
IRIS® Graphics Library Programming
Tools and Techniques

Document Number 007-1489-030

IRIS® Graphics Library Programming Tools and Techniques
Document Number 007-1489-030

CONTRIBUTORS

Written by Patricia Creek and Ken Jones.
Production by Derrald Vogt.
Engineering contributions by George Kong, Sharon Fischler, Reuel Nash, David

Mott, David Immel, John Rohlf, Dan Baum, Ivan Bach, Howard Cheng, Ben
Garlick, Robert Keller, Martin McDonald.

© Copyright 1994, Silicon Graphics, Inc.— All Rights Reserved
This document contains proprietary and confidential information of Silicon
Graphics, Inc. The contents of this document may not be disclosed to third parties,
copied, or duplicated in any form, in whole or in part, without the prior written
permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and/
or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94039-7311.

Silicon Graphics, Geometry Engine, Indigo, IRIS, and the Silicon Graphics logo are
registered trademarks and CASEVision/WorkShop, Crimson, Geometry Pipeline,
Graphics Library, Indigo Elan, IRIS Crimson, IRIS Indigo, IRIS Indigo Elan, IRIS
InSight, IRIS 4D, IRIS GL, IRIS Performer, IRIX, Personal IRIS, POWER Series,
SkyWriter, and VGXT are trademarks of Silicon Graphics, Inc. MIPS, R2000, R3000,
and R4000 are registered trademarks of MIPS Technologies, Inc. Open Software
Foundation is a registered trademark and OSF/Motif is a trademark of the Open
Systems Foundation. IRIS IM is Silicon Graphics’ port of the industry-standard OSF/
Motif. X Window System is a trademark of Massachusetts Institute of Technology.

iii

Contents

About This Guide xv
How to Use This Guide xv
What This Guide Contains xvi
Related Documentation xvi
Style Conventions xvii

1. Using Fonts with the IRIS GL Font Manager 1
IRIS GL Font Manager Basics 1

Font Metrics 2
Font Specification and Sizing 4
Font Transformation 4
Font Search Path 6
Font Formats 6

iv

Contents

Using the IRIS GL Font Manager Library Routines 7
Initializing Fonts 9
Scaling Fonts 10
Setting the Current Font 11
Rendering Fonts 11
Getting Font Information 12
Getting Font Glyph Information 14
Getting the Width of a Character String 14
Getting the Width of a Character 14
Getting and Setting the Font Environment Variables 15
Getting the Font Search Path 15
Setting the Font Search Path 15
Managing Font Memory 15
Adjusting Widths to Match Laser Printers 16
Transforming the Page 17

IRIS GL Font Manager Library Example Program 19
Remote Font Management 20

2. GLX Mixed-Model Programming 21
IRIS Graphics Library Programming in the X Environment 22

Using Network Transparency 22
Using Cursors 23
Handling Input Events 23
Windowing 26
Backing Store and Save Under 27

Writing Mixed-Model Programs 28
The Difference Between Mixed-Model Programs and Multi-Client
Programs 28
Network Transparency and gflush() 28
X Rendering is Not Possible in an IRIS GL Window 29
Incompatible IRIS Graphics Library Calls 29
Installing Colormaps 30

v

Using IRIS GL Widgets to Create Mixed-Model Programs 31
What You Need to Know About Xt and IRIS IM 31
You Don’t Have to Use IRIS IM 32
About the GlxDraw and GlxMDraw Widgets 32
Using GlxDraw 33
Handling Input in a Mixed-Model Program 42
Animation: Timeouts and Workprocs 45
Mixed-Model Sample Programs Using Widgets and Xt 45

Using Xlib to Write a GLX Program 72
Configuring an X Window for IRIS GL Rendering 72
Using the GLX Mixed-Model Routines 72
Mixed-Model Example Program Using Xlib and IRIS GL 73

3. Using GLdebug 79
GLdebug Basics 79

State Checking 79
Parameter Checking 80
Error Checking 81

Running GLdebug 81
Using GLdebug Options 82
Specifying History Output 82
Getting Started with GLdebug 84

Using the GLdebug Tools 85
Using the GLdebug Stateviewer 85
Using the Controller 96

vi

Contents

4. Tuning IRIS GL Applications 103
Tuning Basics 103

Why is Tuning Useful? 104
Three-Stage Model of the Graphics Pipeline 105
Pipeline Tuning 106
Isolating Bottlenecks in the Pipeline 107
Taking Timing Measurements 108
Tuning to Frame Rates 110

CPU Tuning 111
Optimizing Cache and Memory Use on
IRIS POWER Series Systems 112
Optimizing Cache and Memory Use on
IRIS Crimson IP17 Processors 115
Tuning Immediate Mode Drawing 116
Tuning Display Lists 130
Advanced CPU-limited Tuning Techniques 132

Tuning Transform-Limited Drawing 134
Using Fast Drawing Modes 134
Using High-Performance Drawing Subroutines 135
Using Peak Performance Primitives for Drawing 136
Optimizing Lighting Performance 138
Using Expensive Modes Efficiently 141
Advanced Transform-limited Tuning Techniques 142

Tuning Fill-Limited Drawing 143
Using Backface/Frontface Removal 143
Using Expensive Pixel Modes Efficiently 144
Balancing Polygon Size and Pixel Operations 145
Clearing the Bitplanes and z-buffer Simultaneously 145

Review of Tuning Methodology 146
Sample Analysis 147
Experimenting and Benchmarking 149

vii

Summary of Tuning Techniques 149
Overall Graphics Tuning Techniques 150
POWER Series Techniques 151
VGX Techniques 151
GT/GTX Techniques 153
Personal IRIS Techniques 153
IRIS Indigo Techniques 154
Elan Graphics Techniques 156
Benchmarking Techniques 160
Bottleneck Techniques 160

5. Programming Visual Simulation Applications
for SkyWriter Systems 165
Using Special Graphics Features 165

Perspective-Correct Texture 165
Perspective Correct Fog 165
Trilinear MIPmap Filter 166
Outlining Polygons With Antialiased Lines 167
Multiple Graphics Pipelines 168
Pixel-Replicating Video Format 169

Using Multiple Pipes 169
Window Manager Access to Multiple Pipes 169
Program Access to Multiple Pipes 170
Hyper-pipe Applications 171
Using Pixel Replication with Multiple Pipes 172

Process Management 172
Programming Model 173
IRIX Support for Parallel Programming 176
Sample Code 177
Mouse Input 177

Guidelines for Visual Simulation Applications 178
How to Use Texturing 178
How to Use Antialiasing 180

viii

Contents

Performance 181
IRIS GL Tuning Tools and References 181
SkyWriter Transform and Fill Rates 182
SkyWriter Texture Memory Management 183
Practices to Follow for Maximum Performance 185

A. Benchmarking Tools 187

Index 195

ix

Examples

Example 1-1 Drawing Characters and Scaling the Page 5
Example 1-2 Scaling a Font 5
Example 1-3 Displaying a List of Available Fonts 10
Example 1-4 Using IRIS GL Font Manager Routines in an IRIS GL

Program 19
Example 2-1 An Example of Using the GlxDraw Widget 33
Example 2-2 wproc.c Source Code 46
Example 2-3 cmapov.c Source Code 57
Example 2-4 An Example Using Xlib and IRIS GL 74
Example 4-1 The perfobj Data Structure 128

xi

Figures

Figure 1-1 Character Metrics 3
Figure 3-1 Stateviewer 85
Figure 3-2 Color Indicator 86
Figure 3-3 Lighting Indicator 87
Figure 3-4 z-buffer Indicator 87
Figure 3-5 Double Buffering Indicator 88
Figure 3-6 Matrix Mode Indicator 88
Figure 3-7 Draw Mode Indicator 89
Figure 3-8 GConfig Indicator 90
Figure 3-9 Error Condition Indicator 91
Figure 3-10 Options Menu 91
Figure 3-11 Lighting Window 92
Figure 3-12 Attributes Window 94
Figure 3-13 Devices Window 95
Figure 3-14 Current Matrix 95
Figure 3-15 Controller 96
Figure 3-16 Controls Menu 96
Figure 3-17 Breakpoint and Output Selection Windows 98
Figure 3-18 Using the Set Menu to Set Breakpoints on Texturing 100
Figure 4-1 Three-Stage Model of the Graphics Pipeline 105
Figure 4-2 Flowchart of the Tuning Process 149
Figure 5-1 Hyper-pipe Configuration 168
Figure 5-2 Window Manager Access to Multiple Pipes 170
Figure 5-3 Model of Example Shared

Process/Memory Configuration 173
Figure 5-4 Hyper-pipe Mode Timing 174
Figure 5-5 Dual-Channel Mode Timing 175

xiii

Tables

Table 1-1 IRIS GL Font Manager Library Routines 7
Table 1-2 Members of the fmfontinfo Structure 13
Table 2-1 GlxDraw Callbacks 39
Table 4-1 VGX Texture Memory 152
Table 5-1 SkyWriter Per-Pipe Transform Rates 182
Table 5-2 SkyWriter Per-Pipe Fill Rates 182
Table 5-3 SkyWriter Texture Memory 184

xv

About This Guide

Graphics Library Programming Tools and Techniques describes Silicon
Graphics® software tools and programming techniques for the graphics
application developer. These tools and techniques can assist you in
developing and debugging your IRIS® Graphics Library™ (IRIS GL™)
application, and in analyzing and maximizing its performance.

How to Use This Guide

You’ll find the information in this guide especially helpful if you:

• write IRIS GL and mixed-model programs

• use the IRIS GL Font Manager

• need assistance debugging IRIS GL programs

• require maximum performance from your IRIS GL applications

• build visual simulation applications

• build virtual reality applications

• have SkyWriter™ systems, especially multi-head systems

This guide assumes that you are familiar with the IRIS GL and that you use
the IRIS GL to develop applications for Silicon Graphics IRIS-4D™ systems.

In this guide, tools are software applications that provide a graphical user
interface for performing a task associated with developing a IRIS GL
application. Techniques are rules, hints, and programming practices to
follow for programming IRIS GL applications in a variety of situations.

xvi

About This Guide

What This Guide Contains

This guide contains five chapters:

• Chapter 1, “Using Fonts with the IRIS GL Font Manager,”describes
how to use the IRIS GL Font Manager to provide font management for
IRIS GL and mixed-model applications.

• Chapter 2, “GLX Mixed-Model Programming,” describes how to
incorporate IRIS GL rendering in an X Window System™ application.

• Chapter 3, “Using GLdebug,” describes how to use GLdebug to debug
IRIS GL applications. GLdebug is a graphical tool for debugging IRIS
GL applications that lets you interactively control program execution,
view the state of the IRIS GL while your program is running, and
generate a history file.

• Chapter 4, “Tuning IRIS GL Applications,” describes how to analyze a
graphics application for potential performance problems and how to
improve graphics application performance by taking advantage of the
pipeline architecture of IRIS-4D systems. It also outlines recommended
programming practices to follow when writing application software for
a variety of architectures and situations.

• Chapter 5, “Programming Visual Simulation Applications for
SkyWriter Systems,” describes the special features of SkyWriter systems
designed for visual simulation applications and explains how to use
those features to their best advantage.

• Appendix A, “Benchmarking Tools,” contains code to assist you in
taking timing measurements and provides a sample benchmark.

Related Documentation

See the Graphics Library Programming Guide, Volumes I and II, and the on-line
Graphics Library reference (man) pages for information about the IRIS GL.

See the Owner’s Guide for your system for information about system
architecture and operation.

Style Conventions

xvii

See the following online books, which are viewable from the IRIS InSight™

viewer for additional information:

• IRIX System Programming Guide

Chapter 4 “Improving Program Performance” describes how to
use IRIX profiling and optimization tools.

Chapter 7 “Using Real-Time Programming Features” describes
facilities for real-time programming.

• IRIX Advanced Site and Server Administration Guide

Chapter 5 “Tuning System Performance” describes system tuning
concepts.

Appendix A “IRIX Kernel Tunable Parameters,” describes how to
tune system parameters that affect the IRIX™ operating
system kernel.

Style Conventions

These typographical conventions are used in this guide:

functions() appear in boldface font with parentheses.

arguments appear in italic font.

file names appear in italic font.

code appears in fixed-width font.

<key> appears in bold fixed-width font, surrounded by angle
brackets, indicating that you press the designated key on
your keyboard.

entry appears in bold fixed-width font, indicating that you enter
the information from your keyboard.

1

Chapter 1

1. Using Fonts with the IRIS GL Font Manager

This chapter describes how to use fonts with the IRIS GL Font Manager.

IRIS GL Font Manager Basics

The main purpose of the IRIS GL Font Manager is to make it easier to write
IRIS GL and mixed-model programs that need fonts. The IRIS GL Font
Manager is implemented as a library, which consists of:

• /usr/lib/libfm.so

• /usr/lib/libfm_s

• /usr/lib/libfm_s.a

libfm.so is a dynamic shared object, a new type of shared library introduced
in IRIX 5.0. It should be used when you develop new programs.

libfm_s is the same type of static shared library that was shipped before
IRIX 5.0. It is used to run programs that were linked with a shared version of
the IRIS GL Font Manager Library prior to IRIX 5.0.

libfm_s.a is a symbolic link to libfm.so. It is installed when you install the
gl_dev subsystem. It is provided to avoid breaking old Makefiles that still have
the option -lfm_s specified on their compile and link command lines. When
you specify that option, the linker tries to link your program with
/usr/lib/libfm_s.a. It then links your program with /usr/lib/libfm.so. In IRIX
release 5.0 and later, you should use the option -lfm to link your program
with /usr/lib/libfm.so. The file libfm.a is no longer shipped because it is no
longer needed.

The IRIS GL Font Manager Library provides a number of font management
(fm) functions, described in “Using the IRIS GL Font Manager Library

2

Chapter 1: Using Fonts with the IRIS GL Font Manager

Routines” on page 7, that can be used to get a list of the names of available
font families, select and scale a specified font, draw text in a specified font,
and so on.

Note: Because font management functions were written in the C
programming language, they can easily be used in C and C++ programs.
Fortran programs can be linked with C modules that contain calls to font
management functions. ♦

If you need font management functions, you should link your program with
the library /usr/lib/libfm.so by specifying -lfm on the compile and link
command line, such as the cc command line. You should also put the
following statement at the beginning of each module that calls font
management functions:

#include <fmclient.h>

Font Metrics

The metrics (dimensions) of a character are given in the struct fmglyphinfo:

typedef struct fmglyphinfo {
 long xsize, ysize; /* dimensions of glyph in pixels */
 long xorig, yorig; /* origin */
 float xmove, ymove; /* move */
 long gtype; /* glyph type */
 long bitsdeep; /* depth of pixels,in bits */
} fmglyphinfo;

All but two character metrics are long integers. xmove and ymove are floats.
The basic unit of the values in xmove and ymove is the device unit (pixel). By
making xmove and ymove floats, the IRIS GL Font Manager Library supports
the subpixel positioning information needed by typesetting and graphics
applications.

IRIS GL Font Manager Basics

3

Figure 1-1 shows the character metrics for a pair of characters.

Figure 1-1 Character Metrics

A bitmap font usually contains the specification of all pixels within the
bounding box of each character, without the surrounding white space. The
drawing of a character starts at a reference point on the baseline. That point
represents the origin of a coordinate system. The values xorig and yorig are
the coordinates of the left-lower corner of the character’s bounding box. The
character’s bitmap is drawn at those coordinates. Then you return to the
reference point on the baseline, and advance to the coordinates specified by
the values of xmove and ymove. That becomes the reference point for the
drawing of the next character.

Note that in Figure 1-1, the values increase in the directions indicated by the
arrows. Thus, xmove increases to the right; a negative value of xmove would
indicate that the next character should be to the left. The value yorig is the
distance from the bottom of the glyph to the baseline. The value xorig is the
horizontal distance from the current character position to the left edge of the
glyph; either can be a negative value. xsize and ysize are the character
boundaries (for a bitmap glyph, this is the bitmap size).

4

Chapter 1: Using Fonts with the IRIS GL Font Manager

Font Specification and Sizing

The API for the IRIS GL Font Manager Library is patterned after PostScript.
After calling fminit() to initialize the IRIS GL Font Manager Library, your
program should call fmenumerate() to find out which font families are
available. Then it should call fmfindfont() to find one of the available font
families. That function returns a handle for a 1-point font in the specified
font family. If it cannot find the specified font, it returns a value of zero (0).

To get a font of certain point size, your program should call fmscalefont()
with the handle it got from fmfindfont() and a point size. Your program can
then call fmsetfont() to make the scaled font the current font, and call
fmprstr() or fmfprstr() to draw a specified string of characters. Other ways
of rendering text are discussed later.

Font Transformation

The IRIS GL Font Manager Library maintains an abstract notion of font
rendering, called the page. Think of the page as a transparent sheet that is
superimposed on the current window. The page maintains a coordinate
system for font rendering. Application programs can make calls to the IRIS
GL Font Manager Library to modify the page’s transformation matrix.
Changing the page’s transformation matrix changes the appearance of the
font in the window. You can make calls to the IRIS GL Font Manager Library
if you want to render scaled or rotated text. If you do not want to alter the
page’s transformation matrix, you can use fmscalefont() to scale only the
characters without scaling the page.

Conceptually, there is a distinction between scaling a font and scaling the
characters of a font as they are rendered.

The code in Example 1-1 first draws a string of characters (Hello) whose
height is 1 point and then draws a second string of characters (World) with
a 2-point height. The text appears larger because the size of the page is
doubled. The font is actually still a 1-point font, but the characters are scaled
as they are rendered.

IRIS GL Font Manager Basics

5

Example 1-1 Drawing Characters and Scaling the Page

font1 = fmfindfont("Times-Roman");
fmsetfont(font1);
fmprstr("Hello");
fmscalepagematrix(2.0);
fmprstr("World");

The second font drawn by the code is a true 2-point font, but the page scale
is still at a 1:1 ratio. Calling fmprstr() draws a string of 2-point-high
characters.

You can produce an identical effect using the code in Example 1-2.

Example 1-2 Scaling a Font

font1 = fmfindfont("Times-Roman");
fmsetfont(font1);
fmprstr("Hello");
font2 = fmscalefont(font1,2.0);
fmsetfont(font2);
fmprstr("World");

Example 1-2 illustrates the fact that both the font and the page have a
transformation matrix. Before rendering, the font’s transformation matrix is
concatenated with the page’s transformation matrix, and the resultant font
size is rendered onto the page. The font’s transformation matrix is stored
with the font. The page’s transformation matrix is stored in the client’s
process space.

To set or read the page’s transformation matrix, use these routines:

fmconcatpagematrix()
fmgetpagematrix()
fminitpagematrix()
fmrotatepagematrix()
fmscalepagematrix()
fmsetpagematrix()

You can use fmrotatepagematrix() to rotate the page. If you then render text
onto that page, a font of zero-degree rotation appears along a rotated
baseline. fmprstr() maintains the current character position, even with
rotated text.

6

Chapter 1: Using Fonts with the IRIS GL Font Manager

Font Search Path

The IRIS GL Font Manager Library has a path that it searches when it looks
for bitmap fonts. The default value for this font path is
/usr/lib/X11/fonts/100dpi:/usr/lib/X11/fonts/75dpi:/usr/lib/X11/fonts/misc. To
override the default search value, set the environment variable FONTPATH.
Alternatively, you can use fmsetpath() to load a new font path. The
argument to fmsetpath() is a colon-separated string of directory names.

Because the IRIS GL Font Manager Library searches a path, you can store
font files in different directories. During a font look-up, the IRIS GL Font
Manager Library searches the directories in the order specified (left to right)
by the string given to fmsetpath(). You can use this order to make the IRIS
GL Font Manager Library use a “local” experimental font but still preserve
the official font for other users.

For example, if you put the experimental font in your current directory and
set FONTPATH to:

.:/usr/lib/X11/fonts/100dpi:/usr/lib/X11/fonts/75dpi:/usr/lib/X11/fonts/misc

the IRIS GL Font Manager Library uses the font in the current directory
(dot), even if that font also exists in other specified font directories. If the IRIS
GL Font Manager Library fails to find the font in the current directory, it
searches for the font in other specified font directories.

The IRIS GL Font Manager Library also uses outline font files in the Type 1
font format stored in the directory:

/usr/lib/DPS/outline/base

The path for outline fonts cannot be modified.

Font Formats

This section provides references to information about font formats that are
used on Silicon Graphics workstations.

Using the IRIS GL Font Manager Library Routines

7

About the Extended Bitmap Distribution Format Version 2.1

The Bitmap Distribution Format (BDF) was originally specified by Adobe
Systems. That format was later extended for the X Window System, as
described in these documents:

• Bitmap Distribution Format 2.1 (MIT X Consortium Standard, X Version
11, Release 5). Mountain View, CA: Adobe Systems Incorporated, 1988.

• Flowers, Jim. X Logical Font Description Conventions (Version 1.4, MIT X
Consortium Standard, X Version 11, Release 5). Cambridge, MA:
Massachusetts Institute of Technology, 1989.

About the Portable Compiled Format for Bitmap Font Files

The bitmap fonts shipped by Silicon Graphics are in the PCF or compressed
PCF format. Those files are produced from bitmap font files in the BDF 2.1
format. The Portable Compiled Format (PCF) format is described in
Appendix D of:

• Elias, Israel and Erik Fortune. The X Window System Server (X Version 11,
Release 5). Menlo Park: Digital Press, 1992.

About the Adobe Type 1 Font Format

The Adobe Type 1 format for outline (scalable) font files is described in:

• Adobe Systems Incorporated. Adobe Type 1 Font Format (Version 1.1).
Reading, MA: Addison-Wesley Publishing Company, Inc., 1990.

Using the IRIS GL Font Manager Library Routines

Table 1-1 lists the font management routines in the IRIS GL Font Manager
Library.

Table 1-1 IRIS GL Font Manager Library Routines

Task Routine

fmconcatpagematrix() Concatenate page matrix

fmenumerate() List font family

8

Chapter 1: Using Fonts with the IRIS GL Font Manager

fmfindfont() Prepare font for manipulation

fmfontpath() Get a path for finding fonts

fmfprstr() Render a character string in the current font without using
subpixel positioning. Usually faster than fmprstr().

fmfreefont() Free memory storage for a font

fmgetchrwidth() Return width of a character

fmgetcomment() Return a comment associated with a font

fmgetfontinfo() Return overall information about font

fmgetfontname() Return a font’s name

fmgetpagematrix() Get page matrix

fmgetstrwidth() Return width of a string in pixels

fmgetwholemetrics() Get information on each character in font

fminit() Initialize the IRIS GL Font Manager Library

fminitpagematrix() Initialize the page matrix to identity

fmmakefont() Associate a matrix with a font

fmoutchar() Draw a single glyph

fmprintermatch() Toggle printer matching

fmprstr() Draw a string in the current font with subpixel accuracy

fmrotatepagematrix() Rotate the page

fmscalefont() Scale a font

fmsetcachelimit() Set the maximum cache size in quanta

fmsetfont() Set the current font

fmsetpagematrix() Set the page matrix

fmsetpath() Set a path for finding fonts

Table 1-1 (continued) IRIS GL Font Manager Library Routines

Task Routine

Using the IRIS GL Font Manager Library Routines

9

The sections that follow explain how to use the routines listed in
Table 1-1. These sections are organized in functional, rather than
alphabetical, order.

Initializing Fonts

This section describes routines that perform various font initialization and
specification functions.

Call fminit() to initialize the IRIS GL Font Manager Library. It sets the
default page matrix for the scaling and transformation routines. You must
call fminit() before you can make any other calls to the IRIS GL Font
Manager Library routines. Its function prototype is:

void fminit()

Use fmfindfont() to get a font handle for a typeface. Its function prototype is:

fmfonthandle fmfindfont(char *face)

The face argument is a pointer to a character string that specifies a font
family.

If fmfindfont() cannot find the font, it returns a value of zero. Otherwise,
fmfindfont() returns a handle to a one-point high font of the specified type.

fmenumerate() accepts the name of a callback routine as an argument. It
calls the specified callback routine for each font family it finds in the
directories specified by the font path. fmenumerate() uses a string pointer to
pass the name of a font family to the callback routine. Its function prototype
is:

void fmenumerate(callback)
void (*callback)();

For example, the code in Example 1-3 uses fmenumerate() to send font
names (via string pointers) to the user-defined routine, printname(). The
printname() routine displays a list of available font families.

10

Chapter 1: Using Fonts with the IRIS GL Font Manager

Example 1-3 Displaying a List of Available Fonts

void printname(str)
char *str;

{
printf("%s\n", str);

}

main()
{

fminit();
fmenumerate(printname);

}

Scaling Fonts

This section describes routines that control the size of a font.

fmscalefont() applies a scale factor to the matrix associated with the font
handle passed to it, then returns a new font handle. Its function prototype is:

fmfonthandle fmscalefont(fmfonthandle fh, double scale)

Use fmscalefont() when you want to scale a font, but not rotate it.

fmmakefont() concatenates a matrix that is passed to it with the matrix
associated with the font handle that is also passed to it, then returns a new
font handle. Its function prototype is:

fmfonthandle fmmakefont(fh, matrix)
fmfonthandle *fh;
double matrix[3][2];

The transformation matrix passed in by matrix is multiplied with the
transformation matrix in the font handle passed in by fh. When the font is
imaged, this matrix is inspected to determine the proper scaling, shearing,
rotation, or combination of these, for the imaging. This operator is more
general than fmscalefont(), which applies uniform scaling only. For
example, this multiplication can scale the font and rotate the baseline.

If you want to scale the font but do not want to rotate the baseline, it is easier
to use fmscalefont() than fmmakefont(). Except for size and rotation
information, the information in the new handle is copied from the handle

Using the IRIS GL Font Manager Library Routines

11

passed in by fh. If the scaling of a font requests a font that does not exist, the
IRIS GL Font Manager Library substitutes the closest match available.

Note: When using matrix[3][2], think of it as a 2 × 2 transformation
matrix. The last row is reserved for future development and is currently
ignored. ♦

Setting the Current Font

Use fmsetfont() to set the current font (font handle). Its function prototype
is:

void fmsetfont(fmfonthandle fh)

All subsequent rendering operations use the font handle named by fh. To get
a font handle, use a font routine that returns a font handle, for example,
fmfindfont(), fmscalefont(), or fmmakefont().

Rendering Fonts

This section describes routines that render fonts to the screen.

fmoutchar() renders a single glyph, ch, from the current font. Its function
prototype is:

long fmoutchar(fmoutchar fh, unsigned char ch)

If the glyph doesn’t exist, the IRIS GL Font Manager Library advances the
current character position by the width of a space. If the font does not define
a space character, the IRIS GL Font Manager Library advances the current
character position by the width of the font. The returned value of
fmoutchar() is the width moved.

fmprstr() renders the characters in str onto the screen at the current character
position, using subpixel positioning. Its function prototype is:

long fmprstr(char *str)

The font used is the one most recently named by fmsetfont(). The IRIS GL
Font Manager Library starts rendering at the current character position and

12

Chapter 1: Using Fonts with the IRIS GL Font Manager

updates the current character position as it renders. Clients should use the
IRIS GL cmov() and getcpos() routines to set or read the current character
position.

Before calling fmprstr(), you must call cmov() to set the current character
position or the results of fmprstr() are undefined. If the string is null, or the
font does not exist, fmprstr() returns -1; otherwise, fmprstr() returns zero.

fmfprstr() renders the characters in str onto the screen at the current
character position, without using subpixel positioning. This routine can
usually render a given character string faster than fmfprstr(). Its function
prototype is:

long fmfprstr(char *str)

The font used is the one most recently named by fmsetfont(). The IRIS GL
Font Manager Library starts rendering at the current character position and
updates the current character position as it renders. Clients should use the
IRIS GL cmov() and getcpos() routines to set or read the current character
position.

Before calling fmfprstr(), you must call cmov() to set the current character
position or the results of fmfprstr() are undefined. If the string is null, or the
font does not exist, fmfprstr() returns -1; otherwise, fmfprstr() returns the
length of the rendered string.

Getting Font Information

This section describes routines that return information about specified fonts.

fmgetfontname() gets the name of the font associated with the font handle
in fh. Its function prototype is:

long fmgetfontname(fmfonthandle fh, long slen, char *str)

fmgetfontname() writes information to the location pointed to by str. Use
slen to tell fmgetfontname the size of the array pointed to by str.
fmgetfontname() does not write more characters than are specified by slen.
If there is an error in locating the font, or if no name exists for the font
specified by fh, the returned value of fmgetfontname() is -1; otherwise, the

Using the IRIS GL Font Manager Library Routines

13

returned value of fmgetfontname() is the length of the string actually
written to str.

The function fmgetcomment() is obsolete. It has been replaced by a stub that
does not do anything.

fmgetfontinfo() writes information to the members of the fmfontinfo type
structure pointed to by the info parameter. Its function prototype is:

long fmgetfontinfo(fmfonthandle fh, fmfontinfo *info)

The information written to this structure pertains to the entire font that is
associated with fh. The fmfontinfo data structure is defined in the
/usr/include/fmclient.h header file.

Table 1-2 lists members of the fmfontinfo structure that provide the most
frequently used information.

Note: Some indices may not have glyphs assigned to them, but when you
allocate space for fmgetwholemetrics(), you should use nglyphs + 1 as
though it were the total number of characters. In other words, nglyphs is the
highest index of a possibly sparse matrix. ♦

Table 1-2 Members of the fmfontinfo Structure

Structure Member Meaning

printermatched There is a printer widths file corresponding to this font.

matrix00, matrix01,
matrix10, matrix11

Double-precision floats that provide transformation
matrix information in points.

fixed_width All the characters in the font are the same width.

xorig, yorig Coordinates of the lower-left corner of the font
bounding box.

xsize and ysize Maximum sizes of the characters in the font, in pixels.

height Often the same as ysize, but some fonts use a larger
ysize to get free leading (spacing between lines of text).

nglyphs Index of the highest-numbered character. Indexing
begins at 0.

14

Chapter 1: Using Fonts with the IRIS GL Font Manager

Getting Font Glyph Information

fmgetwholemetrics() gets glyph information associated with the font
handle fh and writes it to the fmglyphinfo structures pointed to by the
elements of the array fi. Its function prototype is:

long fmgetwholemetrics(fmfonthandle fh, fmglypinfo *fi)

You should allocate enough space to contain nglyphs*sizeof(fmglyphinfo).
Because fmgetwholemetrics() fills only those structures of the array that
have corresponding glyphs in the font file, you should initialize all the
fmglyphinfo structures before calling fmgetwholemetrics(). (For example,
you could use calloc() to allocate the space. See malloc(3C) for more
information.)

The returned function value of fmgetwholemetrics() is 0 if successful. If
fmgetwholemetrics() cannot find the font referenced by the font handle, the
returned function value is -1.

Getting the Width of a Character String

fmgetstrwidth() returns the number of pixels the string occupies in the x
dimension. It uses the subpixel resolution provided in the glyph widths as it
accumulates the width and rounds the sum to the nearest pixel. Rotated
fonts are measured along an untransformed x axis. Its function prototype is:

long fmgetstrwidth(fmfonthandle fh, char *str)

Getting the Width of a Character

fmgetchrwidth() returns the number of pixels the given character occupies
in the x dimension when it is rendered. Its function prototype is:

long fmgetchrwidth(fmfonthandle fh, unsigned char ch)

The returned value is rounded to an integer. If that character glyph does not
exist, the width of a space is returned. If a space does not exist, the width of
the font is returned. Rotated fonts are measured along an untransformed x
axis.

Using the IRIS GL Font Manager Library Routines

15

Getting and Setting the Font Environment Variables

This section describes routines that affect the environment in which fonts are
managed.

Getting the Font Search Path

fmfontpath() returns a pointer to a string that describes the current search
path for finding font files. Its function prototype is:

char *fmfontpath()

The path is a colon-separated list of directories that originate at the root. The
default path is /usr/lib/fmfonts. To reset the value of the font path, use
fmsetpath().

Setting the Font Search Path

fmsetpath() accepts a pointer to a string that describes the current search
path for finding font files. Its function prototype is:

void *fmsetpath(char *path)

The path is a colon-separated list of directories that originate at the root. The
default path is /usr/lib/fmfonts.

Managing Font Memory

Memory management for the IRIS GL Font Manager Library is under user
control.

Note: Previous releases of the IRIS GL Font Manager Library used caching
to restrict its use of memory for fonts. For compatibility, the font-caching
routines are still in the library as stubs, but they are not functional. ♦

fmfreefont() frees the storage associated with a font in a given rotation and
size, specified by the font handle fh. Its function prototype is:

void fmfreefont(fmfonthandle fh)

16

Chapter 1: Using Fonts with the IRIS GL Font Manager

Freeing a font also frees the font handle. To ensure that fmfreefont() frees the
correct font/rotation/size instance, be sure that the same page matrix is in
force as when you first queried or rendered from that font.

Because normal usage of the IRIS GL Font Manager Library does not involve
changing the page matrix, you seldom need to worry about it. But if you find
that you cannot delete a font (or have deleted the wrong font) you may have
rotated the page matrix. One way to avoid this problem is to call
fmfreefont() only when the page matrix is not rotated. Rotated fonts are
created and destroyed as necessary and do not need explicit deletion.

Adjusting Widths to Match Laser Printers

Many applications render text on the screen to give the user the chance to
proof the text before printing it on a laser printer. For a more realistic
simulation, you should use laser printer character widths to represent the
text.

fmprintermatch() sets a state variable that controls printer font matching. Its
function prototype is:

void fmprintermatch(long set)

Call:

When the IRIS GL Font Manager Library renders (images) a font, it inspects
the state of this variable. If enabled, the IRIS GL Font Manager Library
searches for a printer widths file that corresponds to the font. If the file exists,
and the font has not yet been sized, the IRIS GL Font Manager Library
creates a new font. The IRIS GL Font Manager Library also updates the font
handle of the current font so that it has character widths that correspond to
the laser printer’s width scheme.

fmprintermatch(1) to enable printer matching

fmprintermatch(0) to disable printer matching

Using the IRIS GL Font Manager Library Routines

17

Transforming the Page

The page transformation is stated in the page matrix. This section describes
routines that let you inspect and change the state of the page matrix.

Note: When using matrix[3][2], think of it as a 2×2 transformation matrix.
The last row is reserved for future development and is currently ignored.

fminitpagematrix() initializes the page matrix to an orthographic projection.
Its function prototype is:

void fminitpagematrix()

fmsetpagematrix() loads the page matrix verbatim with matrix mat. Its
function prototype is:

void fmsetpagematrix(mat)
double mat[3][2];

fmgetpagematrix() returns the page matrix in mat. Its function prototype is:

void fmgetpagematrix(mat)
double mat[3][2];

fmscalepagematrix() uniformly scales the page matrix by scale. Its function
prototype is:

void fmscalepagematrix(double scale)

fmrotatepagematrix() post-concatenates a rotation to the page matrix,
where the rotation is measured in a counter-clockwise direction in degrees.
Its function prototype is:

fmrotatepagematrix(double angle)

You can also use fmrotatepagematrix() to generate a screen font that is
exactly (within one pixel) the specified size. You should try this in a test
program first to see whether the possible degradation in quality is
acceptable. This “roughness” comes from the need to scale a bitmap font if
that font does not exist at the specified size.

For example, the IRIS GL Font Manager Library normally renders text using
a bitmap font that is the closest match possible to the requested size. But, if
you rotate the page matrix, even by one 1/1000 of a degree, the IRIS GL Font

18

Chapter 1: Using Fonts with the IRIS GL Font Manager

Manager Library tries to create a font that is rotated that much. As a side
effect, the IRIS GL Font Manager Library also distorts (shrinks or stretches)
the page to generate a font that is within a pixel of the specified size;
however, stretching or shrinking a bitmap often results in “rough” looking
characters.

