
4DDN Programming Guide
and Man Pages

Document Number 007-1302-020

4DDN Programming Guide and Man Pages
Document Number 007-1302-020

CONTRIBUTORS

Written by Pam Sogard
Edited by Loraine McCormick
Production by Laura Cooper and Diane Wilford
Engineering contributions by John Ng
Other contributions by Bent Jensen, Ray Niblett, Sam Sengupta and John Talbott
St. Peter’s Basilica image courtesy of ENEL SpA and InfoByte SpA. Disk Thrower

image courtesy of Xavier Berenguer, Animatica.

© 1992, Silicon Graphics, Inc.— All Rights Reserved
© 1990-92, Bell Atlantic Software Systems, Inc.

The contents of this document may not be copied or duplicated in any form, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

This manual has been adapted from the commUnity-UNIX User’s Guide by Bell
Atlantic Software Systems, Inc. This material may be changed without notice by Bell
Atlantic Software Systems, Inc., or by Silicon Graphics, Inc. Bell Atlantic Software
Systems, Inc., is not responsible for any errors that may appear herein.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-7311.

Silicon Graphics and IRIS are registered trademarks and IRIX, 4D, 4DDN, and
WorkSpace are trademarks of Silicon Graphics, Inc. DEC, DECnet, RSX, ULTRIX,
VAX and VMS are trademarks of Digital Equipment Corporation. Ethernet is a
registered trademark of Xerox Corporation. UNIX is a trademark of Unix System
Laboratories.

Contents

1. Introduction ...1-1
1.1 Using This Guide ...1-1
1.2 Conventions..1-3
1.3 Related Documentation ..1-4
1.4 Product Support...1-4
1.5 Overview of 4DDN..1-5
1.6 4DDN User Services ..1-5

2. Notes to New Users ...2-1
2.1 If You Are New to Networks ...2-1

2.1.1 Network Protocols ...2-2
2.1.2 Message Packets ...2-2

2.2 The Architecture of DECnet...2-3
2.3 If You Are New to DECnet...2-4

2.3.1 DECnet Components ...2-4
2.3.2 DECnet Node Identification2-5
2.3.3 4DDN Software Components.....................................2-6

2.4 If You Are New to IRIX...2-7
2.4.1 Opening an IRIX Shell ...2-7
2.4.2 Using Command Equivalents2-8

iii

3. Using Network File Access Routines ...3-1
3.1 The NFARS Library...3-1
3.2 Accessing Remote Files...3-2

3.2.1 Reading and Writing to Opened Files.......................3-3
3.2.2 Specifying Record Length...3-4
3.2.3 Closing Remote Files ...3-4
3.2.4 Deleting Remote Files..3-4
3.2.5 Executing Remote Files ...3-5
3.2.6 Renaming Remote Files...3-5

3.3 The Wildcard Expansion Utility ..3-5
3.3.1 The File Attributes Structure3-6
3.3.2 File Time Attributes ...3-6
3.3.3 File Protection Attributes ..3-7
3.3.4 Other File Attributes..3-7

3.4 NFARS Header Files..3-9
3.5 NFARS Errors...3-10

4. Using Task-to-Task Communication ..4-1
4.1 Client and Server Processes..4-2
4.2 Establishing Logical Links..4-2

4.2.1 Activating the Logical Link Device4-2
4.2.2 Registering 4DDN Processes As Servers4-3
4.2.3 Transmitting and Receiving Data4-6
4.2.4 Terminating the Logical Link4-7

5. Task-To-Task Communication Programming Reference5-1
5.1 Header Files and Libraries ...5-1
5.2 The errno External Variable ..5-2
5.3 The Calling Sequence ..5-2
5.4 Opening a Logical Link Device..5-4
5.5 Requesting a Logical Link ..5-5
5.6 Registering the Server Program...5-9
5.7 Receiving Access Control Information.....................................5-10
5.8 Accepting or Rejecting a Logical Link Request5-12
5.9 Using the Proxy Ioctl Function ..5-14

iv

5.10 Selecting the Data Format and I/O Mode................................5-15
5.11 Determining the Maximum Transmit Buffer Size5-18
5.12 Receiving Data across a Logical Link5-19

5.12.1 Receiving Data in Stream Format5-19
5.12.2 Receiving Data in Record Format............................5-21

5.13 Sending Data across a Logical Link ..5-23
5.13.1 Sending Data in Stream Format5-23
5.13.2 Sending Data in Record Format...............................5-24

5.14 Transmitting Interrupt Data...5-26
5.15 Receiving Interrupt Data ..5-28

5.15.1 ACCEPT_INT ioctl() ..5-28
5.15.2 RECV_INTERRUPT ioctl ..5-29

5.16 Disconnecting a Logical Link...5-32
5.17 Aborting a Logical Link ..5-34
5.18 Closing a Logical Link...5-36
5.19 Obtaining Link Status..5-37
5.20 Printing Error Messages ...5-38

5.20.1 The dn_perror Function ..5-38
5.20.2 The dn_strerror Function..5-39

A. NFARS Error Messages...A-1

B. 4DDN Error Codes ...B-1

C. Sample Programs..C-1
C.1 client.c..C-1
C.2 server.c ...C-5

D. Glossary ..D-1

E. IRIX Manual Pages...E-1

Index ..Index-1

v

vi

Figures

Figure 2-1 DNA Network Layers ...2-4

vii

viii

Tables

Table 2-1 4DDN Command Equivalents...2-8
Table 5-1 Sequence of Task-to-Task Communication

Commands..5-3
Table B-1 errno Error Codes...B-1

ix

Chapter 1

Introduction

Silicon Graphics ’ 4DDN Programming Guide explains the software tools
available for developing network applications for IRIS -4D workstations
running 4DDN software. It describes the library of routines and task-to-task
communication that can be used in C programs to access files and establish
logical links across a DECnet network.

The 4DDN Programming Guide is one of a three-volume set that documents
the 4DDN product. Other members of the set are the 4DDN User’s Guide,
which explains how to use the interactive commands that provide user-level
services, and the 4DDN Network Management Guide, which explains how to
configure 4DDN software and monitor and control the network from a
4DDN node.

1.1 Using This Guide

The 4DDN Programming Guide assumes you are experienced with the DECnet
environment and with programming in the C language. The information in
this guide also requires some familiarity with using IRIX input/output
operations. If you are not familiar with the IRIX programming environment,
refer to the sections entitled "Programming in a UNIX System Environment"
and "Programming Basics" in Volume 1 of the IRIS-4D Programmer’s Guide.

The 4DDN Programming Guide is organized into these chapters:

Chapter 1 This Introduction explains the purpose of the 4DDN
Programming Guide and gives information on how to use it.
Chapter 1 also gives a brief description of 4DDN user-level
services.

4DDN Programming Guide and Man Pages 1-1

Chapter 2 "Notes to New Users" explains the architecture of the
DECnet network and the components of 4DDN software. It
also gives quick tips on using IRIX, and provides a table of
command equivalents for VMS , IRIX, and 4DDN.

Chapter 3 "Using Network File Access Routines" describes the services
provided by the Network File Access Routines (NFARS), the
elements from which network applications are constructed.
It also explains how to include NFARS in C programs and
link them to the object library.

Chapter 4 "Using Task-to-Task Communications" describes how
logical links are established between processes running on
different network nodes. This chapter provides the
background information needed to use the subroutines
described in Chapter 5.

Chapter 5 "Task-to-Task Communication Programming Reference"
provides a detailed description of each subroutine call used
in the 4DDN task-to-task communication service.

Appendix A "NFARS Error Messages" lists each error message that
Network File Acccess Routines can generate and
recommends corrective action.

Appendix B "4DDN Error Codes" describes programming error codes
and recommends remedial actions.

Appendix C "Sample Programs" contains a sample client and server
program for exchanging data across the network.

Appendix D "Glossary" defines terms used in 4DDN documentation.

Appendix E "Man Pages" contains the IRIX man pages for NFARS
routines and task-to-task communication services.

1-2 Introduction

1.2 Conventions

This document uses the standard UNIX conventions when referring to
entries in the IRIX documentation. The entry name is followed by a section
number in parentheses. For example, cc(1) refers to the cc manual entry in
Section 1 of the IRIS-4D User’s Reference Manual, Volume 1.

In body text, commands and file and directory specifications entered on IRIX
systems appear in italics, while commands entered on VMS systems appear
in UPPER-CASE ITALICS. In addition, we use these typographical
conventions throughout this guide:

typewriter font
Command syntax descriptions, examples, and screen
displays appear in typewriter font.

bold typewriter
User entries are shown in bold typewriter font.

bold Command options are shown in bold when they appear in
body text. Options do not appear in bold in syntax
descriptions or examples.

UPPERCASE Error codes and function options appear in uppercase
letters.

node-name Multi-word variables are hyphenated.

[] Command arguments that are optional appear in square
brackets.

4DDN Programming Guide and Man Pages 1-3

1.3 Related Documentation

4DDN User’s Guide
Silicon Graphics, Inc.

4DDN Network Management Guide
Silicon Graphics, Inc.

IRIS-4D Programmer’s Guide
Silicon Graphics, Inc.

DECnet Digital Network Architecture
(Phase IV) General Description
Digital Equipment Corporation

Guide to Networking on VAX/VMS
Digital Equipment Corporation

1.4 Product Support

Silicon Graphics provides a comprehensive product support and
maintenance program for IRIS products. For further information, contact
your service organization.

1-4 Introduction

1.5 Overview of 4DDN

4DDN is a Silicon Graphics’ software option that connects IRIS-4D series
workstations and servers to a DECnet network. It provides DECnet
connection and data transfer services to interactive users, file access routines
and task-to-task communication service for applications programming, and a
suite of Network Control Program (NCP) commands for network
management.

4DDN is an implementation of Digital Network Architecture (DNA)
protocols and runs on a DECnet Phase IV network. IRIS workstations
running 4DDN operate as Ethernet end nodes in the DECnet network.

In addition to 4DDN, your IRIS workstation might also be running TCP/IP
protocols, the standard networking software shipped with the IRIS system.
Both TCP/IP and 4DDN software can run simultaneously on an IRIS
workstation. Although an IRIS can be configured with multiple Ethernet
interfaces, 4DDN can run on only one Ethernet interface at a time.

1.6 4DDN User Services

4DDN user services are provided by a set of commands that you enter at
your workstation to connect to other DECnet nodes (computers) or transfer
data over the network. 4DDN commands provide these services:

sethost Logs you on to a remote node for a virtual terminal session.
During the session, the commands you enter are executed by the
remote node, rather than by your workstation.

dnls Lists the contents of a directory on a remote node in the network.

dnmv Moves or renames a file on a remote node in the network.

dnrm Removes a file in a remote directory on the network.

4DDN Programming Guide and Man Pages 1-5

dncp Transfers files to, from, or between remote nodes on the network.

dnex Locates a command files on a remote node and submits it for
execution.

dnlp Prints a file to a network printer.

dnMail Provides mail service between IRIS workstations running 4DDN
and VMS nodes on the network.

1-6 Introduction

Chapter 2

Notes to New Users

This chapter acquaints readers with some of the concepts and terms that
apply to networking in general, and others that are specific to the DECnet
network. It explains how network software is organized, describes the
functional components of the DECnet network, and identifies the 4DDN
software components that support each network service.

It also gives some tips for using the IRIX user interface to enter 4DDN
commands, and a table of equivalent commands for VMS, IRIX, and 4DDN.

2.1 If You Are New to Networks

A network is a configuration of computers that permits the exchange of data
and sharing of resources among its members. Incompatibilities in hardware
and software components in the network must be resolved in order for an
intelligent exchange of information to take place. To resolve these
differences, the government and private industry have collaborated to set
standards for the development of networking products.

Under the guidance of the International Standards Organization (ISO), a set
of standards have been developed in the communications industry that
specify a network architecture based on layers. This architecture is known as
the ISO model for Open Systems Interconnection (ISO/OSI). Each layer in
the model conforms to rules that govern its structure and function.
Implementations of the standards are referred to as protocols.

4DDN Programming Guide and Man Pages 2-1

2.1.1 Network Protocols

Each protocol layer in the network operates according to specific rules to
perform a function and deliver a service to the layer above it. In addition to
the interface between the layer above and below, each layer also
communicates with a peer layer running in other computers connected to the
network. Since layer functions are standardized, peer layers running in
different computers can be supplied by different vendors.

Two widely used protocols are Transmission Control Protocol, Internet
Protocol (TCP/IP), developed by the Department of Defense, and Digital
Network Architecture (DNA), developed by Digital Equipment Corporation
(DEC). The structure and function of TCP/IP and DNA protocols are
similar to those specified by the ISO/OSI model.

2.1.2 Message Packets

Information travels through the network in packets, small blocks of data
prefixed with addressing and control information. Packets originate at the
upper network layer and move down succeeding layers until they arrive at
the transmission hardware. As each layer receives the packet, it adds header
information and passes the packet down to the layer below it.

After a packet is transmitted over network hardware, it is moved up through
the layers on the destination computer. Each layer of receiver software strips
off header information from the packet and passes it to the layer above it.
The end result of this process is a structure that the receiving machine can
understand and use.

2-2 Notes to New Users

2.2 The Architecture of DECnet

DECnet, an implementation of DNA that provides connectivity among
Digital Equipment systems, is composed of seven layers. In local areas of a
DECnet network, the first two layers are frequently an implementation of
Ethernet, a specification developed by DEC, Intel Corporation, and Xerox
Corporation. DECnet layers perform these functions:

1. Physical Link Layer provides the electrical and mechanical support, as
well as the software device drivers for network equipment.

2. Data Link Layer separates the data from noise coming in over the
communication line, frames the data, and corrects transmission errors.

3. Routing Layer forwards packets to their destination and controls packet
traffic on the network.

4. End Communications Layer controls the addressing and timing of data
exchanged between communicating processes in different nodes.

5. Session Control Layer adapts data received from the End
Communications Layer to the specific needs of the local operating
system.

6. Network Application Layer controls functions required for file
transfers, virtual terminal service, and remote access to files and devices
on the local system.

7. User Layer provides resource sharing, file access and transfers, and the
interface to network management tools.

In addition to these layers, DNA also includes a Network Management Layer
that spans other layers in the hierarchy. Network Management provides the
services needed to plan, control, and maintain the network.

4DDN Programming Guide and Man Pages 2-3

Figure 2.1 illustrates the layers in DNA networks.

Figure 2-1 DNA Network Layers

2.3 If You Are New to DECnet

DECnet is the name given to a collection of hardware and software products
that enables computers running DEC operating systems to be members of a
network. Since IRIS workstations run IRIX, a Silicon Graphics
implementation of the UNIX operating system, they require specialized
software, 4DDN, to provide DECnet connectivity. An IRIS workstation
running 4DDN is often called a 4DDN node on the DECnet network.

2.3.1 DECnet Components

A DECnet network contains two kinds of nodes: end nodes and router
nodes. An end node is one that can send packets to other DECnet nodes and
receive packets that bear its address. An IRIS workstation running 4DDN
operates as an Ethernet end node on the DECnet.

