
IRIS SNA LU 6.2 Programming Guide

Document Number 007-0874-030

IRIS SNA LU 6.2 Programming Guide
Document Number 007-0874-030

CONTRIBUTORS

Engineering contributions by Jay Lan.
Cover design and illustration by Rob Aguilar, Rikk Carey, Dean Hodgkinson,

Erik Lindholm, and Kay Maitz

© Copyright 1994, Silicon Graphics, Inc.— All Rights Reserved
The contents of this document may not be copied, or duplicated in any form, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

Silicon Graphics and IRIS are registered trademarks and IRIX is a trademark of
Silicon Graphics, Inc. IBM is a registered trademark of International Business
Machines Corporation. UNIX is a registered trademark of UNIX System
Laboratories.

iii

Contents

List of Tables vii

Introduction ix
Using This Guide ix
Conventions x
Related Documentation x
Product Support xi

1. Programming with API 13
SNA SERVER Verb Categories 13

Implementation-specific Verbs 14
Configuration Verbs 15
Node Operator Verbs 16

API Overview 18
IRIS SNA LU 6.2 Verb Categories 18

Conversation Verbs 19
Control Operator Verbs 19
Verb Library 19
Header Files 19
Data Type Definitions 20
Data Structures 21
Global Variables 21

Return Code: snamaj and snamin 22
Conversation State: snastat 24

iv

Contents

Conversation Verbs 25
Mapped Conversation Verbs 27

Conversation States 29
Data Mapping 30
Mapper: The Mapping Utility Interface 31

Type-independent Conversation Verbs 31
Conversation States 32

Basic Conversation Verbs 32
Conversation States 34

Control Operator Verbs 35
Change Number of Session Verbs 36
Session Control Verbs 38

Security Features 38
LU-LU Security 39
Conversation-level Security 40
Resource-level Security 41
Comparison of TPRM and LU 6.2 Security 43

LU-LU Security 43
Conversation-level Security 44
Resource-level Security 44

Application Diagnostics Guide 45

2. Sample Transaction Programs 47
Sample Program: Send a File 47
Sample Program: Receive a File 59

3. The IRIS LU 6.2 Implementation 69
How the IRIS Implementation Differs from IBM SNA 69

Basic Conversation Verbs 69
Implementation-specific Verbs 70
Control Operator Verbs 70

Implemented LU 6.2 Function Sets 71

Contents

v

A. Major and Minor Return Codes 73

B. API Verb Catalog 101

C. Man Pages 107

vi

Contents

vii

List of Tables

Table 1-1 Transaction Program Connection Verbs 14
Table 1-2 Configuration Define Verbs 15
Table 1-3 Configuration Display Verbs 16
Table 1-4 Node Operator Verbs 17
Table 1-5 Major Return Codes 22
Table 1-6 Conversation State Constant Identifiers 24
Table 1-7 Mapped Conversation Verbs 27
Table 1-8 Mapped Verb Conversation States and Verb Validity 29
Table 1-9 Type-independent Conversation Verbs 32
Table 1-10 Conversation States ansd Verb Validity 32
Table 1-11 Basic Conversation Verbs 33
Table 1-12 Conversation States and Verb Validity 34
Table 1-13 CNOS Verbs 37
Table 1-14 Session Control Verbs 38
Table 1-15 Application Error Codes 45
Table A-1 Major Code 00 (S2_OK): Function Completed Normally 73
Table A-2 Major Code 01(S2_USAGE): Function Aborted, Usage Error

74
Table A-3 Major Code 02 (S2_UNSUC): Completed Unsuccessfully

93
Table A-4 Major Code 03 (S2_STATE): Function Aborted, State Error

94
Table A-5 Major Code 05 (S2_ALCER): Allocation Error 94
Table A-6 Major Code 07 (S2_PGMER): Program Error 95
Table A-7 Major Code 09 (S2_DEALC): Deallocated 96
Table A-8 Major Code 11 (S2_NPERR): Node Operator Error 98

viii

ix

Introduction

This guide is designed for application programmers and end users who
operate Silicon Graphics® IRIS® SNA LU 6.2, a specific implementation of
the Systems Network Architecture (SNA) Logical Unit (LU) Type 6.2
protocols.

Using This Guide

The IRIS SNA 6.2 Programming Guide contains the following chapters and
appendices:

Chapter 1 “Programming with API” contains an overview to the
Application Programmers Interface, or verb functions,
which are provided separately as manual pages in
Appendix C. A diagnostic guide for applications is also
included.

Chapter 2 “Sample Transaction Programs” presents two example
programs: a transaction program to send a file and one to
receive a file.

Chapter 3 “The IRIS LU 6.2 Implementation” describes the Silicon
Graphics implementation of the SNA LU 6.2 architecture
and the implemented LU 6.2 function sets.

Appendix A “Major and Minor Return Codes” lists the major and minor
error codes returned by the API verbs (that is, the SNA
SERVER, LU 6.2, and LU 0-3 verbs).

Appendix B “API Verb Catalog” provides an index to all API verbs.

Appendix C “Man Pages” contains the category (3) manual pages
related to the IRIS SNA LU 6.2.

x

Introduction

Conventions

Within text, file names, parameters, commands, and command arguments
are shown in italics.

Command syntax descriptions and examples appear in typewriter
font.

User input and keyboard commands appear in bold typewriter font.

API verb names are shown in bold face.

Related Documentation

The following reference materials from Silicon Graphics and IBM® provide
supplementary information on topics covered in this guide.

Silicon Graphics, Inc.

Token Ring Administration Guide

IRIS SNA SERVER Administration Guide

IRIS SNA SERVER Programming Guide

IRIS SNA SERVER VT100 Interface Guide

IRIS SNA 3270 Administrator's Guide

IRIS SNA 3770 Administrator's Guide

International Business Machines (IBM order numbers follow title)

Systems Network Architecture Concepts and Products (GC30-3072)

Systems Network Architecture Technical Overview (GC30-3073)

An Introduction to Advanced Program-to-Program Communication (GG24-1584)

Product Support

xi

Systems Network Architecture Transaction Programmer's Reference Manual for
LU Type 6.2 (GC30-3084)

Systems Network Architecture Format and Protocol Reference Manual:
Architecture Logic for LU Type 6.2 (SC30-3269)

Systems Network Architecture Network Product Formats (LY43-0081)

Synchronous Data Link Control Concepts (GA27-3093)

Systems Network Architecture Reference Summary (GA27-3136)

Token Ring Network Architecture Reference (SC30-3374)

Product Support

Silicon Graphics provides a comprehensive product support and
maintenance program for IRIS products. For further information, contact the
Technical Assistance Center.

xii

Introduction

13

Chapter 1

1. Programming with API

This chapter contains information about writing transaction programs using
the verb library functions. It also has information to help you diagnose
application errors. The material in this chapter provides an introduction and
overview of the verbs. Appendix A lists the major and minor codes returned
by the verb functions. Appendix B, “API Verb Catalog,” lists all of the API
verbs in alphabetical order, giving their full names and verb types.

The IRIS SNA SERVER incorporates verbs that are of interest to the
programmer using IRIS SNA LU 6.2. The relevant server verbs are noted first
in this chapter. The LU 6.2 Application Program Interface (API) overview
and verb catalogs follow. A description of the LU 6.2 security features and a
diagnostics guide for applications complete this chapter. See Appendix C,
“Man Pages,” for a more complete description of the LU 6.2 verbs.

SNA SERVER Verb Categories

This section describes the functions provided by the IRIS SNA SERVER that
are of interest to the programmer using the LU 6.2 Application Program
Interface (API) verbs. There are three general categories of IRIS SNA
SERVER API verbs used with the IRIS SNA LU 6.2 API verbs:

• Implementation-specific verbs

• Configuration verbs

• Node operator verbs

Note: Details about the configuration and node operator verbs are contained
in the IRIS SNA SERVER Programming Guide. Because the
implementation-specific verbs listed below are used by all applications, man
pages for them are included with this guide's man pages for convenience.

14

Chapter 1: Programming with API

Implementation-specific Verbs

Although the implementation-specific verbs, also called the transaction
program connection verbs, are not part of the IBM SNA, they are required
for the IRIS SNA SERVER.

Before a program can issue any conversation, control-operator, or
node-operator functions, it must establish a connection with the IRIS SNA
SERVER. This is called attaching. Conversation verbs and control operator
verbs attach by specifying the name of the configuration and the local LU
that the transaction program wants to use.

The names specified in the attach request are called the context of the attach.
Since a program can issue verbs to more than one configuration or LU, the
program can issue multiple attach requests. Each of these attaches creates a
new logical instance of the program. The setctx verb switches from one
instance to the other before issuing verbs to the different LUs.

Because transaction program connection verbs establish or break the
connection between the transaction program and the IRIS SNA SERVER,
they are the first and last verbs the program issues. The verbs listed in
Table 1-1 attach and detach the application to the IRIS SNA SERVER. All
applications must use the attach and detach verbs. The setctx verb is
optional.

Table 1-1 Transaction Program Connection Verbs

Verb Function

attach Initiates communication between the
local program and the IRIS SNA
SERVER

detach Detaches the current context from the
IRIS SNA SERVER.

rattach Initiates communication between a
remotely invoked transaction program
and the IRIS SNA Scheduler.

setctx Establishes the current context under
which subsequent verbs are issued.

SNA SERVER Verb Categories

15

Configuration Verbs

Configuration verbs define and display the resources of the node and logical
unit. The following IRIS SNA SERVER verbs are useful to the programmer
using the LU 6.2 API verbs and are divided into two groups: define verbs
and display verbs. Table 1-2 lists the configuration define verbs.

Table 1-3 lists the configuration display verbs.

Table 1-2 Configuration Define Verbs

Verb Full Name

dfncp Define Control Point

dfnline Define Line

dfnllu Define Local LU

dfnmode Define Mode

dfnnode Define Node

dfnrlu Define Remote LU

dfnsta Define Station

dfntp Define Transaction Program

16

Chapter 1: Programming with API

Node Operator Verbs

The IRIS SNA SERVER node operator verbs (Table 1-4) control the links and
activate, deactivate, and supervise the configured local resources of the
server.

Table 1-3 Configuration Display Verbs

Verb Full Name

dspcp Display Control Point

dspline Display Line

dspllu Display Local LU

dspmode Display Mode

dspnode Display Node

dsprlu Display Remote LU

dspses Display Session

dspsta Display Station

dsptp Display Transaction Program

SNA SERVER Verb Categories

17

Table 1-4 Node Operator Verbs

Verb Full Name

actline Activate Line

actlu Activate Logical Unit

actpu Activate Physical Unit

actsta Activate Station

chgmsgq Change Message Queue

dctline Deactivate Line

dctlu Deactivate Logical Unit

dctpu Deactivate Physical Unit

dctsta Deactivate Station

dspmsgq Display Message Queue

rtvnmsg Retrieve Node Message

18

Chapter 1: Programming with API

API Overview

Advanced Program-to-Program Communications (APPC) provides
high-level access to data communications facilities. It defines a
machine-independent programmatic interface that offers a standard
solution to the problems of data communications. This high-level approach
frees the programmer to spend time designing the features of distributed
applications rather than laboring over the details of communications
protocols.

An APPC application is a couplet of programs that exchange both data and
control information using the LU 6.2 programmatic interface. The second
program in the couplet is started at the remote site at the request of the first.
IRIS SNA LU 6.2 enables the two programs to exchange information. This
exchange, called a conversation, is transparent to low-level communications.
The programs conduct the conversation by issuing verbs, which are
high-level procedural calls that perform the tasks of starting the
conversation (and the partner program at the remote site), sending and
receiving data, controlling error handling, and stopping the exchange.

In the IRIS implementation, these verbs take the form of C-language
function calls. The Application Program Interface (API) is a library
containing verb functions and header files defining the structures and
variables used by applications that call the verb functions. For more LU 6.2
protocol information, consult the IBM Transaction Programmer's Reference
Manual, which is referred to in this guide as the TPRM.

IRIS SNA LU 6.2 Verb Categories

Verbs are divided into categories according to their function. These
categories, in turn, are divided into groups. Two categories of LU 6.2 verbs
exist: conversation verbs and control operator verbs. A description of the
groups that comprise each category and their respective functions follows.
See the man pages in Appendix C for individual verb details.

IRIS SNA LU 6.2 Verb Categories

19

Conversation Verbs

Application programs use conversation verbs to exchange data. These verbs
are divided into three groups:

• Mapped conversation verbs

• Basic conversation verbs

• Type-independent verbs

Mapped and basic verbs conduct peer-to-peer conversations. They differ in
the amount of formatting the application program must do.
Type-independent verbs are used on either mapped or basic conversations.

Control Operator Verbs

Control operator verbs define and control the resources of the logical unit.
They are divided into two groups: change number of sessions (CNOS) verbs
and session control verbs.

Both CNOS and session control verbs control the sessions between the local
LU and the remote LU.

Verb Library

Verb functions and functions called by the verb are archived in
/usr/lib/liblu62.a. Programs that use verb functions are linked against this
library. For most compilers, use the -l option. For example:

cc sample.c-llu62.a

See your compiler documentation for instructions on linking with IRIS
libraries.

