
IRIX® Network Programming Guide
007-0810-100

CONTRIBUTORS
Written by Susan Thomas, Jed Hartman, and Judith Radin
Updated by Helen Vanderberg, Terry Schultz, and Julie Boney

COPYRIGHT
© 1999, 2003 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No
permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

LIMITED RIGHTS LEGEND
The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA government
or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable license agreement, as
specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of the DoD FAR Supplement; or
sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy 2E, Mountain View, CA 94043-1351.

TRADEMARKS AND ATTRIBUTIONS
Silicon Graphics, SGI, the SGI logo, and IRIX are registered trademarks and BDSPro and Indigo Magic are trademarks of Silicon Graphics, Inc.
IBM is a registered trademark of International Business Machines Corporation. MIPS is a trademark of MIPS Technologies, Inc. Sun is a registered
trademark or trademark of Sun Microsystems, Inc. UNIX is a registered trademark of the Open Group in the United States and other countries.
VAX is a trademark of Digital Equipment Corporation.

Certain portions of these materials are derived from a document published as an Internet Request for Comment, S. Deering, Stanford University,
1989.

This document uses material from chapters of the 4.3BSD Programmer’s Supplementary Documents and from various Internet Request For
Comment documents.

This product includes software developed by the University of California, Berkeley and its contributors. © Copyright 1982, 1986, 1990 Regents
of the University of California. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software must display the following acknowledgment: This product includes
software developed by the University of California, Berkeley and its contributors.
4. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE, ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Cover Design By Sarah Bolles, Sarah Bolles Design, and Dany Galgani, SGI Technical Publications.

New Features in This Manual

This update of the IRIX Network Programming Guide supports the 6.5.19 release of the IRIX
operating system.

Major Documentation Changes

Changes to this document include the following:

• New subsection, “Translation Functions” in Chapter 2

• New chapter, Chapter 3, “Sockets-based Communication Using IPv6”
007-0810-100 iii

Record of Revision

Version Description

090 November 1999
Incorporates information for the IRIX 6.5.6 release

100 January 2003
Incorporates information for the IRIX 6.5.19 release
007-0810-100 v

Contents

New Features in This Manual iii

Record of Revision . v

Figures . . xix

Tables . xxi

Examples . xix

About This Guide. . xxi
Audience for This Guide xxii
Typographic Conventions xxii
Chapter Summaries . xxiii
Documentation Sources xxiv
Additional Reading . xxv
Obtaining Publications . xxv
Reader Comments . . xxv

1. Network Programming Overview 1
Introduction to IRIX Network Programming 2
The Internet Protocol Suite . 2
Compiling BSD and RPC Programs 4

2. Sockets-based Communication 7
Sockets Basics . . 8

Socket Types . . 9
Stream Sockets . 9
Datagram Sockets . 9
ST Sockets . . 10
Raw Sockets . . 10
007-0810-100 vii

Contents
Creating Sockets . 10
Binding Local Names to a Socket 12
Establishing Socket Connections. 15
Transferring Data . . 17
Discarding Sockets . 19
Scheduled Transfers Sockets 20
Connectionless Sockets . 20
I/O Multiplexing . . 21

Network Library Routines. . 24
Host Names . 25
Network Names . 25
Protocol Names . 26
Service Names . . 26
Network Dependencies . 27
Byte Ordering . . 29
Translation Functions . . 30

Node Names and Service Names 30
Node Name Mapping 33
Interface Identification 34

The Client/Server Model . . 34
Connection-based Servers 35
Connection-based Clients. 38
Connectionless Servers . 39

Advanced Topics . 43
Out-of-Band Data . . 43
Nonblocking Sockets . . 45
Interrupt-driven Sockets I/O. 46
Signals and Process Groups 47
Pseudo-Terminals . . 48
Selecting Protocols. . 50
Address Binding . 51
Socket Options . . 54
viii 007-0810-100

Contents
The inetd Daemon . 55
Broadcasting . . 58
IP Multicasting . 63

Sending IP Multicast Datagrams 64
Receiving IP Multicast Datagrams 67
Sample Multicast Program 68

3. Sockets-based Communication Using IPv6 71
Creation of an IPv6 Socket . 71
IPv6 Address Structures . . 72
IPv6 Unspecified Address . 72
IPv6 Loopback Address . . 73
Protocol Independent Socket Address Structure 73
Server and Client Programs 74

Connection-based Server and Client 74
Connection-based Server 74
Connection-based Client 76

Connectionless Server and Client 78
Connectionless Server 78
Connectionless Client 79

Socket Options . . 81
Unicast Socket Options 81
Multicast Socket Options. 81

Sending Packets . . 81
Receiving Packets . 82

Socket Option for IPv6 Only. 83
Using Multicasting . 83

Sending IPv6 Multicast Datagrams 83
Receiving IPv6 Multicast Datagrams 84

4. Introduction to RPC Programming 85
Overview of Remote Procedure Calls 86

The Remote Procedure Call Model 86
007-0810-100 ix

Contents
RPC Transports and Semantics 88
Binding and Rendezvous Independence 89
RPC Message Identification and Authentication 89

The XDR Standard . . 90
The Layers of RPC . . 91

The Highest Layer . . 91
The Middle Layer . . 91
The Lowest Layer . . 92

The rpcgen Protocol Compiler 92
Assigning RPC Program Numbers 93
The Port Mapper Programs . 96

5. Programming with rpcgen . 97
Introduction to the rpcgen Compiler 98
Changing Local Procedures to Remote Procedures 99
Generating XDR Routines 107
The C Preprocessor. . 112
pcgen Programming Notes 113

Generating ANSI C Prototypes 113
Client-side Timeout Changes. 114
Server-side Broadcast Handling 114
Other Information Passed to Server Procedures 115

6. RPC Programming Guide 119
The Layers of RPC . . 120

The Highest Layer of RPC 120
The Middle Layer of RPC. 121

Passing Arbitrary Data Types 124
The Lowest Layer of RPC. 127

More Information about the Server 127
More Information about the Client 130
Memory Allocation with XDR 133
x 007-0810-100

Contents
Other RPC Features . .134
Select on the Server Side134
Broadcast RPC. .135

Broadcast RPC Synopsis. 136
Batching .137
Authentication .140

Client-side Authentication 141
Server-side Authentication 142

Using inetd .148
More Examples .149

Program Version Number 149
TCP . .151
Callback Procedures . .154

7. XDR and RPC Language Structure159
XDR Language . .160

Notational Conventions 160
Lexical Notes . .161
Syntax Information . .161
Syntax Notes . .163
XDR Data Description Example. 163

RPC Language . .165
Definitions . .165
Structures . .165
Unions . .166
Enumerations . .167
Typedefs . .167
Constants . .167
Programs . .168
Declarations . .169
Special Cases . .170

8. XDR Programming Notes .173
Overview of XDR Programming. 174
007-0810-100 xi

Contents
The XDR Library . 178
XDR Library Primitives . 180

Number Filters . . 180
Floating-point Filters 181
Enumeration Filters . 181
No Data . . 182
Constructed Data Type Filters 182

Strings . . 183
Byte Arrays . 184
Arrays . . 184
Examples of Constructed Data Types 185
Opaque Data . . 187
Fixed-length Size Arrays 187

Discriminated Unions 188
Pointers . 190
Pointer Semantics and XDR 191

Non-filter Primitives 191
XDR Operation Directions. 192
XDR Stream Access . 192

Standard I/O Streams. 192
Memory Streams . . 193
Record (TCP/IP) Streams. 193

XDR Stream Implementation 195
The XDR Object . 195

Advanced Topics . 196
Linked Lists . 197

9. Transport Layer Interface 201
Introduction. . 202
Network Selection and Name-to-Address Mapping 202
OSI Reference Model . . 203
Overview of the Transport Interface 206

Modes of Service . . 208
Connection-Mode Service 208
xii 007-0810-100

Contents
Local Management 209
Connection Establishment 210
Data Transfer . .212
Connection Release 212
Connectionless-Mode Service 213

State Transitions . .214
Introduction to Connection-Mode Service 214

Local Management .214
The Client . .216
The Server. .218

Connection Establishment 221
The Client . .222
Event Handling . .223
The Server. .224

Data Transfer . .228
The Client . .230
The Server. .230

Connection Release . .233
The Server. .234
The Client . .234

Introduction to Connectionless-Mode Service 235
Local Management .236
Data Transfer . .238
Datagram Errors . .240

A Read/Write Interface . .241
write() . .243
read() . .243
close() . .244

Advanced Topics . .245
Asynchronous Execution Mode245
Advanced Programming Example 246

State Transitions . .253
Transport Interface States 253
007-0810-100 xiii

Contents
Outgoing Events . 253
Incoming Events . 255
Transport User Actions 256
State Tables . . 256

Guidelines for Protocol Independence 258
Some Examples . . 260

Connection-Mode Client 260
Connection-Mode Server 262
Connectionless-Mode Transaction Server 265
Read/Write Client . . 268
Event-Driven Server 269

Error Messages . . 275

A. RPC Protocol Specification 277
RPC Protocol Requirements 278

Remote Programs and Procedures 278
Message Authentication 279
Other Uses of the RPC Protocol 280

Batching . 280
Broadcast RPC. . 280

RPC Protocol Definition . 281
Authentication Protocols 285

Null Authentication . 285
AUTH_UNIX Authentication 285
Trusted UNIX Systems 286

Record Marking Standard 288
Port Mapper Program Protocol 288

Port Mapper Protocol Specification 289
Port Mapper Operation 291

B. XDR Protocol Specification 293
Basic Block Size . . 294

Block . 294
xiv 007-0810-100

Contents
XDR Data Types . .294
Integers. .294

Integer . .295
Unsigned Integers .295

Unsigned Integer. .295
Enumerations . .295
Booleans .296
Hyper Integers and Hyper Unsigned 296

Hyper Integer or Unsigned Hyper Integer 296
Floating Points .296

Single-Precision Floating-Point297
Double-Precision Floating Points 298

Double-Precision Floating-Point 298
Fixed-Length Opaque Data 299

Fixed-Length Opaque 299
Variable-Length Opaque Data 299

Variable-Length Opaque 300
Strings . .300

String . .301
Fixed-Length Arrays . .301

Fixed-Length Array 301
Variable-Length Arrays 301

Counted Array . .302
Structures . .302
Discriminated Unions .302

Discriminated Union 303
Voids . .303

Void .303
Constants . .303
Typedefs . .304
Optional Data . .305
Areas for Future Enhancement 306

Common Questions about XDR 306
007-0810-100 xv

Contents
C. IRIX Name Service Implementation 309
Overview of UNS . . 310
UNS Programming Steps 310
UNS Library Routines . . 311

getXbyY() Routine . . 311
getXent() Routine . . 312
ns_lookup() Routine 312
ns_list() Routine . 312

UNS Cache Files . 313
UNS Name Service Daemon Operation 314

Name Service Configuration Files and Data Structures 314
Understanding the UNS Runtime Loop. 316
Understanding UNS Utility Functions 317

How UNS Protocol Libraries Work 321
Library Init Routine . 321
Library Lookup Routine 322
Library List Routine . 322
Library Dump Routine 323
Library Verify Routine 323
Library Shake Routine 323
Files Callout Library 324
NIS Callout Library(Optional) 324
Nisserv Callout Library (Optional) 325
DNS Callout Library 325
MDBM Callout Library 326
Berkeley DB Callout Library 326
NDBM Callout Library 326

NFS Interface to UNS . . 327

Index . . 329
xvi 007-0810-100

Figures

Figure 1-1 BSD Model of Network Layering. 3
Figure 4-1 The Remote Procedure Call Model 87
Figure 9-1 OSI Reference Model 204
Figure 9-2 Transport Interface207
Figure 9-3 Channel between User and Provider. 209
Figure 9-4 Transport Connection 211
Figure 9-5 Listening and Responding Transport Endpoints 228
007-0810-100 xvii

Tables

Table 2-1 Common errno values 16
Table 2-2 C Run-time Routines 29
Table 2-3 TTL Threshold Convention 65
Table 4-1 Some Registered RPC Programs 94
Table 4-2 RPC Program Number Assignment 95
Table 5-1 C Preprocessor Symbol Definition 112
Table 7-1 DR Data Encoding Examples 164
Table 9-1 Local Management Routines for the Transport Interface 210
Table 9-2 Routines for Establishing a Transport Connection211
Table 9-3 Connection-Mode Data Transfer Routines 212
Table 9-4 Connection Release Routines 213
Table 9-5 Routines for Connectionless-Mode Data Transfer 213
Table 9-6 States Describing Transport Interface State Transitions 253
Table 9-7 Outgoing Events 254
Table 9-8 Incoming Events 255
Table 9-9 Common Local Management State Table 257
Table 9-10 Connectionless-Mode State Table 257
Table 9-11 Connection-Mode State Table258
Table A-1 Port Mapper Procedures 291
007-0810-100 xix

Examples

Example 2-1 A Remote-Login Client 27
Example 2-2 Flushing Terminal I/O on Receipt of Out-of-Band Data 44
Example 2-3 Asynchronous Notification of I/O Requests 46
Example 2-4 Using the SIGCHLD Signal 48
Example 2-5 Creating and Using a Pseudo-Terminal on IRIX 49
Example 3-1 Connection-based Server 75
Example 3-2 Connection-based Client 77
Example 3-3 Connectionless Server 78
Example 3-4 Connectionless Client 80
Example 3-5 Using IPV6_UNICAST_HOPS 81
Example 9-1 The Connection-Mode Client Definitions and Local Management .216
Example 9-2 The Connection-Mode Server Definitions and Local Management .218
Example 9-3 Sending Data to a Client 231
Example 9-4 The Transaction Server Definitions and Local Management . . .236
Example 9-5 The Data Transfer Phase of a Connectionless-Mode Server . . .238
Example 9-6 An Advanced Server 246
Example 9-7 Processing an Incoming Event 249
Example 9-8 A Connection-Mode Client 260
Example 9-9 A Connection-Mode Server 262
Example 9-10 A Connectionless-Mode Transaction Server. 266
Example 9-11 A Connection-Mode Read/Write Client268
Example 9-12 A Connection-Mode Server 269
007-0810-100 xxi

About This Guide

The IRIX Network Programming Guide describes the network programming facilities
available with the IRIX operating system.

IRIX implements the Internet Protocol (IP) suite and UNIX domain sockets using the BSD
sockets mechanism and supports access to the underlying network media using raw
sockets. It also implements the Transport Layer Interface (TLI) defined in ISO-OSI, using
SVR4 STREAMS modules. IRIX does not support the Xerox NS protocol suite.

Note: SGI does not encourage use of the TLI model; its inclusion is for compatibility with
interfaces used by other vendors.

The networking software described in this guide is derived from the BSD UNIX release
from the University of California, Berkeley; from the Sun Microsystems Remote
Procedure Call (RPC) programming interface; and from UNIX System V, Release 4 from
UNIX System Laboratories, Inc.

The IRIX Network Programming Guide is for programmers who want to develop network
applications using the sockets interface, Sun RPC, or TLI. It explains the fundamental
elements of each interface - including the libraries, routines, and other programming
tools offered by each interface - and explains how to use them to develop IRIX network
applications.

This introduction contains background information that you should read before
proceeding. Topics include:

• The audience for this guide

• Typographic conventions

• Chapter summaries

• Documentation sources

• Additional reading
007-0810-100 xxiii

About This Guide
Audience for This Guide

This guide is for experienced programmers who intend to write applications that use
network interfaces. Knowledge of the UNIX operating system, the C language, and
general network theory is assumed.

Typographic Conventions

IRIX man pages are referred to by name and section number, in this format:

name(sect)

where name is the name of a command, system call, or library routine, and sect is the
section number where the entry resides. For example:

rpc(3R)

refers to the rpc man page in section 3 of the IRIX man pages (which is divided up into
subsections such as 3N and 3R). To look at that man page, enter the command:

% man 3 rpc

The following conventions are used throughout this document:

command This fixed-space font denotes literal items such as commands, files,
routines, path names, signals, messages, and programming language
structures.

manpage(x) Man page section identifiers appear in parentheses after man page
names.

variable Italic typeface denotes variable entries and words or concepts being
defined.

user input This bold, fixed-space font denotes literal items that the user enters in
interactive sessions. (Output is shown in nonbold, fixed-space font.)

[] Brackets enclose optional portions of a command or directive line.

... Ellipses indicate that a preceding element can be repeated.
xxiv 007-0810-100

About This Guide
Chapter Summaries

This guide contains the following chapters:

• Chapter 1, “Network Programming Overview,” provides general information about
IRIX network programming.

• Chapter 2, “Sockets-based Communication,” describes the BSD sockets interface.

• Chapter 3, “Sockets-based Communication Using IPv6,” describes the
sockets-based communication facilities that use IPv6.

• Chapter 4, “Introduction to RPC Programming,” provides background information
about the RPC interface.

• Chapter 5, “Programming with rpcgen,” describes how to use the rpcgen compiler
to write RPC applications. This chapter contains the complete source code for a
working RPC service.

• Chapter 6, “RPC Programming Guide,” describes the details of the RPC
programming interface. If you use rpcgen, it isn’t necessary to understand most of
the information in this chapter.

• Chapter 7, “XDR and RPC Language Structure,” describes the structure and syntax
of the RPC and XDR languages; it shows you how to write program interface
definitions using RPC language.

• Chapter 8, “XDR Programming Notes,” contains technical notes about the XDR
standard.

• Chapter 9, “Transport Layer Interface,” describes USL’s implementation of the
ISO-OSI network interface to the transport layer.

• Appendix A, “RPC Protocol Specification” describes the underlying details of the
RPC protocol specification.

• Appendix B, “XDR Protocol Specification” describes the underlying details of the
XDR protocol specification.

• Appendix C, “IRIX Name Service Implementation” describes the underlying details
of the Unified Name Service.
007-0810-100 xxv

About This Guide
Documentation Sources

This guide uses material from several sources:

• Deering, S. “Host Extensions for IP Multicasting.” Internet Request For Comment
1112. Menlo Park, California: Network Information Center, SRI International,
August 1989.

• Karels, Michael J., Chris Torek, James M. Bloom, et al. 4.3BSD UNIX System
Manager’s Manual. Berkeley, California: University of California.

• Kirkpatrick, S., M. Stahl, and M. Recker. “Internet Numbers.” Internet Request For
Comment 1166. Menlo Park, California: Network Information Center, SRI
International, July 1990.

• Leffler, Samuel J., Robert S. Fabry, William N. Joy, et al. “An Advanced 4.3BSD
Interprocess Communication Tutorial.” 4.3BSD UNIX Programmer’s Supplementary
Documents, Volume 1. Berkeley, California: University of California.

• Lottor, M. “TCP Port Service Multiplexer (TCPMUX).” Internet Request for Comment
1078. Menlo Park, California: Network Information Center, SRI International,
November 1988.

• Reynolds, J., and J. Postel. “Assigned Numbers.” Internet Request for Comment 1060.
Menlo Park, California: Network Information Center, SRI International, March
1990.

• Sechrest, Stuart. “An Introductory 4.3BSD Interprocess Communication Tutorial.”
4.3BSD UNIX Programmer’s Supplementary Documents, Volume 1. Berkeley,
California: University of California.

• Sun Microsystems. eXternal Data Representation: Sun Technical Notes (for RPC 4.0).
Mountain View, California: Sun Microsystems, Inc.

• Sun Microsystems. eXternal Data Representation Standard: Protocol Specification (for
RPC 4.0). Mountain View, California: Sun Microsystems, Inc.

• Sun Microsystems. Remote Procedure Calls: Protocol Specification (for RPC 4.0).
Mountain View, California: Sun Microsystems, Inc.

• Sun Microsystems. rpcgen Programming Guide (for RPC 4.0). Mountain View,
California: Sun Microsystems, Inc.

• UNIX System Laboratories. Programmer’s Guide: Networking Interfaces (for SVR4.1).
Englewood Cliffs, New Jersey: Prentice Hall, Inc.
xxvi 007-0810-100

About This Guide
Additional Reading

For additional information, you can consult your online man pages and these
documents:

• IRIX Admin manual set.

• Comer, Douglas E. Internetworking with TCP/IP, Volume I, Second Edition. Prentice
Hall, Inc., Englewood Cliffs, New Jersey (1991).

• Corbin, John R. The Art of Distributed Applications. Springer-Verlag, New York (1991).

• Kockan, Stephen G., and Wood, Patrick H., editors. UNIX Networking. Hayden
Books, Indiana (1989).

• Stevens, W. Richard. UNIX Network Programming, Prentice Hall, Inc., Englewood
Cliffs, New Jersey (1990).

• Stevens, W. Richard. TCP/IP Illustrated, Addison-Wesley Publishing Co.

• Schneier, Bruce. Applied Cryptography, Second Edition, John Wiley and Sons, New
York (1996).

You can also find related information in Internet Request For Comment documents,
available by anonymous ftp from the /rfc directory at Government Systems, Inc. (IP
number 192.112.36.5). For more information about using ftp, see IRIS Essentials.

Obtaining Publications

To obtain SGI documentation, go to the SGI Technical Publications Library at:

http://docs.sgi.com

Reader Comments

If you have comments about the technical accuracy, content, or organization of this
document, please tell us. Be sure to include the title and document number of the manual
with your comments. (Online, the document number is located in the front matter of the
manual. In printed manuals, the document number is located at the bottom of each
page.)
007-0810-100 xxvii

About This Guide
You can contact us in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Use the Feedback option on the Technical Publications Library World Wide Web
page:

http://docs.sgi.com

• Contact your customer service representative and ask that an incident be filed in the
SGI incident tracking system.

• Send mail to the following address:

Technical Publications
SGI
1200 Crittenden Lane, M/S 3-535
Mountain View, California 94043-1351

• Send a fax to the attention of “Technical Publications” at +1 650 932 0801.

We value your comments and will respond to them promptly.
xxviii 007-0810-100

Chapter 1

1. Network Programming Overview

The network programming facilities available with the IRIX operating system include
the BSD sockets library, and the Sun Microsystems Remote Procedure Call (RPC)
interface, and ISO-OSI’s TLI. The programming interface you use depends on the
requirements of the application you plan to develop.

This chapter introduces general concepts related to network programming. Topics
include:

• an overview of network programming under IRIX

• a discussion of the Internet Protocol (IP) suite

• comments and caveats on compiling BSD and RPC programs
007-0810-100 1

1: Network Programming Overview
Introduction to IRIX Network Programming

The BSD program-to-program communication facility provides the socket abstraction.
The sockets interface enables low-level access to network addressing and data transfer,
and it provides the flexibility to accommodate diverse application requirements. The
sockets interface also provides greater speed, simpler programming, and a wider base of
platforms than TLI.

RPC implements a remote procedure call model, in which a procedure executing on a
remote machine can be treated as a local procedure call by the calling application. RPC
enables synchronous execution of procedure calls on remote hosts, provides transparent
access to network facilities, and uses eXternal Data Representation (XDR) to ensure
portability. (See Chapter 4, “Introduction to RPC Programming,” for more information.)

The International Standards Organization (ISO) has developed a standard known as the
Reference Model of Open Systems Interconnection (abbreviated as ISO-OSI, or the OSI
Reference Model, or simply OSI). This model conceives of networking as being divided
into seven layers. The interface between the fourth and fifth layers (that is, between the
transport layer and the session layer) is known as the Transport Layer Interface (TLI); it
provides a set of functions for applications to call to perform various network
procedures.

Note: Silicon Graphics does not encourage use of the TLI model; its inclusion is for
compatibility with interfaces used by other vendors.

The Internet Protocol Suite

A protocol is a set of rules, data formats, and conventions that regulate the transfer of
data between participants in the communication.

The IRIX operating system implements the Internet Protocol (IP) suite. The IP suite is a
collection of layered protocols developed by the U.S. Department of Defense Advanced
Research Projects Agency (DARPA). The two most widely used IP protocols are the
Transmission Control Protocol (TCP) and the User Datagram Protocol (UDP).
2 007-0810-100

The Internet Protocol Suite
TCP/IP provides a reliable means of transferring data between systems. TCP/IP
messages are acknowledged by the receiver as they are received. UDP/IP provides a
faster, low-overhead method of transferring data, but the receiver under UDP/IP does
not provide the sender with any acknowledgment of messages received.

TCP creates a virtual circuit, a data path in which data blocks are guaranteed delivery to
a target machine in the correct order. Messages are sent from the sender to the receiver
until the receiver sends back a message saying that all the data blocks have been received
in the correct order.

By using network applications built on top of the IP suite, you can interactively transfer
files between computers, log in to remote computers, execute commands on remote
computers, and send mail between users on different machines.

Figure 1-1 illustrates the BSD model of network layering.

Figure 1-1 BSD Model of Network Layering

telnet, ftp, rlogin,
rcp, sendmail rwho, talk, tftp

network library routines

sockets interface

TCP UDP

IP

network driver and controller

network hardware
007-0810-100 3

1: Network Programming Overview
Scheduled Transfers (ST) is a new protocol implemented under a standard being
developed in the ANSI T11. committee. ST occupies levels two through four of the OSI
networking model. The flow control characteristics of the ST protocol provides the
receiving device or host more control over the flow of data. As the name Scheduled
Transfers implies, data transfers must be scheduled in advance. ST does not allow data
to be sent until the resources to the support the transfer have been allocated and reserved
on the receiver.

There a two basic modes of data transmission in ST are as follows:

• Data sent using the first mode requires resources to be acquired on a per transfer
basis.

This mode requires a three-way handshake prior to the data transmit operation:
Request-To-Send Message (RTS), Clear-To-Send Message (CTS), and Data Message
(Data).

• Data sent using the second mode can be written into memory at any time by the
sender because it uses the concept of “persistent memory”, in which a region of
memory on the receiving device or host has been acquired by the sender ahead of
time.

Because the transmission resources are acquired in advance, this mode does not
require a protocol handshake to occur before data is sent.

Compiling BSD and RPC Programs

Most BSD and RPC programs compile and link under IRIX without change. Some BSD
and RPC programs, however, may require compiler options, linking with additional
libraries, or even source code modification.

Since most BSD and Sun RPC programs were written before the ANSI C standard, you
may need to compile with the –cckr command-line option to obtain traditional
C semantics. For example:

% cc -cckr example.c -o example

If your program assumes that the char data type is signed, use the –signed option (most
BSD programs assume signed characters, but the IRIX C compiler assumes unsigned
characters by default). For example:

% cc -cckr -signed example.c -o example
4 007-0810-100

Compiling BSD and RPC Programs
The BSD library routines formerly in /usr/lib/libbsd.a (in releases before IRIX 3.3)
are now in the standard C library, which is linked in by default during compilation.

Note: In previous versions of IRIX, BSD header files were located in the
/usr/include/bsd directory. In more recent versions, such header files are in
/usr/include with the other header files. If your program contains #include
statements to include header files of the form <bsd/filename.h>, you should remove the
bsd/ part of such filenames from the #include statement.

Several network library routines have NIS equivalents that used to be in the libsun
library. In current versions of IRIX, libsun has been incorporated into libc.

IRIX provides UNIX System V, BSD, and POSIX signal handling mechanisms. BSD
signals are obtained with the –D_BSD_SIGNALS compiler directive.
007-0810-100 5

Chapter 2

2. Sockets-based Communication

This chapter describes the BSD sockets-based Inter-Process Communication (IPC)
facilities available with the IRIX operating system.

Topics in this chapter include:

• the basic sockets communication model and IPC-related system calls

• network library routines used to construct distributed applications

• the client/server model that is used to develop applications, including examples of
the two major types of servers

• advanced topics for sophisticated users, such as UDP/IP broadcasting and
multicasting
007-0810-100 7

2: Sockets-based Communication
Sockets Basics

A socket is the basic building block for program-to-program communication. A socket is
an endpoint of communication to which a name can be bound. Each socket in use has a
type and one or more associated processes. Sockets are typed according to their
communication properties.

Four socket types are available:

• Stream sockets provide a bidirectional, reliable, sequenced, and unduplicated flow
of message data.

• Datagram sockets support bidirectional data flow, but do not guarantee that the
message data is sequenced, reliable, or unduplicated.

• ST sockets provides a reliable, sequenced, and unduplicated flow of message data
and requires data transfers to be scheduled in advance.

• Raw sockets give you access to the underlying communication protocols that
support socket abstractions.

(All four socket types are described in “Socket Types” on page 9.)

The processes associated with a socket communicate through the socket. Sockets are
presumed to communicate with sockets of the same type; however, nothing prevents
communication between sockets of different types should the underlying
communication protocols support it.

Sockets exist within communication domains. A domain dictates various properties of
the socket. One such property is the scheme used to name sockets. For example, in the
UNIX communication domain, sockets are named with UNIX pathnames; a socket, for
example, may be named /dev/foo.

Normally, sockets exchange data within the same domain. It may be possible to cross
domain boundaries, but only if some translation process is performed.

The sockets facility supports three communication domains:

• The UNIX domain is used only for on-system communication.

• The Internet domain is used by processes that communicate using the Internet
standard communication protocols IP/TCP/UDP.
8 007-0810-100

Sockets Basics
• The Raw domain provides access to the link-level protocols of network interfaces
(unique to IRIX).

The underlying communication facilities provided by each domain significantly
influence the interface to the sockets facilities available to users, providing
protocol-specific socket properties that may be set or changed by the user. For example,
a socket operating in the UNIX domain can see a subset of the error conditions that are
possible when operating in the Internet domain.

In general, there is one protocol for each socket type within each domain. The code that
implements a protocol keeps track of the names that are bound to sockets, sets up
connections, and transfers data between sockets, perhaps sending the data across a
network. It is possible for several protocols, differing only in low-level details, to
implement the same style of communication within a particular domain. Although it is
possible to select which protocol should be used, for nearly all uses it is sufficient to
request the default protocol.

Socket Types

This section describes the three socket types: stream sockets, datagram sockets, and raw
sockets.

Stream Sockets

A stream socket provides a bidirectional, reliable, sequenced, and unduplicated flow of
data without record boundaries. Aside from the bidirectionality of data flow and some
additional signaling facilities, a pair of connected stream sockets provides an interface
similar to that of a pipe. (In the UNIX domain, in fact, the semantics are identical.)

Note: Stream sockets should not be confused with STREAMS, the modularized driver
interface on which TLI is built.

Datagram Sockets

A datagram socket supports the bidirectional flow of messages that are not necessarily
sequenced, reliable, or unduplicated. That is, a process receiving messages on a
datagram socket can find messages duplicated or in a different order. The data in any
007-0810-100 9

2: Sockets-based Communication
single message, however, is in the correct order, with no duplications, deletions, or
changes.

An important characteristic of a datagram socket is that record boundaries in the data are
preserved. Datagram sockets closely model facilities found in many packet-switched
networks. However, datagram sockets provide additional facilities, including routing
and fragmentation.

Routing is used to forward messages from one local network to another nearby or distant
network. Dividing one large network into several smaller ones can improve network
performance in each smaller network, improve security, and facilitate administration
and troubleshooting.

Fragmentation divides large messages into pieces small enough to fit on the local
medium. It allows application programs to use a single message size independent of the
packet size limitations of the underlying networks.

ST Sockets

An ST socket provides a reliable, sequenced, and unduplicated flow of data. The ST
protocol provides the receiving host or device more control over the flow of data by
requiring data transfers to be scheduled in advance and does not allow data to be sent
until the resources to support the transfer have been allocated and reserved on the
receiving host or device.

Raw Sockets

A raw socket provides access to the underlying communication protocols that support
socket abstractions. Raw sockets are normally datagram-oriented, though their exact
characteristics depend on the interface provided by the protocol.

Raw sockets are not intended for the general user. They are provided for programmers
interested in developing new communication protocols or for gaining access to some of
the more esoteric facilities of an existing protocol.

Creating Sockets

To create a socket, use the socket() system call (see socket(2)):

#include <sys/types.h>
10 007-0810-100

Sockets Basics
#include <sys/socket.h>
s = socket(domain, type, protocol);

This call creates a socket in the specified domain, of the specified type, using the specified
protocol, and returns a descriptor (a small integer) that can be used in later system calls
operating on sockets.

If protocol is not specified (a 0 value is given), a default protocol is used. The system
selects from the protocols that make up the communication domain and that can be used
to support the requested socket type.

The domain is specified as one of the manifest constants defined in the file
<sys/socket.h>:

AF_UNIX UNIX domain

AF_INET Internet domain

AF_RAW Raw domain

Note: AF indicates the address family (or format) to use in interpreting names.

The socket types are also defined in <sys/socket.h>, as SOCK_STREAM,
SOCK_DGRAM, or SOCK_RAW.

For example, to create a stream socket in the Internet domain, you could use this call:

s = socket(AF_INET, SOCK_STREAM, 0);

This creates a stream socket in which underlying communication support is provided by
the default protocol, TCP.

The default protocol should be correct for most situations. However, you can specify
other protocols; see “Selecting Protocols” on page 50 for details.

To create a datagram socket for same-machine use, the call might be:

s = socket(AF_UNIX, SOCK_DGRAM, 0);

To create an ST socket in the Internet domain, you could use this call:

s = socket(AF_INET, SEQPACKET, 0);
007-0810-100 11

2: Sockets-based Communication
This creates an ST socket in which underlying communication support is provided by IP
protocol.

To create a drain socket, which receives all packets that have a network-layer type-code
or encapsulation not implemented by the kernel, use this call:

#include <net/raw.h>
s = socket(AF_RAW, SOCK_RAW, RAWPROTO_DRAIN);

For details about raw domain sockets, see the manual pages for raw(7F), snoop(7P), and
drain(7P).

A socket() call can fail for several reasons, each of which sets the errno variable
appropriately. Aside from the rare occurrence of lack of memory (ENOBUFS), a socket
request can fail in response to a request for an unknown protocol
(EPROTONOSUPPORT) or a request for a type of socket for which there is no supporting
protocol (EPROTOTYPE).

Binding Local Names to a Socket

A socket is created without a name. Until a name is bound to the socket, processes have
no way to reference it, and, consequently, no messages can be received on it.

Communicating processes are bound by an association. An association is a temporary or
permanent specification of a pair of communicating sockets.

In the Internet domain, an association is composed of local and foreign addresses, and
local and foreign ports. The structure of Internet domain addresses is defined in the file
<netinet/in.h>.

Internet addresses specify a host address (a 32-bit number) and a delivery slot, or port,
on that machine. These ports are managed by the system routines that implement a
particular protocol. Unlike UNIX domain socket names, Internet domain socket names
are not entered into the filesystem and, therefore, do not have to be unlinked after the
socket is closed.

When a message is exchanged between machines, it is first sent to the protocol routine
on the destination machine. This routine interprets the address to determine to which
socket the message should be delivered. Several different protocols may be active on the
same machine, but, in general, they will not communicate with one another. As a result,
12 007-0810-100

Sockets Basics
different protocols are allowed to use the same port numbers. Thus, an Internet address
is a triple address, including a protocol, the port, and the machine address.

An Internet association is identified by the tuple <protocol, local address, local port, remote
address, remote port>. Duplicate tuples are not allowed. An association may be transient
when using datagram sockets; the association actually exists during a send() operation.

In the UNIX domain, an association is composed of local and foreign pathnames (a
foreign pathname is a pathname created by a foreign process, not a pathname on a
foreign system). UNIX domain sockets need not always be bound to a name, but when
they are bound, there may never be duplicate <protocol, local pathname, foreign pathname>
tuples.

The pathnames may not refer to files already existing on the system. Like pathnames for
normal files, they may be either absolute (for example, /dev/imaginary) or relative
(for example, socket). Because these names are used to allow processes to rendezvous,
relative pathnames can pose difficulties and should be used with care.

When a name is bound into the name space, a file (inode) is allocated in the filesystem. If
the inode is not deallocated, the name will continue to exist even after the bound socket
is closed. This situation can cause subsequent runs of a program to find a name
unavailable and can cause directories to fill up with these objects. You can remove names
by calling unlink() (see unlink(2)) or by using the rm command.

Names in the UNIX domain are used only for rendezvous; they are not used for message
delivery once a connection is established. Therefore, in contrast to the Internet domain,
unbound sockets are not, and need not be, automatically given addresses when they are
connected.

The bind() system call (see bind(2)) allows a process to specify half of an association,
<local address, local port> (or <local pathname>), while the connect() and accept()
system calls are used to complete a stream socket’s association.

The form of the bind() system call is:

bind(s, name, namelen);

The bound name is a variable-length byte string that is interpreted by the supporting
protocol(s). The interpretation of the bound name may vary from communication
domain to communication domain (this is one of the properties that make up the
domain).
007-0810-100 13

2: Sockets-based Communication
In the UNIX domain, names contain a pathname and a family, which is always
AF_UNIX. The following code fragment binds the name /tmp/foo to a UNIX domain
socket:

#include <sys/un.h>
 ...
struct sockaddr_un addr;
 ...
strcpy(addr.sun_path, "/tmp/foo");
addr.sun_family = AF_UNIX;
bind(s, (struct sockaddr *)&addr, strlen(addr.sun_path) +
 sizeof(addr.sun_family));

Note that in determining the size of a UNIX domain address, null bytes are not counted,
which is why strlen() is used.

Note: In the current implementation of UNIX domain IPC under IRIX, the filename
referred to in addr.sun_path is created as a socket in the system’s file space. The caller
must, therefore, have write permission in the directory where addr.sun_path is to reside,
and this file should be deleted by the caller when it is no longer needed using the
unlink() system call (see unlink(2)). Future versions of IRIX may not create this file.

In the Internet domain, binding names to sockets can be fairly complex. Fortunately, it
usually isn’t necessary to specifically bind an address and port number to a socket,
because the connect() and send() calls automatically bind an appropriate address if
they are used with an unbound socket. To bind an Internet address, use the bind()
system call like this:

#include <sys/types.h>
#include <netinet/in.h>
 ...
struct sockaddr_in sin;
 ...
bind(s, (struct sockaddr *)&sin, sizeof(sin));

Note: Selecting what to place in the address sin requires some discussion. See “Network
Library Routines” on page 24 for information about formulating Internet addresses and
the library routines used in name resolution.
14 007-0810-100

Sockets Basics
Establishing Socket Connections

Stream socket connections are usually established asymmetrically, with one process a
client and the other a server. When it offers its advertised services, the server binds a
socket to a well-known address associated with the service and then passively listens on
its socket. It is then possible for an unrelated process to rendezvous with the server.

Note: For details about datagram sockets, see “Connectionless Sockets” on page 20.

The client requests services from the server by initiating a connection to the server’s
socket. On the client side, the connect() call is used to initiate a connection. Using the
UNIX domain, this might appear as:

struct sockaddr_un server;
 ...
connect(s, (struct sockaddr *)&server,
 strlen(server.sun_path) +
 sizeof(server.sun_family));

Using the Internet domain, this might appear as:

struct sockaddr_in server;
 ...
connect(s, (struct sockaddr *)&server, sizeof(server));

In the preceding examples, server contains either the UNIX pathname or the Internet
address and port number of the server to contact. If the client process’s socket is unbound
at the time of the connect() call, the system will automatically select and bind a name
to the socket if necessary. This is the way local addresses are usually bound to a socket.

The connect() call returns an error if the connection attempt was unsuccessful (any
name automatically bound by the system, however, remains). Otherwise, the socket is
associated with the server, and data transfer can begin.
007-0810-100 15

2: Sockets-based Communication
When a connection attempt fails, an error is returned and the global variable errno is set
to indicate the error. Table 2-1 lists some of the more common errno values.

To receive a client’s connection, the server must perform two steps after binding its
socket: it indicates that it is ready to listen for incoming connection requests, and then it
accepts the connection.

To indicate that a socket is ready to listen for incoming connection requests, use the
listen() call (see listen(2)):

listen(s, 5);

The second parameter of the listen() call specifies the maximum number of
outstanding connections that can be queued awaiting acceptance by the server process;
this number is limited by the system and is a value that is intended to catch flagrant
abuses of system resources. If a connection is requested while the queue is full, the
connection is not refused, but the individual messages that make up the request are
ignored. This gives a busy server time to make room in its pending connection queue
while the client retries the connection request. If the connection returns with the
ECONNREFUSED error, the client will be unable to determine whether the server is up.

Table 2-1 Common errno values

Value Explanation

ETIMEDOUT This error indicates that after failing to establish a connection for
a period of time, the system stopped trying. It usually occurs
because the destination host is down or because problems in the
network resulted in lost transmissions.

ECONNREFUSED This error indicates that the host has refused service. It usually
occurs because a server process is not present at the requested
port on the host. It may also indicate an explicit refusal due to
access control.

EHOSTDOWN, ENETDOWN These errors describe status information delivered to the client
host by the underlying communication services.

EHOSTUNREACH,

ENETUNREACH

These errors can occur either because the network or host is
unknown (no route to the network or host is present) or because
of status information returned by intermediate gateways or
switching nodes. Many times the status returned is not
sufficient to determine if a network or host is down, in which
case the system indicates that the entire network is unreachable.
16 007-0810-100

Sockets Basics
It is still possible to get the ETIMEDOUT error back, though this is unlikely. The backlog
figure supplied with the listen() call is limited to a very large value, (currently 1000).
Applications should limit the backlog parameter to a value consistent with a server’s
usage.

With a socket marked as listening, a server can accept a connection by using the
accept() system call (see accept(2)):

struct sockaddr_in from;
int fromlen = sizeof (from);
newsock = accept(s, (struct sockaddr *)&from, &fromlen);

Note: For the UNIX domain, from would be declared as a struct sockaddr_un, but the rest
of this example would remain the same. The examples that follow describe only
Internet-domain routines.

A new descriptor is returned on receipt of a connection (along with a new socket). To
identify the client, a server can supply a buffer for the client socket’s name. The server
initializes the value-result parameter fromlen to indicate how much space is associated
with from. The parameter is then modified on return to reflect the true size of the name.
If the client’s name is not of interest, the second parameter can be a null pointer.

Theaccept() call normally blocks. That is,accept()will not return until a connection
is available or the system call is interrupted by a signal to the program. Furthermore, a
program cannot indicate it will accept connections from only a specific individual or
individuals. It is up to the program to consider whom the connection is from and close
down the connection if it does not wish to speak to the remote program. If the server
program wants to accept connections on more than one socket, or wants to avoid
blocking on the accept call, there are alternatives; see “The Client/Server Model” on
page 34 for details.

Transferring Data

IRIX has several system calls for reading and writing information. The simplest calls are
read() and write() (see read(2) and write(2)). They take as arguments a descriptor,
a pointer to a buffer containing the data, and the size of the data:
007-0810-100 17

2: Sockets-based Communication
char buf [100];
 ...
write(s, buf, sizeof (buf));
read(s, buf, sizeof (buf));

The descriptor may indicate a file or a connected socket. “Connected” can mean either a
connected stream socket or a datagram socket for which a connect() call has provided
a default destination. The write() call requires a connected socket, since no destination
is specified in the parameters of the system call. The read() call can be used for either
a connected or an unconnected socket. These calls are, therefore, quite flexible and may
be used to write applications that do not require assumptions about the source of their
input or the destination of their output.

The readv() and writev() calls (see read(3) and write(3)) (for read and write
vector) are variations of the read() and write() calls, which allow the source and
destination of the input and output to use several separate buffers, while retaining the
flexibility to handle both files and sockets.

Sometimes it’s necessary to send high-priority data over a connection that may have
unread low-priority data at the other end. For example, a user interface process may be
interpreting commands and sending them on to another process through a stream
connection. The user interface may have filled the stream with as-yet-unprocessed
requests when the user types a command to cancel all outstanding requests. Rather than
have the high-priority data wait to be processed after the low-priority data, it is possible
to send it as out-of-band (OOB) data. OOB data is specific to stream sockets and is
discussed in “Out-of-Band Data” on page 43.

The send() and recv() calls (see send(2) and recv(2)) are similar to read() and
write(), but they allow options, including sending and receiving OOB information:

send(s, buf, sizeof (buf), flags);
recv(s, buf, sizeof (buf), flags);

These calls are used only with connected sockets; specifying a descriptor for a file will
result in an error.

While send() and recv() are virtually identical to write() and read(), the addition
of the flags argument is important. The flags are defined in <sys/socket.h> and can
have nonzero values if one or more of the following are required:

MSG_PEEK look at data without reading

MSG_OOB send/receive out-of-band data
18 007-0810-100

Sockets Basics
MSG_DONTROUTE
send data without routing packets

To preview data, specify MSG_PEEK with a recv() call. The recv() call allows a
process to read data without removing the data from the stream. That is, the nextread()
or recv() call applied to the socket will return the data previously previewed.

One use of this facility is to read ahead in a stream to determine the size of the next item
to be read. The option to have data sent in outgoing packets without routing is used only
by the routing table management process.

To send datagrams, one must be allowed to specify the destination. The call sendto()
(see sendto(2)) takes a destination address as an argument and is therefore used for
sending datagrams. The call recvfrom() (see recvfrom(2)) is often used to read
datagrams, since this call returns the address of the sender, if it is available, along with
the data. If the identity of the sender does not matter, one may use read() or recv().

Finally, there is a pair of calls that allow you to send and receive messages from multiple
buffers (the sender must specify the address of the recipient). These are sendmsg() and
recvmsg() (see sendmsg(2) and recvmsg(2)). These calls are actually quite general
and have other uses, including, in the UNIX domain, the transmission of a file descriptor
from one process to another.

Discarding Sockets

A socket is discarded by closing the descriptor; use the close() system call (see
close(2)):

close(s);

If data is associated with a socket that promises reliable delivery (for example, a stream
socket) when a close takes place, the system will continue trying to transfer the data.
However, after a period of time, undelivered data is discarded. Should you have no use
for any pending data, perform a shutdown() on the socket prior to closing it:

shutdown(s, how);

The value how is 0 if you do not want to read data, 1 if no more data will be sent, or 2 if
no data is to be sent or received.
007-0810-100 19

2: Sockets-based Communication
Scheduled Transfers Sockets

Nearly all SGI socket system calls such as accept(), bind(), connect(), and so on,
support ST sockets. ST sockets must be connected before they can send or receive data.
Therefore, the sendto() and recfrom() calls are not supported for ST sockets.

Connectionless Sockets

The sockets described so far follow a connection-oriented model. However,
connectionless interactions, typical of the datagram facilities found in contemporary
packet-switched networks, are also supported. A datagram socket provides a symmetric
interface to data exchange. While processes are still likely to be client and server, there is
no requirement for connection establishment. Instead, each message includes the
destination address.

Datagram sockets are created as described in “Creating Sockets” on page 10. If a
particular local address is needed, the bind() operation must precede the first data
transmission. Otherwise, the system will set the local address and/or port when data is
first sent.

To send data, use the sendto() system call:

sendto(s, buf, buflen, flags, (struct sockaddr *)&to,
 sizeof(to));

The s, buf, buflen, and flags parameters are used as described for the send() call (see
“Transferring Data” on page 17). The to value indicates the destination address. On an
unreliable datagram interface, errors probably will not be reported to the sender. When
information is present locally to recognize a message that cannot be delivered (for
instance when a network is unreachable), the call will return –1 and the global variable
errno will contain an error number.

To receive messages on an unconnected datagram socket, use the recvfrom() call:

recvfrom(s, buf, buflen, flags, (struct sockaddr *)&from,
 &fromlen);

Once again, the value-result parameter, fromlen, initially contains the size of the from
buffer and is modified on return to indicate the actual size of the address from which the
datagram was received. If you don’t care who the sender is, use 0 for the &from and
&fromlen parameters.
20 007-0810-100

Sockets Basics
In addition to sendto() and recvfrom(), datagram sockets can use the connect()
call to associate a socket with a specific destination address. In this case, any data sent on
the socket will automatically be addressed to the connected peer, and only data received
from that peer will be delivered to the user.

Only one connected address is permitted for each socket at a time; a second connect()
will change the destination address, and a connect() to a “null” address (family
AF_UNSPEC) will cause a disconnection.

Connection requests on datagram sockets return immediately, because the request
simply results in the system recording the peer’s address. Connection requests on a
stream socket, however, do not return immediately; the request initiates the
establishment of an end-to-end connection. (The accept() and listen() calls are not
used with datagram sockets.)

While a datagram socket is connected, errors from recent send() calls can be returned
asynchronously. These errors can be reported on subsequent operations on the socket or
by using a special socket option, SO_ERROR, with getsockopt() that can be used to
interrogate the error status. A select() for reading or writing will return true when an
error indication has been received. The next operation will return the error, and the error
status is cleared. For additional details about datagram sockets, see “Advanced Topics”
on page 43.

I/O Multiplexing

You can multiplex I/O requests among multiple sockets and/or files by using the
select() call:

#include <sys/time.h>
#include <sys/types.h>
 ...
fd_set readmask, writemask, exceptmask;
struct timeval timeout;
 ...
select(nfds, &readmask, &writemask, &exceptmask, &timeout);

The select() call takes three sets of pointers as arguments:

• one for the set of file descriptors on which the caller wants to read data
007-0810-100 21

2: Sockets-based Communication
• one for the set of file descriptors on which data is to be written

• one for which exceptional conditions are pending (out-of-band data is the only
exceptional condition currently implemented)

If you are not interested in certain conditions (that is, read, write, or exceptions), the
corresponding argument to the select() call should be a null pointer.

Each set is a structure containing an array of long integer bit masks. The size of the array
is set by the definition FD_SETSIZE. The array must be long enough to hold one bit for
each FD_SETSIZE file descriptor.

The set should be zeroed before use. To clear the set mask, use this macro:

FD_ZERO(&mask)

To add and remove the file descriptor fd in the set mask, use these macros:

FD_SET(fd, &mask)
FD_CLR(fd, &mask)

The parameter nfds in the select() call specifies the range of file descriptors (one plus
the value of the largest descriptor) to be examined in a set.

You can specify a timeout value if the selection will not last more than a predetermined
period of time. If the fields in timeout are set to 0, the selection takes the form of a poll,
returning immediately. If timeout is a null pointer, the selection will block indefinitely. To
be more specific, a return takes place only when a descriptor is selectable or when a
signal is received by the caller, interrupting the system call.

The select() call normally returns the number of file descriptors selected. If the
select() call returns because the timeout expires, the value 0 is returned. If the
select() call terminates because of an error or interruption, –1 is returned with the
error number in errno, and with the file descriptor masks unchanged.

For a successful return, the three sets will indicate which file descriptors are ready to be
read from, written to, or have exceptional conditions pending. The status of a file
descriptor in a select mask can be tested with this macro:

FD_ISSET(fd, &mask)

This macro returns a nonzero value if fd is a member of the set mask, and 0 if it is not.
22 007-0810-100

Sockets Basics
To check for read readiness on a socket to be used with an accept() call, use select()
followed by the FD_ISSET(fd, &mask) macro. If FD_ISSET returns a nonzero value,
indicating permission to read, then a connection is pending on the socket.

For example, to read data from two sockets, s1 and s2, as the data becomes available and
with a one-second timeout, this code might be used:

#include <sys/time.h>
#include <sys/types.h>
 ...
fd_set read_template; struct timeval wait;
 ...
for (;;) {
 wait.tv_sec = 1; /* one second */
 wait.tv_usec = 0;
 FD_ZERO(&read_template);
 FD_SET(s1, &read_template);
 FD_SET(s2, &read_template);
 nb = select(FD_SETSIZE, &read_template, (fd_set *) 0,
 (fd_set *) 0, &wait);
 if (nb <= 0) {
 /*
 * An error occurred during the select, or
 * the select timed out.
 */
 }
 if (FD_ISSET(s1, &read_template)) {
 /* Socket #1 is ready to be read from. */
 }
 if (FD_ISSET(s2, &read_template)) {
 /* Socket #2 is ready to be read from. */
 }
}

Note: In 4.2BSD, the arguments to select() were pointers to integers instead of
pointers to fd_sets. This type of call will still work, as long as the largest file descriptor is
numerically less than the number of bits in an integer (that is, 32). However, the methods
illustrated above should be used in all current programs.
007-0810-100 23

2: Sockets-based Communication
The select() call provides a synchronous multiplexing scheme. Asynchronous
notification of output completion, input availability, and exceptional conditions are
possible through the use of the SIGIO and SIGURG signals.

Network Library Routines

When you use the IPC facilities in a distributed environment, programs need to locate
and construct network addresses. This section discusses the library routines you can use
to manipulate Internet network addresses.

Locating a service on a remote host requires many levels of mapping before client and
server can communicate. A service is assigned a name, such as login server, that humans
can easily understand. This name, and the name of the peer host, must then be translated
into network addresses. Finally, the address is used to locate a physical location and
route to the service.

The specifics of these mappings can vary among network architectures. For instance, it is
desirable that a network not require a host to have a name indicating its physical location
to a client host. Instead, underlying services in the network can discover the actual
location of the host at the time the client host wants to communicate.

This ability to have hosts named in a location-independent manner can induce overhead
in connection establishment, as a discovery process must take place, but it allows a host
to be physically mobile. The host does not have to notify its clients of its current location.

Standard routines are provided for these mappings:

• host names to network addresses

• network names to network numbers

• protocol names to protocol numbers

• service names to port numbers

Routines also indicate the appropriate protocol to use to communicate with the server
process. The file <netdb.h> must be included when using any of these routines.
24 007-0810-100

Network Library Routines
Host Names

The hostent data structure provides Internet host Name-to-Address Mapping:

struct hostent {
 char *h_name; /* official name of host */
 char **h_aliases; /* alias list */
 int h_addrtype; /* host address type (eg AF_INET) */
 int h_length; /* length of address */
 char **h_addr_list; /* list of addresses, */
 /* null-terminated */
};
/* first address, in network byte order, for backward
 * compatibility: */
#define h_addr h_addr_list[0]

The routine gethostbyname() takes an Internet host name and returns a hostent
structure, while the routine gethostbyaddr() maps Internet host addresses into a
hostent structure (see gethostbyname(3N) and gethostbyaddr(3N)).

These routines return the official name of the host and its public aliases, along with the
address type (family) and a null-terminated list of variable-length addresses. The list of
addresses is required because a host may have many addresses and the same name. The
h_addr definition is provided for backward compatibility and is defined as the first
address in the list of addresses in the hostent structure.

The database for these calls is provided either by the /etc/hosts file—see
hosts(4)—or by using the Internet domain name server, named (see named(1M)). The
database can also come from the NIS, if you have the NFS option. Because of the
differences in these databases and their access protocols, the information returned can
differ. When using the host table or NIS versions of gethostbyname(), the call returns
only one address but includes all listed aliases. When using the name server version, the
calls can return alternate addresses, but they will not provide any aliases other than the
one given as the argument.

Network Names

The netent data structure defines the Network-Name-to-Network-Number Mapping
used with the getnetbyname(), getnetbynumber(), and getnetent() routines
(see getnetbyname(3N), getnetbynumber(3N), and getnetent(3N)):
007-0810-100 25

2: Sockets-based Communication
/*
 * Assumption here is that a network number
 * fits in 32 bits.
 */
struct netent {
 char *n_name; /* official name of net */
 char **n_aliases; /* alias list */
 int n_addrtype; /* net address type */
 int n_net; /* network number, host byte order */
};

These routines are the network counterparts to the host routines described in the
preceding section. The routines extract their information from /etc/networks or from
the NIS if the NFS option is installed.

Protocol Names

The protoent data structure defines the protocol Name-to-Number Mapping used with
the routines getprotobyname(), getprotobynumber(), and getprotoent() (see
getprotobyname(3N), getprotobynumber(3N), and getprotoent(3N)):

struct protoent {
 char *p_name; /* official protocol name */
 char **p_aliases; /* alias list */
 int p_proto; /* protocol number */
};

The routines extract their information from/etc/protocols or from the NIS if the NFS
option is installed.

Service Names

A service is expected to reside at a specific port and employ a particular communication
protocol. This view is consistent with the Internet domain but is inconsistent with other
network architectures. Furthermore, a service can reside on multiple ports. If it does, the
higher-level library routines will have to be bypassed or extended. Services available are
obtained from the file /etc/services or from the NIS if the NFS option is installed.

The servent structure defines the service Name-to-Port-Number Mapping:
26 007-0810-100

Network Library Routines
struct servent {
 char *s_name; /* official service name */
 char **s_aliases; /* alias list */
 int s_port; /* port #, network byte order */
 char *s_proto; /* protocol to use */
};

The routine getservbyname() (see getservbyname(3N)) maps service names to a
servent structure by specifying a service name and, optionally, a qualifying protocol.

The following returns the service specification for a TELNET server using any protocol:

sp = getservbyname("telnet", (char *) 0);

This returns only the TELNET server that uses the TCP protocol:

sp = getservbyname("telnet", "tcp");

The routines getservbyport() and getservent() also provide service mappings
(see getservbyport(3N) and getservent(3N)). The getservbyport() routine has
an interface similar to that provided by getservbyname—you specify an optional
protocol name to qualify lookups.

Network Dependencies

With the support routines already described, an Internet application program rarely has
to deal directly with addresses. This allows services to operate as much as possible in a
network-independent fashion. However, purging all network dependencies is difficult.
As long as the user must supply network addresses when naming services and sockets,
some network dependency is required in a program. For example, the normal code
included in client programs, such as the remote login program, takes the form shown in
Example 2-1:

Example 2-1 A Remote-Login Client

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <stdio.h>
#include <netdb.h>

main(argc, argv)
 int argc;
007-0810-100 27

2: Sockets-based Communication
 char *argv[];
{
 struct sockaddr_in server;
 struct servent *sp;
 struct hostent *hp;
 int s;
 ...
 sp = getservbyname("login", "tcp");
 if (sp == NULL) {
 fprintf(stderr,
 "rlogin: tcp/login: unknown service\n");
 exit(1);
 }
 hp = gethostbyname(argv[1]);
 if (hp == NULL) {
 fprintf(stderr,
 "rlogin: %s: unknown host\n", argv[1]);
 exit(2);
 }
 bzero((char *)&server, sizeof (server));
 bcopy(hp->h_addr, (char *)&server.sin_addr,
 hp->h_length);
 server.sin_family = hp->h_addrtype;
 server.sin_port = sp->s_port;
 s = socket(hp->h_addrtype, SOCK_STREAM, 0);
 if (s < 0) {
 perror("rlogin: socket");
 exit(3);
 }
 ...
 /* Connect does the bind() for us */
 if (connect(s, (struct sockaddr *)&server,
 sizeof (server)) < 0) {
 perror("rlogin: connect");
 exit(4);
 }
}

Note: To make the remote login program independent of the Internet protocols and
addressing scheme, the program would have to have a layer of routines that masked the
network-dependent aspects from the mainstream login code. For the current facilities
available in the system, this does not appear worthwhile.
28 007-0810-100

Network Library Routines
Byte Ordering

In addition to the address-related database routines, several other routines are available
to simplify manipulation of names and addresses. Table 2-2 summarizes the routines that
manipulate variable-length byte strings and handle byte swapping of network addresses
and values.

The format of the socket address is specified, in part, by standards within the Internet
domain. The specification includes the order of the bytes in the address (called the
network byte order). Addresses supplied to system calls must be in network byte order;
values returned by the system also have this ordering. Because machines differ in the
internal representation of integers, examining an address as returned by
getsockname() or getservbyname() (see getsockname(2) or
getservbyname(3N)) may result in a misinterpretation. To use the number, it is
necessary to call the routine ntohs() to convert the number from the network
representation to the host’s representation. For example:

printf("port number %d\n", ntohs(sp->s_port));

On machines that have “big-endian” byte ordering, such as the IRIS, the ntohs is a null
operation. On machines with “little-endian” ordering, such as the VAX™, this results in
a swapping of bytes. Another routine exists to convert a short integer from the host
format to the network format, calledhtons(); thentohl() andhtonl() routines exist

Table 2-2 C Run-time Routines

Call Synopsis

bcmp(s1, s2, n) Compare byte strings; 0 if same, not 0 otherwise.

bcopy(s1, s2, n) Copy n bytes from s1 to s2.

bzero(base, n) Zero-fill n bytes starting at base.

htonl(val) (host-to-network-long) Convert 32-bit quantity from host to
network byte order.

htons(val) (host-to-network-short) Convert 16-bit quantity from host to
network byte order.

ntohl(val) (network-to-host-long) Convert 32-bit quantity from network to
host byte order.

ntohs(val) (network-to-host-short) Convert 16-bit quantity from network to
host byte order.
007-0810-100 29

2: Sockets-based Communication
for long integers. Any protocol that transfers integer data between machines with
different byte orders should use these routines. The library routines that return network
addresses and ports provide them in network order so that they can simply be copied
into the structures provided to the system.