2-4 Notes to New Users

A router node is one that can receive its own packets and forward packets
addressed to other nodes. When a particular router is assigned to route
messages for end nodes, it is considered the designated router.

Nodes attached to the same Ethernet line are considered adjacent nodes.
Nodes are considered reachable when they are available for connections to
other nodes. The availability of a node can be controlled by turning its state
on or off.

The data path between a local node and a remote one is called a circuit. The
connection between two processes that occurs over a circuit is called a logical
link. A circuit can support simultaneous logical links between network nodes.
The physical media that connects computers and support circuits
are called lines.

Network software maintains information on events that occur at network
nodes, circuits, links, and lines. Event information is saved in counters, which
are used to track network performance and throughput. This information
can be retrieved with the NCP, the user interface to DECnet management.

2.3.2 DECnet Node Identification

A node name and address identify nodes in the DECnet network. If nodes
are members of a subnetwork, or area, the address includes an area number.
Name and address information is stored in a database on each node and
used to route connections to other network nodes. Node names and
addresses follow these conventions:

Node Address is a unique number assigned by the network manager; it
must conform to the following format:

area-number.node-number

where:

area-number is an integer in the 1-63 range. Area numbers
must be unique within the network. If an
area number is not specified, the area number
defaults to the local area.

4DDN Programming Guide and Man Pages 2-5

node-number is an integer in the 1-1023 range. Node
numbers must be unique to the specific
network area.

Node Name is a string of up to six alphanumeric characters (letters and
numbers), and at least one character in the name must be
alphabetic. Only one name is allowed per node. Node
names are not case-sensitive; lowercase letters are converted
to uppercase. However, since IRIX is case sensitive, it is
easier to manage 4DDN nodes when all letters in their
names are lowercase.

2.3.3 4DDN Software Components

A network connection requires communication between two processes: a
client process running in the node where the request is entered, and a server
process running in the responding node. Unless each counterpart is running,
logical links cannot be established between network nodes.

The master server process, dnserver, is responsible for network connections to
4DDN nodes. dnserver is a continuously running IRIX process that invokes
other servers to handle requests for service. For each server dnserver invokes,
a corresponding client process resides on other DECnet nodes. dnserver calls
on these other 4DDN servers to handle incoming requests:

FAL The File Access Listener (FAL) server handles incoming requests
that require access to files on its node. It provides the local file
system with network file access functions, such as file copies and
directory listings. FAL uses Data Access Protocol (DAP) to
communicate with processes on other nodes. User commands
such as dnls and dncp require the services of FAL.

NML The Network Management Listener (NML) server supports NCP,
which handles network management tasks. Together with NCP,
NML enables users to determine the status of a network, zero
lines and circuit counters, and perform other network control
operations. NML executes Network Information and Control
Exchange (NICE) protocol messages that it receives from NCP.
The responses to the protocol messages are returned to the
appropriate NCP for display.

2-6 Notes to New Users

sethostd The virtual terminal server sethostd enables a user on one node to
log into a remote node on the network. The SET HOST client and
sethostd server use the CTERM protocol to communicate during
virtual terminal sessions.

dnMaild The mail server, dnMaild, handles incoming mail deliveries to the
4DDN node where it runs. It passes the mail messages it receives
from remote nodes to the local delivery service. dnMaild uses a
subset of the VMS MAIL protocol.

2.4 If You Are New to IRIX

IRIX is the operating system supplied with your IRIS workstation. It is a
version of the UNIX System V operating system (originally developed at Bell
Laboratories) and also includes some BSD UNIX enhancements (features
developed by the University of California at Berkeley). The IRIX kernel
handles system-level tasks such as managing hardware, and the shell is the
command interpreter for user entries.

The IRIS workstation offers two user interfaces to IRIX: a visual interface
called the WorkSpace , which you use by selecting icons; and a shell
interface, which you use by typing commands at the IRIX prompt. 4DDN
commands must be used from an IRIX shell. (See Appendix A of the Owner’s
Guide for your IRIS for more introductory information on IRIX.)

2.4.1 Opening an IRIX Shell

To open an IRIX shell, follow this procedure:

1. Click on the Tools toolbox.
2. Select Shell from the menu.
3. Position the shell and click it in place.

4DDN Programming Guide and Man Pages 2-7

2.4.2 Using Command Equivalents

Table 2-1 shows you command equivalents in the VMS, IRIX, and 4DDN
environments. IRIX, like other UNIX systems, is case sensitive; your
commands must be entered in lower or upper case, as shown.
ii
VMS IRIX 4DDNii
COPY cp dncp
DELETE rm dnrm
DIRECTORY ls dnls
RENAME mv dnmv
PRINT lp dnlp
SET HOST rlogin sethost
SUBMIT sh dnex
TYPE more (none)
MAIL mail, Mail dnMailii

Table 2-1 4DDN Command Equivalents

2-8 Notes to New Users

Chapter 3

Using Network File Access Routines

This chapter explains how to use Network File Access Routines (NFARS) in
network applications. It provides a functional description of the major
routines, explains how NFARS perform wildcard expansion and error
handling, and describes how to include and link NFARS routines in C
programs. It also provides a reference guide describing each routine you can
use for creating network applications.

NFARS provide a programming interface to file systems on remote nodes
running 4DDN or DECnet Phase IV. NFARS use DNA’s Data Access
Protocol for file transfers. The interface to the DAP protocol was designed to
closely emulate IRIX basic I/O system calls.

3.1 The NFARS Library

The object-code library of NFARS included with 4DDN software provides
the elements for building network applications. The Remote File Access
Service (RFAS) programs dnls, dnmv, dnrm, dncp, dnex, and dnlp were built
with the NFARS facilities described in this chapter.

NFARS provide the programming interface to RFAS on the DECnet network.
NFARS provide these functions:

g Open or create a remote file
g Write data to the currently open file
g Read data from the currently open file

4DDN Programming Guide and Man Pages 3-1

g Append data to the end of a file
g Print a file after it is closed
g Submit a remote command file for execution
g Delete a remote file
g Rename a remote file
g Display the cause of an error encountered in an NFARS call

The NFARS are supplied in an archived object library called /usr/lib/libdn.a.
To link user programs that use the NFARS routines to the NFARS object
library, use the cc(1) command shown below:

cc example.c -o example -ldn

Appendix E of this guide contains man pages for the NFARS routines that
4DDN supports. It contains reference information on these NFARS:

net_open net_delete
net_read net_execute
net_write net_rename
net_close net_find
net_perror net_fnext
net_strerror net_fstop

3.2 Accessing Remote Files

The net_open function initiates remote file access. Depending on the value of
the option argument, it can open an existing remote file for reading or create
a new remote file for writing. The net_open function returns an integer value
that can be either a network file descriptor or a negative value to signal a
failure. By default, files opened with net_open are in record format; format
conversions are performed by the net_read or net_write function during the
transfer of the file.

NFARS uses a network file descriptor to reference an open network stream.
The descriptor is a small, non-negative integer value similar to the IRIX local
file descriptor returned by the open and create system calls. However, DO
NOT use the local file descriptor instead of the descriptor returned from the
network.

3-2 Using Network File Access Routines

3.2.1 Reading and Writing to Opened Files

The net_read and net_write functions transfer data to or from remote files.
Use net_read and net_write in the same way as you use the IRIX basic I/O read
and write functions. A remote file opened for reading supports only the
net_read function, whereas a file created or opened for writing supports only
the net_write function. These restrictions are imposed by the subset of the
DAP protocol that implements the NFARS, and by an IRIX restriction on files
opened by the net_open function.

Do not intermix calls to both net_read and net_write on the same file
descriptor. Unlike the IRIX file system where a file can be opened for both
read and write operations, network files cannot.

If you open a file without the RFM_VERBATIM option, data access to the file
is line oriented. Data from a call to net_read is one or more lines of text. A
line is a collection of characters, including control characters, terminated by
the local line terminator. In IRIX, the local line terminator is the line-feed
known as newline.

When net_read reads a data block fragment that is not delivered to the user, it
stores the fragment. It then combines the fragment with subsequent
incoming records and delivers it with them.

net_read provides a sequence of lines resembling the source file to its caller.
net_write writes the data it receives to the remote file one line at a time. Each
line of source data goes into a separate record for transport. Since DAP
transport is heavily record oriented, it limits some NFARS capabilities, such
as the ability to select file record formats and to seek.

When net_write receives line fragments, it combines them with subsequent
net_writes. Thus, net_write can handle partial lines. When it writes to a file
that was opened for writing, the resulting file is line oriented and suitable as
a user text file on the remote system. On VAX/VMS systems, the file is in
Variable Record Format with Carriage Return Carriage Control. On IRIX,
the file is simply lines of text.

If you specify the RFM_VERBATIM option to open a file, the line orientation
of NFARS is disengaged. Data from a call to net_read is read without regard
to structure or line orientation; it is merely a byte-for-byte read.

4DDN Programming Guide and Man Pages 3-3

Consider the differences between IRIX and VAX/VMS record formats when
writing programs that use the NFARS library. These differences are
described under the topic "Converting File Record Formats" in Chapter 6 of
the 4DDN User’s Guide.

3.2.2 Specifying Record Length

The default record length for file reads and writes is 512 bytes. However,
you can specify a different record length for reads and writes with the
external variable usr_blk_len. Using usr_blk_len, you can specify a record
length up to 1024 bytes for read and write operations.

3.2.3 Closing Remote Files

When a network file descriptor is no longer needed, close it immediately
with net_close. net_close releases the network resources the descriptor
occupies. Although network files left open when an NFARS application exits
(or is terminated) close automatically, use net_close to prevent loss of data on
remote files that are open for writing when an application exits.

3.2.4 Deleting Remote Files

Use the net_delete function to delete remote files. Some remote nodes restrict
the data to be deleted, or impose access limitations on files. In addition,
some remote nodes are not capable of supporting net_delete.

net_delete is analogous to the dnrm program. However, dnrm supports
wildcards, whereas net_delete generally does not (some systems are
exceptions). See "Deleting Files with dnrm" in Chapter 5 of the 4DDN User’s
Guide for more information on using net_delete in network applications.

The net_delete function has no formal relationship with the net_open function.
Do not use net_delete on an opened file.

3-4 Using Network File Access Routines

3.2.5 Executing Remote Files

You can locate remote command files and submit them for execution on the
remote node with a call to the net_execute function. Some nodes restrict the
files that can be executed. In addition, some nodes apply access control rules
to the request. For further information on remote file execution, see Chapter
7, "Executing Remote Files," in the 4DDN User’s Guide.

3.2.6 Renaming Remote Files

Calls to net_rename rename remote files. The specified files must be on the
same node. On some nodes, there are restrictions on renaming files across
devices, or when there are differences in access control information. Refer to
the section "Moving Files with dnmv" in Chapter 5 of the 4DDN User’s Guide
for more information. The dnmv command supports wildcards, whereas the
net_rename function does not.

The net_rename function has no formal relationship with the net_open
function. Do not use net_rename on an opened file.

3.3 The Wildcard Expansion Utility

The wildcard name expansion facility identifies files that match specified
naming requirements. The file specification being expanded may or may not
contain wildcard characters. The net_find function initiates the search, and
the net_fnext function finds and retrieves subsequent names. The net_fstop
function terminates or aborts the wildcard list.

Names resolved by the name expansion facility are stored in its three
components: filename, directory, and volume. You can also request that the
attributes of the file be collected.

Use this C preprocessor directive to include the attributes structure
definition:

#include <dn/nfattr.h>

4DDN Programming Guide and Man Pages 3-5

3.3.1 The File Attributes Structure

If you request file attributes, the attributes are placed in a file_attr structure.
The values within the structure are filled in with information that the caller
of net_fnext requests. If date information is necessary, specify RFA_DATE as
an attribute when net_find is called. The structure below applies to VAX/VMS
systems:

typedef struct file_att {
/* Date-time information in UNIX time format */
long fa_cdt; /* file creation */
long fa_rdt; /* last modification */
long fa_adt; /* last access */

/* Owner identification */
char *fa_owner; /* user code of file owner */

/* File protection */
unsigned char fa_powner; /* file owner */
unsigned char fa_pgroup; /* group */
unsigned char fa_pworld; /* world */
unsigned char fa_psystem; /* system */

/* Attributes information */
short fa_org; /* file organization */
short fa_bsz; /* # of bits per byte */
short fa_bls; /* # of bytes per block */
short fa_rfm; /* format of records */
short fa_mrs; /* length of each file record (bytes) */
short fa_ffb; /* first free byte in EOF block */
short fa_rat; /* attribute of individual records */
long fa_alg; /* allocation quantity (blocks) */
long fa_ebk; /* # of last block */

} File_attr;

3.3.2 File Time Attributes

The times are stored in a format that is identical to the return of a call to the
IRIX time(2) system call. For this reason, it might require a call to ctime(3C) to
print the date in a pleasing local format.

3-6 Using Network File Access Routines

3.3.3 File Protection Attributes

The fa_powner element is a pointer to a string that contains a sequence of
characters, generated by the remote system, that describes the owner of the
file. On VMS the sequence is a set of numbers, whereas on UNIX it is a pair
of names from the /etc/passwd file.

The protection attributes are grouped four bits to the attribute byte
describing the access rights of a particular entity. File protection is similar to
IRIX with the addition of the "system" entity, which is similar to the operator
concept on some systems. You can test each byte of permissions with the
masks listed below. If the bits are set, they have the following meaning:

P_READ file may be read
P_WRITE file may be written
P_EXECUTE file may be executed
P_DELETE file may be deleted

The meanings are similar to the meanings on IRIX, except that the delete
concept is associated with the file rather than the directory.

3.3.4 Other File Attributes

The fa_org element contains a code that can be tested to determine file
organization. File organizations are specific to VMS. Only sequential files
can be transferred using NFARS. Only one of these values is possible. The
test symbols are shown below.

ORG_SEQUENTIAL the file is sequential in structure
ORG_RELATIVE the file is relative in structure
ORG_INDEXED the file is indexed in structure

The fa_bsz element contains a number that is the number of bits per byte.
This is normally 8. It can be considered 8 if it is set to 0. The fa_bls element is
the number of bytes per block. Its normal value is 512 bytes. If the value in
this element is 0, the number of bytes per block can be considered 512.

4DDN Programming Guide and Man Pages 3-7

The fa_rfm element contains a code that you can test to determine the record
format of the file. Only one of the following symbols can be true:

RFM_UNDEFINED the record format is undefined
RFM_FIXED fixed length records
RFM_VARIABLE variable length records
RFM_VARFC variable with fixed control records
RFM_STREAM stream format (basically non-record)
RFM_STREAMLF stream-LF format (lines ending with \n)
RFM_STREAMCR stream-CR format (lines ending with \r)

The fa_mrs element contains the maximum number of bytes per record. Its
default value is 512 bytes. If the entry is 0, you can assume it is 512 bytes.