To try scaling a bitmap, call:

fmrotatepagematrix(.01)

then print a string with fmprstr().

fmconcatpagematrix() post-concatenates the page matrix with mat. Its
function prototype is:

void fmconcatpagematrix(mat)
double mat[3][2];

IRIS GL Font Manager Library Example Program

19

IRIS GL Font Manager Library Example Program

The program in Example 1-4 writes a string of green, 25-point characters to
a window, beginning at window coordinate (30, 100). Compile the program
using the following command line options:

cc example.c -o example -lc_s -lfm_s -lgl_s

Example 1-4 Using IRIS GL Font Manager Routines in an IRIS GL Program

#include <gl/gl.h>
#include <gl/device.h>
#include <fmclient.h>

main()
{
 short val;
 fmfonthandle font1, font25;

 prefsize(240,210);
 winopen("Hello");
 color(BLACK);
 clear();
 color(GREEN);
 fminit();
 /* Exit if can’t find the font family */
 if ((font1=fmfindfont("Times-Roman")) == 0) exit (1);
 /* scale the 1-point-high font to 25 points */
 font25 = fmscalefont(font1, 25.0);
 fmsetfont(font25);
 cmov2i(30, 100);
 fmprstr("Hello World!");
 while(TRUE) { /* redraw window if necessary */
 if (qread(&val) == REDRAW) {
 reshapeviewport();
 color(BLACK);
 clear();
 color(GREEN);
 cmov2i(30, 100);
 fmprstr("Hello World!");
 }
 }
}

20

Chapter 1: Using Fonts with the IRIS GL Font Manager

Remote Font Management

Remote font usage, like the Network Transparent IRIS GL, follows the X
remote font model.

The old shared IRIS GL Font Manager Library (/usr/lib/libfm_s) and the new
shared IRIS GL Font Manager Library (/usr/lib/libfm.so) work with either
local or remote graphics service, or both within the same application.

All IRIS GL Font Manager Library routines are rerouted at their calling
point. This means that when the remote graphics routine is active, all calls
are executed on the remote host. Because of this, a font directory containing
the needed font data must reside on the remote host—font data is not
transmitted over a DGL socket connection. Only high-level calls to render
and manipulate text are transmitted over the socket connection.

For applications that open both local and remote windows, the user must
note that the local and remote IRIS GL Font Manager Library services are
disjoint. The user must note which server is currently active by following the
rules for the network-transparent IRIS GL. To summarize how the current
server is determined:

1. After dglopen() has been called, the current server is that specified by
the dglopen() call. This remains in effect until the next dglopen or
winset() call.

2. In the absence of a dglopen() call, the current server is determined by
an environment variable such as DISPLAY and the defaulting
mechanism.

To use the IRIS GL Font Manager Library in a multi-server environment:

1. fminit() must be called once for each graphics server on which IRIS GL
Font Manager Library facilities are desired. Only one call to fminit() is
needed, regardless of the number of windows you want to use on the
specified server.

2. A font handle returned by findfont() is usable only in the windows
controlled by the server from which the request originated; therefore,
the user must remember which server originated the findfont() request.

3. Matrix operations pertain only to the currently active server.

21

Chapter 2

2. GLX Mixed-Model Programming

Most X-based applications are limited to 2D graphics. You can use the IRIS
GL to add one or more 3D rendering windows to an X application. For
example, you can manipulate a 3D IRIS GL image using an IRIS IM1 control
panel. Using one or more IRIS GL windows in an X application, mixing X
and IRIS GL, is called mixed-model, or GLX, programming.

“IRIS Graphics Library Programming in the X Environment” on page 22
highlights some considerations for IRIS GL programming in the X
environment.

When writing a mixed-model program, you have two choices: you can use
the Xt toolkit and a widget set such as IRIS IM, or you can write your
program in Xlib and IRIS GL using special GLX commands. The first
mixed-model programming method, using Xt, is much easier to use and is
more commonly used by mixed-model developers. Silicon Graphics
provides a widget library that simplifies mixed-model programming with
Xt. “Using IRIS GL Widgets to Create Mixed-Model Programs” on page 31
explains how to write a mixed-model program using Xt, the IRIS Widget
Library, and the IRIS GL widget, GlxDraw (Silicon Graphics also provides an
IRIS IM version of GlxDraw, called GlxMDraw). Sample programs in
“Mixed-Model Sample Programs Using Widgets and Xt” on page 45
demonstrate these concepts.

If you prefer to create a mixed-model program in Xlib, without using Xt,
refer to the recommended references on X programming, and use the four
mixed-model routines described in “Using Xlib to Write a GLX Program” on
page 72. The sample program in “Mixed-Model Example Program Using
Xlib and IRIS GL” on page 73 at the end of “Using Xlib to Write a GLX
Program” contains an example of a mixed-model program created with Xlib.

1 IRIS IM is Silicon Graphics’ port of the industry-standard OSF/Motif™.

22

Chapter 2: GLX Mixed-Model Programming

The mixed-model programming routines documented in this guide are
subject to change when the next version of the Graphics Library is released.

IRIS Graphics Library Programming in the X Environment

This section provides some general information about how to write an IRIS
GL program in the X environment. In this guide, a pure IRIS GL program is
one that does not include X—a pure IRIS GL program uses IRIS GL calls
even for tasks such as input handling, which are governed by the X server.

Silicon Graphics recommends that you write mixed-model programs rather
than pure IRIS GL programs. A mixed-model program is essentially an X
program that uses the IRIS GL to handle graphics. In a mixed-model
program, the IRIS GL is completely removed from all areas governed by the
X server.

Using Network Transparency

The IRIS Graphics Library is network transparent. Network transparency
allows an application running on one host to display on a remote host. Any
IRIS GL program can follow a display selection scheme based on the X
Windows DISPLAY variable.

By setting the DISPLAY environment variable, you can render on the screen
of another workstation. The IRIS GL follows the X display syntax, reading
the DISPLAY environment variable to determine the correct screen for
rendering. If the DISPLAY environment variable is not set, the IRIS GL
checks the other environment variables until it determines the proper
location.

The full X display syntax supported is:

[[userid@]hostname [#port]]:server[.screen]

Using the Shared IRIS GL

There are two IRIS GL libraries: shared (libgl_s.a) and nonshared (libgl.a).
Shared libraries provide optimum use of system resources and the best
portability and compatibility between platforms. The shared IRIS GL is

IRIS Graphics Library Programming in the X Environment

23

network transparent. To use network-transparent features, you must link
with the shared IRIS GL using -lgl_s.

The nonshared graphics library (libgl.a) is provided for use with some
debugging tools. IRIS GL programs using the nonshared library cannot use
network-transparent features, nor can you use gldebug on them.

Flushing Buffered Graphics Data

Because IRIS GL programs are network transparent, you must use gflush()
to ensure that buffered graphics data is transferred. A single-buffered
program that never swaps buffers or never reads the event queue may not
ever display any graphics without gflush().

A gflush() is built in to some IRIS GL commands, such as qread() and
swapbuffers(), but these routines are illegal in mixed-model programs.

In mixed-model programs, you may need to put gflush() at the end of all
callbacks and actions. Alternatively, if there is a single routine that draws the
scene each time, you can put gflush() at the end of that function. You should
be careful about where you place gflush(), because it can adversely affect
graphics performance if you place it inside a loop or other time-critical
location. For more information about network-transparent features, see
gflush(3G) and the Graphics Library Programming Guide.

Using Cursors

X maintains a cursor color and shape for each window. Pure IRIS GL
programs do not need to re-color the cursor when they get input focus. It is
not possible to call mapcolor() on the cursor colormap to change the colors
for all cursors.

Handling Input Events

This section describes the two different ways of handling user input, and it
provides information about how the X server relates to input events.

24

Chapter 2: GLX Mixed-Model Programming

Differences Between Pure IRIS GL and Mixed-Model Event Handling

When your IRIS GL program calls an IRIS GL windowing routine, the IRIS
GL windowing routine passes information directly to the X server. In turn,
the X server puts events in the IRIS GL event queue so that existing IRIS GL
programs can monitor and react to events. Thus, IRIS GL events originate
from the X server and IRIS GL event calls such as qenter() are implemented
using a combination of X protocol requests to the X server. When qread() is
called to read the event queue, X events are received from the X server and
translated into the appropriate IRIS GL events.

The IRIS GL queue size is given by GL_MAXQ in /usr/include/gl/qcontrol.h,
which is currently defined as 600.

Using the IRIS GL windowing routines precludes the use of any of the X
event management routines, any X-based toolkit, and any Graphical User
Interface (GUI) widgets that such a toolkit may define.

Currently, the IRIS GL interface does not include a library of GUI widgets,
although it does contain routines that support the creation of popup menus.
If you want to use a dialogue box or some other GUI widget (except for
menus), you must write the widget code from scratch.

If you must create a GUI widget library from scratch or add to an existing
library, you should consider buying the Showcase™ source code and using
its user-interface code for dialog boxes, alert boxes, slide bars, and buttons.

Although an IRIS GL program cannot call X-based widgets, an X program
can create a subwindow that uses the IRIS GL for rendering. Such an X
program is called a mixed-model program. In a mixed-model program, you
can use the widgets of an X-based toolkit (such as IRIS IM) to handle the user
interface.

In a mixed-model program, you cannot use any of the IRIS GL event or
windowing management routines such as winopen() or qread(), or any of
the popup menu routines such as dopup(). In a mixed-model program, the
X part of the code must manage all of the event handling, window control,
and menus.

IRIS Graphics Library Programming in the X Environment

25

Filtering the Number of Mouse Input Events

Under X, the mouse generates about 100 events per second. You can set an
IRIS GL compatibility resource, glCompat.motionQGrowthRate, to filter the
number of events to a more appropriate scale for applications that do a lot of
mouse processing. You can use glcompat() to set the number of mouse input
events to a rate compatible with IRIX system software releases prior to
4D1-4.0, or to provide maximum compression of mouse motion events.

For compatibility, use:

glcompat(GLC_MQUEUERATE, GLC_COMPATRATE)

For maximum compression, use:

glcompat(GLC_MQUEUERATE, GLC_CMPRESS)

Event Buffering

When an IRIS GL call gets an input event, the X server is queried for the
event. All outstanding events are read from the X server, and those events
are stored in an event buffer in libgl. If a user moves the mouse, generating
10 events, then the next qread() call done by the program causes the last 9 of
those events to be stored in a libgl array in memory. The first event is
returned by qread().

Using select() on the IRIS GL File Descriptor

As a result of the way libgl buffers events, programs that use the IRIX call
select() on the IRIS GL file descriptor returned by qgetfd() should call
gflush() before calling select(), to flush rendering before waiting for input.
The application should also empty out the IRIS GL queue after returning
from select().

Two concepts are important when using select():

• It is important to consume all IRIS GL events that are waiting in the
queue before returning to the select() in order to maintain proper input
behavior.

• IRIS GL timers do not work with the select() mechanism. You should
modify the select() timeout to adjust time intervals rather than using
IRIS GL timers to regularize event scheduling.

26

Chapter 2: GLX Mixed-Model Programming

The sample code below demonstrates the proper use of select():

gl_fd = qgetfd();
FD_SET(gl_fd &fds);
while (1) {

gflush(); /* Flush rendering before checking for input
*/
select(...);
if (FD_ISSET (gl_fd, &fds)) {

while (qtest()) {
 short val;
 Device dev = qread(&val);
 ... /* process the event */

}

If the program were to execute only a single qread() after returning from
select(), instead of using the loop structure shown in the sample code, this
sequence of events could occur:

1. The user moves the mouse, generating 10 mouse-motion events.

2. In the IRIS GL program, select() returns, indicating that there is an IRIS
GL event to read.

3. The program does a qread(), which returns the first of the 10 events and
stores the remaining events in an internal libgl buffer. As far as the X
server is concerned, it has returned all 10 events to the client.

4. The next select() hangs forever.

Windowing

You can handle windowing with IRIS GL windowing routines, such as
winopen(). A winopen() call provides results similar to the X calls
XOpenDisplay() and XCreateWindow(). These X events are then translated
into IRIS GL events.

Note: Where possible, it is much better to write mixed-model programs and
handle windowing with X calls, rather than IRIS GL calls. ♦

IRIS Graphics Library Programming in the X Environment

27

Backing Store and Save Under

In the X Window System environment, when an X window is covered by
another window, the contents of the covered window may be saved. The
pixels saved by the X server are known as backing store. Even though the X
server may save and restore the contents of obscured windows, an
application must always be prepared to redraw itself in response to X Expose
events. This is because the X server is always free to ignore requests for
backing store, and it may discard existing backing store at any time if
memory runs out.

Backing store requests are ignored for all IRIS GL windows. Because IRIS GL
rendering bypasses the X server and goes directly to the hardware, drawing
requests for obscured areas cannot be trapped by the X server and are
subsequently redirected to backing store. As a result, whenever an IRIS GL
window is exposed, it will receive a redraw event and it should redraw itself.
Use of overlay planes may help to reduce the number of redraws required
for IRIS GL windows.

Application programmers should not automatically assume that use of
backing store is faster than redrawing damaged windows. On some Silicon
Graphics workstations, redrawing a window is faster than saving and
restoring pixels. Backing store can also use large amounts of memory. For
example, backing store for a full-screen-sized window that is 24 bits per
pixel can use as much as 5 megabytes of memory. Backing store for several
large 24-bit windows can easily use up all memory and cause excessive
memory thrashing.

For more information on backing store, see O’Reilly Vol. 1, Section 4.3.5,
“Backing Store.”

Save Under is another example of the X Window System storing pixels for
windows that are covered by other windows. Save Under is another action
that you may not be able to rely upon, because it is not supported for IRIS
GL windows.

28

Chapter 2: GLX Mixed-Model Programming

Writing Mixed-Model Programs

A mixed-model program is an X program. It allows full access to the
capabilities of X by completely removing the IRIS GL from any feature
governed by the X server. X gives the programmer direct control of all the
areas governed by the X server. You can’t create mixed-model programs that
go only halfway. Your mixed-model program must use X for all
window-system-related services.

You can find examples of many mixed-model programs in the 4Dgifts
directories. If you have trouble finding the relevant directories, refer to the
README file in /usr/people/4Dgifts. This file explains the contents and
organization of the 4Dgifts directories.

The Difference Between Mixed-Model Programs and
Multi-Client Programs

Under previous releases of the IRIX operating system, it was possible for a
single program to open some windows with the IRIS GL, open some
windows with X, and draw into each kind of window with the appropriate
library. This is one program that is both an X and an IRIS GL client, not a
mixed-model program. It is important to understand the difference between
a mixed-model program and this type of program, which is sometimes
called a multi-client or a split-model program. In a mixed-model program,
IRIS GL windows can be nested within one another. In a split-model
program, IRIS GL and X interfaces remain in separate top-level windows.
The interaction between X and IRIS GL windows in split-model programs is
not as easy to implement nor is it as elegant and complete as the interaction
provided by mixed-model programs.

Network Transparency and gflush()

Mixed-model programs are network transparent; that is, simply by setting
the DISPLAY environment variable, the same binary can be made to image
locally or remotely on a machine supporting the network-transparent IRIS
GL.

Writing Mixed-Model Programs

29

To ensure transfer of buffered graphics data across the network,
mixed-model programs must call gflush(), as must pure IRIS GL programs.
A good place to call gflush() is before waiting for user input. In a
widget-based program, it is a good idea to call gflush() at the end of every
callback that performs IRIS GL drawing. For more information on how to
use gflush(), see the Graphics Library Programming Guide.

X Rendering is Not Possible in an IRIS GL Window

Once the IRIS GL has been bound to a window, X rendering in that window
yields undefined results. Subwindows may exist or can be created, in which
rendering works correctly.

Incompatible IRIS Graphics Library Calls

Most IRIS GL code that follows the features documented in the Graphics
Library Programming Guide can be used in mixed-model programs, but a few
IRIS GL functions are not compatible with mixed-model programming. In
mixed-model programs, facilities managed by the X server are accessed
through X, rather than through the IRIS GL. It is illegal to call any IRIS GL
routine that accesses window-system-controlled features from within a
mixed-model window.

These routines are illegal, and the areas they govern must be handled
through X in a mixed-model program:

cursors attachcursor(), curorigin(), curstype(), defcursor(),
getcursor(), RGBcursor(), setcursor()

colormaps blink(), cyclemap(), getcmmode(), getmap(), getmcolor(),
mapcolor(), multimap(), onemap(), setmap()

device input getbutton(), getvaluator(), noise(), qdevice(), qread(),
qtest(), tie(), unqdevice()

device control qcontrol(), qenter(), setvaluator()

display mode acsize(), drawmode(), overlay(), underlay()

framebuffers cmode(), gconfig(), doublebuffer(), leftbuffer(),
rightbuffer(), singlebuffer(), stereobuffer(), RGBmode()

30

Chapter 2: GLX Mixed-Model Programming

windows foreground(), fudge(), keepaspect(), minsize(), maxsize(),
noport(), noborder(), prefsize(), prefposition(), stepunit(),
screenspace(), winconstraints(), winget(), winmove(),
winopen(), winpush(), winpop(), winposition(), winset(),
wintitle()

The window-shaping routines that follow work in mixed-model programs,
but they are not recommended. You should obtain this information from the
window system if possible.

window shape getorigin(), getviewport(), reshapeviewport()

In a mixed-model program, instead of using these incompatible routines,
you can use Xt, GlxDraw, and the four special mixed-model calls described
in “Using the GLX Mixed-Model Routines” on page 72.

In mixed-model programs, window depth and display mode are window
attributes that are defined when the window is created, and they cannot be
changed. To change these attributes, you must create a new window. If you
need multiple display modes in your application, you can create multiple
windows, then map and unmap them, or raise one above the others.

Installing Colormaps

When using colormaps in GLX programs, it is a mistake to not call
XSetWMColormapWindows(). A mixed-model program must use
XSetWMColormapWindows() to make sure its colormaps are installed.
Even if a program is using RGB mode, XSetWMColormapWindows()
should still be called because some hardware (such as IRIS Indigo) simulates
RGB with a colormap.

If you don’t call XSetWMColormapWindows(), the default X colormap is
used. This may not cause any obvious problems on single colormap systems
such as the Personal IRIS, but it may cause problems on multiple colormap
systems such as the IRIS Indigo. For example, on an IRIS Indigo Entry
system, which simulates RGB with a colormap, this means that the IRIS GL
colormap does not get installed, so the resulting colors are incorrect. It is a
good idea to test programs on both types of systems.

Using IRIS GL Widgets to Create Mixed-Model Programs

31

See the cmapov.c sample program at the end of this chapter for a
demonstration of installing a custom colormap. For more general
information on colormaps, see the IRIS IM Programming Notes.

Using IRIS GL Widgets to Create Mixed-Model Programs

The addition of direct control over X features makes mixed-model programs
more complex than pure IRIS GL programs. In general, you can bypass
many of the complexities of X and of mixed-model programming by using
the Xt toolkit and a widget set such as IRIS IM.

When mixing the IRIS GL with Xt, IRIS IM, or Athena widgets, you can use
the Silicon Graphics mixed-model GlxDraw widget, which simplifies
mixed-model programming with IRIS IM or any other widget set. The
GlxDraw widget is also compatible with User Interface Language (UIL).
This section explains how to use the GlxDraw widget for embedding IRIS
GL in an Xt or IRIS IM program.

This section also discusses overlays and some Xt features that are useful in
mixed-model programming, such as the features for handling input and
dealing with animation that are discussed in “Animation: Timeouts and
Workprocs” on page 45.

What You Need to Know About Xt and IRIS IM

The examples shown in this section use Xt and IRIS IM. Although
knowledge of Xt and IRIS IM is not required to read this section,
understanding the details of the examples does require some Xt and IRIS IM
knowledge. This chapter points out areas of the Xt and IRIS IM toolkits that
are of special interest to mixed-model programmers—it does not provide a
tutorial on Xt and IRIS IM. For more information on the relevant features of
Xt and IRIS IM consult the OSF/Motif series, and Digital’s X Window System
Toolkit: the Complete Programmer’s Guide and Specification, or O’Reilly’s Vols. 4
& 5 on X Toolkit Intrinsics.

32

Chapter 2: GLX Mixed-Model Programming

You Don’t Have to Use IRIS IM

This section refers frequently to IRIS IM because it is commonly used in
mixed-model programs; however, unless otherwise specified, you can use
the features discussed here with other widget sets, such as the Athena
widget set because the features discussed in this chapter exist either within
the widget itself or are based on the X toolkit. If you do use IRIS IM, you
should use GlxMDraw, the IRIS IM version of the GlxDraw widget.

About the GlxDraw and GlxMDraw Widgets

Use the GlxDraw widget when creating a mixed-model program using Xt.
The GlxDraw widget is similar to a normal widget, but it sets up a
configuration for IRIS GL drawing, as well as providing resources and
callbacks that are useful to the IRIS GL programmer. The GlxDraw widget
also provides support for overlays.

There are actually two GlxDraw widgets. The widget known as GlxDraw is
a generic widget, suitable with any widget set that is based on the Xt
intrinsics. There is also a version known as GlxMDraw (note the M) for use
with IRIS IM programs.

The two widgets are very similar, but they do have these differences:

• GlxMDraw is a subclass of the IRIS IM XmPrimitive rather than being a
subclass of the Xt Core widget and, therefore, has various defaults such
as background color.

• GlxMDraw understands IRIS IM traversal, although traversal is turned
off by default.

• GlxMDraw has an IRIS IM style creation function, GlxCreateMDraw(),
in addition to allowing creation of the widget directly through Xt.

In all other respects, the two widgets are identical. The remainder of this
chapter refers to the GlxDraw widget, but unless otherwise specified,
everything stated refers to both.

Using IRIS GL Widgets to Create Mixed-Model Programs

33

Using GlxDraw

Follow these basic steps for writing a mixed-model program using Xt and
the GlxDraw (or GlxMDraw) widget:

1. Include the appropriate header file.

2. Declare the GlxConfig resource to describe the IRIS GL requirements.

3. Create the GlxDraw widget (include the GlxConfig resource).

4. Add callbacks and provide callback routines.

5. Write the IRIS GL code.

6. Handle the input events.

7. Link with the IRIS Widget Library.

A sample program that demonstrates these concepts follows, and the
sections that follow the sample program describe each step in detail, except
steps 5 and 6, which are covered more thoroughly in “Handling Input in a
Mixed-Model Program” on page 42.

A Sample Program Using GlxDraw

The sample program in Example 2-1 uses the GlxDraw widget. Details about
the code are discussed in the sections that follow.

Example 2-1 An Example of Using the GlxDraw Widget

#include <X11/Xirisw/GlxDraw.h>
. . .
/* The following configuration should match your
 * hardware needs as described in GLXgetconfig
 */

GLXconfig glxConfig [] = {
 { GLX_NORMAL, GLX_DOUBLE, TRUE },
 { GLX_NORMAL, GLX_RGB, TRUE },
 { GLX_NORMAL, GLX_ZSIZE, GLX_NOCONFIG },
 { 0, 0, 0 }
};

34

Chapter 2: GLX Mixed-Model Programming

main()
{
 Arg args[10];
 int n;
 Widget parent; /* The parent of the gl widget */
 Widget glw; /* The glxDraw widget */
 . . .
 /* Create the widget */
 n = 0;
 XtSetArg(args[n], GlxNglxConfig, glxConfig); n++;
 glw = XtCreateManagedWidget(“glx”, glxDrawWidgetClass,
 parent, args, n);
 /* Add any needed callbacks */
 XtAddCallback(glw, GlxNginitCallback, ginitCB, 0);
 XtAddCallback(glw, GlxNexposeCallback, exposeCB, 0);
 XtAddCallback(glw, GlxNresizeCallback, resizeCB, 0);
 /* Also add input callback if needed */
 . . .
 XtRealizeWidget(toplevel);
 /* install the colormap after the widget is realized */
 installColormap (toplevel, glw);
}
/* The initialize callback */
static void
ginitCB(w, client_data, call_data)
 Widget w;
 caddr_t client_data;
 GlxDrawCallbackStruct *call_data;
{
 GLXwinset(display, call_data->window);
 /* Perform any necessary graphics initialization.*/
}

/* a function to install the colormaps */
installColormap(toplevel, glw)
Widget toplevel, glw;
{
 Window windows[2];
 windows[0] = XtWindow(glw);
 windows[1] = XtWindow(toplevel);
 XSetWMColormapWindows(XtDisplay(toplevel),
 XtWindow(toplevel),windows, 2);
}

Using IRIS GL Widgets to Create Mixed-Model Programs

35

/* The expose callback */
static void
exposeCB(w, client_data, call_data)
 Widget w;
 caddr_t client_data;
 GlxDrawCallbackStruct *call_data;
{
 GLXwinset(display, call_data->window);
 draw_scene(); /* User provided routine to redraw */
}

/* The resize callback */
static void
resizeCB(w, client_data, call_data)
 Widget w;
 caddr_t client_data;
 GlxDrawCallbackStruct *call_data;
{
 GLXwinset(display, call_data->window);
 viewport(0, (Screencoord) call_data->width-1,
 0, (Screencoord) call_data->height-1);
}

Including GlxDraw Header Files

The header file to include depends on whether the IRIS IM or the generic
version of the program is included.

For the IRIS IM version:

#include <X11/Xirisw/GlxMDraw.h>

For the generic version:

#include <X11/Xirisw/GlxDraw.h>

Declaring the GLXconfig Resource

In mixed-model programs, you must configure your windows before you
can render in them, rather than configuring them on the fly as you can in
pure IRIS GL programs—you cannot use the IRIS GL routine gconfig() in
mixed-model programs.

36

Chapter 2: GLX Mixed-Model Programming

The GLXconfig resource takes an array describing IRIS GL requirements
such as single or double buffering, RGB or color index mode, z-buffering,
accumulation buffering, overlay/underlay/popup windows, and so on.
GLXconfig determines what is possible on the current hardware and returns
a new structure with the exact description of what will be allowed, as well
as the information needed to create an X window suitable for IRIS GL
drawing. You can use GLXgetconfig() to return the actual configuration. See
the GLXgetconfig(3G) manual page for more information.

The structure prototype is:

typedef struct _GLXconfig { /* from <gl/glws.h> */
 int buffer;
 int mode;
 int arg;
} GLXconfig;

Values for GLXconfig.buffer specify which framebuffer the configuration
affects. Possible values are GLX_NORMAL, GLX_POPUP, GLX_OVERLAY
and GLX_UNDERLAY.

Values for GLXconfig.mode specify which attributes of the buffer are being
configured. The interpretation of GLXconfig.arg is dependent on the mode
that is specified.

Values for the mode and arg fields of the GLXconfig are:

GLX_DOUBLE
In the input configuration, single buffering is assumed
unless GLX_DOUBLE, True is specified. On output, if
double buffering is not available, the arg field for
GLX_DOUBLE will be false.

GLX_RGB In the input configuration, color index is assumed unless
GLX_RGB, True is specified. On output, if RGB is not
available, the arg field for GLX_RGB will be false.

GLX_BUFSIZE
If not specified, or if the arg is GLX_NOCONFIG, then the
largest available number will be allocated. On return, the
arg field will contain the number allocated.

Using IRIS GL Widgets to Create Mixed-Model Programs

37

GLX_STENSIZE, GLX_ACSIZE, GLX_ZSIZE
If none of these buffers are specified, none will be allocated.
If the arg is GLX_NOCONFIG, the largest available number
will be allocated. On return, the arg field will contain the
number allocated.

GLX_VISUAL Ignored on input. On output, it contains the correct visual
ID for the window to be created for that buffer.

GLX_COLORMAP
Ignored on input. In the output, the value is the colormap
that traditional winopen()-style IRIS GL windows will use
for that buffer. This is for information only—colors in this
colormap can be queried, and this colormap ID can be used
in creating windows. However, it’s forbidden to write into
this colormap using XStoreColor(s). If a client wants to do
XStoreColor(s), it needs to create its own colormap. Even if
a client does not do XStoreColor(s), it is free to create
windows with a colormap other than the one returned in
GLX_COLORMAP.

GLX_WINDOW
Ignored on input. On output, for a supported buffer
request, it is a placeholder with value GLX_NONE. Before
the output buffer is passed to GLXlink(), the value should
be replaced with the window that was created.

GLX_MSSAMPLE
On input, the arg field should contain the requested number
of multisample samples to be stored at each framebuffer
pixel location. On output, the arg will contain the allocated
number of samples. If not specified, no samples will be
allocated.

GLX_MSZSIZE
On input, the arg field should contain the requested number
of bits per depth component desired in the multisample
buffer. On output, the arg will contain the allocated number
of bits. If none are specified, no bits will be allocated.

38

Chapter 2: GLX Mixed-Model Programming

GLX_MSSSIZE
On input, the arg field should contain the requested number
of bits per stencil field desired in the multisample buffer. On
output, the arg will contain the allocated number of bits. If
none are specified, no bits will be allocated.

GLX_STEREOBUF
In the input configuration, monoscopic buffer is assumed
unless GLX_STEREOBUF, True is specified. On output, if
stereoscopic viewing is not available, the arg field for
GLX_STEREOBUF will be false.

The following code fragment, reproduced from the sample program,
requests double buffered RGB mode with z-buffering:

GLXconfig glxConfig [] = {
 { GLX_NORMAL, GLX_DOUBLE, TRUE },
 { GLX_NORMAL, GLX_RGB, TRUE },
 { GLX_NORMAL, GLX_ZSIZE, GLX_NOCONFIG },
 { 0, 0, 0 }
};

Creating the GlxDraw Widget

Create the GlxDraw widget, just like any other widget, as part of the widget
hierarchy. IRIS IM users may wish to create it as the child of a frame, as it
provides no decoration of its own. You can create the IRIS IM version of the
widget by using the IRIS IM style convenience function:

GlxCreateMDraw(parent,name,arglist,argcount)

Alternately, you can create the IRIS IM version of the widget directly, using
Xt creation functions:

XtCreateWidget(name,glxMDrawWidgetClass,parent,arglist,argcount)

To create the generic version of the widget, you must use an Xt Creation
function, such as:

XtCreateWidget(name,glxDrawWidgetClass,parent,arglist,argcount)

The sample program in Example 2-1 creates a generic GlxDraw widget using
the Xt creation function.

Using IRIS GL Widgets to Create Mixed-Model Programs

39

The following code fragment creates an IRIS IM style widget using the
convenience function:

main(argc, argv)
int argc;
char *argv[];
{
 Arg args[20];
 int n;
 Widget parent, glw;
 . . .
 n = 0;
 XtSetArg(args[n], GlxNglxConfig, glxConfig); n++;
 glw = GlxCreateMDraw(frame, "glwidget", args, n);
 XtManageChild (glw);
 . . .
}

Inserting Callbacks

Xt programs handle events through a callback mechanism, whereby the user
provides functions to be called when certain events occur. The GlxDraw
widget provides several callbacks, which are listed in Table 2-1.

Table 2-1 GlxDraw Callbacks

Callback Description

ginit This callback is the first callback. It is called automatically when a
widget is realized and the window is created.

expose This callback is called whenever the window needs redrawing, for
example if an overlapping window is removed.

resize This callback is called whenever the window is resized.

input This callback is called for keyboard and mouse input.

overlayExpose This callback is called whenever the overlay window needs
redrawing. There are similar callbacks for underlays and popups.

40

Chapter 2: GLX Mixed-Model Programming

After creating the widget, add the necessary callbacks with
XtAddCallback(), as demonstrated in this code fragment from the sample
program:

XtAddCallback(glw, GlxNginitCallback, initCB, 0);
XtAddCallback(glw, GlxNexposeCallback, exposeCB, 0);
XtAddCallback(glw, GlxNresizeCallback, resizeCB, 0);

The ginit callback is needed because Xt doesn’t create windows immediately.
Instead, it waits until the widget is realized (usually by a call to
XtRealizeWidget()). You can’t use the IRIS GL in a window until it is
realized. The application can either perform its IRIS GL initialization after
realizing the widget, or it can use the ginit callback to perform this function.

Here are some things not to do within the ginit callback:

• Do not call winopen(). The widget has already created the window.
winopen() is not allowed in mixed-model programs.

• Do not call gconfig(). This is not allowed in mixed-model programs.
Use the GlxConfig() resource to set up IRIS GL configuration.

• Do not draw the window. After the window is created, it gets an expose
callback (unless it is hidden). Drawing the window during initialization
is unnecessary.

The second callback states that when the widget glw receives an Expose
callback, the user provided routine exposeCB should be called, with a
parameter of 0.

An Expose callback might look like this:

static void
exposeCB(w, client_data, call_data)
 Widget w;
 caddr_t client_data;
 GlxDrawCallbackStruct *call_data;
{
 GLXwinset(display, call_data->window);
 draw_scene();
 gflush();
}

The first parameter, w, is the widget. The second parameter, client_data, is
passed in by the programmer when adding the callback. The third

Using IRIS GL Widgets to Create Mixed-Model Programs

41

parameter, call_data, is provided by the widget itself. For the GlxDraw
widget, this includes the reason for the callback, the window, and the
window’s width and height.

The first thing that the callback does is call GLXwinset(). Unlike X, where a
window is passed to all drawing routines, the IRIS GL maintains the concept
of a current window. GLXwinset() tells the IRIS GL to perform all
subsequent operations in the specified window. Begin every callback by
calling GLXwinset() to make sure you’re dealing with the correct IRIS GL
window. (The exception to this rule is when there is only one IRIS GL
window in the application—in this case GLXwinset() is unnecessary.) The
widget makes one call to GLXwinset() when it is created, and all subsequent
IRIS GL operations go to that window.

After calling GLXwinset(), the callback redraws the image. In this example,
that is accomplished by calling draw_scene().

Finally, the call to gflush() flushes the queue if the application is running
over the network. The call to gflush() can be in either the callback or in
draw_scene().

A resize callback is very similar:

static void
resizeCB(w, client_data, call_data)
 Widget w;
 caddr_t client_data;
 GlxDrawCallbackStruct *call_data;
{
 GLXwinset(display, call_data->window);
 viewport(0, (Screencoord) call_data->width-1,
 0, (Screencoord) call_data->height-1);
 gflush();
}

The main addition here is the call to viewport(). This tells the IRIS GL to
resize the viewport to the same size as the window.

Using Overlays

The GlxDraw widget provides support for overlays and popups. Under X,
overlay drawing is managed by the window system. In order to function in

42

Chapter 2: GLX Mixed-Model Programming

an environment where there might be X windows in the overlay planes, it is
necessary for mixed-model programs to explicitly create a window in the
overlay planes for overlay drawing.

To create an overlay, add the appropriate entries to the GlxConfig() resource,
and set the useOverlay resource to TRUE. The widget creates the overlay
window and automatically generates overlayExpose callbacks when
necessary. To draw to the overlay at other times, get the window ID by
querying the overlayWindow resource. Call GLXwinset() to select either the
normal window or the overlay window as the drawing surface.

The last two steps in the outline for using GlxDraw, writing the IRIS GL
code, and handling the input events are discussed in “Handling Input in a
Mixed-Model Program” below.

Linking with the IRIS Widget Library

When using the IRIS GL widgets, link with -lXirisw. Here is an IRIS IM
example:

ld -oprognameprog.o -lXirisw -lXm_s -lXt_s -lX11_s -lPW -lsun -lmalloc

In the example, progname is the name of your program.

Handling Input in a Mixed-Model Program

To provide for smoother porting from system to system, as well as for easier
integration of X and IRIS GL in a single application, always separate event
handling loops from the rest of your program.

Input in Xt is event-driven. There are two ways of handling input with the
GlxDraw widget. The first is to use the input callback, which provides a
callback for keyboard and mouse events. The second is to use actions and
translations, Xt-provided mechanisms that map keyboard input into
user-provided routines.

Both the input callback and the translations have advantages. The input
callback is usually somewhat simpler to write, especially the first time. Also
with the input callback all input is handled by a single routine that can
maintain private state.

