enough wait time has passed, the slaves
block themselves through blockproc. Once the slaves are blocked, it requires
a system call to unblockproc to activate the slaves again (refer to the
unblockproc(2) man page for details). This makes the response time much
longer when starting up a parallel region.

Advanced Features

99

This trade-off between response time and CPU usage can be adjusted with
the mp_blocktime(3f) call. mp_blocktime takes a single integer argument
that specifies the number of times to spin before blocking. By default, it is set
to 10,000,000; this takes roughly 3 seconds. If called with an argument of 0,
the slave threads will not block themselves no matter how much time has
passed. Explicit calls to mp_block, however, will still block the threads.

This automatic blocking is transparent to the user’s program; blocked
threads are automatically unblocked when a parallel region is reached.

mp_numthreads, mp_set_numthreads

Occasionally, you may want to know how many execution threads are
available. mp_numthreads(3f) is a zero-argument integer function that
returns the total number of execution threads for this job. The count includes
the master thread.

mp_set_numthreads(3f) takes a single-integer argument. It changes the
default number of threads to the specified value. A subsequent call to
mp_setup will use the specified value rather than the original defaults. If the
slave threads have already been created, this call will not change their
number. It only has an effect when mp_setup is called.

mp_my_threadnum

mp_my_threadnum(3f) is a zero-argument function that allows a thread to
differentiate itself while in a parallel region. If there are n execution threads,
the function call returns a value between zero and n – 1. The master thread
is always thread zero. This function can be useful when parallelizing certain
kinds of loops. Most of the time the loop index variable can be used for the
same purpose. Occasionally, the loop index may not be accessible, as, for
example, when an external routine is called from within the parallel loop.
This routine provides a mechanism for those rare cases.

100

Chapter 5: Fortran Enhancements for Multiprocessors

Environment Variables: MP_SET_NUMTHREADS,
MP_BLOCKTIME, MP_SETUP

These environment variables act as an implicit call to the corresponding
routine(s) of the same name at program start-up time.

For example, the csh command

% setenv MP_SET_NUMTHREADS 2

causes the program to create two threads regardless of the number of CPUs
actually on the machine, just like the source statement

CALL MP_SET_NUMTHREADS (2)

Similarly, the sh commands

% set MP_BLOCKTIME 0

% export MP_BLOCKTIME

prevent the slave threads from autoblocking, just like the source statement

call mp_blocktime (0)

For compatibility with older releases, the environment variable
NUM_THREADS is supported as a synonym for
MP_SET_NUMTHREADS.

To help support networks with several multiprocessors and several CPUs,
the environment variable MP_SET_NUMTHREADS also accepts an
expression involving integers +, –, mm, max, and the special symbol all,
which stands for “the number of CPUs on the current machine.”

For example, the following command selects the number of threads to be
two fewer than the total number of CPUs (but always at least one):

% setenv MP_SET_NUMTHREADS max(1,all-2)

Advanced Features

101

Environment Variables: MP_SCHEDTYPE, CHUNK

These environment variables specify the type of scheduling to use on
DOACROSS loops that have their scheduling type set to RUNTIME. For
example, the following csh commands cause loops with the RUNTIME
scheduling type to be executed as interleaved loops with a chunk size of 4:

% setenv MP_SCHEDTYPE INTERLEAVE
% setenv CHUNK 4

The defaults are the same as on the DOACROSS directive; if neither
variable is set, SIMPLE scheduling is assumed. If MP_SCHEDTYPE is set,
but CHUNK is not set, a CHUNK of 1 is assumed. If CHUNK is set, but
MP_SCHEDTYPE is not, DYNAMIC scheduling is assumed.

Environment Variable: MP_PROFILE

By default, the multiprocessing routines use the fastest possible method of
doing their job. This can make it difficult to determine where the time is
being spent if the multiprocessing routines themselves seem to be a
bottleneck. By setting the environment variable MP_PROFILE, the
multiprocessing routines use a slightly slower method of synchronization,
where each step in the process is done in a separate subroutine with a long
descriptive name. Thus pixie or pc-sample profiling can get more complete
information regarding how much time is spent inside the multiprocessing
routines.

Note: Only set/unset is important. The value the variable is set to is
irrelevant (and typically is null).

102

Chapter 5: Fortran Enhancements for Multiprocessors

mp_setlock, mp_unsetlock, mp_barrier

These zero-argument functions provide convenient (although limited)
access to the locking and barrier functions provided by ussetlock(3p),
usunsetlock(3p), and barrier(3p). The convenience is that no user
initialization need be done because calls such as usconfig(3p) and usinit(3p)
are done automatically. The limitation is that there is only one lock and one
barrier. For a great many programs, this is sufficient. Users needing more
complex or flexible locking facilities should use the ussetlock family of
routines directly.

Local COMMON Blocks

A special ld(1) option allows named COMMON blocks to be local to a
process. This means that each process in the parallel job gets its own private
copy of the common block. This can be helpful in converting certain types of
Fortran programs into a parallel form.

The common block must be a named COMMON (blank COMMON may
not be made local), and it must not be initialized by DATA statements.

To create a local COMMON block, give the special loader directive
–Xlocaldata followed by a list of COMMON block names. Note that the
external name of a COMMON block known to the loader has a trailing
underscore and is not surrounded by slashes. For example, the command

% f77 –mp a.o –Xlocaldata foo_

would make the COMMON block /foo/ be a local COMMON block in the
resulting a.out file.

It is occasionally desirable to be able to copy values from the master thread’s
version of the COMMON block into the slave thread’s version. The special
directive C$COPYIN allows this. It has the form

C$COPYIN item [, item …]

Advanced Features

103

Each item must be a member of a local COMMON block. It can be a variable,
an array, an individual element of an array, or the entire COMMON block.
For example,

C$COPYIN x,y, /foo/, a(i)

will propagate the values for x and y, all the values in the COMMON block
foo, and the ith element of array a. All these items must be members of local
COMMON blocks. Note that this directive is translated into executable
code, so in this example i is evaluated at the time this statement is executed.

Compatibility With sproc

The parallelism used in Fortran is implemented using the standard system
call sproc. It is recommended that programs not attempt to use both
C$DOACROSS loops and sproc calls. It is possible, but there are several
restrictions:

• Any threads you create may not execute $DOACROSS loops; only the
original thread is allowed to do this.

• The calls to routines like mp_block and mp_destroy apply only to the
threads created by mp_create or to those automatically created when
the Fortran job starts; they have no effect on any user-defined threads.

• Calls to routines such as m_get_numprocs(3p) do not apply to the
threads created by the Fortran routines. However, the Fortran threads
are ordinary subprocesses; using the routine kill(2) with the arguments
0 and sig (kill(0,sig)) to signal all members of the process group might
possibly result in the death of the threads used to execute
C$DOACROSS.

• If you choose to intercept the IGCLD signal, you must be prepared to
receive this signal when the threads used for the C$DOACROSS loops
exit; this occurs when mp_destroy is called or at program termination.

• Note in particular that m_fork(3p) is implemented using sproc, so it is
not legal to m_fork a family of processes that each subsequently
executes C$DOACROSS loops. Only the original thread can execute
C$DOACROSS loops.

104

Chapter 5: Fortran Enhancements for Multiprocessors

DOACROSS Implementation

This section discusses how multiprocessing is implemented in a
DOACROSS routine. This information is useful when you use the debugger
and interpret the results of an execution profile.

Loop Transformation

When the Fortran compiler encounters a C$DOACROSS statement, it
spools the corresponding DO loop into a separate subroutine and replaces
the loop statement with a call to a special library routine. Exactly which
routine is called depends on the value of MP_SCHEDTYPE. For discussion
purposes, assume SIMPLE scheduling, so the library routine is
mp_simple_sched.

The newly created subroutine is named using the following conventions.
First, underscores are prepended and appended to the original routine
name. For example, for a routine named foo, the first part of the name is
foo. The next part of the name is the line number where the loop begins.
This is the line number in the file, not the line number in the procedure. The
last part of the name is a unique, four-character, alphabetic identifier. The
first loop in a procedure uses aaaa, the second uses aaab, and so on. This
“counter” is restarted to aaaa at the beginning of each procedure (not each
file). So if the first parallel loop is at line 1234 in the routine named foo, the
loop is named _foo_1234_aaaa. The second parallel loop, at line 1299, is
named _foo_1299_aaab, and so on.

If a loop occurs in the main routine and if that routine has not been given a
name by the PROGRAM statement, its name is assumed to be main. Any
variables declared to be LOCAL in the original C$DOACROSS statement
are declared as local variables in the spooled routine. References to SHARE
variables are resolved by referring back to the original routine.

Because the spooled routine is now just a DO loop, the mp_simple_sched
routine specifies, through subroutine arguments, which part of the loop a
particular process is to execute. The spooled routine has four arguments: the
starting value for the index, the number of times to execute the loop, the
amount to increment the index, and a special flag word.

