
ONC3/NFS™ Administrator’s Guide

Document Number 007-0850-070

ONC3/NFS™ Administrator’s Guide
Document Number 007-0850-070

CONTRIBUTORS

Written by Kim Simmons, Pam Sogard, Susan Ellis, and Susan Thomas
Illustrated by Dan Young
Production by Julia Lin
Engineering contributions by Andrew Cherenson, Dana Treadwell, James

Yarbrough, and Jon Livesey

© Copyright 1993, 1994 Silicon Graphics, Inc.— All Rights Reserved
This document contains proprietary and confidential information of Silicon
Graphics, Inc. The contents of this document may not be disclosed to third parties,
copied, or duplicated in any form, in whole or in part, without the prior written
permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 940439-1389.

Silicon Graphics and IRIS are registered trademarks and IRIX is a trademark of
Silicon Graphics, Inc. Apollo is a registered trademark of Apollo Computer, Inc.
FrameMaker is a registered trademark of Frame technology, Inc. Hewlett-Packard is
a registered trademark of Hewlett-Packard Company. IBM is a registered trademark
of International Business Machines Corporation. Macintosh is a registered trademark
of Apple Computer, Inc. ONC+ and NFS are trademarks or registered trademarks of
Sun Microsystems, Inc. UNIX is a registered trademark in the United States and other
countries, licensed exclusively through X/Open Company, Ltd.

iii

Contents

List of Figures ix

List of Tables xi

About This Guide xiii
Summary of Contents xiv
What You Should Know xv
Supplementary Documentation xvi
Typographical Conventions xvi
Product Support xvii

1. Understanding ONC3/NFS 1
What Is NFS? 2
NFS and Diskless Workstations 3
The Cache File System 3
NFS and the Network Information Service 4
Client-Server Fundamentals 4

Exporting 4
Mounting 5

Mount Points 5
Mount Restrictions 6

Automatic Mounting 7
automount Restrictions 7

Stateless Protocol 7
Input/Output Management 8
NFS File Locking Service 8

Locking and Crash Recovery 9
Locking and the Network Status Monitor 10

iv

Contents

2. Planning ONC3/NFS Service 11
The Export Process 11

exportfs Command Options 12
/etc/exports and Other Export Files 12

/etc/exports Options 13
Sample /etc/exports File 14
Export Restrictions 14

Recommendations for Exporting 15
The /etc/fstab Mount Process 15

mount and umount Command Options 15
/etc/fstab and Other Mount Files 16

/etc/fstab Options 17
Sample /etc/fstab File 18

Recommendations for /etc/fstab Mounting 19
The Automounter 20

automount Command Options 20
automount Files and Maps 21
automount Mount Points 22
automount Map Types 22

Master Maps 23
Direct Maps 24
Indirect Maps 25

Recommendations for Automounting 26
The CacheFS File System 27

Command and File Options for CacheFS 27
mount and umount Commands 27
fsck_cachefs Command 28
/etc/fstab File 28
Consistency Checking mount Options for fstab 29
cfsadmin Command 31
Cache Resource Parameters 32

CacheFS Tunable Parameters 34

Contents

v

3. Using Automount Map Options 35
Including Group Mounts in Maps 35
Using Hierarchical Formats in Group Mounts 37
Specifying Alternative Servers 38
Using Metacharacters 39

The Ampersand (&) 39
The Asterisk (*) 40
The Backslash (\) 41
Double quotes (") 41

Using Environment Variables 42
Including Supplementary Maps 42

4. Setting Up and Testing ONC3/NFS 45
Setting Up the NFS Server 46
Setting Up an NFS Client 49
Setting Up the Automounter 52

Setting Up a Default Automount Environment 52
Setting Up a Custom Automount Environment 53

Step 1: Creating the Maps 53
Step 2: Starting the automount Program 54
Step 3: Verifying the automount Process 56
Step 4: Testing automount 57

Setting Up the Lock Manager 58
Setting Up the CacheFS File System 59

Front File System Requirements 60
Setting Up a Cached File System 60
Creating a Cache 61
Setting Cache Parameters 61

Mounting a Cached File System 62
Using mount to Mount a Cached File System 62

Mounting a Cached File System That Is Already Mounted 63
Mounting a CD-ROM as a Cached File System 63

Creating an fstab Entry for Cached File Systems 64
Checking a Cached File System 65

vi

Contents

5. Maintaining ONC3/NFS 67
Changing the Number of NFS Server Daemons 68
Temporary NFS Mounting 69
Modifying the Automounter Maps 69

Modifying the Master Map 69
Modifying Indirect Maps 70
Modifying Direct Maps 70

Mount Point Conflicts 71
Modifying CacheFS File System Parameters 71

Displaying Information About Cached File Systems 72
Deleting a CacheFS File System 74

6. Troubleshooting ONC3/NFS 75
General Recommendations 75
Understanding the Mount Process 76
Identifying the Point of Failure 77

Checking Out a Server 77
Checking Out a Client 78
Checking Out the Network 78

Troubleshooting NFS Common Failures 79
Remote Mount Failed 79
Programs Do Not Respond 79
Hangs Partway through Boot 80
Everything Works Slowly 81
Cannot Access Remote Devices 81

Understanding the Automount Process 82
System Startup 82
Mounting 83
The Effect of Map Types 83

Troubleshooting CacheFS 84

Contents

vii

A. ONC3/NFS Error Messages 87
mount Error Messages 87
Verbose automount Error Messages 91
General automount Error Messages 93
General CacheFS Errors 96

cfsadmin Error Messages 96
mount_cachefs Error Messages 99
umount_cachefs Error Messages 100

Index 101

ix

List of Figures

Figure 1-1 NFS Software Implementation 3
Figure 1-2 Sample Mounted Directory 6

xi

List of Tables

Table i ONC3/NFS Administrator’s Guide Chapter Summaries xiv
Table 2-1 Consistency Checking Arguments for the

-o mount Option 30
Table 2-2 CacheFS Parameters 32
Table 2-3 Default Values of Cache Parameters 32
Table 2-4 CacheFS Tunable Parameters 34
Table 2-5 CacheFS Tunable Parameter Values 34

xiii

About This Guide

The ONC3/NFS Administrator’s Guide documents the Silicon Graphics® Open
Network Computing/Network File System (ONC3/NFS). ONC3/NFS is
adapted from Sun Microsystems, Inc.’s ONC+ version 1.2, and was
previously referred to as the Network File System (NFS). The purpose of this
guide is to provide the information needed to set up and maintain the
ONC3/NFS services. It explains ONC3/NFS software fundamentals and
provides procedures to help you install, test, and troubleshoot ONC3/NFS
on your network. It also contains planning information and
recommendations for administering the service.

ONC+ has been optimized for use on Silicon Graphics systems, and has been
integrated with the IRIS Indigo Magic™ environment and system toolchest.
The Silicon Graphics implementation of ONC+ can run only on a Silicon
Graphics system.

ONC3/NFS is made up of distributed services that allow users to access file
systems and directories on remote systems and treat them as if they were
local. Networks with heterogeneous architectures and operating systems
can participate in the same ONC3/NFS service. The service can also include
systems connected to different types of networks.

The components of ONC3/NFS are described below. Further information is
provided in the following chapters.

NFS The Network File System (NFS) is the distributed file
system in ONC3/NFS.

CacheFS The Cache File System (CacheFS) is a new file system type
in IRIX 5.3 that provides client-side caching for NFS and
other file system types.

NIS The Network Information Service (NIS) is a collection of
databases of network entity location information that can be
used by applications, including NFS.

xiv

About This Guide

Summary of Contents

Table i contains a summary of each chapter in this guide and suggests how
to use the chapter.

Table i ONC3/NFS Administrator’s Guide Chapter Summaries

Chapter Summary When to Read

Chapter 1,
“Understanding
ONC3/NFS”

Introduces the vocabulary of
ONC3/NFS, and the
fundamentals of ONC3/NFS
operation.

Read this chapter if you are
new to ONC3/NFS. If you
already have ONC3/NFS
experience, you can skip
Chapter 1.

Chapter 2,
“Planning
ONC3/NFS
Service”

Explains ONC3/NFS
processes and their options in
detail.

You should be thoroughly
familiar with the information
in this chapter before
continuing with Chapter 4,
“Setting Up and Testing
ONC3/NFS.”

Chapter 3, “Using
Automount Map
Options”

Describes special features of
the automounter.

Read this chapter if you plan
to customize your automount
environment.

Chapter 4,
“Setting Up and
Testing
ONC3/NFS”

Contains procedures for
implementing ONC3/NFS on
server and client systems and
verifying their operation.

Use this chapter as a guide to
implementing the ONC3/NFS
service on your network.

Chapter 5,
“Maintaining
ONC3/NFS”

Contains procedures for
changing the parameters in
ONC3/NFS after it is in
service.

Use these procedures for
routine upkeep of
ONC3/NFS.

What You Should Know

xv

What You Should Know

To use the setup and maintenance information in this guide, you should
have experience in the following areas:

• Setting up network services

• Assessing the needs of network users

• Maintaining hosts databases

• Understanding the UNIX® file system structure

• Using UNIX editors

To troubleshoot ONC3/NFS, you should be familiar with these concepts:

• Theory of network services

• Silicon Graphics network implementation

Chapter 6,
“Troubleshooting
ONC3/NFS”

Provides general
problem-solving information
and check-out procedures.
Also describes specific
problems that can occur with
ONC3/NFS and suggests
what you can do to correct
them.

Use this chapter to diagnose
and correct ONC3/NFS
problems. Some of the
suggestions in this chapter
require an understanding of
other network software, such
as NIS.

Appendix A,
“ONC3/NFS
Error Messages”

Explains the interactions
between the ONC3/NFS lock
manager and IRIX kernel. It
also gives a detailed
description of ONC3/NFS
daemons.

Read this appendix if you
need a detailed understanding
of how the lock manager or
ONC3/NFS daemon
processes work.

Table i (continued) ONC3/NFS Administrator’s Guide Chapter Summaries

Chapter Summary When to Read

xvi

About This Guide

Supplementary Documentation

You can find supplementary information in these documents:

• IRIX Advanced Site and Server Administration Guide (Silicon Graphics
publication) explains the fundamentals of system and network
administration for Silicon Graphics systems on a local area network.

• NIS Administration Guide (Silicon Graphics publication) explains how to
set up and maintain Silicon Graphics implementation of the network
information service.

• IRIX Network Programming Guide (Silicon Graphics publication)
explains the programmatic interfaces to ONC3/NFS.

• Diskless Workstation Administration Guide (Silicon Graphics publication)
describes the setup and maintenance of diskless workstations.

• Defense Data Network Protocol Handbook, available from the Network
Information Center, 14200 Park Meadow Dr., Suite 200, Chantilly, VA
22021. This three-volume set contains information on TCP/IP and
UDP/IP.

• Stern, Hal Managing NFS and NIS O’Reilly & Associates, Inc. 1991. This
book contains detailed, but not Silicon Graphics-specific, information
about NFS and how to administer and use it.

Typographical Conventions

These type conventions and symbols are used in this guide:

Italics Filenames, variables, IRIX command arguments, command
flags, host names, user IDs, map names, the first use of new
terms, titles of publications, icon names

Screen type Code examples, file excerpts, and screen displays
(including error messages), and /etc/export and /etc/fstab
options

Bold Screen type

User input

Product Support

xvii

() (Parentheses) Following IRIX commands, they surround
the reference page (man page) section where the command
is described

[] (Brackets) Surround optional syntax statement arguments

IRIX shell prompt for the superuser (root)

Product Support

Silicon Graphics offers a comprehensive product support and maintenance
program for its products. For information about using support services for
this product, refer to the Release Notes that accompany it.

1

Chapter 1

1. Understanding ONC3/NFS

This chapter introduces the Silicon Graphics implementation of the Sun
Microsystems Open Network Computing Plus (ONC+) distributed services,
which was previously referred to as Network File System (NFS). In this
guide, NFS refers to the distributed file system in ONC3/NFS.

The information in this chapter is prerequisite to successful ONC3/NFS
administration. It defines ONC3/NFS and its relationship to other network
software, introduces the ONC3/NFS vocabulary, and identifies the software
elements that support ONC3/NFS operation. It also explains special utilities
and implementation features of ONC3/NFS. You should be familiar with
the information in this chapter before setting up or modifying the
ONC3/NFS environment.

The components of ONC3/NFS are described below.

NFS The distributed file system in ONC3/NFS. It contains the
automounter and lock manager. ONC3/NFS includes the
new level of the NFS protocol, NFS3, an optimized version
of NFS, designed to be transparent to users. NFS is
multithreaded to take advantage of multiprocessor
performance.

CacheFS The Cache File System (CacheFS) is a new file system type
in IRIX 5.3 that provides client-side caching for NFS and
other file system types. Using CacheFS on NFS clients with
local disk space can significantly increase the number of
clients a server can support and reduce the data access time
for clients using read-only file systems.

NIS The network information service (NIS) is a database of
network entity location information that can be used by
NFS. Information about NIS is published in a separate
volume called the NIS Administration Guide.

2

Chapter 1: Understanding ONC3/NFS

This chapter contains these sections:

• “What Is NFS?” on page 2

• “NFS and Diskless Workstations” on page 3

• “The Cache File System” on page 3

• “NFS and the Network Information Service” on page 4

• “Client-Server Fundamentals” on page 4

• “Automatic Mounting” on page 7

• “Stateless Protocol” on page 7

• “Input/Output Management” on page 8

• “NFS File Locking Service” on page 8

What Is NFS?

NFS is a network service that allows users to access file hierarchies across a
network and treat them as if they were local. File hierarchies can be entire file
systems or individual directories. Systems participating in the NFS service
can be heterogeneous. They may be manufactured by different vendors, use
different operating systems, and be connected to networks with different
architectures. These differences are transparent to the NFS application.

NFS is an application layer service that can be used on any network running
the Transmission Control Protocol (TCP) or User Datagram Protocol (UDP).
It relies on remote procedure calls (RPC) for session layer services and external
data representation (XDR) for presentation layer services.

XDR is a library of routines that translate data formats between processes.

Figure 1-1 illustrates the NFS software implementation in the context of the
Open Systems Interconnect (OSI) model.

NFS and Diskless Workstations

3

Figure 1-1 NFS Software Implementation

NFS and Diskless Workstations

It is possible to set up a system so that all the required software, including
the operating system, is supplied from remote systems by means of the NFS
service. Workstations operating in this manner are considered diskless
workstations, even though they may be equipped with a local disk.

Instructions for implementing diskless workstations are given in the Diskless
Workstation Administration Guide. However, it is important to acquire a
working knowledge of NFS before setting up a diskless system.

The Cache File System

A cache is a temporary storage area for data. The Cache File System
(CacheFS) enables you to use local disk drives on workstations to store
frequently used data from a remote file system or CD-ROM. The data stored
on the local disk is the cache.

When a file system is cached, the data is read from the original file system
and stored on the local disk. The reduction in network traffic improves
performance. If the remote file system is on a storage medium with slower
response time than the local disk (such as a CD-ROM), caching provides an
additional performance gain.

application

presentation

session

transport

network

data link

physical

NFS

XDR

RPC

UDP/TCP

IP

network interface

4

Chapter 1: Understanding ONC3/NFS

CacheFS can use all or part of a local disk to store data from one or more
remote file systems. A user accessing a file does not need to know whether
the file is stored in a cache or is being read from the original file system. The
user opens, reads, and writes files as usual.

NFS and the Network Information Service

The Network Information Service (NIS) is a database service that provides
location information about network entities to other network servers and
applications, such as NFS. NFS and NIS are independent services that may
or may not be operating together on a given network. On networks running
NIS, NFS may use the NIS databases to locate systems when NIS queries are
specified.

Client-Server Fundamentals

In an NFS transaction, the workstation requesting access to remote
directories is known as the client. The workstation providing access to its
local directories is known as the server. A workstation can function as a client
and a server simultaneously. It can allow remote access to its local file
systems while accessing remote directories with NFS. The client-server
relationship is established by two complementary processes, exporting and
mounting.

Exporting

Exporting is the process by which an NFS server provides access to its file
resources to remote clients. Individual directories, as well as file systems, can
be exported, but exported entities are usually referred to as file systems.
Exporting is done either during the server’s boot sequence or from a
command line as superuser while the server is running.

Once a file system is exported, any authorized client can use it. A list of
exported file systems, client authorizations, and other export options are
specified in the /etc/exports file (see “/etc/exports and Other Export Files” in
Chapter 2 for details). Exported file systems are removed from NFS service
by a process known as unexporting.

Client-Server Fundamentals

5

A server can export any file system or directory that is local. However, it
cannot export both a parent and child directory within the same file system;
to do so is redundant.

For example, assume that the file system /usr contains the directory
/usr/demos. As the child of /usr, /usr/demos is automatically exported with /usr.
For this reason, attempting to export both /usr and /usr/demos generates an
error message that the parent directory is already exported. If /usr and
/usr/demos were separate file systems, this example would be valid.

Mounting

Mounting is the process by which file systems, including NFS file systems,
are made available to the IRIX operating system and consequently, the user.
When NFS file systems or directories are mounted, they are made available
to the client over the network by a series of remote procedure calls that
enable the client to access the file system transparently from the server’s
disk. Mounted NFS directories or file systems are not physically present on
the client system, but the mount looks like a local mount and users enter
commands as if the file systems were local.

NFS clients can have directories mounted from several servers
simultaneously. Mounting can be done as part of the client’s boot sequence,
automatically, at file system access, with the help of a user-level daemon, or
with a superuser command after the client is running. When mounted
directories are no longer needed, they can be relinquished in a process
known as unmounting.

Like locally mounted file systems, NFS mounted file systems and directories
can be specified in the /etc/fstab file (see “/etc/fstab and Other Mount Files”
in Chapter 2 for details). Since NFS file systems are located on remote
systems, specifications for NFS mounted resources must include the name of
the system where they reside.

Mount Points

The access point in the client file system where an NFS directory is attached
is known as a mount point. A mount point is specified by a conventional IRIX
pathname.

