
CASEVision/Tracker 2.0
Design Guide

Document Number 007-1664-020

CASEVision/Tracker 2.0 Design Guide
Document Number 007-1664-020

CONTRIBUTORS

Written by Margaret-Anne Halse
Production by Gloria Ackley
Engineering contributions by Pete Orelup

© Copyright 1993, Silicon Graphics, Inc.— All Rights Reserved
This document contains proprietary and confidential information of Silicon
Graphics, Inc. The contents of this document may not be disclosed to third parties,
copied, or duplicated in any form, in whole or in part, without the prior written
permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and/
or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94039-7311.

Silicon Graphics is a registered trademark and CASEVision and IRIX are trademarks
of Silicon Graphics, Inc. UNIX is a registered trademark of UNIX System
Laboratories. X Window System is a trademark of Massachusetts Institute of
Technology. OSF/Motif is a trademark of Open Software Foundation. ClearCase is a
registered trademark of Atria Software, Inc. Raima and Raima Data Manager are
trademarks of Raima Corporation. ToolTalk is a trademark of Sun Microsystems, Inc.

iii

Contents

Introduction xiii
About This Guide xiii

1. Introduction to Tracker System Design 1
Tracker Terminology 1

Application Views 2
Display Areas 4
Transitions 4

Tracker Design Tools 4
The PDL File 5
The Data Manipulation Language 5
The tvgen Program 6
The app-defaults File 7

Tracker Design Cycle 7
Using Starter Systems 9

2. Using the Process Description Language (PDL) 11
The PDL File 11

Application Components 12
PDL Structure 12

Field Declarations 15
Field Types 15
Declaring Fields with like 20
Declaring Entities 20
Fields Declared by Tracker 21
Field Declaration Example 21

iv

Contents

Transition Declarations 23
Transition Example 25
Declaring States 26
Declaring Rules and Actions 27
Predefined Methods 29

View Declarations 36
View Format 36
User Interface Formatting 38
Formatting Example 41
Defining a Control Bar 43
Defining a Query Results Area 43
Defining a Request Form Area 45
Defining Field Pop-up Menus 49

Help Declarations 51
Creating a Help Declaration 51
Help Declaration Locations in the PDL File 52
Help Implementation Strategy 54

3. Using the Data Manipulation Language (DML) 57
Tracker Database Overview 58

Database Structure 58
Access to the Database 60
Controlling Database Access 61

DML Statements 62
General Characteristics of DML Statements 63
Specifying Literal Values 63
Select Statement 66
Nested Select Statements 69
Insert Statement 70
Update Statement 70
Delete Statement 71
Locking Statements 71
Transaction Statements 72

v

4. Tutorial—A Basic Tracking System 73
Analyzing the sample1 PDL File 74

sample1 PDL File 74
sample1 Field Declarations 76
sample1 Transition Declarations 76
sample1 View Declaration 78

Generating a Tracker Application 79
Expanding the sample1 Application 80

Adding a Field Declaration 81
Adding a Field to a View 82
Adding a State 83
Adding a Transition 85

5. Installing RTS Applications 87
Procedures for Installing RTS Applications 87

Step One 88
Step Two 88
Step Three 89
Step Four 89
Step Five 90
Step Six 91
Step Seven 92

6. Advanced Design Techniques 93
Using Dates 94

Representing Date Values 94
Input Formats 94
Display Formats 98
Comparing Dates 98
Date Entry in PDL 99
Date Entry in DML 99

vi

Contents

Customizing Resources 99
Naming Applications, Widgets, and Resources 100
Using Names 101
Personal Tracker Resources 103

Using the exec Functions 106
Executing UNIX Commands from PDL 106
Executing DML Select Statements 107

Importing Data 108
Basics 109
Text Output from Your Old Database 112

Preparing Translation Scripts 114
The Translation Script 115
The Resulting DML 125

7. Configuration Management 127
The checkout/checkin Model 128
Updating Databases 129
Using the Reporting Capabilities 130
Configuration Tools 130
Setting Up a bug_task Utility 131

The Integration Architecture 131
The Trigger Scripts 132
checkout Triggers 133
checkin Triggers 134
uncheckout Trigger 135