Translation Functions

This section describes the functionality of some of the network library translation
routines available with the IRIX operating system. Topics in this section include the
following:

• Node name-to-address and address-to-name translation functions

• Interface index-to-name and interface name-to-index translation functions

The following translation interfaces are included in section 3N of the man pages:

• freeaddrinfo

• freehostent

• gai_strerror

• getaddrinfo

• getipnodebyname

• getipnodebyaddr

• getnameinfo

• if_freenameindex

• if_indextoname

• if_nameindex

• if_nametoindex

• inet_ntop

• inet_pton

Node Names and Service Names

The interfaces getaddrinfo, getnameinfo, and freeaddrinfo provide a simplified
way to translate between the names and addresses of a service on a node.
30 007-0810-100

Network Library Routines
You can use the getaddrinfo function instead of calling gethostbyname and
getservbyname. The getaddrinfo() function is protocol independent and thread
safe and can be used with both IPv6 and IPv4 addresses.

The getaddrinfo() function uses the addrinfo structure, which is defined in
netdb.h, as follows
struct addrinfo {
 int ai_flags; /* AI_PASSIVE, AI_CANONNAME, etc */
 int ai_family; /* AF_xxx */
 int ai_socktype; /* SOCK_xxx */

int ai_protocol; /* 0 or IPPROTO_xxx for IPv4,IPv6 */
 socklen_t ai_addrlen; /* length of ai_addr */
 char *ai_canonname; /* canonical name for node name */
 struct sockaddr *ai_addr; /* binary address */
 struct addrinfo *ai_next; /* next structure in linked list */
};

The following example shows the use of getaddrinfo(), freeaddrinfo(), and
gai_strerror():

#include <sys/socket.h>
#include <netdb.h>

struct addrinfo hints;
struct addrinfo *res, *ressave;
int err_num;
char *nodename, *servname;

nodename = argv[1];
servname = argv[2];
bzero(&hints, sizeof(hints));
hints.ai_flags = AI_ADDRCONFIG | AI_CANONNAME;
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;

err_num = getaddrinfo(nodename, servname, &hints, &res);
if(err_num) {
 fprintf(stderr, "getaddrinfo: %s for nodename %s servname %s\n",
 gai_strerror(err_num), nodename, servname);
 exit(1);
}
ressave = res; /* save res pointer to be freed later */
... /* process the information returned */
freeaddrinfo(ressave);
007-0810-100 31

2: Sockets-based Communication
The gai_strerror function prints error messages based on the EAI_xxx codes
returned by the getaddrinfo() and getnameinfo() functions. The information that
getaddrinfo() returns is dynamically allocated. To prevent memory leaks, the
freeaddrinfo() function is used to free the addrinfo structures along with any
additional storage associated with those structures.

The getnameinfo function translates the contents of a socket address structure to a
node name and/or service name. The getnameinfo() function is thread safe.

The following example shows the use of getnameinfo:

#include <sys/socket.h>
#include <netinet/in.h>
#include <netdh.h>
#include <stdio.h>

...
struct sockaddr_storage ss;
socklen_t sslen;
int oldsock, newsock;
int err_num;
char nodename[NI_MAXHOST];
char servname[NI_MAXSERV];

... /* socket(), bind() and listen() calls */
sslen = sizeof(ss);
newsock = accept(oldsock, (struct sockaddr *)&ss, &sslen);
if(newsock == -1) {
...
}
err_num = getnameinfo((struct sockaddr *)&ss, sslen, nodename,
 sizeof(nodename), servname, sizeof(servname), 0);
if(err_num) {
 fprintf(stderr, "getnameinfo: %s\n", gai_strerror(err_num));
 exit(1);
}
else {
 printf("Connection from %s for service %s\n",
 nodename, servname);
}
...
32 007-0810-100

Network Library Routines
Node Name Mapping

You can use functions such as getipnodebyname() and getipnodebyaddr() to map
a node name to a hostent structure and a node address to a hostent structure,
respectively. These functions are very similar to gethostbyname and
gethostbyaddr, but they require additional arguments for specifying address family
and operation modes, and they are not protocol-independent. These routines return a
hostent structure containing the name of the host, its aliases, the address type, and a
list of addresses that are dynamically allocated by them. The calling program has to use
the freehostent() function for freeing the memory region used by the hostent
structure allocated by these functions.

Functions such as inet_ntoa() and inet_addr() that convert IPv4 addresses between
binary and printable form are specific to 32-bit IPv4 addresses only. The new functions
inet_ntop() and inet_pton() can be used to convert both 32-bit IPv4 addresses and
128-bit IPv6 addresses.

The inet_ntop() function maps an IPv4 or IPv6 network format address to a printable
format address and inet_pton() maps an IPv4 or IPv6 printable format address to a
network format address.

The following example shows the use of inet_ntop:

#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>

struct addrinfo hints, *res, *ressave;
int s, err_num;
char *nodename, *servname;
char hname[INET_ADDRSTRLEN];

bzero(&hints, sizeof(struct addrinfo));
hints.ai_family = AF_INET;
hints.ai_socktype = SOCK_STREAM;

err_num = getaddrinfo(nodename, servname, &hints, &res);
if(err_num) {
 ... /* exit */

}
ressave = res;
007-0810-100 33

2: Sockets-based Communication
do {
 s = socket(res->ai_family, res->ai_socktype, res->ai_protocol);
 if (s < 0)
 continue;
 if(connect(s, res->ai_addr, res->ai_addrlen) >= 0) {
 inet_ntop(AF_INET,
 &(((struct sockaddr_in *)res->ai_addr)->sin_addr),
 hname, sizeof(hname));
 printf("Connected to %s\n", hname);
 break;
 }
 else {
 ...
 }
} while ((res = res->ai_next) != NULL);
...

Interface Identification

Functions if_indextoname() and if_nametoindex() map between an interface
name and index. The if_nameindex() function returns all of the interface names and
indexes. The if_freenameindex() function returns the dynamic memory allocated by
if_nameindex(). These functions can be used, for example, to specify the interface from
which to send multicast packets. (See the example in the description of the
IPV6_MULTICAST_IF socket option in “Multicast Socket Options” in Chapter 3.)
Interface indexes are small positive integers.

These functions use theif_nameindex structure, defined innet/if.h, which can hold
the information about a single interface (see the following example).

struct if_nameindex {
 unsigned int if_index; /* 1, 2, ... */
 char *if_name; /* null terminated name: ef0,...*/
};

The Client/Server Model

The most commonly used paradigm in constructing distributed applications is the
client/server model. In this scheme, client applications request services from a server
process. This implies an asymmetry in establishing communication between the client
and server. (See “Establishing Socket Connections” on page 15 for details.) This section
34 007-0810-100

The Client/Server Model
examines the interactions between client and server, and considers some of the problems
in developing client and server applications.

The client and server require a well-known set of conventions before service can be
rendered (and accepted). This set of conventions constitutes a protocol that must be
implemented at both ends of a connection. The protocol can be symmetric or asymmetric.
In a symmetric protocol, either side can play the master or slave role. In an asymmetric
protocol, one side is always the master, and the other is the slave. An example of a
symmetric protocol is TELNET, which is used in Internet for remote terminal emulation.
An example of an asymmetric protocol is the Internet File Transfer Protocol (FTP).
Regardless of whether the protocol is symmetric or asymmetric, when it accesses a
service there is a “server process” and a “client process.”

A server process normally listens at a well-known address for service requests. That is,
the server process remains dormant until a connection is requested by a client’s
connection to the server’s address. At such a time the server process “wakes up” and
services the client, performing actions the client requests.

Alternative schemes that use a server to provide a service can eliminate a flock of server
processes clogging the system while remaining dormant most of the time. For Internet
servers in BSD-based systems, this scheme has been implemented via inetd, the
so-called “Internet super-server.” The inetd daemon listens at a variety of ports,
determined at startup by reading a configuration file. When a connection is requested to
a port on which inetd is listening, inetd executes the appropriate server program to
handle the client. With this method, clients are unaware that an intermediary such as
inetd has played any part in the connection. The inetd daemon is described in more
detail in “Advanced Topics” on page 43.

Connection-based Servers

Most servers are accessed at well-known Internet addresses. The remote login server’s
main loop takes the form shown in this sample code:

main(int argc, char **argv)
{
 int f;
 struct sockaddr_in from;
 struct servent *sp;

 sp = getservbyname("login", "tcp");
 if (sp == NULL) {
007-0810-100 35

2: Sockets-based Communication
 fprintf(stderr,
 "rlogind: tcp/login: unknown service\n");
 exit(1);
 }
 ...
#ifndef DEBUG
 /* Disassociate server from controlling terminal */
 ...
#endif
 /* Restricted port -- see "Address Binding" */
 from.sin_port = sp->s_port;
 ...
 f = socket(AF_INET, SOCK_STREAM, 0);
 ...
 if (bind(f, (struct sockaddr *) &from,
 sizeof (from)) < 0) {
 syslog(LOG_ERR, "rlogind: bind: %m");
 exit(1);
 }
 ...
 listen(f, 5);
 for (;;) {
 int g, len = sizeof (from);
 g = accept(f, (struct sockaddr *)&from, &len);
 if (g < 0) {
 if (errno != EINTR) {
 syslog(LOG_ERR, "rlogind: accept: %m");
 }
 continue;
 }
 if (fork() == 0) { /* child */
 close(f);
 doit(g, &from);
 }
 close(g); /* parent */
 }
}

The first step taken by the server is to look up its service definition:

sp = getservbyname("login", "tcp");
if (sp == NULL) {
 fprintf(stderr, "rlogind: tcp/login: unknown service\n");
 exit(1);
}

36 007-0810-100

The Client/Server Model
The result of the getservbyname() call is used in later portions of the code to define
the well-known Internet port where the server listens for service requests (indicated by
a connection).

The second step taken by the server is to disassociate from the controlling terminal of its
invoker:

_daemonize(0, -1, -1, -1);

The _daemonize() function does the common work needed to put a program into the
background or to make a program into a daemon. This generally includes fork()ing a
new process, closing most files, and releasing the controlling terminal. See the
daemonize(3) manual page for details.

The server is protected from receiving signals delivered to the process group of the
controlling terminal. Note, however, that once a server has disassociated itself, it can no
longer send reports of errors to a terminal and must log errors via syslog().

Once a server has established a pristine environment, it creates a socket and begins
accepting service requests. The bind() call is required to ensure that the server listens
at its expected location. Note that the remote login server listens at a restricted port
number and must therefore be run with a user ID of root. This concept of a “restricted
port number” is specific to BSD-based systems; see “Address Binding” on page 51 for
more information.

The main body of the loop is shown in this example:

for (;;) {
 int g, len = sizeof (from);
 g = accept(f, (struct sockaddr *)&from, &len);
 if (g < 0) {
 if (errno != EINTR) {
 syslog(LOG_ERR, "rlogind: accept: %m");
 }
 continue;
 }
 if (fork() == 0) { /* Child */
 close(f);
 doit(g, &from);
 }
 close(g); /* Parent */
}

007-0810-100 37

2: Sockets-based Communication
An accept() call blocks the server until a client requests service. This call could return
a failure status if interrupted by a signal such as SIGCHLD. Therefore, the return value
from accept() is checked to ensure that a connection has actually been established, and
an error report is logged via syslog() if an error has occurred.

With a connection established, the server then fork()s a child process and invokes the
main body of the remote login protocol processing. Note that the socket used by the
parent for queuing connection requests is closed in the child, while the socket created as
a result of accept() is closed in the parent. The address of the client is also handed to
the doit() routine, because the routine requires it in authenticating clients.

Connection-based Clients

The client side of the remote login service was described in “Network Dependencies” on
page 27. The separate, asymmetric roles of the client and server show clearly in the code.
The server is a passive entity, listening for client connections, while the client process is
an active entity, initiating a connection when invoked.

Consider the steps taken by the client remote login process. As in the server process, the
first step is to locate the service definition for a remote login:

sp = getservbyname("login", "tcp");
if (sp == NULL) {
 fprintf(stderr, "rlogin: tcp/login: unknown service\n");
 exit(1);
}

Then the gethostbyname() call looks up the destination host:

hp = gethostbyname(argv[1]);
if (hp == NULL) {
 fprintf(stderr, "rlogin: %s: unknown host\n", argv[1]);
 exit(2);
}

Next, a connection is established to the server at the requested host and the remote login
protocol is started. The address buffer is cleared and is then filled in with the Internet
address of the remote host and the port number of the login process on the remote host:

bzero((char *)&server, sizeof (server));
bcopy(hp->h_addr, (char *) &server.sin_addr, hp->h_length);
server.sin_family = hp->h_addrtype;
server.sin_port = sp->s_port;
38 007-0810-100

The Client/Server Model
A socket is created and a connection is initiated:

s = socket(hp->h_addrtype, SOCK_STREAM, 0);
if (s < 0) {
 perror("rlogin: socket");
 exit(3);
}
 ...
if (connect(s, (struct sockaddr *)&server,
 sizeof (server)) < 0) {
 perror("rlogin: connect");
 exit(4);
}

Note that connect() implicitly performs a bind() call in this case, since s is unbound.

Connectionless Servers

While connection-based services are the norm, some services are based on the use of
datagram sockets. The rwho service is an example. It provides users with status
information for hosts connected to a local area network. This service is predicated on the
ability to broadcast information to all hosts connected to a particular network.

A user on any machine running the rwho server can find out the current status of a
machine with the ruptime program (see ruptime(1C)). For example, ruptime might
generate this output:

dali up 2+06:28, 9 users, load 1.04, 1.20, 1.65
breton down 0:24
manray up 3+06:18, 0 users, load 0.03, 0.03, 0.05
magritte up 1+00:43, 2 users, load 0.22, 0.09, 0.07

Status information for each host is periodically broadcast by rwho server processes on
each machine. The same server process also receives the status information and uses it to
update a database. This database is then interpreted to generate the status information
for each host. Servers operate autonomously, coupled only by the local network and its
broadcast capabilities.

The use of broadcast for such a task is inefficient, as all hosts must process each message,
whether or not they are using an rwho server. Unless such a service is sufficiently
universal and frequently used, the expense of periodic broadcasts outweighs the
simplicity. However, on a very small network (for example, one dedicated to a
007-0810-100 39

2: Sockets-based Communication
computation engine and several display engines) broadcast works well because all
services are universal.

Note: Multicasting reduces the load on host machines and is an alternative to
broadcasting. Setting up multicast sockets is described in “IP Multicasting” on page 63.

The rwho server, in a simplified form, is shown in this code sample:

main()
{
 ...
 sp = getservbyname("who", "udp");
 from.sin_addr.s_addr = htonl(INADDR_ANY);
 from.sin_port = sp->s_port;
 ...
 s = socket(AF_INET, SOCK_DGRAM, 0);
 ...
 on = 1;
 if (setsockopt(s, SOL_SOCKET, SO_BROADCAST,
 &on, sizeof(on)) < 0) {
 syslog(LOG_ERR, "setsockopt SO_BROADCAST: %m");
 exit(1);
 }
 bind(s, (struct sockaddr *)&from, sizeof (from));
 ...
 signal(SIGALRM, onalrm);
 onalrm();
 for (;;) {
 struct whod wd;
 int cc, whod, len = sizeof (from);

 cc = recvfrom(s, (char *)&wd, sizeof (struct whod),
 0, (struct sockaddr *)&from, &len);
 if (cc <= 0) {
 if (cc < 0 && errno != EINTR) {
 syslog(LOG_ERR, "rwhod: recv: %m");
 }
 continue;
 }
 if (from.sin_port != sp->s_port) {
 syslog(LOG_ERR, "rwhod: %d: bad from port",
 ntohs(from.sin_port));
 continue;
40 007-0810-100

The Client/Server Model
 }
 ...
 if (!verify(wd.wd_hostname)) {
 syslog(LOG_ERR,
 "rwhod: malformed host name from %x",
 ntohl(from.sin_addr.s_addr));
 continue;
 }
 (void) sprintf(path, "%s/whod.%s", RWHODIR,
 wd.wd_hostname);
 whod = open(path, O_WRONLY|O_CREAT|O_TRUNC, 0666);
 ...
 /*undo header byte swapping before writing to file*/
 wd.wd_sendtime = ntohl(wd.wd_sendtime);
 ...
 (void) time(&wd.wd_recvtime);
 (void) write(whod, (char *)&wd, cc);
 (void) close(whod);
 }
}

The server performs two separate tasks. The first task is to receive status information
broadcast by other hosts on the network. This job is carried out in the main loop of the
program. Packets received at the rwho port are interrogated to make sure they were sent
by another rwho server process. They are then time-stamped with their arrival time and
used to update a file indicating the status of the host. When a host has not been heard
from for an extended period of time, the database interpretation routines assume the host
is down and indicate such on the status reports. This algorithm is prone to error, because
an rwho server can be down while a host is actually up.

The second task performed by the server is to supply host status information. This task
involves periodically acquiring system status information, packaging it in a message,
and broadcasting it on the local network for other rwho servers to hear. The supply
function is triggered by a timer and runs off a signal.

Deciding where to transmit the resultant packet is somewhat problematical. Status
information must be broadcast on the local network. For networks that do not support
broadcast, another scheme must be used. One possibility is to enumerate the known
neighbors (based on the status messages received from other rwho servers). This method
requires some bootstrapping information, because a server will have no idea what
machines are its neighbors until it receives status messages from them. Therefore, if all
machines on a network are freshly booted, no machine will have any known neighbors
007-0810-100 41

2: Sockets-based Communication
and thus will never receive, or send, any status information. This problem also occurs in
the routing table management process in propagating routing status information.

The standard solution is to inform one or more servers of known neighbors and request
that the servers always communicate with these neighbors. If each server has at least one
neighbor supplied to it, status information can then propagate through a neighbor to
hosts that are not directly neighbors.

If the server is able to support networks that provide a broadcast capability, as well as
those that do not, networks with an arbitrary topology can share status information.
However, network loops can cause problems. That is, if a host is connected to multiple
networks, it will receive status information from itself. This situation can lead to an
endless, wasteful exchange of information.

Software operating in a distributed environment should not have any site-dependent
information compiled into it. To achieve this, each host must have a separate copy of the
server, making server maintenance difficult. The BSD model attempts to isolate
host-specific information from applications by providing system calls that return the
necessary information. An example of such a call is gethostname() (see
gethostname(2)), which returns the host’s “official” name. In addition, an ioctl call
can find the collection of networks to which a host is directly connected. Furthermore, a
local network broadcasting mechanism has been implemented at the sockets level.

Combining these features lets a process broadcast on any directly connected local
network that supports the notion of broadcasting in a site-independent manner. The
system decides how to propagate status information in the case of rwho, or more
generally in broadcasting. Such status information is broadcast to connected networks at
the sockets level, where the connected networks have been obtained via the appropriate
ioctl calls. The specifics of this kind of broadcasting are discussed in the next section,
“Advanced Topics.”
42 007-0810-100

Advanced Topics
Advanced Topics

For most users of the sockets interface, the mechanisms already described will suffice in
constructing distributed applications. However, you might need to use some of the more
advanced features described in this section.

Out-of-Band Data

Stream sockets can accommodate “out-of-band” data. Out-of-band data is transmitted
on a logically independent transmission channel associated with each pair of connected
stream sockets. Out-of-band data is delivered to the user independently of normal data.
For stream sockets, the out-of-band data facilities must support the reliable delivery of at
least one out-of-band message at a time. This message can contain at least one byte of
data, and at least one message can be pending delivery to the user at any one time.

For communication protocols that support only in-band signaling (that is, the urgent
data is delivered in sequence with the normal data), the system extracts the data from the
normal data stream and stores it separately. You can choose between receiving urgent
data in sequence and receiving it out of sequence, without having to buffer all the
intervening data.

It is possible to “peek” (via MSG_PEEK) at out-of-band data. If the socket has a process
group, SIGURG is generated when the protocol is notified of its existence. A process can
set the process group or process ID to be informed by SIGURG via the appropriatefcntl
call as described for SIGIO (see “Interrupt-driven Sockets I/O” on page 46). If multiple
sockets can have out-of-band data awaiting delivery, a select call for exceptional
conditions can be used to determine which sockets have such data pending. Neither the
signal nor the select indicates the actual arrival of the out-of-band data, only
notification of pending data.

In addition to the information passed, a logical mark is placed in the data stream to
indicate the point at which the out-of-band data was sent. The remote login and remote
shell applications use this facility to propagate signals between client and server
processes. When a signal flushes pending output from the remote process(es), all data up
to the mark in the data stream is discarded.
007-0810-100 43

2: Sockets-based Communication
To send an out-of-band message, the MSG_OOB flag is supplied to a send() or
sendto() call. To receive out-of-band data, MSG_OOB should be indicated when
performing a recvfrom() or recv() call. To find out if the read pointer is currently
pointing at the mark in the data stream, use the SIOCATMARK ioctl:

int yes;
ioctl(s, SIOCATMARK, &yes);

If the value yes is a 1 on return, the next read will return data after the mark. Otherwise
(assuming out-of-band data has arrived), the next read will provide data sent by the
client prior to transmission of the out-of-band signal. Example 2-2 shows the routine
used in the remote login process to flush output on receipt of an interrupt or quit signal.
It reads the normal data up to the mark (to discard it) and then reads the out-of-band
byte.

Example 2-2 Flushing Terminal I/O on Receipt of Out-of-Band Data

#include <stdio.h>
#include <termios.h> /* POSIX-style */
#include <sys/ioctl.h>
#include <sys/socket.h>

oob()
{
 int mark;
 char waste[BUFSIZ];
 /* Flush local terminal output */
 tcflush(1, TCOFLUSH);
 for (;;) {
 if (ioctl(rem, SIOCATMARK, &mark) < 0) {
 perror("ioctl");
 break;
 }
 if (mark)
 break;
 (void) read(rem, waste, sizeof (waste));
 }
 if (recv(rem, &mark, 1, MSG_OOB) < 0) {
 perror("recv");
 ...
 }
 ...
}

44 007-0810-100

Advanced Topics
A process can also read the out-of-band data without first reading up to the mark.
Reading the out-of-band data in this way is more difficult when the underlying protocol
delivers the urgent data in-band with the normal data and only sends notification of its
presence ahead of time (for example, the TCP protocol used to implement streams in the
Internet domain). With such protocols, the out-of-band byte may not yet have arrived
when a recv is done with the MSG_OOB flag. In that case, the call will return an error
of EWOULDBLOCK. Worse, there may be so much in-band data in the input buffer that
normal flow control prevents the sender from sending the urgent data until the buffer is
cleared. The process must then read enough of the queued data for the urgent data to be
delivered.

Certain programs that use multiple bytes of urgent data and must handle multiple
urgent signals—for example, telnet (see telnet(1C))—need to retain the position of
urgent data within the stream. This treatment is available as a sockets-level option,
SO_OOBINLINE; see setsockopt(2) for usage. With this option, the position of urgent
data (the “mark”) is retained, but the urgent data immediately follows the mark within
the normal data stream returned without the MSG_OOB flag. Reception of multiple
urgent indications causes the mark to move, but no out-of-band data is lost.

Nonblocking Sockets

Programs that cannot wait for a socket operation to be completed should use
nonblocking sockets. I/O requests on nonblocking sockets return with an error if the
request cannot be satisfied immediately.

Once a socket has been created with the socket() call, it can be marked as nonblocking
by fcntl() as follows:

#include <fcntl.h>
 ...
int s;
 ...
s = socket(AF_INET, SOCK_STREAM, 0);
 ...
if (fcntl(s, F_SETFL, FNDELAY) < 0) {
 perror("fcntl F_SETFL, FNDELAY");
 exit(1);
}
...
007-0810-100 45

2: Sockets-based Communication
When performing nonblocking I/O on sockets, check for the error EAGAIN (stored in
the global variable errno). This error occurs when an operation would normally block,
but the socket it was performed on is nonblocking. In particular, accept(),
connect(), send(), recv(), read(), and write() can all return EAGAIN, and
processes should be prepared to deal with this return code.

Note: In previous releases of IRIX, the error EWOULDBLOCK was sometimes returned
instead of EAGAIN. In the current release of IRIX, EWOULDBLOCK is defined as
EAGAIN for source compatibility.

If an operation such as a send() cannot be completed, but partial writes are sensible (for
example, when using a stream socket), data that can be sent immediately is processed,
and the return value indicates the amount that was actually sent.

Interrupt-driven Sockets I/O

The SIGIO signal allows a process to be notified when a socket (or more generally, a file
descriptor) has data waiting to be read. Use of the SIGIO facility requires three steps:

1. The process must use a signal call to set up a SIGIO signal handler.

2. The process must set the process ID or process group ID (see “Signals and Process
Groups” on page 47) to receive notification of pending input either to its own
process ID or to the group ID of its process group (the default process group of a
socket is group zero). To do this, the process uses an fcntl call.

3. The process uses another fcntl call to enable asynchronous notification of pending
I/O requests. Example 2-3 shows sample code that enables a process to receive
information on pending I/O requests as they occur for a socket s. With the addition
of a handler for SIGURG, this code can be used to prepare for receipt of SIGURG
signals.

Example 2-3 Asynchronous Notification of I/O Requests
#include <signal.h>
#include <fcntl.h>

...
int io_handler();
...
main()
46 007-0810-100

Advanced Topics
{
 signal(SIGIO, io_handler);

 /*Set the process receiving SIGIO/SIGURG signals to us*/

 if (fcntl(s, F_SETOWN, getpid()) < 0) {
 perror("fcntl F_SETOWN");
 exit(1);
 }

 /* Allow receipt of asynchronous I/O signals */
 if (fcntl(s, F_SETFL, FASYNC) < 0) {
 perror("fcntl F_SETFL, FASYNC");
 exit(1);
 }
}
io_handler()
{
...
}

Signals and Process Groups

Due to the existence of the SIGURG and SIGIO signals, each socket has an associated
process number. This value is initialized to zero, but it can be redefined at a later time
with the F_SETOWN fcntl, as was done in the previous code for SIGIO. To set the
socket’s process ID for signals, positive arguments should be given to the fcntl call. To
set the socket’s process group for signals, negative arguments should be passed to fcntl.
Note that the process number indicates either the associated process ID or the associated
process group; it is impossible to specify both at the same time. A similar fcntl,
F_GETOWN, is available for determining the current process number of a socket.

Another useful signal you can use when constructing server processes is SIGCHLD,
which is delivered to a process when any child processes have changed state. Normally,
servers use SIGCHLD to “reap” child processes that have exited, without explicitly
awaiting their termination or periodic polling for exit status. For example, the remote
login server loop shown in “Connection-based Servers” on page 35 can be augmented,
as shown in Example 2-4.
007-0810-100 47

2: Sockets-based Communication
Example 2-4 Using the SIGCHLD Signal

#include <signal.h>

int reaper();
...
main()
{
 ...
 signal(SIGCHLD, reaper);
 listen(f, 5);
 for (;;) {
 int g, len = sizeof (from);

 g = accept(f, (struct sockaddr *)&from, &len,);
 if (g < 0) {
 if (errno != EINTR) {
 syslog(LOG_ERR, "rlogind: accept: %m");
 }
 continue;
 }
 ...
 }
}
#include <sys/wait.h>
reaper()
{
 union wait status;

 while (wait3(&status, WNOHANG, 0) > 0) {
 ; /* no-op */
 }
}

If the parent server process fails to reap its children, a large number of “zombie”
processes can be created.

Pseudo-Terminals

Many programs will not function properly without a terminal for standard input and
output. Since sockets do not provide the semantics of terminals, it is often necessary to
have a process communicate over the network through a pseudo-terminal. A
pseudo-terminal is actually a pair of devices, master and slave, that allows a process to
48 007-0810-100

Advanced Topics
serve as an active agent in communication between processes and users. Data written on
the slave side of a pseudo-terminal is supplied as input to a process reading from the
master side, while data written on the master side is processed as terminal input for the
slave. In this way, the process manipulating the master side of the pseudo-terminal has
control over the information read and written on the slave side, as if it were manipulating
the keyboard and reading the screen on a real terminal. The purpose of this abstraction
is to preserve terminal semantics over a network connection. The slave side appears as a
normal terminal to any process reading from or writing to it.

For example, the remote login server uses pseudo-terminals for remote login sessions. A
user logging in to a machine across the network gets a shell with a slave pseudo-terminal
as standard input, output, and error. The server process then handles the communication
between the programs invoked by the remote shell and the user’s local client process.
When a user sends a character that causes a remote machine to flush terminal output, the
pseudo-terminal generates a control message for the server process. The server then
sends an out-of-band message to the client process to signal a flush of data at the real
terminal and on the intervening data buffered in the network.

Under IRIX, the name of the slave side of a pseudo-terminal has this syntax:

/dev/ttyqx

In this syntax, x is a number in the range 0 through 99. The master side of a
pseudo-terminal is the generic device /dev/ptc.

Creating a pair of master and slave pseudo-terminals is straightforward. The master half
of a pseudo-terminal is opened first. The slave side of the pseudo-terminal is then opened
and is set to the proper terminal modes if necessary. The process then forks. The child
closes the master side of the pseudo-terminal and execs the appropriate program.
Meanwhile, the parent closes the slave side of the pseudo-terminal and begins reading
and writing from the master side.

The sample code in Example 2-5 illustrates making use of pseudo-terminals. This code
assumes that a connection on a socket s exists, connected to a peer that wants a service of
some kind, and that the process has disassociated itself from any previously controlling
terminal.

Example 2-5 Creating and Using a Pseudo-Terminal on IRIX

#include <sys/sysmacros.h>
#include <fcntl.h>
#include <syslog.h>
007-0810-100 49

2: Sockets-based Communication
int master, slave;
struct stat stb;
char line[sizeof("/dev/ttyqxxx")];
master = open("/dev/ptc", O_RDWR | O_NDELAY);
if (master < 0 || fstat(master, &stb) < 0) {
 syslog(LOG_ERR, "All network ports in use");
 exit(1);
}
sprintf(line, "/dev/ttyq%d", minor(stb.st_rdev));
/* Put in separate process group, disassociate
 controlling terminal. */
setsid();

slave = open(line, O_RDWR); /* Open slave side */
if (slave < 0) {
 syslog(LOG_ERR, "Cannot open slave pty %s", line);
 exit(1);
}
pid = fork();
if (pid < 0) {
 syslog(LOG_ERR, "fork: %m");
 exit(1);
}
if (pid > 0) { /* Parent */
 close(slave);
 ...
} else { /* Child */
 close(master);
 dup2(slave, 0);
 dup2(slave, 1);
 dup2(slave, 2);
 if (slave > 2)
 (void) close(slave);
 ...
}

Selecting Protocols

If the third argument to the socket() call is 0, socket() will select a default protocol
to use with the returned socket of the type requested. The default protocol is usually
correct, and alternate choices are not usually available. However, when using raw
sockets to communicate directly with lower-level protocols or hardware interfaces, the
protocol argument can be important for setting up de-multiplexing. For example, raw
50 007-0810-100

Advanced Topics
sockets in the Internet family can be used to implement a new protocol above IP, and the
socket will receive packets only for the protocol specified.

To obtain a particular protocol, determine the protocol number as defined within the
communication domain. For the Internet domain, you can use one of the library routines
described in “Network Library Routines” on page 24. For example, you can use
getprotobyname():

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
 ...
pp = getprotobyname("newtcp");
s = socket(AF_INET, SOCK_STREAM, pp->p_proto);

This call results in a socket s using a stream-based connection, but with a protocol type
of newtcp instead of the default tcp.

Address Binding

Binding addresses to sockets in the Internet domain can be fairly complex. These
associations are composed of local and foreign addresses, and local and foreign ports.
Port numbers are allocated out of separate spaces, one for each system and one for each
domain on that system.

Through the bind() system call, a process can specify half of an association, the <local
address, local port> part, while the connect and accept calls are used to complete a
socket’s association by specifying the <foreign address, foreign port> part. Since the
association is created in two steps, the association uniqueness requirement could be
violated unless care is taken.

Furthermore, user programs do not always know the proper values to use for the local
address and local port, since a host can reside on multiple networks and the set of
allocated port numbers is not directly accessible to a user.

To simplify local address binding in the Internet domain, a wildcard address is provided.
When an address is specified as INADDR_ANY (a manifest constant defined in
<netinet/in.h>), the system interprets the address as “any valid address.”
007-0810-100 51

2: Sockets-based Communication
For example, to bind a specific port number to a socket but leave the local address
unspecified, the following code might be used:

#include <sys/types.h>
#include <netinet/in.h>
 ...
struct sockaddr_in sin;
 ...
s = socket(AF_INET, SOCK_STREAM, 0);
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = htonl(INADDR_ANY);
sin.sin_port = htons(MYPORT);
bind(s, (struct sockaddr *) &sin, sizeof (sin));

Sockets with wildcarded local addresses can receive messages directed to the specified
port number and sent to any of the possible addresses assigned to a host. For example, if
a host has addresses 128.32.0.4 and 10.0.0.78, and a socket is bound as above, the process
will be able to accept connection requests that are addressed to 128.32.0.4 or 10.0.0.78. For
a server process to allow only hosts on a given network to connect to it, it would bind
whichever of the server’s addresses were on the appropriate network.

Similarly, a local port can be left unspecified (specified as zero), in which case the system
selects an appropriate port number for it. For example, to bind a specific local address to
a socket but leave the local port number unspecified, use this code:

hp = gethostbyname(hostname);
if (hp == NULL) {
 ...
}
bcopy(hp->h_addr, (char *) sin.sin_addr, hp->h_length);
sin.sin_port = htons(0);
bind(s, (struct sockaddr *) &sin, sizeof (sin));

The system selects the local port number based on two criteria:

• On BSD systems, Internet ports between 512 and 1023 (IPPORT_RESERVED – 1) are
reserved for privileged users; Internet ports above IPPORT_USERRESERVED
(5000) are reserved for nonprivileged servers; and Internet ports between
IPPORT_RESERVED and IPPORT_USERRESERVED are used by the system for
assignment to clients.

• The port number may not be bound to another socket.
52 007-0810-100

Advanced Topics
To find a free Internet port number in the privileged range, the rresvport library
routine can be used as follows to return a stream socket with a privileged port number:

int lport = IPPORT_RESERVED - 1;
int s;
 ...
s = rresvport(&lport);
if (s < 0) {
 if (errno == EAGAIN)
 fprintf(stderr, "socket: all ports in use");
 else
 perror("rresvport: socket");
 ...
}

The restriction on allocating ports allows processes executing in a “secure” environment
to perform authentication based on the originating address and port number. For
example, the rlogin command (see rlogin(1C)) lets users log in across a network
without being asked for a password, under two conditions:

• The name of the system the user is logging in from is in the file
/etc/hosts.equiv on the system being logged in to (or the system name and the
user name are in the user’s .rhosts file in the user’s home directory).

• The user’s rlogin process is coming from a privileged port on the machine from
which the user is logging in.

The port number and network address of the machine the user is logging in from can be
determined either by the from result of the accept() call or from the getpeername()
call.

The algorithm used by the system to select port numbers can be unsuitable for an
application, because the algorithm creates associations in a two-step process. For
example, FTP specifies that data connections must always originate from the same local
port. However, duplicate associations are avoided by connecting to different foreign
ports. The system disallows binding the same local address and port number to a socket
if a previous data connection’s socket still exists. To override the default port selection
algorithm, the following option call must be performed before address binding:

 ...
int on = 1;
 ...
setsockopt(s, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on));
bind(s, (struct sockaddr *) &sin, sizeof (sin));
007-0810-100 53

2: Sockets-based Communication
With this call, local addresses that are already in use can be bound. Binding local
addresses does not violate the uniqueness requirement, because the system still checks
at connect time to make sure that any other sockets with the same local address and port
do not have the same foreign address and port. If the association already exists, the error
EADDRINUSE is returned.

Socket Options

You can use the setsockopt() and getsockopt() system calls to set and get a
number of options on sockets. These options include marking a socket for broadcasting,
not routing, lingering on closing, and so on. In addition, you can specify protocol-specific
options for IP and TCP, as described in ip(7P) and tcp(7P), and in “IP Multicasting” on
page 63.

The general form of the setsockopt() and getsockopt() calls is:

setsockopt(s, level, optname, optval, optlen);
getsockopt(s, level, optname, optval, optlen);

The parameters have these meanings:

• s is the socket on which the option is to be applied.

• level specifies the protocol layer on which the option is to be applied; in most cases,
level is the sockets level, indicated by the symbolic constant SOL_SOCKET, defined
in <sys/socket.h>.

• optname specifies the actual option, a symbolic constant that is also defined in
<sys/socket.h>.

• optval points to the value of the option (in most cases, whether the option is to be
turned on or off).

• optlen points to the length of the value of the option. For getsockopt, optlen is a
value-result parameter, initially set to the size of the storage area pointed to by
optval and modified upon return to indicate the actual amount of storage used.

For example, sometimes it’s useful to determine the type (stream or datagram) of an
existing socket. Programs under inetd (described in “The inetd Daemon” on page 55)
may need to perform this task. You can do so via the SO_TYPE socket option and the
getsockopt call, shown in this code:
54 007-0810-100

Advanced Topics
#include <sys/types.h>
#include <sys/socket.h>

int type, size;
size = sizeof (int);
if (getsockopt(s, SOL_SOCKET, SO_TYPE,
 (char *) &type, &size) < 0) {
 perror("getsockopt");
 ...
}

After the getsockopt call, type will be set to the value of the socket type, as defined in
<sys/socket.h>. For example, if the socket were a datagram socket, type would have
the value corresponding to SOCK_DGRAM.

The inetd Daemon

When a single daemon listens for requests for many daemons, instead of having each
daemon listen for its own requests, the number of idle daemons is reduced and the
implementation of each daemon is simplified.

The inetd daemon handles three types of service:

• A standard service, which has a well-known port assigned to it and is listed in
/etc/services or the NIS services map—see services(4). It may be a service
that implements an official Internet standard or is a BSD UNIX-specific service.

• An RPC service, which uses the Sun RPC calls as the transport; such services are
listed in /etc/rpc or the NIS rpc map—see rpc(4).

• A TCPMUX service, which is nonstandard and does not have a well-known port
assigned to it. TCPMUX services are invoked from inetd when a program
connects to the tcpmux well-known port and specifies the service name. This is
useful for adding locally developed servers.

The inetd daemon is invoked at boot time. It examines the file
/usr/etc/inetd.conf to determine the servers it will listen for. Once this
information has been read and a pristine environment created, inetd proceeds to create
one socket for each service it is to listen for, binding the appropriate port number to each
socket.
007-0810-100 55

2: Sockets-based Communication
The inetd daemon performs a select() on these sockets for read() availability,
waiting for a process to request a connection to the service corresponding to that socket.
The inetd daemon then performs an accept() on the socket in question, fork()s,
dup()s the new socket to file descriptors 0 and 1 (stdin and stdout), closes other open file
descriptors, and execs the appropriate server.

Servers making use of inetd are considerably simplified, because inetd takes care of
most of the IPC work required in establishing a connection. The server invoked by
inetd expects the socket connected to its client on file descriptors 0 and 1, and can
immediately perform any operations such as read(), write(), send(), or recv().
Servers can use buffered I/O as provided by the stdio conventions, as long as they use
fflush() when appropriate. However, for server programs that handle multiple
services or protocols, inetd allocates socket descriptors to protocols based on
lexicographic order of service and protocol name.

For example, the RPC mount daemon, rpc.mountd, has two entries in inetd.conf for
its TCP and UDP ports. When invoked by inetd, the TCP socket is on descriptor 0, and
UDP is on 1.

When writing servers under inetd, you can use the getpeername call to return the
address of the peer (process) connected on the other end of the socket. For example, to
log a client’s Internet address in “dot notation” (for example, 128.32.0.4), you might use
the following code:

struct sockaddr_in name;
int namelen = sizeof (name);
 ...
if (getpeername(0, (struct sockaddr *)&name, &namelen) < 0) {
 syslog(LOG_ERR, "getpeername: %m");
 exit(1);
} else {
 syslog(LOG_INFO, "Connection from %s",
 inet_ntoa(name.sin_addr));
}

While the getpeername call is especially useful when writing programs to run with
inetd, it can be used by stand-alone servers.

Standard TCP services are assigned unique well-known port numbers in the range of 0
to 255. These ports are of a limited number and are typically only assigned to official
Internet protocols. The TCPMUX service, as described in RFC-1078, allows you to add
locally developed protocols without needing an official TCP port assignment.
56 007-0810-100

Advanced Topics
The protocol used by TCPMUX is simple: a TCP client connects to a foreign host on TCP
port 1. It sends the service name followed by a carriage-return/ line-feed <Ctrl>-F. The
server replies with a single character indicating positive (+) or negative (–)
acknowledgment, immediately followed by an optional message of explanation,
terminated with a <Ctrl>-F. If the reply was positive, the selected protocol begins;
otherwise, the connection is closed. In the IRIX system, the TCPMUX service is built into
inetd; that is, inetd listens on TCP port 1 for requests for TCPMUX services listed in
inetd.conf.

The following code is an example TCPMUX server and its inetd.conf entry:

#include <sys/types.h>
#include <stdio.h>

main()
{
 time_t t;
 printf("+Go\r\n");
 fflush(stdout);
 time(&t);
 printf("%d = %s", t, ctime(&t));
 fflush(stdout);
}

More sophisticated servers may want to do additional processing before returning the
positive or negative acknowledgment.

The inetd.conf entry is:

tcpmux/current_time stream tcp nowait guest /d/curtime curtime

The following portion of the client code handles the TCPMUX handshake:

char line[BUFSIZ];
FILE *fp;
 ...
/* Use stdio for reading data from the server */
fp = fdopen(sock, "r");
if (fp == NULL) {
 fprintf(stderr, "Can't create file pointer\n");
 exit(1);
}
/* Send service request */
sprintf(line, "%s\r\n", "current_time");
if (write(sock, line, strlen(line)) < 0) {
007-0810-100 57

2: Sockets-based Communication
 perror("write");
 exit(1);
}

/* Get ACK/NAK response from the server */
if (fgets(line, sizeof(line), fp) == NULL) {
 if (feof(fp)) {
 die();
 } else {
 fprintf(stderr, "Error reading response\n");
 exit(1);
 }
}
/* Delete <CR> */
if ((lp = index(line, '\r')) != NULL) {
 *lp = ' ';
}

switch (line[0]) {
 case '+':
 printf("Got ACK: %s\n", &line[1]);
 break;
 case '-':
 printf("Got NAK: %s\n", &line[1]);
 exit(0);
 default:
 printf("Got unknown response: %s\n", line);
 exit(1);
}
/* Get rest of data from the server */
while ((fgets(line, sizeof(line), fp)) != NULL) {
 fputs(line, stdout);
}

Broadcasting

Using a datagram socket, you can send broadcast packets on many networks supported
by the system. The network itself must support broadcast; the system provides no
simulation of broadcast in software. Broadcast messages can place a high load on a
network, since they force every host on the network to service them. Consequently, the
ability to send broadcast packets has been limited to sockets explicitly marked to allow
broadcasting. Broadcast is typically used for one of two reasons: to find a resource on a
58 007-0810-100

Advanced Topics
local network without prior knowledge of its address or to send information to all
accessible neighbors.

Note: Multicasting is an alternative to broadcasting. See “IP Multicasting” on page 63 for
information about setting up multicast sockets.

To send a broadcast message, create a datagram socket:

s = socket(AF_INET, SOCK_DGRAM, 0);

Mark the socket to allow broadcasting:

int on = 1;
setsockopt(s, SOL_SOCKET, SO_BROADCAST, &on, sizeof (on));

Bind a port number to the socket:

sin.sin_family = AF_INET;
sin.sin_addr.s_addr = htonl(INADDR_ANY);
sin.sin_port = htons(MYPORT);
bind(s, (struct sockaddr *) &sin, sizeof (sin));

The destination address of the broadcast message depends on the network(s). The
Internet domain supports a shorthand notation for broadcast on the local network, the
address INADDR_BROADCAST (defined in <netinet/in.h>).

Determining the list of addresses for all reachable neighbors requires knowledge of the
networks to which the host is connected. Since this information should be obtained in a
host-independent fashion and may be impossible to derive, IRIX provides a method for
retrieving this information from the system data structures.

The SIOCGIFCONF ioctl call returns the interface configuration of a host in the form
of a single ifconf structure. This structure contains a data area that is made up of an
array of ifreq structures, one for each network interface to which the host is connected.

These structures are defined in <net/if.h>, as shown in this example:

struct ifconf {
 ifc_len /* size of associated buffer */
 union {
 caddr_t ifcu_buf;
 struct ifreq *ifcu_req;
 } ifc_ifcu;
007-0810-100 59

2: Sockets-based Communication
};

/* Buffer address */
#define ifc_buf ifc_ifcu.ifcu_buf

/* Array of structures returned */
#define ifc_req ifc_ifcu.ifcu_req

#define IFNAMSIZ 16
struct ifreq {

 /* Interface name, e.g. "en0" */
 char ifr_name[IFNAMSIZ];
 union {
 struct sockaddr ifru_addr;
 struct sockaddr ifru_dstaddr;
 struct sockaddr ifru_broadaddr;
 short ifru_flags;
 int ifru_metric;
 /* MIPS ABI - unused by BSD */
 char ifru_data[1];
 char ifru_enaddr[6]; /* MIPS ABI */
 char ifru_oname[IFNAMSIZ]; /* MIPS ABI */
 struct ifstats ifru_stats;

 /* Trusted IRIX */
 struct {
 caddr_t ifruv_base;
 int ifruv_len;
 } ifru_vec;
 } ifr_ifru;
};

/* Address */
#define ifr_addr ifr_ifru.ifru_addr

/* Other end of p-to-p link */
#define ifr_dstaddr ifr_ifru.ifru_dstaddr

/* Broadcast address */
#define ifr_broadaddr ifr_ifru.ifru_broadaddr

/* Flags */
#define ifr_flags ifr_ifru.ifru_flags
60 007-0810-100

Advanced Topics
/* Metric */
#define ifr_metric ifr_ifru.ifru_metric

/* For use by interface */
#define ifr_data ifr_ifru.ifru_data

/* Ethernet address */
#define ifr_enaddr ifr_ifru.ifru_enaddr

/* Other interface name */
#define ifr_oname ifr_ifru.ifru_oname

/* Statistics */
#define ifr_stats ifr_ifru.ifru_stats

/* Trusted IRIX */
#define ifr_base ifr_ifru.ifru_vec.ifruv_base
#define ifr_len ifr_ifru.ifru_vec.ifruv_len

The following call obtains the interface configuration:

struct ifconf ifc;
char buf[BUFSIZ];

ifc.ifc_len = sizeof (buf);
ifc.ifc_buf = buf;
if (ioctl(s, SIOCGIFCONF, (char *) &ifc) < 0) {
 ...
}

After this call, buf will contain one ifreq structure for each network to which the host
is connected, and ifc.ifc_len will have been modified to reflect the number of bytes
used by the ifreq structure.

Each structure has an associated set of interface flags that tell whether the network
corresponding to that interface is up or down, point-to-point or broadcast, and so on. The
SIOCGIFFLAGS ioctl retrieves these flags for an interface specified by an ifreq
structure:

struct ifreq *ifr;
struct sockaddr dst;

ifr = ifc.ifc_req;
for (n = ifc.ifc_len / sizeof (struct ifreq); --n >= 0;
 ifr++) {
007-0810-100 61

2: Sockets-based Communication
 /* Be careful not to use an interface devoted to an
 * address family other than the one intended */
 if (ifr->ifr_addr.sa_family != AF_INET)
 continue;
 if (ioctl(s, SIOCGIFFLAGS, (char *) ifr) < 0) {
 ...
 }
 /*
 * Skip boring cases.
 */
 if ((ifr->ifr_flags & IFF_UP) == 0 ||
 (ifr->ifr_flags & IFF_LOOPBACK) ||
 (ifr->ifr_flags &
 (IFF_BROADCAST | IFF_POINTTOPOINT)) == 0) {
 continue;
 }

Once you retrieve the flags, retrieve the broadcast address. For broadcast networks,
retrieval is done via the SIOCGIFBRDADDR ioctl. For point-to-point networks, the
address of the destination host is obtained with SIOCGIFDSTADDR:

if (ifr->ifr_flags & IFF_POINTTOPOINT) {
 if (ioctl(s, SIOCGIFDSTADDR, (char *) ifr) < 0) {
 ...
 }
 bcopy((char *) ifr->ifr_dstaddr, (char *) &dst,
 sizeof (ifr->ifr_dstaddr));

} else if (ifr->ifr_flags & IFF_BROADCAST) {
 if (ioctl(s, SIOCGIFBRDADDR, (char *) ifr) < 0) {
 ...
 }
 bcopy((char *) ifr->ifr_broadaddr, (char *) &dst,
 sizeof (ifr->ifr_broadaddr));
}

After the appropriate ioctls get the broadcast or destination address (now in dst), use
the sendto() call:

 sendto(s, buf, buflen, 0, (struct sockaddr *)&dst,
 sizeof (dst));
62 007-0810-100

Advanced Topics
In the above loop, one sendto() occurs for every interface the host is connected to that
supports broadcast or point-to-point addressing. For a process to send only broadcast
messages on a given network, use code similar to that outlined above, but the loop needs
to find the correct destination address.

Received broadcast messages contain the sender’s address and port, since datagram
sockets are bound before a message is allowed to go out.

IP Multicasting

The following quote is attributed to Request For Comments 1112, "Host Extensions for IP
Multicasting," S.Deering August 1989:

Multicasting is the transmission of an IP datagram to a host group, a set of zero or
more hosts identified by a single IP destination address. A multicast datagram is
delivered to all members of its destination host group with the same best-efforts
reliability as regular unicast IP datagrams; that is, the datagram is not guaranteed to
arrive intact at all members of the destination group or in the same order relative to
other datagrams.

The membership of a host group is dynamic; that is, hosts may join and leave
groups at any time. There is no restriction on the location or number of members in
a host group. A host may be a member of more than one group at a time. A host
need not be a member of a group to send datagrams to it.

A host group may be permanent or transient. A permanent group has a
well-known, administratively assigned IP address. It is the address, not the
membership of the group, that is permanent; at any time a permanent group may
have any number of members, even zero. Those IP multicast addresses that are not
reserved for permanent groups are available for dynamic assignment to transient
groups, which exist as long as they have members.

In general, a host cannot assume that datagrams sent to any host group address will
reach only the intended hosts, or that datagrams received as a member of a transient host
group are intended for the recipient. Misdirected delivery must be detected at a level
above IP, using higher-level identifiers or authentication tokens. Information transmitted
to a host group address should be encrypted or governed by administrative routing
controls if the sender is concerned about unwanted listeners.
007-0810-100 63

2: Sockets-based Communication
Note: This RFC-1112 level-2 implementation of IP multicasting is experimental and
subject to change in order to track future BSD UNIX releases. In particular, there may be
changes in the way a process overrides the default interface for sending multicast
datagrams and for joining multicast groups. This ability to override the default interface
is intended mainly for routing daemons; normal applications should not be concerned
with specific interfaces.

IP multicasting is currently supported only on AF_INET sockets of type SOCK_DGRAM
and SOCK_RAW, and only on subnetworks for which the interface driver has been
modified to support multicasting. The standard Ethernet, FDDI, and SLIP interfaces on
the IRIS support multicasting. (Older versions of ENP-10 Ethernet interfaces may require
an upgrade; see the IRIX Admin manual set for details.)

The next sections describe how to send and receive multicast datagrams.

Sending IP Multicast Datagrams

To send a multicast datagram, specify an IP multicast address in the range 224.0.0.0 to
239.255.255.255 as the destination address in a sendto() call.

The definitions required for the multicast-related socket options are found in
<netinet/in.h>. All IP addresses are passed in network byte order.

By default, IP multicast datagrams are sent with a time-to-live (TTL) of 1, which prevents
them from being forwarded beyond a single subnetwork. A new socket option allows the
TTL for subsequent multicast datagrams to be set to any value from 0 to 255, in order to
control the scope of the multicasts:

u_char ttl;
setsockopt(sock, IPPROTO_IP, IP_MULTICAST_TTL, &ttl,
 sizeof(ttl));

Multicast datagrams with a TTL of 0 will not be transmitted on any subnetwork but may
be delivered locally if the sending host belongs to the destination group and if multicast
loopback has not been disabled on the sending socket. Multicast datagrams with a TTL
greater than 1 may be delivered to more than one subnetwork if there is at least one
multicast router attached to the first-hop subnetwork. To provide meaningful scope
control, the multicast routers support the notion of TTL thresholds, which prevent
datagrams with less than a certain TTL from traversing certain subnetworks.
64 007-0810-100

Advanced Topics
The thresholds enforce the convention shown in Table 2-3.

“Sites” and “regions” are not strictly defined, and sites may be further subdivided into
smaller administrative units, as a local matter.

An application may choose an initial TTL other than one listed in Table 2-3. For example,
an application might perform an expanding-ring search for a network resource by
sending a multicast query, first with a TTL of 0, and then with larger and larger TTLs,
until a reply is received, perhaps using the TTL sequence 0, 1, 2, 4, 8, 16, 32.

The multicast router mrouted (see mrouted(1M)) refuses to forward any multicast
datagram with a destination address between 224.0.0.0 and 224.0.0.255, inclusive,
regardless of its TTL. This range of addresses is reserved for the use of routing protocols
and other low-level topology discovery or maintenance protocols, such as gateway
discovery and group membership reporting.

The address 224.0.0.0 is guaranteed not to be assigned to any group, and 224.0.0.1 is
assigned to the permanent group of all IP hosts (including gateways). This assignment
convention is used to address all multicast hosts on the directly connected network.
There is no multicast address (or any other IP address) for all hosts on the total Internet.
The addresses of other well-known, permanent groups are published in the “Assigned
Numbers” RFC (Internet Request for Comment 1060).

Each multicast transmission is sent from a single network interface, even if the host has
more than one multicast-capable interface. (If the host is also serving as a multicast
router, a multicast may be forwarded to interfaces other than the originating interface,
provided that the TTL is greater than 1.) The default interface to be used for multicasting

Table 2-3 TTL Threshold Convention

Scope Initial TTL

Restricted to the same host 0

Restricted to the same subnetwork 1

Restricted to the same site 32

Restricted to the same region 64

Restricted to the same continent 128

Unrestricted 255
007-0810-100 65

2: Sockets-based Communication
is the primary network interface on the system. A socket option is available to override
the default for subsequent transmissions from a given socket:

struct in_addr addr;
setsockopt(sock, IPPROTO_IP, IP_MULTICAST_IF, &addr,
 sizeof(addr));

where addr is the local IP address of the desired outgoing interface. An address of
INADDR_ANY may be used to revert to the default interface. The local IP address of an
interface can be obtained via the SIOCGIFCONF ioctl. To determine if an interface
supports multicasting, fetch the interface flags via the SIOCGIFFLAGS ioctl and see if
the IFF_MULTICAST flag is set. (Normal applications should not need to use this option;
it is intended primarily for multicast routers and other system services specifically
concerned with Internet topology.) The SIOCGIFCONF and SIOCGIFFLAGS ioctls are
described in “Broadcasting” on page 58.

If a multicast datagram is sent to a group to which the sending host itself belongs (on the
outgoing interface), a copy of the datagram is, by default, looped back by the IP layer for
local delivery. Another socket option gives the sender explicit control over whether or
not subsequent datagrams are looped back:

u_char loop;
setsockopt(sock, IPPROTO_IP, IP_MULTICAST_LOOP, &loop,
 sizeof(loop));

In this example, loop is set to 0 to disable loopback, and set to 1 to enable loopback. This
option improves performance for applications that may have no more than one instance
on a single host (such as a router daemon) by eliminating the overhead of receiving their
own transmissions. In general, loop should not be used by applications for which there
may be more than one instance on a single host (such as a conferencing program) or for
which the sender does not belong to the destination group (such as a time-querying
program).

A multicast datagram sent with an initial TTL greater than 1 may be delivered to the
sending host on a different interface from that on which it was sent if the host belongs to
the destination group on that other interface. The loopback control option has no effect
on such delivery.
66 007-0810-100

Advanced Topics
Receiving IP Multicast Datagrams

Before a host can receive IP multicast datagrams, it must become a member of one or
more IP multicast groups. A process can ask the host to join a multicast group by using
this socket option:

struct ip_mreq mreq;
setsockopt(sock, IPPROTO_IP, IP_ADD_MEMBERSHIP, &mreq,
 sizeof(mreq))

mreq is defined in this structure:

struct ip_mreq {
 struct in_addr imr_multiaddr; /*multicast group to join*/
 struct in_addr imr_interface; /*interface to join on*/
}

Every membership is associated with a single interface, and it is possible to join the same
group on more than one interface. imr_interface should be INADDR_ANY to choose
the default multicast interface or one of the host’s local addresses to choose a particular
(multicast-capable) interface. Up to IP_MAX_MEMBERSHIPS (currently 20)
memberships may be added on a single socket.

To drop a membership, use

struct ip_mreq mreq;
setsockopt(sock, IPPROTO_IP, IP_DROP_MEMBERSHIP, &mreq,
 sizeof(mreq));

where mreq contains the same values as used to add the membership. The memberships
associated with a socket are also dropped when the socket is closed or the process
holding the socket is killed. However, more than one socket may claim a membership in
a particular group, and the host will remain a member of that group until the last claim
is dropped.

The memberships associated with a socket do not necessarily determine which
datagrams are received on that socket. Incoming multicast packets are accepted by the
kernel IP layer if any socket has claimed a membership in the destination group of the
datagram; however, delivery of a multicast datagram to a particular socket is based on
the destination port (or protocol type for raw sockets), just as with unicast datagrams. To
receive multicast datagrams sent to a particular port, it is necessary to bind to that local
port, leaving the local address unspecified (that is, INADDR_ANY).
007-0810-100 67

More than one process may bind to the same SOCK_DGRAM UDP port if the bind()
call is preceded by:

int on = 1;
setsockopt(sock, SOL_SOCKET, SO_REUSEPORT, &on, sizeof(on));

In this case, every incoming multicast or broadcast UDP datagram destined to the shared
port is delivered to all sockets bound to the port. For backward compatibility reasons,
this does not apply to incoming unicast datagrams. Unicast datagrams are never
delivered to more than one socket, regardless of how many sockets are bound to the
datagram’s destination port. SOCK_RAW sockets do not require the SO_REUSEPORT
option to share a single IP protocol type.

Note: A final multicast-related extension is independent of IP: two new ioctls,
SIOCADDMULTI and SIOCDELMULTI, are available to add or delete link-level (for
example, Ethernet) multicast addresses accepted by a particular interface. The address to
be added or deleted is passed as a sockaddr structure of family AF_UNSPEC, within the
standard ifreq structure.

These ioctls are used for protocols other than IP and require superuser privileges. A
link-level multicast address added via SIOCADDMULTI is not automatically deleted
when the socket used to add it goes away; it must be explicitly deleted. It is inadvisable
to delete a link-level address that may be in use by IP.

Sample Multicast Program

The following program sends or receives multicast packets. If invoked with one
argument, it sends a packet containing the current time to an arbitrarily chosen multicast
group and UDP port. If invoked with no arguments, it receives and prints these packets.
Start it as a sender on just one host and as a receiver on all the other hosts.

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <time.h>
#include <stdio.h>

#define EXAMPLE_PORT 6000
#define EXAMPLE_GROUP "224.0.0.250"

Advanced Topics
main(argc)
 int argc;
{
 struct sockaddr_in addr;
 int addrlen, fd, cnt;
 struct ip_mreq mreq;
 char message[50];

 fd = socket(AF_INET, SOCK_DGRAM, 0);
 if (fd < 0) {
 perror("socket");
 exit(1);
 }
 bzero(&addr, sizeof(addr));
 addr.sin_family = AF_INET;
 addr.sin_addr.s_addr = htonl(INADDR_ANY);
 addr.sin_port = htons(EXAMPLE_PORT);
 addrlen = sizeof(addr);
 if (argc > 1) { /* Send */
 addr.sin_addr.s_addr = inet_addr(EXAMPLE_GROUP);
 while (1) {
 time_t t = time(0);
 sprintf(message, "time is %-24.24s", ctime(&t));
 cnt = sendto(fd, message, sizeof(message), 0,
 &addr, addrlen);
 if (cnt < 0) {
 perror("sendto");
 exit(1);
 }
 sleep(5);
 }
 } else { /* Receive */
 if (bind(fd, &addr, sizeof(addr)) < 0) {
 perror("bind");
 exit(1);
 }
 mreq.imr_multiaddr.s_addr = inet_addr(EXAMPLE_GROUP);
 mreq.imr_interface.s_addr = htonl(INADDR_ANY);
 if (setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
 &mreq, sizeof(mreq)) < 0) {
 perror("setsockopt mreq");
 exit(1);
 }
 while (1) {
 cnt = recvfrom(fd, message, sizeof(message), 0,
007-0810-100 69

2: Sockets-based Communication
 &addr, &addrlen);
 if (cnt < 0) {
 perror("recvfrom");
 exit(1);
 } else if (cnt == 0) {
 break;
 }
 printf("%s: message = \"%s\"\n",
 inet_ntoa(addr.sin_addr), message);
 }
 }
}

70 007-0810-100

Chapter 3

3. Sockets-based Communication Using IPv6

This chapter describes the sockets-based communication facilities using IPv6.

