
IRIS IM Programming Guide

Document Number 007-1472-020

IRIS IM Programming Guide
Document Number 007-1472-020

CONTRIBUTORS

Written by Ken Jones
Production by Lorrie Williams
Engineering contributions by Bob Blean, Susan Dahlberg, Todd Newman, Kevin

Smith, and Joel Tesler

© Copyright 1993, Silicon Graphics, Inc.— All Rights Reserved
This document contains proprietary and confidential information of Silicon
Graphics, Inc. The contents of this document may not be disclosed to third parties,
copied, or duplicated in any form, in whole or in part, without the prior written
permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and/
or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94039-7311.

Silicon Graphics and IRIS are registered trademarks and Graphics Library, IRIS IM,
IRIS Indigo, Personal IRIS, IRIX, OpenGL, and RealityEngine are trademarks of
Silicon Graphics, Inc. Open Software Foundation, OSF, OSF/1, OSF/Motif, and Motif
are trademarks of the Open Software Foundation, Inc. X Window System is a
trademark of the Massachusetts Insistute of Technology. PostScript is a registered
trademark and Display Postscript is a trademark of Adobe Systems, Inc.

iii

Contents

Introduction v
Suggestions for Further Reading v
Typographical Conventions vii

1. X Window System and IRIS IM Programming Guidelines 1
Programming with IRIS IM 2

Using Shared Libraries to Maximize System Resources 3
Using Debugging Libraries to Troubleshoot Programs 3
Linking Your IRIS IM Programs 4
Building IRIS IM Programs with imake 4
Building IRIS IM Programs with Conventional Makefiles 5
Handling Keyboard Issues 5

Virtual Key Bindings 5
Numeric Keypad Behavior 5
Translation Tables and the Numeric Keypad 6

Widgets for GL/X Mixed-Model Programming 7
Using Silicon Graphics Extensions 8
Using the IRIS IM Sample Source Code 8

Using the IRIS IM Demonstration Programs 9
Using the IRIS IM Overlay Demonstration Programs 10
Using the Reference Book Sample Programs 10

iv

Contents

Rendering Considerations 11
Hardware Configurations of Silicon Graphics Workstations 11

Framebuffers on Silicon Graphics Workstations 12
Visual Classes on Silicon Graphics Workstations 13

Colormaps on Silicon Graphics Workstations 14
Colormap Size Issues 14
Variation across Colormaps 15
Multiple Colormap Issues 15

Using X11 Visuals on Silicon Graphics Workstations 16
Using Nondefault Visuals in the Normal Framebuffer 17

Xlib Programming with Nondefault Visuals 18
Xt Toolkit Programming with Nondefault Visuals 18

Setting Consistent Resources for Nondefault Visuals 18
Resources Cannot Control Putting X Toolkit Components in
Overlay Planes 19
Inheriting and Using Nondefault Visuals 20

IRIS IM Programming with Nondefault Visuals 20
Limited Color Range in Overlay and Popup Planes 21
MenuBar Uses a Common Shell for Pull-down Menus 21
Pixmaps in Nondefault Visuals 21
Beware of Visuals-related Issues in libMrm 22

Using IRIS IM Interface Builders with Nondefault Visuals 22
Nondefault Visual Heuristic Routines 23

Adding Input Devices with the X Input Extension 24

Index 25

v

Introduction

This guide is for all programmers interested in developing applications
using IRIS IM™, Silicon Graphics’ port of the industry-standard
OSF/Motif™ for use on Silicon Graphics IRIS workstations.

This guide also contains advice for pure X and X toolkit programmers about
programming in the Silicon Graphics® X environment, including how to
work with nondefault visuals. The Silicon Graphics IRIX™ operating system
contains a fully compliant native X Window System™ that provides
standard X toolkits, font support, and improved X performance.

X server enhancements include support for multiple visuals, overlay
windows, the Display PostScript™ Extension, the Shape Extension, the X
Input Extension, the Shared Memory Extension, and simultaneous display
on multiple graphics monitors. X applications can use high-performance GL
rendering for 2D and 3D graphics.

Suggestions for Further Reading

For comprehensive information on the X Window System, Xlib, Xt, and X
protocol, see the Digital Press X series:

• X Window System: The Complete Reference to Xlib, X Protocol, ICCCM,
XLFD, Third Edition, X Version 11, Release 5, Scheifler, Robert W. and
James Gettys, et al., Digital Press—Digital Equipment Corporation,
Burlington MA, 1992. ISBN 1-55558-088-2

• X Window System Toolkit: The Complete Programmer’s Guide and
Specification, Asente, Paul J. and Ralph R. Swick, Digital Press—Digital
Equipment Corporation, Burlington MA, 1992. ISBN 1-55558-051-3

vi

Introduction

Or refer to the O’Reilly X Window System Series, Volumes 1,2, 4, and 5:

• Volume One: Xlib Programming Manual, by Adrian Nye, published by
O’Reilly & Associates, Inc., Sebastopol, California.

• Volume Two: Xlib Reference Manual, published by O’Reilly & Associates,
Inc., Sebastopol, California.

• Volume Four: X Toolkit Intrinsics Programming Manual, by Adrian Nye
and Tim O’Reilly, published by O’Reilly & Associates, Inc., Sebastopol,
California.

• Volume Five: X Toolkit Intrinsics Reference Manual, published by O’Reilly
& Associates, Inc., Sebastopol, California.

For detailed information about the X server and X version 11, Release 5:

• The X Window System Server: X Version 11, Release 5, Elias Israel and Erik
Fortune, Digital Press - Digital Equipment Corporation, Bedford MA,
1992. ISBN 1-55558-096-3

• R5 Update—Programmer’s Supplement for Release 5 of the X Window
System, Version 11, David Flanagan, O’Reilly & Associates, Inc.,
Sebastopol CA, 1991. ISBN 0-937175-86-2

For information on OSF/Motif:

• OSF/Motif Programmer’s Guide, Revision 1.2, Open Software Foundation,
PTR Prentice-Hall, Inc., Englewood Cliffs NJ, 1993.

• OSF/Motif Programmer’s Reference, Revision 1.2, Open Software
Foundation, PTR Prentice-Hall, Inc., Englewood Cliffs NJ, 1993.