DOACROSS Implementation

105

 As an example, the following routine that appears on line 1000

 SUBROUTINE EXAMPLE(A, B, C, N)
 REAL A(*), B(*), C(*)

C$DOACROSS LOCAL(I,X)
 DO I = 1, N
 X = A(I)*B(I)
 C(I) = X + X**2
 END DO

 C(N) = A(1) + B(2)
 RETURN
 END

produces this spooled routine to represent the loop:

 SUBROUTINE _EXAMPLE_1000_aaaa
X (_LOCAL_START, _LOCAL_NTRIP, _INCR, _THREADINFO)
 INTEGER*4 _LOCAL_START
 INTEGER*4 _LOCAL_NTRIP
 INTEGER*4 _INCR
 INTEGER*4 _THREADINFO
 INTEGER*4 I
 REAL X
 INTEGER*4 _DUMMY

 I = _LOCAL_START
 DO _DUMMY = 1,_LOCAL_NTRIP
 X = A(I)*B(I)
 C(I) = X + X**2
 I = I + 1
 END DO

 END

Note: The compiler does not accept user code with an underscore (_) as the
first letter of a variable name.

106

Chapter 5: Fortran Enhancements for Multiprocessors

Executing Spooled Routines

The set of processes that cooperate to execute the parallel Fortran job are
members of a process share group created by the system call sproc. The
process share group is created by special Fortran start-up routines that are
used only when the executable is linked with the –mp option, which enables
multiprocessing.

The first process is the master process. It executes all the nonparallel portions
of the code. The other processes are slave processes; they are controlled by
the routine mp_slave_control. When they are inactive, they wait in the
special routine __mp_slave_wait_for_work.

When the master process calls mp_simple_sched, the master passes the
name of the spooled routine, the starting value of the DO loop index, the
number of times the loop is to be executed, and the loop index increment.

The mp_simple_sched routine divides the work and signals the slaves. The
master process then calls the spooled routine to do its work. When a slave is
signaled, it wakes up from the wait loop, calculates which iterations of the
spooled DO loop it is to execute, and then calls the spooled routine with the
appropriate arguments. When a slave completes its execution of the spooled
routine, it reports that it has finished and returns to
__mp_slave_wait_for_work.

When the master completes its execution of the spooled routine, it returns to
mp_simple_sched, then waits until all the slaves have completed
processing. The master then returns to the main routine and continues
execution.

Refer to Chapter 6 for an example of debugger output for the stack trace
command where, which shows the calling sequence.

107

Chapter 6

6. Compiling and Debugging Parallel Fortran

This chapter gives instructions on how to compile and debug a parallel
Fortran program and contains the following sections:

• “Compiling and Running” explains how to compile and run a parallel
Fortran program.

• “Profiling a Parallel Fortran Program” describes how to use the system
profiler, prof, to examine execution profiles.

• “Debugging Parallel Fortran” presents some standard techniques for
debugging a parallel Fortran program.

• “Parallel Programming Exercise” explains how to apply Fortran
loop-level parallelism to an existing application.

This chapter assumes you have read Chapter 5, “Fortran Enhancements for
Multiprocessors,” and have reviewed the techniques and vocabulary for
parallel processing in the IRIX environment.

Compiling and Running

After you have written a program for parallel processing, you should debug
your program in a single-processor environment by calling the Fortran
compiler with the f77 command. After your program has executed
successfully on a single processor, you can compile it for multiprocessing.
Check the f77(1) manual page for multiprocessing options.

To turn on multiprocessing, add –mp to the f77 command line. This option
causes the Fortran compiler to generate multiprocessing code for the
particular files being compiled. When linking, you can specify both object
files produced with the –mp flag and object files produced without it. If any
or all of the files are compiled with –mp, the executable must be linked with
–mp so that the correct libraries are used.

108

Chapter 6: Compiling and Debugging Parallel Fortran

Using the –static Flag

A few words of caution about the –static flag: The multiprocessing
implementation demands some use of the stack to allow multiple threads of
execution to execute the same code simultaneously. Therefore, the parallel
DO loops themselves are compiled with the –automatic flag, even if the
routine enclosing them is compiled with –static.

This means that SHARE variables in a parallel loop behave correctly
according to the –static semantics but that LOCAL variables in a parallel
loop will not (see “Debugging Parallel Fortran” on page 110 for a description
of SHARE and LOCAL variables).

Finally, if the parallel loop calls an external routine, that external routine
cannot be compiled with –static. You can mix static and multiprocessed
object files in the same executable; the restriction is that a static routine
cannot be called from within a parallel loop.

Examples of Compiling

This section steps you through a few examples of compiling code using –mp.
The following command line

% f77 –mp foo.f

compiles and links the Fortran program foo.f into a multiprocessor
executable.

In this example

% f77 –c –mp –O2 snark.f

the Fortran routines in the file snark.f are compiled with multiprocess code
generation enabled. The optimizer is also used. A standard snark.o binary is
produced, which must be linked:

% f77 –mp –o boojum snark.o bellman.o

Here, the –mp flag signals the linker to use the Fortran multiprocessing
library. The file bellman.o need not have been compiled with the –mp flag
(although it could have been).

Profiling a Parallel Fortran Program

109

After linking, the resulting executable can be run like any standard
executable. Creating multiple execution threads, running and
synchronizing them, and task terminating are all handled automatically.

When an executable has been linked with –mp, the Fortran initialization
routines determine how many parallel threads of execution to create. This
determination occurs each time the task starts; the number of threads is not
compiled into the code. The default is to use the number of processors that
are on the machine (the value returned by the system call
sysmp(MP_NAPROCS); see the sysmp(2) man page). The default can be
overridden by setting the shell environment variable
MP_SET_NUMTHREADS. If it is set, Fortran tasks will use the specified
number of execution threads regardless of the number of processors
physically present on the machine. MP_SET_NUMTHREADS can be an
integer from 1 to 16.

Profiling a Parallel Fortran Program

After converting a program, you need to examine execution profiles to judge
the effectiveness of the transformation. Good execution profiles of the
program are crucial to help you focus on the loops consuming the most time.

IRIX provides profiling tools that can be used on Fortran parallel programs.
Both pixie(1) and pc-sample profiling can be used. On jobs that use multiple
threads, both these methods will create multiple profile data files, one for
each thread. The standard profile analyzer prof(1) can be used to examine
this output.

The profile of a Fortran parallel job is different from a standard profile. As
mentioned in “Analyzing Data Dependencies for Multiprocessing” on page
79, to produce a parallel program, the compiler pulls the parallel DO loops
out into separate subroutines, one routine for each loop. Each of these loops
is shown as a separate procedure in the profile. Comparing the amount of
time spent in each loop by the various threads shows how well the workload
is balanced.

110

Chapter 6: Compiling and Debugging Parallel Fortran

In addition to the loops, the profile shows the special routines that actually
do the multiprocessing. The mp_simple_sched routine is the synchronizer
and controller. Slave threads wait for work in the routine
mp_slave_wait_for_work. The less time they wait, the more time they work.
This gives a rough estimate of how parallel the program is.

“Parallel Programming Exercise” on page 119 contains several examples of
profiling output and how to use the information it provides.

Debugging Parallel Fortran

This section presents some standard techniques to assist in debugging a
parallel program.

General Debugging Hints

• Debugging a multiprocessed program is much harder than debugging
a single-processor program. For this reason, do as much debugging as
possible on the single-processor version.

• Try to isolate the problem as much as possible. Ideally, try to reduce the
problem to a single C$DOACROSS loop.

• Before debugging a multiprocessed program, change the order of the
iterations on the parallel DO loop on a single-processor version. If the
loop can be multiprocessed, then the iterations can execute in any order
and produce the same answer. If the loop cannot be multiprocessed,
changing the order frequently causes the single-processor version to
fail, and standard single-process debugging techniques can be used to
find the problem.

• Once you have narrowed the bug to a single file, use –g –mp_keep to
save debugging information and to save the file containing the
multiprocessed DO loop Fortran code that has been moved to a
subroutine. –mp_keep will store the compiler-generated subroutines in
the following file name:

$TMPDIR/P<user_subroutine_name>_<machine_name><pid>

If you do not set $TMPDIR, /tmp is used.

Debugging Parallel Fortran

111

Example: Erroneous C$DOACROSS

In this example, the bug is that the two references to a have the indexes in
reverse order. If the indexes were in the same order (if both were a(i,j) or
both were a(j,i)), the loop could be multiprocessed. As written, there is a data
dependency, so the C$DOACROSS is a mistake.

c$doacross local(i,j)
 do i = 1, n
 do j = 1, n
 a(i,j) = a(j,i) + x*b(i)
 end do
 end do

Because a (correct) multiprocessed loop can execute its iterations in any
order, you could rewrite this as:

c$doacross local(i,j)
 do i = n, 1, –1
 do j = 1, n
 a(i,j) = a(j,i) + x*b(i)
 end do
 end do

This loop no longer gives the same answer as the original even when
compiled without the –mp option. This reduces the problem to a normal
debugging problem consiting of the following checks:

• Check the LOCAL variables when the code runs correctly as a single
process but fails when multiprocessed. Carefully check any scalar
variables that appear in the left-hand side of an assignment statement
in the loop to be sure they are all declared LOCAL. Be sure to include
the index of any loop nested inside the parallel loop.

A related problem occurs when you need the final value of a variable
but the variable is declared LOCAL rather than LASTLOCAL. If the
use of the final value happens several hundred lines farther down, or if
the variable is in a COMMON block and the final value is used in a
completely separate routine, a variable can look as if it is LOCAL when
in fact it should be LASTLOCAL. To combat this problem, simply
declare all the LOCAL variables LASTLOCAL when debugging a loop.