Topics in this chapter include:

• Introduction of the AF_INET6 socket and related address structures

• Client/Server programs for connection-based and connectionless sockets

• Socket options for unicasting and multicasting

• Multicasting

Creation of an IPv6 Socket

The socket() call creates a socket in the specified domain of the specified type, as in the
following example:

#include <sys/socket.h>
s = socket(domain, type, protocol);

A number of domains are available from the sys/socket.h file, including the
AF_INET6 domain. Following are all of the domains that are available:

AF_UNIX UNIX domain

AF_INET6 Internet domain for IPv6 and IPv4

AF_INET Internet domain for IPv4 only

AF_RAW Raw domain

The socket types, SOCK_STREAM, SOCK_DGRAM, or SOCK_RAW are supported by the
domains AF_INET6, AF_INET, and AF_UNIX. For example, to create a stream socket in
the IPv6 domain, use the following entry:

s = socket(AF_INET6, SOCK_STREAM, 0);
007-0810-100 71

3: Sockets-based Communication Using IPv6
IPv6 Address Structures

The in6_addr structure, defined in netinet/in.h, stores IPv6 addresses. Also
defined in netinet/in.h is the sockaddr_in6 structure, a protocol-specific socket
address data structure for IPv6.

IPv6 Unspecified Address

The global variable in6addr_any is defined as an in6_addr structure and initialized
to the “unspecified address” in netinet/in.h. After opening an AF_INET6 socket, for
the system to select the source address, this “unspecified address” can be used in the
bind() call.

For example, you can use the following code to bind an AF_INET6 socket to a port
number but let the system select the source address. Here the global variable
in6addr_any is used.

struct sockaddr_in6 sin6;
...
bzero(&sin6, sizeof(struct sockaddr_in6));
sin6.sin6_family = AF_INET6;
sin6.sin6_port = htons(23);
sin6.sin6_addr = in6addr_any;
...
if(bind(s, (struct sockaddr *)&sin6, sizeof(sin6)) == -1)
...

You can use the symbolic constant IN6ADDR_ANY_INIT, which is also defined in
netinet/in.h, to initialize an object of type struct in6_addr. The object will then
contain the same address as the global variable in6addr_any. Consider the following
example:

struct in6_addr anyaddr = IN6ADDR_ANY_INIT;

This constant can be used only at declaration time. It cannot be used to assign a
previously declared in6_addr structure. For example, the following code will not
work:

struct sockaddr_in6 sin6;
...
sin6.sin6_addr = IN6ADDR_ANY_INIT; /* will NOT compile */
72 007-0810-100

IPv6 Loopback Address
IPv6 Loopback Address

Like the unspecified address, the IPv6 loopback address is also provided in two forms: a
global variable and a symbolic constant. The global variable is defined as an in6_addr
structure named in6addr_loopback. The symbolic constant is named
IN6ADDR_LOOPBACK_INIT. Both are defined in netinet/in.h. Like
IN6ADDR_ANY_INIT, IN6ADDR_LOOPBACK_INIT cannot be used in an assignment to
a previously declared IPv6 address variable.

The following example shows the use of in6addr_loopback:

struct sockaddr_in6 sin6;
...
sin6.sin6_addr = in6addr_loopback;
...
if(connect(s, (struct sockaddr *)&sin6, sizeof(sin6)) == -1)
...

The following example shows the use of IN6ADDR_LOOPBACK_INIT:

struct in6_addr loopbackaddr = IN6ADDR_LOOPBACK_INIT;

Protocol Independent Socket Address Structure

You can use the sockaddr_storage structure, defined in sys/socket.h, to write
protocol-independent application programs. This data structure is large enough to
accommodate both AF_INET and AF_INET6 protocol-specific address structures. It is
also aligned at an appropriate boundary so that pointers to it can be cast as pointers to
protocol specific address structures and they can be used to access the fields of those
structures without alignment problems.

For example, it can be used in a server code in the following way:

...
struct sockaddr_storage from;
...
struct addrinfo hints, *res, *ressave;
int oldsock, newsock, err_num;
...
hints.ai_family = AF_UNSPEC;
hints.ai_family = AI_PASSIVE | AI_ADDRCONFIG;
...
007-0810-100 73

3: Sockets-based Communication Using IPv6
err_num = getaddrinfo(NULL, argv[1], &hints, &res);
ressave = res;
do {
 /* do socket(), bind() and listen() calls here */
 ...
 if((newsock = accept(oldsock, (struct sockaddr *)&from,
 sizeof(from))) == -1) {
 perror("accept");
 exit(1);
 }
 else {
 doit(&from);
 }
}
...

Server and Client Programs

For the server and client examples given in this section, if the ai_family field of the
hints structure is replaced with AF_UNSPEC and if AF_INET6 is not supported, the
program tries for the AF_INET family.

Connection-based Server and Client

A server process normally opens a stream socket and listens at a particular port number
for sevice requests. The client initiates a connection to the server’s address and port
number by calling connect(). At this point, the server wakes up and services the client
request.

Connection-based Server

Example 3-1 is an example of a server program that creates an IPv6 socket and binds a
name to that socket. The port number on which the socket is to be bound is provided on
the command line. The program calls listen() to mark the socket as ready to accept
incoming connections. In this example, the number of connections that the server can
accept is set to five. Each pass of the loop accepts a new connection and creates a new
socket. The server reads and displays the messages from the socket and closes it.

The command-line format for the server program is as follows:
74 007-0810-100

Server and Client Programs
program_name port_number

Example 3-1 Connection-based Server

#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>

#define MAX_CONN 5

main(argc, argv)
 int argc;
 char *argv[];
 {
 struct addrinfo hints, *res, *ressave;
 struct sockaddr_storage from;
 int fromlen;
 int err_num;
 int oldsock, newsock;
 int readval;
 char buf[1024];
 int conn_num = 0;

 memset(&hints, 0, sizeof(hints));
 hints.ai_family = AF_INET6;
 hints.ai_flags = AI_PASSIVE | AI_ADDRCONFIG;
 hints.ai_socktype = SOCK_STREAM;

 err_num = getaddrinfo(NULL, argv[1], &hints, &res);
 if(err_num) {
 fprintf(stderr, "getaddrinfo: %s", gai_strerror(err_num));
 exit(1);
 }
 ressave = res;
 do {
 oldsock = socket(res->ai_family, res->ai_socktype,
 res->ai_protocol);
 if(oldsock < 0)
 continue;
 if(bind(oldsock, res->ai_addr, res->ai_addrlen) < 0) {
 perror("bind");
 close(oldsock);
 continue;
 }
007-0810-100 75

3: Sockets-based Communication Using IPv6
 if(listen(oldsock, 5) < 0) {
 perror("listen");
 close(oldsock);
 continue;
 }
 do {
 if((newsock = accept(oldsock, (struct sockaddr *)&from,
 &fromlen)) < 0) {
 perror("accept");
 close(oldsock);
 }
 else {
 do {
 memset(&buf, 0, sizeof(buf));
 if((readval = read(newsock, buf, 1024)) == -1)
 perror("read");
 if(readval == 0)
 printf("Ending connection\n");
 else
 printf("---> %s\n", buf);
 } while (readval > 0);
 conn_num++;
 }
 close(newsock);
 } while (conn_num < MAX_CONN);
 /* break after establishing the required no. of connections */
 close(oldsock);
 break;
 } while ((res = res->ai_next) != NULL);
 if(!res) {
 fprintf(stderr, "bind/listen/accept failed for all addresses\n");
 freeaddrinfo(ressave);
 exit(1);
 }
 freeaddrinfo(ressave);
} /* end of main */

Connection-based Client

Example 3-2 is an example of a client program that creates an AF_INET6 stream socket
and calls connect() with the socket address for connection. If the request is accepted,
the connection is complete and the program can send data. The port number provided
on the command line should match the port number provided on the command line for
the server program.
76 007-0810-100

Server and Client Programs
The command-line format for this program is as follows:

program_name server_name port_number

Example 3-2 Connection-based Client

#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>

#define DATA "Data received through connection-based socket from
client"
main(argc, argv)
 int argc;
 char *argv[];
{
 struct addrinfo hints, *res, *ressave;
 int s, err_num;

 bzero(&hints, sizeof(struct addrinfo));
 hints.ai_family = AF_INET6;
 hints.ai_flags = AI_ADDRCONFIG | AI_CANONNAME;
 hints.ai_socktype = SOCK_STREAM;

 err_num = getaddrinfo(argv[1], argv[2], &hints, &res);
 if(err_num) {
 fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(err_num));
 exit(1);
}
ressave = res;
do {
 s = socket(res->ai_family, res->ai_socktype, res->ai_protocol);
 if (s < 0)
 continue;
 if(connect(s, res->ai_addr, res->ai_addrlen) < 0) {
 perror("connect");
 close(s);
 }
 else
 break;
 } while ((res = res->ai_next) != NULL);
 if (!res) {
 fprintf(stderr, "socket/connect failed for all addresses\n");
 freeaddrinfo(ressave);
 exit(1);
007-0810-100 77

3: Sockets-based Communication Using IPv6
 }
 if (write(s, DATA, sizeof DATA) == -1)
 perror("write");
 close(s);
 freeaddrinfo(ressave);
} /* end of main */

Connectionless Server and Client

With datagram sockets, data can be exchanged without requiring connection
establishment. The sendto() call sends data on an unconnected datagram socket. You
can use recvfrom() to receive data on a datagram socket.

Connectionless Server

Example 3-3 is an example program that creates a datagram socket, binds a name to it,
then reads from the socket.

The command-line format for this server program is as follows:

program_name port_number

Example 3-3 Connectionless Server

#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>

main(argc, argv)
 int argc;
 char *argv[];
{
 struct addrinfo hints, *res, *ressave;
 int s, err_num;
 char buf[1024];

 bzero(&hints, sizeof(hints));
 hints.ai_family = AF_INET6;
 hints.ai_flags = AI_PASSIVE | AI_ADDRCONFIG;
 hints.ai_socktype = SOCK_DGRAM;

 err_num = getaddrinfo(NULL, argv[1], &hints, &res);
78 007-0810-100

Server and Client Programs
 if(err_num) {
 fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(err_num));
 exit(1);
 }
 ressave = res;
 do {
 s = socket(res->ai_family, res->ai_socktype, res->ai_protocol);
 if(s < 0)
 continue;
 if(bind (s, res->ai_addr, res->ai_addrlen) == -1) {
 perror("bind");
 close(s);
 continue;
 }
 if(read(s, buf, 1024) == -1) {
 perror("read");
 close(s);
 continue;
 }
 else {
 printf("---> %s\n", buf);
 close(s);
 break;
 }
 } while ((res = res->ai_next) != NULL);
 if(!res){
 fprintf(stderr, "socket/bind/read failed for all addresses\n");
 freeaddrinfo(ressave);
 exit(1);
 }
 freeaddrinfo(ressave);
} /* end of main */

Connectionless Client

Example 3-4 is an example of a program that opens an AF_INET6 datagram socket and
sends a datagram to the server whose name is obtained from the command line
argument. The port number provided on the command line should match the port
number that is provided on the command line for the server program.

The command line format for this program is as follows:

program_name server_name port_number
007-0810-100 79

3: Sockets-based Communication Using IPv6
Example 3-4 Connectionless Client

#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>

#define DATA "Data received through connection-less socket from client"
main(argc, argv)
 int argc;
 char *argv[];
{
 struct addrinfo hints, *res, *ressave;
 int s, err_num;

 bzero(&hints, sizeof(hints));
 hints.ai_family = AF_INET6;
 hints.ai_flags = AI_ADDRCONFIG | AI_CANONNAME;
 hints.ai_socktype = SOCK_DGRAM;

 err_num = getaddrinfo(argv[1], argv[2], &hints, &res);
 if(err_num) {
 fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(err_num));
 exit(1);
 }
 ressave = res;
 do {
 s = socket(res->ai_family, res->ai_socktype, res->ai_protocol);
 if(s < 0)
 continue;
 if(sendto(s, DATA, sizeof DATA, 0, res->ai_addr, res->ai_addrlen)
 == -1) {
 perror("send");
 close(s);
 continue;
 }
 else {
 close(s);
 break;
 }
 } while ((res = res->ai_next) != NULL);
 if(!res) {
 fprintf(stderr, "socket/sendto failed for all addresses\n");
 freeaddrinfo(ressave);
 exit(1);
80 007-0810-100

Socket Options
 }
 freeaddrinfo(ressave);
} /* end of main */

Socket Options

For IPv6, there are a number of socket options that are defined at the IPPROTO_IPV6
level. When you use these socket options, set the level parameter to IPPROTO_IPV6.
You can obtain these socket options and the declaration for IPPROTO_IPV6 by including
the header netinet/in.h.

Unicast Socket Options

Use the socket option IPV6_UNICAST_HOPS at the IPPROTO_IPV6 level to control the
hop limit used in outgoing IPv6 unicast packets. Example 3-5 shows its usage:

Example 3-5 Using IPV6_UNICAST_HOPS
int hoplimit = 10;

if(setsockopt(s, IPPROTO_IPV6, IPV6_UNICAST_HOPS, (char *)&hoplimit,
 sizeof(hoplimit)) == -1)
 perror("setsockopt IPV6_UNICAST_HOPS");

If this option is not set, the system selects a default value.

Multicast Socket Options

Several socket options are available for sending and receiving IPv6 multicast packets.
The following sections describe those options.

Sending Packets

The following socket options at the IPPROTO_IPV6 level control some of the parameters
for sending IPv6 multicast packets:
007-0810-100 81

3: Sockets-based Communication Using IPv6
• IPV6_MULTICAST_IF

• IPV6_MULTICAST_HOPS

• IPV6_MULTICAST_LOOP

The IPV6_MULTICAST_IF socket option sets the interface to use for outgoing multicast
packets. If the interface index is specified as 0, the system selects the interface to use.
Here the argument type is unsigned int. In the following example, ifindex is the
interface index for the desired outgoing interface.

unsigned int ifindex;
ifindex = if_nametoindex("ef0");
setsockopt(s, IPPROTO_IPV6, IPV6_MULTICAST_IF, &ifindex,sizeof(ifindex));

The IPV6_MULTICAST_HOPS socket option sets the hop limit to use for outgoing
multicast packets. If it is not set, the default is 1. Here the argument type is int.

If a multicast datagram is sent to a group to which the sending host itself belongs (on the
outgoing interface) and theIPV6_MULTICAST_LOOP option is set to 1, a copy of the
datagram is looped back for local delivery. If this option is set to 0, a copy is not looped
back. If this option is not set, the default is 1. This socket option in IPv6 is similar to
IP_MULTICAST_LOOP in IPv4. The argument type is unsigned int. In the following
example, loop is 0 to disable loopback and 1 to enable loopback.

unsigned int loop;
setsockopt(s, IPPROTO_IPV6, IPV6_MULTICAST_LOOP, &loop, sizeof(loop));

Receiving Packets

The following socket options control the reception of IPv6 multicast packets:

• IPV6_JOIN_GROUP

• IPV6_LEAVE_GROUP

The IPV6_JOIN_GROUP socket option allows you to join a multicast group on a
specified local interface. The ipv6_mreq structure, defined in netinet/in.h, is to be
used for this purpose, as shown in the following example. If ipv6mr_interface is set
to 0, the kernel chooses the local interface.

struct ipv6_mreq {
struct in6_addr ipv6mr_multiaddr; /* IPv6 multicast address of group */
unsigned int ipv6mr_interface; /* interface index */
};
82 007-0810-100

Using Multicasting
The IPV6_LEAVE_GROUP socket option allows you to leave a multicast group on a
specified interface. If the ipv6mr_interface field of the ipv6_mreq structure is set
to 0, the system chooses a multicast group membership to drop by matching the
multicast address.

Socket Option for IPv6 Only

The IPV6_V6ONLY socket option restricts AF_INET6 sockets to IPv6 communication
only. Normally, AF_INET6 sockets can be used for both IPv4 and IPv6 communications.
But if an application wishes to restrict the use of AF_INET6 sockets to IPv6
communications only, this socket option can be used, as in the following example:

int on = 1;
setsockopt(s, IPPROTO_IPV6, IPV6_V6ONLY, (char *)&on, sizeof(on));

Using Multicasting

IP multicasting is supported both on AF_INET6 and AF_INET sockets for connectionless
protocols, that is, for sockets of types other than SOCK_STREAM, and only on
subnetworks for which the interface driver supports multicasting. The following
sections describe sending and receiving IPv6 multicast datagrams.

Note: Broadcasting is not supported in IPv6. It is supported only in IPv4.

Sending IPv6 Multicast Datagrams

To send an IPv6 multicast datagram, specify an IP multicast address in the range ff00::0/8
as the destination address in a sendto() call.

The definitions required for the multicast-related socket options are found in
netinet/in.h.

By default, IPv6 multicast datagrams are sent with a hop limit of 1, which prevents it
from being forwarded beyond a single subnetwork. The socket option
IPV6_MULTICAST_HOPS allows the hop limit for subsequent multicast datagrams to be
007-0810-100 83

3: Sockets-based Communication Using IPv6
set to any value from 0 to 255, to control the scope of the multicasts, as in the following
example:

int hops;
setsockopt(s, IPPROTO_IPV6, IPV6_MULTICAST_HOPS, &hops,sizeof(hops));

IPv6 multicast datagrams with a hop limit of 0 are not transmitted on any subnet but can
be delivered locally if the following conditions exist:

• The sending node belongs to the destination group.

• Multicast loopback on the sending socket is enabled.

Multicast datagrams with a hop limit greater than 1 might be delivered to more than one
subnetwork if there is at least one multicast router attached to the first-hop subnetwork.

The IPv6 multicast addresses contain scope information encoded in the first part of the
address. The scopes are defined in netinet/in.h.

Receiving IPv6 Multicast Datagrams

Before a node can receive IP multicast datagrams for a given multicast address, it must
become a member of the associated IP multicast group. A process can ask the node to join
an IPv6 multicast group by using the IPV6_JOIN_GROUP socket option, as follows:

struct ipv6_mreq mreq;
setsockopt(s, IPPROTO_IPV6, IPV6_JOIN_GROUP, &mreq, sizeof(mreq));

Each membership is associated with a single interface and it is possible to join the same
group on more than one interface. If ipv6mr_interface is 0, the default multicast
interface is chosen for the membership. Otherwise, one of the node’s interface indices
that is specified as ipv6mr_interface is chosen for the multicast membership.

To leave a group, use the following code:

struct ipv6_mreq mreq;
setsockopt(s, IPPROTO_IPV6, IP_LEAVE_GROUP, &mreq, sizeof(mreq));

The mreq argument contains the same values as those used to add the membership. The
socket drops associated memberships when the socket is closed or the process holding
the socket is killed. However, more than one socket may claim a membership in a
particular group, and the node will remain a member of that group until the last claim is
dropped.
84 007-0810-100

Chapter 4

4. Introduction to RPC Programming

Remote procedure calls are a high-level communication paradigm that allows
programmers to write network applications using procedure calls that hide the details of
the underlying network. RPC implements a client/server system without requiring that
callers be aware of the underlying network.

This chapter introduces the RPC programming interface, which enables an application to
make procedure calls to remote machines using architecture-independent mechanisms.
This portability is achieved by using eXternal Data Representation (XDR) data-encoding
to resolve byte-ordering differences and the port mapper program to locate and invoke
a requested procedure.

Topics in this chapter include:

• an overview of remote procedure calls, including the RPC model, the RPC protocol,
and RPC message authentication

• the XDR standard

• the layers of RPC

• the rpcgen protocol compiler

• assigning RPC program numbers

• the port mapper programs
007-0810-100 85

4: Introduction to RPC Programming
Overview of Remote Procedure Calls

Programs that communicate over a network need a paradigm for communication. For
example, a low-level mechanism might send a signal when incoming packets arrive,
causing a network signal handler to execute. With the remote procedure call paradigm,
a client makes a procedure call to send a data packet to the server. When the packet
arrives, the server calls a dispatch routine, performs whatever service is requested, sends
back the reply, and the procedure call returns to the client.

In this context, a server is a machine where some number of network services are
implemented. A service is a collection of one or more remote programs. A remote
program implements one or more remote procedures; the procedures, their parameters,
and results are documented in the specific program’s protocol specification. Network
clients are pieces of software that initiate remote procedure calls to services. A server
may support more than one version of a remote program in order to be
forward-compatible with changing protocols.

The Remote Procedure Call Model

The remote procedure call model is similar to the local procedure call model. With the
local model, the caller places arguments to a procedure in a well-specified location (such
as a result register) and transfers control to the procedure. When the caller eventually
regains control, it extracts the results of the procedure from the well-specified location
and continues execution.

The remote procedure call model operates in a similar fashion, except control winds
through two processes: the caller’s process and a server’s process. That is, the caller
process sends a message to the server process and waits (blocks) for a reply message. The
call message contains the procedure’s parameters (among other things), and the reply
message contains the procedure’s results (among other things). When the reply message
returns, the caller extracts the results of the procedure and resumes execution.

On the server side, a process is dormant as it waits for the arrival of a call message. When
a reply arrives, the server process extracts the procedure’s parameters, computes the
results, sends a reply message, and then waits for the arrival of the next call message.

Note that in the remote procedure call model, only one of the two processes is active at
any given time. However, this scenario is given only as an example. The RPC protocol
(see “RPC Transports and Semantics” on page 88) makes no restrictions on concurrency,
86 007-0810-100

Overview of Remote Procedure Calls
and other scenarios are possible. For example, an implementation may choose to have
asynchronous RPC calls, so the client may do useful work while waiting for the reply
from the server. Another possibility is to have the server create a task to process an
incoming request, so the server can be free to receive other requests.

Figure 4-1 illustrates the remote procedure call model.

Figure 4-1 The Remote Procedure Call Model

Client
program

Service
daemon

NetworkMachine A Machine B

callrpc()

Invoke
service

Call service

Service
executes

return()
answer

Request
completed

return()
answer

Program
continues
007-0810-100 87

4: Introduction to RPC Programming
RPC Transports and Semantics

The RPC package is implemented using the RPC protocol, a message protocol specified
using XDR language. The RPC protocol is independent of transport protocols; that is,
RPC does not care how a message is passed from one process to another; the protocol is
concerned only with the specification and interpretation of messages.

RPC does not try to implement reliability; the application must be aware of the type of
transport protocol underneath RPC. If the application knows it’s running on top of a
reliable transport (such as TCP/IP), most of the work is already done. If the application
is running on top of an unreliable transport (such as UDP/IP), however, it must
implement its own retransmission and timeout policy, because the RPC layer does not
provide this service.

To ensure transport independence, the RPC protocol does not attach specific semantics
to the remote procedures or their execution. Semantics can be inferred from (but should
be explicitly specified by) the underlying transport protocol. For example, consider what
happens when RPC runs on top of an unreliable transport. If an application retransmits
RPC messages after short timeouts and receives no reply, all it can infer is that the
procedure was executed zero or more times. If it receives a reply, it can infer that the
procedure was executed at least once.

A server may wish to ensure some degree of execute-at-most-once semantics and
remember previously granted requests from a client and not grant them again. A server
can do this by taking advantage of the transaction ID that is packaged with every RPC
request.

The transaction ID is used primarily by the client RPC layer to match replies to requests.
However, a client application may choose to reuse its previous transaction ID when
retransmitting a request. The server application, knowing this fact, may choose to
remember this ID after granting a request and not regrant requests with the same ID in
order to achieve some degree of execute-at-most-once semantics. The server is not
allowed to examine this ID in any other way except as a test for equality.

On the other hand, if the application uses a reliable transport, it can infer from a reply
message that the procedure was executed exactly once. If it receives no reply message,
however, it cannot assume the remote procedure was not executed. Note that even with
a connection-oriented protocol such as TCP, an application still needs timeouts and
reconnection to handle server crashes.
88 007-0810-100

Overview of Remote Procedure Calls
Additional transport possibilities exist for datagram- or connection-oriented protocols.
On IRIX, RPC is currently implemented on top of both TCP/IP and UDP/IP transports.

Binding and Rendezvous Independence

The act of binding a client to a service is not part of the RPC specification. This important
and necessary function is left up to some higher-level software. (The software may use
RPC itself; see “Port Mapper Program Protocol” in Appendix A for more information.)

Implementors should think of the RPC protocol as the jump-subroutine instruction (JSR)
of a network; the loader (binder) makes JSR useful, and the loader itself uses JSR to
accomplish its task. Likewise, the network makes RPC useful, using RPC to accomplish
its task.

RPC Message Identification and Authentication

The RPC protocol provides the fields necessary for a client to identify itself to a service
and vice versa. Authentication and identity-based access control mechanisms, on the
other hand, are not provided and must be added to provide security.

Identification is the means to present or assert an identity that is recognizable to the
receiver; it provides no proof that the identity is valid. In UNIX, typing a user name at
the login prompt is identification, as is putting a UID and a GID into an AUTH_UNIX
credential for RPC.

Authentication provides the actions to verify the truth of the asserted identity. To
continue with the examples above, the password is used by the UNIX login program to
verify the user’s identity, and the AUTH_DES or AUTH_KERB protocols (not provided
with Silicon Graphics’ RPC) provide authentication in RPC. The action the password
program performs is to compare what the user types to the encrypted copy that resides
on the system. AUTH_DES and AUTH_KERB use encryption-based user authentication.

Silicon Graphics’ RPC message authentication mechanism, which consists of the
AUTH_UNIX and AUTH_NONE protocols, does not provide authentication, as defined
above. When these protocols are used, the application must provide the authentication.
An example of how to extend RPC to include an authentication procedure, as provided
in the rlogin program, is shown in “Server-side Authentication” in Chapter 6.
007-0810-100 89

4: Introduction to RPC Programming
Once the client is identified and verified, access control can be implemented. Access
control is the mechanism that provides permission to allow the requests made by the
user to be granted, based upon the user’s authentic identity. Access control is not
provided in RPC and must be supplied by the application.

Several different authentication protocols are supported. A field in the RPC header
indicates which protocol is being used.

For information about specific authentication protocols, see “Authentication Protocols”
in Appendix A.

The XDR Standard

RPC assumes the existence of XDR, a set of library routines that allow a C programmer
to describe arbitrary data structures in a machine-independent fashion. XDR is useful for
transferring data between diverse computer architectures and has been used to
communicate data between such diverse machines as the IRIS, Sun, VAX, IBM PC, and
Cray computers.

XDR enables RPC to handle arbitrary data structures, regardless of a machine’s byte
order or structure layout conventions, by converting the data structures to XDR before
sending them over the wire. Any program running on any machine can use XDR to
create portable data by translating its local representation into the XDR representation;
similarly, any program running on any machine can read portable data by translating the
XDR standard representations into its local equivalents. This process of converting from
a particular machine representation to XDR format is called serializing, and the reverse
process is called deserializing (see Chapter 8, “XDR Programming Notes,” for details).

XDR uses the XDR language to describe data formats (see Chapter 7, “XDR and RPC
Language Structure”). Protocols such as Sun RPC and NFS use XDR to describe their
data format.

The XDR language lets you describe intricate data formats in a concise manner. The
alternative—using graphical representations (an informal language)—quickly becomes
incomprehensible when faced with complexity. The XDR language is similar to the C
language, but it is not a programming language and can only be used to describe data.
90 007-0810-100

The Layers of RPC
XDR fits into the ISO presentation layer and is roughly analogous in purpose to X.409,
ISO Abstract Syntax Notation. The major difference is that XDR uses implicit typing,
while X.409 uses explicit typing.

The Layers of RPC

This section provides a brief overview of the RPC layers. For programming details about
each layer, see Chapter 6, “RPC Programming Guide.”

RPC is divided into three layers: the highest layer, the middle layer, and the lowest layer.

The Highest Layer

The highest layer of RPC is transparent to the operating system, the machine, and the
network upon which it is run. It’s probably best to think of this level as a way of using
RPC, rather than as a part of “RPC proper.” Programmers who write RPC routines
should (almost) always make this layer available to others by using a simple C front end
that entirely hides the networking.

For example, at this level, a program can make a call to the C routine rnusers(), which
returns the number of users on a remote machine. Users are not explicitly aware of using
RPC—they simply call a procedure, just as they would call malloc().

The Middle Layer

The middle layer of RPC is really RPC proper and consists of routines used for most
applications. In the middle layer, the user simply makes remote procedure calls to
routines on other machines, without considering details about the socket interface, the
UNIX system, or other low-level implementation mechanisms. For example, the middle
layer allows RPC to pass the “hello world” test.

RPC calls are made with the registerrpc(), callrpc(), and svc_run() routines.
registerrpc() and callrpc() are the most fundamental: registerrpc() obtains
a unique system-wide procedure-identification number, and callrpc() actually
executes a remote procedure call. In the middle layer, a call to rnusers() is
implemented by using these two routines.
007-0810-100 91

4: Introduction to RPC Programming
Note: The middle layer of RPC is rarely used in serious programming due to its
inflexibility (simplicity). It does not allow timeout specifications or the choice of
transport; it does not allow UNIX process control or flexibility in the case of errors; and
it does not support multiple methods of call authentication. Although programmers
rarely need all of these controls, one or two are sometimes necessary.

The Lowest Layer

In the lowest layer of RPC, the programmer has control over the hidden details and can
write more-sophisticated applications that alter the defaults of the routines. At this layer,
programmers can explicitly manipulate sockets used for transmitting RPC messages.

Programs written at this level are most efficient, but efficiency is rarely an issue, because
RPC clients and servers rarely generate heavy network loads; if possible, this level
should be avoided.

Note: This guide only describes the interface to C, but you can make remote procedure
calls from any language. And, although this guide describes RPC when it is used to
communicate between processes on different machines, it works just as well for
communication between different processes on the same machine.

The rpcgen Protocol Compiler

Programming applications that use RPC can be difficult, especially when you are writing
XDR routines that convert procedure arguments and results into their network format
and vice versa. The rpcgen compiler helps automate the process of writing RPC
applications. Using rpcgen decreases development time that would otherwise be spent
coding and debugging low-level routines. With rpcgen, the compiler does most of the
dirty work; the programmer need only debug the main features of the application, rather
than spend time debugging network interface code.

rpcgen accepts remote program interface definitions written in the RPC language (see
Chapter 7, “XDR and RPC Language Structure,” for more information) and produces C
language output for RPC programs. This output consists of a stub version of the client
92 007-0810-100

Assigning RPC Program Numbers
routines, a server skeleton, XDR filter routines for parameters and results, a header file
that contains common definitions, and ANSI C prototyped stub routines.

You can compile and link rpcgen’s output files using standard techniques. Then after
writing the server procedures, you can link the server procedures with the server
skeletons to produce an executable server program.

To use a remote program, the programmer writes an ordinary main program that makes
local procedure calls to the client skeletons. Linking the main program with the skeletons
creates an executable program.

Like other compilers, rpcgen provides an escape hatch that lets programmers mix
low-level code with high-level code. In speed-critical applications, handwritten routines
can be linked with therpcgen output without any difficulty. In addition,rpcgen output
can be used as a starting point; you can rewrite the code as necessary.

For details about rpcgen, see Chapter 5, “Programming with rpcgen.”

Assigning RPC Program Numbers

An RPC call message has three fields, which uniquely identify the procedure to be called.
These fields include:

• the remote program’s RPC version number

• the remote procedure number

• the remote program number

The version field of the call message identifies which version of the RPC protocol the
caller is using. Because most new protocols evolve into better, stable, and mature
protocols, a version field of the call message identifies which version of the protocol the
caller is using. Version numbers make it possible for old and new protocols to
communicate through the same server process.

The procedure number identifies the procedure to be called. This number is documented
in the specific program’s protocol specification. For example, a file service’s protocol
specification may state that its procedure number 5 is read() and procedure number 12
is write() (see “Remote Programs and Procedures” in Appendix A for more
information).
007-0810-100 93

4: Introduction to RPC Programming
Program numbers are administered by a central authority (such as Sun Microsystems).
Once you have a program number, you can implement your remote program. Table 4-1
lists some of the currently registered programs.

Table 4-1 Some Registered RPC Programs

RPC Number Program Description

100000 PMAPPROG port mapper

100001 RSTATPROG remote stats

100002 RUSERSPROG remote users

100003 NFSPROG NFS

100004 YPPROG NIS

100005 MOUNTPROG mount daemon

100006 DBXPROG remote dbx

100007 YPBINDPROG ypbind server

100008 WALLPROG shutdown msg

100009 YPPASSWDPROG yppasswd server

100010 ETHERSTATPROG ether stats

100012 SPRAYPROG spray packets

100017 REXECPROG remote execution

100020 LOCKPROG local lock manager

100021 NETLOCKPROG network lock manager

100023 STATMON1PROG status monitor 1

100024 STATMON2PROG status monitor 2

100026 BOOTPARAMPROG boot parameters service

100028 YPUPDATEPROG ypupdate server

100029 KEYSERVEPROG key server

100036 PWDAUTHPROG password authorization
94 007-0810-100

Assigning RPC Program Numbers
RPC program numbers are assigned in groups of 0x20000000 (536870912) according to
the categories in Table 4-2.

Sun Microsystems administers the first group of numbers. The second group is reserved
for specific customer applications; this range is intended primarily for debugging new
programs. The third group is reserved for applications that generate program numbers
dynamically. The final groups are reserved for future use and should not be used.

To register a protocol specification, write to:

RPC Administrator
Sun Microsystems
2550 Garcia Avenue
Mountain View, CA 94043

Make sure to include a compilable rpcgen “.x” file (see Chapter 5) describing your
protocol. In return, you will be given a unique program number.

You can find the RPC program numbers and protocol specifications of standard Sun RPC
services in the include files in /usr/include/rpcsvc. These services, however,
constitute only a small subset of those that have been registered.

Table 4-2 RPC Program Number Assignment

Number Assignment

 0x0 - 0x1fffffff Defined by Sun

0x20000000 - 0x3fffffff Defined by user

0x40000000 - 0x5fffffff Transient

0x60000000 - 0x7fffffff Reserved

0x80000000 - 0x9fffffff Reserved

0xa0000000 - 0xbfffffff Reserved

0xc0000000 - 0xdfffffff Reserved

0xe0000000 - 0xffffffff Reserved
007-0810-100 95

4: Introduction to RPC Programming
The Port Mapper Programs

The port mappers (see portmap(1M) or rpcbind(1M)) are servers that convert RPC
program numbers into universal addresses (IP port numbers). Either portmap or
rpcbindmust be running in order to make RPC calls. If rpcbind is installed, it runs by
default.

When an RPC server is started, it tells the port mapper the port number it is listening to
and what RPC program numbers it is prepared to serve. When a client wants to make an
RPC call to a given program number, it first checks the port mapper on the server
machine to determine the port number where RPC packets should be sent.
96 007-0810-100

Chapter 5

5. Programming with rpcgen

This chapter describes the rpcgen protocol compiler, which helps automate the process
of writing RPC applications. When you use rpcgen, the compiler does most of the dirty
work; you need only debug the main features of the application instead of spending time
debugging network interface code.

Topics in this chapter include:

• converting local procedures into remote procedures

• generating XDR routines

• the C preprocessor

• rpcgen programming notes

Note: For a general introduction to RPC, see Chapter 4, “Introduction to RPC
Programming.” For details about programming RPC without rpcgen, see Chapter 6,
“RPC Programming Guide.”
007-0810-100 97

5: Programming with rpcgen
Introduction to the rpcgen Compiler

The rpcgen protocol compiler accepts remote program interface definitions written in
RPC language and produces C language output for RPC programs. (See Chapter 7, “XDR
and RPC Language Structure,” for details about writing program interface definitions
using RPC language.) This C output includes:

• skeleton versions of the client routines

• a server skeleton

• XDR filter routines for parameters and results

• a header file that contains common definitions

• ANSI C prototyped stub routines (optional)

The client skeletons interface with the RPC library and “hide” the network from its caller.
Similarly, the server skeleton hides the network from server procedures that are to be
invoked by remote clients.

The programmer writes server procedures, using any language that observes C language
calling conventions, and links them with the server skeleton generated by rpcgen to
produce an executable server program. To use a remote program, the programmer writes
an ordinary main program that makes local procedure calls to the client skeletons
produced by rpcgen.

Note: At present, the main program must be written in C or C++.

Linking the main program with rpcgen’s skeletons creates an executable program.
Options to rpcgen let you suppress stub generation, specify the transport to be used by
the server stub, pass flags to cpp, or choose a different preprocessor. See rpcgen(1) for
details.
98 007-0810-100

Changing Local Procedures to Remote Procedures
Changing Local Procedures to Remote Procedures

Assume you have an application that runs on a single machine and you want to convert
it to run over a network. The following code sample demonstrates the conversion for a
program that prints a message to the console:

/*
 * printmsg.c: print a message on the console
 */
#include <stdio.h>

main(int argc, char **argv)
{
 char *message;

 if (argc < 2) {
 fprintf(stderr, "usage: %s <message>\n", argv[0]);
 exit(1);
 }
 message = argv[1];

 if (!printmessage(message)) {
 fprintf(stderr, "%s: couldn't print your message\n",
 argv[0]);
 exit(1);
 }
 printf("Message Delivered!\n");
 exit(0);
}

/*
 * Print a message to the console. Return a boolean
 * indicating whether the message was actually printed.
 */
printmessage(char *msg)
{
 FILE *f;

 f = fopen("/dev/console", "w");
 if (f == NULL) {
 return(0);
 }
 fprintf(f, "%s\n", msg);
 fclose(f);
007-0810-100 99

5: Programming with rpcgen
 return(1);
}

And then, of course:

% cc printmsg.c -o printmsg

% printmsg "Hello, there"

Message Delivered!

%

If printmessage() were turned into a remote procedure, it could be called from
anywhere in the network. It would be nice to be able to simply insert a keyword such as
remote in front of a procedure to turn it into a remote procedure. Unfortunately, you have
to live within the constraints of the C language, since it existed long before RPC did. But
even without language support, it’s not very difficult to make a procedure remote.

In general, it’s necessary to figure out what the types are for all procedure inputs and
outputs. In this case, there is a procedure, printmessage(), that takes a string as input
and returns an integer as output. Knowing this, you can write a protocol specification in
RPC language that describes the remote version of printmessage():

/*
 * msg.x: Remote message printing protocol
 */
program MESSAGEPROG {
 version MESSAGEVERS {
 int PRINTMESSAGE(string) = 1;
 } = 1;
} = 99;

Remote procedures are part of remote programs, so an entire remote program was
declared here that contains the single procedure PRINTMESSAGE. This procedure was
declared to be in version 1 of the remote program. No null procedure (procedure 0) is
necessary, because rpcgen generates it automatically.

Note: Notice that everything is declared with all capital letters. This is not required, but
it is a good convention to follow.
100 007-0810-100

Changing Local Procedures to Remote Procedures
Notice that the argument type is string and not char *. This is because char * is ambiguous
in C. Programmers usually intend it to mean a null-terminated string of characters, but
it could also represent a pointer to a single character or a pointer to an array of characters.
In RPC language, a null-terminated string is unambiguously called a string.

Next, define the remote procedure itself. The following example implements the
PRINTMESSAGE procedure declared above:

/*
 * msg_proc.c: implementation of the remote
 * procedure "printmessage"
 */
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <rpc/rpc.h> /* Required. */
#define _RPCGEN_SVC /*Selects server function prototypes.*/
#include "msg.h" /* This will be generated by rpcgen. */

/* Remote version of "printmessage" */
int *printmessage_1(msg, UNUSED)
/* UNUSED specified for prototype agreement */
char **msg;
struct svc_req *UNUSED;
{
 static int result; /* must be static! */

 FILE *f;

 f = fopen("/dev/console", "w");
 if (f == NULL) { /* failure! */
 result = 0;
 return (&result);
 }

 fprintf(f, "%s\n", *msg); /* success! */
 fclose(f);
 result = 1;
 return (&result);
}

007-0810-100 101

5: Programming with rpcgen
Notice that the declaration of the remote procedure printmessage_1() differs from
the declaration of the local procedure printmessage() in three ways:

• printmessage_1() takes a pointer to a string instead of a string itself, which is
true of all remote procedures; they always take pointers to their arguments rather
than the arguments themselves.

• printmessage_1() returns a pointer to an integer instead of returning an integer
itself. This is also generally true of remote procedures: they return a pointer to their
results.

• printmessage_1() has _1 appended to its name. In general, all remote
procedures called by rpcgen are named using the following rule: the name in the
program definition (here PRINTMESSAGE) is converted to all lowercase letters and
an underscore (_) is appended to it, followed by the version number (here, 1).

Finally, declare the main client program that will call the remote procedure:

/*
 * rprintmsg.c: remote version of "printmsg.c"
 */
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <rpc/rpc.h> /* Required. */
#define _RPCGEN_CLNT /*selects client function prototypes*/
#include "msg.h" /* This will be generated by rpcgen. */

void main(argc, argv)
int argc;
char **argv;
{
 CLIENT *cl;
 int *result;
 char *server;
 char *message;

 if (argc < 3) {
 fprintf(stderr, "usage: %s host message\n", argv[0]);
 exit(1);
 }

 /* save values of command line arguments */
 server = argv[1];
 message = argv[2];
102 007-0810-100

Changing Local Procedures to Remote Procedures
 /* Create client "handle" used for calling MESSAGEPROG
 * on the server designated on the command line. We tell
 * the RPC package to use "tcp" when contacting the
 * server.
 */
 cl = clnt_create(server, MESSAGEPROG, MESSAGEVERS,
 "tcp");
 if (cl == NULL) {
 /* Couldn’t establish connection with the server.
 * Print error message and exit.
 */
 clnt_pcreateerror(server);
 exit(1);
 }

 cl->cl_auth = authunix_create_default();

 /* Call the remote procedure "printmessage" on the
 * server */
 result = printmessage_1(&message, cl);
 if (result == NULL) {
 /*
 * An error occured while calling the server.
 * Print error message and exit.
 */
 clnt_perror(cl, server);
 exit(1);
 }

 /* Okay, we’ve *called(the server; now, did it print
 * the message? */
 if (*result == 0) {
 /* The server was unable to print our message.
 * Print error message and exit.
 */
 fprintf(stderr,
 "%s: %s couldn’t print your message\n",
 argv[0], server);
 exit(1);
 }
 /* The message was printed on the server’s console */
 printf("Message delivered to %s!\n", server);
 exit(0);
}

007-0810-100 103

5: Programming with rpcgen
There are two things to note:

• A client handle is created using the RPC library routine clnt_create(). This client
handle will be passed to the stub routines that call the remote procedure.

• The remote procedure printmessage_1() is called exactly the same way as it is
declared in msg_proc.c except for the inserted client handle as the second
argument.

Here’s how to put the pieces together:

% rpcgen -P msg.x

% cc rprintmsg.c msg_clnt.c -o rprintmsg

rprintmsg.c:

msg_clnt.c:

% cc msg_proc.c msg_svc.c -o msg_server

msg_proc.c:

msg_svc.c:

%

Note: The command-line option –lsun used to be required to compile these programs,
but it should no longer be used because libsun has been incorporated into libc.

Two programs were compiled: the client program rprintmsg and the server program
msg_server. Before compilation, rpcgen was used to fill in the missing pieces. The
following explains what rpcgen did with the input file msg.x:

• rpcgen created a header file called msg.h that contained #defines for
MESSAGEPROG, MESSAGEVERS, and PRINTMESSAGE for use in the other
modules.

• rpcgen created client stub routines in the msg_clnt.c file. In this case, there is
only one, the printmessage_1() that was referred to from the printmsg client
program. The name of the output file for client stub routines is always formed in
this way: if the name of the input file is foo.x, the client stubs output file is called
foo_clnt.c.

• rpcgen created the server program that calls printmessage_1() in
msg_proc.c. This server program is named msg_svc.c. The rule for naming the
104 007-0810-100

Changing Local Procedures to Remote Procedures
server output file is similar to the previous one: for an input file called foo.x, the
output server file is named foo_svc.c.

The following shows the contents of the file msg_svc.c, as generated by rpcgen from
the file msg.x. Note that all registerable RPC server functions take the same parameters
as the function messageprog_1(), shown in this example.

/* msg_svc.c
 * Please do not edit this file.
 * It was generated using rpcgen.
 */

#include <bstring.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <stdio.h>
#include <rpc/rpc.h>
#include <rpc/pmap_clnt.h>
#define _RPCGEN_SVC
#include "msg.h"

static void messageprog_1(struct svc_req *, SVCXPRT *);

main(void)
{
 register SVCXPRT *transp;

 (void) pmap_unset(MESSAGEPROG, MESSAGEVERS);

 transp = svcudp_create(RPC_ANYSOCK);
 if (transp == NULL) {
 fprintf(stderr, "cannot create udp service.");
 exit(1);
 }
 if (!svc_register(transp, MESSAGEPROG, MESSAGEVERS, messageprog_1, IPPROTO_UDP)) {
 fprintf(stderr, "unable to register (MESSAGEPROG, MESSAGEVERS, udp).");
 exit(1);
 }

 transp = svctcp_create(RPC_ANYSOCK, 0, 0);
 if (transp == NULL) {
 fprintf(stderr, "cannot create tcp service.");
 exit(1);
 }
 if (!svc_register(transp, MESSAGEPROG, MESSAGEVERS, messageprog_1, IPPROTO_TCP)) {
007-0810-100 105

5: Programming with rpcgen
 fprintf(stderr, "unable to register (MESSAGEPROG, MESSAGEVERS, tcp).");
 exit(1);
 }
 svc_run();
 fprintf(stderr, "svc_run returned");
 exit(1);
 /* NOTREACHED */
}

static void
messageprog_1(struct svc_req *rqstp, SVCXPRT *transp)
{
 union __svcargun {
 char *printmessage_1_arg;
 } argument;
 xdrproc_t xdr_argument, xdr_result;
 void *result;
 typedef void *(*__svcproc_t)(union __svcargun *, struct svc_req *);
 __svcproc_t local;

 switch (rqstp->rq_proc) {
 case NULLPROC:
 (void) svc_sendreply(transp, (xdrproc_t)xdr_void, (char *)NULL);
 return;

 case PRINTMESSAGE:
 xdr_argument = (xdrproc_t)xdr_wrapstring;
 xdr_result = (xdrproc_t)xdr_int;
 local = (__svcproc_t) printmessage_1;
 break;

 default:
 svcerr_noproc(transp);
 return;
 }
 bzero((char *)&argument, sizeof(argument));
 if (!svc_getargs(transp, xdr_argument, &argument)) {
 svcerr_decode(transp);
 return;
 }
 result = (*local)(&argument, rqstp);
 if (result != NULL && !svc_sendreply(transp, xdr_result, result)) {
 svcerr_systemerr(transp);
 }
 if (!svc_freeargs(transp, xdr_argument, &argument)) {
106 007-0810-100

Generating XDR Routines
 fprintf(stderr, "unable to free arguments");
 exit(1);
 }
 return;
}

Now you’re ready to have some fun. For this example, the local machine is called bonnie
and the remote machine is called clyde. First, copy the server to a remote machine and run
it:

clyde% msg_server &

Note: Server processes are run in the background because they never exit.

Next, on the local machine (bonnie), print a message on the remote machine’s console:

bonnie% rprintmsg clyde "Hello, clyde"

Message delivered to clyde!

bonnie%

The message will print on clyde’s console. You can print a message on anybody’s console
(including your own) with this program if you are able to copy the server to that person’s
machine and run it.

Generating XDR Routines

The previous example demonstrated the automatic generation of client and server RPC
code. You can also use rpcgen to generate XDR routines; that is, the routines necessary
to convert local data structures into network format and vice versa. This example
presents a complete RPC service, a remote directory listing service; rpcgen is used to
generate stub routines and to generate the XDR routines.

This code is an example of a protocol description file:

/* dir.x: Remote directory listing protocol */
const MAXNAMELEN = 255; /*maximum length of directory entry*/
typedef string nametype<MAXNAMELEN>; /* directory entry */
typedef struct namenode *namelist; /* a link in listing */

/* A node in the directory listing */
007-0810-100 107

5: Programming with rpcgen
struct namenode {
 nametype name; /* name of directory entry */
 namelist next; /* next entry */
};

/* The result of a READDIR operation. */
union readdir_res switch (int errno) {
case 0:
 namelist list; /* no error: return directory listing */
default:
 void; /* error occurred: nothing else to return */
};

/* The directory program definition */
program DIRPROG {
 version DIRVERS {
 readdir_res READDIR(nametype) = 1;
 } = 1;
} = 76;

Note: Define types (such as readdir_res in the example above) by using the struct, union,
and enum keywords; these keywords should not be used in subsequent declarations of
variables of those types. For example, if you define a union foo, you should declare using
only foo and not union foo. In fact, rpcgen compiles RPC unions into C structures; it is an
error to declare them using the union keyword.

Running rpcgen –P on dir.x creates four output files. Three are the same as before: a
header file, client stub routines, and a server skeleton. The fourth output file consists of
the XDR routines necessary for converting the data types you declared into XDR format
and vice versa. These routines are output in the file dir_xdr.c.

This example implements the READDIR procedure:

/* dir_proc.c: remote readdir implementation */
#include <string.h>
#include <stdlib.h>
#include <errno.h>
#include <rpc/rpc.h>
#include <sys/dir.h>
#include "dir.h"

readdir_res *readdir_1(dirname, UNUSED)
108 007-0810-100

Generating XDR Routines
/* UNUSED specified for prototype agreement */
nametype *dirname;
struct svc_req *UNUSED;
{
 DIR *dirp;
 struct direct *d;
 namelist nl;
 namelist *nlp;
 static readdir_res res; /* must be static! */

 /* Open directory */
 dirp = opendir(*dirname);
 if (dirp == NULL) {
 res.errno = errno;
 return (&res);
 }

 /* Free previous result */
 xdr_free(xdr_readdir_res, &res);

 /* Collect directory entries. Memory allocated here
 * will be freed by xdr_free next time readdir_1 is
 * called
 */
 nlp = &res.readdir_res_u.list;
 while (d = readdir(dirp)) {
 nl = *nlp = (namenode *) malloc(sizeof(namenode));
 nl->name = strdup(d->d_name);
 nlp = &nl->next;
 }
 *nlp = NULL;

 /* Return the result */
 res.errno = 0;
 closedir(dirp);
 return (&res);
}

This example shows the client-side program to call the server:

/*
 * rls.c: Remote directory listing client
 */
#include <stdio.h>
#include <errno.h>
#include <rpc/rpc.h> /* always need this */
007-0810-100 109

5: Programming with rpcgen
#define _RPCGEN_CLNT /*selects client function prototypes*/
#include "dir.h" /* will be generated by rpcgen */

main(argc, argv)
int argc;
char **argv;
{
 CLIENT *cl;
 char *server;
 char *dir;
 readdir_res *result;
 namelist nl;
 if (argc != 3) {
 fprintf(stderr, "usage: %s host directory\n",
 argv[0]);
 exit(1);
 }
 /* Remember what command line arguments refer to */
 server = argv[1];
 dir = argv[2];
 /* Create client "handle" used for calling
 * MESSAGEPROG on the server designated on the
 * command line. We tell the RPC package to use the
 * "tcp" protocol when contacting the server.
 */
 cl = clnt_create(server, DIRPROG, DIRVERS, "tcp");
 if (cl == NULL) {
 /* Couldn't establish connection with server.
 * Print error message and close up shop.
 */
 clnt_pcreateerror(server);
 exit(1);
 }
 /* Call the remote procedure readdir() on the server */
 result = readdir_1(&dir, cl);
 if (result == NULL) {
 /* An error occurred while calling the server.
 * Print error message and exit.
 */
 clnt_perror(cl, server);
 exit(1);
 }
 /* Okay, the remote procedure was called successfully. */

 if (result->errno != 0) {
110 007-0810-100

Generating XDR Routines
 /* A remote system error occurred. Print error
 * message and exit.
 */
 errno = result->errno;
 perror(dir);
 exit(1);
 }
 /* Successfully got a directory listing.
 * Print it out.
 */
 for (nl = result->readdir_res_u.list; nl != NULL;
 nl = nl->next) {
 printf("%s\n", nl->name);
 }
 exit(0);
}

Finally, compile everything and run the server:

bonnie% rpcgen -P dir.x

bonnie% cc rls.c dir_clnt.c dir_xdr.c -o rls

rls.c:

dir_clnt.c:

dir_xdr.c:

bonnie% cc dir_svc.c dir_proc.c dir_xdr.c -o dir_svc

dir_svc.c:

dir_proc.c:

dir_xdr.c:

bonnie% dir_svc &

Now run the client from another machine:

clyde% rls bonnie /usr/pub

.

..

apseqnchar

cateqnchar

eqnchar

psceqnchar
007-0810-100 111

5: Programming with rpcgen
terminals

clyde%

You can test the client program and the server procedure together as a single program by
linking them to each other, rather than linking to the client and server stubs. The
procedure calls will be executed as ordinary local procedure calls, and the program can
be debugged with a local debugger such as dbx. When the program is working, the client
program can be linked to the client stub produced by rpcgen, and the server procedures
can be linked to the server stub produced by rpcgen.

Note that if you link the programs in this way, you may want to comment out calls to
RPC library routines, and have client-side routines call server routines directly.

The C Preprocessor

The C preprocessor is run on all input files before they are compiled, so all preprocessor
directives are legal within a .x file.

Four symbols may be defined, depending on which output file is being generated. These
symbols are listed in Table 5-1.

rpcgen also does some preprocessing of its own. Any line that begins with a percent
sign (%) is passed directly into the output file, without any interpretation of the line. The
following example demonstrates the preprocessing features:

/* time.x: Remote time protocol */
program TIMEPROG {
 version TIMEVERS {
 unsigned int TIMEGET(void) = 1;

Table 5-1 C Preprocessor Symbol Definition

Symbol Usage

RPC_CLNT for client stub output

RPC_HDR for header file output

RPC_SVC for server skeleton output

RPC_XDR for XDR routine output
112 007-0810-100

pcgen Programming Notes
 } = 1;
} = 44;

#ifdef RPC_SVC
%u_int *timeget_1()
%{
% static u_int thetime;
%
% thetime = time(0);
% return (&thetime);
%}
#endif

Note: The percent (%) feature is not generally recommended, since there is no guarantee
that the compiler will put the output where you intended.

pcgen Programming Notes

This section describes ANSI C prototypes, timeout changes, broadcast on the server side,
and information passed to server procedures.

Generating ANSI C Prototypes

To generate prototyped XDR and stub function declarations and definitions suitable for
ANSI C, use the –P option to rpcgen—see rpcgen(1). The prototypes for the client and
server-side stubs are different; their declarations in the generated header file are
conditionally compiled with the value _RPCGEN_CLNT or _RPCGEN_SVC. If you
write your own client or server code, you must define the appropriate value in your
source files before including the generated header file.

For instance, in the remote message example from the “Changing Local Procedures to
Remote Procedures” section, the file for client code uses:

#define _RPCGEN_CLNT
#include "msg.h"

and the file for server code uses:
007-0810-100 113

5: Programming with rpcgen
#define _RPCGEN_SVC
#include "msg.h"

Client-side Timeout Changes

RPC sets a default timeout of 25 seconds for RPC calls when clnt_create() is used.
This timeout may be changed using clnt_control(). This code fragment
demonstrates the use of clnt_control():

struct timeval tv;
CLIENT *cl;
cl = clnt_create("somehost", SOMEPROG, SOMEVERS, "tcp");
if (cl == NULL) {
 exit(1);
}
/* change timeout to 1 minute */
tv.tv_sec = 60;
tv.tv_usec = 0;
clnt_control(cl, CLSET_TIMEOUT, &tv);

Server-side Broadcast Handling

When a procedure is known to be called via broadcast RPC, it is usually wise for the
server not to reply unless it can provide some useful information to the client. This
prevents the network from being flooded by useless replies.

To prevent the server from replying, a remote procedure can return NULL as its result,
and the server code generated by rpcgen will detect the NULL and not send out a reply.

The next example shows a simple procedure that replies only if it thinks it is an NFS
server. It assumes an NFS client won’t have this file, which may not be valid.

void *reply_if_nfsserver(void)
{
 char notnull; /* just here so you can use its address */
 if (access("/etc/exports", F_OK) < 0) {
 return (NULL); /* prevent RPC from replying */
 }
 /*return non-null pointer so RPC will send out a reply*/
 return ((void *)¬null);
}

114 007-0810-100

pcgen Programming Notes
Note that if a procedure returns type void *, it must return a non-NULL pointer if it wants
RPC to reply to it.

Other Information Passed to Server Procedures

Server procedures will often want to know more about an RPC call than just its
arguments. For example, getting authentication information is important to procedures
that want to implement some level of security.

This extra information is actually supplied to the server procedure as a second argument,
as shown in the following example. The previous printmessage_1() procedure has
been rewritten to allow only root users to print a message to the console:

/*
 * msg_proc.c: implementation of the remote
 * procedure "printmessage"
 */
#include <stdio.h>
#include <syslog.h>
#include <pwd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <rpc/rpc.h> /* Required. */
#define _RPCGEN_SVC /*Selects server function prototypes.*/
#include "msg.h" /* This will be generated by rpcgen. */

#define MAX_LOG_MESSAGE 160

int printmessage_1_client_ok(struct svc_req *rqstp);

/* Remote version of "printmessage" */
int *printmessage_1(msg, rq)
char **msg;
struct svc_req *rq;
{
 static int result; /* Must be static or external */
 FILE *f;
 struct authunix_parms *aup;

 /* perform authentication checks on client credentials */
 if (! printmessage_1_client_ok(rq)) {
007-0810-100 115

5: Programming with rpcgen
 result = 0;
 return (&result);
 }

 /* Same code as before. */
 f = fopen("/dev/console", "w");
 if (f == NULL) { /* failure! */
 result = 0;
 return (&result);
 }
 fprintf(f, "%s\n", *msg); /* success! */
 fclose(f);
 result = 1;
 return (&result);
}

static int logging_successful_requests = 1;

/* This routine attempts to verify that the client user is
 * authorized access on the server host. A true value is
 * returned to indicate that the client user is not authorized.
 * Otherwize the value returned is false. */
int
printmessage_1_client_ok(struct svc_req *rqstp)
{
 SVCXPRT * transp = rqstp->rq_xprt;
 char * user = NULL;
 uid_t uid;
 struct authunix_parms *unix_cred;
 struct hostent *host_entry = NULL;
 struct passwd *passwd_entry = NULL;
 char log_message[MAX_LOG_MESSAGE];

 static u_long peer_addr = 0;
 static u_long client_host_addr = 0;
 static char * client_host = NULL;

 switch (rqstp->rq_cred.oa_flavor) {
 case AUTH_UNIX:
 unix_cred = (struct authunix_parms *)rqstp->rq_clntcred;
 uid = unix_cred->aup_uid;
 break;
 case AUTH_NULL:
 default: /* invalid credentials */
 sprintf(log_message, "Rejected request, "
116 007-0810-100

pcgen Programming Notes
 "invalid credentials, type %d", rqstp->rq_cred.oa_flavor);
 syslog(LOG_NOTICE | LOG_AUTH, log_message);
 return 0;
 }

 if (transp->xp_raddr.sin_port >= IPPORT_RESERVED) {
 sprintf(log_message, "Rejected request, "
 "non-priviledged port %d", transp->xp_raddr.sin_port);
 syslog(LOG_NOTICE | LOG_AUTH, log_message);
 return 0;
 }
 /* Determine the client host name and address. */
 if (peer_addr != transp->xp_raddr.sin_addr.s_addr) {
 host_entry = gethostbyaddr(&transp->xp_raddr.sin_addr,
 sizeof(struct in_addr),
 AF_INET);
 if (host_entry == NULL) {
 sprintf(log_message, "Rejected request, "
 "unknown client host at address 0x%08x",
 transp->xp_raddr.sin_addr);
 syslog(LOG_NOTICE | LOG_AUTH, log_message);
 return 0;
 }
 peer_addr = transp->xp_raddr.sin_addr.s_addr;
 if (client_host != NULL) {
 free(client_host);
 }
 client_host = strdup(host_entry->h_name);
 client_host_addr = *(u_long *) host_entry->h_addr;
 }

 /* Determine the user name. */
 passwd_entry = getpwuid(uid);
 if (passwd_entry == NULL) {
 sprintf(log_message, "Rejected request, "
 "unknown uid %d from host %s",
 uid, client_host);
 syslog(LOG_NOTICE | LOG_AUTH, log_message);
 return 0;
 }
 user = strdup(passwd_entry->pw_name);
 if (passwd_entry->pw_passwd != NULL &&
 *passwd_entry->pw_passwd != '\0' &&
 ruserok(client_host, 1, user, "root") < 0) {
 sprintf(log_message, "Rejected request by %s at %s",
007-0810-100 117

5: Programming with rpcgen
 user, client_host);
 syslog(LOG_NOTICE | LOG_AUTH, log_message);
 free(user);
 return 0;
 }

 if (logging_successful_requests) {
 if (user != NULL) {
 sprintf(log_message, "Granted request by %s at %s",
 user, client_host);
 } else {
 sprintf(log_message, "Granted request by uid %d at %s",
 uid, client_host);
 }
 syslog(LOG_INFO | LOG_AUTH, log_message);
 }
 if (user != NULL) {
 free(user);
 }
 return 1;
} /* printmessage_1_client_ok */
118 007-0810-100

Chapter 6

6. RPC Programming Guide

This chapter is for programmers who want to write network applications using RPC. For
most applications, you can use the rpcgen compiler, thus avoiding the need to
understand much of the information in this chapter. (Chapter 5, “Programming with
rpcgen,” contains the source for a working RPC service, which uses rpcgen to generate
XDR routines and client and server stubs.)