• OSF/Motif User’s Guide, Revision 1.2, Open Software Foundation, PTR
Prentice-Hall, Inc., Englewood Cliffs NJ, 1993. ISBN 0-13-643131-3

• Volume Six: Motif Programming Manual, by Dan Heller, published by
O’Reilly & Associates, Inc., Sebastopol, California.

These and other books in the X Window System series and OSF/Motif series
are available from bookstores. They are referred to throughout this
document.

Typographical Conventions

vii

For more information on programming in OpenGL, refer to these manuals:

• OpenGL Reference Manual, from the OpenGL Architecture Review
Board, published by Addison-Wesley Publishing Company, Reading,
Massachusetts, 1992. ISBN 0-201-63276-4.

• OpenGL Programming Guide, written by Jackie Neider, Tom Davis, and
Mason Woo, published by Addison-Wesley Publishing Company,
Reading, Massachusetts. ISBN 0-201-63274-8

For more information on programming with IRIS GL, refer to these Silicon
Graphics manuals:

• Graphics Library Programming Guide

• Graphics Library Programming Tools and Techniques

The Silicon Graphics book OpenGL Porting Guide contains information on
porting IRIS GL programs to OpenGL, including information on converting
GL/IRIS IM mixed-model programs.

Typographical Conventions

This guide uses the following typographical conventions:

functions() appear in boldface font with parentheses.

arguments appear in italic font.

file names appear in italic font.

code appears in courier font.

<key> appears in boldface courier font, surrounded by angle
brackets, indicating that you press the designated key on
your keyboard.

entry appears in boldface courier font, indicating that you enter
the information from your keyboard.

viii

Introduction

1

Chapter 1

1. X Window System and IRIS IM Programming
Guidelines

This chapter outlines the some of the facilities available to the developer in
the Silicon Graphics X environment. Topics discussed in this chapter
include:

• building applications with X toolkits

• using X visuals and nondefault X visuals

• using colormaps

The Silicon Graphics native X Window System is a full implementation of
the X Version 11 Release 5 (X11R5) standard that supports multiple visuals,
overlay windows, the X Input Extension, the Display PostScript Extension,
the Shape Extension, and the Shared Memory Extension.

The X Window System is a portable, network-based windowing system. The
portability provided by X allows you to create an application that is capable
of running on many different types of workstations. You can compile and
execute portable X application code in IRIX without modification. Because X
is network transparent, applications can be used in a heterogeneous
environment, running and displaying on workstations from different
vendors. X also allows simultaneous display on multiple graphics monitors.

You’ll find most of the information you need to develop X-based
applications in the references listed under “Suggestions for Further
Reading” in the Introduction to this guide. The programming notes in this
guide are a supplement to those references, detailing the features available
in the Silicon Graphics X environment.

2

Chapter 1: X Window System and IRIS IM Programming Guidelines

Programming with IRIS IM

IRIS IM interface maker is Silicon Graphics’ port of the industry standard,
OSF/Motif, for use on Silicon Graphics IRIS workstations.

Silicon Graphics also supplies some related software that is not part of
standard OSF/Motif, including:

• Widget support for integrating toolkits with the IRIS Graphics Library.

• 4Dwm, an enhanced version of mwm.

• Modified copies of many of the OSF/Motif demonstration programs,
which show how IRIS IM programs can use nondefault visuals such as
the popup and overlay planes.

The techniques used in these sample programs are useful with any
nondefault visual. These demos use #ifdef OVERLAY_DEMO statements
so you can compile them without using the Silicon Graphics
modifications.

• An added “Quit...” option for the mwm root menu to avoid an ICCCM
shortcoming. This was added to both the built-in root menu and the
default root menu in /usr/lib/X11/system.mwmrc.

• Several bug fixes implemented by Silicon Graphics.

This section contains information about programming IRIS IM on an IRIS
workstation. See the release notes for release-specific information regarding
IRIS IM, such as product codes, sizes, version numbers, and bugs.

Topics discussed in section are:

• the advantages of using shared libraries

• specifics about building a toolkit-based program

• virtual key bindings

• default translation issues

• rendering from the IRIS Graphics Library using the GlxMDraw widget

• using nonstandard visuals that let you take advantage of the special
framebuffer architecture available on Silicon Graphics workstations

Programming with IRIS IM

3

Using Shared Libraries to Maximize System Resources

Generally, programs should be linked with the shared libraries. Shared
libraries provide several significant advantages:

• Programs are significantly smaller—they take less disk space and less
virtual memory.

• The smaller size leads to faster startup times.

Note: If only one application is running with the shared library, memory
usage and startup time can actually be worse; however, in the default
system configuration two programs are running that make use of the
IRIS IM shared library, namely 4Dwm and Toolchest. The shared library
is also used in mwm. ♦

• A program linked with the shared library benefits from any bug fixes
and changes in subsequent compatible versions of the shared library.
While this is normally a benefit, it does mean that the application could
be running in an untested configuration.

Silicon Graphics tries to maintain shared library compatibility across
releases; however, it is not always possible to maintain compatibility in
new releases. In cases where a new library is not compatible with those
of previous releases, Silicon Graphics tries to supply the old,
compatible library. The older library is not updated nor are bugs in it
fixed; you must relink your applications with the new library to get
these benefits. To check whether your application needs relinking, refer
to the compatibility section of the Release Notes.

The default system behavior is to link with shared libraries; however,
sometimes you might not want to use shared libraries. You can do so only by
specifying the full library name, such as libXm.a.

It is strongly recommended that programs linked with the IRIS IM library be
linked with the other shared libraries. Programs linked with the unshared
IRIS IM library can still be linked with other shared libraries.

Using Debugging Libraries to Troubleshoot Programs

Silicon Graphics provides a set of debugging libraries (for example, libXm_d,
libUil_d, and libMrm_d) to help you troubleshoot IRIS IM programs. These

4

Chapter 1: X Window System and IRIS IM Programming Guidelines

libraries are large, so they are not automatically installed with the standard
IRIS IM development libraries. If you have sufficient disk space, you can
install these libraries and link your programs with them to find out more
information when you debug your programs.

Linking Your IRIS IM Programs

When using Imakefiles, the correct libraries are automatically loaded;
however, when using Makefiles, the correct libraries must be specified.