Header Files

The structures and variables used in IRIS SNA LU 6.2 verbs are defined in
header files located in /usr/include/sna. These header files are available:

20

Chapter 1: Programming with API

basic.h Contains definitions of the verb parameter structures for the
basic conversation verbs

mapped.h Contains definitions of the verb parameter structures for the
mapped conversation verbs

cntrl.h Contains definitions of the verb parameter structures for the
control operator verbs

global.h Contains definitions of the global variables used by all of
the verb types

imp.h Contains definitions of the verb parameter structures for the
implementation-specific verbs

mc_mcb.h Contains definition of the mapping control block structure

In addition to these header files, /usr/include/sna has a
number of files of type definitions and constant values used
by the LU 6.2 verbs. These files need not be explicitly
included but can be examined for their contents.

ddhvtyp.h Type definitions for the LU 6.2 verbs.

ddhverr.h Constants for major and minor return codes.

ddhvicn.h Constants used for verb parameter values.

ddhviex.h External variable declarations.

Data Type Definitions

The verb parameter structures use data types defined in the header file
ddhvtyp.h. These data types are:

typedef unsigned char hex
(Used for strings or bytes where all bits are significant)

typedef unsigned short shex
(Used for values that must be two bytes long)

typedef unsigned long lhex
(Used for values that must be four bytes long)

IRIS SNA LU 6.2 Verb Categories

21

Data Structures

Each member (referred to as both parameter and field) of the data structure
is described as being Supplied, Returned, or Supplied/Returned.

• Supplied parameters are set by the application program.

• Returned parameters are set automatically by the successful operation
of the verb.

• Supplied/Returned parameters are set by the application program
when the verb is issued, but their value can change after the successful
operation of the verb.

Initialization of every member of the structure is the responsibility of the
application. Pointers not set to a specific address are set to null.

Note: For the character-string parameters in the Display and Get Attribute
verbs, Returned and Supplied have a slightly different meaning. These verbs
require the application program to allocate space for returned names and
strings. If the pointer is nulled, the name is not returned. Thus, even though
the value in a name field is returned by the verb, the pointer must still be
supplied by the application program. If a name parameter is listed as
Supplied/Returned in a display verb, a different name can be returned in the
same space after the successful completion of the verb.

Supplied parameters are specified as Required, Conditional, or Optional.

• Required parameters must be set by the application program.

• Conditional parameters may have a value required, depending on the
setting of another parameter.

• Optional parameters need not be set.

Global Variables

Information on the state of the conversation and feedback on the execution
of verb calls is returned in three global variables. These variables are defined
in the header file global.h. This file must be included in each program that
uses APPC functions. Routines that query the values of these variables
should refer to them as external variables.

22

Chapter 1: Programming with API

Return Code: snamaj and snamin

After executing a verb function, return information is placed in global
variables snamaj and snamin. The values carried here correspond to the verb
return-code parameters defined in the TPRM. If the function completes
normally (return code of OK), the function returns 0 and the major and
minor codes also are 0.

A return code set in the major or minor fields returns the verb function -1.
In general, the major code is sufficient for controlling program logic.

Table 1-5 describes the major codes used. See Appendix A for a complete list
of the major and minor return codes.

Table 1-5 Major Return Codes

Major Code Description

 S2_OK (0) Function completed successfully.

 S2_UNSUC (2) Function completed unsuccessfully.

(Set when a function, such as “Receive

Immediate” or “Test,” completes
normally but does not return data.)

 S2_USAGE (1) Function aborted, usage error.

(The function was not performed
because a parameter was in error or
requested an unsupported function. The
majority of the minor codes provided
specific information on usage errors.)

 S2_STATE (3) Function aborted, state error.

(The function was not performed
because it is not allowed in the current
conversation state.)

IRIS SNA LU 6.2 Verb Categories

23

 S2_ALCER (5) Allocation error.

(The program could not allocate a
conversation for the reason specified in
the minor code. The conversation is in
deallocated state when an allocation
errors occurs.)

 S2_PGMER (7) Program Error. (The partner program
issued an error indication. A send state
conversation is changed to a receive
state.)

 S2_DEALC (9) Deallocation indication.

(The conversation has been deallocated,
normally or abnormally, for the reason
specified in the minor code. The
conversation is in deallocated state.)

 S2_COERR (10) Control-operator function error.

(A control-operator function has ended
abnormally. Since the control operator
verb may not have been using a
conversation, the conversation state
does not apply.)

 S2_NPERR (11) Operation function error.

(An operation function was not
accepted. Since operation verbs do not
use conversations, the conversation state
does not apply.)

Table 1-5 (continued) Major Return Codes

Major Code Description

24

Chapter 1: Programming with API

Conversation State: snastat

After the execution of any of the conversation verb functions, the
conversation state is set in the variable snastat. Table 1-6 describes the values.
The states are referred to by their constant identifier throughout the
conversation verb documentation.

Table 1-6 Conversation State Constant Identifiers

Constant Identifier Description

 S2_NONE (0) No state.

(The program has not allocated a
conversation.)

 S2_RESET (1) Reset state.

(The conversation has not been fully
allocated.)

S2_SEND (2) Send state.

(The conversation can send data and
confirmation requests.)

S2_RECV (3) Receive state.

(The conversation can receive
information from the partner program.)

S2_CNFRM (4) Confirm state.

(The conversation can respond to a
confirmation request from the partner
program.)

 S2_CSEND (5) Confirm send state.

Conversation Verbs

25

Conversation Verbs

Full connectivity among programs requires that all transaction programs
interpret the records they transfer in the same way. Data is transferred
between SNA components or sublayers via message units (MUs), which are
any bit-strings that contain an SNA-defined format. The type of format
depends on the type of conversation.

The basic conversation protocol boundary, usually used by service
transaction programs, is implemented in a low-level language, such as
assembler. Basic conversations format MUs into logical records, which
consist of a two-byte length prefix (LL) followed by data. A transaction
program sending data over a basic conversation must include the LL field in
its data, and complete the formatting of the logical record it is sending before
leaving the send state.

(The partner has issued a
prepare-to-receive of type
SYNC. When the program issues a
confirm, it is in send state.)

S2_CDELC (6) Confirm deallocate state.

(The partner has issued a deallocate of
type SYNC or type CONFIRM. When the
program issues a confirm, it is in
deallocate state.)

S2_DLCED (7) Deallocate state.

(The partner has ended the conversation.
The program must deallocate the
conversation locally.)

Table 1-6 (continued) Conversation State Constant Identifiers

Constant Identifier Description

26

Chapter 1: Programming with API

The mapped conversation protocol boundary, usually used by application
transaction programs, is implemented in a high-level language, such as C.
Mapped conversations transform MUs into a standard format called a
general data stream, or GDS. The basic structural unit in the GDS is a
two-byte length prefix (LL), a two-byte GDS identifier (ID), and a variable
length data field. A transaction program sending data over a mapped
conversation is responsible for providing only the data and a map name. The
receiving LU automatically converts the data into its original form.

Figure 1-1 illustrates the significant difference between basic and mapped
conversation formats.

Figure 1-1 Basic and Mapped Conversation Formats

Because the LL prefix of a logical record has the same format as the LL field
in a GDS variable segment, a GDS variable segment is also a logical record.
Application transaction programs that use basic conversations do not need
to supply ID fields. If they are supplied, the basic conversation treats
everything following the LL prefix of the logical record as user data.

Conversation verbs are divided into three categories: mapped, basic, and
type independent. Mapped verbs communicate between user-written
transaction programs. Basic verbs are normally used only by service
programs, such as the Change Number of Sessions program.
Type-independent verbs provide functions that span both mapped and basic
verbs.

Basic: Logical Record

Mapped: GDS Structure

LL

(2 Bytes)
LL

(2 Bytes)

DATA

DATA

GDS ID
(2 Bytes)

Conversation Verbs

27

Note: Since a transaction program that uses basic verbs is responsible for all
data formatting, it can also use basic verbs to format mapped conversation
flows. This feature is useful in implementations that provide only basic-verb
support.

Mapped Conversation Verbs

All mapped conversation verb functions and functions called by a mapped
conversation verb are in /usr/lib/liblu62.a. Data structures for the mapped
conversation verbs are in /usr/include/sna/mapped.h. The global variables are
defined in the header file /usr/include/sna/global.h.

The mapped conversation verbs listed in Table 1-7 are supported.

Table 1-7 Mapped Conversation Verbs

Verb Function

malcnv Allocates a mapped conversation connecting the local

transaction program to a remote transaction program.

mcnfrm Sends a confirmation request to the remote transaction

program and waits for a reply so that the two

programs can synchronize their processing.

mcnfrmed Sends a confirmation reply to the remote transaction

program so that the two programs can synchronize

their processing.

mdalcnv Deallocates a mapped conversation resource from the

transaction program.

28

Chapter 1: Programming with API

mflush Transmits all information that the LU has buffered.

mgetatr Returns information pertaining to a mapped

conversation.

mprprcv Changes the mapped conversation from send state to

receive state in preparation to receive data.

mpstrct Requests posting of the specified mapped

conversation when information is available for the

program to receive.

mrcvim Receives any information available from the specified

mapped conversation, but does not wait for the

information to arrive.

mrcvwt Waits for information to arrive on the mapped

conversation and then receives the information.

mrqssnd Notifies the remote program that the local program is

requesting to enter send state for the mapped
conversation.

msnddta Sends one logical record to the remote transaction
program.

Table 1-7 (continued) Mapped Conversation Verbs

Verb Function

Conversation Verbs

29

Conversation States

Certain verbs are only issued in certain states. An application can be
designed to use the state variable to determine which verb to issue. For
example, the program may be designed with a receive loop that issues
mrcvim while in S2_RECV state and a switch statement that issues msnddta,
mdalcnv, or mcnfrm when the state changes from S2_RECV. (See the sample
transaction programs in Chapter 2 for examples of the use of the state
variable.)

Table 1-8 lists the states in which each mapped verb are issued.The states
listed in the table heading are described in Section , “Global Variables.”

msnderr Informs the remote transaction program that the local

program has detected an application error.

mtestcv Tests the mapped conversation to determine whether or
not it has been posted.

Table 1-8 Mapped Verb Conversation States and Verb Validity

S2_ S2_ S2_ S2_ S2_ S2_ S2_

REQUEST SEND ECV CONFIRM CSEND SDELC DLCED

malcnv yes no no no no no no

mcnfrm no yes no no no no no

mcnfrmed no no no yes yes yes no

mdalcnv

Type:

flush no yes no no no no no

sync no yes no no no no no

Table 1-7 (continued) Mapped Conversation Verbs

Verb Function

30

Chapter 1: Programming with API

Data Mapping

At its simplest level, the information sent between two transaction programs
consists of a stream of data bytes formatted into logical records. At the
logical-record level, however, the data may require further transformation
before the transaction program can receive it. Map names provide this
function. A map name is a non-null user-defined name that identifies the
format of the logical record and describes the mapping performed before the
data is sent in a manner transparent to the transaction program.

The map name specified by the local program and the map name received
by the remote program can be different. For example, the local LU can

abend no yes yes yes yes yes no

local no no no no no no yes

confirm no yes no no no no no

mflush no yes no no no no no

mgetatr no yes yes yes yes yes yes

mprprcv no yes no no no no no

mpstrct no no yes no no no no

mrcvwt no yes yes no no no no

mrcvim no no yes no no no no

mrqssnd no no yes yes no no no

msnddta no yes no no no no no

msnderr no yes yes yes yes yes no

mtestcv

Type:

posted no no yes no no no no

rqssnd no no yes yes no no no

Table 1-8 (continued) Mapped Verb Conversation States and Verb Validity

Conversation Verbs

31

translate a map name with a meaning known locally into a global map name
known to the remote LU. The remote LU in turn can translate the received
map name into one that is known locally to the remote transaction program.

Data mapping is optional on a mapped conversation. That is, the logical
record can be sent without being mapped. A null map name specifies that no
data mapping should be done. A null map name is never translated into a
non-null map name, although a non-null map name may be translated into
a null map name, which would disable mapping.

Mapper: The Mapping Utility Interface

When data mapping is specified, the programmer is responsible for
supplying it. A defined interface exists between the LU
Mapped-conversation Component (MC) and the user-supplied Mapping
Utility (Mapper). The Mapper must adhere to this interface to ensure correct
operation of the LU mapped-conversation component.

Under the LU 6.2 architecture, the Mapper is responsible for map-name
transmission as well as data transformation. Under this implementation of
data mapping, the Mapper handles only data transformation. The MC
handles the transmission of map names between the local and remote LUs.

The function that performs mapping, mc_map, is defined in a man page. To
use data mapping, an application programmer creates a function with the
name mc_map and links it to the executable object.

Type-independent Conversation Verbs

The type-independent conversation verbs described in Table 1-9 are used on
either mapped or basic conversations and are supported in IRIS SNA LU 6.2.

32

Chapter 1: Programming with API

Conversation States

After the execution of any of the conversation verb functions, the
conversation state is set in the variable snastat.

Table 1-10 lists the states in which each type-independent verb can be issued.
(The states listed in the table header are defined in Section , “Global
Variables.”)

All type-independent conversation verb functions, and functions called by a
type-independent conversation verb are in /usr/liblu62.a. The data structures
for the type-independent verbs are in /usr/include/lu62/basic.h.

The global variables are defined in the header file global.h.

Basic Conversation Verbs

Basic conversation verbs can conduct basic or mapped conversations. The
application is responsible for correctly formatting the data that is sent using
basic verbs. That is, the data must be packed into logical records, including

Table 1-9 Type-independent Conversation Verbs

Verb Function

gtype Returns the type of resource to which the specified resource ID
is assigned.

waitcv Waits for posting to occur on any basic or mapped
conversation from among a list of conversations.

