
dbx User’s Guide

007–0906–120

COPYRIGHT
© 1996, 1999 – 2001 Silicon Graphics, Inc. and Cray Research, Inc. All Rights Reserved. This manual or parts thereof may not be
reproduced in any form unless permitted by contract or by written permission of Silicon Graphics, Inc. or Cray Research, Inc.

LIMITED RIGHTS LEGEND
The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA
government or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable
license agreement, as specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of
the DoD FAR Supplement; or sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy
2E, Mountain View, CA 94043-1351.

TRADEMARKS AND ATTRIBUTIONS
Silicon Graphics, IRIS and IRIX are registered trademarks and SGI and the SGI logo are trademarks of Silicon Graphics, Inc.

DynaWeb is a trademark of Electronic Book Technologies, Inc. UNIX is a registered trademark in the United States and other countries,
licensed exclusively through X/Open Company Limited. X/Open is a trademark of X/Open Company Ltd. The X device is a
trademark of the Open Group.

This product documents the duel program developed by Michael Golan.

Cover design by Sarah Bolles, Sarah Bolles Design, and Dany Galgani, SGI Technical Publications.

Record of Revision

Version Description

1996
Original Printing.

7.3 June, 1999
This revision supports the ProDev 7.4 release.

120 November, 2001
This revision supports the ProDev 2.9.1 release.

007–0906–120 iii

Contents

About This Guide . xxi

Related Publications . xxii

Obtaining Publications . xxii

Conventions . xxii

Reader Comments . xxiii

1. Getting Started with dbx 1

Examining Core Dumps to Determine Cause of Failure 1

Debugging Your Programs . 2

Studying a New Program . 3

Avoiding Common Pitfalls . 4

2. Running dbx . 5

Compiling a Program for Debugging under dbx 5

Compiling and Linking Programs with Dynamic Shared Objects 5

Invoking dbx . 6

Specifying Object and Core Files 7

Specifying Files with dbx Commands 8

Running Your Program (run, rerun, and sort) 8

Automatically Executing Commands on Startup 10

Using Online Help . 10

Entering Multiple Commands on a Single Line 11

Spanning a Command Across Multiple Lines 11

Invoking a Shell . 11

007–0906–120 v

Contents

Quitting dbx . 12

3. Examining Source Files 13

Specifying Source Directories . 13

Specifying Source Directories with Arguments 13

Specifying Source Directories with dbx Commands 14

Path Remapping . 15

Controlling Use of Path Remappings and Your Source-Directory List 15

Changing Source Files . 16

Listing Source Code . 17

Listing Inlines and Clones . 18

Searching through Source Code 19

Calling an Editor . 20

4. Controlling dbx . 21

Creating and Removing dbx Variables 21

Setting dbx Variables . 22

Removing dbx Variables . 23

Using the History Feature and the History Editor 23

Examining the History List 23

Repeating Commands . 24

The History Editor . 26

Creating and Removing dbx Aliases 26

Creating Command Aliases 27

Listing Aliases . 30

Removing Aliases . 30

Recording and Playing Back dbx Input and Output 30

vi 007–0906–120

dbx User’s Guide

Recording Input . 31

Ending a Recording Session 31

Playing Back Input . 32

Recording Output . 32

Playing Output . 33

Examining the Record State 33

Executing dbx Scripts . 34

5. Examining and Changing Data 35

Using Expressions . 35

Operators . 36

Constants . 38

Printing Expressions . 39

Value History for Print and Calls 40

Using Data Types and Type Coercion (Casts) 41

Qualifying Names of Program Elements 41

Displaying and Changing Program Variables 44

Variable Scope . 45

Displaying the Value of a Variable 45

Changing the Value of a Variable 47

Conflicts between Variable Names and Keywords 48

Case Sensitivity in Variable Names 48

Displaying and Changing Environment Variables Used by a Program 49

Using the High-Level Debugging Language duel 49

Using duel Quick Start . 50

duel Operator Summary . 52

duel Examples . 53

007–0906–120 vii

Contents

duel Semantics . 55

duel Operators . 56

Differences from Other Languages 61

Determining Variable Scopes and Fully Qualified Names 62

Displaying Type Declarations . 63

Examining the Stack . 63

Printing Stack Traces . 64

Moving within the Stack . 66

Moving to a Specified Procedure 68

Printing Activation Level Information 69

Using Interactive Function Calls 70

Using the ccall Command 71

Using the clearcalls Command 72

Nesting Interactive Function Calls 73

Obtaining Basic Blocks Counts 74

Accessing C++ Member Variables 75

6. Controlling Program Execution 77

Setting Breakpoints . 77

Setting Unconditional Breakpoints 78

Setting Conditional Breakpoints 78

Stopping If a Variable or Memory Location Has Changed 79

Using Fast Data Breakpoints 80

Stopping If a Test Expression Is True 81

Conditional Breakpoints Combining Variable and Test Clauses 81

Continuing Execution after a Breakpoint 82

Tracing Program Execution . 83

viii 007–0906–120

dbx User’s Guide

Writing Conditional Commands 85

Managing Breakpoints, Traces, and Conditional Commands 87

Listing Breakpoints, Traces, and Conditional Commands 87

Disabling Breakpoints, Traces, and Conditional Commands 88

Enabling Breakpoints, Traces, and Conditional Commands 89

Deleting Breakpoints, Traces, and Conditional Commands 89

Using Signal Processing . 90

Catching and Ignoring Signals 90

Continuing after Catching a Signal 91

Stopping on C++ Exceptions . 92

Stopping at System Calls . 94

Stepping through Your Program 95

Stepping Using the step Command 96

Stepping Using the next Command 97

Using the return Command 97

Starting at a Specified Line . 98

Referring to C++ Functions . 98

7. Debugging Machine Language Code 103

Examining and Changing Register Values 103

Printing Register Values . 105

Changing Register Values . 106

Examining Memory and Disassembling Code 107

Setting Machine-Level Breakpoints 110

Syntax of the Stopi Command 110

Continuing Execution after a Machine-Level Breakpoint 112

Tracing Execution at the Machine Level 113

007–0906–120 ix

Contents

Writing Conditional Commands at the Machine Level 114

Stepping through Machine Code 115

8. Debugging Multiprocess Programs 117

Processes and Threads . 117

Setting up Your Environment 118

Using the pid Clause . 118

Using the pgrp Clause . 119

Using the thread Clause . 119

Using Scripts . 120

Listing Available Processes . 120

Adding a Process to the Process Pool 121

Deleting a Process from the Process Pool 122

Selecting a Process . 122

Suspending a Process . 123

Resuming a Suspended Process 123

Waiting for a Resumed Process 124

Waiting for Any Running Process 125

Killing a Process . 125

Handling fork System Calls . 126

Handling exec System Calls . 127

Handling sproc System Calls and Process Group Debugging 128

Appendix A. dbx Commands 133

Appendix B. Predefined Aliases 161

Appendix C. Predefined dbx Variables 165

x 007–0906–120

dbx User’s Guide

Index . 173

007–0906–120 xi

Tables

Table 5-1 Variable Types . 39

Table 5-2 duel Operator Summary 52

Table 5-3 duel Examples . 54

Table 7-1 Hardware Registers and Aliases 103

Table 7-2 Memory Display Format Codes 108

Table B-1 Predefined Aliases 161

Table C-1 Predefined dbx Variables 165

007–0906–120 xiii

Examples

Example 3-1 Examples of dir and use 14

Example 3-2 list command 17

Example 3-3 listinlines usage 18

Example 3-4 Using search commands 19

Example 3-5 Editor usage . 20

Example 4-1 set and print commands 22

Example 4-2 unset command 23

Example 4-3 history command 24

Example 4-4 !! command . 24

Example 4-5 ! string command 25

Example 4-6 ! integer command 25

Example 4-7 Creating and using aliases 27

Example 4-8 Linked lists, aliases, and casts 29

Example 4-9 Listing aliases 30

Example 4-10 Removing aliases 30

Example 4-11 Recording input 31

Example 4-12 Ending a recording session 32

Example 4-13 Recording output 33

Example 4-14 Playing output 33

Example 4-15 Examining the record state 34

Example 5-1 Using operators 36

Example 5-2 Printing expressions 39

Example 5-3 Value history . 41

007–0906–120 xv

Contents

Example 5-4 Casting value . 41

Example 5-5 Displaying Variable Values 45

Example 5-6 assign command 47

Example 5-7 Using casts to change variable values 47

Example 5-8 Variable name and keyword conflicts 48

Example 5-9 duel usage . 50

Example 5-10 duel and multiple values 50

Example 5-11 duel and symbolic output 51

Example 5-12 duel and loop alternatives 51

Example 5-13 which command 62

Example 5-14 whatis command 63

Example 5-15 Stack trace . 64

Example 5-16 Stack trace and -g compiler option 65

Example 5-17 func command 69

Example 5-18 dump command 70

Example 5-19 Activation levels and stack trace 71

Example 5-20 Use of clearcalls 72

Example 5-21 Nesting levels 73

Example 5-22 Basic block counts 74

Example 6-1 trace command 84

Example 6-2 Setting a new trace 85

Example 6-3 disable command 88

Example 6-4 enable command 89

Example 6-5 delete command 90

Example 6-6 cont command 92

Example 6-7 if clause and intercept command 93

Example 6-8 intercept command 93

xvi 007–0906–120

dbx User’s Guide

Example 6-9 step and next command comparison 96

Example 6-10 C++ overload functions 99

Example 7-1 assign command and register values 107

Example 7-2 Linking with DSOs and stopi command 112

Example 8-1 Seeing breakpoints using pid 118

Example 8-2 showproc command 120

Example 8-3 addproc command 121

Example 8-4 delproc command 122

Example 8-5 active command 122

Example 8-6 suspend command 123

Example 8-7 resume command 124

Example 8-8 wait command 125

Example 8-9 waitall command 125

Example 8-10 kill command 126

Example 8-11 fork system calls 126

Example 8-12 exec system call 127

Example 8-13 showgrp command 129

007–0906–120 xvii

Procedures

Procedure 1-1 Examining a core File 1

Procedure 1-2 Tracing program variables 3

Procedure 1-3 Studying a new program 3

007–0906–120 xix

About This Guide

This guide explains how to use the source level debugger, dbx. You can use dbx to
debug programs in C, C++, Fortran, and assembly language. This manual is written
for programmers, and assumes that you are familiar with general debugging
techniques.

This book contains the following information:

• Chapter 1, "Getting Started with dbx", page 1, introduces some basic dbx
commands and offers some tips about how to approach a debugging session.

• Chapter 2, "Running dbx", page 5, explains how to run dbx and perform basic
dbx control functions.

• Chapter 3, "Examining Source Files", page 13, explains how to examine source files
under dbx.

• Chapter 4, "Controlling dbx", page 21, describes features of dbx that affect its
operation while debugging a program.

• Chapter 5, "Examining and Changing Data", page 35, describes how to examine
and change data in your program while running it under dbx.

• Chapter 6, "Controlling Program Execution", page 77, describes how to use the
dbx commands that control execution of your program.

• Chapter 7, "Debugging Machine Language Code", page 103, explains how to
debug machine language code.

• Chapter 8, "Debugging Multiprocess Programs", page 117, explains multiprocess
debugging procedures.

• Appendix A, "dbx Commands", page 133, lists and describes all dbx commands.

• Appendix B, "Predefined Aliases", page 161, lists and describes all predefined dbx
aliases.

• Appendix C, "Predefined dbx Variables", page 165, lists and describes all
predefined dbx variables.

007–0906–120 xxi

About This Guide

Related Publications
The following documents contain additional information that may be helpful:

• SpeedShop User’s Guide

• C Language Reference Manual

• C++ Programmer’s Guide

• MIPSpro Fortran 90 Commands and Directives Reference Manual

• MIPSpro Fortran Language Reference Manual, Volume 1

• MIPSpro Fortran Language Reference Manual, Volume 2

• MIPSpro Fortran Language Reference Manual, Volume 3

• MIPSpro Fortran 77 Language Reference Manual

• MIPSpro Fortran 77 Programmer’s Guide

• ProDev WorkShop: ProMP User’s Guide

• ProDev Workshop: Debugger User’s Guide

• ProDev WorkShop: Static Analyzer User’s Guide

• ProDev WorkShop: Overview

Obtaining Publications
To obtain SGI documentation, go to the SGI Technical Publications Library at:

http://techpubs.sgi.com.

Conventions
The following conventions are used throughout this document:

xxii 007–0906–120

dbx User’s Guide

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

variable Italic typeface denotes variable entries and words or
concepts being defined.

user input This bold, fixed-space font denotes literal items that the
user enters in interactive sessions. Output is shown in
nonbold, fixed-space font.

[] Brackets enclose optional portions of a command or
directive line.

... Ellipses indicate that a preceding element can be
repeated.

In addition to the above conventions, some commands in this documentation may
show mutually exclusive arguments to a command enclosed in braces ({ }) and
separated by a pipe character (|).

Reader Comments
If you have comments about the technical accuracy, content, or organization of this
document, please tell us. You can contact us in any of the following ways:

• Send us electronic mail at the following address:

techpubs@sgi.com

• Contact your customer service representative and ask that a PV be filed.

• Call our Software Publications Group in Eagan, Minnesota, through the Customer
Service Call Center, using either of the following numbers:

1–800–950–2729 (toll free from the United States and Canada)
+1–651–683–5600

• Send a facsimile of your comments to the attention of Software Publications Group
in Eagan, Minnesota, at fax number +1–651–683–5599.

We value your comments and will respond to them promptly.

007–0906–120 xxiii

Chapter 1

Getting Started with dbx

You can use dbx to trace problems in a program at the source code level, rather than
at the machine code level. dbx enables you to control a program’s execution,
symbolically monitoring program control flow, variables, and memory locations. You
can also use dbx to trace the logic and flow of control to acquaint yourself with a
program written by someone else.

This chapter introduces some basic dbx commands and discusses some tips about
how to approach a debugging session. Specifically, this chapter covers:

• "Examining Core Dumps to Determine Cause of Failure", page 1.

• "Debugging Your Programs", page 2.

• "Studying a New Program", page 3.

• "Avoiding Common Pitfalls", page 4.

Examining Core Dumps to Determine Cause of Failure
Even if your program compiles successfully, it still can crash when you try to run it.
When a program crashes, it generates a terminating signal that instructs the system to
write out to a core file. The core file is the memory image of the program at the
time it crashed.

You can examine the core file with dbx to determine at what point your program
crashed. To determine the point of failure, follow these steps:

Procedure 1-1 Examining a core File

1. If the core file is not in the current directory, specify the pathname of the core
file on the dbx command line.

If the source code for the program is on a different machine or the source was
moved, provide dbx with the pathname to search for source code (also see
"Specifying Source Directories", page 13).

2. Invoke dbx for the failed program as described in "Invoking dbx", page 6. dbx
automatically reads in the local core file.

007–0906–120 1

1: Getting Started with dbx

3. Perform a stack trace using the where command (described in "Examining the
Stack", page 63) to locate the failure point.

For example, suppose you examine the core file for a program called test. Suppose
the stack trace appears as follows:

(dbx) where

> 0 foo2(i = 5) [‘‘/usr/tmp/test.c’’:44, 0x1000109c]

1 foo(i = 4) [‘‘/usr/tmp/test.c’’:38, 0x1000105c]

2 main(argc = 1, argv = 0xffffffad78) [‘‘/usr/tmp/test.c’’:55, 0x10001104]
3 __start() [‘‘/shamu/crt1text.s’’:137, 0x10000ee4]

In this case, test crashed at line 44 of the source file test.c. The program crashed
while executing the function foo2. foo2 was called from line 38 in the function foo,
which was in turn called from line 55 in the function main. You can use the other
features of dbx to examine values of program variables and otherwise investigate
why test crashed.

If you use dbx to debug code that was not compiled with the -g option, local
variables are invisible to dbx, and source lines may appear to jump around as a result
of various optimizations. If the code is stripped of its debugging information, dbx
displays very little information.

Debugging Your Programs
Debugging a program consists primarily of stopping your program under certain
conditions and then examining the state of the program stack and the values stored in
program variables.

You stop execution of your program by setting breakpoints in your program.
Breakpoints can be unconditional, in which case they always stop your program when
encountered, or conditional, in which case they stop your program only if a test
condition that you specify is true. (See "Setting Breakpoints", page 77, for more
information.)

To use breakpoints to debug your program, examine your program carefully to
determine where problems are likely to occur, and set breakpoints in these problem
areas. If your program crashes, first determine which line causes it to crash, then set a
breakpoint just before that line.

2 007–0906–120

dbx User’s Guide

You can use several dbx commands to trace a variable’s value. Here’s a simple
method for tracing a program variable:

Procedure 1-2 Tracing program variables

1. Use the stop command (see "Setting Breakpoints", page 77) to set breakpoints in
the program at locations where you want to examine the state of the program
stack or the values stored in program variables.

2. Use the run or rerun command (described in "Running Your Program (run,
rerun, and sort)", page 8) to run your program under dbx. The program stops
at the first breakpoint that it encounters during execution.

3. Examine the program variable as described in "Displaying the Value of a
Variable", page 45. Examine the program stack as described in "Examining the
Stack", page 63.

4. Use the cont command (see "Continuing Execution after a Breakpoint", page 82)
to continue execution past a breakpoint. However, you cannot continue execution
past a line that crashes the program.

Studying a New Program
Use dbx to examine the flow of control in a program. When studying the flow of
control within a program, use the dbx commands stop, run/rerun, print, next,
step, and cont. Use the following procedure to study a new program.

Procedure 1-3 Studying a new program

1. Use the stop command to set breakpoints in the program. When you execute the
program under dbx, it stops execution at the breakpoints.

If you want to review every line in the program, set a breakpoint on the first
executable line. If you don’t want to look at each line, set breakpoints just before
the sections you intend to review.

2. Use the run and rerun commands to run the program under dbx. The program
stops at the first breakpoint.

3. Use the print command to print the value of a program variable at a breakpoint.

4. Use the step, next, or cont command to continue past a breakpoint and
execute the rest of the program.

007–0906–120 3

1: Getting Started with dbx

• step executes the next line of the program. If the next line is a procedure call,
step steps down into the procedure. step is described in "Stepping Using the
step Command", page 96.

• next executes the next line; if it is a procedure, next executes it but does not step
down into it. next is described in "Stepping Using the next Command", page 97.

• cont resumes execution of the program past a breakpoint and does not stop until
it reaches the next breakpoint or the end of the program. cont is explained in
"Continuing Execution after a Breakpoint", page 82.

Another tool that you can use to follow the execution of your program is the trace
command (described in "Tracing Program Execution", page 83). With it you can
examine:

• Values of variables at specific points in your program or whenever variables
change value.

• Parameters passed to and values returned from functions.

• Line numbers as they are executed.

Avoiding Common Pitfalls
You may encounter some problems when you debug a program. Common problems
and their solutions are listed below.

• If dbx does not display variables, recompile the program with the -g compiler
option. Note that in some cases, this may cause the problem to go away, or its
symptoms to change.

• If the debugger’s listing seems confused, try separating the lines of source code
into logical units. The debugger may get confused if more than one source
statement occurs on the same line.

• If the debugger’s executable version of the code doesn’t match the source,
recompile the source code. The code displayed in the debugger is identical to the
executable version of the code.

• If code appears to be missing, it may be contained in an include file or a macro.
The debugger treats macros as single lines. To debug a macro, expand the macro
in the source code.

4 007–0906–120

Chapter 2

Running dbx

This chapter explains the basics of how to run dbx. It contains the following topics:

• "Compiling a Program for Debugging under dbx", page 5

• "Compiling and Linking Programs with Dynamic Shared Objects", page 5

• "Invoking dbx", page 6

• "Running Your Program (run, rerun, and sort)", page 8

• "Automatically Executing Commands on Startup", page 10

• "Using Online Help", page 10

• "Entering Multiple Commands on a Single Line", page 11

• "Spanning a Command Across Multiple Lines", page 11

• "Invoking a Shell", page 11

• "Quitting dbx", page 12

Compiling a Program for Debugging under dbx
Before using dbx to debug a program, compile the program with the compiler’s -g
option (for example, cc -g). The -g option includes additional debugging
information in your program object so that dbx can list local variables and find
source lines.

If you use dbx to debug code that was not compiled using the -g option, local
variables are invisible to dbx, and source lines may appear to jump around oddly as
a result of various optimizations. It is more difficult to debug code without reliable
references to lines of source code.

Compiling and Linking Programs with Dynamic Shared Objects
This section summarizes some hings you need to know if you compile and link your
program with Dynamic Shared Objects (DSOs). A DSO is a relocatable shared library.

007–0906–120 5

2: Running dbx

By linking with a DSO, you keep your program size small and also use memory
efficiently.

If you compile and link with DSOs, dbx automatically notices their use in the
program and picks up the relevant debugging information. The dbx listobj
command shows any DSOs in a process. The dbx whichobj command lists all DSOs
in which a specified variable is present. The dbx listregions command identifies
DSO addresses at run time.

The dbx help section on hint_dso has more information on dbx and DSOs. For
more information on DSOs, refer to the MIPSpro N32/64 Compiling and Performance
Tuning Guide.

Invoking dbx

This section describes how to invoke dbx and includes the following topics:

• "Specifying Object and Core Files", page 7

• "Specifying Files with dbx Commands", page 8

To invoke dbx from the shell command line, use the following dbx syntax:

dbx [options] [object_file [corefile]]

After dbx starts, it displays the following prompt:

(dbx)

To change this prompt, change the value of the dbx $prompt variable. "Setting dbx
Variables", page 22, describes how to set dbx variables.

The following list describes options that you can give to the dbx command. These
options are described in detail later in this chapter.

• -c file: selects a command file other than .dbxinit to execute on starting
dbx. For information about .dbxinit, see "Automatically Executing Commands
on Startup", page 10.

• -d: provides startup information to the shell when a program is started with the
run command.

6 007–0906–120

dbx User’s Guide

• -e num: chooses as large an evaluation stack size as you want. The default stack
size is 20,000 bytes, where num is equal to the number of bytes. If you see the
message too large to evaluate, rerun dbx while suppling a value greater
than 20,000.

• -i: uses interactive mode. This option prompts for source even when it reads
from a file and treats data in a file as if it comes from a terminal (stdin). This
option does not treat # characters as comments in a file.

• -I dir: tells dbx to look in the specified directory (in addition to the current
directory and the object file’s directory) for source files. To specify multiple
directories, use a separate -I option for each directory. If no directory is specified
when you invoke dbx, it looks for source files in the current directory and in the
object file’s directory. From dbx, changes the directories searched for source files
with the use and dir commands.

• -k: turns on kernel debugging. When debugging a running system, specify
/dev/kmem as the core file.

• -N: sets the dbx $nonstop variable to 1 on startup. Attaching to a process does
not stop the process. This affects only the dbx -p and dbx -P options and the
addproc command.

• -P name: debugs the running process with the specified name (name as described
in the ps(1) man page).

• -p pid: debugs the process specified by the pid number.

• -R: allows breakpoints in the runtime linker (rld).

• -r program [args]: runs the named program upon entering dbx by using the
arguments specified by args. The .dbxinit file (if any) is read and executed after
executing the object file. You cannot specify a core file with -r option.

Specifying Object and Core Files

The object_file is the name of the executable object file that you want to debug. It
provides both the code that dbx executes and the symbol table that provides variable
and procedure names and maps executable code to its corresponding source code in
source files.

A corefile is produced when a program exits abnormally and produces a core dump.
dbx allows you to provide the name of a core file that it uses as “the contents of

007–0906–120 7

2: Running dbx

memory” for the program that you specify. If you provide a core file, dbx lists the
point of program failure. You can then perform stack traces and examine variable
values to determine why a program crashed. However, you cannot force the program
to execute past the line that caused it to crash.

If you do not specify a corefile, dbx examines the current directory for a file named
core. If it finds core, and if core seems (based on data in the core file) to be a core
dump of the program you specified, dbx acts as if you had specified core as the core
file.

You can specify object and core files either as arguments when you invoke dbx or as
commands that you enter at the dbx prompt.

Specifying Files with dbx Commands

The dbx givenfile and corefile commands allow you to set the object file and
the core file, respectively, while dbx is running.

• givenfile file: if you provide a filename, dbx kills the processes that currently
are running and loads the executable code and debugging information found in file.

If you do not provide a filename, dbx displays the name of the program that it is
currently debugging without changing it.

• corefile file: if you provide a filename, dbx uses the program data stored in
the core dump file.

If you do not provide a filename, dbx displays the name of the current core file
without changing it.

Running Your Program (run, rerun, and sort)
You can start your program under dbx by using the run or the rerun command.

To verify exactly how your application is being started by the run or the rerun
command, start dbx with the -d option.

• run run-arguments: the run command starts your program and passes any
arguments to it that you provide. The command uses your shell (the program
named in the SHELL environment variable or in /bin/sh if an environment
variable does not exist) to process a run command. The same syntax allowed in
your shell is allowed on the run command line. All shell processing is accepted,

8 007–0906–120

dbx User’s Guide

such as expansion and substitution of * and ? in filenames. Redirection of the
program’s standard input and standard output, and/or standard error is also done
by the shell.

Therefore, the dbx run command does exactly the same thing as typing target
run-arguments at the shell prompt. You can specify target either on dbx
invocation or in a prior givenfile command. dbx passes ./target as
argv[0] to target when you specify it as a relative pathname.

The run command must appear on a line by itself and cannot be followed by
another dbx command separated by a semicolon (;). Terminate the command line
with a return. Note that you cannot include a run command in the command list
of a when command.

The run command does not invoke the initialization files of the Bourne, C, and
Korn shells before it starts a program. If you use a non-standard shell, before you
run a program you should set the dbx variable called $shellparameters to a
string that will instruct the shell to not load the initialization file. For example, for
the C shell you would enter the following command:

% set $shellparameters = "-f"

If the SHELL environment variable is set to a C shell and your program has
file-descriptors other than the default values (0,1,2), switch to the Bourne shell
before you invoke the run command. This means you can use only sh-style
redirections, because csh closes the extra file-descriptors. To switch shells for the
purpose of running your program, use the following dbx command:

% setenv SHELL /bin/sh

• rerun: the rerun command, without any arguments, repeats the last run
command. rerun is equivalent to the run command without any arguments.

• sort: the sort command takes an input file and produces a sorted output file;
you can specify input and output files either through command-line arguments or
file redirection. For example, from the command line you can enter:

% sort -i input -o output

% sort < input2 > output2

If you are debugging the sort program, the equivalent dbx commands are:

(dbx) run -i input -o output

(dbx) run < input2 > output2

007–0906–120 9

2: Running dbx

If you execute these run commands in the order presented, you can repeat the last
run command by using the rerun command:

(dbx) rerun

Automatically Executing Commands on Startup
You can use an editor to create a .dbxinit command file. This file contains various
dbx commands that automatically execute when you invoke dbx. You can put any
dbx command in the .dbxinit file. If a command requires input, the system
prompts you for it when you invoke dbx.

On invocation, dbx looks for a .dbxinit file in the current directory. If the current
directory does not contain a .dbxinit file, dbx looks for one in your home directory.
(This assumes that you have set the IRIX system HOME environment variable.)

Using Online Help
The dbx command help has several options:

• help: shows the supported dbx commands.

• help keyword: shows information pertaining to a given keyword, such as alias,
help, most_used, quit, playback, record, and so on.

• help all: shows the entire dbx help file.

When you type help all, dbx displays the help file by using the command name
specified in the dbx $pager variable. The dbx help file is large and can be difficult
to read even if you use a simple paging program like more(1). You can set the
$pager variable to a text editor like vi(1) or to your favorite editor.

For example, just add the following command in your .dbxinit file:

% set $pager = "vi"

When the above entry is in your .dbxinit file, dbx displays the help file in vi. You
can then use the editor’s search commands to look through the help file quickly. Quit
the editor to return to dbx.

10 007–0906–120

dbx User’s Guide

Entering Multiple Commands on a Single Line
You can use a semicolon (;) as a separator to include multiple commands on the
same command line. This is useful with commands such as when (described in
"Writing Conditional Commands", page 85) because it allows you to include multiple
commands in the command block.

For example:

(dbx)when at "myfile.c":37 {print a ; where ; print b}

Spanning a Command Across Multiple Lines
You can use a backslash (\) at the end of a line of input to indicate that the command
is continued on the next line. This can be convenient when entering complex
commands such as an alias definition (aliases are discussed in "Creating and
Removing dbx Aliases", page 26).

For example:

(dbx) alias foll "print *(struct list *)$p ; \
set $p = (int)((struct list *)($p))->next"

Note: You can also use the hed command for creating and modifying commands.
"The History Editor", page 26, has details on this command.

Invoking a Shell
To invoke a subshell, enter the sh command at the dbx prompt, or enter the sh
command and a shell command at the dbx prompt. After invoking a subshell, type
the exit or Ctrl-d to return to dbx.

The syntax for the sh command is:

sh command

The sh command alone invokes a subshell. The sh command syntax executes the
specified command. dbx interprets the rest of the line as a command to pass to the

007–0906–120 11

2: Running dbx

spawned shell process, unless you enclose the command in double quotes or you
terminate your shell command with a semicolon (;).

For example, to spawn a subshell, enter:

(dbx) sh

%

To display the end of the file datafile, enter:

(dbx) sh tail datafile

Quitting dbx

To end a dbx debugging session, enter the quit command at the dbx prompt:

(dbx) quit

12 007–0906–120

Chapter 3

Examining Source Files

This chapter explains how to examine source files under dbx. It describes:

• "Specifying Source Directories", page 13

• "Searching through Source Code", page 19

• "Changing Source Files", page 16

• "Listing Inlines and Clones", page 18

• "Calling an Editor", page 20

Specifying Source Directories
Based on the information contained in an object file’s symbol table, dbx determines
from which source files the program was compiled and prints portions of these files
as appropriate.

Object files compiled with -g record the absolute path names to the source files. Each
time dbx needs a source file, it first searches the absolute path for the source file. If
the source file is not present (or if the object file was not compiled with -g), dbx
checks its own list of directories for source files.

By default, the dbx directory list contains only the current directory (from which you
invoked dbx) and the object file’s directory (if it is different from the current
directory). Each time dbx searches this list, it searches all directories in the list in the
order in which they appear until it finds the file with the specified name.

Specifying Source Directories with Arguments

You can specify additional source directories when you invoke dbx with the -I
option. To specify multiple directories, use a separate -I for each.

For example, consider debugging a program called look in /usr/local/bin, the
source for which resides in /usr/local/src/look.c. To debug this program, you
can invoke dbx from the /usr/local/bin directory by entering:

% dbx -I /usr/local/src look

007–0906–120 13

3: Examining Source Files

Specifying Source Directories with dbx Commands

The use commands allow you to specify a source directory list while dbx is running.

dir [dir]

If you provide one or more directories, dbx adds those directories to the end of the
source directory list. If you do not provide any directories, dbx displays the current
source directory list.

use [dir]

If you provide one or more directories, dbx replaces the source directory list with the
directories that you provide. If you do not provide any options, dbx displays the
current source directory list.

Both the dir and use commands recognize absolute and relative pathnames (for
example, ../src); however, they do not recognize C shell tilde (~) syntax (for
example, ~kim/src) or environment variables (for example, $HOME/src).

Example 3-1 Examples of dir and use

In this sample you will debug the look program in /usr/local/bin. Recall that
the source resides in /usr/local/src/look.c. If you invoke dbx from the
/usr/local/bin directory without specifying /usr/local/src as a source
directory, it will not initially appear in the directory list.