Topics in this chapter include:

• programming in each RPC layer

• RPC features such as broadcast, batching, and authentication

• examples of other uses of RPC

Note: For a general introduction to RPC, see Chapter 4, “Introduction to RPC
Programming.” For information about XDR and RPC language, see Chapter 7, “XDR and
RPC Language Structure.” For a description of the RPC Protocol, see Appendix A, “RPC
Protocol Specification”. For details about the routines described in this chapter, see
rpc(3R).
007-0810-100 119

6: RPC Programming Guide
The Layers of RPC

This section presents detailed information about programming in the three RPC layers
(see Chapter 4, “Introduction to RPC Programming,” for background information about
the RPC layers).

The Highest Layer of RPC

The highest layer of RPC is transparent to the operating system, machine, and network
upon which it is run and consists of RPC library-based services. Suppose you’re writing
a program that needs to know how many users are logged into a remote machine.

You can do this by calling the RPC library routine rnusers(), as shown in this code
fragment:

/*
 * howmany.c
 */

#include <stdio.h>

main(int argc, char **argv)
{
 int num;

 if (argc != 2) {
 fprintf(stderr, "usage: howmany hostname\n");
 exit(1);
 }
 if ((num = rnusers(argv[1])) < 0) {
 fprintf(stderr, "error: howmany\n");
 exit(1);
 }
 printf("%d users on %s\n", num, argv[1]);
 exit(0);
}

RPC library routines in C, such as rnusers(), are included in the DSO librpcsvc.so. (For
more information about DSOs, see the IRIX System Programming Guide.) Thus, you can
compile the above program with cc:

% cc howmany.c -lrpcsvc -o howmany
120 007-0810-100

The Layers of RPC
Note: See “Compiling BSD and RPC Programs” in Chapter 1 for other compiling hints.

The Middle Layer of RPC

The middle layer of RPC consists of routines used for most applications. In this layer, the
user can make remote procedure calls to routines on other machines without considering
details about the socket interface, the UNIX system, or other low-level implementation
mechanisms.

The simplest interface, which explicitly makes RPC calls, uses the callrpc() and
registerrpc() functions. Another way to determine the number of remote users is
shown in this example, which can be compiled in the same way as the previous example:

/*
 * howmany2.c
 */

#include <stdio.h>
#include <rpc/rpc.h>
#include <rpcsvc/rusers.h>

main(int argc, char **argv)
{
 unsigned long nusers;
 int stat;
 if (argc != 2) {
 fprintf(stderr, "usage: howmany2 hostname\n");
 exit(1);
 }

 if (stat = callrpc(argv[1], RUSERSPROG, RUSERSVERS,
 RUSERSPROC_NUM, xdr_void, 0,
 xdr_u_long, &nusers) != 0) {
 clnt_perrno(stat);
 exit(1);
 }
 printf("%d users on %s\n", nusers, argv[1]);
 exit(0);
}

007-0810-100 121

6: RPC Programming Guide
Each RPC procedure is uniquely defined by a program number, version number, and
procedure number (see “Assigning RPC Program Numbers” in Chapter 4 for details).
The program number specifies a group of related remote procedures, each of which has
a different procedure number. Each program also has a version number, so when a minor
change is made to a remote service (such as adding a new procedure), a new program
number doesn’t have to be assigned.

The simplest way to make a remote procedure call is with the callrpc() routine.
callrpc() has eight parameters:

• The first parameter is the name of the remote server machine.

• The next three parameters identify the procedure to be called and consist of the
program, version, and procedure numbers.

• The fifth parameter is an XDR filter.

• The sixth parameter is an argument to be encoded and passed to the remote
procedure.

• The seventh parameter is a filter for decoding the results returned by the remote
procedure.

• The last parameter is a pointer to the place where the procedure’s results are to be
stored.

Multiple arguments and results are handled by embedding them in structures. If
callrpc() completes successfully, it returns zero; otherwise, it returns a nonzero value.
The return codes (of type cast into an integer) are found in <rpc/clnt.h>.

Since data types may be represented differently on different machines, callrpc()
needs both the type of the RPC argument and a pointer to the argument itself (and
similarly for the result). For RUSERSPROC_NUM, the return value is an unsigned long.
So, callrpc() has xdr_u_long as its first return parameter, which says that the result is
of type unsigned long, and &nusers as its second return parameter, which is a pointer to
where the long result will be placed. Since RUSERSPROC_NUM takes no argument, the
argument parameter of callrpc() is xdr_void.

After trying several times to deliver a message, if callrpc() gets no answer, it returns
with an error code. The delivery mechanism is UDP. Methods for adjusting the number
of retries or for using a different protocol require you to use the lowest layer of the RPC
library (see “The Lowest Layer of RPC” on page 127).
122 007-0810-100

The Layers of RPC
The remote server procedure corresponding to the preceding example might look like
this:

void *nuser(indata)
char *indata;
{
 static int nusers;
 /* Code here to compute the number of users
 * and place result in variable nusers.
 */
 return ((void *)&nusers);
}

It takes one argument, which is a pointer to the input of the remote procedure call
(ignored in the example), and it returns a pointer to the result.

Normally, a server registers all of the RPC calls it plans to handle and then goes into an
infinite loop waiting to service requests. In this example, there is only a single procedure
to register, so the main body of the server looks like this:

#include <stdio.h>
#include <rpc/rpc.h>
#include <rpcsvc/rusers.h>

void *nuser();

main()
{
 registerrpc(RUSERSPROG, RUSERSVERS, RUSERSPROC_NUM,
 nuser, xdr_void, xdr_u_long);
 svc_run(); /* never returns */
 fprintf(stderr, "Error: svc_run returned!\n");
 exit(1);
}

The registerrpc() routine establishes what C procedure corresponds to each RPC
procedure number. The first three parameters—RUSERSPROG, RUSERSVERS, and
RUSERSPROC_NUM—are the program, version, and procedure numbers of the remote
procedure to be registered; nuser is the name of the C procedure implementing it; and
xdr_void and xdr_u_long are the XDR filters for the remote procedure’s arguments and
results, respectively. (Multiple arguments or multiple results are passed as structures.)

Only the UDP transport mechanism can use registerrpc(); thus, registerrpc()
is always safe in conjunction with calls generated by callrpc().
007-0810-100 123

6: RPC Programming Guide
Note: The UDP transport mechanism can only deal with arguments and results that are
less than 8 kilobytes long.

After registering the local procedure, the server program’s main procedure calls
svc_run(), the RPC library’s remote procedure dispatcher. It is this function that calls
the remote procedures in response to RPC call messages. Note that the dispatcher takes
care of decoding remote procedure arguments and encoding results, using the XDR
filters specified when the remote procedure was registered.

Passing Arbitrary Data Types

In the previous example, the RPC call passes a single unsigned long. RPC can handle
arbitrary data structures, regardless of different machines’ byte order or structure-layout
conventions, by always converting them to XDR before sending them over the network.
(The process of converting from a particular machine representation to XDR format is
called serializing, and the reverse is called deserializing.)

The type field parameters passed to callrpc() and registerrpc() can be built-in
procedures like xdr_u_long() or user-supplied procedures. XDR has the following
built-in type routines that can be used with callrpc() and registerrpc():

xdr_int() xdr_u_int() xdr_enum()
xdr_long() xdr_u_long() xdr_bool()
xdr_short() xdr_u_short() xdr_wrapstring()
xdr_char() xdr_u_char()

Note that the routine xdr_string() exists but cannot be used with callrpc() and
registerrpc(), which pass only two parameters to their XDR routines.
xdr_wrapstring() has only two parameters and is thus okay; it calls xdr_string().

This is an example of a user-defined type routine:

struct simple {
 int a;
 short b;
} simple;

If you want to send and receive this structure, call callrpc() like this:

callrpc(hostname, PROGNUM, VERSNUM, PROCNUM, xdr_simple,
 &simple, xdr_simple, &simple);
124 007-0810-100

The Layers of RPC
In this case, xdr_simple() is written as:

#include <rpc/rpc.h>

xdr_simple(XDR *xdrsp, struct simple *simplep)
{
 if (!xdr_int(xdrsp, &simplep->a))
 return(0);
 if (!xdr_short(xdrsp, &simplep->b))
 return(0);
 return(1);
}

An XDR routine returns a nonzero value (which means “true” in C) if it completes
successfully; zero otherwise.

Note: This section gives only a few examples of implementing XDR. For more
information, see Chapter 8, “XDR Programming Notes.”

In addition to the built-in routines, XDR has these prefabricated building blocks:

xdr_array() xdr_bytes() xdr_reference()
xdr_vector() xdr_union() xdr_pointer()
xdr_string() xdr_opaque()

To send a variable array of integers, you might package them as a structure:

struct varintarr {
 int *data;
 int arrlength;
} arr;

Next, you could make an RPC call something like this:

callrpc(hostname, PROGNUM, VERSNUM, PROCNUM, xdr_varintarr,
 &arr, xdr_varintarr, &arr);

In this case, xdr_varintarr() is defined as:

xdr_varintarr(XDR *xdrsp, struct varintarr *arrp)
{
 return (xdr_array(xdrsp, &arrp->data, &arrp->arrlength,
 MAXLEN, sizeof(int), xdr_int));
}

007-0810-100 125

6: RPC Programming Guide
This routine takes as parameters the XDR handle, a pointer to the array, a pointer to the
size of the array, the maximum allowable array size, the size of each array element, and
an XDR routine for handling each array element.

If the size of the array is known in advance, you can use xdr_vector(), which
serializes fixed-length arrays:

int intarr[SIZE];
xdr_intarr(XDR *xdrsp, int intarr[])
{
 int i;
 return (xdr_vector(xdrsp, intarr, SIZE, sizeof(int),
 xdr_int));
}

XDR always converts quantities to four-byte multiples when it is serializing. Thus, if
either of the preceding examples involved characters instead of integers, each character
would occupy 32 bits, which is the reason for the xdr_bytes() routine. xdr_bytes()
is like xdr_array(), except it packs characters; xdr_bytes() has four parameters,
similar to the first four parameters of xdr_array().

For null-terminated strings, there is also the xdr_string() routine. xdr_string() is
the same as xdr_bytes() without the length parameter. When serializing, the string
length is taken from strlen(); when deserializing, a null-terminated string is created.

In this final example of the middle layer, a call is made to the previously written
xdr_simple(), as well as to the built-in functions xdr_string() and
xdr_reference():

struct finalexample {
 char *string;
 struct simple *simplep;
} finalexample;

xdr_finalexample(XDR *xdrsp, struct finalexample *finalp)
{
 int i;
 if (!xdr_string(xdrsp, &finalp->string, MAXSTRLEN))
 return (0);
 if (!xdr_reference(xdrsp, &finalp->simplep,
 sizeof(struct simple), xdr_simple))
 return (0);
 return (1);
}

126 007-0810-100

The Layers of RPC
Note that you could just as easily call xdr_simple() instead of xdr_reference().

The Lowest Layer of RPC

The lowest layer of RPC is used for more-sophisticated applications. In this section,
you’ll see how to change defaults by using the lowest layer of the RPC library.

Note: This section assumes that you are familiar with socket-related concepts and the
socket library (see Chapter 2, “Sockets-based Communication”).

You may need to use the lowest layer of RPC in one of the following instances:

• To use TCP (the highest layer uses UDP, which restricts RPC calls to 8 kilobytes of
data). Using TCP permits calls to send long streams of data (see “TCP” on
page 151).

• To allocate and free memory while serializing or deserializing with XDR routines.
There is no call at the highest level to let you free memory explicitly. See “Memory
Allocation with XDR” on page 133.

• To perform authentication on either the client or server side, by supplying
credentials or verifying them. See “Authentication” on page 140.

More Information about the Server

There are a number of assumptions built intoregisterrpc(). One is that you are using
the UDP datagram protocol. Another is that you don’t want to do anything unusual
while deserializing, since deserialization is automatic and occurs before the user’s server
routine is called.

The server for the following program is written using the lowest layer of RPC, which
does not make these assumptions:

#include <stdio.h>
#include <rpc/rpc.h>
#include <utmp.h>
#include <rpcsvc/rusers.h>

main()
{
 SVCXPRT *transp;
007-0810-100 127

6: RPC Programming Guide
 void nuser();

 transp = svcudp_create(RPC_ANYSOCK);
 if (transp == NULL){
 fprintf(stderr, "can't create an RPC server\n");
 exit(1);
 }
 pmap_unset(RUSERSPROG, RUSERSVERS);
 if (!svc_register(transp, RUSERSPROG, RUSERSVERS, nuser,
 IPPROTO_UDP)) {
 fprintf(stderr, "can't register RUSER service\n");
 exit(1);
 }
 svc_run(); /* never returns */
 fprintf(stderr, "should never reach this point\n");
 exit(1);
}

void nuser(rqstp, transp)
struct svc_req *rqstp;
SVCXPRT *transp;
{
 unsigned long nusers;

 switch (rqstp->rq_proc) {
 case NULLPROC:
 if (!svc_sendreply(transp, xdr_void, 0)) {
 fprintf(stderr, "can't reply to RPC call\n");
 exit(1);
 }
 return;
 case RUSERSPROC_NUM:
 /* Code here to compute the number of users and
 * assign to the variable nusers
 */
 if (!svc_sendreply(transp, xdr_u_long, &nusers)) {
 fprintf(stderr, "can't reply to RPC call\n");
 exit(1);
 }
 return;
 default:
 svcerr_noproc(transp);
 return;
 }
}

128 007-0810-100

The Layers of RPC
In this example, the server gets a transport handle, which is used for sending RPC
messages. registerrpc() uses svcudp_create() to get a UDP handle. If you
require a reliable protocol, call svctcp_create() instead. If the argument to
svcudp_create() is RPC_ANYSOCK, the RPC library creates a socket on which to
send out RPC calls. Otherwise, svcudp_create() expects its argument to be a valid
socket number.

If you specify your own socket, it can be bound or unbound. If it is bound to a port by
the user, the port numbers of svcudp_create() and clntudp_create() (the
low-level client routine) must match.

If you specify RPC_ANYSOCK for a socket, the RPC library routines will open sockets.
Otherwise, they will expect the caller to do so. The svcudp_create() and
clntudp_create() routines will cause RPC library routines to bind their sockets if
they are not bound already.

A service may choose to register its port number with the local port mapper service. This
is done by specifying a nonzero protocol number in svc_register(). Incidentally, a
client can discover the server’s port number by consulting the port mapper on the
server’s machine. This can be done automatically by specifying a zero port number in
clntudp_create() or clnttcp_create().

After creating a SVCXPRT, the next step is to call pmap_unset() so that if the nusers
server crashed earlier, any previous trace of it is erased before restarting. More precisely,
pmap_unset() erases the entry for RUSERS from the port mapper’s tables.

Finally, you associate the program number for nusers with the procedure nuser(). The
final argument to svc_register() is normally the protocol being used, which in this
case is IPPROTO_UDP. Notice that unlike registerrpc(), there are no XDR routines
involved in the registration process. In addition, registration is done on the program level
rather than the procedure level.

The user routine nuser() must call and dispatch the appropriate XDR routines based
on the procedure number. Note that two things are handled by nuser() that
registerrpc() handles automatically:

• A simple test to detect whether a remote program is running: call procedure
NULLPROC (currently zero), which returns with no arguments.

• A check for invalid procedure numbers. If one is detected, svcerr_noproc() is
called to handle the error.
007-0810-100 129

6: RPC Programming Guide
The user service routine serializes the results and returns them to the RPC caller via
svc_sendreply(). Its first parameter is the SVCXPRT handle, the second parameter is
the XDR routine, and the third parameter is a pointer to the data to be returned.

Not illustrated previously is how a server handles an RPC program that passes data. For
example, we could add a procedure RUSERSPROC_BOOL, which has an argument
nusers, and returns TRUE or FALSE, depending on whether the number of users logged
in is equal to nusers. The procedure looks something like this:

case RUSERSPROC_BOOL: {
 int bool;
 unsigned nuserquery;

 if (!svc_getargs(transp, xdr_u_int, &nuserquery) {
 svcerr_decode(transp);
 return;
 }
 /* Insert code here to set nusers = number of users */
 if (nuserquery == nusers)
 bool = TRUE;
 else
 bool = FALSE;
 if (!svc_sendreply(transp, xdr_bool, &bool)) {
 fprintf(stderr, "can't reply to RPC call\n");
 exit(1);
 }
 return;
}

The relevant routine is svc_getargs(), which takes a SVCXPRT handle, the XDR
routine, and a pointer to where the input is to be placed as arguments.

More Information about the Client

When you use callrpc(), you have no control over the RPC delivery mechanism or the
socket used to transport the data. To illustrate how the lowest layer of RPC lets you adjust
these parameters, consider the following code sample, which calls the nusers service:

/*
 * howmany3.c
 */
#include <stdio.h>
#include <rpc/rpc.h>
#include <utmp.h>
130 007-0810-100

The Layers of RPC
#include <rpcsvc/rusers.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <netdb.h>

main(int argc, char **argv)
{
 struct hostent *hp;
 struct timeval pertry_timeout, total_timeout;
 struct sockaddr_in server_addr;
 int sock = RPC_ANYSOCK;
 register CLIENT *client;
 enum clnt_stat clnt_stat;
 unsigned long nusers;

 if (argc != 2) {
 fprintf(stderr, "usage: howmany3 hostname\n");
 exit(1);
 }
 if ((hp = gethostbyname(argv[1])) == NULL) {
 herror(argv[1]);
 exit(1);
 }
 pertry_timeout.tv_sec = 3;
 pertry_timeout.tv_usec = 0;
 bcopy(hp->h_addr, (caddr_t)&server_addr.sin_addr,
 hp->h_length);
 server_addr.sin_family = AF_INET;
 server_addr.sin_port = 0;
 if ((client = clntudp_create(&server_addr, RUSERSPROG,
 RUSERSVERS, pertry_timeout, &sock)) == NULL) {
 clnt_pcreateerror("clntudp_create");
 exit(1);
 }
 total_timeout.tv_sec = 20;
 total_timeout.tv_usec = 0;
 clnt_stat = clnt_call(client,RUSERSPROC_NUM,xdr_void,0,
 xdr_u_long,&nusers, total_timeout);
 if (clnt_stat != RPC_SUCCESS) {
 clnt_perror(client, "rpc");
 exit(1);
 }

 printf("%d users on %s\n", nusers, argv[1]);
007-0810-100 131

6: RPC Programming Guide
 clnt_destroy(client);
 close(sock);
 exit(0);
}

The low-level version of callrpc() is clnt_call(), which takes a CLIENT pointer
rather than a host name. The parameters to clnt_call() are a CLIENT pointer, the
procedure number, the XDR routine for serializing the argument, a pointer to the
argument, the XDR routine for deserializing the return value, a pointer to where the
return value will be placed, and the time in seconds to wait for a reply.

The CLIENT pointer is encoded with the transport mechanism. callrpc() uses UDP;
thus it calls clntudp_create() to get a CLIENT pointer. To specify TCP/IP, use
clnttcp_create().

The parameters toclntudp_create() are the server address, the program number, the
version number, a timeout value (how long to wait before trying again), and a pointer to
a socket. The final argument to clnt_call() is the total time to wait for a response.
Thus, the number of tries is the clnt_call() timeout divided by the
clntudp_create() timeout.

Note that the clnt_destroy() call always deallocates the space associated with the
CLIENT handle. It closes the socket associated with the CLIENT handle, however, only
if the RPC library opened it. If the socket was opened by the user, it stays open. This
makes it possible, in cases where there are multiple client handles using the same socket,
to destroy one handle without closing the socket that other handles are using.

To make a stream connection, the call to clntudp_create() is replaced with a call to
clnttcp_create():

clnttcp_create(&server_addr, prognum, versnum, &socket,
 inputsize, outputsize);

There is no timeout argument; instead, the receive and send buffer sizes must be
specified. When the clnttcp_create() call is made, a TCP connection is established.
All RPC calls using that CLIENT handle use this connection. The server side of an RPC
call using TCP has svcudp_create() replaced by svctcp_create():

transp = svctcp_create(RPC_ANYSOCK, 0, 0);

The last two arguments to svctcp_create() are send and receive sizes, respectively.
If 0 is specified for either argument, the system chooses a reasonable default.
132 007-0810-100

The Layers of RPC
Memory Allocation with XDR

In addition to input and output, XDR routines do memory allocation. For this reason, the
second parameter of xdr_array() is a pointer to an array, rather than the array itself.
If it is NULL, xdr_array() allocates space for the array and returns a pointer to it,
putting the size of the array in the third argument. For example, consider the following
XDR routine, xdr_chararr1(), which deals with a fixed array of bytes with length
SIZE:

xdr_chararr1(XDR *xdrsp, char chararr[])
{
 char *p;
 int len;
 p = chararr;
 len = SIZE;
 return (xdr_bytes(xdrsp, &p, &len, SIZE));
}

If space has already been allocated in chararr, it can be called from a server:

char chararr[SIZE];
svc_getargs(transp, xdr_chararr1, chararr);

In this case, chararr has already allocated space.

If you want XDR to do the allocation, you have to rewrite the routine; for example:

xdr_chararr2(XDR *xdrsp, char **chararrp)
{
 int len;
 len = SIZE;
 return (xdr_bytes(xdrsp, charrarrp, &len, SIZE));
}

The RPC call might then look like this:

char *arrptr;
arrptr = NULL;
svc_getargs(transp, xdr_chararr2, &arrptr);
/* Use the result here */
svc_freeargs(transp, xdr_chararr2, &arrptr);
007-0810-100 133

6: RPC Programming Guide
Note that after being used, the character array can be freed with svc_freeargs(),
which will not attempt to free any memory if the variable indicating memory is NULL.
For example, in the routine xdr_finalexample() (described in “Passing Arbitrary
Data Types” on page 124), if finalp->string is NULL, it is not freed. The same is true for
finalp->simplep.

To summarize, each XDR routine is responsible for serializing, deserializing, and freeing
memory. When an XDR routine is called from callrpc(), the serializer is used. When
called from svc_getargs(), the deserializer is used. When called from
svc_freeargs(), the memory deallocator is used.

When building simple examples like the ones in this section, a user doesn’t have to worry
about the three modes. Chapter 8, “XDR Programming Notes,” provides examples of
more sophisticated XDR routines that determine which of the three modes they are in
order to function correctly.

Other RPC Features

This section discusses some other aspects of RPC that can be useful to RPC programmers.

Select on the Server Side

Suppose a process is processing RPC requests while performing some other activity. If
the other activity involves periodically updating a data structure, the process can set an
alarm signal before calling svc_run(). But if the other activity involves waiting on a file
descriptor, the svc_run() call won’t work. The following is the code for svc_run():

void svc_run()
{
 fd_set readfds;
 int dtbsz = getdtablesize();
 for (;;) {
 readfds = svc_fdset;
 switch (select(dtbsz, &readfds, NULL,NULL,NULL)) {
 case -1:
 if (errno == EINTR)
 continue;
 perror("select");
 return;
 case 0:
134 007-0810-100

Other RPC Features
 break;
 default:
 svc_getreqset(&readfds);
 }
 }
}

You can bypasssvc_run() and callsvc_getreqset() yourself. All you need to know
are the file descriptors of the sockets associated with the programs you are waiting on.
Thus, you can have your own select() that waits on both the RPC socket and your
own descriptors. Note that svc_fdset is a bit mask of all the file descriptors that RPC is
using for services. It can change whenever any RPC library routine is called, because
descriptors are constantly being opened and closed, such as for TCP connections.

Broadcast RPC

You cannot do broadcast RPC without a port mapper, which converts RPC program
numbers into UDP or TCP port numbers; see portmap(1M) or rpcbind(1M) for more
information.

The main differences between broadcast RPC and normal RPC calls are:

• Normal RPC expects one answer, whereas broadcast RPC expects many answers
(one or more answers from each responding machine).

• Broadcast RPC can be supported only by packet-oriented (connectionless) transport
protocols, such as UDP/IP.

• The implementation of broadcast RPC treats all unsuccessful responses as garbage
by filtering them out. Thus, if there is a version mismatch between the broadcaster
and a remote service, the user of broadcast RPC never knows.

• All broadcast messages are sent to the port mapper port. Thus, only services that
register themselves with their port mapper are accessible via the broadcast RPC
mechanism.

• Broadcast requests are limited in size to the Maximum Transfer Unit (MTU) of the
local network. For Ethernet, the MTU is 1500 bytes. For FDDI, the MTU is 4352
bytes.
007-0810-100 135

6: RPC Programming Guide
Broadcast RPC Synopsis

The following is the synopsis of broadcast RPC:

#include <rpc/pmap_clnt.h>

enum clnt_stat clnt_stat;
 . . .
clnt_stat = clnt_broadcast(prognum, versnum, procnum,
 inproc, in, outproc, out, eachresult)
 u_long prognum; /* program number */
 u_long versnum; /* version number */
 u_long procnum; /* procedure number */
 xdrproc_t inproc; /* xdr routine for args */
 void *in; /* pointer to args */
 xdrproc_t outproc; /* xdr routine for results */
 void *out; /* pointer to results */
 bool_t (*eachresult)();
 /* call with each result gotten */
clnt_stat = clnt_broadcast_exp(prognum, versnum, procnum,
 inproc, in, outproc, out,
 eachresult,inittime,waittime)
 /* first eight parameters same as above. */
 int inittime; /* initial wait period */
 int waittime; /* total wait period */

The procedure eachresult() is called each time a valid result is obtained. It returns a
boolean that indicates whether or not the client wants more responses:

bool_t done;

done = eachresult(resultsp, raddr)
 void *resultsp;
 struct sockaddr_in *raddr;
 /* address of machine that sent response */

If done is TRUE, broadcasting stops and clnt_broadcast() returns successfully.
Otherwise, the routine waits for another response. The request is rebroadcast after a few
seconds of waiting. If no responses come back, the routine returns with
RPC_TIMEDOUT. Use clnt_broadcast_exp() to control the initial and total waiting
intervals. To interpret clnt_stat errors, feed the error code to clnt_perrno().
136 007-0810-100

Other RPC Features
Batching

The RPC architecture is designed so that a client sends a call to a server and waits for a
reply that the call succeeded. Clients do not compute while servers are processing a call,
which is inefficient if the client does not want or need an acknowledgment for every
message sent. RPC batch facilities make it possible for clients to continue computing
while waiting for a response.

Batching occurs when RPC messages are placed in a “pipeline” of calls to a server.
Batching assumes that:

• Each RPC call in the pipeline does not require a response from the server, and the
server does not send a response message.

• The pipeline of calls is transported on a reliable byte stream transport such as
TCP/IP.

Since the server does not respond to every call, the client can generate new calls in
parallel, with the server executing previous calls. In addition, the TCP/IP
implementation can buffer many calls and send them to the server in a single write
system call.

This overlapped execution greatly decreases the inter-process communication overhead
of the client and server processes, and the total elapsed time of a series of calls.

Since the batched calls are buffered, the client should eventually do a nonbatched call to
flush the pipeline.

The following is a (contrived) example of batching. Assume that a string-rendering
service (such as a window system) has two similar calls: one renders a string and returns
void results, while the other renders a string and remains silent. The service (using the
TCP/IP transport) could look something like this:

#include <stdio.h>
#include <rpc/rpc.h>
#include <rpcsvc/windows.h> /* assumes this files exists
 * and defines all the
 * necessary constants.
 */

void windowdispatch();

main()
007-0810-100 137

6: RPC Programming Guide
{
 SVCXPRT *transp;

 transp = svctcp_create(RPC_ANYSOCK, 0, 0);
 if (transp == NULL) {
 fprintf(stderr, "can't create an RPC server\n");
 exit(1);
 }
 pmap_unset(WINDOWPROG, WINDOWVERS);
 if (!svc_register(transp, WINDOWPROG, WINDOWVERS,
 windowdispatch, IPPROTO_TCP)) {
 fprintf(stderr, "can't register WINDOW service\n");
 exit(1);
 }
 svc_run(); /* never returns */
 fprintf(stderr, "should never reach this point\n");
 exit(1);
}

void windowdispatch(rqstp, transp)
struct svc_req *rqstp;
SVCXPRT *transp;
{
 char *s = NULL;
 switch (rqstp->rq_proc) {
 case NULLPROC:
 if (!svc_sendreply(transp, xdr_void, 0)) {
 fprintf(stderr, "can't reply to RPC call\n");
 exit(1);
 }
 return;
 case RENDERSTRING:
 if (!svc_getargs(transp, xdr_wrapstring, &s)) {
 fprintf(stderr, "can't decode arguments\n");
 /* tell caller it messed up */
 svcerr_decode(transp);
 break;
 }
 /* Code here to render the string s */
 if (!svc_sendreply(transp, xdr_void, NULL)) {
 fprintf(stderr, "can't reply to RPC call\n");
 exit(1);
 }
 break;
 case RENDERSTRING_BATCHED:
138 007-0810-100

Other RPC Features
 if (!svc_getargs(transp, xdr_wrapstring, &s)) {
 fprintf(stderr, "can't decode arguments\n");
 /* We are silent in face of protocol errors */
 break;
 }
 /*Code here to render string s, but send no reply!*/
 break;
 default:
 svcerr_noproc(transp);
 return;
 }
 /* Now free string allocated while decoding arguments */
 svc_freeargs(transp, xdr_wrapstring, &s);
}

Of course, the service could have one procedure that takes the string and a boolean to
indicate whether or not the procedure should respond.

In order for a client to take advantage of batching, the client must perform RPC calls on
a TCP-based transport, and the actual calls must have these attributes:

• The result’s XDR routine must be zero (NULL).

• The RPC call’s timeout must be zero.

The following is an example of a client that uses batching to render a collection of strings;
the batching is flushed when the client gets a null string:

#include <stdio.h>
#include <rpc/rpc.h>
#include <rpcsvc/windows.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <netdb.h>

main(int argc, char **argv)
{
 struct hostent *hp;
 struct timeval pertry_timeout, total_timeout;
 struct sockaddr_in server_addr;
 int sock = RPC_ANYSOCK;
 register CLIENT *client;
 enum clnt_stat clnt_stat;
 char buf[1000], *s = buf;
 if ((client = clnttcp_create(&server_addr,
007-0810-100 139

6: RPC Programming Guide
 WINDOWPROG, WINDOWVERS, &sock, 0, 0)) == NULL) {
 perror("clnttcp_create");

 exit(1);
 }
 total_timeout.tv_sec = 0;
 total_timeout.tv_usec = 0;
 while (scanf("%s", s) != EOF) {
 clnt_stat = clnt_call(client, RENDERSTRING_BATCHED,
xdr_wrapstring, &s, NULL, NULL, total_timeout);
 if (clnt_stat != RPC_SUCCESS) {
 clnt_perror(client, "batched rpc");
 exit(1);
 }
 }

 /* Now flush the pipeline */

 total_timeout.tv_sec = 20;
 clnt_stat = clnt_call(client, NULLPROC, xdr_void, NULL,
 xdr_void, NULL, total_timeout);
 if (clnt_stat != RPC_SUCCESS) {
 clnt_perror(client, "rpc");
 exit(1);
 }
 clnt_destroy(client);
 exit(0);
}

Since the server does not send a message, the clients cannot be notified of any failures
that occur. Therefore, clients are on their own when it comes to handling errors.

Authentication

In the examples presented so far, the caller never identifies itself to the server, and the
server never requires an ID from the caller. Clearly, some network services, such as a
network filesystem, require stronger security.

The Silicon Graphics RPC authentication subsystem provides two protocols:
AUTH_NONE and AUTH_UNIX. AUTH_UNIX provides only for identification of the
client in the RPC call, while AUTH_NONE, the default, turns the subsystem off.
140 007-0810-100

Other RPC Features
Therefore, for these two protocols, no authentication is actually performed by the RPC
code or library code prior to calling the program’s implementation function.

Note: For these two protocols, authentication is entirely the responsibility of the server
application program. Applications should not rely on the veracity of the identification
information in the AUTH_UNIX protocol without first taking steps to authenticate. An
example of how to implement an authentication procedure is provided in “Server-side
Authentication.”

The authentication subsystem of the RPC package is open-ended. That is, other types of
authentication are easy to support. However, this section deals only with the
AUTH_UNIX authentication type, which is the only supported type other than
AUTH_NONE.

Client-side Authentication

In this example, a caller creates a new RPC client handle:

clnt = clntudp_create(address, prognum, versnum, wait, sockp)

The appropriate transport instance defaults to the associated authentication protocol:

clnt->cl_auth = authnone_create();

The RPC client can choose to use the AUTH_UNIX protocol by setting clnt->cl_auth after
creating the RPC client handle:

clnt->cl_auth = authunix_create_default();

This code causes each RPC call associated with clnt to carry with it this AUTH_UNIX
protocol credentials structure:

/*
* AUTH_UNIX protocol credentials
*/
struct authunix_parms {
 u_long aup_time; /* credentials creation time */
 char *aup_machname; /* host name where client is */
 int aup_uid; /* client's UNIX effective uid */
 int aup_gid; /* client's current group ID */
 u_int aup_len; /* element length of aup_gids */
007-0810-100 141

6: RPC Programming Guide
 int *aup_gids; /* array of groups user in */
};

These fields are set by authunix_create_default() when you invoke the
appropriate system calls.

Since the RPC user created the AUTH_UNIX protocol structure, he or she is responsible
for destroying it with:

auth_destroy(clnt->cl_auth);

You should use this call in all cases to conserve memory.

Server-side Authentication

Server-side authentication is necessary in cases where security needs to be enforced.
Since by default, no authentication is provided, this section provides an example of how
to implement an authentication of the UID that is passed in the AUTH_UNIX protocol.

Consider the fields of a request handle passed to a service dispatch routine:

/*
 * An RPC Service request
 */
struct svc_req {
 u_long rq_prog; /* service program number */
 u_long rq_vers; /* service protocol vers num */
 u_long rq_proc; /* desired procedure num */
 struct opaque_auth rq_cred; /* raw credentials from wire */
 caddr_t rq_clntcred; /* read only credentials */
};

The rq_cred is mostly opaque, except for one field of interest—the style or flavor of
authentication credentials:

/*
 * Authentication info. Mostly opaque to the programmer.
 */
struct opaque_auth {
 enum_t oa_flavor; /* style of credentials */
 caddr_t oa_base; /* address of more auth stuff */
 u_int oa_length; /* not to exceed MAX_AUTH_BYTES */
};
142 007-0810-100

Other RPC Features
The RPC package guarantees the following to the service dispatch routine:

• The request’s rq_cred is well formed. Thus, the service implementor should inspect
the request’s rq_cred.oa_flavor to determine which style of authentication protocol
the caller used. The service implementor may also want to inspect the other fields of
rq_cred if the style is not one supported by the RPC package.

• The request’s rq_clntcred field is either NULL or points to a well-formed structure
that corresponds to a supported style of authentication protocol. Only the
AUTH_UNIX protocol is currently supported, so it is strongly recommended that
the program check that the value of rq_cred.oa_flavor is AUTH_UNIX before
rq_clntcred is cast to a pointer to the authunix_parms structure. If the authentication
protocol in the client request differs from the protocol used in the server’s
rq_cred.oa_flavor value, errant behavior and possible security holes could result.

Note: In both cases, the authentication protocol does not verify the veracity of the
request; it checks only that the structure format is adhered to.

The following example implements authentication by first checking that the protocol
used in the authentication credential (rq_cred.oa_flavor) is AUTH_UNIX. If it is, and
since AUTH_UNIX provides no authentication, further checks are made to verify that
the identity provided in the client identity structure, rq_clntcred, is valid. If either of
these checks fails, the function svcerr_weakauth() is called to alert the server that
security is not being enforced.

#include <stdio.h>
#include <syslog.h>
#include <pwd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <rpc/rpc.h> /* Required. */
#include <utmp.h>
#include <rpcsvc/rusers.h>

#define MAX_LOG_MESSAGE 160

int nuser_client_ok(struct svc_req *rqstp, SVCXPRT *transp);
void nuser();

main()
007-0810-100 143

6: RPC Programming Guide
{
 SVCXPRT *transp;
 transp = svcudp_create(RPC_ANYSOCK);
 if (transp == NULL){
 fprintf(stderr, "can't create an RPC server\n");
 exit(1);
 }
 pmap_unset(RUSERSPROG, RUSERSVERS);
 if (!svc_register(transp, RUSERSPROG, RUSERSVERS, nuser,
 IPPROTO_UDP)) {
 fprintf(stderr, "can't register RUSER service\n");
 exit(1);
 }
 svc_run(); /* never returns */
 fprintf(stderr, "should never reach this point\n");
 exit(1);
}

void
nuser(rqstp, transp)
struct svc_req *rqstp;
SVCXPRT *transp;
{
 uid_t uid;
 unsigned long nusers;
 struct authunix_parms *unix_cred;

 /* we don't care about authentication for the null procedure */
 if (rqstp->rq_proc == NULLPROC) {
 if (!svc_sendreply(transp, xdr_void, 0)) {
 fprintf(stderr, "can't reply to RPC call\n");
 exit(1);
 }
 return;
 }
 /* now get the uid */
 switch (rqstp->rq_cred.oa_flavor) {
 case AUTH_UNIX:
 /* perform authentication checks on client credentials */
 if (! nuser_client_ok(rqstp, transp)) {
 svcerr_weakauth(transp);
 return;
 }
 /* passed test */
 unix_cred = (struct authunix_parms *)rqstp->rq_clntcred;
144 007-0810-100

Other RPC Features
 uid = unix_cred->aup_uid;
 break;
 case AUTH_NULL:
 default:
 svcerr_weakauth(transp);
 return;
 }
 switch (rqstp->rq_proc) {
 case RUSERSPROC_NUM:
 /* make sure the caller is allowed to call this procedure. */
 if (uid == 16) {
 svcerr_systemerr(transp);
 return;
 }
 /* code here to compute the number of users and put
 * in variable nusers
 */
 if (!svc_sendreply(transp, xdr_u_long, &nusers)) {
 fprintf(stderr, "can't reply to RPC call\n");
 exit(1);
 }
 return;
 default:
 svcerr_noproc(transp);
 return;
 }
} /* nuser */

static int logging_successful_requests = 1;

/* This routine attempts to verify that the client user is
 * authorized access on the server host. A value of 0 is
 * returned to indicate that the client user is not authorized.
 * Otherwize the value returned is 1. */
int
nuser_client_ok(struct svc_req *rqstp, SVCXPRT *transp)
{
 uid_t uid;
 char *user = NULL;
 struct authunix_parms *unix_cred;
 struct hostent *host_entry = NULL;
 struct passwd *passwd_entry;
 char log_message[MAX_LOG_MESSAGE];

 static u_long peer_addr = 0;
007-0810-100 145

6: RPC Programming Guide
 static char *client_host = NULL;
 static u_long client_host_addr = 0;

 if (transp->xp_raddr.sin_port >= IPPORT_RESERVED) {
 sprintf(log_message, "Rejected request, "
 "non-priviledged port %d", transp->xp_raddr.sin_port);
 syslog(LOG_NOTICE | LOG_AUTH, log_message);
 return 0;
 }
 /* Determine the client host name and address. */
 if (peer_addr != transp->xp_raddr.sin_addr.s_addr) {
 host_entry = gethostbyaddr(&transp->xp_raddr.sin_addr,
 sizeof(struct in_addr),
 AF_INET);
 if (host_entry == NULL) {
 sprintf(log_message, "Rejected request, "
 "unknown client host at address 0x%08x",
 transp->xp_raddr.sin_addr);
 syslog(LOG_NOTICE | LOG_AUTH, log_message);
 return 0;
 }
 peer_addr = transp->xp_raddr.sin_addr.s_addr;
 if (client_host != NULL) {
 free(client_host);
 }
 client_host = strdup(host_entry->h_name);
 client_host_addr = *(u_long *) host_entry->h_addr;
 }

 /* Determine the user name. */
 unix_cred = (struct authunix_parms *)rqstp->rq_clntcred;
 uid = unix_cred->aup_uid;
 passwd_entry = getpwuid(uid);
 if (passwd_entry == NULL) {
 sprintf(log_message, "Rejected request, "
 "unknown uid %d from host %s",
 uid, client_host);
 syslog(LOG_NOTICE | LOG_AUTH, log_message);
 return 0;
 }

 user = strdup(passwd_entry->pw_name);
 if (passwd_entry->pw_passwd != NULL &&
 *passwd_entry->pw_passwd != '\0' &&
 ruserok(client_host, uid == 0, user, user) < 0) {
146 007-0810-100

Other RPC Features
 sprintf(log_message, "Rejected request by %s at %s",
 user, client_host);
 syslog(LOG_NOTICE | LOG_AUTH, log_message);
 free(user);
 return 0;
 }

 if (logging_successful_requests) {
 if (user != NULL) {
 sprintf(log_message, "Granted request by %s at %s",
 user, client_host);
 } else {
 sprintf(log_message, "Granted request by uid %d at %s",
 uid, client_host);
 }
 syslog(LOG_INFO | LOG_AUTH, log_message);
 }
 if (user != NULL) {
 free(user);
 }
 return 0;
} /* nuser_client_ok */

Several points should be noted:

• It is customary not to check the authentication parameters associated with the
NULLPROC (procedure number zero).

• If the authentication parameter’s type is not suitable for your service, you should
call svcerr_weakauth().

• The service protocol itself should return status for access denied; in the case of our
example, the protocol does not have such a status, so we call the service primitive
svcerr_systemerr() instead.

The last point underscores the relationship between the RPC authentication package and
the services—RPC with the AUTH_UNIX protocol is concerned only with identification
and not with individual services’ authentication or access control. The services
themselves must implement these policies, and they must reflect these policies as return
statuses in their protocols.

It is important to recognize that the AUTH_ UNIX credential is passed in the clear across
the network and can be easily modified or counterfeited. There are no checks performed
on the AUTH_ UNIX credential except to make sure it is correctly formatted.
007-0810-100 147

6: RPC Programming Guide
Services that provide functions that require root permissions, and accept requests
bearing AUTH_UNIX credentials, should take steps to perform authentication of the
information in the AUTH_UNIX credential before relying on that information for access
control decisions.

• Limit the service to a reserved port. This requires that the originator have sufficient
privilege to create a port with an address less than 1024.

• Verify that the source IP address of the RPC request is from the machine named in
the RPC AUTH_UNIX credential. The name corresponding to the source IP address
should be in the list of addresses for the name.

• Ensure that the user name/UID is known to the local system. This requires that the
originator be in the network name service.

• Consider using ruserok() (see ruserok(3N)) or an equivalent functionality to
limit access to a list of known hosts.

Further authentication such as encryption, digital signatures, Kerberos, and time stamps
can be incorporated into the body of the RPC request. Consult references on network
security such as Applied Cryptography, Second Edition, for more examples.

Using inetd

An RPC server can be started from inetd. Call the service creation routine as follows
(since inetd passes a socket as file descriptor 0):

transp = svcudp_create(0); /* For UDP */
transp = svctcp_create(0,0,0);/* For listener TCP sockets */
transp = svcfd_create(0,0,0); /* For connected TCP sockets */

In addition, you should call svc_register() as:

svc_register(transp, PROGNUM, VERSNUM, service, 0);

The final flag is 0, since the program will already be registered by inetd.

Remember that if you want to exit from the server process and return control to inetd, you
must explicitly exit, since svc_run() never returns.

Entries in /usr/etc/inetd.conf for RPC services should be in one of these two formats:

p_name/version dgram rpc/udp wait user server args
p_name/version stream rpc/tcp wait user server args
148 007-0810-100

More Examples
In these entries, p_name is the symbolic name of the program as it appears in rpc(4);
server is the program implementing the server; and version is the version number of the
service. By convention, the first argument must be the program’s name. For more
information about inetd, see inetd(1M).

If the same program handles multiple versions, the version number can be a range. For
example:

rstatd/1-2 dgram rpc/udp wait root /usr/etc/rpc.rstatd rstatd

For server programs that handle multiple services or protocols, inetd allocates socket
descriptors to protocols based on lexicographic order of service and protocol names.

More Examples

The examples in this section illustrate a program version number, TCP use, and a
callback procedure.

Program Version Number

By convention, the first version number of program PROG is PROGVERS_ORIG, and the
most recent version is PROGVERS. Suppose there is a new version of the user program
that returns an unsigned short rather than a long. If we name this version
RUSERSVERS_SHORT, a server that wants to support both versions does a double
register:

if (!svc_register(transp, RUSERSPROG, RUSERSVERS_ORIG,
 nuser, IPPROTO_TCP)) {
 fprintf(stderr, "can't register RUSER service\n");
 exit(1);
}
if (!svc_register(transp, RUSERSPROG, RUSERSVERS_SHORT,
 nuser, IPPROTO_TCP)) {
 fprintf(stderr, "can't register RUSER service\n");
 exit(1);
}

Both versions can be handled by the same C procedure:

nuser(struct svc_req *rqstp, SVCXPRT *transp)
{

007-0810-100 149

6: RPC Programming Guide
 unsigned long nusers;
 unsigned short nusers2;
 switch (rqstp->rq_proc) {
 case NULLPROC:
 if (!svc_sendreply(transp, xdr_void, 0)) {
 fprintf(stderr, "can't reply to RPC call\n");
 exit(1);
 }
 return;

 case RUSERSPROC_NUM:
 /* Code here to compute the number of users and
 * assign it to the variable nusers
 */
 nusers2 = nusers;
 switch (rqstp->rq_vers) {
 case RUSERSVERS_ORIG:
 if (!svc_sendreply(transp, xdr_u_long,
 &nusers)) {
 fprintf(stderr, "can't reply to RPC call\n");
 }
 break;
 case RUSERSVERS_SHORT:
 if (!svc_sendreply(transp,xdr_u_short,&nusers2)) {
 fprintf(stderr,"can't reply to RPC call\n");
 }
 break;
 }
 default:
 svcerr_noproc(transp);
 return;
 }
}

150 007-0810-100

More Examples
TCP

This example is essentially rcp. The initiator of the RPC snd() call sends its standard
input to the server rcv(), which prints it on standard output. The RPC call uses TCP.
This example also illustrates an XDR procedure that behaves differently on serialization
than on deserialization:

/*
 * The xdr routine:
 * on decode, read from wire, write onto fp
 * on encode, read from fp, write onto wire
 */
#include <stdio.h>
#include <rpc/rpc.h>

xdr_rcp(XDR *xdrs, FILE *fp)
{
 unsigned long size;
 char buf[MAXCHUNK], *p;

 if (xdrs->x_op == XDR_FREE) /* nothing to free */
 return 1;
 while (1) {
 if (xdrs->x_op == XDR_ENCODE) {
 if ((size = fread (buf, sizeof(char),
 MAXCHUNK, fp)) == 0 && ferror(fp)) {
 fprintf(stderr, "can't fread\n");
 exit(1);
 }
 }
 p = buf;
 if (!xdr_bytes(xdrs, &p, &size, MAXCHUNK))
 return 0;
 if (size == 0)
 return 1;
 if (xdrs->x_op == XDR_DECODE) {
 if (fwrite(buf, sizeof(char), size, fp) != size) {
 fprintf(stderr, "can't fwrite\n");
 exit(1);
 }
 }
 }
}

/* The sender routines */
007-0810-100 151

6: RPC Programming Guide
#include <stdio.h>
#include <netdb.h>
#include <rpc/rpc.h>
#include <sys/socket.h>
#include <sys/time.h>

main(int argc, char **argv)
{
 int xdr_rcp();
 int err;

 if (argc < 2) {
 fprintf(stderr, "usage: %s server-name\n", argv[0]);
 exit(-1);
 }
 if ((err = callrpctcp(argv[1], RCPPROG, RCPPROC_FP,
 RCPVERS, xdr_rcp, stdin, xdr_void, 0)) != 0) {
 clnt_perrno(err);
 fprintf(stderr, " can't make RPC call\n");
 exit(1);
 }
 exit(0);
}

callrpctcp(host, prognum, procnum, versnum, inproc, in,
 outproc, out)
char *host;
int prognum;
int procnum;
int versnum;
xdrproc_t inproc;
char *in;
xdrproc_t outproc;
char *out;
{
 struct sockaddr_in server_addr;
 int socket = RPC_ANYSOCK;
 enum clnt_stat clnt_stat;
 struct hostent *hp;
 register CLIENT *client;
 struct timeval total_timeout;
 if ((hp = gethostbyname(host)) == NULL) {
 herror(host);
 return (-1);
 }
152 007-0810-100

More Examples
 bcopy(hp->h_addr, (caddr_t)&server_addr.sin_addr,
 hp->h_length);
 server_addr.sin_family = AF_INET;
 server_addr.sin_port = 0;
 if ((client = clnttcp_create(&server_addr, prognum,
 versnum, &socket, BUFSIZ, BUFSIZ)) == NULL) {
 perror("rpctcp_create");
 return(-1);
 }
 total_timeout.tv_sec = 20;
 total_timeout.tv_usec = 0;
 clnt_stat = clnt_call(client, procnum, inproc, in,
 outproc, out, total_timeout);
 clnt_destroy(client);
 return (int)clnt_stat;
}

/* The receiving routines */
#include <stdio.h>
#include <rpc/rpc.h>

main()
{
 register SVCXPRT *transp;
 int rcp_service(), xdr_rcp();
 if ((transp = svctcp_create(RPC_ANYSOCK, 1024, 1024))
 == NULL) {
 fprintf(stderr, "svctcp_create: error\n");
 exit(1);
 }
 pmap_unset(RCPPROG, RCPVERS);
 if (!svc_register(transp, RCPPROG, RCPVERS, rcp_service,
 IPPROTO_TCP)) {
 fprintf(stderr, "svc_register: error\n");
 exit(1);
 }
 svc_run(); /* never returns */
 fprintf(stderr, "svc_run should never return\n");
 exit(1);
}

rcp_service(rqstp, transp)
register struct svc_req *rqstp;
register SVCXPRT *transp;
{

007-0810-100 153

6: RPC Programming Guide
 switch (rqstp->rq_proc) {
 case NULLPROC:
 if (svc_sendreply(transp, xdr_void, 0) == 0) {
 fprintf(stderr, "err: rcp_service\n");
 return(1);
 }
 return;
 case RCPPROC_FP:
 if (!svc_getargs(transp, xdr_rcp, stdout)) {
 svcerr_decode(transp);
 return(1);
 }
 if (!svc_sendreply(transp, xdr_void, 0)) {
 fprintf(stderr, "can't reply\n");
 return(1);
 }
 return(0);
 default:
 svcerr_noproc(transp);
 return(1);
 }
}

Callback Procedures

In some cases (for example, in remote debugging), it’s useful for a server to become a
client and make an RPC callback to its client process.

For example, if the client is a window system program and the server is a debugger
running on a remote machine, when the user clicks a mouse button in the debugging
window, the click is converted to a debugger command, and an RPC call is made to the
server (where the debugger is actually running) telling it to execute that command.

When the debugger hits a breakpoint, however, the roles are reversed. The debugger
wants to make an RPC call to the window program to notify the user of the breakpoint.

To do an RPC callback, you need a program number on which to make the RPC call (see
“Assigning RPC Program Numbers” in Chapter 4 for more information). Because the
callback will be a dynamically generated program number, it should be in the transient
range, 0x40000000—0x5fffffff.
154 007-0810-100

More Examples
The gettransient() routine returns a valid program number in the transient range
and registers it with the port mapper (see “The Port Mapper Programs” in Chapter 4 for
more information). The program talks only to the port mapper running on the same
machine as the gettransient() routine itself.

The call to pmap_set() is a test-and-set operation. pmap_set() indivisibly tests
whether a program number has already been registered; if the number has not been
registered, pmap_set() reserves it. Upon return, the sockp argument will contain a
socket that can be used as the argument to a svcudp_create() or svctcp_create()
call.

#include <stdio.h>
#include <rpc/rpc.h>
#include <sys/socket.h>
#include <netinet/in.h>

gettransient(proto, vers, sockp)
int proto, vers, *sockp;
{
 static int prognum = 0x40000000;
 int s, len, socktype;
 struct sockaddr_in addr;
 switch(proto) {
 case IPPROTO_UDP:
 socktype = SOCK_DGRAM;
 break;
 case IPPROTO_TCP:
 socktype = SOCK_STREAM;
 break;
 default:
 fprintf(stderr, "unknown protocol type\n");
 return(0);
 }
 if (*sockp == RPC_ANYSOCK) {
 if ((s = socket(AF_INET, socktype, 0)) < 0) {
 perror("socket");
 return(0);
 }
 *sockp = s;
 } else
 s = *sockp;
 addr.sin_addr.s_addr = 0;
 addr.sin_family = AF_INET;
 addr.sin_port = 0;
007-0810-100 155

6: RPC Programming Guide
 len = sizeof(addr);
 /* may be already bound, so don't check for error*/
 bind(s, &addr, len);
 if (getsockname(s, &addr, &len)< 0) {
 perror("getsockname");
 return(0);
 }
 while (!pmap_set(prognum++, vers, proto,
 ntohs(addr.sin_port)))
 continue;
 return (prognum-1);
}

Note: The call to ntohs() is necessary to ensure that the port number in addr.sin_port,
which is in network byte order, is passed in host byte order (as pmap_set() expects). See
byteorder(3N) for more information about network address conversion from network
to host byte order.

The following programs illustrate how to use the gettransient() routine. The client
makes an RPC call to the server, passing it a transient program number. Next, the client
waits to receive a callback from the server at that program number. The server registers
the program EXAMPLEPROG so it can receive the RPC call informing it of the callback
program number. Then, at some random time (on receiving a SIGALRM signal in this
example), it sends a callback RPC call, using the program number it received earlier.

/* client */
#include <stdio.h>
#include <rpc/rpc.h>

void callback();
char hostname[256];

main()
{
 int x, ans, s;
 SVCXPRT *xprt;

 gethostname(hostname, sizeof(hostname));
 s = RPC_ANYSOCK;
 x = gettransient(IPPROTO_UDP, 1, &s);
 fprintf(stderr, "client gets prognum %d\n", x);
 if ((xprt = svcudp_create(s)) == NULL) {
156 007-0810-100

More Examples
 fprintf(stderr, "rpc_server: svcudp_create\n");
 exit(1);
 }
 /* protocol is 0 - gettransient does registering */
 (void) svc_register(xprt, x, 1, callback, 0);
 ans = callrpc(hostname, EXAMPLEPROG, EXAMPLEVERS,
 EXAMPLEPROC_CALLBACK, xdr_int, &x, xdr_void, 0);
 if ((enum clnt_stat) ans != RPC_SUCCESS) {
 fprintf(stderr, "call:");
 clnt_perrno(ans);
 fprintf(stderr, "\n");
 }
 svc_run();
 fprintf(stderr,
 "Error: svc_run shouldn't have returned\n");
 exit(1);
}

void callback (rqstp, transp)
 register struct svc_req *rqstp;
 register SVCXPRT *transp;
{
 switch (rqstp->rq_proc) {
 case 0:
 if (!svc_sendreply(transp, xdr_void, 0)) {
 fprintf(stderr, "err: exampleprog\n");
 return(1);
 }
 return(0);
 case 1:
 if (!svc_getargs(transp, xdr_void, 0)) {
 svcerr_decode(transp);
 return(1);
 }
 fprintf(stderr, "client got callback\n");
 if (!svc_sendreply(transp, xdr_void, 0)) {
 fprintf(stderr, "err: exampleprog");
 return(1);
 }
 }
}

/* server */
007-0810-100 157

6: RPC Programming Guide
#include <stdio.h>
#include <rpc/rpc.h>
#include <sys/signal.h>

char *getnewprog();
char hostname[256];
void docallback();
int pnum; /*program number for callback routine */

main()
{
 gethostname(hostname, sizeof(hostname));
 registerrpc(EXAMPLEPROG, EXAMPLEVERS,
 EXAMPLEPROC_CALLBACK, getnewprog, xdr_int,
 xdr_void);
 fprintf(stderr, "server going into svc_run\n");
 signal(SIGALRM, docallback);
 alarm(10);
 svc_run();
 fprintf(stderr,
 "Error: svc_run shouldn't have returned\n");
 exit(1);
}

char *getnewprog(pnump)
char *pnump;
{
 pnum = *(int *)pnump;
 return NULL;
}

void docallback()
{
 int ans;
 ans = callrpc(hostname, pnum, 1, 1, xdr_void, 0,
 xdr_void, 0);
 if (ans != 0) {
 fprintf(stderr, "server: %s", clnt_sperrno(ans));
 }
}

158 007-0810-100

Chapter 7

7. XDR and RPC Language Structure

This chapter describes the XDR and RPC languages. Topics include:

• XDR language structure, syntax, and examples

• RPC language structure, syntax, and examples

Note: For an overview of the relationship between the RPC and XDR languages and the
RPC interface, see Chapter 4, “Introduction to RPC Programming.” For information
about rpcgen, see Chapter 5, “Programming with rpcgen.” For information about RPC
programming, see Chapter 6, “RPC Programming Guide.” For technical details about
XDR, see Chapter 8, “XDR Programming Notes.” For complete specifications of the RPC
and XDR protocols, see Appendix A, “RPC Protocol Specification” and Appendix B,
“XDR Protocol Specification”.
007-0810-100 159

7: XDR and RPC Language Structure
XDR Language

This section describes the components of the XDR language.

Notational Conventions

This specification uses an extended Backus-Naur Form notation for describing the XDR
language. This notation has the following characteristics:

• These are the special characters:

| () [] " *

• Terminal symbols are strings of any characters surrounded by double quotes (" ").

• Nonterminal symbols are strings of non-special characters.

• Alternative items are separated by a vertical bar (|).

• Optional items are enclosed in brackets ([]).

• Items are grouped by enclosing them in parentheses (()).

• An asterisk (*) following an item means zero or more occurrences of that item.

For example, consider this pattern:

"a" "very" ("," "very")* ["cold" "and"] "rainy" ("day" | "night")

An infinite number of strings match this pattern; for example:

"a very rainy day"
"a very, very rainy day"
"a very cold and rainy day"
"a very, very, very cold and rainy night"
160 007-0810-100

XDR Language
Lexical Notes

This section discusses some lexical features of the XDR language:

• Comments begin with /* and end with */. For example:

/* comment */

• White space separates items and is otherwise ignored.

• An identifier is a letter followed by an optional sequence of letters, digits, or an
underscore (_). The case of identifiers is not ignored.

• A constant is a sequence of one or more decimal digits, optionally preceded by a
minus sign (–).