6

Chapter 1: Understanding ONC3/NFS

Figure 1-2 illustrates the effect of mounting directories onto mount points on
an NFS client.

Figure 1-2 Sample Mounted Directory

The pathname of a file system on a server can be different from its mount
point on the client. For example, in Figure 1-2 the file system /usr/demos is
mounted in the client’s file system at mount point /n/demos. Users on the
client gain access to the mounted directory with a conventional cd(1)
command to /n/demos, as if the directory were local.

Mount Restrictions

NFS does not permit multihopping, mounting a directory that is itself NFS
mounted on the server. For example, if host1 mounts /usr/demos from host2,
host3 cannot mount /usr/demos from host1. This would constitute a multihop.

NFS also does not permit loopback mounting, mounting a directory that is
local to the client via NFS. For example, the local file system /usr on host1
cannot be NFS mounted to host1, this would constitute a loopback mount.

ClientServer

/home /usr

/usr/demos

/ /

 /n /usr

/n/demos
/usr/demos on server
NFS mounted to
/n/demos on client

Automatic Mounting

7

Automatic Mounting

As an alternative to standard mounting via /etc/fstab or the mount command,
NFS provides an automatic mounting feature called the automounter, or
automount. The automounter dynamically mounts file systems when they
are referenced by any user on the client system, then unmounts them after a
specified time interval. Unlike standard mounting, automount(1M), once set
up, does not require superuser privileges to mount a remote directory. It also
creates the mount points needed to access the mounted resource. NFS
servers cannot distinguish between directories mounted by the
automounter from those mounted by conventional mount procedures.

Unlike the standard mount process, automount does not read the /etc/fstab file
for mount specifications. Instead, it reads alternative files (either local or
through NIS) known as maps for mounting information (see “automount
Files and Maps” in Chapter 2 for details). It also provides special maps for
accessing remote systems and automatically reflecting changes in the
/etc/hosts file and any changes to the remote server’s /etc/exports file.

Default configuration information for automounting is contained in the file
/etc/config/automount.options. This file can be modified to use different
options and more sophisticated maps.

automount Restrictions

CacheFS file systems cannot be automatically mounted with automount.

Stateless Protocol

NFS implements a stateless protocol in which the server maintains almost no
information on NFS processes. This stateless protocol insulates clients and
servers from the effects of failures. If a server fails, the only effect to clients
is that NFS data on the server is unavailable to clients. If a client fails, server
performance is not affected.

Clients are independently responsible for completing NFS transactions if the
server or network fails. By default, when a failure occurs, NFS clients
continue attempting to complete the NFS operation until the server or
network recovers. To the client, the failure can appear to be slow

8

Chapter 1: Understanding ONC3/NFS

performance on the part of the server. Client applications continue
retransmitting until service is restored and their NFS operations can be
completed. If a client fails, no action is needed by the server or its
administrator in order for the server to continue operation.

The major advantage of a stateless server is robustness in the face of client,
server, or network failures. This robustness is especially important in a
complex network of heterogeneous systems, many of which are not under
the control of a centralized operations staff, and some of which are systems
that are often rebooted without warning.

Input/Output Management

In NFS transactions, data input and output is asynchronous read-ahead and
write-behind, unless otherwise specified. As the server receives data, it
notifies the client that the data was successfully written. The client responds
by freeing the blocks of NFS data successfully transmitted to the server. In
reality, however, the server might not write the data to disk before notifying
the client, a technique called delayed writes. Writes are done when they are
convenient for the server, but at least every 30 seconds.

Although delayed write is the default method of operation for NFS,
synchronous writes are also an option (see “/etc/exports Options” in
Chapter 2 for more details about NFS options). With synchronous writes, the
server writes the data to disk before notifying the client that it has been
written. Synchronous writes may slow NFS performance due to the time
required for disk access, but increase data integrity in the event of system or
network failure.

NFS File Locking Service

To help manage file access conflicts and protect NFS sessions during failures,
NFS offers a file and record locking service called the network lock manager.
The network lock manager is not an integral part of NFS. It is a separate
service NFS makes available to user applications with the facility to use it.
To use the locking service, applications must make calls to standard IRIX
lock routines (fcntl(2), flock(3B), and lockf(3C)). For NFS files, these calls are
received by the network lock manager process (lockd(1M)).

NFS File Locking Service

9

The network lock manager processes must run on both the client and the
server to function properly. Communication between the two processes is by
means of RPC. Calls for service issued to the client process are handed to the
server process, which uses its local IRIX locking utilities to handle the call. If
the file is in use, the lock manager issues an advisory to the calling
application, but it does not prevent the application from accessing a busy
file. The application must determine how to respond to the advisory, using
its own facilities.

There are four basic kernel-to-lock manager requests:

KLM_LOCK Lock the specified record.

KLM_UNLOCK
Unlock the specified record.

KLM_TEST Test if the specified record is locked.

KLM_CANCEL
Cancel an outstanding lock request.

Despite the fact that the network lock manager adheres to lockf/fcntl
semantics, its operating characteristics are influenced by the nature of the
network, particularly during crashes.

Locking and Crash Recovery

As part of the file locking service, the network lock manager assists with
crash recovery by maintaining state information on locked files. It uses this
information to reconstruct locks in the event of a server or client failure.

When an NFS client goes down, the lock managers on all of its servers are
notified by their status monitors, and they simply release their locks, on the
assumption that the client will request them again when it wants them.
When a server crashes, however, matters are different. When the server
comes back up, its lock manager gives the client lock managers a grace
period to submit lock reclaim requests. During this period, the lock manager
accepts only reclaim requests. The client status monitors notify their
respective lock managers when the server recovers. The default grace period
is 45 seconds.

10

Chapter 1: Understanding ONC3/NFS

After a server crash, a client may not be able to recover a lock that it had on
a file on that server, because another process may have beaten the recovering
application process to the lock. In this case the SIGLOST signal is sent to the
process (the default action for this signal is to kill the application).

The local lock manager does not reply to the kernel lock request until the
server lock manager has responded to it. Further, if the lock request is on a
server new to the local lock manager, the lock manager registers its interest
in that server with the local status monitor and waits for its reply. Thus, if
either the status monitor or the server’s lock manager is unavailable, the
reply to a lock request for remote data is delayed until it becomes available.

Locking and the Network Status Monitor

To handle crash recoveries, the network lock manager relies on information
provided by the network status monitor. The network status monitor is a
general service that provides information about network systems to network
services and applications. The network status monitor notifies the network
lock manager when a network system recovers from a failure, and by
implication, that the system failed. This notification alerts the network lock
manager to retransmit lock recovery information to the server.

To use the network status monitor, the network lock manager registers with
the status monitor process (statd(1M)) the names of clients and servers for
which it needs information. The network status monitor then tracks the
status of those systems and notifies the network lock manager when one of
them recovers from a failure.

11

Chapter 2

2. Planning ONC3/NFS Service

To plan the ONC3/NFS service for your environment, it is important to
understand how ONC3/NFS processes work and how they can be
configured. This chapter provides prerequisite information on ONC3/NFS
processes and their configuration options. It also explains the conditions
under which certain options are recommended.

This chapter contains these sections:

• “The Export Process” on page 11

• “The /etc/fstab Mount Process” on page 15

• “The Automounter” on page 20

• “The CacheFS File System” on page 27

The Export Process

Access to files on an NFS server is provided by means of the exportfs(1M)
command. The exportfs command reads the file /etc/exports(4) for a list of file
systems and directories to be exported from the server. Normally, exportfs is
executed at system startup by the /etc/init.d/network script. It can also be
executed by the superuser from a command line while the server is running.
Exported file systems must be local to the server. A file system that is
NFS-mounted from another server cannot be exported (see “Mount
Restrictions” in Chapter 1 regarding multihop).

12

Chapter 2: Planning ONC3/NFS Service

exportfs Command Options

The exportfs command has several options used to configure its operation.
Four of these options are briefly described below. For more complete
information on exportfs options, see the exportfs(1M) manual page.

–a (all) Export all resources listed in /etc/exports.

–i (ignore) Do not use the options set in the /etc/exports file.

–u (unexport) Terminate exporting designated resources.

–v (verbose) Display any output messages during execution.

Invoking exportfs without options reports the file systems that are currently
exported.

/etc/exports and Other Export Files

Exporting starts when exportfs reads the file /etc/exports(4) for a list of file
systems and directories to be exported from the server. As it executes,
exportfs writes a list of file systems it successfully exported, and information
on how they were exported, in the /etc/xtab(4) file. Anytime the /etc/exports
file is changed, exportfs must be executed to update the /etc/xtab file. If an
entry is not listed in /etc/xtab, it has not been exported, even if it is listed in
/etc/exports.

In addition to the /etc/xtab file, the server maintains a record of the exported
resources that are currently mounted and the names of clients that have
mounted them. The record is maintained in a file called /etc/rmtab. Each time
a client mounts a directory, an entry is added to the server’s /etc/rmtab file.
The entry is removed when the directory is unmounted. The information
contained in the /etc/rmtab file can be viewed using the showmount(1M)
command.

Note: The information in /etc/rmtab may not be current, since clients can
unmount file systems without informing the server.

The Export Process

13

/etc/exports Options

There are a number of export options for managing the export process. Some
commonly used export options are briefly described below. For a complete
explanation of options, see the exports(4) manual page.

ro (read only) Export this file system with read-only
privileges.

rw (read, write) Export this file system with read and write
privileges. rw is the default.

rw= (read mostly) Export this file system read-only to all clients
except those listed.

Note: Directories are exported either ro or rw, not both
ways. The option specified first is used. ♦

anon = (anonymous UID) If a request comes from the user root (UID
= 0), use the specified UID as the effective UID instead. By
default, the effective UID is nobody (UID = –2). Specifying a
UID of –1 disables access by unknown users or by root on a
host not specified by the root option. Use the root option
to permit accesses by root.

root = Give superuser privileges to root users of NFS-mounted
directories on systems specified in root access list. By
default, root is set to none .

access = Grant mount privileges to a specified list of clients only.
Clients can be listed individually or as an NIS netgroup (see
netgroup(4)).

nohide (IRIX enhancement) By default, the contents of a child file
system are hidden when only the parent file system is
mounted. Allow access to this file system if its parent file
system is mounted.

wsync (IRIX enhancement) Perform all write operations to disk
before sending an acknowledgment to the client. Overrides
delayed writes. (See “Input/Output Management” in
Chapter 1 for details.)

When a file system or directory is exported without specifying options, the
default options are rw and anon=nobody .

14

Chapter 2: Planning ONC3/NFS Service

Sample /etc/exports File

A default version of the /etc/exports file is shipped with NFS software and
stored in /etc/exports when NFS is installed. You must add your own entries
to the default version as part of the NFS setup procedure (given in “Setting
Up the NFS Server” in Chapter 4). This sample /etc/exports illustrates entries
and how to structure them with various options:

/ -ro
/reports -access=finance,rw=susan
/usr -nohide
/usr/demos -ro,access=client1:client2:client3
/usr/catman -nohide

In this sample /etc/exports, the first entry exports the root directory (/) with
read-only privileges. The second entry exports a separate file system, /reports
read-only to the netgroup finance, with write permission specified for susan.
Users who mount /usr can access the /usr/demos file system because nohide

is specified.

The fourth entry uses the access list option. It specifies that client1, client2,
and client3 are authorized to access /usr/demos with read-only privileges. To
avoid possible problems, client1, client2, and client3 should be fully qualified
domain names (as returned by hostname(1)).

Note: If you are using an access list to export to a client with multiple
network interfaces, the /etc/exports file must contain all names associated
with the client’s interfaces. For example, a client named octopus with two
interfaces needs two entries in the /etc/exports file, typically octopus and
gate-octopus. ♦

The fifth entry is an example of an open file system. It exports /usr/catman to
the entire world with read-write access (the default when neither ro or rw is
specified) to its contents. Activities performed as superuser on /usr/catman
files have no effect, since anon is not specified.

Export Restrictions

CacheFS file systems cannot be exported.

The /etc/fstab Mount Process

15

Recommendations for Exporting

Consider these suggestions for setting up exports on your NFS service:

1. Use the ro option unless clients must write to files. This reduces
accidental removal or changes to data.

2. In secure installations, set anon to –1 to disable root on any client, except
those specified in the root option, from accessing the designated
directory as root.

3. Be cautious with your use of the root option.

4. If you are using NIS, consider using netgroups for long access lists.

5. Use nohide to export related but separate file systems to minimize the
number of mounts clients must perform.

6. Use wsync when minimizing risk to data is more important than
optimizing performance.

The /etc/fstab Mount Process

An NFS client mounts directories at startup via /etc/fstab entries, or by
executing the mount(1M) command. The mount command can be executed
during the client’s boot sequence, from a command line entry, or graphically,
using the System Manager tool. The mount command supports the NFS3
protocol if that protocol is also running on the server.

Mounts must reference directories that are exported by a network server and
mount points that exist on the client. Directories that serve as mount points
may or may not be empty. If using the System Manager for NFS mounting,
the mount points must be empty. If the directory is not empty, the original
contents are hidden and inaccessible while the NFS resources remain
mounted.

mount and umount Command Options

The mount and umount(1M) commands have many options for customizing
mounting and unmounting that can apply to either EFS or NFS file systems.

16

Chapter 2: Planning ONC3/NFS Service

Several commonly-used options are briefly described below in their NFS
context (see mount(1M) for full details).

–t type (type) Set the type of directories to be mounted or
unmounted. type is nfs for NFS mounting, nfs3 for
the new NFS3 protocol, and nfs3pref for mounts that
attempt NFS3 protocol, but fall back to nfs if the attempt
fails. To mount NFS3, the server must support NFS3.

–a (all) Attempt to mount all directories listed in /etc/fstab, or
unmount all directories listed in /etc/mtab.

–h hostname (host) Attempt to mount all directories listed in /etc/fstab
that are remote-mounted from the server hostname, or
unmount directories listed in /etc/mtab that are
remote-mounted from server hostname.

-b list (all but) Attempt to mount or unmount all file systems listed
in /etc/fstab except those associated with the directories in
list. list contains one or more comma-seperated directory
names.

–o options (options) Use the options options, instead of the options in
/etc/fstab.

/etc/fstab and Other Mount Files

Mounting typically occurs when the mount command reads the /etc/fstab file.
Each NFS entry in /etc/fstab contains up to six fields. An NFS entry has this
format:

file_system directory type options frequency pass

where:

file_system is the remote server directory to be mounted.

directory is the mount point on the client where the directory is
attached.

type is the file system type. This can be nfs for NFS resources,
nfs3 for the NFS3 protocol, and nfs3pref for mounts that
try nfs3 but fall back to nfs if the mount fails.

The /etc/fstab Mount Process

17

options is mount options (see “/etc/fstab Options” in this chapter).

frequency is always set to zero (0) for NFS and CacheFS entries.

pass is always set to zero (0) for NFS and CacheFS entries.

The mount command maintains a list of successfully mounted directories in
the file /etc/mtab. When mount successfully completes a task, it automatically
updates the /etc/mtab file. It removes the /etc/mtab entry when the directory is
unmounted. The contents of the /etc/mtab file can be viewed using the mount
command without any options. See the mount(1M) manual page for more
details.

/etc/fstab Options

There are several options for configuring mounts. When you use these
options, it is important to understand that export options (specified on a
server) override mount options. NFS /etc/fstab options are briefly described
below (see the fstab(4) manual page for complete information):

ro Read-only permissions are set for files in this directory.

rw Read write permissions are set for files in this directory
(default).

hard Specifies how the client should handle access attempts if the
server fails. If the NFS server fails while a directory is
hard-mounted, the client keeps trying to complete the
current NFS operation until the server responds (default).

soft Alternative to hard mounting. If the NFS server fails while
a directory is soft-mounted, the client attempts a limited
number of tries to complete the current NFS operation
before returning an error.

intr (interrupt) Allows NFS operations to be interrupted by
users. The default setting is off .

bg (background) Mounting is performed as a background task
if the first attempt fails. The default setting is off .

fg (foreground) Mounting is performed as a foreground task.
The default setting is on .

18

Chapter 2: Planning ONC3/NFS Service

private (IRIX enhancement) Uses local file and record locking
instead of a remote lock manager and minimizes delayed
write flushing. Diskless clients are the primary users of this
option.

rsize (read size) Changes the read buffer to the size specified
(default is 8K).

wsize (write size) Changes the write buffer to the size specified
(default is 8K).

timeo (NFS timeout) Sets a new timeout limit (default is .11
seconds.)

retrans (retransmit) Specifies an alternative to the number of times
NFS operations are retried (default is 5).

port Specifies an alternative UDP port number for NFS on the
server (default port number is 2049).

noauto Tells mount –a to ignore this /etc/fstab entry.

grpid Allows files created in a file system to have the parent
directory’s group ID, not the process’ group ID.

nosuid Turns setuid execution off for nonsuperusers (default is
off).

nodev Disallows access to character and block special files (default
is off).

In addition to these options, /etc/fstab also offers several options dedicated to
attribute caching. Using these options, you can direct NFS to cache file
attributes, such as size and ownership, to avoid unnecessary network
activity. See the fstab(4) manual page for more details.

Sample /etc/fstab File

NFS entries in /etc/fstab are designated by the nfs identifier, while EFS (local
file systems) entries are designated by efs . This sample /etc/fstab file includes
a typical NFS entry:

/dev/root / efs rw,raw=/dev/rroot 0 0
/dev/usr /usr efs rw,raw=/dev/rusr 0 0
redwood:/usr/demos /n/demos nfs ro,hard,intr,bg 0 0

The /etc/fstab Mount Process

19

In this example, the NFS directory /usr/demos on server redwood is mounted
at mount point /n/demos on the client system with read-only (ro) permissions
(see Figure 1-2). If the server fails after the mount has taken place, the client
attempts to complete any current NFS transactions indefinitely (hard) or
until it receives an interrupt (intr). Mounting executes as a background task
(bg) if it didn’t succeed the first time.