112

Chapter 6: Compiling and Debugging Parallel Fortran

• Check for EQUIVALENCE problems. Two variables of different names
may in fact refer to the same storage location if they are associated
through an EQUIVALENCE.

• Check for the use of uninitialized variables. Some programs assume
uninitialized variables have the value 0. This works with the –static
flag, but without it, uninitialized values assume the value left on the
stack. When compiling with –mp, the program executes differently and
the stack contents are different. You should suspect this type of problem
when a program compiled with –mp and run on a single processor
gives a different result when it is compiled without –mp. One way to
track down a problem of this type is to compile suspected routines with
–static. If an uninitialized variable is the problem, it should be fixed by
initializing the variable rather than by continuing to compile –static.

• Try compiling with the –C option for range checking on array
references. If arrays are indexed out of bounds, a memory location may
be referenced in unexpected ways. This is particularly true of adjacent
arrays in a COMMON block.

• If the analysis of the loop was incorrect, one or more arrays that are
SHARE may have data dependencies. This sort of error is seen only
when running multiprocessed code. When stepping through the code
in the debugger, the program executes correctly. In fact, this sort of error
often is seen only intermittently, with the program working correctly
most of the time.

• The most likely candidates for this error are arrays with complicated
subscripts. If the array subscripts are simply the index variables of a
DO loop, the analysis is probably correct. If the subscripts are more
involved, they are a good choice to examine first.

• If you suspect this type of error, as a final resort print out all the values
of all the subscripts on each iteration through the loop. Then use
uniq(1) to look for duplicates. If duplicates are found, then there is a
data dependency.

Debugging Parallel Fortran

113

Multiprocess Debugging Session

This section takes you through the process of debugging the following
incorrectly multiprocessed code.

SUBROUTINE TOTAL(N, M, IOLD, INEW)
IMPLICIT NONE
INTEGER N, M
INTEGER IOLD(N,M), INEW(N,M)

DOUBLE PRECISION AGGREGATE(100, 100)
COMMON /WORK/ AGGREGATE

INTEGER I, J, NUM, II, JJ
DOUBLE PRECISION TMP
C$DOACROSS LOCAL(I,II,J,JJ,NUM)
DO J = 2, M–1
 DO I = 2, N–1

 NUM = 1
 IF (IOLD(I,J) .EQ. 0) THEN
 INEW(I,J) = 1
 ELSE
 NUM = IOLD(I–1,J) + IOLD(I,J–1) + IOLD(I–1,J–1) +
 & IOLD(I+1,J) + IOLD(I,J+1) + IOLD(I+1,J+1)
 IF (NUM .GE. 2) THEN
 INEW(I,J) = IOLD(I,J) + 1
 ELSE
 INEW(I,J) = MAX(IOLD(I,J)–1, 0)
 END IF
 END IF

 II = I/10 + 1
 JJ = J/10 + 1

 AGGREGATE(II,JJ) = AGGREGATE(II,JJ) + INEW(I,J)

 END DO
END DO

RETURN
END

In the program, the LOCAL variables are properly declared. INEW always
appears with J as its second index, so it can be a SHARE variable when
multiprocessing the J loop. The IOLD, M, and N are only read (not written),
so they are safe. The problem is with AGGREGATE. The person analyzing

this code reasoned that because J is different in each iteration, J/10 will also
be different. Unfortunately, because J/10 uses integer division, it often gives
the same results for different values of J.

Although this is a fairly simple error, it is not easy to see. When run on a
single processor, the program always gets the right answer. Some of the time
it gets the right answer when multiprocessing. The error occurs only when
different processes attempt to load from and/or store into the same location
in the AGGREGATE array at exactly the same time.

After reviewing the debugging hints from the previous section, try reversing
the order of the iterations. Replace

DO J = 2, M–1

with

DO J = M–1, 2, –1

This still gives the right answer when running with one process and the
wrong answer when running with multiple processes. The LOCAL
variables look right, there are no EQUIVALENCE statements, and INEW
uses only very simple indexing. The likely item to check is AGGREGATE.
The next step is to use the debugger.

First compile the program with the –g –mp_keep options.

% f77 –g –mp –mp_keep driver.f total.f –o total.ex
driver.f:
total.f:

This debug session is being run on a single-processor machine, which forces
the creation of multiple threads.

% setenv MP_SET_NUMTHREADS 2

Start the debugger.

% dbx total.ex

Debugging Parallel Fortran

115

dbx version 1.31
Copyright 1987 Silicon Graphics Inc.
Copyright 1987 MIPS Computer Systems Inc.
Type 'help' for help.
Reading symbolic information of `total.ex' . . .
MAIN:14 14 do i = 1, isize

Tell dbx to pause when sproc is called.

(dbx) set $promptonfork=1

Start the job:

(dbx) run

Warning: MP_SET_NUMTHREADS greater than available cpus

(MP_SET_NUMTHREADS = 2; cpus = 1)
Process 19324(total.ex) started
Process 19324(total.ex) has executed the "sproc" system call

Add child to process pool (n if no)? y
Reading symbolic information of Process 19325 . . .
Process 19325(total.ex) added to pool
Process 19324(total.ex) after sproc [sproc.sproc:38,0x41e130]
Source (of sproc.s) not available for process 19324

Make each process stop at the first multiprocessed loop in the routine total,
which is on line 99. Its name will be _total_99_aaaa (see “Loop
Transformation” on page 104), so enter

(dbx) stop in _total_99_aaaa pgrp

[2] stop in _total_99_aaaa
[3] stop in _total_99_aaaa

Start them all off and wait for one of them to hit a break point.

(dbx) resume pgrp
(dbx) waitall
Process 19325(total.ex) breakpoint/trace
trap[_total_99_aaaa:16,0x4006d0]
 16 j = _local_start
(dbx) showproc
Process 19324(total.ex) breakpoint/trace
trap[_total_99_aaaa:16,0x4006d0]

116

Chapter 6: Compiling and Debugging Parallel Fortran

Process 19325(total.ex) breakpoint/trace
trap[_total_99_aaaa:16,0x4006d0]

Look at the complete listing of the multiprocessed loop routine.

(dbx) list 1,50
 1
 2
 3 subroutine _total_99_aaaa
 4 x (_local_start, _local_ntrip, _incr, _my_threadno)
 5 integer*4 _local_start
 6 integer*4 _local_ntrip
 7 integer*4 _incr
 8 integer*4 _my_threadno
 9 integer*4 i
 10 integer*4 ii
 11 integer*4 j
 12 integer*4 jj
 13 integer*4 num
 14 integer*4 _dummy
 15
>* 16 j = _local_start
 17 do _dummy = 1,_local_ntrip
 18 do i = 2, n–1
 19
 20 num = 1
 21 if (iold(i,j) .eq. 0) then
 22 inew(i,j) = 1
More (n if no)?y
 23 else
 24 num = iold(i–1,j) + iold(i,j–1) + iold(i–1,j–1) +
 25 $ iold(i+1,j) + iold(i,j+1) +
iold(i+1,j+1)
 26 if (num .ge. 2) then
 27 inew(i,j) = iold(i,j) + 1
 28 else
 29 inew(i,j) = max(iold(i,j)–1, 0)
 30 end if
 31 end if
 32
 33 ii = i/10 + 1
 34 jj = j/10 + 1
 35
 36 aggregate(ii,jj) = aggregate(ii,jj) + inew(i,j)
 37

Debugging Parallel Fortran

117

 38 end do
 39 j = j + 1
 40 end do
 41
 42 end

To look at AGGREGATE, stop at that line with

(dbx) stop at 36 pgrp

[4] stop at "/tmp/Ptotalkea_11561_":36
[5] stop at "/tmp/Ptotalkea_11561":36

Continue the current process (the master process). Note that cont continues
only the current process; other members of the process group (pgrp) are
unaffected.

(dbx) cont

[4] Process 19324(total.ex) stopped at
[_total_99_aaaa:36,0x400974]
 36 aggregate(ii,jj) = aggregate(ii,jj) + inew(i,j)
(dbx) \f8showproc
Process 19324(total.ex) breakpoint/trace
trap[_total_99_aaaa:36,0x400974]
Process 19325(total.ex) breakpoint/trace
trap[_total_99_aaaa:16,0x4006d0]

Check the Slave

Look at the slave process with the following command:

(dbx) active 19325

Process 19325(total.ex) breakpoint/trace
trap[_total_99_aaaa:16,0x4006d0]

(dbx) cont
[5] Process 19325(total.ex) stopped at
[_total_99_aaaa:36,0x400974]
 36 aggregate(ii,jj) = aggregate(ii,jj) + inew(i,j)

118

Chapter 6: Compiling and Debugging Parallel Fortran

(dbx) where
> 0 _total_99_aaaa(_local_start = 6, _local_ntrip = 4,
_incr = 1,
 my_threadno = 1) ["/tmp/Ptotalkea_11561":36,
0x400974]
 1 mp_slave_sync(0x0,0x0,0x1,0x1,0x0,0x0)["mp_slave.s":119,
0x402964]

The slave process has entered the multiprocessed routine from the slave
synchronization routine mp_slave_sync. Both processes are now at the
AGGREGATE assignment statement. Look at the values of the indexes in
both processes.