Syntax Information

This section describes XDR language syntax:

declaration:
 type-specifier identifier
 | type-specifier identifier "[" value "]"
 | type-specifier identifier "<" [value] ">"
 | "opaque" identifier "[" value "]"
 | "opaque" identifier "<" [value] ">"
 | "string" identifier "<" [value] ">"
 | type-specifier "*" identifier
 | "void"

value:
 constant
 | identifier

type-specifier:
 ["unsigned"] "int"
 | ["unsigned"] "hyper"
 | "float"
 | "double"
 | "bool"
 | enum-type-spec
 | struct-type-spec
 | union-type-spec
 | identifier

enum-type-spec:
 "enum" enum-body
007-0810-100 161

7: XDR and RPC Language Structure
enum-body:
 "{"
 (identifier "=" value)
 ("," identifier "=" value)*
 "}"

struct-type-spec:
 "struct" struct-body

struct-body:
 "{"
 (declaration ";")
 (declaration ";")*
 "}"

union-type-spec:
 "union" union-body

union-body:
 "switch" "(" declaration ")" "{"
 ("case" value ":" declaration ";")
 ("case" value ":" declaration ";")*
 ["default" ":" declaration ";"]
 "}"

constant-def:
 "const" identifier "=" constant ";"

type-def:
 "typedef" declaration ";"
 | "enum" identifier enum-body ";"
 | "struct" identifier struct-body ";"
 | "union" identifier union-body ";"

definition:
 type-def
 | constant-def

specification:
 definition *
162 007-0810-100

XDR Language
Syntax Notes

This section provides additional information about XDR language syntax:

• The following keywords cannot be used as identifiers:
bool double opaque typedef
case enum string union
const float struct unsigned
default hyper switch void

• Only unsigned constants may be used as size specifications for arrays. If an identifier
is used, it must have been declared previously as an unsigned constant in a const
definition.

• Constant and type identifiers within the scope of a specification are in the same
name space and must be declared uniquely within this scope.

• Similarly, variable names must be unique within the scope of struct and union
declarations. Nested struct and union declarations create new scopes.

• The discriminant of a union must be of a type that evaluates to an integer. That is,
int, unsigned int, bool, an enumerated type, or any typedef type that evaluates to
one of these is legal. Also, the case values must be one of the legal values of the
discriminant. Finally, a case value may not be specified more than once within the
scope of a union declaration.

XDR Data Description Example

The following is a short XDR data description of a “file” that you might use to transfer
files from one machine to another:

const MAXUSERNAME = 32; /* max length of a user name */
const MAXFILELEN = 65535; /* max length of a file */
const MAXNAMELEN = 255; /* max length of a filename */

/* Types of files: */
enum filekind {
 TEXT = 0, /* ascii data */
 DATA = 1, /* raw data */
 EXEC = 2 /* executable */
};

/* File information, per kind of file: */
union filetype switch (filekind kind) {
007-0810-100 163

7: XDR and RPC Language Structure
 case TEXT:
 void; /* no extra information */
 case DATA:
 string creator<MAXNAMELEN>; /* data creator */
 case EXEC:
 string interpreter<MAXNAMELEN>;/*program interpreter*/
};

/* A complete file: */
struct file {
 string filename<MAXNAMELEN>; /* name of file */
 filetype type; /* info about file */
 string owner<MAXUSERNAME>; /* owner of file */
 opaque data<MAXFILELEN>; /* file data */
};

Suppose that a user named jean wants to store a LISP program sillyprog, which
contains just the data “(quit).” The file would be encoded as shown in Table 7-1.

Table 7-1 DR Data Encoding Examples

Offset Hex Bytes ASCII Description

0 00 00 00 09 Length of filename = 9

4 73 69 6c 6c sill Filename characters

8 79 70 72 6 ypro More filename characters

12 67 00 00 00 g... The last filename character plus 3 zero-bytes of fill

16 00 00 00 02 File kind is EXEC = 2

20 00 00 00 04 Length of interpreter name = 4

24 6c 69 73 70 lisp Interpreter name

28 00 00 00 04 Length of owner name = 4

32 6a 65 61 6e jean Owner name

36 00 00 00 06 Length of data = 6

40 28 71 75 69 (qui File data bytes

44 74 29 00 00 t).. More data plus 2 zero-bytes of fill
164 007-0810-100

RPC Language
RPC Language

RPC language is an extension of the XDR language; the sole extension is the addition of
the program type.

Definitions

An RPC language file consists of a series of definitions:

definition-list:
 definition ";"
 definition ";" definition-list

It recognizes six types of definition:

definition:
 enum-definition
 struct-definition
 union-definition
 typedef-definition
 const-definition
 program-definition

Structures

An XDR structure is declared almost exactly like its C counterpart:

struct-definition:
 "struct" struct-ident "{"
 declaration-list
 "}"

declaration-list:
 declaration ";"
 declaration ";" declaration-list

For example, the following code is an XDR structure for a two-dimensional coordinate
and the C structure into which it is compiled in the output header file:

struct coord { struct coord {
 int x; --> int x;
 int y; int y;
007-0810-100 165

7: XDR and RPC Language Structure
}; };
 typedef struct coord coord;

The output is identical to the input, except for the added typedef at the end of the
output. Using typedef allows you to use coord instead of struct coord when declaring
items.

Unions

XDR unions are discriminated unions, and they look different from C unions. They are
more analogous to Pascal variant records than they are to C unions:

union-definition:
 "union" union-ident "switch" "(" declaration ")" "{"
 case-list
 "}"
case-list:
 "case" value ":" declaration ";"
 "default" ":" declaration ";"
 "case" value ":" declaration ";" case-list

The next example shows a type that might be returned as the result of a read data
operation. If no error, return a block of data. Otherwise, return nothing.

union read_result switch (int errno) {
case 0:
 opaque data[1024];
default:
 void;
};

This code is compiled into:

struct read_result {
 int errno;
 union {
 char data[1024];
 } read_result_u;
};
typedef struct read_result read_result;

Notice that the union component of the output struct has the name as the type name,
except for the trailing _u.
166 007-0810-100

RPC Language
Enumerations

XDR enumerations have the same syntax as C enumerations:

enum-definition:
 "enum" enum-ident "{"
 enum-value-list
 "}"

enum-value-list:
 enum-value
 enum-value "," enum-value-list

enum-value:
 enum-value-ident
 enum-value-ident "=" value

The XDR enum and the C enum are compiled into:

enum colortype { enum colortype {
 RED = 0, RED = 0,
 GREEN = 1, --> GREEN = 1,
 BLUE = 2 BLUE = 2
}; };
 typedef enum colortype colortype;

Typedefs

An XDR typedef has the same syntax as a C typedef:

typedef-definition:
 "typedef" declaration

The following example defines a fname_type used to declare filename strings that have a
maximum length of 255 characters:

typedef string fname_type<255>; --> typedef char *fname_type;

Constants

XDR constants are symbolic constants. They may be used wherever an integer constant
is used; for example, in array-size specifications:
007-0810-100 167

7: XDR and RPC Language Structure
const-definition:
 "const" const-ident "=" integer

For example, the following defines a constant DOZEN equal to 12:

const DOZEN = 12; --> #define DOZEN 12

Programs

RPC programs are declared using this syntax:

program-definition:
 "program" program-ident "{"
 version-list
 "}" "=" value

version-list:
 version ";"
 version ";" version-list

version:
 "version" version-ident "{"
 procedure-list
 "}" "=" value

procedure-list:
 procedure ";"
 procedure ";" procedure-list

procedure:
 type-ident procedure-ident "(" type-ident ")" "=" value

This example shows the time protocol, revisited:

/*
 * time.x: Get or set the time. Time is represented as
 * number of seconds since 0:00, January 1, 1970.
 */
program TIMEPROG {
 version TIMEVERS {
 unsigned int TIMEGET(void) = 1;
 void TIMESET(unsigned) = 2;
 } = 1;
} = 44;
168 007-0810-100

RPC Language
This file compiles into #defines in the output header file:

#define TIMEPROG 44
#define TIMEVERS 1
#define TIMEGET 1
#define TIMESET 2

Declarations

There are four kinds of declaration in XDR:

• Simple declarations are like simple C declarations:

 simple-declaration:
 type-ident variable-ident

For example:

 colortype color; --> colortype color;

• Fixed-array declarations are like array declarations in C:

 fixed-array-declaration:
 type-ident variable-ident "[" value "]"

For example:

 colortype palette[8]; --> colortype palette[8];

• Variable-array declarations have no explicit syntax in C, so XDR invents its own
using angle brackets:

 variable-array-declaration:
 type-ident variable-ident "<" value ">"
 type-ident variable-ident "<" ">"

• The maximum size is specified between the angle brackets. The size may be
omitted, indicating that the array may be of any size:

 int heights<12>; /* at most 12 items */
 int widths<>; /* any number of items */

• Since variable-length arrays have no explicit syntax in C, these declarations are
actually compiled into structs. For example, the heights declaration gets compiled
into the following struct:

 struct {
 u_int heights_len; /* # of items in array */
 int *heights_val; /* pointer to array */
 } heights;
007-0810-100 169

7: XDR and RPC Language Structure
• The number of items in the array is stored in the _len component, and the pointer to
the array is stored in the _val component. The first part of each component’s name is
the same as the name of the declared XDR variable.

• Pointer declarations are made in XDR exactly as they are in C. You can’t really send
pointers over the network, but you can use XDR pointers to send recursive data
types such as lists and trees. The type is actually called optional data, not pointer, in
XDR language.

 pointer-declaration:
 type-ident "*" variable-ident

For example:

 listitem *next; --> listitem *next;

Special Cases

There are a few exceptions to the rules described in the preceding sections:

• Booleans

C has no built-in boolean type. However, the RPC library does have a boolean type
called bool_t that is either TRUE or FALSE. Things declared as type bool in XDR
language are compiled into bool_t in the output header file. For example:

 bool married; --> bool_t married;

• Strings

C has no built-in string type, but instead uses the null-terminated char * convention.
In XDR language, strings are declared using the string keyword and are compiled
into char *s in the output header file. The number contained in the angle brackets
specifies the maximum number of characters allowed in the string (not counting the
NULL character). The maximum size may be left off, indicating a string of arbitrary
length. For example:

 string name<32>; --> char *name;
 string longname<>; --> char *longname;

• Opaque data

Opaque data is used in RPC and XDR to describe untyped data; that is, just
sequences of arbitrary bytes. Opaque data may be declared as either a fixed- or a
variable-length array. For example:
170 007-0810-100

RPC Language
 opaque diskblock[512]; --> char diskblock[512];
 opaque filedata<1024>; --> struct {
 u_int filedata_len;
 char *filedata_val;
 } filedata;

• Voids

In a void declaration, the variable is not named. The declaration is just void and
nothing else. Void declarations can occur in only two places: union definitions and
program definitions (as the argument or the result of a remote procedure).
007-0810-100 171

Chapter 8

8. XDR Programming Notes

XDR is the backbone of Sun’s RPC package—the data for remote procedure calls is
transmitted using the XDR standard. This chapter is based on Sun’s technical notes about
the implementation of the XDR standard. (For a complete specification of the XDR
protocol, see Appendix B, “XDR Protocol Specification”.)

Most programmers (especially RPC programmers) will only need the information in
three sections of this chapter: “Number Filters” on page 180, “Floating-point Filters” on
page 181, and “Enumeration Filters” on page 181. Topics in this chapter include:

• overview of XDR programming

• XDR library routines and primitives

• XDR operation directions

• XDR stream access

• defining new streams and data types

• advanced topics
007-0810-100 173

8: XDR Programming Notes
Overview of XDR Programming

XDR’s approach to standardizing data representations is canonical. That is, XDR defines
a single byte order (big-endian), a single floating-point representation (IEEE), and so on.
Any program running on any machine can use XDR to create portable data by translating
its local data representations to the equivalent XDR standard representations; similarly,
any program running on any machine can read portable data by translating the XDR
standard representations to its local equivalents. The single standard completely
decouples programs that create or send portable data from those that use or receive
portable data.

The advent of a new machine or a new language has no effect on the community of
existing portable data creators and users. A new machine joins this community by being
taught how to convert the standard representations and its local representations; the
local representations of other machines are irrelevant.

Conversely, the local representations of the new machine are also irrelevant to existing
programs running on other machines; such programs can immediately read portable
data produced by the new machine, because such data conforms to the canonical
standard that it already understands.

There are strong precedents for XDR’s canonical approach. For example, TCP/IP,
UDP/IP, Ethernet, and indeed all protocols below layer five of the ISO model are
canonical protocols. The advantage of any canonical approach is simplicity; in the case
of XDR, a single set of conversion routines is written once and is never touched again.
The canonical approach has a disadvantage, but this disadvantage is unimportant in
real-world data transfer applications.

Suppose two little-endian machines are transferring integers according to the XDR
standard. The sending machine converts the integers from little-endian byte order to
XDR (big-endian) byte order; the receiving machine performs the reverse conversion.
Because both machines observe the same byte order, their conversions are unnecessary.
The point, however, is not necessity but cost, when compared to the alternative.

The time spent converting to and from a canonical representation is insignificant,
especially in networking applications. Most of the time required to prepare a data
structure for transfer is not spent in conversion but in traversing the elements of the data
structure. To transmit an image of a tree, for example, each leaf must be visited and each
element in a leaf record must be copied to a buffer and aligned there; storage for the leaf
may have to be deallocated as well. Similarly, to receive a tree image, storage must be
allocated for each leaf; data must be moved from the buffer to the leaf and properly
174 007-0810-100

Overview of XDR Programming
aligned; and pointers must be constructed to link the leaves. Every machine pays the cost
of traversing and copying data structures, regardless of whether conversion is required.

In networking applications, communication overhead—the time required to move the
data down through the sender’s protocol layers, across the network, and up through the
receiver’s protocol layers—dwarfs conversion overhead.

Consider the writer and reader programs.

The writer program looks like this:

#include <stdio.h>

main() /* writer.c */
{
 long i;

 for (i = 0; i < 8; i++) {
 if (fwrite((char *)&i, sizeof(i), 1, stdout) != 1) {
 fprintf(stderr, "failed!\n");
 exit(1);
 }
 }
 exit(0);
}

The reader program looks like this:

#include <stdio.h>

main() /* reader.c */
{
 long i, j;

 for (j = 0; j < 8; j++) {
 if (fread((char *)&i, sizeof (i), 1, stdin) != 1) {
 fprintf(stderr, "failed!\n");
 exit(1);
 }
 printf("%ld ", i);
 }
 printf("\n");
 exit(0);
}

007-0810-100 175

8: XDR Programming Notes
The writer and reader programs appear to be portable, because they pass lint
checking, and they exhibit the same behavior when executed on different hardware
architectures—an IRIS-4D and a VAX.

Piping the output of the writer program to the reader program produces identical
results on both machines:

IRIS% writer | reader
0 1 2 3 4 5 6 7
VAX% writer | reader
0 1 2 3 4 5 6 7

With the advent of local area networks and Berkeley’s 4.2BSD UNIX came the concept of
“network pipes”—a process produces data on one machine, and a second process
consumes data on another machine. You can construct a network pipe with writer and
reader. The next example shows the results if writer produces data on an IRIS, and
reader consumes data on a VAX:

IRIS% writer | rsh vax reader
0 16777216 33554432 50331648 67108864 83886080 100663296 117440512
IRIS%

You can obtain identical results by executing writer on the VAX and reader on the
IRIS. These results occur because the byte ordering of long integers differs between the
VAX and the IRIS, even though word size is the same.

Note: The 16777216 is 224—when the order of 4 bytes is reversed, the 1 that started in the
zeroth bit winds up in the 24th bit.

Whenever data is shared by two or more machine types, there is a need for portable data.
Programs can be made data-portable by replacing theread() andwrite() system calls
with calls to the XDR routine xdr_long(), a filter that knows the standard
representation of a long integer in its external form.

This is the revised version of the writer program:

#include <stdio.h>
#include <rpc/rpc.h> /* xdr is a sub-library of rpc */

main() /* writer.c */
{
 XDR xdrs;
176 007-0810-100

Overview of XDR Programming
 long i;

 xdrstdio_create(&xdrs, stdout, XDR_ENCODE);
 for (i = 0; i < 8; i++) {
 if (! xdr_long(&xdrs, &i)) {
 fprintf(stderr, "failed!\n");
 exit(1);
 }
 }
 exit(0);
}

This is a revised version of the reader program:

#include <stdio.h>
#include <rpc/rpc.h> /* xdr is a sub-library of rpc */

main() /* reader.c */
{
 XDR xdrs;
 long i, j;

 xdrstdio_create(&xdrs, stdin, XDR_DECODE);
 for (j = 0; j < 8; j++) {
 if (! xdr_long(&xdrs, &i)) {
 fprintf(stderr, "failed!\n");
 exit(1);
 }
 printf("%ld ", i);
 }
 printf("\n");
 exit(0);
}

When the revised programs are executed on an IRIS, on a VAX, and from an IRIS to a
VAX, the results are:

IRIS% writer | reader
0 1 2 3 4 5 6 7

VAX% writer | reader
0 1 2 3 4 5 6 7

IRIS% writer | rsh vax reader
0 1 2 3 4 5 6 7
007-0810-100 177

8: XDR Programming Notes
Dealing with integers is just the tip of the portable-data iceberg. Arbitrary data structures
present portability problems, particularly with respect to alignment and pointers.
Alignment on word boundaries may cause the size of a structure to vary from machine
to machine. Pointers are convenient to use, but they have no meaning outside the
machine where they are defined.

Note: On IRIX systems, C programs that want access to XDR routines should include the
<rpc/rpc.h> header file, which contains all necessary interfaces to the XDR system.
Since the default C DSO contains all the XDR routines, you don’t need to indicate any
special libraries on the compilation line in order to use XDR. See “Compiling BSD and
RPC Programs” in Chapter 1 for additional compiling hints.

The XDR Library

The XDR library not only solves data portability problems, it also lets you write and read
arbitrary C constructs in a consistent, specified, well-documented manner. Thus, it
makes sense to use the XDR library, even when data is not shared among machines on a
network.

The XDR library has filter routines for strings (null-terminated arrays of bytes),
structures, unions, and arrays, to name a few. Using more primitive routines, you can
write your own specific XDR routines to describe arbitrary data structures, including
elements of arrays, arms of unions, or objects pointed at from other structures. The
structures themselves may contain arrays of arbitrary elements or pointers to other
structures.

Examine the reader and writer programs more closely. There is a family of XDR
stream creation routines in which each member treats the stream of bits differently. In the
example, data is manipulated using standard I/O routines; therefore, use
xdrstdio_create(). The parameters to XDR stream creation routines vary according
to their function. In our example, xdrstdio_create() takes a pointer to an XDR
structure that it initializes, a pointer to a FILE that the input or output is performed on,
and the operation. The operation may be XDR_ENCODE for serializing in the writer
program or XDR_DECODE for deserializing in the reader program.
178 007-0810-100

The XDR Library
Note: RPC users never need to create XDR streams; the RPC system itself creates the
streams, which are then passed to the users.

The xdr_long() primitive is characteristic of most XDR library primitives and all client
XDR routines. First, the routine returns FALSE (that is, 0) if it fails and TRUE (1) if it
succeeds. Second, for each data type xxx there is an associated XDR routine of the form
shown in this example:

xdr_xxx(XDR *xdrs, xxx *xp)
{
}

In this case, xxx is long, and the corresponding XDR routine is a primitive, xdr_long().
The client could also define an arbitrary structure xxx, in which case the client would also
supply the xdr_xxx() routine, describing each field by calling XDR routines of the
appropriate type. In all cases, the first parameter, xdrs, can be treated as an opaque handle
and passed to the primitive routines.

XDR routines are direction-independent; that is, the same routines are called to serialize
or deserialize data. This feature is critical to the software engineering of portable data.
The idea is to call the same routine for either operation—which almost guarantees that
serialized data can also be deserialized. One routine is used by both producer and
consumer of networked data. This direction independence is implemented by always
passing the address of an object rather than the object itself—only in the case of
deserialization is the object modified. This feature is not shown in our trivial example,
but its value becomes obvious when nontrivial data structures are passed among
machines. If needed, the user can obtain the direction of the XDR operation. (See “XDR
Operation Directions” on page 192 for details.)

For a slightly more complicated example, assume that a person’s gross assets and
liabilities are to be exchanged among processes, and assume that these values are
important enough to warrant their own data type:

struct gnumbers {
 long g_assets;
 long g_liabilities;
};

A corresponding XDR routine describing this structure is:

bool_t /* TRUE is success, FALSE is failure */
xdr_gnumbers(xdrs, gp)
007-0810-100 179

8: XDR Programming Notes
XDR *xdrs;
struct gnumbers *gp;
{
 if (xdr_long(xdrs, &gp->g_assets) &&
 xdr_long(xdrs, &gp->g_liabilities))
 return(TRUE);
 return(FALSE);
}

Note that the parameter xdrs is never inspected or modified; it is only passed on to the
subcomponent routines. It is imperative to inspect the return value of each XDR routine
call and to give up immediately and return FALSE if the subroutine fails.

This example also shows that the type bool_t is declared as an integer whose only values
are TRUE (1) and FALSE (0). This chapter uses the following definitions:

#define bool_t int
#define TRUE 1
#define FALSE 0

Keeping these conventions in mind, xdr_gnumbers() can be rewritten like this:

xdr_gnumbers(XDR *xdrs, struct gnumbers *gp)
{
 return (xdr_long(xdrs, &gp->g_assets) &&
 xdr_long(xdrs, &gp->g_liabilities));
}

This chapter uses both coding styles.

XDR Library Primitives

This section gives a synopsis of each XDR primitive, including basic data types,
constructed data types, and XDR utilities. The interface to these primitives and utilities
is defined in the include file <rpc/xdr.h>, automatically included by <rpc/rpc.h>.

Number Filters

The XDR library provides primitives to translate between numbers and their
corresponding external representations. Primitives cover the set of numbers in:
180 007-0810-100

XDR Library Primitives
[signed, unsigned] [short, int, long]

The eight primitives are:

bool_t xdr_char(XDR *xdrs, char *cp);

bool_t xdr_u_char(XDR *xdrs, unsigned char *ucp);

bool_t xdr_int(XDR *xdrs, int *ip);

bool_t xdr_u_int(XDR *xdrs, unsigned *up);

bool_t xdr_long(XDR *xdrs, long *lip);

bool_t xdr_u_long(XDR *xdrs, u_long *lup);

bool_t xdr_short(XDR *xdrs, short *sip);

bool_t xdr_u_short(XDR *xdrs, u_short *sup);

The first parameter, xdrs, is an XDR stream handle. The second parameter is the address
of the number that provides data to the stream or receives data from it. All routines
return TRUE if they complete successfully, and FALSE otherwise.

Floating-point Filters

The XDR library also provides primitive routines for C’s floating-point types:

bool_t xdr_float(XDR *xdrs, float *fp);

bool_t xdr_double(XDR *xdrs, double *dp);

The first parameter, xdrs, is an XDR stream handle. The second parameter is the address
of the floating-point number that provides data to the stream or receives data from it.
Both routines return TRUE if they complete successfully, and FALSE otherwise.

Note: Since the numbers are represented in IEEE floating point, routines may fail when
decoding a valid IEEE representation into a machine-specific representation, or vice
versa.

Enumeration Filters

The XDR library provides a primitive for generic enumerations. The primitive assumes
that a C enumeration has the same representation inside the machine as a C integer. The
007-0810-100 181

8: XDR Programming Notes
boolean type is an important instance of the enum. The external representation of a
boolean is always one (TRUE) or zero (FALSE).

#define bool_t int
#define FALSE 0
#define TRUE 1
#define enum_t int

bool_t xdr_enum(XDR *xdrs, enum_t *ep);
bool_t xdr_bool(XDR *xdrs, bool_t *bp);

The second parameters ep and bp are addresses of the associated type that provides data
to, or receives data from, the stream xdrs. The routines return TRUE if they complete
successfully, and FALSE otherwise.

No Data

Occasionally, an XDR routine must be supplied to the RPC system, even when no data is
passed or required. The XDR library provides this routine:

bool_t xdr_void(XDR *xdrs, void *vp); /*always returns TRUE*/

Constructed Data Type Filters

Constructed or compound data type primitives require more parameters and perform
more complicated functions than the primitives already discussed. This section includes
primitives for strings, arrays, unions, and pointers to structures.

Constructed data type primitives may use memory management. In many cases,
memory is allocated when deserializing data with XDR_DECODE. Therefore, the XDR
package must provide means to deallocate memory. The XDR operation XDR_FREE is
used for this purpose.

To review, the three XDR directional operations are:

• XDR_ENCODE

• XDR_DECODE

• XDR_FREE
182 007-0810-100

XDR Library Primitives
Strings

In C language, a string is defined as a sequence of bytes terminated by a null byte, which
is not considered when calculating string length. However, when a string is passed or
manipulated, a pointer to the string is employed. Therefore, the XDR library defines a
string to be a char * and not a sequence of characters.

The external representation of a string is drastically different from its internal
representation. Externally, strings are represented as sequences of ASCII characters,
while internally they are represented with character pointers. Conversion between the
two representations is accomplished with the xdr_string() routine:

bool_t xdr_string(XDR *xdrs, char **sp, u_int maxlength);

The first parameter, xdrs, is the XDR stream handle. The second parameter, sp, is a pointer
to a string (type char *). The third parameter, maxlength, specifies the maximum number
of bytes allowed during encoding or decoding. Its value is usually specified by a
protocol. (For example, a protocol specification may say that a filename may be no longer
than 255 characters.)

The routine returns FALSE if the number of characters exceeds maxlength, and TRUE if it
doesn’t.

Note: Keep maxlength small. If it is too big, you can overrun the heap, since
xdr_string() will call malloc() for space.

The behavior of xdr_string() is similar to the behavior of other routines discussed in
this chapter. The XDR_ENCODE operation is easiest to understand. The parameter sp
points to a string of a certain length; if the string does not exceed maxlength, the bytes are
serialized.

The effect of deserializing a string is subtle. First, the length of the incoming string is
determined; it must not exceed maxlength. Next, sp is dereferenced; if the value is NULL,
a string of the appropriate length is allocated, and *sp is set to this string. If the original
value of *sp is non-NULL, the XDR package assumes that a target area has been allocated
that can hold strings no longer than maxlength. In either case, the string is decoded into
the target area. The routine then appends a null character to the string.
007-0810-100 183

8: XDR Programming Notes
In the XDR_FREE operation, the string is obtained by dereferencing sp. If the string is not
NULL, it is freed and *sp is set to NULL. In this operation, xdr_string() ignores the
maxlength parameter.

Byte Arrays

Variable-length byte arrays are often preferable to strings. Byte arrays differ from strings
in several ways:

• The length of the array (the byte count) is explicitly located in an unsigned integer.

• The byte sequence is not terminated by a null character.

• The external representation of the bytes in the array is the same as their internal
representation.

The xdr_bytes() primitive converts byte arrays between their internal and external
representations:

bool_t xdr_bytes(XDR *xdrs, char **bpp, u_int *lp,
 u_int maxlength);

The usage of the xdrs, bpp, and maxlength parameters is identical to their usage in
xdr_string(). The length of the byte area is obtained by dereferencing lp when
serializing; *lp is set to the byte length when deserializing.

Arrays

The XDR library provides a primitive for handling arrays of arbitrary elements.
xdr_bytes() treats a subset of generic arrays, in which the size of array elements is
known to be 1, and the external description of each element is built-in. The generic array
primitive, xdr_array(), requires parameters identical to those of xdr_bytes() plus
two more: the size of array elements and an XDR routine to handle each of the elements.
This routine is called to encode or decode each element of the array:

bool_t xdr_array(XDR *xdrs, char **ap, u_int *lp,
 u_int maxlength, u_int elementsize,
 xdrproc_t *xdr_element);

The parameter ap is the address of the pointer to the array. If *ap is NULL when the array
is being deserialized, XDR allocates an array of the appropriate size and sets *ap to that
array. The element count of the array is obtained from *lp when the array is serialized; *lp
is set to the array length when the array is deserialized. The parameter maxlength is the
184 007-0810-100

XDR Library Primitives
maximum number of elements that the array is allowed to have; elementsize is the byte
size of each element of the array; the C function sizeof() can be used to obtain this
value. The xdr_element() routine is called to serialize, deserialize, or free each
element of the array.

Examples of Constructed Data Types

Before defining more constructed data types, consider the examples in this section.

Example A

A user on a networked machine can be identified by:

• the machine name, such as krypton; see gethostname(2)

• the user’s user ID; see geteuid(2)

• the group numbers to which the user belongs; see getgroups(2)

A structure with this information and its associated XDR routine could be coded like this:

struct netuser {
 char *nu_machinename;
 int nu_uid;
 u_int nu_glen;
 int *nu_gids;
};

#define NLEN 255 /* machine names must < 256 chars */
#define NGRPS 20 /* user can't belong to > 20 groups */

bool_t
xdr_netuser(XDR *xdrs, struct netuser *nup)
{
 return (xdr_string(xdrs, &nup->nu_machinename, NLEN) &&
 xdr_int(xdrs, &nup->nu_uid) &&
 xdr_array(xdrs, &nup->nu_gids, &nup->nu_glen,
 NGRPS, sizeof (int), xdr_int));
}

Example B

A party of network users could be implemented as an array of netuser structure. This is
the declaration and its associated XDR routines:
007-0810-100 185

8: XDR Programming Notes
struct party {
 u_int p_len;
 struct netuser *p_nusers;
};
#define PLEN 500 /* max number of users in a party */

bool_t
xdr_party(XDR *xdrs, struct party *pp)
{
 return (xdr_array(xdrs, &pp->p_nusers, &pp->p_len, PLEN,
 sizeof (struct netuser), xdr_netuser));
}

Example C

The well-known parameters to main(), argc and argv, can be combined into a structure,
and an array of instances of this structure can make up a history of commands. The
declarations and XDR routines might look like this:

struct cmd {
 u_int c_argc;
 char **c_argv;
};

struct history {
 u_int h_len;
 struct cmd *h_cmds;
};

#define NCMDS 75 /* history is no more than 75 commands */
#define ALEN 1000 /* args cannot be > 1000 chars */
#define NARGC 100 /* command cannot have > 100 args */

bool_t
xdr_wrap_string(XDR *xdrs, char **sp)
{
 return (xdr_string(xdrs, sp, ALEN));
}

bool_t
xdr_cmd(XDR *xdrs, struct cmd *cp)
{
 return (xdr_array(xdrs, &cp->c_argv, &cp->c_argc, NARGC,
 sizeof (char *), xdr_wrap_string));
}

186 007-0810-100

XDR Library Primitives
bool_t
xdr_history(XDR *xdrs, struct history *hp)
{
 return (xdr_array(xdrs, &hp->h_cmds, &hp->h_len, NCMDS,
 sizeof (struct cmd), xdr_cmd));
}

The most confusing part of this example is that the xdr_wrap_string() routine is
needed to package the xdr_string() routine, because the implementation of
xdr_array() only passes two parameters to the array element description routine;
xdr_wrap_string() supplies the third parameter to xdr_string().

Opaque Data

In some protocols, handles are passed from a server to a client; the client passes the
handle back to the server at some later time. Handles are never inspected by clients; they
are obtained and submitted. In other words, handles are opaque. The xdr_opaque()
primitive is used to describe fixed-size opaque bytes.

bool_t xdr_opaque(XDR *xdrs, char *p, u_int len);

The parameter p is the location of the bytes; len is the number of bytes in the opaque
object. By definition, the actual data contained in the opaque object is not machine
portable.

Fixed-length Size Arrays

The XDR library does not provide a primitive for fixed-length arrays; the primitive
xdr_array() is for variable-length arrays.

Example A could be rewritten to use fixed-size arrays, as shown in this code:

#define NLEN 255
/* machine names must be shorter than 256 chars */
#define NGRPS 20
/* user cannot be a member of more than 20 groups */
struct netuser {
 char *nu_machinename;
 int nu_uid;
 int nu_gids[NGRPS];
};
007-0810-100 187

8: XDR Programming Notes
bool_t
xdr_netuser(XDR *xdrs, struct netuser *nup)
{
 int i;
 if (! xdr_string(xdrs, &nup->nu_machinename, NLEN))
 return (FALSE);
 if (! xdr_int(xdrs, &nup->nu_uid))
 return (FALSE);
 if (!xdr_vector(xdrs, nup->nu_gi , NGRPS, sizeof(int),
 xdr_int)) {
 return (FALSE);
 }
 return (TRUE);
}

Discriminated Unions

The XDR library supports discriminated unions, C unions, and an enum_t value that
selects an “arm” of the union:

struct xdr_discrim {
 enum_t value;
 bool_t (*proc)();
};

bool_t xdr_union(XDR *xdrs, enum_t *dscmp, char *unp,
 struct xdr_discrim *arms,
 xdrproc_t defaultarm);

First, the routine translates the discriminant of the union located at *dscmp. The
discriminant is always an enum_t. Next, the union located at *unp is translated. The
parameter arms is a pointer to an array of xdr_discrim structures. Each structure contains
an ordered pair of [value, proc].

If the union’s discriminant is equal to the associated value, the proc is called to translate
the union. The end of the xdr_discrim structure array is denoted by a routine of value
NULL (0). If the discriminant is not found in the arms array, the defaultarm procedure is
called if it is non-NULL; otherwise, the routine returns FALSE.
188 007-0810-100

XDR Library Primitives
Example D

Suppose the type of a union is integer, character pointer (a string), or a gnumbers
structure. Also, assume the union and its current type are declared in a structure.

The declaration is:

enum utype { INTEGER=1, STRING=2, GNUMBERS=3 };

struct u_tag {
 enum utype utype; /* the union's discriminant */
 union {
 int ival;
 char *pval;
 struct gnumbers gn;
 } uval;
};

The following constructs and XDR procedure (de)serialize the discriminated union:

struct xdr_discrim u_tag_arms[4] = {
 { INTEGER, xdr_int },
 { GNUMBERS, xdr_gnumbers }
 { STRING, xdr_wrap_string },
 { __dontcare__, NULL }
 /* always terminate arms with a NULL xdr_proc */
}

bool_t
xdr_u_tag(XDR *xdrs, struct u_tag *utp)
{
 return (xdr_union(xdrs, &utp->utype, &utp->uval,
 u_tag_arms, NULL));
}

The routine xdr_gnumbers() was described in “The XDR Library” on page 178. The
routine xdr_wrap_string()was described in Example C. The defaultarm parameter to
xdr_union() (the last parameter) is NULL in this example. Therefore, the value of the
union’s discriminant may legally take on only values listed in the u_tag_arms array. This
example also demonstrates that the elements of the arm’s array need not be sorted.

It is worth pointing out that the values of the discriminant may be sparse, although in
this example they are not. It is always good practice to assign explicit integer values to
each element of the discriminant’s type. This practice both documents the external
007-0810-100 189

8: XDR Programming Notes
representation of the discriminant and guarantees that different C compilers emit
identical discriminant values.

Pointers

In C language it is often convenient to put pointers to a structure within another
structure. The xdr_reference() primitive makes it easy to serialize, deserialize, and
free these referenced structures:

bool_t xdr_reference(XDR *xdrs, char **pp, u_int ssize,
 xdrproc_t proc);

Parameter pp is the address of the pointer to the structure; parameter ssize is the size in
bytes of the structure (use the C function sizeof() to obtain this value); and proc is the
XDR routine that describes the structure. When you are decoding data, storage is
allocated if *pp is NULL.

There is no need for a primitive xdr_struct() to describe structures within structures,
because pointers are always sufficient.

Note: xdr_reference() and xdr_array() are not interchangeable external
representations of data.

Example E

Suppose there’s a structure containing a person’s name and a pointer to a gnumbers
structure containing the person’s gross assets and liabilities. This example demonstrates
this construct:

struct pgn {
 char *name;
 struct gnumbers *gnp;
};

The corresponding XDR routine for this structure is:

bool_t
xdr_pgn(XDR *xdrs, struct pgn *pp)
{
 if (xdr_string(xdrs, &pp->name, NLEN) &&
 xdr_reference(xdrs, &pp->gnp,
 sizeof(struct gnumbers), xdr_gnumbers))
190 007-0810-100

XDR Library Primitives
 return(TRUE);
 return(FALSE);
}

Pointer Semantics and XDR

In many applications, C programmers attach double meaning to the values of a pointer.
Typically, the value NULL (or zero) means data is not needed, yet some
application-specific interpretation applies. In essence, the C programmer is encoding a
discriminated union efficiently by overloading the interpretation of the value of a
pointer.

For instance, in Example E, a NULL pointer value for gnp could indicate that the person’s
assets and liabilities are unknown. That is, the pointer value encodes two things: whether
or not the data is known; and if it is known, where it is located in memory. Linked lists
are an extreme example of the use of application-specific pointer interpretation.

The primitive xdr_reference() cannot and does not attach any special meaning to a
NULL-value pointer during serialization. That is, passing an address of a pointer whose
value is NULL to xdr_reference() when you are serializing data will most likely
cause a memory fault and, on the UNIX system, a core dump.

xdr_pointer() correctly handles NULL pointers. For more information about its use,
see “Linked Lists” on page 197.

Non-filter Primitives

XDR streams can be manipulated with the primitives discussed in this section.

u_int xdr_getpos(XDR *xdrs);

bool_t xdr_setpos(XDR *xdrs, u_int pos);

xdr_destroy(XDR *xdrs);

The routine xdr_getpos() returns an unsigned integer that describes the current
position in the data stream.

Note: In some XDR streams, the returned value of xdr_getpos() is meaningless; the
routine returns –1 in this case (though –1 should be a legitimate value).
007-0810-100 191

8: XDR Programming Notes
The xdr_setpos() routine sets a stream position to pos.

Note: In some XDR streams, setting a position is impossible; in such cases,
xdr_setpos() will return FALSE. This routine will also fail if the requested position is
out-of-bounds. The definition of bounds varies from stream to stream.

The xdr_destroy() primitive destroys the XDR stream. Usage of the stream after
calling this routine is undefined.

XDR Operation Directions

You can optimize XDR routines by taking advantage of the direction of the operation
(XDR_ENCODE, XDR_DECODE, or XDR_FREE). The value xdrs->x_op always contains
the direction of the XDR operation. Programmers are not encouraged to take advantage
of this information. Therefore, no example is presented here. However, an example in
“Linked Lists” on page 197 demonstrates the usefulness of the xdrs->x_op field.

XDR Stream Access

An XDR stream is obtained by calling the appropriate creation routine. These creation
routines take arguments that are tailored to the specific properties of the stream.

Streams currently exist for (de)serialization of data to or from standard I/O FILE streams,
TCP/IP connections and UNIX files, and memory. “XDR Stream Implementation” on
page 195 documents the XDR object and how to make new XDR streams when they are
required.

Standard I/O Streams

XDR streams can be interfaced to standard I/O using the xdrstdio_create() routine:

#include <stdio.h>
#include <rpc/rpc.h> /* xdr streams part of rpc */

void
xdrstdio_create(XDR *xdrs, FILE *fp, enum xdr_op x_op);
192 007-0810-100

XDR Stream Access
The xdrstdio_create() routine initializes an XDR stream pointed to by xdrs. The
XDR stream interfaces to the standard I/O library. Parameter fp is an open file, and x_op
is an XDR direction.

Memory Streams

Memory streams allow the streaming of data into or out of a specified area of memory:

#include <rpc/rpc.h>

void
xdrmem_create(XDR *xdrs, char *addr, u_int len,
 enum xdr_op x_op);

Thexdrmem_create() routine initializes an XDR stream in local memory. The memory
is pointed to by parameter addr; len is the length in bytes of the memory. The parameters
xdrs and x_op are identical to the corresponding parameters of xdrstdio_create().
Currently, the UDP/IP implementation of RPC uses xdrmem_create(). Complete call
or result messages are built in memory before calling the sendto() system call.

Record (TCP/IP) Streams

A record stream is an XDR stream built on top of a record-marking standard that is built
on top of the UNIX file or 4.3BSD connection interface.

#include <rpc/rpc.h> /* xdr streams are part of the
 * rpc library */

xdrrec_create(XDR *xdrs, u_int sendsize, u_int recvsize,
 void *iohandle,
 int (*readproc) (void *, void *, u_int),
 int (*writeproc) (void *, void *, u_int));

The routine xdrrec_create() provides an XDR stream interface that allows for
bidirectional, arbitrarily long sequences of records. The contents of the records are meant
to be data in XDR form. The stream’s primary use is for interfacing RPC to TCP
connections. However, it can be used to stream data into or out of normal UNIX files.

The parameter xdrs is similar to the corresponding parameter described above. The
stream does its own data buffering similar to that of standard I/O. The parameters
sendsize and recvsize determine the size in bytes of the output and input buffers,
007-0810-100 193

8: XDR Programming Notes
respectively; if their values are zero (0), predetermined defaults are used. When a buffer
needs to be filled or flushed, the routine readproc() or writeproc() is called,
respectively.

These routines are much like the read() and write() system calls. However, the first
parameter to each routine is the opaque parameter iohandle. The other two parameters
(buf and nbytes) and the results (byte count) are identical to the system routines.

If xxx is readproc() or writeproc(), it has this form:

/*
 * Returns the actual number of bytes transferred.
 * -1 is an error.
 */
int xxx(char *iohandle, char *buf, int len, int nbytes);

The XDR stream provides a means for delimiting records in the byte stream. The
primitives specific to record streams are:

bool_t
xdrrec_endofrecord(XDR *xdrs, bool_t flushnow);

bool_t
xdrrec_skiprecord(XDR *xdrs);

bool_t
xdrrec_eof(XDR *xdrs);

(See “Advanced Topics” on page 196 for the implementation details of delimiting records
in a stream.)

The xdrrec_endofrecord() routine causes the current outgoing data to be marked
as a record. If the parameter flushnow is TRUE, the stream’s writeproc()will be called;
otherwise, writeproc() will be called when the output buffer has been filled.

The xdrrec_skiprecord() routine causes an input stream’s position to be moved
past the current record boundary and onto the beginning of the next record in the stream.

If no data remains in the stream’s input buffer, the xdrrec_eof() routine returns
TRUE; that is, there is no more data in the underlying file descriptor.
194 007-0810-100

XDR Stream Implementation
XDR Stream Implementation

This section provides the abstract data types needed to implement new instances of XDR
streams.

The XDR Object

This structure defines the interface to an XDR stream:

enum xdr_op { XDR_ENCODE = 0, XDR_DECODE = 1, XDR_FREE = 2 };

typedef struct {
 enum xdr_op x_op; /* operation; fast added param */
 struct xdr_ops {
 bool_t (*x_getlong)(); /* get long from stream */
 bool_t (*x_putlong)(); /* put long to stream */
 bool_t (*x_getbytes)(); /* get bytes from stream */
 bool_t (*x_putbytes)(); /* put bytes to stream */
 u_int (*x_getpostn)(); /* return stream offset */
 bool_t (*x_setpostn)(); /* reposition offset */
 caddr_t (*x_inline)(); /* ptr to buffered data */
 VOID (*x_destroy)(); /* free private area */
 } *x_ops;
 caddr_t x_public; /* users' data */
 caddr_t x_private; /* pointer to private data */
 caddr_t x_base; /* private for position info */
 int x_handy; /* extra private word */
} XDR;

The x_op field is the current operation being performed on the stream. This field is
important to the XDR primitives but should not affect a stream’s implementation. That
is, a stream’s implementation should not depend on this value.

The fields x_private, x_base, and x_handy are private to the particular stream’s
implementation. The field x_public is for the XDR client and should never be used by the
XDR stream implementations or the XDR primitives.

x_getpostn(), x_setpostn(), and x_destroy() are macros for accessing
operations. The operation x_inline() takes two parameters: an XDR * and an
unsigned integer, which is a byte count. The routine returns a pointer to a piece of the
stream’s internal buffer. The caller can then use the buffer segment for any purpose. From
007-0810-100 195

8: XDR Programming Notes
the stream’s point of view, the bytes in the buffer segment have been consumed. The
routine may return NULL if it cannot return a buffer segment of the requested size.

Note: The x_inline() routine is for cycle squeezers. Use of the resulting buffer is not
data portable. Programmers should avoid using this feature.

The operations x_getbytes() and x_putbytes() blindly get and put sequences of
bytes from or to the underlying stream; they return TRUE if they are successful, and
FALSE otherwise. The routines have identical parameters (replace xxx):

bool_t xxxbytes(XDR *xdrs, char *buf, u_int bytecount);

The operations x_getlong() and x_putlong() receive and put long numbers from
and to the data stream. It is the responsibility of these routines to translate the numbers
between the machine representation and the (standard) external representation. The IRIX
routines htonl() and ntohl() can be helpful in accomplishing this task. Appendix B,
“XDR Protocol Specification”, defines the standard representation of numbers.

The higher-level XDR implementation assumes that signed and unsigned long integers
contain the same number of bits and that nonnegative integers have the same bit
representations as unsigned integers.

These routines return TRUE if they succeed, and FALSE otherwise. They have identical
parameters:

bool_t xxxlong(XDR *xdrs, long *lp);

Implementors of new XDR streams must make an XDR structure (with new operation
routines) available to clients, using some kind of creation routine.

Advanced Topics

This section describes additional techniques for passing data structures; for example,
linked lists (of arbitrary lengths). Unlike the simpler examples already presented in this
chapter, the examples in this section are written using both the XDR C library routines
and the XDR data description language.
196 007-0810-100

Advanced Topics
Linked Lists

Example E (see “Pointers” on page 190) presented a C data structure and its associated
XDR routines for an individual’s gross assets and liabilities. The example is duplicated
here:

struct gnumbers {
 long g_assets;
 long g_liabilities;
};

bool_t
xdr_gnumbers(XDR *xdrs, struct gnumbers *gp)
{
 if (xdr_long(xdrs, &(gp->g_assets)))
 return (xdr_long(xdrs, &(gp->g_liabilities)));
 return (FALSE);
}

Now assume that you want to implement a linked list of such information. A data
structure could be constructed as follows:

struct gnumbers_node {
 struct gnumbers gn_numbers;
 struct gnumbers_node *gn_next;
};

typedef struct gnumbers_node *gnumbers_list;

The head of the linked list can be thought of as the data object; that is, the head is not
merely a convenient shorthand for a structure. Similarly, the gn_next field is used to
indicate whether or not the object has terminated. Unfortunately, if the object continues,
the gn_next field is also the address of where it continues. The link addresses do not carry
any useful information when the object is serialized.

The XDR data description of this linked list is described by the recursive type declaration
of gnumbers_list:

typedef union switch (boolean) {
 case TRUE: struct {
 struct gnumbers current_element;
 gnumbers_list rest_of_list;
 };
 case FALSE: struct {};
} gnumbers_list;
007-0810-100 197

8: XDR Programming Notes
In this description, the boolean indicates whether there is more data following it. If the
boolean is FALSE, then it is the last data field of the structure. If TRUE, it is followed by
a gnumbers structure and (recursively) by a gnumbers_list (the rest of the object). Note that
the C declaration has no boolean explicitly declared (although the gn_next field implicitly
carries the information), while the XDR data description has no pointer explicitly
declared.

Hints for writing the XDR routines for a gnumbers_list follow easily from the XDR
description above. Note how the primitive xdr_pointer() is used to implement the
above XDR union:

bool_t
xdr_gnumbers_node(XDR *xdrs, gnumbers_node *gn)
{
 return(xdr_gnumbers(xdrs, &gn->gn_numbers) &&
 xdr_gnumbers_list(xdrs, &gp->gn_next));
}

bool_t
xdr_gnumbers_list(XDR *xdrs, gnumbers_list *gnp)
{
 return(xdr_pointer(xdrs, gnp,
 sizeof(struct gnumbers_node),
 xdr_gnumbers_node));
}

The unfortunate side effect of XDRing a list with these routines is that the C stack grows
linearly with respect to the number of nodes in the list due to the recursion. The
following routine collapses the above two mutually recursive routines into a single,
nonrecursive routine:

bool_t
xdr_gnumbers_list(XDR *xdrs, gnumbers_list *gnp)
{
 bool_t more_data;
 gnumbers_list *nextp;
 for (;;) {
 more_data = (*gnp != NULL);
 if (!xdr_bool(xdrs, &more_data)) {
 return(FALSE);
 }
 if (! more_data) {
 break;
 }
198 007-0810-100

Advanced Topics
 if (xdrs->x_op == XDR_FREE) {
 nextp = &(*gnp)->gn_next;
 }
 if (!xdr_reference(xdrs, gnp,
 sizeof(struct gnumbers_node),
 xdr_gnumbers)) {
 return(FALSE);
 }
 gnp = (xdrs->x_op == XDR_FREE) ?
 nextp : &(*gnp)->gn_next;
 }
 *gnp = NULL;
 return(TRUE);
}

The first task is to find out whether there is more data so that the boolean information can
be serialized. Notice that this statement is unnecessary in the XDR_DECODE case, since
the value of more_data is not known until you deserialize it in the next statement.

The next statement XDR’s the more_data field of the XDR union. If there isn’t any more
data, set this last pointer to NULL to indicate the end of the list, and return TRUE,
because you are done. Note that setting the pointer to NULL is only important in the
XDR_DECODE case, since it is already NULL in the XDR_ENCODE and XDR_FREE
cases.

Next, if the direction is XDR_FREE, the value of nextp is set to indicate the location of the
next pointer in the list. You set this value now because you need to dereference gnp to find
the location of the next item in the list, and after the next statement, the storage pointed
to by gnp will be freed up and no longer valid. You can’t free gnp in this way for all
directions, though, because in the XDR_DECODE direction the value of gnp won’t be set
until the next statement.

Next, XDR the data in the node using the xdr_reference() primitive.
xdr_reference() is like xdr_pointer() (used earlier), but it does not send over the
boolean indicating whether there is more data. Use it instead of xdr_pointer(),
because you have already XDR’d this information.

Notice that the XDR routine passed is not the same type as an element in the list. The
routine passed is xdr_gnumbers(), for XDR’ing gnumbers, but each element in the list
is actually of type gnumbers_node. You don’t pass xdr_gnumbers_node(), because it is
recursive, but instead use xdr_gnumbers(), which XDR’s all of the nonrecursive part.
007-0810-100 199

8: XDR Programming Notes
Note that this trick will work only if the gn_numbers field is the first item in each element,
so that their addresses are identical when passed to xdr_reference().

Finally, update gnp to point to the next item in the list. If the direction is XDR_FREE, set
it to the previously saved value; otherwise you can dereference gnp to get the proper
value. Though harder to understand than the recursive version, this nonrecursive
routine is less likely to blow the C stack. It will also run more efficiently, since a lot of the
procedure call overhead has been removed. Most lists are small, though (in the hundreds
of items or less), and the recursive version should be sufficient for them.
200 007-0810-100

Chapter 9

9. Transport Layer Interface

This chapter provides detailed information, with various examples, on X/Open’s
Transport Layer Interface. This chapter describes the more important and common
facilities of TLI, but is not meant to be exhaustive.

Note: Silicon Graphics does not encourage use of the TLI model; its inclusion is for
compatibility with interfaces used by other vendors. The sockets interface, with its ease
of use and compatibility with industry standardization is the preferred interface.

Topics covered in this chapter include:

• an introduction to TLI

• a brief discussion of Network Selection and Name-to-Address Mapping

• a description of the OSI Reference Model

• a summary of the basic services available to Transport Interface users

• an introduction to connection-mode (virtual circuit) communication

• an introduction to connectionless-mode (datagram) communication

• how to use read() and write()

• advanced topics such as asynchronous event handling and processing of multiple
simultaneous connect requests

• the allowable state transitions associated with the Transport Interface

• necessary guidelines for developing software that can be run without change over
any transport protocol developed for TLI

• a full listing of each programming example given (in fragmentary form) elsewhere
in the chapter

• error message enhancements provided for XTI compatibility
007-0810-100 201

9: Transport Layer Interface
Introduction

The Transport Layer Interface is a programming interface to the transport layer of ISO’s
Open Systems Interconnection Reference Model. It is a subset of the X/Open Transport
Interface (XTI), and is implemented within the STREAMS framework. TLI is media- and
protocol-independent; it allows applications to run across any transport protocol that
supports the interface.

Network Selection and Name-to-Address Mapping facilities have been added to TLI to
provide a means of guaranteeing media and protocol independence for transport
applications. Network Selection and Name-to-Address Mapping allow network
applications to acquire transport-specific information in a transport-independent way.

The following discussion assumes that you have a working knowledge of IRIX, C
language programming, and data communication concepts. You should also be familiar
with ISO-OSI before reading this chapter.

Network Selection and Name-to-Address Mapping

If TLI applications are to be media- and protocol-independent, they require an
understanding of Network Selection and Name-to-Address Mapping facilities. The
Network Selection routines in libnsl.so provide a standard interface to the networks
available in any environment. Name-to-Address Mapping allows applications to
translate transport-specific addresses. The following manual pages give more
information on these topics:

getnetconfig()
describes the libnsl.so routines that manipulate the network
configuration administrative file, netconfig. For more information,
see getnetconfig(3N).

getnetpath()describes the routines that manipulate the NETPATH variable, allowing
you to specify which networks in the netconfig file to try. For more
information, see getnetpath(3N).

netconfig() describes the network configuration database file. For more
information, see netconfig(4).

netdir() describes the Name-to-Address Mapping library functions. For more
information, see netdir(3N).
202 007-0810-100

OSI Reference Model
rpcbind() allows client C programs to make procedure calls to the RPC binder
service. For more information, see rpcbind(3N).

rpc_svc_calls()
 library routines for registering servers: rpc_reg, svc_reg,
svc_unreg, xprt_register, xprt_unregister. For more
information, see rpcbind(3N).

rpc_svc_reg()
library routines for RPC servers: svc_freeargs, svc_getargs,
svc_getreqset, svc_getrpccaller, svc_run, svc_sendreply.
For more information, see rpcbind(3N).

rpc() library routines that allow C language programs to make procedure calls
on other machines across a network. For more information, see
rpcbind(3N).

rpc_svc_err()
 library routines for server side remote procedure call errors:
svcerr_auth, svcerr_decode, svcerr_noproc,
svcerr_noprog, svcerr_progvers, svcerr_systemerr,
svcerr_weakauth. For more information, see rpcbind(3N).

Note: libnsl, the Network Selection library, should not be confused with libnls, the
network license server library.

OSI Reference Model

This section discusses the Reference Model to place the Transport Interface in
perspective. The Reference Model partitions networking functions into seven layers, as
depicted in Figure 9-1.
007-0810-100 203

9: Transport Layer Interface
Figure 9-1 OSI Reference Model

Layer 7

Layer 6

Layer 5

Layer 4

Layer 3

Layer 2

Layer 1

application

presentation

session

transport

network

data link

physical protocol

protocol

System A System B

protocol

protocol

protocol

protocol

protocol

interface

interface

interface

interface

interface

interface

application

presentation

session

transport

network

data link

physical

interface

interface

interface

interface

interface

interface
204 007-0810-100

OSI Reference Model
Layer 1 The physical layer is responsible for the transmission of raw data over a
communication medium.

Layer 2 The data-link layer provides the exchange of data between network
layer entities. It detects and corrects any errors that may occur in the
physical layer transmission.

Layer 3 The network layer manages the operation of the network. In particular,
it is responsible for the routing and management of data exchange
between transport layer entities within the network.

Layer 4 The transport layer provides transparent data transfer services between
session layer entities, thereby relieving them of concerns about how to
achieve reliable and cost-effective transfer of data.

Layer 5 The session layer provides the services needed by presentation layer
entities that enable them to organize and synchronize their dialogue and
manage their data exchange.

Layer 6 The presentation layer manages the representation of information that
application layer entities either communicate or reference in their
communication.

Layer 7 The application layer serves as the window between corresponding
application processes that are exchanging information.

A basic principle of the Reference Model is that each layer provides services needed by
the next higher layer in a way that frees the upper layer from concern about how these
services are provided. This approach simplifies the design of each particular layer.

Industry standards have been defined (or are being defined) at each layer of the
Reference Model. Two standards are defined at each layer: one that specifies an interface
to the services of the layer (to be used when interacting with other layers) and one that
defines the protocol by which services are provided (used by each instance of the current
layer, as shown in Figure 9-1). A service interface standard at any layer frees users of the
service from details of how that layer’s protocol is implemented, or even which protocol
is used to provide the service.

The transport layer is important because it is the lowest layer in the Reference Model that
provides the basic service of reliable, end-to-end data transfer needed by applications
and higher-layer protocols. In doing so, this layer hides the topology and characteristics
of the underlying network from its users. More important, however, the transport layer
defines a set of services common to layers of many contemporary protocol suites,
including the International Standards Organization (ISO) protocols, the Transmission
007-0810-100 205

9: Transport Layer Interface
Control Protocol and Internet Protocol (TCP/IP) of the Internet, and the Systems
Network Architecture (SNA).

A transport service interface, then, enables applications and higher layer protocols to be
implemented without knowledge of the underlying protocol stack. That is a principal
goal of the Transport Interface. Also, because an inherent characteristic of the transport
layer is that it hides details of the physical medium being used, the Transport Interface
offers both protocol and medium independence to networking applications and higher
layer protocols.

The Transport Interface was modeled after the industry standard ISO Transport Service
Definition (ISO 8072). As such, it is intended for those applications and protocols that
require transport services. Because the Transport Interface provides reliable data transfer,
and because its services are common to several protocol suites, many networking
applications will find these services useful.

The Transport Interface is implemented as a user library using the STREAMS
input/output mechanism. Therefore, many services available to STREAMS applications
are also available to users of the Transport Interface. These services will be highlighted
throughout this guide. For detailed information about STREAMS, refer to any generic
UNIX SVR4 document set.

Overview of the Transport Interface

This section presents a high-level overview of the services of the Transport Interface,
which supports the transfer of data between two user processes. Figure 9-2 illustrates the
Transport Interface.
206 007-0810-100

Overview of the Transport Interface
Figure 9-2 Transport Interface

The transport provider is the entity that provides the services of the Transport Interface,
and the transport user is the entity that requires these services. An example of a transport
provider is ISO 8073 (the OSI transport protocol), while a transport user can be a
networking application or session layer protocol.

The transport user accesses the services of the transport provider by issuing the
appropriate service requests. One example is a request to transfer data over a connection.
Similarly, the transport provider notifies the user of various events, such as the arrival of
data on a connection.

The Network Services Library includes a set of functions that support the services of the
Transport Interface for user processes.

These functions enable a user to make requests to the provider and process incoming
events. Programs using the Transport Interface can link the appropriate routines from the
Network Services Library by using the –lnsl command-line option to cc.

Transport user

Transport
interface

Transport
provider

Service events
and results

Service
requests

To other transport
providers and
user processes

User process
007-0810-100 207

9: Transport Layer Interface
Modes of Service

The Transport Interface provides two modes of service: connection mode and
connectionless mode.

Connection mode is circuit-oriented and enables the transmission of data over an
established connection in a reliable, sequenced manner. It also provides an identification
procedure that avoids the overhead of address resolution and transmission during the
data transfer phase. This service is attractive for applications that require relatively
long-lived, datastream-oriented interactions. Connection-mode service is analogous to
BSD’s “stream sockets” (as opposed to datagram sockets), which provide a stream of
data instead of isolated data units.

Connectionless mode, by contrast, is message-oriented and supports data transfer in
self-contained units with no logical relationship required among multiple units. This
service requires only a preexisting association between the peer users involved, which
determines the characteristics of the data to be transmitted. This mode corresponds to
sending datagrams in the sockets paradigm. All the information required to deliver a
unit of data (for example, the destination address) is presented to the transport provider,
together with the data to be transmitted, in one service access (which need not relate to
any other service access). Each unit of data transmitted is entirely self-contained, like
datagrams transmitted through BSD datagram sockets. Connectionless-mode service is
attractive for applications that:

• involve short-term request/response interactions

• exhibit a high level of redundancy

• are dynamically reconfigurable

• do not require guaranteed, in-sequence delivery of data

Connection-Mode Service

The connection-mode transport service is characterized by four phases:

• local management

• connection establishment

• data transfer

• connection release
208 007-0810-100

Overview of the Transport Interface
Local Management

The local management phase defines local operations between a transport user and a
transport provider. For example, a user must establish a channel of communication with
the transport provider, as illustrated in Figure 9-3. Each channel between a transport user
and transport provider is a unique endpoint of communication, and is called the
transport endpoint. The t_open() routine (see t_open(3)) enables a user to choose a
particular transport provider that supplies the connection-mode service, and establishes
the transport endpoint.

Figure 9-3 Channel between User and Provider

Another necessary local function for each user is to establish an identity with the
transport provider. Each user is identified by a transport address. More accurately, a
transport address is associated with each transport endpoint, and one user process can
manage several transport endpoints. In connection-mode service, one user requests a
connection to another user by specifying that user’s address. The structure of a transport
address is defined by the address space of the transport provider. An address can be
anything from a simple character string (such as “file_server”) to an encoded bit pattern
that specifies all information needed to route data through a network. Each transport
provider defines its own mechanism for identifying users. Addresses can be assigned to
each transport endpoint by t_bind().