To handle regular expressions, the FileSelectionBox and related IRIS IM code
use the functions regex() and regcmp(). These functions are in libPW. A
program linked with the unshared IRIS IM library requires -lPW only if the
file selection box is used. A program linked with the shared IRIS IM library
always requires it. Thus, converting from unshared to shared libraries may
result in these undefined symbols unless -lPW is included.

Building IRIS IM Programs with imake

If you use Imakefiles, and you depend on the configuration files in the
/usr/lib/X11/config directory, you need to generate a new Makefile as follows:

1. cd to the directory containing your Imakefile.

2. Run mmkmf.

The above procedure makes a new Makefile with the correct definitions for
building IRIS IM software so that the standard Makefile targets, such as make
Makefile or make Makefiles work properly.

Note: mmkmf is similar to xmkmf. ♦

Programs using Imakefiles will automatically be linked with the shared
libraries.

The Imakefiles loaded with the demonstration software build the
demonstration programs under /usr/src/X11/motif/osf_demos. You can
examine these Imakefiles for an example of how to build an IRIS IM program.

Programming with IRIS IM

5

Building IRIS IM Programs with Conventional Makefiles

It is entirely possible to build your IRIS IM programs using conventional
Makefiles. For example, the Makefiles that build the book example programs
(located under /usr/src/X11/motif/book_examples) are traditional
Makefiles—even if they are fairly terse; however, if you use Makefiles to build
your IRIS IM programs, you need to maintain the Makefiles and make sure
that all definitions and targets still work from release to release. (If you use
Imakefiles, up-to-date definitions will be provided in the configuration files
with each new release.)

If you are having problems with your Makefiles, look at the command lines
generated by building the demo programs. Since the demo Makefiles were
generated by imake, these command lines will be correct.

Handling Keyboard Issues

This section touches on a few keyboard issues that may be of interest to
developers.

Virtual Key Bindings

The virtual key bindings shipped with IRIS IM match the default ones
compiled into libXm. There is no assurance that users won’t change their
own bindings. Virtual key bindings are not synonyms for other keysyms.
Instead, virtual key bindings replace other keysyms.

Numeric Keypad Behavior

The OSF virtual key binding model translates a single keysym into a virtual
keysym—for example, <Key>Left is translated to <Key>osfLeft. On Silicon
Graphics keyboards, the arrows on the numeric keypad generate keypad
arrows rather than arrows—for example, <Key>KP_Left instead of
<Key>Left. The OSF virtual binding model is unable to accommodate
multiple keysyms mapping to the same virtual keysym.

To accommodate the two types of arrows without introducing an
incompatible syntax, Silicon Graphics has introduced internal virtual
keysyms prefixed with _sg_KP (for example, _sg_KP_Left). These are

6

Chapter 1: X Window System and IRIS IM Programming Guidelines

mapped internally to the same key code as the OSF equivalent, so the net
result is that both the numeric keypad and the other arrow keypad will
generate the osf virtual bindings (for example, osfLeft).

Because the _sg_KP bindings are an internal mechanism that get translated
to osf bindings, users should not use them directly. Bindings should not
appear in translations; they may be removed from a future release.

For all IRIS IM widgets except for XmText and XmTextField, the numeric
keypad is treated as pure arrow keys. For the XmText and XmTextField, the
numeric keypad is treated as either arrows or numbers, depending on the
state of the <Num Lock>, and <Shift> keys. If either <Shift> or <Num Lock>
is on, numbers are sent, otherwise arrows are sent. It should be noted,
however, that <Shift-Num Lock-KP_4> sends a shifted left arrow rather
than an unshifted left arrow, which is treated differently by the text widget.

Translation Tables and the Numeric Keypad

For writers of translations, whether in application default files or in widgets,
it is important to understand how to write a translation so the numbers and
the other keysyms work on the keypad.

If a translation of the form:

<Key>osfLeft: action() \n \

is used, the action applies to both the left arrow key and to the numeric
keypad <4> key (because it also has a left arrow on it), whether or not the
<Shift> key is also pressed.

To permit the numeric keypad keys to function normally, the following form
is recommended:

:<Key>KP_4: self-insert() \n \
<Key>osfLeft: action() \n \

The leading colon on the first translation states that the action “self-insert”
should be executed if keypad <4> is pressed in such a manner that it would
normally be interpreted as a digit—that is, either <Num Lock> or <Shift> is
turned on, but not both. The second translation specifies that “action”
should occur if <key>osfLeft is pressed in any other circumstances. Note
that the action for :<key>KP_4 must come first.

Programming with IRIS IM

7

So, if you are defining translations that affect the shifted keypad keys, the
following translations should come first to also permit use of the digits from
the numeric keypad:

:<Key>KP_0: self-insert() \n \
:<Key>KP_1: self-insert() \n \
:<Key>KP_2: self-insert() \n \
:<Key>KP_3: self-insert() \n \
:<Key>KP_4: self-insert() \n \
:<Key>KP_5: self-insert() \n \
:<Key>KP_6: self-insert() \n \
:<Key>KP_7: self-insert() \n \
:<Key>KP_8: self-insert() \n \
:<Key>KP_9: self-insert() \n \
:<Key>KP_Decimal: self-insert() \n \\

Widgets for GL/X Mixed-Model Programming

Silicon Graphics provides the GLwMDrawingArea widget for IRIS IM
programs that use OpenGL to draw to a window within an IRIS IM
application. The GLwMDrawingArea widget is actually a special version of
the GLwDrawingArea widget; GLwDrawingArea is a generic widget,
suitable with any widget set that is based on the Xt intrinsics, whereas
GLwMDrawingArea is designed specifically for use within an IRIS IM
application. Similarly, the GlxMDraw widget allows programs to use IRIS
GL to draw to a window within an IRIS IM application. The GlxMDraw
widget is in turn a special version of the GlxDraw widget for drawing IRIS
GL into any Xt-based program. All of these widgets are included in the Sgm
IRIS widget library. They can be linked in by specifying -lSgm before -lXm on
the link line.