Using IRIS GL Widgets to Create Mixed-Model Programs

43

On the other hand, the action and translation method can produce more
modular programs, because translations have one function for each action.
Also, with translations, the system does the keyboard parsing so you don’t
have to do it in the code. Finally, the use of translations allows the users to
customize the bindings, for example, they can create a setup where they can
type q instead of <Esc> to quit an application.

Using the Input Callback

By default, the input callback is called with every key press and release, with
every mouse button press and release, and whenever the mouse is moved
while a mouse button is pressed. You can change this by providing a
different translation table, although the default setting should be suitable for
many IRIS GL applications. The callback is passed an X event, which it
should interpret, then perform the appropriate action. It is up to you to
interpret the event—for example, to convert an X keycode into a key
symbol—then decide what to do with it.

Using Actions and Translations

Actions and translations provide a mechanism for binding a key or mouse
event to a function call. For example, you can set things up so that when the
<Esc> key is pressed, exit is called; when mouse button 1 is pressed, a
rotation occurs; and when <f> is pressed, the program zooms in. The
following translations show how this might be done:

program*glwidget*translations: #override \n\
 <Btn1Down>: start_rotate() \n\
 <Btn1Up>: stop_rotate() \n\
 <Btn1Motion>: rotate() \n\
 <Key>f: zoom_in() \n\
 <Key>b: zoom_out() \n\
 <KeyUp>osfCancel: quit()

Although the syntax takes a little getting used to, the effect is clear. When
button 1 is pressed, start_rotate() is called. When it is released, stop_rotate()
is called. Moving the mouse with the button 1 causes the actual rotation.
Similarly, the <f> and keys cause zooming in and out.

The last entry is a little cryptic. It actually says that when the <Esc> key is
pressed, quit() is called. However, the Open Software Foundation® has

44

Chapter 2: GLX Mixed-Model Programming

implemented virtual bindings, which allow the same programs to work on
computers with different keyboards that may be missing various keys. If a
key has a virtual binding, the virtual binding name must be specified in the
translation. Thus, the example above specifies osfCancel rather than <Esc>.
To use the above translation in a program that is not based on IRIS IM,
replace <KeyUp>osfCancel with <KeyUp>Escape.

The translation is only half of what it takes to set up this binding. Although
the translation table above has what looks like function names, they are
actually action names. The program must create an action table to bind the
action names to actual functions in the program. For more information on
setting up actions and translations, see the recommended X Window System
references.

Common Pitfalls

Regardless of whether you use the input callback or actions and translations,
there is one simple pitfall to watch out for when parsing mouse
events—namely that X and IRIS GL have different notions of the y direction.
With X, positive y is down—with GL, positive y is up. It is easy to write an
application where the program tries to track the mouse, only to find the
object moving in the wrong direction vertically.

Another common problem that crops up is that, in programs using IRIS IM,
it may appear that keyboard input is getting lost. This is caused by IRIS IM’s
traversal behavior. The keyboard input might actually be directed to another
widget. There are two solutions to this. The easiest solution is to set the
resource:

keyboardFocusPolicy: POINTER

for the application. This eliminates IRIS IM traversal, and always sets input
focus to follow the pointer; however, doing so eliminates traversal for those
users who prefer it and forces a nondefault model. A better solution is to set
the resource:

traversalOn: TRUE

for the widget (not the application) and to call:

XmProcessTraversal(widget, XmTRAVERSE_CURRENT);

Using IRIS GL Widgets to Create Mixed-Model Programs

45

whenever mouse button 1 is pressed in the window. Turning processTraversal
on causes the window to respond to traversal (which it normally does not),
and calling XmProcessTraversal() actually traverses into the widget when
needed.

Animation: Timeouts and Workprocs

In GL, animation is usually handled by a continuous loop, but because Xt is
event-driven, this won’t work in an Xt program. Instead, Xt provides two
mechanisms, timeouts and workprocs (work procedures), that are useful in
animation:

• A timeout is called every n milliseconds. It is useful for constant speed
animation, as long as the processor can keep up.

• A workproc is called whenever the process has nothing else to do. It
provides the highest speed animation that the processor can handle,
but the speed varies depending on load.

One advantage of workprocs is that user actions such as menu postings have
a higher priority than the workproc, so the menus will pop up immediately.
Although the workproc has the lowest priority in the process, it still must
compete with other processes. The example in “Mixed-Model Sample
Programs Using Widgets and Xt” below shows how to use workprocs to
produce animation.

Mixed-Model Sample Programs Using Widgets and Xt

This section presents two mixed-model programs that demonstrate the
concepts used in this section. These examples are provided on line in
/usr/people/4Dgifts/examples/GLX. They are reprinted here for your
convenience, but you should study the online versions because they can be
updated after this guide is released.

Work Procedures and Popup Menus

Example 2-2 lists wproc.c, which shows how to achieve continuous
animation through the Xt Intrinsics mechanism of workprocs. The program
displays a continuously rotating wireframe cube. It also demonstrates how

46

Chapter 2: GLX Mixed-Model Programming

to create a popup menu for the IRIS GL widget. Click the right mouse button
to see the popup menu.

Example 2-2 wproc.c Source Code

/** header **/
/*
//
// purpose:
// mixed model motif program demonstrating
// ... using workprocs for continuous animation
// ... updating aspect of 3d view to keep "square’s square"
// ... creating popup menu for the gl widget
//
// compiling:
// cc -float -prototypes -DFUNCPROTO -O wproc.c -o wproc \
// -s -lXirisw -lXm_s -lXt_s -lgl_s -lX11_s -lm -lsun -lPW
*/

/** notes ***/
/** includes **/

#include <stdio.h> /* printf(), ... */
#include <Xm/Xm.h> /* for motif */
#include <Xm/Form.h> /* motif widget */
#include <Xm/Frame.h> /* motif widget */
#include <Xm/Label.h> /* motif widget */
#include <Xm/PushB.h> /* motif widget */
#include <Xm/RowColumn.h> /* motif widget */
#include <Xm/Separator.h> /* motif widget */
#include <X11/Xirisw/GlxMDraw.h> /* gl widget */

/** defines ***/

/* c environment */
#define global

/* colors */
#define RGB_BLACK 0x00000000
#define RGB_RED 0x000000FF
#define RGB_GREEN 0x0000FF00
#define RGB_BLUE 0x00FF0000

/** typedefs **/

Using IRIS GL Widgets to Create Mixed-Model Programs

47

/** prototypes **/

extern void main(int argc, char *argv[], char *envp[]);

/* setup */
static void check_capabilities(void);
static void install_colormaps(Widget top_level, Widget glw);

/* callbacks (gl widget) */
static void gl_ginit_cb(Widget w, XtPointer appdat, XtPointer sysdat);
static void gl_expose_cb(Widget w, XtPointer appdat, XtPointer sysdat);
static void gl_resize_cb(Widget w, XtPointer appdat, XtPointer sysdat);
static void gl_input_cb(Widget w, XtPointer appdat, XtPointer sysdat);

/* callbacks (misc) */
static void quit_cb(Widget w, XtPointer appdat, XtPointer sysdat);
static void color_cb(Widget w, XtPointer appdat, XtPointer sysdat);

/* event handlers */
static void post_menu_eh(Widget w, Widget menu, XEvent *event);

/* work procedures */
static Boolean anim_wp(XtPointer appdat);

/* drawing */
static void draw_frame(char *ops);
static void model_cube_wire(void);

/** variables ***/

/* fallback resources */
static char *fallback_resources[] = {
 "Wproc*Red*foreground: red",
 "Wproc*Green*foreground: green4",
 "Wproc*Blue*foreground: blue",
 "Wproc*info_label*labelString: "
 "[Use the Right Mouse Button to pop up color menu]",
 NULL,
};

48

Chapter 2: GLX Mixed-Model Programming

/*
// mixed-model configuration:
*/
static GLXconfig glx_config[] = {
 {GLX_NORMAL, GLX_DOUBLE, TRUE},
 {GLX_NORMAL, GLX_RGB, TRUE},
 { 0, 0, 0 },
};
static unsigned long cube_color = RGB_GREEN;

/** functions ***/
/*
// main - program entry point.
*/
global void main(
 int argc, /* argument count */
 char *argv[], /* argument vector */
 char *envp[] /* environment pointer */
)
{
 XtAppContext app_context; /* application context */
 Display *dsp; /* display ref */
 Widget app_shell; /* first widget */
 Widget form; /* surrounds app */
 Widget rowcol; /* manages input buttons */
 Widget button; /* utility button */
 Widget label; /* utility label */
 Widget separator; /* utility separator */
 Widget frame; /* to surround gl widget */
 Widget glw; /* can do gl rendering in this guy */
 Widget menu; /* simple popup for gl widget */
 XtWorkProcId anim_wpid; /* animation work proc */
 Arg args[15]; /* for name/value pairs */
 int n; /* reusable indices */

 /* make sure we can we do it */
 check_capabilities();

 /* initialize toolkit, creating application shell */
 n = 0;
 XtSetArg(args[n], XmNtitle, "Work Proc"); n++;
 app_shell = XtAppInitialize(
 &app_context, "Wproc", NULL, 0, &argc, argv,
 fallback_resources, args, n

);

Using IRIS GL Widgets to Create Mixed-Model Programs

49

 /* create container for app */
 n = 0;
 form = XmCreateForm(app_shell, "form", args, n);
 XtManageChild(form);

 /* create the command area */
 n = 0;
 XtSetArg(args[n], XmNleftAttachment, XmATTACH_FORM); n++;
 XtSetArg(args[n], XmNbottomAttachment, XmATTACH_FORM); n++;
 XtSetArg(args[n], XmNtopAttachment, XmATTACH_FORM); n++;
 XtSetArg(args[n], XmNorientation, XmVERTICAL); n++;
 rowcol = XmCreateRowColumn(form, "rowcol", args, n);
 XtManageChild(rowcol);

 /* create the command area buttons */
 n = 0;
 button = XmCreatePushButton(rowcol, "Quit", args, n);
 XtAddCallback(button, XmNactivateCallback, quit_cb, NULL);
 XtManageChild(button);

 /* create separator between command area and output area */
 n = 0;
 XtSetArg(args[n], XmNleftAttachment, XmATTACH_WIDGET); n++;
 XtSetArg(args[n], XmNleftWidget, rowcol); n++;
 XtSetArg(args[n], XmNbottomAttachment, XmATTACH_FORM); n++;
 XtSetArg(args[n], XmNtopAttachment, XmATTACH_FORM); n++;
 XtSetArg(args[n], XmNorientation, XmVERTICAL); n++;
 separator = XmCreateSeparator(form, "separator", args, n);
 XtManageChild(separator);

 /* create the output area */
 /* create the informational label */
 n = 0;
 XtSetArg(args[n], XmNleftAttachment, XmATTACH_WIDGET); n++;
 XtSetArg(args[n], XmNleftWidget, separator); n++;
 XtSetArg(args[n], XmNleftOffset, 5); n++;
 XtSetArg(args[n], XmNrightAttachment, XmATTACH_FORM); n++;
 XtSetArg(args[n], XmNrightOffset, 5); n++;
 XtSetArg(args[n], XmNtopAttachment, XmATTACH_FORM); n++;
 XtSetArg(args[n], XmNtopOffset, 5); n++;
 label = XmCreateLabel(form, "info_label", args, n);
 XtManageChild(label);

50

Chapter 2: GLX Mixed-Model Programming

 /* create the frame */
 n = 0;
 XtSetArg(args[n], XmNleftAttachment, XmATTACH_WIDGET); n++;
 XtSetArg(args[n], XmNleftWidget, separator); n++;
 XtSetArg(args[n], XmNleftOffset, 5); n++;
 XtSetArg(args[n], XmNrightAttachment, XmATTACH_FORM); n++;
 XtSetArg(args[n], XmNrightOffset, 5); n++;
 XtSetArg(args[n], XmNbottomAttachment, XmATTACH_FORM); n++;
 XtSetArg(args[n], XmNbottomOffset, 5); n++;
 XtSetArg(args[n], XmNtopAttachment, XmATTACH_WIDGET); n++;
 XtSetArg(args[n], XmNtopWidget, label); n++;
 XtSetArg(args[n], XmNtopOffset, 5); n++;
 XtSetArg(args[n], XmNshadowThickness, 6); n++;
 frame = XmCreateFrame(form, "frame", args, n);
 XtManageChild(frame);

 /* create the gl widget */
 n = 0;
 XtSetArg(args[n], GlxNglxConfig, glx_config); n++;
 XtSetArg(args[n], XmNborderWidth, 0); n++;
 XtSetArg(args[n], XmNwidth, 400); n++;
 XtSetArg(args[n], XmNheight, 400); n++;
 glw = GlxCreateMDraw(frame, "glw", args, n);
 XtManageChild(glw);
 XtAddCallback(glw, GlxNginitCallback, gl_ginit_cb, 0);
 XtAddCallback(glw, GlxNexposeCallback, gl_expose_cb, 0);
 XtAddCallback(glw, GlxNresizeCallback, gl_resize_cb, 0);
 XtAddCallback(glw, GlxNinputCallback, gl_input_cb, 0);

 /* create a popup menu */
 n = 0;
 menu = XmCreatePopupMenu(form, "menu", args, n);
 XtAddEventHandler(
 form, ButtonPressMask, FALSE, (XtEventHandler) post_menu_eh,
 (XtPointer) menu
);

 /* menu title is the name of the program */
 n = 0;
 label = XmCreateLabel(menu, "Color", args, n);
 XtManageChild(label);
 separator = XmCreateSeparator(menu, "separator", args, n);
 XtManageChild(separator);
 separator = XmCreateSeparator(menu, "separator", args, n);
 XtManageChild(separator);

Using IRIS GL Widgets to Create Mixed-Model Programs

51

 /* add some buttons to change color */
 n = 0;
 button = XmCreatePushButton(menu, "Red", args, n);
 XtAddCallback(button, XmNactivateCallback, color_cb, (XtPointer) RGB_RED);
 XtManageChild(button);
 button = XmCreatePushButton(menu, "Green", args, n);
 XtAddCallback(button, XmNactivateCallback, color_cb, (XtPointer) RGB_GREEN);
 XtManageChild(button);
 button = XmCreatePushButton(menu, "Blue", args, n);
 XtAddCallback(button, XmNactivateCallback, color_cb, (XtPointer) RGB_BLUE);
 XtManageChild(button);

 /* setup work procedure */
 anim_wpid = XtAppAddWorkProc(app_context, anim_wp, (XtPointer) glw);

 /* realize the app, creating the actual x windows */
 XtRealizeWidget(app_shell);
 install_colormaps(app_shell, glw);

 /* enter the event loop */
 XtAppMainLoop(app_context);
}

/*- support: setup ---*/
/*
// check_capabilities - find out if the machine can do what we need.
*/
static void check_capabilities(void)
{
 if (getgdesc(GD_BITS_NORM_DBL_RED) == 0) {
 fprintf(stderr, "Double buffered RGB mode not available.\n");
 exit(1);
 }
}

52

Chapter 2: GLX Mixed-Model Programming

/*
// install_colormaps - let the window manager know about our colormaps.
//
// This has been generalized to handle any windows a gl widget might have.
// It may not necessarily being using any of them.
*/
static void install_colormaps(Widget top_level, Widget glw)
{
 Window overlay_win, popup_win, underlay_win;
 Window window[5];

 int i;

 XtVaGetValues(
 glw,
 GlxNoverlayWindow, &overlay_win,
 GlxNpopupWindow, &popup_win,
 GlxNunderlayWindow, &underlay_win,
 NULL
);
 i = 0;
 if (overlay_win)
 window[i++] = overlay_win;
 if (popup_win)
 window[i++] = popup_win;
 if (underlay_win)
 window[i++] = underlay_win;
 window[i++] = XtWindow(glw);
 window[i++] = XtWindow(top_level);
 XSetWMColormapWindows(XtDisplay(top_level), XtWindow(top_level), window, i);
}

Using IRIS GL Widgets to Create Mixed-Model Programs

53

/*- support: callbacks (gl widget) ---*/
/*
// gl_ginit_cb - perform any necessary graphics initialization.
*/
static void gl_ginit_cb(Widget w, XtPointer appdat, XtPointer sysdat)
{
 GlxDrawCallbackStruct *glx = (GlxDrawCallbackStruct *) sysdat;

 GLXwinset(XtDisplay(w), XtWindow(w));
 mmode(MVIEWING);
 perspective(300, glx->width/(float)glx->height, 1.0, 50.0);
 polarview(10.0, 0, 0, 0);
 frontbuffer(TRUE);
 cpack(RGB_BLACK);
 clear();
 frontbuffer(FALSE);
 gflush();
}

/*
// gl_expose_cb - handle expose events for the gl widget.
*/
static void gl_expose_cb(Widget w, XtPointer appdat, XtPointer sysdat)
{
 GlxDrawCallbackStruct *glx = (GlxDrawCallbackStruct *) sysdat;

 GLXwinset(XtDisplay(w), XtWindow(w));
 draw_frame("cds");
}

/*
// gl_resize_cb - handle resize events for the gl widget.
*/
static void gl_resize_cb(Widget w, XtPointer appdat, XtPointer sysdat)
{
 GlxDrawCallbackStruct *glx = (GlxDrawCallbackStruct *) sysdat;

 GLXwinset(XtDisplay(w), XtWindow(w));
 viewport(0, glx->width-1, 0, glx->height-1);
 perspective(300, glx->width/(float)glx->height, 1.0, 50.0);
}

54

Chapter 2: GLX Mixed-Model Programming

/*
// gl_input_cb - handle input from a gl window.
*/
static void gl_input_cb(Widget w, XtPointer appdat, XtPointer sysdat)
{
 GlxDrawCallbackStruct *glx = (GlxDrawCallbackStruct *) sysdat;

 GLXwinset(XtDisplay(w), XtWindow(w));
}

/*- support: callbacks (misc) --*/
/*
// quit_cb - exit application.
*/
static void quit_cb(Widget w, XtPointer appdat, XtPointer sysdat)
{
 exit(0);
}

/*
// color_cb - change cube color.
*/
static void color_cb(Widget w, XtPointer appdat, XtPointer sysdat)
{
 cube_color = (unsigned long) appdat;
}

/*- support: event handlers --*/
/*
// post_menu_eh - popup menu to get user’s color selection.
*/
static void post_menu_eh(Widget w, Widget menu, XEvent *event)
{
 int button;

 /* make sure it’s the correct button being pressed */
 XtVaGetValues(menu, XmNwhichButton, &button, NULL);
 if (event->xbutton.button == button) {
 XmMenuPosition(menu, (XButtonPressedEvent *) event);
 XtManageChild(menu);
 }
}

Using IRIS GL Widgets to Create Mixed-Model Programs

55

/*- support: work procedures ---*/
/*
// anim_wp - do another frame of animation.
*/
static Boolean anim_wp(XtPointer appdat)
{
 Widget glw = (Widget) appdat;

 GLXwinset(XtDisplay(glw), XtWindow(glw));
 draw_frame("cdsu");
 return (False);
}

/*- support: drawing ---*/
/*
// draw_frame - localize steps to drawing a frame.
*/
static void draw_frame(char *ops)
{
 static Angle rx = 0;
 static Angle ry = 0;
 static Angle rz = 0;
 for (; *ops != ’\0’; ops++) {
 switch (ops[0]) {
 case ’c’: /* clear */
 cpack(RGB_BLACK);
 clear();
 break;
 case ’d’: /* draw */
 cpack(cube_color);
 pushmatrix();
 rotate(rz, ’z’);
 rotate(ry, ’y’);
 rotate(rx, ’x’);
 model_cube_wire();
 popmatrix();
 break;
 case ’s’: /* swap */
 swapbuffers();
 gflush();
 break;

56

Chapter 2: GLX Mixed-Model Programming

 case ’u’: /* update */
 /* next angle */
 rx = (rx + 10) % 3600;
 ry = (ry + 10) % 3600;
 rz = (rz + 10) % 3600;
 break;
 default:
 break;
 }
 }
}

/*- support: modelling primitives --*/
/*
// model_cube_wire - cube primitive (3D, wireframe)
*/
static void model_cube_wire(void)
{
 static long v[8][3] = {
 {-1, -1, -1},
 {-1, -1, 1},
 {-1, 1, 1},
 {-1, 1, -1},
 { 1, -1, -1},
 { 1, -1, 1},
 { 1, 1, 1},
 { 1, 1, -1},
 };
 static int path[16] = {
 0, 1, 2, 3,
 0, 4, 5, 6,
 7, 4, 5, 1,
 2, 6, 7, 3
 };
 int i;

 bgnline();
 for (i=0; i<16; i++)
 v3i(v[path[i]]);
 endline();
}

/** eof ***/

Using IRIS GL Widgets to Create Mixed-Model Programs

57

Mouse Input and Colormaps

Example 2-3 lists cmapov.c, which installs a colormap and uses mouse input.

Example 2-3 cmapov.c Source Code

/** header **/
/*
//
// purpose:
// mixed model program demonstrating
// ...using custom colormaps for the normal and overlay buffers.
// ...moving things with the mouse.
//
// compiling:
// cc -float -prototypes -DFUNCPROTO -O cmapov.c -o cmapov
// -s -lXirisw -lXm_s -lXt_s -lgl_s -lX11_s -lm -lsun -lPW
//
// operating:
// Use the left mouse button to move the red, green, and blue blocks.
// Verify that they "pass under" the yellow, magenta, and cyan blocks
// which are in the overlay planes.
//
*/

/** includes **/

#include <stdio.h> /* standard */
#include <Xm/Xm.h> /* for motif */
#include <Xm/Form.h> /* motif widget */
#include <Xm/Frame.h> /* motif widget */
#include <Xm/PushB.h> /* motif widget */
#include <Xm/RowColumn.h> /* motif widget */
#include <Xm/Separator.h> /* motif widget */
#include <X11/Xirisw/GlxMDraw.h> /* gl widget */

/** defines ***/

/* c environment */
#define global

/** typedefs **/

58

Chapter 2: GLX Mixed-Model Programming

/** prototypes **/

extern void main(int argc, char *argv[], char *envp[]);

/* setup */

static void check_capabilities(void);
static void install_colormaps(Widget top_level, Widget glw);
static void normal_cmap_init(Widget glw);
static Pixel normal_cmap_set(Widget glw, int index, short r, short g, short b);
static void overlay_cmap_init(Widget glw);
static Pixel overlay_cmap_set(Widget glw, int index, short r, short g, short b);

/* mixed model support */
static void gl_ginit_cb(Widget w, XtPointer appdat, XtPointer sysdat);
static void gl_expose_cb(Widget w, XtPointer appdat, XtPointer sysdat);
static void gl_resize_cb(Widget w, XtPointer appdat, XtPointer sysdat);
static void gl_input_cb(Widget w, XtPointer appdat, XtPointer sysdat);
static void gl_overlay_expose_cb(Widget w, XtPointer appdat, XtPointer sysdat);

/* callbacks (misc) */
static void quit_cb(Widget w, XtPointer appdat, XtPointer sysdat);

/* drawing */
static void draw_normal_frame(void);
static void draw_overlay_frame(void);
static void draw_boxes(int c1, int c2, int c3);

/** variables ***/
/* mixed-model configuration */
static GLXconfig glx_config[] = {
 {GLX_NORMAL, GLX_DOUBLE, TRUE},
 {GLX_OVERLAY, GLX_BUFSIZE, 2},
 { 0, 0, 0 },
};

Using IRIS GL Widgets to Create Mixed-Model Programs

59

/* information which allows us to use the overlay or popup buffer */
static struct {
 char *use;
 char *expose_cb;
 char *window;
 char *visual;
 char *colormap;
} *over_res, over_res_map[2] = {
 /* describe needed overlay resources */
 { GlxNuseOverlay, GlxNoverlayExposeCallback, GlxNoverlayWindow,
 GlxNoverlayVisual, GlxNoverlayColormap
 },
 /* describe analogous popup resources for when overlays aren’t there */
 { GlxNusePopup, GlxNpopupExposeCallback, GlxNpopupWindow,
 GlxNpopupVisual, GlxNpopupColormap
 },
};

/* normal buffer colors */
static Pixel n_grey, n_red, n_green, n_blue;

/* overlay buffer colors */
static Pixel o_trans, o_yellow, o_magenta, o_cyan;

/* gl window info */
static struct {
 Dimension width; /* in pixels */
 Dimension height; /* in pixels */
 float pt[3]; /* world position of moving object */
} glwin = {400, 400, {15.0, 20.0, 0.0}};

/** functions ***/

/*
// main - program entry point.
*/
global void main(
 int argc, /* argument count */
 char *argv[], /* argument vector */
 char *envp[] /* environment pointer */
)

60

Chapter 2: GLX Mixed-Model Programming

{
 XtAppContext app_context; /* application context */
 Widget app_shell; /* first widget */
 Widget form; /* surrounds app */
 Widget rowcol; /* manages input buttons */
 Widget button; /* quit button */
 Widget separator; /* between input and output */
 Widget frame; /* to surround gl widget */
 Widget glw; /* the gl widget inside window */
 Arg args[15]; /* for name/value pairs */
 int n; /* for reusable indices */

 /* initialize toolkit, creating application shell */
 n = 0;
 XtSetArg(args[n], XmNtitle, "CMode Overlay"); n++;
 app_shell = XtAppInitialize(
 &app_context, "Cmapov", NULL, 0, &argc, argv, NULL,
 args, n
);

 /* create container for app */
 n = 0;
 form = XmCreateForm(app_shell, "form", args, n);
 XtManageChild(form);

 /* create the command area */
 n = 0;
 XtSetArg(args[n], XmNleftAttachment, XmATTACH_FORM); n++;
 XtSetArg(args[n], XmNbottomAttachment, XmATTACH_FORM); n++;
 XtSetArg(args[n], XmNtopAttachment, XmATTACH_FORM); n++;
 XtSetArg(args[n], XmNorientation, XmVERTICAL); n++;
 rowcol = XmCreateRowColumn(form, "rowcol", args, n);
 XtManageChild(rowcol);

 /* create the command area buttons */
 n = 0;
 button = XmCreatePushButton(rowcol, "Quit", args, n);
 XtAddCallback(button, XmNactivateCallback, quit_cb, NULL);
 XtManageChild(button);

Using IRIS GL Widgets to Create Mixed-Model Programs

61

 /* create separator between command area and output area */
 n = 0;
 XtSetArg(args[n], XmNleftAttachment, XmATTACH_WIDGET); n++;
 XtSetArg(args[n], XmNleftWidget, rowcol); n++;
 XtSetArg(args[n], XmNbottomAttachment, XmATTACH_FORM); n++;
 XtSetArg(args[n], XmNtopAttachment, XmATTACH_FORM); n++;
 XtSetArg(args[n], XmNorientation, XmVERTICAL); n++;
 separator = XmCreateSeparator(form, "separator", args, n);
 XtManageChild(separator);
 /* create the output area */
 /* create the frame */
 n = 0;
 XtSetArg(args[n], XmNleftAttachment, XmATTACH_WIDGET); n++;
 XtSetArg(args[n], XmNleftWidget, separator); n++;
 XtSetArg(args[n], XmNleftOffset, 5); n++;
 XtSetArg(args[n], XmNrightAttachment, XmATTACH_FORM); n++;
 XtSetArg(args[n], XmNrightOffset, 5); n++;
 XtSetArg(args[n], XmNbottomAttachment, XmATTACH_FORM); n++;
 XtSetArg(args[n], XmNbottomOffset, 5); n++;
 XtSetArg(args[n], XmNtopAttachment, XmATTACH_FORM); n++;
 XtSetArg(args[n], XmNtopOffset, 5); n++;
 XtSetArg(args[n], XmNshadowThickness, 6); n++;
 frame = XmCreateFrame(form, "frame", args, n);
 XtManageChild(frame);
 /* create the gl widget */
 n = 0;
 XtSetArg(args[n], GlxNglxConfig, glx_config); n++;
 XtSetArg(args[n], over_res->use, True); n++;
 XtSetArg(args[n], XmNborderWidth, 0); n++;
 XtSetArg(args[n], XmNwidth, glwin.width); n++;
 XtSetArg(args[n], XmNheight, glwin.height); n++;
 glw = GlxCreateMDraw(frame, "glw", args, n);
 XtManageChild(glw);
 XtAddCallback(glw, GlxNginitCallback, gl_ginit_cb, 0);
 XtAddCallback(glw, GlxNexposeCallback, gl_expose_cb, 0);
 XtAddCallback(glw, GlxNresizeCallback, gl_resize_cb, 0);
 XtAddCallback(glw, GlxNinputCallback, gl_input_cb, 0);
 XtAddCallback(glw, over_res->expose_cb, gl_overlay_expose_cb, 0);

62

Chapter 2: GLX Mixed-Model Programming

 /* setup custom normal colormap */
 normal_cmap_init(glw);
 n_grey = normal_cmap_set(glw, 0, 125, 125, 125);
 n_red = normal_cmap_set(glw, 1, 255, 0, 0);
 n_green = normal_cmap_set(glw, 2, 0, 255, 0);
 n_blue = normal_cmap_set(glw, 3, 0, 0, 255);

 /* setup custom overlay colormap */
 overlay_cmap_init(glw);
 o_trans = 0; /* transparent is always zero */
 o_yellow = overlay_cmap_set(glw, 0, 255, 255, 0);
 o_magenta = overlay_cmap_set(glw, 1, 255, 0, 255);
 o_cyan = overlay_cmap_set(glw, 2, 0, 255, 255);

 /* realize the app, creating the actual x windows */
 XtRealizeWidget(app_shell);

 /* setup for colormap installation */
 install_colormaps(app_shell, glw);

 /* enter the event loop */
 XtAppMainLoop(app_context);
}

/*- support: setup ---*/

/*
// check_capabilities - find out if the machine can do what we need.
*/
static void check_capabilities(void)
{
 if (getgdesc(GD_BITS_NORM_DBL_RED) == 0) {
 fprintf(stderr, "Double buffered RGB mode not available.\n");
 exit(1);
 }

Using IRIS GL Widgets to Create Mixed-Model Programs

63

 /* use popup planes if there is not enough overlay planes */
 over_res = &over_res_map[0];
 if (getgdesc(GD_BITS_OVER_SNG_CMODE) < 2) {
 glx_config[1].buffer = GLX_POPUP;
 over_res = &over_res_map[1];
 }
 printf(
 "\nUsing the %s planes\n", over_res==over_res_map? "OVERLAY" : "POPUP"
);
}

/*
// install_colormaps - let the window manager know about our colormaps.
//
// This has been generalized to handle any windows a gl widget might have.
// It may not necessarily being using any of them.
*/
static void install_colormaps(Widget top_level, Widget glw)
{
 Window overlay_win, popup_win, underlay_win;
 Window window[5];
 int i;

 XtVaGetValues(
 glw,
 GlxNoverlayWindow, &overlay_win,
 GlxNpopupWindow, &popup_win,
 GlxNunderlayWindow, &underlay_win,
 NULL
);
 i = 0;
 if (overlay_win)
 window[i++] = overlay_win;
 if (popup_win)
 window[i++] = popup_win;
 if (underlay_win)
 window[i++] = underlay_win;
 window[i++] = XtWindow(glw);
 window[i++] = XtWindow(top_level);
 XSetWMColormapWindows(XtDisplay(top_level), XtWindow(top_level), window, i);
}

64

Chapter 2: GLX Mixed-Model Programming

/*- support: custom normal colormap --*/
/*
// normal_cmap_init - create a new normal colormap for the gl widget.
//
// The gl widget must already be created prior to calling this function,
// however the gl widget does not need to be realized for it to work. This
// is because the window it uses in creating the colormap is the root window
// on the same screen.
*/
static void normal_cmap_init(Widget glw)
{
 Display *display;
 Window window;
 XVisualInfo *visinfo;
 Colormap pmap;
 Colormap cmap;
 XColor *color;
 int ncolors;
 int i;

 /* get display; any window on the same screen; and the visual */
 display = XtDisplay(glw);
 window = RootWindowOfScreen(XtScreen(glw));
 XtVaGetValues(glw, XmNvisual, &visinfo, NULL);

 /* create new normal colormap, allocating all entries */
 cmap = XCreateColormap(display, window, visinfo->visual, AllocAll);

 /* set new normal colormap for the gl widget */
 XtVaSetValues(glw, XmNcolormap, cmap, NULL);

 /*
 // duplicate the parent’s default colors for the lower colormap entries
 // (max 256) to avoid colormap flashing on machines with only one h/w
 // colormap.
 */
 XtVaGetValues(XtParent(glw), XmNcolormap, &pmap, NULL);
 ncolors = visinfo->colormap_size;
 printf("\nnormal colors = %d\n", ncolors);
 if (ncolors > 256)
 ncolors = 256;
 color = (XColor *) XtMalloc(ncolors*sizeof(XColor));
 for (i=0; i<ncolors; i++)
 color[i].pixel = i;
 XQueryColors(display, pmap, color, ncolors);

Using IRIS GL Widgets to Create Mixed-Model Programs

65

 XStoreColors(display, cmap, color, ncolors);
 XtFree((char *)color);
}

/*
// normal_cmap_set - map a color for the normal buffer.
//
// This uses a simple scheme of mapping the colors backwards from the highest
// colormap index.
*/
static Pixel normal_cmap_set(Widget glw, int index, short r, short g, short b)
{
 XVisualInfo *visinfo;
 Colormap cmap;
 XColor color;
 int n_last;
 XtVaGetValues(glw, XmNvisual, &visinfo, XmNcolormap, &cmap, NULL);
 n_last = visinfo->colormap_size-1;
 color.pixel = n_last - index; /* work backwards from the last position */
 color.flags = DoRed | DoGreen | DoBlue;
 color.red = r << 8;
 color.green = g << 8;
 color.blue = b << 8;
 XStoreColor(XtDisplay(glw), cmap, &color);
 return (color.pixel);
}

66

Chapter 2: GLX Mixed-Model Programming

/*- support: custom overlay colormap ---------------------------------------*/
/*
// overlay_cmap_init - create a new overlay colormap for the gl widget.
//
// The gl widget must already be created prior to calling this function,
// however the gl widget does not need to be realized for it to work. This
// is because the window it uses in creating the colormap is the root window
// on the same screen.
*/
static void overlay_cmap_init(Widget glw)
{
 Display *display;
 Window window;
 XVisualInfo *visinfo;
 Colormap cmap;
 XColor color;
 int ncolors;
 Pixel *pixel;
 unsigned long plane_mask[1];
 int result;

 /* get display; any window on the same screen; and the visual */
 display = XtDisplay(glw);
 window = RootWindowOfScreen(XtScreen(glw));
 XtVaGetValues(glw, over_res->visual, &visinfo, NULL);

 /*
 * create new overlay colormap, allocating no entries.
 * (AllocAll would fail here because index 0 is reserved for transparency)
 */
 cmap = XCreateColormap(display, window, visinfo->visual, AllocNone);

 /* set new overlay colormap for the gl widget */
 XtVaSetValues(glw, over_res->colormap, cmap, NULL);

 /* allocate every color except transparency as read/write */
 ncolors = visinfo->colormap_size; /* including transparent color */
 printf("\noverlay colors = %d\n", ncolors);
 pixel = (Pixel *) XtMalloc(ncolors*sizeof(Pixel)); /* stub array */
 result = XAllocColorCells(
 display, cmap, True, plane_mask, 0,
 &pixel[1], ncolors-1 /* one less due to transparency */
);
 XtFree((char *) pixel);

Using IRIS GL Widgets to Create Mixed-Model Programs

67

 /* check for booboo */
 if (result == 0)
 fprintf(stderr, "XAllocColorCells failed for overlay buffer.\n");
}

/*
// overlay_cmap_set - map a color for the overlay buffer.
//
// This uses a simple scheme of mapping the colors backwards from the highest
// colormap index.
*/
static Pixel overlay_cmap_set(Widget glw, int index, short r, short g, short b)
{
 XVisualInfo *visinfo;
 Colormap cmap;
 XColor color;
 int n_last;