Recommendations for /etc/fstab Mounting

Some recommendations for /etc/fstab mounting are:

1. Use conventional mounting for clients that are inoperable without NFS
directories (such as diskless workstations) and for directories that need
to be mounted most of the time.

2. If directories are mounted with the rw (read-write) option or if they
contain executable files, they should be mounted with the hard option.
Hard mounting offers more certainty that processing will complete if
the server temporarily fails.

3. The intr option is recommended when using a hard mount. It allows
the user to break retransmission attempts if the server becomes
unavailable for an extended period of time.

4. The bg option should always be specified to expedite the boot process if
a server is unavailable when the client is booting. In other words, a
client hangs until the server comes back up unless you specify bg .

5. If you use nohide when exporting file systems on the server, the client
can mount the top-most directory in the exported file system hierarchy.
This gives access to all related file systems while reducing individual
mount calls and the complexity of the /etc/fstab file.

Note: A severe performance problem occurs if the nohide option is used
when exporting an NFS back file system for a CacheFS mount. The
nohide option creates duplicate node IDs with different file handles,
causing CacheFS to remove files from the cache sooner than normal.
Either avoid using the nohide option for NFS file systems that are used
as the back file system or map CacheFS mounts to the back file system
on the server one-to-one.

6. Use private when the NFS directory on the server is not shared
between multiple NFS clients.

20

Chapter 2: Planning ONC3/NFS Service

7. Do not put NFS mount points in the root (/) directory of a client. Mount
points in the root directory can slow the performance of the client and
can cause the client to be unusable when the server is unavailable.

The Automounter

The automount utility dynamically mounts NFS directories on a client when
a user references the directory. This function is provided by the automount
command. It can be set up to execute when a client is booted, or it can be
executed by the superuser from a command line while the client is running.
The automounter supports the NFS3 file system type.

To start the automounter at boot time, the automount flag must be set to on

(see the chkconfig(1M) manual page for details). If the flag is on , the
automounter is invoked by the /etc/init.d/network script and started with any
automount options specified in the /etc/config/automount.options file.

automount Command Options

The automount command offers many options that allow you to configure its
operation (for a complete description, see the automount(1M) manual page).
Some commonly used options are:

–D Assign a value to an environment variable.

–f Read the specified local master file before the NIS master
map.

–m Do not read the NIS master map.

–M Use the specified directory as the automount mount point.

–n Disable dynamic mounts.

–T Trace and display each NFS call.

–tl Maintain the mount for a specified duration of client
inactivity (default duration is 5 minutes).

–tm Wait a specified interval between mount attempts (default
interval is 30 seconds).

The Automounter

21

–tp Hold information about server availability in a cache for a
specified time (default interval is 5 seconds).

–tw Wait a specified interval between attempts to unmount file
systems that have exceeded cache time (default interval is
60 seconds).

–v Display any output messages during execution.

automount Files and Maps

Just as the conventional mount process reads /etc/fstab and writes to
/etc/mtab, automount can be set up to read input files for mounting
information. automount also records its mounts in the /etc/mtab file and
removes /etc/mtab entries when it unmounts directories.

By default, when automount executes at boot time, it reads the
/etc/config/automount.options file for initial operating parameters. The
information contained in the /etc/config/automount.options file can contain the
complete information needed by the automounter or the information can
direct automount to a set of files that contain customized automounting
instructions. /etc/config/automount.options cannot have comments in it.

The default version of /etc/config/automount.options is:

-v /hosts -hosts -intr,nosuid,nodev

This /etc/config/automount.options directs automount to execute with the
verbose (–v) option. It also specifies that automount should use /hosts as its
daemon mount point. When a user accesses a file or directory under /hosts,
the –hosts argument directs automount to use the pathname component
that follows /hosts as the name of the NFS server. All accessible file
systems exported by the server are mounted to the default mount point
/tmp_mnt/hosts with the intr , nosuid , and nodev options.

 For example, if the system redwood has the following entry in /etc/exports:

/usr/share/catman -ro,nohide

22

Chapter 2: Planning ONC3/NFS Service

If a client system is using the default /etc/config/automount.options file, as
above, then executing the following command on the client lists the contents
of the directory /usr/share/catman on redwood:

ls -l /hosts/redwood/usr/share/catman/*

automount Mount Points

Mount points for automount serve the same function as mount points in
conventional NFS mounting. They are the access point in the client’s file
system where a remote NFS directory is attached. There are two major
differences between automount mount points and conventional NFS mount
points.

With automount, mount points are automatically created and removed as
needed by the automount program. When the automount program is started,
it reads configuration information from /etc/config/automount.options,
additional automount maps, or both, and creates all mount points needed to
support the specified configuration.

By default, automount mounts everything in the directory /tmp_mnt and
creates a link between the mounted directory in /tmp_mnt and the accessed
directory. For example, in the default configuration, mounts take place
under /tmp_mnt/hosts/hostname. The automounter creates a link from the
access point /hosts/hostname to the actual mount point under
/tmp_mnt/hosts/hostname. This command ls /hosts/redwood/tmp displays
the contents of server redwood's /tmp directory. You can change the default
root mount point with the automount –M option.

automount Map Types

The automount feature uses three kinds of maps:

• master maps

• direct maps

• indirect maps

The Automounter

23

Master Maps

The master map is the first file read by the automount program. There is only
one master map on a client. It specifies the types of supported maps, the
name of each map to be used, and options that apply to the entire map (if
any). By convention, the master map is called /etc/auto.master, but the name
can be changed.

For complex automount configurations, a master map can be specified in the
/etc/config/automount options file.

The master map can be a local file or an NIS database file. It contains three
fields: mount point, map name and map options. A crosshatch (#) at the
beginning of a line indicates a comment line. A sample of master map entries
is:

#Mount Point Map Name Map Options
/hosts -hosts -intr,nosuid,nodev
/net /etc/auto.irix.misc -intr,nosuid
/home /etc/auto.home -intr,timeo=10
/- /etc/auto.direct -ro,intr
/net /etc/indirect3 -ro,nfs3

The mount point field serves two purposes. It determines whether a map is
a direct or indirect map, and it provides mount point information. A dash
(/–) in the mount point field designates a direct map. It signals automount to
use the mount points specified in the direct map for mounting this map. For
example, to mount the fourth entry in the sample above, automount gets a
mount point specification from the direct map /etc/auto.direct. In the fifth
entry, an entire indirect map, which includes all its entries, is declared to use
the NFS3 protocol. If NFS3 is not available on the server, the mount fails.

A directory name in the mount point field designates an indirect map. It
specifies the mount point automount should use when mounting this map.
For example, the second entry in the sample above tells automount to mount
the indirect map /etc/auto.irix.misc at mount point /net. A mount point for
direct and indirect maps can be several directory levels deep.

The map name field in a master map specifies the full name and location of
the map. Notice that –hosts is considered an indirect map whose mount point
is /hosts. The –hosts map mounts all the exported file systems from a server.
If frequent access to just a single file system is required for a server with

24

Chapter 2: Planning ONC3/NFS Service

many exports, it is more efficient to access that file system with a map entry
that mounts just that file system.

The map options field can be used to specify any options that should apply
to the entire map. Options set in a master map can be overridden by options
set for a particular entry within a map.

Direct Maps

Direct maps allow mounted directories to be distributed throughout a
client’s local file system. They contain the information automount needs to
determine when, what, and how to mount a remote NFS directory. You can
have as many direct maps as needed.

A direct map is typically called /etc/auto.mapname, where mapname is some
logical name that reflects the map’s contents. Direct maps can also be
grouped based on logical characteristics. For instance, in the above master
map example, the direct map /etc/auto.direct, indicated by the /– mount point,
can also include mounting information for software to be mounted as
read-only.

All direct maps contain three fields: directory, options, and location. An
example of an /etc/auto.direct direct map is:

#Directory Options Location
/usr/local/tools -nodev ivy:/usr/cooltools
/usr/frame redwood:/usr/frame
/usr/games -nosuid peach:/usr/games

In a direct map, users access the NFS directory with the pathname that is
identical to the directory field value in the direct map. For example, a user
gives the command cd /usr/local/tools to mount /usr/cooltools from
server ivy as specified in the direct map /etc/auto.direct. Notice that the
directory field in a direct map can include several subdirectory levels.

The options field can be used to set options for an entry in the direct map.
Options set within a map for an individual entry override the general option
set for the entire map in the master map. The location field contains the NFS
server’s name and the remote directory to mount.

Note: When direct map mount points are mounted into routinely accessed
directories, unexpected mount activity can occur. ♦

The Automounter

25

Indirect Maps

Indirect maps allow remotely mounted directories to be housed under a
specified shared top-level location on the client’s file system. They contain
the specific information the automount program needs to determine when,
what, and how to NFS mount a remote directory. You can have as many
indirect maps as needed.

An indirect map is typically called /etc/auto.mapname, where mapname is
some logical name that reflects the map’s contents. Indirect maps can be
grouped according to logical characteristics. For example, in the master map
above, the indirect map /etc/auto.home, indicated by the mount point /home,
can include mounting information for all home directories on various
servers.

Indirect maps contain three fields: directory, options, and location. Entries
might look something like this for the /etc/auto.home indirect map:

#Directory Options Location
willow -intr willow:/usr/people
pine -nosuid pine:/usr/people
ivy -ro,intr ivy:/usr/people
jinx -ro,nfs3 jinx:/usr

With an indirect map, user access to an NFS directory is always relative to
the mount point specified in the master map entry for the indirect map. That
is, the directory is the concatenation of the mount-point field in the master
map and the directory field in the indirect map. For example, given our
sample /etc/auto.master and indirect map /etc/auto.home, a user gives the
command cd /home/willow to access the NFS directory
willow:/usr/people.

If a user changes the current working directory to the /home directory and
tries to list its contents, the directory appears empty unless a subdirectory of
/home, such as /home/willow, was previously accessed, thereby mounting
/home subdirectories. Access to the mount point of an indirect map only
shows information for mounts currently in effect; it does not trigger mounts,
as with direct maps. Users must access a subdirectory to trigger a mount.

The directory field in an indirect map is limited to one subdirectory level.
Additional subdirectory levels for indirect maps must be indicated in the
mount point field in the master map or on the command line.

26

Chapter 2: Planning ONC3/NFS Service

The options field can be used to set options for an entry in the indirect map.
For example, the fourth entry attempts to mount /usr using the NFS3
protocol, all other entries in the map are unaffected. Options set within a
map for an entry override the general options set for the entire map in the
master map. The location field contains the NFS server’s name and the
remote directory to mount.

Recommendations for Automounting

Some recommendations for automounting are:

1. Use the automounter when the overhead of a mount operation is not
important, when a file system is used more often than the automount
time limit (5 minutes by default, specified by the –tl option), or when
file systems are used infrequently. Although directories that are used
infrequently do not consume local or remote resources, they can slow
down applications that report on file systems, such as df(1).

2. The default configuration in /etc/config/automount.options is usually
sufficient because it allows access to all systems. It performs the
minimal number of mounts necessary when it is used in conjunction
with the nohide export option on the server.

3. Use indirect maps whenever possible. Direct maps create more /etc/mtab
entries, which means more mounts are performed, so system overhead
is increased. With indirect maps, mounts occur when a process
references a subdirectory of the daemon or map mount point. With
direct maps, when a process reads a directory containing one or more
direct mount points, all of the file systems are mounted at the mount
points. This can result in a flurry of unintended mounting activity
when direct mount points are used in well-traveled directories.

4. Try not to mount direct map mount points into routinely accessed
directories. This can cause unexpected mount activity and slow down
system performance.

5. Use a direct rather than an indirect map when directories cannot be
grouped, but must be distributed throughout the local file system.

6. Plan and test maps on a small group of clients before using them for a
larger group. Some changes to the automount environment require that
systems be rebooted (see Chapter 5, “Maintaining ONC3/NFS” for
details on changing the map environment).

The CacheFS File System

27

The CacheFS File System

CacheFS is optimally used on an NFS client that has sufficient local disk
space to reduce network data access time. Once the data has been cached, file
read and read-only directory operations are as fast as those on a local disk
(EFS file systems). Write performance, however, is closer to an NFS write
operation.

The original file system (which is typically NFS) is called the back file system
and files in it are back files. The cached file system resides on the local disk and
files in it are cached files. The cache directory is a directory on the local disk
where the data for the cached file system is stored. The file system in which
the cache directory resides is called the front file system and its files are front
files.

Planning and setting up a CacheFS configuration is similar to that of an NFS
client-server configuration.

Command and File Options for CacheFS

CacheFS-specific options have been added to the conventional mount
command and /etc/fstab file and are described in this section. For the
complete description of these commands and files, refer to “The /etc/fstab
Mount Process” on page 15. The cfsadmin(1M) and fsck_cache(1M) commands
are new with CacheFS.

mount and umount Commands

When mounting and unmounting a CacheFS file system, the following
option is used for CacheFS. For descriptions of the other options, see “mount
and umount Command Options” on page 15.

–t type (type) Set the type of directories to be mounted or
unmounted. type is cachefs for all CacheFS mounting.

28

Chapter 2: Planning ONC3/NFS Service

fsck_cachefs Command

The CacheFS version of fsck(1M) checks the integrity of a cache directory. By
default, it corrects any problems it may find. It is automatically invoked
when a CacheFS file system is mounted. The syntax for fsck_cachefs is:

fsck_cachefs [-m | -o noclean] cache_directory

The two command line options are:

-m Check, but do not repair the file system.

-o noclean Force a check on the cache directory, even if there is no
reason to suspect an integrity problem.

/etc/fstab File

The /etc/fstab file has several new options that are used with CacheFS for
mounting, unmounting, and consistency checking.

Any mount options not recognized by CacheFS are passed to the back file
system mount if one is performed.

Note: Any mount points which share the same cache directory must have
the same set of the following options: write-around , non-shared , noconst ,
and purge .

The options that are new for CacheFS are:

backfstype =file_system_type
Specifies the back file system type (for example, nfs). Any
file system type may be used except proc , fd , and swap. The
backfstype argument must be specified.

backpath =path Specifies the path where the back file system is already
mounted. If this argument is not specified, CacheFS
determines a mount point for the back file system.

cachedir =directory
Specifies the name of the cache directory. It must be an
existing directory, previously created with cfsadmin(1M).

The CacheFS File System

29

cacheid =ID Allows you to assign a string to identify each separate
cached file system. If you do not specify a cacheid , CacheFS
generates one. You need the cacheid when you delete a
cached file system with cfsadmin -d. A cacheid you choose
is easier to remember than one automatically generated.
The cfsadmin command with the -l option includes the
cacheid in its display.

write-around | non-shared

Determines the write modes for CacheFS. In the default
write-around mode, as writes are made to the back file
system, the affected file is purged from the cache.

The non-shared mode can be used when only one source is
writing to the cached file system. In this mode, all writes are
made to both the front and back file systems, and file
remains in the cache.

noconst Disables consistency checking between the front and back
file systems. Use noconst when the back file system and
cache file system are read-only. Otherwise, always allow
consistency checking. The default is to enable consistency
checking.

If none of the files in the back file system will be modified,
you can use the noconst option to mount when mounting
the cached file system. Changes to the back file system may
not be reflected in the cached file system.

local-access Improves performance by having CacheFS check the mode
bits. By default, the back file system interprets the mode bits
used for access checking to ensure data integrity.

purge Remove any cached information for the specified file
system.

suid | nosuid Allow set-uid (default) or do not allow set-uid.

Consistency Checking mount Options for fstab

To ensure that the cached directories and files are kept up to date, CacheFS
periodically checks consistency of files stored in the cache. To check
consistency, CacheFS compares the current modification time to the previous

30

Chapter 2: Planning ONC3/NFS Service

modification time; if the modification times are different, all data and
attributes for the directory or file are purged from the cache and new data
and attributes are retrieved from the back file system.

When an operation on a directory or file is requested, CacheFS checks to see
if it is time to verify consistency. If so, CacheFS obtains the modification time
from the back file system and performs the comparison. If the write mode is
write-around , CacheFS checks on every operation.

Table 2-1 provides more information on mount consistency checking
parameters.

Table 2-1 Consistency Checking Arguments for the -o mount Option

Parameter Description

acdirmin =n Specifies that cached attributes are held for at least n seconds
after a directory update. After n seconds, if the directory
modification time on the back file system has changed, all
information about the directory is purged and new data is
retrieved from the back file system. The default for n is 30
seconds.

acdirmax =n Specifies that cached attributes are held for no more than n
seconds after a directory update. After n seconds, the
directory is purged from the cache and new data is retrieved
from the back file system. The default for n is 30 seconds.

acregmin =n Specifies that cached attributes are held for at least n seconds
after file modification. After n seconds, if the file modification
time on the back file system has changed, all information
about the file is purged and new data is retrieved from the
back file system. The default for n is 30 seconds.

acregmax =n Specifies that cached attributes are held for no more than n
seconds after a file modification. After n seconds, all file
information is purged from the cache. The default for n is 30
seconds.

actimeo =n Sets acregmin , acregmax , acdirmin , and acdirmax to n.

The CacheFS File System

31

cfsadmin Command

The cfsadmin(1M) command is used to administer the cached file system on
the local system. It is used to

• create a cached file system

• list the contents and statistics about the cache

• delete the cached file system

• modify the resource parameters when the file system is unmounted

The cfsadmin command works on a cache directory, which is the directory
where the cache is actually stored. A pathname in the front file system
identifies the cache directory.

The syntax for the cfsadmin command is:

cfsadmin -c [-o cachefs_parameters] cache_directory
cfsadmin -d [cache_ID | all] cache_directory
cfsadmin -l cache_directory
cfsadmin -u [-o cachefs_parameters] cache_directory

The options and their parameters are:

-c Create a cache under the directory specified by
cache_directory. This directory must not exist prior to cache
creation.

-d Delete the file system and remove the resources of the
cache_ID that you specify or all file systems in the cache if
you specify all .

Note: You must run fsck_cachefs(1M) after deleting a file
system to correct the resource counts for the cache.

-l List the file systems that are stored in the specified cache
directory. A listing provides the cache_ID, and statistics
about resource utilization and cache resource parameters.