Examples that use the mixed-model widget appear in the 4Dgifts directory
in examples/GLX/glxwidget/demos. The actual source to the widget appears in
examples/GLX/glxwidget/widget, although it is recommended that programs
link with the version provided in the Sgm library to ensure that they get
future changes.

For information on OpenGL/IRIS IM mixed-model programming and the
GLwMDrawingArea widget, consult OpenGL Programming Guide, OpenGL
Porting Guide, and the GlwMDrawingArea(3X) manual page. For
information on IRIS GL/IRIS IM mixed-model programming and the

8

Chapter 1: X Window System and IRIS IM Programming Guidelines

GlxMDraw widget, consult Graphics Library Programming Tools and
Techniques and the GlxMDraw(3X) manual page.

Using Silicon Graphics Extensions

Silicon Graphics has adopted the convention for IRIS IM that names
beginning with the letters SG, in upper or lower case, are Silicon Graphics
extensions that customers can use, but they do not guarantee portability.
Names beginning with _SG are for internal use only—they are subject to
change without warning in future releases. This intent of this policy is to
allow Silicon Graphics to make extensions that:

• do not affect existing customer code

• let customers know when they are relying on Silicon Graphics
extensions

• minimize the chance that unforeseen OSF changes might force Silicon
Graphics to break compatibility

Such names appear in 4Dwm resource names and in the sgi_visual module
with the overlay demo programs.

Using the IRIS IM Sample Source Code

To study code that uses IRIS IM, look at the sample code under these
directories:

/usr/src/X11/motif/osf_demos
Contains the standard demonstration programs provided
by OSF. All demos are unsupported.

/usr/src/X11/motif/overlay_demos
Contains modified versions of many of the programs from
/usr/src/X11/motif/osf_demos. These demonstration programs
use the popup and overlay planes to show how IRIS IM
programs can use nondefault visuals.

/usr/src/X11/motif/book_examples
Contains the code examples from the book The X Window
System: Programming and Applications with Xt.

Programming with IRIS IM

9

Most of the demonstration software subdirectories also contain README
files that describe the individual demonstration programs. Be sure to read
the README file with each demonstration program before trying to run that
program.

Note: Be sure you actually read the README files in these directories. They
contain important information on resource files. Simply typing make all is
not sufficient. You need to first determine how the applications find their
resource files. ♦

Using the IRIS IM Demonstration Programs

Your IRIS IM software includes source for the demonstration programs
provided by OSF. Many of them are contributed software—they are not part
of the core product. These programs and their Imakefiles are in the
subdirectories of /usr/src/X11/motif/osf_demos.

Here is important information about the demonstration programs provided
by OSF:

• Size of the demonstration programs

Installing the demonstration program sources takes about 3 megabytes.
When built, they take about 20 megabytes. If you do not want to build
them all at once, see the README file for advice on building individual
applications.

• Building and running the demonstration programs

The demonstration program source code is in subdirectories of
/usr/src/X11/motif/osf_demos. To build the demonstration programs, read
the file /usr/src/X11/motif/osf_demos/README and follow the
instructions.

• No support is provided for the demonstration programs

Although Silicon Graphics has fixed a number of bugs in these
demonstration programs, Silicon Graphics does not claim that these
programs are bug free. Because OSF does not support these programs,
neither does Silicon Graphics. Bug reports are welcome, but fixes are
not guaranteed.

10

Chapter 1: X Window System and IRIS IM Programming Guidelines

Using the IRIS IM Overlay Demonstration Programs

Your IRIS IM software includes source for the overlay demonstration
programs. These are slightly modified versions of the standard
demonstration programs. Each source change has been clearly identified
with #ifdef OVERLAY_DEMO statements. These programs and their Imakefiles
are in the subdirectories of /usr/src/X11/motif/overlay_demos.

Here is important information about the overlay demonstration programs:

• These programs use the popup and overlay planes. The techniques
demonstrated are appropriate to any nondefault visual.

• Size of the overlay demonstration programs

The sources themselves take about 1.8 megabytes when installed. When
built, they take about 9.8 megabytes. If you do not want to build them
all at once, see the README file for advice on building individual
applications.

• Building and running the overlay demonstration programs

The overlay demonstration programs are built and run just as the
normal demonstration programs are. Be sure to read
/usr/src/X11/motif/overlay_demos/README for the status of individual
overlay demonstration programs.

• No support is provided for the demonstration programs

These programs are unsupported. They are derived from the
(unsupported) standard demonstration software. Bug reports are
welcome, but fixes are not guaranteed.

Using the Reference Book Sample Programs

Your IRIS IM software includes source for the example programs in the book
The X Window System: Programming and Applications with Xt, OSF/Motif
Edition, Douglas A. Young, ISBN 0-13-497074-8.

These sample programs are provided to make it easier for you to use this
book to learn IRIS IM. The examples also show how to use simple Makefiles
with IRIS IM (as contrasted with the demonstration programs that show you
how to use Imakefiles). Before you try to run an example program, be sure to
read the README file in its directory.

Rendering Considerations

11

The X defaults files for the example programs are in the AppDefaults
subdirectory of /usr/src/X11/motif/book_examples.

Here is important information about the overlay demonstration programs:

• Size of the Example Program Sources

Installing the example program sources takes about 0.5 megabytes.
When built, they take about 72 megabytes. If you don’t want to build
them all at once, see the file /usr/src/X11/motif/book_examples/README
for advice on building individual applications.

• Building and Running the Example Programs

These programs and their Makefiles are in the subdirectories of
/usr/src/X11/motif/book_examples. Read the top level README file for
instructions on building and running these example programs.

• No support is provided for the demonstration programs

Silicon Graphics does not claim that these example programs are bug
free. Silicon Graphics does not support these example programs. These
programs are as supplied by the book’s publisher, except that Silicon
Graphics has fixed a few bugs and provided some missing application
default files. Bug reports are welcome, but fixes are not guaranteed.

Rendering Considerations

This section highlights issues, including framebuffers and colormaps, that
are related to rendering from a software and hardware perspective. All the
information necessary for drawing on the screen, such as framebuffer
selection, depth, and visual class (colormap type) is contained in an X11
visual. See “Using X11 Visuals on Silicon Graphics Workstations” on page 16
for more information about visuals on Silicon Graphics workstations.