However, you can add /usr/local/src with the dir command by entering:

(dbx) dir /usr/local/src

(dbx) dir

. /usr/local/src

If you use the use command instead, the current directory is no longer contained in
the source directory list:

(dbx) use /usr/local/src

(dbx) use
/usr/local/src

14 007–0906–120

dbx User’s Guide

Path Remapping

The debugging information for programs compiled with the -g option includes the
full pathnames for source files. By default, dbx uses these pathnames to search for
source files.

However, if you are debugging a program that was compiled elsewhere and you
want to specify a new path to the sources, you can use path remapping. You can
substitute one pattern for another to remap the path so dbx can find the source file.
The syntax of the remapping command is as follows:

dir pattern1:pattern2

The dir (or use) command allows you to remap directories and specify a new path
to the source. dbx substitutes pattern2 for pattern1.

For example, a compiled program’s source is /x/y/z/kk.c and the source was
moved to /x/y/zzz/kk/kk.c. Specify the dir (or use) command to remap the
path:

(dbx) dir /z/:/zzz/kk/

The new path is /x/y/zzz/kk/kk.c, where /z/ has been remapped to the string
following the colon.

Controlling Use of Path Remappings and Your Source-Directory List

The dbx $sourcepathrule variable controls how, in a source-file search, dbx uses path
remappings and the source-directory list created by the dir and use commands. The
following list summarizes the effects of the $sourcepathrule variable.

• 0 (default): search for a source file by:

a. using the pathname in the object file’s debugging information; if the file is not
found, then

b. examine pathnames remapped by the dir or use command; if the file is still
not found, then

c. reduce full pathnames to base file names and search the list of directories
created by the dir or use command.

• 1: Permute the default source-file search sequence to: step b, step c, then step a.

007–0906–120 15

3: Examining Source Files

• 2: use only steps b and c of the default source-file search sequence.

$sourcepathrule = 1 is useful when, for example, you move source files after you
compile your program. You can direct dbx to the correct files.

$sourcepathrule = 2 is useful when, for example, your network is slow and you have
full pathnames in your debugging information that point to files on other machines.
The debugger ignores all pathnames in the debugging information and, hence, will
not attempt access over the network.

Changing Source Files
The file command changes the current source file to a file that you specify. The new
file becomes the current source file, on which you can search, list, and perform other
operations. For example, to set the current source file to ‘‘Examining the
Stack’’ on page 54 procedure.c, enter:

(dbx) file procedure.c

If your program is large, typically you store the source code in multiple files. dbx
automatically selects the proper source file for the section of code that you are
examining. Thus, many dbx commands reset the current source file as a side effect.
For example, when you move up and down activation levels in the stack using the up
and down commands, dbx changes the current source file to whatever file contains
the source for the procedure (see "Examining the Stack", page 63, for more
information on activation levels).

If you enter the file command without any arguments, dbx prints the current
source as follows:

(dbx) file

procedure.c

You can also change the current source file by typing:

(dbx) func procedure

You can use the tag command to search the tag file for procedure:

(dbx) tag procedure

The tag command finds C preprocessor macros if they have arguments (func
procedure cannot). For more information about the tag file, see ctags(1).

16 007–0906–120

dbx User’s Guide

Listing Source Code
The list command displays lines of source code. The dbx $listwindow variable
defines the number of lines dbx lists by default. The list command uses the active
frame and line of the current source file unless overridden by a file command. Any
execution of the program overrides the file command by establishing a new current
source file.

The syntax for the list command is:

list [exp] [exp1:exp2] [exp1,exp2] [func] [func, exp] [func:exp]

The following list describes the arguments:

• list: lists $listwindow lines beginning at the current line (or list the line of the
current pc if the current line is unknown or not set).

• exp: lists $listwindow lines starting with the line number given by exp. exp can be
any valid expression that evaluates to an integer value as described in "Using
Expressions", page 35.

• exp1:exp2: lists exp2 lines, beginning at line exp1.

• exp1,exp2: lists all source between line exp1 and line exp2 inclusive.

• func: lists $listwindow lines starting at procedure func.

• func,exp: lists all source between func and exp, inclusive.

• func:exp: lists exp lines, beginning at func.

A > symbol prints to the left of the line that is the current line. A * symbol prints to
the left of the line of the current pc location.

Example 3-2 list command

To list lines 20–35 of a file, enter:

(dbx) list 20,35

In response to this command, dbx displays lines 20 through 35 and sets the current
line to 36.

To list 15 lines starting with line 75, enter:

007–0906–120 17

3: Examining Source Files

(dbx) list 75:15

In response to this command, dbx displays lines 75 through 89 and sets the current
line to 90.

Listing Inlines and Clones
The compiler may inline routines, replacing a call with quotes of code from the called
routine, either as a result of optimization or inline directives. Clones are specialized
versions of routines that you can use to get faster-running code. The source for
cloned routines is called a root.

In special cases, you may want to find inlined routines or clones. The listinlines
and listclones commands find the routines, if enough debugging information is
available. Compilations with the -32 option or with IRIX 6.2 and earlier base
compilers do not have the necessary information; listinlines and listclones
show nothing.

The syntax for the listinlines command is:

listinlines [func]

The following arguments are available:

• listinlines (with no argument): lists all inlined routines with their start and
end addresses.

• func: lists all the inlined instances of func with their start and end addresses.

Example 3-3 listinlines usage

::MultPoints is a C++ routine and you enter:

(dbx) listinlines ::MultPoints

The dbx output lists the address ranges of all the instances where ::MultPoints is
inlined.

The syntax for the listclones command is similar:

listclones [func]

18 007–0906–120

dbx User’s Guide

The following arguments are available:

• listclones (with no argument): lists all the root functions and their derived
clones.

• func: lists the root and all derived clones for func.

Searching through Source Code
Use the forward slash (/) and question mark (?) commands to search through the
current file for regular expressions in source code. For a description of regular
expressions, see the ed(1) reference page.

The search commands have the following syntax:

/[reg_exp]

This command searches forward through the current file from the current line for the
regular expression reg_exp. If dbx reaches the end of the file without finding the
regular expression, it wraps around to the beginning of the file. dbx prints the first
source line containing a match of the search expression.

If you do not supply a regular expression, dbx searches forward based on the last
regular expression searched.

?[reg_exp]

This command searches backward through the current file from the current line for
the regular expression reg_exp. If dbx reaches the beginning of the file without
finding the regular expression, it wraps around to the end of the file. dbx prints the
first source line containing a match of the search expression.

If you do not supply a regular expression, dbx searches backward based on the last
regular expression searched.

Example 3-4 Using search commands

To search forward for the next occurrence of the string errno, enter:

(dbx) /errno

007–0906–120 19

3: Examining Source Files

To search backward for the previous occurrence of either img or Img, enter:

(dbx) ?[iI]mg

Calling an Editor
The edit command lets you edit files from within dbx.

The following is the synopsis for this command:

edit [file] [procedure]

The following arguments are available:

• edit (without any arguments): this command invokes an editor (vi by default)
on the current source file. If you set the dbx variable $editor to the name of an
editor, the edit command invokes that editor. If you do not set the $editor
variable, dbx checks the environment variable EDITOR and, if set, invokes that
editor. When you exit the editor, you return to the dbx prompt.

• file: invokes the editor on the given file.

• procedure: invokes the editor on the file that contains the source for the specified
procedure. dbx extended naming does not work. You may only name procedures
that dbx can find with a simple name: procedures in the current activation stack
and global procedures.

Example 3-5 Editor usage

To edit a file named soar.c from within dbx, type:

(dbx) edit soar.c

The edit command is also useful for editing dbx script files. See "Executing dbx
Scripts", page 34, for more information on script files.

20 007–0906–120

Chapter 4

Controlling dbx

This chapter describes features of dbx that affect its operation while debugging a
program. Specifically, this chapter covers:

• "Creating and Removing dbx Variables", page 21

• "Using the History Feature and the History Editor", page 23

• "Creating and Removing dbx Aliases", page 26

• "Recording and Playing Back dbx Input and Output", page 30

• "Executing dbx Scripts", page 34

Creating and Removing dbx Variables
dbx allows you to define variables that you can use within dbx to store values. These
variables exist entirely in dbx; they are not part of your program. You can use dbx
variables for a variety of purposes while debugging. For example, you can use dbx
variables as temporary storage, counters, or pointers that you use to step through
arrays.

dbx also provides many predefined variables that control how various dbx
commands function. Appendix C, "Predefined dbx Variables", page 165, provides a
complete list of predefined dbx variables and their purposes.

A dbx variable does not have a fixed type. You can assign a dbx variable any type of
value, even if it already has a value of a different type. However, a variable
predefined by dbx does have a fixed predefined type.

You can use almost any name for dbx variables. A good practice to follow is to use a
dollar sign ($) as the first character of all dbx variables to prevent conflicts with most
program variable names. All of dbx’s predefined variables begin with a dollar sign.

The commands described in this section apply only to the manipulations of dbx
variables, not program variables. "Displaying and Changing Program Variables", page
44, describes how to manipulate program variables.

007–0906–120 21

4: Controlling dbx

Setting dbx Variables

The set command sets a dbx variable to a given value, defining the variable if it
does not exist:

set var=exp

This command defines (or redefines) the specified dbx variable, setting its value to
that of the expression you provide.

If you enter the set command without arguments, dbx displays (in alphabetical
order) a list of all currently defined dbx variables, including predefined variables.
Partial output looks like this:

(dbx) set

$addrfmt ‘‘0x%x’’

$addrfmt64 ‘‘0x%llx’’
$assignverify 1

$casesense 2

$ctypenames 1

$curevent 3

$curline 44

$curpc 268439708
...

$stacktracelimit 1024

$stdc 0

$stepintoall 0

$tagfile ‘‘tags’’

You can display the value of a variable by using the print command.

Example 4-1 set and print commands

(dbx) set $k = 1

(dbx) print $k
1

(dbx) set $k = $k +23

(dbx) print $k

24

(dbx) print $k / 11
2

22 007–0906–120

dbx User’s Guide

In the above example, dbx performs an integer division because both the variable $k
and the constant 11 are integers. If you assign a floating point value to $k and
evaluate the expression again, dbx performs a floating point division:

(dbx) set $k = 24.0

(dbx) print $k

24.0

(dbx) print $k / 11

2.1818181818181817

Note: It is recommended that you begin a dbx variable with a $ to avoid confusion
with a program variable. A dbx variable without a leading $ hides any program
variable that has the same name. The only way to see the program variable is to
remove the dbx variable with an unset command.

Removing dbx Variables

The unset command removes a dbx variable.

Example 4-2 unset command

For example, to delete the $k variable, enter:

(dbx) unset $k

Using the History Feature and the History Editor
The dbx history feature is similar to the C shell’s history feature; you can repeat
commands that you have entered previously using this command. However, unlike
the C shell’s history feature, dbx does not allow you to execute a history command
anywhere except at the beginning of a line. Also, dbx does not support history
substitution of command arguments such as the C shell !$ argument.

Examining the History List

dbx stores all commands that you enter in the history list. The value of the dbx $lines
variable determines how many commands are stored in the history list. The default
value is 100.

007–0906–120 23

4: Controlling dbx

You can display the history list by using the history command.

Example 4-3 history command

After setting a breakpoint, running a program, and examining some variables, your
history list might look something like this:

(dbx) history
1 set $prompt = ‘‘(dbx)’’

2 set $page=0

3 set $pimode=1

4 stop in main

5 history

Repeating Commands

You can execute any of the commands contained in the history list. Each history
command begins with an exclamation point (!). The following list describes history
command usage:

• !!: repeats the previous command. If the value of the dbx $repeatmode variable is
set to 1, then entering a carriage return at an empty line is equivalent to executing
!!. By default, $repeatmode is set to 0.

• ! string: repeats the most recent command that starts with the specified string.

• ! integer: repeats the command associated with the specified integer in the history
list.

• !- integer: repeats the command that occurred integer times before the most recent
command. Entering !-1 executes the previous command, !-2 the command
before that, and so forth.

Example 4-4 !! command

You can use the !! command to help you single-step through your program.
(Single-stepping is described in "Stepping through Your Program", page 95.) The
following illustrates using the next command to execute 5 lines of source code and
then using the !! command to repeat the next command.

For example:

(dbx) next 5

Process 22545 (test) stopped at [main:60 ,0x10001150]

24 007–0906–120

dbx User’s Guide

60 total += j;
(dbx) !!

(!! = next 5)

Process 22545 (test) stopped at [main:65 ,0x100011a0]

65 printf(‘‘i = %d, j = %d, total = %d\n’’,i,j,total);

Example 4-5 ! string command

Another easy way to repeat a commonly used command is with ! string. For
example, suppose that you occasionally print the values of certain variables using the
printf command while running your program under dbx (the printf command is
described in "Printing Expressions", page 39.) In this case, as long as you do not enter
any command beginning with pr after you enter the printf command, you can
repeat the printf command by entering !pr. For example:

(dbx) printf "i = %d, j = %d, total = %d\n", i, j, total

i = 4, j = 25, total = 1

...

(dbx) !pr
i = 12, j = 272, total = 529

Example 4-6 ! integer command

Using ! integer, you can repeat any command in the history list. If you want to
repeat the printf command, but you have entered a subsequent print command,
examine the history list and then explicitly repeat the printf command using its
reference number. For example:

(dbx) history

1 set $prompt = ‘‘(dbx)’’

2 set $page=0
..

45 printf "i = %d, j = %d, total = %d\n", i, j, total

46 next

..

49 print j

..
53 history

(dbx) !45

(!45 = printf "i = %d, j = %d, total = %d\n", i, j, total)

i = 9, j = 43, total = 1084

007–0906–120 25

4: Controlling dbx

The History Editor

The history editor (hed) lets you use your favorite editor on any or all of the
commands in the current dbx history list. When you enter the hed command, dbx
copies all or part of the history list into a temporary file that you can edit. When you
quit the editor, any commands left in this temporary file are automatically executed
by dbx.

If you have set the dbx $editor variable to the name of an editor, the hed command
invokes that editor. If you have not set this variable, dbx checks if the EDITOR
environment variable is set, and if so, invokes that editor. If neither the dbx variable
or the environment variable is set, dbx invokes the vi editor.

The syntax for the hed commands is:

hed [num1] [num1, num2] [all]

The following arguments are available:

• hed (with no arguments): edits only the last line of the history list (the last
command executed).

• num1: edits line num1 in the history list.

• num1, num2: edits the lines in the history list from num1 through num2.

• all: edits the entire history list.

By default, dbx does not display the commands that it executes as a result of the hed
command when the dbx $pimode variable is set to 0. If $pimode is set to 1, dbx
displays the commands as it executes them. See Appendix C, "Predefined dbx
Variables", page 165, for more information.

Creating and Removing dbx Aliases
You can create dbx aliases for debugger commands. Use these aliases as you would
any other dbx command. When dbx encounters an alias, it expands the alias using
the definition you provided.

dbx has a group of predefined aliases that you can modify or delete. These aliases are
listed and described in Appendix B, "Predefined Aliases", page 161.

26 007–0906–120

dbx User’s Guide

If you find that you often create the same aliases in your debugging sessions, you can
include their definitions in your .dbxinit file so that they are automatically defined
for you. See "Automatically Executing Commands on Startup", page 10, for more
information on the .dbxinit file.

Creating Command Aliases

You can use the alias command to define new aliases:

alias name [command] ["string"] [arg1 ,...argN "string"]

The following arguments are available:

• command: defines name as an alias for command.

• string: defines name as an alias for the quoted string. With this form of the alias
command, you can provide command arguments in the alias definition.

• [arg1 ,...argN] “string“: defines name as an alias for the quoted string. arg1
through argN are arguments to the alias, appearing in the string definition. When
you use the alias, you must provide values for the arguments, which dbx then
substitutes in string.

The simplest form of an alias is to redefine a dbx command with a short alias. Many
of the predefined dbx aliases fall into this category: for example, a is an alias for the
assign command and s is an alias for the step command. When you use one of
these aliases, dbx simply replaces it with the command for which it is an alias. Any
arguments that you include on the command line are passed to the command.

Example 4-7 Creating and using aliases

If you want to create gf as an alias for the givenfile command, enter:

(dbx) alias gf givenfile

(dbx) alias gf

"givenfile"

(dbx) gf
Current givenfile is test

(dbx) gf test2

Process 22545 (test) terminated

Executable /usr/var/tmp/dbx_examples/test2

(dbx) gf

007–0906–120 27

4: Controlling dbx

Current givenfile is test2

More complex alias definitions require more than the name of a command. In these
cases, you must enclose the entire alias definition string in double quotation marks.
For example, you can define a brief alias to print the value of a variable that you
commonly examine. Note that you must use the escape character (\) to include the
double quotation marks as part of the alias definition. For example:

(dbx) alias pa "print \"a =\", a"

(dbx) alias pa

"print "a =", a"
(dbx) pa

a = 3

You can also define an alias so that you can pass arguments to it, much in the same
way that you can provide arguments in a C language macro definition. When you
use the alias, you must include the arguments. dbx then substitutes the values that
you provide in the alias definition.

Consider the following alias definition:

(dbx) alias p(arg1, arg2, arg3, arg4) "print ’|arg1|arg2|arg3|arg4|’"
(dbx) alias p

(arg1, arg2, arg3, arg4)"print ’|arg1|arg2|arg3|arg4|’"

The p alias takes four arguments and prints them surrounded by vertical bars (|). For
example:

(dbx) p(1,2,3,4)

|1|2|3|4|

(dbx) p(first, second, 3rd,4)

| first| second| 3rd|4|

In the previous example, dbx retains any spaces that you enter when calling an alias.

You can also omit arguments when calling an alias as long as you include the
commas as argument separators in the alias call:

(dbx) p(a,,b,c)

|a||b|c|

(dbx) p(,first missing, preceding space,)

||first missing| preceding space||

(dbx) delete

delete

28 007–0906–120

dbx User’s Guide

Example 4-8 Linked lists, aliases, and casts

One way to follow linked lists is to use aliases and casts, another is to use the duel
command (see "Using the High-Level Debugging Language duel", page 49 for more
information). This example shows how to construct an alias that follows a simple
linked list with members defined by the following structure:

struct list { struct list *next; int value; };

In this example, a dbx variable called $p is used as a pointer to a member of the
linked list. You can define an alias called foll to print the contents of the list
member to which $p currently points and then advance to the next list member.
Because the command is too long to fit onto one line, this example uses the backslash
character (\) to continue the command on a second line:

(dbx) alias foll "print *(struct list *)$p ; \

set $p = (long)((struct list *)($p))->next"

Casting $p to an integer type when following the link (the second assignment in the
alias) is essential. If omitted, dbx may leave the $p reference symbolic and if so, goes
into an infinite loop. (Type Ctrl-c to interrupt dbx if it gets into the infinite loop.)

Before using this alias, you must set $p to point at the first list member. In this
example, assume that the program variable top points to the first list member. Then
you can use the foll alias to follow the linked list, printing the contents of each
member as you proceed:

(dbx) set $p = top

(dbx) foll

struct list {

next = 0x7fffc71c

value = 57
}

(dbx) foll

struct list {

next = 0x7fffc724

value = 3
}

(dbx) foll

struct list {

next = 0x7fffc72c

value = 12

}

007–0906–120 29

4: Controlling dbx

Listing Aliases

You can display the definition of aliases using the alias command:

alias [name]

The following arguments are available:

• alias (with no arguments): lists all existing aliases.

• name: lists the alias definition for name.

Example 4-9 Listing aliases

To display the definitions of the predefined aliases l and bp, enter:

(dbx) alias l

"list"

(dbx) alias bp
"stop in"

Removing Aliases

The unalias command removes the alias you provide as an argument.

Example 4-10 Removing aliases

To remove the pa alias defined in Example 4-7, page 27, enter the following command:

(dbx) unalias pa

You can remove any of the predefined dbx aliases; however, these aliases are restored
the next time you start dbx.

Recording and Playing Back dbx Input and Output
dbx allows you to play back your input and record dbx’s output. dbx saves the
information that you capture in files, which allows you to create command scripts
that you can use in subsequent dbx sessions.

30 007–0906–120

dbx User’s Guide

Recording Input

Use the record input command to start an input recording session. Once you start
an input recording session, all commands to dbx are copied to the specified file. If the
specified file already exists, dbx appends the input to the existing file. You can start
and run as many simultaneous dbx input recording sessions as you need.

Each recording session is assigned a number when you begin it. Use this number to
reference the recording session with the unrecord command described in "Ending a
Recording Session", page 31.

After you end the input recording session, use the command file with the playback
input or pi commands to execute again all the commands saved to the file. See
"Playing Back Input", page 32, for details.

Example 4-11 Recording input

To save the recorded input in a file called script, enter the following command:

(dbx) record input script
[4] record input script (0 lines)

If you do not specify a file to record input, dbx creates a temporary dbx file in the
/tmp directory. The name of the temporary file is stored in the dbx $defaultin variable
. You can display the temporary filename by using the print command:

(dbx) print $defaultin

Because the dbx temporary files are deleted at the end of the dbx session, use the
temporary file to repeat previously executed dbx commands in the current debugging
session only. If you need a command file for use in subsequent dbx sessions, you
must specify the filename when you invoke record input. If the specified file
exists, the new input is appended to the file.

Ending a Recording Session

To end input or output recording sessions, use the unrecord command.

The following is the syntax of this command:

unrecord session1 [,session2...] [all]

The following arguments are available:

007–0906–120 31

4: Controlling dbx

• session1,[session2]: turns off the specified recording session(s) and closes the file(s)
involved.

• all: turns off all recording sessions and closes all files involved.

Example 4-12 Ending a recording session

To stop recording session 4, enter the following dbx command:

(dbx) unrecord 4

To stop all recording sessions, enter:

(dbx) unrecord all

The dbx status command does not report on recording sessions. To see if any
active recording sessions exist, use the record command described in "Examining
the Record State", page 33.

Playing Back Input

Use the playback input command to execute commands that you recorded with
the record input command. Two aliases exist for the playback input
command: pi and source. If you do not specify a filename, dbx uses the current
temporary file that it created for the record input command.

If you set the dbx $pimode variable to nonzero, commands are printed out as they are
played back. By default, $pimode is set to zero.

Recording Output

Use the record output command to start output recording sessions within dbx.
During an output recording session, dbx copies its screen output to a file. If the
specified file already exists, dbx appends to the existing file. You can start and run as
many simultaneous dbx output recording sessions as you need.

By default, the commands you enter are not copied to the output file; however, if you
set the dbx $rimode variable to a nonzero value, dbx also copies the commands you
enter.

Each recording session is assigned a number when you begin it. Use this number to
reference the recording session with the unrecord command described in "Ending a
Recording Session", page 31.

32 007–0906–120

dbx User’s Guide

The record output command is very useful when the screen output is too large for
a single screen (for example, when printing a large structure). Within dbx, you can
use the playback output command (described in "Playing Output", page 33) to
look at the recorded information. After quitting dbx, you can review the output file
using any IRIX system text viewing command (such as vi(1)).

Example 4-13 Recording output

To record the dbx output in a file called gaffa, enter:

(dbx) record output gaffa

To record both the commands and the output, enter:

(dbx) set $rimode=1

(dbx) record output gaffa

If you omit the filename, dbx saves the recorded output in a temporary file in /tmp.
The temporary file is deleted at the end of the dbx session. To save output for use
after the dbx session, you must specify the filename when giving the record output
command. The name of the temporary file is stored in the dbx variable $defaultout.

To display the temporary filename, type:

(dbx) print $defaultout

Playing Output

The playback output command displays output saved with the record output
command. This command works the same as the cat(1) command. If you do not
specify a filename, dbx uses the current temporary file created for the record
output command.

Example 4-14 Playing output

For example,t o display the output stored in the file script, enter:

(dbx) playback output script

Examining the Record State

The record command displays all record input and record output sessions
currently active.

007–0906–120 33

4: Controlling dbx

Example 4-15 Examining the record state

The following is an example of the record command used to display the record
sessions:

(dbx) record

[4] record input /usr/demo/script (12 lines)

[5] record output /tmp/dbxoXa17992 (5 lines)

Executing dbx Scripts
You can create dbx command scripts by using an external editor and then executing
these scripts by using the pi or playback input command. This is a convenient
method for creating and executing automated test scripts.

You can include comments in your command scripts by using a pound sign (#) to
introduce a comment. To include a # operator (described in "Operators", page 36) in a
dbx script, use two pound signs (for example, ##27). When dbx sees a pound sign in
a script file, it interprets all characters between the pound sign and the end of the
current line as a comment.

34 007–0906–120

Chapter 5

Examining and Changing Data

This chapter describes how to examine and change data in your program while
running it under dbx. Topics in this chapter include:

• "Using Expressions", page 35

• "Printing Expressions", page 39

• "Using Data Types and Type Coercion (Casts)", page 41

• "Qualifying Names of Program Elements", page 41

• "Displaying and Changing Program Variables", page 44

• "Displaying and Changing Environment Variables Used by a Program", page 49

• "Using the High-Level Debugging Language duel", page 49

• "Determining Variable Scopes and Fully Qualified Names", page 62

• "Displaying Type Declarations", page 63

• "Examining the Stack", page 63

• "Using Interactive Function Calls", page 70

• "Obtaining Basic Blocks Counts", page 74

• "Accessing C++ Member Variables", page 75

Using Expressions
Many dbx commands accept one or more expressions as arguments. Expressions can
consist of constants, dbx variables, program variables, and operators. This section
discusses operators and constants. "Creating and Removing dbx Variables", page 21,
describes dbx variables, and "Displaying and Changing Program Variables", page 44,
describes program variables.

007–0906–120 35

5: Examining and Changing Data

Operators

In general, dbx recognizes most expression operators from C, Fortran 77, and Pascal.
dbx also provides some of its own operators. Operators follow the C language
precedence. You can also use parentheses to explicitly determine the order of
evaluation.

The following list describes the operators provided by dbx.

• not: unary operator returning false if the operand is true.

• or: binary logical operator returning true if either operand is nonzero.

• xor: binary operator returning the exclusive-OR of its operands.

• /: binary division operator (// also works for division).

• div: binary operator that coerces its operands to integers before dividing.

• mod: binary operator returning op1 modulo op2. This is equivalent to the C %
operator

• #exp: unary operator returning the address of source line specified by exp.

• file#exp: unary operator returning the address of source line specified by exp in the
file specified by file.

• proc #exp: unary operator returning the address of source line specified by exp in
the file containing the procedure proc.

The # operator takes the line number specified by the expression that follows it and
returns the address of that source line. If you precede the # operator with a filename
enclosed in quotation marks, the # operator returns the address of the line number in
the file you specify. If you precede the # operator with the name of a procedure, dbx
identifies the source file that contains the procedure and returns the address of the
line number in that file.

A pound sign (#) introduces a comment in a dbx script file. When dbx sees a pound
sign in a script file, it interprets all characters between the pound sign and the end of
the current line as a comment. See "Executing dbx Scripts", page 34, for more
information on dbx script files. To include the # operator in a dbx script, use two
pound signs (for example, ##27).

Example 5-1 Using operators

To print the address of line 27 in the current source file, enter:

36 007–0906–120

dbx User’s Guide

(dbx) print #27

To print the address of line 27 in the source file foo.c (assuming that foo.c contains
source that was used to compile the current object file), enter:

(dbx) print "foo.c" #27

To print the address of line 27 in the source file containing the procedure bar
(assuming that bar is a function in the current object file), enter:

(dbx) print bar #27

The following list shows the C language operators recognized by dbx:

• Unary: ! & + - * sizeof()

• Binary: % << >> == <= >= != < > & && | || + - * / []-> .

Note: C does not allow the use of the sizeof operator on bit fields. However, dbx
allows you to enter expressions using the sizeof operator on bit fields; in these
cases, dbx returns the number of bytes in the data type of bit fields (such as int or
unsigned int). The C language exclusive-OR (^) operator is not supported. Use the
dbx xor operator instead.

The following list describes the Pascal operators recognized by dbx:

• Unary: not ^ + -

• Binary: mod = <= >= <> < > and or + - * / div []

The following list describes the FORTRAN 77 and Fortran 90 language operators
recognized by dbx. Note that dbx does not recognize Fortran logical operators (such
as .or. and .TRUE.).

• Unary: + -

• Binary: + - * / %

Fortran array subscripts may be in either square brackets, [], or the standard
parenthesis, (), and the Fortran 90 member selection operator (%) is allowed.

007–0906–120 37

5: Examining and Changing Data

Constants

You can use both numeric and string constants under dbx. Expressions cannot
contain constants defined by #define declarations to the C preprocessor.

• Numeric constants: in numeric expressions, you can use any valid integer or
floating point constants. By default, dbx assumes that numeric constants are in
decimal. You can set the default input base to octal by setting the dbx $octin
variable to a nonzero value. You can set the default input base to hexadecimal by
setting $hexin to a nonzero value. If you set both $octin and $hexin to nonzero
values, $hexin takes precedence.

You can override the default input type by prefixing 0x to indicate a hexadecimal
constant, or 0t to indicate a decimal constant. For example, 0t23 is decimal 23
and 0x2A is hexadecimal 2A.

By default, dbx prints the value of numeric expressions in decimal. You can set
the default output base to octal by setting the $octints variable to a nonzero value.
You can set the default output base to hexadecimal by setting the dbx $hexints
variable to a nonzero value. If you set both $octints and $hexints to nonzero
values, $hexints takes precedence.

• String constants: most dbx expressions cannot include string constants. The
print and printf commands are two of the dbx commands that accept string
constants as arguments. You can also use the set command to assign a string
value to a dbx variable.

Otherwise, string constants are useful only as arguments to functions that you call
interactively. See "Using Interactive Function Calls", page 70, for information on
interactive function calls.

You can use either the double-quotation mark (“) or the single-forward quotation
mark (’) to quote strings in dbx. In general, dbx recognizes the following escape
sequences in quoted strings (following the standard C language usage):

\\ \n \r \f \b \t \’ \" \a

Enclosing a character string in back quotation marks (‘) indicates that the whole
string is the name of a program element, not a character-string constant. This is
useful, for example, when referring to C++ templates, which include in their
names the greater-than (>) and less-than (<) characters. Without back quotation
marks, dbx would attempt to interpret the characters as operators. For further
discussion, see "Qualifying Names of Program Elements", page 41, and "Referring
to C++ Functions", page 98.

38 007–0906–120

dbx User’s Guide

Printing Expressions
dbx provides the following commands for printing values of expressions:

• print [exp1,[exp2, ...]]: prints the value(s) of the specified expression(s).

• printd [exp1 ,[exp2], ...]: prints the value(s) of the specified expression(s) in
decimal. pd is an alias for printd. See "Creating and Removing dbx Variables",
page 21, for more information about dbx aliases.

• printo [exp1 ,[exp2], ...]: prints the value(s) of the specified expression(s)
in octal. po is an alias for printo.

• printx [exp1 ,[exp2], ...]: prints the value(s) of the specified expression(s) in
hexadecimal. px is an alias for printx.

For displaying information about variables, the duel command is a flexible
alternative to the print command; see "Using the High-Level Debugging Language
duel", page 49.