The fa_ffb element contains the number of the first free byte in the last block.
You can use fa_ffb to compute the number of bytes in the file with this
equation:

size = (ebk - 1) * bls + ffb

The fa_rat element contains some additional record attributes. You can
combine the symbols that follow in a bitwise manner using the OR operator.
This field is extremely VMS oriented.

RAT_FORTRAN Record contains FORTRAN carriage control
RAT_CR record has an implied LF/CR envelope
RAT_PRN print file carriage control is in

fixed part of VFC
RAT_BLK records to not span blocks
RAT_EMB embedded format control
RAT_LSA line sequenced − ASCII number in

fixed part of VFC
RAT_MACY RSX-11 compatible format

The fa_alq element contains the number of blocks allocated to contain the file.
This number may be larger than the number of bytes actually involved.

The fa_ebk element contains the number of blocks actually involved in the file.
More precisely, fa_ebk contains the number of the last block.

3-8 Using Network File Access Routines

3.4 NFARS Header Files

C programs using NFARS should add this line before any references to
NFARS appear in the program:

#include <dn/nfars.h>

You can also include the header file nferror.h in your programs. nferror.h
contains the symbolic constants corresponding to the error codes. The
comments next to the values in nferror.h are similar to the messages printed
by net_perror. Include this file to check the values of nfars_errno. Add this
line to include nferror.h:

#include <dn/nferror.h>

You must include the nfattr.h file for wildcard processing and to create new
files with net_open. nfattr.h determines the attributes of files discovered with
the wildcard expansion system, based on net_find and net_fnext. Add this
line to include nfattr.h:

#include <dn/nfattr.h>

For C++ programs, include the header file nfarsbasic.h. It contains the
function prototypes your program needs:

#include <dn/nfarsbasic.h>

4DDN Programming Guide and Man Pages 3-9

3.5 NFARS Errors

The value returned by an NFARS function always indicates whether it
succeeded or failed. In the event of a failure, the external variable nfars_errno
is set to a code identifying the cause of the failure.

The net_perror function prints a descriptive message based on the nfars_errno
error code. The message contains an NFARS error message listed in
Appendix A. The NFARS error message can be preceded by a user-defined
string identifying the application program that generated the error.

The net_strerror function returns a string of descriptive text, based on the
nfars_errno error code. Use net_strerror to vary the format of an error
message from those produced by net_perror.

3-10 Using Network File Access Routines

Chapter 4

Using Task-to-Task Communication

This chapter describes task-to-task communications, the process by which
4DDN programs exchange data over network connections. It explains how
network applications establish, maintain, and terminate logical links; and it
provides a programming reference to IRIX system calls that can be included
in user-written applications requiring the task-to-task communication
service.

The 4DDN task-to-task communication service enables the exchange of data
between processes running on different nodes. It provides reliable, effective
communication between tasks, regardless of their location on the network.

The 4DDN virtual terminal service, remote file access, and network
management utility use task-to-task communications. You can also use the
task-to-task programmatic interface to develop other network applications.
The advantage of this program interface is that it protects users from lower-
level network details, such as topology, transmission sharing techniques, or
communication linkages.

4DDN Programming Guide and Man Pages 4-1

4.1 Client and Server Processes

Task-to-task communication involves two processes, usually (but not
necessarily) running on different nodes, and communicating over a logical
link. To establish a logical link between two processes, one process must
notify the other that it wishes to communicate. The process that requests the
connection is called the client, and the responding process is called the server.

First the server informs the network software that it wants to be a server.
The client supplies access control information that the server uses to evaluate
the incoming request. The server determines whether to accept or reject the
connection request, based on the access control information.

If the request is accepted, a logical link is established. Once the logical link is
established, either process can send or receive data; no distinction exists
between a client and a server once the link is established.

4.2 Establishing Logical Links

A logical link is a temporary software data path established between two
communicating processes in a network. A process can set up more than one
logical link. For example, it can set up multiple logical links to communicate
with different processes. It can also set up several logical links to
communicate with the same process if separate data streams are intended for
different purposes. The application using a logical link determines how the
link is established.

Logical links are established through the standard IRIX I/O system calls
open(), close(), read(), and write(), as well as ioctl() system calls. The logical
link between two processes is comparable to an I/O channel over which both
processes can send and receive data. To establish a logical link and transmit
data across it, applications must issue calls to the 4DDN logical link device.

4.2.1 Activating the Logical Link Device

To establish a logical link, the client first issues an open() to activate the
logical link device, /dev/dn_ll. The logical link device is a virtual I/O device
responsible for controlling logical links. The open() returns a file descriptor
for the logical link. This file descriptor must be used in all subsequent task-

4-2 Using Task-to-Task Communication

to-task calls over this logical link. Applications must specify an open() for
each logical link to be established.

Once the client obtains a file descriptor, it makes the connect request by
issuing an ioctl request and passing access control information to the server.
This information identifies the server process and the client. The server
process must be available for connection at the time the request is made.

After receiving the request, the server can either accept or reject the
connection. A logical link is established only after the server accepts the
logical link request.

The ioctl() issued by the client returns the status from the server. If the link is
rejected, the status indicates a failure and the client must free the file
descriptor by issuing a close. If the link is accepted, the status indicates
success. The logical link is then established and the exchange of data can
take place.

4.2.2 Registering 4DDN Processes As Servers

You can code a 4DDN server process to start automatically or explicitly.
Automatically started servers are those started by dnserver, a process that
registers itself for the purpose of accepting requests for objects not
previously registered as explicitly started servers. Explicitly started servers are
server processes, started by a command line entry by the user or a shell
script, that register to receive a specific or explicit object.

Automatically started servers offers these advantages:

g The server does not need to be pre-started in anticipation of a
connection.

g Access control is enforced.

Using Explicitly Started Servers

A server process that is started explicitly by a user or through a shell script
must open a logical link and register as a server, either by name or number.
To open a link, the server process must first issue an open() to activate the
logical link device and receive a file descriptor. This file descriptor is used in
subsequent task-to-task commands over this logical link.

4DDN Programming Guide and Man Pages 4-3

The server process must then register itself as a server to 4DDN networking
software by specifying an object type number or task name to which it will
respond. It does this by issuing an ioctl() request. Until a 4DDN process is a
registered server, no client process can initiate logical connections to it.

After it issues the ioctl to be registered, the server process issues an ioctl() to
wait for a connection request and access control information transmitted by a
client. When it receives a connection request from a client process, the server
process can use the control information it receives from the client to evaluate
the request. The server process then issues an ioctl request to accept or reject
the link.

When an ioctl() to accept a link completes successfully, the link is established
and ready for the exchange of data between processes. When the ioctl() to
reject the link completes successfully, the link must be closed (close()) by both
processes.

In order to accept new logical links, the server process must re-register itself
as a server by repeating the registering process.

Using Automatically Started Servers

dnserver, a continuously running IRIX process, can start servers
automatically. Whenever 4DDN receives a connection for an object that is
not currently registered by name or number, the connection is given to
dnserver. dnserver performs these actions:

1. dnserver checks to see if a username and password are specified in the
OpenBlock. If they are specified but not valid according to the
/etc/passwd file or Network Information Services (NIS) password
database, the connection is rejected.

2. dnserver checks /usr/etc/dn/servers.reg for an entry for the requested
object, by object name or object number (most servers are registered by
number). The number 0 is not valid and means that the object is known
by name only. The servers.reg file consists of entries in this form:

obj-number obj-name path

17 FAL /usr/etc/dn/fal

4-4 Using Task-to-Task Communication

3. If no entry is found and the connection was by name, then the login
directory of the user specified in username is searched for a runnable file
named objectname.

4. If no server can be found, the link is rejected; if the server is found, the
dnserver forks a process with group and user privileges associated with
the user name and runs the server process. The working directory for
the process is the login directory of the user.

The server process starts with the logical link opened but not yet
accepted or rejected, using these file-descriptors:

0 (stdin) The logical link (read only)
1 (stdout) The logical link (write only)
2 (stderr) A log file opened by dnserver
argv[1] The logical link (read and write)

Note: Writing to stdout for automatically started servers writes to the
logical link rather than the console.

dnserver starts the process specified by the path in /usr/etc/dn/servers.reg
or the path in the users’s login directory, using a single argument. That
argument is the file descriptor number of the logical link. This call starts
the process:

execl ("/usr/etc/dn/fal","fal","4",0);

If main is defined by:

main(argc,argv)
int argc;
char *argv[];

The result is:

argc = 2;
argv[0] = "fal";
argv[1] = "4";

The newly-forked server process may do another SES_GET_AI ioctl to
get the OpenBlock if desired. The server must perform a SES_ACCEPT
ioctl before the logical link is really active or a SES_REJECT to explicitly
reject it.

4DDN Programming Guide and Man Pages 4-5

A server can be coded to run either explicitly or automatically as
follows:

#include <ctype.h>

if (argc == 2 && isdigit(argv[1][0])) {
/* automatic start */

} else {
/* explicit start */

}

4.2.3 Transmitting and Receiving Data

While a logical link is in effect, a process can exchange data across the logical
link through a series of calls using the assigned file descriptor. It can also
transmit interrupt data, special high-priority information that is transmitted
immediately.

The process uses read() to receive data and write() to send data. It transmits
and receives interrupt data through ioctl requests.

By means of an ioctl request, 4DDN allows a process to specify the I/O data
format as either record or stream:

g In stream format, data is passed across the network in a buffer. There is
no indication whether the buffer contains a complete message. A process
receives only the number of bytes sent in the buffer.

g In record format, a process uses a structure to send and receive data.
This structure contains the address of the data buffer and a special status
field that indicates whether the buffer contains the beginning, middle, or
end of a message, or a complete message. Record format allows
applications to perform their own data segmentation.

4DDN allows a process to specify the input mode for read() operations as
either blocking and non-blocking:

g With a blocking read, a process waits until the available data has been
written into a user-supplied buffer.

g With a non-blocking read, the number of bytes read is returned or the
process is notified that data is unavailable. Optionally, a special signal
may be registered to notify the process when data becomes available.

4-6 Using Task-to-Task Communication

4.2.4 Terminating the Logical Link

At any time, either process can terminate the logical link and, optionally,
transmit data explaining the reason for termination. If no optional data is to
be sent, close() is sufficient to terminate the logical link. close() automatically
disconnects the link.

If optional data is to be sent to the remote process, a disconnect or abort
ioctl() request is first issued, followed by close(). Disconnecting a logical link
guarantees that all data that has been transmitted is delivered before the link
is closed.

Note: Successful disconnect indicates that the remote node has received,
but not necessarily processed, all transmitted data. An application-
level acknowledgment is necessary for assurance.

Aborting a link means that outstanding data is discarded before the link is
terminated. The link is terminated whether or not the remote node has
acknowledged receipt of previously transmitted data.

Processes should normally disconnect, not abort, a link. A process may
choose to abort in response to an error condition.

After the logical link is closed (close()), the server process must re-register
itself as a server in order to be a server for another logical link connection.

4DDN Programming Guide and Man Pages 4-7

Chapter 5

Task-To-Task Communication
Programming Reference

This chapter is a programming reference to the system calls used in 4DDN
task-to-task communication. It provides a functional description of each call,
illustrates call syntax, describes data structures used in the call, and explains
call results. You can include these calls in user-written network applications
that require task-to-task communications.

5.1 Header Files and Libraries

The <dn/defs.h> header file contains constants and data structure definitions
used in the 4DDN task-to-task communication function calls. The
<dn/defs.h> file should be included when you write networking applications
using the 4DDN C program interface.

The <fcntl.h> file is a standard IRIX header file that should be included in
your source files. The <fcntl.h> file is needed only for the open() call. It
contains the definitions for the different open modes (read only, write only,
read and write).

Programs that call the dn_perror library routine should link with the library
/usr/lib/libdn.a:

cc example.c -o example -ldn

4DDN Programming Guide and Man Pages 5-1

5.2 The errno External Variable

If a 4DDN task-to-task function call returns a value of −1, it means the
function did not execute successfully. An unsuccessful completions sets the
external variable errno to the appropriate error code. errno is not changed
under any other circumstances. (Appendix B contains information on 4DDN
error codes and recommended actions.)

IRIX can generate other error codes. Refer to the intro(2) man page for IRIX
errors.

Calls to the library routine dn_perror print a descriptive message based on the
errno value. The message can include a user-defined string that identifies the
application program that generated the message (see "Printing Error
Messages" later in this chapter).

5.3 The Calling Sequence

Table 5-1 illustrates the sequence of system calls that client and server
processes issue in 4DDN task-to-task communications. The lower region of
the table lists calls that either the client or the server process can issue after
the logical link is established.

5-2 Task-To-Task Communication Programming Reference

ii
Client Serverii

open() logical link device
create logical link fd.

ioctl() to register as a server
(SES_NUM_SERVER or
SES_NAME_SERVER)

ioctl() to wait for connect
request (SES_GET_AI)ii

open() logical link device
create logical link fd server

waits
ioctl() to request logical

link and pass access
control information
(SES_LINK_ACCESS)ii

receive access control info
client
waits ioctl() to accept link request
for response (SES_ACCEPT)
(accept or reject) or
from server ioctl() to reject link request

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

(SES_REJECT)ii

Logical link is established.
ii
ioctl() to define I/O data format and input mode (SES_IO_TYPE)
ioctl() (SES_GET_PROXY) to determine proxy login data field
ioctl() to determine the maximum transmit buffer size
read() and write() for normal data
ioctl() to transmit interrupt data (XMIT_INTERRUPT)
ioctl() to receive interrupt data (ACCEPT_INT and RCV_INTERRUPT)
ioctl() for logical link status (SES_STATUS)
ioctl() to disconnect logical link (SES_DISCONNECT)
ioctl() to abort logical link (SES_ABORT)
close() the logical linkiic

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 5-1 Sequence of Task-to-Task Communication Commands

4DDN Programming Guide and Man Pages 5-3

5.4 Opening a Logical Link Device

The open() call opens the logical link device and returns a unique logical link
file descriptor used in subsequent calls associated with this logical link. This
is the first step in establishing a logical link. It must be issued by the server
and the client for each logical link desired.

Call Usage

#include <fcntl.h>
#include <dn/defs.h>

int open_mode;
int link;
link = open(DN_LINK, open_mode);

Arguments

link Logical link file descriptor. link is assigned −1 if an error
occurred; otherwise it receives the logical link identifier.

DN_LINK Logical link device name defined in <dn/defs.h>.

open_mode Indicates the open mode for the logical link. These codes
are defined in <fcntl.h>.

Results

On success, the open() call returns a unique logical link file descriptor used
for all subsequent I/O function calls pertaining to the associated logical link.
If an error occurs, a −1 is returned, and errno is set to the appropriate error
code. (See Appendix B for recommended actions.)

Error Codes

LOCAL_RESOUR Local node does not have resources for the link.