 XtVaGetValues(
 glw, over_res->visual, &visinfo, over_res->colormap, &cmap, NULL
);
 n_last = visinfo->colormap_size-1;
 color.pixel = n_last - index; /* work backwards from the last position */
 color.flags = DoRed | DoGreen | DoBlue;
 color.red = r << 8;
 color.green = g << 8;
 color.blue = b << 8;
 XStoreColor(XtDisplay(glw), cmap, &color);
 return (color.pixel);
}

/*- support: callbacks (gl widget) ---*/
/*
// gl_ginit_cb - perform any necessary graphics initialization.
*/
static void gl_ginit_cb(Widget w, XtPointer appdat, XtPointer sysdat)
{
 GlxDrawCallbackStruct *glx = (GlxDrawCallbackStruct *) sysdat;

68

Chapter 2: GLX Mixed-Model Programming

 GLXwinset(XtDisplay(w), XtWindow(w));
 mmode(MVIEWING);
 ortho2(-0.5, 100.5, -0.5, 100.5);
 gflush();
}

/*
// gl_expose_cb - handle expose events for the gl widget.
*/
static void gl_expose_cb(Widget w, XtPointer appdat, XtPointer sysdat)
{
 GlxDrawCallbackStruct *glx = (GlxDrawCallbackStruct *) sysdat;

 GLXwinset(XtDisplay(w), XtWindow(w));
 draw_normal_frame();
}

/*
// gl_resize_cb - handle resize events for the gl widget.
*/
static void gl_resize_cb(Widget w, XtPointer appdat, XtPointer sysdat)
{
 GlxDrawCallbackStruct *glx = (GlxDrawCallbackStruct *) sysdat;
 Window overlay_window;

 /* squirrel away size */
 glwin.width = glx->width;
 glwin.height = glx->height;

 /* setup normal buffer viewport */
 GLXwinset(XtDisplay(w), XtWindow(w));
 viewport(0, glx->width-1, 0, glx->height-1);

 /* setup overlay buffer viewport */
 XtVaGetValues(w, over_res->window, &overlay_window, NULL);
 GLXwinset(XtDisplay(w), overlay_window);
 viewport(0, glx->width-1, 0, glx->height-1);
}

Using IRIS GL Widgets to Create Mixed-Model Programs

69

/*
// gl_input_cb - handle input for the gl window.
*/
static void gl_input_cb(Widget w, XtPointer appdat, XtPointer sysdat)
{
 static Boolean active = False; /* currently moving? */
 static float dx, dy; /* offset from current position */
 /**/
 GlxDrawCallbackStruct *glx = (GlxDrawCallbackStruct *) sysdat;
 XEvent *event = glx->event; /* what occured */
 int msx, msy; /* gl window mouse position */
 float mwx, mwy; /* gl world mouse position */

 GLXwinset(XtDisplay(w), XtWindow(w));
 /* map to gl window coords */
 msx = event->xbutton.x; /* same x */
 msy = (glwin.height-1) - event->xbutton.y; /* flip y */
 /* map to gl world coords */
 mwx = 0.0 + ((msx - 0) / (float)glwin.width) * 100.0;
 mwy = 0.0 + ((msy - 0) / (float)glwin.height) * 100.0;
 /* process event */
 switch (event->type) {
 case ButtonPress:
 if (event->xbutton.button == Button1) {
 /* compute delta from current position */
 dx = mwx - glwin.pt[0];
 dy = mwy - glwin.pt[1];
 active = True;
 }
 break;
 case MotionNotify:
 if (active) {
 /* compute new position and draw */
 glwin.pt[0] = mwx - dx;
 glwin.pt[1] = mwy - dy;
 draw_normal_frame();
 }
 break;

70

Chapter 2: GLX Mixed-Model Programming

 case ButtonRelease:
 if (event->xbutton.button == Button1) {
 /* we’re done */
 active = False;
 }
 break;
 }
}

/*
// gl_overlay_expose_cb - handle overlay expose events for the gl widget.
*/
static void gl_overlay_expose_cb(Widget w, XtPointer appdat, XtPointer sysdat)
{
 GlxDrawCallbackStruct *glx = (GlxDrawCallbackStruct *) sysdat;

 GLXwinset(XtDisplay(w), glx->window);
 draw_overlay_frame();
}

/*- support: callbacks (misc) --*/
/*
// quit_cb - exit application.
*/
static void quit_cb(Widget w, XtPointer appdat, XtPointer sysdat)
{
 exit(0);
}

/*- support: drawing ---*/
/*
// draw_normal_frame - render objects in the normal buffer and swap.
*/
static void draw_normal_frame(void)
{
 color(n_grey);
 clear();
 pushmatrix();
 translate(glwin.pt[0], glwin.pt[1], glwin.pt[2]);
 draw_boxes(n_red, n_green, n_blue);
 popmatrix();
 swapbuffers();
 gflush();
}

Using IRIS GL Widgets to Create Mixed-Model Programs

71

/*
// draw_overlay_frame - render objects in the overlay buffer.
*/
static void draw_overlay_frame(void)
{
 color(o_trans);
 clear();
 pushmatrix();
 translate(15.0, 60.0, 0.0);
 draw_boxes(o_yellow, o_cyan, o_magenta);
 popmatrix();
 gflush();
}

/*
// draw_boxes - draw three boxes in three different colors.
*/
static void draw_boxes(int c1, int c2, int c3)
{
 static float vert[][2] = { /* a box */
 { 0.0, 0.0},
 {20.0, 0.0},
 {20.0, 20.0},
 { 0.0, 20.0},
 };

 pushmatrix();
 color(c1);
 bgnpolygon();
 v2f(vert[0]); v2f(vert[1]); v2f(vert[2]); v2f(vert[3]);
 endpolygon();
 translate(25.0, 0.0, 0.0);
 color(c2);
 bgnpolygon();
 v2f(vert[0]); v2f(vert[1]); v2f(vert[2]); v2f(vert[3]);
 endpolygon();
 translate(25.0, 0.0, 0.0);
 color(c3);
 bgnpolygon();
 v2f(vert[0]); v2f(vert[1]); v2f(vert[2]); v2f(vert[3]);
 endpolygon();
 popmatrix();
}
/** eof ***/

72

Chapter 2: GLX Mixed-Model Programming

Using Xlib to Write a GLX Program

This section explains how to use Xlib and the four special GLX routines to
create a mixed-model program.

Configuring an X Window for IRIS GL Rendering

The IRIS GL cannot draw into any ordinary X window. A window with the
appropriate X visual for IRIS GL rendering must be created. There is no
method for determining from the X interface which of the many available
visuals to choose; therefore, you must use the GLXgetconfig() routine to
obtain the proper visual.

Using the GLX Mixed-Model Routines

Silicon Graphics provides four routines designed specifically for
mixed-model programming. This section provides a brief overview of these
routines. For more detailed information, refer to the man pages.

Window Configuration: GLXgetconfig()

Use GLXgetconfig() to configure an X window for IRIS GL rendering.
GLXgetconfig() takes the display, screen, and configuration information and
returns the data needed to create and render IRIS GL into an X window. The
return value is a complete description of the actual configuration available.
This is useful to check what configuration was available, but it is also needed
as an argument to GLXlink(). It can be freed with free(3) when it is no longer
needed. GLXgetconfig() performs a role in mixed-model programs similar
to the role of gconfig() in pure IRIS GL programs.

See “Declaring the GLXconfig Resource” on page 35 and the
GLXgetconfig(3G) man page for a description of the GLXconfig structure.

Rendering IRIS GL in a Window: GLXlink()

Once you create a window, use GLXlink() to communicate to the IRIS GL
that you intend to render into it. See the GLXlink(3G) man page for more
detailed information about using GLXlink().

Using Xlib to Write a GLX Program

73

Drawing: GLXwinset()

Once you select a window for IRIS GL rendering using GLXlink(), you can
direct IRIS GL drawing commands to the window with the call
GLXwinset(). This call indicates that all subsequent IRIS GL drawing
commands will happen in the window passed to GLXwinset(). You can
switch quickly between several windows by calling GLXwinset() for each
window. GLXwinset() also selects the appropriate drawmode for the
window. See the GLXwinset(3G) man page for more detailed information
about using GLXwinset().

Cleanup: GLXunlink()

A small amount of memory is allocated when a window is selected for IRIS
GL rendering. For completeness, the routine GLXunlink() is provided to
allow the IRIS GL to clean up the resources connected with IRIS GL
rendering for a window. If you destroy a window with XDestroyWindow(),
you should call GLXunlink() afterward. Typically, you call GLXunlink()
only if a program will not do any IRIS GL drawing for a long time. See the
GLXunlink(3G) man page for more detailed information about using
GLXunlink().

Mixed-Model Example Program Using Xlib and IRIS GL

Example 2-4 provides an example of a mixed-model program that uses
double buffered RGB and overlays, based on Xlib. This example is on line in
/usr/people/4Dgifts/examples/GLX. Check the on-line version for updates
before using this code.

74

Chapter 2: GLX Mixed-Model Programming

Example 2-4 An Example Using Xlib and IRIS GL

/*
 * mixexamp.c:
 * This program is an example of a mixed model program that uses double
 * buffered RGB and overlays (or popups if no overlays are present),
 * based on Xlib.
 * To compile: cc -o mixexamp mixexamp.c -lgl_s -lX11_s
 */

/* Include X headers files first */
#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <gl/glws.h>

/* X Display */
Display* D;

/* To use for X screen */
int S;

struct {
 short vertex[2];
 short color[3];
} stamp[4] = {
 { { 0, 0 }, { 255, 0, 0 } },
 { { 0, 1 }, { 0, 255, 0 } },
 { { 1, 1 }, { 0, 0, 255 } },
 { { 1, 0 }, { 255, 255, 0 } }
};

/* Declare the data structure for the IRIS GL rendering configuration needed */
GLXconfig rgb_ov[] = {
 { GLX_NORMAL, GLX_RGB, True} ,
 { GLX_OVERLAY, GLX_BUFSIZE, 2} ,
 { 0, 0, 0}
};
/* use this one if we find we’re on a machine that does not have overlays */
GLXconfig rgb_pup[] = {
 { GLX_NORMAL, GLX_RGB, True} ,
 { GLX_POPUP, GLX_BUFSIZE, 2} ,
 { 0, 0, 0}
};

Using Xlib to Write a GLX Program

75

unsigned long
extract_value(int buffer, int mode, GLXconfig *conf)
{
 int i;
 for (i = 0; conf[i].buffer; i++)
 if (conf[i].buffer == buffer && conf[i].mode == mode)
 return conf[i].arg;
 return 0;
}

/* Extract X visual information */
XVisualInfo*
extract_visual(int buffer, GLXconfig *conf)
{
 XVisualInfo template, *v;
 int n;

 template.screen = S;
 template.visualid = extract_value(buffer, GLX_VISUAL, conf);
 return XGetVisualInfo (D, VisualScreenMask|VisualIDMask, &template, &n);
}

/* Fill the configuration structure with the appropriately */
/* created window */
void
set_window(int buffer, Window W, GLXconfig *conf)
{
 int i;

 for (i = 0; conf[i].buffer; i++)
 if (conf[i].buffer == buffer && conf[i].mode == GLX_WINDOW)
 conf[i].arg = W;
}

main(argc, argv)
int argc;
char *argv[];
{
 GLXconfig *conf;
 XVisualInfo* v;
 XSetWindowAttributes attr;
 Window W, ovW, wins[2];
 int i;
 int OverlayPlanes;

76

Chapter 2: GLX Mixed-Model Programming

 /* Follow the DISPLAY environment variable */
 D = XOpenDisplay(0);
 S = DefaultScreen(D);

 if (getgdesc(GD_BITS_OVER_SNG_CMODE) < 2) {/* test for overlay planes */
 if ((conf = GLXgetconfig(D, S, rgb_pup)) == 0) {
 printf(“getconfig failed\n”);
 exit(1);
 }
 OverlayPlanes = FALSE;
 } else {
 if ((conf = GLXgetconfig(D, S, rgb_ov)) == 0) {
 printf(“getconfig failed\n”);
 exit(1);
 }
 OverlayPlanes = TRUE;
 }
 /* Turn off verbose Xlib error messages */
 XSetErrorHandler(0);

 /* Create main plane window */
 v = extract_visual(GLX_NORMAL, conf);
 attr.colormap = extract_value(GLX_NORMAL, GLX_COLORMAP, conf);
 attr.border_pixel = 0;
 W = XCreateWindow(D, RootWindow(D, S), 0, 0, 400, 400, 0,
 v->depth, InputOutput, v->visual,
 CWBorderPixel|CWColormap, &attr);
 XStoreName(D, W, “DBL-Bufr’d, Overlay/Popup Mix Model Window”);
 set_window(GLX_NORMAL, W, conf);

 /* Create overlay window, or popup if no overlay on this machine */
 if (OverlayPlanes) {
 v = extract_visual(GLX_OVERLAY, conf);
 attr.colormap = extract_value(GLX_OVERLAY, GLX_COLORMAP, conf);
 ovW = XCreateWindow(D, W, 0, 0, 400, 400, 0,
 v->depth, InputOutput, v->visual,
 CWBorderPixel|CWColormap, &attr);
 set_window(GLX_OVERLAY, ovW, conf);
 } else {
 v = extract_visual(GLX_POPUP, conf);
 attr.colormap = extract_value(GLX_POPUP, GLX_COLORMAP, conf);
 ovW = XCreateWindow(D, W, 0, 0, 400, 400, 0,
 v->depth, InputOutput, v->visual,
 CWBorderPixel|CWColormap, &attr);

Using Xlib to Write a GLX Program

77

 set_window(GLX_POPUP, ovW, conf);
 }
 /* Bind the IRIS GL to the created windows */
 if (GLXlink(D, conf) < 0) {
 printf(“Bind failed\n”);
 exit(1);
 }
 wins[0] = W;
 wins[1] = ovW;
 XSetWMColormapWindows(D, W, wins, 2);
 XSelectInput(D, W, KeyPressMask|ExposureMask);
 XMapWindow(D, W);
 XSelectInput(D, ovW, ExposureMask);
 XMapWindow(D, ovW);

 for (;;) {
 XEvent e;
 XNextEvent(D, &e);
 switch (e.xany.type) {
 case Expose: {
 short v[2];
 /* Draw in main planes */
 if (GLXwinset(D, W) < 0) {
 printf(“winset failed\n”);
 exit(1);
 }
 reshapeviewport();
 ortho2(0, 1, 0, 1);
 bgnpolygon();
 for (i = 0; i < 4; i++) {
 c3s(stamp[i].color);
 v2s(stamp[i].vertex);
 }
 endpolygon();
 /* draw in overlays */
 if (GLXwinset(D, ovW) < 0) {
 printf(“winset failed\n”);
 exit(1);
 }
 color(0);
 rectf(0.0, 0.0, 1.0, 1.0);
 color(1);
 rectf(.2, .2, .8, .8);
 color(0);
 rectf(.4, .4, .6, .6);

78

Chapter 2: GLX Mixed-Model Programming

 break;
 }
/* Die on any keystroke */
 case KeyPress:
 exit(0);
 }
 }
}

79

Chapter 3

3. Using GLdebug

This chapter describes the GLdebug software tool and tells you how to use
GLdebug to assist in debugging graphics applications.

GLdebug Basics

GLdebug helps you locate programming errors in an executable caused by
using IRIS GL calls incorrectly. It also shows a graphical representation of the
state of the IRIS GL while your program is running. GLdebug helps you
visualize what your program is doing and helps you locate usage violations
so you can correct your code, but it does not correct the code for you.

GLdebug features:

• a history file for tracing IRIS GL calls made during program execution

• a Stateviewer tool for viewing IRIS GL state during program execution

• a Controller tool for managing debugging sessions interactively

GLdebug verifies IRIS GL state and parameter(s) for every IRIS GL call
issued in the program and performs error checking based on those
verifications.

State Checking

State checking verifies that the IRIS GL is properly set up to allow the IRIS
GL call.

State checking verifies these conditions:

• The IRIS GL has been initialized. The IRIS GL is initialized when you
call winopen().

80

Chapter 3: Using GLdebug

• The IRIS GL call is allowed from the calling location. For example,
calling gconfig() from within a bgn/end structure is not allowed.

• The IRIS GL call is allowed in the current mode and the IRIS GL has
been set to the correct mode for the specified operation.

Modes are listed below, with usage examples:

Parameter Checking

Parameter checking verifies that the parameter value obeys the following
conditions, as defined for each parameter:

• value is the required type defined for the parameter. For example, the
value must be a device type for qdevice().

• value is one member of a set of values defined for the parameter. For
example, the value must be one of {MSINGLE, MVIEWING,
MPROJECTION, MTEXTURE} for mmode().

• value is within the range defined for the parameter. For example, the
value must be in the range 0-255 for RGBcolor().

• value is not NULL or non-zero. For example, value cannot be NULL for
charstr().

draw mode Must be set correctly to allow the draw operation.
For example, zdraw() is allowed in NORMALDRAW
mode only

doublebuffer mode Must be true to call swapbuffers()

immediate mode Must be true to call qdevice()

matrix mode Calling lmbind() is not allowed in MSINGLE mode

multimap mode Must be true to call setmap()

pick mode Calling viewport() is not allowed in pick mode

select mode Must be enabled to allow user selection from screen
objects

feedback mode Must be enabled for hardware feedback operations

rgb mode Must be true to call RGBcolor()

Running GLdebug

81

Error Checking

GLdebug generates error messages based on the results of the state and
parameter verification. Errors are categorized according to severity:

Warnings States or parameter values that are legal but may lead to
unpredictable results.

Errors Illegal operations or illegal parameter values, as defined by
the IRIS GL implementation.

Fatals Errors that result in a core dump and exit the program.

The history file contains a list of every IRIS GL call, warning, error, and fatal
error that occurs during program execution.

GLdebug uses these files:

• /usr/lib/libgd_s

• /usr/sbin/gldebug

• /usr/sbin/gd_convert

• /usr/sbin/gd_stateview

• /usr/sbin/gd_controller

• /usr/lib/x11/app_defaults/GLdebug

Running GLdebug

You can run GLdebug from the Admin menu of the
CASEVision™/WorkShop Debugger or invoke it separately. See the
CASEVision/WorkShop User’s Guide, Volume I for instructions.

Note: To use GLdebug, your application program must be compiled and
linked to the shared IRIS Graphics Library with the -lgl_s option. ♦

To invoke GLdebug enter:

gldebug [-gldebug_options] executablename [-program_options]

82

Chapter 3: Using GLdebug

Use -gldebug_options to specify the operational behavior of GLdebug and to
control the contents of the GLdebug output file(s). Substitute the name of
your program and its options for executablename and -program_options.

Using GLdebug Options

Use these options to select which GLdebug tools to run and to specify the
level of error reporting and the type of output to use in the history file:

-h Do not generate a history file

-w Suppress warning listings in the history file

-e Suppress error listings in the history file

-f Suppress fatal listings in the history file

-c Do not run the Controller while debugging

-s Do not run the Stateviewer while debugging

-C Generate the history output in C code

-F Flush the contents of the output buffer to the history file
after every IRIS GL call

-p wait Profile the output

-i filename Ignore debugging for the IRIS GL calls listed in filename

-o filename Specify the name of the output file as filename

-O Send output to the screen (stdout)

Specifying History Output

The default filename for the GLdebug output file is GLdebug.history. Use the
-o filename option to specify a name for the history file other than the default.
If you prefer to view the IRIS GL calls step-by-step while your program
executes, use the -O option to direct output to the screen. If both the -O and
the -o options are invoked concurrently, the -O option takes precedence and
output goes to the screen rather than to the history file.

GLdebug.history contains a listing of every IRIS GL call made by the program,
along with the parameter values associated with each call. Parameters used

Running GLdebug

83

to return values to the program are listed as “OUT”. The return values of
functions are not output.

GLdebug.history also lists all warnings, errors, and fatal errors encountered
during program execution, unless they are suppressed by an option. Use the
-h option to disable history output.

Generating History Output as C Code

Use the -C option to generate history output in C language. This code can be
used to produce a program duplicating the IRIS GL behavior of the original
program, but the history file may require additional editing before it will
compile. Currently, valid C code is produced for approximately 80% of the
IRIS GL calls.

Forcing History Output

Output is buffered to the history file. The contents of the buffer are flushed
to the history file at every breakpoint. When a program crashes before the
output buffer is completely flushed to the history file, the resulting trace is
incomplete. For programs that tend to crash abruptly, you can obtain a
complete trace by using the -F option, which forces the contents of the output
buffer to be flushed to the history file after every IRIS GL call.

Profiling History Output

Use the -p option to generate a profile. The profile contains a count of the
number of times each IRIS GL subroutine is called. GLdebug writes the
count to a file named GLdebug.count, according to the value entered for the
wait parameter. The count is written to the output file after wait number of
IRIS GL calls have been executed.

Selecting Subroutines to be Written to the History Output

History files that track every IRIS GL call tend to grow large very quickly. To
focus the history trace, create a file listing the IRIS GL calls that you wish to
be executed, but not written to the history. Enter each IRIS GL call on a
separate line in the file. To define the non-traceable IRIS GL calls, specify the
name of your file with the -i (ignore) option when you invoke GLdebug.

84

Chapter 3: Using GLdebug

Getting Started with GLdebug

When GLdebug is invoked on a pure IRIS GL program, that is, a program in
which winopen() is called for window creation, this sequence of events
occurs:

1. The graphics application output window appears on the screen.

If the program allows the user to size the window, use the left mouse
button to drag the window corner to the desired size. Otherwise,
simply drag the window to the desired location on the screen.

Nothing appears in the program output window yet, because GLdebug
automatically sets a breakpoint on the first IRIS GL call. A breakpoint is a
statement that is flagged to tell the system to halt the program before
executing the statement. Setting breakpoints is discussed in detail
under “Using the Controller” on page 96.

2. The Controller window appears on the screen (unless you have
disabled it with the -c option).

The Controller window is already set to a fixed size, so simply drag the
window to the desired screen location.

3. The Stateviewer appears on your screen (unless you have disabled it
with the -s option).

When GLdebug is invoked on a mixed-model GL/X program (a program that
uses X Window System commands as well as GL calls), the Controller and
Stateviewer appear directly after the first GLXlink() call is made. This
typically occurs before any application windows appear. Since a breakpoint
is set, execution is halted until you click the Continue button.

Using the GLdebug Tools

85

Using the GLdebug Tools

This section describes the GLdebug Stateviewer and Controller tools.

Using the GLdebug Stateviewer

Stateviewer is a IRIS GL status visualization tool that helps you visualize
what is actually happening within the system during program execution.
The Stateviewer displays icons that represent IRIS GL conditions. Options let
you view more detailed information, as described in “Viewing Additional
Information from the Options Menu” on page 91.

Figure 3-1 shows the Stateviewer.

Figure 3-1 Stateviewer

Lighting

Single/Double buffering

Draw mode

Error state

Color mode

z-buffering

Matrix mode
and stack depth

gconfig state

and current color

86

Chapter 3: Using GLdebug

Stateviewer is updated continuously while GLdebug is executing the
program, to show the following conditions:

• color mode and current color

• lighting activity

• z-buffering activity

• double buffering activity

• matrix mode and depth

• draw mode

• gconfig status

• error status

The Stateviewer icons are described in the following sections.

Color Indicator

Figure 3-2 shows the color indicator.

Figure 3-2 Color Indicator

The color indicator displays a color bar and the numerical value(s) of the
associated color. In color index mode, the color bar is horizontal and the
color value is shown as a single number. In RGB mode, the color bar is
vertical and the color value is broken down into its red, green, and blue
components.

When the current color in the IRIS GL state is a computed color, for example,
from a lighted material vertex, a universal no sign appears over the color bar,
signifying that the color displayed in the color bar does not accurately
represent the color that appears in the image.

Color Index mode RGB mode Computed color

Using the GLdebug Tools

87

Lighting Indicator

Figure 3-3 shows the lighting indicator.

Figure 3-3 Lighting Indicator

The lighting indicator displays a lightbulb that is on when lighting is active;
off when lighting is not active. Select Lighting from the Options menu to view
additional lighting information.

Z-Buffer Indicator

Figure 3-4 shows the z-buffer indicator.

Figure 3-4 z-buffer Indicator

The z-buffer indicator displays the letter Z. A universal no sign appears over
the Z when z-buffering is not used. The square shows the z-buffer status:

Red square z-buffer is undefined

White square z-buffer is cleared

Yellow square z-buffer is filled

Green outline z-buffer is enabled for drawing (using zdraw())

Red outline z-buffer is disabled for drawing

The z-buffer is not enabled for drawing until zdraw() is called.

Lighting inactiveLighting active

z-buffer active z-buffer inactive

88

Chapter 3: Using GLdebug

Double Buffering Indicator

Figure 3-5 shows the double buffering indicator.

Figure 3-5 Double Buffering Indicator

Two overlapping square icons, representing the front and back buffers,
indicate double buffering; one square indicates single buffering. Initially, the
front buffer icon appears on top of the back buffer icon. Each swapbuffers()
call changes the orientation of the buffer icons, as the active buffer moves to
the front. The color codes are the same as the z-buffer color codes.

Matrix Mode Indicator

Figure 3-6 shows the matrix mode indicator.

Figure 3-6 Matrix Mode Indicator

The matrix mode (mmode) indicator displays the matrix stack depth and the
current matrix mode as follows:

MSINGLE mode S represents the single matrix which is used for all
modeling, viewing and projection transformations.
MSINGLE is the default mode.

MVIEWING mode V represents a multi-matrix mode, where the ModelView
matrix is modified by all matrix operations.

MPROJECTION mode P represents the active ModelView and Projection matrices.

MTEXTURE mode T represents the texture option for systems that
support textures.

Double buffering Single buffering

MSINGLE mode MVIEWING mode MPROJECTION mode MTEXTURE mode

Using the GLdebug Tools

89

The grid of 32 small squares represents the matrix stack. When a matrix is
pushed onto the stack, the square representing the top of the stack turns
green. The square turns black when the matrix is popped off the stack. All
the squares turn red when there is a stack overflow.

The stack contents are shifted to reflect every pushmatrix() and popmatrix()
operation, so that the green squares always show the depth of the matrix
stack. A number in the upper right-hand corner of the indicator also displays
the stack depth.

Select Matrix from the Options menu to view the contents of the current
matrix.

Draw Mode Indicator

Figure 3-7 shows the draw mode indicator.

Figure 3-7 Draw Mode Indicator

The draw mode indicator displays a group of square icons that represent
drawing surfaces. The active drawing surface appears in green. The position
of the square indicates the drawing position and corresponding draw mode:

NORMALDRAW mode middle square is green

UNDERDRAW mode bottom left square is green

OVERDRAW mode top right square is green

PUPDRAW mode bottom right rectangle is green

NORMALDRAW mode UNDERDRAW mode OVERDRAW mode PUPDRAW mode

90

Chapter 3: Using GLdebug

GConfig Indicator

Figure 3-8 shows the GConfig indicator.

Figure 3-8 GConfig Indicator

The GConfig indicator displays a traffic light icon. Normally, the green light
is illuminated.

The yellow light is illuminated when you call a IRIS GL subroutine that
requires a subsequent gconfig() call. If a subsequent IRIS GL call that
depends upon gconfig() is executed before gconfig() is called, the light
changes to red. If gconfig() is called first, the light changes back to green.

For example, calling RGBmode() causes the light to turn yellow. If
RBGcolor() is called before gconfig(), the light turns red. If gconfig() is called
before RGBcolor(), the light turns green.

The GConfig icon is ignored for mixed-model GL/X windows, because the
graphics configuration of such a window is specified at creation time and
cannot be changed.

Normal status gconfig() expected Unable to process IRIS GL call
Green light Yellow light Red light

Using the GLdebug Tools

91

Error Condition Indicator

Figure 3-9 shows the error condition indicator.

Figure 3-9 Error Condition Indicator

The indicator is green and displays the “OK” message when there are no
errors or warnings.

When a warning occurs, the square turns yellow and displays the “Warning”
message. The warning indicator remains yellow for the duration of the
program, unless an error occurs. When an error occurs, the square turns red
and displays the “Error” message, or the “Fatal” message for a fatal error.

You can use the Controller to force execution past a fatal error by setting a
breakpoint on “Fatal”, then skipping the fatal statement when the
breakpoint occurs. Refer to “Using the Controller” on page 96 for more
information about setting breakpoints.

Viewing Additional Information from the Options Menu

Figure 3-10 shows the Options menu. Use the Options menu to view
additional IRIS GL status information on lighting, devices, attributes, and
the current matrix. Slide the selection bar over the desired item and release
the mouse button to display the selected item.

Figure 3-10 Options Menu

Normal status Unexpected results possible Program failureProgram error

92

Chapter 3: Using GLdebug

Lighting

Figure 3-11 shows the Lighting window.

Figure 3-11 Lighting Window

The Lighting window displays attributes for each of the defined lighting
models. Material, lighting model, and light source attributes are displayed
for each lmdef number that is currently bound. When you activate a
material, a lighting model, or a light by calling lmbind(), the active attributes
are displayed. If an attribute is not bound, “None” is displayed for that
value.

Using the GLdebug Tools

93

Material properties are in the upper left corner of the Lighting window.
Emission and reflection properties are shown as color bars with numeric
values; shininess and alpha values are listed. Material properties are:

E Indicates the emission property of the material. The
emission value is represented by three RGB values. The
color and intensity of the emitted light is shown in the bar.

A Indicates the ambient reflection property of the material.

D Indicates the diffuse reflection property of the material.

S Indicates the specular reflection property of the material.

Shininess Indicates the shininess property of the material.

Alpha Indicates the alpha index of the material.

Lighting model (Lmodel) properties are shown directly below the material
properties. The ambient light characteristic is shown as a color bar with the
associated ambient coefficients listed below it. Attenuation and local viewer
assignments are also listed. Lmodel properties are:

A Indicates the ambient characteristic of the lighting model.

Att Lists the attenuation factors for the lighting model. The top
number represents the k0 coefficient and the bottom
number represents the k1 coefficient.

Local Indicates the status of the Local Viewer flag. A value of “1”

Viewer Indicates that the flag is set, a “0” indicates that the flag is
not set.

94

Chapter 3: Using GLdebug

Light source properties are listed for each light that has been bound with
lmbind(). Color bars show the ambient and intensity properties of each
light. Light source properties are:

A Indicates the ambient light characteristic of the light source.

L Indicates the intensity characteristic of the light source.

Pos Indicates the position of the light source in x,y,z coordinates.

Dir Indicates the direction of the light source in x,y,z coordinates
(not shown).

Attributes

Figure 3-12 shows the Attributes window.

Figure 3-12 Attributes Window

The Attributes window displays information about IRIS GL attributes.
Attributes are displayed with their default values in black. If the program
changes any of the attributes, the new value is displayed in green.

Using the GLdebug Tools

95

Devices

Figure 3-13 shows the Devices window.

Figure 3-13 Devices Window

The Devices window displays a list of buttons and valuators that can be used
for input to the program. When a device is queued, its name is displayed in
green. This list should be ignored for GL/X windows, because it reflects the
state of IRIS GL input devices, not X input devices.

Matrix

Figure 3-14 shows the Matrix window. The Matrix window displays the
values in the current transformation matrix.

Figure 3-14 Current Matrix

96

Chapter 3: Using GLdebug

Using the Controller

Controller is an interactive debugging tool that lets you select the level of
debug output and lets you control program execution.

Figure 3-15 shows the Controller.

Figure 3-15 Controller

The Controller contains a Controls menu, control buttons, two sets of toggle
buttons for enabling outputs and breakpoints, and a message window. The
next sections describe how to operate these features.

Selecting Actions from the Controls Menu

Figure 3-16 shows the Controls menu.

Figure 3-16 Controls Menu

Using the GLdebug Tools

97

The Controls menu lets you access windows for setting breakpoints, for
specifying output, and for quitting GLdebug:

Breakpoints... Displays a list of IRIS GL calls that can be selected as
breakpoints.

Output... Displays a list of IRIS GL calls that can be selected for
output to the history file.

Quit Exits GLdebug and closes all associated windows.

Using the Control Buttons

The control buttons control program execution in debug mode. Use the left
mouse button to activate the desired control button:

Continue Resume program execution after a breakpoint.

Skip Resume program execution at the statement following the
breakpoint. The breakpoint statement itself is not actually
executed when Skip is selected. This feature can be used to
skip over fatal errors and examine program behavior
beyond the failure point.

Halt Forces a breakpoint at the next IRIS GL call, whether or not
it has been previously defined as a breakpoint.

The message window at the bottom of the Controller displays the IRIS GL
call where the program is halted. The IRIS GL call shown in the message
window is the next statement to be executed.

Setting Breakpoints and Output

Breakpoints are used to freeze program execution at selected statements.
Breakpoints let you examine the program output at a particular instant in
time, much like viewing a still frame from a movie.

Breakpoints are typically set on errors so that the behavior of the program
prior to the occurrence of the error can be examined. Execution of the
program is halted just before the IRIS GL call selected as the breakpoint
executes, but after a trace of this call is written to the history file.

98

Chapter 3: Using GLdebug

Use the Controls Menu to access the Output and Breakpoint selection
windows. These windows display a list of IRIS GL calls.

Figure 3-17 shows the Breakpoint and Output selection windows.

Figure 3-17 Breakpoint and Output Selection Windows

Initially, all IRIS GL calls are selected for both output and breakpoints.
Selected functions appear in inverse video (white text on a black
background). You can streamline your debugging by focusing the output
and the breakpoints on suspected problem areas. Select or deselect the
desired IRIS GL calls individually with the mouse, or by group from the Set
or Unset pulldown menus.

To select an individual IRIS GL call from the list, click the left mouse button
on the desired call. Select a block of IRIS GL calls by holding down the
mouse button and dragging. If you drag past the top or bottom of the
window, the list of calls continues to scroll.

You can also select a block by clicking on the first item in the block and then
shift-selecting, holding down the <Shift> key while clicking on the last
item. Select two or more non-adjacent items by holding down the <Control>
key while clicking left. Control-selecting a previously selected item deselects
it.

Using the GLdebug Tools

99

Summary of mouse selection actions:

Click left Select an item.

<Control> + click
Select additional non-adjacent item(s) or deselect
previously selected item(s).

<Shift> + click Select a block of items, from the first item selected up to and
including the last item selected.

Click + Drag Continue selecting items, and scroll window until mouse
button is released or until end of list is reached.

Use the Set and Unset pulldown menus to select from the following
functional groups of IRIS GL calls:

All Selects every IRIS GL call listed.

Swapbuffers Selects the swapbuffers() call.

Geometry Selects all IRIS GL calls associated with geometry.

Transforms Selects all IRIS GL calls associated with matrix operations.

Lighting Selects all IRIS GL calls associated with lighting.

Objects Selects all IRIS GL calls associated with display list objects.

Texturing Selects all IRIS GL calls associated with texture operations.

GL Input Selects all IRIS GL calls associated with performing user
input.

Text Selects all IRIS GL calls associated with text operations.

None Deselects all the IRIS GL calls.

Set enables output/breakpoints for a functional group. Unset deselects the
group.

100

Chapter 3: Using GLdebug

For example, choosing Texturing from the Set menu selects all IRIS GL
subroutines associated with texturing, as shown in Figure 3-18.

Figure 3-18 Using the Set Menu to Set Breakpoints on Texturing

Using the Toggle Buttons

The Output and Break toggle buttons let you enable/disable outputs and
breakpoints for IRIS GL calls, Warnings, Errors, and Fatal errors. The default
state is all toggles on.

There is an Output toggle and a Break toggle for each of the following:

• GL Call

• Warning

• Error

• Fatal

Using the GLdebug Tools

101

The toggle button must be on to enable the selected outputs and breakpoints.
If the toggle buttons are off, no output or breakpoints will occur, regardless
of what is selected from the Output and Breakpoint windows.

Use the left mouse button to operate the toggle buttons. A toggle is on when
it is light gray in color, appears to be pushed in, and shows a yellow LED. A
toggle is off when it is dark gray, appears to be pushed out, and does not
show an LED.