The variable types are as follows:

Table 5-1 Variable Types

Type Variable Name Value

Signed char sc 0xff

Unsigned char usc 0xff

Signed short ssh 0xffff

Unsigned short ush 0xffff

Example 5-2 Printing expressions

Examples include:

(dbx) pd sc

-1
(dbx) pd ssh
-1
(dbx) px sc

0xff
(dbx) px ssh

007–0906–120 39

5: Examining and Changing Data

0xffff
(dbx) pd usc

255
(dbx) pd ush

65535

dbx always prints the bits in the appropriate type. pd is an exception; it expands
signed types with sign extension so the decimal value looks correct.

Another example:

(dbx) print sc, usc

’\377’ ’\377’

If the dbx $hexchars variable is set, this command displays 0xff 0xff. (This is a
change from releases previous to IRIX 5.2. Previously, the px, po cases on signed char
expanded to 32 bits, so px sc printed 0xffffffff.)

If the printed data type is pointer, dbx uses the format specified by the $addrfmt or
$addrfmt64 predefined dbx variable ($addrfmt64 is used on only 64-bit processes).

The following is the syntax of the printf command:

printf string ,[exp1 ,[exp2] ...]

This command prints the value(s) of the specified expression(s) in the format
specified by the string, string. The printf command supports all formats of the IRIX
printf command except %s. For a list of formats, see the printf(3S) man page.

Value History for Print and Calls

Values printed by the print command as well as values returned by the ccall
command can be saved so they can be displayed later or used in other expressions.

Use the following command to enable this feature:

% set $printhistory=0

The value variables are created with names starting with $, followed by a number and
displayed after each print and ccall command. These values can be later referred
to by using the generated name. The last value can also be referred to simply as $.

40 007–0906–120

dbx User’s Guide

Example 5-3 Value history

(dbx) set $valuehistory=1
(dbx) print foof()

$1 = 9.9899997711181641

(dbx) print $1/4567.98987

$2 = 0.0021869575142289366

(dbx) print $

$3 = 0.0021869575142289366

These values are kept until a givenfile command is used. They are then discarded.

The set command can be used to print the complete list of value history, in addition
to the dbx variables.

Using Data Types and Type Coercion (Casts)
You can use data types for type conversion (also known as casting) by including the
name of the data type in parentheses before the expression you want to cast. For
example, to convert a character into an integer, use (int) to cast the value as shown
in the following example:

Example 5-4 Casting value

(dbx) print (int) ’b’

98

To convert an integer into a character, use (char) to cast the value as shown in the
next example:

(dbx) print (char) 67

’C’

This is standard C language type casting.

Qualifying Names of Program Elements
You can use the same name for different program elements, such as variables,
functions, statement labels, several times in a program. This is convenient and,
during program execution, the potential ambiguity presents no problem. For
example, you can use a temporary counter named i in many different functions. The

007–0906–120 41

5: Examining and Changing Data

scope of each variable is local; space is allocated for it when the function is called and
freed when the function returns. However, in dbx you sometimes need to distinguish
occurrences of identical names.

dbx allows unambiguous reference to all program elements by using source file and
routine names as qualifying information that makes otherwise indistinguishable
names unique. To find the fully qualified name of the active version of a name, use
the which command. To find the fully qualified names of all versions of a name, use
the whereis command. Note that if a variable, such as i, is used many times,
whereis can generate many lines of output.

The fully qualified name of a program element allows you not only to refer within a
procedure to variables of the same name with different scopes, but to refer
unambiguously to program elements outside your current frame or activation stack.

dbx qualifies names with the file (also called module), the procedure, a block, or a
structure. You can manually specify the full scope of a variable by separating scopes
with periods. For example:

mrx.main.i

In this expression, i is the variable name, main is a procedure in which it appears, and
mrx is the source file (omitting the file extension) in which the procedure is defined.

For languages without modules, such as C, C++, and Fortran, the base name of the
source file, that is the file name up to the first dot in the name, is taken as a module
name. For example, if b is a Fortran subroutine in t.f, then t.b names the routine.

To illustrate how names are qualified, consider a C program called test that contains
a function compare. In this example, the variable i is declared in both the main
procedure and the compare function:

int compare (int);

main(argc, argv)

int argc;

char **argv;

{
int i;

...

}

int compare (arg1, arg2)

42 007–0906–120

dbx User’s Guide

{
int i;

...

}

To trace the value of the i variable that appears in the function compare, enter:

(dbx) trace test.compare.i

To print the value of the i that appears in the procedure main, enter:

(dbx) print test.main.i

It is possible to have variable scopes in C and C++ that are in unnamed program
blocks. dbx provides names for these scopes, starting with __$$blk1 and followed
by __$$blk2, __$$blk3, etc., which it places in the fully qualified name of the
variable as it would an explicit scope name. The whereis and which commands
show the names assigned. dbx provides a special name __aout for your base
executable. So for example, you can use __aout.main to refer to a global C function
main in your executable. You can, of course, also refer to the function using the name
of your executable; if your executable is named myaout, myaout.main also refers to
the global C function main.

If you wish to refer to a variable that occurs in a DSO, dbx uses a naming convention
similar to that for variables in your executable. If, for example, strcpy is a function
from the file stuff.c in the library libc.so.1, then both libc.stuff.strcpy
and libc.strcpy refer to the function strcpy.

In C, struct, union, and enum tags can conflict with other names. From the
context, dbx usually interprets correctly a reference to one of these tags. However, if
dbx does not, prefix the tag with the marker __$T_ to prevent confusion with
variables or functions. For example; use __$T_foo if you wish to refer to:

struct foo { /* ... */ }

In ANSI C, statement label names also can conflict with other names. The ambiguity
is removed by applying a prefix of __$L_ to the label name. Thus, for example:

int myfoo { int x; x: goto x; ++x}

If you enter the following, the output is the address of the variable x:

(dbx) print &x

007–0906–120 43

5: Examining and Changing Data

If you enter the following, the output is the address of label x. The –32 compiler
provides no debugging information on C labels.:

(dbx) print &__$L_x

To refer to Fortran statement labels you must either use the __$L_ prefix or use back
quotation marks to force dbx to recognize a numerical label as a name. For example,
if you have the following:

do 10 i = 1,10

10 continue

Both of the following commands lists the address of the label:

(dbx) print &‘10‘

(dbx) print &__$L_10

You may have multiple source files with the same name, for example myfile.c, that
are in different directories. The module name myfile may refer to either source file.
dbx resolves this ambiguity by prefixing the fully qualified file names with a unique,
numeric label. The which and whereis commands show the label used. For
example, suppose the main executable has two myfile.c source files, then
__aout.myfile refers to either source file, __aout._$1_myfile refers to one of
them, and __aout._$2_myfile refers to the other.

A leading dot (a period at the beginning of the identifier) tells dbx that the first
qualifier is not a module (file).

The leading dot is useful when a file and a procedure have the same name. For
instance, suppose mrx.c contains a function called mrx. Further, suppose that mrx.c
contains a global variable called mi and a local variable, also called mi. To refer to the
global variable, use the qualified form .mrx.mi, and to refer to the local variable, use
the qualified form mrx.mrx.mi.

Displaying and Changing Program Variables
You can use the value of program variables in dbx expressions. You can also change
the value of program variables while running your program under dbx control.

44 007–0906–120

dbx User’s Guide

Variable Scope

You can access the value of a variable only while it is in scope. The variable is in
scope only if the block or procedure with which it is associated is active.

After you start your program, whenever your program executes a block or procedure
that contains variables, your program allocates space for those variables and they
“come into scope.” You may access the values of those variables as long as the block
or procedure is active. Once the block or procedure ends, the space for those
variables is deallocated and you may no longer access their values.

Displaying the Value of a Variable

You can display the value of a program variable by using the printd, printf,
printo, and printx commands and the pd, po, and px aliases described in
"Printing Expressions", page 39.

Example 5-5 Displaying Variable Values

To print the value of the program variable total, enter the following:

(dbx) print total

235

The print command also displays arrays, structures, and other complex data
structures. For example, if message is a character array (a string), dbx prints the
string:

(dbx) print message

"Press <Return> to continue."

As a more complex example, consider a simple linked list stored as an array of
elements, each element consisting of a pointer to the next element and an integer
value. If the array is named list, print the entire array by entering:

(dbx) print array

dbx prints the value of each element in the array:

{

[0] struct list {
next = (nil)

value = 1034

}

007–0906–120 45

5: Examining and Changing Data

[1] struct list {
next = 0x10012258

value = 1031

}

[2] struct list {

next = 0x10012270
value = 1028

}

[3] struct list {

next = 0x10012288

value = 1025

}
[4] struct list {

next = 0x100122a0

value = 1022

}

[5] struct list {
next = 0x100122b8

value = 1019

}

...

}

To print an individual element, enter a command such as:

(dbx) print array[5]

struct list {
next = 0x100122b8

value = 1019

}

If your array consists of simple elements such as integers or floating point values, you
can directly examine the contents of memory using the / (examine forward)
command described in "Examining Memory and Disassembling Code", page 107.

Suppose a single-precision floating point array is named float_vals. To see the six
consecutive elements beginning with the fifth element, enter:

(dbx) &float_vals[4] / 6f

10012018: 0.25000000000000000 0.20000000298023224 0.16666699945926666

0.14280000329017639

10012028: 0.12500000000000000 0.11111100018024445

46 007–0906–120

dbx User’s Guide

You can also print parts of arrays and complex structures with duel, a high-level
debugging language. For more information, see "Using the High-Level Debugging
Language duel", page 49.

Changing the Value of a Variable

The assign command changes the value of existing program variables. You can also
use the assign command to change the value of machine registers, as described in
"Changing Register Values", page 106.

The following is the syntax of the assign command:

assign variable=expression

This command assigns the value of expression to the program variable.

Example 5-6 assign command

(dbx) assign x = 27

27

(dbx) assign y = 37.5

37.5

Example 5-7 Using casts to change variable values

If you receive an incompatible types error when you try to assign a value to a
pointer, use casts to make the assignment work. For example, if next is a pointer to a
structure of type element, you can assign next a null pointer by entering:

(dbx) assign *(int *) (&next) = 0
0

(dbx) assign next = 0

(nil)

(dbx) assign next = (struct list*) 0;

(nil)

In this example, nil denotes that the value of the pointer is 0; nil is similar to NULL
in the C language.

007–0906–120 47

5: Examining and Changing Data

Conflicts between Variable Names and Keywords

When naming variables in your program, avoid using any dbx keywords. If you
have a variable with the same name as a dbx keyword and you attempt to use that
variable in a dbx command, dbx reports a syntax error.

If you do have a program variable with the same name as a dbx command, you can
force dbx to treat it as a variable by enclosing the variable in parentheses.

dbx keywords include:

all not

and or

at pgrp

div pid
if sizeof

in to

mod xor

Example 5-8 Variable name and keyword conflicts

For example, if you try to print the value of a variable named in by entering the
following command, dbx displays an error.

(dbx) print in

print in

^ syntax error
Suggestion: in is a dbx keyword; a revised command is in history.

Type !16 or !! to execute: print (in)

The correct way to display the value of in is to enter the following command:

(dbx) print (in)

34

Case Sensitivity in Variable Names

Whether dbx is case sensitive when it evaluates program variable names depends on
the value of the dbx $casesense variable.

If $casesense is 2 (the default), then the language in which the variable was defined is
taken into account (for example, C and C++ are case sensitive while Pascal and
Fortran are not). If $casesense is 1, case is always checked. If $casesense is 0, case is

48 007–0906–120

dbx User’s Guide

always ignored. Note that file (module) names are always case sensitive since they
represent UNIX file names.

Displaying and Changing Environment Variables Used by a Program
You can control the values of environment variables used by a program without
affecting the shell. The dbx commands printenv, setenv, and unsetenv control
the debugging environment much like their csh counterparts control the shell
environment. However, they only affect your program while it is being debugged.
dbx passes the values shown by the printenv command to the shell as the
environment to use while your program is run by the run or rerun commands.

The following commands control your program’s environment variables:

• printenv: prints the list of environment variables affecting the program being
debugged.

• setenv: same as printenv.

• setenv var: sets the environment variable var to an empty value.

• setenv var value: sets the environment variable var to value, where value is not a
dbx variable.

• setenv var $var: sets the environment variable var to $var, where $var is a dbx
variable.

• setenv var “charstring”: sets the environment variable var to "charstring".

• unsetenv var: removes the specified environment variable.

If you attempt to change the PAGER or EDITOR environment variables, the effect on
dbx is undefined; the new values may, or may not, affect how dbx runs.

Using the High-Level Debugging Language duel

The duel language is a high-level debugging language that you can invoke from
dbx. duel is an acronym for Debugging U (might) Even Like.

The duel language does not control processes; it provides the following commands
for printing data such as parts of arrays and complex structures. The following is the
syntax of this command:

007–0906–120 49

5: Examining and Changing Data

duel [alias] [clear]

The duel command invokes the debugging language. alias shows all current duel
aliases. clear deletes all duel aliases.

To invoke duel from within dbx, type:

(dbx) duel

Example 5-9 duel usage

To print the array elements x[1] to x[10] that are greater than 5, enter:

(dbx) duel x[1..10] >? 5

x[3] = 14

x[8] = 6

The output includes the values 14 and 6, as well as their symbolic representation
x[3] and x[8].

Using duel Quick Start

The duel language is implemented by adding the duel command to dbx. All dbx
commands work as before. The duel command, however, is interpreted by duel,
and its concepts are not understood by other dbx commands.

Note: This version of duel does not allow interactive function calls.

duel is based on expressions that return multiple values. The x..y operator returns
the integers from x to y; the x,y operator returns x and then y.

Example 5-10 duel and multiple values

(dbx) duel (1,9,12..15,22)

This command prints 1, 9, 12, 13, 14, 15, and 22.

You can use such expressions wherever a single value is used. For example:

(dbx) duel x[1,9,12..15,22]

This command prints elements 1, 9, 12, 13, 14, 15, and 22 of the array x. duel
incorporates C operators, and casts C statements as expressions.

50 007–0906–120

dbx User’s Guide

The semicolon (;) prevents duel output. duel aliases are defined with x:=y and
provide an alternative to variable declaration. You can also return x[i] instead of
using printf:

(dbx) duel if(x[i:=0..99]<0) x[i]

x[i] = -4

Example 5-11 duel and symbolic output

The symbolic output x[i] can be fixed by surrounding i with {}. For example:

(dbx) duel if(x[i:=0..99]<0) x[{i}]

x[7] = -4

The braces ({}) are like parentheses (), but force the symbolic evaluation to use i’s
value, instead of i. You can usually avoid this altogether with direct duel operators:

(dbx) duel x[..100] <? 0

x[7] = -4

The ..n operator is a shorthand for 0..n-1. For example, ..100 is the same as
0..99. The operators x<?y, x==?y, x>=?y compare their left side operand to their
right side operand as in C, but return the left side value if the comparison result is
true. Otherwise, they look for the next values to compare, without returning anything.

duel’s x.y and x->y allow an expression y, evaluated under x’s scope:

(dbx) duel emp[..100].(if(code>400) (code,name))

emp[46].code = 682

emp[46].name = ‘‘Ela’’

The if() expression is evaluated under the scope of each element of emp[], an array
of structures. In C language terms, we have to write:

for(i = 0; i < 100; i++) {

if(emp[1].code > 400) {
printf(‘‘%d %s\n’’,emp[i].cond,emp[i].name);

Example 5-12 duel and loop alternatives

A useful alternative to loops is the x=>y operator. It returns y for each value of x,
setting the underbar (_) to reference x’s value. For example:

(dbx) ..100 => if(emp[_].code>400) emp[_].code,emp[_].name

007–0906–120 51

5: Examining and Changing Data

Using _ instead of i also avoids the need for {i}. Finally, the x-->y operator
expands lists and other data structures. If head points to a linked list threaded
through the next field, then:

(dbx) duel head-->next->data

head->data = 12

head->next->data = 14

head-->next[[2]]->data = 20

head-->next[[3]]->data = 26

This produces the data field for each node in the list. x-->y returns x, x->y,
x->y->y, x->y->y->y, ... until a NULL is found. The symbolic output
x-->y[[n]] indicates that ->y was applied n times. x[[y]] is also the selection
operator:

(dbx) duel head-->next[[50..60]]->data

This example returns the 50th through the 60th elements in the list. The #/x operator
counts the number of values. For example:

(dbx) duel #/(head-->next->data >? 50)

This example counts the number of data elements over 50 on the list. Several other
operators, including x@y, x#y, and active call stack access are described in the "duel
Operators", page 56.

duel Operator Summary

Most duel operators have the same precedence as their C counterparts. Table 5-2,
page 52, lists duel operators in decreasing precedence.

Table 5-2 duel Operator Summary

Associativity Operators Details

left {} () [] -> . f() --> x-->y expands x->y x->y->y ...

x[[y]] x#y x@y Generate x; select, index, or stop at y

right #/ - * & ! ~ ++ -- (cast) #/x number of x values

frame(n) sizeof(x) Reference to call stack activation level n

52 007–0906–120

dbx User’s Guide

Associativity Operators Details

= Simple assignment

left x/y x*y x%y Multiply, divide, and reminder

left x-y x+y Add and subtract

left x<<y x>>y Shift left and shift right

none x..y ..y x.. ..y 0..y-1. x..y Return x, x+1...y

left < > <= >= <? >? <=? >=? x>?y Return x if x>y

left == != ==? !=? x==?y Return x if x=y

left x&y Bit-and

left x^y Bit-xor

left x|y Bit-or

left x&&y &&/x &&/x Are all x values nonzero?

left x||y ||/x ||/x Is any x value nonzero?

right x? y:z For each x, if(x) y else z

right x:=y x:=y set x as a duel alias to y

left x,y Return x, then y

right x=>y For each x, evaluate y with x value ‘_’

right if() else while() for() C statements cast as operators

left x;y Evaluate and ignore x, return y

right ,, Fortran multidimensional array separator: x[7,,5].
Use square brackets; x(7,,5) will not work in duel.

duel Examples

Table 5-3, page 54, lists and briefly explains duel examples.

007–0906–120 53

5: Examining and Changing Data

Table 5-3 duel Examples

Example Explanation

duel (0xff-0x12)*3 Compute simple expression

duel (1..10)*(1..10) Display multiplication table

duel x[10..20,22,24,40..60] Display x[i] for the selected indexes

duel x[9..0] Display x[i] backwards

duel x[..100] >? 5 Display x[i] that are greater than 5

duel x[..100] >? 5 <? 10 Display x[i] if 5<x[i]<10

duel x[..100] ==? (6..9) Same as above

duel x[0..99]=>if(_>5 && _<10) _ Same as above

duel y[x[..100] !=? 0] Dsplay y[x[i]] for each nonzero x[i]

duel emp[..50].code Display emp[i].code for i=0 to 49

duel emp[..50].(code,name) Display emp[i].code & emp[i].name

duel val[..50].(is_dbl? x:y) Display val[i].x or val[i].y depending on
val[i].is_dbl.

duel val[..50].if(is_dbl) x else y Same as above

duel (hash[..1024]!=?0)->scope hash[i].scope for non-null hash[i]

duel x[i:=..100] >? x[i+1] Check if x[i] is not sorted

duel x[i:=..100] ==? x[j:=..100]=>
if(i<j) x[{i,j}]

Check if x has nonunique elements

duel if(x[i:=..99] == x[j:=i+1..99])
x[{i,j}]

Same as above

duel (x[..100] >? 0)[[0]] Return the first (0th element) positive x[i]

duel (x[..100] >? 0)[[2]] Return the third positive x[i]

duel (x[..100] >? 0)[[..5]] Return the first five positive x[i]

duel (x[0..] >? 6)[[0]] Return the first x[i]>6, no limit on i

duel argv[0..]@0 argv[0] argv[1].. until first null

duel x[0..]@20 >? 9 x[0..n]>9 where n is first x[n]==20

54 007–0906–120

dbx User’s Guide

Example Explanation

duel emp[0..]@(code==0) emp[0]..emp[n-1] where emp[n].code==0

duel head-->next->val Return val of each element in a linked list

duel head-->next[[20]] Return the twenty-first element of a linked list

duel *head-->next[[20]] Display above as a struct

duel #/head-->next Count elements on a linked list

duel x-->y[[#/x-->y - 1]] Reutrn last element of a linked list

duel x-->y[[#/x-->y - 10..1]] Return last ten elements of a linked list

duel head-->next-> if(next) val >?
next->val

Check if the list is sorted by val

duel head-->(next!=?head) Expand cyclic linked list (tail->head)

duel head-->(next!=?_) Handle termination with p->next==p

duel root-->(left,right)->key Expand binary tree, and show keys

duel root-->(left,right)->(
(left!=?0)->key>=?key, (right !=?0
)->key<=?key)

Check bin tree as sorted by key

duel (T mytype) x Convert x to user defined type mytype

duel (struct s*) x Convert x to struct s pointer

duel if(x) y; else z *ERR* ‘;’ must be followed by an expression

duel {x} y *ERR* ‘}’ requires ‘;’ if followed by exp

fortarray[2..5,, 6,7] Print two-dimensional Fortran array elements

duel Semantics

The duel semantics are modeled after the Icon programming language. The input
consists of expressions that return sequences of values. C statements are cast as
expressions, too. Expressions are parsed into abstract syntax trees, which are
traversed during evaluation. The evaluation of most nodes (operators) recursively
evaluates the next value for each operand, and then applies the operator to produce
the next result. Only one value is produced each time, and duel’s eval function
keeps a state record for each node (backtracking, co-routines, consumer-producer or
threads are good metaphors for the evaluation mechanism).

007–0906–120 55

5: Examining and Changing Data

For example, in (5,3)+6..8, the evaluation of + first retrieves the operands 5 and 6,
to compute and return 5+6. Then 7, the next right operand is retrieved and 5+7 is
returned, followed by 5+8. Since no other right operand value exists, the next left
operand, 3 is fetched. The right operand’s computation is restarted returning 6, and
3+6 is returned. The final return values are 3+7 and 3+8.

The computation for operators like x>?y is similar, but when x<=y, the next values
are fetched instead of returning a value, forming the basis for an implicit search.
Operators like .. return a sequence of values for each pair of operands.

The duel values follow the C semantics. A value is either an lvalue (can be used as
the left-hand side of assignment), or an rvalue. Therefor, objects like arrays can not
be directly manipulated. However, operators like x..y can accomplish such tasks.

The duel types also follow the C semantics, with some important differences. C
types are checked statically; duel types are checked when operators are applied. For
example, (1,1.0)/2 returns 0 (int) and 0.5 (double); (x,y).z returns x.z and
y.z even if x and y are of different types, as long as they both have a field z.

Values and types of symbols are looked up at run-time (using the dbx lookup rules).

To avoid this ambiguity, the keyword T must precede a user-defined type. For
example, if value is a typedef, C’s (value (*)()) x is written in duel as (T
value (*)()) x. Types that begin with a reserved keyword don’t need T. For
example, (struct value*) x and (long *[5]) y are accepted. As special cases,
(type)x and (type*)x are accepted but discouraged (it causes
(printf)(‘‘hi’’), which is valid in C, to fail). A side effect is that sizeof x
must be written as sizeof(x).

duel Operators

The duel operators are described in the following list:

x=y x+y x-y x*y x/y x%y x^y x|y x&y x<<y x>>y

x>y x<y x>=y x<=y x==y x!=y x[y]

These binary operators follow their C semantics. For each value of x,
they are evaluated for every value of y. For example, (5,2)>(4,1)
evaluates as 5>4, 5>1, 2>4, 2>1 returning 1, 1, 0, 1.

The y values are reevaluated for each new value of x. For example,
i=4; (4,5)>i++ evaluates as 4>4 and 5>5. Beware of multiple y

56 007–0906–120

dbx User’s Guide

values in assignment. For example, x[..3]=(4,6,9) does not set
x[0]=4, x[1]=6, and x[2]=9. It assigns 4, 6, and 9 to each
element, which has the same effect as x[..3]=9. Use
x[i:=..3]=(4,6,9)[[i]] to achieve the desired effect.

-x ~x &x *x !x ++x --x x++ x-- sizeof(x) (type)x

These unary operators follow their C semantics. They are applied to
each value of x. The increment and decrement operators require an
lvalue, so i:=0 ; i++ produces an error because i is a duel alias
to 0, an rvalue. Parenthesis must be used with sizeof(x). Note
that sizeof x is not allowed. Cast to user defined type requires
generally requires T. For example, (T val(*)())x, but (val)x and
(val*)x are accepted as special cases.

x&&y x||y

These logical operators also follow their C semantics, but have
nonintuitive results for multi-valued x and y. For example, (1,0,0)
|| (1,0) returns 1,1,0,1,0 – the right hand-side (1,0) is
returned for each left-hand side 0. It is best to use these operators
only in single value expressions.

x? y:z if(x)y if(x)y else z

These expressions return the values of y for each nonzero value
returned by x, and the values of z for each zero value returned by x.
For example, if(x[..100]==0) y returns y for every x[i]==0,
not if all x[i] are zero (if(&&/(x[..100]==0)); y does that).
Also, if(x) y; else z is illegal. duel’s semicolon is an
expression separator, not a terminator.

while(x)y for(w;x;y)z

The while(x)y expression returns y as long as all values of x are
nonzero. The for() expression is similar and both have the expected
C semantics. For example, for(i=0 ; i<100 ; i++) x[i] is the
same as x[..100]. Unlike the if() expression,
while(x[..100]==0) continues to execute only if all elements of x
are zero, that is, the condition is evaluated into a single value using
an implicit &&/x.

At present, assignments are not supported, so the for is of limited
utility except to assign aliases.

007–0906–120 57

5: Examining and Changing Data

x,y x..y ..x x..

These operators produce multiple values for single value operands.
x,y returns x, then y. x..y returns the integers from x to y.
When x>y, the sequence is returned in descending order, that is,
5..3 returns 5, 4, 3.

The ..x operator is a shorthand for 0..x-1. For example, ..3
returns 0, 1, 2. The x.. operator is a shorthand for x..maxint. It
returns increasing integer values starting at x indefinitely, and should
be bounded by [[n]] or @n operators.

A comma (,) retains its precedence level in C. The precedence of ..
is above < and below arithmetic operators, so 0..n-1 and x==1..9
work as expected.

x,,y

The ,, operator is very low precedence, is only usable inside the []
array operators, and is used to separate the dimension expressions of
Fortran multi-dimensional arrays. Note the deviation from Fortran
and dbx command-line usage; array operators are square brackets, [
], not parentheses, ().

x<?y x>?y x>=?y x<=?y x!=?y x==?y

These operators work like their C counterparts but return x if the
comparison is true. If the comparison is false, the next (x,y) value is
tried, forming the basis of an implicit search.

(x) {x} x;y x=>y

Both () and {} act as C parenthesis.

The {} set the returned symbolic value as the actual value. For
example, if i=5 and x[5]=3, then x[i] produces the output x[i]
= 3, x[{i}] produces x[5] = 3, and {x[i]} produces 3.

The semicolon is an operator. x;y evaluates x, ignoring the results,
then evaluates and returns y. For example, (i:=1..3 ; i+5) sets i
to 3 and returns 8.

The x=>y operator evaluates and returns y for each value of x. For
example, (i:=1..3 => i+5) returns 6, 7, and 8. The value
returned by x is also stored implicitly in _, which can be used in y.

58 007–0906–120

dbx User’s Guide

For example, 1..5 => z[_][_] produces z[1][1], z[2][2], and
so forth. The symbolic value for _ is that of the left side value, hence
{_} is not needed.

Semicolon (;) has the lowest precedence, so it must be used inside ()
or {} for compound expressions. The precedence of => is just below
comma (,).

Be aware that if(a) x; else {y;} z is illegal; a semicolon is not
allowed before } or else and must be inserted before z.

x->y x.y

These expressions work as in C for a symbol y. If y is an expression,
it is evaluated under the scope of x. For example, x.(a+b) is the
same as x.a+x.b, if a and b are fields of x (if they are not, they are
looked up as local or global variables). x may return multiple values
of different types. For example, (u,v).a returns u.a and v.a, even
if u and v are different structures.

Also, the value of x is available as _ inside y. For example,
x[..100].(if(a) _) produces x[i] for each x[i].a!=0. Nested
x.y are allowed. For example, u.(v.(a+b)) looks up a and b first
under v, then under u.

x:=y

The duel aliases store a reference to y in x. Any reference to x is then
replaced by y. If y is a constant or an rvalue, its value is replaced
for x. If y is an lvalue (e.g., a variable), a reference to same lvalue
is returned. For example, x:=emp[5] ; x=9 assigns 9 to emp[5].

Aliases retain their values across invocation of the duel command. A
duel alias to a local variable references a stray address when the
variable goes out of scope.

The special command duel clear delete all the duel aliases; duel
alias shows all current duel aliases. Symbols are looked up as
duel aliases first, so a duel alias x will hide a local x.

The duel aliases are separate from dbx aliases. Currently, duel
aliases are shared across all processes.

007–0906–120 59

5: Examining and Changing Data

x-->y

The expansion operator x-->y expands a data structure x following
the y links.

It returns x, x->y, x->y->y, until a null is found. If x is null, no
values are produced. If y returns multiple values, they are stacked
and each is further expanded in a depth-first notion. For example, if
r is the root of a tree with children u->childs[..u->nchilds],
then u-->(childs[..nchilds]) expands the whole tree. y is an
arbitrary expression, evaluated exactly like x->y (this includes _).

x@y

The expression x@y produces the values of x until x.y is nonzero.
For example, for(i=0 ; x[i].code!= -1 && i<100 ; i++)
x[i] can be written as x[..100]@(code==-1).

The evaluation of x is stopped as soon as y evaluates to true. x->y
(or x=>y) is used to evaluate y when x is not a struct or a union. If y
is a constant, (_==y) is used. For example, s[0..]@0 produces the
characters in string s up to but not including the terminating null.

#/x &&/x ||/x

These operators return a single summary value for all the values
returned by x. The #/x returns the number of values returned by x.
For example, #/(x[..100]>?0) counts the number of positive
x[i]. The &&/x returns 1 if all the values produced by x are
nonzero, and ||/x returns 1 if any of x’s values are nonzero. Like in
C, the evaluation stops as soon as possible.

For example, ||/(x[..100]==0) and &&/(x[..100]==0) check
if one or all of x[i] are zero, respectively.

x#y x[[y]]

The operator x#y produces the values of x and arranges for y to be
an alias for the index of each value in x. It is commonly used with
x-->y to produce the element’s index. For example,
head-->next->val#i=i assigns each val field its element number
in the list.

The selection operator x[[y]] produces the yth result of x. If y
returns multiple value, each select a value of x. For example,

60 007–0906–120

dbx User’s Guide

(5,7,11,13)[3,0,2] returns 13, 5, and 11 (13 is the third
element, 5 is the 0th element).

Do not use side effects in x, since its evaluation can be restarted
depending on y. For example, after (x[0..i++])[[3,5]] the value
of i is unpredictable.

Note: Within a duel command, the # operator does not have
anything to do with line numbers or dbx comments.

frame(n) frames_no func.x

The frame(n) for an integer n returns a reference to the nth frame,
or activation level, on the stack (0 is the inner most function and
frame(frames_no-1) is main()).

Frame values can be compared to function pointers. For example,
frame(3)==myfunc is true if the fourth frame is a call to myfunc,
and in scope resolution. For example, frame(3).x returns the local
variable x of the fourth frame.

The frames_no is the number of active frames on the stack. For
example, (frames(..frames_no) ==? myfunc).x displays x
for all active invocations of myfunc. As a special case,
(frames(..frames_no)==?f)[[0]].x can be written as f.x (x
can be an expression).

Differences from Other Languages

The following list describes the differences between duel and the C, and Fortran
languages.