Table 1-10 Conversation States ansd Verb Validity

S2_
RESET

S2_
SEND

S2_
RECV

S2_
CNFRM

S2_
CSEND

S2_
CDELC

S2_
DLCED

gtype no yes yes yes yes yes no

waitev no no yes no no no no

Conversation Verbs

33

the GDS variables if a mapped conversation is being conducted. Basic verbs
are intended for use by LU service programs, such as CNOS or Document
Interchange Architecture (DIA). Mapped verbs also use basic verbs; the
mapped verbs format the data and the verb request and then call the basic
verb to perform the action.

The basic conversation verbs listed in Table 1-11 are supported.

Table 1-11 Basic Conversation Verbs

Verb Function

alcnv Allocates a conversation connecting the local transaction
program to a remote transaction program.

cnfrm Sends a confirmation request to the remote transaction
program and waits for a reply, so that the two programs can
synchronize their processing.

cnfrmed Sends a confirmation reply to the remote transaction program,
so that the two programs can synchronize their processing.

dalcnv Deallocates a conversation resource from the ransaction
program.

flush Transmits all information that the LU has buffered.

getatr Returns information pertaining to a conversation when
information is available for the program to receive.

prprcv Changes the conversation from send state to receive state in
preparation to receive data.

pstrct Requests posting of the specified conversation when
information is available for the program to receive.

rcvim Receives any information that is available from the specified
conversation, but does not wait for the information to arrive.

rcvwt Waits for information to arrive on the conversation and then
receives the information.

rqssnd Notifies the remote program that the local program is
requesting to enter send state for the conversation.

snddta Sends information to the remote transaction program.

34

Chapter 1: Programming with API

Conversation States

Some verbs are issued only in certain states (see Table 1-12). An application
can use the state variable to determine which verb to issue. One example is
a program designed with a receive loop that issues rcvim while in S2_RECV
state and a switch statement that issues snddta, dalcnv, or cnfrm when the
state changes from S2_RECV.

snderr Informs the remote transaction program that the local
program has detected an application error.

testcv Tests the conversation to determine whether it has been
posted.

Table 1-12 Conversation States and Verb Validity

S2_ S2_ S2_ S2_ S2_ S2_ S2_

RESET SEND RECV CONFIRM CSEND CDELC DLCED

alcnv yes no no no no no no

cnfrm no yes no no no no no

cnfrmed no no no yes yes yes no

dalcnv

Type:

flush no yes no no no no no

sync no yes no no no no no

abend no yes yes yes yes yes no

local no no no no no no yes

confirm no yes no no no no no

flush no yes yes yes yes yes yes

Table 1-11 (continued) Basic Conversation Verbs

Verb Function

Control Operator Verbs

35

Control Operator Verbs

Control operator verbs, which define and control LUs, modes, and sessions,
are divided into two categories: change number of session verbs and session
control verbs.

CNOS verbs establish the number of sessions allowed between two LUs
over a particular mode. Session control verbs activate and deactivate
sessions after the session limits have been established.

The verb functions and functions called by the verb are archived in
/usr/lib/liblu62.a. Programs that use verb functions are linked with this
library. The data structures for the CNOS and session control verbs are in
/usr/lib/cntrl.h. The global variables are defined in the header file global.h.

getatr no yes yes yes yes yes yes

prprcv no yes no no no no no

pstrct no no yes no no no no

rcvwt no yes yes no no no no

rcvim no no yes no no no no

rqssnd no no yes yes no no no

snddta no yes no no no no no

snderr no yes yes yes yes yes no

testcv

Type:

posted no no yes no no no no

rqssnd no yes yes no no no no

Table 1-12 (continued) Conversation States and Verb Validity

36

Chapter 1: Programming with API

Note: Feedback on the execution of control operator verb calls is returned in
two global variables: snamaj and snamin. The third global variable, snastat, is
not used by the control operator verbs.

Change Number of Session Verbs

The CNOS verbs set the allowed number of sessions between the local LUs
and the remote LUs. The limits are set for each mode defined between the
LUs. When the node is first activated, the session limits on all modes is 0; that
is, no sessions can be activated. Limits are raised by the initsl verb. If
pre-bound sessions were defined for the mode, sessions can also be activated
as a result of raising the limits. If not, sessions can be started using the
session control verbs. Once limits have been raised initially, they can be
changed by the chgsl verb. All session activity can be terminated by using
the rstsl verb, which reduces the session limits to 0.

When parallel sessions are supported by the LUs (that is, the defined session
limit can be greater than 1), the two LUs must agree on the number of
sessions allowed. This agreement is negotiated between the LUs by an LU
6.2 conversation over a special mode. The mode, named SNASVCMG, is
defined by default for all LUs that support parallel sessions. The session
limit on this mode is always set to 2 so the LUs need not negotiate these
limits. Nevertheless, these modes must be initialized by both LUs before any
other mode can be initialized. The LU starts the negotiation when the
operator issues initsl (initialize session limits), chgsl (change session limits),
or
rstsl (reset session limits) for a parallel-session mode. The LU then allocates
a conversation with the partner LU, requesting the CNOS model as its target
program, and sends a defined message that contains the requested limits.
The CNOS model (s2_cnos) issues the procsl verb to handle the target side of
the negotiation. This verb determines the defined limits for the mode and
returns a message containing limits that are the lesser of those defined for the
mode or requested by the source. The target returns the limits which the
mode will observe.

Note: When LUs try to initiate the CNOS exchange at the same time, the LU
with the “greater” network name prevails.

When parallel sessions are not supported, the initsl verb is still issued,
although no CNOS negotiation takes place. Do not use the chgsl verb (limits

Control Operator Verbs

37

are either 0 or 1). See the man pages in Appendix C for detailed information
on the verbs listed in Table 1-13.

Table 1-13 CNOS Verbs

Verb Function

chgsl Changes the session limit and contention-winner

polarities for parallel-session connections.

dspsl Provides information on the mode's current session

limit.

initsl Establishes the initial session limit for single-session

or parallel-session connections.

procsl Processes the session limit, contention-winner

polarities, and related CNOS parameters from the

source LU and, if necessary, negotiates them to values

acceptable to the target LU.

rstsl Resets to 0 the session limit for single-session or

parallel-session connections, and the contention

winner polarities for the parallel-session connections.

38

Chapter 1: Programming with API

Session Control Verbs

Session control verbs explicitly activate and deactivate sessions. Sessions are
activated by any one of three ways:

1. By issuing the actses verb.

2. By issuing a CNOS verb if pre-bound (also called “auto-activated”)
sessions are defined for the mode.

3. By issuing the alcnv verb if session limits have been raised, but no
sessions are active.

Sessions can be deactivated by issuing either a dctses verb or a CNOS verb
to reduce the number of allowed sessions. In fact, if pre-bound sessions are
defined, a session may be activated to replace one brought down by a dctses
verb, leaving the same number of sessions active. The session control verbs
listed in Table 1-14 are supported. See Appendix C, “Man Pages,” for
additional information about these verbs.

Security Features

Three levels of security are defined for IRIS SNA LU 6.2:

• LU-LU security

• Conversation-level security

• Resource-level security

LU-LU security at session activation verifies the identity of the remote LU.

Table 1-14 Session Control Verbs

Verb Function

actses Activates a session with the specified mode name to the target LU.
The session is activated as a contention winner for either the
source or target LU.

dctses Deactivates the specified LU-LU session.

Security Features

39

Conversation-level security verifies access to the remote system (that is, it
determines whether or not the requesting user is authorized to allocate a
conversation to the remote system).

Resource-level security verifies the user’s authority to access the requested
resources on the remote system; for example, whether the user is authorized
to access the requested transaction program.

This section explains the three types of security and how they are
implemented Following the explanation is a comparison of this
implementation to the specifications in the TPRM.

LU-LU Security

LU-LU security verifies the identity of the remote LU when a session is
activated between local and remote LUs using passwords configured at both
LUs. Both LUs verify the identify of the other by using the following
exchange protocol during session activation.

The local LU transmits random text to the remote LU, which encrypts the
text using its password. The remote LU sends the encrypted data back to the
local LU. The local LU then encrypts the original random data with its
password and checks that the two encrypted versions match. The same
exchange takes place in the opposite direction with the remote LU
transmitting random data to the local LU, which then sends back the
encrypted form to the remote LU.

To initiate LU-LU security, define an LU password for the remote LU with
the dfnrlu verb by specifying the pswd and pswdop parameters. The hex
characters must match the password of your partner. A partner using LU 6.2
specifies the same characters in defining the remote LU for your site. If your
partner is an IBM system, consult the relevant IBM manual for information
on how to specify security information. The encryption algorithm makes
only the first seven bits of each byte significant. Therefore, passwords
0x000000 and 0x01010101 are identical.

Note: Because of federal export regulations, the LU-LU security feature is
not available on all systems.

40

Chapter 1: Programming with API

Conversation-level Security

Conversation-level security verifies that a user requesting a program start on
a remote site is authorized to that site. When allocating a conversation, the
user of the transaction program specifies a user ID, password, and profile. If
the user does not specify this information, the source LU captures the
information from the sign-on ID under which the program is being run. The
security information is transmitted with the conversation-initiation
information to enable the remote site to validate the request for access.

The security information is specified on the alcnv verb parameters sec, user,
pass, and prof.

The parameter sec controls how security information is specified:

• SEC_NONE indicates that no security information should be
transmitted.

• SEC_SAME specifies the use of the sign-on ID of the user running the
transaction program. In this case, the password is flagged as being
already verified and is not transmitted.

• SEC_PGM indicates that the information provided in the user, pass, and
prof parameters is to be transmitted to the remote site.

Note: Since data is not encrypted, any password sent on the allocate request
is transmitted in readable form and captured with a line trace. For this
reason, the SEC_SAME option is preferred.

The acceptance of the security information is configured with the dfnrlu
verb at the site receiving the allocation request (remote site). The secacc
parameter indicates the type of security information that can be accepted for
each of the remote LUs.

The following values are defined:

• NO_SEC indicates that security information is not accepted. Allocation
requests received from this LU that carry security information are
rejected. This means that the initiation program can specify only
SEC_NONE on the alcnv request.

Security Features

41

• USERID indicates that security information is accepted from this LU,
but the password-verified option is not allowed. Therefore, the
initiating program cannot specify SEC_SAME on the alcnv request.

• VERIFIED indicates that security information is accepted and that the
verified option can be used. This means the initiation program can use
any valid setting for the sec parameter of the alcnv request.

After sessions have been established between the LUs, each reads the
security-acceptance level of its partner from the psecacc field returned in the
dsprlu verb. The three values specify only the acceptable level of security
information, and not the level required.

Accepted security information is verified against the IRIX™ system file
/etc/passwd when the allocation request is received at the remote site. The
user is authorized if listed in /etc/passwd. The password is verified against the
encrypted password in /etc/passwd (through the IRIX login program). If the
/etc/passwd entry for the user lacks a password, the user is verified without
checking the allocation request password. Also, if SEC_SAME was specified,
indicating a verified allocation request password, no password check is
performed. The transaction program initiator s2_tpi performs the check
against the IRIX password file.

Note: The dfnllu and dfntp verbs define a list of authorized users for the LU
and the transaction program. This defined security information is never
used in this implementation. The IRIX security information is used in its
place. Defining users has no adverse effect on operations, although it
increases memory resource usage.

Resource-level Security

Resource-level security is defined for IRIS SNA LU 6.2 to add another level
of access authorization above conversation-level security. Resources, such as
transaction programs, can be restricted to a small group of users. Resource
security is provided in two ways. First, when a transaction program is
defined, specify the level of security information required to run the
program. Second, when the program is started, it is initiated under the IRIX
user ID specified in the allocation request, so that IRIX security can control
access to other resources, such as data files.

42

Chapter 1: Programming with API

The dfntp verb’s secrq parameter specifies whether or not security is
required. Several values are provided for this parameter, indicating whether
conversation-level security is required and giving the level of resource
security required. However, since this implementation verifies security
against the IRIX password file, not against the user information specified on
the dfntp verb, the secrq parameter functions as though it were a Boolean
value. Specifying SQ_NONE indicates that security information is not
required. Security information can be specified in the allocation request, but
is not required. Any other value indicates that security information must be
provided in the allocation request. The user and password fields are verified
against /etc/passwd. If a profile is specified, it is verified against /etc/group.

There is a connection between the secacc parameter of the dfnrlu verb and
the secrq parameter of dfntp. The requirement for security information is
determined by the transaction program configuration, but the acceptance of
security information is determined by the remote LU configuration.
Mismatched configurations can lead to situations where no allocation
request is accepted. For example, if the transaction program requires
security, but security information cannot be accepted from the remote LU,
allocation requests for the transaction program from the remote LU are
always rejected. Requests that contain security information are rejected
because secacc is SEC_NONE. Requests that do not specify security are
rejected because secrq is not SQ_NONE.

After an allocation request has passed all edits and the user has been
verified, the transaction program initiator s2_tpi invokes the transaction
program process and changes the process group ID and process user ID
values to those in the /etc/passwd entry for the user. The transaction program
runs under the IRIX security limitations of the group ID and user ID and is,
in effect, logged in as the requesting user. When no security information is
specified, the transaction runs by default under the group ID and user ID of
the s2_tpi process. Underlying IRIX security enhances the LU 6.2-defined
user verification by limiting system resources available to the transaction
program to those resources available to the specified user.

In addition to user and password, LU 6.2 implements a special use of the
profile field. A profile specified in the allocation request identifies an IRIX
group name. The IRIX system file /etc/group is checked to see if the group is
available to the user. If so, the transaction program runs under the group ID
indicated in /etc/group for the group name (specified by the profile parameter)
as well as under the user ID specified for the user in /etc/passwd. This way a

Security Features

43

given user has multiple groups available under which to run the transaction
program. The group is specified by the profile parameter in the allocation
request.