5-4 Task-To-Task Communication Programming Reference

5.5 Requesting a Logical Link

The SES_LINK_ACCESS ioctl call, issued by a client, transmits information
identifying the client and the server to which it wants to connect. The
information is passed in a data structure called an OpenBlock.

Call Usage

#include <dn/defs.h>

int link;
OpenBlock ob;
int ret;
ret = ioctl(link, SES_LINK_ACCESS, &ob);

Arguments

OpenBlock typedef defined in <dn/defs.h>
See the explanation of OpenBlock, below.

link Logical link file descriptor.

SES_LINK_ACCESS ioctl function code.

ob Structure containing the information transmitted to
the server by the client. See the explanation of the
OpenBlock, below.

ret Value returned by ioctl().

Results

On success, this ioctl call returns 0, and a logical link is established with the
server program. If an error occurs or the server program rejects the logical
link request, ioctl() returns −1 and the errno is set to the appropriate error
code. (See Appendix B for recommended actions.) If the server sends data in
addition to the connect acceptance or rejection, this data is placed into the
op_opt_data field of the OpenBlock.

4DDN Programming Guide and Man Pages 5-5

The open_block Structure

typedef struct image_16 {
char im_length;
char im_data[DATA_LEN];
char im_rsvd;

} Image16;

/* Open Block Data
*
* The open_block structure contains the access control
* information necessary for establishing a logical link.
* This structure must be used in the SES_LINK_ACCESS and
* SES_SET_AI_IOCTL function calls.
*/

#define NODE_LEN 7
#define TASK_LEN 17
#define USER_LEN 32
#define ACCT_LEN 16
#define PASS_LEN 32

typedef struct open_block {
short op_object_nbr; /* Object number */
char op_node_name[NODE_LEN]; /* Node name */
char op_task_name[TASK_LEN]; /* Task name */
char op_userid[USER_LEN]; /* User name */
char op_account[ACCT_LEN]; /* User account number */
char op_password[PASS_LEN]; /* User password */
Image16 op_opt_data; /* Optional data */
unsigned short op_proxy_uid; /* UID for proxy-login */

} OpenBlock;

Arguments

op_node_name is the system name or number of the server system for
the connection. It is a null-terminated string. Legal
values are:

1. A character string, the name of the remote system,
must consist of at least one alphabetic character. It
should not end with a colon (":").

5-6 Task-To-Task Communication Programming Reference

2. A character string, in the form aa.nnn, representing
the system number of the remote system; aa is the
area number and nnn is the system number. If no
period is detected in the string, the value is treated
as a system number in the same area as the local
system.

3. A null string indicates a connection to an object on
the local system.

op_task_name is the name of the server program. It is a null-
terminated string. See "Server Addressing Rules,"
below.

op_object_number is a binary value of the server object number on the
remote system. Legal values range between 1 and 255.
See "Server Addressing Rules," below.

op_userid is the name used by the remote system to identify the
connections client (required by some remote systems). It
is a null-terminated string.

op_account is the accounting information (if required) used by the
remote system in allowing the connection. It is a null-
terminated string.

op_password is the password (if required) used by the remote system
in accepting the connection. It is a null-terminated
string.

op_opt_data is connection-dependent optional data used by the
remote application. im_length indicates the length of the
data and should be set by the requesting program to
send optional data to the server program. When a server
program returns optional data with the acceptance or
rejection, im_length is set to the number of bytes
received. It should be set to 0 if no data is desired.

im_data contains the data. im_rsvd must be binary zero.

4DDN Programming Guide and Man Pages 5-7

Server Addressing Rules

1. To address a server program, a logical link request specifies either a task
name or object number, but not both.

2. To address a server program by task name, op_object_nbr must be set to 0
and op_task_name set to an ASCII name.

3. To address a target program by object number, op_object_nbr must be an
integer between 1 and 255 and op_object_name must be set to null. User-
defined objects must be integers between 128 and 255. Numbers between
1 and 127 are reserved for use by privileged tasks.

Error Codes

ACCESS_CONT Remote system or program rejected access information
ALREADY Logical link file descriptor already in use
BAD_OBJECT Specified remote object does not exist
BY_OBJECT Local or remote program has closed the link
LOCAL_RESOUR Local node does not have resources for the link
LOCAL_SHUT Local node is not accepting new links
MANAGEMENT Link was disconnected by network
NET_RESOUR Insufficient network resources
NODE_DOWN Remote system is not accepting new links
NODE_FAILED Remote system failed to respond
NODE_NAME Unrecognized system name
NODE_UNREACH Remote system is currently inactive
OBJ_BUSY Insufficient resources at remote system
OBJ_NAME Specified task name invalid
OUT_OF_SPACE Temporarily out of kernel buffers
REMOTE_ABORT Link was aborted by remote program
UNKNOWN_ERR Status code sent by remote system is

undefined at local system

5-8 Task-To-Task Communication Programming Reference

5.6 Registering the Server Program

The SES_NUM_SERVER and SES_NAME_SERVER ioctl calls are used when
a program wants to register itself as a server. Registration assigns server
programs an object number or object name that other programs use to
identify the servers.

Call Usage

int link;
int ret;
short object_number;
ret = ioctl(link, SES_NUM_SERVER, &object_number);

or
char task_name[TASK_LEN];
ret = ioctl(link, SES_NAME_SERVER, task_name);

Arguments

link Logical link file descriptor.

SES_NUM_SERVER Appropriate ioctl request codes.

SES_NAME_SERVER Appropriate ioctl request codes.

object_number Task or object number of the server program.
User-defined object numbers must be integers
between 128 and 255.

task_name Null-terminated ASCII string specifying a task
or object name of server program.

ret Value returned by ioctl().

Results

SES_NUM_SERVER and SES_NAME_SERVER return 0 when the server is
registered correctly. The call returns −1 if an error occurs, and the external
variable errno is set to indicate the appropriate error code. (See Appendix B
for recommended actions.)

4DDN Programming Guide and Man Pages 5-9

Error Codes

ALREADY Logical link file descriptor already in use
LOCAL_RESOUR Local system does not have resources for the link
LOCAL_SHUT Local system is not accepting new links
OBJ_NAME Specified task name is invalid
OUT_OF_SPACE Temporarily out of kernel buffers
UNKNOWN_ERR Status code sent by remote system is

undefined at local node

5.7 Receiving Access Control Information

The SES_GET_AI ioctl call, used to receive access control information, is
issued by the server program after it has registered itself. If a logical link
request has already been received before this call is issued, then the
OpenBlock structure is returned with access control information. If this call
is issued before a request has been received, this call blocks and waits until a
request is received.

The SES_GET_AI_NB ioctl call is used to poll for an incoming connection. It
immediately returns a NOT_CONNECTED error if no connect request is
pending. Otherwise, it returns success and fills in the open block structure.

Call Usage

int link;
OpenBlock ob;
int ret;
ret = ioctl(link, SES_GET_AI, &ob);

5-10 Task-To-Task Communication Programming Reference

Arguments

OpenBlock typedef defined in <dn/defs.h>.

link Logical link file descriptor.

SES_GET_AI ioctl request code.

SES_GET_AI_NB ioctl non_blocking call.

ob OpenBlock structure to receive the access control
information transmitted by the client to the server.

ret Value returned by ioctl().

Results

When a logical link request is received, the content of the client’s OpenBlock
is copied into the server’s allocated OpenBlock, and the call returns 0. If an
error occurs, ioctl() returns −1, and the external variable errno is set to the
appropriate error code. (See Appendix B for recommended actions.)

Error Codes

BY_OBJECT The remote user disconnected the link

LOCAL_SHUT The network software was shut off while waiting for
the connect request

NOT CONNECTED The logical link does not exist

OUT_OF_SPACE Temporarily out of kernel buffers

REMOTE_ABORT The remote user aborted the link

UNKNOWN_ERR Error code sent by remote system undefined at local
system

4DDN Programming Guide and Man Pages 5-11

5.8 Accepting or Rejecting a Logical Link Request

The server program has the option of accepting or rejecting the logical link
request through the ioctl calls SES_ACCEPT and SES_REJECT.

Call Usage

typedef struct session_data {
short sd_reason;
Image16 sd_data;
char sd_rsvd[4];

} SessionData;

int link;
SessionData sd;
int ret;
ret = ioctl(link, SES_ACCEPT, &sd);

Or

ret = ioctl(link, SES_REJECT, &sd);

Arguments

Image16 typedef defined in <dn/defs.h>.

SessionData typedef defined in <dn/defs.h>.

link Logical link file descriptor.

SES_ACCEPT ioctl request code.

SES_REJECT ioctl request code.

5-12 Task-To-Task Communication Programming Reference

sd Structure that contains the acceptance or rejection data to be
sent to the client. The value of sd_data.im_data is application
dependent. If no data is to be sent, the sd_data.im_length
field must be set to 0.

sd_reason contains a user-defined code sent by the
SES_ACCEPT ioctl call.

sd_data.im_rsvd and sd_rsvd must be binary zero.

ret Value returned by ioctl().

Description

The acceptance or rejection data passed in the sd.sd_data field is sent to the
client. The client receives this data in the optional data field (op_opt_data) of
the OpenBlock structure that was used to request a logical link. Once a
logical link request is rejected by the server program, the logical link must be
explicitly close()’d by the rejecting program in order to free the descriptor for
future use. If the logical link is not closed, it remains open and unavailable
for any connection requests. To accept a new logical link connection
requests, the server program must re-open the logical link device and re-
register itself as a server.

Results

On successful completion, SES_ACCEPT returns 0, and the link is accepted
and prepared for the exchange of data. If an error occurs, SES_ACCEPT
returns −1 and the external variable errno is set to the appropriate error code.
(See Appendix B for recommended actions.)

On successful completion, SES_REJECT returns 0 and the link is rejected. (To
terminate the logical link, refer to ‘‘Closing the Logical Link’’ below.) If an
error occurs, SES_REJECT returns −1, and the external variable errno is set to
the appropriate error code. (See Appendix B for recommended actions.)

If an error occurs for either SES_ACCEPT or SES_REJECT, the logical link file
descriptor must be released by a close().

4DDN Programming Guide and Man Pages 5-13

Error Codes

BY_OBJECT The remote user disconnected the link
LOCAL_SHUT The local node has been shut down
OUT_OF_SPACE Temporarily out of kernel buffers
REMOTE_ABORT The remote user aborted the link
UNKNOWN_ERR Error code sent by remote node is

undefined at local node

5.9 Using the Proxy Ioctl Function

The proxy ioctl function allows an application to request the proxy login data
field of an incoming connect request. It can be used either as an alternative
or as an adjunct to user name and password information. Proxy ioctl returns
the proxy login field as an Image16 data structure.

The example below illustrates the proxy ioctl function.

SessionData Sd;
Image16 Proxy;

.
:

/*Obtain access control information*/
if (ioctl (fd,SES_GET_AI,&openblock) <0)
{

dn_perror("?Get Access Info Request Failed - ");
close(fd);
Exit();

}
/*Obtain proxy field*/

if (ioctl (fd,SES_GET_PROXY,&Proxy) <0)
{

dn_perror("?Link Accept Failed - ");
close(fd);
Exit();

}
/*Now accept connection request*/

if (ioctl (fd,SES_ACCEPT,&Sd) <0)
{

dn_perror("?Link Accept Failed - ");
close(fd);
Exit();

}
/*Proxy structure now has proxy data from Connect*/
/*Initiate Msg*/

5-14 Task-To-Task Communication Programming Reference

5.10 Selecting the Data Format and I/O Mode

The SES_IO_TYPE ioctl function command is used to select the options for
sending and receiving data before issuing a read or write. The options are:
I/O data format; stream or record; and the I/O mode,blocking or non-
blocking. The data format and I/O mode selected must be used on all
subsequent read() or write() calls.

Note: This ioctl request is optional. If omitted, the defaults, stream format
and blocking mode, are used.

Data Formats

In stream format, data is passed across the network in a buffer. There is no
indication whether the buffer contains a complete or incomplete message. A
program receives only the number of bytes sent in the buffer. Stream data
format is the default.

In record format, a program uses a structure to send and receive data. This
structure contains the address of the data buffer and a special status field that
indicates if the buffer contains the beginning, the middle, the end of the
message, or a complete message. Record format allows applications to
perform their own data segmentation. One end of the link may run in stream
format and the other in record format.

Blocking I/O Mode

In blocking I/O mode, a read function returns to the calling program, only
after the available data written into a user-supplied buffer. In this mode, the
user program is blocked until data becomes available on the link. blocking
I/O mode is the default.

In blocking I/O mode, a write function blocks until the data in the user-
supplied buffer is copied to a network buffer for transmission. If the link is
flow-controlled, a write function does not return (blocks) until the remote
program starts reading.

4DDN Programming Guide and Man Pages 5-15

As memory for transmit and receive buffers becomes scarce, flow control is
automatically activated by the network software. When flow control is
activated, the receiving system notifies the transmitting system to stop
sending data messages. After this occurs, the transmitting system must wait
for a message from the receiving system before resuming transmission of
data messages.

Non-blocking I/O Mode

Non-blocking input mode may be used by polling the logical link for data
availability, or with a signal notification indicating that data is available.

In non-blocking input mode, a read returns immediately with one of these
results:

1. The number of bytes received and written into the user-supplied data
buffer.

2. −1 and the external variable errno set to NO_DATA_AVAIL indicating
that no data is available.

For non-blocking I/O without signal notification, a program must poll with
read commands to determine if data is available. For non-blocking I/O with
signal notification, a program receives a signal when data is available for
reading. The notification scheme requires you to register the signal with both
IRIX and 4DDN, via SES_IO_TYPE (see signal(2) in the IRIS-4D Programmer’s
Reference Manual).

4DDN signals your process when data becomes available on the link. When
all the existing data is received (through reads) and new data becomes
available, your process is signaled again.

In non-blocking I/O mode, a write function returns immediately if the
logical link is not flow-controlled. If the logical link is flow-controlled, a
write function returns immediately with a −1, and the external variable errno
is set to the error code FLOW_CONTROL.

5-16 Task-To-Task Communication Programming Reference

Call Usage

typedef struct io_options {
short io_record;
short io_nonblocking;
short io_rsvd[2];
int io_signo;

} IoOptions;

int link;
IoOptions opt;
int ret;
ret = ioctl(link, SES_IO_TYPE, &opt);

Arguments

Io_Options typedef defined in <dn/defs.h>.

link Logical link file descriptor.

SES_IO_TYPE Appropriate ioctl function code.

opt.io_record Indicates the data format:

SES_IO_RECORD_MODE (default)
SES_IO_STREAM_MODE.

opt.io_nonblocking Indicates the input type:

SES_IO_BLOCKING (default)
SES_IO_NON_BLOCKING.

opt.io_rsvd Must be binary zero.

opt.io_signo Number to signal when data becomes available on the
link. The signal must be registered with the signal(2)
system call before this call is issued. This field is used
only when the non-blocking I/O mode is chosen.

ret Value returned by the ioctl().