-u Update the resource parameters of the specified cache
directory. The parameter values (specified with the -o
option) can only be increased; to decrease the values, you
must remove the cache, then re-create it. All file systems in
the cache must be unmounted when you use this option.

32

Chapter 2: Planning ONC3/NFS Service

Changes take effect the next time you mount the file system
in the cache directory.

Using the -u option with the -o option resets all parameters
to their default values.

cache_ID Specifies an identifying name for the file system that is
cached. If you do not specify an ID, CacheFS assigns a
unique identifier.

-o options Specifies the CacheFS resource parameters. Multiple
resource parameters must be separated by commas. The
following section describes the cache resource parameters.

Cache Resource Parameters

The default values for the cache parameters are for a cache that uses the
entire front file system for caching. To limit the cache to only a portion of the
front file system, you should change the parameter values.

Table 2-2 shows the parameters for space and file allocation.

Table 2-3 shows the default values for the cache parameters. The default
values for parameters devote the full resources of the front file system to
caching.

Table 2-2 CacheFS Parameters

Parameters for Space Allocation Parameters for File Allocation

maxblocks maxfiles

minblocks minfiles

threshblocks threshfiles

Table 2-3 Default Values of Cache Parameters

Cache Parameters Default Value

maxblocks 90%

minblocks 0%

The CacheFS File System

33

The maxblocks parameter sets the maximum number of blocks, expressed
as a percentage, that CacheFS is allowed to claim within the front file system.
The maxfiles parameter sets the maximum percentage of available inodes
(number of files) CacheFS can claim.

Note: The maxblocks and maxfiles parameters do not guarantee the
resources will be available for CacheFS—they set maximums. If you allow
the front file system to be used for purposes other than CacheFS, there may
be fewer blocks or files available to CacheFS than you intend.

The minblocks parameter does not guarantee availability of a minimum
level of resources. The minblocks and threshblocks parameters work
together. CacheFS can claim more than the percentage of blocks specified by
minblocks only if the percentage of available blocks in the front file system
is greater than threshblocks. The minfiles and threshfiles parameters work
together in the same fashion.

The threshfiles and threshblocks values apply to the entire front file system,
not file systems you have cached under the front file system. The
threshblocks and threshfiles values are ignored until the minblocks and
minfiles values have been reached.

Note: Using the whole front file system solely for caching eliminates the
need to change the maxblocks, maxfiles, minblocks, minfiles,
threshblocks, or threshfiles parameter.

When the minimum, maximum, and threshold values are identical, CacheFS
allows the cache to grow to the maximum size specified—if you have not
reduced available resources by using part of the front file system for other
storage purposes.

threshblocks 85%

maxfiles 90%

minfiles 0%

threshfiles 85%

Table 2-3 (continued) Default Values of Cache Parameters

Cache Parameters Default Value

34

Chapter 2: Planning ONC3/NFS Service

CacheFS Tunable Parameters

The CacheFS tunable parameters are used to fine tune the performance of
CacheFS file opens and reads. The CacheFS tunable parameters are
contained in the file /var/sysgen/mtune/cachefs. They can be modified with the
systune(1M) command.

There are three tunable parameters for CacheFS. Their descriptions are listed
in Table 2-4.

The parameter’s maximum, minimum, and default values are listed in
Table 2-5.

Table 2-4 CacheFS Tunable Parameters

Parameter Description

cachefs_max_lru Controls the maximum number of files held open for all
mounted CacheFS file systems in anticipation of future use.
Holding files open reduces the overhead of opening and
closing and is most noticeable for intensive open/close
operations. Performance improves as the value is increased,
but the system becomes vulnerable to system crashes and
the time for unmounting a CacheFS file system increases.

cachefs_readahead Controls the number of readaheads performed on any given
read from a file.

cachefs_max_threads Controls the maximum number of asynchronous I/O
daemons allowed to run for each CacheFS file system.

Table 2-5 CacheFS Tunable Parameter Values

Parameter Default Value Minimum Value Maximum Value

cachefs_max_lru 1000 0 10000

cachefs_readahead 1 0 10

cachefs_max_threads 5 1 10

35

Chapter 3

3. Using Automount Map Options

Automount maps offer a number of options that increase mounting
efficiency and make map building easier. This chapter explains each option
and provides examples of how to include them in maps. Except as noted, the
options described in this chapter can be used in either direct or indirect
maps.

This chapter contains these sections:

• “Including Group Mounts in Maps” on page 35

• “Using Hierarchical Formats in Group Mounts” on page 37

• “Specifying Alternative Servers” on page 38

• “Using Metacharacters” on page 39

• “Using Environment Variables” on page 42

• “Including Supplementary Maps” on page 42

Including Group Mounts in Maps

Group mounts are a means of organizing entries in a direct map so that a
single mount provides several directories that users are likely to need
simultaneously. Group mounts work only with direct maps. The map entry
for a group mount specifies the parent directory to be mounted. Subentries
specify the individual child directories the mount makes available and any
mount options that apply to them. The directories in a group mount need not
be on the same server.

36

Chapter 3: Using Automount Map Options

A sample group mount entry is:

/usr/local \
 /bin –ro,intr ivy:/export/local/iris_bin \
 /share –rw,intr willow:/usr/local/share \
 /src –ro,intr oak:/home/jones/src

This example shows that, when /usr/local is mounted, users have access to
three directories: /export/local/iris_bin, a read-only directory on server ivy;
/usr/local/share, a read-write directory on server willow; and /home/jones/src, a
read-only directory on server oak. The backslash (\) at the end of a line
indicates that a continuation line follows. Continuation lines are indented
with blank spaces or tabs.

Without the group mount feature, the single entry shown in the previous
example would require three separate mounts and three individual map
entries, as shown in this example:

/usr/local/bin –ro,intr ivy:/export/local/iris–bin
/usr/local/share –rw,intr willow:/usr/local/share
/usr/local/src –ro,intr oak:/home/jones/src

Group mounts and separate entries differ in that group mounts guarantee
that all directories in the group are mounted whenever any one of them is
referenced. This is not the case for separate entries. For example, notice the
error message that occurs in this sequence when the user specifies a relative
pathname to change directories:

% cd /usr/local/bin
% cd ../src
UX:csh:ERROR: ../src - No such file or directory

The error occurs because the directory /usr/local/src is not mounted with
/usr/local/bin. A separate cd(1) command is required to mount /usr/local/src.

Using Hierarchical Formats in Group Mounts

37

Using Hierarchical Formats in Group Mounts

When the root of a file hierarchy must be mounted before any other mounts
can occur, it must be specified in the map. A hierarchical mount is a special
case of group mounts in which directories in the group must be mounted in
a particular order. For hierarchical mounts, the automounter must have a
separate mount point for each mount within the hierarchy.

The sample group mount entry shown in the previous section illustrates
nonhierarchical mounts under /usr/local when /usr/local is already mounted,
or when it is a subdirectory of another mounted system. The concept of root
here is very important. The symbolic link returned by the automounter to
the kernel request is a path to the mount root, the root of the hierarchy
mounted under /tmp_mnt.

An example of a hierarchical mount is:

/usr/local \
 / –rw,intr peach:/export/local \
 /bin –ro,intr ivy:/export/local/iris–bin \
 /share –rw,intr willow:/usr/local/share \
 /src –ro,intr oak:/home/jones/src

The mount points used here for the hierarchy are /, /bin, /share, and /src. These
mount point paths are relative to the mount root, not to the system’s file
system root. The first entry in this example has / as its mount point. It is
mounted at the mount root. The first mount of a hierarchy is not required to
be at the mount root. The automounter creates directories to build a path to
the first mount point if the mount point is not at the mount root.

A true hierarchical mount can be a disadvantage if the server of the root
hierarchy becomes unavailable. When this happens, any attempt to
unmount the lower branches fail, since unmounting must proceed through
the mount root, and the mount root cannot be unmounted while its server is
unavailable.

38

Chapter 3: Using Automount Map Options

Specifying Alternative Servers

In an automount map, you can specify alternative servers to be used in the
event the specified server is unavailable when mounting is attempted. This
example illustrates an indirect map in which alternative servers are used:

man –ro,intr oak:/usr/man \
 rose:/usr/man \
 willow:/usr/man
frame –ro,intr redwood:/usr/frame2.0 \
 balsa:/export/frame

The mount point man lists three server locations, and frame lists two.
Mounting can be done from any listed server, as long as it is available.

Alternative locations are recommended for mounting read-only hierarchies.
However, they are not advised for read-write files, since alternating versions
of writable files causes problems with version control.

In the example above, multiple mount locations are expressed as a list of
mount locations in the map entry. They can also be expressed as a
comma-separated list of servers, followed by a colon and the pathname, if
the pathname is the same for all alternate servers:

man –ro,intr oak,rose,willow:/usr/man

In this example, manual pages are mounted from either oak, rose, or willow,
but this list of servers does not imply order. However, the automounter does
try to connect to servers on the local network first before soliciting servers on
a remote network. The first server to respond to the automounter’s RPC
requests is selected, and automount(1M) attempts to mount the server.

Although this redundancy is very useful in an environment where
individual servers may or may not be exporting their file systems, it is
beneficial at mount time only. If a server goes down while a mount is in
effect, the directory becomes unavailable. An option here is to wait 5 minutes
until the auto-unmount takes place and try again. At the next attempt, the
automounter chooses one of the available servers. It is also possible to use
the umount(1M) command to unmount the directory, and then inform the
automounter of the change in the mount table with the command
/etc/killall -HUP automount , and retry the mount. See the automount,
killall(1M), and umount(1M) manual pages for more details.

Using Metacharacters

39

Using Metacharacters

The automounter recognizes some characters, metacharacters, as having a
special meaning. Metacharacters are used to do substitutions and to disable
the effects of special characters. Metacharacters recognized by the
automounter are described below.

The Ampersand (&)

The automounter recognizes an ampersand as a string substitution
character. It replaces ampersands in the location field with the directory field
character string specification wherever the ampersand occurs in the location
specification. For example, assume you have a map containing many
subdirectory specifications, like this:

#Directory Mount Options Location
john -nodev willow:/home/willow:john
mary -nosuid,intr willow:/home/willow:mary
joe -ro,intr willow:/home/willow:joe
able pine:/export/home:able
baker peach:/export/home:baker

Using the ampersand, the map above looks like this:

#Directory Mount Options Location
john -nodev willow:/home/willow:&
mary -nosuid,intr willow:/home/willow:&
joe -ro,intr willow:/home/willow:&
able pine:/export/home:&
baker peach:/export/home:&

Let’s say the server name and directory name are the same, as in this
example:

#Directory Mount Options Location
willow –intr willow:/home/willow
peach –ro peach:/home/peach
pine pine:/home/pine
oak –nosuid,intr oak:/home/oak
poplar –nosuid,intr poplar:/home/poplar

40

Chapter 3: Using Automount Map Options

Using the ampersand results in entries that look like this:

#Directory Mount Options Location
willow –intr &:/home/&
peach –ro &:/home/&
pine &:/home/&
oak –nosuid,intr &:/home/&
poplar –nosuid,intr &:/home/&

You can also use directory substitutions in a direct map. For example,
assume a direct map contains this entry:

/usr/man willow,cedar,poplar:/usr/man

Using an ampersand, this entry can be shortened to this:

/usr/man willow,cedar,poplar:&

Notice that the ampersand substitution uses the whole directory string.
Since directory specifications in a direct map begin with a slash (/), it is
important to remember that the slash is carried over when you use the
ampersand. For example, if a direct map contains this entry,

/progs &1,&2,&3:/export/src/progs

the automounter interprets the map entry in this way:

/progs /progs1,/progs2,/progs3:/export/src/progs

The Asterisk (*)

The automounter recognizes an asterisk as a wild card substitution for a
directory specification given in a command line. Asterisks must always be
the last entry in a map, since the automounter does not read beyond an
asterisk entry.

Consider the map in this example:

#Directory Mount Options Location
oak –nosuid,intr &:/export/&
poplar –nosuid,intr &:/export/&
* &:/home/&

Using Metacharacters

41

In this example, a command line entry with the directory argument redwood

is equivalent to this map entry:

redwood redwood:/home/redwood

In the next map, the last two entries are always ignored:

#Directory Mount Options Location
* &:/home/&
oak –nosuid,intr &:/export/&
poplar –nosuid,intr &:/export/&

The Backslash (\)

The automounter recognizes the backslash as a signal to disable the effects
of the special character that follows it. It interprets the special character
literally. For example, under certain circumstances, you might need to
mount directories whose names could confuse the automounter’s map
parser. An example might be a directory called rc0:dk1. This name could
result in an entry like:

/junk –ro vmsserver:rc0:dk1

The presence of the two colons in the location field confuses the
automounter’s parser. To avoid this confusion, use a backslash to escape the
second colon and remove its special meaning of separator:

/junk –ro vmsserver:rc0\:dk1

Double quotes (")

Automount recognizes double quotes (") as string delimiters. Blank spaces
within double quotes are not interpreted as the start of a new field. This
example illustrates double quotes used to hide the blank space in a
two-word name:

/smile dentist:/"front teeth"/smile

42

Chapter 3: Using Automount Map Options

Using Environment Variables

You can use the value of an environment variable by prefixing a dollar sign
to its name. You can also use braces to delimit the name of the variable from
appended letters or digits. Environment variables can appear anywhere in
an entry line, except as a directory.

The environment variables can be inherited from the environment or can be
defined explicitly with the –D command line option. For instance, if you
want each client to mount client–specific files in the network in a replicated
format, you could create a specific map for each client according to its name,
so that the relevant line for the system oak looks like this:

/mystuff acorn,ivy,balsa:/export/hostfiles/oak

For willow, the entry looks like this:

/mystuff acorn,ivy,balsa:/export/hostfiles/willow

This scheme is viable within small networks, but maintaining
system-specific maps across a large network is burdensome. An alternative
for large networks is to start the automounter with a command like this:

/usr/etc/automount –D HOST=‘hostname‘ ...

The entry in the direct map looks like this:

/mystuff acorn,ivy,balsa:/export/hostfiles/$HOST

Now each system finds its own files in the mystuff directory, and centralized
administration and distribution of maps is easier.

Including Supplementary Maps

A line of the form +mapname causes the automounter to consult the
mentioned map as if it were included in the current map. If mapname is a
relative pathname (no slashes), the automounter assumes it is an NIS map.
If the pathname is an absolute pathname the automounter looks for a local
map of that name. If the map name starts with a dash (–), the automounter
consults the appropriate built-in map.

Including Supplementary Maps

43

For instance, you can have a few entries in your local auto.home map for the
most commonly accessed home directories and follow them with the
included NIS map, as shown in this example:

ivy –rw,intr &:/home/&
oak –rw,intr &:/export/home
+auto.home

If the automounter finds no match in the included map, it continues
scanning the current map. This allows you to use additional entries after the
included map, as shown in this example:

ivy –rw,intr &:/home/&
oak –rw,intr &:/export/home
+auto.home
* –rw &:/home/&

Finally, the included map can be a local file, or even a built-in map:

+auto.home.finance # NIS map
+auto.home.sales # NIS map
+auto.home.engineering # NIS map
+/etc/auto.mystuff # local map
+auto.home # NIS map
+–hosts # built–in hosts map
* &:/export/& # wild card

Notice that in all cases the wild card should be the last entry, since the
automounter does not continue consulting the map after it reads the asterisk.
It assumes the wild card has found a match.

45

Chapter 4

4. Setting Up and Testing ONC3/NFS

This chapter explains how to set up ONC3/NFS services and verify that they
work. It provides procedures for enabling exporting on NFS servers, for
setting up mounting and automounting on NFS clients, and for setting up
the network lock manager. It also explains how to create a CacheFS file
system. Before you begin these procedures, you should be thoroughly
familiar with the information provided in Chapter 2, “Planning ONC3/NFS
Service.”

This chapter contains these sections:

• “Setting Up the NFS Server” on page 46

• “Setting Up an NFS Client” on page 49

• “Setting Up the Automounter” on page 52

• “Setting Up the Lock Manager” on page 58

• “Setting Up the CacheFS File System” on page 59

Note: To do the procedures in this chapter, you should have already
installed ONC3/NFS software on the server and client systems that will
participate in the ONC3/NFS services. The ONC3/NFS Release Notes explain
where to find instructions for installing ONC3/NFS software.

46

Chapter 4: Setting Up and Testing ONC3/NFS

Setting Up the NFS Server

Setting up an NFS server requires verifying that the required software is
running on the server, editing the server’s /etc/exports file, adding the file
systems to be exported, exporting the file systems, and verifying that they
have been exported. The instructions below explain the set-up procedure.
They assume that NFS software is already installed on the server. Do this
procedure as the superuser on the server.

1. Check the NFS configuration flag on the server.

When the /etc/init.d/network script executes at system startup, it starts
NFS running if the chkconfig(1M) flag nfs is on . To verify that nfs is on ,
type the chkconfig(1M) command and check its output, for example:

/etc/chkconfig
 Flag State
 ==== =====
 ...
 nfs on
 ...

This example shows that the nfs flag is set to on .