When you are finished debugging your application, select Quit to exit
GLdebug and to quit your application.

103

Chapter 4

4. Tuning IRIS GL Applications

The process of analyzing software performance and adjusting the code to
obtain improved performance is known as tuning. Just as tuning up a car
makes it run more efficiently, tuning code makes the software run faster and
facilitates optimum use of hardware capabilities.

This chapter presents programming techniques and a methodology to help
you achieve maximum performance from your IRIS GL application.

The techniques described in this chapter are also incorporated into Silicon
Graphics’s IRIS Performer™ software development environment. IRIS
Performer automatically optimizes graphical applications on the full range
of IRIS products without changes or recompilation. Performance features
supported by IRIS Performer include:

• data structures to use the CPU, cache, and memory system architecture
efficiently

• tuned rendering loops to convert the system CPU into an optimized
data management engine

• state-management control to minimize overhead

For more information on IRIS Performer, contact your sales representative.

Tuning Basics

This section outlines the basic tuning strategy and presents techniques for
taking timing measurements and for isolating performance problems. It
presents a three-stage model of the IRIS Geometry Pipeline® and explains
pipeline tuning considerations.

104

Chapter 4: Tuning IRIS GL Applications

Why is Tuning Useful?

Effective code tuning is a natural part of graphics programming. A clear,
consistent programming style combined with a systemized approach to
performance tuning produces efficient, understandable, and maintainable
code. Tuning need not detract from software readability and modularity.
This chapter provides you with a conceptual framework to guide you in the
tuning process and details specific techniques that are effective and easy to
implement.

Because the hardware of Silicon Graphics systems is so fast, you might think
that you won’t be able to make a significant difference in perceived
performance by tuning your code. This is not the case, because in addition
to the graphics capabilities of your system, the speed at which an application
runs is a limiting factor—even the fastest machine can only render as fast as
the application can drive it. Simple changes in application code can make a
dramatic difference in rendering time.

There are two quick changes that give your program a big performance
advantage, especially if you are running older IRIS GL code, which does not
use the newer vertex subroutines (for example, v3f()). For code that uses
old-style subroutines, adding the following line may make your program go
as much as 30% faster:

glcompat(GLC_OLDPOLYGON,FALSE);

On newer graphics subsystems, such as PowerVision™ (IRIS-4D/VGX™),
including this line can double the performance of some programs:

subpixel(TRUE);

These mode settings should be used by most programs on recent Silicon
Graphics workstation models; however, to preserve backwards
compatibility they are not the default settings, so you must set them in your
program.

Tuning Basics

105

Three-Stage Model of the Graphics Pipeline

For software tuning purposes, the graphics pipeline in all Silicon Graphics
workstations may be modeled by three operational stages:

1. The application program running on the CPU, feeding commands to
the graphics subsystem.

2. Per-polygon operations, such as coordinate transformations, lighting,
depth-cueing, clipping, and concave polygon decomposition.

3. Per-pixel operations, such as the simple operation of writing color
values into the frame buffer, or more complex operations such as
z-buffering, alpha blending, and texture mapping.

Figure 4-1 shows the three-stage model of the graphics pipeline.

Figure 4-1 Three-Stage Model of the Graphics Pipeline

This three-stage model is simpler than the actual hardware implementation
in the various models in the Silicon Graphics product line, but it is detailed
enough for all but the most subtle tuning tasks.

The amount of work required from the different pipeline stages varies
among applications. For example, consider a program that draws a small
number of large polygons. Because there are only a few polygons, the
pipeline stage that does per-polygon operations is lightly loaded. Because
those few polygons cover many pixels on the screen, the pipeline stage that
does per-pixel operations is heavily loaded. To speed up this program, you
must speed up the per-pixel stage, either by drawing fewer pixels or by
drawing pixels in a way that takes less time, by turning off modes like
texturing, blending, or z-buffering.

Furthermore, because spare capacity is available in the per-polygon stage,
you can increase the work load at that stage without degrading
performance. For example, you can use a more complex lighting model, or

Per-Polygon
Processing

Per-Pixel
ProcessingCPU

106

Chapter 4: Tuning IRIS GL Applications

define geometries such that they remain the same size but look more
detailed because they are composed of a larger number of polygons.

Pipeline Tuning

Traditional software tuning focuses on finding and tuning hot spots, the 10%
of the code in which the program spends 90% of its time. Pipeline tuning uses
a different approach — rather than looking for hot spots, you look for
bottlenecks, overloaded stages that are holding up other processes, in the
pipeline.

Imagine a factory assembly line. The station on the assembly line that takes
the longest to complete a task limits the speed of the entire line. No one
downstream can process more work, because the downstream flow is
limited by the output of the slowest station. No one upstream can process
more work, because the line backs up and slows down to match the slowest
station. The only way to get more performance out of the entire assembly
line is to speed up the operation of the slowest task.

A pipeline-oriented graphics system behaves in a similar way. At any given
time, one stage of the pipeline is the limiting factor — the bottleneck.
Reducing the time spent in the bottleneck is the only way to improve
performance. Speeding up operations in other parts of the pipeline has no
effect. Conversely, doing work that further intensifies the bottleneck, or that
creates a new bottleneck somewhere else, is the only thing that will further
degrade performance. The work load can be increased at other parts of the
pipeline without degrading performance, as long as it does not become so
slow that it becomes a new bottleneck. In this way, an application can
sometimes be altered to draw a higher quality image with no degradation of
performance.

Different programs stress different parts of the pipeline, so it’s important to
understand which elements in the graphics pipeline are the bottlenecks for
your program.

Tuning Basics

107

The following parameters determine the performance of most applications:

• total number of polygons in a frame

• transform rate for the given polygon type and mode settings

• number of pixels filled

• fill rate for the given mode settings

• time of screen and/or z clears

• time to swap buffers

• time of application overhead

Isolating Bottlenecks in the Pipeline

The basic strategy for isolating bottlenecks is to measure the time it takes to
execute a program or part of a program and then change the code in ways
that don’t alter its performance except by adding or subtracting work at a
single point in the graphics pipeline at a certain time. If changing the amount
of work processed at a given stage of the pipeline does not alter performance
appreciably, that stage is not the bottleneck. If there is a noticeable difference
in performance, you’ve found a bottleneck.

Finding CPU Bottlenecks

The most common bottleneck occurs when the application program does not
feed the graphics subsystem fast enough. Such programs are called
CPU-limited.

To test for a CPU bottleneck, you want to remove as much graphics work as
possible, while preserving the behavior of the application in terms of the
number of instructions executed and the way memory is accessed. Often,
changing just a few IRIS GL calls is a sufficient test. For example, replacing
vertex and normal calls like v3f() and n3f(), with color subroutines, like c3f(),
preserves the CPU behavior while eliminating all drawing and lighting
work in the graphics pipeline. If making these changes does not significantly
improve performance, then your application has a CPU bottleneck.

108

Chapter 4: Tuning IRIS GL Applications

Finding Per-Polygon Bottlenecks

Programs that create bottlenecks in the per-polygon stage are called
transform-limited. To test for bottlenecks in per-polygon operations, change
the program so that the application code runs at the same speed and the
same number of pixels are filled, but the per-polygon work is reduced. For
example, if you are using lighting, temporarily turn lighting off. Bind your
material to 0 and see if performance improves. If performance improves,
then your application has a per-polygon bottleneck.

Finding Per-Pixel Bottlenecks

Programs that cause bottlenecks at the per-pixel stage in the pipeline are
fill-rate limited. To test for bottlenecks in per-pixel operations, shrink objects,
or shrink the window size to reduce the number of active pixels. This
technique won’t work if your program alters its behavior based on the sizes
of objects or the size of the window. You can also reduce the work done per
pixel by turning off per-pixel operations such as z-buffering or
alphablending. If any of these experiments speeds up your program, then
your application has a per-pixel bottleneck.

Break Complex Programs Into Smaller Pieces

Many programs draw a variety of different things, each of which stresses
different parts of the system. Decompose such a program into pieces and
time each piece. You can then focus your bottleneck isolation and tuning
activities on the slowest pieces.

Taking Timing Measurements

Timing, or benchmarking, a piece of graphics code requires some care.

Follow these steps to get accurate timing measurements:

1. Take measurements on a quiescent system.

Verify that no unusual activity is taking place on your system when you
take timing measurements. Other graphics programs, background
processes, and network activity can distort your timing results.

Tuning Basics

109

2. Choose timing trials that are not limited by the clock resolution.

If your system updates its clock at intervals of one-hundredth of a
second, and the phenomenon you’re trying to measure lasts only one
one-hundredth of a second, the expected error percentage of any given
timing trial is very large. A good rule of thumb is to benchmark
something that takes at least two seconds, so that the uncertainty
contributed by the clock reading is less than one percent of the total
error. To measure something that is faster than two seconds, write a
loop to execute the test code repeatedly.

3. Benchmark static frames.

Verify that the code you are timing behaves identically for each frame of
a given timing trial. If the scene changes, the current bottleneck in the
graphics pipeline may change, making your timing measurements
meaningless. For example, if you are benchmarking the drawing of a
rotating airplane, choose a single frame and draw it repeatedly, rather
than letting the airplane rotate while you are taking the benchmark.
Once a single frame has been analyzed and tuned, you can look for
frames that stress the graphics pipeline in different ways, then analyze
and tune them individually.

4. Call finish() before reading the clock at the start and at the end of the
time trial.

Graphics calls can be tricky to benchmark because they do all their
work in the graphics pipeline. When a program running on the main
CPU issues a graphics command, the command is put into a hardware
queue in the graphics subsystem, to be processed whenever the
graphics pipeline is ready to process it. The main CPU can immediately
go on to do other work, including issuing more graphics commands
until the queue fills up.

When benchmarking a piece of graphics code, you must include in
your measurements the time it takes to process all the work left in the
queue after the last graphics call. To accomplish this, call finish() at the
end of your timing trial, just before sampling the clock. Call finish()
before sampling the clock and starting the trial, to make sure no
graphics calls remain in the graphics queue ahead of the process you
are timing. Sample benchmarking code is provided in Appendix A,
“Benchmarking Tools.”

110

Chapter 4: Tuning IRIS GL Applications

Tuning to Frame Rates

The smoothness of an animation depends on its frame rate. The more frames
per second, the smoother the motion appears. Smooth animation also
requires double buffering. In double buffering, one frame buffer holds the
current frame, which is scanned out to the monitor by video hardware, while
the rendering hardware is drawing into a second buffer that is not visible.
When the new frame buffer is ready to be displayed, the system swaps the
buffers. The system must wait until the short vertical retrace period between
raster scans to swap the buffers, so that each raster scan displays an entire
stable frame, rather than parts of two or more frames.

Therefore, frame rates must be integer multiples of the screen refresh time,
which is 16.7 milliseconds (msec) for a 60 Hz monitor. If the draw time for a
frame is slightly longer than the time for n raster scans, the system waits
until the n+1st vertical retrace before swapping buffers and allowing
drawing to continue, so the total frame time is (n+1)∗ 16.7 msec. Thus, a
change in the time spent rendering a frame has no visible effect unless it changes the
total time to a different integer multiple of the screen refresh time. If you want an
observable performance increase, you must reduce the rendering time
enough to take a smaller number of 16.7 msec raster scans. Alternatively, if
performance is acceptable, you can add work without reducing
performance, as long as the rendering time does not exceed the current
multiple of the raster scan time.

Follow these steps to optimize frame rate performance:

1. To produce an observable performance increase, reduce drawing time
to a lower multiple of the screen refresh time.

2. Take timing measurements in single buffer mode only.

To get accurate numbers, you must perform timing trials in single
buffer mode, with no calls to swapbuffers(). Because buffers can only
be swapped during a vertical retrace, there is a dead period, between
the time a swapbuffers() call is issued and the next vertical retrace,
when a program may not execute any graphics calls. If a program
attempts to issue graphics calls during this period, it is put to sleep
until the next vertical retrace, distorting the accuracy of the timing
measurement.

CPU Tuning

111

3. Perform non-graphics computation after swapbuffers().

A program is free to do non-graphics computation during the wait
cycle between vertical retraces. Therefore issue a swapbuffers() call
immediately after sending the last graphics call for the current frame,
perform computation needed for the next frame, then execute IRIS GL
calls for the next frame, call swapbuffers(), and so on.

“Three-Stage Model of the Graphics Pipeline” on page 105 introduced a
three-stage model of the graphics pipeline, consisting of CPU, per-polygon
and per-pixel operations. The following sections assume that you know
which part of the pipeline you are trying to optimize. They describe
techniques for writing and tuning graphics code for a particular stage of the
graphics pipeline.

Suggestions for graphics programming for peak performance are also
described. However, writing high-performance code is usually more
complex than just following a set of rules. Most often, it involves making
trade-offs between special functions, quality, and performance for a
particular application. After reading these sections, experiment with the
different techniques described to help you decide where to make these
trade-offs.

CPU Tuning

When an application is CPU-limited, the entire graphics pipeline may be
sitting idle for periods of time. This section describes techniques for
structuring application code so that the CPU doesn’t become the bottleneck.

To get the best possible CPU performance, follow these two overall
guidelines:

1. Compile your application for optimum speed.

Compile all object files with at least -O2. Note that the compiler option
for debugging, -g, turns off all optimization. If you must run the
debugger on optimized code, you can use -g3 with -O2 with limited
success. For faster floating point operations, compile with -float.

112

Chapter 4: Tuning IRIS GL Applications

2. Use a simple data structure and a fast traversal method.

The CPU tuning strategy focuses on developing fast database traversal
for drawing with a simple, easily accessed data structure. The fastest
rendering is achieved with an inner loop that traverses a completely
flattened (non-hierarchical) database. Most applications cannot achieve
this level of simplicity for a variety of reasons. For example, some
databases occupy too much memory when completely flattened.

Suggestions for database structure and traversal methods that allow you to
manage and balance the performance/memory conflict follow.

Optimizing Cache and Memory Use on IRIS POWER Series
Systems

This section discusses efficient use of cache and memory in IRIS POWER
Series™ multiprocessor architectures. These architectures use MIPS® R2000®

and R3000® series processors. Refer to “Optimizing Cache and Memory Use
on IRIS Crimson IP17 Processors” on page 115 for information about the IRIS
Crimson IP17 processors.

Most systems do not have an unlimited amount of fast memory. To approach
this ideal, system memory is structured as a hierarchy that contains a small
amount of faster, more expensive, memory at the top and a large amount of
slower memory at the base.

The hierarchy is organized from registers in the CPU at the top, down to the
disks at the bottom. As memory locations are accessed, they are
automatically copied into higher levels of the hierarchy, so data that is
accessed most often is placed in the fastest memory locations.

The two levels of the memory hierarchy with which you should be most
concerned are the cache, which feeds data to the CPU and the
translation-lookaside buffer (TLB), which keeps track of frequently used pages
of memory.

Each processor has an instruction cache and two data caches. The purpose of
the caches is to feed data and instructions to the CPU at maximum speed.
When data is not found in the cache, a cache miss occurs and a performance
penalty is incurred as data is brought into the cache.

CPU Tuning

113

Locations in virtual memory are found from a page table that translates
virtual pages to physical memory. This page table can be very large and can
be paged itself, therefore, such lookups can become very expensive. The
solution to this problem is to cache the translations of the most frequently used
pages in the TLB. The TLB is fully associative, that is, a page may be placed
in any location on the TLB. The only restriction is the limit on the number of
pages and there are currently 56 page entries available to user processes. If a
page translation is not found in the TLB, a delay is incurred to look up the
page and enter its translation.

The goal of machine designers and programmers is to maximize the chance
of finding data in a top level of the hierarchy. To achieve this goal, algorithms
for maintaining the hierarchy, encoded into the hardware and the operating
system, assume that programs have locality of reference in both time and
space, keeping frequently accessed locations close together. You get
increased performance by respecting the degree of locality required by each
level in the memory hierarchy.

Even applications that appear not to be memory intensive, in terms of total
number of memory locations accessed, may suffer unnecessary performance
penalties for inefficient allocation of these resources. An excess of cache
misses, especially misses on read operations, can force the most optimized
code to be CPU-limited. Memory paging causes almost any application to be
severely CPU-limited.

Follow these guidelines to minimize memory paging:

1. Keep frequently used data within a minimal number of pages (each
page consists of 4K (4096) bytes).

Minimize the number of pages accessed in your program by keeping
data structures within as few pages as possible and verify that TLB
misses are not occurring. Instructions for tracking TLB activity are
provided later in this section.

2. Minimize cache misses.

Each processor has a first-level data cache of 64KB and a second-level
data cache of 256KB. The first-level data cache is actually a subset of the
data in the second-level cache. The data caches are direct-mapped, so
the location of the data in the cache depends exclusively on its lower
address bits. A cache line is a block of four 32-bit words. On a read-miss,
a block of four full cache lines is brought into the cache.

114

Chapter 4: Tuning IRIS GL Applications

Structure your data so the most frequently accessed data remains in the
first-level cache wherever possible.

Locate data within cache lines to get the maximum benefit from each
cache miss. Each cache miss brings sixteen 32-bit words into the cache.
If you’re accessing words sequentially, each cache miss brings in sixteen
words of needed data; if you’re accessing every sixteenth word, each
cache miss brings in one needed word and fifteen unneeded words,
degrading performance by up to a factor of sixteen.

Avoid conflicts where data in two separate cache lines map to the same
location in the cache. If data structures access multiple pages, or are
very large, conflicts for cache locations may occur, causing additional
misses. For large, packed arrays this is unavoidable. However, the
impact can be minimized by packing each cache line with currently
needed data.

Avoid simultaneously traversing two large buffers of value data, such
as an array of address flags and an array of cpack() data, because there
can be cache conflicts between the two buffers. Instead, pack the
contents into one buffer.

Second-level data cache misses also increase bus traffic, which can be a
problem in a multi-processing application. Three processors missing
their second-level cache will saturate the MP bus that connects the
CPU, memory, and graphics subsystems. This can happen with
multiple processes traversing very large data sets.

3. Minimize page (TLB) misses.

The same concerns exist for page access as for cache access. If you
access words sequentially, each TLB miss brings in a TLB entry to be
used for the next page of 1024 32-bit words. If you access words that are
4096 bytes apart, every access results in a TLB miss.

4. Measure cache-miss and page-fault overhead.

To find out if cache and memory usage are a significant part of your
CPU limitation:

■ Use osview to monitor your application.

You should not see any page faults or tfaults - TLB misses. To
quickly estimate the effect of memory access for just graphics calls,
compare the running time of your rendering loop with graphics
calls completely stubbed out to the time with graphics calls left in,

CPU Tuning

115

but with v3f() calls turned into c3f() calls. When graphics calls are
completely stubbed out, no graphics data is accessed or sent to the
pipe. When graphics calls are left in, with v3f() calls changed to
c3f() calls, all data is accessed but the graphics subsystem doesn’t
spend any time drawing.

■ A more rigorous way to estimate the time spent on memory access
is to compare the results obtained by PC sampling vs. basic block
counting analyses for the two different runs, with and without
v3f()’s. PC sampling, from prof(1), gives a real-time estimate of the
time spent in different sections of the code. Basic block counting,
from pixstats(1), gives an ideal estimate of how much time should
be spent, not including memory references. See the prof(1) and
pixstats(1) man pages for information on these tools. PC sampling
includes time for system overhead, so it always predicts longer
execution than pixstats basic block counting. However, your PC
sample time should not be more than 1.5 times the time predicted
by pixstats. For detailed information on profiling, see Chapter 4,
“Improving Program Performance,” in the IRIX System
Programming Guide, which you can read online from the IRIS
InSight viewer.

These experiments help you determine if the significant problem is waiting
on cache, TLB misses, or page faults for your graphics data.

Optimizing Cache and Memory Use on IRIS Crimson IP17
Processors

IRIS Crimson™ systems contain an IP17 CPU board with the MIPS R4000®

CPU. The MIPS R4000 CPU architecture differs from the MIPS R3000
processors used in Silicon Graphics POWER Series systems in ways that
may have performance implications for graphics applications.

The Crimson CPU provides a significant increase in instruction rate over
earlier system architectures. Crimson delivers a 100 MHz instruction rate
(compared with 40 MHz in R3000-based systems). This rate brings
previously CPU-limited graphics programs closer to achieving peak
graphics performance.

116

Chapter 4: Tuning IRIS GL Applications

The Crimson CPU has a direct-mapped unified 1 MByte secondary cache for
both instructions and data. Therefore, much larger data sets fit in the
secondary cache on a Crimson system than do on POWER Series systems,
for example, the 200 and 300 series systems. However, data sets may
experience conflicts with instructions in the unified secondary cache. Try to
minimize cache conflicts, as they can force frequently needed data out of the
cache.

The Crimson CPU uses a different method for transferring data to the
graphics subsystem than do the POWER Series CPUs. For optimal graphics
performance on the 200, 300, and 400 POWER Series systems, it is important
that graphics geometry data for IRIS GL commands that send information to
the graphics subsystem by address, such as v3f(), n3f(), c3f(), and t2f(), be
kept in memory that is allocated separately from other program data. The
reason for this is that on these systems, geometry data is transferred to the
graphics subsystem without going through the cache.

On Crimson systems, geometry data is sent to the graphics subsystem
through the CPU, so it is needed in the cache. Therefore, separating graphics
geometry data from other data is not necessary on a Crimson system; in fact,
doing so may have a negative effect on performance because it increases the
probability of cache conflicts.

To achieve peak graphics performance, maximize the chance that a piece of
data needed by the CPU, including any type of graphics data on a Crimson
system, is in the cache when it is needed. You can use the same techniques
described in “Optimizing Cache and Memory Use on IRIS POWER Series
Systems” on page 112, except you should not separate your value data from
your geometric reference data as recommended for IRIS POWER Series
systems.

Tuning Immediate Mode Drawing

Immediate mode provides flexibility and control over both storage
management and drawing traversal. The trade-off for the extra control is
that you have to write your own subroutines for data traversal. These
subroutines, and the data structures they access, must be optimized.

CPU Tuning

117

Optimizing Data Structures

The suggestions presented in this section for creating data structures and
traversals concern general cache and memory efficiency. Some machines,
such as the POWER Series machines, can yield extra performance if some
additional constraints are followed.

It is common for scenes to have hierarchical definitions. Scene management
techniques may rely on specific hierarchical information. Caching behavior
is often difficult to predict for hierarchical dynamic data structures.
Hierarchical structures present several performance drawbacks:

• The time spent traversing pointers to different sections of a hierarchy
can create a CPU bottleneck.

This is partly because of the number of extra instructions executed, but
it is also a result of the inefficient use of cache and memory. Overhead
data not needed for rendering is brought through the cache and can
push out needed data, causing subsequent cache misses.

• Traversing hierarchical structures can cause excessive memory paging.

Hierarchical structures can be distributed throughout memory. It is
difficult to be sure of the exact amount of data you are accessing and
where it is located, therefore traversing hierarchical structures can
access a costly number of pages.

• Complex operations may need access to both the geometric data and
other scene information, complicating the data structure.

For these reasons, hierarchy should be used with care. In general, store the
geometry data used for rendering in static, contiguous buffers, rather than
in the hierarchical data structures. In addition, because Silicon Graphics
processors have a direct-mapped cache, avoid having pieces needed for a
given object occupying the same locations in the cache where possible.

Follow these steps to optimize data structures:

1. Minimize data structure hierarchy.

Flatten your rendering data (minimize the number of levels in the
hierarchy) as much as cache and memory considerations and your
application constraints permit.

118

Chapter 4: Tuning IRIS GL Applications

2. Separate value data from geometric reference data on POWER Series
systems.

Note: Do not separate the value data from geometric reference data on
Crimson IP17 systems. The Crimson CPU uses a different method for
transferring data to the graphics subsystem than do the POWER Series
CPUs. ♦

The reason for this separation is related to how the POWER Series
systems transfer geometric data to the graphics pipe. The high
performance graphics subroutines use Direct Memory Access (DMA) to
transfer blocks of reference data from memory directly to the graphics
pipe without that reference data ever going through cache.

Whenever value data is pulled into cache, it is brought in as full
cache-lines of data (four words on a POWER Series). Therefore, if value
data, such as cpack() data, or your own command flags, is mixed in
with reference data, reference data is pulled into the cache
unnecessarily. This effectively destroys locality of reference, wastes
valuable cache locations, and increases the likelihood of a future
cache-miss occurring on the next piece of value data, that could have
been brought in, instead of reference data, with previous value data.

The “Optimizing Database Traversal” on page 120 discusses ways to
organize different types of data for a fast traversal that satisfies this
constraint.

3. Use quad-word alignment on POWER Series systems.

All data sent to high performance graphics subroutines, such as v3f(),
should begin on a quad-word address, an address divisible by 16. Using
quad-word alignment is simple. A quad word is four words, so always
allow the data for a given command four 32-bit words of space. For
example, an integer or a float takes up one word, therefore c3f(), n3f(),
and v3f() data for one 3-D vertex uses three words. Instead of packing
the data for each command, always leave a fourth word as padding and
start the data for the next command at the next quad-word.

The following example shows four component color data alternating
with vertex data:

r g b a x y z _ r g b a x y z _

In the case of normal and color data, each gets a word of padding:

r g b _ x y z _

CPU Tuning

119

The need for quad-word alignment depends on how the CPU gets data
from memory to the graphics system. On the POWER Series machines,
such as the IRIS-4D/GTX or VGX, the DMA hardware uses a 3-way
handshake between CPU, memory and graphics to send data to the
graphics subsystem. Blocks of data are sent directly to the graphics pipe
without ever going through cache.

Each bus transaction consists of a quad-word that begins on an address
that is divisible by 16. Thus a call to a subroutine, like v3f(), with
quad-word aligned data requires a single bus transaction. Two
transactions are required for data that is not quad-word aligned.
Therefore, unaligned polygons without other significant bottlenecks,
can suffer a performance loss in comparison with quad-word aligned
data. If a traversal is otherwise CPU-limited, or there is a bottleneck in
the graphics pipeline, then changing to quad-word alignment may not
have a noticeable effect.

Quad-word alignment increases the size of your graphics data.
However, because geometry data does not go through cache, you may
only notice the effect from this increase if you are accessing too many
pages, causing additional TLB misses or actually running out of
memory.

Note: IRIS GL display lists automatically quad-word align all data sent
to graphics subroutines. ♦

The following sample C language code fragment page-aligns a malloc-ed
buffer, which is also quad-word aligned, because page boundaries are on
quad-word boundaries.

/* malloc with a page of overhead */
pointer = (float *) malloc (num_floats*sizeof(float) + 4096);
/* bump up the pointer a page */
pointer = (float *) ((int) pointer) + 4095);
/* All page addresses are divisible by 4096 = 212 so zeroing
* the bottom 12 bits will put us back to the previous page
* boundary which is automatically a quad word boundary.
*/
pointer = (float *) (((int) pointer) & 0xfffff000);

120

Chapter 4: Tuning IRIS GL Applications

4. Use floats or ints, but not shorts, on VGX systems.

On a VGX system, the subroutines for sending data to the graphics pipe
as shorts, for example c3s(), and v3s(), are less efficient than the other
subroutines, because the VGX does not always use the DMA method
for data transfer for these commands. Therefore, using shorts on a VGX
can be CPU-limiting.

Optimizing Database Traversal

This section includes some suggestions for writing peak-performance code
for inner rendering loops.

Ideally, an application should be spending most of its time in database
traversal and sending data to the graphics pipe. Instructions in the display
loop are executed many times every frame, creating hot spots. Any extra
overhead in a hot spot is greatly magnified by the number of times it is
executed.

When using simple, high-performance graphics primitives, the application
is even more likely to be CPU-limited. The data traversal must be optimized
so that it does not limit the speed of all drawing.

Follow these steps to optimize data traversal:

1. Use peak-performance code for drawing subroutines.

During rendering time, the sections of code that actually issue graphics
commands should be the hot spots in application code. These
subroutines should use peak-performance coding methods. Small
improvements to a line that is executed for every vertex in a database
accumulate to cause a noticeable effect when the entire frame is
rendered.

Follow these suggestions for writing peak-performance code:

■ Use single-dimensioned arrays for data.

■ Use flat data structures and do not use multiple pointer
indirections when rendering:

bad: v3f(object->data->vert);
ok: v3f(dataptr->vert);
best: v3f(dataptr);

CPU Tuning

121

The following sample code fragment is an example of efficient code
to output a single gouraud, lit, polygon from quad-word aligned
data. Notice that a single data pointer is used. It is updated once at
the end of the polygon, after the endpolygon() call.

bgnpolygon();
n3f(ptr);
v3f(ptr+4);
n3f(ptr+8);
v3f(ptr+12);
n3f(ptr+16);
v3f(ptr+20);
n3f(ptr+24);
v3f(ptr+28);
endpolygon();
ptr += 32;

■ Do not have short, fixed-length loops, especially around vertices.
Instead, unroll these loops:

bad:
for(i=0; i < 4; i++){

cpack(poly_colors[i]);
v3f(poly_vert_ptr[i]);

}

good:

cpack(poly_colors[0]);
v3f(poly_vert_ptr[0]);
cpack(poly_colors[1]);
v3f(poly_vert_ptr[1]);
cpack(poly_colors[2]);
v3f(poly_vert_ptr[2]);
cpack(poly_colors[3]);
v3f(poly_vert_ptr[3]);

■ Minimize the work done in a loop to maintain and update variables
and pointers. Unrolling can often assist in this:

bad: n3f(*(ptr++); v3f(*(ptr++));
or n3f(ptr); ptr += 4;

v3f(ptr); ptr += 4;
good: n3f(*(ptr)); v3f(*(ptr+1)); n3f (*(ptr+2));

v3f(*(ptr+3));
or n3f(ptr); v3f(ptr+4); n3f(ptr+8); v3f(ptr+12);

122

Chapter 4: Tuning IRIS GL Applications

■ Minimize the number of different buffers accessed in a loop:

bad: n3f(normaldata); t2f(texdata); v3f(vertdata);
good: n3f(dataptr); t2f(dataptr+4); v3f(dataptr+8);

■ Use simple switch statements instead of multiple if-else-if control
structures.

■ Avoid division. Shift or multiply by a reciprocal rather than
perform integer divides.

■ Prototype subroutines in ANSI C style to avoid run-time
typecasting of parameters:

void drawit(float *ptr, int count)
{
.......

}

■ Avoid typecasting of values, which happens at run-time:

val = (float) *ptr;

Typecasting of pointers occurs at compile time and is efficient:

long *ptr;
*(float *) ptr = float_val;
float_val = *(float *) ptr;

■ Make end-conditions on loops as trivial as possible, for example,
compare the loop variable to a constant, preferably 0. Therefore,
decrementing loops are often more efficient than their incrementing
counterparts:

bad: for (i=0, i*size < (end - begining)/size; i++)
{...}

better: for (i +beginning, i < end; i +=size)
{...}

good: for (i=total, i > 0; i--)
{...}

■ Do not do if tests around vertices—use duplicate code instead. An
example of this is shown under rule 2 on page 123.

CPU Tuning

123

2. Use specialized drawing subroutines and macros.

Decide how geometry should be displayed at as high a level in the
program organization as possible. The drawing subroutines should be
highly specialized leaves in the program tree. Decisions made too far
down the tree can be redundant. For example, consider a program that
switches back and forth between drawing flat-shaded and
gouraud-shaded. Once this choice has been made for a frame, the
decision is fixed and the flag is set. For example, the code illustrated
below is extremely inefficient:

/* Inefficient way to toggle modes */
draw_object(float *data, int npolys, int gouraud) {
int i=npolys;
for (; i > 0; i--) {

bgnpolygon();
if (gouraud) c3f(data);
v3f(data + 4);
if (gouraud) c3f(data +8);
v3f(data + 12);
if (gouraud) c3f(data + 16);
v3f(data + 20);
if (gouraud) c3f(dta + 24);
v3f(data + 28);
endpolygon();

}

Even though the choice of drawing mode was made before the
draw_object routine was entered, the flag is checked for every vertex in
the scene. A simple if-test may seem innocuous; however, when done
on a per-vertex basis, it can accumulate a noticeable amount of
overhead.

Compare the size and number of useless NOPs (no operations) in the
disassembled code for the routine, first without, and then with, the
if-test.

124

Chapter 4: Tuning IRIS GL Applications

Assembly code for routine without if-tests (19 instructions):

jal bgnpolygon
nop
jal n3f
move a0,s0
jal v3f
addiu a0,s0,16
jal n3f
addiu a0,s0,32
jal v3f
addiu a0,s0,48
jal n3f
addiu a0,s0,64
jal v3f
addiu a0,s0,80
jal n3f
addiu a0,s0,96
jal v3f
addiu a0,s0,112
jal endpolygon

Assembly code for routine with if-tests (27 instructions):

jal bgnpolygon
nop
beq s1,zero,0x3c
nop
jal n3f
move a0,s0
jal v3f
addiu a0,s0,16
beq s1,zero,0x54
nop
jal n3f
addiu a0,s0,32
jal v3f
addiu a0,s0,48
beq s1,zero,0x6c
nop
jal n3f
addiu a0,s0,64
jal v3f
addiu a0,s0,80
beq s1,zero,0x84
nop

CPU Tuning

125

jal n3f
addiu a0,s0,96
jal v3f
addiu a0,s0,112
jal endpolygon

Notice how many extra instructions precede each n3f() in the if-test
code. That extra if-test per-vertex increases the number of instructions
executed for this otherwise optimal code by 40%. For code that is
otherwise less optimal, the effect can still be significant as a result of
swapping data in registers or other unpredictable interactions. These
effects may not be visible if such code is used only to render objects that
are always graphics limited. However, if the process is CPU-limited,
then moving decision operations, such as this if-test, higher up the in
the program structure, improves performance.

The appropriate place to check the flag for gouraud shading is outside
the loop. To do this, create two specialized subroutines: one routine for
gouraud shading and one for flat shading. Redundancies in writing
such duplicate code can usually be effectively managed with macros.

3. Preprocess drawing data

Putting some extra effort into generating a simpler database makes a
world of difference when traversing that data for display. A common
tendency is to leave the data in a format that is good for loading or
generation of the object, but not optimal for actually displaying it. For
peak performance, you should do as much of the work as possible
before rendering.

Preprocessing turns a difficult database into a database that is easy to
render quickly. This is typically done at initialization or in changing
from a modeling to a fast-rendering mode. For example, consider a
database that has many-sided or concave polygons. Many sided, or
concave, polygons are very slow to render. You can break those
polygons into quads and triangles, which can then be grouped into
qstrips and/or tmeshes, for sorting of like-primitives.

Preprocessing can also be used to turn general meshes into fixed-length
strips.

126

Chapter 4: Tuning IRIS GL Applications

The following sample code shows a commonly used, but very
inefficient, way to write a tmesh render loop.

while (!done) switch(*data) {
case BGNMESH:

bgntmesh();
break;

case ENDMESH:
endtmesh();
break;

case SWAPMESH:
swaptmesh();
break;

case EXIT:
done = 1;
break;

default: /* have a vertex !!! */
n3f(dataptr);
v3f(dataptr + 4);
dataptr += 8;

}

This type of traversal incurs a significant amount of per-vertex
overhead. The loop is evaluated for every vertex and every vertex must
also be checked to make sure that it is not a flag. This wastes time and
also brings all of the object data through the cache. This practice
reduces the performance advantage of using meshes. Any variation of
this code that has per-vertex overhead is CPU-limiting on the peak
graphics machines, like the VGX, and even more so on the CPU-limited
IRIS-4D/85GT™, for most types of simple graphics operations.

This possibility also applies to another popular tmesh coding scheme,
the vertex loop:

bgntmesh();
for (i=num_verts; i > 0; i--) {

n3f(dataptr);
v3f(dataptr+4);
dataptr += 8;
}

endtmesh();

For peak immediate mode performance, the best way to optimize this
code is to precompile meshes into specialized primitives of fixed length
strips. Only a few fixed lengths are needed. For example, use strips of
length 12, 8, and 2.