4DDN Programming Guide and Man Pages 5-17

Rules

1. If non-blocking I/O with signal notification is chosen, the signal must be
registered with IRIX before this call is issued.

2. This call may be issued only once, before any I/O takes place on the
logical link.

Results

Upon successful completion, the ioctl SES_IO_TYPE function call returns 0.
If it returns −1, an error occurred and the external variable errno is set to the
appropriate error code. (See Appendix B for recommended actions.)

Error Codes

BAD_COMMAND Invalid ioctl command

5.11 Determining the Maximum Transmit Buffer Size

A program can inquire about the maximum number of bytes allowed in a
single write request or returned by a single read request by issuing the
SES_MAX_IO ioctl().

Note: When using record-mode, I/O programs can send and receive
messages that are longer than can be specified in a single write or
read request.

Call Usage

long length;
int ret;
ret = ioctl(link, SES_MAX_IO, &length);

5-18 Task-To-Task Communication Programming Reference

Arguments

link Logical link file descriptor.

SES_MAX_IO Appropriate ioctl function code.

length Variable where the maximum transmit length (in bytes) is
returned by ioctl().

ret Value returned by ioctl().

Results

On success, the value 0 is returned and the maximum length allowed for
single read and write is placed into the length field. If an error occurs, the
value -1 is returned and the external variable errno is set to the appropriate
error code.

5.12 Receiving Data across a Logical Link

Data can be received across a logical link in either stream or record format.
The calls described below are used to receive data in each format.

5.12.1 Receiving Data in Stream Format

Use this call to receive data in streams format:

Call Usage

int link;
char *buf;
int nbytes;
int ret;
ret = read(link, buf, nbytes);

4DDN Programming Guide and Man Pages 5-19

Arguments

link Logical link file descriptor.

buf Character buffer in which data from the link is to be
placed.

nbytes The number of bytes for the read request.

ret The number of bytes read or −1.

NON_BLOCKING If set and data is not available, the read returns a −1
and errno is set to NO_DATA_AVAILABLE.

BLOCKING If set, the read blocks until data is
available.

Results

The read function call attempts to read (receive) a message that is no longer
than the value specified in the nbytes parameter.

On successful completion, a non-negative integer is returned indicating the
number of byptes of data read. If an error occurs, a −1 is returned and errno
is set to the appropriate error code.

Error Codes

BY_OBJECT Local or remote program has closed the link
MANAGEMENT Link was disconnected by network
NODE_FAILED Remote node failed to respond
NOT_CONNECTED Logical link does not exist
OUT_OF_SPACE Temporarily out of kernel buffers
REMOTE_ABORT Link was aborted by remote program
UNKNOWN_ERR Error code sent by remote node is

undefined at local node

5-20 Task-To-Task Communication Programming Reference

5.12.2 Receiving Data in Record Format

This call receives data in record format:

Call Usage

typedef struct session_record {
short sr_status;
char *sr_buffer;
char sr_reserved[6];

} SesRecord;

SesRecord sesrec;
int link;
int nbytes;
int ret;
ret = read(link, &sesrec, nbytes);

Arguments

SesRecord typedef defined in <dn/defs.h>.

link Logical link file descriptor.

sesrec Structure holding address of buffer in which data from the
link is placed, and status information about this data.
sr_reserved must be zero.

nbytes Requested number of bytes to be read into of sesrec.sr_buffer.
The read() function call attempts to read (receive) a message
no longer than this value.

ret The number of bytes read or −1.

sesrec.sr_status Buffer allocated to store status of the data.
On successful return, contains one of these values.

1. BEG_OF_MESSAGE

2. MID_OF_MESSAGE

4DDN Programming Guide and Man Pages 5-21

3. END_OF_MESSAGE

sesrec.sr_buffer Buffer allocated to store the data to be read.

Results

On success, read() returns the number of bytes placed in the allocated buffer.
The value of sesrec.sr_reserved must be 0. The value in the sr_status field of
SesRecord informs the user if more data is available. If the status returned is
BEG_OF_MESSAGE or MID_OF_MESSAGE, then more data is available.

If an error occurs, read() returns −1 and the external variable errno is set to the
appropriate error code.

Example

Assume a remote program issues a write() with sr_status set to COMPLETE
and nbytes = 512. If the local program issues a read() with nbytes = 100, then
the whole message cannot be read with one read() call. The first read() returns
100 to ret and BEG_OF_MESSAGE to sr_status. In order to read the 512
bytes, several read()s must be issued (in a loop) until the END_OF_MESSAGE
status is returned.

In this example, the second, third, fourth, and fifth read()s return a
MID_OF_MESSAGE status. The sixth read() returns 12 to ret and
END_OF_MESSAGE to sr_status.

Error Codes

BY_OBJECT Local or remote program has closed the link
MANAGEMENT Link was disconnected by network
NODE_FAILED Remote node failed to respond
NOT_CONNECTED Logical link does not exist
OUT_OF_SPACE Temporarily out of kernel buffers
REMOTE_ABORT Link was aborted by remote program
UNKNOWN_ERR Error code sent by remote node is

undefined at local node

5-22 Task-To-Task Communication Programming Reference

5.13 Sending Data across a Logical Link

Data can be sent across a logical link in either stream or record format. The
system calls described below are used to send data in each format.

5.13.1 Sending Data in Stream Format

In stream format, the write function causes the specified number of bytes to
be transmitted from the given buffer as a complete data message.

Call Usage

int link;
char *buf;
int nbytes;
int ret;
ret = write(link, buf, nbytes);

Arguments

link Logical link file descriptor.

buf Data buffer from which the data is taken.

nbytes The length of the buffer (in bytes) to transmit. Length must
be less than the value returned by the ioctl call
SES_MAX_IO.

ret The actual number of bytes that were sent.

Results

The write() call returns the number of bytes sent. If −1 is returned, an error
has occurred, and the external variable errno is set to the appropriate error
code. (See Appendix B for recommended actions.)

If the I/O mode is blocking, then the write() function blocks until the data
buffer is copied to the kernel for transmission. If the I/O mode is non-

4DDN Programming Guide and Man Pages 5-23

blocking, the write() function returns immediately. When the logical link is
flow-controlled, a −1 is returned, and the external variable errno is set to
FLOW_CONTROL.

Error Codes

BY_OBJECT Local or remote program closed the link
MANAGEMENT Link was disconnected by network
NODE_FAILED Remote node failed to respond
NOT_CONNECTED Logical link does not exist
OUT_OF_SPACE Temporarily out of kernel buffers
REMOTE_ABORT Link was aborted by remote program
UNKNOWN_ERR Error code sent by remote node is

undefined at local node

5.13.2 Sending Data in Record Format

In record format, the write() function results in the transmission of a specified
number of bytes from the given buffer. The number of bytes is specified in
the sr_status field. Sending messages in an incorrect order, (for example,
COMPLETE after BEG_OF_MESSAGE) results in unpredictable results.

Call Usage

typedef struct session_record {
short sr_status;
char *sr_buffer;
char sr_reserved[6];

} SesRecord;

SesRecord sesrec;
int link;
int nbytes;
int ret;
ret = write(link, &sesrec, nbytes);

5-24 Task-To-Task Communication Programming Reference

Arguments

SesRecord typedef defined in <dn/defs.h>.

link Logical link file descriptor.

sesrec Structure containing the address of the buffer with the
transmission data and status information about this data.

The status of the write is placed in the sr_status field.

The sesrec.sr_status field should be set to a value that indicates
where this block of data fits within a message. These values
can be set by the application:

BEG_OF_MESSAGE
MID_OF_MESSAGE
END_OF_MESSAGE
COMPLETE

(See Appendix B for more information on these completion
codes.)

sesrec.sr_reserved must be zero.

ret The actual number of bytes that were sent.

nbytes The length of the buffer (in bytes) to transmit. The maximum
length supported by 4DDN is found by using the ioctl call
SES_MAX_IO.

Results

The write() call returns a the number of bytes sent. If this value is −1, then an
error was detected, and the external variable errno is set to the appropriate
error code. (See Appendix B for recommended actions.)

If the I/O mode is blocking, the write() function blocks until the data buffer is
copied to the controller for transmission.

If the I/O mode is blocking, the write() function returns immediately. If the
logical link is flow-controlled, then a −1 is returned, and the external variable
errno is set to FLOW_CONTROL.

4DDN Programming Guide and Man Pages 5-25

Note: If the statuses from multiple record format write() function calls are
sent out of sequence (for example, MID_OF_MESSAGE before
BEG_OF_MESSAGE), results are unpredictable.

Error Codes

BY_OBJECT Local or remote program closed the link
MANAGEMENT Link was disconnected by network
NODE_FAILED Remote node failed to respond
NOT_CONNECTED Logical link does not exist
OUT_OF_SPACE Temporarily out of kernel buffers
REMOTE_ABORT Link was aborted by remote program
UNKNOWN_ERR Error code sent by remote node is

undefined at local node

5.14 Transmitting Interrupt Data

Interrupt data is high-priority information that is immediately transmitted
through an ioctl call. The XMIT_INTERRUPT ioctl returns immediately with
a success or failure indication. Because of its importance, the exchange of
interrupt data is flow controlled by 4DDN software. For this reason, the
XMIT_INTERRUPT ioctl returns a −1, and the external variable errno is set to
FLOW_CONTROL providing that the previous XMIT_INTERRUPT ioctl has
not yet been received by the remote program.

Call Usage

typedef struct image_16 {
char im_length;
char im_data[DATA_LEN];
char im_rsvd;

} Image16;

int link;
Image16 data;
int ret;
ret = ioctl(link, XMIT_INTERRUPT, &data);

5-26 Task-To-Task Communication Programming Reference

Arguments

Image16 typedef defined in <dn/defs.h>.
link Logical link file descriptor.
XMIT_INTERRUPT ioctl request code.
data.im_length Length of data (0-16 bytes).
data.im_data Interrupt data.
data.im_rsvd Must be zeroed.
ret Value returned by ioctl().

Results

Upon successful completion, this ioctl() call returns 0. If it returns −1, then an
error has occurred, and the external variable errno is set to the appropriate
error code. (See Appendix B for recommended actions).

An errno of FLOW_CONTROL indicates a non-fatal, temporary condition. In
the case of this error, the transmit may be retried.

Error Codes

BY_OBJECT Local or remote program closed the link
FLOW_CONTROL Transmit failed; the logical link has been flow controlled
MANAGEMENT Link was disconnected by network
NODE_FAILED Remote node failed to respond
NOT_CONNECTED Logical link does not exist
OUT_OF_SPACE Temporarily out of kernel buffers
REMOTE_ABORT Link was aborted by remote program
UNKNOWN_ERR Error code sent by remote node is

undefined at local node

4DDN Programming Guide and Man Pages 5-27

5.15 Receiving Interrupt Data

Receiving interrupt data is a two-step process. The first step is to issue an
ACCEPT_INT ioctl request. This call is issued only once; it specifies to the
device driver the signal to raise when interrupt data is received.

The second step is performed every time data is received. The
RECV_INTERRUPT ioctl request places interrupt data into the im_data field.

5.15.1 ACCEPT_INT ioctl()

Use this system call only once before any interrupt data is passed over the
logical link to specify the interrupt data signal.

Call Usage

int link;
int ret;
int sig_no;
void func();

signal(sig_no, func);
ret = ioctl(link, ACCEPT_INT, &sig_no);

Arguments

link Logical link file descriptor.

sig_no Signal sent when interrupt data are received.

func func is the name of the function to be called when interrupt
data are received. See below.

ACCEPT_INT Appropriate ioctl function code.

ret Value returned by ioctl().

5-28 Task-To-Task Communication Programming Reference

Results

ioctl() returns 0 when it completes successfully. If it returns −1, an error
occurred, and the external variable errno is set to the appropriate error code.
(See Appendix B for recommended actions.)

5.15.2 RECV_INTERRUPT ioctl

Use this system call to receive interrupt data.

Call Usage

typedef struct image_16 {
char im_length;
char im_data[DATA_LEN];
char im_rsvd;

} Image16;

int link;
Image16 id;
int ret;
ret = ioctl(link, RECV_INTERRUPT, &id);

Arguments

Image16 typedef defined in <dn/defs.h>.
link Logical link file descriptor.
RECV_INTERRUPT Appropriate ioctl function code.
id.im_length Contains the length of the data when the ioctl returns.
id.im_data Buffer used for storing the received interrupt data.
ret Value returned by ioctl call.

4DDN Programming Guide and Man Pages 5-29

Rules

1. The signal number must be registered with the signal(2) call before this
ioctl is issued.

2. The ACCEPT_INT ioctl call may be issued only once, before any I/O
takes place on the logical link.

Results

The RECV_INTERRUPT ioctl request places interrupt data into the id.im_data
field. The value of id.im_length is set to the number of bytes received. If the
call takes place successfully, the ioctl() returns zero.

If −1 is returned, and the external variable, errno, is set to NO_DATA_AVAIL,
then there was no interrupt data for this link. If −1 is returned, and the
external variable errno is not set to NO_DATA_AVAIL, then an error
occurred, and the external variable errno contains the appropriate error code.
(See Appendix B for recommended actions.)

Error Codes

BY_OBJECT Local or remote program closed the link
MANAGEMENT Link was disconnected by network
NO_DATA_AVAIL No data available (read only)
NODE_FAILED Remote node failed to respond
NOT_CONNECTED Logical link does not exist
OUT_OF_SPACE Temporarily out of kernel buffers
REMOTE_ABORT Link was aborted by remote program
UNKNOWN_ERR Error code sent by remote node is

undefined at local node

5-30 Task-To-Task Communication Programming Reference

Example

The following program illustrates the two-step process to accept and receive
interrupt data.

int link;
int ret;
Image16 int_data;
void int_handler();
int sig_no = SIGNAL_NUMBER;

/* Main routine or subroutine */

routine()
{

/*
* STEP 1: register the signal handler, then
* issue ioctl to accept interrupt data.
*/

signal(sig_no, int_handler);
ret = ioctl(link, ACCEPT_INT, &sig_no);

}

/* Interrupt notification routine -
* Issue ioctl to receive interrupt data and
* reregister the signal.
*/

void
int_handler()
{

/*
* STEP 2: if interrupt data is available, issue the
* RECV_INTERRUPT ioctl call to get the interrupt data.
*/

ret = ioctl (link, RECV_INTERRUPT, &int_data)

/* Re-register the signal handler */

signal (sig_no, int_handler);
}

4DDN Programming Guide and Man Pages 5-31

5.16 Disconnecting a Logical Link

This system call disconnects a logical link. A disconnect operation can be
initiated at either end of a logical link connection.

Call Usage

typedef struct image_16 {
char im_length;
char im_data[DATA_LEN];
char im_rsvd;

} Image16;

typedef struct session_data {
short sd_reason;
Image16 sd_data;
char sd_rsvd[4];

} SessionData;

int link;
SessionData sd;
int ret;
ret = ioctl(link, SES_DISCONNECT, &sd);

Arguments

SessionData typedef defined in <dn/defs.h>.