2. If your output shows that nfs is off , type this command and reboot
your system:

/etc/chkconfig nfs on

3. Verify that NFS daemons are running.

Four nfsd and four biod daemons should be running (the default
number specified in /etc/config/nfsd.options and /etc/config/biod.options).
Verify that the appropriate NFS daemons are running using the ps(1)
command, shown below. The output of your entries looks similar to the
output in these examples:

ps -ef | grep nfsd
root 102 1 0 Jan 30 ? 0:00 /usr/etc/nfsd 4
root 104 102 0 Jan 30 ? 0:00 /usr/etc/nfsd 4
root 105 102 0 Jan 30 ? 0:00 /usr/etc/nfsd 4
root 106 102 0 Jan 30 ? 0:00 /usr/etc/nfsd 4
root 2289 2287 0 14:04:50 ttyq4 0:00 grep nfsd

Setting Up the NFS Server

47

ps -ef | grep biod
root 107 1 0 Jan 30 ? 0:00 /usr/etc/biod 4
root 108 1 0 Jan 30 ? 0:00 /usr/etc/biod 4
root 109 1 0 Jan 30 ? 0:00 /usr/etc/biod 4
root 110 1 0 Jan 30 ? 0:00 /usr/etc/biod 4
root 2291 2287 4 14:04:58 ttyq4 0:00 grep biod

If no NFS daemons appear in your output, they were not included in
the IRIX kernel during NFS installation. To check the kernel, type this
command:

strings /unix | grep nfs

If there is no output, rebuild the kernel with this command, then reboot
the system:

/etc/autoconfig -f

4. Verify that mount daemons are registered with the portmapper.

Mount daemons must be registered with the server’s portmapper so
the portmapper can provide port numbers to incoming NFS requests.
Verify that the mount daemons are registered with the portmapper by
typing this command:

/usr/etc/rpcinfo –p | grep mountd

After your entry, you should see output similar to this:

100005 1 tcp 1230 mountd
100005 1 udp 1097 mountd
391004 1 tcp 1231 sgi_mountd
391004 1 udp 1098 sgi_mountd

The sgi_mountd in this example is an enhanced mount daemon that
reports on SGI-specific export options.

5. Edit the /etc/exports file.

Edit the /etc/exports file to include the file systems you want to export
and their export options (/etc/exports and export options are explained
in “/etc/exports and Other Export Files” in Chapter 2). This example
shows one possible entry for the /etc/exports file:

/usr/demos -ro,access=client1:client2:client3

In this example, the file system /usr/demos are exported with read-only
access to three clients: client1, client2, and client3. Domain information
can be included in the client names, for example client1.eng.sgi.com.

48

Chapter 4: Setting Up and Testing ONC3/NFS

6. Run the exportfs(1M) command.

Once the /etc/exports file is complete, you must run the exportfs
command to make the file systems accessible to clients. You should run
exportfs anytime you change the /etc/exports file. Type this command:

/usr/etc/exportfs -av

In this example, the –a exports all file systems listed in the /etc/exports
file, and the –v causes exportfs to report its progress. Error messages
reported by exportfs usually indicate a problem with the /etc/exports file.

7. Use exportfs to verify your exports.

Type the exportfs command with no parameters to display a list of the
exported file system(s) and their export options, as shown in this
example:

/usr/etc/exportfs
/usr/demos -ro,access=client1:client2:client3

In this example, /usr/demos is accessible as a read-only file system to
systems client1, client2, and client3. This matches what is listed in the
/etc/exports file for this server (see instruction 5 of this procedure). If you
see a mismatch between the /etc/exports file and the output of the
exportfs command, check the /etc/exports file for syntax errors.

The NFS software for this server is now running and its resources are
available for mounting by clients. Repeat these instructions to set up
additional NFS servers.

Setting Up an NFS Client

49

Setting Up an NFS Client

Setting up an NFS client for conventional mounting requires verifying that
NFS software is running on the client, editing the /etc/fstab file, adding the
names of directories to be mounted, and mounting the directories in /etc/fstab
by giving the mount(1M) command or by rebooting your system. These
directories remain mounted until you explicitly unmount them.

Note: For instructions on mounting directories not listed in /etc/fstab, see
“Temporary NFS Mounting” in Chapter 5.

The procedure below explains how to set up NFS software on a client and
mount its NFS resources using the mount command. You must do this
procedure as the superuser.

1. Use chkconfig to check the client’s NFS configuration flag.

To verify that nfs is on, give the chkconfig command and check its output
(see “Setting Up the NFS Server” in this chapter for details on
chkconfig).

2. If your output shows that nfs is off , type this command and reboot
your system:

/etc/chkconfig nfs on

3. Verify that NFS daemons are running.

Four nfsd and four biod daemons should be running (the default
number specified in /etc/config/nfsd.options and /etc/config/biod.options).
Verify that the appropriate NFS daemons are running using the ps(1)
command, shown below. The output of your entries looks similar to the
output in these examples:

ps -ef | grep nfsd
root 102 1 0 Jan 30 ? 0:00 /usr/etc/nfsd 4
root 104 102 0 Jan 30 ? 0:00 /usr/etc/nfsd 4
root 105 102 0 Jan 30 ? 0:00 /usr/etc/nfsd 4
root 106 102 0 Jan 30 ? 0:00 /usr/etc/nfsd 4
root 2289 2287 0 14:04:50 ttyq4 0:00 grep nfsd

50

Chapter 4: Setting Up and Testing ONC3/NFS

ps -ef | grep biod
root 107 1 0 Jan 30 ? 0:00 /usr/etc/biod 4
root 108 1 0 Jan 30 ? 0:00 /usr/etc/biod 4
root 109 1 0 Jan 30 ? 0:00 /usr/etc/biod 4
root 110 1 0 Jan 30 ? 0:00 /usr/etc/biod 4
root 2291 2287 4 14:04:58 ttyq4 0:00 grep biod

If no NFS daemons appear in your output, they were not included in
the IRIX kernel during NFS installation. To check the kernel, type this
command:

strings /unix | grep nfs

If there is no output, rebuild the kernel with this command, then reboot
the system:

/etc/autoconfig -f

4. Edit the /etc/fstab file.

Add an entry to the /etc/fstab file for each NFS directory you want
mounted when the client is booted. The example below illustrates an
/etc/fstab with an NFS entry to mount /usr/demos from the server redwood
at mount point /n/demos:

/dev/root / efs rw,raw=/dev/rroot 0 0
/dev/usr /usr efs rw,raw=/dev/rusr 0 0
redwood:/usr/demos /n/demos nfs ro,intr,bg 0 0

Note: The background (bg) option in this example allows the client to
proceed with the boot sequence without waiting for the mount to
complete. If the bg option is not used, the client hangs if the server is
unavailable.

5. Create the mount points for each NFS directory.

After you edit the /etc/fstab file, create a directory to serve as the mount
point for each NFS entry in /etc/fstab file. If you specified an existing
directory as a mount point for any of your /etc/fstab entries, remember
that the contents of the directory are inaccessible while the NFS mount
is in effect.

For example, to create the mount point /n/demos for mounting the
directory /usr/demos from server redwood, give this command:

mkdir -p /n/demos

Setting Up an NFS Client

51

6. Mount each NFS resource.

You can use the mount command in several ways to mount the entries
in this client’s /etc/fstab. See the mount(1M) manual page for a
description of the options. The examples below show two methods:
mounting each entry individually and mounting all fstab entries that
specify a particular server. The first example is:

mount /n/demos

In this example, only the mount point is specified. All other
information needed to perform the mount, the server name redwood and
its resource /usr/demos, is provided by the /etc/fstab file.

The second example is:

mount -h redwood

In this example, all NFS entries in /etc/fstab that specify server redwood
are mounted.

Note: If you reboot the client instead of using the mount command, all
NFS entries in /etc/fstab will be mounted.

The NFS software for this client is now ready to support user requests for
NFS directories. Repeat these instructions to set up additional NFS
clients.

52

Chapter 4: Setting Up and Testing ONC3/NFS

Setting Up the Automounter

Since the automounter runs only on NFS clients, all setup for the
automounter is done on the client system. This section provides two
procedures for setting up the automounter: one for setting up a default
automount environment and one for setting up a more complex
environment.

Setting Up a Default Automount Environment

If you set up the default automount environment on a client, at system
startup automount(1M) reads the /etc/config/automount.options file for mount
information. By default, /etc/config/automount.options contains an entry for a
special map called –hosts. The –hosts map tells the automounter to read the
hosts database (/etc/hosts, NIS and/or DNS (BIND), see the resolver(4)
manual page) and use the server specified on the command line if the hosts
database has a valid entry for that server. When using the –hosts map, when
a client accesses a server, automount gets the exports list from the server and
mounts all directories exported by that server. automount uses /tmp_mnt/hosts
as the mount point.

A sample –hosts entry in /etc/config/automount.options is:

-v /hosts -hosts -intr,nosuid,nodev

Use this procedure to set up the default automount environment on an NFS
client. You must do this procedure as the superuser.

1. Verify that NFS flags are on.

By default, the nfs and automount flags are set to on . To verify that they
are on , give the chkconfig command and check its output (see instruction
1 of “Setting Up an NFS Client” in this chapter for sample chkconfig
output). If either flag is set to off , use one of these commands to reset it,
then reboot:

/etc/chkconfig nfs on
/etc/chkconfig automount on

2. Verify that the default configuration is working:

cd /hosts/ servername

Setting Up the Automounter

53

In place of servername, substitute the host name of any system whose
name can be resolved by the host name resolution method you are
using (see the resolver(4) manual page). If the system specified is
running NFS and has file systems that can be accessed by this client,
automount mounts all available file systems to
/tmp_mnt/hosts/servername. If the system is not running NFS or has
nothing exported that you have access to, you get an error message
when you try to access its file systems.

3. Verify that directories have been mounted, for example (the \ character
shows that the output is wrapped):

mount
servername:/ on /tmp_mnt/hosts/ servername type nfs
(rw,dev=c0005)

The automounter has serviced this request. It dynamically mounted
/hosts/servername using the default automount environment.

Setting Up a Custom Automount Environment

A customized automount environment allows you to select the NFS
directories that are dynamically mounted on a particular client, and allows
you to customize the options in effect for particular mounts. You must
complete four general steps to set up a customized automount environment:

1. Creating the maps

2. Starting the automount program

3. Verifying the automount process

4. Testing automount

Step 1: Creating the Maps

A customized automount environment contains a master map and any
combination of direct and indirect maps. Although a master map is required,
automount does not require both direct and indirect maps. You can use either
direct or indirect maps exclusively.

Instructions for creating each type of map are given below. Notice from these
instructions that a crosshatch (#) at the beginning of a line indicates a

54

Chapter 4: Setting Up and Testing ONC3/NFS

comment line in all types of maps. Include comment lines in your maps to
illustrate map formats until you become familiar with each map type.

1. Create the master map on the client.

The master map points automount to other files that have more detailed
information needed to complete NFS mounts. To create the master map,
become superuser and create a file called /etc/auto.master with any text
editor. Specify the mount point, map name, and any options that apply
to the direct and indirect maps in your entries, for example:

#Mount Point Map Name Map Options
/food/dinner /etc/auto.food -ro
/- /etc/auto.exercise -ro,soft,intr
/hosts -hosts -intr,nosuid,nodev

2. Create the indirect map.

Create your indirect map and insert the entries it needs. This example is
the indirect map /etc/auto.food, listed in /etc/auto.master in instruction 1:

#Directory Options Location
ravioli venice:/food/pasta
crepe -rw paris:/food/desserts
chowmein hongkong:/food/noodles

3. Create the direct map.

Create your direct map and insert the entries it needs. This example is
the direct map /etc/auto.exercise, listed in /etc/auto.master in instruction 1:

#Directory Options Location
/leisure/swim spitz:/sports/water/swim
/leisure/tennis becker:/sports/racquet/tennis
/leisure/golf -hard palmer:/sports/golf

Step 2: Starting the automount Program

You can set up the software on a client so that automount starts when the
client is booted, and you can also start automount from the command line.
The procedures in this section explain how to set up the automounter to start
during the boot sequence.

If automount is configured on at system startup, the /etc/init.d/network script
reads the contents of the /etc/config/automount.options file to determine how
to start the automount program and what to mount and how to mount it.

Setting Up the Automounter

55

Depending on the site configuration specified in the /etc/automount.options
file, automount either finds all necessary information in the
/etc/automount.options file, or it is directed to local or NIS maps (or both) for
additional mounting information.

Note: If you plan to use NIS database maps other than the –hosts built-in
map, you need to create the NIS maps. See the NIS Administration Guide for
information on building custom NIS maps.

Follow this procedure to set automount to start automatically at system
startup:

1. Configure automount on with the chkconfig command (if needed):

/etc/chkconfig automount on

2. Modify the /etc/config/automount.options file.

Using any standard editor, modify /etc/config/automount.options to reflect
the automount site environment. See automount(1M) for details on the
/etc/config/automount.options file. Based on the previous examples, the
/etc/config/automount.options file contains this entry:

-v -m -f /etc/auto.master

The –v option directs error messages to the screen during start up and
into the /var/adm/SYSLOG file once automount is up and running. The
–m option tells automount not to check the NIS database for a master
map. Use this option to isolate map problems to the local system by
inhibiting automount from reading the NIS database maps, if any exist.
The –f option tells automount that the argument that follows it is the full
path name of the master file.

Note: In general, it is recommended that you start the automounter with
the verbose option (–v), since this option provides messages that can
help with problem solving.

3. Reboot the system.

56

Chapter 4: Setting Up and Testing ONC3/NFS

Step 3: Verifying the automount Process

Verify that the automount process is functioning by performing the following
two steps.

1. Validate that the automount daemon is running with the ps command:

ps -ef | grep automount

You should see output similar to this:

 root 455 1 0 Jan 30 ? 0:02 automount -v -m -f /etc/auto.master
 root 4675 4673 0 12:45:05 ttyq5 0:00 grep automount

2. Check the /etc/mtab entries.

When the automount program starts, it creates entries in the client’s
/etc/mtab for each automount mount point. Entries in /etc/mtab include
the process number and port number assigned to automount, the mount
point for each direct map entry, and each indirect map. The /etc/mtab
entries also include the map name, map type (direct or indirect), and
any mount options.

Look at the /etc/mtab file. A typical /etc/mtab table with automount
running looks similar to this example (wrapped lines end with the \
character):

/dev/root / efs rw,raw=/dev/rroot 0 0
/dev/usr /usr efs rw,raw=/dev/rusr 0 0
/debug /debug dbg rw 0 0
/dev/diskless /diskless efs rw,raw=/dev/rdiskless 0 0
/dev/d /d efs rw,raw=/dev/rd 0 0
flight:(pid12155) /src/sgi ignore \
 ro,intr,port=885,map=/etc/auto.source,direct 0 0
flight:(pid12155) /pam/framedocs/nfs ignore \
 ro,intr,port=885,map=/etc/auto.source,direct 0 0
flight:(pid12155) /hosts ignore ro,intr,port=885,\
 map=-hosts,indirect,dev=1203 0 0

The entries corresponding to automount mount points have the file
system type ignore to direct programs to ignore this /etc/mtab entry. For
instance, df(1) and mount do not report on file systems with the type
ignore . When a directory is NFS mounted by the automount program,
the /etc/mtab entry for the directory has nfs as the file system type. df and
mount report on file systems with the type nfs .

Setting Up the Automounter

57

Step 4: Testing automount

When the automount program is set up and running on a client, any regular
account can use it to mount remote directories transparently. You can test
your automount set-up by changing to a directory specified in your map
configuration.

The instructions below explain how to verify that automount is working.

1. As a regular user, cd(1) to an automounted directory.

For example, test whether automount mounts /food/pasta:

% cd /food/dinner/ravioli

This command causes automount to look in the indirect map
/etc/auto.food to execute a mount request to server venice and apply any
specified options to the mount. automount then mounts the directory
/food/pasta to the default mount point /tmp_mnt/food/dinner/ravioli. The
directory /food/dinner/ravioli is a symbolic link to
/tmp_mnt/food/dinner/ravioli.

Note: The /food/dinner directory appears empty unless one of its
subdirectories has been accessed (and therefore mounted).

2. Double-check your setup using a different directory.

To have automount NFS mount /sports/water/swim automatically, give
this command:

% cd /leisure/swim

This command causes automount to look in the direct map
/etc/auto.exercise to execute a mount request to server spitz and apply
specified options to the mount. It then mounts the directory
/sports/water/swim to the default mount point /tmp_mnt/leisure/swim. The
directory /leisure/swim is a symbolic link to /tmp_mnt/leisure/swim.

3. Verify that the individual mount has taken place.

Use the pwd(1) command to verify that the mount has taken place, as
shown in this example:

% pwd
/leisure/swim

58

Chapter 4: Setting Up and Testing ONC3/NFS

4. Verify that both directories have been mounted with the automounter.

You can also verify automounted directories by checking the output of
a mount command:

% mount

mount reads the current contents of the /etc/mtab file and includes
conventional and automount mounted directories in its output.

The custom configuration of automount is set up and ready to work for users
on this client.

Setting Up the Lock Manager

The NFS lock manager provides file and record locking between a client and
server for NFS-mounted directories. As an NFS utility, the lock manager is
in effect when NFS software in installed and operating properly on both the
server and client systems. It is implemented by two daemons, lockd(1M) and
statd(1M). These daemons must be running on an NFS server and its clients
for the lock manager to function.

The NFS lock manager program must be running on both the NFS client and
the NFS server to function properly. Use this procedure to check the lock
manager setup:

1. Use chkconfig on the client to check the lock manager flag.

To verify that the lockd flag is on , give the chkconfig command and check
its output (see instruction 1 of “Setting Up an NFS Client” in this
chapter for sample chkconfig output). If your output shows that lockd is
off , give this command and reboot your system:

/etc/chkconfig lockd on

Setting Up the CacheFS File System

59

2. Verify that both lock manager daemons are running.

Give these ps commands and check their output to verify that the lock
manager daemons, rpc.lockd(1M) and rpc.statd(1M), are running:

ps -ef | grep statd
root 131 1 0 Aug 6 ? 0:51 /usr/etc/rpc.statd
root 2044 427 2 16:13:24 ttyq1 0:00 grep statd

ps -ef | grep lockd
root 129 1 0 Aug 6 ? 0:51 /usr/etc/rpc.lockd
root 2045 427 2 16:13:24 ttyq1 0:00 grep lockd

If either rpc.lockd or rpc.statd is not running, start them manually by
giving these commands in this order:

/usr/etc/rpc.statd
/usr/etc/rpc.lockd

3. Repeat instructions 1 and 2, above, on the NFS server.

Setting Up the CacheFS File System

When you set up a cache, you can use all or part of an existing file system.
You can also set up a new slice to be used by CacheFS. In addition, when you
create a cache, you can specify the percentage of resources, such as number
of files or blocks, that CacheFS can use in the front file system. The
configurable cache parameters are discussed in the section “Cache Resource
Parameters” on page 32.