Transport user

Transport
interface

Transport
provider

Transport
endpoint

To other transport
providers and endpoints
007-0810-100 209

9: Transport Layer Interface
In addition to t_open() and t_bind(), several routines are available to support local
operations. Table 9-1 summarizes all local management routines of the Transport
Interface.

Connection Establishment

The connection establishment phase enables two users to create a connection, or virtual
circuit, between them, as demonstrated in Figure 9-4.

Table 9-1 Local Management Routines for the Transport Interface

Routine Description

t_alloc() Allocates Transport Interface data structures

t_bind() Binds a transport address to a transport endpoint

t_close() Closes a transport endpoint

t_error() Prints a Transport Interface error message

t_free() Frees structures allocated using t_alloc()

t_getinfo() Returns a set of parameters associated with a particular transport provider

t_getstate() Returns the state of a transport endpoint

t_look() Returns the current event on a transport endpoint

t_open() Establishes a transport endpoint connected to a chosen transport provider

t_optmgmt() Negotiates protocol-specific options with the transport provider

t_sync() Synchronizes a transport endpoint with the transport provider

t_unbind() Unbinds a transport address from a transport endpoint
210 007-0810-100

Overview of the Transport Interface
Figure 9-4 Transport Connection

This phase is illustrated in the following description of a client/server relationship. The
client application and the server application are users of their respective transport
providers. One user, the server, typically advertises some service to a group of users, and
then listens for requests from those users. When a client requires the service, the client
attempts to connect itself to the server using the server’s advertised transport address.
The t_connect() routine (see t_connect(3N)) initiates the connect request. One
argument to t_connect(), the transport address, identifies the server the client wishes
to access. The server is notified of each incoming request using t_listen() and can call
t_accept() (see t_listen(3N) and t_accept(3N)) to accept the client’s request for
access to the service. If the request is accepted, the transport connection is established.

Table 9-2 summarizes all routines available for establishing a transport connection.

Table 9-2 Routines for Establishing a Transport Connection

Routine Description

t_accept() Accepts a request for a transport connection

t_connect() Establishes a connection with the transport user at a specified destination

User 1 User 2
Transport
interfaces

Transport layer
service providers

Lower-layer
service providers

Transport
connection
007-0810-100 211

9: Transport Layer Interface
Data Transfer

The data transfer phase enables users to transfer data in both directions over an
established connection. Two routines, t_snd() and t_rcv(), send and receive data
over this connection. All data sent by a user is guaranteed to be delivered to the user on
the other end of the connection in the order in which it was sent. Table 9-3 summarizes
the connection-mode data transfer routines.

Connection Release

The connection release phase allows you to break an established connection. When you
decide that a conversation should end, you can request that the provider release the
transport connection. Two types of connection release are supported by the Transport
Interface. The first is an abortive release, which directs the transport provider to release
the connection immediately. Any previously sent data that has not yet reached the other
transport user can be discarded by the transport provider. The t_snddis() routine
initiates this abortive disconnect, and t_rcvdis() processes the incoming indication
for an abortive disconnect.

All transport providers must support the abortive release procedure. In addition, some
transport providers can also support an orderly release facility that enables users to
terminate communication gracefully with no data loss. The functions t_sndrel() and

t_listen() Retrieves an indication of a connect request from another transport user

t_rcvconnect
()

Completes connection establishment if t_connect() was called in
asynchronous mode (see “Advanced Topics” on page 245)

Table 9-3 Connection-Mode Data Transfer Routines

Routine Description

t_rcv() Retrieves data that has arrived over a transport connection

t_snd() Sends data over an established transport connection

Table 9-2 Routines for Establishing a Transport Connection (continued)

Routine Description
212 007-0810-100

Overview of the Transport Interface
t_rcvrel() support this capability. Table 9-4 summarizes the connection release
routines.

Connectionless-Mode Service

The connectionless-mode transport service is characterized by two phases: local
management and data transfer. The local management phase defines the same local
operations described above for the connection-mode service.

The data transfer phase enables a user to transfer data units (sometimes called
datagrams) to the specified peer user. Each data unit must be accompanied by the
transport address of the receiver. Two routines, t_sndudata() and t_rcvudata(),
support this message-based data transfer facility, while another routine,
t_rcvuderr(), allows retrieval of error messages. (For more information, see
t_sndudata(3N), t_rcvudata(3N), and t_rcvuderr(3N).) Table 9-5 summarizes all
routines associated with connectionless-mode data transfer.

Table 9-4 Connection Release Routines

Routine Description

t_rcvdis() Returns an indication of an aborted connection, including a
reason code and user data

t_rcvrel() Returns an indication that the other transport user has
requested an orderly release of a connection

t_snddis() Aborts a connection or rejects a connect request

t_sndrel() Requests the orderly release of a connection

Table 9-5 Routines for Connectionless-Mode Data Transfer

Routine Description

t_rcvudata() Retrieves a message sent by another transport user

t_rcvuderr() Retrieves error information associated with a previously sent
message

t_sndudata() Sends a message to the specified destination user
007-0810-100 213

9: Transport Layer Interface
State Transitions

The Transport Interface has two components:

• the library routines that provide the transport services to users

• the state transition rules that define the sequence in which the transport routines
can be invoked

The state transition rules can be found in the state tables under “State Transitions” on
page 253. The state tables define the legal sequence of library calls based on state
information and the handling of events. These events include user-generated library
calls, as well as provider-generated event indications.

Note: Any user of the Transport Interface must completely understand all possible state
transitions before writing software using the interface.

Introduction to Connection-Mode Service

This section describes the connection-mode service of the Transport Interface. As
discussed in the previous section, the connection-mode service can be illustrated using a
client/server paradigm. The important concepts of connection-mode service are
presented using two programming examples. The examples are related: Example 9-1
illustrates how a client establishes a connection to a server and then communicates with
it, while Example 9-2 shows the server’s side of the interaction. All code-fragment
examples discussed in this chapter are presented as complete programs in “Some
Examples” on page 260.

In the examples, the client establishes a connection with a server process. The server then
transfers a file to the client. The client, in turn, receives the data from the server and
writes it to its standard output file.

Local Management

Before the client and server can establish a transport connection, each must first establish
a local channel (the transport endpoint) to the transport provider using t_open() and
establish its identity (or address) using t_bind().
214 007-0810-100

Introduction to Connection-Mode Service
The set of services supported by the Transport Interface may not be implemented by all
transport protocols. Each transport provider has a set of characteristics associated with it
that determines the services it offers and the limits associated with those services. This
information is returned to the user by t_open() and consists of the following:

addr maximum size of a transport address

options maximum bytes of protocol-specific options that can be passed between
the transport user and transport provider

tsdu maximum message size that can be transmitted

etsdu maximum expedited data message size that can be sent over a transport
connection

connect maximum number of bytes of user data that can be passed between
users during connection establishment

discon maximum number of bytes of user data that can be passed between
users during the abortive release of a connection

servtype type of service supported by the transport provider

The three service types (servtype) defined by the Transport Interface are as follows:

T_COTS The transport provider supports connection-mode service but does not
provide the optional orderly release facility.

T_COTS_ORD The transport provider supports connection-mode service with the
optional orderly release facility.

T_CLTS The transport provider supports connectionless-mode service. Only one
such service can be associated with the transport provider identified by
t_open().

Note: t_open() returns the default provider characteristics associated with a transport
endpoint. However, some characteristics can change after an endpoint has been opened.
This occurs if the characteristics are associated with negotiated options (option
negotiation is described later in this section). For example, if the support of expedited
data transfer is a negotiated option, the value of this characteristic can change.
t_getinfo() can be called to retrieve the current characteristics of a transport
endpoint.
007-0810-100 215

9: Transport Layer Interface
Once a user establishes a transport endpoint with the chosen transport provider, it must
establish its identity. As mentioned earlier, t_bind() does this by binding a transport
address to the transport endpoint. In addition, for servers, this routine informs the
transport provider that the endpoint will be used to listen for incoming connect
indications, also called connect requests.

An optional facility, t_optmgmt() (see t_optmgmt(3N)), is also available during the
local management phase. It enables a user to negotiate the values of protocol options
with the transport provider. Each transport protocol is expected to define its own set of
negotiable protocol options, which can include such information as Quality-of-Service
parameters. Because of the protocol-specific nature of options, only applications written
for a particular protocol environment are expected to use this facility.

The Client

The local management requirements of the example client and server are used to discuss
details of these facilities following each example. The following are the definitions
needed by the client program, followed by its necessary local management steps:

Example 9-1 The Connection-Mode Client Definitions and Local Management

#include <stdio.h>
#include <tiuser.h>
#include <fcntl.h>

#define SRV_ADDR 1 /* server’s well-known address */

void main()
{
 int fd;
 int nbytes;
 int flags = 0;
 char buf[1024];
 struct t_call *sndcall;
 extern int t_errno;
if ((fd = t_open("/dev/ticotsord", O_RDWR, NULL)) < 0) {
 t_error("t_open failed");
 exit(1);
 }

 if (t_bind(fd, NULL, NULL) < 0) {
 t_error("t_bind failed");
216 007-0810-100

Introduction to Connection-Mode Service
 exit(2);
 }

The first argument to t_open() is the pathname of a filesystem node that identifies the
transport protocol that supplies the transport service. In this example,
/dev/ticotsord is a STREAMS clone device node that identifies a generic,
connection-based transport protocol (see clone(7)). The clone device finds an available
minor device of the transport provider for the user. It is opened for both reading and
writing, as specified by the O_RDWR flag passed as the second argument. The third
argument can be used to return the service characteristics of the transport provider to the
user. This information is useful when writing protocol-independent software (discussed
in “Guidelines for Protocol Independence” on page 258). For simplicity, the client and
server in this example ignore this information and assume the transport provider has the
following characteristics:

• The transport address is an integer value that uniquely identifies each user.

• The transport provider supports the T_COTS_ORD service type, and the example
uses the orderly release facility to release the connection.

• User data cannot be passed between users during either connection establishment
or abortive release.

• The transport provider does not support protocol-specific options.

Because these characteristics are not needed by the user, NULL is specified in the third
argument to t_open(). If the user were to require a service other than T_COTS_ORD,
another transport provider would be opened. An example of the T_CLTS service
invocation is presented in “Introduction to Connectionless-Mode Service” on page 235.

The return value of t_open() is an identifier for the transport endpoint that is used by
all subsequent Transport Interface function calls. This identifier is actually a file
descriptor obtained by opening the transport protocol file (see open(2)). The significance
of this fact is highlighted in “A Read/Write Interface” on page 241.

After the transport endpoint is created, the client calls t_bind() to assign an address to
the endpoint. The first argument identifies the transport endpoint. The second argument
describes the address the user would like to bind to the endpoint, and the third argument
is set on return from t_bind() to specify the address that the provider bound.

The address associated with a server’s transport endpoint is important, because that is
the address used by all clients to access the server. However, the typical client does not
care what its own address is, because no other process tries to access it. That is the case
007-0810-100 217

9: Transport Layer Interface
in this example, where the second and third arguments to t_bind() are set to NULL. A
NULL second argument directs the transport provider to choose an address for the user.
A NULL third argument specifies that the user does not care what address was assigned
to the endpoint.

If either t_open() or t_bind() fails, the program calls t_error() (see
t_error(3N)) to print an appropriate error message to stderr. If any Transport Interface
routine fails, the global integer t_errno is assigned a transport error value. A set of error
values is defined (in <tiuser.h>) for the Transport Interface, and t_error() prints
an error message corresponding to the value in t_errno. This routine is analogous to
perror(), which prints an error message based on the value of errno (see perror(3)).
If the error associated with a transport function is a system error, t_errno is set to
TSYSERR, and errno is set to the appropriate value.

The Server

The server in Example 9-2 must take similar local management steps before
communication can begin. The server must establish a transport endpoint through which
it listens for connect indications. The necessary definitions and local management steps
are shown in Example 9-2.

Example 9-2 The Connection-Mode Server Definitions and Local Management

#include <tiuser.h>
#include <stropts.h>
#include <fcntl.h>
#include <stdio.h>
#include <signal.h>

#define DISCONNECT -1
#define SRV_ADDR 1 /* server’s well-known address */

int conn_fd; /* connection established here */
extern int t_errno;

void main()
{
 int listen_fd; /* listening transport endpoint */
 struct t_bind *bind;
 struct t_call *call;

 if ((listen_fd = t_open("/dev/ticotsord", O_RDWR, NULL))
 < 0) {
218 007-0810-100

Introduction to Connection-Mode Service
 t_error("t_open failed for listen_fd");
 exit(1);
 }

 /*
 * By assuming that the address is an integer value,
 * this program may not run over another protocol.
 */

 if ((bind = (struct t_bind *)t_alloc(listen_fd,
 T_BIND, T_ALL))== NULL) {
 t_error("t_alloc of t_bind structure failed");
 exit(2);
 }

 bind->qlen = 1;
 bind->addr.len = sizeof(int);

 *(int *)bind->addr.buf = SRV_ADDR;

 if (t_bind(listen_fd, bind, bind) < 0) {
 t_error("t_bind failed for listen_fd");
 exit(3);
 }

 /* Was the correct address bound? */
 if (*(int *)bind->addr.buf != SRV_ADDR) {
 fprintf(stderr, "t_bind bound wrong address\n");
 exit(4);
 }

As with the client, the first step is to call t_open() to establish a transport endpoint with
the desired transport provider. This endpoint, listen_fd, is used to listen for connect
indications. Next, the server must bind its well-known address to the endpoint. This
address is used by each client to access the server. The second argument to t_bind()
requests that a particular address be bound to the transport endpoint. This argument
points to a t_bind structure with the following format:

struct t_bind {
 struct netbuf addr;
 unsigned qlen;
}

007-0810-100 219

9: Transport Layer Interface
addr describes the address to be bound, and qlen specifies the maximum outstanding
connect indications that can arrive at this endpoint. All Transport Interface structure and
constant definitions are found in <tiuser.h>.

The address is specified using a netbuf structure that contains the following members:

struct netbuf {
 unsigned int maxlen;
 unsigned int len;
 char *buf;
}

buf points to a buffer containing the data, len specifies the number of bytes of data in the
buffer, and maxlen specifies the maximum number of bytes the buffer can hold (and need
only be set when data is returned to the user by a Transport Interface routine). For the
t_bind structure, the data pointed to by buf identifies a transport address. The structure
of addresses is likely to vary between protocol implementations under the Transport
Interface; the netbuf structure is intended to support any address structure.

If the value of qlen is greater than 0, the transport endpoint can be used to listen for
connect indications. In such cases, t_bind() directs the transport provider to begin
queueing connect indications destined for the bound address immediately. Furthermore,
the value of qlen specifies the maximum outstanding connect indications the server
wishes to process. The server must respond to each connect indication, either accepting
or rejecting the request for connection. An outstanding connect indication is one to which
the server has not yet responded. Often, a server fully processes a single connect
indication and responds to it before receiving the next indication. When this occurs, a
value of 1 is appropriate for qlen. However, some servers may wish to retrieve several
connect indications before responding to any of them. In such cases, qlen specifies the
maximum number of outstanding indications the server processes. An example of a
server that manages multiple outstanding connect indications is presented in “Advanced
Topics” on page 245.

t_alloc() is called to allocate the t_bind structure needed by t_bind(). t_alloc()
takes three arguments. The first is a file descriptor that references a transport endpoint.
This is used to access the characteristics of the transport provider (see t_open(3N)). The
second argument identifies the appropriate Transport Interface structure to be allocated.
The third argument specifies which, if any, netbuf buffers should be allocated for that
structure. T_ALL specifies that all netbuf buffers associated with the structure should be
allocated, and causes the addr buffer to be allocated in this example. The size of this buffer
is determined from the transport provider characteristic that defines the maximum
address size. The maxlen field of this netbuf structure is set to the size of the buffer
220 007-0810-100

Introduction to Connection-Mode Service
allocated by t_alloc(). The use of t_alloc() helps ensure the compatibility of user
programs with future releases of the Transport Interface.

The server in this example processes connect indications one at a time, so qlen is set to 1.
The address information is then assigned to the newly allocated t_bind structure. This
t_bind structure is passed to t_bind() as both the second and third arguments; as the
second argument, it contains information for t_bind(), while as the third argument, it
returns information to the user.

On return, the t_bind structure contains whatever address was bound to the transport
endpoint. If the provider can’t bind the requested address (perhaps because it’s already
bound to another transport endpoint), it returns another appropriate address.

Note: Each transport provider manages its address space differently. Some transport
providers can allow a single transport address to be bound to several transport
endpoints, while others can require a unique address per endpoint. The Transport
Interface supports either choice. Based on its address management rules, a provider
determines if it can bind the requested address. If not, it chooses another valid address
from its address space and binds it to the given transport endpoint.

The server must check the bound address to ensure that it is the one previously
advertised to clients. Otherwise, the clients are unable to reach the server.

If t_bind() succeeds, the provider begins queueing connect indications, entering the
next phase of communication, connection establishment.

Connection Establishment

The connection establishment procedures highlight the distinction between clients and
servers. The Transport Interface imposes a different set of procedures in this phase for
each type of transport user. The client starts the connection establishment procedure by
requesting a connection to a particular server using t_connect(). The server is then
notified of the client’s request by calling t_listen(). The server can either accept or
reject the client’s request. It calls t_accept() to establish the connection, or calls
t_snddis() to reject the request. The client is notified of the server’s decision when
t_connect() completes. For more information, see t_connect(3N), t_listen(3N),
t_accept(3N), and t_snddis(3N).
007-0810-100 221

9: Transport Layer Interface
The Transport Interface supports two facilities during connection establishment that are
not necessarily supported by all transport providers:

• The ability to transfer data between the client and server when establishing the
connection.

The client can send data to the server when it requests a connection. This data is
passed to the server by t_listen(). Similarly, the server can send data to the
client when it accepts or rejects the connection. The connect characteristic returned
by t_open() determines how much data, if any, two users can transfer during
connect establishment.

• The negotiation of protocol options.

The client can specify protocol options that it would like the transport provider
and/or the other user to support. The Transport Interface supports both local and
remote option negotiation. As discussed earlier, option negotiation is inherently a
protocol-specific function. If you want protocol-independent software, you should
not use this facility (see “Guidelines for Protocol Independence” on page 258).

The Client

Continuing with the client/server example, the steps needed by the client to establish a
connection are as follows:

/* Since it assumes that the address is an integer value,
 * this program may not run over another protocol.
 */
if ((sndcall = (struct t_call *)t_alloc(fd, T_CALL, T_ADDR)) == NULL) {
 t_error("t_alloc failed");
 exit(3);
}
sndcall->addr.len = sizeof(int);
*(int *)sndcall->addr.buf = SRV_ADDR;

if (t_connect(fd, sndcall, NULL) < 0) {
 t_error("t_connect failed for fd");
 exit(4);
}

The t_connect() call establishes the connection with the server. The first argument to
t_connect() identifies the transport endpoint through which the connection is
established, and the second argument identifies the destination server. This argument is
a pointer to a t_call structure with the following format:
222 007-0810-100

Introduction to Connection-Mode Service
struct t_call {
 struct netbuf addr;
 struct netbuf opt;
 struct netbuf udata;
 int sequence;
}

addr identifies the address of the server, opt can be used to specify protocol-specific
options that the client would like to associate with the connection, and udata identifies
user data that can be sent with the connect request to the server. The sequence field has
no meaning for t_connect().

t_alloc() is called to allocate the t_call structure dynamically. Once allocated, the
appropriate values are assigned. In this example, no options or user data items are
associated with the t_connect() call, but the server’s address must be set. The third
argument to t_alloc() is set to T_ADDR to specify that an appropriate netbuf buffer
should be allocated for the address. The server’s address is then assigned to buf, and len
is set accordingly.

The third argument to t_connect() can be used to return information to the user about
the newly established connection, and can be used to retrieve any user data sent by the
server in its response to the connect request. It is set to NULL by the client here to indicate
that this information is not needed. The connection is established on the successful return
of t_connect(). If the server rejects the connect request, t_connect() fails and sets
t_errno to TLOOK.

Event Handling

The TLOOK error has special significance in the Transport Interface. TLOOK notifies the
user if a Transport Interface routine is interrupted by an unexpected asynchronous
transport event on the given transport endpoint. As such, TLOOK does not report an
error with a Transport Interface routine, but the normal processing of that routine is not
performed because of the pending event. The events defined by the Transport Interface
are listed as follows:

T_LISTEN A request for a connection, called a connect indication, has arrived at the
transport endpoint.

T_CONNECT The confirmation of a previously sent connect request, called a connect
confirmation, has arrived at the transport endpoint. The confirmation is
generated when a server accepts a connect request.

T_DATA User data has arrived at the transport endpoint.
007-0810-100 223

9: Transport Layer Interface
T_EXDATA Expedited user data has arrived at the transport endpoint. Expedited
data is discussed later in this section.

T_DISCONNECT
A notification that the connection was aborted or that the server rejected
a connect request, called a disconnect indication, has arrived at the
transport endpoint.

T_ERROR A notification that a fatal error has occurred.

T_UDERR A notification of an error in a previously sent datagram, called a
unitdata error indication, has arrived at the transport endpoint (see
“Introduction to Connectionless-Mode Service” on page 235).

T_ORDREL A request for the orderly release of a connection, called an orderly
release indication, has arrived at the transport endpoint.

It is possible in some states to receive one of several asynchronous events, as described
in the state tables of “State Transitions” on page 253. The t_look() routine enables a
user to determine what event has occurred if a TLOOK error is returned. The user can
then process that event accordingly. In the example, if a connect request is rejected, the
event passed to the client is a disconnect indication. The client exits if its request is
rejected.

The Server

Returning to the example, when the client calls t_connect(), a connect indication is
generated on the server’s listening transport endpoint. The steps required by the server
to process the event are discussed below. For each client, the server accepts the connect
request and spawns a server process to manage the connection as follows:

if ((call = (struct t_call *)t_alloc(listen_fd, T_CALL,
 T_ALL)) == NULL) {
 t_error("t_alloc of t_call structure failed");
 exit(5);
}
while (1) {
 if (t_listen(listen_fd, call) < 0) {
 t_error("t_listen failed for listen_fd");
 exit(6);
 }
 if ((conn_fd = accept_call(listen_fd, call))
 != DISCONNECT)
224 007-0810-100

Introduction to Connection-Mode Service
 run_server(listen_fd);
}

The server loops forever, processing each connect indication. First, the server calls
t_listen() to retrieve the next connect indication. When one arrives, the server calls
accept_call() to accept the connect request.accept_call() accepts the connection
on an alternate transport endpoint (as discussed below) and returns the value of that
endpoint. conn_fd is a global variable that identifies the transport endpoint where the
connection is established. Because the connection is accepted on an alternate endpoint,
the server can continue listening for connect indications on the endpoint that was bound
for listening. If the call is accepted without error, run_server() spawns a process to
manage the connection.

The server allocates a t_call structure to be used by t_listen(). The third argument to
t_alloc(), T_ALL, specifies that all necessary buffers should be allocated for
retrieving the caller’s address, options, and user data. As mentioned earlier, the transport
provider in this example does not support the transfer of user data during connection
establishment, and also does not support any protocol options. Therefore, t_alloc()
does not allocate buffers for the user data and options. It must, however, allocate a buffer
large enough to store the address of the caller. t_alloc() determines the buffer size
from the addr characteristic returned by t_open(). The maxlen field of each netbuf
structure is set to the size of the buffer allocated by t_alloc() (maxlen is 0 for the user
data and options buffers).

Using the t_call structure, the server calls t_listen() to retrieve the next connect
indication. If one is currently available, it is returned to the server immediately.
Otherwise, t_listen() blocks until a connect indication arrives.

The Transport Interface supports an asynchronous mode for these routines, which
prevents a process from blocking. This feature is discussed in “Advanced Topics” on
page 245.

When a connect indication arrives, the server calls accept_call() to accept the client’s
request, as follows:

int accept_call(listen_fd, call)
int listen_fd;
struct t_call *call;
{
 int resfd;

 if ((resfd = t_open("/dev/ticotsord", O_RDWR, NULL))
007-0810-100 225

9: Transport Layer Interface
 < 0) {
 t_error("t_open for responding fd failed");
 exit(7);
 }

 if (t_bind(resfd, NULL, NULL) < 0) {
 t_error("t_bind for responding fd failed");
 exit(8);
 }
 if (t_accept(listen_fd, resfd, call) < 0) {
 if (t_errno == TLOOK) { /* must be a disconnect */
 if (t_rcvdis(listen_fd, NULL) < 0) {
 t_error("t_rcvdis failed for listen_fd");
 exit(9);
 }
 if (t_close(resfd) < 0) {
 t_error("t_close failed for responding fd");
 exit(10);
 } /* go back up and listen for other calls */
 return(DISCONNECT);
 }
 t_error("t_accept failed");
 exit(11);
 }
 return(resfd);
}

accept_call() takes two arguments:

• listen_fd identifies the transport endpoint where the connect indication arrived

• call is a pointer to a t_call structure that contains all information associated with the
connect indication.

The server first establishes another transport endpoint by opening the clone device
node of the transport provider and binding an address. As with the client, a NULL value
is passed to t_bind() to specify that the user does not care what address is bound by
the provider. The newly established transport endpoint, resfd, is used to accept the
client’s connect request.

The first two arguments of t_accept() specify the listening transport endpoint and the
endpoint where the connection is accepted, respectively. A connection can be accepted
on the listening endpoint, but this prevents other clients from accessing the server for the
duration of the connection.
226 007-0810-100

Introduction to Connection-Mode Service
The third argument of t_accept() points to the t_call structure associated with the
connect indication. This structure should contain the address of the calling user and the
sequence number returned by t_listen(). The sequence number is significant if the
server manages multiple outstanding connect indications. “Advanced Topics” presents
an example of this situation. Also, the t_call structure should identify protocol options
the user has requested and user data that can be passed to the client. Because the
transport provider in this example does not support protocol options or the transfer of
user data during connection establishment, the t_call structure returned by t_listen()
can be passed without change to t_accept().

For simplicity in the example, the server exits if either the t_open() or t_bind() call
fails. exit() closes the transport endpoint associated with listen_fd, causing the
transport provider to pass a disconnect indication to the client that requested the
connection. This disconnect indication notifies the client that the connection was not
established; t_connect() fails, setting t_errno to TLOOK.

t_accept() can fail if an asynchronous event has occurred on the listening transport
endpoint before the connection is accepted, and t_errno is set to TLOOK. The state
transition table in “State Transitions” on page 253 shows that the only event that can
occur in this state with only one outstanding connect indication is a disconnect
indication. This event can occur if the client decides to undo the connect request it had
previously sent. If a disconnect indication arrives, the server must retrieve the disconnect
indication using t_rcvdis(). This routine takes a pointer to a t_discon structure as an
argument, which is used to retrieve information associated with a disconnect indication.
In this example, however, the server does not care to retrieve this information, so it sets
the argument to NULL. After receiving the disconnect indication, accept_call()
closes the responding transport endpoint and returns DISCONNECT, which informs the
server that the connection was disconnected by the client. The server then listens for
further connect indications.

Figure 9-5 illustrates how the server establishes connections.
007-0810-100 227

9: Transport Layer Interface
Figure 9-5 Listening and Responding Transport Endpoints

The transport connection is established on the newly created responding endpoint, and
the listening endpoint is freed to retrieve further connect indications.

Data Transfer

Once the connection is established, both the client and server can begin transferring data
over the connection using t_snd() and t_rcv(). The Transport Interface does not
differentiate the client from the server from this point on. Either user can send and
receive data or release the connection. The Transport Interface guarantees reliable,
sequenced delivery of data over an existing connection.

Two classes of data can be transferred over a transport connection: normal data and
expedited data.

Client
Server

Transport
interfaces

Transport layer
service providers

Lower-layer
service providers

Transport
connection

Responding
endpoint

Listening
endpoint
228 007-0810-100

Introduction to Connection-Mode Service
Expedited data is typically associated with urgent information. The exact semantics of
expedited data are subject to the interpretations of the transport provider. Furthermore,
not all transport protocols support the notion of an expedited data class (see
t_open(3N)).

All transport protocols support the transfer of data in byte stream mode, where byte
stream implies no concept of message boundaries on data that’s transferred over a
connection. However, some transport protocols support the preservation of message
boundaries over a transport connection. This service is supported by the Transport
Interface, but protocol-independent software must not rely on its existence.

The message interface for data transfer is supported by a special flag of t_snd() and
t_rcv() called T_MORE. The messages, called Transport Service Data Units (TSDU),
can be transferred between two transport users as distinct units. The maximum TSDU
size is a characteristic of the underlying transport protocol. This information is available
to the user from t_open() and t_getinfo(). Because the maximum size can be large
(possibly unlimited), the Transport Interface allows a user to transmit a message in
multiple units.

To send a message in multiple units over a transport connection, the user must set the
T_MORE flag on every t_snd() call except the last. This flag specifies that the user will
send more data associated with the message in a subsequent call to t_snd(). The last
message unit should be transmitted with T_MORE turned off to specify that this is the
end of the TSDU.

Similarly, a TSDU can be passed in multiple units to the receiving user. Again, if
t_rcv() returns with the T_MORE flag set, the user should continue calling t_rcv()
to retrieve the remainder of the message. The last unit in the message is identified by a
call to t_rcv() that does not set T_MORE.

Note: The T_MORE flag implies nothing about how the data can be packaged below the
Transport Interface or how the data can be delivered to the receiver. Each transport
protocol, and each implementation of that protocol, can package and deliver the data
differently.

For example, if a user sends a complete message in a single call to t_snd(), there is no
guarantee that the transport provider will deliver the data in a single unit to the remote
transport user. Similarly, a message transmitted in two message units can be delivered in
a single unit to the remote transport user. The message boundaries can only be preserved
007-0810-100 229

9: Transport Layer Interface
by noting the value of the T_MORE flag on t_snd() and t_rcv(). This guarantees that
the receiving user sees a message with the same contents and message boundaries as that
sent by the sender.

The Client

Continuing with the client/server example, the server transfers a log file to the client
over the transport connection. The client receives this data and writes it to its standard
output file. A byte stream interface is used by the client and server, where message
boundaries (that is, the T_MORE flag) are ignored. The client receives data using the
following instructions:

while ((nbytes = t_rcv(fd, buf, 1024, &flags)) != -1) {
 if (fwrite(buf, 1, nbytes, stdout) < 0) {
 fprintf(stderr, "fwrite failed\n");
 exit(5);
 }
}

The client continuously calls t_rcv() to process incoming data. If no data is currently
available, t_rcv() blocks until data arrives. t_rcv() retrieves the available data up to
1024 bytes, which is the size of the client’s input buffer, and returns the number of bytes
received. The client then writes this data to standard output and continues. The data
transfer phase completes when t_rcv() fails. t_rcv() fails if an orderly release or
disconnect indication arrives, as discussed later in this section. If the fwrite() call (see
fwrite(3S)) fails for any reason, the client exits, closing the transport endpoint. If the
transport endpoint is closed (either by exit() or t_close()) during the data transfer
phase, the connection is aborted and the other user receives a disconnect indication.

The Server

Looking now at the other side of the connection, the server manages its data transfer by
spawning a child process to send the data to the client. The parent process then loops
back to listen for further connect indications.

run_server() is called by the server to spawn this child process as shown in
Example 9-3.
230 007-0810-100

Introduction to Connection-Mode Service
Example 9-3 Sending Data to a Client

void connrelease()
{
 /* conn_fd is global because needed here */
 if (t_look(conn_fd) == T_DISCONNECT) {
 fprintf(stderr, "connection aborted\n");
 exit(12);
 } /* else orderly release indication - normal exit */
 exit(0);
 }

int run_server(listen_fd)
int listen_fd;
{
 int nbytes;
 FILE *logfp; /* file pointer to log file */
 char buf[1024];

 switch (fork()) {

 case -1:
 perror("fork failed");
 exit(20);

 default: /* parent */

 /* close conn_fd and then go up and listen again */
 if (t_close(conn_fd) < 0) {
 t_error("t_close failed for conn_fd");
 exit(21);
 }
 return;

 case 0: /* child */

 /* close listen_fd and do service */
 if (t_close(listen_fd) < 0) {
 t_error("t_close failed for listen_fd");
 exit(22);
 }
 if ((logfp = fopen("logfile", "r")) == NULL) {
 perror("cannot open logfile");
 exit(23);
 }
007-0810-100 231

9: Transport Layer Interface
 signal(SIGPOLL, connrelease);
 if (ioctl(conn_fd, I_SETSIG, S_INPUT) < 0) {
 perror("ioctl I_SETSIG failed");
 exit(24);
 }

 /* was disconnect there? */
 if (t_look(conn_fd) != 0) {
 fprintf(stderr, "t_look: unexpected event\n");
 exit(25);
 }
 while ((nbytes = fread(buf, 1, 1024, logfp)) > 0)
 if (t_snd(conn_fd, buf, nbytes, 0) < 0) {
 t_error("t_snd failed");
 exit(26);
 }

After the fork(), the parent process returns to the main processing loop and listens for
further connect indications. Meanwhile, the child process manages the newly established
transport connection. If the fork() call fails, exit() closes the transport endpoint
associated with listen_fd, sending a disconnect indication to the client, and the client’s
t_connect() call fails.

The server process reads 1024 bytes of the log file at a time and sends that data to the
client using t_snd(). buf points to the start of the data buffer, and nbytes specifies the
number of bytes to be transmitted. The fourth argument can contain one of the two
optional flags as follows:

• T_EXPEDITED specifies that the data is expedited.

• T_MORE defines message boundaries when transmitting messages over a
connection.

Neither flag is set by the server in this example.

If the user floods the transport provider with data, the provider can exert back pressure
to provide flow control. In such cases, t_snd() blocks until the flow control is relieved,
and then resumes its operation. t_snd() does not complete until nbyte bytes have been
passed to the transport provider.

The t_snd() routine does not look for a disconnect indication (showing that the
connection was broken) before passing data to the provider. Also, because the data traffic
flows in one direction, the user never looks for incoming events. If the connection is
aborted, the user should be notified since data can be lost. The user can invoke
232 007-0810-100

Introduction to Connection-Mode Service
t_look(), which checks for incoming events before each t_snd() call. A more efficient
solution is presented in Example 9-3. The STREAMS I_SETSIG ioctl() enables a user
to request a signal when a given event occurs (see streamio(5) and signal(2)).
S_INPUT causes a signal to be sent to the user if any input arrives on the Stream
referenced by conn_fd. If a disconnect indication arrives, the signal catching routine
(connrelease()) prints an error message and then exits.

If the data traffic flowed in both directions in this example, the user would not have to
monitor the connection for disconnects. If the client alternated t_snd() and t_rcv()
calls, it could rely on t_rcv() to recognize an incoming disconnect indication.

Connection Release

At any point during data transfer, either user can release the transport connection and
end the conversation. As mentioned earlier, two forms of connection release are
supported by the Transport Interface:

• Abortive release breaks a connection immediately and can result in the loss of any
data that has not yet reached the destination user.

Either user can call t_snddis() to generate an abortive release. Also, the transport
provider can abort a connection if a problem occurs below the Transport Interface.
t_snddis() enables a user to send data to the receiver when aborting a
connection. Although the abortive release is supported by all transport providers,
the ability to send data when aborting a connection is not.

When a user receives notification of the aborted connection, t_rcvdis() must be
called to retrieve the disconnect indication. This call returns a reason code that
identifies why the connection was aborted, and returns any user data that
accompanied the disconnect indication (if the abortive release was initiated by the
other user). This reason code is specific to the underlying transport protocol and
should not be interpreted by protocol-independent software.

• Orderly release gracefully terminates a connection and guarantees that no data is
lost.

All transport providers must support the abortive release procedure, but orderly release
is an optional facility that is not supported by all transport protocols.
007-0810-100 233

9: Transport Layer Interface
The Server

The client/server example in this section assumes that the transport provider supports
the orderly release of a connection. When all the data has been transferred by the server,
the connection can be released as follows:

 if (t_sndrel(conn_fd) < 0) {
 t_error("t_sndrel failed");
 exit(27);
 }
 pause();
 /* until orderly release indication arrives */
 }

The orderly release procedure consists of two steps by each user. The first user to
complete data transfer can initiate a release using t_sndrel(), as illustrated in the
example. This routine informs the client that no more data will be sent by the server.
When the client receives this indication, it can continue sending data back to the server
if desired. When all data has been transferred, however, the client must also call
t_sndrel() to indicate that it is ready to release the connection. The connection is
released only after both users have requested an orderly release and received the
corresponding indication from the other user.

In this example, data is transferred in one direction from the server to the client, so the
server does not expect to receive data from the client after it has initiated the release
procedure. Thus, the server simply calls pause() (see pause(2))after initiating the
release. Eventually, the client responds with its orderly release request, which generates
a signal that is caught by connrelease(). Remember that the server earlier issued an
I_SETSIG ioctl() call to generate a signal on any incoming event. Since the only
possible Transport Interface events that can occur in this situation are a disconnect
indication or an orderly release indication, connrelease() terminates normally when
the orderly release indication arrives. The exit() call in connrelease() closes the
transport endpoint, freeing the bound address for another user. If a user process wants
to close a transport endpoint without exiting, it can call t_close().

The Client

The client’s view of connection release is similar to that of the server. As mentioned
earlier, the client continues to process incoming data until t_rcv() fails. If the server
releases the connection (using either t_snddis() or t_sndrel()), t_rcv() fails and
sets t_errno to TLOOK. The client then processes the connection release as follows:
234 007-0810-100

Introduction to Connectionless-Mode Service
 if ((t_errno == TLOOK) && (t_look(fd) == T_ORDREL)) {
 if (t_rcvrel(fd) < 0) {
 t_error("t_rcvrel failed");
 exit(6);
 }
 if (t_sndrel(fd) < 0) {
 t_error("t_sndrel failed");
 exit(7);
 }
 exit(0);
 }
 t_error("t_rcv failed");
 exit(8);

When an event occurs on the client’s transport endpoint, the client checks whether the
expected orderly release indication has arrived. If so, it proceeds with the release
procedures by callingt_rcvrel() to process the indication andt_sndrel() to inform
the server that it is also ready to release the connection. At this point the client exits,
closing its transport endpoint.

Because not all transport providers support the orderly release facility just described,
users may have to use the abortive release facility provided by t_snddis() and
t_rcvdis(). However, steps must be taken by each user to prevent data loss. For
example, a special byte pattern can be inserted in the datastream to indicate the end of a
conversation. There are many possible routines for preventing data loss. Each
application and high-level protocol must choose an appropriate routine given the target
protocol environment and requirements.

Introduction to Connectionless-Mode Service

This section describes the connectionless-mode service of the Transport Interface.
Connectionless-mode service is appropriate for short-term request/response
interactions, such as transaction-processing applications. Data is transferred in
self-contained units with no logical relationship required among multiple units.

The connectionless-mode service is described using a transaction server as an example.
This server waits for incoming transaction queries, and processes and responds to each
query.
007-0810-100 235

9: Transport Layer Interface
Local Management

Just as with connection-mode service, the transport users must do appropriate local
management steps before transferring data. A user must choose the appropriate
connectionless service provider using t_open() and establish its identity using
t_bind(). See the t_open(3N) man page or the other “Local Management” section of
this chapter (under “Introduction to Connection-Mode Service”) for information about
what t_open() returns.

t_optmgmt() can be used to negotiate protocol options associated with the transfer of
each data unit. As with the connection-mode service, each transport provider specifies
the options, if any, that it supports. Option negotiation is therefore a protocol-specific
activity.

The definitions and local management calls needed by the transaction server are shown
in Example 9-4:

Example 9-4 The Transaction Server Definitions and Local Management

#include <stdio.h>
#include <fcntl.h>
#include <tiuser.h>

#define SRV_ADDR 2 /* server’s well-known address */

void main()
{
 int fd;
 int flags;

 struct t_bind *bind;
 struct t_unitdata *ud;
 struct t_uderr *uderr;

 extern int t_errno;

 if ((fd = t_open("/dev/ticlts", O_RDWR, NULL)) < 0) {
 t_error("unable to open /dev/provider");
 exit(1);
 }

 if ((bind = (struct t_bind *)t_alloc(fd, T_BIND,
 T_ADDR)) == NULL) {
 t_error("t_alloc of t_bind structure failed");
236 007-0810-100

Introduction to Connectionless-Mode Service
 exit(2);
 }

 bind->addr.len = sizeof(int);
 *(int *)bind->addr.buf = SRV_ADDR;
 bind->qlen = 0;

 if (t_bind(fd, bind, bind) < 0) {
 t_error("t_bind failed");
 exit(3);
 }

 /*
 * is the bound address correct?
 */

 if (*(int *)bind->addr.buf != SRV_ADDR)
 {
 fprintf(stderr, "t_bind bound wrong address\n");
 exit(4);
 }

The local management steps should look familiar by now. The server establishes a
transport endpoint with the desired transport provider using t_open(). Each provider
has an associated service type, so the user can choose a particular service by opening the
appropriate transport provider file. This connectionless-mode server ignores the
characteristics of the provider returned by t_open() in the same way as the users in the
connection-mode example, by setting the third argument to NULL. For simplicity, the
transaction server assumes the transport provider has the following characteristics:

• The transport address is an integer value that uniquely identifies each user.

• The transport provider supports the T_CLTS service type (connectionless transport
service, or datagram).

• The transport provider does not support any protocol-specific options.

The connectionless server also binds a transport address to the endpoint so that potential
clients can identify and access the server. A t_bind structure is allocated using
t_alloc(), and the buf and len fields of the address are set accordingly.

One important difference between the connection-mode server and this
connectionless-mode server is that the qlen field of the t_bind structure has no meaning
for connectionless-mode service, since all users are capable of receiving datagrams once
007-0810-100 237

9: Transport Layer Interface
they have bound an address. The Transport Interface defines an inherent client/server
relationship between two users while establishing a transport connection in the
connection-mode service. However, no such relationship exists in the
connectionless-mode service. It is the context of this example, not the Transport Interface,
that defines one user as a server and another as a client.

Because the address of the server is known by all potential clients, the server checks the
bound address returned by t_bind() to ensure it is correct.

Data Transfer

Once a user has bound an address to the transport endpoint, datagrams can be sent or
received over that endpoint. Each outgoing message is accompanied by the address of
the destination user. In addition, the Transport Interface enables a user to specify
protocol options that should be associated with the transfer of the data unit (for example,
transit delay). As discussed earlier, each transport provider defines the set of options, if
any, that can accompany a datagram. When the datagram is passed to the destination
user, the associated protocol options can be returned as well.

The sequence of calls in Example 9-5 illustrates the data transfer phase of the
connectionless-mode server:

Example 9-5 The Data Transfer Phase of a Connectionless-Mode Server

if ((ud = (struct t_unitdata *)t_alloc(fd, T_UNITDATA,
 T_ALL)) == NULL) {
 t_error("t_alloc of t_unitdata structure failed");
 exit(5);
}

if ((uderr = (struct t_uderr *)t_alloc(fd, T_UDERROR,
 T_ALL)) == NULL) {
 t_error("t_alloc of t_uderr structure failed");
 exit(6);
}

 while (1) {
 if (t_rcvudata(fd, ud, &flags) < 0) {
 if (t_errno == TLOOK) {
 /* Error on previously sent datagram */
 if (t_rcvuderr(fd, uderr) < 0) {
 exit(7);
238 007-0810-100

Introduction to Connectionless-Mode Service
 }
 fprintf(stderr, "bad datagram, \
 error = %d\n", uderr->error);
 continue;
 }
 t_error("t_rcvudata failed");
 exit(8);
 }

 /*
 * Query() processes the request and places the
 * response in ud->udata.buf, setting ud->udata.len
 */

 query(ud);

 if (t_sndudata(fd, ud < 0) {
 t_error("t_sndudata failed");
 exit(9);
 }
 }
}
query()
{
 /* Merely a stub for simplicity */
}

The server must first allocate a t_unitdata structure for storing datagrams, which has the
following format:

struct t_unitdata {
 struct netbuf addr;
 struct netbuf opt;
 struct netbuf udata;
}

addr holds the source address of incoming datagrams and the destination address of
outgoing datagrams, opt identifies any protocol options associated with the transfer of
the datagram, and udata holds the data itself. The addr, opt, and udata fields must all be
allocated with buffers large enough to hold any possible incoming values. As described
in the previous section, the T_ALL argument to t_alloc() ensures this and sets the
maxlen field of each netbuf structure accordingly. Because the provider does not support
protocol options in this example, no options buffers are allocated, and maxlen is set to
007-0810-100 239

9: Transport Layer Interface
zero in the netbuf structure for options. The server also allocates a t_uderr structure for
processing any datagram errors, as discussed later in this section.

The transaction server loops forever, receiving queries, processing the queries, and
responding to the clients. It first calls t_rcvudata() to receive the next query.
t_rcvudata() retrieves the next available incoming datagram. If none is currently
available, t_rcvudata() blocks, waiting for a datagram to arrive. The second
argument of t_rcvudata() identifies the t_unitdata structure in which the datagram
should be stored.

The third argument, flags, must point to an integer variable and can be set to T_MORE on
return from t_rcvudata() to specify that the user’s udata buffer was not large enough
to store the full datagram. In this case, subsequent calls to t_rcvudata() retrieve the
remainder of the datagram. Because t_alloc() allocates a udata buffer large enough to
store the maximum datagram size, the transaction server does not have to check the
value of flags.

If a datagram is received successfully, the transaction server calls the query() routine to
process the request. This routine stores the response in the structure pointed to by ud, and
sets ud–>udata.len to the number of bytes in the response. The source address returned
by t_rcvudata() in ud–>addr is used as the destination address by t_sndudata().

When the response is ready, t_sndudata() is called to return the response to the client.
The Transport Interface prevents a user from flooding the transport provider with
datagrams using the same flow control mechanism described for the connection-mode
service. In such cases, t_sndudata() blocks until the flow control is relieved, and then
resumes its operation.

Datagram Errors

If the transport provider cannot process a datagram that was passed to it by
t_sndudata(), it returns a unit data error event, T_UDERR, to the user. This event
includes the destination address and options associated with the datagram, plus a
protocol-specific error value that describes what could be wrong with the datagram. The
reason a datagram could not be processed is protocol-specific. One reason can be that the
transport provider could not interpret the destination address or options. Each transport
protocol is expected to specify all reasons why it is unable to process a datagram.
240 007-0810-100

A Read/Write Interface
Note: The unit data error indication is not necessarily intended to indicate success or
failure in delivering the datagram to the specified destination. The transport protocol
decides how the indication is used. Remember, the connectionless service does not
guarantee reliable delivery of data.

The transaction server is notified of this error event when it attempts to receive another
datagram. In this case, t_rcvudata() fails, setting t_errno to TLOOK. If TLOOK is set,
the only possible event is T_UDERR, so the server calls t_rcvuderr() to retrieve the
event. The second argument tot_rcvuderr() is the t_uderr structure that was allocated
earlier. This structure is filled in by t_rcvuderr() and has the following format:

struct t_uderr {
 struct netbuf addr;
 struct netbuf opt;
 long error;
 }

addr and opt identify the destination address and protocol options as specified in the bad
datagram, and error is a protocol-specific error code that specifies why the provider could
not process the datagram. The transaction server prints the error code and then continues
by entering the processing loop again.

A Read/Write Interface

A user may wish to establish a transport connection and then exec() (see exec(2)) an
existing user program such as cat to process the data as it arrives over the connection.
However, existing programs use read() and write() for their input/output needs.
The Transport Interface does not directly support a read/write interface to a transport
provider, but one is available with IRIX. This interface enables a user to issue read()
and write() calls over a transport connection that is in the data transfer phase. This
section describes the read/write interface to the connection-mode service of the
Transport Interface. This interface is not available with the connectionless-mode service.

The read/write interface is presented using the client example of “Introduction to
Connection-Mode Service” with some minor modifications. The clients are identical until
the data transfer phase is reached. At that point, this client uses the read/write interface
and cat to process incoming data. cat() can be run without change over the transport
007-0810-100 241

9: Transport Layer Interface
connection. Only the differences between this client and that of the example in
“Introduction to Connection-Mode Service” are shown below:

#include <stropts.h>
 ...
 /*
 * Same local management and connection
 * establishment steps.
 */
 ...
 if (ioctl(fd, I_PUSH, "tirdwr") < 0) {
 perror("I_PUSH of tirdwr failed");
 exit(5);
 }

 close(0);
 dup(fd);
 execl("/usr/bin/cat", "/usr/bin/cat", 0);
 perror("execl of /usr/bin/cat failed");
 exit(6);
 }

The client invokes the read/write interface by pushing the tirdwr (see tirdwr(7))
module onto the Stream associated with the transport endpoint where the connection
was established (see I_PUSH in streamio(5)). This module converts the Transport
Interface above the transport provider into a pure read/write interface. With the module
in place, the client calls close() and dup() (see close(2) and dup(2)) to establish the
transport endpoint as its standard input file, and uses /usr/bin/cat to process the
input. Because the transport endpoint identifier is a file descriptor, the facility for
dup()ing the endpoint is available to users.

Because the Transport Interface uses STREAMS, the facilities of this character
input/output mechanism can be used to provide enhanced user services. By pushing the
tirdwr module above the transport provider, the user’s interface is effectively changed.
The semantics of read() and write() must be followed, and message boundaries are
not preserved.
242 007-0810-100

A Read/Write Interface
Note: The tirdwr module can only be pushed onto a Stream when the transport endpoint
is in the data transfer phase. Once the module is pushed, the user cannot call any
Transport Interface routines. If a Transport Interface routine is invoked, tirdwr generates
a fatal protocol error, EPROTO, on that Stream, rendering it unusable. Furthermore, if the
user pops the tirdwr module off the Stream (see I_POP in streamio(5)), the transport
connection is aborted.

The exact semantics of write(), read(), and close() using tirdwr are described
below. To summarize, tirdwr enables a user to send and receive data over a transport
connection using read() and write(). This module translates all Transport Interface
indications into the appropriate actions. The connection can be released with the
close() system call.

write()

The user can transmit data over the transport connection using write(). The tirdwr
module passes data through to the transport provider. However, if a user attempts to
send a zero-length data packet, which the STREAMS mechanism allows, tirdwr discards
the message. If the transport connection is aborted (for example, because the other user
aborts the connection using t_snddis()), a STREAMS hangup condition is generated
on that Stream, and further write() calls fail and set errno to ENXIO. The user can still
retrieve any available data after a hangup.

read()

read() can be used to retrieve data that has arrived over the transport connection. The
tirdwr module passes data through to the user from the transport provider. However,
any other event or indication passed to the user from the provider is processed by tirdwr
as follows:

• read() cannot process expedited data because it cannot distinguish expedited data
from normal data for the user. If an expedited data indication is received, tirdwr
generates a fatal protocol error, EPROTO, on that Stream. This error causes further
system calls to fail. You should therefore not communicate with a process that is
sending expedited data.
007-0810-100 243

9: Transport Layer Interface
• If an abortive disconnect indication is received, tirdwr discards it and generates a
hangup condition on that Stream. Subsequent read() calls retrieve any remaining
data, and then read() returns 0 for all further calls (indicating end-of-file).

• If an orderly release indication is received, tirdwr discards the indication and
delivers a zero-length message to the user. As described in read(2), this notifies the
user of end-of-file by returning 0.

• If any other Transport Interface indication is received, tirdwr generates a fatal
protocol error, EPROTO, on that Stream. This causes further system calls to fail. If a
user pushes tirdwr onto a Stream after the connection has been established, no
indication is generated.

close()

With tirdwr on a Stream, the user can send and receive data over a transport connection
for the duration of that connection. Either user can terminate the connection by closing
the file descriptor associated with the transport endpoint or by popping the tirdwr
module off the Stream. In either case, tirdwr takes the following actions:

• If an orderly release indication was previously received by tirdwr, an orderly
release request is passed to the transport provider to complete the orderly release of
the connection. The user who initiated the orderly release procedure receives the
expected indication when data transfer completes.

• If a disconnect indication was previously received by tirdwr, no special action is
taken.

• If neither an orderly release indication nor a disconnect indication was previously
received by tirdwr, a disconnect request is passed to the transport provider to abort
the connection.

• If an error previously occurred on the Stream and a disconnect indication has not
been received by tirdwr, a disconnect request is passed to the transport provider.

A process cannot initiate an orderly release after tirdwr is pushed onto a Stream, but
tirdwr handles an orderly release properly if it is initiated by the user on the other side
of a transport connection. If the client described in this section is communicating with the
server program in “Introduction to Connection-Mode Service,” that server terminates
the transfer of data with an orderly release request. The server then waits for the
corresponding indication from the client. At that point, the client exits and the transport
endpoint is closed. When the file descriptor is closed, as explained in the first bulleted
item above, tirdwr initiates the orderly release request from the client’s side of the
244 007-0810-100

Advanced Topics
connection. This generates the indication that the server is expecting, and the connection
is released properly.

Advanced Topics

This section presents the following important concepts of the Transport Interface that
have not been covered in the previous section:

• An optional nonblocking (asynchronous) mode for some library calls

• An advanced programming example that defines a server supporting multiple
outstanding connect indications and operating in an event-driven manner

Asynchronous Execution Mode

Many Transport Interface library routines can block waiting for an incoming event or the
relaxation of flow control. However, some time-critical applications should not block for
any reason. Similarly, an application may wish to do local processing while waiting for
some asynchronous transport interface event.

Support for asynchronous processing of Transport Interface events is available to
applications using a combination of the STREAMS asynchronous features and the
nonblocking mode of the Transport Interface library routines. Earlier examples in this
chapter have illustrated the use of the poll() system call and the I_SETSIG ioctl()
command for processing events asynchronously.

In addition, any Transport Interface routine that can block while waiting for some event
can be run in a special nonblocking mode. For example, t_listen() normally blocks
waiting for a connect indication. However, a server can periodically poll a transport
endpoint for existing connect indications by calling t_listen() in the nonblocking (or
asynchronous) mode. The asynchronous mode is enabled by setting O_NDELAY or
O_NONBLOCK on the file descriptor. These can be set as a flag on t_open() or by
calling fcntl() (see fcntl(2)) before calling the Transport Interface routine. fcntl()
can be used to enable or disable this mode at any time. All programming examples in this
chapter use the default synchronous processing mode.

O_NDELAY or O_NONBLOCK affect each Transport Interface routine differently. To
determine the exact semantics of O_NDELAY or O_NONBLOCK for a particular routine,
see the relevant manual pages.
007-0810-100 245

9: Transport Layer Interface
Advanced Programming Example

The example in Example 9-6 demonstrates two important concepts. The first is a server’s
ability to manage multiple outstanding connect indications. The second is an illustration
of the ability to write event-driven software using the Transport Interface and the system
call interface.

The server example in Example 9-6 is capable of supporting only one outstanding
connect indication, but the Transport Interface supports the ability to manage multiple
outstanding connect indications. One reason a server might wish to receive several
simultaneous connect indications is to impose a priority scheme on each client. A server
can retrieve several connect indications, and then accept them in an order based on a
priority associated with each client. A second reason for handling several outstanding
connect indications is that the single-threaded scheme has some limitations. Depending
on the implementation of the transport provider, it is possible that while the server is
processing the current connect indication, other clients will find it busy. If, however,
multiple connect indications can be processed simultaneously, the server will be found
to be busy only if the maximum allowed number of clients attempt to call the server
simultaneously.

The server example in Example 9-6 is event-driven: the process polls a transport
endpoint for incoming Transport Interface events, and then takes the appropriate actions
for the current event. The example demonstrates the ability to poll multiple transport
endpoints for incoming events.

The definitions and local management functions needed by the example in Example 9-6
are similar to those of the server example in Example 9-4.

Example 9-6 An Advanced Server

#include <tiuser.h>
#include <fcntl.h>
#include <stdio.h>
#include <poll.h>
#include <stropts.h>
#include <signal.h>

#define NUM_FDS 1
#define MAX_CONN_IND 4
#define SRV_ADDR 1 /* server’s well-known address */

int conn_fd; /* server connection here */
extern int t_errno;
246 007-0810-100

Advanced Topics
/* holds connect indications */
struct t_call *calls[NUM_FDS][MAX_CONN_IND];

void main()
{
 struct pollfd pollfds[NUM_FDS];
 struct t_bind *bind;
 int i;

 /*
 * Only opening and binding one transport endpoint,
 * but more could be supported
 */
 if ((pollfds[0].fd = t_open("/dev/ticotsord", O_RDWR,
 NULL)) < 0) {
 t_error("t_open failed");
 exit(1);
 }

 if ((bind = (struct t_bind *)t_alloc(pollfds[0].fd,
T_BIND, T_ALL)) == NULL) {

 t_error("t_alloc of t_bind structure failed");
 exit(2);
 }
 bind->qlen = MAX_CONN_IND;
 bind->addr.len = sizeof(int);
 *(int *)bind->addr.buf = SRV_ADDR;

 if (t_bind(pollfds[0].fd, bind, bind) < 0) {
 t_error("t_bind failed");
 exit(3);
 }

 /* Was the correct address bound? */
 if (*(int *)bind->addr.buf != SRV_ADDR) {
 fprintf(stderr, "t_bind bound wrong address\n");
 exit(4);
 }

The file descriptor returned by t_open() is stored in a pollfd structure (see poll(2)) that
polls the transport endpoint for incoming data. Notice that only one transport endpoint
is established in this example. However, the remainder of the example is written to
007-0810-100 247

9: Transport Layer Interface
manage multiple transport endpoints. Several endpoints could be supported with minor
changes to the above code.

An important aspect of this server is that it sets qlen to a value greater than 1 for
t_bind(). This specifies that the server is willing to handle multiple outstanding
connect indications. Remember that the earlier examples single-threaded the connect
indications and responses. The server accepted the current connect indication before
retrieving additional connect indications. This example, however, can retrieve up to
MAX_CONN_IND connect indications at one time before responding to any of them.
The transport provider can negotiate the value of qlen downward if it cannot support
MAX_CONN_IND outstanding connect indications.

Once the server has bound its address and is ready to process incoming connect requests,
it performs the following:

 pollfds[0].events = POLLIN;
 while (1) {
 if (poll(pollfds, NUM_FDS, -1) < 0) {
 perror("poll failed");
 exit(5);
 }
 for (i = 0; i < NUM_FDS; i++) {

 switch (pollfds[i].revents) {

 default:
 perror("poll returned error event");
 exit(6);

 case 0:
 continue;

 case POLLIN:
 do_event(i, pollfds[i].fd);
 service_conn_ind(i, pollfds[i].fd);
 }
 }
 }
}

The events field of the pollfd structure is set to POLLIN, which notifies the server of any
incoming Transport Interface events. The server then enters an infinite loop, in which it
poll()s the transport endpoint(s) for events, and then processes those events as they
occur.
248 007-0810-100

Advanced Topics
The poll() call blocks indefinitely, waiting for an incoming event. On return, each entry
(corresponding to each transport endpoint) is checked for an existing event. If revents is
set to 0, no event has occurred on that endpoint. In this case, the server continues to the
next transport endpoint. If revents is set to POLLIN, an event does exist on the endpoint.
In this case, do_event() is called to process the event. If revents contains any other
value, an error must have occurred on the transport endpoint, and the server exits.

For each iteration of the loop, if any event is found on the transport endpoint,
service_conn_ind() is called to process any outstanding connect indications.
However, if another connect indication is pending, service_conn_ind() saves the
current connect indication and responds to it later. This routine is explained shortly. If an
incoming event is discovered, the routine in Example 9-7 is called to process it.