Image16 typedef defined in <dn/defs.h>.

link Logical link file descriptor.

SES_DISCONNECT Appropriate ioctl function code.

5-32 Task-To-Task Communication Programming Reference

sd Disconnect data sent to the program at the other end
of the logical link.

sd_data.im_length indicates the length of the data.

sd_reason gives the reason for disconnect and is
application dependent.

The value of sd_data.im_data is application dependent.

Disconnect data is optional. If omitted, sd_rsvd and
sd_data.im_rsvd must be binary zero.

ret Value returned by ioctl().

Description

This ioctl request is issued by the client or the server. Following a successful
disconnect operation, the logical link must be closed to release the descriptor
for subsequent use. Then a server program must issue a new open() and re-
register itself as a server.

Disconnect guarantees the delivery of outstanding data (data that was sent
but not acknowledged as received) before the link is terminated. The
disconnect ioctl blocks until all transmitted data is received by the remote
process.

Results

Upon successful completion, 0 is returned. If an error occurs, −1 is returned,
and the external variable errno is set to the appropriate error code. (See
Appendix B for recommended actions.)

4DDN Programming Guide and Man Pages 5-33

Error Codes

BY_OBJECT Local or remote program closed or rejected the link
MANAGEMENT Link was disconnected by network
NODE_FAILED Remote node failed to respond
NOT_CONNECTED Logical link does not exist
OUT_OF_SPACE Temporarily out of kernel buffers
REMOTE_ABORT Link was aborted by remote program
UNKNOWN_ERR Error code sent by remote node is

undefined at local node

5.17 Aborting a Logical Link

This ioctl request is issued by the client or server to abort a logical link. It
results in an abnormal termination of the link.

Call Usage

typedef struct image_16 {
char im_length;
char im_data[DATA_LEN];
char im_rsvd;

} Image16;

typedef struct session_data {
short sd_reason;
Image16 sd_data;
char sd_rsvd[4];

} SessionData;

int link;
SessionData sd;
int ret;
ret = ioctl(link, SES_ABORT, &sd);

5-34 Task-To-Task Communication Programming Reference

Arguments

SessionData typedef defined in <dn/defs.h>.

link Logical link file descriptor.

SES_ABORT ioctl request code.

sd Abort data sent to the program at the other end of the
logical link. Values are application-dependent.

sd.sd_data.im_length indicates the length of the data.

sd.sd_reason gives the reason for abort and is application
dependent.

The value of sd.sd_data.m_data is application dependent.

Abort data is optional. If omitted, sd.sd_data.im_length must
be set to 0.

sd.sd_rsvd and sd.sd_data.im_rsvd must be binary zero.

ret Value returned by ioctl().

Results

Upon successful completion, 0 is returned. On error, −1 is returned, and the
external variable errno is set to the appropriate error code. (See Appendix B
for recommended actions.)

Data not yet sent is discarded when the abort is sent to the remote node.

Comments

Following a successful abort operation, the logical link device must be closed
to release the descriptor for subsequent use. Then a server program issues a
new open() and re-registers itself as a server.

An abort constitutes an abnormal termination of the logical link.

4DDN Programming Guide and Man Pages 5-35

Error Codes

BY_OBJECT Local or remote program closed or rejected the link
MANAGEMENT Link was disconnected by network
NODE_FAILED Remote node failed to respond
NOT_CONNECTED Logical link is not connected
OUT_OF_SPACE Temporarily out of kernel buffers
REMOTE_ABORT Link was aborted by remote program
UNKNOWN_ERR Error code sent by remote node is

undefined at local node

5.18 Closing a Logical Link

A logical link must be closed by issuing a close() function call. Both the client
and the server must issue this command. The close() function call terminates
the logical link and frees the logical link file descriptor for subsequent use.
However, the close() function does not permit the transmission of data to the
remote node before the logical link termination.

Two other methods can be used to terminate a logical link: it can be
disconnected or aborted.

Call Usage

int ret;
ret = close(link);

Description

link Logical link file descriptor.

ret Value returned by close().

5-36 Task-To-Task Communication Programming Reference

Results

Upon successful completion, 0 is returned. On error, −1 is returned, and the
external variable errno is set to the appropriate error code. (See Appendix B
for recommended actions.)

Comment

To obtain optional data, issue a disconnect, or abort ioctl before close().

The close() call always terminates the link. It also frees the logical link
identifier without sending optional data.

5.19 Obtaining Link Status

This call returns the status of a logical link. A program can inquire about the
status of a logical link at any time.

Call Usage

long status;
int ret;
ret = ioctl(link, SES_STATUS, &status)

Description

link Logical link file descriptor.

SES_STATUS Appropriate ioctl function code.

status Status code for the link. Possible status values are the
following:

NO_LINK No logical link for given file descriptor

LINK_OPEN Logical link open but link not yet
established

4DDN Programming Guide and Man Pages 5-37

LINK_CONNECT
Logical link device open and logical link
established

CLOSING Remote system closed the logical link,
waiting for local close()

ABORTED Remote system aborted the logical link,
waiting for local close()

ret Value returned by ioctl().

Results

A successful return of 0 indicates that an error code was placed into the
status field. On error, −1 is returned, and the external variable errno is set to
the appropriate error code.

5.20 Printing Error Messages

The dn_perror function prints an informative error message based on the
errno variable. The function writes one line to the stderr (standard error)
stream, which is usually the terminal. This line consists of the indicated
string followed by a colon and the appropriate error message. To vary the
formatting of error messages, use the dn_strerror function.

5.20.1 The dn_perror Function

This function prints an error message with the format user-text-string:error-
code-string.

Call Usage

dn_perror(string);
char *string;

5-38 Task-To-Task Communication Programming Reference

Description

string A character array or a string constant.

Results

The dn_perror function has no return value.

5.20.2 The dn_strerror Function

This function returns an informative error message that corresponds to the
given error number.

Call Usage

char *
dn_strerror(errnum)

int errnum;

Description

errnum An error number resulting from a failed 4DDN ioctl() call.

Results

The dn_strerror function returns the message string for the given 4DDN error
number. Be aware that the string might be a static buffer that can be
modified in a subsequent call to this function.

4DDN Programming Guide and Man Pages 5-39

Appendix A

NFARS Error Messages

NFARS error message are listed below with an explanation of the probable
cause of the error and a recommended action. (Messages appear in boldface,
for clarity.) For some error conditions, you might need to consult your
system manager; software errors should be reported. Any messages not
shown in this section are task-to-task error messages. (See Appendix B,
"4DDN Error Codes" for more information.)

local discovered protocol error
remote discovered protocol error
unknown error
DAP error detected
state table error
unsupported operation
network operation failed at remote
message building failed

Meaning: The above messages explain the general cause of the
error. The messages include a set of codes that explain
the exact cause of the problem. The message may
indicate an incompatibility between the system or a
shortcoming in an implementation.

Recommended Action:
Report the error to your service organization. Please
include the the 4DDN software version (dncp -r); the s
vendor name and operating system version of the
remote node; the exact command line; a printout of
the results of the command line (please be precise);
and a full directory listing showing the subject file(s).
If encountered using an NFARS routine, please
include source code.

4DDN Programming Guide and Man Pages A-1

operation aborted

Meaning: The remote host aborted the assigned operation. No
explanation is available.

Recommended Action:
Try executing the command again and, if the error
persists, report it to your service organization for
analysis.

link was not established
cannot alloc NFARS NCB structure

Meaning: These errors are extremely unlikely to occur.

Recommended Action:
Report the error to your service organization. Please
include the 4DDN software version (dncp -r); the
vendor name and operating system version of the
remote node; the exact command line; a printout of
the results of the command line (please be precise);
and a full directory listing showing the subject file(s).
If encountered using an NFARS routine, please
indicate source code.

invalid wildcard operation

Meaning: This message indicates that an invalid wildcard
operation was sent to a function that is capable of
handling wildcard operation. The system where the
function was called cannot perform the operation.

Recommended Action:
Attempt the operation again on a single file.

Note: This message does is not generated by the
RFAS programs.

A-2 NFARS Error Messages

invalid NFD/NWD
inactive DAP link
inconsistent arguments
inappropriate operation

Meaning: The above messages all indicate that the user provided
wrong information to one of the follow-on NFARS
functions: net_read, net_write, or net_fnext. These
messages are not generated by the RFAS programs.

Recommended Action:
Make certain that the functions are called with the
proper arguments.

invalid or missing filespec
invalid device or volume
invalid directory
invalid file
invalid version

Meaning: The above messages all indicate that the remote
system has found an error in the indicated part of a
filespec. It may mean an invalid character, unknown
element (such as a directory or device, for example) or
an incorrect format.

Recommended Action:
Review the specification rules for the remote system.

no file attributes for dir list
error in reading name for dir list
error in reading attribs; dir list
unable to recover; dir list

Meaning: These messages indicate very rare problems in the
creation of parts of a directory list. They may occur in
any of the RFAS programs, as well as with the
net_find and net_fnext functions.

Recommended Action:
These errors are unavoidable and have no known
work-around, other than to use a less ambiguous
filespec and avoid the files that have strong access
control.

4DDN Programming Guide and Man Pages A-3

no more files (wildcard expansion)

Meaning: This message is postedeafter the last item of a
wildcard expansion has been retrieved. Any further
calls to net_fnext result in failures.

error deleting full directory
error deleting a locked file
error deleting a file

Meaning: These messages occur when applications encounter
problems with calls to net_delete. The messages are
self-explanatory. These messages occur only with
dnrm and calls to net_delete.

2 different devices in rename
cannot rename old file systems
invalid directory rename operation
inconsistent nodes for rename
rename mismatch Access Control info
rename failed; file lost

Meaning: These messages occur only with dnmv and calls to
net_rename. Renaming a file is valid only on a single
node. Restrictions might limit renaming across
devices on that node. You can use two sets of access
control information for a renaming operation;
however, the information in both sets must be
identical.

file not found

Meaning: This message originates from any NFARS routine that
uses a file specification as an argument; it means that
the desired file does not exist.

Recommended Action:
Verify the name of the file and try again.

A-4 NFARS Error Messages

file already exists

Meaning: When a call to net_open with RFO_CREATE is
executed, the specified file already exists.

Recommended Action:
If this results from a net_open with RFO_CREATE,
then the caller should try again and use RFO_WRITE
instead of RFO_CREATE.

access permission violation
privilege violation(OS denies access)
file is locked by another user

Meaning: These messages occur when file access is denied due
to improper access permission or a conflict in a
current access.

Recommended Action:
Check the access to the target file(s). If locked by
another user, the caller should retry the call later.

error in opening file
error in reading file
error in writing file
device or file are full
error in closing file

Meaning: These messages are the result of problems
encountered during the execution of ordinary NFARS
functions and they are self-explanatory. These errors
might occur in the dncp program and the operation
has, most likely, failed. However, part of the operation
may have been performed, and the file may contain
unpredictable data.

end of file

Meaning: This informative message is received by net_read when
the read reaches the end of the open file.

4DDN Programming Guide and Man Pages A-5

bad data format

Meaning: This error concerns the data that a user provides to
net_write. Data for the non-verbatim mode, that is,
without the RFM_VERBATIM bit masked with
RFO_WRITE or RFO_CREATE, must have local line
terminations at suitable intervals. The largest number
of characters in a line (between terminators) is 510
bytes.

Recommended Action:
Use verbatim mode to transfer data byter-for-byte
(without record conversion).

A-6 NFARS Error Messages

Appendix B

4DDN Error Codes

Table B-1 lists the error codes returned in errno with the appropriate
recommended actions.

ii
Name Meaning Recommended

Actionsii
The logical link
does not exist.

NOT_CONNECTED Check program.

Remote node
received too much
connect data.

Contact your
service
organization.

PROC_ERROR

An invalid logical
link ID was
specified.

Check the program.
Probably trying to
access a closed link.

BAD_LINK

The local or remote
process has closed
or rejected the link.

This indicates a
normal close of the
link.

BY_OBJECT

ii

Table B-1 errno Error Codes

4DDN Programming Guide and Man Pages B-1

ii
Name Meaning Recommended

Actionsii
Insufficient network
resources.

NET_RESOUR Try again.

Unrecognized node
name.

Check the NCP
database with the
"show known
nodes" command to
make sure the node
exists.

NODE_NAME

The remote node is
not accepting new
links.

Try again. The
remote node is
being disconnected
from the network.

NODE_DOWN

The specified
remote object does
not exist.

Either the object
number/task name
passed in the
OpenBlock is
wrong or the
requested server
has not been
registered on the
remote node.

BAD_OBJECT

ii

Table B-1. errno Error Codes (continued)

B-2 4DDN Error Codes

ii
Name Meaning Recommended

Actionsii
The specified task
name is invalid.

Change the
program to correct
the format. Verify
that the task name
format follows the
rules in Chapter 4.

OBJ_NAME

Insufficient
resources at the
remote node.

OBJ_BUSY Try again later.

The link was
disconnected by the
network.

Try again later. The
remote node may
have become
inactive.

MANAGEMENT

The link was
aborted by the
remote process.

Check the remote
program. It may
have crashed.

REMOTE_ABORT

The node name is
invalid.

Verify that the node
name in the
OpenBlock is valid.

BAD_NAME

The local node is
not accepting new
links. The STATE
of the node is OFF.

Set the node STATE
to ON using NCP.

LOCAL_SHUT

The remote node or
process rejected the
access information.

Check the access
control information
given in the
OpenBlock.

ACCESS_CONT

ii

Table B-1. errno Error Codes (continued)

4DDN Programming Guide and Man Pages B-3

ii
Name Meaning Recommended

Actionsii
The local node does
not have resources
for a new link.

Too many links are
currently open. Kill
unneeded programs
with open links.

LOCAL_RESOUR

The remote node
failed to respond.

Check if the remote
node is responding,
then retry.

NODE_FAILED

The remote node is
currently inactive.

Use the shownet
command to
determine the status
of the remote node
and try again when
the remote node
becomes active.

NODE_UNREACH

Logical link
identifier is already
in use.

ALREADY Check the program.

ii

Table B-1. errno Error Codes (continued)

B-4 4DDN Error Codes

ii
Name Meaning Recommended

Actionsii
Program aborted by
interactive user at
terminal.

This status code
will not be returned
in the current
version.

USER_ABORT

Invalid access
attempt on read or
write.

Reopen the link
with the correct
address modes.

INV_ACCESS_MODE

No data available in
non-blocking input
mode.

NO_DATA_AVAIL No action required.

The status given in
record format
during a write is
invalid.

Modify the status in
the sr_status_field.

BAD_RECORD_STAT

Size of transmit
buffer is greater
than DN_MAX_IO.

Issue the ioctl
SES_MAX_IO to
determine the
maximum transmit
buffer size. Then
reduce the size of
the transmit buffer.

INVALID_SIZE

ii

Table B-1. errno Error Codes (continued)

4DDN Programming Guide and Man Pages B-5

ii
Name Meaning Recommended

Actionsii
No kernel buffer
space available.