The s2_tpi process requires the effective user ID of a superuser to enable it to
set the group ID and the user IDs for the transaction program processes. This
is accomplished either of two ways:

1. Start s2_tpi from a superuser logon.

This is dangerous since transaction programs run by default under the
user ID of the s2_tpi process if no security information is specified in the
allocation request. If no security information is specified, the evoked
program runs as root.

2. Run the s2_tpi program under an effective user ID of a superuser.

The s2_tpi program owned by a superuser has its file mode set to run
under an effective user ID of the file’s owner (for example, mode 04111)
and runs under the effective user ID of the superuser. s2_tpi always
removes the process-effective user ID from invoked transaction
program processes. This is the preferred method.

Comparison of TPRM and LU 6.2 Security

This section compares the methods used by IRIS SNA LU 6.2 to provide LU
to LU security, conversation-level security, and resource level security to
those described in the IBM System Network Architecture Transaction
Programmer's Reference Manual for LU 6.2 (TPRM).

LU-LU Security

The IBM TPRM configures LU-LU security via the DEFINE_REMOTE_LU
verb. The LU_LU_PASSWORD parameter defines the 64-bit password used
during session activation for the LU-LU verification.

LU 6.2 configures LU-LU security with the dfnrlu verb. The pswd and pswdop
parameters define the LU-LU password.

44

Chapter 1: Programming with API

Conversation-level Security

In the IBM TPRM, the DEFINE_LOCAL_LU verb provides a list of users and
their associated passwords to the local LU. This list identifies the user
specified in the allocation request; or, if the user is not already identified in
the request, the list provides passwords to verify that the user has system
access. In LU 6.2, the list of users is provided by the IRIX system file
/etc/passwd. User and password information can be specified by the dfnllu
verb, but this information is not used.

In the TPRM, the DEFINE_REMOTE_LU verb defines the acceptable remote
LU allocation request security information. In LU 6.2, security acceptance is
defined by the dfnrlu verb in a fashion similar to TPRM.

Resource-level Security

In the TPRM, the DEFINE_TP verb indicates the security required by a
specific transaction program. In LU 6.2, the security required is defined
similarly by the dfntp verb. However, the various flavors of security have
been collapsed into one in the LU 6.2 implementation.

In the TPRM, the DEFINE_TP verb defines the users, passwords, and
profiles authorized to access the program. In LU 6.2, the authorities can be
defined, but the list of authorized users is not checked at program-initiation
time. Instead, IRIX security is contained in /etc/passwd and /etc/group files.
This provides unauthorized access protection for resources, such as files, not
directly under the control of LU 6.2.

Application Diagnostics Guide

45

Application Diagnostics Guide

Table 1-15 provides information to help locate the source of problems
encountered when creating an application with IRIS SNA LU 6.2.

Table 1-15 Application Error Codes

Problem Solution

Compile Errors:

Include files not found Use the -I option of the cc command to direct the
compiler to load in /usr/lib.

Unresolved references The program must be linked against the LU 6.2
library /usr/lib/liblu62.a.

Execution Errors:

LU name and/or mode are not
recognized

Your program must know the configuration’s
names for the local LU, remote LU, and mode
names to attach and to allocate a conversation.

Verb function returns a usage
error (Major Code 01)

A usage error indicates that a verb parameter is
being used incorrectly. Refer to the Message Guide
in the IRIS SNA SERVER Administration Guide for
an exact description of the error received and how
to change the parameter settings.

Remote program not known
(Major Code 05) (Minor Code
08)

If a fully qualified pathname is not specified, the
program must be located in one of the directories
in the standard path. Either relocate the target
program or specify a pathname.

Remote program starts, but
does not begin to receive data.

The remote program must issue an LU rattach
verb connect itself to the conversation. It then
must reissue a rcvwt verb to begin to receive data.
Consult the man pages on these verbs for more
information.

46

Chapter 1: Programming with API

When communicating with an
IBM system, PIP arrive with
unexpected values.

Parameters sent to an IBM system must be sent in
EBCDIC. Use the routines atoe and etoa to
perform the translation. (CICS does not support
Program Initialization Parameter (PIP).

When communicating with an
IBM System/36, transaction
error received. (Major Code 07)
(Minor Code 11)

The RPG support on the System/36 required
mapped conversations. The data service must be
packaged in GDS variable 0x12ff. See the sample
transaction programs in Chapter 2 for an example
of a mapped conversation.

Table 1-15 (continued) Application Error Codes

Problem Solution

47

Chapter 2

2. Sample Transaction Programs

These sample transaction programs are for descriptive purposes only and
are not considered part of the production system. Two sample programs are
illustrated. The first describes a transaction program to send a file, and the
second describes a program to receive a file.

Sample Program: Send a File

OBJECT: s2_fsnd.c

FULL NAME: Send a file

TYPE: End-user Package Main

FUNCTION: Sends a file to another computer, either UNIX® or IBM. The
program will confirm delivery.

Without any option flags, the program uses a basic conversation, performs
no transformation on the file, and evokes the remote program s2frcv. With
option flags, a user can request the program to translate the file into EBCDIC,
use a mapped conversation, or evoke a different remote program.

INPUTS: Required:

• Pathname of local node

• Local LU name

• Remote LU name

• Mode name

• Pathname of the file to send

• Name(s) of the file on the remote side

48

Chapter 2: Sample Transaction Programs

If the remote system requires multiple names to identify a file (for example,
library name, data set name), enter them here separately. Each name is then
passed to the remote program as a separate parameter.

INPUTS: Optional:

-m Use a mapped conversation

-e Translate the file to EBCDIC before sending

This option assumes text is being sent. New lines are stripped and text is
shipped in packets of eighty characters or less. This option cannot be used
when document mode is specified.

-r Evokes “Program name”

-d Document mode

All flags must come on the command line before the required names. The
required names must be in the order given. All parameters are translated to
EBCDIC before sending, regardless of whether the -e option is taken. It is the
responsibility of the remote program to transform them if necessary.

OUTPUTS: An exit code of 0 if the remote system confirms successful
delivery; otherwise, an exit code of -1.

/*...*/
/*DATA DEFINITION SECTION */
/*...*/

#include <stdio.h>
#include <fcntl.h>
#include "global.h"/ *SNA62 global variables*/
#include "basic.h"/ *SNA62 Basic Verb Header*/

long cnvid; */ Conversation Identifier*/
#define BUFFSIZE 802
#define RECSIZE 84
#define REMOTPGM "s2_frcv"

/*...*/
/*MAINLINE */
/*...*/

main(argc, argv)
int argc;
char**argv;

Sample Program: Send a File

49

{
extern interrno;
extern intoptind;
extern intopterr;
extern char*optarg;
intrc;
intfildes;
FILE*stream;
char*ch;
intnbyte;
intc;
intstart = 2;/* Default to basic*/
intmapped = 0;/* Default to basic*/
intebcdic = 0;/* Default to ascii*/
intdoc = 0/* Default to not a document*/

char**names;
char*rpgm;

structsnddta_dssnddta_ds;

union{
short II
hexbuff[BUFFSIZE];
} s;

union{
short II
hexbuff[RECSIZE];
} e;

/*...*/
/*Find Option flags -m, -e, -d, and -r */
/*...*/

opterr = 1;/* Turn off option error */
rpgm = REMOTPGM;

while((c=getopt(argv, "mer:d"))!=EOF)

{
switch (c)

{

50

Chapter 2: Sample Transaction Programs

case 'm':
mapped = 1;
start = 4;
break;

case 'e':
if (doc)

{
printf("-e for ebcdic assumes document
mode./n");
printf("-e and -d cannot be specified
simultaneously.\n");
exit(-1);
}

ebcdic = 1;

break;
case 'r':

rpgm = optarg;
if(!rpgm)

{
printf("A program name isrequired with the -r
option.\n");
printf("s2_fsnd exiting.\n");
exit(-1);
}
break;

case 'd':
if (ebcdic)

{
printf("-e for ebcdic assumes document
mode.\n");
printf("-e and -d cannot be specified
simultaneously.\n");
exit(-1);
}

doc = 1;
break;

}
}

names = (argv + optind);

Sample Program: Send a File

51

/*...*/
/*Six parameters must be entered. Exit if not */
/*...*/
if ((argc - optind) <6)

{
printf("These parameters must be entered to
s2_fsnd:\n");
printf("The configuration file name, the local LU,
the partner LU, the mode,
\n");
printf("the file you wish to transfer, and its name
on the remote system.\n");
printf("The -m -e and -r flags are optional, but
must come first if present.
\n");
printf("s2_fsnd exiting.\n");
exit(-1);
}

/*...*/
/*Open a local file. Exit if it cannot be opened */
/*...*/

if ((fildes = open(*(names + 4), O_RDONLY)) == -1
)

{
printf("File %s open unsuccessful, errno %d\n",
*(names + 4),errno);
printf("s2_fsnd exiting.\n"); exit(-1);
}

else if (doc || ebcdic)
{
if(!(stream = fdopen(fildes, "r")))
{
printf("File %s open unsuccessful, errno %d\n",
*(names + 4), errno);
printf("s2_fsnd exiting.\n"); exit(-1);
}

}

/*...*/
LOCALLY ATTACH THE PROGRAM

52

Chapter 2: Sample Transaction Programs

LATTACH requires the node name, local LU name, and
transaction program name to be present as parameters.

/*...*/

rc = lattach(*(names + 0), *(names + 1), argv[0]);

if(rc == S2_ERR)
{
prterr(names);
exit(-1);
}

/*...*/
ALLOCATE THE CONVERSATION

Pass mapped and ebcdic values, the remote pgm name, and
the pointer to the array of pointers that contain the
names.

/*...*/

rc = lconv(mapped, ebcdic, rpgm, names); /* Allocate
Conversation*/

if (rc == S2_ERR)
{
prterr(names);
exit(-1);
}

/*...*/
READ AND SEND DATA

If ebcdic, call sndibm - else call sndunix.
/*...*/

if (ebcdic)
{
sndibm(snddta_ds, mapped, stream, start, names);
}

else
{
sndunix(snddta_ds, mapped, stream, start, names,

Sample Program: Send a File

53

doc, fildes, ebcdic);
}

/*...*/
DEALLOCATE, FLUSH

If the deallocate returns OK, detach from the LU and end
the program. If the deallocate fails, (a negative
response was received), deallocate locally, detach, and
end program with an abend code.

/*...*/

if (snamaj != S2_OK)
{
cleanup();
}

else
{
rc = ldealloc(DC_SYNC);

if (rc == S2_NOERR)
{
rc = detach();
rc = 0;
}

else
{
prterr(names);
cleanup();
}

}

exit(rc);
/* END SPEEDL */

/*...*/
LOCAL ATTACH

/*...*/

lattach(pfile, llu, tpn)
char *pfile, *llu, *tpn;

54

Chapter 2: Sample Transaction Programs

{
structattach_ds attach_ds;
intrc;

attach_ds.type= AT_LU
attach_ds.path= pfile;
attach_ds.name= llu;
attach_ds.tpn= tpn;
attach_ds.wait= NO;

rc = attach(&attach_ds);
return(rc);
}

/*...*/
LALLOC

/*...*/

lconv(mapped, ebcdic, rpgm, names)
int mapped;
int ebcdic;
char *rpgm;
char *names[];

{
int rc, i, j;
char wrkrlu[8];
char wrkmode[8];
struct alcnv_ds alcnv_ds;

alcnv_ds.rlu = names[2];
alcnv_ds.mode= names[3];alcnv_ds.tpn = rpgm;

alcnv_ds.when = AC_WHEN;/* Delay*/
alcnv_ds.type = mapped;/* Basic or mapped */
alcnv_ds.sync = 1;

alcnv_ds.user = NULL;
alcnv_ds.pass = NULL;
alcnv_ds.sec = 0;

alcnv_ds.pipused = 1;
if (ebcdic)
alcnv_ds.pipa[0] = "EBCDIC";

else

Sample Program: Send a File

55

alcnv_ds.pipa(0) = "ASCII";
atoe(alcnv_ds.pipa[0], strlen(alcnv_ds.pipa[0]));

strcpy(wrkrlu, alcnv_ds.rlu);

alcnv_ds.pipa(1) = wrkrlu;

atoe(alcnv_ds.pipa{1}, strlen(alcnv_ds.pipa[1]));

strcpy(wrkmode, alcnv_ds.mode);

alcnv_ds.pipa(2) = wrkmode;

atoe(alcnv_ds.pipa{2}, strlen(alcnv_ds.pipa[2]));

for(i = 5, j = 3; names[i]; i++, j++)
{
alcnv_ds.pipa[j] = names[i];
atoe(alcnv_ds.pipa[j],
strlen(alcnv_ds.pipa[j]));
}

alcnv_ds.pipa[j] = NULL;
rc = alcnv(&alcnv_ds);
cnvid = alcnv_ds.cnvid;
return(rc);
}

/*...*/
LDEALLOC

/*...*/

ldealloc(type)
int type;

{
int rc;

if(snastat == S2_DLCED)
type = DC_LOCAL;

rc = dalcnv(cnvid,type,NULL);

return(rc);
}

56

Chapter 2: Sample Transaction Programs

/*...*/
PRTERR

/*...*/

prterr(names)
char *names[];

{
if(!(snamaj == S2_DEALC && snamin == S2_DNORM))
{

printf("Major code: %-4d %s\n", snamaj,
dspmaj(snamaj));

printf("Minor code: %-4d %s\n", snamin,
dspmin(snamaj,snamin));

printf("Error in s2_fsnd, file '%s' not sent
to '%s'\n", names[4], names[2]);

}
}

/*...*/
CLEANUP
Called if a conversation terminates abnormally.