• Differences from C: both {} and ; are operators, not statements or expression
separators. For example, if(x) y; else {z;} u is illegal; use if(x) y else
{z} ; u. Ambiguities require preceding user-defined types (typedef) with the
keyword T.

For example, if value is a user type, C’s sizeof(value*) is written sizeof(T
value*), except for the casts (t)x and (t*)x; sizeof(x) requires parenthesis
for variable x.

007–0906–120 61

5: Examining and Changing Data

• Differences from Fortran: because the comma (,) is used to separate a sequence
of values, the usual dbx syntax for multi-dimensional array references of
myarr[3,4] does not mean the same thing to duel as it does to dbx.

In duel, refer to the dimensions of a multi-dimensional Fortran array using ,, as
the dimension separator. In other words, if myarr is a two-dimensional array,
myarr[3,,4] refers to the Fortran array element myarr(3,4).

The base dbx syntax for this element remains unchanged. For example, to show
that element of myarr, use one of the following:

(dbx) print myarr[3,4]

(dbx) duel myarr[3,,4]

Determining Variable Scopes and Fully Qualified Names
The which command allows you to determine the scope of a variable. This command
is useful for programs that have multiple variables with the same name occurring in
different scopes.

Example 5-13 which command

The which command prints the fully qualified name of the active version of a
specified variable. For example, to determine the scope of the variable i, enter:

(dbx) which i

.foo.foo2.i

In this example, the variable i that is currently active is local to the procedure foo2
that appears in the module foo (corresponding to the file foo.c in a C language
program).

The which command also determines the fully qualified name of other program
elements, such as procedures or type descriptors, that are submitted as arguments for
the command. The whereis command prints the fully qualified names of all
versions of the name of any program element. dbx searches (a possibly limited part
of) your program for all occurrences of the name and returns the fully qualified
names. The range of the search is determined by the dbx $whereisdsolimit variable. By
default, $whereisdsolimit is 1 and only the main executable is checked by whereis. To
search all objects, set $whereisdsolimit to 0. To check just the first n objects, set
$whereisdsolimit to n.

62 007–0906–120

dbx User’s Guide

Displaying Type Declarations
The whatis command displays the type declaration for a specified variable or
procedure in your program.

Example 5-14 whatis command

To display the type declaration for the variable i, enter:

(dbx) whatis i

int i;

The following example illustrates the output of whatis for an array of structures:

(dbx) whatis array

struct list {
struct list* next;

int value;

} array[12];

When you provide a procedure name to whatis, dbx reports the type of the value
returned by the procedure and the types of all arguments to the procedure:

(dbx) whatis foo

int foo(i)

int i;
(dbx) whatis main

int main(argc, argv)

int argc;

char** argv;

Examining the Stack
Each time your program executes a procedure, the information about where in the
program the call was made from is saved on a stack. The stack also contains
arguments to the procedure and all of the procedure’s local variables. Each procedure
on the stack defines an frame. Activation levels can also consist of blocks that define
local variables within procedures.

The most recently called procedure or block is numbered 0. The next active procedure
(the one that called the current procedure) is numbered 1. The last activation level is
always the main program block.

007–0906–120 63

5: Examining and Changing Data

The stack determines the scope of many dbx commands and expressions. For
example, unless you qualify a variable, as described in "Qualifying Names of Program
Elements", page 41, dbx assumes that variables you reference are local to the current
activation level. If a variable does not appear in the current activation level, dbx
successively examines previous activation levels in the stack until it finds the
referenced variable. The maximum number of activation levels examined is
determined by the dbx $stacktracelimit variable, which has a default value of 100.

Printing Stack Traces

The where command prints stack traces. Stack traces show the current activation
levels (procedures) of a program.

Example 5-15 Stack trace

Consider the following stack trace for a program called test:

(dbx) where
> 0 foo2(i = 5) [‘‘/usr/var/tmp/dbx_examples/test.c’’:44, 0x1000109c]

1 foo(i = 4) [‘‘/usr/var/tmp/dbx_examples/test.c’’:38, 0x1000105c]

2 main(argc = 1, argv = 0xffffffad78) [‘‘/usr/var/tmp/dbx_examples/test.c’’:55,

0x10001104]

3 __start() [‘‘/shamu/lib/libc/libc_64/crt1text.s’’:137, 0x10000ee4]

This program has four activation levels. The most recent, a call of the procedure
foo2, is numbered 0. The currently selected activation level is 0, indicated by the >
character.

The stack trace also reports that foo2 was passed one argument: the value 5 was
assigned to the local variable i. The trace indicates that the program was stopped at
line 44 of the file test.c, which translates to machine address 0x1000109c.

The stack trace reports similar information for the next two activation levels in this
example. You can see that the function foo called foo2 from line 38 in test.c. In
turn, foo was called by main at line 55 of the file test.c. Finally, the run-time
start-up level was called at line 137 from the file ctrltext.s.

If a program is highly recursive, stack traces can get quite long. The dbx
$stacktracelimit variable controls the maximum number of activation levels that appear
in a stack trace. In the example above, setting $stacktracelimit = 2 before issuing the
where command reduces the set of reported frames to just levels 0 and 1.

64 007–0906–120

dbx User’s Guide

Example 5-16 Stack trace and -g compiler option

If you compile with -g0 or with no -g option, limited symbols are reported. In cases
such as this, where detailed symbolic information is not available, the four
hexadecimal values returned represent dbx’s guess that the function has four integer
arguments.

The following example illustrates such a case:

(dbx) where

> 0 fooexample(0x300000000, 0x4000000ff, 0x5000000ff, 0x0)

[‘‘/usr/var/tmp/dbx_examples/test3.c’’:10, 0x10000cf8]

1 main(0x3, 0x4, 0x5, 0x0) [‘‘/usr/var/tmp/dbx_examples/test3.c’’:5,
0x10000cbc]

2 __start() [‘‘/shamu/lib/libc/libc_64/csu/crt1text.s’’:137,

0x10000c64]

(dbx) quit

Process 22582 terminated
int fooexample(int,int,int);

int main()

{

fooexample(3,4,5);

return 0;

}
int fooexample(int i, int j, int k)

{

int x = i + j + 3*k;

return x;

}

The following examples show register values from code compiled without a -g option.
MIPS1 or MIPS2 code using the 32-bit ABI (for example, on an Indy workstation):

(dbx) where

> 0 subr1(0x3, 0x7fffaf14, 0x7fffaf1c, 0x0) [‘‘t.c’’:3, 0x4009ec]

1 test(0x3, 0x7fffaf14, 0x7fffaf1c, 0x0) [‘‘t.c’’:8, 0x400a10]

2 main(0x1, 0x7fffaf14, 0x7fffaf1c, 0x0) [‘‘t.c’’:13, 0x400a48]

3 __start() [‘‘crt1text.s’’:133, 0x40099c]

There are four hexadecimal values displayed in most lines of the code above since the
32-bit MIPS ABI has four integer argument passing registers. No user-useful registers
are passed to __start().

007–0906–120 65

5: Examining and Changing Data

MIPS3 or MIPS4 code using the 64-bit ABI (for example, on a Power Challenge
system):

(dbx) where

> 0 subr1(0x3, 0xffffffaed8, 0xffffffaee8, 0x0, 0x2f, 0x10, 0x0, 0xfbd82a0)

[‘‘/usr/people/doc/debug/t.c’’:3, 0x10000c9c]

1 test(0x3, 0xffffffaed8, 0xffffffaee8, 0x0, 0x2f, 0x10, 0x0, 0xfbd82a0)

[‘‘/usr/people/doc/debug/t.c’’:9, 0x10000ce8]

2 main(0x1000000ff, 0xffffffaed8, 0xffffffaee8, 0x0, 0x2f, 0x10, 0x0,
0xfbd82a0) [‘‘/usr/people/doc/debug/t.c’’:14, 0x10000d2c]

3 __start() [‘‘/shamu/redwood2/work/irix/lib/libc/libc_64/csu/crt1text.s’’:137,

0x10000c70]

There are eight hexadecimal values displayed in most lines of the code above since
the 64-bit MIPS ABI has eight integer argument passing registers. No user-useful
registers are passed to __start().

The values listed as arguments are the integer argument-passing register values.
Typically, only the 0 entry of the stack has those argument values correct. Correctness
is not guaranteed because the code generator can overwrite the values, using the
registers as temporary variables.

The debugger reports the integer argument-passing registers because this information
may be of some value.

For example, for the code samples above, the following code calls subr1():

int test(void)

{

subr1(3);
}

This code displays 0x3 as the argument register value. The other registers listed for
subr1 contain arbitrary data.

Moving within the Stack

The up and down commands move up and down the activation levels in the stack.
These commands are useful when examining a call from one level to another. You can
also move up and down the activation stack with the func command described in
"Moving to a Specified Procedure", page 68.

66 007–0906–120

dbx User’s Guide

The up and down commands each take num as an argument. up [num] moves up the
specified number of activation levels in the stack. The default is one level. down
[num] moves down the specified number of activation levels in the stack. The default
is one level.

When you change activation levels, your scope changes. For example, unless you
qualify a variable, as described in "Qualifying Names of Program Elements", page 41,
dbx assumes that variables you reference are local to the current activation level.
Also, dbx changes the current source file to the file containing the procedure’s source.

Consider examining the stack trace for a program called test4 and moving up in the
activation stack:

(dbx) where

> 0 foo2(i = 5) [‘‘/usr/var/tmp/dbx_examples/foo.c’’:46, 0x10001214]

1 foo(i = 4) [‘‘/usr/var/tmp/dbx_examples/foo.c’’:40, 0x100011d4]

2 main(argc = 1, argv = 0xffffffad78)

[‘‘/usr/var/tmp/dbx_examples/test4.c’’:25, 0x10000fa0]
3 __start() [‘‘/shamu/lib/libc/libc_64/csu/crt1text.s’’:137, 0x10000f34]

(dbx) print i

5

(dbx) up

foo: 40 r = foo2(i+1);

The current activation level is now the procedure foo. As indicated in the output, the
variable i receives the argument passed to foo and is therefore local to foo. The
variable i at this activation level is different from the variable i in the foo2
activation level. You can reference the currently active i as i; whereas you must
qualify the reference to the i in foo2:

(dbx) print i

4

(dbx) print foo2.i
<symbol not found>

Moving up one more activation level brings you to the main procedure:

(dbx) up

main: 25 j = foo(j);

(dbx) file

/usr/var/tmp/dbx_examples/test4.c

007–0906–120 67

5: Examining and Changing Data

In this example, the source for main is in test4.c, whereas the source for foo and
foo2 is in foo.c; therefore, dbx changes the current source file when you move up
to the main activation level.

dbx resets the source file when you return to the foo2 activation level:

(dbx) down 2

foo2: 46 printf(‘‘foo2 arg is %d\n’’,i);

(dbx) file

/usr/var/tmp/dbx_examples/foo.c

Moving to a Specified Procedure

The func command moves you up or down the activation stack. You can specify the
new activation level by providing either a procedure name or an activation level
number.

The syntax for the func command is:

func [activation_level][procedure]

The following arguments are available:

• func (with no arguments): displays the name of the procedure corresponding to
the current activation level.

• activation_level|procedure: changes the current activation level. If you specify an
activation_level by number, dbx changes to that activation level. If you specify a
procedure, dbx changes to the activation level of that procedure. If you specify a
procedure name and that procedure has called itself recursively, dbx changes to
the most recently called instance of that procedure.

When you change your activation level, your scope changes. For example, unless you
qualify a variable as described in "Qualifying Names of Program Elements", page 41,
dbx assumes that variables you reference are local to the current activation level.
Also, dbx changes the current source file to the one containing the procedure’s source
and the current line to the first line of the procedure.

You can also give the func command the name of a procedure that is not on the
activation stack, even when your program is not executing. In this case, dbx has no
corresponding activation level to make current. However, dbx still changes the

68 007–0906–120

dbx User’s Guide

current source file to the one containing the procedure’s source and the current line to
the first line of the procedure.

Example 5-17 func command

For example, consider the following activation stack:

(dbx) where
> 0 foo2(i = 5) [‘‘/usr/var/tmp/dbx_examples/foo.c’’:46, 0x10001214]

1 foo(i = 4) [‘‘/usr/var/tmp/dbx_examples/foo.c’’:40, 0x100011d4]

2 main(argc = 1, argv = 0xffffffad78)

[‘‘/usr/var/tmp/dbx_examples/test4.c’’:25, 0x10000fa0]

3 __start() [‘‘/shamu/lib/libc/libc_64/csu/crt1text.s’’:137, 0x10000f34]

In this case, you can go to the main activation stack by entering:

(dbx) func main

main: 25 j = foo(j);

This command changes the current activation level to 2 and changes the current
source file to test4.c.

If you use the func command to go to a function that is not on the activation stack,
dbx changes only the current source file to the one containing the procedure’s source
and the current line to the first line of the procedure:

(dbx) func bar

3 {

(dbx) file

/usr/var/tmp/dbx_examples/bar.c

Printing Activation Level Information

The dump command prints information about the variables in an activation level. The
following is the syntax for this command:

dump [procedure] [.]

The following arguments are available:

• dump (with no arguments): prints information about the variables in the current
procedure.

007–0906–120 69

5: Examining and Changing Data

• procedure: prints information about the variables in the specified procedure. The
procedure must be active. Starts searching for procedure at the current activation
level as set by the up or down command. (See "Moving within the Stack", page 66,
for more information about the up and down commands.)

• . : prints information about the variables in all procedures in all activation levels.

Example 5-18 dump command

Executing dump while in a function called foo2 appears as:

(dbx) dump

foo2(i = 5) [‘‘/usr/var/tmp/dbx_examples/foo.c’’:46, 0x10001214]

To examine the information for the procedure main, enter:

(dbx) dump main

main(argc = 1, argv = 0xffffffad78) [‘‘/usr/var/tmp/dbx_examples/test4.c’’:25,

0x10000fa0]

j = 4
i = 12

r = <expression or syntax error>

a = 0

total = 0

To perform a complete dump of the program’s active variables, enter:

(dbx) dump .

> 0 foo2(i = 5) [‘‘/usr/var/tmp/dbx_examples/foo.c’’:46, 0x10001214]

1 foo(i = 4) [‘‘/usr/var/tmp/dbx_examples/foo.c’’:40, 0x100011d4]
r = 0

2 main(argc = 1, argv = 0xffffffad78)

[‘‘/usr/var/tmp/dbx_examples/test4.c’’:25, 0x10000fa0]

j = 4

i = 12
r = <bad operand>

a = 0

total = 0

Using Interactive Function Calls
You can interactively call a function in your program from dbx.

70 007–0906–120

dbx User’s Guide

If the function returns a value, you can use that function in a normal dbx expression.
For example, consider a function prime defined in your program that accepts an
integer value as an argument, and returns 1 if the value is prime and 0 if it is not.
You can call this function interactively and print the results by entering a command
such as:

(dbx) print prime(7)

1

Using the ccall Command

If your function does not return a value, or if you want to execute a function
primarily for its side effects, you can execute the function interactively with the dbx
command ccall. The following is the syntax for this command:

ccall func [arg1, arg2,... ,argn]

This command calls a function with the given arguments. Regardless of the language
the function was written in, the call is interpreted as if it were written in C, and
normal C calling conventions are used.

Note: Structure and union arguments to a function, and structure and union returns
from a function, are not supported.

Functions called interactively honor breakpoints. Thus you can debug a function by
setting breakpoints and then calling it interactively.

Example 5-19 Activation levels and stack trace

If you perform a stack trace using the where command while stopped in a routine
executed interactively, dbx displays only those activation levels created by your
interactive function call. The activation levels for your active program are effectively
invisible.

For example, a stack trace looks like this during an interactive function call:

(dbx) where
> 0 foo2(i = 9) [‘‘/usr/var/tmp/dbx_examples/foo.c’’:46, 0x10001214]

1 foo(i = 8) [‘‘/usr/var/tmp/dbx_examples/foo.c’’:40, 0x100011d4]

007–0906–120 71

5: Examining and Changing Data

===== interactive function call =====

2 foo2(i = 5) [‘‘/usr/var/tmp/dbx_examples/foo.c’’:46, 0x10001214]

3 foo(i = 4) [‘‘/usr/var/tmp/dbx_examples/foo.c’’:40, 0x100011d4]

4 main(argc = 1, argv = 0xffffffad78)

[‘‘/usr/var/tmp/dbx_examples/test4.c’’:25, 0x10000fa0]
5 __start() [‘‘/shamu/lib/libc/libc_64/csu/crt1text.s’’:137, 0x10000f34]

If you stop execution of an interactively called function, you are responsible for
eventually unstacking the call and returning from the function call. To unstack a call,
you can complete the call using dbx commands such as cont, resume, next, or
step as many times as necessary. If you run or rerun your program, dbx
automatically unstacks all interactive function calls.

Using the clearcalls Command

Another way to unstack an interactive function call is to execute the clearcalls
command, which clears all stopped interactive calls.

(dbx) clearcalls

When stopped or faulted within one or more nested interactive calls, the
clearcalls command removes these calls from the stack and returns the program
to its regular callstack. This command is useful when a segmentation fault, infinite
loop, or other fatal error is encountered within the interactive call.

When stopped in an interactive call, the call stack displayed by where shows the
following line at the end of each stack of interactive call instantiation.

==== interactive function call ====

Example 5-20 Use of clearcalls

If the procedure foo() is interactively called from main(), you see the following
stack:

> 0 foo2(i = 9) [‘‘/usr/var/tmp/dbx_examples/foo.c’’:46, 0x10001214]

1 foo(i = 8) [‘‘/usr/var/tmp/dbx_examples/foo.c’’:40, 0x100011d4]

===== interactive function call =====

2 foo2(i = 5) [‘‘/usr/var/tmp/dbx_examples/foo.c’’:46, 0x10001214]

3 foo(i = 4) [‘‘/usr/var/tmp/dbx_examples/foo.c’’:40, 0x100011d4]

72 007–0906–120

dbx User’s Guide

4 main(argc = 1, argv = 0xffffffad78)
[‘‘/usr/var/tmp/dbx_examples/test4.c’’:25, 0x10000fa0]

5 __start() [‘‘/shamu/lib/libc/libc_64/csu/crt1text.s’’:137, 0x10000f34]

Nesting Interactive Function Calls

You can also nest interactive function calls. In other words, if you have one or more
breakpoints in a function, and you call that function repeatedly, each interactive call is
stacked on top of the previous call. Breakpoints in a function affect all nesting levels,
so you cannot have different breakpoints at different nesting levels.

Example 5-21 Nesting levels

The where command shows the entire stack trace from which you can determine the
nesting depth. The following example has two nesting levels.

(dbx) where

> 0 foo2(i = 17) [‘‘/usr/var/tmp/dbx_examples/foo.c’’:46, 0x10001214]
1 foo(i = 16) [‘‘/usr/var/tmp/src/dbx_examples/foo.c’’:40, 0x100011d4]

===== interactive function call =====

2 foo2(i = 9) [‘‘/usr/var/tmp/dbx_examples/foo.c’’:46, 0x10001214]

3 foo(i = 8) [‘‘/usr/var/tmp/dbx_examples/foo.c’’:40, 0x100011d4]

===== interactive function call =====

4 foo2(i = 5) [‘‘/usr/var/tmp/dbx_examples/foo.c’’:46, 0x10001214]

5 foo(i = 4) [‘‘/usr/var/tmp/dbx_examples/foo.c’’:40, 0x100011d4]
6 main(argc = 1, argv = 0xffffffad78)

[‘‘/usr/var/tmp/src/dbx_examples/test4.c’’:25, 0x10000fa0]

7 __start() [‘‘/shamu/lib/libc/libc_64/csu/crt1text.s’’:137,

0x10000f34]

To set a conditional breakpoint, for example, type:

(dbx) stop in foo if j == 7

Process 0: [3] stop in foo if j==7

If j is not within the scope of foo, then you will receive an error message if you
attempt to call foo interactively. To prevent this, disable or delete any such

007–0906–120 73

5: Examining and Changing Data

breakpoints, conditional commands, or traces before executing the interactive function
call.

Obtaining Basic Blocks Counts
dbx permits interactive control of a pixie–instrumented binary.

pixie clear clears the basic block counts for the current execution. pixie write
writes out the counts file with the current basic block counts. The counts reflect the
execution of the program since the run command or since the last pixie clear
command, whichever was more recent.

When you debug a program that has been instrumented by pixie, it is often
desirable to perform experiments over different code paths and do comparisons of the
results. You can do this by capturing the pixie basic block counts at any point in the
program’s execution.

Example 5-22 Basic block counts

Suppose you want to determine the basic block counts for the section of code
between lines 10 and 15 of a given file. Just set breakpoints at the two lines of
interest, zero the counts when the first breakpoint is encountered, and then write out
the counts file when the second breakpoint is encountered.

(dbx) stop at ‘‘pix.c’’:15

Process 0: [3] stop at ‘‘pix.c’’:15

(dbx) stop at ‘‘pix.c’’:20

Process 0: [4] stop at ‘‘pix.c’’:20
(dbx) run

Process 997 (pix.pixie) started

[3] Process 997 (pix.pixie) stopped at [main:15 ,0x400a48 (pixie

0x404570)] 15 first = 12;

(dbx) pixie clear

(dbx)cont
[4] Process 997 (pix.pixie) stopped at [main:20 ,0x400aa8 (pixie

0x404684)] 20 total = multiply(total, 2);

(dbx) pixie write

(dbx) sh prof -pixie prog

--
Profile listing generated Tue Feb 14 11:08:46 1995

with: prof -pixie prog

74 007–0906–120

dbx User’s Guide

--
Total cycles Total Time Instructions Cycles/inst Clock Target

53 5.3e-07s 27 1.963 100.0MHz R4000

10: Total number of Load Instructions executed.

40: Total number of bytes loaded by the program.
3: Total number of Store Instructions executed.

12: Total number of bytes stored by the program.

2: Total number nops executed in branch delay slot.

0: Total number conditional branches executed.

0: Total number conditional branches actually taken.
0: Total number conditional branch likely executed.

0: Total number conditional branch likely actually taken.

18: Total cycles waiting for current instr to finish.

26: Total cycles lost to satisfy scheduling constraints.
5: Total cycles lost waiting for operands be available.

-p[rocedures] using basic-block counts. *

Sorted in descending order by the number of cycles executed in each *

procedure. Unexecuted procedures are not listed. *

--
cycles(%) cum % secs instrns calls procedure(file)

27(50.94) 50.94 0.00 19 1 main(prog:prog.c)

18(33.96) 84.91 0.00 4 1 multiply(prog:prog.c)

8(15.09) 100.00 0.00 4 2 add(prog:prog.c)

The above example uses the sh command to invoke prof directly from dbx.

For more information about the prof and pixie commands, refer to the prof(1)
and pixie(1) man pages.

Accessing C++ Member Variables
Debugging a program written in C++ is somewhat different from debugging
programs written in other languages. This section describes features that affect how
you access variables. See also "Referring to C++ Functions", page 98.

007–0906–120 75

5: Examining and Changing Data

Typically you use standard C++ syntax to access member variables of objects. For
example, if the string _name is a member variable of the object myWindow, you can
print its value by entering:

(dbx) print myWindow._name

0x1001dc1c = ‘‘MenuWindow’’

To display a static member variable for a C++ class, you must specify the variable
with the class qualifier. For example, to print the value of the static member variable
costPerShare of the class CoOp, enter:

(dbx) print CoOp::costPerShare

25.0

76 007–0906–120

Chapter 6

Controlling Program Execution

A program typically runs until it exits or encounters an unrecoverable error. You can
use dbx, however, to stop a program under various conditions, step through your
program line by line, stop execution on receiving a signal, and execute conditional
commands based on your program’s status.

This chapter has the following topics:

• "Setting Breakpoints", page 77

• "Continuing Execution after a Breakpoint", page 82

• "Tracing Program Execution", page 83

• "Writing Conditional Commands", page 85

• "Managing Breakpoints, Traces, and Conditional Commands", page 87

• "Using Signal Processing", page 90

• "Stopping on C++ Exceptions", page 92

• "Stopping at System Calls", page 94

• "Stepping through Your Program", page 95

• "Starting at a Specified Line", page 98

• "Referring to C++ Functions", page 98

Setting Breakpoints
Breakpoints allow you to stop execution of your program. Breakpoints can be
unconditional, in which case they always stop your program, or conditional, in which
case they stop your program only if a test condition that you specify is true.

All breakpoints halt program execution before executing the line on which they are
set. Therefore, if you want to examine the effects of a line of code, you should set the
breakpoint on the line of code following the one whose effects you want to study.

Each breakpoint is assigned a number when you create it. Use this number to
reference a breakpoint in the various commands provided for manipulating

007–0906–120 77

6: Controlling Program Execution

breakpoints (for example, disable, enable, and delete, all described in
"Managing Breakpoints, Traces, and Conditional Commands", page 87).

Setting Unconditional Breakpoints

To set an unconditional breakpoint, you simply specify the point at which you want
to stop program execution, using one of the following forms of the stop command:

stop at [line]
stop at [file:line]
stop in [procedure]

The following list describes these options:

• stop at: sets a breakpoint at the current source line.

• stop at line: sets a breakpoint at the specified source line in the current source
file.

• stop in procedure: sets a breakpoint to stop execution upon entering the specified
procedure. Execution will stop in all inlined or cloned instances of the procedure.

• stop at file:line: sets a breakpoint in the specified file at the specified line.

!
Caution: If your program has multiple source files, be sure to set the breakpoint in
the correct file. To do so, you can explicitly set the source file using dbx’s file
command (see "Changing Source Files", page 16) or you can use the func command
to go to a source file containing a specified function (see "Moving to a Specified
Procedure", page 68).

Setting Conditional Breakpoints

An unconditional breakpoint is the simplest type of breakpoint; your program stops
every time it reaches a specified place. On the other hand, a conditional breakpoint
stops your program only if a condition that you specify is true. The two conditions
that you can test are:

• Has the value of a variable or other memory location changed?

78 007–0906–120

dbx User’s Guide

• Is a test expression true?

Stopping If a Variable or Memory Location Has Changed

By including a variable clause in your stop command, you can cause dbx to stop if
the value of a variable or the contents of a memory location has changed.

If you provide only a variable name in your variable clause, the breakpoint stops
your program if the value of the variable has changed since the last time dbx checked
it. If instead of a variable name, you provide an expression of type pointer, dbx
checks the data pointed to. If the data pointed to is a structure, dbx checks that
structure. If you provide an expression that’s not of type pointer, dbx evaluates the
expression and uses the result as an address in memory. The breakpoint stops your
program if the contents of the memory location (32 bits) has changed since the last
time dbx checked it.

The points at which dbx checks the value of a variable or memory location depend
on the command that you use to set the breakpoint:

• stop [expression|variable] : inspects the value before executing each source line.
If the expression is of type pointer, look at the data pointed to and watch until it
changes.

If the expression is not of type pointer, look at the 32 bits at that address (assume
the expression evaluates to an address). For example, consider the following
command:

stop (struct s*) 0x12345678

This command checks the contents of the structure located at 0x12345678.

• stop [expression|variable] at line: inspects the value at the given source line.
Stops if the value has changed.

If the expression is of type pointer, look at the data pointed to and watch until it
changes. If the expression is not of type pointer, look at the 32 bits at that address
(assume the expression evaluates to an address).

• stop [expression|variable] in procedure: inspects the value at every source line
within a given procedure. Stops if the value has changed.

If the expression is of type pointer, look at the data pointed to and watch until it
changes.

007–0906–120 79

6: Controlling Program Execution

If the expression is not of type pointer, look at the 32 bits at that address (assume
the expression evaluates to an address).

Using Fast Data Breakpoints

You can use fast watchpoints, also known as data breakpoints, with the stop
command. A fast watchpoint watches a specified variable or memory address
without severely impacting the performance of the program being debugged.

In IRIX 4 and earlier versions of dbx, the debugger had to single-step the process
being debugged and check if the value of a variable had changed after each
instruction. With fast watchpoints, the debugger uses a hardware virtual memory
write protect mechanism to allow the program to run freely until the variable
being watched changes. The program being debugged stops only when the virtual
memory page containing the variable is written to. If the value of the variable being
watched does not changed, dbx continues the execution of the process. If a write
modifies a watched variable, dbx notifies you of the change.

Consider a small program that contains a global variable called global:

stop global

This command causes the program to stop if the value of the global variable
changes. The program runs virtually at full speed until global gets assigned a new
value. Similarly, consider the next command:

stop 0x100100

This command stops when the 32- bit integer residing at address 0x100100 is
modified, and runs at nearly full speed until the value changes. This form of the
stop command is useful for watching the contents of anonymous memory, such as
the memory returned by malloc().

dbx still needs to use the single-step approach if the stop command contains an
expression to watch, such as in stop if global == 1. The performance of the
debugged program can be greatly enhanced by including a variable to watch in the
stop command.

For example, the previous stop command can be expressed equivalently as stop
global if global == 1. This instructs the debugger to check only the expression
global == 1 if the value of global changes. For situations where the expression
does not depend upon a particular variable getting modified such as stop if

80 007–0906–120

dbx User’s Guide

global == x * 3, the single-step approach is the only way to achieve the desired
behavior.

Stopping If a Test Expression Is True

By including a test clause in your stop command, you can cause dbx to stop if the
value of an expression is true. You can use any valid numerical expression as a test. If
the result of the expression is nonzero, the expression is true and the test is successful.

The point at which dbx evaluates the test expression depends on the command that
you use to set the breakpoint:

• stop if expression: evaluates the expression before executing each source line.
Note that execution is very slow if you choose this type of conditional breakpoint.

• stop at line if expression: evaluates the expression at the given line.

• stop in procedure if expression: evaluates the expression at every source line
within a given procedure.

Conditional Breakpoints Combining Variable and Test Clauses

You can create conditional breakpoints that combine both variable and test clauses. In
these cases, the overall test evaluates to true only if both clauses are true.

The following forms of the stop command combine both the variable and test clauses:

• stop [expression1|variable] if expression2: tests both conditions before
executing each source line. Stops if both conditions are true.

If expression1 is of type pointer, look at the data pointed to and watch until it
changes. If expression1 is not of type pointer, look at the 32 bits at that address
(assume the expression evaluates to an address).

• stop [expression1|variable] at line if expression2: tests both conditions at the
given source line. Stops if both conditions are true.

If expression1 is of type pointer, look at the data pointed to and watch until it
changes. If expression1 is not of type pointer, look at the 32 bits at that address
(assume the expression evaluates to an address).

• stop [expression1|variable] in procedure if expression2: tests both conditions at
every source line within a given procedure. Stops if both conditions are true.

007–0906–120 81

6: Controlling Program Execution

If expression1 is of type pointer, look at the data pointed to and watch until it
changes. If expression1 is not of type pointer, look at the 32 bits at that address
(assume the expression evaluates to an address).

Continuing Execution after a Breakpoint

The cont command allows you to continue execution after any type of breakpoint. In
its simplest form, program execution continues until the end of the program or until
another breakpoint is reached. You can also tell dbx to continue your program until it
reaches a given line or procedure; this is similar to setting a temporary breakpoint
and then continuing.

The syntax of the cont command is:

cont [at line] [to line] [in procedure]

The following list describes these options:

• cont (with no arguments): continues execution with the current line.

• cont [at|to] line: sets a temporary breakpoint at the specified source line, then
resumes execution with the current line. When your program reaches the
breakpoint at line, dbx stops your program and deletes the temporary breakpoint.
The keywords at and to are equivalent.