(dbx) print ii
1
(dbx) print jj
1
(dbx) print ii pid 19324
1
(dbx) print jj pid 19324
1

The indexes are the same in both processes. Now examine the arguments to
the multiprocessed routine; note that this information can also be seen in the
where command above.

(dbx) print _local_ntrip
4
(dbx) print _local_start
6
(dbx) print j
6
(dbx) print _local_ntrip pid 19324
4
(dbx) print _local_start pid 19324
2
(dbx) print j pid 19324
2

The analysis for this loop assumed that J/10 would be different for each loop
iteration. This is the problem; confirm it by looking further into the loop

(dbx) active 19324
Process 19324(total.ex) breakpoint/trace
trap[_total_99_aaaa:36,0x400974]

Parallel Programming Exercise

119

(dbx) where
> 0 _total_99_aaaa(_local_start = 2, _local_ntrip = 4,
_incr = 1,

_my_threadno = 0) ["/tmp/Ptotalkea_11561":36, 0x400974]
 1 mp_simple_sched_(0x0, 0x0, 0x0, 0x0, 0x0, 0x40034c)
[0x400e38]
 2 total.total(n = 100, m = 10, iold = (...), inew = (...))

["total.f":15, 0x4005f4]
 3 MAIN() ["driver.f":25, 0x400348]
 4 main.main(0x0, 0x7fffc7a4, 0x7fffc7ac, 0x0, 0x0, 0x0)

["main.c":35, 0x400afc]
(dbx) func total
[using total.total]
total:15 15 do j = 2, m–1
(dbx) print m
10
(dbx) quit
Process 19324(total.ex) terminated
Process 19325(total.ex) terminated
%

There are several possible ways to correct this problem; they are left as an
exercise for the reader.

Parallel Programming Exercise

This section explains the techniques for applying Fortran loop-level
parallelism to an existing application. Each program is unique; these
techniques must be adapted for your particular needs.

In summary, the steps to follow are these:

1. Make the original code work on one processor.

2. Profile the code to find the time-critical part(s).

3. Perform data dependence analysis on the part(s) found in the previous
step.

120

Chapter 6: Compiling and Debugging Parallel Fortran

4. If necessary, rewrite the code to make it parallelizable. Add
C$DOACROSS statements as appropriate.

5. Debug the rewritten code on a single processor.

6. Run the parallel version on a multiprocessor. Verify that the answers
are correct.

7. If the answers are wrong, debug the parallel code. Always return to
step 5 (single-process debugging) whenever any change is made to the
code.

8. Profile the parallel version to gauge the effects of the parallelism.

9. Iterate these steps until satisfied.

First Pass

The next several pages take you through the process outlined above. The
exercise is based on a model of a molecular dynamics program; the routine
shown below will not work except as a test bed for the debug exercise.

Step 1: Make the Original Work

Make sure the original code runs on a Silicon Graphics workstation before
attempting to multiprocess it. Multiprocess debugging is much harder than
single-process debugging, so fix as much as possible in the single-process
version.

Step 2: Profile

Profiling the code enables you to focus your efforts on the important parts.
For example, initialization code is frequently full of loops that will
parallelize; usually these set arrays to zero. This code typically uses only 1
percent of the CPU cycles; thus working to parallelize it is pointless.

In the example, you get the following output when you run the program
with pixie. For brevity, we omit listing the procedures that took less than 1
percent of the total time.

Parallel Programming Exercise

121

prof –pixie –quit 1% orig orig.Addrs orig.Counts

* -p[rocedures] using basic-block counts; sorted in *
* descending order by the number of cycles executed in*
* each procedure; unexecuted procedures are excluded *

10864760 cycles

 cycles %cycles cum % cycles bytes procedure (file)
 /call /line

 10176621 93.67 93.67 484601 24 calc_
(/tmp/ctmpa00845)
 282980 2.60 96.27 14149 58 move_
(/tmp/ctmpa00837)
 115743 1.07 97.34 137 70 t_putc (lio.c)

The majority of time is spent in the CALC routine, which looks like this:

 SUBROUTINE CALC(NUM_ATOMS,ATOMS,FORCE,THRESHOLD,WEIGHT)
 IMPLICIT NONE
 INTEGER MAX_ATOMS
 PARAMETER(MAX_ATOMS = 1000)
 INTEGER NUM_ATOMS
 DOUBLE PRECISION ATOMS(MAX_ATOMS,3), FORCE(MAX_ATOMS,3)
 DOUBLE PRECISION THRESHOLD
 DOUBLE PRECISION WEIGHT(MAX_ATOMS)

 DOUBLE PRECISION DIST_SQ(3), TOTAL_DIST_SQ
 DOUBLE PRECISION THRESHOLD_SQ
 INTEGER I, J

 THRESHOLD_SQ = THRESHOLD ** 2

 DO I = 1, NUM_ATOMS

 DO J = 1, I-1

 DIST_SQ(1) = (ATOMS(I,1) - ATOMS(J,1)) ** 2
 DIST_SQ(2) = (ATOMS(I,2) - ATOMS(J,2)) ** 2
 DIST_SQ(3) = (ATOMS(I,3) - ATOMS(J,3)) ** 2

 TOTAL_DIST_SQ = DIST_SQ(1) + DIST_SQ(2) + DIST_SQ(3)

 IF (TOTAL_DIST_SQ .LE. THRESHOLD_SQ) THEN
C
C ADD THE FORCE OF THE NEARBY ATOM ACTING ON THIS
C ATOM ...
C

122

Chapter 6: Compiling and Debugging Parallel Fortran

 FORCE(I,1) = FORCE(I,1) + WEIGHT(I)
 FORCE(I,2) = FORCE(I,2) + WEIGHT(I)
 FORCE(I,3) = FORCE(I,3) + WEIGHT(I)
C
C ... AND THE FORCE OF THIS ATOM ACTING ON THE
C NEARBY ATOM
C
 FORCE(J,1) = FORCE(J,1) + WEIGHT(J)
 FORCE(J,2) = FORCE(J,2) + WEIGHT(J)
 FORCE(J,3) = FORCE(J,3) + WEIGHT(J)

 END IF

 END DO
 END DO

 RETURN
 END

Step 3: Analyze

It is better to parallelize the outer loop, if possible, to enclose the most work.
To do this, analyze the variable usage. The simplest and best way is to use
the Silicon Graphics POWER Fortran Accelerator™ (PFA). If you do not
have access to this tool, you must examine each variable by hand.

Data dependence occurs when the same location is written to and read.
Therefore, any variables not modified inside the loop can be dismissed.
Because they are read only, they can be made SHARE variables and do not
prevent parallelization. In the example, NUM_ATOMS, ATOMS,
THRESHOLD_SQ, and WEIGHT are only read, so they can be declared
SHARE.

Next, I and J can be LOCAL variables. Perhaps not so easily seen is that
DIST_SQ can also be a LOCAL variable. Even though it is an array, the
values stored in it do not carry from one iteration to the next; it is simply a
vector of temporaries.

The variable FORCE is the crux of the problem. The iterations of FORCE(I,*)
are all right. Because each iteration of the outer loop gets a different value of
I, each iteration uses a different FORCE(I,*). If this was the only use of
FORCE, we could make FORCE a SHARE variable. However, FORCE(J,*)
prevents this. In each iteration of the inner loop, something may be added to

Parallel Programming Exercise

123

both FORCE(I,1) and FORCE(J,1). There is no certainty that I and J will ever
be the same, so you cannot directly parallelize the outer loop. The uses of
FORCE look similar to sum reductions but are not quite the same. A likely
fix is to use a technique similar to sum reduction.

In analyzing this, notice that the inner loop runs from 1 up to I–1. Therefore,
J is always less than I, and so the various references to FORCE do not
overlap with iterations of the inner loop. Thus the various FORCE(J,*)
references would not cause a problem if you were parallelizing the inner
loop.

Further, the FORCE(I,*) references are simply sum reductions with respect
to the inner loop (see “Debugging Parallel Fortran” on page 110 Example 4,
for information on modifying this loop with a reduction transformation). It
appears you can parallelize the inner loop. This is a valuable fallback
position should you be unable to parallelize the outer loop.

But the idea is still to parallelize the outer loop. Perhaps sum reductions
might do the trick. However, remember round-off error: accumulating
partial sums gives different answers from the original because the precision
nature computer arithmetic is limited. Depending on your requirements,
sum reduction may not be the answer. The problem seems to center around
FORCE, so try pulling those statements entirely out of the loop.

Step 4: Rewrite

Rewrite the loop as follows; changes are noted in bold.