Example 9-7 Processing an Incoming Event

do_event(slot, fd)
{
 struct t_discon *discon;
 int i;

 switch (t_look(fd)) {

 default:
 fprintf(stderr,"t_look: unexpected event\n");
 exit(7);

 case T_ERROR:
 fprintf(stderr,"t_look returned T_ERROR event\n");
 exit(8);

 case -1:
 t_error("t_look failed");
 exit(9);

 case 0:
 /* since POLLIN returned, this should not happen */
 fprintf(stderr, "t_look returned no event\n");
 exit(10);

 case T_LISTEN:
 /* find free element in calls array */

 for (i = 0; i < MAX_CONN_IND; i++) {
 if (calls[slot][i] == NULL)
007-0810-100 249

9: Transport Layer Interface
 break;
 }

 if ((calls[slot][i] = (struct t_call *)t_alloc(fd,
T_CALL, T_ALL)) == NULL) {

 t_error("t_alloc of t_call structure failed");
 exit(11);
 }

 if (t_listen(fd, calls[slot][i]) < 0) {
 t_error("t_listen failed");
 exit(12);
 }
 break;
 case T_DISCONNECT:
 discon = (struct t_discon *)t_alloc(fd,T_DIS,T_ALL);
 if (t_rcvdis(fd, discon) < 0) {
 t_error("t_rcvdis failed");
 exit(13);
 }
 /* find call ind in array and delete it */

 for (i = 0; i < MAX_CONN_IND; i++) {
 if (discon->sequence==calls[slot][i]->sequence) {
 t_free((char*)calls[slot][i], T_CALL);
 calls[slot][i] = NULL;
 }
 }
 t_free(discon, T_DIS);
 break;
 }
}

This routine takes a number, slot, and a file descriptor, fd, as arguments. slot is used as an
index into the global array calls. This array contains an entry for each polled transport
endpoint, where each entry consists of an array of t_call structures that hold incoming
connect indications for that transport endpoint. The value of slot is used to identify the
transport endpoint.

do_event() calls t_look() to determine the Transport Interface event that has
occurred on the transport endpoint specified by fd. If a connect indication (T_LISTEN
event) or disconnect indication (T_DISCONNECT event) has arrived, the event is
processed. Otherwise, the server prints an appropriate error message and exits.
250 007-0810-100

Advanced Topics
For connect indications, do_event() scans the array of outstanding connect indications
looking for the first free entry. A t_call structure is then allocated for that entry, and the
connect indication is retrieved using t_listen(). There must always be at least one
free entry in the connect indication array, because the array is large enough to hold the
maximum number of outstanding connect indications as negotiated by t_bind(). The
processing of the connect indication is deferred until later.

If a disconnect indication arrives, it must correspond to a previously received connect
indication. This occurs if a client attempts to undo a previous connect request. In this
case, do_event() allocates a t_discon structure to retrieve the relevant disconnect
information. This structure has the following members:

struct t_discon {
 struct netbuf udata;
 int reason;
 int sequence;
 }

udata identifies any user data that might have been sent with the disconnect indication,
reason contains a protocol-specific disconnect reason code, and sequence identifies the
outstanding connect indication that matches this disconnect indication.

Next, t_rcvdis() is called to retrieve the disconnect indication. The array of connect
indications for slot is then scanned for one that contains a sequence number that matches
the sequence number in the disconnect indication. When the connect indication is found,
it is freed and the corresponding entry is set to NULL.

As mentioned earlier, if any event is found on a transport endpoint,
service_conn_ind() is called to process all currently outstanding connect
indications associated with that endpoint as follows:

service_conn_ind(slot, fd)
{
 int i;

 for (i = 0; i < MAX_CONN_IND; i++) {
 if (calls[slot][i] == NULL)
 continue;
 if ((conn_fd = t_open("/dev/ticotsord", O_RDWR,
 NULL)) < 0) {
 t_error("open failed");
 exit(14);
 }
 if (t_bind(conn_fd, NULL, NULL) < 0) {
007-0810-100 251

9: Transport Layer Interface
 t_error("t_bind failed");
 exit(15);
 }
 if (t_accept(fd, conn_fd, calls[slot][i]) < 0) {
 if (t_errno == TLOOK) {
 t_close(conn_fd);
 return;
 }
 t_error("t_accept failed");
 exit(16);
 }
 t_free((char*)calls[slot][i], T_CALL);
 calls[slot][i] = NULL;

 run_server(fd);
 }
}

For the given slot (the transport endpoint), the array of outstanding connect indications
is scanned. For each indication, the server opens a responding transport endpoint, binds
an address to the endpoint, and then accepts the connection on that endpoint. If another
event (connect indication or disconnect indication) arrives before the current indication
is accepted, t_accept() fails and sets t_errno to TLOOK.

Note: The user cannot accept an outstanding connect indication if any pending connect
indication events or disconnect indication events exist on that transport endpoint.

If this error occurs, the responding transport endpoint is closed and
service_conn_ind() returns immediately (saving the current connect indication for
later processing). This causes the server’s main processing loop to be entered, and the
new event is discovered by the next call to poll(). In this way, multiple connect
indications can be queued by the user.

Eventually, all events are processed, and service_conn_ind() is able to accept each
connect indication in turn. Once the connection is established, the run_server()
routine used by the server in “Introduction to Connection-Mode Service” is called to
manage the data transfer.
252 007-0810-100

State Transitions
State Transitions

These tables describe all state transitions associated with the Transport Interface. First,
however, the states and events are described.

Transport Interface States

Table 9-6 defines the states used to describe the Transport Interface state transitions.

Outgoing Events

The outgoing events described in Table 9-7 correspond to the return of the specified
transport routines, where these routines send a request or response to the transport
provider.

Table 9-6 States Describing Transport Interface State Transitions

State Description Service Type

T_UNINIT Uninitialized—initial and
final state of interface

T_COTS, T_COTS_ORD, T_CLTS

T_UNBND Initialized but not bound T_COTS, T_COTS_ORD, T_CLTS

T_IDLE No connection established T_COTS, T_COTS_ORD, T_CLTS

T_OUTCON Outgoing connection
pending for client

T_COTS, T_COTS_ORD

T_INCON Incoming connection
pending for server

T_COTS, T_COTS_ORD

T_DATAXFER Data transfer T_COTS, T_COTS_ORD

T_OUTREL Outgoing orderly release
(waiting for orderly
release indication)

T_COTS_ORD

T_INREL Incoming orderly release
(waiting to send orderly
release request)

T_COTS_ORD
007-0810-100 253

9: Transport Layer Interface
In the table, some events (such as acceptn) are distinguished by the context in which they
occur. The context is based on the values of the following variables:

ocnt count of outstanding connect indications

fd file descriptor of the current transport endpoint

resfd file descriptor of the transport endpoint where a connection is accepted

Table 9-7 Outgoing Events

Event Description Service Type

open Successful return of t_open() T_COTS, T_COTS_ORD, T_CLTS

bind Successful return of t_bind() T_COTS, T_COTS_ORD, T_CLTS

optmgmt Successful return of t_optmgmt() T_COTS, T_COTS_ORD, T_CLTS

unbind Successful return of t_unbind() T_COTS, T_COTS_ORD, T_CLTS

close Successful return of t_close() T_COTS, T_COTS_ORD, T_CLTS

sndudata Successful return of t_sndudata() T_CLTS

connect1 Successful return of t_connect() in
synchronous mode

T_COTS, T_COTS_ORD

connect2 TNODATA error on t_connect() in
asynchronous mode, or TLOOK error due to a
disconnect indication arriving on the transport
endpoint

T_COTS, T_COTS_ORD

accept1 Successful return of t_accept() with ocnt
== 1, fd == resfd

T_COTS, T_COTS_ORD

accept2 Successful return of t_accept() with ocnt
== 1, fd != resfd

T_COTS, T_COTS_ORD

accept3 Successful return of t_accept()with ocnt >
1

T_COTS, T_COTS_ORD

snd Successful return of t_snd() T_COTS, T_COTS_ORD

snddis1 Successful return of t_snddis() with
ocnt <= 1

T_COTS, T_COTS_ORD
254 007-0810-100

State Transitions
Incoming Events

The incoming events correspond to the successful return of the specified routines, where
these routines retrieve data or event information from the transport provider. The only
incoming event not associated directly with the return of a routine is pass_conn, which
occurs when a user transfers a connection to another transport endpoint. This event
occurs on the endpoint that is being passed the connection, despite the fact that no
Transport Interface routine is issued on that endpoint. pass_conn is included in the state
tables to describe the behavior when a user accepts a connection on another transport
endpoint.

In Table 9-8, the rcvdis events are distinguished by the context in which they occur. The
context is based on the value of ocnt, which is the count of outstanding connect
indications on the transport endpoint.

snddis2 Successful return of t_snddis()with ocnt >
1

T_COTS, T_COTS_ORD

sndrel Successful return of t_sndrel() T_COTS_ORD

Table 9-8 Incoming Events

Event Description Service Type

rcvudata Successful return of t_rcvudata() T_CLTS

rcvuderr Successful return of t_rcvuderr() T_CLTS

rcvconnect Successful return of t_rcvconnect() T_COTS, T_COTS_ORD

listen Successful return of t_listen() T_COTS, T_COTS_ORD

rcv Successful return of t_rcv() T_COTS, T_COTS_ORD

rcvdis1 Successful return oft_rcvdis()with ocnt <=
0

T_COTS, T_COTS_ORD

rcvdis2 Successful return oft_rcvdis()with ocnt ==
1

T_COTS, T_COTS_ORD

rcvdis3 Successful return oft_rcvdis()with ocnt > 1 T_COTS, T_COTS_ORD

Table 9-7 Outgoing Events (continued)

Event Description Service Type
007-0810-100 255

9: Transport Layer Interface
Transport User Actions

In the state tables that follow, some state transitions are accompanied by a list of actions
the transport user must take. These actions are represented by the notation [x], where x
is a mnemonic for the specific action:

[0] Set the count of outstanding connect indications to zero.

[+] Increment the count of outstanding connect indications.

[-] Decrement the count of outstanding connect indications.

[–>] Pass a connection to another transport endpoint as indicated in
t_accept().

State Tables

Table 9-9, Table 9-10, and Table 9-11 describe the Transport Interface state transitions.
Given a current state and an event, the transition to the next state is shown, as well as any
actions that must be taken by the transport user (indicated by [x]). The state is that of the
transport provider as seen by the transport user.

To see what the next state will be in a given situation, find the table cell at the intersection
of the column headed by the current state and the row labeled with the current incoming
or outgoing event. An empty cell represents a state/event combination that is invalid.
Along with the next state, each cell can indicate one or more actions from among those
listed in the previous section. The transport user must take the specific actions in the
order specified in the state table.

The following should be understood when studying the state tables:

• The t_close() routine is referenced in the state tables (see close event in Table 9-9)
but can be called from any state to close a transport endpoint. If t_close() is
called when a transport address is bound to an endpoint, the address is unbound.

rcvrel Successful return of t_rcvrel() T_COTS_ORD

pass_conn Receive a passed connection T_COTS, T_COTS_ORD

Table 9-8 Incoming Events (continued)

Event Description Service Type
256 007-0810-100

State Transitions
Also, if t_close() is called when the transport connection is still active, the
connection is aborted.

• If a transport user issues a routine out of sequence, the transport provider
recognizes this and the routine fails, setting t_errno to TOUTSTATE. The state does
not change.

• If any other transport error occurs, the state does not change unless explicitly stated
on the manual page for that routine. The exception to this is a TLOOK or
TNODATA error on t_connect(), as described in Table 9-7 under “connect2.”
The state tables assume correct use of the Transport Interface.

• The support routines t_getinfo(), t_getstate(), t_alloc(), t_free(),
t_sync(), t_look(), and t_error() are excluded from the state tables because
they do not affect the state.

Here are the state-transition tables: one for common local management steps; one for
data transfer in connectionless mode; and one for connection establishment, connection
release, and data transfer in connection mode.

Table 9-9 Common Local Management State Table

T_UNINIT T_UNBND T_IDLE

open T_UNBND

bind T_IDLE[0]

optmgmt T_IDLE

unbind T_UNBND

close T_UNINIT

Table 9-10 Connectionless-Mode State Table

T_IDLE

sndudata T_IDLE

rcvudata T_IDLE

rcvuderr T_IDLE
007-0810-100 257

9: Transport Layer Interface
Guidelines for Protocol Independence

By defining a set of services common to many transport protocols, the Transport Interface
provides many opportunities for protocol independence. However, there exist some
transport protocols that do not support all of the services supported by the Transport
Interface. If software must be run in a variety of protocol environments, only the
common services should be accessed.

Table 9-11 Connection-Mode State Table

T_IDLE T_OUTCON T_INCON T_DATAXFER T_OUTREL T_INREL

connect1 T_DATAXFER

connect2 T_OUTCON

rcvconnet T_DATAXFR

listen T_INCON [+] T_INCON [+]

accept1 T_DATAXFER [-]

accept2 T_IDLE [-] [–>]

accept3 T_INCON [-] [–>]

snd T_DATAXFR T_INRL

rcv T_DATAXFR T_OUTRL

snddis1 T_IDLE T_IDLE [-] T_IDLE T_IDLE T_IDLE

snddis2 T_INCON [-]

rcvdis1 T_IDLE T_IDLE T_IDLE T_IDLE

rcvdis2 T_IDLE [-]

rcvdis3 T_INCON [-]

sndrel T_OUTREL T_IDLE

rcvrel T_INREL T_IDLE

pass_conn T_DATAXFER
258 007-0810-100

Guidelines for Protocol Independence
The following guidelines highlight services that may not be common to all transport
protocols:

• In the connection-mode service, the concept of a transport service data unit (TSDU)
may not be supported by all transport providers. The user should make no
assumptions about the preservation of logical data boundaries across a connection.
If messages must be transferred over a connection, a protocol should be
implemented above the Transport Interface to support message boundaries.

• Protocol- and implementation-specific service limits are returned by the t_open()
and t_getinfo() routines. These limits are useful when allocating buffers to store
protocol-specific transport addresses and options. It is the responsibility of the user
to access these limits and then adhere to the limits throughout the communication
process.

• User data should not be transmitted with connect requests or disconnect requests
(see t_connect(3N) and t_snddis(3N)). Not all transport protocols support this
capability.

• The buffers in the t_call structure used for t_listen() must be large enough to
hold any information passed by the client during connection establishment. The
server should use the T_ALL argument to t_alloc(), which determines the
maximum buffer sizes needed to store the address, options, and user data for the
current transport provider.

• The user program should not look at or change options that are associated with any
Transport Interface routine. These options are specific to the underlying transport
protocol. The user should not pass options with t_connect() or t_sndudata().
In such cases, the transport provider uses default values. Also, a server should use
the options returned by t_listen() when accepting a connection.

• Protocol-specific addressing issues should be hidden from the user program. A
client should not specify any protocol address on t_bind(), but instead should
allow the transport provider to assign an appropriate address to the transport
endpoint. Similarly, a server should retrieve its address for t_bind() in such a way
that it does not require knowledge of the transport provider’s address space. Such
addresses should not be hard-coded into a program. A name server procedure
could be useful in this situation, but the details for providing this service are outside
the scope of the Transport Interface. The reason codes associated with t_rcvdis()
are protocol-dependent. The user should not interpret this information if protocol
independence is important.

• The error codes associated with t_rcvuderr() are protocol-dependent. The user
should not interpret this information if protocol independence is a concern.
007-0810-100 259

9: Transport Layer Interface
• The names of devices should not be hard-coded into programs, because the device
node identifies a particular transport provider and is not protocol independent.

• The optional orderly release facility of the connection-mode service (provided by
t_sndrel() and t_rcvrel()) should not be used by programs targeted for
multiple protocol environments. This facility is not supported by all
connection-based transport protocols.

Some Examples

This section contains examples of complete client and server programs mentioned earlier
in the chapter.

Connection-Mode Client

The code in Example 9-8 represents the connection-mode client program described in
“Introduction to Connection-Mode Service.”

This client establishes a transport connection with a server, and then receives data from
the server and writes that data to the client’s standard output. The connection is released
using the orderly release facility of the Transport Interface. This client communicates
with each of the connection-mode servers presented in the guide.

Example 9-8 A Connection-Mode Client

#include <stdio.h>
#include <tiuser.h>
#include <fcntl.h>

#define SRV_ADDR 1 /* server’s well-known address */

void main()
{
 int fd;
 int nbytes;
 int flags = 0;
 char buf[1024];
 struct t_call *sndcall;
 extern int t_errno;

 if ((fd = t_open("/dev/ticotsord", O_RDWR, NULL)) < 0) {
260 007-0810-100

Some Examples
 t_error("t_open failed");
 exit(1);
 }

 if (t_bind(fd, NULL, NULL) < 0) {
 t_error("t_bind failed");
 exit(2);
 }

 /* By assuming that the address is an integer value,
 * this program may not run over another protocol. */

 if ((sndcall = (struct t_call *)t_alloc(fd, T_CALL,
 T_ADDR)) == NULL) {
 t_error("t_alloc failed");
 exit(3);
 }
 sndcall->addr.len = sizeof(int);
 *(int *)sndcall->addr.buf = SRV_ADDR;

 if (t_connect(fd, sndcall, NULL) < 0) {
 t_error("t_connect failed for fd");
 exit(4);
 }
 while ((nbytes = t_rcv(fd, buf, 1024, &flags)) != -1){
 if (fwrite(buf, 1, nbytes, stdout) < 0){
 fprintf(stderr, "fwrite failed\n");
 exit(5);
 }
 }
 if ((t_errno == TLOOK) && (t_look(fd) == T_ORDREL)) {
 if (t_rcvrel(fd) < 0) {
 t_error("t_rcvrel failed");
 exit(6);
 }
 if (t_sndrel(fd) < 0) {
 t_error("t_sndrel failed");
 exit(7);
 }
 exit(0);
 }
 t_error("t_rcv failed");
 exit(8);
 }
007-0810-100 261

9: Transport Layer Interface
Connection-Mode Server

The code in Example 9-9 represents the connection-mode server program described in
“Introduction to Connection-Mode Service.” This server establishes a transport
connection with a client, and then transfers a log file to the client on the other side of the
connection. The connection is released using the orderly release facility of the Transport
Interface. The connection-mode client presented earlier communicates with this server.

Example 9-9 A Connection-Mode Server

#include <tiuser.h>
#include <stropts.h>
#include <fcntl.h>
#include <stdio.h>
#include <signal.h>

#define DISCONNECT -1
#define SRV_ADDR 1 /* server’s well-known address */

int conn_fd; /* connection established here */
extern int t_errno;

void main()
{
 int listen_fd; /* listening transport endpoint */
 struct t_bind *bind;
 struct t_call *call;
 if ((listen_fd = t_open("/dev/ticotsord", O_RDWR, NULL))
 < 0) {
 t_error("t_open failed for listen_fd");
 exit(1);
 }
 /*
 * By assuming that the address is an integer value,
 * this program may not run over another protocol.
 */
 if ((bind = (struct t_bind *)t_alloc(listen_fd, T_BIND,
 T_ALL)) == NULL) {
 t_error("t_alloc of t_bind structure failed");
 exit(2);
 }
 bind->qlen = 1;
 bind->addr.len = sizeof(int);
 *(int *)bind->addr.buf = SRV_ADDR;
262 007-0810-100

Some Examples
 if (t_bind(listen_fd, bind, bind) < 0) {
 t_error("t_bind failed for listen_fd");
 exit(3);
 }

 /* Was the correct address bound? */
 if (*(int *)bind->addr.buf != SRV_ADDR) {
 fprintf(stderr, "t_bind bound wrong address\n");
 exit(4);
 }
 if ((call = (struct t_call *)t_alloc(listen_fd, T_CALL,
 T_ALL)) == NULL) {
 t_error("t_alloc of t_call structure failed");
 exit(5);
 }
 while (1) {
 if (t_listen(listen_fd, call) < 0) {
 t_error("t_listen failed for listen_fd");
 exit(6);
 }
 if ((conn_fd = accept_call(listen_fd, call))
 != DISCONNECT)
 run_server(listen_fd);
 }
}

int accept_call(listen_fd, call)
int listen_fd; struct t_call *call;
{
 int resfd;

 if ((resfd = t_open("/dev/ticotsord", O_RDWR, NULL))
 < 0) {
 t_error("t_open for responding fd failed");
 exit(7);
 }
 if (t_bind(resfd, NULL, NULL) < 0) {
 t_error("t_bind for responding fd failed");
 exit(8);
 }
 if (t_accept(listen_fd, resfd, call) < 0) {
 if (t_errno == TLOOK) { /* must be a disconnect */
 if (t_rcvdis(listen_fd, NULL) < 0) {
 t_error("t_rcvdis failed for listen_fd");
007-0810-100 263

9: Transport Layer Interface
 exit(9);
 }
 if (t_close(resfd) < 0) {
 t_error("t_close failed for responding fd");
 exit(10);
 }
 /* go back up and listen for other calls */
 return(DISCONNECT);
 }
 t_error("t_accept failed");
 exit(11);
 }
 return(resfd);
}

void connrelease()
 {
 /* conn_fd is global because needed here */
 if (t_look(conn_fd) == T_DISCONNECT) {
 fprintf(stderr, "connection aborted\n");
 exit(12);
 }
 /* else orderly release indication - normal exit */
 exit(0);
 }

int run_server(listen_fd)
int listen_fd;
{
 int nbytes;
 FILE *logfp; /* file pointer to log file */
 char buf[1024];

 switch (fork()) {

 case -1:
 perror("fork failed");
 exit(20);

 default: /* parent */
 /* close conn_fd and then go up and listen again */
 if (t_close(conn_fd) < 0) {
 t_error("t_close failed for conn_fd");
 exit(21);
 }
264 007-0810-100

Some Examples
 return;

 case 0: /* child */
 /* close listen_fd and do service */
 if (t_close(listen_fd) < 0) {
 t_error("t_close failed for listen_fd");
 exit(22);
 }

 if ((logfp = fopen("logfile", "r")) == NULL) {
 perror("cannot open logfile");
 exit(23);
 }

 signal(SIGPOLL, connrelease);
 if (ioctl(conn_fd, I_SETSIG, S_INPUT) < 0) {
 perror("ioctl I_SETSIG failed");
 exit(24);
 }
 if (t_look(conn_fd) != 0) {
 /* disconnect wasn’t there */
 fprintf(stderr, "t_look: unexpected event\n");
 exit(25);
 }

 while ((nbytes = fread(buf, 1, 1024, logfp)) > 0)
 if (t_snd(conn_fd, buf, nbytes, 0) < 0) {
 t_error("t_snd failed");
 exit(26);
 }

 if (t_sndrel(conn_fd) < 0) {
 t_error("t_sndrel failed");
 exit(27);
 }
 pause(); /*until orderly release indication arrives*/
 }
 }

Connectionless-Mode Transaction Server

The code in Example 9-10 represents the connectionless-mode transaction server
program described in “Introduction to Connectionless-Mode Service.”
007-0810-100 265

9: Transport Layer Interface
This server waits for incoming datagram queries, and then processes each query and
sends a response.

Example 9-10 A Connectionless-Mode Transaction Server

#include <stdio.h>
#include <fcntl.h>
#include <tiuser.h>

#define SRV_ADDR 2 /* server’s well-known address */

void main()
{
 int fd;
 int flags;
 struct t_bind *bind;
 struct t_unitdata *ud;
 struct t_uderr *uderr;
 extern int t_errno;

 if ((fd = t_open("/dev/ticlts", O_RDWR, NULL)) < 0) {
 t_error("unable to open /dev/provider");
 exit(1);
 }

 if ((bind = (struct t_bind *)t_alloc(fd, T_BIND,
 T_ADDR)) == NULL) {
 t_error("t_alloc of t_bind structure failed");
 exit(2);
 }
 bind->addr.len = sizeof(int);
 *(int *)bind->addr.buf = SRV_ADDR;
 bind->qlen = 0;

 if (t_bind(fd, bind, bind) < 0) {
 t_error("t_bind failed");
 exit(3);
 }

 /* is the bound address correct? */
 if (*(int *)bind->addr.buf != SRV_ADDR) {
 fprintf(stderr, "t_bind bound wrong address\n");
 exit(4);
 }
266 007-0810-100

Some Examples
 if ((ud = (struct t_unitdata *)t_alloc(fd, T_UNITDATA,
 T_ALL)) == NULL) {
 t_error("t_alloc of t_unitdata structure failed");
 exit(5);
 }
 if ((uderr = (struct t_uderr *)t_alloc(fd, T_UDERROR,
 T_ALL)) == NULL) {
 t_error("t_alloc of t_uderr structure failed");
 exit(6);
 }

 while (1)
 {
 if (t_rcvudata(fd, ud, &flags) < 0) {
 if (t_errno == TLOOK) {
 /* Error on previously sent datagram */
 if (t_rcvuderr(fd, uderr) < 0) {
 t_error("t_rcvuderr failed");
 exit(7);
 }
 fprintf(stderr, "bad datagram, \
 error = %d\n", uderr->error);
 continue;
 }
 t_error("t_rcvudata failed");
 exit(8);
 }

 /*
 * Query() processes the request and places the
 * response in ud->udata.buf, setting ud->udata.len
 */
 query(ud);

 if (t_sndudata(fd, ud < 0) {
 t_error("t_sndudata failed");
 exit(9);
 }
 }
}

query()
{
 /* Merely a stub for simplicity */
}

007-0810-100 267

9: Transport Layer Interface
Read/Write Client

The code in Example 9-11 represents the connection-mode read/write client program
described in “A Read/Write Interface.” This client establishes a transport connection
with a server, and then uses cat to retrieve the data sent by the server and write that
data to the client’s standard output. This client communicates with each of the
connection-mode servers presented in the guide.

Example 9-11 A Connection-Mode Read/Write Client

#include <stdio.h>
#include <tiuser.h>
#include <fcntl.h>
#include <stropts.h>

#define SRV_ADDR 1 /* server’s well-known address */

void main()
{
 int fd;
 int nbytes;
 int flags = 0;
 char buf[1024];
 struct t_call *sndcall;
 extern int t_errno;

 if ((fd = t_open("/dev/ticotsord", O_RDWR, NULL)) < 0) {
 t_error("t_open failed");
 exit(1);
 }

 if (t_bind(fd, NULL, NULL) < 0) {
 t_error("t_bind failed");
 exit(2);
 }

 /* By assuming that the address is an integer value,
 * this program may not run over another protocol. */

 if ((sndcall = (struct t_call *)t_alloc(fd, T_CALL,
 T_ADDR)) == NULL) {
 t_error("t_alloc failed");
 exit(3);
 }
268 007-0810-100

Some Examples
 sndcall->addr.len = sizeof(int);
 *(int *)sndcall->addr.buf = SRV_ADDR;

 if (t_connect(fd, sndcall, NULL) < 0)
{
 t_error("t_connect failed for fd");
 exit(4);
 }
 if (ioctl(fd, I_PUSH, "tirdwr") < 0) {
 perror("I_PUSH of tirdwr failed");
 exit(5);
 }

 close(0);
 dup(fd);

 execl("/usr/bin/cat", "/usr/bin/cat", 0);
 perror("execl of /usr/bin/cat failed");
 exit(6);
}

Event-Driven Server

The code in Example 9-12 represents the connection-mode server program described in
“Advanced Topics.” This server manages multiple connect indications in an
event-driven manner. Either connection-mode client presented earlier communicates
with this server.

Example 9-12 A Connection-Mode Server

#include <tiuser.h>
#include <fcntl.h>
#include <stdio.h>
#include <poll.h>
#include <stropts.h>
#include <signal.h>

#define NUM_FDS 1
#define MAX_CONN_IND 4
#define SRV_ADDR 1 /* server’s well-known address */

int conn_fd; /* server connection here */
007-0810-100 269

9: Transport Layer Interface
extern int t_errno;

/* holds connect indications */
struct t_call *calls[NUM_FDS][MAX_CONN_IND];

void main()
{
 struct pollfd pollfds[NUM_FDS];
 struct t_bind *bind;
 int i;

 / * Only opening and binding one transport endpoint,
 * but more could be supported */

 if ((pollfds[0].fd = t_open("/dev/ticotsord", O_RDWR,
 NULL)) < 0) {
 t_error("t_open failed");
 exit(1);
 }

 if ((bind = (struct t_bind *)t_alloc(pollfds[0].fd,
 T_BIND, T_ALL)) == NULL) {
 t_error("t_alloc of t_bind structure failed");
 exit(2);
 }
 bind->qlen = MAX_CONN_IND;
 bind->addr.len = sizeof(int);
 *(int *)bind->addr.buf = SRV_ADDR;

 if (t_bind(pollfds[0].fd, bind, bind) < 0) {
 t_error("t_bind failed");
 exit(3);
 }

 /* Was the correct address bound? */
 if (*(int *)bind->addr.buf != SRV_ADDR) {
 fprintf(stderr, "t_bind bound wrong address\n");
 exit(4);
 }

 pollfds[0].events = POLLIN;

 while (1) {
 if (poll(pollfds, NUM_FDS, -1) < 0) {
 perror("poll failed");
270 007-0810-100

Some Examples
 exit(5);
 }

 for (i = 0; i < NUM_FDS; i++) {

 switch (pollfds[i].revents) {

 default:
 perror("poll returned error event");
 exit(6);

 case 0:
 continue;

 case POLLIN:
 do_event(i, pollfds[i].fd);
 service_conn_ind(i, pollfds[i].fd);
 }
 }
 }
}
do_event(slot, fd)
{
 struct t_discon *discon;
 int i;

 switch (t_look(fd)) {

 default:
 fprintf(stderr,"t_look: unexpected event\n");
 exit(7);

 case T_ERROR:
 fprintf(stderr,"t_look returned T_ERROR event\n");
 exit(8);

 case -1:
 t_error("t_look failed");
 exit(9);

 case 0:
 /* since POLLIN returned, this should not happen */
 fprintf(stderr,"t_look returned no event\n");
 exit(10);
 case T_LISTEN:
007-0810-100 271

9: Transport Layer Interface
 /* find free element in calls array */

 for (i = 0; i < MAX_CONN_IND; i++) {
 if (calls[slot][i] == NULL)
 break;
 }
 if ((calls[slot][i] = (struct t_call *)t_alloc(fd,
 T_CALL, T_ALL)) == NULL) {
 t_error("t_alloc of t_call structure failed");
 exit(11);
 }
 if (t_listen(fd, calls[slot][i]) < 0) {
 t_error("t_listen failed");
 exit(12);
 }
 break;

 case T_DISCONNECT:
 discon = (struct t_discon *)t_alloc(fd,T_DIS,T_ALL);

 if (t_rcvdis(fd, discon) < 0) {
 t_error("t_rcvdis failed");
 exit(13);
 }
 /* find call ind in array and delete it */

 for (i = 0; i < MAX_CONN_IND; i++) {
 if (discon->sequence==calls[slot][i]->sequence) {
 t_free((char*)calls[slot][i], T_CALL);
 calls[slot][i] = NULL;
 }
 }
 t_free((char*)discon, T_DIS);
 break;
 }
 }
service_conn_ind(slot, fd)
{
 int i;
 for (i = 0; i < MAX_CONN_IND; i++) {
 if (calls[slot][i] == NULL)
 continue;
 if ((conn_fd = t_open("/dev/ticotsord", O_RDWR,
 NULL)) < 0){
 t_error("open failed");
272 007-0810-100

Some Examples
 exit(14);
 }

 if (t_bind(conn_fd, NULL, NULL) < 0) {
 t_error("t_bind failed");
 exit(15);
 }
 if (t_accept(fd, conn_fd, calls[slot][i]) < 0) {
 if (t_errno == TLOOK) {
 t_close(conn_fd);
 return;
 }
 t_error("t_accept failed");
 exit(16);
 }
 t_free((char*)calls[slot][i], T_CALL);
 calls[slot][i] = NULL;

 run_server(fd);
 }
 }

void connrelease()
{
 /* conn_fd is global because needed here */
 if (t_look(conn_fd) == T_DISCONNECT) {
 fprintf(stderr, "connection aborted\n");
 exit(12);
 }

 /* else orderly release indication - normal exit */
 exit(0);
}

int run_server(listen_fd)
int listen_fd;
{
 int nbytes;
 FILE *logfp; /* file pointer to log file */
 char buf[1024];

 switch (fork())
{

 case -1:
007-0810-100 273

9: Transport Layer Interface
 perror("fork failed");
 exit(20);

 default: /* parent */

 /* close conn_fd and then go up and listen again */
 if (t_close(conn_fd) < 0) {
 t_error("t_close failed for conn_fd");
 exit(21);
 }
 return;

 case 0: /* child */

 /* close listen_fd and do service */
 if (t_close(listen_fd) < 0) {
 t_error("t_close failed for listen_fd");
 exit(22);
 }
 if ((logfp = fopen("logfile", "r")) == NULL) {
 perror("cannot open logfile");
 exit(23);
 }

 signal(SIGPOLL, connrelease);
 if (ioctl(conn_fd, I_SETSIG, S_INPUT) < 0) {
 perror("ioctl I_SETSIG failed");
 exit(24);
 }
 /* disconnect already there? */
 if (t_look(conn_fd) != 0) {
 fprintf(stderr, "t_look: unexpected event\n");
 exit(25);
 }

 while ((nbytes = fread(buf, 1, 1024, logfp)) > 0)
 if (t_snd(conn_fd, buf, nbytes, 0) < 0){
 t_error("t_snd failed");
 exit(26);
 }

 if (t_sndrel(conn_fd) < 0) {
 t_error("t_sndrel failed");
 exit(27);
 }
274 007-0810-100

Error Messages
 pause();
 /* until orderly release indication arrives */
 }
 }

Error Messages

The following errors have been added to TLI for X/Open Transport Interface (XTI)
compatibility.

Note: XTI has changed the names specified by struct_type by appending _STR to the end.
For example, to allocate a t_bind structure, the argument struct_type is T_BIND_STR
instead of T_BIND. The old names will continue to be supported. t_free() supports
the new names for the struct_type argument.

Upon failure, t_accept() sets t_errno to TBADADDR if the specified protocol address
was in an incorrect format or contained illegal information.

Upon failure, t_alloc() sets t_errno to TNOSTRUCTYPE if the struct_type parameter
is invalid.

Upon failure, t_bind() sets t_errno to TADDRBUSY if the requested address is in use
and the transport provider can’t allocate an new address.

t_look() includes two new events, and an existing event was removed. The T_ERROR
event was removed because it can be handled by setting t_errno to TSYSERR. The new
events, T_GODATA and T_GOEXDATA, are returned to indicate that flow-control
restrictions on normal data flow (T_GODATA) or expedited data flow (T_GOEXDATA)
have been lifted and data may be sent again.

Upon failure, t_open() sets t_errno to:

TBADFLAG if oflag is invalid.

TBADNAME if name is not a valid transport provider.

Upon failure, t_rcv(), t_rcvconnect(), t_rcvdis(), t_rcvrel(), and
t_rcvudata() set t_errno to TOUTSTATE if the function was issued in the wrong
sequence on this transport endpoint.
007-0810-100 275

9: Transport Layer Interface
Upon failure, t_snd() sets t_errno to:

TBADFLAG if oflag is invalid.

TLOOK if an asynchronous event has occurred on this transport endpoint and
requires immediate attention.

TOUTSTATE if the function was issued in the wrong sequence on this transport
endpoint.

Upon failure, t_sndrel() and t_sndudata() set t_errno to:

 TLOOK if an asynchronous event has occurred on this transport endpoint and
requires immediate attention.

 TOUTSTATE if the function was issued in the wrong sequence on this transport
endpoint.
276 007-0810-100

Appendix A

A. RPC Protocol Specification

This chapter describes the RPC protocol, a message protocol that is specified with the
XDR language and is used in implementing Sun’s RPC package.

This chapter assumes you are familiar with both RPC and XDR, as described in this
guide. It does not attempt to justify RPC or its uses. The casual user of RPC need not be
familiar with the information in this chapter.

Topics in this chapter include:

• RPC protocol requirements

• RPC protocol definition

• authentication protocols

• RPC record-marking standard

• port mapper program protocol

Note: For details about RPC programming, see Chapter 6, “RPC Programming Guide.”
For information about the structure and syntax of XDR and RPC language, see Chapter 7,
“XDR and RPC Language Structure.”
007-0810-100 277

A: RPC Protocol Specification
RPC Protocol Requirements

The RPC protocol provides:

• unique specification of a procedure to be called

• provisions for matching response messages to request messages

• provisions for authenticating the caller to the service and vice versa

Besides these requirements, features that detect the following are worth supporting
because of protocol roll-over errors, implementation bugs, user error, and network
administration:

• RPC protocol mismatches

• remote program protocol version mismatches

• protocol errors (such as errors in specifying a procedure’s parameters)

• reasons why remote authentication failed

• any other reasons why the desired procedure was not called

Remote Programs and Procedures

An RPC call message has three unsigned fields that uniquely identify the procedure to
be called:

• remote program number

• remote program version number

• remote procedure number

Program numbers are administered by some central authority (see “Assigning RPC
Program Numbers” in Chapter 4 for details). Once you have a program number, you can
implement your remote program.

The version field of the call message identifies the version of the RPC protocol being used
by the caller. Because most new protocols evolve into better, stable, and mature protocols,
a version field identifies which version of the protocol the caller is using. Version
numbers make it possible to speak old and new protocols through the same server
process.
278 007-0810-100

RPC Protocol Requirements
The procedure number identifies the procedure to be called. Such numbers are
documented in the specific program’s protocol specification. For example, a file service’s
protocol specification may state that its procedure number 5 is read and procedure
number 12 is write.

Just as remote program protocols may change over several versions, the actual RPC
message protocol could also change. Therefore, the call message also has the RPC version
number in it; this field must be two (2) for the version of RPC described here.

The reply message to a request message has enough information to distinguish the
following error conditions:

• The remote implementation of RPC does speak protocol version 2. The lowest and
highest supported RPC version numbers are returned.

• The remote program is not available on the remote system.

• The remote program does not support the requested version number. The lowest
and highest supported remote program version numbers are returned.

• The requested procedure number does not exist (this is usually a caller-side
protocol or programming error).

• The parameters to the remote procedure appear to be garbage from the server’s
point of view. (Again, this situation is caused by a disagreement about the protocol
between client and service.)

Message Authentication

The RPC protocol provides the fields necessary for a client to identify itself to a service
and vice versa. The call message has two authentication fields, the credentials and
verifier. The reply message has one authentication field, the response verifier. The RPC
protocol specification defines all three fields as the following opaque type:

enum auth_flavor {
 AUTH_NULL = 0,
 AUTH_UNIX = 1,
 AUTH_SHORT = 2
/* and more to be defined */
};
struct opaque_auth {
 auth_flavor flavor;
 opaque body<400>;
};
007-0810-100 279

A: RPC Protocol Specification
In simple English, any opaque_auth structure is an auth_flavor enumeration followed by
bytes that are opaque to the RPC protocol implementation.

The interpretation and semantics of the data contained within the authentication fields is
specified by individual, independent authentication protocol specifications. (See
“Authentication Protocols” on page 285 for definitions of the various authentication
protocols.)

If authentication parameters are rejected, the response message contains information
stating why they were rejected.

Other Uses of the RPC Protocol

The intended use of the RPC protocol is for calling remote procedures. That is, each call
message is matched with a response message. However, the protocol itself is a message
passing protocol with which other (non-RPC) protocols can be implemented. Sun
currently uses the RPC message protocol for the following two (non-RPC) protocols:
batching (or pipelining) and broadcast RPC. These two protocols are discussed (but not
defined) next.

Batching

Batching allows a client to send an arbitrarily large sequence of call messages to a server;
batching uses reliable byte stream protocols (such as TCP/IP) for its transport. The client
never waits for a reply from the server, and the server does not send replies to batch
requests. A sequence of batch calls is usually terminated by a legitimate RPC in order to
flush the pipeline (with positive acknowledgment).

Broadcast RPC

In broadcast RPC-based protocols, the client sends a broadcast packet to the network and
waits for numerous replies. Broadcast RPC uses unreliable, packet-based protocols (such
as UDP/IP) as its transport. Servers that support broadcast protocols respond only when
the request is successfully processed, and they are silent in the face of errors. Broadcast
RPC uses the Port Mapper RPC service to achieve its semantics. See “Port Mapper
Program Protocol” on page 288 for more information.
280 007-0810-100

RPC Protocol Definition
RPC Protocol Definition

This section defines the RPC protocol in the XDR data description language. The message
is defined in a top-down style.

Note that this is an XDR specification, not C code:

enum msg_type {
 CALL = 0,
 REPLY = 1
};
/*
 * A reply to a call message can take two forms:
 * the message was either accepted or rejected.
 */
enum reply_stat {
 MSG_ACCEPTED = 0,
 MSG_DENIED = 1
};
/* Given that a call message was accepted, the following is
 * the status of an attempt to call a remote procedure.
 */
enum accept_stat {
 SUCCESS =0, /* RPC successfully executed */
 PROG_UNAVAIL =1, /* remote machine exports program */
 PROG_MISMATCH =2, /* remote can't support version num*/
 PROC_UNAVAIL =3 /* prog can’t support procedure */
 GARBAGE_ARGS =4 /* remote can't figure out params */
};
/*
 * Reasons why a call message was rejected:
 */
enum reject_stat {
 RPC_MISMATCH = 0, /* RPC version number not 2 */
 AUTH_ERROR = 1 /* caller not authenticated on */
 /* remote */
};

/*
 * Why authentication failed:
 */
enum auth_stat {
 AUTH_BADCRED = 1, /* bad credentials (seal broken) */
 AUTH_REJECTEDCRED = 2, /* have client begin new session */
007-0810-100 281

A: RPC Protocol Specification
 AUTH_BADVERF = 3, /* bogus verifier (seal broken) */
 AUTH_REJECTEDVERF = 4, /* verifier expired or replayed */
 AUTH_TOOWEAK = 5, /* rejected for security reasons */
};

/*
 * The RPC message:
 * All messages start with a transaction identifier, xid,
 * followed by a two-armed discriminated union. The
 * union's discriminant is a msg_type which switches to
 * one of the two types of the message. The xid of a
 * REPLY message always matches that of the initiating
 * CALL message. NB: The xid field is only used for clients
 * matching reply messages with call messages or for servers
 * detecting retransmissions; the service side cannot treat
 * this ID as any type of sequence number.
 */
struct rpc_msg {
 unsigned int xid;
 union switch (msg_type mtype) {
 case CALL:
 call_body cbody;
 case REPLY:
 reply_body rbody;
 } body;
};

/*
 * Body of an RPC request call:
 * In version 2 of the RPC protocol specification, rpcvers
 * must be equal to 2. The fields prog, vers, and proc
 * specify the remote program, its version, and the
 * procedure within the remote program to be called. These
 * fields are followed by two authentication parameters,
 * cred (authentication credentials) and verf
 * (authentication verifier). The two authentication
 * parameters are followed by the parameters to the remote
 * procedure, which are specified by the specific program
 * protocol.
 */
struct call_body {
 unsigned int rpcvers; /* must be equal to 2 */
 unsigned int prog;
 unsigned int vers;
 unsigned int proc;
282 007-0810-100

RPC Protocol Definition
 opaque_auth cred;
 opaque_auth verf;
 /* procedure-specific parameters start here */
};

/*
 * Body of a reply to an RPC request.
 * The call message was either accepted or rejected.
 */
union reply_body switch (reply_stat stat) {
 case MSG_ACCEPTED:
 accepted_reply areply;
 case MSG_DENIED:
 rejected_reply rreply;
} reply;

/*
 * Reply to an RPC request that was accepted by the server.
 * Note: there could be an error even though the request
 * was accepted. The first field is an authentication
 * verifier which the server generates in order to validate
 * itself to the caller. It is followed by a union whose
 * discriminant is an enum accept_stat. The SUCCESS arm of
 * the union is protocol specific. The PROG_UNAVAIL,
 * PROC_UNAVAIL, and GARBAGE_ARGS arms of the union are
 * void. The PROG_MISMATCH arm specifies the lowest and
 * highest version numbers of the remote program that are
 * supported by the server.
 */
struct accepted_reply {
 opaque_auth verf;
 union switch (accept_stat stat) {
 case SUCCESS:
 opaque results[0];
 /* procedure-specific results start here */
 case PROG_MISMATCH:
 struct {
 unsigned int low;
 unsigned int high;
 } mismatch_info;
 default:
 /* Void. Cases include PROG_UNAVAIL,
 PROC_UNAVAIL, and GARBAGE_ARGS. */
 void;
 } reply_data;
007-0810-100 283

A: RPC Protocol Specification
};

/*
 * Reply to an RPC request that was rejected by the server.
 * The request can be rejected because of two reasons: either
 * the server is not running a compatible version of the
 * RPC protocol (RPC_MISMATCH), or the server refused to
 * authenticate the caller (AUTH_ERROR). In the case of
 * an RPC version mismatch, the server returns the lowest and
 * highest supported RPC version numbers. In the case of
 * refused authentication, the failure status is returned.
 */
union rejected_reply switch (reject_stat stat) {
 case RPC_MISMATCH:
 struct {
 unsigned int low;
 unsigned int high;
 } mismatch_info;
 case AUTH_ERROR:
 auth_stat stat;
};
284 007-0810-100

Authentication Protocols
Authentication Protocols

As previously stated, authentication parameters are opaque but open-ended to the rest
of the RPC protocol. This section defines some “flavors” of authentication in this
implementation. Other sites are free to invent new authentication types, with the same
rules of flavor number assignment as those for program number assignment.

Null Authentication

RPC calls are often made when the caller doesn’t know its authentication parameters,
and the server doesn’t care. In this case, the auth_flavor value (the discriminant of the
opaque_auth’s union) of the RPC message’s credentials, verifier, and response verifier is
AUTH_NULL(0). The bytes of the opaque_auth’s body are undefined. It is recommended
that the opaque length be zero.

AUTH_UNIX Authentication

The caller of a remote procedure may want to identify itself as it is identified on a trusted
UNIX system. The value of the credential’s discriminant of an RPC call message is
AUTH_UNIX (1). The bytes of the credential’s opaque body encode the following
structure:

struct auth_unix {
 unsigned int stamp;
 string machinename<255>;
 unsigned int uid;
 unsigned int gid;
 unsigned int gids<16>;
};

The stamp is an arbitrary ID that the caller machine may generate. The machinename is the
name of the caller’s machine (such as krypton). The uid is the caller’s effective user ID. The
gid is the caller’s effective group ID. The gid is a counted array of groups that contain the
caller as a member. The verifier accompanying the credentials should be of AUTH_NULL
(defined in the previous section).
007-0810-100 285

A: RPC Protocol Specification
The value of the discriminate of the “response verifier” received in the reply message
from the server may be AUTH_NULL or AUTH_SHORT(2). In the case of
AUTH_SHORT, the bytes of the response verifier’s string encode an opaque structure.
This new opaque structure may now be passed to the server instead of the original
AUTH_UNIX flavor credentials. The server keeps a cache that maps shorthand opaque
structures (passed back via an AUTH_SHORT style “response verifier”) to the original
credentials of the caller. The caller can save network bandwidth and server CPU cycles
by using the new credentials.

The server may flush the shorthand opaque structure at any time. If this happens, the
remote procedure call message will be rejected due to an authentication error. The reason
for the failure will be AUTH_REJECTEDCRED. At this point, the caller may want to try
the original AUTH_UNIX style of credentials.

Note: In an open environment, extra checks should be performed against the source and
identity of the originator before accepting the credential values.

Trusted UNIX Systems

Authentication is based on the premise that one multi-user UNIX system should be able
to accept and rely upon the user and group identification information from a trusted
source. The criteria for such trust between two systems are as follows:

• Both systems are administered securely. This includes practices such as:

– using passwords on all accounts, especially root.

– ensuring all setuid-root programs and daemons that run as root are
trustworthy, that is, they do not lie about their UID and are not easily fooled.

– protecting system files (the kernel) through file system permissions.

• Both systems share a common set of user UIDs and GIDs, such as is implemented
with NIS.

Systems that adhere to the criteria in the first bulleted item above are considered
equivalent, and are typically named in the file /etc/hosts.equiv.
286 007-0810-100

Authentication Protocols
As a result of following these criteria, a UNIX system believes the content of a credential
is authentic if comes from a trusted and trustworthy source. A UNIX system attempts to
assure itself that the credential has come from such a trusted source if:

• The packet is not self-inconsistent about its source (the host name in the credential
maps to the IP source address of the packet).

• The packet bears a source address that maps into a list of trusted or equivalent
hosts. Assuming that the list has been properly maintained, this assures the
program that the source system is a UNIX system, with privileged ports.

• The credential information (that is, the UIDs and GIDs) are all known to the local
system. This attempts to catch information from hosts that do not have equivalent
(common) sets of users’ UIDs and GIDs.

• The packet came from a privileged port on the source system. Given that the source
system was a UNIX host, this implies that the packet came from a process running
as root, which is trustworthy.

All of these actions constitute authentication, not access control. They attempt to answer
the question “should we trust the identity information in this credential?” not the
question “is the identity in this credential entitled to perform the requested RPC
function?”

This entire premise of authentication based on trust of equivalent systems is dated.
Personal computers and UNIX workstations that are individually administered are far
less likely to be worthy of the level of trust suggested here than were the large multi-user
systems that were kept in locked computer rooms, and whose root passwords were
known only to a few trusted system administrators, so common years ago. Most typical
modern UNIX workstation environments simply don’t meet the criteria for equivalent
systems any more.

Personal computers do not have root accounts, and no privileged ports. Any user on a
personal computer can send packets from a port number that would be a privileged port
if it were a UNIX system.

So, accepting an AUTH_UNIX RPC request from a system not known to be UNIX is risky.
007-0810-100 287

A: RPC Protocol Specification
Record Marking Standard

When RPC messages are passed on top of a byte stream protocol (such as TCP/IP), it is
necessary, or at least desirable, to delimit one message from another in order to detect
and possibly recover from user protocol errors. This is called record marking (RM). This
implementation of RPC uses this RM/TCP/IP transport for passing RPC messages on
TCP streams. One RPC message fits into one RM record.

A record is composed of one or more record fragments. A record fragment is a 4-byte
header followed by 0 to 231-1 bytes of fragment data. The bytes encode an unsigned
binary number; as with XDR integers, the byte order is from highest to lowest. The
number encodes two values—a boolean, which indicates whether the fragment is the last
fragment of the record (bit value 1 implies the fragment is the last fragment), and a 31-bit
unsigned binary value, which is the length in bytes of the fragment’s data. The boolean
value is the highest order bit of the header; the length is the 31 low-order bits. (Note that
this record specification is not in XDR standard form.)

Port Mapper Program Protocol

The port mapper program maps RPC program and version numbers to transport-specific
port numbers, which enables dynamic binding of remote programs.

This mapping is desirable because the range of reserved port numbers is very small and
the number of potential remote programs is very large. By running only the port mapper
on a reserved port, the port numbers of other remote programs can be ascertained by
querying the port mapper.

The port mapper also aids in broadcast RPC. A given RPC program will usually have
different port number bindings on different machines, so there is no way to directly
broadcast to all of these programs. The port mapper, however, does have a fixed port
number. To broadcast to a given program, the client actually sends its message to the port
mapper located at the broadcast address. Each port mapper that picks up the broadcast
then calls the local service specified by the client. When the port mapper gets the reply
from the local service, it sends the reply back to the client.
288 007-0810-100

Port Mapper Program Protocol
Port Mapper Protocol Specification

The following specifies the Port Mapper Protocol (in RPC language):

const PMAP_PORT = 111; /* portmapper port number */

/*
 * A mapping of (program, version, protocol) to port number
 */
struct mapping {
 unsigned int prog;
 unsigned int vers;
 unsigned int prot;
 unsigned int port;
};

/*
 * Supported values for the "prot" field
 */
const IPPROTO_TCP = 6; /* protocol number for TCP/IP */
const IPPROTO_UDP = 17; /* protocol number for UDP/IP */

/*
 * A list of mappings
 */
struct *pmaplist {
 mapping map;
 pmaplist next;
};

/*
 * Arguments to callit
 */
struct call_args {
 unsigned int prog;
 unsigned int vers;
 unsigned int proc;
 opaque args<>;
};

/*
 * Results of callit
 */
struct call_result {
 unsigned int port;
007-0810-100 289

A: RPC Protocol Specification
 opaque res<>;
};

/*
 * Port mapper procedures
 */
program PMAP_PROG {
 version PMAP_VERS {
 void
 PMAPPROC_NULL(void) = 0;
 bool
 PMAPPROC_SET(mapping) = 1;
 bool
 PMAPPROC_UNSET(mapping) = 2;
 unsigned int
 PMAPPROC_GETPORT(mapping) = 3;
 pmaplist
 PMAPPROC_DUMP(void) = 4;
 call_result
 PMAPPROC_CALLIT(call_args) = 5;
 } = 2;
} = 100000;
290 007-0810-100

Port Mapper Program Protocol
Port Mapper Operation

The port mapper program currently supports two protocols (UDP/IP and TCP/IP). The
port mapper is contacted by talking to it on assigned port number 111 (sunrpc in
/etc/services) on either of these protocols.

Table A-1 contains a description of each port mapper procedure.

Table A-1 Port Mapper Procedures

Procedure Description

PMAPPROC_NULL This procedure does not do any work. By convention, procedure
zero of any protocol takes no parameters and returns no results.

PMAPPROC_SET When a program first becomes available on a machine, it
registers itself with the port mapper program on the same
machine. The program passes its program number prog, version
number vers, transport protocol number prot, and the port port
on which it awaits a service request. The procedure returns a
boolean response whose value is TRUE if the procedure
successfully established the mapping, and FALSE otherwise.
The procedure refuses to establish a mapping if one already
exists for the tuple “(prog, vers, prot).”

PMAPPROC_UNSET When a program becomes unavailable, it should unregister itself
with the port mapper program on the same machine. The
parameters and results have meanings identical to those of
PMAPPROC_SET. The protocol and port number fields of the
argument are ignored.

PMAPPROC_GETPORT Given a program number prog, version number vers, and
transport protocol number prot, this procedure returns the port
number on which the program is awaiting call requests. A port
value of zero means the program has not been registered. The
port field of the argument is ignored.
007-0810-100 291

A: RPC Protocol Specification
PMAPPROC_DUMP This procedure enumerates all entries in the port mapper’s
database. The procedure takes no parameters and returns a list
of program, version, protocol, and port values.

PMAPPROC_CALLIT This procedure allows a caller to call another remote procedure
on the same machine without knowing the remote procedure’s
port number. It is intended for supporting broadcasts to
arbitrary remote programs via the well-known port mapper’s
port. The parameters prog, vers, proc, and the bytes of args are
the program number, version number, procedure number, and
parameters of the remote procedure.

This procedure sends a response only if the procedure was
successfully executed and is silent (no response) otherwise.

The port mapper communicates with the remote program using
UDP/IP only.

The procedure returns the remote program’s port number, and
the bytes of results are the results of the remote procedure.

Table A-1 Port Mapper Procedures (continued)

Procedure Description
292 007-0810-100

Appendix B

B. XDR Protocol Specification

This chapter describes the XDR protocol, a standard for describing and encoding data.
The XDR standard assumes that bytes (or octets) are portable, where a byte is defined as
8 bits of data. It also assumes that hardware that encodes bytes onto various media will
preserve the bytes’ meanings across hardware boundaries. (For example, the Ethernet
standard suggests that bytes be encoded in “little-endian” style, or least significant bit
first.)

Once XDR data is shared among machines, it shouldn’t matter that the data produced on
an IRIS is consumed by a VAX (or vice versa). Similarly, the choice of operating systems
should have no influence on how the data is represented externally. For programming
languages, data produced by a C program should be readable by a FORTRAN or Pascal
program.

Topics in this chapter include:

• basic block size

• XDR data types

• discussion of common questions about XDR

Note: For information about the structure and syntax of XDR language, see Chapter 7,
“XDR and RPC Language Structure.” For details about XDR programming, see
Chapter 8, “XDR Programming Notes.”
007-0810-100 293

B: XDR Protocol Specification
Basic Block Size

Representation of all items requires a multiple of four bytes (32 bits) of data. The bytes
are numbered 0 through n–1. The bytes are read or written to some byte stream such that
byte m always precedes byte m+1. If the number of bytes needed to contain the data are
not a multiple of 4, those n bytes are followed by enough (0 to 3) residual zero bytes, r, to
make the total byte count a multiple of 4.

Include the familiar graphic box notation for illustration and comparison. In most
illustrations, each box (delimited by a plus sign at each of the four corners, and vertical
bars and dashes) depicts a byte. Ellipses (...) between boxes indicate zero or more
additional bytes, where required.

Block
+--------+--------+...+--------+--------+...+--------+
| byte 0 | byte 1 |...|byte n-1| 0 |...| 0 |
+--------+--------+...+--------+--------+...+--------+
|<-----------n bytes---------->|<------r bytes------>|
|<-----------n+r (where (n+r) mod 4 = 0)>----------->|

XDR Data Types

This section describes the data types defined in the XDR standard, showing how each
data type is declared in XDR language, and including a graphic representation of how
each type is encoded.

Integers

An XDR signed integer is a 32-bit datum that encodes an integer in the range
[–2147483648, 2147483647]. The integer is represented in two’s complement notation. The
most and least significant bytes are 0 and 3, respectively. The data description of integers
is integer.
294 007-0810-100

XDR Data Types
Integer

(MSB) (LSB)
+-------+-------+-------+-------+
|byte 0 |byte 1 |byte 2 |byte 3 |
+-------+-------+-------+-------+
<------------32 bits------------>

Unsigned Integers

An XDR unsigned integer is a 32-bit datum that encodes a non-negative integer in the
range [0,4294967295]. It is represented by an unsigned binary number whose most and
least significant bytes are 0 and 3, respectively. The data description of unsigned integers
is unsigned.

Unsigned Integer

(MSB) (LSB)
+-------+-------+-------+-------+
|byte 0 |byte 1 |byte 2 |byte 3 |
+-------+-------+-------+-------+
<------------32 bits------------>

Enumerations

Enumerations have the same representation as integers and are handy for describing
subsets of integers. The data description of enumerated data is:

enum { name-identifier = constant, ... } identifier;

The three colors (red, yellow, and blue) could be described by an enumerated type, as
follows:

enum { RED = 2, YELLOW = 3, BLUE = 5 } colors;

It is an error to encode enumerations that have not been given assignments in the enum
declaration.
007-0810-100 295

B: XDR Protocol Specification
Booleans

Booleans are important enough and occur frequently enough to warrant their own
explicit type in the standard.

Booleans are declared like this:

bool identifier;

This is equivalent to:

enum { FALSE = 0, TRUE = 1 } identifier;

Hyper Integers and Hyper Unsigned

The XDR standard also defines 64-bit (8-byte) numbers called hyper integers and
unsigned hyper integers. Their representations are the obvious extensions of the integer
and unsigned integer defined in the preceding sections in this chapter. They are
represented in two’s complement notation. The most and least significant bytes are 0 and
7, respectively.

Hyper Integer or Unsigned Hyper Integer

(MSB) (LSB)
+------+------+------+------+------+------+------+------+
|byte 0|byte 1|byte 2|byte 3|byte 4|byte 5|byte 6|byte 7|
+------+------+------+------+------+------+------+------+
<-------------------------64 bits----------------------->

Floating Points

The XDR standard defines the floating-point data type float (32 bits or 4 bytes). The
encoding used is the IEEE standard for normalized single-precision floating-point
numbers. (See the ANSI/IEEE 754-1985 floating-point standard.)
296 007-0810-100

XDR Data Types
The following fields describe the single-precision floating-point number:

S The sign of the number. Values 0 and 1 represent positive and negative,
respectively. One bit.

E The exponent of the number, base 2. Eight bits are devoted to this field.
The exponent is biased by 127.

F The fractional part of the number’s mantissa, base 2. Twenty-three bits
are devoted to this field.

Therefore, the floating-point number is described by:

(-1)S * 2{E - Bias} * 1.F

It is declared like this:

Single-Precision Floating-Point

+-------+-------+-------+-------+
|byte 0 |byte 1 |byte 2 |byte 3 |
S| E | F |
+-------+-------+-------+-------+
1|<- 8 ->|<-------23 bits------>|
<------------32 bits------------>

Just as the most and least significant bytes of a number are 0 and 3, the most and least
significant bits of a single-precision, floating-point number are 0 and 31. The beginning
bit (and most significant bit) offsets of S, E, and F are 0, 1, and 9, respectively. Note that
these numbers refer to the mathematical positions of the bits, and not to their actual
physical locations (which vary from medium to medium).

The IEEE specifications should be consulted regarding the encoding for signed zero,
signed infinity (overflow), and denormalized numbers (underflow). According to IEEE
specifications, the “NaN” (not a number) is system dependent and should not be used
externally.
007-0810-100 297

B: XDR Protocol Specification
Double-Precision Floating Points

The XDR standard defines the encoding for the double-precision floating-point data type
double (64 bits or 8 bytes). The encoding used is the ANSI/IEEE 754/1985 standard for
normalized double-precision, floating-point numbers.

The following fields describe the double-precision floating-point number:

S The sign of the number. Values 0 and 1 represent positive and negative,
respectively. One bit.