Hardware Configurations of Silicon Graphics
Workstations

This section outlines some hardware features of Silicon Graphics
workstations that you should be aware of when developing your
applications.

12

Chapter 1: X Window System and IRIS IM Programming Guidelines

Framebuffers on Silicon Graphics Workstations

On Silicon Graphics workstations, the display bitplanes are divided into
framebuffers:

Normal Supported on all IRIS workstations. Most applications use
this framebuffer to render graphics. The number of
bitplanes assigned to this framebuffer can vary.

Popup Two popup planes are supported on all IRIS workstations.
The popup planes are intended for transient drawing. For
example, the window manager and toolchest use this
framebuffer to display such things as popup menus without
damaging the graphics rendered in other framebuffers.

By system convention, drawing to these planes does not
necessarily use a window. If you put anything other than
transient drawing here, it may get damaged. It is
reasonable to put your application’s menus and modal
popup dialogs here.

Overlay 0, 2, 4, or 8 overlay planes are supported on IRIS
workstations.

The 2-bit overlay planes are used by applications for
transient things, such as popup menus and dialog boxes.

Silicon Graphics discourages the use of 4-bit overlay
framebuffers. The 4-bit overlay framebuffer uses the same
hardware as the two-bit overlay and popup framebuffers.
That means that both the pixels and the colormap of the
4-bit overlay planes conflict with those of both the 2-bit
overlay planes and the popup planes.

Underlay On any Silicon Graphics hardware that has overlay planes,
the hardware supports underlay planes. The X server,
however, does not support visuals for the underlay
framebuffers. This means that X11 (and therefore IRIS IM)
programs cannot draw in the underlay planes. Any
underlay planes drawing must be done by means of the
Graphics Library.

Rendering Considerations

13

Special Other special-purpose framebuffers include the z-buffer,
the stencil planes, and the alpha planes. These framebuffers
are not available in all IRIS workstations and there are no X
visuals that support these framebuffers.

Configurable Some workstations, such as RealityEngine™, allow you to
configure the framebuffer to suit your application needs.
This is an advanced concept that affects only RealityEngine
systems and similar architectures and there are no X visuals
that support this feature.

Note that only normal planes and popup planes are supported on all Silicon
Graphics hardware. For more information on these framebuffers, including
interactions between them, see the Graphics Library Programming Guide.

Visual Classes on Silicon Graphics Workstations

As part of the complete X visual, a hierarchy of six visual classes (colormap
types) distinguishes between color/monochrome display, read-only/
read-write colormaps, and color index/RGB color representation.

All currently available Silicon Graphics workstations support an 8-bit
PseudoColor visual, some workstations support 12-bit visuals, and X servers
running on workstations with sufficient hardware support a 24-bit
TrueColor visual. Other visuals may be available from a particular X server,
depending largely on the type of workstation and its graphics capabilities.
Various-depth visuals are available in static, dynamic, color, or gray classes.

Some workstations, such as the RealityEngine, support a 24-bit DirectColor
visual. A workstation that supports DirectColor can support any of the six
visual classes. There is no difference in the number of displayable colors
between a 24-bit TrueColor visual and a 24-bit DirectColor visual; however,
with a DirectColor visual, you can redefine the colormap to include only one
color and thus obtain varying intensities of that color. TrueColor displays
colors at full intensity only.

GL uses display modes to access and properly display visual data in the
bitplanes of a Silicon Graphics workstation. X visuals are mapped to GL
modes when an X window is prepared for GL rendering. Consult the
OpenGL Programming Guide and The OpenGL Porting Guide for information
on OpenGL rendering in X windows. Consult the Graphics Library

14

Chapter 1: X Window System and IRIS IM Programming Guidelines

Programming Tools and Techniques for information on IRIS GL rendering in X
windows.

Colormaps on Silicon Graphics Workstations

Colormaps are managed by the X server. X employs a virtual colormap
model. Each window can have a different virtual colormap, while GL
maintains a fixed colormap notion. There are IRIS GL routines for
manipulating the colormap, but you can use them only in pure IRIS GL
programs—programs that contain no X routines. Some workstations allow
more than one colormap to be loaded simultaneously.

Silicon Graphics supports two types of hardware. One type, such as the
Personal IRIS™, installs only one colormap at a time; thus colormap
switching must occur when input focus shifts among windows with
different colormaps. The other type, such as the IRIS Indigo™, installs
multiple colormaps concurrently—for example, an X colormap and an IRIS
GL colormap can be loaded simultaneously.

On single colormap hardware, a single top-level colormap affects all
windows on the screen (except for RGB, popup, and overlay windows,
which are separate resources). On multiple colormap hardware, each
window (up to a hardware dependent maximum) uses its own colormap.
It’s best to test your programs on both types of hardware. Some common
mistakes might be seen on only one type of hardware.

Colormap Size Issues

The size of the colormap depends on the number of bitplanes associated
with the visual. To express interest in a colormap, use
XSetWMColormapWindows(). This lets the window manager know which
colormap(s) to install when your application gets focus. These are some
important points about colormap sizes:

• If you do decide to put widgets in one of the overlay visuals, remember
that the colormap is probably smaller than the default one.

• The 2-bit popup planes colormap has only 4 entries. Color 0 is reserved
for transparent, and the other three colors are available.

Rendering Considerations

15

• The 2-bit overlay planes colormap has only 4 entries. Color 0 is reserved
for transparent, and the other three colors are available.

• The 4-bit overlay planes colormap has 16 entries. Color 0 is reserved for
transparent, and the other fifteen colors are available.

• The popup planes and the 2-bit overlay planes (if available) have
independent colormaps. The colormap for the 4-bit overlay planes
conflicts with both.

Variation across Colormaps

The same pixel location in different colormaps does not necessarily
represent the same color. Be sure you use the correct pixel values for the
colormap you are working with.

If you use a nondefault colormap, avoid color macros such as BlackPixel()
and WhitePixel(). As is required by X11, these macros return pixel values
that are correct for the default colormap. They will probably return
inappropriate values for your application. The pixel is likely to represent a
different color in your colormap, or worse yet, be out of range for it. If the
pixel does not exist in your colormap (such as any pixel greater than three
for a 2-bit overlay colormap), you will get an X protocol error.