• cont in procedure: sets a temporary breakpoint to stop execution upon entering
the specified procedure, then resumes execution with the current line. When your
program reaches the breakpoint in procedure, dbx stops your program and deletes
the temporary breakpoint.

If your program stopped because dbx caught a signal intended for your program,
then dbx will send that signal to your program when you continue execution. You
can also explicitly send a signal to your program when you continue execution.
Sending signals to your program upon continuation is discussed in "Continuing after
Catching a Signal", page 91.

When you debug multiprocess programs, the resume command can be more helpful
than the cont command. Refer to "Resuming a Suspended Process", page 123, for
more information about the resume command.

82 007–0906–120

dbx User’s Guide

Tracing Program Execution
The trace command allows you to observe the progress of your program as it
executes. With it, you can print:

• values of variables at specific points in your program or whenever variables
change value

• parameters passed to and values returned from functions

Each trace is assigned a number when you create it. Use this number to reference the
trace in the various commands provided for manipulating traces (for example,
disable, enable, and delete, all described in "Managing Breakpoints, Traces, and
Conditional Commands", page 87).

The syntax of the trace command is:

trace [variable] [procedure] [[expression|variable] at line] [[expression|variable]
in procedure] [[expression1|variable] at line if expression2]
[[expression1|variable] in procedure if expression2]

The following list describes these options:

• trace variable: whenever the specified variable changes, dbx prints the old and
new values of that variable.

• trace procedure: prints the values of the parameters passed to the specified
procedure whenever your program calls it. Upon return, dbx prints the return
value.

• trace [expression|variable] at line: whenever your program reaches the
specified line, dbx prints the value of the variable if its value has changed.

If the expression is of type pointer, look at the data pointed to and watch until it
changes. If the expression is not of type pointer, look at the 32 bits at that address
(assume the expression evaluates to an address).

• trace [expression|variable] in procedure: whenever the variable changes within
the procedure, dbx prints the old and new values of that variable.

If the expression is of type pointer, look at the data pointed to and watch until it
changes. If the expression is not of type pointer, look at the 32 bits at that address
(assume the expression evaluates to an address).

007–0906–120 83

6: Controlling Program Execution

• trace [expression1|variable] at line if expression2: prints the value of the
variable (if changed) whenever your program reaches the specified line and the
given expression is true.

If expression1 is of type pointer, look at the data pointed to and watch until it
changes. If expression1 is not of type pointer, look at the 32 bits at that address
(assume the expression evaluates to an address).

• trace [expression1|variable] in procedure if expression2: whenever the
variable changes within the procedure that you specify, dbx prints the old and
new values of that variable, if the given expression is true.

If expression1 is of type pointer, look at the data pointed to and watch until it
changes. If expression1 is not of type pointer, look at the 32 bits at that address
(assume the expression evaluates to an address).

Example 6-1 trace command

To examine the parameters passed to and values returned from a function, you can
trace that function. For example, if the function name is foo, set the trace by entering
the following command:

(dbx) trace foo

When you execute your program, dbx prints the values of the parameters passed to
foo whenever your program calls it. Upon return from foo, dbx prints the return
value:

(dbx) run

[3] calling foo(text = 0x10000484 = "Processing...\n", i = 4) from
function main

[4] foo returning -1 from foo

In the example shown above, foo receives two parameters: a character string variable
named text containing the value ‘‘Processing...\n’’ and an integer variable
named i containing the value 4. The trace also indicates that foo returns a value of -1.

You can also examine a variable as it changes values. For example, you can monitor
the value of a string variable named curarg as you use it to process an argument
list. To set the trace, enter:

(dbx) trace curarg

Process 2395: [6] trace .test.main.curarg in main

84 007–0906–120

dbx User’s Guide

When you set a trace on a variable, examine the confirmation that dbx prints. If you
use the same variable name in multiple functions in your program, dbx may not set
the trace on the variable that you want. If dbx sets the trace on an incorrect variable,
delete the trace and set a new trace using a qualified variable format as described in
"Qualifying Names of Program Elements", page 41. For more information on deleting
traces, see "Deleting Breakpoints, Traces, and Conditional Commands", page 89.

Example 6-2 Setting a new trace

If you use the curarg variable in both main and a function called arg_process,
and you want to trace curarg in arg_process, first delete this trace and then set a
new trace:

(dbx) delete 6
(dbx) trace arg_process.curarg

Process 2395: [7] trace .test.arg_process.curarg in arg_process

When you execute your program, whenever the curarg variable changes, dbx prints
its old and new values:

(dbx) run

[7] curarg changed before [arg_process: line 53]:

new value = (nil);
[7] curarg changed before [arg_process: line 86]:

old value = 0;

new value = 0x7fffc7e5 = "-i";

[7] curarg changed before [arg_process: line 86]:

old value = 2147469285;

new value = 0x7fffc7eb = "names.out";
[7] curarg changed before [arg_process: line 86]:

old value = 2147469291;

new value = 0x7fffc7f5 = "names.in";

Writing Conditional Commands
A conditional command created with the when command is similar to a breakpoint
set with the stop command, except that rather than stopping when certain conditions
are met, dbx executes a list of commands. The command list can consist of any dbx
commands, separated by semicolons if you include more than one command in the
command list. Additionally, you can use the keyword stop in the command list to
stop execution, just like a breakpoint.

007–0906–120 85

6: Controlling Program Execution

Each conditional command is assigned a number when you create it. You use this
number to reference the conditional command in the various commands provided for
manipulating conditional commands (for example, disable, enable, and delete,
all described in "Managing Breakpoints, Traces, and Conditional Commands", page
87).

The following list describes the various options and arguments to the when command:

• when[expression|variable] command list: inspects the value before executing each
source line. If it has changed, executes the command list.

If the expression is of type pointer, look at the data pointed to and watch until it
changes. If the expression is not of type pointer, look at the 32 bits at that address
(assume the expression evaluates to an address).

• when[expression|variable] at line command-list: inspects the value at the given
source line. If it has changed, executes the command list.

If the expression is of type pointer, look at the data pointed to and watch until it
changes. If the expression is not of type pointer, look at the 32 bits at that address
(assume the expression evaluates to an address).

• when[expression|variable] in procedure command-list: inspects the value at
every source line within a given procedure. If it has changed, executes the
command list.

If the expression is of type pointer, look at the data pointed to and watch until it
changes. If the expression is not of type pointer, look at the 32 bits at that address
(assume the expression evaluates to an address).

• when if expression command-list: evaluates the expression before executing each
source line. If it is true, executes the command list. Note that execution is slow if
you choose this type of conditional command execution.

• when at line if expression command-list: evaluates the expression at the given
line. If it is true, executes the command list.

• when in procedure if expression command-list: evaluates the expression at every
source line within a given procedure. If it is true, executes the command list.

• when[expression1|variable] if expression2 command-list: checks if the value of the
variable has changed. If it has changed and the expression is true, executes the
command list.

86 007–0906–120

dbx User’s Guide

If expression1 is of type pointer, look at the data pointed to and watch until it
changes. If expression1 is not of type pointer, look at the 32 bits at that address
(assume the expression evaluates to an address).

• when[expression1|variable] at line if expression2 command-list: checks if the
value of the variable has changed each time the line is executed. If the value has
changed and the expression is true, executes the command list.

If expression1 is of type pointer, look at the data pointed to and watch until it
changes. If expression1 is not of type pointer, look at the 32 bits at that address
(assume the expression evaluates to an address).

• when[expression1|variable] in procedure if expression2 command-list: checks if
the value of variable has changed at each source line of the given procedure. If the
value has changed and the expression is true, executes the command list.

If expression1 is of type pointer, look at the data pointed to and watch until it
changes. If expression1 is not of type pointer, look at the 32 bits at that address
(assume the expression evaluates to an address).

Managing Breakpoints, Traces, and Conditional Commands
dbx provides commands that allow you to disable, enable, delete, and examine the
status of the breakpoints, traces, and conditional commands that you set in your
programs.

Each breakpoint, trace, and conditional command is assigned a number when you
create it. Use these numbers as identifiers in the various commands provided for
manipulating these debugging controls.

Listing Breakpoints, Traces, and Conditional Commands

The status command lists all of the breakpoints, traces, and conditional commands
that you have set and indicates whether they are enabled or disabled.

For example, consider executing the following commands while debugging a program
called test:

(dbx) stop in foo

Process 0: [3] stop in foo

(dbx)r

007–0906–120 87

6: Controlling Program Execution

Process 22631 (test) started
[3] Process 22631 (test) stopped at [foo:38 ,0x10001050]

38 r = foo2(i+1);

(dbx) trace total

Process 22631: [4] trace total in foo

(dbx) when at 60 {print i,j }
Process 22631: [5] when at ‘‘/usr/var/tmp/dbx_examples/test.c’’:60

{ print i, j }

If you enter status, you see the following:

(dbx) status

Process 22631: [3] stop in foo

Process 22631: [4] trace total in foo

Process 22631: [5] when at ‘‘/usr/var/tmp/dbx_examples/test.c’’:60

{ print i, j }

Disabling Breakpoints, Traces, and Conditional Commands

The disable command allows you to temporarily disable a breakpoint, trace, or
conditional command so that it is inoperative and has no effect on program execution.
dbx remembers all information about a disabled breakpoint, trace, or conditional
command, and you may enable it using the enable command described in "Enabling
Breakpoints, Traces, and Conditional Commands", page 89.

The syntax of the disable command is:

disable item ,[item ...]

This command disables the specified breakpoint(s), trace(s), or conditional
command(s). It has no effect if the item you specify is already disabled.

Example 6-3 disable command

For example,t o disable the conditional command set in "Listing Breakpoints, Traces,
and Conditional Commands", page 87, enter:

(dbx) disable 4

If you enter status, you see the following:

88 007–0906–120

dbx User’s Guide

(dbx) status
Process 22631: [3] stop in foo

Process 22631: [4] (disabled) trace total in foo

Process 22631: [5] when at ‘‘/usr/var/tmp/dbx_examples/test.c’’:60

{ print i, j

Enabling Breakpoints, Traces, and Conditional Commands

The enable command reverses the effects of a disable command: The breakpoint,
trace, or conditional command that you specify is enabled and once again affects the
execution of your program. The syntax of the enable command is:

enable item,[item ...]

This command enables the specified breakpoint(s), trace(s), or conditional
command(s).

Example 6-4 enable command

For example, to enable the conditional command disabled in "Disabling Breakpoints,
Traces, and Conditional Commands", page 88, enter:

(dbx) enable 4

Executing the status command shows that the condition command is now enabled:

(dbx) status
Process 22631: [3] stop in foo

Process 22631: [4] trace total in foo

Process 22631: [5] when at ‘‘/usr/var/tmp/dbx_examples/test.c’’:60

{ print i, j

Deleting Breakpoints, Traces, and Conditional Commands

The delete command allows you to delete breakpoints, traces, and conditional
commands:

delete [item,[item ...]|all]

007–0906–120 89

6: Controlling Program Execution

Deletes the item or items specified. If you use the keyword all instead of listing
individual items, dbx deletes all breakpoints, traces, and conditional commands.

Example 6-5 delete command

To delete the breakpoint and trace set in "Listing Breakpoints, Traces, and Conditional
Commands", page 87, enter:

(dbx) delete 3, 4

If you enter status, you see the following:

(dbx) status

Process 22631: [5] when at ‘‘/usr/var/tmp/dbx_examples/test.c’’:60

{ print i, j }

To delete all breakpoints, traces, and conditional commands, enter:

(dbx) delete all

Using Signal Processing
dbx can detect any signals sent to your program while it is running and, at your
option, stop the program.

Catching and Ignoring Signals

With the catch command, you can instruct dbx to stop your program when it
receives any specified signal. The ignore command undoes the effects of a catch
command.

The catch and ignore commands have the following syntax:

catch [signal][all]

ignore [signal][all]

The command (catch or ignore) prints a list of all signals that are caught or
ignore. Using signal instructs dbx to stop your program whenever it receives the

90 007–0906–120

dbx User’s Guide

specified signal or ignore the specified signal. If you use the keyword all rather than
giving a specific signal, dbx catches or ignores all signals.

You can use the signal names and numbers as listed in the signal(2) man page. You
can also abbreviate the signal names by omitting the SIG portion of the name. You
can use uppercase or lowercase for the signal names.

Note: Because int (in lowercase) is a dbx keyword, you cannot use it as an
abbreviation for the SIGINT signal. You must use uppercase (INT), the full signal
name (SIGINT or sigint), or the signal number (2). SIGINT is the only signal name
with such a restriction.

If you instruct dbx to catch a signal, whenever that signal is directed to your program,
dbx intercepts it and stops your program. Your program does not see this signal until
you continue your program with the cont command. If your program has a handler
for the signal, the signal is then passed to the program. If there is no handler for the
signal, the program does not see the signal. You can suppress passing the signal to
the program’s signal handler by issuing a step or next command, rather than cont.

If you issue a SIGINT signal at the keyboard (usually by pressing Contl-c) while
you are running an application under dbx, what happens depends on the
circumstances:

• If the process is in the same IRIX process group as dbx, the interrupt signal is sent
to both dbx and the process. Both dbx and the process stop running. You are left
at the dbx command line.

• If the process was added with addproc, dbx -P, or dbx -p, it is not in the same
IRIX process group as dbx. In this case, the signal interrupt is sent to dbx but not
to the process. dbx stops running, but the process continues to run. Use the
showproc command to see whether the process is still running. Then use the
suspend command to stop the process.

Continuing after Catching a Signal

The cont command allows you to continue execution after catching a signal. You can
also use the cont command to specify a different signal to send to your program
than the one that dbx caught. Using the same syntax, you can also send a signal to
your program when you continue, even if your program did not stop because of a
caught signal.

007–0906–120 91

6: Controlling Program Execution

Use the following forms of the cont command when handling signals. In each case,
if you do not provide a signal, but your program stopped because dbx caught a
signal intended for your program, then dbx sends that signal to your program when
you continue execution:

• cont[signal]: continues execution with the current line and sends the specified
signal to your program.

• cont[signal] at|to line: sets a temporary breakpoint at the specified source line,
then resumes execution with the current line and sends the specified signal to
your program.

• cont[signal] in procedure: sets a temporary breakpoint to stop execution upon
entering the specified procedure, then resumes execution with the current line and
sends the specified signal to your program.

Example 6-6 cont command

If your program stopped because dbx caught a SIGINT signal, dbx will automatically
send that signal to your program, if you enter:

(dbx) cont

Suppose you have a procedure called alarm_handler to handle an alarm signal sent
to your program. If you want to test this procedure by single-stepping through it,
you can execute the following command:

(dbx) cont SIGALRM in alarm_handler

This sets a temporary breakpoint to stop your program upon entering
alarm_handler, continues execution of your program, and sends a SIGALRM signal
to your program. Your program then enters the alarm_handler procedure and
stops. You can then single-step through the procedure and observe execution.

Stopping on C++ Exceptions
The intercept command stops program execution on C++ exceptions. You can
append a conditional expression to an intercept command by using the if clause.
However, the context of an intercept break is not that of the throw; the context is
the exception handling code of the C++ runtime library. Hence, only global variables
have unambiguous interpretation in the if clause. To refer to a variable whose scope
is that of the throw, use the fully qualified name for the variable.

92 007–0906–120

dbx User’s Guide

The options and arguments to the intercept command are as follows:

• intercept[all|item]: stops on all C++ exceptions, or exceptions that throw the
base typeitem.

• intercept unexpected[[all]|[item] [, item]]: stops on all C++ exceptions that
have either no handler or are caught by an unexpected handler. You may omit
all. If you specify item, stops on exceptions that throw the base type item.

• intercept ... if expression: you can append the if clause to all
intercept commands. Your program stops only if expression is non-zero. Note
that the context for evaluation of expression is the C++ runtime library, not that of
the throw, so use global variables or fully qualified names in expression.

bx is an alias for intercept and unx is an alias for unexpected.

Example 6-7 if clause and intercept command

The following program example illustrates the if clause with the intercept
command:

int global = 1;

main (){

int local = 2;

try {

throw -1;
}

catch (int key) {

printf (‘‘exception: %d.\n’’, key);

}

}

To set a break with a condition on the global variable, enter:

(dbx) intercept int if global != 0

Use a fully qualified name to set a break with a condition on the local variable:

(dbx) intercept int if main.local != 0

Example 6-8 intercept command

Do not include complex expressions involving operators such as * and & in your type
specification for an intercept command. Note, however, that if you use the

007–0906–120 93

6: Controlling Program Execution

intercept command with a specific base type, you will also stop your program on
throws of pointer, reference, const and volatile types. For example:

(dbx) bx char

Your program will stop on throws of type char, char *, char&, const char&,
volatile char*, and so forth.

Like all other break points, pgrp or a pid clause can be appended to an intercept
command. For example:

(dbx)intercept int pid 12345

(dbx)intercept char pgrp

Stopping at System Calls
Because system calls are part of the operating system and their source is generally not
available for debugging purposes, you cannot set breakpoints in system calls using
the same method that you use for your program’s procedures. Instead, dbx provides
the syscall command to allow you to stop your program when it executes system
calls. With the syscall command you can catch (breakpoint) system calls either at
the entry to the system call or at the return from the system call.

The options and arguments to the syscall command are as follows:

• syscall catch[call|return] [system_call]|all: sets a breakpoint to stop
execution upon entering (call) or returning from (return) the specified system
call. Note that you can set dbx to catch both the call and the return of a system
call.

If you use the keyword all rather than giving a specific system call, dbx catches
all system calls.

• syscall ignore [call|return] [system_call|all]: clears the breakpoint to
stop execution upon entering (call) or returning from (return) the specified
system call.

If you use the keyword all rather than giving a specific system call, dbx clears
the breakpoints to stop execution upon entering (call) or returning from
(return) all system calls.

94 007–0906–120

dbx User’s Guide

• syscall catch [call|return]: prints a list of all system calls caught upon
entry (call) or return (return). If you provide neither the call nor return
keyword, dbx lists all system calls that are caught.

• syscall ignore [call|return]: prints a list of all system calls not caught
upon entry (call) or return (return). If you provide neither the call nor
return keyword, dbx lists all system calls that are ignored.

• syscall: prints a summary of the catch and ignore status of all system calls. The
summary is divided into four sections: calls caught at call, calls caught at return,
calls ignored at call, and calls ignored at return.

Note: The fork and sproc system calls are treated differently from other calls
because they invoke new processes. The returns from these system calls are controlled
by the dbx $promptonfork and $mp_program variables, not by syscall. This is
discussed in "Handling fork System Calls", page 126, and "Handling sproc System
Calls and Process Group Debugging", page 128. The execv and execve system calls
also are treated differently from other calls because they change a process into a new
program. For more information, see "Handling exec System Calls", page 127.

System calls are listed in the /usr/include/sys.s file. dbx ignores the case of the
system call names in all syscall commands; therefore, you can use uppercase or
lowercase in these commands.

A particularly useful setting is:

(dbx) syscall catch call exit

This stops your program upon entry to exit. With your program stopped, you can
do a stack trace before the termination to see why exit was called.

Stepping through Your Program
Stepping is a process of executing your program for a fixed number of lines and then
automatically returning control to dbx. dbx provides two commands for stepping
through lines of code: step and next.

For both step and next, dbx counts only those source lines that actually contain
code; for the purposes of stepping, dbx ignores blank lines and lines consisting solely
of comments.

007–0906–120 95

6: Controlling Program Execution

The next and step commands differ in their treatment of procedure calls. When
step encounters a procedure call, it usually steps into the procedure and continues
stepping through the procedure counting each line of source code. On the other hand,
when next encounters a procedure call, it steps over the procedure—executing it
without stopping and without counting lines in the procedure.

Example 6-9 step and next command comparison

The following code fragment illustrates the difference between step and next:

55 foo(arg1, arg2)

56 int arg1, arg2;

57 {

58 if (arg1 < arg2) {
... ...

78 return(0);

79 }

...

211 x = foo(i, j);
212 y = 2 * x;

In this example, if at line 211 you execute a step command to advance one line, dbx
allows the process to proceed to line 58 (the first code line of the foo procedure).
However, if you execute a next command, dbx executes line 211 while calling foo
and advances the process to line 212.

Stepping Using the step Command

The format of the step command is as follows:

step [integer]

This command executes the specified number of lines of source code, stepping into
procedures. If you do not provide an argument, step executes one line. If step
encounters any breakpoints, it immediately stops execution.

By default, step steps into only those procedures that are compiled with the
debugging options -g, -g2, or -g3 for which line numbers are available in the
symbol table. Note that this does not include standard library routines because they
are not compiled using debugging options.

96 007–0906–120

dbx User’s Guide

You can modify this behavior, even force dbx to step into procedures not compiled
with full debugging information, by changing the value of the dbx $stepintoall
variable.

The following list summarizes how the value of $stepintoall affects the step command.

• 0 (default): steps into all procedures that are compiled with debugging options
-g, -g2, or -g3 for which line numbers are available in the symbol table.

• 1: in addition to the above procedures, steps into any procedures for which a
source file can be found. Note that when you debug a source file compiled without
symbols or compiled with optimization, the line numbers may jump erratically.

• 2: steps into all procedures. Note that if dbx cannot locate a source file, then it
cannot display source lines as you step through a procedure.

If your program has DSOs, set the LD_BIND_NOW environment variable to 1 before
you run your program. This will force complete run-time linking. Otherwise, you can
accidentally step into the runtime linker, rld(1), which becomes part of your program
at run time. Useful stack traces are then impossible. To avoid this situation, enter the
following before the run command:

(dbx) setenv LD_BIND_NOW 1

Stepping Using the next Command

The format of the next command is as follows:

next [integer]

This command executes the specified number of lines of source code, stepping over
procedures. If you do not provide an argument, next executes one line. If next
encounters any breakpoints, even in procedures that it steps over, it immediately
stops execution.

Using the return Command

If you step into a procedure and then decide you do not want to step through the rest
of it, use the return command to finish executing the procedure and return to the
calling procedure.

007–0906–120 97

6: Controlling Program Execution

The format of the return command is as follows:

return [proc]

return without arguments continues execution until control returns to the procedure
that invoked the return command.

The command with proc continues execution until control returns to the named
procedure. Execution continues, unless stopped by a breakpoint, until the latest
invocation of the procedure named by proc at the time the command was issued is
reached. Execution doesn’t stop at subsequent invocations of the same procedure.
The search for the frame to return to starts with the previous frame, because the
current frame is skipped in looking for a frame whose name matches proc. If
execution is stopped for any reason, this command is cancelled.

Starting at a Specified Line
When you continue your program, you typically do so at the place where it stopped
using the cont command. However, you can also force your program to continue at
a different address by using the goto command:

goto line

This command begins execution at the specified line. You may not use the goto
command to resume execution with a line outside of the current procedure.

Referring to C++ Functions
As discussed in "Accessing C++ Member Variables", page 75, debugging a program
written in C++ has some unique features. This section discusses setting breakpoints
in C++ functions.

For the purpose of dbx debugging, functions in C++ programs fall into three general
categories:

1. Member functions: refers to member functions using the syntax
classname::functionname. For example, refers to the member function foo in the
class Window as Window::foo.

98 007–0906–120

dbx User’s Guide

2. Global C++ functions: Refers to global functions using the syntax ::functionname.
For example, refers to the global function foo as ::foo.

3. Non-C++ functions: Refers to non-C++ functions using the syntax functionname.
For example, refers to the function printf as printf.

Example 6-10 C++ overload functions

When using dbx with C++, you cannot distinguish between overloaded functions.
For example, consider two functions:

print(int);

print(float);

The following command sets a breakpoint in both functions:

(dbx) stop in ::print

The following example illustrates various possibilities:

#include <stdio.h>

class foo {

int n;

public:
foo() {n = 0;}

foo(int x);

int bar();

int bar(int);

};

int foo:: bar()

{

return n;

}

int foo:: bar(int x)

{

return n + x;

}

foo::foo(int x)

{

n = x;

}

007–0906–120 99

6: Controlling Program Execution

int square(int x)

{

return x*x;

}

main()

{

foo a;

foo b = 11;

int x = a.bar();

int y = b.bar(x) + square(x);
printf("y = %d\n", y);

}

If you enter:

(dbx) stop in foo::foo

dbx stops execution in the constructor for the variable b; dbx also stops in the
constructor for the variable a.

If you enter:

(dbx) stop in foo::bar

dbx stops execution both when a.bar is called and when b.bar is called, because
dbx is unable to distinguish between the overloaded functions.

To stop in square, enter:

(dbx) stop in ::square

To stop in printf (a C function), enter:

(dbx) stop in printf

To set breakpoints in a specific function from a C++ template, the name of the
function must be in back quotation marks to force dbx to interpret the entire
character string as the name of the function. Otherwise the < and > characters in the
template name are interpreted by dbx as operators.

dbx sets breakpoints in all instantiations of the template if you do not use back
quotation marks and simply leave out the template’s type-argument list, that is leave
out the two characters < and > and the characters included between them.

100 007–0906–120

dbx User’s Guide

The following code illustrates these points:

template <class T> myclass {
myclass() { /*... */ }

~myclass() { /*... */ }

myfunc(T) { /* ... */ }};

To set a breakpoint only in the <int> template function for myfunc enter:

(dbx) stop in m` yclass<int>::myfunc̀

To set breakpoints in all functions myfunc for all instantiations of the template class
enter:

(dbx) stop in myclass::myfunc

007–0906–120 101

Chapter 7

Debugging Machine Language Code

This chapter explains how to debug machine language code; it includes the following
topics:

• "Examining and Changing Register Values", page 103

• "Examining Memory and Disassembling Code", page 107

• "Setting Machine-Level Breakpoints", page 110

• "Continuing Execution after a Machine-Level Breakpoint", page 112

• "Tracing Execution at the Machine Level", page 113

• "Writing Conditional Commands at the Machine Level", page 114

• "Stepping through Machine Code", page 115

Examining and Changing Register Values
By using dbx, you can examine and change the hardware registers during execution
of your program. Table 7-1, page 103, lists the machine form of the register names
and the alternate software names as defined in the include file regdef.h.

Table 7-1 Hardware Registers and Aliases

Register Software Name Description

$r0 $zero Always 0

$r1 $at Reserved for assembler

$r2... $r3 $v0...$v1 Expression evaluations, function return
values, static links

$r4... $r7 $a0... $a3 Arguments

$r8... $r11 $t0... $t7
$a4... $a7,
$ta0... $ta3

Temporaries (32 bit)
Arguments (64 bit)

007–0906–120 103

7: Debugging Machine Language Code

Register Software Name Description

$r12... $r15 $t4... $t7,
$t0... $t3
$ta0... $ta3

Temporaries (32 bit)
Temporaries (64 bit)

$r16... $r23 $s0... $s7 Saved across procedure calls

$r24... $r25 $t8... $t9 Temporaries

$r26... $r27 $k0... $k1 Reserved for kernel

$r28 $gp Global pointer

$r29 $sp Stack pointer

$r30 $s8 Saved across procedure calls

$r31 $ra Return address

$mmhi Most significant multiply/divide result
register

$mmlo Least significant multiply/divide result
register

$fcsr Floating point control and status register

$feir Floating point exception instruction register

$cause Exception cause register

$d0, $d2, ... $d30
$d0, $d2, ... $d31

Double precision floating point registers
(32 bit)
(64 bit)

$f0, $f2, ... $f30
$f0, $f1, ... $f31

Single precision floating point registers
(32 bit)
(64 bit)

For registers with alternate names, the dbx $regstyle variable controls which name is
displayed when you disassemble code (as described in "Examining Memory and
Disassembling Code", page 107). If $regstyle is set to 0, then dbx uses the alternate
form of the register name (for example, zero instead of r0, and t1 instead of r9); if
$regstyle is anything other than 0, the machine names are used (r0 through r31).

104 007–0906–120

dbx User’s Guide

Printing Register Values

Use the printregs command to print the values stored in all registers.

The base in which the register values are displayed depends on the values of the dbx
$octints and $hexints variables. By default, dbx prints register values in decimal. You
can set the output base to octal by setting the dbx $octints variable to a nonzero
value. You can set the output base to hexadecimal by setting the dbx $hexints variable
to a nonzero value. If you set both $octints and $hexints to nonzero values, $hexints
takes precedence.

To examine the register values in hexadecimal, enter the following commands:

(dbx) set $hexints = 1

(dbx) printregs
r0/zero=0x0 r1/at=0x19050

r2/v0=0x8 r3/v1=0x100120e0

r4/a0=0x4 r5/a1=0xffffffad78

r6/a2=0xffffffad88 r7/a3=0x0

r8/a4=0x10 r9/a5=0x20
r10/a6=0x0 r11/a7=0xfbd5990

r12/t0=0x0 r13/t1=0x0

r14/t2=0x65 r15/t3=0x0

r16/s0=0x1 r17/s1=0xffffffad78

r18/s2=0xffffffad88 r19/s3=0xffffffaf70

r20/s4=0x0 r21/s5=0x0
r22/s6=0x0 r23/s7=0x0

r24/t8=0x0 r25/t9=0x10001034

r26/k0=0x0 r27/k1=0x20

r28/gp=0x1001a084 r29/sp=0xffffffaca0

r30/s8=0x0 r31/ra=0x1000110c
mdhi=0x0 mdlo=0xe0

cause=0x24 pc=0x10001050

fpcsr=0x0

f0=0.0000000e+00 f1=0.0000000e+00 f2=0.0000000e+00

f3=0.0000000e+00 f4=0.0000000e+00 f5=0.0000000e+00
f6=0.0000000e+00 f7=0.0000000e+00 f8=0.0000000e+00

f9=0.0000000e+00 f10=0.0000000e+00 f11=0.0000000e+00

f12=0.0000000e+00 f13=0.0000000e+00 f14=0.0000000e+00

f15=0.0000000e+00 f16=0.0000000e+00 f17=0.0000000e+00

f18=0.0000000e+00 f19=0.0000000e+00 f20=0.0000000e+00

f21=0.0000000e+00 f22=0.0000000e+00 f23=0.0000000e+00

007–0906–120 105

7: Debugging Machine Language Code

f24=0.0000000e+00 f25=0.0000000e+00 f26=0.0000000e+00
f27=0.0000000e+00 f28=0.0000000e+00 f29=0.0000000e+00

f30=0.0000000e+00 f31=0.0000000e+00

d0=0.000000000000000e+00 d1=0.000000000000000e+00

d2=0.000000000000000e+00 d3=0.000000000000000e+00

d4=0.000000000000000e+00 d5=0.000000000000000e+00
d6=0.000000000000000e+00 d7=0.000000000000000e+00

d8=0.000000000000000e+00 d9=0.000000000000000e+00

d10=0.000000000000000e+00 d11=0.000000000000000e+00

d12=0.000000000000000e+00 d13=0.000000000000000e+00

d14=0.000000000000000e+00 d15=0.000000000000000e+00

d16=0.000000000000000e+00 d17=0.000000000000000e+00
d18=0.000000000000000e+00 d19=0.000000000000000e+00

d20=0.000000000000000e+00 d21=0.000000000000000e+00

d22=0.000000000000000e+00 d23=0.000000000000000e+00

d24=0.000000000000000e+00 d25=0.000000000000000e+00

d26=0.000000000000000e+00 d27=0.000000000000000e+00
d28=0.000000000000000e+00 d29=0.000000000000000e+00

d30=0.000000000000000e+00 d31=0.000000000000000e+00

Note that there are twice as many floating point registers with 64-bit programs. You
can also use the value of a single register in an expression by typing the name of the
register preceded by a dollar sign ($).