/*...*/

cleanup()
{
ldealloc(DC_AB_PGM);
detach();
exit(-1);
}

/*...*/
READ FROM THE FILE, SEND THE DATA, UNIX TO IBM

Leave the first two bytes for the logical record length
field.
Read eighty bytes of data or less at one time.

/*...*/

sndibm(snddta_ds, mapped, stream, start, names)

structsnddta_dssnddta_ds;

Sample Program: Send a File

57

intmapped;
FILE*stream;
intstart;
char**names;

{

intnbyte;
intrc;
union {

shortII
hexbuff[RECSIZE];
} e;

snddta_ds.cnvid = cnvid;
snddta_ds.data = e.buff;

/* while snastat is in send state, and read is successful,
 is successful, perform the send data */

while(snastat == S2_SEND &&
(fgets(e.buff + start, RECSIZE - start, stream)))
{

nbyte = strlen(e.buff +start);

if(e.buff[nbyte + start -1] =='\n')nbyte--;

atoe(e.buff + start, nbyte);

e.II = nbyte + start;

snddta_ds.length = nbyte + start ;

if(mapped)
{
*(e.buff + 2) = 0x12;
*(e.buff + 3) = 0xFF;
}

rc = snddta(&snddta_ds);

if(rc == S2_ERR)
prterr(names);

58

Chapter 2: Sample Transaction Programs

}
}

/*...*/
 READ FROM THE FILE, SEND THE DATA, UNIX TO UNIX

Leave the first two bytes for the logical record length
field.
/*...*/

sndunix(snddta_ds, mapped, stream, start, names, doc, fildes,
ebcdic)

structsnddta_dssnddta_ds;
intmapped;
FILE*stream;
intstart;
char**names;
intdoc;
intfildes;
intebcdic;

{

intnbyte;
intrc;
union {

shortII
hexbuff[BUFFSIZE];
} s;

snddta_ds.cnvid = cnvid;
snddta_ds.data = s.buff;

/* while snastat is in send state, and either of
 the read types are successful, perform the
 send data */

while(snastat == S2_SEND && ((!doc && (nbyte =
read(fildes, s.buff + start,
BUFFSIZE - start))
&& (nbyte != -1)) ||
(doc&& (fgets(s.buff + start,
BUFFSIZE - start,stream)))))

Sample Program: Receive a File

59

{

if(doc) nbyte = strlen(s.buff + start);

if(ebcdic)
atoe(s.buff + start, nbyte);

s.II = nbyte + start;
snddta_ds.length = nbyte F+ start ;

if(mapped)

{

*(s.buff + 2) = 0x12;
*(s.buff + 3) = 0xFF;

}
rc = snddta(&snddta_ds);
if(rec == S2_ERR)
prterr(names);
}

}

Sample Program: Receive a File

OBJECT: s2_frcv.c

FULL NAME: Receive a file

TYPE: End-user Package Main

FUNCTION: Program reads the open conversation and writes to
the file name input as a parameter. If the file is sent in
EBCDIC, this program translates it to ASCII. This
program can read from either a basic or mapped
conversation: it simply checks to see what type of
conversation has evoked it and acts accordingly.

INPUTS: Node name, conversation ID, EBCDIC or ASCII,
(depending on which language the file is in), the RLU name,
mode name, and pathname of the file. Node name and

60

Chapter 2: Sample Transaction Programs

conversation ID are provided by the LU; a programmer
wishing to write a different source program provides the
EBCDIC or ASCII string and the pathname of the file. This
program does not use RLU and mode, a part of the PIP data
required by IBM System/36 programs.

OUTPUTS: A return code of 0 if the file is successfully written to disk;
otherwise, -1.

..
***/

#ifndef GOLD static char SCCSID[] = "@(#)s2_frcv.c
1.4";#endif

/*...*/
/*DATA DEFINITION SECTION */
/*...*/

#include <fcntl.h>
#include <string.h>
#include "global.h"/* SNA62 global variables*/
#include "basic.h"/* SNA62 Basic Verb Header*/

#defineBUFFSIZE 802 #define
RECSIZE 80

union {
short II;
hex buff[BUFFSIZE];
} r;

longcnvid;/* Conversation Identifier*/

/*...*/
/*MAINLINE */
/*...*/

main(argc, argv)
int argc;
char *argv[];
{

extern interrno;
intrc;

Sample Program: Receive a File

61

structrcvwt_ds rcvwt_ds;
intfildes;
char*fspc;
intstart = 2;
intmapped = 0;/* Default to basic*/
intebcdic = 0;/* Default to ascii*/

/*...*/
/*REMOTELY ATTACH THE PROGRAM */
/*...*/

rc = lrattach(argv[1], argv[2]);
if(rc == S2_ERR)

{
cleanup();
exit(-1);
}

/*...*/
/*Determine the type of conversation, set LL offset */
/*...*/

mapped = gtype(cnvid);
if(mapped == S2_ERR)

{
cleanup();
exit(-1);
}

if(mapped)
start = 4;

else
start = 2;

/*...*/
/*Check parameters, which are in EBCDIC. Abend if /*
/*parms not here. Determine if EBCDIC to ASCII /*
/*transform is needed. /*
/*...*/

if(!argv[3] || !argv[6])

62

Chapter 2: Sample Transaction Programs

if(mapped == S2_ERR)
{
cleanup();
exit(-1);
}

etoa(argv[3], strlen(argv[3]));
if(!(strcmp(argv[3], "EBCDIC")))

ebcdic = 1;
etoa(argv[6], strlen(argv[6]));

fspc = strchr(argv[6], ' ');
if(*fspc != '\0';

/*...*/
/*Open local file. Exit if it cannot be open. */
/*...*/

if ((fildes = open(argv[6], O_WRONLY | O_CREAT,
0777)) == -1)

{
cleanup();
exit(-1);
}

/*...*/
/* Receive the data and write it out. */
/*...*/

rcvwt_ds.cnvid = cnvid;
rcvwt_cs.fill = RW_LL;
rcvwt_ds.data = r.buff;

while(snastat == SW_RECV && rc !=S2_ERR)

{
rcvwt_ds.length = BUFFSIZE;

rc = rcvwt(&rcvwt_ds);

if (rc != S2_ERR && snastat == S2_RECV &&
rcvwt_ds.what == RW_CMPL)

{

Sample Program: Receive a File

63

if(ebcdic)
{
 etoa(r.buff + start, rcvwt_ds.length - start);

rc = ctus(r.buff + start, rcvwt+ds.length - start, fildes);
}

else
{
rc = write(fildes. r.buff + start,

rcvwt_ds.length - start);
}

if (rc == -1)
(
cleanup();
exit(-1);
}

}

/*...*/
CONFIRM DEALLOCATE
If a confirm deallocate arrives, send back a positive
response. A negative response would have been sent prior to
this.
/*...*/

if(snastat == S2_CDELC)
{
cnfrmed(cnvid);
}

/*...*/
DEALLOCATE

If the deallocate returns OK, detach from the LU and end
the program. If the deallocate fails, (a negative
response wasreceived), deallocate locally, detach, and
end program with an abend code.

/*...*/

if (snastat == S2_DLCED)
{
rc = ldealloc(DC_LOCAL);

64

Chapter 2: Sample Transaction Programs

rc = detach();
rc = 0;
}

else
{
cleanup();
rc = -1;
}
exit(rc);

}/* END FRCV */
/*...*/
/*REMOTE ATTACH */
/*...*/

lrattach(pfile,cconv)
char*pfile;
char*cconv;

{
intrc;

cnvid = rattach(pfile, cconv, AT_NOMAX);

return(cnvid);
}

/*...*/
/* LDEALLOC */
/*...*/

ldealloc(type)

inttype;

{
intrc;

if (snastat == S2_DLCED)
type = DC_LOCAL;

rc = dalcnv(cnvid,type,NULL);

return(rc);
}

Sample Program: Receive a File

65

/*...*/
CLEANUP
Called if a conversation terminates abnormally.

/*...*/

cleanup()
{
ldealloc(DC_AB_PGM);
detach();
}

/*...*/
CTUX

Converts EBCDIC source file to UNIX. Adds new line
termination
and strips spaces at ends of line. Called if a conversation
terminates abnormally.
/*...*/

ctux(buf, noc, fd)
char*buf;/* pointer to buffer */
intnoc;/* number of characters */
intfd;/* file descriptor */
{
char *a, *b;

a = buf;

while(noc > 0)
{
b = a + RECSIZE - 1;
while(*b-- == ' ')
;

if(write(fd, a, (unsigned)(b - a + 2)) == -1)
return(-1);

if(write(fd, "\n", 1) == -1)
return(-1);

a += RECSIZE;

66

Chapter 2: Sample Transaction Programs

noc -= RECSIZE;
}

return(0);
}

/*...*/
CLEANUP
Called if a conversation terminates abnormally.
/*...*/

cleanup()
{
ldealloc(DC_AB_PGM);
detach();
}

/*...*/
CTUX

Converts EBCDIC source file to UNIX. Adds new line
termination
and strips spaces at ends of line. Called if a conversation
terminates abnormally.
/*...*/

ctux(buf, noc, fd)
char*buf;/* pointer to buffer */
intnoc;/* number of characters */
intfd;/* file descriptor */
{
char *a, *b;

a = buf;

while(noc > 0)
{
b = a + RECSIZE - 1;
while(*b-- == ' ')
;

if(write(fd, a, (unsigned)(b - a + 2)) == -1)
return(-1);

if(write(fd, "\n", 1) == -1)
return(-1);

Sample Program: Receive a File

67

a += RECSIZE;
noc -= RECSIZE;

}
return(0);

}

68

Chapter 2: Sample Transaction Programs

69

Chapter 3

3. The IRIS LU 6.2 Implementation

This chapter provides additional information about Silicon Graphics
implementation of SNA Logical Unit Type 6.2 (LU 6.2) architecture. Also
contained in this chapter are the base set of functions and the option sets of
LU 6.2, as defined in the IBM Systems Network Architecture Transaction
Programmer's Reference Manual for LU Type 6.2 and Systems Network
Architecture Format and Protocol Reference Manual: Architecture Logic for LU
Type 6.2.

How the IRIS Implementation Differs from IBM SNA

Each verb is implemented as a C-language library function. After the
execution of any verb function, return information is placed in the global
variables snamaj and snamin. This equates to the architected
RETURN_CODE. The conversation state is set in the global variable snastat.
While the architecture does not mandate that the state be explicitly returned
to the transaction program, doing so enables the programmer to write the
transaction program in a convenient, state-driven fashion.

The IRIS implementation of LU 6.2 from Silicon Graphics maps on an almost
one-for-one basis to the IBM architected verbs and their specified
parameters. Exceptions are described in this section.

Basic Conversation Verbs

The basic conversation verbs are described below.

 GET_TYPE (gtype)

A return value of 0 indicates that the conversation type is basic; 1 indicates
that the conversation type is mapped. A return value of -1 indicates an error.
There is no variable corresponding to type to receive the value.

70

Chapter 3: The IRIS LU 6.2 Implementation

SEND_ERROR (snderr)

An additional value for type, SE_ALC (2), indicates an allocation error. If the
type returned is SE_ALC, the sense field (also not architected) contains the
allocation-error sense data. These parameters are reserved for the
Transaction Program Initiator (TPI).

WAIT (waitcv)

Passes an additional parameter, count, that indicates the number of
conversation IDs on the following list. All posted conversation IDs are
checked when count is 0.

Implementation-specific Verbs

Two additional verbs are included in LU 6.2 to control the initial connection
between the transaction program and the IRIS SNA SERVER: attach and
rattach. attach establishes the connection between the local transaction
program and the IRIS SNA SERVER. rattach establishes the connection
between a remotely evoked transaction program and the conversation that
evoked it.

Control Operator Verbs

RESET_SESSION_LIMITS (rstsl)

MODE_NAME is handled as two parameters: the first, all, uses 0 to indicate
that a single mode is to be reset, or 1 to indicate that all modes are to be reset.
The second, mode, contains the name of the mode to be reset if all is 0. It is
ignored if all is 1.

PROCESS_SESSION_LIMIT (procsl)

LU_NAME and MODE_NAME are not returned. They are handled
internally by s2_cnos.

DEACTIVATE_SESSION (dctses)

Implemented LU 6.2 Function Sets

71

Requires two parameters not specified in the architecture: remote (the local
name of the remote LU) and mode (the name of the mode for the session).

Implemented LU 6.2 Function Sets

 The following basic conversation verbs are implemented:

• alcnvAllocate

• cnfrmConfirm

• cnfrmedConfirmed

• dalcnvDeallocate

• getatrGet Attributes

• rcvwtReceive-and-Wait

• rqssndRequest-to-Send

• snddtaSend Data

• snderrSend Error

• The following control operator verbs are implemented:

• initslInitialize Session Limit

• rstslReset Session Limit

These option sets are supported:

• Conversations between programs located at the same LU

• Delayed allocation of a session

• Immediate allocation of a session

• Session-level LU-LU verification

• User ID verification

• Profile verification and authorization

• Profile pass-through

• Program-supplied profile

• PIP data

72

Chapter 3: The IRIS LU 6.2 Implementation

• Logging of data in a system log

• Flush the LU's send buffer

• Prepare-to-Receive

• Long locks

• Post-on-Receipt with wait

• Get Attributes

• Get Conversation Type

• Mapped conversation LU services component

• CHANGE_SESSION_LIMIT verb

• MIN_CONWINNERS_TARGET parameter

• RESPONSIBLE(TARGET) parameter

• DRAIN_TARGET(NO) parameter

• FORCE parameter

• ACTIVATE_SESSION verb

• DEACTIVATE_SESSION verb

• LU parameter verbs

• LU-LU session limit

• Locally known LU names

• Uninterpreted LU names

• Single-session reinitiation

• Maximum RU size bounds

• Contention-winner automatic activation limit

73

Appendix A

A. Major and Minor Return Codes

This appendix lists and defines the return codes that may be displayed in the
message line area of the Information Panel in the IRIS SNAView main
window. Table A-1 lists return codes for functions that complete normally.
Table A-2 lists return codes for functions that are aborted. Table A-3 lists
return codes for functions that do not complete normally. Table A-4 lists
return codes for functions that terminate abnormally with state errors.
Table A-5 lists return codes for allocation errors. Table A-6 lists return codes
for program errors. Table A-7 lists return codes for deallocation errors.
Table A-8 lists return codes for node operator errors.