You are most likely to make a “right index–wrong map” type of mistake if
you use the macros BlackPixel() and WhitePixel(). For example, the
BlackPixel() macro returns 0, which is black in the default colormap. That
value is always transparent (not black) in the popup and overlay colormaps.

Multiple Colormap Issues

The need to deal with multiple colormaps of various sizes raises new issues.
Some of these issues do not have well-defined solutions.

• There is no general official way for multiple independent applications
to cooperate to use a common colormap. There are no defaults,
including a default colormap, for any visual other than the default
visual.

• With multiple colormaps in use, there may be colormap flashing. An
application is guaranteed to have all of its colormaps installed only
when it has colormap focus. At that time, the window manager installs

16

Chapter 1: X Window System and IRIS IM Programming Guidelines

all of the application’s colormaps, regardless if they are all currently
needed. These colormaps remain installed until another application
needs to have one of them replaced. If another application gets
colormap focus, the window manager installs those (possibly
conflicting) colormaps. Thus, some widgets might be affected while
other widgets remain unchanged. The window manager does not
reinstall the colormaps for your application until your application has
the colormap focus again.

• Remember to call XSetWMColormapWindows() to tell the window
manager which colormaps your application wants installed when it
gets colormap focus. Some of the IRIS IM overlay demonstration
programs illustrate this.

In particular, if any of your application’s subwindows or override
redirect windows (for example, pull-down and popup menus) use their
own colormaps, remember to call XSetWMColormapWindows() for
those windows. This instructs the window manager to install the
colormaps you need whenever you enter your main window.

Using X11 Visuals on Silicon Graphics Workstations

An X visual contains all the information necessary for drawing on the screen,
such as framebuffer selection, depth, and visual class (colormap type). Each
visual allows drawing to only a single combination of framebuffer, depth,
and colormap type.

The Silicon Graphics X11 server, Xsgi, provides various visuals that enable
X11 drawing access to the framebuffers that are physically available. The
server supports at least one visual for the overlay, popup, and normal
framebuffers (except for Entry graphics, which does not support an overlay
framebuffer). There are several visuals for the normal framebuffer. There is
no visual for the underlay framebuffer.

Note: One shortcoming of the current X11 visual model is that it does not
consider layering of framebuffers (that is, it does not explicitly consider
overlays or underlays). Thus, any application code that deals with them is
nonstandard. Silicon Graphics is continuing to work with the X11
Consortium to get this area standardized, so you can expect this area to
evolve. ♦

Using Nondefault Visuals in the Normal Framebuffer

17

Each X server can support multiple visuals, depending on the available
hardware. Each server has a default visual that can be specified when the
server starts. You can ascertain the default visual with the Xlib macro
DefaultVisual().

Because you can’t predict the configuration of every X server, and you may
not know what hardware configuration your program will be used on, it is
best to find out what visual classes are available on a case-by-case basis. You
can determine which visuals are supported on any given workstation either
at the command line or from within an application.

To get X display information from the command line, enter xdpyinfo. Use
xdpyinfo to confirm the visuals supported by your workstation and to return
information regarding the capabilities of your X server. For more
information, consult the manual page for xdpyinfo(1).

To get X display information from within your application, use the Xlib
functions XGetVisualInfo() and XMatchVisualInfo() to determine what
visuals are available on a given workstation. These functions allow you to
indicate the visuals you prefer, returning a list of available visuals called an
XVisualInfo() structure, from which you can match your preference.

Using Nondefault Visuals in the Normal Framebuffer

The need to use nondefault visuals on an IRIS workstation is not confined to
putting a widget in the overlay or popup planes. Visuals define which
bitplanes to use for a widget, and they also determine things such as
whether you use 24-bit TrueColor or 8-bit PseudoColor, and so on.

Thus, even if your application draws only into the normal framebuffer, it
might need to specify a nondefault visual—if only to account for the
possibility that the user can change the default visual.

The sections that follow describe some issues related to using nondefault
visuals when programming with Xlib, Xt, and IRIS IM.

18

Chapter 1: X Window System and IRIS IM Programming Guidelines

Xlib Programming with Nondefault Visuals

When you call XCreateWindow(), the depth and visual resources must be
consistent and correct. You cannot later change this information for the
window. Other things can be set as needed.

You must also be consistent in how you set the XSetWindowAttributes
structure members. Table 1-1 lists the requirements for these settings.

If an application sets these values inconsistently, or if it allows a widget to
inherit an inconsistent value, the result is an error returned by the X server.

Xt Toolkit Programming with Nondefault Visuals

The major concerns when using the nondefault visuals with Xt Toolkit
intrinsics are setting visual and depth resources consistently and expressing
interest in any special colormaps you want to associate with the nondefault
visual.

Setting Consistent Resources for Nondefault Visuals

visual is a Shell widget resource. A Shell widget’s visual resource is inherited
by all widget descendants of that Shell widget (except for other Shell
widgets), because their windows are descendants of the Shell’s window.

Table 1-1 XSetWindowAttributes Structure Settings for Nondefault Visuals

Structure Member Requirement

background pixmap Must be of the stated depth

background pixel Doesn’t exceed the colormap size

border pixmap Must be of the stated depth

border pixel Doesn’t exceed the colormap size

colormap Must match the visual

backing store Information must be consistent with the visual and depth

Using Nondefault Visuals in the Normal Framebuffer

19

colormap and depth are Core widget resources. They must always be
consistent with the current visual setting. Generally, whenever you set
visual, you also need to set colormap and depth.

Anything else that has an associated depth also needs to be consistent with
the depth resource. The most common such consistency problem is using a
pixmap at a depth different than the depth for which it was created.

Note: Use the new IRIS IM function XmGetPixmapByDepth() instead of
XmGetPixmap(). ♦

Resources Cannot Control Putting X Toolkit Components in Overlay
Planes

When you put X toolkit components (for example, popup menus) into the
overlay or popup planes, you must do this programmatically rather than
from a resource file. The reasons are:

• To put a widget tree into the overlay or popup planes, you must put the
Shell for the widget tree into the overlay or popup planes. To put your
entire application in the overlay or popup planes, you must put your
top-level Shell in the overlay or popup planes.