For example, to print the current value of the program counter (the pc register), enter:

(dbx) printx $pc

0x10001050

Changing Register Values

In the same way you change the values of program variables, you can use the
assign command to change the value of registers:

assign $register=expression

This assigns the value of expression to register. You must precede the name of the
register with a dollar sign ($).

106 007–0906–120

dbx User’s Guide

Example 7-1 assign command and register values

For example:

(dbx) assign $f0 = 3.14159
3.1415899999999999

(dbx) assign $t3 = 0x5a

0x5a

By default, the assign register command changes the register value in the current
activation level, which is a typical operation. To force the hardware register to be
updated regardless of the current activation level, use the $ set $framereg
command.

Examining Memory and Disassembling Code
The listregions command shows all memory regions, along with their sizes, in
use by your program. This overview can be particularly useful if you want to know
to what piece of your program a given data address corresponds. Since
listregions shows the sizes of the memory regions, it allows you to easily
determine the sizes of the data and stack regions of your program.

The forward slash (/) and question mark (?) commands allow you to examine the
contents of memory. Depending on the format you specify, you can display the
values as numbers, characters, or disassembled machine code. Note that all common
forms of address are supported. Some unusual expressions may not be accepted unless
enclosed in parentheses, as in (address)/count format.

The commands for examining memory have the following syntax:

• address / count format: prints the contents of the specified address, or disassembles
the code for the instruction at the specified address. Repeat for a total of count
addresses in increasing address. In other words, it works like an examine
forward command. Format codes are listed in Table 7-2, page 108.

• address ? count format: prints the contents of the specified address or, disassembles
the code for the instruction at the specified address. Repeat for a total of count
addresses in decreasing address. In other words, it works like an examine
backward command. The format codes are listed in Table 7-2, page 108.

007–0906–120 107

7: Debugging Machine Language Code

• address / count L value mask: examines count 32-bit words in increasing addresses;
prints those 32-bit words which, when ORed with mask, equals value. This
command searches memory for specific patterns.

• ./: repeats the previous examine command with increasing address.

• .?: repeats the previous examine command with decreasing address.

Table 7-2 Memory Display Format Codes

Format Code Displays Memory in the Format

i Print machine instructions (disassemble)

d Print a 16-bit word in signed decimal

D Print a 32-bit word in signed decimal

dd Print a 64-bit word in signed decimal

o Print a 16-bit word in octal

O Print a 32-bit word in octal

oo Print a 64-bit word in octal

x Print a 16-bit word in hexadecimal

X Print a 32-bit word in hexadecimal

xx Print a 64-bit word in hexadecimal

v Print a 16-bit word in unsigned decimal

V Print a 32-bit word in unsigned decimal

vv Print a 64-bit word in unsigned decimal

L Same as X but used with val mask

b Print a byte in octal

c Print a byte as character

s Print a string of characters that ends in a null byte

f Print a single-precision real number

g Print a double-precision real number

108 007–0906–120

dbx User’s Guide

For example, to display 10 disassembled machine instructions starting at the current
address of the program counter, enter:

(dbx) $pc/10i

*[main:26, 0x400290] sw zero,28(sp)

[main:27, 0x400294] sw zero,24(sp)

[main:29, 0x400298] lw t1,28(sp)

[main:29, 0x40029c] lw t2,32(sp)

[main:29, 0x4002a0] nop
[main:29, 0x4002a4] slt at,t1,t2

[main:29, 0x4002a8] beq at,zero,0x4002ec

[main:29, 0x4002ac] nop

[main:31, 0x4002b0] lw t3,28(sp)

[main:31, 0x4002b4] nop

To disassemble another 10 lines, enter:

(dbx) ./
[main:31, 0x4002b8] addiu t4,t3,1

[main:31, 0x4002bc] sw t4,28(sp)

[main:32, 0x4002c0] lw t5,24(sp)

[main:32, 0x4002c4] lw t6,28(sp)

[main:32, 0x4002c8] nop

[main:32, 0x4002cc] addu t7,t5,t6
[main:32, 0x4002d0] sw t7,24(sp)

[main:33, 0x4002d4] lw t8,28(sp)

[main:33, 0x4002d8] lw t9,32(sp)

[main:33, 0x4002dc] nop

To examine ten 32-bit words starting at address 0x7fffc754, and print those whose
least significant byte is hexadecimal 0x19, enter:

(dbx) 0x7fffc754 / 10 L 0x19 0xff
7fffc758: 00000019

Consider a single-precision floating point array named array. You can examine the
six consecutive elements, beginning with the fifth element, by entering:

(dbx) &array[4] / 6f

7fffc748: 0.2500000 0.2000000 0.1666667 0.1428571

7fffc758: 0.1250000 0.1111111

007–0906–120 109

7: Debugging Machine Language Code

Setting Machine-Level Breakpoints
dbx allows you to set breakpoints while debugging machine code just as you can
while debugging source code. You set breakpoints at the machine code level using
the stopi command.

The conditional and unconditional versions of the stopi commands work in the
same way as the stop command described in "Setting Breakpoints", page 77, with
these exceptions:

• The stopi command checks its breakpoint conditions on a machine-instruction
level instead of a source-code level.

• The stopi at command requires an address rather than a line number.

Each breakpoint is assigned a number when you create it. Use this number to
reference the breakpoint in the various commands provided for manipulating
breakpoints (for example, disable, enable, and delete, all described in
"Managing Breakpoints, Traces, and Conditional Commands", page 87).

Syntax of the Stopi Command

The following list describes the syntax of the stopi command:

• stopi at: sets an unconditional breakpoint at the current instruction.

• stopi at address: sets an unconditional breakpoint at address.

• stopi in procedure: sets an unconditional breakpoint to stop execution upon
entering procedure.

• stopi [expression|variable]: inspects the value before executing each machine
instruction and stops if the value has changed.

If expression is of type pointer, look at the data pointed to and watch until it
changes. If the expression is not of type pointer, look at the 32 bits at that address
(assume the expression evaluates to an address).

• stopi [expression|variable] at address: inspects the value when the program is at
the given address and stops if the value has changed (for machine-level debugging).

If expression is of type pointer, look at the data pointed to and watch until it
changes. If expression is not of type pointer, look at the 32 bits at that address
(assume the expression evaluates to an address).

110 007–0906–120

dbx User’s Guide

• stopi [expression|variable] in procedure: inspects the value at every machine
instruction within procedure and stops if the value has changed.

If expression is of type pointer, look at the data pointed to and watch until it
changes. If the expression is not of type pointer, look at the 32 bits at that address
(assume the expression evaluates to an address).

• stopi if expression: evaluates expression before executing each instruction and
stops if the expression is true. Note that execution is very slow if you choose this
type of conditional breakpoint.

• stopi at address if expression: evaluates expression at the given address and
stops if the expression is true.

• stopi in procedure if expression: evaluates expression at every instruction
within a given procedure and stops if the expression is true.

• stopi [expression1|variable] if expression2: tests both conditions before
executing each machine instruction. Stops if both conditions are true.

If expression1 is of type pointer, look at the data pointed to and watch until it
changes. If expression1 is not of type pointer, look at the 32 bits at that address
(assume the expression evaluates to an address).

• stopi [expression1|variable] at address if expression2: tests both conditions at
the given address (for machine-level debugging). Stops if both conditions are true.

If expression1 is of type pointer, look at the data pointed to and watch until it
changes. If expression1 is not of type pointer, look at the 32 bits at that address
(assume the expression evaluates to an address).

• stopi [expression1|variable] in procedure if expression2: tests the expression
each time that the given variable changes within the given procedure.

If expression1 is of type pointer, look at the data pointed to and watch until it
changes. If expression1 is not of type pointer, look at the 32 bits at that address
(assume the expression evaluates to an address).

Note: When you stop execution because of a machine-level breakpoint set by one of
the stopi in commands, a where command at the point of stop may yield an
incorrect stack trace. This is because the stack for the function is not completely set
up until several machine instructions have been executed. dbx attempts to account
for this, but is sometimes unsuccessful.

007–0906–120 111

7: Debugging Machine Language Code

Example 7-2 Linking with DSOs and stopi command

If you link with a DSO, be careful when you use the stopi at command. For
example, suppose you enter:

dbx() stopi at functionx

The breakpoint at functionx is hit only if the gp_prolog instruction is executed.
(gp_prolog is a short sequence of instructions at the beginning of the routine.)

To avoid this problem, use the stopi in command:

dbx() stopi in functionx

If you really want to use stopi at, a safe alternative is to disassemble functionx
and put the breakpoint after the gp_prolog instruction. For more information on
gp_prolog, see the MIPSpro Assembly Language Programmer’s Guide.

The tracei at, wheni at, and conti at commands described in the following
sections also follow this pattern. Use the version of these commands that has in in it
to ensure that the function breakpoint is hit.

Continuing Execution after a Machine-Level Breakpoint
The conti command continues execution of assembly code after a breakpoint has
been hit. As with the cont command, if your program stops because dbx catches a
signal intended for your program, then dbx sends that signal to your program when
you continue execution. You can also explicitly send a signal to your program when
you continue execution. Signal processing and sending signals to your program is
discussed in "Using Signal Processing", page 90.

The syntax of the conti command is as follows:

• conti [signal]: continues execution with the current instruction.

• conti [signal] [at|to] address: sets a temporary breakpoint at the specified
address, then resumes execution with the current instruction. When your program
reaches the breakpoint at address, dbx stops your program and deletes the
temporary breakpoint.

• conti [signal] in procedure: sets a temporary breakpoint to stop execution upon
entering the specified procedure, then resumes execution with the current

112 007–0906–120

dbx User’s Guide

instruction. When your program reaches the breakpoint in procedure, dbx stops
your program and deletes the temporary breakpoint.

Tracing Execution at the Machine Level
The tracei command allows you to observe the progress of your program while
debugging machine code, just as you can with the trace command while debugging
source code. The tracei command traces in units of machine instructions instead of
in lines of code.

Each trace is assigned a number when you create it. Use this number to reference the
breakpoint in the various commands provided for manipulating breakpoints (for
example, disable, enable, and delete, all of which are described in "Managing
Breakpoints, Traces, and Conditional Commands", page 87).

The following list describes the options and arguments to the tracei command:

• tracei [expression|variable]: whenever the specified variable changes, dbx prints
the old and new values of that variable (for machine-level debugging). Note that
execution is very slow if you choose this type of trace.

If expression is of type pointer, look at the data pointed to and watch until it
changes. If expression is not of type pointer, look at the 32 bits at that address
(assume the expression evaluates to an address).

• tracei procedure: this command is equivalent to entering the trace procedure
command. dbx prints the values of the parameters passed to the specified procedure
whenever your program calls it. Upon return, dbx prints the return value.

• tracei [expression|variable] at address: prints the value of variable whenever
your program reaches the specified address (for machine-level debugging).

If expression is of type pointer, look at the data pointed to and watch until it
changes. If expression is not of type pointer, look at the 32 bits at that address
(assume the expression evaluates to an address).

• tracei [expression|variable] in procedure: whenever variable changes within the
procedure that you specify, dbx prints the old and new values of that variable (for
machine-level debugging).

If expression is of type pointer, look at the data pointed to and watch until it
changes. If expression is not of type pointer, look at the 32 bits at that address
(assume the expression evaluates to an address).

007–0906–120 113

7: Debugging Machine Language Code

• tracei [expression1|variable] at address if expression2: p rints the value of
variable whenever your program reaches the specified address and the given
expression is true (for machine-level debugging).

If expression1 is of type pointer, look at the data pointed to and watch until it
changes. If expression1 is not of type pointer, look at the 32 bits at that address
(assume the expression evaluates to an address).

• tracei [expression1|variable] in procedure if expression2: whenever the variable
changes within the procedure that you specify, dbx prints the old and new values
of that variable, if the given expression is true (for machine-level debugging).

If expression1 is of type pointer, look at the data pointed to and watch until it
changes. If expression1 is not of type pointer, look at the 32 bits at that address
(assume the expression evaluates to an address).

Writing Conditional Commands at the Machine Level
Use the wheni command to write conditional commands for use in debugging
machine code. The wheni command works in the same way as the when command
described in "Writing Conditional Commands", page 85. The command list is a list of
dbx commands, separated by semicolons. When the specified conditions are met, the
command list is executed. If one of the commands in the list is stop (with no
operands), then the process stops when the command list is executed.

• wheni if expression command-list: evaluates expression before executing each
machine instruction. If expression is true, executes the command list.

• wheni at address if expression command-list: evaluates expression at the given
address. If expression is true, executes the command list.

• wheni variable at address if expression command-list: tests both conditions at
the given address. If the conditions are true, executes the command list (for
machine-level debugging) .

If expression is of type pointer, look at the data pointed to and watch until it
changes. If expression is not of type pointer, look at the 32 bits at that address
(assume the expression evaluates to an address).

• wheni variable in procedure if expression command-list: tests both conditions at
every machine instruction within a procedure. If both conditions are true, executes
the command list.

114 007–0906–120

dbx User’s Guide

Stepping through Machine Code
The nexti commands allow you to step through machine code in much the same
way you can with the step and next commands while debugging source code. The
stepi and nexti commands step in units of machine instructions instead of in lines
of code.

The formats of the nexti and stepi commands are:

nexti [integer]

stepi [n]

• nexti [integer]: executes the specified number of machine instructions, stepping
over procedures. If you do not provide an argument, nexti executes one
instruction. If nexti encounters any breakpoints, even in procedures that it steps
over, it immediately stops execution.

• stepi (without arguments): single steps one machine instruction, stepping into
procedures (as called by jal and jalr). If stepi encounters any breakpoints, it
immediately stops execution.

• stepi [n]: executes the specified number of machine instructions, stepping into
procedures (as called by jal and jalr).

The value of the dbx $stepintoall variable affects the stepi and nexti
commands just as it does the step and next commands. See "Stepping through Your
Program", page 95, for more information.

If your program has DSOs, set the environment variable LD_BIND_NOW to 1 before
you run your program. This forces complete run-time linking when your program
starts. Otherwise, you could accidentally step into the runtime linker, rld(1), which
becomes part of your program at run time.

007–0906–120 115

Chapter 8

Debugging Multiprocess Programs

This chapter explains multiprocess debugging procedures, and covers these topics:

• "Processes and Threads", page 117

• "Listing Available Processes", page 120

• "Adding a Process to the Process Pool", page 121

• "Deleting a Process from the Process Pool", page 122

• "Selecting a Process", page 122

• "Suspending a Process", page 123

• "Resuming a Suspended Process", page 123

• "Waiting for a Resumed Process", page 124

• "Waiting for Any Running Process", page 125

• "Killing a Process", page 125

• "Handling fork System Calls", page 126

• "Handling exec System Calls", page 127

• "Handling sproc System Calls and Process Group Debugging", page 128

Processes and Threads
dbx supports debugging multiprocess programs, including processes spawned with
either the fork(2) or sproc(2) system calls. You can attach child processes
automatically to dbx. You also can perform process control operations on a single
process or on all processes in a group.

dbx provides commands specifically for seizing, stopping, and debugging currently
running processes. When dbx seizes a process, it adds it to a pool of processes
available for debugging. Once you select a process from the pool of available
processes, you can use all the dbx commands normally available.

007–0906–120 117

8: Debugging Multiprocess Programs

Once you are finished with the process, you can terminate it, return it to the pool, or
return it to the operating system.

dbx also provides limited support for the IRIX pthreads library. You can obtain
information about threads, but cannot specify threads in program-control commands.

Setting up Your Environment

When debugging a multiprocess program (one compiled with the -mp option), enter
the following command:

% (dbx) ignore TERM

This command allows a multiprocessed program to terminate gracefully after
execution is complete.

When debugging pthreaded programs, set the following dbx variables as shown
below:

% set $mp_program=1

% set $promptonfork=2

Using the pid Clause

Many dbx commands allow you to append the clause pid pid (where pid is a
numeric process ID or a debugger variable holding a process ID). Using the pid pid
clause means you can apply a command to any process in the process pool even
though it is not the active process.

Example 8-1 Seeing breakpoints using pid

To set a breakpoint at line 97 of the process whose ID is 12745, enter:

(dbx) stop at 97 pid 12745

Process 12745: [3] stop at "/usr/demo/test.c":97

Commands that accept the pid pid clause include:

active edit resume wait
addproc file return whatis

assign func showpoc when, when[i]

catch goto status where

118 007–0906–120

dbx User’s Guide

cont, cont[i] ignore step, step[i} whereis
delete kill stop, stop[i] which

delproc next suspend

directory print trace, trace[i]

down printf up

dump printregs use

Using the pgrp Clause

Many dbx commands allow the pgrp clause as a way to apply a command to several
processes. For information, see "Handling sproc System Calls and Process Group
Debugging", page 128.

Using the thread Clause

You can append the clause thread tid (where tid is a numeric thread ID, a debugger
variable holding a thread ID, or the qualifier all) to some dbx commands that
provide program information. You cannot use the thread tid clause with
program-control commands such as stop, trace, when or continue. Using the
thread tid clause means you can apply a command to any thread even if it is not
current or in the current process. The current thread is defined to be the thread that is
running in the current process. Examples of the thread tid clause are:

(dbx) where thread
(dbx) where thread $no

The outputs of these commands are respectively: a stack trace of the current thread
and a stack trace of the thread whose ID is stored in $no.

The showthread command provides status information about the threads in your
program. In one dbx session, you cannot debug more than one program that uses
threads.

The syntax of the showthread command is:

showthread [full] [thread] [number] [$no] [all]

The following list describes these options and arguments:

007–0906–120 119

8: Debugging Multiprocess Programs

• showthread [full]: prints brief status information about the current thread. If
the full qualifier is included, prints full status information.

• showthread [full] [thread] [number|$no|all]: prints brief status
information about the thread identified by number or the value of $no, or all
threads associated with the debug session. If the full qualifier is included, prints
full status information. The thread qualifier does not affect the output, but it is
allowed so the syntax can be the same as that for other commands that use the
thread clause.

Using Scripts

dbx also provides two variables that you can use when writing scripts to debug
multiprocess programs:

• $lastchild: always set to the process ID of the last child process created by a fork
or sproc.

• $pid0: always set to the process ID of the process started by the run command.

Listing Available Processes
Use the showproc command to list the available processes:

showproc all [pid]

The following list describes the options and arguments:

• showproc (with no arguments): shows processes already in the dbx process pool
or processes that dbx can control. Without any arguments, dbx lists the processes
it already controls.

• showproc all: lists all the processes controlled by dbx and all the processes it
could control but that are not yet added to the process pool.

• showproc pid: shows the status of the process ID.

Example 8-2 showproc command

For example, to display all processes in the process pool, enter:

120 007–0906–120

dbx User’s Guide

(dbx) showproc
Process 12711 (test) Trace/BPT trap [main:14 ,0x40028c]

Process 12712 (test) Trace/BPT trap [main:18 ,0x4002b4]

To display only process 12712, enter:

(dbx) showproc 12712

Process 12712 (test) Trace/BPT trap [main:18 ,0x4002b4]

To display all processes that dbx can control, enter:

(dbx) showproc all

Process 12711 (test) Trace/BPT trap [main:14 ,0x40028c]

Process 12055 (tcsh)

Process 12006 (clock)
Process 12054 (tcsh)

Process 12673 (zipxgizmo)

Process 12672 (zip)

Process 11974 (4Dwm)

Process 12712 (test) Trace/BPT trap [main:18 ,0x4002b4]
Process 12708 (dbx)

Process 12034 (xlock)

Adding a Process to the Process Pool
The addproc command adds one or more specified processes to the dbx process
pool. This allows you to debug a program that is already running.

Example 8-3 addproc command

The following examples show the syntax of the addproc command:

addproc pid [...]

addproc var

For example:

(dbx) addproc 12924
Reading symbolic information of Process 12924 . . .

Process 12924 (loop_test) added to pool

Process 12924 (loop_test) running

007–0906–120 121

8: Debugging Multiprocess Programs

Equivalently, you can enter either of the following commands:

(dbx) set $foo = 12924
(dbx) addproc $foo

Deleting a Process from the Process Pool
The delproc command removes a process or variable from the process pool, freeing
it from dbx control. When you delete a process from the process pool, dbx
automatically returns the process to normal operation.

Example 8-4 delproc command

The following examples show the syntax of the delproc command:

delproc pid [...]

delproc var

For example:

(dbx) delproc 12924
Process 12924 (loop_test) deleted from pool

Equivalently, you can enter either of the following:

(dbx) set $foo = 12924

(dbx) delproc $foo

Selecting a Process
The dbx command has the ability to control multiple processes. However, dbx
commands (by default) apply to only one process at a time, the active process. To
select a process from the process pool to be the active process, use the active
command; it selects a process, pid, from the dbx process pool as the active process. If
you do not provide a process ID, dbx prints the currently active process ID.

Example 8-5 active command

For example, to determine which process is currently active, enter:

122 007–0906–120

dbx User’s Guide

(dbx) active
Process 12976 (test1) is active

To then select process 12977 as the active process, enter:

(dbx) active 12977

Process 12977 (test1) after fork [.fork.fork:15 +0x8,0x4005e8]

Suspending a Process
The suspend command allows you to stop a process in the dbx process pool; the
following list shows the options and arguments for this command:

• suspend: suspends the active process if it is running. If it is not running, this
command does nothing.

• suspend all: suspends all the processes.

• suspend pid pid: suspends the process names by pid if it is in the dbx process
pool. If it is not running, this command does nothing.

• suspend pgrp: suspends all the processes the process group specified by pgrp.

Example 8-6 suspend command

For example, to stop the active process, enter:

(dbx) suspend

Process 12987 (loop_test) requested stop [main:10 +0x8,0x400244]

10 i = i % 10;

Then to stop process 12988, enter:

(dbx) suspend pid 12988

Process 12988 (test3) requested stop [main:29 +0x4,0x400424]

10 j = k / 10.0;

Resuming a Suspended Process
To resume execution of a suspended dbx–controlled process, you can use either the
cont command or the resume command. If you use cont, you do not return to the
dbx command interpreter until the program encounters an event (for example, a

007–0906–120 123

8: Debugging Multiprocess Programs

breakpoint). On the other hand, the resume command returns immediately to the
dbx command interpreter.

The resume command resumes program execution and returns immediately to the
dbx command interpreter. When used with the signal argument, it resumes process
execution, sending it the specified signal, and returns immediately to the dbx
command interpreter.

Because the resume command returns you to the dbx command interpreter after
restarting the process, it is more useful than the cont command when you are
debugging multiple processes. With resume, you are free to select and debug a
process while another process is running.

If any resumed process modifies the terminal modes (for example if it uses
curses(3X)), dbx cannot correctly control the modes. Intercept programs using
curses by typing dbx -p (or dbx -P).

Example 8-7 resume command

If you are debugging multiple processes and want to resume the active process, enter:

(dbx) resume

dbx restarts the active process and returns the dbx prompt. You can then continue
debugging, for example by switching to another process.

To resume all the processes in pgrp 2 and send a SIGINT signal to the process when
dbx resumes, enter:

(dbx) resume SIGINT 2

Waiting for a Resumed Process
To wait for a process to stop for an event (such as a breakpoint), use the wait
command. This is useful after a resume command. Also refer to the description of
the waitall command, described in "Waiting for Any Running Process", page 125.

The syntax of the wait command is:

wait [pid]

124 007–0906–120

dbx User’s Guide

wait without arguments waits for the active process to stop for an event. With pid, it
waits for the process pid to stop for an event.

Example 8-8 wait command

Assume that you want to wait until process 14280 stops, perhaps at a breakpoint you
have set. To do so, enter:

(dbx) wait pid 14280

After you enter this command, dbx waits until process 14280 stops, at which point it
displays the dbx prompt.

Waiting for Any Running Process
To wait for any process currently running to breakpoint or stop for any reason, use
the waitall command. It causes dbx to wait until a running process in the process
list stops, at which point it returns you to the dbx command interpreter.

Note: When you return to the dbx command interpreter after a waitall command,
dbx does not make the process that stopped the active process. You must use the
active command to change the active process.

Example 8-9 waitall command

To wait until one of your processes under dbx control stops, enter:

(dbx) waitall

After you enter this command, dbx waits until a process stops, at which point it
indicates which process stopped and displays the dbx prompt. For example:

Process 14281 (loop_test) Terminated [main:10 +0x8,0x400244]

10 i = i % 10;
(dbx)

Killing a Process
To kill a process in the process pool while running dbx, use the kill command:

007–0906–120 125

8: Debugging Multiprocess Programs

kill [pid]

The kill command without arguments kills the active process. By using the pid
argument, it kills the specified processes.

Example 8-10 kill command

For example, to kill process 14257, enter:

(dbx) kill 14257

Process 14257 (fork_test) terminated

Process 14257 (fork_test) deleted from pool

Handling fork System Calls
When a program executes a fork system call and starts another process, dbx allows
you to add that process to the process pool. (See also "Stopping at System Calls",
page 94.)

The dbx $promptonfork variable determines how dbx treats fork system calls. The
following list summarizes its effects:

• 0 (default): dbx does not add the child process to the process pool. Both the child
process and the parent process continue to run.

• 1: dbx stops the parent process and asks if you want to add the child process to
the process pool. If you answer yes, then dbx adds the child process to the pool
and stops the child process; if you answer no, dbx allows the child process to run
and does not place it in the process pool.

• 2: dbx automatically stops both the parent and child processes and adds the child
process to the process pool.

"Handling sproc System Calls and Process Group Debugging", page 128, provides
additional information on debugging multiprocessing programs; some of the material
in that section can apply also to programs that use the fork system call.

Example 8-11 fork system calls

Consider a program named fork that contains these lines:

main(argc, argv)

int argc;

126 007–0906–120

dbx User’s Guide

char *argv;
{

int pid;

if ((pid = fork()) == -1)

perror("fork");

else if (pid == 0)
printf("child\n");

else { printf("parent\n");

}

If you set $promptonfork to 1 and run the program, dbx prompts you whether it
should add the child process to the process pool:

(dbx) set $promptonfork = 1

(dbx) run

Process 22661 (fork) started
Process 22662 (fork) has executed the ‘‘fork’’ system call

Add child to process pool (n if no)?y

Process 22662 (fork) added to pool

Process 22662 (fork) stopped on sysexit fork [_fork:28 ,0x40643a4]
Process 22661 (fork) stopped on sysexit fork [_fork:28 ,0x40643a4]

Source (of /shamu/lib/libc/libc_64/proc/fork.s) not

available for Process 22661

Handling exec System Calls
The exec system call executes another program. During an exec, the first program
gives up its process number to the program it executes. When a program using DSOs
executes an exec() call, dbx runs the new program to main. When a program
linked with a non-shared library executes an exec() call, dbx reads the symbolic
information for the new program and then stops program execution. In either case,
you can continue by entering a cont or resume command.

Example 8-12 exec system call

Consider the programs exec1.c and exec2.c:

/* exec1.c */
main()

{

007–0906–120 127

8: Debugging Multiprocess Programs

printf("in exec1\n");
/* Invoke the "exec2" program */

execl("exec2", "exec2", 0);

/* We’ll only get here if execl() fails */

perror("execl");

}

/* exec2.c */

main()

{
printf("in exec2\n");

}

You can enter cont to continue executing exec2. For example:

(dbx) cont

in exec2

Process 14409 (exec2) finished

Handling sproc System Calls and Process Group Debugging
The process group facility allows a group of processes to be operated on
simultaneously by a single dbx command. This is more convenient to use when
dealing with processes created with the sproc system call than issuing individual
resume, suspend, or breakpoint setting commands. This facility was created for use
with applications that have multiple processes (sproc) and the multiple processes
have built-in barriers, such as those created on MP Fortran on IRIX 6.4 (and earlier)
systems.

The dbx $mp_program variable determines how dbx treats sproc system calls. The
following list summarizes its effects:

• 0 (default): dbx treats calls to sproc in the same way as it treats calls to fork.

• 1: child processes created by calls to sproc are allowed to run; they block on
multiprocessor synchronization code emitted by mp Fortran or C code. When you
set $mp_program to 1, multiprocess Fortran or C code is easier to debug.

Whenever a process executes a sproc, if dbx adds the child to the process pool, dbx
also adds the parent and child to the group list. The group list is simply a list of

128 007–0906–120

dbx User’s Guide

processes. If you set the dbx $groupforktoo variable to 1, then forked processes are
added to the group list automatically just as sproced processes are. (By default,
$groupforktoo is set to 0.)

You can explicitly add one or more processes to the group list with the addpgrp
command (you can add only processes in the process pool to the group list). The
syntax of the command is:

addpgrp pid [...]

You can remove processes from the group list with the delpgrp command:

delpgrp pid [...]

The showpgrp command displays information about the group list. The showpgrp
command shows the process group numbers and all the stop, trace, or when
events in each. These events are created by stop[i], when[i] ... pgrp (which
create multiple stop, trace, or when events) and by delete pgrp commands,
which delete them.

Example 8-13 showgrp command

The following example shows the output of the showpgrp command with two
processes in the group list:

(dbx) showpgrp

2 processes in group:

14559 14558

Once you add processes to the group list (by adding the keyword pgrp to the end of
certain dbx commands), you can apply that command to all processes in the group.
The commands to which you can append pgrp are: delete, list, next[i], resume,
status, stop[i], suspend, trace[i], and when.

The breakpoints and traces set by the stop[i], trace[i], and when commands,
when used with the pgrp keyword, are also added to the group history. This group
history is displayed as a numbered list when you execute showpgrp.

To delete breakpoints from multiple processes with a single command, use the group
history number with the delete command. For example, to delete the history entry
7 for the process group, enter:

(dbx) delete 7 pgrp

007–0906–120 129

8: Debugging Multiprocess Programs

The dbx $newpgrpevent variable stores the group history number of the most recent
pgrp event. This can be useful when writing a script, for example:

set $myevent = $newpgrpevent

....

delete $myevent pgrp

Breakpoints set on the process group are recorded both in the group and in each
process. Deleting breakpoints individually (even if set by a group command) is
allowed.

For example, the following command sets a breakpoint at line 10 in all processes in
the group list:

(dbx) stop at 10 pgrp
Process 14558: [6] stop at "/usr/demo/pgrp_test.c":10

Process 14559: [7] stop at "/usr/demo/pgrp_test.c":10

If you now enter a status command, only those breakpoints associated with the
active process are displayed:

(dbx) status

Process 14559: [7] {pgrp 269011340} stop at "/usr/demo/pgrp_test.c":10

By appending the keyword pgrp, you can display the breakpoints for all processes in
the group list:

(dbx) status pgrp

Process 14558: [6] {pgrp 269011276} stop at "/usr/demo/pgrp_test.c":10
Process 14559: [7] {pgrp 269011340} stop at "/usr/demo/pgrp_test.c":10

Use the showpgrp command to display the group history:

(dbx) showpgrp

2 processes in group:

14559 14558

Group history number: 10

Process 14558 Process 14558: [6] stop at "/usr/demo/pgrp_test.c":10
Process 14559 Process 14559: [7] stop at "/usr/demo/pgrp_test.c":10

You can delete the breakpoints in both processes by deleting the associated group
history entry. For example, enter:

(dbx) delete 10 pgrp

(dbx) showpgrp

130 007–0906–120

dbx User’s Guide

2 processes in group:
14559 14558

007–0906–120 131

Appendix A

dbx Commands

The dbx commands listed here reflect information that is current as of this printing.
For a list of newly added commands, see the dbx(1) man page.