Table A-1 Major Code 00 (S2_OK): Function Completed Normally

Major
Code

Minor
Code

Code
Meaning

00 0000 Completed normally.
Function completed normally.

00 0001 Completed as negotiated.

Function completed as negotiated.

00 0003 Data available. Returned by test conversation if data has
arrived on the posted conversation.

00 0004 Control information available.

Returned by test conversation if control information has
arrived on the posted conversation.

00 0086 Logic error.

74

Appendix A: Major and Minor Return Codes

Table A-2 Major Code 01(S2_USAGE): Function Aborted, Usage Error

Major
Code

Minor
Code

Code
Meaning

01 0001 Program not attached.

The transaction issued another verb before issuing an
attach verb. The program must attach efore calling
other verbs.

01 0002 Duplicate attach attempted.

After a previous attach verb and before a detach verb,
the transaction program attempted to reissue the
attach verb.

01 0003 Invalid conversation ID (rsrc unknown).

The conversation specified in the cnvid parameter is
not a valid conversation.

01 0004 Context not set.

01 0009 Null structure pointer parameter passed.

A verb was called with a null structure pointer as a
parameter.

01 0010 Attach: path is a required parameter.

The configuration file path is required for attach and
rattach.

01 0011 Attach: LU name is a required parameter.

The LU name is required for attach type AT_LU(0).

01 0012 Attach: Invalid attach type parameter.

Valid attach types for a transaction program are
AT_LU(0) AT_NODE(1).

01 0013 Attach: LU unknown.

The specified LU is not configured.

75

01 0014 Attach: LU not available, limits reached.

The LU specified in the attach is not activated, or has
already reached the configured limit of attached
transaction programs.

01 0015 Attached: TP name is not configured.

The transaction program name specified in the
request is not configured.

01 0016 Attach, rattach: Configuration file not authorized or
invalid.

Cannot authorize attach.

The attach failed because the transaction program
process does not have access permission to the node,
the node is not active, or the attach verb configuration
file parameter was incorrect.

01 0017 Rattach: Conversation ID required.

Conversation ID required for remote attach.

01 0018 Rattach: Invalid conversation ID for rattach.

The conversation specified in the remote attach is
invalid or cannot be remotely attached.

01 0019 Attach, rattach: Invalid wait-time parameter.

Invalid wait-time. Valid wait parameters are 0, 1, 2, ...,
or -1 to specify no maximum wait time.

01 0020 Attach: Not enough space. Attach rejected.

Not enough space to support the transaction
program.

01 0021 Attach: SNA Scheduler TP limit reached. Attach
rejected.

The SNA Scheduler process limit has been reached.

Table A-2 (continued) Major Code 01(S2_USAGE): Function Aborted, Usage

Major
Code

Minor
Code

Code
Meaning

76

Appendix A: Major and Minor Return Codes

01 0022 Attach: Not enough space in TP.

01 0023 Attach: Pathname is too long.

01 0030 Alcnv: Partner (rlu) is a required parameter.

Remote LU name is required.

01 0031 Alcnv: Mode name is a required parameter.

Mode name is required.

01 0032 Alcnv: Program name (tpn) is a required parameter.

Remote transaction program name is required.

01 0033 Alcnv: Partner LU (rlu) not found. Remote LU
unknown.

The specified remote LU is not configured for the
attached LU.

01 0034 Alcnv: Mode not found. Mode unknown.

The specified mode is not configured between the
remote LU and the attached LU.

01 0035 Alcnv: Invalid parameter (type).

Invalid alcnv type. Valid conversation types for alcnv
are 0 for basic conversation and 1 for mapped
conversation.

01 0036 Alcnv: Mapped verb interface not allowed.

Mapped conversations not available. Either the
attached LU or the remote LU is not configured to
support mapped conversations, or the transaction
program name specified in the previous attach is not
configured to support mapped conversations.

01 0037 Alcnv: Basic verb interface not allowed. Basic
conversations not available.

Table A-2 (continued) Major Code 01(S2_USAGE): Function Aborted, Usage

Major
Code

Minor
Code

Code
Meaning

77

The transaction program name specified in the
previous attach is not configured to support basic
conversations.

01 0038 Alcnv: Invalid parameter (when).

Invalid session allocation parameter. Valid session
allocation parameters for alcnv are AC_WHEN(0),
AC_DELAY(1), and AC_IMMED(2).

01 0039 Alcnv: Delayed allocation not allowed. No delayed
session allocation.

The attached LU is not configured to support delayed
session allocation.

01 0040 Alcnv: Immediate allocation not allowed. No
immediate session allocation.

The attached LU is not configured to support delayed
session allocation.

01 0041 Alcnv: Invalid parameter (sync).

Invalid sync-level parameter. Valid sync level
parameters for alcnv are 0 for NONE and 1 for
CONFIRM processing.

01 0042 Alcnv: Requested sync level not allowed. Requested
sync level not available.

The requested sync-level support must be configured
for the requested mode and for the transaction
program name specified in the previous attach
request.

01 0043 Alcnv: PIP not allowed. No PIP data.

PIP data-support must be configured for the
transaction program name specified in the previous
attach request.

01 0044 Alcnv: Invalid PIP length. PIP data too large.

Table A-2 (continued) Major Code 01(S2_USAGE): Function Aborted, Usage

Major
Code

Minor
Code

Code
Meaning

78

Appendix A: Major and Minor Return Codes

Too many PIP parameters were passed in the PIP
data, or the PIP data exceeds the maximum length.

01 0045 Alcnv: Invalid parameter (sec).

Invalid security-level parameter. Valid security-level
parameters are SEC_NONE(0), SEC_SAME(1), and
SEC_PGM(2).

01 0046 Alcnv: Requested security not allowed. Requested
security level not available.

The requested security-level support is not
configured. SEC_SAME(1) must be configured for
the attached LU and the remote LU. SEC_PGM(2)
must be configured for the attached LU, the remote
LU, and for the transaction program name specified
in the previous attach request.

01 0047 Alcnv: Invalid format for user parameter.

01 0048 Alcnv: Invalid format for password parameter.

01 0049 Invalid mode name. Mode name SNASVCMG cannot
be specified when using a mapped conversation.

01 0060 Cnfrm, cnfrmed: Conflict with conversation sync
level.

Sync level conflict. A cnfrm or cnfrmed verb was
attempted on a conversation that was allocated sync
level NONE.

01 0070 Dalcnv: Invalid parameter (type).

Invalid dalcnv type. Valid dalcnv types are:

DC_SYNC(1)

DC_FLUSH(2)

DC_AB_PGM(3)

DC_AB_SVC(4)

Table A-2 (continued) Major Code 01(S2_USAGE): Function Aborted, Usage

Major
Code

Minor
Code

Code
Meaning

79

DC_AB_TMR(5)

DC_LOCAL(6)

DC_CNFRM(7)

Invalid mdalcnv types are:

DC_AB_PGM(3)

DC_AB_SVC(4)

DC_AB_TMR(5)

Valid mdalcnv types are:

DC_SYNC(1)

DC_FLUSH(2)

DC_LOCAL(6)

DC_CNFRM(7)

DC_ABEND(8)

01 0080 Prprcv: Invalid parameter (type).

Invalid prprcv type. Valid prprcv types are 0 for
FLUSH and 1 for SYNC.

01 0081 Prprcv: Invalid parameter (lock).

Invalid prprcv lock parameter. Valid prprcv lock
parameters are 0 for Short lock, and 1 for Long lock.
This parameter is significant for prprcv type SYNC.

01 0090 Rcvwt, pstrct: Invalid parameter (fill).

Invalid fill parameters for rcvwt and pstrct are
RW_BUFF(0) and RW_LL(1).

01 0091 Invalid parameter (length) cannot be negative.

Table A-2 (continued) Major Code 01(S2_USAGE): Function Aborted, Usage

Major
Code

Minor
Code

Code
Meaning

80

Appendix A: Major and Minor Return Codes

Negative length is invalid. The length parameter is
negative.

01 0100 Snddta: Invalid LL.

Invalid LL field. The data passed to snddta contains
an invalid LL field of 0x0000, 0x8000, or 0x8001.

01 0101 Snddta: Invalid LL within the data stream. PS
headers not supported.

The data passed to snddta contains an LL field of
0x0001, which indicates a PS header. This is not
supported.

01 0102 Mapping Error: Map name not found.

01 0103 Mapping Error: Map execution failure.

01 0104 Mapping Error: Duplicate map name.

01 0110 Snderr: Invalid parameter (type).

Invalid snderr type. Valid snderr types for
transaction programs are SE_PGM(1) and SE_SVC(0).

01 0111 Snderr: SE_ALC(2) is reserved.

01 0120 Waitcv: Negative count value is invalid.

Negative waitcv count is invalid.

01 0121 Waitcv: Invalid conversation ID on list. Invalid
conversation for waitcv.

The list parameter passed to waitcv contained an
invalid conversation ID.

01 0122 Waitcv: Listed conversation ID does not have posting
active.

01 0123 Waitcv: No conversation with posting is active.

Table A-2 (continued) Major Code 01(S2_USAGE): Function Aborted, Usage

Major
Code

Minor
Code

Code
Meaning

81

If a list of conversations was passed to waitcv, none of
the conversations had posting active. If no list was
passed, then no conversations for the TP had posting
active.

01 0124 Waitcv: List size (count) must be positive. Waitcv
requires list when non-zero count specified.

When the waitcv request specifies one or more
conversations in the count parameter, those
conversations must be passed in the list parameter.
No list parameter was passed.

01 0125 Waitcv: List size (count) too large. Waitcv list too
large.

The number of conversations specified in the waitcv
request exceeds the ability of the verb interface layer
to process the request.

01 0130 Testcv: Invalid parameter (type).

01 0131 Testcv: Posting not active for conversation.

01 0140 Setctx: Path required if tcbid is supplied.

01 0141 Setctx: Requested context not found.

01 0300 Not authorized to CO verbs. TP not authorized to the
type of Control Operator verb issued.

01 0301 Requested limits are invalid.

Limits requested in CNOS verb are invalid.

01 0302 Service Manager Mode not initialized.

CNOS verb issued before service manager mode is
initialized.

01 0310 Session limit of 0 is invalid.

Session limit must be greater than 0.

Table A-2 (continued) Major Code 01(S2_USAGE): Function Aborted, Usage

Major
Code

Minor
Code

Code
Meaning

82

Appendix A: Major and Minor Return Codes

01 0311 Responsible value invalid.

Invalid responsible parameter.

01 0312 C_maxs must be greater than c_minf + c_minb.

Sum of the minimum first-speaker sessions and the
minimum bidder sessions cannot exceed session
limit.

01 0313 Dctses: Invalid parameter (immediate).

01 0314 Rstsl: Invalid parameter (dtrg).

01 0315 Rstsl: Invalid parameter (dsrc).

01 0316 Rstsl: Invalid parameter (force).

01 0320 Next session identifier not found.

01 0321 Invalid session identifier.

01 0400 Name must be less than 20 characters. Node
Operator: String parameter too long.

Maximum name length is 20 characters.

01 0401 Line is a required parameter. Node Operator: Line
name is required.

01 0402 LU is a required parameter. Node Operator: LU name
is required.

01 0403 PU is a required parameter. Node Operator: PU name
is required.

01 0404 Actsta: Invalid parameter (dial). Node Operator:
Invalid dial parameter.

Valid dial parameters are 0, 1, 2.

01 0410 Rspque must be NULL. Node Operator: Response
queue name unsupported this release.

01 0411 Chgmsgq: Severity must be between 0 and 99.

Table A-2 (continued) Major Code 01(S2_USAGE): Function Aborted, Usage

Major
Code

Minor
Code

Code
Meaning

83

01 0501 Invalid local LU.

The fully qualified LU name of the local LU specified
on the dfnllu is invalid.

01 0502 Invalid remote LU.

The value specified in the local LU session-limit
parameter of the dfnllu verb is less than the sum of
the currently defined LU mode session limits.

01 0503 Invalid mode.

01 0504 Invalid ALS.

01 0505 Invalid Send Pacing Window.

01 0506 Invalid Receive Pacing Window.

01 0507 Invalid Max RU Upper Bound.

01 0508 Invalid Max RU Lower Bound.

01 0509 Invalid Sync Level option.

01 0510 Invalid Single Session Reinitialization option.

01 0511 Invalid Cryptography option.

01 0512 Invalid Maximum Number Sessions.

Parallel-session support (YES) is specified on the
dfnrlu verb but the local LU session limit is 1.

01 0513 Invalid Minimum Number First Speaker.

Parallel-session support (YES) and CNOS support
(NO) are specified on the dfnrlu verb.