As useful as it is, you cannot use XtAppInitialize() in this case. To put a
Shell into the overlay or popup planes, you first need to know the
display, which you cannot know before calling XtAppInitialize().
Instead, you must use the older piece-meal approach. Then you can
determine the display before you need to create the top-level Shell.
(There are demos done each way for you to look at.)

• There is no resource converter for the shell.visual resource, meaning
that you can set this resource only programmatically.

It also means that the varargs calls such as XtVaCreate() and
XmVaCreate() cannot use an XtVaTypedArg parameter to put a Shell in
a nondefault visual.

• There is no Xt resource that you can use to distinguish between the
types of framebuffer (for example, there is no visualType: overlay).

20

Chapter 1: X Window System and IRIS IM Programming Guidelines

Inheriting and Using Nondefault Visuals

The Shell widget inherits all of the visual attributes it needs (such as
colormap and depth) from its widget parent—except for the visual itself. The
Shell inherits the actual visual from its window (not widget) parent.
Inheriting things that must be consistent from two different places causes
trouble when using nondefault visuals because the inherited values are
almost certain to be inconsistent.

In practice, this usually means that the default colormap and depth come
from the widget parent, but that the visual is inherited from the root window
(and is therefore the default visual). This may cause an X11 server
BADMATCH error when everything else pertains to a nondefault visual.

To get around this problem, you need to do one of two things:

• Explicitly set the visual for each shell you want to put in a nondefault
visual. That is, be careful to not depend on how the shell visual is
inherited.

• Link with a modified Shell.o that inherits the visual from its widget tree
instead of its window parent.

A modified version of Shell.c is provided with the IRIS IM overlay
demos so you can see what changes are needed.The requisite header
files are not included. If you have your own X11 source, you have those
header files and you can recompile it if you wish.

A matching Shell.o is also supplied for those who want to link with this
modified version. Many of the converted demo programs do this.

Note: This modified Shell.c, and the modified Shell.o, are supplied solely on
a demonstration software basis. They are not supported products and might
not appear in future releases. If you link with one of them, you do not get
any fixes to Shell.o that might appear in future versions of libXt. ♦

IRIS IM Programming with Nondefault Visuals

Most of the problems you might have with putting IRIS IM widgets in the
overlay or popup planes arise from the need to use nondefault visuals;
however, color range issues can arise if you try to put a 4-color widget in a
framebuffer only two bits deep.

Using Nondefault Visuals in the Normal Framebuffer

21

Limited Color Range in Overlay and Popup Planes

Because the popup and 2-bit overlay framebuffers are two bits deep, the
colormap for these framebuffers contains only four color values. In
colormaps for popup or overlay framebuffers, pixel 0 is always reserved to
mean transparent, which leaves room for three additional colors.

Note: On workstations with configurable framebuffers, for example
workstations with RealityEngine graphics, pixel 0 is not reserved to mean
transparent. You can use all color values on these workstations. ♦

An IRIS IM widget generally uses at least four colors (foreground,
background, top shadow color, bottom shadow color); however, allocating a
fourth color fails. Silicon Graphics has modified certain color selection
algorithms in libXm to deal with colormap overflow by choosing the “best”
available color from those already in the colormap. The color chosen is not
the background color (unless you are explicitly setting the background
color), nor is it transparent.

Because of the limited number of choices, the “best” available color might
not be very close to the one you actually requested. To produce the best
possible appearance for the widget, be sure that you select your three colors
carefully.

These Silicon Graphics modifications apply only to colors set in the IRIS IM
library, libXm. Silicon Graphics did not modify color selection in libXt, which
sets colors for things such as BorderColor. If Xt cannot allocate the color you
request, it returns pixel 0, which is transparent in popups and overlays.

MenuBar Uses a Common Shell for Pull-down Menus

The IRIS IM MenuBar includes an optimization that uses a common shell for
all of the pull-down menus of a single MenuBar, meaning that all such
menus will be in the same visual; this should cause no practical problems.

Pixmaps in Nondefault Visuals

As of Release 1.2 there is a new call, XmGetPixmapByDepth(), which you
should use instead of XmGetPixmap().

22

Chapter 1: X Window System and IRIS IM Programming Guidelines

XmGetPixmap() assumes DefaultDepth when it creates pixmaps and does
not let you set the depth resource. You cannot use XmGetPixmap() to create
pixmaps for use in a visual whose depth differs from the default depth.

Because the Xt resource converter uses the default depth, you cannot specify
pixmaps in an application default file if they will be used in a visual whose
depth is different from that of the default visual.

Beware of Visuals-related Issues in libMrm

The IRIS IM resource manager (libMrm) has many visuals-related bugs that
occur when you use a nondefault visual. Silicon Graphics has not fixed them.
The bugs occur because libMrm relies on defaults, such as default depth and
the default colormap. You can still use UIL, but use it with caution.

In your UIL file, avoid:

pixmaps mrm uses the default depth

bitmap files mrm uses the default depth

colors mrm uses the colormap index appropriate to the default
colormap. That index might not even exist in your colormap
(for example, there is no pixel 10 in a 4-entry colormap).

You can specify your colors in a resource file instead of the UIL file, but you
must set up your bitmaps and pixmaps programmatically. The pixmap
resource converter uses the default depth when converting a resource.

Using IRIS IM Interface Builders with Nondefault Visuals

Because default-file resources cannot deal with nondefault visual resource
issues, it is possible that none of the interface builders work properly in this
environment.

In particular, TeleUSE and UIMX do not directly work with IRIS IM overlay
use. A possible workaround is to hand code anything that needed a
nondefault visual and then link this to the builder-generated code. This hand
code could even be initially generated by the builder tool (for a default
visual) and then hand-modified.

Using Nondefault Visuals in the Normal Framebuffer

23

Nondefault Visual Heuristic Routines

The files /usr/src/X11/motif/overlay_demos/lib/sgi_visual.[ch] provide
convenient routines to get legal and consistent values for use with different
visuals (such as overlay planes). Some of these routines are used by some
Silicon Graphics code—for example, 4Dwm, toolchest—and by the overlay
demonstration programs. This encapsulation is useful because:

• The functions are commonly needed by software wanting to open
windows in the overlay or popup planes.

• Opening windows in the overlay or popup planes is (understandably) a
mystery to many application writers.