Before starting to set up CacheFS, check that it is configured to start on both
the server and client.

60

Chapter 4: Setting Up and Testing ONC3/NFS

1. Check the CacheFS configuration flag.

When the /etc/init.d/network script executes at system startup, it starts
CacheFS running if the chkconfig(1M) flag cachefs is on . To verify that
cachefs is on , type the chkconfig(1M) command and check its output, for
example:

/etc/chkconfig
 Flag State
 ==== =====
 ...
 cachefs on
 ...

This example shows that the cachefs flag is set to on .

2. If your output shows that cachefs is off , type this command and reboot
your system:

/etc/chkconfig cachefs on

Front File System Requirements

CacheFS typically uses a local EFS file system for the front file system.You
can use an existing EFS file system for the front file system or you can create
a new one. Using an existing file system is the quickest way to set up a cache.
Dedicating a file system exclusively to CacheFS gives you the greatest
control over the file system space available for caching.

Caution: Do not make the front file system read-only and do not set quotas
on it. A read-only front file system prevents caching, and file system quotas
interfere with control mechanisms built into CacheFS.

Setting Up a Cached File System

There are two steps to setting up a cached file system:

1. You must create the cache with the cfsadmin command. See “Creating a
Cache” on page 61.

2. You must mount the file system you want cached using the -t cachefs
option to the mount command. See “Mounting a Cached File System”
on page 62.

Setting Up the CacheFS File System

61

Creating a Cache

The following example is the command to create a cache:

cfsadmin -c directory_name

The following example creates a cache and creates the cache directory
/local/mycache. Make sure the cache directory does not already exist.

cfsadmin -c /local/mycache

This example uses the default cache parameter values. The CacheFS
parameters are described in the section “Cache Resource Parameters” on
page 32. See the cfsadmin(1M) manual page and “cfsadmin Command” on
page 31 for more information on cfsadmin options.

Setting Cache Parameters

The following example shows how to set parameters for a cache.

cfsadmin -c -o parameter_list cache_directory

The parameter_list has the following form:

parameter_name1=value,parameter_name2=value,...

The parameter names are listed in Table 2-2 on page 32. You must separate
multiple arguments to the -o option with commas.

Note: The maximum size of the cache is by default 90% of the front file
system resources. Performance deteriorates significantly if an EFS file
system exceeds 90% capacity.

The following example creates a cache named /local/cache1 that can use up to
80% of the disk blocks in the front file system and can grow to use 55% of the
front file system blocks without restriction unless 60% (or more) of the front
file system blocks are already in use.

cfsadmin -c -o maxblocks=80,minblocks=55,threshblocks=60 \
/local/cache1

62

Chapter 4: Setting Up and Testing ONC3/NFS

The following example creates a cache named /local/cache2 that can use up to
75% of the files available in the front file system.

cfsadmin -c -o maxfiles=75 /local/cache2

The following example creates a cache named /local/cache3 that can use 75%
of the blocks in the front file system, that can use 50% of the files in the front
file system without restriction unless total file usage already exceeds 60%,
and that has 70% of the files in the front file system as an absolute limit.

cfsadmin -c -o \
maxblocks=75,minfiles=50,threshfiles=60,maxfiles=70 \
/local/cache3

Mounting a Cached File System

There are two ways to mount a file system in a cache:

• Using the mount command

• Creating an entry for the file system in the /etc/fstab file

Using mount to Mount a Cached File System

The following command mounts a file system in a cache.

mount -t cachefs -o backfstype= type, cachedir= cache_directory \
back_file system mount_point

The arguments used with the -o option are described in “/etc/fstab File” on
page 28. See the mount(1M) manual page for more information about the
arguments used when mounting a cached file system.

For example, the following command makes the file system merlin:/docs
available as a cached file system named /docs:

mount -t cachefs -o backfstype=nfs,cachedir=/local\
/cache1 merlin:/docs /docs

Mounting a Cached File System

63

Mounting a Cached File System That Is Already Mounted

Use the backpath argument when the file system you want to cache has
already been mounted. backpath specifies the mount point of the mounted
file system. When the backpath argument is used, the back file system must
be read-only. If you want to write to the back file system, you must unmount
it before mounting it as a cached file system.

For example, if the file system merlin:/doc is already NFS-mounted on
/nfsdocs, you can cache that file system by giving that path name as the
argument to backpath, as shown in the following example:

mount -t cachefs -o \
backfstype=nfs,cachedir=/local/cache1,backpath=/nfsdocs \
merlin:/doc /doc

Note: There is no performance gain in caching a local EFS disk file system.

Mounting a CD-ROM as a Cached File System

So far, examples have illustrated back file systems that are NFS-mounted,
and the device argument to the mount command has taken the form
server:file_system. If the back file system is an ISO9660 file system, the device
argument is the CD-ROM device in the /CDROM directory. The file system
type is iso9660.

The following example illustrates caching an ISO9660 back file system on the
device /CDROM as /doc in the cache /local/cache1:

mount -t cachefs -o
backfstype=iso9660,cachedir=/local/cache1,\
ro,backpath=/CDROM /CDROM /doc

Because you cannot write to the CD-ROM, the ro argument is specified to
make the cached file system read-only. The arguments to the -o option are
explained in “/etc/fstab and Other Mount Files” on page 16.

You must specify the backpath argument because the CD-ROM is
automatically mounted when it is inserted. The mount point is in the
/CDROM directory and is determined by the name of the CD-ROM. The
special device to mount is the same as the value for the backpath argument.

64

Chapter 4: Setting Up and Testing ONC3/NFS

Note: When a CD-ROM is changed, the CacheFS file system must be
unmounted and remounted.

Creating an fstab Entry for Cached File Systems

As with other file system types, you can put an entry in the /etc/fstab file for
a cached file system to mount the cached file system automatically every
time the system boots. The /etc/fstab file has the following fields:

• device to mount

• mount point

• file system type

• mount options

• dump frequency

• fsck pass

Enter the special device name of the back file system as the device to mount.
For NFS file systems, the entry takes the form server:path. The device to fsck
is the cache directory path. The mount point is the mount point of the cached
file system. The dump frequency and fsck pass should always be 0. The
following example shows an entry for a cached file system (the lines
beginning with hash marks (#) are comments):

#device mount FS mount dump fsck
#to mount point type options frequency pass

svr1:/usr/abc /docs cachefs rw,backfstype=nfs,cachedir=/cache1 0 0

Checking a Cached File System

65

Checking a Cached File System

The fsck_cachefs(1M) command checks the integrity of cached file systems.
The CacheFS version of fsck automatically corrects problems without
requiring user interaction.

To check a cached file system, type:

fsck_cachefs -o noclean cache_directory

The following example forces a check of the cache directory /local/cache1:

fsck_cachefs -o noclean /local/cache1

You should not need to run fsck manually for cached file systems; fsck is run
automatically when the file system is mounted.

Two options are available for the CacheFS version of fsck: -m and -o noclean.
The -m option causes fsck to check the specified file system without making
any repairs. The -o noclean option forces a check of the file system. See the
fsck_cachefs(1M) man page for more information.

67

Chapter 5

5. Maintaining ONC3/NFS

This chapter provides information about maintaining ONC3/NFS. It
explains how to change the default number of NFS daemons and modify
automount maps. It also gives suggestions for using alternative mounting
techniques and avoiding mount point conflicts. It also describes how to
modify and delete CacheFS file systems.

This chapter contains these sections:

• “Changing the Number of NFS Server Daemons” on page 68

• “Temporary NFS Mounting” on page 69

• “Modifying the Automounter Maps” on page 69

• “Mount Point Conflicts” on page 71

• “Modifying CacheFS File System Parameters” on page 71

• “Deleting a CacheFS File System” on page 74

68

Chapter 5: Maintaining ONC3/NFS

Changing the Number of NFS Server Daemons

Systems set up for NFS normally run four nfsd(1M) daemons. nfsd daemons,
called NFS server daemons, accept RPC calls from clients. Four NFS server
daemons might be inadequate for the amount of NFS traffic on your server.
Degraded NFS performance on clients is usually an indication that their
server is overloaded.

To change the number of NFS server daemons, create the file
/etc/config/nfsd.options on the server if it doesn’t already exist and specify the
number of daemons to start at system start up. For example, to have the
/etc/init.d/network script start eight nfsd daemons, the /etc/config/nfsd.options
file needs to look like this:

cat /etc/config/nfsd.options
8

Modify this number only if a server is overloaded with NFS traffic. In
addition to increasing NFS daemons, consider adding another server to your
NFS setup. The maximum recommended number of NFS daemons is 24 on
a large server. If you increase the number of NFS server daemons, confirm
your choice by giving this command:

/usr/etc/nfsstat -s

Server RPC:

calls badcalls nullrecv badlen xdrcall duphits dupage
21669881 0 118760787 0 0 12246 7.56

If the output shows many null receives, such as in this example, you should
consider lowering the number of NFS server daemons. There is no exact
formula for choosing the number of NFS daemons, but here are several rules
of thumb you can consider:

• One nfsd for each CPU plus one to three nfsds as a general resource

• One nfsd for each disk controller plus one to three nfsds as a general
resource (a logical volume counts as one controller, no matter how
many real controllers it is spread over)

• One nfsd for each CPU, one nfsd for each controller, and one to three
nfsds as a general resource

Temporary NFS Mounting

69

Temporary NFS Mounting

In cases where an NFS client requires directories not listed in its /etc/fstab file,
you can use manual mounting to temporarily make the NFS resource
available. With temporary mounting, you need to supply all the necessary
information to the mount(1M) program through the command line. As with
any mount, a temporarily mounted directory requires that a mount point be
created before mounting can occur.

For example, to mount /usr/demos from the server redwood to a local mount
point /n/demos with read-only, hard, interrupt, and background options give
this command:

mkdir -p /n/demos
mount –o ro,intr,bg redwood:/usr/demos /n/demos

A temporarily mounted directory remains in effect until the system is
rebooted or until the superuser manually unmounts it. Use this method for
one-time mounts.

Modifying the Automounter Maps

You can modify the automounter maps at any time. Some of your
modifications take effect the next time the automounter accesses the map,
and others take effect when the system is rebooted. Whether or not booting
is required depends on the type of map you modify and the kind of
modification you introduce.

Rebooting is generally the most effective way to restart the automounter.
You can also kill and restart the automounter using an automount(1M)
command line. Use this method sparingly, however. (See the automount(1M)
manual page.)

Modifying the Master Map

The automounter consults the master map only at startup time. A
modification to the master map, /etc/auto.master, takes effect only after the
system has been rebooted or automount is restarted (see “Modifying Direct
Maps”).

70

Chapter 5: Maintaining ONC3/NFS

Modifying Indirect Maps

You can modify, delete, or add to indirect maps (the files listed in
/etc/auto.master) at any time. Any change takes effect the next time the map
is used, which is the next time a mount is requested.

Modifying Direct Maps

Each entry in a direct map is an automount mount point, and the daemon
mounts itself at these mount points at startup. Therefore, adding or deleting
an entry in a direct map takes effect only after you have gracefully killed and
restarted the automount daemon or rebooted. However, except for the name
of the mount point, direct map entries can be modified while the
automounter is running. The modifications take effect when the entry is next
mounted, because the automounter consults the direct maps whenever a
mount must be done.

For instance, suppose you modify the file /etc/auto.indirect so that the
directory /usr/src is mounted from a different server. The new entry takes
effect immediately (if /usr/src is not mounted at this time) when you try to
access it. If it is mounted now, you can wait until auto-unmounting takes
place to access it. If this is not satisfactory, unmount with the umount(1M)
command, notify automount that the mount table has changed with the
command /etc/killall -HUP automount , and then access it. The
mounting should be done from the new server. However, if you want to
delete the entry, you must gracefully kill and restart the automount daemon.
automount must be killed with the SIGTERM signal:

/etc/killall -TERM automount

You can then manually restart automount or reboot the system.

Note: If gracefully killing and manually restarting automount does not work,
rebooting the system should always work.

Mount Point Conflicts

71

Mount Point Conflicts

You can cause a mount conflict by mounting one directory on top of another.
For example, say you have a local home partition mounted on /home, and
you want the automounter to mount other home directories. If the
automounter maps specify /home as a mount point, the automounter hides
the local home partition whenever it mounts.

The solution is to mount the server’s /home partition somewhere else, such
as /export/home, for example. You need an entry in /etc/fstab like this:

/net/home /export/home efs rw,raw=/dev/rhome 0 0

This example assumes that the master file contains a line similar to this:

/home /etc/auto.home

It also assumes an entry in /etc/auto.home like this:

terra terra:/export/home

where terra is the name of the system.

Modifying CacheFS File System Parameters

Note: Before changing parameters for a cache, you must unmount all file
systems in the cache directory with the umount command.

The following command changes the value of one or more parameters:

cfsadmin -u -o parameter_list cache_directory

Note: You can only increase the size of a cache, either by number of blocks
or number of inodes. If you want to make a cache smaller, you must remove
it and re-create it with new values.

The following commands unmount /local/cache3 and change the threshfiles
parameter to 65%:

umount /local/cache3
cfsadmin -u -o threshfiles=65 /local/cache3

72

Chapter 5: Maintaining ONC3/NFS

Displaying Information About Cached File Systems

The following command returns information about all file systems cached
under the specified cache directory.

cfsadmin -l cache_directory

The following command shows information about the cache directory
named /usr/cache/lolita:

cfsadmin -l /usr/cache/lolita
cfsadmin: list cache FS information
 maxblocks 90% (122628 blocks)
 minblocks 0% (0 blocks)
 threshblocks 85% (115815 blocks)
 hiblocks 85% (104234 blocks)
 lowblocks 75% (91971 blocks)
 maxfiles 90% (206480 files)
 minfiles 0% (0 files)
 threshfiles 85% (195009 files)
 hifiles 85% (175508 files)
 lowfiles 75% (154860 files)
 maxfilesize 3MB
 lolita:_usr_people_jmy_work:_usr_people_jmy_work
 flags CFS_DUAL_WRITE CFS_ACCESS_BACKFS
 popsize 65536
 fgsize 256

Current Usage:
 blksused 757
 filesused 124
 flags

Modifying CacheFS File System Parameters

73

If there are multiple mount points for a single cache, cfsadmin returns
information similar to the following:

cfsadmin -l /usr/cache/bonnie
cfsadmin: list cache FS information
 maxblocks 90% (122628 blocks)
 minblocks 0% (0 blocks)
 threshblocks 85% (115815 blocks)
 hiblocks 85% (104234 blocks)
 lowblocks 75% (91971 blocks)
 maxfiles 90% (206480 files)
 minfiles 0% (0 files)
 threshfiles 85% (195009 files)
 hifiles 85% (175508 files)
 lowfiles 75% (154860 files)
 maxfilesize 3MB
 bonnie:_jake:_hosts_bonnie_jake
 flags CFS_DUAL_WRITE CFS_ACCESS_BACKFS
 popsize 65536
 fgsize 256
 bonnie:_depot:_hosts_bonnie_depot
 flags CFS_DUAL_WRITE CFS_ACCESS_BACKFS
 popsize 65536
 fgsize 256

bonnie:_proj_sherwood_isms:_hosts_bonnie_proj_sherwood_isms
 flags CFS_DUAL_WRITE CFS_ACCESS_BACKFS
 popsize 65536
 fgsize 256

bonnie:_proj_irix5.3_isms:_hosts_bonnie_proj_irix5.3_isms
 flags CFS_DUAL_WRITE CFS_ACCESS_BACKFS
 popsize 65536
 fgsize 256

Current Usage:
 blksused 759
 filesused 279
 flags

74

Chapter 5: Maintaining ONC3/NFS

Deleting a CacheFS File System

The following command deletes a file system in a cache:

cfsadmin -d cache_id cache_directory

Note: Before deleting a cached file system, you must unmount all the cached
files systems for that cache directory.

The cache ID is part of the information returned by cfsadmin -l. After deleting
one or more of the cached file systems, you must run the fsck_cachefs
command to correct the resource counts for the cache.

The following commands unmount a cached file system, delete it from the
cache, and run fsck_cachefs:

umount /usr/work
cfsadmin -d _dev_dsk_c0t1d0s7 /local/cache1
fsck_cachefs -t cachefs /local/cache1

You can delete all file systems in a particular cache by using all as an
argument to the -d option. The following command deletes all file systems
cached under /local/cache1:

cfsadmin -d all /local/cache1

The all argument to -d also deletes the specified cache directory.

75

Chapter 6

6. Troubleshooting ONC3/NFS

This chapter suggests strategies for troubleshooting the ONC3/NFS
environment, including automounting. This chapter contains these sections:

• “General Recommendations” on page 75

• “Understanding the Mount Process” on page 76

• “Identifying the Point of Failure” on page 77

• “Troubleshooting NFS Common Failures” on page 79

• “Understanding the Automount Process” on page 82

• “Troubleshooting CacheFS” on page 84

General Recommendations

If you experience difficulties with ONC3/NFS, review the ONC3/NFS
documentation before trying to debug the problem. In addition to this guide,
the ONC3/NFS Release Notes and the manual pages for mount(1M), nfsd(1M),
showmount(1M), exportfs(1M), rpcinfo(1M), mountd(1M), inetd(1M), fstab(4),
mtab(4), lockd(1M), statd(1M), automount(1M), and exports(4) contain
information you should review. You do not have to understand them fully,
but be familiar with the names and functions of relevant daemons and
database files.

Be sure to check the console and /var/adm/SYSLOG for messages about
ONC3/NFS or other activity that affects ONC3/NFS performance. Logged
messages frequently provide information that helps explain problems and
assists with troubleshooting.

76

Chapter 6: Troubleshooting ONC3/NFS

Understanding the Mount Process

This section explains the interaction of the various players in the mount
request. If you understand this interaction, the problem descriptions in this
chapter will make more sense. Here is an sample mount request:

mount krypton:/usr/src /n/krypton.src

These are the steps mount goes through to mount a remote file system:

1. mount parses /etc/fstab.