01 0514 Invalid Minimum Number First Prebound.

CNOS support (YES) and parallel-session support
(NO) is not specified on the dfnrlu verb.

01 0516 Invalid Blank Mode option.

Table A-2 (continued) Major Code 01(S2_USAGE): Function Aborted, Usage

Major
Code

Minor
Code

Code
Meaning

84

Appendix A: Major and Minor Return Codes

01 0517 Invalid Network Name operator.

01 0518 Invalid Network Qualifier operator.

01 0519 Invalid Network Name.

01 0520 Invalid Network Qualifier.

01 0521 Invalid Init Type.

01 0522 Invalid Parallel Session option.

The fully qualified LU name of the remote LU
specified on the dfnmode verb is not currently
defined for the local LU.

01 0523 Invalid CNOS ALS.

01 0524 Invalid LU Password.

01 0525 Invalid Security Acceptance option.

01 0526 Invalid Password operation.

01 0527 Invalid LU Session Limits.

01 0528 Invalid Conversation Security.

01 0529 Invalid Security operation.

01 0530 Invalid User ID.

01 0531 Invalid Password.

01 0532 Invalid Profile.

01 0533 Invalid Wait.

01 0534 Invalid Max Number of TPs.

01 0535 Invalid LU ID Number.

01 0536 Invalid TP Name.

01 0537 Invalid Status.

Table A-2 (continued) Major Code 01(S2_USAGE): Function Aborted, Usage

Major
Code

Minor
Code

Code
Meaning

85

01 0538 Invalid Conversation Type.

01 0539 Invalid Security Required.

01 0540 Invalid PIP option.

01 0541 Invalid PIP Number.

01 0542 Invalid PIP check.

01 0543 Invalid Data Mapping.

01 0544 Invalid FMH.

01 0545 Invalid Privilege.

01 0546 Invalid LUW Indicator.

01 0550 Invalid LU.

01 0551 Invalid Partner.

01 0552 Invalid ALS.

01 0553 Not enough space to complete operation.

01 0554 Invalid Remote PU.

01 0555 Invalid Line.

01 0556 Logic error: LSCB not found.

01 0557 Dfnsta: Associated Line not inactive.

01 0558 Logic error: ALCB not found.

01 0560 Dfnmode: Invalid Parameter.

01 0561 Dfnmode: Lower Bound exceeds Upper Bound.

01 0562 Dfnmode: Single Session Reinit not compatible with
Partner.

01 0564 Defend: Minf cannot be greater than maxs.

01 0565 Dfnmode: Minpf cannot be greater than minf.

Table A-2 (continued) Major Code 01(S2_USAGE): Function Aborted, Usage

Major
Code

Minor
Code

Code
Meaning

86

Appendix A: Major and Minor Return Codes

01 0566 Dfnmode: Maxs not compatible with partner.

01 0567 Dfnmode: Blank mode already exists.

01 0570 Dfnrlu: Cnosals and parallel session support not
compatible.

01 0571 Dfnrlu: Parallel session support not compatible with
maxs.

01 0574 Dfnrlu: Invalid reinit option for parallel-session
support.

01 0575 Dfnrlu: CNOS also unknown.

01 0576 Dfnrlu: Null net name already exists.

01 0577 Dfnrlu: Parallel support not compatible with PU
type.

01 0580 Logic error: drcb for local PU does not exist.

01 0581 Dfnllu: Session limits exceed LU session limits
specified.

01 0582 Dfnllu: Network name specified after initsl.

01 0583 Dfnllu: Security parameters to be deleted not found.

01 0584 Dfnllu: LU ID already specified.

01 0585 Dfnllu: LU ID must be specified when lucb is
initialized.

01 0586 Dfnllu: LU ID cannot be updated when session limit
initialized.

01 0590 Dfnllu: Security access parameters conflict with
security required.

01 0591 Dfnllu: Security parameters to be deleted not found.

01 0600 Too many resources defined—no internal address
available.

Table A-2 (continued) Major Code 01(S2_USAGE): Function Aborted, Usage

Major
Code

Minor
Code

Code
Meaning

87

01 0601 Invalid Exchange ID.

01 0602 Invalid Master Device.

01 0603 Invalid Monitor Timer.

01 0604 Invalid NOOP Messages.

01 0605 Invalid LOG Messages.

01 0606 Invalid Debug Messages.

01 0607 Invalid PU Name.

01 0608 Invalid CPU ID.

01 0609 Invalid Line Name.

01 0610 Invalid Line Type.

01 0611 Invalid Device Name.

01 0612 Invalid SDLC Role.

01 0613 Invalid Connection Type.

01 0614 Invalid NRZI.

01 0615 Invalid Half-duplex.

01 0616 Invalid Max BTU.

01 0617 Invalid Max Retries.

01 0618 Invalid Idle.

01 0619 Invalid Nonprod Rcv Time.

01 0620 Invalid Max I-Frames.

01 0621 Invalid Rate.

01 0622 Invalid SDLC Address.

01 0623 Invalid Phone Name.

Table A-2 (continued) Major Code 01(S2_USAGE): Function Aborted, Usage

Major
Code

Minor
Code

Code
Meaning

88

Appendix A: Major and Minor Return Codes

01 0624 Dfnsta: Exceeded maximum number of stations (8).

01 0626 Dfnline: Multidrop specified and role not primary.

01 0627 Dfnsta: One station already defined for leased line.

01 0628 Dfnline: Line already exists.

01 0630 Dfnsta: Line not specified.

01 0631 Dfnsta: PU not specified.

01 0632 Dfnsta: Station already exists.

01 0634 Dspline: Invalid line name.

01 0635 Dspline: End of line list.

01 0636 Dspline: No lines defined.

01 0637 Dspcp: Invalid control point name.

01 0638 Dspcp: End of PU list.

01 0639 Dspcp: No PUs defined.

01 0640 Dltcbl: Mode unknown.

01 0641 Dltcbl: TP Name unknown.

01 0642 Dltcbl: Object is in use.

01 0646 Dltcbl: Local LU name not specified.

01 0647 Dltcbl: Remote LU name not specified.

01 0648 Dltcbl: No parameters specified.

01 0650 Dfnrpu: Neither XID or CPID specified.

01 0651 Dfnrpu: Both XID and CPID specified.

01 0659 Control point is not a host.

01 0660 Dspllu: Userid invalid.

Table A-2 (continued) Major Code 01(S2_USAGE): Function Aborted, Usage

Major
Code

Minor
Code

Code
Meaning

89

01 0661 Dspllu: End of security list.

01 0662 No userid found.

01 0663 Dspllu: Invalid profile.

01 0664 Dspllu: Invalid LU name.

01 0665 Dspllu: End of LU list.

01 0666 Dspllu: No LU defined.

01 0667 Dsprlu: Invalid Remote LU name.

01 0668 Dsprlu: No more Remote LUs.

01 0669 Dsprlu: No Remote LUs defined.

01 0670 Dspmode: Invalid mode name.

01 0671 Dspmode: End of mode list.

01 0672 Dspmode: No modes defined.

01 0673 Dsptp: Invalid TP name.

01 0674 Dsptp: End of TP list.

01 0675 Dsptp: No TP defined.

01 0676 Dsptp: No Network Name.

01 0677 Invalid NEXT parameter value.

01 0691 Control point name is required.

01 0692 No more remote LUs or secondary LUs.

01 0693 LU_ID value does not match any LU.

01 0830 User crash code not described.

01 0850 s2_schd is not active.

The SNA Scheduler is not active.

Table A-2 (continued) Major Code 01(S2_USAGE): Function Aborted, Usage

Major
Code

Minor
Code

Code
Meaning

90

Appendix A: Major and Minor Return Codes

01 0860 s2_schd has terminated abnormally.

The SNA Scheduler is no longer active. The
transaction program has been detached.

01 0870 Time out—request not recovered.

01 0880 Time out—request recovered.

01 0890 Time out—message queue full.

01 0900 Verb logic error.

An internal logic error occurred while processing the
verb.

01 0901 Duplicate s2_tpi.

Duplicate TPI attach attempted.

01 1000 Invalid NAU name.

The NAU must be no greater than eight characters
and all characters must be of symbol-string Type A.

01 1001 Invalid NAU type.

Valid values are P_PU and P_LU.

01 1002 Invalid when parameter.

Valid values for sndru are P_WHEN and P_NONE.
Valid values for alnau are P_WHEN and P_IMMED.

01 1003 Invalid block parameter.

Valid values are P_BLOCK and P_NBLOCK.

01 1004 Invalid bind parameter.

Buffer length is greater than zero and no bind pointer
supplied.

01 1005 Resources temporarily unavailable. Retry.

Table A-2 (continued) Major Code 01(S2_USAGE): Function Aborted, Usage

Major
Code

Minor
Code

Code
Meaning

91

01 1006 Not enough TP space to allocate another NAU.

01 1008 Not enough resources.

An attempt was made to send an RU that exceeds the
maximum send size when sndru is issued in
non-blocking mode.

01 1009 Null structure pointer supplied to a PI verb.

01 1010 Invalid structure type supplied for initpi.

01 1011 NAU identifier invalid.

The NAU identifier supplied on the verb call is not
the nauid of a currently allocated NAU.

01 1012 Specified NAU not allocated.

An attempt was made to use the nauid of an NAU
that is pending allocation.

01 1013 Invalid svcid.

Service identifier is not one of the valid values or is
inconsistent with the NAU type specified on the
alnau verb.

01 1014 The pointer to the pru structure is NULL.

This is a required field.

01 1015 The RU command is zero.

01 1016 The pointer to the RU buffer is NULL.

In this verb call, the RU buffer is required.

01 1017 The pointer to the ufsm structure is NULL.

This is a required field for the gfsm verb.

01 1018 RU sense data is required.

Zero is an invalid value.

Table A-2 (continued) Major Code 01(S2_USAGE): Function Aborted, Usage

Major
Code

Minor
Code

Code
Meaning

92

Appendix A: Major and Minor Return Codes

01 1019 The flow parameter of the ssync verb is invalid.

Valid values are P_SND, P_RCV, and P_FLOW.

01 1020 The wait parameter is invalid.

Valid values are P_WAIT, P_NOWAIT, or a positive
numeric value representing the time, in seconds, that
the verb should wait.

01 1021 The loc_pac parameter is invalid.

This is an optional field, but if specified, valid values
are P_PACE and P_NPACE.

01 1022 Required UFSM pointer is NULL.

The pointer to the ufsm structure is NULL. This field
is required on the rcvru verb and on the alnau verb
issued with block = P_BLOCK.

01 1023 svcid inconsistent with NAU type.

The svcid parameter is compatible with the nau type
of the specified NAU.

01 1024 The dfnslu verb was issued while LU 0-3 was not
configured by

the configuration manager.

01 1025 LU not defined.

A secondary LU with the name specified in naunm is
not currently defined.

01 1026 LU not available.

The LU specified on the alnau verb is already
allocated.

01 1027 PU not defined.

A PU with the name specified in naunm is not
currently defined.

Table A-2 (continued) Major Code 01(S2_USAGE): Function Aborted, Usage

Major
Code

Minor
Code

Code
Meaning

93

01 1028 PU not available.

The PU specified on the alnau verb is already
allocated.

01 1030 Attach type is not specified.

The Transaction Program that issued the verb did not
attach with attach type AT_ANODE or AT_ALU.

01 1031 Send check.

The reply to the sndru verb received from the SNA
Scheduler indicated a send check.

01 1032 Negative response.

The reply to the sndru verb received from the SNA
Scheduler indicated a negative response.

01 1033 Receive check.

The reply to the sndru verb received from the SNA
Scheduler indicated a receive check.

01 1034 Session lost.

Table A-3 Major Code 02 (S2_UNSUC): Completed Unsuccessfully

Major
Code

Minor
Code

Code
Meaning

02 0001 No information for conversation.

02 0002 Conversation not posted.

02 0003 Request-to-send not received.

Table A-2 (continued) Major Code 01(S2_USAGE): Function Aborted, Usage

Major
Code

Minor
Code

Code
Meaning

94

Appendix A: Major and Minor Return Codes

Table A-4 Major Code 03 (S2_STATE): Function Aborted, State Error

Major
Code

Minor
Code

Code
Meaning

03 0001 Conversation State error.

Request is illegal in the current conversation state.

03 0002 Logical Record State error.

Request is illegal because the current logical record has
not been completed.

03 0003 Conv for waitcv not S2_RECV.

A conversation specified in the waitcv request is not in
receive state.

Table A-5 Major Code 05 (S2_ALCER): Allocation Error

Major
Code

Minor
Code

Code
Meaning

05 0001 Remote TP not available—no retry.

The transaction program could not be started on the remote
system because of a lack of resources, which is not
temporary. Retry is not suggested.

05 0002 Remote TP not available—retry.

The transaction program could not be started on the remote
system because of a temporary resource shortage. Retry is
suggested.

05 0003 Remote LU does not support conversation type.

The remote LU does not support the requested conversation
type.

05 0004 PIP data not supported by remote.

95

Program initialization data is not supported by the remote
LU.

05 0005 PIP specification error.

Program initialization data was specified incorrectly.

05 0006 Invalid access security information.

Security information was not specified correctly.

05 0007 Remote program does not support requested sync level.

05 0008 Remote TP not recognized by remote LU.

The transaction program requested was not recognized at
the remote LU.

05 0009 Allocation failure—no retry.

05 0010 Allocation failure—retry.

05 0011 First Speaker session not available.

The session is not immediately available.

05 0012 Local resource allocation failure.

05 0013 Cannot authorize security access.