Using the ClearCase/Tracker Integration 136
Scenario 1: A Typical Bug-fixing Session 136
Scenario 2: Setting Up a Bug Task 137
Scenario 3: Cancelling Work In Progress 138
Scenario 4: An Incomplete Cycle 139
Scenario 5: An Illegal State 140
Scenario 6: Using an Alternate Policy File 140
Scenario 7: Bypassing the Integration 141

vii

Using the find_fixes Utility 141
Recovering from Database Update Failures 143
Preparing VOB Databases 144

A. The policy_vars.sh File 145

B. RTS PDL Files with On-line Help 149
Tracker.pdl 150
rtsapprove.pdl 176
rtsrespond.pdl 179
rtssubmit.pdl 182

Index 185

viii

Contents

ix

Figures

Figure 1-1 Major Parts of rtsquery, a Typical Tracker Window 2
Figure 1-2 rtsfiles, a Typical Tracker Auxiliary View Window 3
Figure 1-3 Overview of Tracker Database Access 5
Figure 1-4 Generating and Installing Tracker Applications 6
Figure 1-5 State Transition Diagram for a Request in rtsquery 8
Figure 2-1 Format for a PDL File 14
Figure 2-2 Entries in the Journal Field 19
Figure 2-3 Field declarations for the PDL file 22
Figure 2-4 Format for the Transitions Section in PDL File 24
Figure 2-5 Format for the Views Section of PDL File 36
Figure 2-6 Typical Declarations in the Views Section of a PDL File 42
Figure 2-7 Portion of PDL Defining Modes Menu 43
Figure 2-8 Portion of PDL Defining Query Results Area 44
Figure 2-9 Portion of PDL Defining Request Form Area 46
Figure 2-10 An example of a three-column display 49
Figure 2-11 Portion of PDL Defining Status Field 50
Figure 2-12 Help Locations at Beginning of PDL File 52
Figure 2-13 Help Locations in Transitions and Views Sections 53
Figure 2-14 Typical Tracker On-line Help Hierarchy 55
Figure 3-1 RTS Database with Entity Classes 59
Figure 3-2 Relation of DML to Tracker and PDL 60
Figure 4-1 sample1 User Interface 74
Figure 4-2 sample1 PDL File 75
Figure 4-3 Adding a Field Declaration 81
Figure 4-4 Changing a View Declaration 82
Figure 4-5 Original State Transitions of a Request in sample1 83
Figure 4-6 State Transitions after Adding State 84

x

Figures

Figure 4-7 Transition Declarations after New State 85
Figure 4-8 Transition Declarations after New Transition 86
Figure 6-1 Input Format 113
Figure 7-1 Updating ClearCase and Tracker Databases 128
Figure 7-2 Database Modifications by ClearCase/Tracker

Integration 129
Figure 7-3 Checkout Mechanism 133
Figure 7-4 Checkin Mechanism 135
Figure 7-5 Complex Version Tree with FIXES Attributes 142
Figure 7-6 Typical Mail Message to Tracker Administrator 143

xi

Tables

Table 2-1 Tracker Field Types 15
Table 2-2 Logical Operators 27
Table 2-3 External Methods 30
Table 2-4 Methods for Testing Field Data 31
Table 2-5 Methods for Retrieving Field Data 32
Table 2-6 Methods for Making Field Comparisons 33
Table 2-7 Methods for Changing Field Values 34
Table 2-8 Methods for Calculating with Field Values 35
Table 2-9 Predefined Feature Names 41
Table 3-1 Implicit Typing Examples 64
Table 3-2 Explicit Typing Examples 65
Table 3-3 Illegal Formats 65
Table 3-4 Comparison Operators 67
Table 6-1 Date Interpretation Examples 95
Table 6-2 Time Zone Interpretation 97
Table 7-1 Script Files 132
Table A-1 Tracker-Specific Environmental Variables 146
Table A-2 Policy Environmental Variables 146
Table A-3 Miscellaneous Environmental Variables 147

xii

Tables

xiii

Introduction

This guide describes CASEVision™/Tracker 2.0, a highly flexible tool from
Silicon Graphics, Inc.®, that enables software organizations to create their
own tracking systems for bugs and enhancement requests. It is intended for
the designers of such systems. It is assumed that the designer has had
exposure to one or more high-level programming languages and
understands the concepts of database design and administration.