SUBROUTINE CALC(NUM_ATOMS,ATOMS,FORCE,THRESHOLD, WEIGHT)
IMPLICIT NONE
INTEGER MAX_ATOMS
 PARAMETER(MAX_ATOMS = 1000)
 INTEGER NUM_ATOMS
 DOUBLE PRECISION ATOMS(MAX_ATOMS,3), FORCE(MAX_ATOMS,3)
 DOUBLE PRECISION THRESHOLD, WEIGHT(MAX_ATOMS)

LOGICAL FLAGS(MAX_ATOMS,MAX_ATOMS)

 DOUBLE PRECISION DIST_SQ(3), TOTAL_DIST_SQ
 DOUBLE PRECISION THRESHOLD_SQ
 INTEGER I, J

 THRESHOLD_SQ = THRESHOLD ** 2
C$DOACROSS LOCAL(I,J,DIST_SQ,TOTAL_DIST_SQ)

124

Chapter 6: Compiling and Debugging Parallel Fortran

 DO I = 1, NUM_ATOMS
 DO J = 1, I-1

 DIST_SQ(1) = (ATOMS(I,1) - ATOMS(J,1)) ** 2
 DIST_SQ(2) = (ATOMS(I,2) - ATOMS(J,2)) ** 2
 DIST_SQ(3) = (ATOMS(I,3) - ATOMS(J,3)) ** 2

 TOTAL_DIST_SQ=DIST_SQ(1)+DIST_SQ(2)+ DIST_SQ(3)

C
C SET A FLAG IF THE DISTANCE IS WITHIN THE
C THRESHOLD
C
 IF (TOTAL_DIST_SQ .LE. THRESHOLD_SQ) THEN

FLAGS(I,J) = .TRUE.
ELSE

FLAGS(I,J) = .FALSE.
 END IF

 END DO
 END DO

 DO I = 1, NUM_ATOMS
DO J = 1, I-1
IF (FLAGS(I,J)) THEN

C
C ADD THE FORCE OF THE NEARBY ATOM ACTING ON THIS
C ATOM ...
C
 FORCE(I,1) = FORCE(I,1) + WEIGHT(I)
 FORCE(I,2) = FORCE(I,2) + WEIGHT(I)
 FORCE(I,3) = FORCE(I,3) + WEIGHT(I)
C
C ... AND THE FORCE OF THIS ATOM ACTING ON THE
C NEARBY ATOM
C
 FORCE(J,1) = FORCE(J,1) + WEIGHT(J)
 FORCE(J,2) = FORCE(J,2) + WEIGHT(J)
 FORCE(J,3) = FORCE(J,3) + WEIGHT(J)

END IF
END DO

END DO

 RETURN
 END

Parallel Programming Exercise

125

You have parallelized the distance calculations, leaving the summations to
be done serially. Because you did not alter the order of the summations, this
should produce exactly the same answer as the original version.

Step 5: Debug on a Single Processor

The temptation might be strong to rush the rewritten code directly to the
multiprocessor at this point. Remember, single-process debugging is easier
than multiprocess debugging. Spend time now to compile and correct the
code without the –mp flag to save time later.

A few iterations should get it right.

Step 6: Run the Parallel Version

Compile the code with the –mp flag. As a further check, do the first run with
the environment variable MP_SET_NUMTHREADS set to 1. When this
works, set MP_SET_NUMTHREADS to 2, and run the job multiprocessed.

Step 7: Debug the Parallel Version

If you get the correct output from the version with one thread but not from
the version with multiple threads, you need to debug the program while
running multiprocessed. Refer to “General Debugging Hints” on page 110
for help.

Step 8: Profile the Parallel Version

After the parallel job executes correctly, check whether the run time has
improved. First, compare an execution profile of the modified code compiled
without –mp with the original profile. This is important because, in
rewriting the code for parallelism, you may have introduced new work. In
this example, writing and reading the FLAGS array, plus the overhead of the
two new DO loops, are significant.

The pixie output on the modified code shows the difference:

% prof –pixie –quit 1% try1 try1.Addrs try1.Counts

126

Chapter 6: Compiling and Debugging Parallel Fortran

--
* -p[rocedures] using basic-block counts; sorted in *
* descending order by the number of cycles executed in *
* each procedure; unexecuted procedures are excluded *
--

13302554 cycles

 cycles %cycles cum % cycles bytes procedure (file)
 /call /line

 12479754 93.81 93.81 594274 25 calc_
(/tmp/ctmpa00857)
 282980 2.13 95.94 14149 58 move_
(/tmp/ctmpa00837)
 155721 1.17 97.11 43 29 _flsbuf (flsbuf.c)

The single-processor execution time has increased by about 30 percent.

Look at an execution profile of the master thread in a parallel run and
compare it with these single-process profiles:

% prof -pixie -quit 1% try1.mp try1.mp.Addrs
try1.mp.Counts00421

--
* -p[rocedures] using basic-block counts; sorted in *
* descending order by the number of cycles executed in *
* each procedure; unexecuted procedures are excluded *
--

12735722 cycles

 cycles %cycles cum % cycles bytes procedure (file)
 /call /line

 6903896 54.21 54.21 328767 37 calc_
(/tmp/ctmpa00869)
 3034166 23.82 78.03 137917 16 mp_waitmaster
(mp_simple_sched.s)
 1812468 14.23 92.26 86308 19 _calc_88_aaaa
(/tmp/fMPcalc_)
 294820 2.31 94.57 294820 13 mp_create
(mp_utils.c)
 282980 2.22 96.79 14149 58 move_
(/tmp/ctmpa00837)

Parallel Programming Exercise

127

Multiprocessing has helped very little compared with the single-process run
of the modified code: the program is running slower than the original. What
happened? The cycle counts tell the story. The routine calc_ is what remains
of the original routine after the C$DOACROSS loop _calc_88_aaaa is
extracted (refer to “Loop Transformation” on page 104 for details about loop
naming conventions). calc_ still takes nearly 70 percent of the time of the
original. When you pulled the code for FORCE into a separate loop, you had
to remove too much from the loop. The serial part is still too large.

Additionally, there seems to be a load-balancing problem. The master is
spending a large fraction of its time waiting for the slave to complete. But
even if the load were perfectly balanced, there would still be the 30 percent
additional work of the multiprocessed version. Trying to fix the load
balancing right now will not solve the general problem.

Regroup and Attack Again

Now is the time to try a different approach. If the first attempt does not give
precisely the desired result, regroup and attack from a new direction.

Repeat Step 3: Analyze

At this point, round-off errors might not be so terrible. Perhaps you can try
to adapt the sum reduction technique to the original code.

Although the calculations on FORCE are not quite the same as a sum
reduction, you can use the same technique: give the reduction variable one
extra dimension so that each thread gets its own separate memory location.

128

Chapter 6: Compiling and Debugging Parallel Fortran

Repeat Step 4: Rewrite

As before, changes are noted in bold.

 SUBROUTINE CALC(NUM_ATOMS,ATOMS,FORCE,THRESHOLD,WEIGHT)
 IMPLICIT NONE
 INTEGER MAX_ATOMS
 PARAMETER(MAX_ATOMS = 1000)
 INTEGER NUM_ATOMS
 DOUBLE PRECISION ATOMS(MAX_ATOMS,3), FORCE(MAX_ATOMS,3)
 DOUBLE PRECISION THRESHOLD
 DOUBLE PRECISION WEIGHT(MAX_ATOMS)
 DOUBLE PRECISION DIST_SQ(3)
 DOUBLE PRECISION THRESHOLD_SQ
 INTEGER I, J

INTEGER MP_SET_NUMTHREADS, MP_NUMTHREADS
INTEGER BLOCK_SIZE, THREAD_INDEX
EXTERNAL MP_NUMTHREADS
DOUBLE PRECISION PARTIAL(MAX_ATOMS, 3, 4)

 THRESHOLD_SQ = THRESHOLD ** 2

MP_SET_NUMTHREADS = MP_NUMTHREADS()
C
C INITIALIZE THE PARTIAL SUMS
C
C$DOACROSS LOCAL(THREAD_INDEX,I,J)
 DO THREAD_INDEX = 1, MP_SET_NUMTHREADS
 DO I = 1, NUM_ATOMS

DO J = 1, 3
 PARTIAL(I,J,THREAD_INDEX) = 0.0D0
 END DO
 END DO
 END DO

 BLOCK_SIZE = (NUM_ATOMS + (MP_SET_NUMTHREADS-1)) /
 & MP_SET_NUMTHREADS

C$DOACROSS LOCAL(THREAD_INDEX, I, J, DIST_SQ, TOTAL_DIST_SQ)
 DO THREAD_INDEX = 1, MP_SET_NUMTHREADS

DO I = THREAD_INDEX*BLOCK_SIZE - BLOCK_SIZE + 1,
 $ MIN(THREAD_INDEX*BLOCK_SIZE, NUM_ATOMS)

 DO J = 1, I-1

 DIST_SQ1 = (ATOMS(I,1) - ATOMS(J,1)) ** 2
 DIST_SQ2 = (ATOMS(I,2) - ATOMS(J,2)) ** 2

Parallel Programming Exercise

129

 DIST_SQ3 = (ATOMS(I,3) - ATOMS(J,3)) ** 2

 TOTAL_DIST_SQ = DIST_SQ1 + DIST_SQ2 + DIST_SQ3

 IF (TOTAL_DIST_SQ .LE. THRESHOLD_SQ) THEN
C
C ADD THE FORCE OF THE NEARBY ATOM ACTING ON THIS
C ATOM ...
C

PARTIAL(I,1,THREAD_INDEX) = PARTIAL(I,1,
 + THREAD_INDEX) + WEIGHT(I)
 PARTIAL(I,2,THREAD_INDEX) = PARTIAL(I,2,
 + THREAD_INDEX) + WEIGHT(I)
 PARTIAL(I,3,THREAD_INDEX) = PARTIAL(I,3,
 + THREAD_INDEX) + WEIGHT(I)
C
C ... AND THE FORCE OF THIS ATOM ACTING ON THE
C NEARBY ATOM
C
 PARTIAL(J,1,THREAD_INDEX) = PARTIAL(J,1,THREAD_INDEX)