Note: The conventions in this appendix are slightly different than those in the rest of
this document; in this appendix, mutually exclusive arguments to a command are
enclosed in braces ({ })and are separated by a pipe character (|).

;

Use the semicolon (;) as a separator to include multiple commands
on the same command line.

\

Use the backslash (\) at the end of a line of input to dbx to indicate
that the command is continued on the next line.

./

Repeats the previous examine command by incrementing the address.

/[reg_exp]

Searches forward through the current source file from the current line
for the regular expression reg_exp. If dbx reaches the end of the file
without finding the regular expression, it wraps around to the
beginning of the file. dbx prints the first source line containing a
match of the search expression.

If you do not supply reg_exp, dbx searches forward, based on the last
regular expression you searched for.

.?

Repeats the previous examine command by decrementing the address.

?[reg_exp]

Searches backward through the current source file from the current
line for the regular expression reg_exp. If dbx reaches the beginning
of the file without finding the regular expression, it wraps around to

007–0906–120 133

A: dbx Commands

the end of the file. dbx prints the first source line containing a match
of the search expression.

If you do not supply a regular expression, dbx searches backward,
based on the last regular expression you searched for.

!!

Repeats the previous command. If the value of the dbxe $repeatmode
variabl is set to 1, then entering a carriage return at an empty line is
equivalent to executing !!. By default, $repeatmode is set to 0.

!string

Repeats the most recent command that starts with the specified string.

!integer

Repeats the command associated with the specified integer in the
history list.

!-integer

Repeats the command that occurred integer times before the most
recent command. Entering !-1 executes the previous command, !-2
the command before that, and so forth.

active [pid]

Selects a process specified by pid, from the dbx process pool as the
active process. If you do not provide a process ID, dbx prints the
currently active process ID.

addpgrp pid [...]

Adds the process IDs specified to the group list. Only processes in
the process pool can be added to the group list.

addproc pid [...]

Adds the specified process(es) to the pool of dbx controlled processes.

address/count format

Prints the contents of the specified address or disassembles the code
for the machine instruction at the specified address. Repeats for a

134 007–0906–120

dbx User’s Guide

total of count addresses in increasing address—in other words, an
examine forward command. The format codes are listed in Table
7-2, page 108.

address ? count format

Prints the contents of the specified address or disassembles the code
for the machine instruction at the specified address. Repeats for a
total of count addresses in decreasing address—in other words, it
functions as an “examine backwards” command. The format codes
are listed in Table 7-2, page 108.

address / count L value mask

Examines count 32-bit words in increasing address and print those
32-bit words which, when ORed with mask, equal value. This
command searches memory for specific patterns.

alias

Lists all existing aliases.

alias name

Lists the alias definition for name .

alias name command

Defines name as an alias for command.

alias name "string"

Defines name as an alias for string. With this form of the alias
command, you can provide command arguments in the alias
definition.

alias name (arg1 [,...argN]) "string"

Defines name as an alias for string. arg1 through argN are arguments
to the alias, appearing in the string definition. When you use the
alias, you must provide values for the arguments, which dbx then
substitutes in string.

assign register=expression

Assigns the value of expression to register. You must precede the name
of the register with a dollar sign ($).

007–0906–120 135

A: dbx Commands

assign variable=expression

Assigns the value of expression to the program variable, variable.

catch

Prints a list of all signals caught.

catch {signal|all}

Instructs dbx to stop your program whenever it receives the specified
signal. If you use the keyword all rather than giving a specific
signal, dbx catches all signals.

ccall func(arg1,arg2,...,argn)

Calls a function with the given arguments.

clearcalls

Clears all stopped interactive calls.

cont

Continues execution with the current line.

cont {at|to} line

Sets a temporary breakpoint at the specified source line, then resumes
execution with the current line. When your program reaches the
breakpoint at line, dbx stops your program and deletes the temporary
breakpoint. The keywords at and to are equivalent.

cont in procedure

Sets a temporary breakpoint to stop execution upon entering the
specified procedure, then resumes execution with the current line.
When your program reaches the breakpoint in procedure, dbx stops
your program and deletes the temporary breakpoint.

cont [signal]

Continues execution with the current line and sends the specified
signal to your program. If you do not provide a signal, but your
program stopped because dbx caught a signal intended for your
program, then dbx sends that signal to your program when you
continue execution.

136 007–0906–120

dbx User’s Guide

cont [signal] {at|to} line

Sets a temporary breakpoint at the specified source line, then resumes
execution with the current line and sends the specified signal to your
program. If you do not provide a signal, but your program stopped
because dbx caught a signal intended for your program, then dbx
sends that signal to your program when you continue execution.

cont [signal] in procedure

Sets a temporary breakpoint to stop execution upon entering the
specified procedure, then resumes execution with the current line and
sends the specified signal to your program. If you do not provide a
signal, but your program stopped because dbx caught a signal
intended for your program, then dbx sends that signal to your
program when you continue execution.

conti [signal]

Continues execution with the current machine instruction. If you
specify a signal, dbx sends the signal to your program. If you do not
provide a signal, but your program stopped because dbx caught a
signal intended for your program, then dbx sends that signal to your
program when you continue execution.

conti [signal] {at|to} address

Sets a temporary breakpoint at the specified address, then resumes
execution with the current machine instruction. When your program
reaches the breakpoint at address, dbx stops your program and deletes
the temporary breakpoint.

If you specify a signal, then dbx sends the signal to your program. If
you do not provide a signal, but your program stopped because dbx
caught a signal intended for your program, then dbx sends that
signal to your program when you continue execution.

conti [signal] in procedure

Sets a temporary breakpoint to stop execution upon entering the
specified procedure, then resumes execution with the current machine
instruction. When your program reaches the breakpoint in procedure,
dbx stops your program and deletes the temporary breakpoint.

007–0906–120 137

A: dbx Commands

If you specify a signal, then dbx sends the signal to your program. If
you do not provide a signal, but your program stopped because dbx
caught a signal intended for your program, then dbx sends that
signal to your program when you continue execution.

corefile [file]

If you provide a filename, dbx uses the program data stored in the
core dump file.

If you do not provide a filename, dbx displays the name of the
current core file.

delete {item [,item ...]|all}

Deletes the item(s) specified. If you use the keyword all instead of
listing individual items, dbx deletes all breakpoints, traces, and
conditional commands.

delpgrp pid [...]

Deletes the process IDs specified from the group list.

delproc pid [...]

Deletes the specified process(es) from the pool of dbx controlled
processes.

dir [dir ...]

If you provide one or more directory names, dbx adds those directory
namess to the end of the source directory list.

If you do not provide any directories, dbx displays the current source
directory list.

disable item [,item...]

Disables the item(s) listed. The specified breakpoint(s), trace(s), or
conditional command(s) no longer affect program execution. This
command has no effect if the item you specify is already disabled.

down[num]

Moves down the specified number of activation levels in the stack.
The default is one level.

138 007–0906–120

dbx User’s Guide

duel

Invokes duel, the high-level debugging tool.

duel alias

Shows are current duel aliases.

duel clear

Deletes all duel aliases.

dump

Prints information about the variables in the current procedure.

dump procedure

Prints information about the variables in the specified procedure. The
procedure must be active.

dump .

Prints information about the variables in all procedures currently
active.

edit[file|procedure]

Edits a file. If you set the dbx $editor variable to the name of an
editor, the edit command invokes that editor on the source file. If
you do not set the dbx this variable , dbx checks whether you have
set the EDITOR environment variable and, if so, invokes that editor. If
you did not set either the dbx variable or the environment variable,
dbx invokes the vi editor. When you exit the editor, you return to
the dbx prompt.

If you supply a filename, edit invokes the editor on that file. If you
supply the name of a procedure, edit invokes the editor on the file
that contains the source for that procedure. If you do not supply a
filename or a procedure name, edit invokes the editor on the current
source file.

editpid pid

Edits the process ID pid clause.

007–0906–120 139

A: dbx Commands

enable item [,item...]

Enables the item(s) specified. This command activates the specified
breakpoint(s), trace(s), or conditional command(s), reversing the
effects of a disable command, so that they affect program execution.

file [file]

Changes the current source file to file. The new file becomes the
current source file, on which you can search, list, and perform other
operations.

func

Displays the name of the procedure corresponding to the current
activation level.

func {activation_level|procedure}

Changes the current activation level. If you specify an activation level
by number, dbx changes to that activation level. If you specify
procedure, dbx changes to the activation level of that procedure. If you
specify a procedure name and that procedure has called itself
recursively, dbx changes to the most recently called instance of that
procedure. If you specify procedure, dbx changes the current source
file to be that procedure, even if the procedure is not active.

givenfile [file]

If you provide a filename, dbx kills the currently running processes
and loads the executable code and debugging information found in
file.

If you do not provide a filename, dbx displays the name of the
program that it is currently debugging.

hed

Edits only the last line of the history list (the last command executed).

hed num1

Edits line num1 in the history list.

140 007–0906–120

dbx User’s Guide

hed num1,num2

Edits the lines in the history list from num1 to num2.

hed all

Edits the entire history list.

help

Shows the list of available help sections.

help all

Displays the entire dbx help file. dbx displays the file using the
command name given by the dbx $pager variable. The dbx help file
is large and can be difficult to use if you use a simple paging
program like more(1). A useful technique is to set the $pager variable
to a text editor like vi(1).

help help

Explains how to display the help file in your favorite editor.

help section

Shows this help section. dbx displays the file using the command
name given by the dbx $pager variable. (By default, it uses more.) A
useful technique is to set the $pager variable to a text editor like vi(1).

history

Prints the commands in the history list.

ignore

Prints a list of all signals ignored.

intercept {all|item}

Stops on all C++ exceptions, or exceptions that throw the base
typeitem.

007–0906–120 141

A: dbx Commands

intercept unexpected {[all]|[item [, item]]}

Stops on all C++ exceptions that have either no handler or are caught
by an unexpected handler. You may omit all. If you specify item,
stops on exceptions that throw the base type item.

intercept ... if expression

You can append the if clause to all intercept commands. Your
program stops only if expression is non-zero. Note that the context for
evaluation of expression is the C++ runtime library, not that of the
throw, so use global variables or fully qualified names in expression.

ignore {signal|all}

Instructs dbx to ignore the specified signal. All ignored signals are
passed to your program normally. If you use the keyword all rather
than giving a specific signal, dbx ignores all signals.

kill

Kills the active process.

kill pid ...

Kills the active process(es) whose PIDs are specified.

listexp

Lists $listwindow lines starting with the line number given by the
expression exp. The expression may be any valid expression that
evaluates to an integer value.

list exp1:exp2

Lists exp2 lines, beginning at line exp1.

list exp1,exp2

Lists all source between line exp1 and line exp2 inclusive.

list func

Lists $listwindow lines starting at procedure func.

142 007–0906–120

dbx User’s Guide

list func:exp

Lists exp2 lines, beginning at func.

list func,exp

Lists all source between func and exp, inclusive.

listclones

Lists all the root functions and their derived clones.

listclones func

Lists the root and all derived clones for func.

listinlines

Lists all of the inlined routines with their start and end addresses.

listinlines func

Lists all of the inlined versions of func with their start and end
addresses.

listobj

Lists dynamic shared objects being used. The base application is first
in the list.

listregions

Lists all the memory regions being used by the application. Any
object region with debugging information is marked with a Y.

next[n]

Executes the specified number of lines of source code, stepping over
procedures. If you do not provide an argument, next executes one
line. If next encounters any breakpoints, even in procedures that it
steps over, it immediately stops execution.

nexti[n]

Executes the specified number of machine instructions, stepping over
procedures. If you do not provide an argument, nexti executes one
line. If nexti encounters any breakpoints, even in procedures which
it steps over, it immediately stops execution.

007–0906–120 143

A: dbx Commands

pixie clear

Clears the basic block counts for the current execution.

pixie write

Writes the counts file with the current basic block counts. The counts
reflect the exectuion of the program since the run command or since
the last pixie clear command, whichever is more recent.

playback input[file]

Executes the commands from file. The default file is the current
temporary file created for the record input command. If the dbx
$pimode variable is nonzero, commands are printed out as they are
played back.1

playback output [file]

Prints the commands from file. The default file is the current
temporary file created for the record output command.

print [exp1 [,exp2, ...]]

Prints the value(s) of the specified expression(s).

printd exp1 [,exp2,...]]

Prints the value(s) of the specified expression(s) in decimal.

printenv

Prints the list of environment variables affecting the program being
debugged.

printf string [,exp1 [,exp2,...]]

Prints the value(s) of the specified expression(s) in the format
specified by the string, string. The printf command supports all
formats except %s. For a list of formats, see the printf(3S) man page.

printo [exp1 [,exp2,...]]

Prints the value(s) of the specified expression(s) in octal.

144 007–0906–120

dbx User’s Guide

printregs

Prints all register values.

printx [exp1 [,exp2,...]]

Prints the value(s) of the specified expression(s) in hexadecimal.

quit

Quits dbx.

record

Displays the current input and output recording sessions.

record input [file]

Records everything you type to dbx in file. The default file is a
temporary dbx file in the /tmp directory. The name of the temporary
file is stored in the dbx $defaultin variable.

record output [file]

Records all dbx output in file. The default file is a temporary dbx file
in the /tmp directory. The name of the temporary file is stored in the
dbx $defaultout variable. If the dbx $rimode variable is nonzero, dbx
also records the commands you enter.

rerun run-arguments

Without any arguments, repeats the last run command, if applicable.
Otherwise, rerun is equivalent to the run command without any
arguments.

resume

Resumes execution of the program, and returns immediately to the
dbx command interpreter .

resume [signal]

Resumes execution of the process, sending it the specified signal, and
returns immediately to the dbx command interpreter.

007–0906–120 145

A: dbx Commands

return

Continues execution until control returns to the next procedure on the
stack.

return proc

Continues execution until control returns to the named procedure.

run run-arguments

Starts your program and passes to it any arguments that you provide.
All shell processing is accepted, such as unglobbing of * and ? in
filenames. Redirection of the program’s standard input and standard
output, and/or standard error is also done by the shell. In other
words, the run command does exactly what typing target
run-arguments does. You can specify a target, either on dbx invocation
or in a prior givenfile command. dbx passes ./target as argv[0]
to target when you specify it as a relative pathname. You can specify
target either on dbx invocation or in a prior givenfile command.
dbx passes ./target as argv[0] to target when you specify it as a
relative pathname.

A run command must appear on a line by itself and cannot be
followed by another dbx command. Terminate the command line
with a return (new-line). Note that you cannot include a run
command in the command list of a when command.

set

Displays a list of predefined and user defined variables.

set var=exp

Defines (or redefines) the specified dbx variable, setting its value to
that of the expression you provide.

setenv

Prints the list of environment variables for the program being
debugged.

setenv VAR

Sets the environment variable VAR to an empty value.

146 007–0906–120

dbx User’s Guide

setenv VAR value

Sets the environment variable VAR to value, where value is not a dbx
variable.

setenv VAR $var

Sets the environment variable VAR to $var, where $var is a dbx
variable.

setenv VAR “charstring”

Sets the environment variable VAR to charstring.

sh

Invokes a subshell. To return to dbx from the subshell, enter exit at
the command line, or otherwise terminate the subshell.

sh com

Executes the specified shell command. dbx interprets the remainder
of the line as a command to pass to the spawned shell process, unless
you enclose the command in double-quotes or you terminate your
shell command with a semicolon (;).

showpgrp

Shows the group process list and the group history.

showproc [pid|all]

Shows processes already in the dbx process pool or processes that
dbx can control. If you provide no arguments, dbx lists the processes
it already controls. If you provide a pid, dbx displays the status of the
specified process. If you use argument all, dbx lists all the processes
it controls as well as all those processes it could control but that are
not yet added to the process pool.

showthread [full]

Prints brief status information about the current thread. If the full
qualifier is included, prints full status information.

007–0906–120 147

A: dbx Commands

showthread [full] [thread] {number|$no|all}

Prints brief status information about the thread identified by number
or the value of $no, or all threads associated with the debug session.
If the full qualifier is included, prints full status information. The
thread qualifier does not affect the output, but it is allowed so the
syntax can be the same as that for other commands that use the
thread clause.

source [file]

Executes dbx commands from file.

status

Displays all breakpoints, traces, and conditional commands.

step [n]

Executes the specified number of lines of source code, stepping into
procedures. If you do not provide an argument, step executes one
line. If step encounters any breakpoints, it immediately stops
execution.

stepi

Single steps one machine instruction, stepping into procedures (as
called by jal and jalr). If stepi encounters any breakpoints, it
immediately stops execution.

stepi[n]

Executes the specified number of machine instructions, stepping into
procedures (as called by jal and jalr).

stop at

Set a breakpoint at the current source line.

stop at line

Sets a breakpoint at the specified source line.

148 007–0906–120

dbx User’s Guide

stop expression

Inspects the expression. If the expression is type pointer, checks the
data being pointed at. Otherwise, checks the 32 bits at the address
given by the expression.

stop in procedure

Sets a breakpoint to stop execution upon entering the specified
procedure. Execution will stop in all inlined or cloned instances of
the procedure.

stop [expression|variable]

Inspects the value before executing each source line. If the expression
is of type pointer, look at the data pointed to and watch until it
changes.

If the expression is not of type pointer, look at the 32 bits at that
address (assume the expression evaluates to an address).

stop [expression|variable] at line

Inspects the value at the given source line. Stops if the value has
changed.

If the expression is of type pointer, look at the data pointed to and
watch until it changes. If the expression is not of type pointer, look at
the 32 bits at that address (assume the expression evaluates to an
address).

stop [expression|variable] in procedure

Inspects the value at every source line within a given procedure.
Stops if the value has changed.

If the expression is of type pointer, look at the data pointed to and
watch until it changes.

If the expression is not of type pointer, look at the 32 bits at that
address (assume the expression evaluates to an address).

007–0906–120 149

A: dbx Commands

stopif expression

Evaluates the expression before executing each source line. Stops if
the expression is true.

stop at line if expression

Evaluates the expression at the given source line. Stops if the
expression is true.

stop in procedure if expression

Evaluates the expression at every source line within a given
procedure. Stops if the expression is true.

stop [expression1|variable] if expression2

Tests both conditions before executing each source line. Stops if both
conditions are true.

If expression1 is of type pointer, look at the data pointed to and watch
until it changes. If expression1 is not of type pointer, look at the 32 bits
at that address (assume the expression evaluates to an address).

stop [expression1|variable] at line if expression2

Tests both conditions at the given source line. Stops if both conditions
are true.

If expression1 is of type pointer, look at the data pointed to and watch
until it changes. If expression1 is not of type pointer, look at the 32 bits
at that address (assume the expression evaluates to an address).

stop [expression1|variable] in procedure if expression2

Tests both conditions at every source line within a given procedure.
Stops if both conditions are true.

If expression1 is of type pointer, look at the data pointed to and watch
until it changes. If expression1 is not of type pointer, look at the 32 bits
at that address (assume the expression evaluates to an address).

stopi at

Sets an unconditional breakpoint at the current machine instruction.

150 007–0906–120

dbx User’s Guide

stopi at address

Sets an unconditional breakpoint at the specified address (for
machine-level debugging).

stopi in procedure

Sets an unconditional breakpoint to stop execution upon entering the
specified procedure (for machine-level debugging).

stopi [expression|variable]

Inspects the value before executing each machine instruction and
stops if the value has changed.

If the expression is of type pointer, look at the data pointed to and
watch until it changes. If the expression is not of type pointer, look at
the 32 bits at that address (assume the expression evaluates to an
address).

stopi [expression|variable] at address

Inspects the value when the program is at the given address and
stops if the value has changed (for machine-level debugging).

If the expression is of type pointer, look at the data pointed to and
watch until it changes. If the expression is not of type pointer, look at
the 32 bits at that address (assume the expression evaluates to an
address).

stopi [expression|variable] in procedure

Inspects the value at every machine instruction within a given
procedure and stops if the value has changed.

If the expression is of type pointer, look at the data pointed to and
watch until it changes. If the expression is not of type pointer, look at
the 32 bits at that address (assume the expression evaluates to an
address).

stopi if expression

Evaluates the expression before executing each machine instruction
and stops if the expression is true.

007–0906–120 151

A: dbx Commands

stopi at address if expression

Evaluates the expression at the given address and stops if the
expression is true (for machine-level debugging).

stopi in procedure if expression

Evaluates the expression at every machine instruction within a given
procedure and stops if the expression is true.

stopi [expression1|variable] if expression2

Tests both conditions before executing each machine instruction.
Stops if both conditions are true.

If expression1 is of type pointer, look at the data pointed to and watch
until it changes. If expression1 is not of type pointer, look at the 32 bits
at that address (assume the expression evaluates to an address).

stopi [expression1|variable] at address if expression2

Tests both conditions at the given address (for machine-level
debugging). Stops if both conditions are true.

If expression1 is of type pointer, look at the data pointed to and watch
until it changes. If expression1 is not of type pointer, look at the 32 bits
at that address (assume the expression evaluates to an address).

stopi [expression1|variable] in procedure if expression2

Tests the expression each time that the given variable changes within
the given procedure.

If expression1 is of type pointer, look at the data pointed to and watch
until it changes. If expression1 is not of type pointer, look at the 32 bits
at that address (assume the expression evaluates to an address).

suspend

Suspends the active process if it is running. If it is not running, this
command does nothing. If you use the keyword all, suspends all
active processes.

152 007–0906–120

dbx User’s Guide

suspend pgrp

Suspends all the processes in the process group, pgrp.

suspend pid pid

Suspends the process pid if it is in the dbx process pool. If it is not
running, this command does nothing.

syscall

Prints a summary of the catch and ignore status of all system calls.
The summary is divided into four sections: 1) caught at call,
2) caught at return, 3) ignored at call, and 4) ignored at return.

syscall catch [{call|return}]

Prints a list of all system calls caught upon entry (call) or return
(return). If you provide neither the call nor return keyword,
dbx lists all system calls that are caught.

syscall ignore [{call|return}]

Prints a list of all system calls not caught upon entry (call) or return
(return). If you provide neither the call nor return keyword,
dbx lists all system calls that are ignored.

syscall catch {call|return} {system_call|all}

Sets a breakpoint to stop execution upon entering or returning from
the specified system call. Note that you can set dbx to catch both the
call and the return of a system call.

If you use the keyword all rather than giving a specific system call,
dbx catches all system calls.

syscall ignore {call|return} {system_call|all}

Clears the breakpoint to stop execution upon entering or returning
from the specified system call.

If you use the keyword all rather than giving a specific system call,
dbx clears the breakpoints to stop execution upon entering or
returning from all system calls.

007–0906–120 153

A: dbx Commands

tagprocedure

Searches the tag file for the given procedure.

trace variable

Whenever the specified variable changes, dbx prints the old and new
values of that variable.

trace procedure

Prints the values of the parameters passed to the specified procedure
whenever your program calls it. Upon return, dbx prints the return
value.

trace [expression|variable] at line

Whenever your program reaches the specified line, dbx prints the
value of the variable if its value has changed.

If the expression is of type pointer, look at the data pointed to and
watch until it changes. If the expression is not of type pointer, look at
the 32 bits at that address (assume the expression evaluates to an
address).

trace [expression|variable] in procedure

Whenever the variable changes within the procedure, dbx prints the
old and new values of that variable.

If the expression is of type pointer, look at the data pointed to and
watch until it changes. If the expression is not of type pointer, look at
the 32 bits at that address (assume the expression evaluates to an
address).

trace [expression1|variable] at line if expression2

Prints the value of the variable (if changed) whenever your program
reaches the specified line and the given expression is true.

If expression1 is of type pointer, look at the data pointed to and watch
until it changes. If expression1 is not of type pointer, look at the 32 bits
at that address (assume the expression evaluates to an address).

154 007–0906–120

dbx User’s Guide

trace [expression1|variable] in procedure if expression2

Whenever the variable changes within the procedure that you specify,
dbx prints the old and new values of that variable, if the given
expression is true.

If expression1 is of type pointer, look at the data pointed to and watch
until it changes. If expression1 is not of type pointer, look at the 32 bits
at that address (assume the expression evaluates to an address).

tracei [expression|variable]

Whenever the specified variable changes, dbx prints the old and new
values of that variable. (For machine-level debugging.)

If the expression is of type pointer, look at the data pointed to and
watch until it changes. If the expression is not of type pointer, look at
the 32 bits at that address (assume the expression evaluates to an
address).

tracei procedure

This command is equivalent to entering trace procedure. (For
machine-level debugging.)

tracei [expression|variable] at address

Prints the value of the variable whenever your program reaches the
specified address. (For machine-level debugging.)

If the expression is of type pointer, look at the data pointed to and
watch until it changes. If the expression is not of type pointer, look at
the 32 bits at that address (assume the expression evaluates to an
address).

tracei [expression|variable] in procedure

Whenever the variable changes within the procedure that you specify,
dbx prints the old and new values of that variable. (For
machine-level debugging.)

If the expression is of type pointer, look at the data pointed to and
watch until it changes. If the expression is not of type pointer, look at
the 32 bits at that address (assume the expression evaluates to an
address).

007–0906–120 155

A: dbx Commands

tracei [expression1|variable] at address if expression2

Prints the value of the variable whenever your program reaches the
specified address and the given expression is true. (For machine-level
debugging.)

If expression1 is of type pointer, look at the data pointed to and watch
until it changes. If expression1 is not of type pointer, look at the 32 bits
at that address (assume the expression evaluates to an address).

tracei [expression1|variable] in procedure if expression2

Whenever the variable changes within the procedure that you specify,
dbx prints the old and new values of that variable, if the given
expression is true. (For machine-level debugging.)

If expression1 is of type pointer, look at the data pointed to and watch
until it changes. If expression1 is not of type pointer, look at the 32 bits
at that address (assume the expression evaluates to an address).

unalias alias

Removes the specified alias.

unrecord session1 [,session2...]

Turns off the specified recording session(s) and closes the file(s)
involved.

unrecord all

Turns off all recording sessions and closes all files involved.

unset var

Removes the specified dbx variable.

unsetenv VAR

Removes the specified environment variable.

up [num]

Moves up the specified number of activation levels in the stack. The
default is one level.

156 007–0906–120

dbx User’s Guide

use [dir ...]

If you provide one or more directories, dbx replaces the source
directory list with the directories that you provide.

If you do not provide any directories, dbx displays the current source
directory list.

wait

Waits for the active process to stop for an event.

wait pid pid

Waits for the process specified by pid to stop for an event.

waitall

Waits for any child process currently running to breakpoint or to a
stop for any reason and reports its status.

whatis name

Prints the type declaration for name.

when [expression|variable] {command-list}

Inspects the value before executing each source line. If it has
changed, executes the command list.

If the expression is of type pointer, look at the data pointed to and
watch until it changes. If the expression is not of type pointer, look at
the 32 bits at that address (assume the expression evaluates to an
address).

when [expression|variable] at line {command-list}

Inspects the value at the given source line. If it has changed, executes
the command list.

If the expression is of type pointer, look at the data pointed to and
watch until it changes. If the expression is not of type pointer, look at
the 32 bits at that address (assume the expression evaluates to an
address).

007–0906–120 157

A: dbx Commands

when [expression|variable] in procedure {command-list}

Inspects the value at every source line within a given procedure. If it
has changed, executes the command list.

If the expression is of type pointer, look at the data pointed to and
watch until it changes. If the expression is not of type pointer, look at
the 32 bits at that address (assume the expression evaluates to an
address).

when if expression {command-list}

Evaluates the expression before executing each source line. If it is
true, executes the command list.

when at line if expression {command-list}

Evaluates the expression at the given source line. If it is true, executes
the command list.

when in procedure if expression {command-list}

Evaluates the expression at every source line within a given
procedure. If it is true, executes the command list.

when [expression1|variable] if expression2 {command-list}

Checks if the value of the variable has changed. If it has changed and
the expression is true, executes the command list. If expression1 is of
type pointer, look at the data pointed to and watch until it changes. If
expression1 is not of type pointer, look at the 32 bits at that address
(assume the expression evaluates to an address).

when [expression1|variable] at line if expression2 {command-list}

Checks if the value of the variable has changed each time the line is
executed. If the value has changed and the expression is true,
executes the command list. If expression1 is of type pointer, look at the
data pointed to and watch until it changes. If expression1 is not of
type pointer, look at the 32 bits at that address (assume the expression
evaluates to an address).

158 007–0906–120

dbx User’s Guide

when [expression1|variable] in procedure if expression2 {command-list}

Checks if the value of variable has changed at each source line of the
given procedure. If the value has changed and the expression is true,
executes the command list. If expression1 is of type pointer, look at the
data pointed to and watch until it changes. If expression1 is not of
type pointer, look at the 32 bits at that address (assume the expression
evaluates to an address).

wheni at address if expression {command-list}

Evaluates the expression at the given address. If the expression is
true, executes the command list. (For machine-level debugging.)

wheni in procedure if expression {command-list}

Evaluates the expression in the given procedure. If the expression is
true, executes the command list. (For machine-level debugging.)

wheni if expression {command-list}

Evaluates the expression before executing each machine instruction. If
the expression is true, executes the command list.

wheni variable at address if expression {command-list}

Tests both conditions at the given address. If the conditions are true,
executes the command list. (For machine-level debugging.) If the
expression is of type pointer, look at the data pointed to and watch
until it changes. If the expression is not of type pointer, look at the 32
bits at that address (assume the expression evaluates to an address).

wheni variable in procedure if expression {command-list}

Tests both conditions at every machine instruction within a given
procedure. If they are true, executes the command list.

where

Print a stack trace. t is an alias for the where command.

whereis name

Prints the fully qualified names of all versions of name. The range of
objects examined is determined by the dbx$whereisdsolimit. variable.

007–0906–120 159

A: dbx Commands

which name

Prints the fully qualified name of the active version of name.

whichobj variable

Lists the dynamic shared objects that contain variable.

160 007–0906–120

Appendix B

Predefined Aliases

The following table lists all predefined dbx aliases. You can override any predefined
alias by redefining it with the command or by removing it with the unalias
command.

Table B-1 Predefined Aliases

Alias Definition Description

a assign Assigns the specified expression to the specified program
variable or register.

b stop at Sets a breakpoint at the specified line.

bp stop in Sets a breakpoint in the specified procedure.

c cont Continues program execution after a breakpoint.

d delete Deletes the specified item from the status list.

dir directory Displays the current source directory list. If you specify
one or more directories, those directories are added to the
end of the source directory list.

e file Displays the name of the currently selected source file. If
you specify a file, this command makes the specified file
the currently selected source file.

f func Moves to the specified procedure (activation level) on the
stack. If you specify no procedure or expression, dbx
prints the current activation level.

g goto Goes to the specified source line.

h history Lists all the items currently in the history list.

j status Lists all the currently set stop, trace, and when
commands.

l list Lists the next $listwindow lines of source code beginning at
the current line.