Retry the program
later.

OUT_OF_SPACE

Invalid ioctl
command.

Check the
program’s ioctl
calls.

BAD_COMMAND

Transmit failed.
Logical link has
been flow
controlled and I/O
mode is non-
blocking.

Normal status in
non-blocking I/O
mode. Reissue the
transmit with the
same buffer address
and length.

FLOW_CONTROL

The link was closed
by the remote node
but data is still
available to be read.

Continue reading
from the link to
receive all available
data or just close
the link to discard
the data.

CL_DATA_AVAIL

Internal 4DDN
status. Will not be
returned to the
user.

INT_DATA No action required.

ii

Table B-1. errno Error Codes (continued)

B-6 4DDN Error Codes

iii
Name Meaning Recommended

Actionsii
Read returned the
first part of a
message that is
larger than the
input buffer
specified.

Continue reading
until the
END_OF_MESSAGE
status.

BEG_OF_MESSAGE

Read returned the
next part of a
message that is
larger than the
input.

Continue reading
until the
END_OF_MESSAGE
status.

MID_OF_MESSAGE

Read returned the
last part of a
message that is
larger than the
input buffer
specified.

No action is
required.

END_OF_MESSAGE

READ returned a
complete message.

No action is
required.

COMPLETE

Error code sent by
remote node is
undefined at local
system.

Try again. If it does
not work, contact
your service
organization.

UNKNOWN_ERR

iii

Table B-1. errno Error Codes (continued)

4DDN Programming Guide and Man Pages B-7

ii
Name Meaning Recommended

Actionsii
Duplicate node
name detected.

Check the NCP
database. If this
node had a different
number when
4DDN was
initialized, change
its name with the
NCP SET NODE
and DEFINE NODE
commands.

DUPE_NODE_NAME

Duplicate node
number detected.

Check the NCP
database. If this
node had a different
number when
4DDN was
initialized, change
its name with the
NCP SET NODE
and DEFINE NODE
commands.

DUPE_NODE_NUM

Node records
require the node
numbers.

Check the contents
of the NCP
database.

NODE_NUM_REQUIRED

Function not yet
supported.

NOT_SUPPORTED Should not appear.

ii

Table B-1. errno Error Codes

B-8 4DDN Error Codes

Appendix C

Sample Programs

These sample test programs illustrate task-to-task communication by
showing an exchange of data using 4DDN. These programs exist in the
directory /usr/etc/dn/examples.

C.1 client.c

/*

* Module: CLIENT.C - Example DECnet Client Program

*

**

* *

* COPYRIGHT 1985, 1986 BY TECHNOLOGY CONCEPTS INC. *

* SUDBURY, MASSACHUSETTS 1776 *

* COPYRIGHT 1988 SILICON GRAPHICS, INC. *

* -- ALL RIGHTS RESERVED -- *

* *

* THIS SOFTWARE IS FURNISHED UNDER LICENSE AND MAY BE USED AND COPIED *

* ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE INCLUSION*

* OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER COPIES THEREOF*

* MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY OTHER PERSON. NO *

* TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY TRANSFERRED. *

* *

* THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE AND*

* SHOULD NOT BE CONSTRUED AS A COMMITMENT BY TECHNOLOGY CONCEPTS INC. AND *

* SILICON GRAPHICS INC. *

* *

* DECnet is a trademark of Digital Equipment Corporation *

* *

**

*

* Version: 1 Revision: 1

*

* Facility: Example client program

*

4DDN Programming Guide and Man Pages C-1

* Abstract: This program demonstrates how to exchange messages with a

* remote node using IRIS-DN. This operation is called

* task-to-task communication and is performed by issuing commands

* to the IRIS-DN network software.

*

* This program demonstrates how to:

*

* 1) Establish a logical link as the client

*

* A logical link must be established between this host and

* the remote node before messages can be exchanged. To

* establish a logical link, one node must initiate the link

* request. The initiating node, or program, is called the

* client and the receiving program is called the server.

* This program is an example of the client. It requests

* a logical link, or connection, to a server.

*

* 2) Exchange messages over the logical link

*

* Once the logical link is established, no distinction is

* made between the client and the server. Both programs

* can receive and send messages across the logical link using

* the read() and write() functions respectively.

*

* 3) Terminate the logical link

*

* Before a client program terminates, it must close

* the logical link.

*

**/

/* Include files */

#include <stdio.h>

#include <fcntl.h>

#include <dn/defs.h>

/* Constant definitions */

#define NUM_BYTES 100 /* Maximum number of bytes to read */

/* Global data definitions */

int ll; /* Logical link identifier */

char buffer[NUM_BYTES+1]; /* Character buffer */

OpenBlock opblk; /* OpenBlock typedef is defined in

<dn/defs.h> */

/* Program description

*

* In this example, our node name will be "CLIENT". We will make a logical

* link request to the task name "EXAMPLE" on a remote node specified

C-2 Sample Programs

* on the command line. If the server accepts our logical link request, we

* will send it the message "This is an example". We will then wait for the

* reply message, "Got it". After we receive this message we will terminate

* the connection and exit the program successfully. If an error is returned

* from any IRIS-DN function call, error() or the library routine dn_perror()

* is called to display the error message.

*/

main(argc, argv)

int argc;

char **argv; /* argv[1] is the server’s node name */

{

int ret;

int len;

/* Before establishing a logical link, we must first open the

* logical link device, DN_LINK.

*/

if ((ll = open(DN_LINK, O_RDWR)) < 0) {

dn_perror("Open Fail: ");

exit(1);

}

/* Next, we must make the logical link request to the server.

* To do this, we must specify the remote node and the server task

* we want to connect to. In addition, we must identify ourself

* so the server knows who is making the request.

* This information is contained in a data structure called the

* OpenBlock. We will fill in an OpenBlock with the necessary

* data, then issue the SES_LINK_ACCESS ioctl() function to make

* the logical link request to the server. The ioctl() function

* will return a 0 if the link is established to the server.

* If it returns a -1, the link is not open. The reason or error

* number is contained in the external variable errno.

*/

bzero((char *) &opblk, sizeof(opblk)); /* Any field not used must be zero */

if (argc == 2) {

strcpy(opblk.op_node_name, argv[1]); /* Remote node name */

} else {

strcpy(opblk.op_node_name, "SERVER"); /* default if not given */

}

strcpy(opblk.op_task_name, "EXAMPLE"); /* Server task name */

strcpy(opblk.op_userid, "CLIENT"); /* Our ID */

if (ioctl(ll, SES_LINK_ACCESS, &opblk) < 0) {

error("link");

}

4DDN Programming Guide and Man Pages C-3

/* The logical link is established once our connect request is

* accepted by the server. We may now proceed to send and receive

* data across the link using the read() and write() functions.

* We will now send the message "This is an example" to the server.

* We will then wait to receive the response message before terminating

* the connection. Note that we are using the default I/O options

* (stream data format and blocking reads).

*/

/* First, copy the message to send into the character buffer allocated

* The copied string is NULL-terminated so we must add 1 to the

* string length for the NULL byte. Then send the message.

*/

strcpy(buffer, "This is an example");

len = strlen(buffer) + 1;

if ((ret = write(ll, buffer, len)) < 0) {

error("write");

}

/* Wait to receive the response message. */

if ((ret = read(ll, buffer, NUM_BYTES)) < 0) {

error("read");

}

/* If the read was successful, display the message. Note that ret

* contains the actual number of bytes received.

*/

display_msg(buffer, ret);

/* Terminate the connection before successfully exiting the program.

* This example chooses not to send the optional disconnect data

* Therefore, only close() is needed.

*/

close(ll);

}

/*

* Display message routine

*/

display_msg(buf, count)

char *buf;

int count;

C-4 Sample Programs

{

buf[count] = ’ ’;

printf("Received reply ’%s’\n", buf);

}

/*

* Error handler routine

*/

error(where)

char *where;

{

/* An error has occurred. Dn_perror displays the appropriate

* message based on the external variable errno. The close()

* system call will disconnect the logical link.

*/

dn_perror(where);

close(ll);

exit(1);

}

C.2 server.c

/*

* Module: SERVER.C - Example DECnet Server Program

*

**

* *

* COPYRIGHT (C) 1985, 1986 BY TECHNOLOGY CONCEPTS INC. *

* SUDBURY, MASSACHUSETTS 1776 *

* COPYRIGHT 1988 SILICON GRAPHICS, INC. *

* -- ALL RIGHTS RESERVED -- *

* *

* THIS SOFTWARE IS FURNISHED UNDER LICENSE AND MAY BE USED AND COPIED *

* ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE INCLUSION*

* OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER COPIES THEREOF*

* MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY OTHER PERSON. NO *

* TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY TRANSFERRED. *

* *

* THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE AND*

* SHOULD NOT BE CONSTRUED AS A COMMITMENT BY TECHNOLOGY CONCEPTS INC. AND *

* SILICON GRAPHICS INC. *

* *

* DECnet is a trademark of Digital Equipment Corporation *

* *

**

*

* Version: 1 Revision: 1

4DDN Programming Guide and Man Pages C-5

*

* Facility: Example server program

*

* Abstract: This program demonstrates how to exchange messages with

* a remote node using IRIS-DN. This operation is called

* task-to-task communication and is performed by calling

* system routines to access the IRIS-DN network software.

*

* This program demonstrates how to:

*

* 1) Establish a logical link as a server

*

* A logical link must be established between this host and

* the remote node before messages can be exchanged. To

* establish a logical link, one node must initiate the

* logical link request. The initiating program is called the

* client and the receiving program is called the server.

* This program is an example of the server. It demonstrates

* how a server program registers itself and waits for a

* logical link request. It also demonstrates how a server

* may use the access control information received with a

* request to decide whether to accept or reject the logical

* link request.

*

* 2) Exchange messages over the logical link

*

* Once the logical link is established, no distinction is

* made between the client and the server. Both programs

* can receive and send messages across the logical link using

* the read() and write() functions respectively.

*

* 3) Terminate the logical link

*

* Before a server program terminates, it must close() the

* logical link. Before it can receive additional logical

* link requests, a server program must reopen the logical

* link device and reregister itself.

*

*

**/

/* Include files */

#include <stdio.h>

#include <fcntl.h>

#include <dn/defs.h>

/* Constant definitions */

#define NUM_BYTES 100 /* Maximum number of bytes to read */

C-6 Sample Programs

/* Global data definitions */

int ll; /* Logical link identifier */

char buffer[NUM_BYTES+1]; /* Character buffer */

OpenBlock opblk; /* OpenBlock typedef is defined

in <dn/defs.h> */

/* Program description

*

* In this example, we will register ourself as a server for the task

* name "EXAMPLE" and wait for a logical link request. If the request

* received is for the user name "CLIENT", we will accept the logical

* link request, otherwise we will reject it. Once a logical link is

* established, we will wait to receive the message "This is an example".

* Upon receiving it, we will display it and send back the reply message,

* "Got it". Then we will terminate the connection and exit the program

* successfully. If an error is returned from any IRIS-DN function call,

* error() or the IRIS-DN error message routine dn_perror() is called to

* display the error message.

*/

main()

{

int len;

int ret;

SessionData sd;

/* Before establishing a logical link, we must first open the

* logical link device, DN_LINK.

*/

if ((ll = open(DN_LINK, O_RDWR)) < 0) {

dn_perror("open");

exit(1);

}

/* Next, we must register ourself as a server for the task name "EXAMPLE".

*/

if (ioctl(ll, SES_NAME_SERVER, "EXAMPLE") < 0) {

error("name server");

}

/* Once registered as a server, we must wait for the access

* control information from a client with the SES_GET_AI ioctl()

* function. When a link request comes in, the client’s access

* control information will be copied into opblk. Note that this

* ioctl() function will block until a request is made for this

4DDN Programming Guide and Man Pages C-7

* server or an error occurs.

*/

if (ioctl(ll, SES_GET_AI, &opblk) < 0) {

error("Get AI");

} else {

/* We received a logical link request and OpenBlock.

* We must now determine whether or not we want to accept or

* reject the request. This determination is application

* dependent. We will use the access control information in the

* OpenBlock just received to make this determination. In this

* example, we will accept the request if it is from the user

* CLIENT, otherwise we will reject it. In this example, we do

* not send any return codes in the Session Data block with the

* SES_ACCEPT or SES_REJECT.

*/

bzero((char *) &sd, sizeof(sd));

if (strcmp(opblk.op_userid, "CLIENT") == 0) {

if (ioctl(ll, SES_ACCEPT, &sd) < 0) {

error("accept");

}

} else {

if (ioctl(ll, SES_REJECT, &sd) < 0) {

error("reject");

}

/* A close() must always be issued after a SES_REJECT. */

close(ll);

/* Return an error to the shell. */

exit(1);

}

}

/* The logical link is established once we (the server) accept the

* link request. We may now proceed to send and receive data across

* the link using the read() and write() functions. We will first

* wait to receive the message "This is an example" from the remote

* node. Upon receiving it, we will display it and send back the

* message "Got it". Then we will terminate the connection. Note

* that we are using the default I/O data format and Input mode. They

* are stream data format and blocking reads.

*/

/* Wait to receive a message from the remote node */

if ((ret = read(ll, buffer, NUM_BYTES)) < 0) {

error("read");

}

C-8 Sample Programs

/* If no error occurred, display the message. Note that ret

* contains the actual number of bytes received.

*/

display_msg(buffer, ret);

/* Copy the response message into the allocated character buffer.

* The copied string is NULL-terminated, so we must add 1 to the

* string length for the NULL byte. Then send the response message.

*/

strcpy(buffer, "Got it");

len = strlen(buffer) + 1;

if ((ret = write(ll, buffer, len)) < 0) {

error("write");

}

/* Terminate the connection before successfully exiting the program.

* In this example, we not to send optional disconnect data.

* Therefore, only the close() function is needed.

*/

close(ll);

}

/*

* Display message routine

*/

display_msg(buf, count)

char *buf;

int count;

{

buf[count] = ’ ’;

printf("Received message ’%s’\n", buf);

}

/*

* Error handler routine

*/

error(where)

char *where;

{

/* An error has occurred. Dn_perror displays the appropriate

* message based on the external variable errno. The close()

4DDN Programming Guide and Man Pages C-9

* system call will disconnect the logical link.

*/

dn_perror(where);

close(ll);

exit(1);

}

C-10 Sample Programs

Appendix D

Glossary

A

access control information
Information contained in the OpenBlock structure that is needed to
access a remote node. This information includes username,
password, and account.

active node
A node that is currently communicating or ready to communicate
with another node.

adjacent node
See active node.

application-dependent
Fields of a data structure that can be filled in with user-defined data
at the option of the application programmer.

area number
A number assigned to a group of nodes in the network to identify it.
The area number must be an integer in the 1-63 range.

B

blocking I/O
A method of reading data in which a process waits to do the read
operation until the data becomes available. See also non-blocking I/O.