CPU Tuning

127

These specialized meshes are then sorted by size, resulting in the
efficient loop shown in this sample code:

/* dump out N 8-triangle meshes */
for (i=N; i > 0; i--) {

bgntmesh();
n3f(dataptr);
v3f(dataptr+4);
n3f(dataptr+8);
v3f(dataptr+12);
n3f(dataptr+16);
v3f(dataptr+20);
/* now each new vertex is a new tri */
n3f(dataptr+24);
v3f(datatpr+28);
...

endtmesh();
dataptr += 80;;

}

The unrolling of the drawing code, illustrated above, can be made more
compact with specialized macros like these:

#define LIT_GOURAUD_VERT(ptr, offset) \
{n3f(ptr + offset); v3f(ptr + offset + 4);}

#define LIT_GOURAUD_MESH_LENGTH_8 (dataptr)\
{\
LIT_GOURAUD_VERT(dataptr, 0); \
LIT_GOURAUD_VERT(dataptr, 8);\
.....
LIT_GOURAUD_VERT(dataptr, 72); \
}

A mesh of length 12 is about the maximum for unrolling. Unrolling
helps to reduce the overall cost-per-loop overhead, but after a point, it
produces no further gain. Over-unrolling eventually hurts performance
if done to an extreme in several places.

Pre-compilation of complex data enables the peak-performance
techniques described above and is often necessary for some of the
specialized techniques described below.

128

Chapter 4: Tuning IRIS GL Applications

4. Experiment and benchmark potential traversals

While the techniques in this section might not be used in their entirety,
this underlying strategy should be applied:

■ Minimize the CPU work done at the per-vertex level.

■ Use a simple data structure for the rendering traversal.

Writing a peak-performance immediate mode renderer for a specific
application can be an interesting and challenging task. Unfortunately, there
is no recipe for this sort of task. Design potential data structures and
traversal loops and write small benchmarks that mimic the memory
demands you expect in order to predict the CPU-limitation of your traversal.
Experiment with small optimizations and benchmark the effects.
Experimentation on small examples can save time in the actual
implementation.

Sample Data Structure and Traversal

The data structure in Example 4-1, perfobj, can be used in the optimal case, as
well as in the more dynamic and complex situations. This example shows a
very simple, but complete and general structure. Most applications only use
a small subset of this structure. Some applications may add specializations.

Example 4-1 The perfobj Data Structure

/* structure to organize geometry data */
typedef struct perfobj_vert_t {

float vertex[4]; /* padded for quad-word alignment */
float color4[4];
float normal[4];
float texture[4];

} perfobj_vert_t;

typedef struct perfobj_t {
/* data buffers - page align these */
float *flags; /* DL flags and value data */
perfobj_vert_t *vdata; /* for geometry data */
float *props; /* props for lmdef, texdef */
unsigned long *texdata; /* texdef */
Matrix mdata[PD_MAX_MATRICES]; /* matrix data */
/* keep track of the size of all data */
int flags_nlongs;

CPU Tuning

129

int vdata_nlongs;
int props_nlongs;
int texdata_nlongs;
int mdata_nmats;

} perfobj_t;

The perfobj data structure has a separate buffer for value data. This buffer
contains the immediate mode display-list flags and associated value data.
For example, you can have a command flag called GOURAUD_QUAD and
have the flag followed by a pointer to the corresponding vertex data in the
geometry data buffer. Corresponding c3f() and n3f() data can be located in
the vdata structure. Value data, such as cpack() data, can be stored with the
flags.

Other data buffers contain geometric data, matrix data, property data for
IRIS GL items, such as lights, materials, textures, and image data. A strict
sizing account of these structures is kept in the *_nlongs fields. This
organization represents convenient classes of usage, cache flow, size, and
type. The geometric reference data is kept separately from other data in the
vdata structure. The perfoj_vertex_t structure organizes the geometric data
and keeps it quad-word aligned. All geometric data is of the type float.

The perfobj structure becomes the basic building block for the application’s
data structures. The data structure is customized with specialized command
flags put in the flags array for use by the traversal. Simple applications can
put their entire scene in a single perfobj. Complex applications may have
many perfobjs for a scene and perhaps an additional perfobj for global
information. The flags array for the global perfobj may then contain
specialized command flags that include jumping to additional perfobjs.

130

Chapter 4: Tuning IRIS GL Applications

The flags array should contain commands that encompass as many actions
as possible. The traversal can then loop over a switch statement for the flags.
The following example is an excerpt from such a traversal:

/* perfobj command handler */
switch(*flagsP) {
....
case TREE:

/* trees need to be oriented and translated */
pushmatrix();
translate (*(flagsP+1), *(flagsP+2), *(flagsP+3));
rot(*(flagsP+4),’z’);
cpack(*(flagsP+5)); /* base tree color */
/* macro to dump out flat-shaded, textured, quad */
DRAW_FLAT_TEX_QUAD(flagsP+6);
flagsP+=7;
break;

case GOURAUD_QUAD_8: /* blast out 8 gouraud quads */
DRAW_GOURAUD_QUAD(flagsP+1);
DRAW_GOURAUD_QUAD(flagsP+2);
....
DRAW_GOURAUD_QUAD(flagsP+8);
flagsP+=9;
break;

case LIT_TMESH_4: /* blast out lit tmesh of 4 tris */
bgntmesh();
n3f((perfobj_vert_t *) (flagsP+1)->normal);
v3f((perfobj_vert_t *) (flagsP+1)->vertex);
...
n3f((perfobj_vert_t *) (flagsP+6)->normal);
v3f((perfobj_vert_t *) (flagsP+6)->vertex);
endtmesh();
break;
....

}

Tuning Display Lists

Display lists simplify drawing because you don’t have to optimize your own
traversal of the data. In addition, display lists manage their own data
storage, which is particularly nice for algorithmically generated objects.
Another advantage of display lists is that they are significantly better for
remote graphics over a network. This is because the display list traversal can

CPU Tuning

131

be done on the remote hardware. Also, assuming no display list editing is
done, the display list can be cached on the remote CPU so that the data for
the display list does not have to be re-sent every frame.

Display lists do have some drawbacks that may affect some applications, the
most troublesome of these is data expansion. To achieve a fast, simple,
traversal on all machines, all data is copied directly into the display list.
Therefore, the display list contains an entire copy of all your data and, for
each command, a jump address that is an extra four bytes. All geometric data
is quad-word aligned. For vertex and color data alone, this adds an extra
33-66% to the data size: a jump address plus the four long word coordinates
for every vertex command (v3f(), c4f(), n3f(), and so on). This is in addition
to the application storage requirements.

Furthermore, many vertices are stored repeatedly. In a grid mesh, each
vertex is used in four quads, so it is stored four times. An arbitrary mesh can
be even worse. If the database becomes significantly large, paging
eventually hinders performance. Therefore, when considering the use of
IRIS GL display lists, consider cache size and, for extremely large databases,
the amount of main memory.

Tuning for display lists focuses mainly on reducing storage requirements.
The ability of the data to fit in cache improves performance because it avoids
cache-misses as the data is retraversed.

Note: Crimson IP17 systems maximize performance for IRIS GL display
lists, including very large display lists that do not fit in the cache. ♦

Follow these steps to optimize display list drawing:

1. Call delobj() to delete objects no longer used.

This frees storage space used by the deleted objects and expedites the
building of new objects and object rendering. If there are serious
memory shortages, call chunksize() to control the size of each malloc(). If
there are many small objects, use smaller malloc()s to reduce wasted
space. If there are large objects, use large malloc()s to help reduce
memory fragmentation.

132

Chapter 4: Tuning IRIS GL Applications

2. Avoid duplication of objects.

For example, if you have a scene for 100 spheres of different sizes,
generate one object that is a unit sphere centered about the origin. For
each sphere in the scene:

■ Set the material for the current sphere.

■ Issue the necessary scaling factors for sizing the sphere and the
transformations for positioning the sphere.

■ Issue a callobj() to the unit sphere.

In this way, a jump address for the unit sphere is stored instead of
storing all of the sphere vertices for each instance of the sphere.

3. Generate an entire object at one time, rather than frequently opening
and closing it, to avoid memory fragmentation.

4. Make the display list as flat as possible.

Avoid using an excessive hierarchy with many callobj() calls. Each
callobj() call requires an extra set of computation for the new object and
several independent objects can cause memory fragmentation and/or
paging. A flat display list requires less memory and yields a simpler
and faster traversal.

Display lists are best used for static objects. Even the most trivial display list
editing is extremely costly. Do not put dynamic data or operations in display
lists. Instead, use a mixture of display lists for static objects and immediate
mode for dynamic operations.

Advanced CPU-limited Tuning Techniques

This section lists some advanced techniques for tuning CPU-limited code.

Use these advanced techniques to tune CPU-limited applications:

1. Mix computation with graphics.

When you are fine-tuning an application, interleaving computation and
graphics can create a balanced, and therefore more efficient, system.
Key places for interleaving are after swapbuffers(), clear(), zclear(), and
known fill-limited drawing.

CPU Tuning

133

The swapbuffers() call creates a special situation. After issuing a call to
swapbuffers(), an application may be forced to wait, in the worst case,
up to 16.7 msecs for the next vertical retrace before issuing more
graphics calls. For a program drawing at 10 frames per second, 15% of
the time (worst case) can be spent waiting for the swapbuffers() to
occur.

In contrast, non-graphic computation is not forced to wait for a vertical
retrace. Therefore, if there is a section of computation that must be done
every frame that includes no graphics calls, it can be done here instead
of causing a CPU-limitation somewhere else.

On the IRIS-4D/GT or Personal IRIS™ graphics systems, clearing the
screen is an expensive operation and doing non-graphics computation
immediately after the clear is more efficient than sending more graphics
down the pipeline when it isn’t ready, then doing the non-graphics
computation in a place where the application is CPU-limited.

Experimentation is required to:

■ Determine where the application is reliably graphics limited.

■ Ensure that inserting the computation does not create a new
bottleneck.

For example, if the new computation references a large section of data
that is not in the data cache, the data for the drawing may be swapped
out for the computation, then swapped back in to draw again, which
may result in worse performance than the original organization.

2. Use dis or compile with -S to look at assembly code

When tuning inner rendering loops, looking at assembly code can be
extremely helpful. Use dis with the -p option to specify a procedure, to
disassemble optimized code for a given procedure, and correlate
assembly code lines with line numbers from the source code file. This is
especially helpful for examining optimized code. The -S option to cc
produces a .s file of assembly output, complete with your original
comments.

You need not be an expert in MIPS assembly code to interpret the
results. Just looking at the number of extra instructions required for
what looks like an innocuous operation is very informative. Knowing

134

Chapter 4: Tuning IRIS GL Applications

some basics about MIPS assembly code can be helpful for finding
performance bugs in inner loops. See MIPS RISC Architecture, by Gerry
Kane, for additional information.

3. Use an additional processor for complex scene management.

If your application is running on systems with multiple processors,
consider supplying an option for doing scene management on
additional processors to relieve the rendering processor from the
burden of expensive computation.

Additional processors may also be used to reduce the amount of data
rendered for a given frame. Simplifying and/or reducing rendering for
a given scene can help reduce bottlenecks in all parts of the pipeline, as
well as the CPU. One example is removing unseen or backfacing
objects. Another common technique is to use an additional processor to
determine when objects are going to appear very far away and use a
simpler model with fewer polygons and less expensive modes for
distant objects. This is known as level-of-detail rendering.

Tuning Transform-Limited Drawing

This section presents techniques that you can use to tune applications that
are transform-limited.

Using Fast Drawing Modes

Use subpixel(TRUE) and shademodel(FLAT) whenever possible.

On a VGX, calling subpixel(TRUE) often doubles performance. The only
time subpixel(TRUE) can slow you down is when using Personal IRIS or GT
graphics with RGB antialiased lines.

Calling shademodel(FLAT) significantly improves CPU, transform, and
fill-limited performance on all machines. Machines that take special
advantage of flat-shading include the VGX, the SkyWriter™, IRIS Indigo™,
and the Personal IRIS. On the Personal IRIS and IRIS Indigo flat-shading is
especially recommended for high-performance lines.

Tuning Transform-Limited Drawing

135

Using High-Performance Drawing Subroutines

Use high performance graphics subroutines such as v3f() with bgn/end
constructs for meshes, polygons, lines and points. Use n3f() instead of
normal() and c3f() or cpack() instead of RGBcolor().

Old library subroutines are slower than the high-performance subroutines
for several reasons. First, old-style polygons are automatically filled and
then given an outline for compatibility reasons. This outline is needed only
in rare instances (concave polygons or t-junctions) where “cracking”
between polygons can occur at certain angles. Turning on outlining to
eliminate t-junctions is very costly and does not always work.

Therefore, any program that uses old-style polygon subroutines, such as
polf() or pdr(), should call glcompat(GLC_OLDPOLYGON,FALSE) before
drawing to turn off outlining. This greatly reduces the work done per
polygon, and thereby yields an immediate improvement in the drawing rate.
Across the product line, high-performance drawing subroutines are
typically about 30% faster than old-style drawing subroutines. Especially
avoid the incremental old style subroutines: pdr(), pmv(), move(), and
draw(), which require significant overhead to maintain the current status of
each open primitive.

The high performance IRIS GL subroutines are always more efficient than
the old-style subroutines, even if outlining is turned off. This is because of a
fundamental difference in functionality and implementation. The old style
subroutines are general primitives in the true sense of the word: every
command is uniquely tied with a primitive. Therefore, a pdr() adds a vertex
to an open polygon and a draw() adds a vertex to an open line. For example,
the following code segment gives you a polygon, a line and a character
string:

pdr();
pmv();
move();
cmov();
draw();
charstr();
draw();
pdr();
pclose();

136

Chapter 4: Tuning IRIS GL Applications

It is expensive to store all the current information for an open primitive to
support this kind of generality. For this reason, pmv() is much slower than
polf(). The polf() subroutine receives all of its data at once and does not need
to maintain an open polygon.

The following code draws the same picture and is much clearer:

cmov();
charstr();
move();
draw();
draw();
pmv();
pdr();
pdr();
pclose();

The high performance subroutines take advantage of this clearer
organization and set drawing modes, as opposed to opening primitives.
Once you set a drawing mode, vertex, normal, and color subroutines, such
as v3f(), n3f(), and c3f(), cause the appropriate behavior for the current
mode. This simplification also allows for more efficient methods of sending
data to the graphics subsystem, which reduces the CPU operations for each
command. This type of orthogonal organization also eliminates the need for
specialized subroutines, thus making the IRIS GL more compact and easy to
extend.

Using Peak Performance Primitives for Drawing

This section describes how to draw geometry with optimal primitives.

Follow these steps to optimize drawing:

1. Use connected primitives or quads.

Connected primitives are very desirable because they reduce the
amount of data sent to the graphics subsystem and also reduce the
amount of per-polygon work done in the pipeline. Typically, about 12
primitives are required in a bgn/end sequence to achieve peak rates.
For lines and points, it is especially beneficial to put as many vertices as

Tuning Transform-Limited Drawing

137

possible in a bgn/end sequence. For example, on a VGX, a
transform-limited bgn/end line with four vertices is twice as fast as one
with two vertices.

2. Use “well behaved” polygons—small and convex with only three or
four vertices.

Polygons with five or more vertices are likely to be transform-limited
and are at best only a fraction of the speed of four-sided polygons.
Drawing concave polygons can be prohibitively expensive, as much as
1/10 the speed of three- or four-sided convex polygons. Triangle
meshes do not need to be checked for concavity, so they never incur a
performance penalty for concave testing. Concave checking, by default,
is set to FALSE.

There are some special differences with the GT graphics subsystem. On
a GT graphics subsystem, concave breakup is always done, so calling
concave(FALSE) currently has no effect. This has the additional
implication that polygons with more than 4 sides are even more costly
as a result of concave testing.

If your database has polygons that are not well-behaved, write code to
perform an initial one-time pass over the database to transform the
troublemakers into well-behaved polygons and use the new database
for rendering. For the newer machines, such as the VGX and Personal
IRIS, using meshed primitives results in additional gains.

3. Call only vertex operations in a bgn/end sequence.

Within a bgn/end sequence, the only legal graphics commands that
may be used are commands for setting colors, normals, texture
coordinates, and vertex coordinates. The use of any other graphics calls
is illegal and may have unpredictable results. This is specified in
Appendix A of the Graphics Library Programming Guide and in the man
pages for the bgn/end commands, such as bgnpolygon(). Even if such
calls appear to “work”, such use is not guaranteed to work in the future
and may cause severe performance penalties.

4. Minimize the data sent per vertex.

Polygon rates can be directly affected by the number of normals or
colors sent per polygon. With CPU-limited drawing, setting a color or
normal per vertex, regardless of the shademodel() used, may be slower
than setting only a color per polygon, because of the time spent sending
the extra data and resetting the current color.

138

Chapter 4: Tuning IRIS GL Applications

The GT calculates lighting only at each normal, so fewer normals per
polygon may speed up lighting because fewer calculations are done per
polygon. This is not the case on the VGX, which lights every vertex.

The number of normals and colors per polygon also directly affects the
size of a display-list containing the object.

Optimizing Lighting Performance

The IRIS GL offers a large selection of lighting features, some being virtually
“free” in terms of computational time, others offering sophisticated effects
with some performance penalty. The penalties some features carry may vary
between machines and performance of certain features may be greatly
improved in the future. In complex situations, you should be prepared to
experiment with the lighting configuration.

You normally won’t notice a performance degradation when using one
infinite light, unless you use lit textures or color index lighting.

Use the following settings for peak performance lighting:

• single infinite light

• RGBmode

• LOCALVIEWER set to 0.0 in the lighting model, the default

• TWOSIDE set to 0.0 in the lighting model, the default

• lmcolor mode set to LMC_COLOR, the default, or LMC_NULL

• nmode(NAUTO), the default

Lighting Operations With Noticeable Performance Costs

Minimize these operations to achieve peak lighting performance:

1. Using multiple lights.

Multiple infinite lights have a performance penalty for each additional
light. This is most severe on the GT graphics subsystem, where multiple
lights have a significant penalty.

Tuning Transform-Limited Drawing

139

On most other systems, the performance penalty is much less than it is
on the GT, decreasing linearly with the number of additional lights.
Most newer systems exhibit only a linear performance degradation for
multiple lights.

2. Changing materials or material properties frequently.

Frequently changing materials, or material properties, can be very
expensive. If the current material needs to be changed many times per
frame, define a single material that can have specific properties altered,
rather than calling lmbind() for separate materials many times per
frame. There are several ways to do this.

If the material needs to be changed every polygon or every vertex, use
the routine lmcolor() to set an lmcolor mode, such as LMC_AD, and
avoid frequently changing the lmcolor mode.

If only a few material properties need to be changed every few
polygons, but still many times per frame, you can use the following
technique:

/* quick lmcolor change */
lmcolor(LMC_AD);
cpack(material_color);
lmcolor(LMC_COLOR);

This retains the peak lighting configuration for the actual drawing of
polygons.

Note: lmcolor() changes are not reflected in the material definition. If the
material is rebound, it will have its original properties. ♦

Finally, if many material properties only need to be changed a few
times a frame, then you can have a special property array and use
lmdef() to re-define the currently bound material. For example:

static float red_props[] = {
AMBIENT, 1.0, 0.0, 0.0,
DIFFUSE 1.0, 0.0, 0.0,
LMNULL};
....
lmdef(DEFMATERIAL, mat_index, 0, red_props);

140

Chapter 4: Tuning IRIS GL Applications

The graphics pipe currently holds only one current lighting material.
When a new material is bound with lmbind(), the entire material is
loaded. However, when a current material has one or two properties
(except SHININESS) re-defined, then only the new properties must be
loaded. In this case only, lmdef() can be faster than lmbind().

The quick lmcolor() change is even faster than lmdef(), because it does
not update the material database and sends only the changing property
to the graphics pipeline.

Lighting Operations With Significant Performance Costs

The features described in this section are classified as having “significant”
costs because any one of them, when added to high-performance lighting,
causes a substantial drop in performance. However, while adding additional
significant features still has some cost, the additional penalty is small
compared to the initial drop from high-performance lighting.

Follow these recommendations to limit your use of lighting features that
significantly limit performance:

1. Use significant features with care.

For a minimal performance drop, set LOCALVIEWER to 1.0 in the
lighting model, while using infinite lights only. Each additional local
light adds noticeable penalties to the transform rate.

Two-sided lighting lights both sides of a polygon. This is much faster
than the alternative of drawing polygons twice to get this effect.
However, using two-sided lighting is significantly slower than
high-performance lighting for a single rendering of the object. Call
getgdesc(GD_LIGHTING_TWOSIDE) to determine if two-sided
lighting is available on your system.

2. Use unit-length normals.

Always use unit-length normals when possible. The feature
nmode(NNORMALIZE) sets to unit length all normals, with a
potentially significant performance cost. You can avoid such situations
with precompilation. Also, avoid using viewing transformations that
result in non-uniform scaling because that forces renormalization of all
normals in the graphics pipeline.

Tuning Transform-Limited Drawing

141

Practices to Avoid

Follow these rules when using lighting:

1. Avoid using lighting calls inside a bgn/end sequence.

If possible, avoid calls to any of the lighting commands, lmcolor(),
lmbind(), or lmdef(), during a bgn/end drawing sequence, as this has a
very serious performance penalty. While making such calls to change
colors, by changing material properties, is technically legal, the
performance penalty is severe. This is a special case of the warning to
call only vertex operations in a bgn/end sequence discussed in “Using
Peak Performance Primitives for Drawing” on page 136.

2. Do not change material SHININESS values.

Avoid changing the SHININESS value of a material or loading
materials with different SHININESS values. This is because each time a
new SHININESS value is set, significant computation is required.

Using Expensive Modes Efficiently

The IRIS GL offers many features that create sophisticated effects with
excellent performance. However, these features are associated with some
performance cost, compared to drawing the same scene without them. The
implication is that these features should be used where their effects,
performance, and quality are justified.

1. Turn off expensive features when they are not required.

Once expensive features have been turned on, they can slow the
transform rate of vertices even when they have no visible effect. For
example, if a texture map is currently bound, then the transform rate of
polygons with no texture coordinates is still degraded. Texturing
should be explicitly turned off with texbind(TX_TEXTURE_0,0) for
nontextured polygons.

The use of fog can slow the transform rate of polygons even when the
polygons are too close to show fog, and even when the fog density is set
to zero. Explicitly turn off fog with the call fogvertex(FG_OFF, 0) for
these conditions.

142

Chapter 4: Tuning IRIS GL Applications

Finally, turn off polygon screen subdivision with the call
scrsubdivide(SS_OFF, 0). Screen subdivision is a mode that should be
avoided in high-performance applications.

2. Minimize expensive mode changes and sort operations by the most
expensive mode.

Avoid changing texture maps and frequently toggling texture on and
off.

Avoid changing the projection matrix, or lsetdepth() parameters, which
affect the world-z to z-buffer mapping.

When fog is on, avoid changing the fog density.

Turn fog off for rendering with a different projection, for example,
orthographic, and turn it back on when returning to the normal
projection.

Expensive mode changes should be minimized. Sort drawing to
minimize the most expensive mode changes and beware of excessive
changes to any modes, even the cheaper mode changes such as
shademodel(), zbuffer() and blendfunction().

Advanced Transform-limited Tuning Techniques

This section describes advanced techniques for tuning transform-limited
drawing.

Follow these hints to draw objects with complex surface characteristics:

1. Use texture to replace complex geometry.

Textured polygons are significantly slower than their non-textured
counterparts. However, texture can be used instead of extra polygons to
add detail to a geometry. This can greatly simplify a geometry, resulting
in a net speed increase and an improved picture, as long as it does not
cause the code to become fill-limited. The texture pixel rate varies
across the product line, so this technique might not be as effective for
other systems, such as the IRIS Indigo, so experimentation is advised.

2. Use afunction(), in conjunction with texture, to give the effect of very
complex geometry on a single polygon.

Tuning Fill-Limited Drawing

143

An image of a complex object is textured onto a single polygon. Alpha
values are set to zero outside the polygon. Calling afunction(0,
AF_NOTEQUAL) causes pixels in the polygon with zero alpha values
to not be drawn. The edges of the object can be antialiased by using
alpha values between zero and one. Finally, the polygon is oriented
toward the viewer. This effect is often used to create objects like trees
that have complex edges and/or that have many holes through which
the background should be visible.

Tuning Fill-Limited Drawing

This section presents techniques for tuning fill-limited drawing.

Using Backface/Frontface Removal

Backface and frontface removal should be used to reduce fill-limited
drawings when a scene has backfacing polygons. For example, if you are
drawing a sphere, then at any given time, half of its polygons are backfacing.
Backface and frontface removal is done after lighting and transformation
calculations and before pixel operations. This means that backfacing
removal may make transform-limited polygons somewhat slower, but is
significantly faster for backfacing fill-limited polygons. You can turn on
backfacing removal when you are drawing an object with many backfacing
polygons, then turn it off again when the drawing is completed. Backfacing
removal causes a noticeable performance drop for transform-limited
polygons with five or more sides.

Backfacing removal is especially important on the Personal IRIS and
Turbo-Personal IRIS which tend to become fill-limited.

144

Chapter 4: Tuning IRIS GL Applications

Using Expensive Pixel Modes Efficiently

As with transform modes, expensive pixel modes should be used with care.
Pixel operations, in order of increasing cost, with flat-shading being the
lowest and texturing the highest, are:

1. flat-shading

2. gouraud shading

3. z-buffering

4. alpha-blending

5. texturing

Each of these can independently slow down the pixel fill rate of a polygon.
Use z-buffering to eliminate the more expensive fill operations of hidden
polygons.

Any fill operation can become fill-limiting for large polygons. Clever
structuring of drawing can eliminate the need for certain fill operations. For
example, if large backgrounds are drawn first, they do not need to be
z-buffered. It is better to turn z-buffering off for the backgrounds and then
turn it on again for other objects where it is needed. For example, the flight
demo uses this technique. The sky and ground are drawn with z-buffering
turned off, then the polygons lying flat on the ground, runway and grid, are
drawn without suffering a performance penalty. Finally, z-buffering is
turned on for drawing the mountains and planes.

Alphablending is a significantly expensive pixel operation. A common use
of alphablending is with transparency, where the alpha value denotes the
opacity of the object. For fully opaque objects, alphablending should be
turned off.

The rule is to turn off pixel operations for objects that do not require them
and to structure the drawing to minimize their use, without causing
excessive toggling of modes.

Tuning Fill-Limited Drawing

145

Balancing Polygon Size and Pixel Operations

To keep the pipeline in balance, the ratio between per pixel work and per
vertex work needs to be kept small. For example, with complex lighting
transformations, there is more time to fill pixels at the end of the pipeline.
With simple vertex operations, there is less time to fill pixels at the end of the
pipeline. The pipeline is generally optimized for polygons that are 10 pixel s
on a side. If the polygons are too large for the fill-rate to keep up with the rest
of the pipeline, the application is fill-rate bound. Smaller polygons balance
the pipeline and increase the polygon rate.

Conversely, if the polygons are too small for the rest of the pipeline to keep
up with filling, then the application will be transform bound. Larger and
fewer polygons, or fewer vertices, balance the pipeline and increase the
polygon rate. The simplest possible fill algorithms should be used for
drawing very large polygons such as backgrounds.

Clearing the Bitplanes and z-buffer Simultaneously

The most basic per-frame operations are clearing the color and the z
bitplanes. On some machines, there are optimizations for common, special,
cases of these operations. For example, on a system with GT graphics, if you
are clearing the screen to black, call czclear(0,0). Call czclear(0, 0x7fffff) if
you are using a Personal IRIS.

With GT graphics, using czclear() is only a performance advantage if the
color and z arguments are set to the same value, preferably a constant and
preferably 0. When you clear the z bitplanes to 0, use lsetdepth() and an
appropriate z-compare function to map your z values into a range such that
the far plane is set to 0. For example:

lsetdepth(0x7fffff, 0);
zfunction(ZF_GEQUAL);
czclear(0,0);

On a Personal IRIS, using czclear() can be up to four times faster than using
clear() and zclear() as long as the z value is equal to getgdesc(GD_ZMIN) or
getgdesc(GD_ZMAX). Again, appropriate lsetdepth() and zfunction()
settings are needed.

146

Chapter 4: Tuning IRIS GL Applications

On a VGX system, screen clears are extremely fast. There is no penalty for
using czclear(), but the color and z bitplanes are always cleared sequentially,
regardless of the color and z values.

See the Graphics Library Programming Guide for an in-depth discussion of
these topics.

Review of Tuning Methodology

The bottleneck-tuning techniques presented so far produce substantial
performance improvements in a short amount of time. A quick application
of these techniques may yield performance that is acceptable, so that further
tuning is not necessary. However, you may be interested in achieving
performance that is demonstrably close to the best the hardware can achieve.
To do this, you need to apply a rigorous and systematic analysis.

A detailed analysis involves examining what your program is asking the
system to do and then calculating how long it should take, based on the
known performance characteristics of the hardware. Compare this
calculation of expected performance with the performance actually
observed and continue to apply the tuning techniques until the two match
more closely. At this point, you have a detailed accounting of how your
program spends its time, and you will be in a very strong position both to
tune further and to make wise speed vs. quality trade-off decisions.

The following parameters determine performance of most applications:

• Total number of polygons in a frame

• Transform rate for the given polygon type and mode settings

• Number of pixels filled

• Fill rate for the given mode settings

• Time of screen and/or z clear and swapbuffers

• Time of application overhead

Review of Tuning Methodology

147

To calculate expected performance for a particular code fragment:

1. Determine how many polygons are being drawn and estimate how
many pixels they cover on the screen. Have your program count the
polygons when you read in the database.

To determine the number of pixels filled, start by making a visual
estimate. Be sure to include surfaces that are hidden behind other
surfaces, and notice whether or not backface elimination is enabled. For
greater accuracy, use feedback mode and calculate the actual number of
pixels filled.

2. Determine the transform and fill rates on the destination hardware
platform for the mode settings you are using.

Refer to the product literature for the destination system to determine
some transform and fill rates. Determine others by writing and running
small benchmark loops.

3. Divide the number of polygons drawn by the transform rate to get the
time spent on per-polygon operations.

4. Divide the number of pixels filled by the fill rate to get the time spent
on per-pixel operations.

5. Measure the time spent executing instructions on the CPU.

To determine time spent executing instructions in the CPU, perform the
graphics-stubbing experiment described in “Isolating Bottlenecks in the
Pipeline” on page 107.

6. The largest of the three times calculated in steps 3, 4, and 5 is the
expected overall performance.

This process takes some effort to complete. In practice, it’s best to make a
quick start, by making some assumptions, then refine your understanding as
you tune and experiment.

Sample Analysis

This section presents a detailed analysis applied to a program that displays
a rotating world globe on an IRIS 4D/85GT. The program draws lighted,
smooth-shaded, z-buffered triangle meshes, and calls swapbuffers() and
czclear(0,0) every frame.

148

Chapter 4: Tuning IRIS GL Applications

There are approximately 10,000 triangles per frame and most of the polygons
average 10 pixels on a side, for a total of 500,000 pixels filled per frame.

On a GT, using the simple lighting model, tmeshes this size have a transform
rate of approximately 130K polygons/sec. and a fill rate of 40 Mpix/sec:

(10K polys) / (130K polys/sec.) = 77 msec.transform time
(500K pixels) / (40M pixels/sec.) = 12.5 msec.fill time

Notice that expected transform time is much greater than the expected fill
time, so per-pixel operations will never be the bottleneck and needn’t be
considered further. Adding the following:

8 msec. for a full-screen czclear(0, 0)

gives the following total:

77msec. + 8 msec. = 85msecs. total time to render a frame
(85 msec. / 16.7 msec.) = 5.089 screen refresh times

Notice that this is just over the time for five screen refresh times, so, after
synchronization to the screen refresh rate, the expected frame rate is:

expected frame rate = 60 Hz/6 = 10 frames/sec.

The actual frame rate observed for this application is 3 frames/sec. This
means that either the assumptions are incorrect or there is a severe CPU
bottleneck.

There did turn out to be inefficiencies in the rendering loop of the application
code and after tuning it as described in “Tuning Immediate Mode Drawing”
on page 116 the expected rate of 10 frames per second was achieved.

Applying the tuning practices further yields even better performance.
Because the calculations indicate that the actual rendering time is just over 5
screen refresh times, a small improvement can push the program under 5
screen refresh times, which gives a frame rate of 12 frames/sec.

The geometry was reconstructed in such a way that it looked almost the
same, but contained slightly fewer polygons and 12 frames/sec. was
achieved. To do this, the many-sided polygons were decomposed. Also, to
take advantage of the parallelism in the graphics pipe, some pairs of adjacent
triangles were combined into quads. This is an application of the first

Summary of Tuning Techniques

149

technique described in “Using Peak Performance Primitives for Drawing”
on page 136.

Experimenting and Benchmarking

Ultimately, you will need to experiment with different rendering techniques
and benchmark your ideas, especially when the unexpected happens.

Verify some of these suggestions presented in this chapter for yourself. Try
out some of the techniques on a small program that you understand and
witness their effect with benchmarks.

Summary of Tuning Techniques

Figure 4-2 is a flowchart of the recommended tuning process.

Figure 4-2 Flowchart of the Tuning Process

Apply General Graphics Techniques

Reduce Worst Bottleneck

Identify Bottlenecks by Benchmarking

150

Chapter 4: Tuning IRIS GL Applications

Overall Graphics Tuning Techniques

These graphics tuning techniques apply to all Silicon Graphics systems. For
best results, all the applicable items should be followed.

• Use the high-speed IRIS GL subroutines such as bgnpolygon(), c3f(),
n3f(), cpack(), v3f(), and endpolygon(). Do not use the old-style
subroutines such as polf(), pmv(), and pdr().

For code that does contain old-style commands, call
glcompat(GLC_OLDPOLYGON, FALSE) in window initialization to
turn off IRIS GL outlining of polygons.

• Use three- or four-sided, convex polygons.

• Don’t make any graphics calls other than color, normal, texture, and
vertex calls in a bgn/end sequence. This includes calls to lmbind(),
lmdef(), lmcolor(), and texbind().

• For peak lighting, use a single infinite light with both LOCALVIEWER
and TWOSIDE in the lighting model set to 0.0.

• Avoid frequently changing materials and material properties. If
material properties must be changed frequently, have a single material
and alter just one property. If changing only a couple of material
properties, don’t use lmbind(), use lmdef() with a special property
array to change specific properties. For example, use:

lmcolor(LMC_XXX)
cpack();
lmcolor(LMC_COLOR);

Use lmcolor() if material properties need to be changed per-vertex. Do
not change the SHININESS property.

• Use nmode(NAUTO), the default, and pre-normalize all normals.

• When using lighting, do not do any nonuniform scaling in viewing
transformations because it forces renormalization of all normals.

• Don’t do display-list editing. Use display lists for static objects and do
dynamic operations, for example, viewing or matrix operations, in
immediate mode.

• For very large display lists, performance may degrade on some
machines, although this is going to improve on future machines.

Summary of Tuning Techniques

151

• Group as many line segments and points as possible into single
bgnline/endline and bgnpoint/endpoint structures.

• Turn off any modes that are not needed, such as texturing, z-buffering,
and alpha blending. For example, if drawing transparent objects mixed
with opaque objects, turn off alphablending for the opaque objects.

• Sort drawing to minimize expensive mode changes such as texbind(),
lmbind(), and lmdef(). Avoid excessive changing of any modes, such as
zbuffer() or blendfunction().

• Use the simplest possible database traversal for drawing.

• Avoid clipping whenever possible.

• Keep all window boundaries within screen limits.

• Arrange windows to be unobstructed by other windows.