CASEVision/Tracker 2.0 runs on IRIX™ 5.1. For system and memory
requirements, please refer to the CASEVision/Tracker 2.0 Release Notes.

About This Guide

This guide has the following chapters:

• Chapter 1, “Introduction to Tracker System Design,” defines the
Tracker terminology and gives an overview of the design cycle and
tools.

• Chapter 2, “Using the Process Description Language (PDL),” describes
the structure of the PDL and the contents of the PDL file, including help
declarations.

• Chapter 3, “Using the Data Manipulation Language (DML),” gives an
overview of the database structure and sets out the characteristics of
DML statements.

• Chapter 4, “Tutorial—A Basic Tracking System,” steps users through
the process of creating and modifying a Tracker application.

• Chapter 5, “Installing RTS Applications,” details the procedure for
installing RTS applications.

xiv

Introduction

• Chapter 6, “Advanced Design Techniques,” discusses advanced
techniques such as using dates, customizing resources, using the exec
functions, and importing data from external databases.

• Chapter 7, “Configuration Management,” outlines the checkout/checkin
model and describes how to use the ClearCase/Tracker integration.

• Appendix A, “The policy_vars.sh File,” defines the environment
variables used by Tracker applications and stored in this file.

• Appendix B, “RTS PDL Files with On-line Help,” gives the complete
text of the four .pdl files, including the on-line help text.

1

Chapter 1

1. Introduction to Tracker System Design

CASEVision/Tracker 2.0 is a highly flexible tool that enables software
organizations to create their own systems for tracking bugs and
enhancement requests. There is no need to change your current method of
making and tracking requests. Unlike commercial off-the-shelf systems,
which are usually limited to a specific methodology and are difficult to
modify, Tracker systems can be built from the ground up or from one of the
starter systems provided.

The starter systems are rtsquery, a full-featured tracking system, and sample1,
a more rudimentary system that can be used as a building block.

This chapter covers these topics:

• Tracker terminology

• Tracker design tools

• Tracker design cycle

Tracker Terminology

To understand Tracker system design, it is helpful to know a few of the terms
used in Tracker. The term request refers to the type of data that you are
tracking in the system, typically bug reports or requests for enhancement
(RFE). A full report contains all the information associated with the request,
such as submitter, owner, priorities, and dates.

2

Chapter 1: Introduction to Tracker System Design

Application Views

The program that a user runs to access a request is an application. A view is a
window for inspecting or changing a request. An application generally has
a main view with most of the request information and one or more auxiliary
views (see definition below). The main view is special in several ways: it
appears when you first start the application, whereas auxiliary views are
windows that open from the Views menu in the main view. Exiting the main
view exits the entire application, while exiting an auxiliary view merely
closes that one window.

Figure 1-1 shows rtsquery, the starter application provided by Silicon
Graphics Inc., which is a typical Tracker main view.

Figure 1-1 Major Parts of rtsquery, a Typical Tracker Window

Modes Menu

Request
form area

Query results
area

Control bar

Menu bar

Tracker Terminology

3

The main sections of the window are labeled. Report #, Description, and Type
in the request form area represent typical fields.

If you want different main views for different types of users, you can create
supplementary applications. A supplementary application uses the same
request database as the main application but has a different main view and
potentially different auxiliary views. Supplementary applications can serve
as filters for users doing specific tasks that don’t require all of the fields (see
definition below).

Auxiliary views supplement the main view and are used for special data or
for users who require limited information or functionality. RTSfiles, for
example in Figure 1-2, lets users enter the names of files in which a bug has
been located into its three fields: Found in:, Resolved in:, and Fixed Releases:.
The bug itself is listed at the top.

Figure 1-2 rtsfiles, a Typical Tracker Auxiliary View Window

4

Chapter 1: Introduction to Tracker System Design

Display Areas

Within a window, there are display areas, which are groupings of related
fields, enclosed by boxes. A field is a piece of information in a request. A field
that has multiple lines may have a sash control. A sash is a small square
“knob” near the right edge of a window that lets users change the size of a
multi-line field by dragging it up or down. Fields are discussed in detail in
“Field Declarations” and display areas are discussed in “View Declarations”
in Chapter 2.