• Unfortunately, some of these requirements have neither a standard X11
nor a standard Silicon Graphics way to do them. This encapsulation
includes a number of heuristic routines that may change in time.

Note: sgi_visual.c is unsupported demonstration code. It is extremely likely
that details of the code, and even the programming interface it presents, will
be different in future releases. If you make use of this code in your own
software, you should make a copy of it so that it won’t be overwritten by
later installation of a changed version. ♦

The routines in sgi_visual.c deal with consistent sets of the following values:
depth, visual class (for example, PseudoColor), visual type (for example,
OVERLAY), X11 visual, and colormaps. The other members of the
XSetWindowAttributes structure must also be consistent, but they are easier
for the application itself to keep track of and set correctly. Therefore,
sgi_visual.c does not do anything with them.

The following functions are included and are among the simplest to use.
These are the functions used by the overlay demo programs. Each function
inserts compatible values for the following visual-related resources into the
arglist for a toolkit widget: colormap, depth, and visual.

The difference between the routines is the visual type (popup, overlay, or
normal) of the visual:

• int SG_getPopupArgs(dpy, scr, args, n)

• int SG_getOverlayArgs(dpy, scr, args, n)

• int SG_getOverlay2Args(dpy, scr, args, n)

24

Chapter 1: X Window System and IRIS IM Programming Guidelines

• int SG_getOverlay4Args(dpy, scr, args, n)

• int SG_getNormalArgs(dpy, scr, args, n)

These functions require these arguments:

Display *dpy The display is used to find the root window.

int scr Screen number

Arglist args Must have room for the three arguments to be added by this
routine; there may be more arguments in the future.

int *n Index into the arguments list. It will be incremented for each
argument added.

If the calling program asks for a visual type that does not exist on the
hardware, the function automatically returns the best one it can.

Adding Input Devices with the X Input Extension

To add an input device, you write a streams module that reformats the
device events to the format used by the X server and handles the information
and control ioctls that are used by the X server. In most cases, events go to the
X server, where they are distributed based on focus policy. It is possible for
a single program to own all the events generated by a device.

Follow the procedure for adding input devices used by the X Window
System and the X Input Extension. The X Input Extension is an X
Consortium standard under X11R5. Documentation on the X Input
Extension can be obtained in the X11R5 distribution from MIT in the
mit/doc/extensions/xinput and mit/hardcopy/extensions/input directories.

For more specific information about adding an input device to a
workstation, refer to the subdirectory on input devices in the 4Dgifts
directory on your IRIS-4D Series workstation. This directory contains a
README file with very detailed instructions on input devices, as well as
some useful example programs that demonstrate how to add an input
device. If you can’t find the 4Dgifts directory on input devices, refer to the
README file in /usr/people/4Dgifts. This README file explains the structure
and contents of the 4Dgifts directory.

25

E

event handling
X Input Extension, 24

F

flashing, colormaps, 14
framebuffers, 12

G

GL colormaps, see colormaps
GLwDrawingArea, 7
GLwMDrawingArea, 7
GlxDraw, 7
GlxMDraw, 7

I

Imakefiles, 4
input devices, adding, 24
interface builders, 22
IRIS IM, v, 2

demo programs, 8
GLwMDrawingArea, 7
GlxMDraw, 7
Imakefiles, 4
interface builders, 22

A

adding input devices, 24
alpha planes, 13

C

colormaps, 14, 15, 19, 20
common problems, 14
default, 14, 15
default X and GL, 14
flashing, 14
hardware considerations, 14
multiple, 15
overflow, 21
overlapping indices, 14

D

default colormap, 14, 15
demo programs

IRIS IM, 8
nondefault visuals, 23
overlays, 10
reference book, 10
Shell visual, 20

depth, 19, 20
Display PostScript Extension, 1

Index

26

Index

keysyms, 5
libPW, 4
Makefiles, 5
MenuBar, 21
overlay sample programs, 10
resource manager, 22
shared libraries, 3
translations, 6
virtual key bindings, 5
widgets, 20

IRIS Indigo
colormaps, 14

K

keysyms, 5

L

libMrm, 22
libPW, 4

M

Makefiles, 5
menu

visuals, 21
mmkmf, 4
mrm, 22
multiple colormaps, 15

N

nondefault visuals, 17

O

Open Software Foundation, v, 2
OSF, see Open Software Foundation
overlapping colormap indices, 14
overlay planes, see overlays
overlays, 12

no TeleUSE, 22
no UIMX, 22
nondefault visual sample programs, 23
sample programs, 10

Shell, 20
Shell, 19
size of colormap, 21
visuals, 23

P

pixmaps, 19, 22
popup planes, 12
PseudoColor, 13, 17

Q

Quit option of root menu, 2

R

RealityEngine, 13
regcmp(), 4
regex(), 4
resource

colormap, 19, 20
converter, 22
depth, 19, 20
manager, 22

27

shell.visual, 19
visual, 18

S

sample programs
nondefault visuals, 23
overlays, 10
reference book, 10
Shell visual, 20

Shape Extension, 1
shared libraries

IRIS IM, 3
Shared Memory Extension, 1
Shell

overlays, 19
widget, 18, 20

shell.visual resource, 19
stencil planes, 13
streams modules, 24

T

TeleUSE, won’t work with overlays, 22
translations, 6
TrueColor, 17

U

UIL, 22
UIMX, won’t work with overlays, 22
underlay planes, 12

V

varargs, 19
virtual key bindings, 5
visuals, 11, 16, 17

inheritance from parent widgets, 20
menu, 21
nondefault, 17
Xt, 18

W

widgets
IRIS IM, 20
Shell, 18, 20

X

X, 1
server, 16
visuals, 11, 16

X colormaps, see colormaps
X functions

XCreateWindow(), 18
XGetVisualInfo(), 17
XMatchVisualInfo(), 17
XmGetPixmapByDepth(), 19, 21
XSetWMColormapWindows(), 14, 16
XtAppInitialize(), 19
XVisualInfo(), 17

X Input Extension, 24
X Window System, see X
xdpyinfo(1), 17
Xsgi, 16
Xt

visuals, 18

28

Index

Z

z-buffer, 13

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-1472-020.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 415-965-0964

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