2. mount checks to see if the caller is the superuser and if /n/krypton.src is a
directory.

3. mount opens /etc/mtab and checks that this mount has not already been
done.

4. mount parses the first argument into the system krypton and remote
directory /usr/src.

5. mount calls library routines to translate the host name (krypton) to its
Internet Protocol (IP) address. Depending on the host resolution order
in /etc/resolv.conf, mount uses /etc/resolv.conf, the NIS databases, or the
DNS databases to determine the NFS server. See resolver(4).

6. mount calls krypton’s portmap daemon to get the port number of mountd.
See portmap(1M).

7. mount calls krypton’s mountd and passes it /usr/src.

8. krypton’s mountd reads /etc/exports and looks for the exported file system
that contains /usr/src.

9. krypton’s mountd calls library routines to expand the host names and
network groups in the export list for /usr.

10. krypton’s mountd performs a system call on /usr/src to get the file handle.

11. krypton’s mountd returns the file handle.

12. mount does a mount system call with the file handle and /n/krypton.src.

13. mount does a statfs(2) call to krypton’s NFS server (nfsd).

14. mount opens /etc/mtab and adds an entry to the end.

Any of these steps can fail, some of them in more than one way.

Identifying the Point of Failure

77

Identifying the Point of Failure

When analyzing an NFS problem, keep in mind that NFS, like all network
services, has three main points of failure: the server, the client, and the
network itself. The debugging strategy outlined below isolates each
individual component to find the one that is not working.

Checking Out a Server

If a client is having NFS trouble, check first to make sure the server is up and
running. From a client, give this command:

/usr/etc/rpcinfo –p server_name | grep mountd

This checks whether the server is running. If the server is running, this
command displays a list of programs, versions, protocols, and port numbers
similar to this:

 100005 1 tcp 1035 mountd
 100005 1 udp 1033 mountd
 391004 1 tcp 1037 sgi_mountd
 391004 1 udp 1034 sgi_mountd

If the mountd server is running, use rpcinfo to check if the mountd server is
ready and waiting for mount requests by using the program number and
version for sgi_mountd returned above. Give this command:

/usr/etc/rpcinfo –u server_name 391004 1

The system responds:

program 391004 version 1 ready and waiting

If these fail, log in to the server and check its /var/adm/SYSLOG for messages.

78

Chapter 6: Troubleshooting ONC3/NFS

Checking Out a Client

If the server and the network are working, give the command ps –de to
check your client daemons. inetd(1M), routed(1M), portmap, and four
biod(1M) and nfsd daemons should be running. For example, the command
ps –de produces output similar to this:

 PID TTY TIME COMD
 103 ? 0:46 routed
 108 ? 0:01 portmap
 136 ? 0:00 nfsd
 137 ? 0:00 nfsd
 138 ? 0:00 nfsd
 139 ? 0:00 nfsd
 142 ? 0:00 biod
 143 ? 0:00 biod
 144 ? 0:00 biod
 145 ? 0:00 biod
 159 ? 0:03 inetd

If the daemons are not running on the client, check /var/adm/SYSLOG, and
ensure that network and nfs chkconfig(1M) flags are on . Rebooting the client
almost always clears the problem.

Checking Out the Network

If the server is operative but your system cannot reach it, check the network
connections between your system and the server and check
/var/adm/SYSLOG. Visually inspect your network connection. You can also
test the logical network connection with various network tools like ping(1M).
You can also check other systems on your network to see if they can reach
the server.

Troubleshooting NFS Common Failures

79

Troubleshooting NFS Common Failures

The sections below describe the most common types of NFS failures. They
suggest what to do if your remote mount fails, and what to do when servers
do not respond to valid mount requests.

Remote Mount Failed

When network or server problems occur, programs that access
hard-mounted remote files fail differently from those that access
soft-mounted remote files. Hard-mounted remote file systems cause
programs to continue to try until the server responds again. Soft-mounted
remote file systems return an error message after trying for a specified
number of intervals. See fstab(4) for more information.

Programs that access hard-mounted file systems do not respond until the
server responds. In this case, NFS displays this message both to the console
window and to the system log file /var/adm/SYSLOG:

server not responding

On a soft-mounted file system, programs that access a file whose server is
inactive get the message:

Connection timed out

Unfortunately, many IRIX programs do not check return conditions on file
system operations, so this error message may not be displayed when
accessing soft-mounted files. Nevertheless, an NFS error message is
displayed on the console.

Programs Do Not Respond

If programs stop responding while doing file-related work, your NFS server
may be inactive. You may see the message:

NFS server host_name not responding, still trying

The message includes the host name of the NFS server that is down. This is
probably a problem either with one of your NFS servers or with the network

80

Chapter 6: Troubleshooting ONC3/NFS

hardware. Attempt to ping and rlogin(1C) to the server to determine whether
the server is down. If you can successfully rlogin to the server, its NFS server
function is probably disabled.

Programs can also hang if an NIS server becomes inactive.

If your system hangs completely, check the servers from which you have file
systems mounted. If one or more of them is down, it is not cause for concern.
If you are using hard mounts, your programs will continue automatically
when the server comes back up, as if the server had not become inactive. No
files are destroyed in such an event.

If a soft-mounted server is inactive, other work should not be affected.
Programs that timeout trying to access soft-mounted remote files fail, but
you should still be able to use your other file systems.

If all of the servers are running, ask some other users of the same NFS server
or servers if they are having trouble. If more than one client is having
difficulty getting service, then the problem is likely with the server’s NFS
daemon nfsd. Log in to the server and give the command ps –de to see if nfsd
is running and accumulating CPU time. If not, you may be able to kill and
then restart nfsd. If this does not work, reboot the server.

If other people seem to be able to use the server, check your network
connection and the connection of the server.

Hangs Partway through Boot

If your workstation mounts local file systems after a boot but hangs when it
normally would be doing remote mounts, one or more servers may be down
or your network connection may be bad. This problem can be avoided
entirely by using the background(bg) option to mount in /etc/fstab (see
fstab(4)).

Troubleshooting NFS Common Failures

81

Everything Works Slowly

If access to remote files seems unusually slow, give this command on the
server:

ps –de

Check whether the server is being slowed by a runaway daemon. If the
server seems to be working and other people are getting good response,
make sure your block I/O daemons are running. To check block I/O
daemons, give this command on the client:

ps –de | grep biod

This command helps you determine whether processes are hung. Note the
current accumulated CPU time, then copy a large remote file and again give
this command:

ps –de | grep biod

If there are no biods running, restart the processes by giving this command:

/usr/etc/biod 4

If biod is running, check your network connection. The netstat(1) command
netstat -i tells you if packets are being dropped. A packet is a unit of
transmission sent across the network. Also, you can use nfsstat -c and
nfsstat -s to tell if the client or server is retransmitting a lot. A
retransmission rate of 5% is considered high. Excessive retransmission
usually indicates a bad network controller board, a bad network transceiver,
a mismatch between board and transceiver, a mismatch between your
network controller board and the server’s board, or any problem or
congestion on the network that causes packet loss.

Cannot Access Remote Devices

You can not use NFS to mount a remote character or block device (that is, a
remote tape drive or similar peripheral).

82

Chapter 6: Troubleshooting ONC3/NFS

Understanding the Automount Process

This section presents a detailed explanation of how the automounter works
that can help you with troubleshooting automounter operation.

There are two distinct stages in the automounter’s actions: the initial stage;
system start up, when /etc/init.d/network starts the automounter; and the
mounting stage, when a user tries to access a file or directory on a remote
system. These two stages, and the effect of map type (direct or indirect) on
automounting behavior are described below.

System Startup

At the initial stage, when /etc/init.d/network invokes automount, it opens a
user datagram protocol (UDP) socket and registers it with the portmapper
service as an NFS server port. It then starts a server daemon that listens for
NFS requests on the socket. The parent process proceeds to mount the
daemon at its mount points within the file system (as specified by the maps).
Through the mount system call, it passes the server daemon’s port number
and an NFS file handle that is unique to each mount point. The arguments to
the mount system call vary according to the kind of fleshiest. For NFS file
systems, the call is:

mount ("nfs", "/usr", & nfs_args);

where nfs_args contains the network address for the NFS server. By having
the network address in nfs_args refer to the local process (the automount
daemon), automount causes the kernel to treat it as if it were an NFS server.
Once the parent process completes its calls to mount, it exits, leaving the
automount daemon to serve its mount points.

Understanding the Automount Process

83

Mounting

In the second stage, when the user actually requests access to a remote file
hierarchy, the daemon intercepts the kernel NFS request and looks up the
name in the map associated with the directory.

Taking the location (server:pathname) of the remote file system from the map,
the daemon then mounts the remote file system under the directory
/tmp_mnt. It answers the kernel, saying it is a symbolic link. The kernel sends
an NFS READLINK request, and the automounter returns a symbolic link to
the real mount point under /tmp_mnt.

The Effect of Map Types

The behavior of the automounter is affected by whether the name is found
in a direct or an indirect map. If the name is found in a direct map, the
automounter emulates a symbolic link, as stated above. It responds as if a
symbolic link exists at its mount point. In response to a GETATTR, it
describes itself as a symbolic link. When the kernel follows up with a
READLINK, it returns a path to the real mount point for the remote
hierarchy in /tmp_mnt.

If, on the other hand, the name is found in an indirect map, the automounter
emulates a directory of symbolic links. It describes itself as a directory. In
response to a READLINK, it returns a path to the mount point in /tmp_mnt,
and a readdir(3) of the automounter’s mount point returns a list of the entries
that are currently mounted.

Whether the map is direct or indirect, if the file hierarchy is already mounted
and the symbolic link has been read recently, the cached symbolic link is
returned immediately. Since the automounter is on the same system, the
response is much faster than a READLINK to a remote NFS server. On the
other hand, if the file hierarchy is not mounted, a small delay occurs while
the mounting takes place.

84

Chapter 6: Troubleshooting ONC3/NFS

Troubleshooting CacheFS

A common error message that can occur during a mount is No space left

on device . The most likely cause of this error is inappropriate allocation of
parameters for the cache (see “Cache Resource Parameters” on page 32 for
explanations about these parameters).

The following example shows this error for a CacheFS client machine named
sluggo, caching data from a server neteng. One mount has been performed
successfully for the cache /cache. A second mount was attempted and
returned the error message No space left on device . The cfsadmin -l
command returned the following:

cfsadmin: list cache FS information
 maxblocks 90% (109109 blocks)
 minblocks 0% (0 blocks)
 threshblocks 85% (103047 blocks)
 hiblocks 85% (92743 blocks)
 lowblocks 75% (81832 blocks)
 maxfiles 90% (188570 files)
 minfiles 0% (0 files)
 threshfiles 85% (178094 files)
 hifiles 85% (160285 files)
 lowfiles 75% (141428 files)
 maxfilesize 3MB
neteng:_home:_home
 flags CFS_DUAL_WRITE
 popsize 65536
 fgsize 256

Current Usage:
 blksused 406
 filesused 30
 flags CUSAGE_ACTIVE

The df command reported the usage statistics for /cache on sluggo. The
following shows the df command and its returned information:

#df -i /cache
Filesystem Type blocks use avail %use iuse ifree %iuse Mounted
/dev/root efs 1939714 1651288 288426 85% 18120 191402 9% /

Troubleshooting CacheFS

85

By default, minfiles and minblocks are both 0. This means if any files or blocks
are allocated, CacheFS uses threshfiles and threshblocks to determine whether
to perform an allocation or fail with the error ENOSPC. CacheFS fails an
allocation if the usage on the front file system is higher than threshblocks or
threshfiles, whichever is appropriate fro the allocation being done. In this
example, the threshfiles value is 178094, but only 18120 files are in use. The
threshblocks value is 103047 (8K blocks) or 1648752 512-byte blocks. The df
output shows the total usage on the front file system is 1651288 512-byte
blocks. This is larger than the threshold, so further block allocations fail.

The possible resolutions for the error are:

• Use cfsadmin to increase minblocks or threshblocks or both. Increasing
threshblocks should be more effective since /dev/root is already 85%
allocated.

• Remove unnecessary files from /dev/root. At least 2536 512-byte blocks
of data need to be removed; removing more makes the cache more
useful. At the current level of utilization, CacheFS needs to continually
throw away files to allow room for the new ones.

• Use a separate disk partition for /cache.

87

Appendix A

A. ONC3/NFS Error Messages

This chapter explains error messages generated during NFS mounting and
by the automounter. It contains these sections:

• “mount Error Messages” on page 87

• “Verbose automount Error Messages” on page 91

• “General automount Error Messages” on page 93

• “General CacheFS Errors” on page 96

mount Error Messages

This section gives detailed descriptions of the NFS mounting failures that
generate error messages.

/etc/mtab: No such file or directory

The mounted file system table is kept in the file /etc/mtab.
This file must exist before mount(1M) can succeed.

mount: ... already mounted

The file system that you are trying to mount is already
mounted or there is an incorrect entry for it in /etc/mtab.

mount: ... Block device required

You probably left off the host name (krypton:) portion of
your entry:

mount krypton:/usr/src /krypton.src

The mount command assumes you are doing a local mount
unless it sees a colon in the file system name or the file
system type is nfs in /etc/fstab. See fstab(4).

88

Appendix A: ONC3/NFS Error Messages

mount: ... not found in /etc/fstab

If you use mount with only a directory or file system name,
but not both, it looks in /etc/fstab for an entry with file
system or directory field matching the argument. For
example,

mount /krypton.src

searches /etc/fstab for a line that has a directory name field
of /krypton.src. If it finds an entry, such as this,

krypton:/usr/src /krypton.src nfs rw,hard 0 0

it mounts as if you had given this command:

mount krypton:/usr/src /krypton.src

If you see this message, it means the argument you gave
mount is not in any of the entries in /etc/fstab.

/etc/fstab: No such file or directory

mount tried to look up the name in /etc/fstab but there was no
/etc/fstab.

mount: ... not in hosts database

The host name you gave is not in the /etc/hosts database.
Check the spelling and the placement of the colon in your
mount call. Try to rlogin(1C) or rcp(1C) to the other system.

mount: directory path must begin with a slash (/).

The second argument to mount is the path of the directory to
be mounted. This must be an absolute path starting at /.

mount: ... server not responding: RPC: Port mapper failure

Either the server from which you are trying to mount is
inactive, or its portmap(1M) daemon is inactive or hung. Try
logging in to that system. If you can log in, give this
command:

/usr/etc/rpcinfo –p hostname

This should produce a list of registered program numbers.
If it does not, start the portmap daemon again. Note that
starting the portmap daemon again requires that you kill
and restart inetd(1M), ypbind(1M), and ypserv(1M). ypbind is

mount Error Messages

89

active only if you are using the NIS service. The ypserv
daemon only runs on NIS servers. See network(1M) for
information about how to stop and restart daemons.

There are two methods for dealing with a server that is
inactive or whose portmap daemon is not responding. You
could reboot the server or you perform these commands:

1. On the server, become the superuser and kill the
daemons. Give this command:

 # /etc/killall portmap inetd ypbind

2. Start new daemons:

 # /usr/etc/portmap
 # /usr/etc/ypbind
 # /usr/etc/inetd

If you cannot rlogin to the server, but the server is
operational, check your network connection by trying
rlogin to some other system. Also check the server’s
network connection.

mount: ... server not responding: RPC: Program not registered

This means mount reached the portmap daemon but the NFS
mount daemon (rpc.mountd(1M)) was not registered.

Go to the server and be sure that /usr/etc/rpc.mountd exists
and that an entry appears in /etc/inetd.conf exactly like this
(shown wrapped):

mountd/1 dgram rpc/udp wait root
/usr/etc/rpc.mountd mountd

Give the command ps –de to be sure that the internet
daemon (inetd) is running. If you had to change
/etc/inetd.conf, give this command:

/etc/killall 1 inetd

This command informs inetd that you have changed
/etc/inetd.conf.

90

Appendix A: ONC3/NFS Error Messages

mount: ... No such file or directory

Either the remote directory or the local directory does not
exist. Check your spelling. Use the ls(1) command for the
local and remote directories. For SGI systems, check to see if
you are attempting to access a hidden file or directory:

showmount -x servername

and check for file systems exported without the nohide

option.

mount: not in export list for ...

Your host name is not in the export list for the file system
you want to mount from the server. You can get a list of the
server’s exported file systems with this command:

showmount –e servername

If the file system you want is not in the list, or your host
name or network group name is not in the user list for the
file system, log in to the server and check the /etc/exports file
for the correct file system entry. A file system name that
appears in the /etc/exports file but not in the output from
showmount(1M) indicates that you need to run exportfs(1M).

mount: ... Permission denied

This message is a generic indication that some
authentication failed on the server. It could simply be that
you are not in the export list (see above), the server could
not figure out who you are, or the server does not recognize
that you are who you say you are. Check the server’s
/etc/exports. In the last case, check the consistency of the NIS
and local host name and user ID information.

mount: ... Not a directory

Either the remote path or the local path is not a directory.
Check your spelling and use the ls command for both the
local and remote directories.

mount: ... You must be root to use mount

You must do the mount as root on your system because it
affects the file system for the whole system, not just your
directories.

Verbose automount Error Messages

91

Verbose automount Error Messages

The following error messages are likely to be displayed if the automounter
fails and the verbose option is on (automount(1M) –v option). Below each
error message is a description of the probable cause of the problem.

no mount maps specified

The automounter was invoked with no maps to serve, and
it cannot find the NIS auto.master map. Recheck the
command, and check for the existence of an NIS auto.master
map:

ypwhich -m | grep auto.master

mapname: Not found

The required map cannot be located. This message is
produced only when the –v option is given. Check the
spelling and pathname of the map name.

leading space in map entry entry text in mapname
The automounter has discovered an entry in an automount
map that contains leading spaces. This is usually an
indication of an improperly continued map entry. For
example:

foo
bar geez:/usr/geez

In this example, the warning is generated when the
automounter encounters the second line, because the first
line should be terminated with a backslash (\).

bad directory directory in indirect map mapname
While scanning an indirect map, the automounter has
found an entry directory containing a "/". Indirect map
directories must be simple names, not pathnames.

bad directory directory in direct map mapname
While scanning a direct map, the automounter has found an
entry directory without a leading "/". Directories in direct
maps must be full pathnames.