E The exponent of the number, base 2. Eleven bits are devoted to this field.
The exponent is biased by 1023.

F The fractional part of the number’s mantissa, base 2. Fifty-two bits are
devoted to this field.

It is declared as follows:

Double-Precision Floating-Point

+------+------+------+------+------+------+------+------+
|byte 0|byte 1|byte 2|byte 3|byte 4|byte 5|byte 6|byte 7|
S| E | F |
+------+------+------+------+------+------+------+------+
1|<--11-->|<-----------------52 bits------------------->|
<-----------------------64 bits------------------------->

Just as the most and least significant bytes of a number are 0 and 3, the most and least
significant bits of a double-precision, floating-point number are 0 and 63. The beginning
bit (and most significant bit) offsets of S, E, and F are 0, 1, and 12, respectively. Note that
these numbers refer to the mathematical positions of the bits, and not to their actual
physical locations (which vary from medium to medium).

The IEEE specifications should be consulted concerning the encoding for signed zero,
signed infinity (overflow), and denormalized numbers (underflow). According to IEEE
specifications, the “NaN” (not a number) is system dependent and should not be used
externally.
298 007-0810-100

XDR Data Types
Fixed-Length Opaque Data

At times, fixed-sized, uninterpreted data needs to be passed among machines. This data
is called opaque and is declared like this:

opaque identifier[n];

Constant n is the (static) number of bytes necessary to contain the opaque data. If n is not
a multiple of 4, the n bytes are followed by enough (0 to 3) residual zero bytes, r, to make
the total byte count of the opaque object a multiple of 4.

Fixed-Length Opaque

0 1 ...
+--------+--------+...+--------+--------+...+--------+
| byte 0 | byte 1 |...|byte n-1| 0 |...| 0 |
+--------+--------+...+--------+--------+...+--------+
|<-----------n bytes---------->|<------r bytes------>|
|<-----------n+r (where (n+r) mod 4 = 0)------------>|

Variable-Length Opaque Data

The XDR standard also provides for variable-length (counted) opaque data, defined as a
sequence of n (numbered 0 through n–1) arbitrary bytes to be the number n encoded as
an unsigned integer and followed by the n bytes of the sequence.

Byte m of the sequence always precedes byte m+1 of the sequence, and byte 0 of the
sequence always follows the sequence’s length (count). Enough residual zero bytes (0 to
3), r, make the total byte count a multiple of 4.

Variable-length opaque data is declared like this:

opaque identifier<m>;

or

opaque identifier<>;

The constant m denotes an upper bound of the number of bytes the sequence may
contain. If m is not specified, as in the second declaration, it is assumed to be the
maximum length, (232) –1.
007-0810-100 299

B: XDR Protocol Specification
The constant m would normally be found in a protocol specification. For example, a filing
protocol may state that the maximum data transfer size is 8192 bytes, as follows:

opaque filedata<8192>;

It is an error to encode a length greater than the maximum described in the specification.

Variable-Length Opaque

0 1 2 3 4 5 ..
+-----+-----+-----+-----+-----+-----+..+-----+-----+..+-----+
| length n |byte0|byte1|..| n-1 | 0 |..| 0 |
+-----+-----+-----+-----+-----+-----+..+-----+-----+..+-----+
|<-------4 bytes------->|<------n bytes----->|<---r bytes-->|
 |<---n+r (where (n+r) mod 4 = 0)--->|

Strings

The XDR standard defines a string of n (numbered 0 through n–1) ASCII bytes to be the
number n encoded as an unsigned integer, and followed by the n bytes of the string. Byte
m of the string always precedes byte m+1 of the string, and byte 0 of the string always
follows the string’s length. If n is not a multiple of 4, the n bytes are followed by enough
(0 to 3) residual zero bytes, r, to make the total byte count a multiple of 4.

Counted byte strings are declared as follows:

string object<m>;

or

string object<>;

The constant m denotes an upper bound of the number of bytes that a string may contain.
If m is not specified, as in the second declaration, it is assumed to be the maximum length,
(232) –1.

The constant m would normally be found in a protocol specification. For example, a filing
protocol may state that a filename can be no longer than 255 bytes, as follows:

string filename<255>;

It is an error to encode a length greater than the maximum described in the specification.
300 007-0810-100

XDR Data Types
String

0 1 2 3 4 5 ..
+-----+-----+-----+-----+-----+-----+..+-----+-----+..+-----+
| length n |byte0|byte1|..| n-1 | 0 |..| 0 |
+-----+-----+-----+-----+-----+-----+..+-----+-----+..+-----+
|<-------4 bytes------->|<-----n bytes------>|<---r bytes-->|
 |<---n+r (where (n+r) mod 4 = 0)--->|

Fixed-Length Arrays

Declarations for fixed-length arrays of homogeneous elements are in this form:

type-name identifier[n];

Fixed-length arrays of elements numbered 0 through n–1 are encoded by individually
encoding the elements of the array in their natural order, 0 through n–1. Each element’s
size is a multiple of 4 bytes. Although all elements are of the same type, the elements may
have different sizes. For example, in a fixed-length array of strings, all elements are type
string, yet each element will vary in length.

Fixed-Length Array

+---+---+---+---+---+---+---+---+...+---+---+---+---+
| element 0 | element 1 |...| element n-1 |
+---+---+---+---+---+---+---+---+...+---+---+---+---+
|<--------------------n elements------------------->|

Variable-Length Arrays

Counted arrays provide the ability to encode variable-length arrays of homogeneous
elements. The array is encoded as the element count n (an unsigned integer) followed by
the encoding of each of the array’s elements, starting with element 0 and progressing
through element n–1.

Declaration for variable-length arrays follow this form:

type-name identifier<m>;

or

type-name identifier<>;
007-0810-100 301

B: XDR Protocol Specification
The constant m specifies the maximum acceptable element count of an array; if m is not
specified, as in the second declaration, it is assumed to be (232) –1.

It is an error to encode a value of n that is greater than the maximum described in the
specification.

Counted Array

0 1 2 3
+--+--+--+--+--+--+--+--+--+--+--+--+...+--+--+--+--+
| n | element 0 | element 1 |...|element n-1|
+--+--+--+--+--+--+--+--+--+--+--+--+...+--+--+--+--+
|<-4 bytes->|<--------------n elements------------->|

Structures

The data description for structures in the XDR standard is very similar to data
description in standard C:

struct {
 component-declaration-A;
 component-declaration-B;
 ...
} identifier;

The components of the structure are encoded in the order of their declaration in the
structure. Each component’s size is a multiple of 4 bytes, although the components may
be different sizes.

Discriminated Unions

A discriminated union is a type composed of a discriminant followed by a type selected
from a set of prearranged types according to the value of the discriminant. The type of
discriminant is either int, unsigned int, or an enumerated type, such as bool. The
component types are called “arms” of the union, and are preceded by the value of the
discriminant, which implies their encoding.

Discriminated unions are declared like this:

union switch (discriminant-declaration) {
 case discriminant-value-A:
302 007-0810-100

XDR Data Types
 arm-declaration-A;
 case discriminant-value-B:
 arm-declaration-B;
 ...
 default: default-declaration;
} identifier;

Each case keyword is followed by a legal value of the discriminant. The default arm is
optional; if not specified, a valid encoding of the union cannot take on unspecified
discriminant values. The size of the implied arm is always a multiple of 4 bytes. The
discriminated union is encoded as its discriminant followed by the encoding of the
implied arm.

Discriminated Union

0 1 2 3
+---+---+---+---+---+---+---+---+
| discriminant | implied arm |
+---+---+---+---+---+---+---+---+
|<---4 bytes--->|

Voids

An XDR void is a 0-byte quantity. Voids are useful for describing operations that take no
data as input or no data as output, and in unions, where some arms may contain data and
others do not.

The declaration is:

void;

Void

 ++
 ||
 ++
--><-- 0 bytes

Constants

The data declaration for a constant follows this form:
007-0810-100 303

B: XDR Protocol Specification
const name-identifier = n;

const defines a symbolic name for a constant; it does not declare any data. The symbolic
constant may be used anywhere a regular constant can be used. For example, the
following defines the symbolic constant DOZEN, equal to 12:

const DOZEN = 12;

Typedefs

A typedef does not declare data either, but it serves to define new identifiers for
declaring data. The syntax is:

typedef declaration;

The new type name is actually the variable name in the declaration part of the typedef.
For example, the following defines a new type called eggbox using an existing type called
egg:

typedef egg eggbox[DOZEN];

Variables declared using the new type name have the same type as the new type name
would have in the typedef, if it was considered a variable. For example, the following
two declarations are equivalent to declaring the variable fresheggs:

eggbox fresheggs;
egg fresheggs[DOZEN];

When a typedef involves a struct, enum, or union definition, there is another (preferred)
syntax that may be used to define the same type.

In general, a typedef of this form can be converted to the alternative form by removing
the typedef part and placing the identifier after the struct, union, or enum keyword,
instead of at the end:

typedef <<struct, union, or enum definition>> identifier;

For example, there are two ways to define the type bool:

typedef enum { /* using typedef */
 FALSE = 0,
 TRUE = 1
} bool;
304 007-0810-100

XDR Data Types
enum bool { /* preferred alternative */
 FALSE = 0,
 TRUE = 1
};

The reason this syntax is preferred is that you do not have to wait until the end of a
declaration to figure out the name of the new type.

Optional Data

Optional data is a kind of union that occurs so frequently that it is given a special
declaration syntax of its own:

type-name *identifier;

This syntax is equivalent to the following union declaration:

union switch (bool opted) {
 case TRUE:
 type-name element;
 case FALSE:
 void;
} identifier;

This syntax is also equivalent to the following variable-length array declaration, since the
boolean opted can be interpreted as the length of the array:

type-name identifier<1>;

Optional data is useful for describing recursive data structures, such as linked lists and
trees. The following example defines a type stringlist, which encodes lists of arbitrary
length strings:

struct *stringlist {
 string item<>;
 stringlist next;
};

It could be declared equivalently as a union:

union stringlist switch (bool opted) {
 case TRUE:
 struct {
 string item<>;
007-0810-100 305

B: XDR Protocol Specification
 stringlist next;
 } element;
 case FALSE:
 void;
};

Or, it could be declared as a variable-length array:

struct stringlist<1> {
 string item<>;
 stringlist next;
};

Both declarations obscure the intention of the stringlist type, however, so the
optional-data declaration is preferred over both of them.

The optional-data type is also closely correlated with how recursive data structures are
represented in high-level languages, such as Pascal and C. In these cases, recursive data
structures use pointers. In fact, the syntax is the same as that of the C language for
pointers.

Areas for Future Enhancement

The XDR standard lacks representations for bit fields and bitmaps, since the standard is
based on bytes. Also missing are packed (or binary-coded) decimals.

It is not the intent of the XDR standard to describe every kind of data that people have
ever sent (or will ever want to send) from machine to machine. It only describes the most
commonly used data types of high-level languages, such as Pascal and C so applications
written in these languages will be able to communicate easily over some medium.

One could imagine extensions to XDR that would let it describe almost any existing
protocol, such as TCP. The minimum requirement for these extensions is support for
different block sizes and byte orders. The XDR discussed here could then be considered
the 4-byte, big-endian member of a larger XDR family.

Common Questions about XDR

This section attempts to answer questions you may have about XDR.
306 007-0810-100

Common Questions about XDR
• Why have a language for describing data?

There are many advantages to using a data description language, such as XDR, over
using diagrams. Languages are more formal than diagrams and lead to less
ambiguous descriptions of data. Languages are also easier to understand and allow
one to think of other issues instead of the low-level details of bit encoding. Also,
there is a close analogy between the types of XDR and a high-level language such as
C or Pascal, which makes the implementation of XDR encoding and decoding
modules an easier task. Finally, the language specification itself is an ASCII string
that can be passed from machine to machine to perform on-the-fly data
interpretation.

• Why is there only one byte order for an XDR unit?

Supporting two byte orderings requires a higher level protocol for determining in
which byte order the data is encoded. Since XDR is not a protocol, it cannot support
two byte orderings. The advantage, however, is that data in XDR format can be
written to a magnetic tape, for example, and any machine will be able to interpret it,
since no higher level protocol is necessary for determining the byte order.

• Why does XDR use big-endian byte order?

Yes, it is unfair that XDR uses big-endian byte order, but having only one byte order
means you have to be unfair to somebody. Many architectures, such as the MIPS
R2000/3000, Motorola 68000, and IBM 370, support the big-endian byte order.

• Why is the XDR unit four bytes wide?

There is a trade-off in choosing the XDR unit size. Choosing a small size such as two
makes the encoded data small but causes alignment problems for machines that
aren’t aligned on these boundaries. A large size such as eight means the data will be
aligned on virtually every machine but causes the encoded data to grow too big.
Four was chosen as a compromise. The four-byte data unit is big enough to support
most architectures efficiently, except for rare machines such as the 8-byte-aligned
Cray. Four is also small enough to keep the encoded data restricted to a reasonable
size.

• Why must variable-length data be padded with zeros?

Forcing the padded bytes to be zero ensures that the same data is encoded into the
same thing on all machines, enabling the encoded data to be meaningfully
compared or checksummed.

• Why is there no explicit data typing?
007-0810-100 307

B: XDR Protocol Specification
Data typing has a relatively high cost for what small advantages it may have. One
cost is the expansion of data due to the inserted type fields. Another is the added
cost of interpreting these type fields and acting accordingly. Most protocols already
know what type they expect, so data typing supplies only redundant information.
However, one can still get the benefits of data typing using XDR. One way is to
encode two things: first a string, which is the XDR data description of the encoded
data, and then the encoded data itself. Another way is to assign a value to all the
types in XDR, and then define a universal type that takes this value as its
discriminant and for each value describes the corresponding data type.
308 007-0810-100

Appendix Cfc

C. IRIX Name Service Implementation

This appendix details the functioning of the IRIX name service implementation, called
Unified Name Service (UNS), included with IRIX beginning with the 6.5 release. The
IRIX name service is made up of a set of C library routines, cache files, a resolver daemon,
and protocol libraries. Each of the elements is considered separately in some depth.

Topics in this appendix include:

• “Overview of UNS” on page 310

• “UNS Programming Steps” on page 310

• “UNS Library Routines” on page 311

• “UNS Cache Files” on page 313

• “UNS Name Service Daemon Operation” on page 314

• “How UNS Protocol Libraries Work” on page 321

• “NFS Interface to UNS” on page 327

For specific tasks associated with installing UNS, refer to the chapter on Unified Name
Service in IRIX Admin: Networking and Mail.
007-0810-100 309

C: IRIX Name Service Implementation
Overview of UNS

The Unified Name Service (UNS) is a name service architecture consisting of a C library
API, a cache database, a management daemon, and a number of protocol libraries. It
permits new name service protocols to be added very simply by the creation of a shared
library with a couple of well-defined entry points, while providing a system-wide cache
of all results.

This name service API maintains library-level compatibility with previous releases, and
no applications need to be recompiled. The protocol code, which existed in the specific
API routines, has been moved out of the C library into separate shared libraries.

UNS Programming Steps

To make full use of the UNS name service, follow these steps:

1. Understand the name service process and determine:

• The network layout.

• The configuration required.

• The details of the resolve order as shown in the /etc/nsswitch.conf file as
described in IRIX Admin: Networking and Mail.

• The relationship between this name service and other name services installed.

2. Configure and test the name service system as described in IRIX Admin: Networking
and Mail.

3. Add configuration information to the nsswitch.conf file as described in IRIX
Admin: Networking and Mail.

4. Write any special programming using the routines described in “UNS Library
Routines.”
310 007-0810-100

UNS Library Routines
UNS Library Routines

Starting in IRIX 6.5, the standard name service API routines, which contained protocol
code to directly converse with name service daemons, such as getpwname(),
gethostent(), and getprotobynumber(), all remain but have been reimplemented
as wrappers around two new library routines: ns_lookup(), which fetches a single
item from a named table, and ns_list(), which enumerates an entire name service
table.

When a C library routine such as gethostbyname() is called in an application,
sufficient memory for the returned data structure is allocated, and the routine
ns_lookup() is called with the key, together with a domain and the name of the table
containing this information.

The ns_lookup() routine mmaps a global shared cache database corresponding to the
table name, and attempts to look up the key in this database. If the lookup fails, then the
routine opens a file associated with the key, table, and domain, and parses the data the
way it has been done historically with flat configuration files. The file is generated on the
fly by a cache miss daemon that acts as a user-level NFS file server.

The daemon determines the resolve order for the request, then calls routines in shared
libraries for each of the protocols supported. Once the data is found, it is stored in the
global shared cache database and a file is generated in memory using the format of the
flat text file.

The gethostbyname() routine then parses the result into the appropriate data
structure and returns.

getXbyY() Routine

Each getXbyY() style routine simply sets up a global memory buffer, calls
ns_lookup() with a normalized key, the name of a map containing the data, and the
domain in which the map lives; it then parses the results into a map-specific data
structure. Reentrant routines of the formgetXbyY_r(), which have been added, behave
exactly as the getXbyY() routines, except that they use passed-in memory buffers
instead of a global space. All of the standard routines are simply wrappers around the
reentrant versions to reduce code space in the C library.
007-0810-100 311

C: IRIX Name Service Implementation
getXent() Routine

The getXent() style routines are wrappers around the ns_list() routine that
provide a concatenation of all records in each of the supported back-end databases for a
table in what appears to be a flat ASCII file. Reentrant routines of the form
getXent_r(), which have been added, behave exactly as the getXent() routines,
except that they use passed-in memory buffers instead of a global space. Again, all of the
standard routines are simply wrappers around the reentrant versions in order to reduce
space.

ns_lookup() Routine

The ns_lookup() routine mmaps the cache file for the given table if it has not already
been opened, then attempts to look up the given key in the cache. The cache is a shared,
multi-reader, multi-writer, hash database written specifically for this name service
implementation, and named MDBM.

If the cache file cannot be opened, or the key does not already exist in the cache, then a
separate daemon is contacted to act as the cache miss handler, locating the information
within a name service and inserting it in the database. This daemon is contacted through
the NFS protocol and the result of the lookup is returned to the client in the format of the
flat system configuration file.

ns_list() Routine

The ns_list() routine contacts the daemon through the NFS protocol and asks for a
concatenation file for a given domain and table, then returns a file pointer to this newly
formed concatenation file. The getXent() wrapper routines then use stdio to walk
through this file, parsing each line into a C data structure, and returning these
sequentially. The getXent_r() routines are identical, and use the same file pointer, but
they use passed-in buffer space to hold the return data instead of dynamically allocated
space.

The arguments to ns_lookup are a table structure, the domain name for the query, a
table name, a key for the query, a buffer to place the results in, and a length for this buffer.
The table structure contains a database pointer, a time stamp lock pointer, and a flags
field, which determines whether the cache file needs to be closed between calls. It returns
an integer result of NS_SUCCESS, NS_NOTFOUND, or NS_FATAL
312 007-0810-100

UNS Cache Files
To see a definition of all return codes and structures, look in the
/usr/include/ns_api.h header file.

The arguments to ns_list are the domain name, table name, and an optional protocol
name. The routine returns a file pointer.

UNS Cache Files

The UNS cache files are multi-reader, multi-writer, mmapped hash database files. The
new database, MDBM, is a simple, extremely fast, single-key, file format.

There is a cache file for each table maintained by the name service daemon in a
well-known location. The C library routines always look for the cache files in the
/var/ns/cache directory.

The cache files are writable only by root, and the C library routines always open the cache
files as read-only. The cache files can be set to a fixed size, which allows them to be
mapped once, then the file descriptor closes, and the mapping remains throughout the
life of the process. If the caches are a variable size then they are remapped on each lookup
unless the stayopen flag is given to the setXent() call associated with the table. This is
similar behavior to the treatment of files in the historic file-only name service
implementations.

Cache file entries are made up of a time_t, which can be compared to the current clock
for timeouts, a time_t which is compared to the time stamp in the map structure, a
status character to support negative caching, and the data. Timeouts are handled by all
applications. When an application notices that the information is out of date, it requests
new information from the daemon. When a cache file is opened with a fixed size, then
the cache is split ahead of time to that size. Any time adding an element results in the
splitting of the page, a shake function is called instead, to free up space for the new data.

The format of keys in the database is:

key\0domain\0protocol

where domain and protocol are not given if they are the default, and not specified in the
lookup.
007-0810-100 313

C: IRIX Name Service Implementation
UNS Name Service Daemon Operation

The IRIX name service daemon, nsd, acts as a cache miss handler for the name service
cache files, and lets all protocols speak with remote name servers. The protocol handlers
are separated into protocol libraries, which are opened dynamically whenever the
protocols are needed, according to the resolution order specified in the daemon
configuration file. The nsd daemon implements a base set of functionality needed by the
protocol libraries.

Name Service Configuration Files and Data Structures

The daemon behavior is completely controlled by the daemon configuration files. A
configuration file exists for the client behavior in /etc/nsswitch.conf, and a similar
file exists under /var/ns/domains/DOMAINNAME/nsswitch.conf for each domain
supported by this daemon. If the file /etc/nsswitch.conf does not exist, a default
configuration is used. Server-side domain directories must contain an nsswitch.conf
file, or the domain is ignored.

The nsswitch.conf file is made up of lines in the format:

map: library library library

where each element in the line can have an attribute list associated with it in the format:

(attribute=value, attribute=value, attribute=value)

These attributes may also exist on a line alone, in which case they set the attributes on the
domain. And a library may be followed by a control field of the form:

[status=action]

All of the data from nsswitch.conf is maintained in the daemon in four data structure
trees:

• A linked list of libraries that have been opened.

• A linked list of cache files, one for each table.

• A btree of file structures. (A btree() is a hash indexed binary tree.)

• A set of attribute lists.
314 007-0810-100

UNS Name Service Daemon Operation
The library data is kept in a simple linked list; one structure for each protocol library that
has been opened by the daemon. The structure contains the library name as found in the
nsswitch.conf file, the pathname for the DSO, and an array of function pointers to
each of the protocol library entry points.

The map structures are also kept in a simple linked list, and contain information about
the cache files the daemon maintains. There is one entry per table that is inserted into the
list the first time a request has been made for data from that table. In contains the name
of the cache file, a pointer to the database structure, and information about the mapping.
Cache files are closed and unmapped when the global shake function is called.

The majority of the information in the nsswitch.conf files is saved in an in-memory
filesystem. Each data item is stored in a file structure and placed into a large global btree.
The file structure contains a set of attributes, and possibly a pointer to a map structure
containing information on the cache file that is updated when this file is changed, or to a
library structure that contains the function pointers for changing this structure. The data
field can either be data as read from the back-end databases or a directory list. The hash
used for the btree is the file ID, which is simply a 32-bit unsigned value stored in the file
structure.

The filesystem tree is rooted with a root file referenced by a global variable. Each
nsswitch.conf file results in a new file structure (domain), and a reference in the root
directory. Each line in the nsswitch.conf file results in a new file structure (table), and
a reference in the corresponding domain directory. Each library on a line results in a new
file structure (callout) and a reference in the table directory. Each directory file structure
also contains a reference to the parent. When the reference count on a file goes to zero, it
is removed, and the reference count is decremented for each file it points to. Removing
the global reference on the root file effectively removes all files in the tree.

Attributes are stored in linked lists attached to file structures. Each attribute list is
terminated by an empty structure referencing the attribute list of the parent directory.
Searching an attribute list starts with the local attributes then follows the link to the
parent list and so on. As a consequence, all attributes are inherited by the children.
Attribute structures are separately reference counted, so that removal of a parent
directory while a file is in use does not necessarily result in the removal of the attribute
list it points to.
007-0810-100 315

C: IRIX Name Service Implementation
Understanding the UNS Runtime Loop

Once the configuration files have been read, the daemon falls into an infinite select loop
waiting for input, then dispatching to handler routines. On startup the daemon opens a
request socket for reading and sets up a handler for this file descriptor. Whenever the
select loop wakes up with data on a file descriptor, the handler for the file descriptor is
called. New descriptors can be added or removed at any time by the protocol library code
using the utility routines nsd_callback_new() and nsd_callback_remove().

Only one callback is set up by default. This callback is the dispatch handler for the NFS
protocols. A new packet is parsed as an NFS request, and is answered out of the
in-memory filesystem. When a file is referenced that does not already exist in the tree, a
new file structure is generated and placed into the tree. A list of callout libraries is
inherited from the parent directory, and control is returned to the central loop, which
walks the structure through each of the callout library routines until a result is obtained.

The loop through the callout list calls a callout procedure in one of the protocol libraries.

• If the library routine returns the code NSD_OK, the request has been filled, and the
input specific return procedure is called to return the results to the calling
application.

• If the library returns the NSD_ERROR code, then an error occurred while trying to
handle the request and an error should be returned immediately to the client.

• If a code of NSD_NEXT is returned, then the library did not find the result and the
next callout procedure is called.

• If the NSD_CONTINUE code is returned, the protocol routine had to send a request
to an external daemon or is doing something that will take a long time, so the loop
should start working on the next request. The protocol code now owns the request,
so there must be a way for the request to start processing again in the future or a
leak will occur. The two typical ways for this to continue are that a result comes in
on a socket resulting in a handler being called, or a timeout occurs. At any time in
the callout list, the default behavior of the return code may be overridden by an
entry in the nsswitch.conf file. For instance, suppose the following line were in
the configuration file:

hosts: nis [notfound=return] files

Instead of continuing on to the files callout when a result is not found in the NIS
maps, an error is returned to the client. The files callout is called only if NIS is not
running, or did not contain the requested record.
316 007-0810-100

UNS Name Service Daemon Operation
Handlers can be set up at any time by protocol code, but typically a socket is set up once
during initialization for each library. Timeouts are usually placed on each forwarded
request in case the remote agent fails to respond to the request within a reasonable time
period. There is a global timeout list for the daemon’s central select() loop. Each time
select() is called, the next timeout is first popped off of the stack and used to
determine what the select() timeout should be. If select() wakes up due to a
timeout, the handler in the timeout structure is called. Handlers are created using the
daemon routine nsd_callback_new(), and removed using
nsd_callback_remove(). Timeouts are created using nsd_timeout_new(), and
removed using nsd_timeout_remove().

Understanding UNS Utility Functions

The name service daemon contains a number of utility functions that should be used by
protocol libraries. These include routines to manipulate return values, set up callbacks
handlers for new file descriptors, set up timeouts on the central select loop, and handle
errors. All prototypes for these functions are defined in /usr/include/nsdapi.h.

• Handling Results

The nsd_set_result() function provides a convenient way to set the return
status and data for a request.The function takes four arguments: a pointer to the file
structure; a status code, which should be one of NS_SUCCESS, NS_NOTFOUND,
NS_TRYAGAIN, NS_UNAVAIL, NS_BADREQ, and NS_FATAL; a pointer to the
result string; the length of the result; and a function pointer to a routine to free this
string if needed. There are three routines predefined: DYNAMIC, which is a pointer
to the standard free() function in the C library; STATIC, which is a null pointer;
VOLATILE, which results in nsd_set_result() copying the data into a new
dynamically allocated buffer. It returns an integer which is either NSD_OK if
successful or NSD_ERROR if unsuccessful. If a result already exists, it is freed using
the existing free function pointer, and the new result is set.

int nsd_set_result(nsd_file_t *, int, char *, int, nsd_free_proc *);

The nsd_append_result() utility function is similar to the
nsd_set_result() function, but it appends the given string to the end of an
already existing result string if one exists. There is no need to pass a free routine, as
this function always copies the data into a new dynamically allocated buffer.
007-0810-100 317

C: IRIX Name Service Implementation
This function takes three arguments: a pointer to the request structure, a pointer to
the result string to be appended, and the length of the string. It returns an integer
that is NSD_OK on success, or NSD_ERROR when unsuccessful. On error, the
current result string and code is unchanged.

int nsd_append_result(nsd_file_t *, int, char *, int);

The nsd_append_element() function is identical to the
nsd_append_result() routine except that the result strings are joined by a
newline character. This routine assumes that all result strings it is given are null
terminated strings.

int nsd_append_element(nsd_file_t *, int, char *, int);

• Handling File Descriptor Callbacks

The nsd_callback_new() function is used to set up a file descriptor callback for
the daemon main loop. When select() wakes up with data on a file descriptor,
the callback handler is looked up in a table, and the corresponding function is
called. Protocol libraries can set up callbacks at any time for a file descriptor that
they have opened. This routine registers the new handler function and causes select
to wake up on new data waiting on the descriptor. If a handler was already
registered for the descriptor, it is replaced.

This function takes three arguments: an integer file descriptor, a pointer to the
handler function, and a flag that contains options for what events the callback
should be used. It should be made up of NSD_READ, NSD_WRITE, and
NSD_EXCEPT. It returns a pointer to the handler function on success, or a null
pointer on failure. The only cause for failure is that the file descriptor is out of range.

nsd_callback_proc *nsd_callback_new(int, nsd_callback_proc
*,unsigned);

The nsd_callback_remove() function clears a handler from the list of file
descriptors. This function takes one argument, which is the integer file descriptor,
and returns an integer, which is NSD_OK or NSD_ERROR.

int nsd_callback_remove(int);

The nsd_callback_get() function returns the callback handler function pointer,
given the integer file descriptor.

nsd_callback_proc *nsd_callback_get(int);
318 007-0810-100

UNS Name Service Daemon Operation
• Handling Timeouts

The nsd_timeout_new() function is used to set up timeout handlers for the
central select loop. Any time a protocol routine returns NS_CONTINUE, the routine
should set up a timeout handler to continue the request processing.

This function takes four arguments: a pointer to the file structure, an unsigned
timeout value in milliseconds, a pointer to a timeout handler routine, and a pointer
to any local data needed by the protocol code. It returns a pointer to the timeout
structure on success, or a null pointer on failure. The local data pointer can be nil if
the calling routine does not need data associated with the timeout.

nsd_times_t *nsd_timeout_new(nsd_file_t *,long,
nsd_timeout_proc *, void *);

The nsd_timeout_remove() function is called to remove a timeout from the
timeout list. This is typically called when a protocol function receives a reply from a
remote daemon, and no longer needs the select loop to timeout to continue
processing.

This function takes one argument, a pointer to the file structure, and returns an
integer result, which is NSD_OK for success or NSD_ERROR for failure. Failure
usually indicates that there was no matching timeout on the list.

int nsd_timeout_remove(nsd_file_t *);

• Handling Attributes

The nsd_attr_store() routine adds an attribute to an attribute list. Attributes
should be used instead of global variables when possible. Attribute lists are tied
together from most specific to least specific, walking backwards up the daemon
data structure tree.

This function takes three arguments: a pointer to the pointer to the beginning of this
attribute list, a pointer to a string for the key, and a pointer to a string for the data. It
returns a pointer to the attribute structure if successful or a null pointer on error.

nsd_attr_t *nsd_attr_store(nsd_attr_t **, char *, char *);

The nsd_attr_delete() routine removes the attribute from the given list.
Continuations to other lists are not followed, which means that if
nsd_attr_fetch() were immediately called with this key, it may find a result.

This function takes two arguments: a pointer to the pointer to the first attribute in
the list and a pointer to the string for the key. It returns an integer, which is
NSD_OK on success or NSD_ERROR if the attribute was not found.

int nsd_attr_delete(nsd_attr_t **, char *);
007-0810-100 319

C: IRIX Name Service Implementation
The nsd_attr_fetch() routine searches through an attribute list, following
continuations to other lists, searching for a matching attribute. Key comparisons are
case-insensitive.

This function takes two arguments: a pointer to the beginning of the attribute list,
and a pointer to the string for the key. It returns a pointer to the attribute structure if
found or a null pointer on failure.

nsd_attr_t *nsd_attr_fetch(nsd_attr_t *, char *);

The three routines nsd_attr_fetch_long(), nsd_attr_fetch_string(),
and nsd_attr_fetch_bool() are simple wrappers around
nsd_attr_fetch(). They take a pointer to the attribute list, a string for the key,
and a default value. The nsd_attr_fetch_long() routine also takes a radix.
These routines return the value of the attribute interpreted as a long, string, or
boolean, depending on the function called, or the default value if the key was not
found.

long nsd_attr_fetch_long(nsd_attr_t *, char *, int, long);
char *nsd_attr_fetch_string(nsd_attr_t *, char *, char *);
int nsd_attr_fetch_bool(nsd_attr_t *, char *, int);

• Handling Memory

The nsd_shake() routine should be called to free up resources when allocating
new resources fails. This results in a call to all of the protocol-specific shake()
routines. This frees memory, close and unmap files, and generally tries to reduce the
resources used. The name service daemon and many of the protocol libraries are
aggressive about caching results, connections to files or remote daemons, and so on.

This routine takes an integer level from 0 to 9, and returns no results.

void nsd_shake(int);

The three routines nsd_malloc(), nsd_calloc(), and nsd_strdup() are
wrappers around the standard malloc(), calloc(), and free() routines, which
call nsd_shake() on failure, then retry the allocation. The standard free()
routine can be called to give up memory.

void *nsd_malloc(size_t);
void *nsd_calloc (size_t,size_t);
char *nsd_strdup(char *);
320 007-0810-100

How UNS Protocol Libraries Work
• Handling Access and Output

The three routines nsd_open(), nsd_mdbm_open(), and nsd_mmap() are
wrapper functions around open(), mdbm_open(), and mmap(). On failure they
call the nsd_shake() function then try again. The standard routines close(),
mdbm_close(), and mmap() can be used to close these files.

int nsd_open(const char *, int, mode_t);
MDBM *nsd_mdbm_open(const char *, int, mode_t, int);
void *nsd_mmap(void *, size_t, int, int, int, off_t);

The nsd_logprintf() routine takes the same arguments as printf() plus an
integer level from 0 to 6, but results in a message to the log or to the console,
depending on arguments to the daemon. If nsd receives a SIGUSR2 signal, it will
cycle through the logging levels, thus allowing a developer, debugger to select the
logging level without having to restart nsd. It should be used to print error
messages. The log levels are defined in ns.daemon.h.

void nsd_logprintf(int char *, ...);

How UNS Protocol Libraries Work

All of the name service protocol code that existed inside the API routines in the C library
is in separate protocol libraries, which are used only by the name service daemon. Each
library has a small set of entry points, which are used by the daemon command routines.
These routines are init(), lookup(), list(), verify(), dump(), and shake().

Library Init Routine

The init() routine in a library is called when the library is first opened, and again
whenever the daemon receives a SIGHUP signal. Typically, the init() procedure reads
any protocol-specific configuration files, such as /etc/resolv.conf for DNS, and sets
up any global data needed by the library, such as a list of domains or server addresses.

The init() procedure takes no arguments, and returns an integer, which is NSD_OK or
NSD_ERROR.

int init(void);
007-0810-100 321

C: IRIX Name Service Implementation
The init() procedure may set up handlers for new requests of an alternative
protocol-specific form, such as the nisserv library, which accepts Sun RPC requests
for NIS version 2.

This routine may also set up handlers for results dealing with forwarded requests. Most
of the name service protocols reformat the request into a different form and send it to
another daemon, then set up a timeout and callback. When the results come back from
the remote system, they go through this handler routine, which parses the results into an
internal form again, and returns a successful result code to the main loop.

The init() routine may also create some false requests to take care of initialization that
can happen asynchronously. The nis and nisserv callouts use this feature to register
with portmap. They send off a packet to the portmap daemon, set up a handler and
timeout, then give control back to the main loop so as not to hang if there are problems
registering.

Library Lookup Routine

The lookup() routine is the most called of all routines in the name server and is the one
that most people think of as the protocol. This routine converts the internal request
format into a protocol-specific format and sends it to a remote daemon. When results
come back, they are converted into an internal format again, and a status code is
returned. It is up to the initial request handler to set up the reply.

The lookup() routine takes one file pointer argument and returns an integer, which is
NSD_OK, NSD_ERROR, NSD_NEXT, or NSD_CONTINUE.

int lookup(nsd_file_t *);

In the simple case the lookup() routine simply fetches data out of a file, converts it into
the proper format, and returns it immediately.

Library List Routine

The list() routine concatenates all records into an internal flat file. This is used by the
getXent() routines or for administration.
322 007-0810-100

How UNS Protocol Libraries Work
The list() function takes one file pointer argument and returns an integer, which is
NSD_OK, NSD_ERROR, NSD_NEXT, or NSD_CONTINUE.

int list(nsd_file_t *);

Library Dump Routine

The dump() routine is used for protocol debugging and outputs the current state of the
library to the given file descriptor. When the daemon is sent a SIGUSR1 signal, it opens
a file /usr/tmp/nsd.dump and writes its state, then calls each of the library routines to
do the same.

void dump(int);

Library Verify Routine

The verify() routine checks that the results previously returned in lookup() or list()
are still valid. The verify() function takes one file pointer and returns an integer which is
NSD_OK or NSD_error.

int verify(nsd_file_t*)

Library Shake Routine

The shake() function is called when the daemon runs short of resources. This function
frees up any resources used by the protocol library that are not needed. For instance, the
files callout shake() function closes and unmaps all of the open files.

Any protocol routine that runs out of resources, such as attempting amalloc() that fails
or failing to open a new file, should call the daemon utility function nsd_shake(),
which frees any unneeded global data then calls each of the protocol-specific shake()
functions. shake() is called with an integer priority from 0 through 9, determined by
need. After calling nsd_shake(), the protocol routine tries again to do whatever failed
before returning an error. The utility routines nsd_malloc(), nsd_calloc(), and
nsd_strdup() do exactly this.

The shake() function takes one integer argument from 0 to 9 and returns an integer,
which is NSD_OK or NSD_ERROR.

int shake(int);
007-0810-100 323

C: IRIX Name Service Implementation
Files Callout Library

The files library mmap() flat files into the daemon memory and searches through them
for matching lines in the same fashion as the C library API fallback routines. The filename
is determined by the map name, and the directory is determined by the domain name.
By default this is /var/ns/domain/file or /etc/file for the .local domain.
Either of these can be overridden using attributes “file” or “directory” attached to the
files callout in the appropriate nsswitch.conf file.

Thepasswd.*map is special. For any line of the form [+-]@?[\S]+, it verifies the element
by making a recursive call into the daemon and returning the NSD_NEXT code to the
main loop. If the directive [notfound=return] is specified after the files callout in
nsswitch.conf, the behavior is identical to the historic behavior of forcing calls into
NIS, except that any library may follow files, not only NIS.

The list routine simply copies the entire mapped file into the result instead of attempting
to do any parsing.

NIS Callout Library(Optional)

The nis library implements the client side of the Sun YP RPC protocol and the YPBIND
protocol. Internal requests are reformatted into RPC requests and sent to a remote host,
a callback and timeout are set up, and control is returned to the main daemon loop. When
a response comes back to the socket owned by the nis library, a handler is called that
parses the YP RPC result packet into the internal format and returns it to the client.
Responses are mapped back to the original request structure using the XID field in the
RPC header of the response packet.

The library also maintains a socket for incoming YPBIND RPC requests which are
answered using data maintained by the nis library.

If any request comes in and the daemon has not already bound to a server, or if a request
to a server times out, then a bind broadcast/multicast is sent out, and the request is held
until the daemon is able to bind to a new server. If the daemon is unable to bind within
a couple of seconds, an NS_TRYAGAIN status is returned to the client so that it will
resend the request instead of falling back to local files. If the
file/var/yp/domain/binding/ypservers exists, then the hosts listed in this file is
sent unicast bind requests instead of a broadcast sent out.
324 007-0810-100

How UNS Protocol Libraries Work
The nis library fakes for maps that exist in the nsswitch.conf file but not in the NIS
version 2 standard. These include services.bynumber, group.bymember, and
rpc.byname. The library first attempts to look up data using these names, then falls
back to stepping through the reverse map file if that fails.

The list() routine connects to the ypserv daemon using TCP, appending the entire
results to the file data.

Nisserv Callout Library (Optional)

The nisserv callout library implements the server side of the Sun YP RPC protocol. It
opens a socket on init on which it accepts new requests. It looks up these requests using
the standard callout list, and replies to the requestor using the YP protocol.

When the YP_ALL request is received, it enumerates only the maps for which the
boolean enumerate attribute is set. If this attribute is not set for any callout, it
enumerates the MDBM database instead, provided the mdbm library is listed as a callout.

Note: yp_all simply enumerates the MDBM database, and is not supported for
anything else. The internal data format needs to change before it can support the other
databases.

DNS Callout Library

The dns library implements the client side of the Domain Name Service Protocol. New
requests are converted from the internal format to a DNS packet format and sent to a
remote server, then a timeout and callback is set up and control is given back to the main
loop. When a response comes back from the server, it comes to a socket owned by thedns
library and passes through a DNS response handler. The response is mapped back to the
original request using the DNS header xid field, and the packet is parsed back into the
internal format to be returned to the client.

The order for contacting servers is controlled by the resolv.conf file, or by the servers
attribute attached to the dns callout in nsswitch.conf. The domain is the same as the
request domain except in the case of the .local domain. When the .local domain is
used, the domain in the dns request is determined by the domain or search fields in
resolv.conf or by the domain attribute in nsswitch.conf.
007-0810-100 325

C: IRIX Name Service Implementation
The map hosts.byname is turned into a class IN, type A request to DNS. The map
hosts.byaddr is turned into a class IN, type PTR request to DNS. Any other map is
turned into a class IN, type TXT request to DNS using the DNS domain table.domain;
where any “.” characters in the table are replaced with “_”. For instance a call for the key
uucp; in the passwd.byname map for the domain fruit.com results in a lookup of
uucp.passwd_byname.fruit.com in the IN class, and returns a TXT type.

MDBM Callout Library

The mdbm library uses the MDBM database format to store data in local files. A set of
parser scripts are provided to parse flat files into the databases. This supports a faster
lookup method than the files library. The files default to /var/ns/domain/table.m
for each table, or /etc/table.m in the .local domain. This can be overridden by
setting the file attribute on the table in the appropriate nsswitch.conf file.

The list() command results in a mdbm_next() loop, appending each successive
value to the end of the result.

Berkeley DB Callout Library

The berkeleydb library is a key-value database. This library supports arbitrary sized
values and is faster than NDBM. The files default to /var/ns/domain/table.db or
/etc/table.db for the local domain. This can be overridden by setting the file
attribute on the table in the appropriate nsswitch.conf file.

The list() command results in a (DB*)db->seq() loop appending each successive
value to the end of the result.

NDBM Callout Library

The ndbm library is the standard IRIX database mechanism, which is a key/value like
hash files, and similar in functionality to the original DBM as well as Berkeley DB.
326 007-0810-100

NFS Interface to UNS
NFS Interface to UNS

The primary interface to the nsd daemon from the API routines is through the Network
File System. The name service daemon acts as a user level NFS file server for an
in-memory stacked filesystem. The daemon is mounted onto the local system at startup,
and all the API routines simply open files in the filesystem tree managed by the name
service daemon.

The name service daemon has a special mount command called nsmount. This
command determines the port that the name service is running on, and the initial file
handle for the requested domain directory then passes this to the kernel. Future versions
of the NFS protocol will hopefully allow the name service daemon to be treated just like
any other NFS server so that the regular mount command, automount, and autofs can
be used.

It is possible to mount the name service daemon from another system, and this technique
is expected to support large networks of systems and trees of domains. The administrator
can explicitly restrict a portion of the namespace to the local host by setting the local
attribute on the top element of the subtree. By default the .local domain sets the local
attribute to true so other systems cannot read local passwords, and so on. The default
location of the mount point is /ns/domain, where domain is the requested domain in
the ns_lookup() or ns_list() routine. There is a special domain labeled .local
that always exists that provides a system local domain to override any parent domain
information. All of the API getXbyY() routines currently use the .local domain.

The daemon filesystem tree is organized as: /ns/domain/table/key, and there is a
special domain, .local, to represent the local view of the namespace, and “dot”
directories under each table to represent the callout libraries. To look up the login name
uucp using the local namespace view, open the file
/ns/.local/passwd.byname/uucp. If you want only the NIS entry for uucp, open
/ns/.local/passwd.byname/.nis/uucp. The special key .all in a map returns a
concatenation of all the records in a table, so opening the file
/ns/.local/passwd.byname/.all gives you a giant passwd file containing all
users in the local domain. Executing cat/ns/.local/passwd.byname/.nis/.all
is equivalent to running ypcat passwd.byname. Or cat
/ns/.local/passwd.byname/.files/.all is identical to cat /etc/passwd on
most systems.

Removing a file in the filesystem maintained by the name service daemon results in the
cached file structure being removed in the daemon. The directory entries cannot be
removed. Instead this is done by editing the nsswitch.conf files and sending the
007-0810-100 327

C: IRIX Name Service Implementation
daemon a SIGHUP signal. Attempting to remove a directory results in the timeout
routine being run on that subdirectory so that all dynamic elements under that directory
are removed.

In the IRIX operating system, extended attributes are supported on each name service
file. The attributes on the file depend on the library that looked them up, but always
include domain, table, key, timeout, library, version, and server. The
timeout is the time in seconds since epoch that the cache entry disappears from the
daemon. The library is the name of the library as given in nsswitch.conf, that
provided the data in the file, and server is the address of the system that provided the
data. The server may not be the actual authorized owner of the information, but is
instead simply the system from which you got the information. These can be read using
the attr command. For example, to get the source of a key, run:

attr -g library /ns/.local/passwd.byname/uucp

Only the get and list functions work with the name service daemon. All information
in the name server tree is read-only.
328 007-0810-100

Index
A

accept, 17
address

binding, 51
address, manipulation, 29
array, fixed length, 301
array, fixed-size, 187
array, variable length, 301
array, XDR, 184
asynchronous processing, 245
authentication, RPC, 89, 279

B

batch, RPC, 280
big endian, 29
binding

address, 51
binding, RPC, 89
block size, XDR, 294
boolean, XDR, 296
booleans, XDR, 170
broadcast, RPC, 280
byte ordering, 29
byte, arrays, XDR, 184

C

cache file mapping, 313
client/server model, 34
connection establishment

transport interface, 221
connection release, 233
connectionless

socket, 20
connectionless-mode service (transport interface),

235
connectionless-mode transport service, 213
connection-mode transport service, 208
constants, 303
constants, XDR, 167
constructed data type filters, 182

D

daemon, Internet, 55
data transfer, 228
data, optional, 305
data, transfer, 17
datagram

receive, 67
send, 64

data-type filters, 182
descriptors,adding to protocol library, 314
discriminated unions, 188
007-0810-100 329

Index
discriminated unions, XDR, 302
double precision, XDR, 298

E

entry points, 321
enumeration filters, XDR, 181
enumerations, XDR, 167, 295
event handling, 223
examples, XDR, 185
exceptions, rpcgen, 170

F

fcntls
F_SETOWN, 46
FASYNC, 46
FNDELAY, 45

FD_CLR, 21
FD_ISSET, 21
FD_SET, 21
FD_SETSIZE, 21
FD_ZERO, 21
filters, number, 180
fixed-length array, 301
fixed-size array, 187
floating point, XDR, 181, 296

G

gethostbyaddr(3), 25
gethostbyname(3), 25
getnetbyname(3), 25
getnetbynumber(3), 25
getprotobyname(3), 26

getprotobynumber(3), 26
getservbyname(3), 26
getservbynumber(3), 26
getsockopt(2), 54
groups

signal process, 47

H

host, name, 25
htonl(3), 29
htons(3), 29
hyper integer, unsigned, 296

I

inetd, 55
tcpmux, 55

integer, unsigned, 295
integer, XDR, 294
Interface identification, 34
interrupt-driven socket I/O, 46
I/O multiplexing, 21
I/O streams, XDR, 192
ioctls

SIOCADDMULTI, 68
SIOCATMARK, 44
SIOCDELMULTI, 68
SIOCGIFBRDADDR, 62
SIOCGIFCONF, 59
SIOCGIFFLAGS, 61
TIOCNOTTY, 37

ioctls, SIOCGIFDSTADDR, 62
IP

broadcasting, 58
multicast datagram, receive, 67
330 007-0810-100

Index
multicast datagram, send, 64
multicasting, 63

IPv6 communication, 71
IPv6 sockets

address structures, 72
connection-based client, 76
connection-based server, 74
connectionless client, 79
connectionless server, 78
creation, 71
loopback addresses, 73
protocol independent, 73
unicast options, 81
unspecified addresses, 72
using multicasting, 83

L

language, RPC, 159
library, UNS, 311
library, XDR, 178
linked lists, XDR, 197
listen, 16
little endian, 29
local management (transport interface), 214

M

mapping, name to address, 202
memory, streams, XDR, 193
message authentication, RPC, 279
message, authentication, RPC, 89
message, protocol, RPC, 281
model, RPC, 86
modes of service (transport interface), 208
multicasting, IP, 63

multiplexing
input, 21
output, 21

N

name service
cache files, 314
functions, 317
implementation, 310
library entry points, 321

names, host, 25
names, network, 25
names, protocol, 26
names, service, 26
Name-to-Address Mapping, 202
network

library routines, 24
names, 25

Network Selection, 202
Network Services Library, 207
no data, 182
Node name mapping, 30, 33
Node names, 30
non-blocking sockets, 45
non-filter primitives, 191
nsd_set_result, 317
ntohl(3), 29
ntohs(3), 29
null authentication, 285
number filters, XDR, 180

O

object, XDR, 195
opaque data, variable length, 299
007-0810-100 331

Index
opaque data, XDR, 187, 299
Open Systems Interconnection, 202
operation directions, XDR, 192
optional data, 305
options, socket, 54
OSI (Open Systems Interconnection), 202

P

pointers, XDR, 190
port mapper, RPC, 288
primitives, non-filter, 191
primitives, XDR library, 180
procedures, RPC, 93
process groups, 47
protocol

select, 50
protocol independence, 258
protocol library utility functions, 317
protocol library, adding descriptors, 314
protocol names, 26
protocol requirements, RPC, 278
pseudo terminals

terminal
pseudo, 48

pty creation, 48

R

read(2), 17
receive IP multicast datagram, 67
record marking, RPC, 288
record streams, 193
recv(2), 17
recvfrom(2), 20

reference model (transport interface), 203
remote, programs, RPC, 93
rendezvous independence, RPC, 89
routines, library, 24
RPC

authentication, 279
authentication protocols, 285
authentication, UNIX, 285
batch, 280
binding, 89
broadcast, 280
generating XDR routines, 107
language, 159
message authentication, 89, 279
message protocol, 281
model, 86
null authentication, 285
parameter authentication, 285
port mapper, 288
procedures, 93
programs, 168
protocol requirements, 278
record marking, 288
remote programs, 93
rendezvous independence, 89
transports, 88
UNIX authentication, 285

rpcbind(1M), 96
rpcgen

C preprocessor, 112
debugging, 112
declarations, 169
local to remote procedure, 99
server broadcasting, 114
server procedures, 115
special cases, 170
timeout changes, 114

rwho server, 40
332 007-0810-100

Index
S

select protocol, 50
select(2), 21
send IP multicast datagram, 64
send(2), 17
sendto(2), 20
server/client model, 34
Service names, 30
service names, 26
setsockopt(2), 54
signal handling, 47
signals

SIGCHLD, 47
SIGIO, 46
SIGURG, 46

size, block, 294
socket

Scheduled Transfers, 20
ST, 10

sockets
connectionless, 20
interrupt-driven I/O, 46
I/O, 17
non-blocking, 45
options, 54

Sockets for IPv6, 71
special cases, rpcgen, 170
state transition rules, 214
state transition tables (transport interface), 253
stream access, XDR, 192
STREAMS, 202, 206, 245
streams, record, 193
strings, 300
strings, XDR, 170, 183
structures, XDR, 165, 302

T

TCP/IP
record streams, 193

transfer, data, 17
Translation functions, 30
transmit datagram, 64
transport interface

connection establishment, 221
connectionless-mode service, 235
local management, 214
reference model, 203
state transition tables, 253

transport service
connection mode, 208
connectionless-mode, 213

transport service data units (TDSU), 229
TSDU (Transport Service Data Units), 229
typedefs, 304
typedefs, XDR, 167

U

unions, discriminated, 188
unions, XDR, 166
UNIX authentication, RPC, 285
UNS, 310
unsigned integer, 295

V

variable-length array, 301
variable-length opaque data, 299
void, XDR, 171
007-0810-100 333

Index
W

write(2), 17

X

XDR
basic block size, 294
booleans, 170, 296
byte arrays, 184
constants, 167
discriminated union, 188
discriminated unions, 302
double precision, 298
enumeration filters, 181
enumerations, 167, 295
examples, 185
fixed-size array, 187
floating point, 296
floating point filters, 181
future directions, 306
hyper integer, 296
hyper unsigned, 296
integer, 294
I/O streams, 192
language, 159
language syntax, 163
library, 178
library primitives, 180
linked lists, 197
memory streams, 193
non-filter primitives, 191
number filters, 180
object, 195
opaque data, 187, 299
operation directions, 192
pointers, 190
record streams, 193
routine generation, 107
specification, 293

stream access, 192
stream implementation, 195
strings, 170, 183
structures, 165, 302
typedefs, 167
unions, 166
void, 171
334 007-0810-100

	Record of Revision
	Figures
	Tables
	Examples
	About This Guide
	Audience for This Guide
	Typographic Conventions
	Chapter Summaries
	Documentation Sources
	Additional Reading
	Obtaining Publications
	Reader Comments

	Network Programming Overview
	Introduction to IRIX Network Programming
	The Internet Protocol Suite
	Compiling BSD and RPC Programs

	Sockets-based Communication
	Sockets Basics
	Socket Types
	Stream Sockets
	Datagram Sockets
	ST Sockets
	Raw Sockets

	Creating Sockets
	Binding Local Names to a Socket
	Establishing Socket Connections
	Transferring Data
	Discarding Sockets
	Scheduled Transfers Sockets
	Connectionless Sockets
	I/O Multiplexing

	Network Library Routines
	Host Names
	Network Names
	Protocol Names
	Service Names
	Network Dependencies
	Byte Ordering
	Translation Functions
	Node Names and Service Names
	Node Name Mapping
	Interface Identification

	The Client/Server Model
	Connection-based Servers
	Connection-based Clients
	Connectionless Servers

	Advanced Topics
	Out-of-Band Data
	Nonblocking Sockets
	Interrupt-driven Sockets I/O
	Signals and Process Groups
	Pseudo-Terminals
	Selecting Protocols
	Address Binding
	Socket Options
	The inetd Daemon
	Broadcasting
	IP Multicasting
	Sending IP Multicast Datagrams
	Receiving IP Multicast Datagrams
	Sample Multicast Program

	Sockets-based Communication Using IPv6
	Creation of an IPv6 Socket
	IPv6 Address Structures
	IPv6 Unspecified Address
	IPv6 Loopback Address
	Protocol Independent Socket Address Structure
	Server and Client Programs
	Connection-based Server and Client
	Connection-based Server
	Connection-based Client

	Connectionless Server and Client
	Connectionless Server
	Connectionless Client

	Socket Options
	Unicast Socket Options
	Multicast Socket Options
	Sending Packets
	Receiving Packets

	Socket Option for IPv6 Only

	Using Multicasting
	Sending IPv6 Multicast Datagrams
	Receiving IPv6 Multicast Datagrams

	Introduction to RPC Programming
	Overview of Remote Procedure Calls
	The Remote Procedure Call Model
	RPC Transports and Semantics
	Binding and Rendezvous Independence
	RPC Message Identification and Authentication

	The XDR Standard
	The Layers of RPC
	The Highest Layer
	The Middle Layer
	The Lowest Layer

	The rpcgen Protocol Compiler
	Assigning RPC Program Numbers
	The Port Mapper Programs

	Programming with rpcgen
	Introduction to the rpcgen Compiler
	Changing Local Procedures to Remote Procedures
	Generating XDR Routines
	The C Preprocessor
	pcgen Programming Notes
	Generating ANSI C Prototypes
	Client-side Timeout Changes
	Server-side Broadcast Handling
	Other Information Passed to Server Procedures

	RPC Programming Guide
	The Layers of RPC
	The Highest Layer of RPC
	The Middle Layer of RPC
	Passing Arbitrary Data Types

	The Lowest Layer of RPC
	More Information about the Server
	More Information about the Client
	Memory Allocation with XDR

	Other RPC Features
	Select on the Server Side
	Broadcast RPC
	Broadcast RPC Synopsis

	Batching
	Authentication
	Client-side Authentication
	Server-side Authentication

	Using inetd

	More Examples
	Program Version Number
	TCP
	Callback Procedures

	XDR and RPC Language Structure
	XDR Language
	Notational Conventions
	Lexical Notes
	Syntax Information
	Syntax Notes
	XDR Data Description Example

	RPC Language
	Definitions
	Structures
	Unions
	Enumerations
	Typedefs
	Constants
	Programs
	Declarations
	Special Cases

	XDR Programming Notes
	Overview of XDR Programming
	The XDR Library
	XDR Library Primitives
	Number Filters
	Floating-point Filters
	Enumeration Filters
	No Data
	Constructed Data Type Filters
	Strings
	Byte Arrays
	Arrays
	Examples of Constructed Data Types
	Opaque Data
	Fixed-length Size Arrays

	Discriminated Unions
	Pointers
	Pointer Semantics and XDR

	Non-filter Primitives

	XDR Operation Directions
	XDR Stream Access
	Standard I/O Streams
	Memory Streams
	Record (TCP/IP) Streams

	XDR Stream Implementation
	The XDR Object

	Advanced Topics
	Linked Lists

	Transport Layer Interface
	Introduction
	Network Selection and Name-to-Address Mapping
	OSI Reference Model
	Overview of the Transport Interface
	Modes of Service
	Connection-Mode Service
	Local Management
	Connection Establishment
	Data Transfer
	Connection Release
	Connectionless-Mode Service

	State Transitions

	Introduction to Connection-Mode Service
	Local Management
	The Client
	The Server

	Connection Establishment
	The Client
	Event Handling
	The Server

	Data Transfer
	The Client
	The Server

	Connection Release
	The Server
	The Client

	Introduction to Connectionless-Mode Service
	Local Management
	Data Transfer
	Datagram Errors

	A Read/Write Interface
	write()
	read()
	close()

	Advanced Topics
	Asynchronous Execution Mode
	Advanced Programming Example

	State Transitions
	Transport Interface States
	Outgoing Events
	Incoming Events
	Transport User Actions
	State Tables

	Guidelines for Protocol Independence
	Some Examples
	Connection-Mode Client
	Connection-Mode Server
	Connectionless-Mode Transaction Server
	Read/Write Client
	Event-Driven Server

	Error Messages

	RPC Protocol Specification
	RPC Protocol Requirements
	Remote Programs and Procedures
	Message Authentication
	Other Uses of the RPC Protocol
	Batching
	Broadcast RPC

	RPC Protocol Definition
	Authentication Protocols
	Null Authentication
	AUTH_UNIX Authentication
	Trusted UNIX Systems

	Record Marking Standard
	Port Mapper Program Protocol
	Port Mapper Protocol Specification
	Port Mapper Operation

	XDR Protocol Specification
	Basic Block Size
	Block

	XDR Data Types
	Integers
	Integer

	Unsigned Integers
	Unsigned Integer

	Enumerations
	Booleans
	Hyper Integers and Hyper Unsigned
	Hyper Integer or Unsigned Hyper Integer

	Floating Points
	Single-Precision Floating-Point

	Double-Precision Floating Points
	Double-Precision Floating-Point

	Fixed-Length Opaque Data
	Fixed-Length Opaque

	Variable-Length Opaque Data
	Variable-Length Opaque

	Strings
	String

	Fixed-Length Arrays
	Fixed-Length Array

	Variable-Length Arrays
	Counted Array

	Structures
	Discriminated Unions
	Discriminated Union

	Voids
	Void

	Constants
	Typedefs
	Optional Data
	Areas for Future Enhancement

	Common Questions about XDR

	IRIX Name Service Implementation
	Overview of UNS
	UNS Programming Steps
	UNS Library Routines
	getXbyY() Routine
	getXent() Routine
	ns_lookup() Routine
	ns_list() Routine

	UNS Cache Files
	UNS Name Service Daemon Operation
	Name Service Configuration Files and Data Structures
	Understanding the UNS Runtime Loop
	Understanding UNS Utility Functions

	How UNS Protocol Libraries Work
	Library Init Routine
	Library Lookup Routine
	Library List Routine
	Library Dump Routine
	Library Verify Routine
	Library Shake Routine
	Files Callout Library
	NIS Callout Library(Optional)
	Nisserv Callout Library (Optional)
	DNS Callout Library
	MDBM Callout Library
	Berkeley DB Callout Library
	NDBM Callout Library

	NFS Interface to UNS

	Index