4DDN Programming Guide and Man Pages D-1

C

client
A local process that requests a logical link connection in task-to-task
communication. See also server.

collision
An event that results from simultaneous transmissions by two or
more nodes on an Ethernet network.

congestion
A condition that occurs when too many packets are to be queued.

counters
Performance variables providing network management information.
These variables can be displayed by using the SHOW COUNTERS
command. They can be zeroed by using the ZERO COUNTERS
command.

D

datagram
The portion of an Ethernet packet that remains after routing control
information is removed.

Digital Network Architecture (DNA)
The Digital Network Architecture developed by Digital Equipment
Corporation as the networking architecture for DEC systems.

DNA
See Digital Network Architecture.

D-2 Glossary

E

Ethernet
A local area network using a Carrier-Sense Multiple Access with
Collision Detect scheme to arbitrate the use of a 10-megabit-per-
second baseband coaxial cable.

F

flow control
The function performed by a receiving node to limit the amount or
rate of data that is sent by a transmitting node. Flow control is
automatically activated by the network software as memory for
transmit and receive buffers becomes scarce. When activated, the
receiving node notifies the transmitting node to stop sending data
messages. After this occurs, the transmitting node must wait for a
message from the receiving node to resume the transmission of data
messages.

frame
A synonym for packet in Ethernet terminology.

I

inactive node
A node that is not currently communicating or ready to
communicate with another system on the Ethernet. See also active
node.

interrupt data
Special high-priority control information that is transmitted
immediately.

4DDN Programming Guide and Man Pages D-3

L

logical link
A virtual circuit between two application programs.

logical link device
A virtual I/O device responsible for controlling logical links.

N

NCP
See Network Control Program.

Network Control Program (NCP)
A utility at the user level that interfaces with lower level modules. It
provides a set of interactive commands that the user enters at the
terminal.

non-blocking I/O
A method of reading data in which a process does not wait until data
is available before performing a read operation. If a special interrupt
signal is registered, the process is notified when data becomes
available. See also blocking I/O.

null-terminated string
A string that ends with zero.

O

object number
A number used instead of a name for addressing a process in task-
to-task communication.

D-4 Glossary

OpenBlock structure
The data structure created by a 4DDN client process containing the
information needed to establish a DECnet connection. This
information includes the node name, object type or name, user name,
and the password.

optional data
A special data field that is generally used by the application program
to explain the reason for terminating a logical link.

P

packet
A unit of data to be routed from a source node to a destination node.
When its routing header is removed and the packet is passed to the
End Communication Layer, it becomes a datagram.

R

record format
A method of exchanging data in which the transmitted message
contains a structure indicating whether it is complete. If the message
is incomplete, a special status field indicates whether it is the
beginning, the middle, or the end of the message. See also stream
format.

4DDN Programming Guide and Man Pages D-5

S

server
A remote process that accepts or rejects a logical link connection
when a process is attempting to establish connection in task-to-task
communication stream I/O data format. See also client.

stream format
A method of exchanging data in which a process receives data as it
appears across the logical link without distinguishing where
messages begin and end. See also record format.

T

task-to-task communication
The exchange of data between two processes over a logical link.

D-6 Glossary

Appendix E

IRIX Manual Pages

This appendix contains the IRIX manual pages that pertain to programming
with 4DDN software.

4DDN Programming Guide and Man Pages E-1

Index

A

aborting logical links, 4-7, 5-34
accepting logical links, 4-4, 4-5, 5-12
ACCEPT_INT ioctl(),

arguments to, 5-28
call results, 5-29
call usage, 5-28
when to use, 5-28

access control information, 4-3
in server startup, 4-4
receiving, 5-10

activating logical link devices, 5-4
activating the logical link device, 4-2
adjacent node, definition of, 2-5
assigning node addresses, 2-5
assigning node names, 2-6
automatic server startup, 4-3, 4-4

B

blocking I/O mode, 5-15
blocking read mode, 4-6
BSD UNIX, 2-7

C

circuit, definition of, 2-5
client functions, 4-2
client process, definition of, 2-6
close(),

and optional data, 5-37
call description, 5-36
call results, 5-37
call usage, 5-36
for activating links, 4-3
for closing links, 5-36
for terminating links, 4-7

closing logical links, 5-36
closing remote files, 3-4
command equivalents, 2-8
counters, definition of, 2-5
creating new files, 3-9
creating remote files, 3-2

D

Data Access Protocol (DAP), 2-6, 3-1
data block fragments, 3-3
data formats, selecting, 5-15
data link layer, 2-3
DECnet, definition of, 2-4

4DDN Programming Guide and Man Pages Index-1

deleting remote files, 3-4
determining buffer size, 5-18
Digital Network Architecture

(DNA), 2-2, 2-3, 3-1
disconnecting logical links, 4-7, 5-32
DNA layers, 2-3
dncp user command, 1-5
dn/defs.h, when to use, 5-1
dnex user command, 1-6
dnlp user command, 1-6
dnls user command, 1-5
dnMail utility, 1-6
dnMaild, 2-7
dnmv, and net_rename, 3-5
dnmv user command, 1-5
dn_perror,

and linking, 5-1
call description, 5-39
call results, 5-39
call usage, 5-38
for printing errors, 5-38

dnrm, and net_delete, 3-4
dnrm user command, 1-5
dnserver, and server startup, 4-4
dnserver process, functions of, 2-6
dn_strerror,

call description, 5-39
call results, 5-39
call usage, 5-39
for error information, 5-39

E

end communications layer, 2-3
end node, definition of, 2-4
errno variable, setting, 5-2
error handling,

and net_perror, 3-10, 5-38
and net_strerror, 3-10, 5-39
NFARS, 3-10

error messages,
NFARS, A-1
printing, 5-2, 5-38
varying format of, 5-39

establishing logical links, 4-2
executing remote files, 3-5

F

File Access Listener (FAL), 2-6
file descriptor,

for logical links, 4-2, 4-5
IRIX, 3-2
network, 3-2

flow control, 5-15, 5-16, 5-23, 5-25
FLOW_CONTROL error code, 5-16,

5-26, 5-27
fnctl.h, when to use, 5-1

H

header files, contents of, 5-1

I

identifying nodes, 2-5
including NFARS header files, 3-9
International Organization for

Standardization (ISO), 2-1
interrupt data,

definition of, 4-6
receiving, 5-28
sending and receiving, 4-6
transmitting, 5-26

Index-2

I/O mode,
selecting, 5-15
selection rules, 5-18

ioctl,
and data format, 4-6
for interrupt data, 4-6
for terminating links, 4-7

ioctrl(), for activating links, 4-3
IRIX,

definition of, 2-7
using, 2-7

IRIX system calls, 4-2
ISO model, 2-2

K

kernel, definition of, 2-7

L

libdn.a object library, 3-2
line terminator, IRIX, 3-3
lines, definition of, 2-5
linking dn_perror routine, 5-1
logical link, file descriptor, 4-2, 4-5
logical link device,

4DDN, 4-2
activating, 4-2, 5-4

logical links,
aborting, 4-7, 5-34
accepting, 4-3, 4-4, 4-5
and data transfer, 4-6
and IRIX system calls, 4-2
and user privileges, 4-5
closing, 5-13, 5-36
definition of, 2-5
disconnecting, 5-32

establishing, 4-2
obtaining status of, 5-37
opening, 5-4
registering, 5-13
rejecting, 4-4, 4-5
requesting, 5-5
terminating, 4-7

M

message packets, 2-2

N

net_close, when to use, 3-4
net_delete,

and dnrm, 3-4
and opened files, 3-4
when to use, 3-4

net_execute, when to use, 3-5
net_find, and wildcard expansion,

3-5
net_fnext, and wildcard expansion,

3-5
net_fstop, and wildcard expansion,

3-5
net_open,

and header files, 3-9
when to use, 3-2

net_read,
how it works, 3-3
length of, 3-4
when to use, 3-3

net_rename,
and dnmv, 3-5
and opened files, 3-5
when to use, 3-5

4DDN Programming Guide and Man Pages Index-3

network application layer, 2-3
Network Control Program (NCP),

2-5
Network File Access Routines, error

messages, A-1
Network File Access Routines

(NFARS),
error handling, 3-10
functions of, 3-1, 3-2

network file descriptor,
closing, 3-4
definition of, 3-2

Network Information and Control
Exchange (NICE), 2-6

Network Information Services
(NIS), 4-4

Network Management Listener
(NML), 2-6

net_write,
how it works, 3-3
length of, 3-4
when to use, 3-3

newline, IRIX line terminator, 3-3
NFARS header files, including, 3-9
NFARS library, linking to, 3-2
nfarsbasic.h header file, including,

3-9
nfars.h header file, including, 3-9
nfattr.h header file, 3-5

including, 3-9
nferror.h header file, including, 3-9
node address, assigning, 2-5
node name, assigning, 2-6
node number, assigning, 2-5
non-blocking I/O mode, 5-16
non-blocking read mode, 4-6
NOT CONNECTED error, 5-10

O

object name, in registration, 4-4
object number, in registration, 4-4
objectname file, 4-5
obtaining link status, 5-37
open(), 5-4

arguments to, 5-4
call results, 5-4
call usage, 5-4
for activating links, 4-2
for opening links, 5-4
for server startup, 4-3

Open Systems Interconnection, 2-1
OpenBlock,

description of, 5-6
purpose of, 5-5
structure of, 5-6

opening logical links, 5-4
opening remote files, 3-2
op_opt_data field, 5-13
OSI model, 2-1

P

packets, 2-2
passwd file, 4-4
peer layers, 2-2
physical link layer, 2-3
polling incoming connections, 5-10
printing error messages, 5-2, 5-38
protocols, definition of, 2-1
proxy ioctl(),

and proxy login data, 5-14
sample usage, 5-14

Index-4

R

read(),
for receiving data, 4-6
input modes, 4-6

read() (record),
arguments to, 5-21
call results, 5-22
call usage, 5-21
error codes, 5-22
example case, 5-22

read() (stream),
arguments to, 5-20
call results, 5-20
call usage, 5-19
error codes, 5-20

reading remote files, 3-3
receiving access control

information, 5-10
receiving data,

over logical links, 4-6
read(), 5-19
record format, 5-21
stream format, 5-19

receiving interrupt data, 5-28
example code, 5-31
rules for, 5-30

record format,
how it works, 4-6, 5-15
receiving data in, 5-21
sending data in, 5-24

record formats,
IRIX, 3-3
specifying length, 3-4
VAX/VMS, 3-3

record length, specifying, 3-4
RECV_INTERRUPT ioctl(),

arguments, 5-29
call usage, 5-29
error codes, 5-30
when to use, 5-29

registering server processes, 4-3, 4-
4, 5-9

rejecting logical links, 4-4, 4-5, 5-12
Remote File Access Routines

(RFAS), 3-1
renaming remote files, 3-5
requesting logical links, 5-5
requesting proxy login data, 5-14
re-registering servers, 4-4
RFM_VERBATIM option, 3-3
router node, definition of, 2-4
routing layer, 2-3

S

sd.sd_data field, 5-13
selecting data format, 5-15
selecting I/O mode, 5-15
sending data,

record format, 5-24
stream format, 5-23

server addressing, rules for, 5-7
server functions, 4-2
server process,

addressing, 5-7
automatic startup, 4-4
definition of, 2-6
identifying, 4-3
registering, 4-3, 4-4, 5-9
re-registering, 4-4, 4-7

server processes re-registering, 4-7
server startup,

automatic, 4-3
explicit, 4-3

servers.reg file, 4-4
SES_ABORT ioctl(),

arguments to, 5-35
call results, 5-35
call usage, 5-34
error codes, 5-36
for aborting links, 5-34
re-registering after, 5-35

4DDN Programming Guide and Man Pages Index-5

SES_ACCEPT ioctl(),
arguments to, 5-12
call results, 5-13
call usage, 5-12
error codes, 5-14
for accepting links, 5-12
in server startup, 4-5

SES_DISCONNECT ioctl(),
arguments to, 5-32
call results, 5-33
call usage, 5-32
delivery guarantees, 5-33
error codes, 5-34
for disconnecting links, 5-32
re-registering after, 5-33

SES_GE_AI_NB ioctl(), for polling,
5-10

SES_GET_AI ioctl(),
arguments to, 5-11
call results, 5-11
call usage, 5-10
error codes, 5-11
for access information, 5-10
in server startup, 4-5

SES_IO_TYPE ioctl(),
arguments to, 5-17
call results, 5-18
call usage , 5-17
error codes, 5-18
for transmit options, 5-15

SES_LINK_ACCESS ioctl(),
arguments to, 5-5
call results, 5-5
call usage, 5-5
error codes, 5-8

SES_MAX_IO ioctl(),
arguments to, 5-19
call results, 5-19
call usage, 5-18
for sizing buffers, 5-18

SES_NAME_SERVER ioctl(),
arguments to, 5-9
call results, 5-9
call usage, 5-9

error codes, 5-10
in server registration, 5-9

SES_NUM_SERVER ioctl(),
arguments to, 5-9
call results, 5-9
call usage, 5-9
error codes, 5-10
in server registration, 5-9

SES_REJECT ioctl(),
arguments to, 5-12
call results, 5-13
call usage, 5-12
error codes, 5-14
for rejecting links, 5-12
in server startup, 4-5

session control layer, 2-3
SES_STATUS ioctl(),

call results, 5-38
call usage, 5-37
for link status, 5-37

sethost user command, 1-5
sethostd server, 2-6
setting errno variable, 5-2
shell, definition of, 2-7
stream format,

how it works, 4-6, 5-15
receiving data in, 5-19
sending data in, 5-23

system calls, sequence of, 5-2

T

task-to-task communication,
purpose of, 4-1

terminating logical links, 4-7
Transmission Control

Protocol/Internet Protocol
(TCP/IP), 2-2

transmit buffer, determining size,
5-18

Index-6

transmitting data, over logical links,
4-6

transmitting interrupt data, 5-26

U

UNIX System V, 2-7
user layer, 2-3
usr_blk_len, record length variable,

3-4
/usr/lib/libdn.a library, 5-1

V

VMS MAIL protocol, 2-7

W

wildcard attribute structure, how to
use, 3-6

wildcard expansion,
and attribute structures, 3-6
block size attribute, 3-7
byte size attribute, 3-7
file organization testing, 3-7
file owner attributes, 3-7
file protection attributes, 3-7
file time attributes, 3-6
header file for, 3-9
how it works, 3-5
storing names from, 3-5

write(), for sending data, 4-6
write() (record),

and status information, 5-26

arguments to, 5-25
call results, 5-25
call usage, 5-24
error codes, 5-26

write() (stream),
arguments to, 5-23
call results, 5-23
call usage, 5-23
error codes, 5-24

writing to remote files, 3-3

X

XMIT_INTERRUPT ioctl(),
arguments to, 5-27
call results, 5-27
call usage, 5-26
error codes, 5-27
for interrupt data, 5-26

4DDN Programming Guide and Man Pages Index-7

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-1302-020.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 650-932-0801

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