+ + WEIGHT(J)
 PARTIAL(J,2,THREAD_INDEX) = PARTIAL(J,2,THREAD_INDEX)
 + + WEIGHT(J)
 PARTIAL(J,3,THREAD_INDEX) = PARTIAL(J,3,THREAD_INDEX)
 + + WEIGHT(J)

 END IF

 END DO
 END DO

ENDDO

C
C TOTAL UP THE PARTIAL SUMS
C
 DO I = 1, NUM_ATOMS
 DO THREAD_INDEX = 1, MP_SET_NUMTHREADS
 FORCE(I,1) = FORCE(I,1) + PARTIAL(I,1,THREAD_INDEX)
 FORCE(I,2) = FORCE(I,2) + PARTIAL(I,2,THREAD_INDEX)
 FORCE(I,3) = FORCE(I,3) + PARTIAL(I,3,THREAD_INDEX)
 END DO
 END DO

 RETURN
 END

130

Chapter 6: Compiling and Debugging Parallel Fortran

Repeat Step 5: Debug on a Single Processor

Because you are doing sum reductions in parallel, the answers may not
exactly match the original. Be careful to distinguish between real errors and
variations introduced by round-off. In this example, the answers agreed
with the original for 10 digits.

Repeat Step 6: Run the Parallel Version

Again, because of round-off, the answers produced vary slightly depending
on the number of processors used to execute the program. This variation
must be distinguished from any actual error.

Repeat Step 7: Profile the Parallel Version

The output from the pixie run for this routine looks like this:

% prof -pixie -quit 1% try2.mp try2.mp.Addrs
try2.mp.Counts00423

--
* -p[rocedures] using basic-block counts; sorted in *
* descending order by the number of cycles executed in *
* each procedure; unexecuted procedures are excluded *
--

10036679 cycles

 cycles %cycles cum % cycles bytes procedure (file)
 /call /line

 6016033 59.94 59.94 139908 16 mp_waitmaster
(mp_simple_sched.s)
 3028682 30.18 90.12 144223 31 _calc_88_aaab
(/tmp/fMPcalc_)
 282980 2.82 92.94 14149 58 move_
(/tmp/ctmpa00837)
 194040 1.93 94.87 9240 41 calc_
(/tmp/ctmpa00881)
 115743 1.15 96.02 137 70 t_putc (lio.c)

With this rewrite, calc_ now accounts for only a small part of the total. You
have pushed most of the work into the parallel region. Because you added a
multiprocessed initialization loop before the main loop, that new loop is

Parallel Programming Exercise

131

now named _calc_88_aaaa and the main loop is now _calc_88_aaab. The
initialization took less than 1 percent of the total time and so does not even
appear on the listing.

The large number for the routine mp_waitmaster indicates a problem. Look
at the pixie run for the slave process

% prof -pixie -quit 1% try2.mp try2.mp.Addrs
try2.mp.Counts00424

--

* -p[rocedures] using basic-block counts; sorted in *

* descending order by the number of cycles executed in *

* each procedure; unexecuted procedures are excluded *

--

10704474 cycles

 cycles %cycles cum % cycles bytes procedure (file)

 /call /line

 7701642 71.95 71.95 366745 31 _calc_2_
(/tmp/fMPcalc_)

 2909559 27.18 99.13 67665 32
mp_slave_wait_for_work (mp_slave.s)

The slave is spending more than twice as many cycles in the main
multiprocessed loop as the master. This is a severe load balancing problem.

Repeat Step 3 Again: Analyze

Examine the loop again. Because the inner loop goes from 1 to I-1, the first
few iterations of the outer loop have far less work in them than the last
iterations. Try breaking the loop into interleaved pieces rather than
contiguous pieces. Also, because the PARTIAL array should have the
leftmost index vary the fastest, flip the order of the dimensions. For fun, we
will put some loop unrolling in the initialization loop. This is a marginal
optimization because the initialization loop is less than 1 percent of the total
execution time.

132

Chapter 6: Compiling and Debugging Parallel Fortran

Repeat Step 4 Again: Rewrite

The new version looks like this, with changes in bold:

 SUBROUTINE CALC(NUM_ATOMS,ATOMS,FORCE,THRESHOLD,WEIGHT)
 IMPLICIT NONE
 INTEGER MAX_ATOMS
 PARAMETER(MAX_ATOMS = 1000)
 INTEGER NUM_ATOMS
 DOUBLE PRECISION ATOMS(MAX_ATOMS,3), FORCE(MAX_ATOMS,3)
 DOUBLE PRECISION THRESHOLD
 DOUBLE PRECISION WEIGHT(MAX_ATOMS)

 DOUBLE PRECISION DIST_SQ(3), TOTAL_DIST_SQ
 DOUBLE PRECISION THRESHOLD_SQ

 INTEGER I, J
 INTEGER MP_SET_NUMTHREADS, MP_NUMTHREADS, THREAD_INDEX
 EXTERNAL MP_NUMTHREADS
 DOUBLE PRECISION PARTIAL(3, MAX_ATOMS, 4)

 THRESHOLD_SQ = THRESHOLD ** 2

MP_SET_NUMTHREADS = MP_NUMTHREADS()

C
C INITIALIZE THE PARTIAL SUMS
C
C$DOACROSS LOCAL(THREAD_INDEX,I,J)
 DO THREAD_INDEX = 1, MP_SET_NUMTHREADS
 DO I = 1, NUM_ATOMS

PARTIAL(1,I,THREAD_INDEX) = 0.0D0
 PARTIAL(2,I,THREAD_INDEX) = 0.0D0
 PARTIAL(3,I,THREAD_INDEX) = 0.0D0
 END DO
 END DO

C$DOACROSS LOCAL(THREAD_INDEX, I, J, DIST_SQ, TOTAL_DIST_SQ)
 DO THREAD_INDEX = 1, MP_SET_NUMTHREADS

DO I = THREAD_INDEX, NUM_ATOMS, MP_SET_NUMTHREADS

 DO J = 1, I-1

 DIST_SQ1 = (ATOMS(I,1) - ATOMS(J,1)) ** 2
 DIST_SQ2 = (ATOMS(I,2) - ATOMS(J,2)) ** 2
 DIST_SQ3 = (ATOMS(I,3) - ATOMS(J,3)) ** 2

Parallel Programming Exercise

133

 TOTAL_DIST_SQ = DIST_SQ1 + DIST_SQ2 + DIST_SQ3

 IF (TOTAL_DIST_SQ .LE. THRESHOLD_SQ) THEN
C
C ADD THE FORCE OF THE NEARBY ATOM ACTING ON THIS
C ATOM ...
C
 PARTIAL(1,I,THREAD_INDEX) = PARTIAL(1,I, THREAD_INDEX)
 + + WEIGHT(I)
 PARTIAL(2,I, THREAD_INDEX) = PARTIAL(2,I, THREAD_INDEX)
 + + WEIGHT(I)
 PARTIAL(3,I,THREAD_INDEX) = PARTIAL(3,I, THREAD_INDEX)
 + + WEIGHT(I)
C
C
C
 PARTIAL(1,J,THREAD_INDEX) = PARTIAL(1,J, THREAD_INDEX)
 + + WEIGHT(J)
 PARTIAL(2,J,THREAD_INDEX) = PARTIAL(2,J, THREAD_INDEX)
 + + WEIGHT(J)
 PARTIAL(3,J,THREAD_INDEX) = PARTIAL(3,J, THREAD_INDEX)
 + + WEIGHT(J)

 END IF

 END DO
 END DO

ENDDO

C
C TOTAL UP THE PARTIAL SUMS
C

DO THREAD_INDEX = 1, MP_SET_NUMTHREADS
 DO I = 1, NUM_ATOMS
 FORCE(I,1) = FORCE(I,1) + PARTIAL(1,I,THREAD_INDEX)
 FORCE(I,2) = FORCE(I,2) + PARTIAL(2,I,THREAD_INDEX)
 FORCE(I,3) = FORCE(I,3) + PARTIAL(3,I,THREAD_INDEX)
 END DO
 END DO

 RETURN
 END

134

Chapter 6: Compiling and Debugging Parallel Fortran

With these final fixes in place, repeat the same steps to verify the changes:

1. Debug on a single processor.

2. Run the parallel version.

3. Debug the parallel version.

4. Profile the parallel version.

Repeat Step 7 Again: Profile

The pixie output for the latest version of the code looks like this:

% prof -pixie -quit 1% try3.mp try3.mp.Addrs
try3.mp.Counts00425

--
* -p[rocedures] using basic-block counts; sorted in *
* descending order by the number of cycles executed in *
* each procedure; unexecuted procedures are excluded *
--

7045818 cycles

 cycles %cycles cum % cycles bytes procedure (file)
 /call /line

 5960816 84.60 84.60 283849 31 _calc_2_ (/tmp/fMPcalc_)
 282980 4.02 88.62 14149 58 move_ (/tmp/ctmpa00837)
 179893 2.75 91.37 4184 16 mp_waitmaster (mp_simple_sched.s)
 159978 2.55 93.92 7618 41 calc_ (/tmp/ctmpa00941)
 115743 1.64 95.56 137 70 t_putc (lio.c)

This looks good. To be sure you have solved the load-balancing problem,
check that the slave output shows roughly equal amounts of time spent in
_calc_2_. Once this is verified, you are finished.