92

Appendix A: ONC3/NFS Error Messages

NIS bind failed

The automounter was unable to communicate with the
ypbind daemon. This is information only — the
automounter continues to function correctly provided it
requires no explicit NIS support. If you need NIS, check to
see if there is a ypbind daemon running.

Couldn’t create mountpoint mountpoint: reason
The automounter was unable to create a mount point
required for a mount. This most frequently occurs when
attempting to hierarchically mount all of a server’s
exported file systems. A required mount point may exist
only in a file system that cannot be mounted (it may not be
exported) and it cannot be created because the exported
parent file system is exported read only.

WARNING: mountpoint already mounted on

The automounter is attempting to mount over an existing
mount point. This is indicative of an automounter internal
error (bug).

server: pathname already mounted on mountpoint
The automounter is attempting to mount over a previous
mount of the same file system. This could happen if an entry
appears both in /etc/fstab and in an automounter map (either
by accident or because the output of mount -p was
redirected to /etc/fstab). Delete one of the redundant entries.

can’t mount server: pathname: reason
The mount daemon on the server refuses to provide a file
handle for server:pathname. Check the server’s export list.

remount server: pathname on mountpoint: server not responding

The automounter has failed to remount a file system it
previously unmounted. This message may appear at
intervals until the file system is successfully remounted.

WARNING: mountpoint not empty

The mount point is not an empty directory. The directory
contains entries that are hidden while the automounter is
mounted there. This is advisory only.

General automount Error Messages

93

General automount Error Messages

This section lists error messages generated by the automounter that can
occur at any time.

WARNING: default option " option" ignored for map mapname
Where option is an unrecognized default mount option for
the map mapname.

option ignored for directory in mapname
The automounter has detected an unknown mount option.
This is advisory only. Correct the entry in the appropriate
map.

bad entry in map mapname " directory" map mapname, directory

directory: bad

The map entry is malformed, and the automounter cannot
interpret it. Recheck the entry; perhaps there are characters
in it that need a special escape sequence.

Can’t get my address

The automounter cannot find an entry for the local system
in the host database.

Cannot create UDP service

Automounter cannot establish a UDP connection.

svc_register failed

Automounter cannot register itself as an NFS server. Check
the kernel configuration file.

couldn’t create pathname: reason
Where pathname is /tmp_mnt or the argument to the –M
command line option.

Can’t mount mountpoint: reason
The automounter couldn’t mount its daemon at mountpoint.

Can’t update pathname
Where pathname is /etc/mtab it means that the automounter
was not able to update the mount table. Check the
permissions of the file.

exiting This is an advisory message only. The automounter has
received a SIGTERM (has been killed) and is exiting.

94

Appendix A: ONC3/NFS Error Messages

WARNING: pathname: line line_number: bad entry

Where pathname is /etc/mtab it means that the automounter
has detected a malformed entry in the /etc/mtab file.

server: pathname no longer mounted

The automounter is acknowledging that server:pathname
which it mounted earlier has been unmounted by the
umount(1M) command. The automounter notices this
within 1 minute of the unmount or immediately if it
receives a SIGHUP.

trymany: servers not responding: reason
No server in a replicated list is responding. This may
indicate a network problem.

server: pathname – linkname : dangerous symbolic link

The automounter is trying to use server:pathname as a mount
point but it is a symbolic link that resolves to a pathname
referencing a mount point outside of /tmp_mnt (or the
mount point set with the –M option). The automounter
refuses to do this mount because it could cause problems in
the system’s file system, e.g. mounting on /usr rather than in
/tmp_mnt.

host server not responding

The automounter attempted to contact server but received
no response.

Mount of server: pathname on mountpoint: reason
The automounter failed to do a mount. This may indicate a
server or network problem.

pathconf: server: server not responding

The automounter is unable to contact the mount daemon on
the server that provides portable operating systems based
on UNIX (POSIX) pathconf(2) information.

pathconf: no info for server: pathname
The automounter failed to get pathconf information for
pathname.

General automount Error Messages

95

hierarchical mountpoints: pathname1 and pathname2
The automounter does not allow its mount points to have a
hierarchical relationship. An automounter mount point
must not be contained within another automounted file
system.

mountpoint: Not a directory

The automounter cannot mount itself on mountpoint
because mountpoint is not a directory. Check the spelling
and pathname of the mount point.

dir mountpoint must start with ’/’

Automounter mount point must be given as full pathname.
Check the spelling and pathname of the mount point.

mapname: yp_err

Error in looking up an entry in an NIS map. May indicate
NIS problems.

hostname: exports: rpc_err

Error getting export list from hostname. This indicates a
server or network problem.

nfscast: cannot send packet: reason
The automounter cannot send a query packet to a server in
a list of replicated file system locations.

nfscast: cannot receive reply: reason
The automounter cannot receive replies from any of the
servers in a list of replicated file system locations.

nfscast:select: reason Cannot create socket for nfs: rpc_err

These error messages indicate problems attempting to
contact servers for a replicated file system. This may
indicate a network problem.

NFS server (pid@mountpoint) not responding; still trying

An NFS request made to the automount daemon with
process identifier pid serving mountpoint has timed out. The
automounter may be temporarily overloaded or dead. Wait
a few minutes. If the condition persists, reboot the client or
use fuser(1M) to find and kill all processes that use
automounted directories (or change to a non-automounted
directory in the case of a shell), kill the current automount
process, and restart it again from the command line.

96

Appendix A: ONC3/NFS Error Messages

General CacheFS Errors

This section describes the error messages that may be generated from
commands used to administer the CacheFS file system.

cfsadmin Error Messages

This section gives detailed descriptions of the CacheFS cfsadmin command
failures that generate error messages.

cfsadmin: must be run by root

You must be logged in as root to run cfsadmin(1M).

cfsadmin: Cache name is in use and cannot be modified.

This error occurs when you attempt to remove a cache ID
from the cache name, if the cache is active (has mounted file
systems).

cfsadmin: cachepath already exists.

The cache directory path cachepath specified with the
cachedir option already exists. The last component of the
path cachepath must not exist when creating a cache. All
other path components must exist.

cfsadmin: creating labelpath failed .
The cache label file labelpath could not be created. This
message always appears with one of the following:

Could not remove labelpath: errmsg
Error creating labelpath: errmsg
Writing labelpath failed: errmsg
Writing labelpath failed on sync: errmsg

In each case, the system error is given in errmsg.

cfsadmin: create resource failed: errmsg
The cache resource file resource could not be created. The
system error is given in errmsg.

cfsadmin: Cache cachedir is in use and cannot be modified.
The cache cachedir was in use when an attempt was made to
modify the contents of the cache label. This operation may
only be performed when the cache has no mounted file
systems.

General CacheFS Errors

97

cfsadmin: Cache size cannot be reduced, maxblocks current p%,

requested n%

An attempt was made to reduce the maximum file system
block allocation percentage from p% to n%. The allocation
can only be increased.

cfsadmin: Cache size cannot be reduced, maxfiles current p%

requested n%

An attempt was made to reduce the maximum number of
files allocated from p% to n%. The allocation can only be
increased.

cfsadmin: cacheid is not a valid cache id.

The cache identifier given by cacheid is not valid. You may
have specified an invalid cache identifier on the command
line for cfsadmin. This can occur when deleting a cache.

cfsadmin: lowblocks can’t be >= hiblocks.

The block allocation specified by minblocks is greater than or
equal to that specified by maxblocks. minblocks must be less
than maxblocks.

cfsadmin: lowfiles can’t be >= hifiles.
The file allocation specified by minfiles is greater than or
equal to that specified by maxfiles. minfiles must be less than
maxfiles.

cfsadmin: Could not open resource: errmsg, run fsck
The cache resource file resource could not be opened. The
error message is given by errmsg. cachefs_fsck(1M) should be
run.

cfsadmin: Could not read cache_usage, val, run fsck
The cache usage structure could not be read from the
resource file. val is the return value from read(2).

cfsadmin: Could not open option file optpath
The cache option file optpath could not be opened. The entire
cache should be removed and reconstructed.

cfsadmin: Could not read option file optpath
The cache option file optpath could not be read. The entire
cache should be removed and reconstructed.

98

Appendix A: ONC3/NFS Error Messages

cfsadmin: Reading cachelabel failed.

The cache label file cachelabel could not be read. This
message appears with one of the following messages:

Cannot stat file cachelabel: errmsg
File cachelabel does not exist.
Cache label file cachelabel corrupted
Cache label file cachelabel wrong size
Error opening cachelabel: errmsg
Reading cachelabel failed: errmsg

The above messages occur when the cache label file is not a
regular file or the label contains the incorrect cache version.
The system error is given in errmsg.

cfsadmin: Could not open resource: errmsg, run fsck
The resource file resource could not be opened in order to
enlarge it or mark it as dirty. The error is given in errmsg.
cachefs_fsck(1M) should be run.

cfsadmin: Resource file has wrong size cursize expected, run fsck
The size of the resource file is incorrect. Its size is cursize
when it should be expected.

cfsadmin: Could not write cache_usage, val, run fsck
The cache usage structure could not be written to the
resource file. val is the return value from write(2).

cfsadmin: Could not write file, val, run fsck
The expanded resource file could not be initialized. val is the
return value from write(2).

General CacheFS Errors

99

mount_cachefs Error Messages

This section gives detailed descriptions of the CacheFS mounting failures
that generate error messages.

mount_cachefs(1M) is normally executed from mount(1M).

mount_cachefs: must be run by root

You must be logged in as root to run mount(1M).

mount_cachefs: mount failed, options do not match.

The mount options supplied on the mount command are not
compatible with the mount options currently set for the
cache. This occurs when there are multiple mount points for
one cache. All mount points must have the same options.

mount_cachefs: suid and nosuid are mutually exclusive

Both of the options suid and nosuid have been specified.
Only one is allowed.

mount_cachefs: rw and ro are mutually exclusive

Both of the options rw and ro have been specified. Only one
is allowed.

mount_cachefs: acregmin cannot be greater than acregmax

The specified acregmin option has a value greater than that
for acregmax .

mount_cachefs: acdirmin cannot be greater than acdirmax

The specified acdirmin option has a value greater than that
for acdirmax .

mount_cachefs: only one of non-shared or write-around may be

specified

Both of the options non-shared and write-around have
been specified. Only one is allowed.

100

Appendix A: ONC3/NFS Error Messages

umount_cachefs Error Messages

This section gives detailed descriptions of the CacheFS unmounting failures
that generate error messages.

umount_cachefs(1M) is normally executed from umount(1M).

umount_cachefs: must be run by root

You must be logged in as root to run umount(1M).

umount_cachefs: warning : dir not in mtab

The mount point directory dir has no entry in the mount
table. This means that the mount table has been corrupted.
The umount command can still be successful; however, the
back file system can not be unmounted.

umount_cachefs: could not exec /sbin/umount on back file system

errmsg
An attempt was made to run umount on the back file system
and failed. The system error is given in errmsg.

101

verifying process is running, 56
automount command, 20, 42, 52, 54, 55, 69

at system startup, 82
error messages, 91-95
killing, 70

" automount metacharacter, 41

B

back files, 27
back file system, 27
bg mount option, 17, 19
biod daemon, 81

C

cached file systems
back file system, 27
checking (fsck_cachefs), 65
creating, 61
definition, 3
deleting, 74
displaying information about, 72
front file system, 27
fstab entries, 64
maxblocks parameter, 33
maxfiles parameter, 33
minblocks parameter, 33
minfiles parameter, 33
modifying parameters, 71

Symbols

in maps, 53
& automount metacharacter, 39
* automount metacharacter, 40
+ in maps, 42
\ automount metacharacter, 41
{} in maps, 42

A

access export option, 13, 15
anon export option, 13, 15
asynchronous data transfer, 8
attribute caching, 18
automount

at system startup, 82
definition, 7
maps, 21
map types, 22, 83
metacharacters, 39-41
modifying maps, 69
NIS maps, 42
process description, 20-26, 82
recommendations, 26
setting up custom environment, 53-58
setting up default environment, 52
starting command, 54
symbolic links, 37, 83
testing, 57

Index

102

Index

mounting, 62
mounting a CD-ROM, 63
parameters, 32
setting parameters, 61
setting up, 60
threshblocks parameter, 33

CacheFS
troubleshooting, 84

cfsadmin command, 61, 71, 74
cfsadmin error messages, 96
cfsadmin parameter, 33
chkconfig command

automount flag, 20, 52, 55
cachefs flag, 60
lockd flag, 58
nfs flag, 46, 49, 52

client
definition, 4
performance, 68
setting up, 49-51

client-server model, 4
crash recovery

and lock manager, 9
and network status monitor, 10

D

delayed writes, 8
deleting

cached file systems, 74
direct maps, 23-26, 53

modifying, 70
diskless workstations, 3

E

environment variables in maps, 42

error messages
automount, 93-95
mount, 87-90
verbose automount, 91-92

/etc/auto.indirect file, 70
/etc/auto.master file, 23, 54, 69
/etc/config/automount.options file, 20, 21, 52, 54
/etc/config/nfsd.options file, 68
/etc/exports file, 12-14, 21, 47
/etc/fstab file, 16-19, 49-51, 71, 76
/etc/init.d/autoconfigure script, 47, 50
/etc/init.d/network script, 11, 20, 46, 54, 60, 82
/etc/mtab file, 16, 21, 26, 56, 76
/etc/rmtab file, 12
/etc/xtab file, 12, 52
exported filesystems

different pathname, 6
exportfs command. See exportfs command.
export options, 13
local to server, 11
recommendations, 15

exportfs command, 11-15, 48
exporting

definition, 4
parent and child directories, 5
restrictions, 5

export options, 13

F

failure
of client, 7, 9, 78
of network, 7, 9, 78, 81
of remote mount, 79
of server, 7, 9, 17, 77

fg mount option, 17
file handle, 82

103

Index

file locking service. See lock manager.
front file system, 27

G

group mounts, 35-37
grpid mount option, 18

H

hanging, 79-81
hard-mounted filesystems, 17, 19, 79
hard mount option, 17
hierarchical mounts, 37
host database, 21
–hosts map, 23, 52

I

indirect maps, 23, 25, 53, 70
$ in maps, 42
– in maps, 42
input/output management, 8
intr mount option, 17, 19
IP address translation, 76

L

lockd daemon, 58
lock manager

application calls, 8
crash recovery, 9
description, 8
kernel requests, 9
setting up, 58

verifying, 58
loopback mounting, definition, 6

M

maps
in maps, 53
& metacharacter, 39
* metacharacter, 40
+ in maps, 42
\ metacharacter, 41
{} for environment variables, 42
alternate servers, 38
automount, 22
definition, 21
direct, 23-26, 53, 70
environment variables, 42
$ for environment variables, 42
group mounts, 35-37
hierarchical, 37
indirect, 23, 25, 53, 70
– in maps, 42
master, 53, 69
" metacharacter, 41
metacharacters, 39-41
modifying, 69
NIS databases, 23
options, 24
supplementary maps, 42
types, 22
wild card, 40

master maps, 23, 53, 69
maxblocks

cfsadmin parameter, 33
maxfiles

cfsadmin parameter, 33
metacharacters, 39-41
minblocks

cfsadmin parameter, 33

104

Index

minfiles
cfsadmin parameter, 33

mount_cachefs error messages, 99
mount command

error messages, 87-90
how invoked, 15
ignoring fstab entries, 18
mount process description, 15-19, 76
on client, 49-51
options, 15
temporary mounting, 69

mounting
definition, 5
exported directories, 15
hard mounts, 17, 19, 79
illustration, 6
mount point directories, 15
options, 17
process description, 15-19, 76
recommendations, 19
remote mount failed, 79
restrictions, 6
soft mounts, 17
temporary, 69

mounting a CD-ROM as a cached file system, 63
mounting cached file systems, 62
/– mount point, 23, 24
mount points

conflicts, 71
definition, 5
empty or not?, 15
for automount, 22

multihopping, 6

N

netgroups, 13, 15
network lock manager. See lock manager.

network status monitor, 10
NFS

and OSI model, 2
definition, 2

nfsd daemon, 68
NIS

and maps, 23
databases, 76
definition, 4
documentation, xiii, 1
maps, 42, 55
netgroups for access lists, 15

noauto mount option, 18
nodev mount option, 18
nohide export option, 13, 15, 19
nosuid mount option, 18

O

ONC3/NFS
version, xiii

P

performance is slow, 81
portmapper, 47, 76, 82
port mount option, 18
private mount option, 18, 19
product support, xvii

R

release of ONC3/NFS, xiii
remote devices, 81

105

Index

remote procedure call (RPC)
and lock manager, 8
and NFS, 2

retransmission rates, 81
retrans mount option, 18
ro export option, 13
ro mount option, 17
root export option, 13, 15
rpcinfo command, 47, 77
rpc.lockd daemon, 59
rpc.statd daemon, 59
rsize mount option, 18
rw export option, 13
rw mount option, 17, 19

S

secure installations, 15
server

daemons, 68
definition, 4
setting up, 46-48

sgi_mountd daemon, 47, 77
showmount command, 12
soft-mounted filesystems, 17, 19, 79
soft mount option, 17
statd daemon, 10, 58
stateless protocol, 7
supplementary maps, 42
synchronous writes, 8, 13, 15

T

timeo mount option, 18
timeout limit, 18

/tmp_mnt directory, 21, 52, 83
troubleshooting CacheFS, 84
troubleshooting recommendations, 75-83
typograhical conventions, xvi

U

umount_cachefs error messages, 100
umount command, 38
unexporting, definition, 4
unmount command, 15
unmounting

definition, 5
/usr/etc/resolv.conf file, 76

V

/var/adm/SYSLOG file, 75
version of ONC3/NFS, xiii

W

wsize mount option, 18
wsync export option, 13, 15

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-0850-070.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 650-965-0964

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