Transitions

 A transition is an operation performed through a view that changes the
request either in terms of status or data. Transitions are accessed from the
Modes menu in the view’s control bar (see Figure 1-1). Note that the selections
“Query” and “Display” also appear in the Modes menu but are used for
inspection rather than request modification.

A transition can have associated rules and actions. A rule is a required
condition necessary for the transition to take place. For example, rtsquery
requires a description entry for submitting requests. An action is an
operation performed as part of the transition. For example, when a request
is submitted, the submit date changes to the current date.

Transitions are discussed in detail in “Transition Declarations” in Chapter 2.

Tracker Design Tools

A Tracker request tracking system has a graphical user interface (GUI) and a
database of requests. Tracker provides these tools for designing a system:

• process description language (PDL)

• data manipulation language (DML)

• Tracker application generator (tvgen)

• Tracker X resources file (app-defaults)

Tracker Design Tools

5

The PDL File

At the heart of a Tracker request tracking system is the PDL file, a file coded
in the process description language. A single PDL file can define a complete
request tracking system, including the data to be recorded, the operations
allowed on that data, rules controlling those operations, automatic actions
performed by the system, and the application from which users can access
the request database. The PDL is discussed in Chapter 2, “Using the Process
Description Language (PDL).”

The Data Manipulation Language

The data manipulation language (DML) is an interface to the Tracker database.
It is similar to SQL and other fourth-generation database query languages.
All queries and database transactions are made through the DML. The
system administrator controls access to the database through the DML, and
can set permissions for individuals who need to make modifications to the
database using DML. Figure 1-3 illustrates database access in Tracker.

Figure 1-3 Overview of Tracker Database Access

GUI (PDL)

dml> select ...

dml

Request
database

shell window

winterm

6

Chapter 1: Introduction to Tracker System Design

Most users access the database from a Tracker application window
(generated from a PDL file). You can also access the DML directly from a
shell for more complex queries on the database, report generation, and batch
database modifications. The DML is hidden from users in the GUI. Database
access is discussed in Chapter 3, “Using the Data Manipulation Language
(DML).”

The tvgen Program

The tvgen program generates Tracker application files from PDL files, as
shown in Figure 1-4. It produces a script containing user-editable views, a
Tracker database with supporting files and directories, an app-defaults file
containing user interface resources, and help files. Field and transition
definitions are stored in the database. After you run tvgen, you can make
changes to any of the new files.

Finally, each user must run tvinstall to create links to the application files.
Installation using tvgen and tvinstall is described in Chapter 4, “Tutorial—A
Basic Tracking System.”

Figure 1-4 Generating and Installing Tracker Applications

pdl file

tvgen

script file database files help files

tvinstall

installed links

app-defaults file
(contains views) (fields, transitions)

to application files

Tracker Design Cycle

7

The app-defaults File

The app-defaults file lets you fine-tune many aspects of the appearance and
behavior of the applications. Tracker provides a number of predefined
features that can be selected through the PDL. You can make other
adjustments to the app-defaults file as well before distributing the complete
applications to the users. For more information, see “Customizing
Resources” in Chapter 6, “Advanced Design Techniques.”

Tracker Design Cycle

The designer of the request tracking system typically performs the following
steps to build a request tracking system for an organization:

1. Identify all the information to be tracked, the users, groups, and any
special needs they have.

2. Define the desired request tracking and approval process. In particular,
define the different states of a request as it goes through the process. (A
state transition or data flow diagram may be useful.)

The state transition diagram for requests in the rtsquery system is
shown in Figure 1-5.

3. Determine whether to use one of the starter systems supplied by Silicon
Graphics or build a new system from scratch.

Note: As with other programming methods, sometimes it is easier to
modify an existing system than to create a new one.

4. Develop a PDL file to match the desired process.

5. Compile the PDL file and specify the request database by using the
tvgen utility.

tvgen checks the syntax, creates an empty database if necessary, loads
the PDL into the request database, takes care of on-line help, and stores
the application in a subdirectory called tools for mounting or copying to
other systems.

The application’s name is based on the name of the main view defined
in the PDL file, shifted to all lower case (the convention for IRIX
commands). For more information, see the tvgen man page.