POWER Series Techniques

Use these techniques for the POWER Series systems (GTX and VGX):

• Align drawing data to quad-word boundaries (addresses divisible by
16).

• Keep static drawing data that is sent by address to commands like
v3f(), n3f(), c3f(), and t2f(), separate from other program data, such as
immediate mode display flags, or pointers to drawing data, and data
sent by value to commands like cpack().

VGX Techniques

Use these techniques for VGX systems:

• Call subpixel(TRUE) in window initialization.

• Use connected primitives, tmeshes and qstrips, especially for
non-textured objects.

• Use the float version of the drawing commands v3f(), c3f(), n3f(), and
t2f().

• Minimize the number of calls to texbind(), which is currently the most
expensive mode change on a VGX.

152

Chapter 4: Tuning IRIS GL Applications

• For primitives that are not textured, be sure to turn off texturing with
texbind(0,0). Otherwise, even if no texture coordinates are issued,
texturing remains on and a performance drop is incurred.

Don’t overflow hardware texture memory. There are several factors that
effect the size of a texture in texture memory on the VGX. First, VGX
textures need borders for wrapping, so their size increases by two
(32-bit) texels in each dimension. If the texture is MIPmapped, its size
increases by 4/3. The total number of texels are then rounded up to the
next multiple of 32.

Table 4-1 shows how many texels fit within a given texture size for
MIPmapped and non-MIPmapped textures on 5 and 10 span VGX
systems. See Table 5-3 for texture memory capacity on SkyWriter
systems.

• Use one or two component textures rather than three and
four-component textures.

• A quad is usually much faster than two independent triangles, so
whenever possible use quads rather than independent triangles.

• Use lrectread()/lrectwrite() in conjunction with pixmode(PM_SIZE,
size) with the size equal to 1, 2, 4, 8, 12, 16, 24, or 32.

Table 4-1 VGX Texture Memory

Texture Size Non-MIPmapped MIPmapped

Total
Texels

5-span 10-span Total
Texels

5-span 10-span

16x16 352 186 465 512 128 320

32x32 1,184 55 137 1,664 39 97

64x64 4,384 14 35 6,016 10 25

128x128 16,928 3 7 22,912 2 5

256x256 66,592 1 2 89,472 0 0

512x512 264,224 0 0 353,664 0 0

Summary of Tuning Techniques

153

• For fast immediate-mode meshes on a VGX, use macros for
fixed-length strips to minimize a CPU-limitations. For example, have
strips of length 2, 4, 8, and 12 drawn with unrolled macros.

#define TMESH_2(dataptr) { \
bgntmesh(); \

c3f(dataptr); \
v3f(dataptr+4); \
c3f(dataptr+8); \
v3f(dataptr+12); \
c3f(dataptr+16); \
v3f(dataptr+20); \
c3f(dataptr+24); \
v3f(dataptr+28); \
dataptr += 32; \

endtmesh(); \
}

GT/GTX Techniques

A technique that applies to the GT and GTX machines is to use
czclear(0,0) with lsetdepth(0,0x7fffff) and zfunction(ZF_GEQUAL) or
zfunction(ZF_GREATER).

Personal IRIS Techniques

Use these techniques for Personal IRIS systems:

• Use czclear() with a z-value of getgdesc(GD_ZMIN), or
getgdesc(GD_ZMAX), and set the zfunction to ZF_GEQUAL or
ZF_GREATER, or to ZF_LEQUAL or ZF_LESS, respectively.

• Use connected primitives, tmeshes and qstrips.

• Use shademodel(FLAT) whenever possible, especially for lines.

• Use sboxf() in conjunction with glcompat(GLC_OLDPOLYGON,
FALSE) for drawing large, flat-shaded, non z-buffered, screen-aligned
rectangles.

154

Chapter 4: Tuning IRIS GL Applications

• Use lrectread()/lrectwrite() in lieu of other pixel commands. Also, use
pixel sizes of 8, 16, and 32, because other sizes will be unpacked in
software.

• Avoid the use of patterning.

IRIS Indigo Techniques

You’ll get the best performance from your IRIS Indigo if you use the simplest
modes possible and avoid the use of complex features like fog and texture.

Use these techniques for IRIS Indigo Systems:

• Use mmode(SINGLE) whenever possible, especially where
multi-matrix mode is not required.

• Use ortho2() in MSINGLE mode. It is faster than ortho() or
perspective().

• Use shademodel(flat) where shading is not necessary.

• Use tmeshes wherever possible and draw as many triangles as possible
per bgntmesh() call.

• Use sboxf() wherever possible, which is even more efficient than
tmesh().

• Use floating point coordinates where possible, except where memory
size is critical, to minimize the time used for floating point conversion.
If memory paging is occurring, shorts may outperform floats.

• Use subpixel(TRUE).

When anti-aliasing is turned off, lines are scan-converted as closed
lines, as in subpixel(FALSE) mode. Scan conversion is faster when you
use subpixel(TRUE).

In addition, certain CPU calculations can lead to floating point
exceptions, such as dividing by zero. These exceptions are handled
either by hardware or by software. If a floating point exception requires
software handling, the hardware generates an interrupt. Interrupts
require more time to service than floating point operations, thus
excessive interrupts can degrade graphics performance.

Summary of Tuning Techniques

155

To check for interrupts:

– Use osview(1) to count the interrupts.

– Set the TRAP_FPE environment variable to ALL=COUNT, link
your program with -lfpe and then run your program. See the
HANDLE_SIGFPES(3C) man page for more details.

If either of these techniques shows an excess of interrupts (more than
5000 per second), calling subpixel(TRUE) will typically reduce the
number of interrupts to under 1000 per second. A quiet system
generates about 200 interrupts (mouse, clock, timer) per second.

• Use backface(TRUE) to eliminate invisible polygons, especially in
modes that have slow fill rates, such as z-buffering, alpha-blending, and
texturing.

• Take advantage of special conditions for 2-D drawing.

The IRIS Indigo has a high-performance method of drawing 2-D points
and lines that makes the v2() family of vertex subroutines about twice
as fast as their 3-D and 4-D counterparts.

To take advantage of this special mode, these conditions must be met:

mmode(MSINGLE);
shademodel(FLAT);
subpixel(TRUE);
ortho2(...) or equivalent projection transformation

In addition, special modes such as z-buffering, texture mapping,
alphablending, depth-cueing, anti-aliasing, scrbox(), feedback and
picking must be turned off.

• Minimize the use of z-buffering.

Avoid using z-buffering whenever possible, because the fill rates for
z-buffering are much slower than normal fill rates. In particular, avoid
using z-buffered lines, as they are especially slow.

156

Chapter 4: Tuning IRIS GL Applications

The z-buffer is allocated out of main memory. The z-buffer is malloc-ed
to the union of the window and the viewport, so to minimize the
amount of memory allocated to the z-buffer:

– Use the smallest possible window and viewport.

– Avoid using screenspace(), because it expands the viewport to the
entire screen.

• Minimize the use of alpha-blending, which is even slower than
z-buffering.

Elan Graphics Techniques

Elan Graphics lets you use advanced IRIS GL features that contribute to
better rendering quality and realism of a graphics scene. If you have
purchased Elan graphics as an upgrade for your Personal IRIS, Personal IRIS
Turbo, or IRIS Indigo, you might not be familiar with these IRIS GL
subroutines. See the Graphics Library Programming Guide for an introduction
to these subroutines, and see the IRIS GL man pages for detailed information
on the subroutines presented here.

• Elan Graphics supports the following video formats. In certain cases,
product options are required to implement a feature.

– NTSC (unencoded)

– PAL (unencoded)

– Genlock

– Stereo viewer (requires StereoView Option)

– 72 Hz screen refresh on certain monitors

– RS-343 monitor

Refer to your system documentation for a complete list of features.

• Elan Graphics uses a Single Instruction Multiple Data (SIMD) parallel
processing architecture that provides exceptional graphics
performance. As a consequence of this architecture, in single buffer
mode, you might need to issue a gflush() after the last of a series of
primitives to force the primitives through the pipeline and expedite
graphics processing. In double buffer mode, the swapbuffers() call
automatically flushes the pipeline; therefore it is not necessary to call

Summary of Tuning Techniques

157

gflush(). This is also known as implicit flushing. Be aware that too
many flushes, implicit or explicit, can adversely affect performance.

• Elan Graphics provides hardware and software support for an
expanded range of IRIS GL commands. Depending on your system
configuration (XS, XS24, or Elan), features such as texturing can be
performed in software or hardware. In some cases, this might affect
your decision about whether or not to use a feature for performance
reasons. Your application can use the getgdesc() function to determine
the hardware features of your system.

• Elan Graphics does not support alpha bitplanes.

• Antialiasing is used to make the straight edges of graphics primitives
appear to be smoother. Several features provided by Elan Graphics are
important in antialiasing, including blending and subpixel positioning,
described later in this section.

Elan Graphics supports the smooth (antialiased) RGB line primitives of
the IRIS GL that are enabled with linesmooth(SML_ON). The
linesmooth() command can be modified by issuing hints to provide
further corrections. Elan Graphics supports endpoint correction for
antialiased lines using the modifier
linesmooth(SML_END_CORRECT); it does not support the
“smoother” sampling algorithm linesmooth(SML_SMOOTHER).
Because these modifiers are hints, not directives, you do not get an error
if you specify an unsupported mode; the system just ignores the
modifier.

• Blending modifies pixel colors to achieve certain effects such as
antialiasing, transparency, and image compositing. The IRIS GL
command blendfunction() specifies blending operations.

Elan Graphics supports blending in hardware. All primitives can be
blended, with the exception of antialiased lines and points, which use
the blending hardware to determine pixel coverage. The alpha value is
ignored for these primitives. Pixel blends work best in 24-bit single
buffered RGB mode. In double buffered RGB mode, the blend quality
degrades.

Because Elan Graphics does not support alpha planes, all blend options
that use destination alpha are inoperable.

158

Chapter 4: Tuning IRIS GL Applications

• Geometry is clipped to a viewing volume before it is rendered. The
projection transformation usually defines the six clipping planes of the
viewing volume.

Elan Graphics supports six additional user-defined clipping planes that
can be used to cross-section a geometry, or create an asymmetrical
viewing volume. Use the clipplanes() command to create up to six
arbitrarily placed clipping planes.

• The IRIS GL provides colormap commands that let you reorganize the
system colormap; however, Elan Graphics does not support this, so the
colormap commands multimap(), cyclemap(), and setmap() are not
supported.

• Dithering is used to expand the range of colors that can be created from
a group of color components and to provide smooth color transitions.
Dithering is user-controllable with the dither() command.

Dithering is the default on all Elan Graphics configurations. To improve
clearing performance, dithering is disabled when performing a clear()
or czclear() on systems with 24-bit frame buffers. On 8-bitplane
systems, dithering is disabled when performing a clear() in color index
mode.

• Fog is used to simulate atmospheric conditions. The IRIS GL provides
fog commands to create fog that is calculated per-pixel or per-vertex for
fogged primitives.

Elan Graphics supports fogvertex() with the per-vertex fog modes
FG_VTX_EXP, FG_VTX_EXP2, and FG_VTX_LIN. Elan Graphics does
not support the per-pixel fog modes.

• Elan Graphics provides advanced lighting features:

– Two-sided lighting—TWOSIDE property

– Spotlights—SPOTDIRECTION and SPOTLIGHT properties

– 3 factor attenuation—ATTENUATION and ATTENUATION2
properties

• Elan Graphics supports these pixmode() operations:

– PM_EXPAND—expand pixel data

– PM_ZDATA—write z information to the z-buffer

– PM_ADD24—add a value to each pixel (supported in software)

Summary of Tuning Techniques

159

– PM_SHIFT—shift pixel data left or right (supported in software)

– PM_TTOB—make pixel fill direction top-to-bottom (see
performance information at the end of this section)

– PM_RTOL—make pixel fill direction right-to-left

– PM_SIZE—specify the number of bits per pixel for pixel packing.
Values of 1, 8, 16, and 32 are supported in hardware and give the
best performance.

When reading/writing pixels, you get the fastest performance by
setting the pixel fill direction to top-to-bottom with
pixmode(PM_TTOB, 1). Top-to-bottom is not the default fill direction,
so it must be set explicitly. Pixel reads on IRIS Crimson systems may be
slightly slower than on Personal IRIS and IRIS Indigo XS, XS24, and
Elan systems.

• Elan Graphics makes four bitplanes from the z-buffer available for
allocation to stencil operations. When using stencil planes, the
resolution of the z-buffer is reduced.

• Elan Graphics uses MicroPixel subpixel positioning to retain vertex
positions rather than snapping vertices to pixel centers. The IRIS GL
command subpixel() was used in earlier systems to enable subpixel
positioning.

With Elan Graphics, for polygons, all drawing is performed with
subpixel precision, regardless of the setting of subpixel(). For lines and
points, the subpixel() command is operable. Performance is excellent in
both modes, but subpixel(TRUE) is recommended for the best quality
rendering and for compatibility with high-end IRIS systems.

• All Elan Graphics texture mapping is performed in software. As a
result, textured primitives do not run at high performance rates.

• The z-buffer stores depth information for graphics primitives. Elan
Graphics supports z-buffer operations on systems that have z-buffer
hardware installed (default on Elan, optional on XS and XS24, not
available on Entry systems). There is no z-buffer support for systems
that do not have hardware z-buffers. The low bit of the 24-bit hardware
z-buffer is reserved for fast clears and should be ignored when reading
data back from the z-buffer. The remaining 23 bits contain the valid z
data.

160

Chapter 4: Tuning IRIS GL Applications

• Drawing into the z-buffer is enabled with zdraw(). zdraw() works on
Elan graphics hardware except under these conditions:

– Drawing into a clipped window

– Using read-modify/write operations, for example, antialiasing or
logicop().

Benchmarking Techniques

• Use a clock with an accuracy of at least 1/100th of a second to make
timing measurements.

• Always call finish() before starting the clock and before checking the
clock for elapsed time. This routine returns when the graphics pipe is
cleared of commands.

• Take measurements over a period of at least a second while repeating
the rendering under test to remove the effect of extra timing and system
overhead.

• Benchmark in single buffer mode. Double buffer mode forces frame
times to be integer multiples of 1/60th of a second.

• Benchmark static frames to find bottlenecks in a given drawing
scenario. Benchmark interactions between frames once the drawing
scenario is fixed.

Bottleneck Techniques

Use these techniques to reduce specific bottlenecks. In some cases, they may
increase performance in one area at the expense of reduced performance in
another area. Therefore, these techniques should not be used until you know
where the current bottlenecks are.

Summary of Tuning Techniques

161

Reducing CPU Bottlenecks

Use these techniques when you know that your program is CPU-limited:

• Use single dimensional arrays traversed with a pointer that always
holds the address for the current drawing command, rather than
array-element addressing or multidimensional array accesses.

Bad: v3f(&data[i][j][k]);
Good: v3f(dataptr);

This sample code is efficient code for outputing a single polygon:

bgnpolygon();
n3f(ptr);
v3f(ptr+4);
n3f(ptr+8);
v3f(ptr+12);
n3f(ptr+16);
v3f(ptr+20);
n3f(ptr+24);
v3f(ptr+28);
endpolygon();
ptr += 32;

• Keep all static drawing data for a given object together in a single
contiguous array traversed with a single pointer. Keep this data
separate from other program data, such as pointers to drawing data, or
interpreter flags.

• Use switch statements over multiple if-else-if structures.

• Avoid run-time typecasting of values. Typecasting of pointers is
performed at compile-time and is acceptable.

• Prototype frequently called subroutines to eliminate run-time
typecasting.

• If the program requires floating point calculations, use the -float option
on the compile line.

162

Chapter 4: Tuning IRIS GL Applications

Reducing Polygon Operation Bottlenecks

Use these techniques to reduce bottlenecks with per-polygon operations,
such as coordinate transformations, lighting, depth-cueing, clipping and
concave decomposition. If these operations cannot be simplified, then
techniques to reduce the number of such polygons may be needed. Some
such techniques are suggested in items 6-8.

• Use connected primitives and put at least 8 in a sequence, 12 to 16 if
possible.

• Turn off backface() and/or frontface() for severely transform-limited
drawing, but be careful not to create a fill-limitation.

• Use the simplest possible lighting model, a single infinite light with an
infinite viewer. For some local effects, try substituting local lights with
infinite lights that have a local viewer.

• Use nmode(NAUTO) and prenormalize all normals.

• Minimize the use of depth-cueing. It is very expensive.

• Do not use nonuniform scaling operations or nonorthogonal viewing
matrices when using lighting.

• Use only three- or four-sided convex polygons and use
concave(FALSE), the default. If necessary, preprocess data to
triangulate 5+ sided polygons and/or concave polygons, or do this as a
separate process on a separate processor.

• Use CPU backface elimination on a separate processor for backfacing
lines, or to save very complex lighting operations that can’t be
otherwise avoided.

• Use culling on a separate processor to eliminate objects or polygons
that will be out of sight or to small to see.

Summary of Tuning Techniques

163

Reducing Pixel Operation Bottlenecks

Use these techniques when you know that you have a bottleneck in per-pixel
operations. This kind of bottleneck can be caused by drawing large polygons
and/or by using fill operations such as z-buffering, alphablending, or
texturing.

• Use backface() and/or frontface() to eliminate all pixel operations for
backfacing polygons. This can improve fill-limited performance by a
factor of 2.

• Organize the drawing to minimize fill operations. For example, if the
scene has large background polygons, then draw them first non
z-buffered in front, then render the more complex z-buffered objects.

• On a VGX, when texturing geometry, using z-buffering improves the
fill-rate of polygons that are behind what is currently drawing.
However, this may not be true on future hardware.

References

Kane, Gerry, MIPS RISC Architecture, Prentice Hall, Englewood Cliffs, NJ
1989.

165

Chapter 5

5. Programming Visual Simulation Applications
for SkyWriter Systems

This chapter tells you how to program and tune visual simulation
applications for SkyWriter systems. It discusses the special graphics
features, multiple pipes, and special video formats that are available on the
SkyWriter for visual simulation applications.

Using Special Graphics Features

The SkyWriter graphics subsystem provides functional enhancements over
the VGX graphics subsystem in a number of areas. These enhancements are
documented in the Graphics Library Programming Guide and in the online
Graphics Library reference (man) pages. To help you port your existing VGX
applications quickly, a summary of these changes follows.

Perspective-Correct Texture

The SkyWriter graphics subsystem performs texture perspective correction
on a per-pixel basis, so there is no need to use screen subdivision. Thus, the
call to scrsubdivide() should not be made when running on a SkyWriter
system.

Perspective Correct Fog

On a VGX, the fog calculation is performed on a per-vertex basis. The
resultant fog color at each vertex is then Gouraud-interpolated across the
primitive. SkyWriter has the ability to perform fog calculations on a
per-pixel basis. Per-pixel perspective correction is performed for the fog
calculation just as it is for the texture calculation. As a result, per-pixel fog is

166

Chapter 5: Programming Visual Simulation Applications for SkyWriter Systems

more accurate than per-vertex fog. Furthermore, SkyWriter can usually
perform per-pixel fog calculations faster than a VGX can perform per-vertex
fog calculations. For a detailed discussion of fog, including equations, see
Volume II of the Graphics Library Programming Guide.

To take advantage of per-pixel fog, the arguments to fogvertex() must be
changed. Originally, on VGX systems, it was possible to specify only an
exponential fog function. Now, both linear and exponential fog functions
can be specified for both VGX and SkyWriter systems. The FG_DEFINE
parameter to fogvertex() is obsolete and is replaced with one of the
following modes:

FG_VTX_EXP2
FG_VTX_EXP
FG_VTX_LIN
FG_PIX_EXP2
FG_PIX_EXP
FG_PIX_LIN

On a VGX, to specify per-vertex exponential or exponential-squared fog
calculations, replace FG_DEFINE with FG_VTX_EXP or FG_VTX_EXP2.
Likewise to specify per-vertex linear fog use FG_VTX_LIN.

On a SkyWriter, you should use per-pixel fog calculations. Use FG_PIX_EXP
or FG_PIX_EXP2 to specify per-pixel exponential or exponential-squared
fog. Similarly, use FG_PIX_LIN for per-pixel linear fog. Notice that the
necessary parameters for linear fog are different from those for exponential
fog. To maximize the accuracy of the per-pixel fog calculation, minimize the
ratio of the distance from the eye to the far clipping plane over the distance
from the eye to the near clipping plane. Also, maximize the lsetdepth()
range. See the Graphics Library Programming Guide for instructions on setting
up these conditions.

Trilinear MIPmap Filter

SkyWriter supports a trilinear filter operation when MIPmapping (VGX
allows up to bilinear). See the Graphics Library Programming Guide for a
description of texture filters. Using a trilinear filter improves the texture
quality at the expense of texture fill performance. To use trilinear filtering,
call texdef2d() with a minification filter (TX_MINFILTER) of
TX_MIPMAP_TRILINEAR.

Using Special Graphics Features

167

A fill rate summary is included in “Performance” on page 181. The
SkyWriter fill performance, using a trilinear minification filter, is better than
the VGX fill performance using a bilinear minification filter.

Outlining Polygons With Antialiased Lines

Another significant new feature for SkyWriter is the ability to antialias
polygon edges without requiring a preliminary sort of the database. The
basic idea is to first draw the scene as filled polygons and then redraw the
portion of the scene that is to be antialiased using
polymode(PYM_LINE_FAST), which draws antialiased edges around the
polygons. When the scene is redrawn, the antialiased polygon edges will be
properly blended into the background. The following sample code fragment
illustrates the use of this technique:

/* draw lines antialiased */
linesmooth(SML_ON | SML_SMOOTHER);

while (1) {
/* Setup to draw the scene as polygons */
polymode(PYM_FILL);
zfunction(ZF_LEQUAL);
blendfunction(BF_ONE,BF_ZERO);

/* draw the scene */
draw_scene_routine();

/* Setup to redraw antialiased edges */
zfunction(ZF_LESS);
blendfunction(BF_SA,BF_MSA);
polymode(PYM_LINE_FAST);

/* draw portions of the scene to be antialiased */
draw_portion_of_scene_to_be_antialiased_routine();

}

SkyWriter decomposes all polygons into triangles before rendering. Using
polymode(PYM_LINE_FAST) draws antialiased edges after the polygon
has been decomposed into triangles. As a result, if you use this polymode to
antialias polygons with four or more edges, you may notice some minor
visual differences on the interior of these polygons. Because drawing
antialiased edges takes time, do so only where necessary.

168

Chapter 5: Programming Visual Simulation Applications for SkyWriter Systems

Multiple Graphics Pipelines

The SkyWriter system contains two complete hardware graphics pipelines
that drive two independent video output channels. On a system with two
graphics display monitors, this feature is called dual-head. SkyWriter also
includes a video multiplexer that can be used to produce a single output
channel consisting of interleaved frames from the two pipelines, giving
twice the graphics performance of a single pipeline. This feature is called
hyper-pipe.

Figure 5-1 shows the hyper-pipe configuration.

Figure 5-1 Hyper-pipe Configuration

See the SkyWriter Owner’s Guide for complete instructions on setting up and
configuring your SkyWriter to use these modes.

The sections that follow describe the application program interface to
control multiple pipes and suggest ways to structure an application to use
them effectively.

MP Bus

Pipe1 videoPipe0 video

Monitor

Video mux board

GM
GE
RM
RM
DG

GM
GE
RM
RM
DG

VX1

Using Multiple Pipes

169

Pixel-Replicating Video Format

The pixel-replicating (PR) video format enables programs to draw into
512x640 pixel region of the frame buffer and fill the drawing area of a
1024x1280 monitor or projector. Video hardware performs 2x2 pixel
replication, so performance is identical to that obtained by drawing into a
512x640-pixel window with the default 1024x1280 video format.

To use PR, you must code your application to render into the lower left
quarter of the screen and put the display system into PR mode, using the
pr60 argument to the setmon command. See setmon(1g) for instructions on
changing video modes.

Using Multiple Pipes

This section describes what application programs must do to use multiple
graphics pipelines, both as independent channels and in hyper-pipe mode.

Window Manager Access to Multiple Pipes

During an interactive session with the window manager, you can use the
DISPLAY environment variable to control the pipe on which newly-started
graphics programs are run. When DISPLAY is set to “unix:0.0”, programs
you start will run on pipe 0; when it is set to “unix:0.1”, programs you start
will run on pipe 1.

For convenience, the default startup files (.login, .profile) for root and guest
shells set DISPLAY to a reasonable initial value, if it is not already set. Each
screen has a toolchest that can be used to invoke graphics programs. Each
toolchest has the DISPLAY variable in its environment set to the correct
value for the screen on which it appears, so any application you invoke from
a toolchest will inherit this DISPLAY value, and thus appear on the same
screen as the toolchest from which it was invoked.

170

Chapter 5: Programming Visual Simulation Applications for SkyWriter Systems

Figure 5-2 shows a diagram of window manager access to multiple pipes.
Once a program has begun execution, it is impossible to move it from one
pipe to another from the window manager.

Figure 5-2 Window Manager Access to Multiple Pipes

Program Access to Multiple Pipes

When a program opens a window, it can specify the pipe on which the
window is to run. Once a window has been opened, it cannot be moved from
one pipe to another. However, a program may achieve the appearance of
moving a window from one pipe to another by closing the original window
and opening a new window on a new pipe.

There are three different ways in which programs can control the pipe on
which windows are opened:

1. Call winopen(). The window is opened on the pipe that is specified by
the DISPLAY environment variable.

setenv DISPLAY unix:0.1
glprogram

2. Call scrnselect() before calling winopen(). scrnselect() specifies a
screen number relative to the current server on which to open a
window.

main()
{

scrnselect(1);
winopen("my program");

}

DISPLAY=unix:0.0 DISPLAY=unix:0.1

Toolchest Toolchest

wsh/xterm wsh/xterm

Using Multiple Pipes

171

3. Call dglopen() instead of winopen(). dglopen() specifies which
machine, which server, and which screen to use for graphics imaging,
in the same format as is used for the DISPLAY variable.

main()
{

dglopen("unix:0.1", DGLLOCAL);
winopen("my program");

}

Hyper-pipe Applications

To operate in hyper-pipe mode, a program must first determine whether it
is running on hardware that is capable of hyper-pipe operation. Use
getgdesc(GD_MUXPIPES) to return the number of other graphics pipes able
to be video multiplexed with the current graphics pipe. On a SkyWriter, the
return value is 1.

The mswapbuffers() call has a flag for multiple pipe rendering called
DUALDRAW. Both of the display processes must use this flag to indicate
that they intend to operate as two cooperative hyper-pipe processes. Each
time a process calls mswapbuffers(), the video multiplexer is toggled to
display the output from that process’ pipe. The DUALDRAW flag is used in
addition to other mswapbuffers() flags. Usually, programs call
mswapbuffers(DUALDRAW|NORMALDRAW).

Set up hyper-pipe according to the following rules:

• The process that renders the first, third, fifth, etc. frames must be started
on pipe 0, and the process that renders the second, fourth, etc. frames
must be started on pipe 1. These processes may be started in either
order. The system swaps displayed pipes and blocks processes
appropriately, so that frames are displayed in the right order.

• At most, only one hyper-pipe process may render into a given pipe.

• IRIS GL popup menus can be used if they are rendered by the display
process that last did mswapbuffers(), since its pipe is driving the video
signal to the monitor.

• One pipe must be genlocked to the other, using the proper cabling and
the setmon(1g) command. See the SkyWriter Owner’s Guide and the
SkyWriter Installation Guide for information on cabling and genlocking.

172

Chapter 5: Programming Visual Simulation Applications for SkyWriter Systems

Using Pixel Replication with Multiple Pipes

To use PR video format with multiple pipes, issue a setmon pr60 command
for each pipe. In hyper-pipe mode, you must also make sure that one pipe is
genlocked to the other. For example, to put the video subsystem into
hyper-pipe mode with pixel replication, enter the following commands:

setenv DISPLAY :0.1
/usr/gfx/setmon pr60
setenv DISPLAY :0.0
/usr/gfx/setmon -g -t pr60
/usr/gfx/stopgfx
/usr/gfx/startgfx

To run the skyfly demo in hyper-pipe mode, enter:

skyfly -c -o0,0 -w640,512

To restore the video subsystem to its default operation (60 Hz), enter:

setenv DISPLAY :0.1
/usr/gfx/setmon 60
setenv DISPLAY :0.0
/usr/gfx/setmon 60
/usr/gfx/stopgfx
/usr/gfx/startgfx

Process Management

Because SkyWriter is a dual-pipe system, applications are typically made
parallel across multiple processes and processors, so that rendering to the
two pipes occurs in parallel.

This section discusses the IRIX mechanisms for parallel programming,
including process decomposition, synchronization, and shared memory. In
addition, this section outlines example programming models for
dual-channel and hyper-pipe visual simulation applications.

See Parallel Programming on Silicon Graphics Computer Systems for more
information on parallel programming. See also Appendix E, “Using
Graphics and Share Groups,” in the Graphics Library Programming Guide, for
additional information on using graphics in shared processes.

Process Management

173

Programming Model

A basic process/memory configuration for a dual-pipe visual simulation
application is diagrammed in Figure 5-3. This is not the only model
possible—it is just one example.

Figure 5-3 Model of Example Shared Process/Memory Configuration

In this example, the visual simulation problem is decomposed into processes
of three types: simulation, cull, and render. The simulation process controls the
motion of the viewer through the database, computes flight dynamics, object
intersections, and so on. In simple cases, a single process can perform all of
these functions. In more complex cases, this process can receive information
from processes running on other CPUs within the same system or on other
systems attached to a network.

The cull process generates a display list of things that are in the viewing
frustum and are thus potentially visible. It may also perform scene

Simulation

Cull Render

Ring buffer

Pipe 1

GeometryBuffered data

Shared process group (sproc())

Shared memory

processprocess

process

Cull Render

Ring buffer

Pipe 0

Shared process group (sproc())

processprocess

174

Chapter 5: Programming Visual Simulation Applications for SkyWriter Systems

management functions, such as level-of-detail selection. The display that is
generated by the cull process is then rendered by the render process.

In the model shown in Figure 5-3, there are two cull/render process pairs,
one for each pipe, and a single simulation process which controls these two
“software pipes.” The synchronization of the processes differs for the
single-channel hyper-pipe mode and the dual-channel mode.

Hyper-pipe Mode

Figure 5-4 shows a timing diagram for hyper-pipe mode.

Figure 5-4 Hyper-pipe Mode Timing

In hyper-pipe mode, the drawing processes are automatically synchronized
by mswapbuffers() as described in “Hyper-pipe Applications” on page 171.
They are staggered so that the combined frame rate is exactly twice that of a
single pipe. To take advantage of this, the simulation process is triggered by
the end of the draw process so that the simulation can sample inputs with
regular frequency, that is, at the combined frame rate. Once the simulation
has finished, it triggers the cull process of the current pipe.

The cull process places pointers to graphical objects into a ring buffer, and
the render process renders the specified graphical objects. Thus, the cull and
render processes operate on the same frame in parallel. Once the render

D0

D1

D2

D3

D4

S2 C2

S1 C1

S4 C4

Pipe 1

Pipe 0

S3 C3 S5 C5

Time

Process Management

175

process finishes, it triggers the simulation process to work on a future frame
for the other pipe.

Dual-channel Mode

Dual-channel operation is typically used to display a different
out-the-window view on each pipe of a dual-head system. In this case, the
frames on each pipe should be drawn at the same time and not staggered as
in the hyper-pipe case. This requires a different synchronization of
processes, as shown in Figure 5-5.

Figure 5-5 Dual-Channel Mode Timing

In Figure 5-5, the simulation process triggers both culls, which work on
different views. The simulation then waits for both render processes to finish
and then starts on the next frame. In this case it is important that the ring
buffer be large enough to contain two complete frames.

In both examples, the simulation and cull processes can be working on
different frames at the same time. Because of this, the data that is modified
by the simulation and passed to the cull must be buffered so that the proper
data is used by the proper frame. Because there are processes working on a
maximum of two different frames at the same time, it is necessary to
double-buffer only the variable data.

D0

D0

D1

D1

D2

S1 C1

C1

S2 C2

Pipe 1

Pipe 0

C2

D2

S3 C3

C3

Time

176

Chapter 5: Programming Visual Simulation Applications for SkyWriter Systems

One issue related to parallelism is latency (transport delay), the time elapsed
from sampling inputs to viewing the resulting output. In hyper-pipe mode,
the frame rate is, ideally, doubled over that of a single pipe, but the latency
is not halved because the doubling of the frame rate is achieved through
parallelism. Latency is increased by the number of stages in the rendering
pipeline and is dependent on process synchronization.

Typically, although there are two independent software pipes, composed of
the cull/render pairs, there is only one database. Instead of wasting memory
by giving each software pipe its own copy of the database, use shared
memory to store the database, so that both pipes can access it. Shared
memory is also used to pass the buffered viewer and object positions from
the simulation to the cull process.

IRIX mechanisms for process management, process synchronization, and
shared memory are discussed next.

IRIX Support for Parallel Programming

The type of parallel programming most useful to visual simulation
applications is coarse-grained, heterogeneous parallelism, in which
processes do large chunks of different kinds of work. The example
programming model uses this kind of parallelism in two ways. It processes
information for two hardware pipes in parallel and it performs the
simulation, culling, and rendering for each pipe in parallel.

The IRIX mechanisms to achieve coarse-grained, heterogeneous parallelism
are sproc() and fork(). Both of these calls clone another identical process, but
forked processes acquire their own virtual address space, while sproc’ed
processes form a share group which shares the same virtual address space.
Since the Graphics Library’s internal data structures are not multi-buffered,
two or more rendering processes cannot share the same address space—they
must be forked.

Forked processes do not share the same virtual address space, but they can
obtain pieces of shareable memory from the operating system. The IRIX
mmap() call is used to map a file into the address space of a process. When
multiple processes map the same file, they share it, providing for
communication and shared data. Memory can be allocated out of a mapped

Process Management

177

file using acreate() to create a shared memory arena and amalloc()/afree() to
manipulate memory in the arena.

Process synchronization is achieved through the use of semaphores.
Semaphores are used to trigger processes and to control access to shared
data. usinit() creates a shared memory area in which semaphores are
created. uspsema() and usvsema() implement the classic P() and V()
semaphore operations.

In some cases it may be useful to control which processes run on which
processors explicitly. For example, lock a critical process, such as render, to a
single processor so that it may not be preempted by another process. The
exact process/processor mapping depends on the number of processes and
their relative priority, as well as the number of processors. The system
commands for multiprocessing control are the mpadmin program, and the
sysmp() system call. Both commands provide for some form of process
restriction and processor isolation. However, you should be careful to avoid
starvation and deadlock problems when using them.

Sample Code

Sample source code which implements both the hyper-pipe and
dual-channel programming models may be found in
/usr/people/4Dgifts/examples/skywriter. The program is called skyfly and may
be run from buttonfly or compiled in the 4Dgifts directory.

Mouse Input

Single-process IRIS GL programs can call IRIS GL input routines, for
example, qread() and getvaluator(), to get mouse input relative to the
windows they open. However, in complex, multi-process applications, the
process that opens and renders to a given window is not necessarily the
process that must receive input relative to that window. To handle cases like
this, X Window System input commands must be used.

Part of the skyfly sample code includes an input system implemented
entirely with Xlib calls, which closely mimic IRIS GL input calls. This code
can be found in the file xinput.c.

178

Chapter 5: Programming Visual Simulation Applications for SkyWriter Systems

The initialization routine openXinput() creates an invisible window over the
whole screen. This window allows the input code to trap all the input events
as they are sent from the X server. A program using this input scheme should
call openXinput() during its initialization sequence. The routine
closeXinput() should be called during the program’s shutdown sequence to
restore states modified by openXinput().

The interface routines Xgetbutton() and Xgetvaluator() behave exactly as
their IRIS GL relatives getbutton() and getvaluator()— they return mouse x
and y coordinate information.