Parallel Programming Exercise

135

Epilogue

After considerable effort, you reduced execution time by about 30 percent by
using two processors. Because the routine you multiprocessed still accounts
for the majority of work, even with two processors, you would expect
considerable improvement by moving this code to a four-processor
machine. Because the code is parallelized, no further conversion is needed
for the more powerful machine; you can just transport the executable image
and run it.

Note that you have added a noticeable amount of work to get the
multiprocessing correct; the run time for a single processor has degraded
nearly 30 percent. This is a big number, and it may be worthwhile to keep
two versions of the code around: the version optimized for multiple
processors and the version optimized for single processors. Frequently the
performance degradation on a single processor is not nearly so large and is
not worth the bother of keeping multiple versions around. You can simply
run the multiprocessed version on a single processor. The only way to know
what to keep is to run the code and time it.

137

Appendix A

A. Run-Time Error Messages

Table A-1 lists possible Fortran run-time I/O errors. Other errors given by
the operating system may also occur.

Each error is listed on the screen alone or with one of the following phrases
appended to it:

apparent state: unit num named user filename

last format: string

lately (reading, writing)(sequential, direct, indexed)

formatted, unformatted(external, internal) IO

When the Fortran run-time system detects an error, the following actions
take place:

• A message describing the error is written to the standard error unit
(Unit 0).

• A core file, which can be used with dbx (the debugger) to inspect the
state of the program at termination, is produced if the f77_dump_flag
environment variable is defined and set to y.

138

Appendix A: Run-Time Error Messages

When a run-time error occurs, the program terminates with one of the error
messages shown in Table A-1. All of the errors in the table are output in the
format user filename : message.

Table A-1 Run-Time Error Messages

Number Message/Cause

100 error in format

Illegal characters are encountered in FORMAT statement.

101 out of space for I/O unit table

Out of virtual space that can be allocated for the I/O unit table.

102 formatted io not allowed

Cannot do formatted I/O on logical units opened for unformatted I/O.

103 unformatted io not allowed

Cannot do unformatted I/O on logical units opened for formatted I/O.

104 direct io not allowed

Cannot do direct I/O on sequential file.

106 can’t backspace file

Cannot perform BACKSPACE/REWIND on file.

107 null file name

Filename specification in OPEN statement is null.

109 unit not connected

The specified filename has already been opened as a different logical
unit.

110 off end of record

Attempt to do I/O beyond the end of the record.

112 incomprehensible list input

Input data for list-directed read contains invalid character for its data
type.

113 out of free space

Cannot allocate virtual memory space on the system.

139

114 unit not connected

Attempt to do I/O on unit that has not been opened and cannot be
opened.

115 read unexpected character

Unexpected character encountered in formatted or directed read.

116 blank logical input field

Invalid character encountered for logical value.

117 bad variable type

Specified type for the namelist is invalid. This error is most likely caused
by incompatible versions of the front end and the run-time I/O library.

118 bad namelist name

The specified namelist name cannot be found in the input data file.

119 variable not in namelist

The namelist variable name in the input data file does not belong to the
specified namelist.

120 no end record

$END is not found at the end of the namelist input data file.

121 namelist subscript out of range

The array subscript of the character substring value in the input data file
exceeds the range for that array or character string.

122 negative repeat count

The repeat count in the input data file is less than or equal to zero.

123 illegal operation for unit

You cannot set your own buffer on direct unformatted files.

124 off beginning of record

Format edit descriptor causes positioning to go off the beginning of the
record.

125 no * after repeat count

An asterisk (*) is expected after an integer repeat count.

Table A-1 (continued) Run-Time Error Messages

Number Message/Cause

140

Appendix A: Run-Time Error Messages

126 'new' file exists

The file is opened as new but already exists.

127 can’t find 'old' file

The file is opened as old but does not exist.

130 illegal argument

Invalid value in the I/O control list.

131 duplicate key value on write

Cannot write a key that already exists.

132 indexed file not open

Cannot perform indexed I/O on an unopened file.

133 bad isam argument

The indexed I/O library function receives a bad argument because of a
corrupted index file or bad run-time I/O libraries.

134 bad key description

The key description is invalid.

135 too many open indexed files

Cannot have more than 32 open indexed files.

136 corrupted isam file

The indexed file format is not recognizable. This error is usually caused
by a corrupted file.

137 isam file not opened for exclusive access

Cannot obtain lock on the indexed file.

138 record locked

The record has already been locked by another process.

138 key already exists

The key specification in the OPEN statement has already been specified.

140 cannot delete primary key

DELETE cannot be executed on a primary key.

Table A-1 (continued) Run-Time Error Messages

Number Message/Cause

141

141 beginning or end of file reached

The index for the specified key points beyond the length of the indexed
data file. This error is probably because of corrupted ISAM files or a bad
indexed I/O run-time library.

142 cannot find request record

The requested key for indexed READ does not exist.

143 current record not defined

Cannot execute REWRITE, UNLOCK, or DELETE before doing a READ
to define the current record.

144 isam file is exclusively locked

The indexed file has been exclusively locked by another process.

145 filename too long

The indexed filename exceeds 128 characters.

148 key structure does not match file structure

Mismatch between the key specifications in the OPEN statement and the
indexed file.

149 direct access on an indexed file not allowed

Cannot have direct-access I/O on an indexed file.

150 keyed access on a sequential file not allowed

Cannot specify keyed access together with sequential organization.

151 keyed access on a relative file not allowed

Cannot specify keyed access together with relative organization.

152 append access on an indexed file not allowed

Cannot specifiy append access together with indexed organization.

153 must specify record length

A record length specification is required when opening a direct or keyed
access file.

154 key field value type does not match key type

The type of the given key value does not match the type specified in the
OPEN statement for that key.

Table A-1 (continued) Run-Time Error Messages

Number Message/Cause

142

Appendix A: Run-Time Error Messages

155 character key field value length too long

The length of the character key value exceeds the length specification for
that key.

156 fixed record on sequential file not allowed

RECORDTYPE='fixed' cannot be used with a sequential file.

157 variable records allowed only on unformatted
sequential file

RECORDTYPE='variable' can only be used with an unformatted
sequential file.

158 stream records allowed only on formatted sequential
file

RECORDTYPE='stream_lf' can only be used with a formatted sequential
file.

159 maximum number of records in direct access file
exceeded

The specified record is bigger than the MAXREC= value used in the
OPEN statement.

160 attempt to create or write to a read-only file

User does not have write permission on the file.

161 must specify key descriptions

Must specify all the keys when opening an indexed file.

162 carriage control not allowed for unformatted units

CARRIAGECONTROL specifier can only be used on a formatted file.

163 indexed files only

Indexed I/O can only be done on logical units that have been opened for
indexed (keyed) access.

164 cannot use on indexed file

Illegal I/O operation on an indexed (keyed) file.

165 cannot use on indexed or append file

Illegal I/O operation on an indexed (keyed) or append file.

Table A-1 (continued) Run-Time Error Messages

Number Message/Cause

143

167 invalid code in format specification

Unknown code is encountered in format specification.

168 invalid record number in direct access file

The specified record number is less than 1.

169 cannot have endfile record on non-sequential file

Cannot have an endfile on a direct- or keyed-access file.

170 cannot position within current file

Cannot perform fseek() on a file opened for sequential unformatted
I/O.

171 cannot have sequential records on direct access file

Cannot do sequential formatted I/O on a file opened for direct access.

173 cannot read from stdout

Attempt to read from stdout.

174 cannot write to stdin

Attempt to write to stdin.

176 illegal specifier

The I/O control list contains an invalid value for one of the I/O
specifiers. For example, ACCESS='INDEXED'.

180 attempt to read from a writeonly file

User does not have read permission on the file.

181 direct unformatted io not allowed

Direct unformatted file cannot be used with this I/O operation.

182 cannot open a directory

The name specified in FILE= mut be the name of a file, not a directory.

183 subscript out of bounds

The exit status returned when a program compiled with the –C option
has an array subscript that is out of range.

Table A-1 (continued) Run-Time Error Messages

Number Message/Cause

144

Appendix A: Run-Time Error Messages

184 function not declared as varargs

Variable argument routines called in subroutines that have not been
declared in a $VARARGS directive.

185 internal error

Internal run-time library error.