05 0022 Allocation rejected by Resource Manager.

05 0099 Unknown sense code data received.

Table A-6 Major Code 07 (S2_PGMER): Program Error

Major
Code

Minor
Code

Code
Meaning

07 0001 Program Error: Current logical record not truncated.

Partner has reported a program error; the current
logical record was not truncated.

07 0002 Program Error: Current logical record truncated.

Table A-5 (continued) Major Code 05 (S2_ALCER): Allocation Error

96

Appendix A: Major and Minor Return Codes

Partner has reported a program error; current logical
record was truncated.

07 0003 Program Error: Data may have been purged.

Partner has reported a program error; current logical
record may have been purged.

07 0011 Service Error: Current logical record not truncated.

Service Transaction Program has reported an error;
current logical record was not truncated.

07 0012 Service Error: Current logical record was truncated.

Service Transaction Program has reported an error;
current logical record was truncated.

07 0013 Service Error: Data may have been purged.

Service transaction program has reported a program
error; current logical record may have been purged.

07 0020 Mapping Error: FMH not supported.

07 0021 Mapping Error: Mapping not supported.

Table A-7 Major Code 09 (S2_DEALC): Deallocated

Major
Code

Minor
Code

Code
Meaning

09 0000 Normal deallocation by partner.

Partner has deallocated the conversation.

09 0001 Abnormal deallocation by partner.

Partner has terminated the conversation abnormally.

09 0002 Abnormal deallocation by service program.

A service transaction program has terminated the
conversation abnormally.

Table A-6 (continued) Major Code 07 (S2_PGMER): Program Error

97

09 0003 Abnormal deallocation verb time-out.

Time-out has occurred.

09 0004 Abnormal deallocation, Session Failure.

The session has failed.

09 0005 Abnormal deallocation by partner.

10 0063 Limits not zero.

10 0064 Requested limits exceed configuration.

This error should be interpreted as
ACTIVATION_FAILURE_RETRY

10 0065 Sum of minimums exceed maximum session.

The sum of the minimum first-speaker and bidder sessions
exceeds the requested maximum.

10 0066 Invalid SNASVCMG limits.

SNASVCMG limits must be 2: 1 bidder and 1 first speaker.

10 0067 SNASVCMG mode not initialized.

10 0068 Mode limits are closed.

10 0069 Chgsl not valid for this mode.

10 0070 SNASVCMG mode not reset, other modes still not reset.

SNASVCMG mode cannot be reset because user modes are
still open.

10 0071 CNOS race with remote—remote won.

10 0072 Partner does not recognize mode.

10 0073 CNOS is in process locally.

10 0074 CNOS allocation error.

10 0075 CNOS resource failure.

Table A-7 (continued) Major Code 09 (S2_DEALC): Deallocated

98

Appendix A: Major and Minor Return Codes

The SNASVCMG session with the partner LU either could
not be started or failed.

10 0076 Insufficient space for a new session.

10 0077 Partner LU is not active.

10 0078 Modes incompatible: session not started.

Table A-8 Major Code 11 (S2_NPERR): Node Operator Error

Major
Code

Minor
Code

Code
Meaning

11 0001 Node operator verb failure.

11 0002 Node operator verb not recognized.

11 0003 Attach of type AT_NODE.

Transaction Program must attach with type AT_NODE to
use node operator verbs.

11 0010 Link name not recognized.

11 0011 Adjacent link station not recognized.

11 0012 Physical unit not recognized.

11 0013 Earlier request still active.

11 0014 Dial in or dial out required.

11 0015 Logical unit name not recognized.

11 0016 Message queue name not recognized.

11 0017 Message queue not enabled.

11 0018 No message in message queue.

11 0100 Actpu failure.

11 0110 Actlu failure.

Table A-7 (continued) Major Code 09 (S2_DEALC): Deallocated

99

11 0120 Dctpu failure.

11 0130 Dctlu failure.

11 0140 Chgmsgq failure.

11 0150 Dspmsgq failure.

11 0190 Rtvnmsg failure.

Table A-8 (continued) Major Code 11 (S2_NPERR): Node Operator Error

Major
Code

Minor
Code

Code
Meaning

100

Appendix A: Major and Minor Return Codes

101

Appendix B

B. API Verb Catalog

This appendix lists all of the API verbs in alphabetical order. These verbs and
their supporting man pages are used with this guide (referred to as LU 6.2 in
the table) and the IRIS SNA LU 6.2 Administration Guide (referred to as SNA
in the table).

102

Appendix B: API Verb Catalog

Verb Verb’s Full Name Verb Type Guide

accru Accept Request Unit PI SNA

actline Activate Line Node Operator SNA

actlu Activate Logical Node Operator Unit SNA

actpu Activate Physical Unit Node Operator SNA

actses Activate Session Session Control LU 6.2

actsta Activate Station Node Operator SNA

alcnv Allocate Basic Conversation LU 6.2

alnau Allocate NAU PI SNA

atoe ASCII to EBCDIC Implementation-specific SNA

Translation

attach Local Attach Implementation-specific SNA

chgmsgq Change Message Queue Node Operator SNA

chgsl Change Session Limit CNOS LU 6.2

cnfrm Confirm Basic Conversation LU 6.2

cnfrmed Confirmed Basic Conversation LU 6.2

dalcnv Deallocate Basic Conversation LU 6.2

dalnau Deallocate NAU PI SNA

dctline Deactivate Line Node Operator SNA

dctlu Deactivate Logical Unit Node Operator SNA

dctpu Deactivate Physical Unit Node Operator SNA

dctses Deactivate Session Session Control LU 6.2

dctsta Deactivate Station Node Operator SNA

detach Detach Implementation-specific SNA

dfncp Define Control Point Define SNA

dfnline Define Line Define SNA

103

dfnllu Define Local LU Define SNA

dfnmode Define Mode Define SNA

dfnnode Define Node Define SNA

dfnrlu Define Remote LU Define SNA

dfnslu Define Secondary LU Define SNA

dfnsta Define Station Define SNA

dfntp Define Transaction Define SNA

Program

dltcbl Delete LU Control Block Define SNA

dltcbu Delete Control Block Define SNA

dspcp Display Control Point Display SNA

dspcph Display Host Control Point Display SNA

dspline Display Line Display SNA

dspllu Display Local LU Display SNA

dspmaj Display Major Code Implementation-specific SNA

dspmin Display Minor Code Implementation-specific SNA

dspmode Display Mode Display SNA

dspmsgq Display Message Queue Node Operator SNA

dspnode Display Node Display SNA

dsprlu Display Remote LU Display SNA

dspses Display Session Display SNA

dspslu Display Secondary LU Display SNA

dspsta Display Station Display SNA

dsptp Display Transaction Display SNA

Program

Verb Verb’s Full Name Verb Type Guide

104

Appendix B: API Verb Catalog

etoa EBCDIC to ASCII Implementation-specific SNA

Translation

flush Flush Basic Conversation LU 6.2

getatr Get Attributes Basic Conversation LU 6.2

gfsm Get Finite State Machine PI SNA

gsync Get Sync Point PI SNA

gtype Get Type Type-independent LU 6.2

Conversation

initcbl Initialize LU Define SNA

Definition Structure

initcbu Initialize Node Define SNA

Definition Structure

initpi Initialize Verb Data PI SNA

Structure

initsl Initialize Session Limit CNOS LU 6.2

malcnv MC Allocate Mapped Conversation LU 6.2

mcnfrm MC Confirm Mapped Conversation LU 6.2

mdalcnv MC Deallocate Mapped Conversation LU 6.2

mflush MC Flush Mapped Conversation LU 6.2

mgetatr MC Get Attributes Mapped Conversation LU 6.2

mprprcv MC Prepare to Receive Mapped Conversation LU 6.2

mpstrct MC Post on Receipt Mapped Conversation LU 6.2

mrcvim MC Receive Immediate Mapped Conversation LU 6.2

mrcvwt MC Receive and Wait Mapped Conversation LU 6.2

mrqssnd MC Request to Send Mapped Conversation LU 6.2

Verb Verb’s Full Name Verb Type Guide

105

msnddta MC Send Data Mapped Conversation LU 6.2

msnderr MC Send Error Mapped Conversation LU 6.2

mtestcv MC Test Mapped Conversation LU 6.2

procsl Process Session Ldimit CNOS LU 6.2

prprcv Prepare to Receive Basic Conversation LU 6.2

prtnmsg Print Node Message Implementation-specific SNA

pstrct Post on Receipt Basic Conversation LU 6.2

rattach Remote Attach Implementation-specific SNA

rcvim Receive Immediate Basic Conversation LU 6.2

rcvru Receive Request Unit PI SNA

rcvwt Receive and Wait Basic Conversation LU 6.2

rejru Reject Request Unit PI SNA

rqssnd Request to Send Basic Conversation LU 6.2

rstsl Reset Session Limit CNOS LU 6.2

rtvnmsg Retrieve Node Message Node Operator SNA

setctx Set Context Implementation-specific SNA

snddta Send Data Basic Conversation LU 6.2

snderr Send Error Basic Conversation LU 6.2

sndru Send Request Unit PI SNA

ssync Set Sync Point PI SNA

testcv Test Basic Conversation LU 6.2

waitcv Wait Type-independent LU 6.2

Conversation

Verb Verb’s Full Name Verb Type Guide

106

Appendix B: API Verb Catalog

107

Appendix C

C. Man Pages

This appendix contains the following category (1M) and (3X) man pages
related to the IRIS SNA LU6. These man pages are listed in alphabetical
order.

Core Programs

• s2_cnos (1M)

• s2_lucp (1M)

• s2_tpi (1M)

Conversation Mapped

• malcnv (3X)

• mc_map (3X)

• mcnfrm (3X)

• mcnfrmed (3X)

• mdalcnv (3X)

• mflush (3X)

• mgetatr (3X)

• mprprcv (3X)

• mpstrct (3X)

• mrcvim (3X)

• mrcvwt (3X)

• mrqssnd (3X)

• msnddta (3X)

• msnderr (3X)

• mtestcv (3X)

108

Appendix C: Man Pages

Conversation/Type-independent

• gtype (3X)

• waitcv (3X)

Conversation Basic

• alcnv (3X)

• cnfrm (3X)

• cnfrmed (3X)

• dalcnv (3X)

• flush (3X)

• getatr (3X)

• prprcv (3X)

• pstrct (3X)

• rcvim (3X)

• rcvwt (3X)

• rqssnd (3X)

• snddta (3X)

• snderr (3X)

• testcv (3X)

Control Operator

• chgsl (3X)

• dsps l (3X)

• initsl (3X)

• procsl (3X)

• rstsl (3X)

Session Control

• actses (3X)

109

• dctses (3X)

110

Appendix C: Man Pages

111

type independent, 31
type-independent, 32

D

data mapping, 30
data structures, 21
data type definitions, 20
define verbs, 15
detach verb, 14
Document Interchange Architecture, 33

G

GDS variable segment, 26
global.h, 21, 32
global variables, 21, 32

snamaj, 22, 69
snamin, 22, 69

H

header files, 19, 21

I

IBM architected verbs, 69
implementation-specific verbs, 70

A

Advanced Program-to-Program Communciations,
see APPC

API, 18
API verbs, 13
APPC, 18
Application Program Interface, see API
attach requests, 14
attach verb, 14

B

basic conversation verbs, 69

C

change number of session verbs, see CNOS
CNOS, 33, 36

verbs, 35
configuration verbs, 15
control operator verbs, 19, 35, 70
conversation formats, 26
conversation-level security, 39, 40, 44
conversation states, 24, 29, 32, 34

snastat, 24
conversation verbs, 25

basic, 32
catagories, 19

Index

112

Index

L

LU 6.2 basic conversation verbs, 71
LU 6.2 control operator verbs, 71
LU 6.2 option sets, 71
LU-LU password, 43
LU-LU security

initiating, 39

M

map names, 30
mapped conversation verbs, 27
mapping utility

mapper, 31
mapping utility interface, 31
mc_map, 31
message units (MUs), 25

N

names
multiple, 48

node operator verbs, 16

O

option flags, 47

P

parallel sessions, 36
password, 39, 40, 43
password file, 42
profile field, 42

protocol boundary
basic conversation, 25
mapped conversation, 25

R

resource-level security, 41, 44
resource-level securitysecurity

resource-level, 39
return codes, 22
return-code values, 22
returned parameters, 21

S

security
conversation-level, 39, 44
LU-LU, 38
resource-level, 41, 44

security-conversaton level, 40
security features, 38
security information

specifying, 40
session control verbs, 38
sessions

parallel, 36
setctx verb, 14
snamaj global variable, 22, 69
snamin global variable, 22, 69
snastat variable, 24
SNASVCMG, 36
supplied parameters, 21
supplied/returned parameters, 21

113

Index

T

TPRM, 18, 43
TPRM security, 43
transaction program connection, 14
Transaction Programmer's Reference Manual, see

TPRM
type definitions, 20
type-independent conversation verbs, 31, 32

U

/usr/include/lu62/basic.h, 32
/usr/include/sna

header files, 19
/usr/lib/liblu62.a

verb library, 19
/usr/liblu62.a, 32

V

verb catagories, 18
verb library, 19
verbs, 14

attach, 14
basic conversation, 69
CNOS, 35
configuration, 15
constant values, 20
control operator, 19, 35, 70
conversation, 19
define, 15
detach, 14
IBM architected, 69
implementation-specific, 14, 70
LU 6.2 basic conversation, 71
mapped conversation, 27

session control, 38
setctx, 14
transaction program connection, 14

verb types
IRIS SNA SERVER, 13