The event handling routine flushQueue() is invoked internally by
Xgetbutton() or Xgetvaluator() when they determine that there are X input
events waiting to be processed. It is not necessary to call flushQueue() from
the application. The tasks accomplished by flushQueue() include processing
all the queued mouse and button events and translating their meanings from
the X to the IRIS GL specification.

In summary, you can call the sample input routines from skyfly/xinput.c as
follows:

• Call openXinput() during the application's initialization phase.

• Call Xgetbutton() and Xgetvaluator() instead of getbutton() and
getvaluator().

• Call closeXinput() during the application's shutdown phase.

Guidelines for Visual Simulation Applications

The following section is a collection of hints and rules-of-thumb that may
help you design your visual simulation application.

How to Use Texturing

The large range of texturing options in the SkyWriter system allow great
flexibility, but they can be confusing. The following suggestions are for
texturing in visual simulation applications, to increase realism while
minimizing the impact on performance.

Guidelines for Visual Simulation Applications

179

A texture is classified by the number of 8-bit components it uses and the
filters used for minification and magnification. A texture can have from one
to four components. The one- and two-component versions are for intensity
maps, with or without alpha, and the three- and four-component versions
are for color maps, with and without alpha. The possible filters are
point-sampling (no filter), bilinear, MIPmapped point, MIPmapped-linear,
MIPmapped bilinear and MIPmapped trilinear. The general rule-of-thumb
is the more components, and the more complicated the filter, the lower the
fill rate. A table of fill rates for the various texturing modes is included in
“Performance” on page 181.

Choosing Texture Options

In visual simulation, fill rate performance is a prime concern. For this reason
most texturing is one component. The complex filters have a smaller
performance penalty on a Sky Writer than on a VGX, but should still be used
cautiously. Fortunately, a one-component texture is almost always sufficient,
if used wisely.

Using blending texture environments, you can use a one-component
intensity map to simulate grass, soil, snow, water, sky, etc., merely by using
a different environment blend color. If this is not sufficient, you can
modulate the color of the base geometry to change color on a per-polygon
basis.

For texture maps that contain high-frequency information, MIPmapping
minification is required, to avoid the scintillation on distant textures caused
by aliasing. Bilinear interpolated magnification is also required, to smooth
out under-sampling when the texture is magnified in the foreground. For
lower frequency maps, point sampling may be adequate, and it will fill faster
when 3 or 4 components are being used.

Selecting or generating an interesting intensity map is vital to creating a
convincing simulation, so do not neglect this stage of development.

Managing Texture Memory

Within the graphics subsystem, there is a fixed-size, special-purpose
memory, where a texture must reside when it is being used for active
drawing.

180

Chapter 5: Programming Visual Simulation Applications for SkyWriter Systems

Multiple texturing programs may run simultaneously, and each may define
and use multiple textures, so the texture memory is managed as a virtual
memory. The operating system and Graphics Library move textures into and
out of texture memory automatically, but the cost of moving textures is high.
For this reason, most visual simulation applications should restrict their use
of textures to the amount that will fit in texture memory without any
swapping.

A detailed description of the amount of texture memory available is
included in “Performance” on page 181. Also see “VGX Techniques” on
page 151.

Other Texturing Techniques

If possible, turning texturing off for distant objects may provide a significant
performance increase. This is because texture considerably decreases
transform rates. Disabling texture on distant objects does not significantly
degrade realism, because texturing cues are naturally diminished with
distance, as the textures lose their high frequency information through
minification.

Texturing information can be used as a substitute for geometry when
rendering objects such as trees or signs. Instead of creating a complex
geometric representation of a tree, you can simply render one or a few
triangles with a texture map that is a picture of a tree. When the object is far
enough away, it can be drawn as a single polygon that is oriented
dynamically to always face the viewer. When it is very close, this dynamic
orientation makes the object appear to rotate, so the object is better drawn as
two or more intersecting polygons. It will then have the appearance of width
when viewed from an angle, but it won’t appear to rotate.

How to Use Antialiasing

Aliasing can be a disturbing artifact, especially when using video formats
that enlarge the displayed image. Aliasing is a by product of the binary
decision as to whether or not to paint a pixel. Sometimes this decision results
in over-coverage, and sometimes in under-coverage of a pixel. The IRIS GL
provides several options for antialiasing. However, many of these are
prohibitively slow (the accumulation buffer) or overly restrictive
(polysmooth()) for use in visual simulation. The desirable technique is to use

Performance

181

polymode(PYM_LINE_FAST), as described in “Using Special Graphics
Features” on page 165.

Aliasing is most disturbing along silhouette edges against backgrounds of a
drastically different color. Objects that create such silhouettes are prime
candidates for antialiasing. Because antialiasing is a moderately expensive
operation, you must decide which objects need antialiasing by playing off
the gain in image quality vs. performance degradation. This is a subjective,
iterative process.

By determining which polygons in an object statistically contribute to the
majority of silhouette edges, you can antialias only these polygons. When
rendering during the second pass, render an object that is composed of this
selected subset of the geometry of the original object with antialiasing
turned on. This technique reduces the transform time associated with the
antialiasing stage.

You can further reduce the amount of geometry drawn during the second
pass by noticing that abutting polygons share an edge that would be
antialiased twice. It may be possible to prune polygons that abut with other
polygons on their entire perimeter, since these polygons do not contribute to
any unique edges.

Note that the polymode(PYM_LINE_FAST) technique only works on the
edges of polygons on convex regions of objects. It cannot be used to antialias
concave regions of objects, nor lines created by the intersection of
self-interesting polygons, nor lines created when an edge of a polygon abuts
with the interior of another polygon.

Performance

IRIS GL Tuning Tools and References

For a comprehensive treatment of the theory and practice of graphics tuning,
see Chapter 3, “Using GLdebug.” Besides giving techniques for tuning
existing programs, Chapter 3 provides detailed advice to help you design
new programs, including recommended data structures and traversal
methods for fast rendering.

182

Chapter 5: Programming Visual Simulation Applications for SkyWriter Systems

SkyWriter Transform and Fill Rates

Table 5-1 shows the SkyWriter per-pipe transform rates.

Table 5-2 shows the SkyWriter per-pipe fill rates.

Table 5-1 SkyWriter Per-Pipe Transform Rates

Primitive Type Transform Rate
(Primitives per second)

Independent Triangle, Gouraud-Shaded 150K

Triangle Mesh, Textured 75K

Independent Triangle, Fogged 150K

Independent Triangle, Textured, Fogged 75K

Independent Triangle, Textured, Fogged, Antialiased 35K

Table 5-2 SkyWriter Per-Pipe Fill Rates

Polygon Type Fill Rate

Non-z-buffered 193M

z-Buffered 96M

Blended 57M

Textured (Not Fogged / Fogged)

Point-Sampled, 1- or 2-Component 50M / 40M

Point-Sampled, 3- or 4-Component 50M / 38M

Linear, 1- or 2-Component 50M / 40M

Linear, 3- or 4-Component 50M / 38M

Bilinear, 1- or 2-Component 47-50M / 40M

Bilinear, 3- or 4-Component 33M / 27M

Trilinear, 1- or 2-Component 30-44M / 25-34M

Trilinear, 3- or 4-Component 20M / 17M

Performance

183

You should be aware of several performance issues when porting an
application from VGX to SkyWriter. Like VGX, SkyWriter is tuned to give
high performance for meshed non-textured primitives, that is, triangle
meshes and quadrilateral strips. For textured primitives, SkyWriter is tuned
for textured independent triangles. Independent quadrilaterals are almost as
fast as independent triangles. However, there is little or no performance
increase over independent textured primitives when using meshed textured
primitives.

On SkyWriter, the fill rate when performing texture and per-pixel fog
calculations is faster than performing texture and per-vertex fog
calculations. If texturing is not being used, the per-vertex fog fill rate may be
faster for large polygons. The only time that per-pixel fog becomes
computationally expensive is when the perspective matrix is modified, the
lsetdepth() range is changed, or the fog density is modified.

SkyWriter Texture Memory Management

As with VGX, SkyWriter has a fixed amount of real texture memory which
is managed by the kernel and the GL. The amount of texture memory on a
SkyWriter is 160K texels when the accumulation buffer is not configured.
Although each texel can hold from one to four components, the entire texel
is used regardless of the number of components in the texture. The memory
for non-MIPmapped textures is exactly equal to their area. For example, a 64
by 64 texture uses 4,096 texels. MIPmapped textures on the other hand use
4/3 the area of a top level texture map. For example, a 64 X 64 MIPmapped
texture uses 5461 texels. The texture manager manages texture memory
using a 32 texel block size. Therefore, round up to the nearest block when
computing the amount memory required for a texture. When performing
per-pixel fog (see fogvertex()), 512 texels of texture memory are reserved for
fog calculations.

Binding a texture from the last n recently bound textures where the n
textures fit into texture memory is relatively fast. In general, the speed of a
texture bind call depends on how much must be changed to switch to the
new texture. Texture binds are fastest when the minification and
magnification filters are the same type. For example, use the
TX_MIPMAP_BILINEAR minification filter with the TX_BILINEAR
magnification filter. The texture bind is almost as fast if the minification filter
differs from the magnification filter, but the minification and magnification

184

Chapter 5: Programming Visual Simulation Applications for SkyWriter Systems

of the newly bound texture are identical to those of the previously bound
texture.

The combination of using texture mapping and the accumulation buffer is
not optimized. Thus, calling acsize() lengthens the time required to perform
subsequent texture binds.

Because texture memory is a shared resource, its availability is affected
whenever additional IRIS GL programs that perform texturing are run. The
kernel will context switch the texture memory with the rest of an IRIS GL
program’s state. In general, if multiple texturing applications are running,
and there is sufficient texture memory to hold all of the textures for each
application, texture maps do not need to be swapped out and reloaded.

Table 5-3 shows how many texels fit within a given texture size for
MIPmapped and non-MIPmapped textures on 5 and 10 span SkyWriter
systems.

Table 5-3 SkyWriter Texture Memory

Texture Size Non-MIPmapped MIPmapped

Total
Texels

5-span 10-span Total
Texels

5-span 10-span

16x16 256 256 640 352 186 465

32x32 1K 64 160 1,376 47 119

64x64 4K 16 40 6,472 11 29

128x128 16K 4 10 21,856 2 7

256x256 64K 1 2 87,392 0 1

512x512 256K 0 0 349,534 0 0

Performance

185

Practices to Follow for Maximum Performance

Use these techniques to obtain maximum performance on a SkyWriter:

• Always specify subpixel(TRUE).

• Don’t specify negative texture coordinates.

• Limit the range of texture coordinates to (2048/texture size). For
example, with a 256 by 256 texture don’t use an s,t coordinate greater
than 8.0.

• Avoid using any polymode other than PYM_FILL or PYM_LINE_FAST.

• Avoid tiling—tiled textures are slower than non-tiled textures.

• As with any high performance IRIS GL application, clipping should be
minimized.

• Fill rate performance is affected by using multi-bank writes, logicop(),
and polysmooth()

Note: Because SkyWriter supports antialiasing with
polymode(PYM_LINE_FAST), the use of polysmooth is not
recommended. ♦

187

Appendix A

A. Benchmarking Tools

This appendix contains source code for useful benchmarking subroutines
and a sample benchmark.

/***
* file: bench.h
***/
#ifdef __cplusplus
extern "C" {
#endif
#include <unistd.h>
#include <signal.h>
/*
* bench variable declarations
*/
extern float timestart, timestop;
extern float elapsed_time;
extern int gotsignal;
/*
 * bench macros
 */
#define REPEAT10(x) {x x x x x x x x x x}
#define LOOPBENCH(count, btime, benchcode) { \
int _loopbench_i; \
gstartclock(); \
for (_loopbench_i=count; \

_loopbench_i > 0; _loopbench_i--) { \
benchcode \

} \
btime = ggetelapsedtime(); \
}
#define SIGBENCH(benchseconds, btime, \

nitems, benchcode) { \
nitems = 0; \
gotsignal = 0; \
signal(SIGALRM, handlesig); \
alarm(((benchseconds +1) /2)); \

188

Appendix A: Benchmarking Tools

do { \
benchcode \
nitems += 2; \

} \
while (!gotsignal); \
LOOPBENCH(nitems, btime, benchcode); \
}
extern void handlesig(int sig, ...);
extern int gstartclock(void);
extern float gstopclock(void);
extern float ggetelapsedtime(void);
extern int SetHighPriority(void);
extern void PrintfBenchResults(float btime, int nitems);
#ifdef __cplusplus
};
#endif

/***
* file: bench.c
***/
#include <stdio.h>
#include <gl.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/times.h>
#include <sys/param.h>
#include <sys/prctl.h>
#include <sys/lock.h>
#include <sys/schedctl.h>
#include "bench.h"
/*
* global variables
*/
int gotsignal = 0;
/* static variables */
static float timestart, timestop;
static float elapsed_time;
static float framerate, polyrate,
cmdrate, cmdsecs;
static struct tms tbuf;
void handlesig(int sig, ...)
{
gotsignal = 1;
}

189

int gstartclock(void)
{
/* flush and put gfx context in pipe */

finish();
timestart = (times(&tbuf) / 100.0);
return(timestart);
}
float ggetelapsedtime(void)
{
/* flush pipe to make sure drawing is
* really done
*/
finish();
timestop = (times(&tbuf) / 100.0);
elapsed_time = (timestop - timestart);

return(elapsed_time);
}
float gstopclock(void)
{
/* flush pipe */
finish();
timestop = (times(&tbuf) / 100.0);
elapsed_time = (timestop - timestart);
return(timestop);
}
int SetHighPriority(void)
{
/* lock it all down */
printf(" Locking down all application pages\n");
if (plock(PROCLOCK) != 0) {

perror("*** Could not lock down pages - continuing");
printf(" Using standard unlocked pages\n");

}
/* give me good priority */
printf(" Setting nondegrading highest user priority\n");
if (schedctl(NDPRI, 0, NDPHIMAX) != 0) {

perror("*** Could not give good priority - continuing");
printf(" Using standard priority\n");

}
}

190

Appendix A: Benchmarking Tools

void PrintfBenchResults(float btime, int nitems)
{
float item_time = btime/(float) nitems;
float item_rate = (float)nitems/btime;
printf("nitems=%d, bench_time=%f secs\n", nitems, btime);
printf("time per item:");
if (item_time <= 0.1) {

printf("%.4f msecs\n",
item_time * 1000.0);

} else {
printf("%f secs\n", item_time);
printf("items per second:");
if (item_rate >= 1000.0)

printf("%.2fK\n", (item_rate / 1000.0));
else if (item_rate >= 1000000.0)

printf("%.2fM\n", (item_rate / 1000000.0));
else

printf("%.2f\n", item_rate);
}
}

This is a sample benchmark using the above code. It benchmarks 10
independent gouraud shaded quads in a display list. Its output as run on a
4D340/VGX follows.

/* file: quad.c */
#include <stdio.h>
#include <gl/gl.h>
#include “bench.h”

/* vertex and color data */
float verts[24][4] = {
{10., 0., 0., 0.}, {10., 10., 0., 0.},
{20., 0., 0., 0.}, {20., 10., 0., 0.},
{30., 0., 0., 0.}, {30., 10., 0., 0.},
{40., 0., 0., 0.}, {40., 10., 0., 0.},
{50., 0., 0., 0.}, {50., 10., 0., 0.},
{60., 0., 0., 0.}, {60., 10., 0., 0.},
{70., 0., 0., 0.}, {70., 10., 0., 0.},
{80., 0., 0., 0.}, {80., 10., 0., 0.},
{90., 0., 0., 0.}, {90., 10., 0., 0.},
{100., 0., 0., 0.}, {100., 10., 0., 0.},
{110., 0., 0., 0.}, {110., 10., 0., 0.},
{120., 0., 0., 0.}, {120., 10., 0., 0.},
};

191

float colors[24][4] = {
 {0.0,0.0,0.9,0.9}, {0.0,0.9,0.0,0.9},
 {0.0,0.9,0.9,0.9}, {0.9,0.0,0.0,0.9},
 {0.9,0.0,0.9,0.9}, {0.9,0.9,0.0,0.9},
 {0.9,0.9,0.9,0.9}, {0.9,0.0,0.0,0.9},
 {0.9,0.0,0.9,0.9}, {0.9,0.9,0.0,0.9},
 {0.9,0.9,0.9,0.9}, {0.9,0.0,0.0,0.9},
 {0.0,0.0,0.9,0.9}, {0.0,0.9, 0.0,0.9},
 {0.0,0.9,0.9, .9}, {0.9,0.0,0.0,0.9},
 {0.9,0.0,0.9,0.9}, {0.9,0.9, 0.0,0.9},
 {0.9,0.9,0.9,0.9}, {0.9,0.0,0.0,0.9},
 {0.9,0.0,0.9,0.9}, {0.9,0.9,0.0,0.9},
 {0.9,0.9,0.9,0.9}, {0.9,0.0, 0.0,0.9},
};

initwin()
{
foreground();
prefposition(0, 200, 0, 20);
winopen(“quad bench”);
subpixel(TRUE);
RGBmode();
gconfig();
cpack(0x0);
clear();
}
static Object mkquadobj(void)
{
int j, quadobj;
makeobj(quadobj = genobj());
for (j = 0; j < 22; j+=2) {

bgnpolygon();
c3f(colors[j]); v3f(verts[j]);
c3f(colors[j+1]); v3f(verts[j+1]);
c3f(colors[j+3]); v3f(verts[j+3]);
c3f(colors[j+2]); v3f(verts[j+2]);

endpolygon();
}
closeobj();
return quadobj;
}

192

Appendix A: Benchmarking Tools

main()
{
/* time for SIGBENCH to run */
int benchSeconds = 2;
/* SIGBENCH will write the elapsed time */
float benchTime =0.;
/* SIGBENCH will write the number of times item drawn */
int numItems=0;
/* obj id for object to bench */
Object obj;
initwin();
obj = mkquadobj();
/* run the benchmark 10 times to get an average result */
REPEAT10(

SIGBENCH(benchSeconds, benchTime, numItems,
callobj(obj);)

/* 10 quads in the object */
numItems *= 10;
PrintfBenchResults(benchTime, numItems);
)
}

An example of the output of this sample benchmark follows:

Output from a 340/VGX: (peak rate is 180k independent
gouraud-shaded quads/sec.)
nitems=356980, bench_time=1.980469 secs
time per item:0.0055 msecs
items per second:180.25K
nitems=359880, bench_time=1.988281 secs
time per item:0.0055 msecs
items per second:181.00K
nitems=358100, bench_time=1.988281 secs
time per item:0.0056 msecs
items per second:180.11K
nitems=357940, bench_time=1.980469 secs
time per item:0.0055 msecs
items per second:180.73K
nitems=358700, bench_time=1.988281 secs
time per item:0.0055 msecs
items per second:180.41K
nitems=358420, bench_time=1.980469 secs
time per item:0.0055 msecs
items per second:180.98K
nitems=361400, bench_time=2.000000 secs

193

time per item:0.0055 msecs
items per second:180.70K
nitems=358740, bench_time=1.980469 secs
time per item:0.0055 msecs
items per second:181.14K
nitems=360880, bench_time=2.000000 secs
time per item:0.0055 msecs
items per second:180.44K
nitems=357980, bench_time=1.980469 secs
time per item:0.0055 msecs
items per second:180.76K

195

B

backfacing removal, 143
BDF, 7
benchmark, 149

sample, 190
benchmarking, 108

summary of techniques, 160
tools, 187

bgn/end sequences
optimizing, 136, 137

block counting, 115
bottleneck

CPU, 117
definition, 106
eliminating CPU type, 111, 161
eliminating per-pixel type, 163
eliminating per-polygon type, 162
finding, 107
summary of tuning techniques, 160-163

breakpoint
definition, 84
setting, 97

bus transaction, 119

C

C programming language
generating GLdebug output in, 83

Numbers

4Dgifts, 28

A

accessing multiple pipes, 170
accumulation buffering, 36
acreate(), 177
actions and translations, 43
Adobe Bitmap Distribution Format (BDF), 7
afree(), 177
alphablending, 144
amalloc(), 177
animation, 45

frame rate, 110
ANSI C

prototyping, 122
antialiasing

for visual simulations, 180
polygon edges on SkyWriter, 167

assembly code
comparing, 124
generating, 133

Athena widget set, 31, 32
Attributes window of GLdebug, 94

Index

196

Index

cache
conflicts, 114
definition, 112
limitations with display lists, 131
line, 113
minimizing conflicts, 117
minimizing misses, 113
miss, 112, 114, 117

calculating expected performance, 146
callbacks, mixed-model, 39

expose, 39
input, 39
overlayExpose, 39
resize, 39

changing materials, 139
characters, scaling, 4
checking for TLB misses, 114
chunksize(), 131
clearing bitplanes, 145
clock resolution, 109
cmov(), 12
code

fill-rate limited, 108
transform-limited, 108

color indicator of GLdebug, 86
compile, 133
compiling

and linking for GLdebug, 81
optimizing, 111

concave polygons
optimizing, 137

conditions shown in GLdebug Stateviewer, 86
conflicts

cache, 114, 117
control buttons

of GLdebug, 97
Controller, 96-97
Controls menu of GLdebug, 96

coordinates, X and GL, 44
CPU bottleneck

from hierarchical data structures, 117
summary of tuning techniques, 161
testing for, 107

CPU stage of the pipeline, 105
CPU-limited code

from using shorts on a VGX, 120
summary of tuning techniques, 161
tuning to correct, 111

cull, 173, 174

D

data
expansion of in display lists, 131
preprocessing, 125
storage self-managed by display lists, 130

data structures, 117
disadvantages of hierarchies, 117
optimizing, 117
optimum sample code for, 128

database
optimizing by preprocessing, 125
optimizing traversal of, 120

debugging
forcing execution past errors, 91
with GLdebug, 79-??

defcursor(), 29
Devices window of GLdebug, 95
dis, 133
DISPLAY environment variable, 28, 169, 171
display lists

automatic quad-word alignment of, 119
optimizing, 131
tuning, 130-132

division
avoid for peak performance, 122

197

DMA, 118, 119
double buffering indicator of GLdebug, 88
draw mode indicator of GLdebug, 89
drawing

optimizing, 135-138
dual-channel

timing, 175
dual-head option of SkyWriter, 168

E

eliminating silhouette edges, 181
end-conditions of loops, 122
error checking, 81
error condition indicator of GLdebug, 91
errors issued by GLdebug, 81
event handling

mixed-model, callbacks, 39
expensive modes, 141-143
expensive pixel modes, 144
expose callback, 39

sample code for, 39

F

fatals issued by GLdebug, 81
fill rate

optimizing SkyWriter per-pixel fog and texture,
183

SkyWriter, 182
fill-limited code

definition, 108
tuning, 143-146

finding bottlenecks, 107
finish(), 109
flat-shading, 144

advantage, 134
flowchart of the tuning process, 149
fmconcatpagematrix(), 18
fmenumerate(), 9
fmfontpath(), 15
fmfreefont(), 15
fmgetchrwidth(), 14
fmgetfontname(), 12
fmgetpagematrix(), 17
fmgetstrwidth(), 14
fmgetwholemetrics(), 14
fmglyphinfo structure, 2, 14
fminitpagematrix(), 17
fmmakefont(), 10
fmoutchar(), 11
fmprintermatch(), 16
fmprstr(), 11, 12
fmrotatepagematrix(), 5, 17
fmscalefont(), 4, 10
fmscalepagematrix(), 17
fmsetfont(), 11
fmsetpagematrix(), 17
fmsetpath(), 6, 15
fog

per-pixel on SkyWriter, 165
font handles, 9
Font Manager

adjusting fonts for laser printers, 16
changing font search path, 15
font metrics, 2
font rendering, 4
font search path, 6
FONTPATH, 6
getting character length, 14
getting font handles, 9
getting the string length, 14
inititializing fonts, 9

198

Index

list of routines, 7
page, 4
page transformation, 17
rendering fonts, 11
rotating fonts, 10
sample program, 19
setting search path, 15
sizing fonts, 10
subpixel positioning fonts, 2
transformation, 4

font metrics, 2
FONTPATH, 6
fonts

Adobe Bitmap Distribution Format (BDF), 7
changing search path, 15
example program, 19
font management routines, 7
font metrics, 2
font rendering, 4
font search path, 6
FONTPATH, 6
geting string length, 14
getting a font handle, 9
getting character length, 14
initializing, 9
page, 4
page transformation, 17
rendering, 11
rotating, 10
setting search path, 15
sizing, 4, 10
specification, 4
subpixel positioning, 2
transformation, 4
widths for laser printers, 16

fork(), 176
fragmentation

reducing, 131
frame rate, 110
frontface removal, 143

G

GConfig indicator of GLdebug, 90
genlock, 171
getcpos(), 12
getvaluator(), 29
gflush(), example, 41
ginit callback, 39

what not to do, 40
GL and X mixed programs, see mixed-model

programming
GL calls

calls invalid in mixed-model programs, 29
GL coordinates, 44
GL widgets, see GlxDraw
glcompat, 104
GLdebug, 79-??

Attributes window, 94
color indicator, 86
control buttons, 97
Controller, 96-97
Controls menu, 96
Devices window, 95
double buffering indicator, 88
draw mode indicator, 89
error condition indicator, 91
features, 79
GConfig indicator, 90
history output, 82
lighting indicator, 87
Lighting window, 92
matrix mode indicator, 88
Matrix window, 95
options, 82
Options menu, 91
Set/Unset menus, 99
starting, 81
Stateviewer, 85-96
toggle buttons, 100

199

unsupported calls, 101
z-buffer indicator, 87

glflush(), 28
GLXConfig()

structure, declaring, 35
GlxConfig()

creating overlays, 42
GlxCreateMDraw, 32, 38
GlxDraw, 31, 32

basic steps for using, 33
creating the widget, 38
IRIS IM version, 32
linking, 42
sample program, 33

GLXlink(), 72
GlxMDraw, see GlxDraw, 32
GLXunlink(), 73
GLXwinset(), 41, 73
GTX

quad-word alignment, 119
summary of tuning techniques, 153

H

hardware
determining capabilities, mixed model, 35

header files, for GlxDraw and GlxMDraw, 35
hierarchy

memory, 112
high-performance

drawing, 135-138
history from GLdebug, 82
hot spots, 106, 120
hyper-pipe, 168, 171

DUALDRAW flag, 171
running skyfly demo, 172
setting up, 171

timing diagram, 174

I

immediate mode
tuning, 116-130

infinite lights, 138
initializing fonts, 9
input callback, 39, 43
input for MP programs using X Window System, 178
input handling

common problems, 44
mixed-model, 42

interleaving
computation with graphics, 132
frames for animation, 168

IRIS IM, 31
lost keyboard input, 44
traversal, 32
widgets, 31

IRIS Indigo
summary of tuning techniques, 154-156

IRIS® Geometry Pipeline™, 103

L

latency in hyper-pipe mode, 176
level-of-detail, 174
lighting

optimizing, 138-141
performance penalty of advanced features, 138

lighting indicator of GLdebug, 87
Lighting window of GLdebug, 92
linking, with GL widgets, 42
local lights, 140
loops, optimizing, 122

200

Index

M

macros, 123, 125
malloc(), 119, 131
managing texture memory, 180
mapcolor(), 29
matrix mode indicator of GLdebug, 88
Matrix window of GLdebug, 95
memory

limitations with display lists, 131
managing for texture, 180
managing texture on SkyWriter, 183
minimizing page misses, 114
minimizing paging, 113
page table, 113
paging caused by hierarchical data structures, 117
reducing fragmentation, 131
structure of, 112
virtual, 113

meshes
optimizing, 126
sorting, 127

minimizing
cache misses, 113
memory paging, 113
page misses, 114

MipMapped textures
optimizing, 183

mixed-model programming, 21, 28, 84
4Dgifts sample programs, 28
actions and translations, 42, 43
animation, 45
animation example, 45
Athena widget set, 31, 32
coordinates, 44
creating GlxDraw widget, 38
event handling

callbacks, 39
expose, 39

gflush(), 41
ginit callback, 39, 40
glflush(), 28
GLXConfig() structure, declaring, 35
GlxDraw, 32

basic steps, 33
IRIS IM version, 32
sample program, 33

GLXgetconfig(), 72
GLXlink(), 72
GlxMdraw, 32
GLXunlink(), 73
GLXwinset(), 41, 73
header files, 35
incompatible GL calls, 29
input, 39
input callback, 42, 43
input handling, 42

common problems, 44
installing colormaps, 30
IRIS IM, 31, 32

GlxMDraw, 32
lost keyboard input, 44
traversal, 32

linking, 42
overlay windows, 41
overlayExpose callback, 39
popup menus example, 45
popup windows, 41
resize, 39
setting accumulation buffering, 35
setting color mode, 35
setting overlay windows, 42
setting popup windows, 42
setting underlay windows, 42
setting Z-buffering, 35
timeouts, 45
underlay windows, 41
User Interface Language (UIL), 31
viewport(), 41
window configuration, 35

201

without IRIS IM, 32
workprocs, 45
workprocs example, 45
Xlib, 21
Xt, 31
Xt and GlxDraw, 31
XtRealizeWidget(), 40

mmap(), 176
MP bus, 114
mpadmin, 177
mswapbuffers() DUALDRAW flag, 171
multi-client programs, 28
multimap(), 29
multiple pipes

access, 170
in PR mode, 172

multiple process input, 177
multiple processors, 134

N

network transparency, 29
non-uniform scaling warning, 140

O

old-style drawing
optimizing, 135

optimizing
bgn/end sequences, 136, 137
compilation, 111
concave polygons, 137
data structure example, 128
data structures, 117
database by preprocessing, 125
database traversal, 120
display lists, 131

drawing, 135-138
lighting, 138-141
loops, 122
meshes, 126
MipMapped textures, 183
old-style drawing, 135
rendering data, 117
rendering loops, 120
SkyWriter fog and texture fill rates, 183
texture performance for visual simulations, 179
texture performance on SkyWriter, 185

options for GLdebug, 82
Options menu of GLdebug, 91
osview, 114
overall tuning techniques, 150-151
overlay windows, 36

creating in mixed model programs, 41
overlayExpose callback, 39

P

page table, 113
page transformation, 17
page, fonts, 4
parallel programming, 172, 176
parameter checking, 80
PC sampling, 115
peak-performance code, 120
per-pixel fog, 165
per-pixel operations, 108

summary of tuning techniques, 163
per-polygon operations

finding bottlenecks, 108
summary of tuning techniques, 162

perfobj, 128
performance

calculating, 146

202

Index

clearing bitplanes, 145
optimizing texture on SkyWriter, 185
penalties with lighting, 138
sample analysis, 147

Personal IRIS
flat-shading advantage, 134
summary of tuning techniques, 153

pipeline
3-stage model, 105
CPU stage, 105
per-pixel stage, 108
tuning, 106

pixel replication, 169, 172
pixstats(1), 115
point size, fonts, 4
polygons

eliminating silhouette edges, 181
polymode(PYM_LINE_FAST), 181
popup windows, 36
porting

from VGX to SkyWriter, 183
to SkyWriter, 165-169

POWER Series™, 117, 118
quad-word alignment, 119
summary of tuning techniques, 151

PowerVision™, 104
preprocessing data, 125
printermatched, 13
process management, 172-177
prof(1), 115
prototyping

in ANSI C, 122

Q

qcontrol(), 29
qdevice(), 29

quad-word
address, 118
alignment, 118

quads, 136

R

remote graphics
advantage of display lists in, 130

removing backfacing polygons, 143
render, 173
rendering

optimizing data for, 117
optimizing loops for, 120

rendering fonts, 11
resize callback, 39
resizing the viewport, 41
review of tuning methodology, 146-149
RGB antialiased lines, 134
RGB mode, setting in mixed-model programs, 36
rotating fonts, 10

S

sample performance analysis, 147
search path, fonts, 6
semaphores, 177
setcursor(), 29
setmon(1g), 169, 171
setting breakpoints, 97
setting up hyper-pipe mode, 171
Set/Unset menus of GLdebug, 99
setvaluator(), 29
share group, 176
shared processes, 172

203

sharing virtual address space, 176
silhouette edges, 181
simple lighting model, 138
sizing fonts, 4, 10
skyfly, 177
SkyWriter, 165-185

antialiasing polygon edges, 167
dual-head operation, 168
flat-shading advantage, 134
hyper-pipe, 168, 171
interleaving animation frames, 168
managing texture memory, 183
optimizing texture performance, 185
parallel programming, 172
per-pipe fill rates, 182
per-pipe transform rates, 182
per-pixel fog, 165
perspective-correct texture, 165
pixel-replicating format, 169
polymode(PYM_LINE_FAST), 167
porting applications to, 165-169
sample code, 177
setting up hyper-pipe mode, 171
trilinear MipMapping, 166
tuning, 182-185
uses triangle polygons, 167
video multiplexer, 168

sorting
meshes, 127

sproc(), 176
starting GLdebug, 81
state checking, 79
Stateviewer, 85-96
stubbing out graphics calls, 115
subpixel positioning, fonts, 2
subpixel(), 104, 134
synchronization

latency, 176
of dual-channel output, 175

of hyper-pipe output, 174
with semaphores, 177

sysmp(), 177

T

texture
as a replacement for complex geometry, 180
managing memory, 180
managing memory on SkyWriter, 183
perspective correction on SkyWriter, 165
suggestions for visual simulation, 178

tfaults, 114
three-stage model of the graphics pipeline, 105
timeouts, 45
timing

of dual-channel mode, 175
of hyper-pipe mode, 174

TLB
definition, 112
minimizing page misses, 114
misses, 114

toggle buttons of GLdebug, 100
toolchest, 169
transform rates

SkyWriter, 182
transform-limited code

finding bottlenecks, 108
tuning, 134-135

transformation matrix, for fonts, 4
translation-lookaside buffer, see TLB
transport delay, 176
traversal

IRIS IM, mixed-model programming, 32
traversals, 117
trilinear MipMapping on SkyWriter, 166
tuning

204

Index

advanced, 132-134
CPU-limited code, 111
display lists, 130-132
fill-limited code, 143-146
immediate mode, 116-130
old-style subroutines, 104
overall techniques, 150-151
pipeline, 106
POWER Series techniques, 151
process flowchart, 149
reducing frame rate, 110
review, 146-149
SkyWriter, 182-185
summary of benchmarking techniques, 160
summary of bottleneck techniques, 160-163
summary of GTX techniques, 153
summary of IRIS Indigo techniques, 154-156
summary of Personal IRIS techniques, 153
summary of VGX techniques, 151-153
transform-limited code, 134-135

two-sided lighting, 140
typecasting, 122
typeface, see fonts

U

UIL, 31
underlay windows, 36
unrolling, 121, 127
unsupported GL calls

GLdebug, 101
User Interface Language, 31
usinit(), 177
uspsema(), 177
usvsema(), 177

V

VGX, 134
flat-shading advantage, 134
optimizing screen clears, 146
quad-word alignment, 119
sample benchmark, 190
summary of tuning techniques, 151-153
use of shorts on, 120

video
multiplexer, 168
pixel-replicating format, 169
PR mode with multiple pipes, 172

viewport(), 41
virtual address space

sharing, 176
virtual memory, 113
visual simulation, 173

applications on SkyWriter, 165-185
guidelines, 178-181

W

warnings issued by GLdebug, 81
window configuration, mixed-model programming,

35
window creation with Xt, 40
winopen(), 30
wintitle(), 30
workprocs, 45

X

X and GL mixed programs, see mixed-model
programming

X coordinates, 44
X functions

205

XDestroyWindow(), 73
XSetWMColormapWindows(), 30

X Window System, 84, 177
closeXinput(), 178
flushQueue(), 178
input routines for MP programming, 178
openXinput(), 178
Xgetbutton(), 178
Xgetvaluator(), 178
Xlib, 177

Xt, 31
input handling, 42

Z

z-buffer indicator of GLdebug, 87
z-buffering, 35

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-1489-030.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 650-932-0801

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