Table A-1 (continued) Run-Time Error Messages

Number Message/Cause

145

Index

A

–align16 compiler option, 8, 28
–align32 compiler option, 8
–align64 compiler option, 8
–align8 compiler option, 8, 28
alignment, 25, 27
archiver, ar, 19
arguments

order, 33
passing between C and Fortran, 32
passing between Fortran and Pascal, 48

arrays
C, 35
character, 42
declaring, 26
Pascal, 50

–automatic compiler option, 108

B

–backslash compiler option, 9
barrier function, 102
–bestG compiler option, 18
blocking slave threads, 97

C

C$, 77
–C compiler option, 9, 112
C functions

calling from Fortran, 30
C macro preprocessor, 3, 11
C$&, 77
C-style comments

accepting in Hollerith strings, 3
cache, 93

reducing conflicts, 18
C$CHUNK, 78
C$COPYIN, 102
C$DOACROSS, 71

and REDUCTION, 73
continuing with C$&, 77
loop naming convention, 104
nesting, 78

character arrays, 42
character variables, 39
–check_bounds compiler option, 9
CHUNK, 74, 96
–chunk compiler option, 9, 78
C$MP_SCHEDTYPE, 78

146

Index

–col72 compiler option, 10
comments, 3
COMMON blocks, 72, 112

making local to a process, 102
common blocks, 26, 36
compilation, 2
compiler options, 8

–1, 14
–align16, 8, 25, 28
–align32, 8
–align64, 8
–align8, 8, 25, 28
–automatic, 108
–backslash, 9
–bestG, 18
–C, 9, 112
–check_bounds, 9
–chunk, 9, 78
–col72, 10
–cord, 18
–cpp, 10
–d_lines, 11
–E, 11
–expand_include, 11
–extend_source, 11
–F, 11
–feedback, 18
–framepointer, 11
–G, 18
–g, 16, 114
–i2, 12
–jmopt, 18
–l, 6
list of, 8
–listing, 12
–lm, 7
–lp, 7
–m, 12
–mp, 12, 106, 107, 112
–mp_schedtype, 12, 78

–N, 12
–nocpp, 3, 13
–noexpopt, 13
–noextend_source, 13
–nof77, 13
–noi4, 13
–noisam, 13
–O, 17
–old_rl, 14
–onetrip, 14
–P, 14
–p, 16
–pfa, 14
–R, 14
–r8, 14
–static, 14, 83, 108, 112
–trapeuv, 15
–U, 15
–u, 15
–usefpidx, 15
–vms_cc, 15
–vms_endfile, 15
–vms_library, 15
–vms_stdin, 15
–w, 15
–w66, 15

–cord compiler option, 18
core files, 22

producing, 137
cpp, 3
–cpp compiler option, 10

D

–d_lines compiler option, 11
data dependencies, 81

analyzing for multiprocessing, 79
breaking, 85
complicated, 84

147

inconsequential, 84
rewritable, 83

data independence, 79
data types

alignment, 25, 27
C, 33
Fortran, 33, 49
Pascal, 49

DATE, 64
dbx, 16, 137
debugging, 125

parallel Fortran programs, 110
with dbx, 16

direct files, 20
directives

C$, 77
C$&, 77
C$CHUNK, 78
C$DOACROSS, 71
C$MP_SCHEDTYPE, 78
list of, 71

DO loops, 70, 80, 91, 112
DOACROSS, 78

and multiprocessing, 104
driver options, 8
drivers, 2
dynamic scheduling, 74

E

–E compiler option, 11
environment variables, 100, 101, 109

f77_dump_flag, 22, 137
equivalence statements, 112, 114
error handling, 22
error messages

run-time, 137

ERRSNS, 65
executable object, 4
EXIT, 66
–expand_include compiler option, 11
–extend_source compiler option, 11
external files, 20
EXTERNAL statement

and –nof77 option, 13

F

–F compiler option, 11
f77

as driver, 2
supported file formats, 20
syntax, 2

f77_dump_flag, 22, 137
–feedback compiler option, 18
file, object file tool, 18
files

direct, 20
external, 20
position when opened, 21
preconnected, 21
sequential unformatted, 20
supported formats, 20
UNKNOWN status, 21

formats
files, 20

Fortran
conformance to standard with –nocpp, 13
SVS, 10
VMS, 11, 13, 15

–framepointer compiler option, 11
functions

declaring in C, 32
declaring in Pascal, 47

148

Index

in parallel loops, 82
intrinsic, 67, 83

SECNDS, 68
library, 55, 83
RAN, 68
side effects, 82

G

–G compiler option, 18
–g compiler option, 16, 114
global data area

reducing, 18
guided self-scheduling, 74

H

handle_sigfpes, 22
Hollerith strings

and C-style comments, 3

I

–i2 compiler option, 12
IDATE, 65
IF clause, 73
IGCLD signal

intercepting, 103
interleave scheduling, 74
intrinsic subroutines, 63

DATE, 64
ERRSNS, 65
EXIT, 66
IDATE, 65
MVBITS, 66
TIME, 66

J

–jmpopt compiler option, 18

L

–l compiler option, 6
LASTLOCAL, 72, 80
libfpe.a, 22
libraries

link, 6
specifying, 7

library functions, 55
link libraries, 6
linking, 5
–listing compiler option, 12
–lm compiler option, 7
load balancing, 95
LOCAL, 72, 80
loop interchange, 91
loops, 70

data dependencies, 80
tranformation, 104

–lp compiler option, 7

M

–m compiler option, 12
m_fork

and multiprocessing, 103
M4 macro preprocessor, 12
macro preprocessor

C, 11
M4, 12

makefiles, 45
master processes, 70, 106

149

misaligned data, 27
mkf2c, 38
–mp compiler option, 12, 106, 107, 112
mp_barrier, 102
mp_block, 97
mp_blocktime, 99
mp_create, 98
mp_destroy, 98
mp_my_threadnum, 99
mp_numthreads, 99
MP_PROFILE, 101
MP_SCHEDTYPE, 73, 78
–mp_schedtype compiler option, 12, 78
MP_SET_NUMTHREADS, 100
mp_set_numthreads, 99
mp_setlock, 102
mp_setup, 98
mp_simple_sched, 110

and loop transformations, 104
tasks executed, 106

mp_slave_control, 106
mp_slave_wait_for_work, 110
mp_unblock, 97
mp_unsetlock, 102
multi-language programs, 4
multiprocessing

and DOACROSS, 104
and load balancing, 95
associated overhead, 90
enabling directives, 12, 106

MVBITS, 66

N

–N compiler option, 12
nm, object file tool, 18

–nocpp compiler option, 3, 13
–noexpopt compiler option, 13
–noextend_source compiler option, 13
–nof77 compiler option, 13
–noi4 compiler option, 13
–noisam compiler option, 13
NUM_THREADS, 100

O

–O compiler option, 17
object files, 4

tools for interpreting, 18
object module, 4
objects

linking, 5
odump, 18
–old_rl compiler option, 14
–onetrip compiler option, 14
optimizing, 17

P

–P compiler option, 14
–p compiler option, 16
parallel blocks of code

executing simultaneously, 79
parallel Fortran

directives, 71
parameters

reduction of, 40
Pascal

interfacing with Fortran, 46
passing arguments, 32, 33, 48
performance

improving, 18

150

Index

PFA, 80, 122
associated directives, 78
running from f77, 14

–pfa compiler option, 14
pixie, 16

and multiprocessing, 101
power Fortran accelerator, 80, 122
preconnected files, 21
preprocessor

cpp, 3
processes

master, 70, 106
slave, 70, 106

prof, 16
profiling, 16, 120

and multiprocessing, 101
parallel Fortran program, 109

programs
multi-language, 4

R

–R compiler option, 14
–r8 compiler option, 14
RAN, 68
rand

and multiprocessing, 83
RATFOR

and –R option, 14
records, 20
recurrence

and data dependency, 87
reduction

and data dependency, 88
listing associated variables, 73
sum, 89

REDUCTION clause

and C$DOACROSS, 73
run-time error handling, 22
run-time scheduling, 74

S

scheduling methods, 73, 97, 104
dynamic, 74
guided self-scheduling, 74
interleave, 74
run-time, 74
simple, 74

SECNDS, 68
self-scheduling, 74
sequential unformatted files, 20
SHARE, 72, 80
SIGCLD, 98
simple scheduling, 74
size, object file tool, 19
slave processes, 70, 106
slave threads

blocking, 97, 98
source files, 3
spooled routines, 104
sproc

and multiprocessing, 103
associated processes, 106

–static compiler option, 14, 83, 108, 112
stdump, object file tool, 18
subprograms, 30
subroutines

intrinsic, 63, 83
system, 63

DATE, 64
ERRSNS, 65
EXIT, 66

151

IDATE, 65
MVBITS, 66

subscripts
checking range, 9

sum reduction, example, 89
SVS Fortran, 10
sychronizer, 110
symbol table information

producing, 18
syntax conventions, xiii
system interface, 55
system subroutines, 63

T

TIME, 66
trap handling, 22
–trapeuv compiler option, 15

U

–U compiler option, 15
–u compiler option, 15
–usefpidx compiler option, 15
ussetlock, 102
usunsetlock, 102

V

variables
in parallel loops, 80
local, 82

VMS Fortran, 11, 13
carriage control, 15

–vms_cc compiler option, 15

–vms_endfile compiler option, 15
–vms_library compiler option, 15
–vms_stdin compiler option, 15

W

–w compiler option, 15
–w66 compiler option, 15
where command, 118
work quantum, 90
wrapper generator

mkf2c, 38

X

–Xlocaldata loader directive, 102

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-0711-060.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 650-932-0801

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