007–0906–120 161

B: Predefined Aliases

Alias Definition Description

li $curpc/10i; \
set $curpc=$curpc+40

Lists the next 40 bytes of machine instructions
(approximately 10 instructions).

n next Executes the specified number of lines of source code,
stepping over procedures. If you do not provide an
argument, dbx executes only one line.

ni nexti Executes the specified number of lines of machine code,
stepping over procedures. If you do not provide an
argument, dbx executes only one instruction.

p print Prints the value of the specified variable or expression.

pd printd Prints the value of the specified variable in decimal.

pi playback input Replays dbx commands saved in the specified file. If you
do not specify a file, dbx uses the temporary file specified
by $defaultin.

po printo Prints the value of the specified variable or expression in
octal.

pr printregs Prints values contained in all registers.

px printx Prints the value of the specified variable or expression in
hexadecimal.

q quit Quits dbx.

r rerun Runs the program again using the arguments specified for
the last run command executed.

ri record input Records to the specified file all the input you give to dbx.
If you do not specify a file, dbx creates a temporary file.
The name of the file is specified by $defaultin.

ro record output Records all dbx output to the specified file. If no file is
specified, records output to a temporary file. The name of
the file is specified by $defaultout.

s step Executes the specified number of lines of source code,
stepping into procedures. If you do not provide an
argument, dbx executes only one line.

S next Executes the specified number of lines of source code,
stepping over procedures. If you do not provide an
argument, dbx executes only one line.

162 007–0906–120

dbx User’s Guide

Alias Definition Description

si stepi Executes the specified number of lines of machine code,
stepping into procedures. If you do not provide an
argument, dbx executes only one instruction.

Si nexti Executes the specified number of lines of machine code,
stepping over procedures. If you do not provide an
argument, dbx executes only one instruction.

source playback input (pi) Replays dbx commands saved in the specified file. If no
file is specified, dbx uses the temporary file specified by
$defaultin.

t where Does a stack trace to show the current activation levels.

u list $curline-9:10 Lists a window of source code showing the nine lines
before the current code line and the current code line. This
command does not change the current code line.

w list $curline-5:10 Lists a window of source code around the current line. This
command shows the four lines before the current code line,
the current code line, and five lines after the current code
line. This command does not change the current code line.

W list $curline-10:20 Lists a window of source code around the current line. This
command shows the nine lines before the current code line,
the current code line, and 10 lines after the current code
line. This command does not change the current code line.

wi $curpc-20/10i Lists a window of assembly code around the program
counter.

007–0906–120 163

Appendix C

Predefined dbx Variables

Predefined dbx variables are listed in the following table. The predefined variable
names begin with ‘‘$’’ so that they do not conflict with variable, command, or alias
names.

Table C-1 Predefined dbx Variables

Variable Default Description

$addrfmt 0x%x Specifies the format for addresses. This can be set to any
format valid for the C language printf(3S) function.

$addrfmt64 0x%llx Specifies the format for 64-bit addresses. This can be set to
any format valid for the C language printf(3S) function.

$assignverify 1 If nonzero, the new value of a program variable will be
displayed after the assign command.

$casesense 2 If 0, symbol names are case sensitive. If 1, symbol names are
not case sensitive. If 2, the case sensitivity of symbol names
depends on the case sensitivity of the language in which the
symbol was defined.

$ctypenames 1 If 1, the words unsigned, short, long, int, char,
struct, union, and enum are keywords usable only in
type casts. If 0, struct, union, and enum are ordinary
words with no predefined meaning (in C modules, the
others are still known as C types).

$curevent The last event number as seen by the status command.

$curline The current line in the source code being executed.

$curpc The current program counter.

$cursrcline The current source listing line plus one.

$defaultin The name of the file that dbx uses when the record input
or the playback input command is executed with no
argument.

007–0906–120 165

C: Predefined dbx Variables

Variable Default Description

$defaultout The name of the file that dbx uses when the record
output or the playback output command is executed
with no argument.

$editor vi The name of the editor to invoke (with the edit command).
Default value is set to the value of the EDITOR environment
variable. If EDITOR missing, it defaults to vi.

$fp_precise 0 When nonzero, dbx runs programs on R8000 processors in
floating point precise mode, allowing accurate floating point
exceptions. By default, R8000 floating point interrupts are
asynchronous and reported program counter values are
useless for debugging. For more information about floating
point precise mode, see the syssgi(2) reference page
section on SGI_SET_FP_PRECISE.

$framereg 1 If 1, all references to registers are to the registers of the
current activation level. If 0, all references are to the
hardware registers.

$groupforktoo 0 If 0, adds only processes created with the sproc(2) system
call to the process group list automatically. If 1, then adds
processes created with either the fork(2) or sproc system
calls to process group list.

$hexchars 0 If nonzero, outputs characters in hexadecimal, using C
format %x. This affects char type variables, including those
in structures. It does not affect arrays of characters, which
are printed using the %.*s format.

$hexdoubles 0 If nonzero, displays floating point and double-precision
variables both as literals and as hexadecimal representations
of the bit pattern.

$hexin 0 If nonzero, input constants are assumed to be in
hexadecimal. This overrides $octin.

$hexints 0 If nonzero, outputs integers in hexadecimal format. This
overrides $octints.

166 007–0906–120

dbx User’s Guide

Variable Default Description

$hexstrings 0 If nonzero, outputs strings and arrays in hexadecimal. For
character arrays, if nonzero, the null byte is not taken as a
terminator. Instead, prints the entire array (or $maxlen
values, whichever is less). If 0, then a null byte in a C or
C++ character array is taken as the end of the array (the
length of the array and $maxstrlen can terminate the
array printing before a null byte is found).

$historyevent The current history line number.

$lastchild The process ID of the last child process created by a fork or
sproc system call.

$lines 100 The number of lines in the history list.

$listwindow 10 Specifies how many lines the list command lists.

$maxstrlen 128 Maximum length printed for zero-terminated char strings
and arrays. Prints char arrays for array-length, $maxstrlen
bytes, or up to a null byte, whichever comes first (see
$hexstrings).

$mp_program 0 If 0, treats calls to sproc in the same way as it treats calls to
fork. If 1, child processes created by calls to sproc are
allowed to run; they block on multiprocessor
synchronization code emitted by mp Fortran code. When
you set $mp_program to 1, mp Fortran code is easier to
debug.

$newevent 0 After every command creating an event, this variable is set
to the event’s number. The $newevent variable is useful in
writing scripts that do not use hard-coded event numbers.

$newpgrpevent 0 Stores the number of the latest pgrp event created by
stop[i], trace[i], and when[i]... pgrp. Useful when
writing scripts .

$nonstop 0 Only used with addproc or with dbx options -p and -P. If
0, the process that is the argument of the command is
stopped; if 1, the process is not stopped. In either case the
process state is not changed. If the you start dbx with the
–N option, then $nonstop should1.

007–0906–120 167

C: Predefined dbx Variables

Variable Default Description

$octin 0 If nonzero, assumes input constants are in octal.
$hexin overrides $octin.

$octints 0 If nonzero, outputs integers in octal format.
$hexints takes precedence.

$page 1 Specifies whether to page when dbx output scrolls
information off the current screen. A nonzero value turns on
paging; a 0 value turns it off.

$pager more The name of the program used to display output from dbx.

$pagewidth 80 The width of the window in characters (assumes a
fixed-width font). Used by dbx to calculate how many
screen lines are output. dbx never inserts newlines; the
window software wraps the lines.

$pagewindow 23 Specifies how many lines print when information is longer
than one screen. This can be changed to match the number
of lines on any terminal. If set to 0, 1 is used.

$pendingtraps 0 If nonzero, allows traps that cannot be satisfied immediately
to wait until they can be satisfied. This is useful for
debugging programs that use DSOs, as it allows setting
breakpoints before the dlopen() call. When set to nonzero,
mistyped procedure names are not flagged and cause a
pending trap to be set.

$piaddtohist 1 If 1, adds commands read from files using the playback
input command to the command history. If 0, does not add
the commands to the history.

$pid The current process for kernel debugging (-k).

$pid0 Set by dbx to the process ID of the running process (also
called the object file).

$pimode 0 If 1, prints the commands read from files using the
playback input command. If 0, does not print the
commands. In either case, dbx prints the output resulting
from such commands.

168 007–0906–120

dbx User’s Guide

Variable Default Description

$printdata 0 Used when disassembling. If 1, prints register contents
alongside disassembled instructions. If 0, just prints
disassembled instructions.

$print_exception_frame 0 If nonzero, the display of a kernel exception frame by the
dump or where commands includes information that you
can use to find the contents of the kernel registers at the
time of the fault.

$printwhilestep 0 If 0, prints only the next line to be executed. If nonzero,
prints each line that is executed while it single steps.

$printwide 0 If 0, prints arrays, unions, structures and classes one element
per line. If nonzero, prints arrays compactly (wide).

$procaddr This variable applies only if you invoke dbx with the -k
option (that is, it is not available unless you are doing kernel
debugging). Whenever $pid is set, dbx sets $procaddr to
the address of the process table entry for that process.

$prompt dbx The prompt for dbx.

$promptonfork 0 If 0, does not add the child process to the process pool. Both
the child process and the parent process continue to run.
If 1, stops the parent process and asks if you want to add
the child process to the process pool. If you answer yes,
adds the child process to the pool and stops the child
process; if you answer no, allows the child process to run
and does not place it in the process pool.
If 2, dbx automatically stops both the parent and child
processes and adds the child process to the process pool.

$regstyle 0 If 0, uses the alternate form of the register name (for
example, zero instead of r0 and t1 instead of r9). If nonzero,
uses the machine name (r0 through r31).

$repeatmode 0 If nonzero, entering a null line (entering a newline on an
empty line) repeats the last command. If 0, performs no
action.

$rimode 0 If 1, records commands you enter in addition to output
when using the record output command. If 0, does not
copy the commands.

007–0906–120 169

C: Predefined dbx Variables

Variable Default Description

$shellparameters “ “ A string that is added by run to the command line it passes
to the command interpreter. Use $shellparameters to
disable spawning of subshells by the initialization file of a
non-standard shell.

$showbreakaddrs 0 If nonzero, shows the address of each breakpoint placed in
the code each time it is placed. Removal of the breakpoints
is not shown. If multiple breakpoints are placed at one
location, only one of the placements is shown. Since
breakpoints are frequently placed and removed by dbx, the
volume of output can be annoying when tracing.

$showfilename 0 If 0, step, next, and so on do not show the source file
name in the dbx message describing the stopped state.
If 1, prints just the base file name.
If 2, prints the full path.
If $stopformat is 1, $showfilename equals 0 is treated
as if $showfilename were 2.

$sourcepathrule 0 If 0, search for a source file by:
a) using the pathname in the object file’s debugging
information;
if the file is not found, then
b) examine pathnames remapped by the dir or use
command;
if the file is still not found, then
c) reduce full pathnames to base file names and search the
list of directories created by the dir or use command.
If 1, permute the default source-file search sequence to: step
b, step c, then step a.
If 2, use only steps b and c of the default source-file search
sequence.

$stacktracelimit 100 Sets the maximum number of frames that will be examined
by the dump, func, and where commands.

170 007–0906–120

dbx User’s Guide

Variable Default Description

$stdc 0 If nonzero, attempts in dbx expressions to model exactly the
promotion rules of ANSI C and ISO/IEC 9899 C (even to
the point of matching float to float rather than converting all
floating points to doubles).
If 0, promotes variables more like traditional pcc C (but
promotions of 16-bit and 8-bit unsigned is to int, not
unsigned int).

$stepintoall 0 If 0, step steps into all procedures that are compiled with
debugging options -g -g2, or -g3 for which line numbers
are available in the symbol table. Note that standard library
routines are excluded.
If 1, in addition to the procedures above, steps into any
procedures for which a source file can be found. Note that
when you debug a source file compiled without symbols or
compiled with optimization, the line numbers may jump
erratically.
If 2, steps into all procedures. Note that if dbx cannot locate
a source file, then it cannot display source lines as you step
through a procedure.

$stopformat 0 If 0, stopping messages appear in the traditional IRIX dbx
format, for example:
stopped at [main:32 , 0x400000 main.c]If 1,
messages appear in a more standard BSD dbx format:
stopped in main at line 32 in file ‘‘main.c’’See
affect on $showfilename also.

$tagfile tags The name of a file of tags, as created by ctags(1). Used by
the tag command.

$whereisdsolimit 1 If 1, whereis looks only in main object.
If 0, whereis checks all objects.
If n, whereis checks first n objects.

007–0906–120 171

Index

!! command, 24
characters, 7, 34, 36
/ command, 19, 46, 133, 135
// (division) operator, 37
; (command separator), 11
; command separator, 133
? command, 19, 133, 134
\\ (command continuation), 11
\\ command continuation, 133
16-bit word, 108
32-bit word, 108
64-bit word, 108

A

activation levels, 63
changing, 68, 140
current, 107
frames, 63
moving down, 67, 139
moving up, 67, 157
printing information, 69, 139
registers and, 107

active command, 134
active process

wait for, 157
add processes to process pool, 121, 134
adding processes to the process group list, 128,

129, 134
addpgrp command, 129, 134
addproc command, 121, 134
address of line numbers, 35, 36
$addrfmt, 165
$addrfmt64, 165
alias command, 27, 30, 135, 161
aliases, 27

creating, 27, 135
deleting, 30, 156
displaying, 30, 135
predefined, 27
predefined. See predefined dbx aliases, 161

assign command, 47, 106, 136
assign to register command, 107
$assignverify, 165

B

back quotation marks (‘), 38, 44
basic block counts, obtaining, 74
blocks, counting, 74
breakpoints, 2, 77

and interactive function calls, 73
conditional, 2, 77
continuing after, 3, 112
disabling, 88, 138
enabling, 89, 140
machine-level, 110, 150, 151
process groups, 129
setting, 3, 78, 148, 149
status, 87, 148
test clause, 81, 82
unconditional, 2, 77
variable clause, 79, 81, 82, 110, 111, 149

C

C keyword conflicts, 165
C preprocessor, 38
C++

considerations, 75, 98
exceptions, 93

007–0906–120 173

Index

global functions, 99
member functions, 98
member variables, 76
non-C++ functions, 99
overloaded functions, 99
static member variables, 76

case sensitivity of program variable names, 165
$casesense, 48, 165
casts, 29
catch command, 136
catching signals, 136
ccall command, 71, 136
changing program variable values, 47, 136
clearcalls command, 72, 136
clones, 18
code missing, 5
command continuation, 11, 133
command scripts

comments, 34, 36
command separator (;), 11, 133
commands

!!, 24
/, 19, 46, 133, 135
?, 19, 133, 134
active, 134
addpgrp, 129, 134
addproc, 121, 134
alias, 27, 30, 135, 161
assign, 47, 107, 136
assign register, 107
catch, 136
ccall, 71, 136
clearcalls, 72, 136
cont, 92, 112, 123, 136
conti, 112, 137
corefile, 8, 138
delete, 89, 110, 113, 138
delpgrp, 129, 138
delproc, 122, 138
dir, 14, 15, 138
disable, 88, 110, 113, 138
down, 67, 139

duel, 49, 139
dump, 69, 139
edit, 20, 139, 140, 166
enable, 110, 113, 140
file, 16, 140
func, 68, 140
givenfile, 8, 140
goto, 98, 140
hed, 26, 140, 141
help, 10, 141
history, 24, 141
ignore, 90, 141
!integer, 24, 134
!-integer, 24, 134
intercept, 142
kill, 142
list, 17, 142
listclones, 19, 143
listinlines, 18
listobj, 6, 143
listregions, 107, 143
next, 3, 95, 143
nexti, 144
pixie, 74, 144
playback input, 31, 34, 144, 168, 165
playback output, 144, 165
print, 3, 22, 39, 45, 144
printd, 39, 45, 144
printenv, 49, 144
printf, 40, 45, 144
printo, 39, 45, 145
printregs, 105, 145
printx, 39, 45, 145
quit, 12, 145
record, 34, 145
record input, 31, 32, 145, 165
record output, 32, 145, 165
rerun, 3, 8, 9, 145
resume, 83, 145
return, 98, 146
run, 3, 8, 9, 146

174 007–0906–120

dbx User’s Guide

search backward (?), 19, 134
search forward (/), 19, 133
set, 22, 38, 146
setenv, 9, 49, 146
sh, 12, 147
showpgrp, 129, 147
showproc, 120, 147
showthread, 148
status, 32, 87, 148
step, 3, 95, 148
stepi, 115, 148
stop, 3, 78, 148
stopi, 110, 151
!string, 24, 134
suspend, 123, 153
syscall, 94, 153
tag, 154
trace, 4, 83, 154
tracei, 113, 155
unalias, 30, 156, 161
unrecord, 31, 32, 156
unset, 23, 156
unsetenv, 49, 156
up, 66, 157
use, 14, 157
wait, 157
waitall, 124, 125, 157
whatis, 63, 157
when, 157
wheni, 114, 159
where, 2, 64, 111, 159
whereis, 42, 43, 62, 160
which, 42, 43, 62, 160
whichobj, 6, 161

comments, command scripts, 34, 36
common pitfalls, 4
compiling a program for dbx debugging, 5
conditional breakpoints, 2, 77

setting, 78
test clause, 81, 82
variable clause, 79, 81, 82, 110, 149

conditional commands

deleting, 90, 138
setting, 85
status, 87, 148
stop keyword, 85
test clause, 158
variable clause, 157

conflicts between program variable names and c
keywords, 165

conflicts between program variable names and
keywords, 48

constants
numeric, 38
string, 38

cont command, 92, 112, 123, 136
conti command, 112, 137
continuing after a breakpoint, 3, 112
core dump, 1, 8
core files, 1

specifying, 8, 138
corefile command, 8, 138
crashes, diagnosing, 1
creating aliases, 27, 135
$ctypenames, 165
$curevent, 165
$curline, 165
$curpc, 165
current directory, 13
current source file, 16, 67, 133, 140
$cursrcline, 165

D

dbx
command scripts, 34
-I flag, 13
invoking, 2, 6
quitting, 145

dbx aliases, 27
dbx variables, 21, 35

listing, 22, 146

007–0906–120 175

Index

predefined, 21
removing, 23, 156
setting, 22, 146

.dbxinit file, 10
debugging

a program, 2
C++ programs, 76, 98
high level, 49
multiprocess application, 117

decimal input, 38
default input base, 38
default output base, 38
$defaultin, 31, 145, 165
$defaultout, 33, 166
#define declarations, 38
delete command, 89, 110, 113, 138
delete processes from process pool, 122, 138
deleting

aliases, 30, 156
conditional commands, 90, 138
processes from the process group list, 129, 138
tracing, 90

delpgrp command, 129, 138
delproc command, 122, 138
determining scope of program variables, 62, 160
dir

alias, 161
path remapping, 15

dir command, 14, 15, 138
disable command, 88, 110, 113, 138
disabling

breakpoints, 88, 138
tracing, 88

disassemble code, 107, 108, 135
display

active process in process pool, 122
processes in process pool, 120, 147

displaying aliases, 30, 135
displaying caught signals, 136
displaying caught system calls, 153
displaying ignored signals, 141
displaying ignored system calls, 153

displaying recording sessions, 34, 145
displaying register values, 65
down command, 66, 139
DSOs, 6, 43

stepping into, 97, 115
duel

C language, 62
debugging, 49
examples, 53
Fortran array subscripts, 58
Fortran language, 62
language differences, 61
operators, 52, 56
quick start, 50
semantics, 56

duel command, 139
dump command, 69, 139

E

edit command, 20, 139, 140, 166
edit history list, 26, 140, 141
editing files, 20, 139, 140
EDITOR environment variable, 20, 26, 139, 165
$editor, 20, 26, 166
enable command, 110, 113, 140
enabling

breakpoints, 89, 140
tracing, 89

ending recording, 31, 32, 156
–g flag, 5
environment variables

EDITOR, 20, 26, 139, 165
HOME, 10
LD_BIND_NOW, 97, 115

examining a new program, 3
examining core dumps, 1
examining program variables, 3
examining stack, 3
exec, 127

176 007–0906–120

dbx User’s Guide

executing a shell command, 147
exit, 95
expressions

printing, 39, 144
printing formatted, 144

F

fast data breakpoints, 80
file command, 16, 140
fork, 117, 126, 128, 165
Fortran

dbx array subscripts, 38
duel array subscripts, 58

$fp_precise, 166
$framereg, 166
frames, 63
fully qualified names, 42
func command, 68, 140
function calls, interactive, 136

G

-g flag, 2, 4, 13, 65, 97
givenfile command, 8, 140
goto command, 98, 140
group history, 129
$groupforktoo, 128, 166

H

hed command, 26, 140, 141
help, 10, 141, 168
help command, 10, 141
hexadecimal input, 38, 165
hexadecimal output, 38, 105, 165
$hexchars, 166
$hexdoubles, 166
$hexin, 38, 166, 168

$hexints, 38, 105, 166, 168
$hexstrings, 167
history command, 24, 141
history editor, 26
history feature, 23
history list, 24

editing, 26, 140, 141
print, 24

$historyevent, 167
HOME environment variable, 10

I

-I flag, 13
ignore command, 90, 141
ignoring signals, 142
include files, 5
inlines, 18
input

playing back, 30, 32
recording, 31

input base
decimal, 38
hexadecimal, 38, 165
octal, 38, 168

instrumented binary, 74
!integer command, 24, 134
!-integer command, 24, 134
interactive function calls, 38, 71

breakpoints, 73
calling, 71, 136
clearing, 72, 136
nesting, 73
unstacking, 72

intercept command, 142
invoking a shell, 11, 147
invoking dbx, 1, 6

007–0906–120 177

Index

K

kill active process, 142
kill command, 142
kill process in process pool, 142

L

$lastchild, 167
LD_BIND_NOW environment variable, 97, 115
line numbers, address, 34, 36
$lines, 167
linked list, 29
list command, 17, 142
listclones command, 19, 143
listing dbx variables, 22, 146
listinlines command, 18
listobj command, 6, 143
listregions command, 107, 143
$listwindow, 17, 142, 167

M

machine-level breakpoints, 110, 151
machine-level debugging, 1
machine-level single-stepping, 115
macros, 5
mapping pathnames, 15
$maxstrlen, 167
memory

print contents, 107, 135
memory, print contents, 108, 135
missing code, 5
mp fortran, 165
$mp_program, 128, 167
multiprocess debugging, 117
multiprocess programs, 82

N

names
fully qualified, 42, 64, 85
statement labels (__$L_ marker), 43
struct, union, and enum tags (__$T_ marker), 43
unnamed program blocks (__$$blk1 marker), 43

nesting interactive function calls, 73
$newevent, 167
$newpgrpevent, 130, 167
next command, 3, 95, 143
nexti command, 144
$nonstop, 167
numeric constants, 38

O

object files, 13
specifying, 7, 8, 140

octal input, 38, 168
octal output, 105, 168
$octin, 38, 168
$octints, 38, 105, 168
on-line help, 10, 141, 168
operators, 36

operator, 34, 36
// (division), 37
precedence, 36

output
playing back, 30
recording, 30, 32, 145

output base
hexadecimal, 38, 105, 165
octal, 105, 168

overloaded c++ functions, 99

P

$page, 168

178 007–0906–120

dbx User’s Guide

$pager, 10, 141, 168
$pagewidth, 168
$pagewindow, 168
path remapping, 15
pathnames, 15
pd, 39, 45
$pendingtraps, 168
pgrp clause, 129
pi command, 32
$piaddtohist, 168
pid clause, 118
$pid, 168, 169
$pid0, 168
$pimode, 26, 32, 144, 168
pixie

counting basic blocks, 74
pixie command, 144
playback input command, 31, 34, 144, 168, 165
playback output command, 144, 165
playing back input, 30, 32
playing back output, 30
po, 45
precedence, operators, 36
predefined dbx aliases, 26, 161

a, 161
b, 161
bp, 161
c, 161
d, 161
dir, 161
e, 161
f, 161
g, 161
h, 161
j, 161
l, 161
li, 162
n, 162
ni, 162
p, 162
pd, 39, 45, 162
pi, 32, 34, 162

po, 45, 162
pr, 162
px, 45, 162
q, 162
r, 162
ri, 162
ro, 162
S, 162
s, 162
Si, 163
si, 163
source, 148, 163
t, 163
u, 163
W, 163
w, 163
wi, 163

predefined dbx variables, 21, 165
$addrfmt, 165
$addrfmt64, 165
$assignverify, 165
$casesense, 48, 165
$ctypenames, 165
$curevent, 165
$curline, 165
$curpc, 165
$cursrcline, 165
$defaultin, 31, 145, 165
$defaultout, 33, 166
$editor, 20, 26, 166
$fp_precise, 166
$framereg, 107, 166
$groupforktoo, 128, 166
$hexchars, 166
$hexdoubles, 166
$hexin, 38, 166, 168
$hexints, 38, 105, 166, 168
$hexstrings, 167
$historyevent, 167
$lastchild, 167
$lines, 167

007–0906–120 179

Index

$listwindow, 17, 142, 167
$maxstrlen, 167
$mp_program, 128, 167
$newevent, 167
$newpgrpevent, 130, 167
$nonstop, 167
$octin, 38, 168
$octints, 38, 105, 168
$page, 168
$pager, 10, 141, 168
$pagewidth, 168
$pagewindow, 168
$pendingtraps, 168
$piaddtohist, 168
$pid, 168, 169
$pid0, 168
$pimode, 26, 32, 144, 168
$print_exception_frame, 169
$printdata, 169
$printwhilestep, 169
$printwide, 169
$procaddr, 169
$prompt, 6, 169
$promptonfork, 126, 169
$regstyle, 104, 169
$repeatmode, 24, 134, 169
$rimode, 32, 145, 169
$shellparameters, 9, 170
$showbreakaddrs, 170
$showfilename, 170
$sourcepathrule, 15, 170
$stacktracelimit, 65, 170
$stdc, 171
$stepintoall, 97, 115, 171
$stopformat, 171
$tagfile, 171
$whereisdsolimit, 63, 171

print
byte in octal, 108
word in decimal, 108
word in hexadecimal, 108
word in octal, 108

print command, 3, 22, 39, 45, 144
print history list, 24
print memory contents, 107, 108, 135
$print_exception_frame, 169
printd command, 39, 45, 144
$printdata, 169
printenv command, 49, 144
printf command, 40, 45, 144
printing expressions, 39, 144
printing formatted expressions, 144
printing program variables, 45
printing register values, 65
printo command, 39, 45, 145
printregs command, 105, 145
$printwhilestep, 169
$printwide, 169
printx command, 39, 45, 145
problems

confused listing, 4
include files, 5
macros, 5
source and code do not match, 4
variables do not display, 4

$procaddr, 169
procedures, tracing, 4
process group list

adding processes, 128, 129, 134
deleting processes, 129, 138
showing processes, 129, 147

process groups, 128
breakpoints, 129
group history, 129
tracing, 129

process identification number (PID), 118
process pool, 118

add processes, 121, 134
delete processes, 122, 138
display active process, 122, 134
display processes, 120, 147
kill active process, 142
kill processes, 142

180 007–0906–120

dbx User’s Guide

resume active process, 145
suspend active process, 123
suspend processes, 123, 153

processes
wait for, 125, 157

program stack, 63
program variables, 36, 44, 45

case sensitivity, 48
changing values, 47
determining scope, 62
names and keyword conflicts, 48
printing, 45
qualifying variable names, 64, 85
scope, 45, 64, 67, 68
type declarations, 63

program variables. See variables, program, 3
prompt, 6, 169
$prompt, 6, 169
$promptonfork, 126, 169
px, 45

Q

qualifying program variable names, 42, 64, 85
quick start duel, 50
quit command, 12, 145
quitting dbx, 12, 145
quotation marks, 38, 44

R

record command, 34, 145
record input command, 31, 32, 145, 165
record output command, 32, 145, 165
recording input, 30
recording output, 30, 32, 145
recording, displaying sessions, 34, 145
recording, ending, 31, 32, 156
register names, 103, 169
registers, 103

changing values, 136
displaying values, 65
printing values, 65, 105, 145
using values in expressions, 106

$regstyle, 105, 169
removing dbx variables, 23, 156
repeating commands, 23, 24, 134, 169
$repeatmode, 24, 134, 169
rerun command, 3, 8, 9, 145
resume active process, 145
resume command, 82, 145
return command, 97, 146
$rimode, 32, 145, 169
run command, 3, 8, 9, 146
running process, wait for, 125, 157
running programs, 8, 9, 145, 146

S

scope of program variables, 45, 64, 67, 68
scripts, 34
search backward (?) command, 19, 134
search forward (/) command, 19, 133
searching source code, 19, 133
sending signals, 82, 112, 145
set command, 22, 38, 146
setenv command, 9, 49, 146
setting breakpoints, 3
setting conditional breakpoints, 78
setting conditional commands, 86
setting dbx variables, 22
setting unconditional breakpoints, 78, 148, 149
sh command, 12, 147
shell command, executing, 147
shell, invoking from dbx, 11, 147
$shellparameters, 9, 170
$showbreakaddrs, 170
$showfilename, 170
showing processes in the process group list, 129,

147

007–0906–120 181

Index

showpgrp command, 129, 147
showproc command, 120, 147
showthread command, 148
signals

catching, 136
displaying caught, 136
displaying ignored, 141
ignoring, 142
sending, 82, 112, 146

single-stepping, 4, 95, 143, 148
single-stepping at the machine-code level, 115
source, 148, 163
source code

searching, 19, 133
source command, 32
source directories

specifying, 13–15, 138, 157
source files, 13

dbx, 15
editing, 20, 140
locating, 15
specifying, 13–16, 138, 140, 157

source lines, tracing, 4
$sourcepathrule, 15, 170
sproc, 117, 128, 165
stack

examining, 3, 63, 65
printing, 65
trace, 2, 64, 159

$stacktracelimit, 64, 170
standard error, 9, 146
standard input, 9, 146
standard output, 9, 146
status command, 32, 87, 148
$stdc, 171
step command, 3, 95, 148
stepi command, 115, 148
$stepintoall, 97, 117, 171
stop command, 3, 78, 148
$stopformat, 171
stopi command, 110, 151
string constants, 38

escape sequences, 38
!string command, 24, 134
stripped symbol table, 2
suspend active process, 123
suspend command, 123, 153
suspend process in process pool, 123, 153
symbol table

stripped, 2
syscall command, 94, 153
system calls

displaying caught, 153
displaying ignored, 153
exec, 127
exit, 95
fork, 117, 126, 128, 165
sproc, 117, 128, 165

T

tag command, 154
$tagfile, 171
thread clause, 119
trace command, 4, 83, 154
tracei command, 113, 155
tracing

deleting, 90
enabling, 89
procedures, 4, 154, 155
process groups, 129
source lines, 4
status, 87, 148
variables, 4, 83, 113, 154–156

troubleshooting, 4
type casting, 41
type conversion, 41
type declarations of program variable names, 63,

157

182 007–0906–120

dbx User’s Guide

U

unalias command, 30, 156, 161
unconditional breakpoints, 2, 77

setting, 78, 148, 149
unrecord command, 31, 32, 156
unset command, 23, 156
unsetenv command, 49, 156
unstacking interactive function calls, 72
up command, 66, 157
use

path remapping, 15
use command, 14, 157

V

value history, 40
variables, 36

dbx, 21
do not display, 4

variables, predefined dbx. See predefined dbx
variables, 165

variables, program
case sensitivity, 165
changing values, 136

determining scope, 159, 160
examining, 3
names and c keyword conflicts, 165
tracing, 4
type declarations, 157

W

W, 163
wait command, 157
wait for active process, 157
wait for process, 157
wait for running process, 125, 157
waitall command, 124, 125, 157
whatis command, 63, 157
when command, 157
wheni command, 114, 159
where command, 2, 64, 111, 159
whereis command, 62, 160
whereis command, 42, 43
$whereisdsolimit, 62, 171
which command, 62
which command, 42, 43, 160
whichobj command, 6, 161

007–0906–120 183