8

Chapter 1: Introduction to Tracker System Design

Figure 1-5 State Transition Diagram for a Request in rtsquery

RE-OPEN

AWAITING_RESPONSE

DELETED

DUPLICATE

RESOLVE DEFER

SUBMIT_BUG SUBMIT_RFE

APPROVE

DELETE

Nonexistence

REDO

AWAITING_APPROVAL

CLOSED

REJECT

Using Starter Systems

9

6. Provide further customization if desired.

Typical customizations at this point include resource settings in the
app-defaults file (named tools/Tracker.adinstall) or addition of any external
scripts used by applications. For more information, see Chapter 6,
“Advanced Design Techniques.”

7. Let users access the new application.

The tools subdirectory, created in the database directory by tvgen,
should be copied or NFS-mounted onto each user’s system (it does not
matter where). Then, run the script tvinstall on the user’s system to
complete the installation.

When the system is fully installed, the user can start the application
generated by tvgen by entering its name on the command line.

Using Starter Systems

Note that the Tracker starter systems do not come already installed. Before
you can use them, you must install sample1 and/or rtsquery by following the
instructions in Chapters 4 (for sample1) or 5 (for rtsquery).

10

Chapter 1: Introduction to Tracker System Design

11

Chapter 2

2. Using the Process Description Language (PDL)

The field declarations, transition definitions, and graphical user interface for
Tracker applications are specified by using a special process description
language (PDL). This chapter describes the PDL and consists of:

• PDL file

• Field declarations

• Transition declarations

• View declarations

• Help declarations

The PDL File

A PDL file (a file coded in the process description language) defines a
complete request tracking system, including the data to be recorded, the
operations allowed on that data, rules controlling those operations,
automatic actions performed by the system, and the application from which
users can access the request database.

After you have gathered the information necessary for defining your
process, you can put together your PDL file.

12

Chapter 2: Using the Process Description Language (PDL)

Application Components

Specifically, Tracker allows you to define the following for a system:

• fields in the request

• transitions, in terms of:

– name

– prior state and new state

– rules

– actions

• views (the windows used to access request information). Some typical
display areas in view windows are:

– control bar

– query results area

– request form area, the rows of request information to be displayed,
including labels and fields

• help information accessible through the on-line help system

PDL Structure

The declarations and top-level expressions in the PDL resemble those in a
block-structured language such as C. The blocks are delimited by braces ({}).
Declarations are separated by semicolons (;).

White space, including newlines, is ignored. Comments are allowed, using
either the C form (/* comment */) or the C++ form (//comment).

You can use the #include, #define, and #ifdef C preprocessor constructs.

The PDL File

13

A PDL file has three major sections (which must be declared in this order):

1. Field declarations, where the fields in the request are named and where
their types are declared.

2. Transition declarations, which define the states through which requests
can pass and the rules for controlling the process.

3. View declarations, where the GUI applications to interact with the
request database are defined.

The format for a PDL file is shown in Figure 2-1. Help declarations, that is,
the information on help cards in the on-line help system, can be made for
most items in a PDL file. Since they take up a lot of space, the help
declarations are not shown in Figure 2-1. They are described in “Field
Declarations” later in this chapter.

Note: The PDL files for supplementary applications contain view
declarations only, since they use the same field and transition declarations as
their main view PDL files.

14

Chapter 2: Using the Process Description Language (PDL)

Figure 2-1 Format for a PDL File

Field

Transition

View

declarations

declarations

declarations

fields {
entity-class entityname;
fieldname: fieldtype; // comment
...

}
transitions {

transitionname (priorstate => newstate) {
rules {

fieldname.method || fieldname.method || ...;
...

}
actions {

fieldname.method;
...

}
}
...
rules {}
actions {}

}
views {

viewname (titletext) {
display (titletext) {

control-bar {
transitions transitionname, ...

}
}
qresults (titletext) {

index listfields,...;
}
display (titletext) {

row { tuple, tuple, ...}
...

}
}
viewname (titletext) {

display (titletext) {
row { tuple, tuple, ...}
...

}
}

}

Field Declarations

15

Field Declarations

Fields are defined by type at the beginning of the PDL file. You can declare
fields that display in the user interface as well as fields for internal purposes
such as scratch variables. Note that you declare only fields in this section.
You specify default values for fields (and other manipulations) in the view
declarations section.

Field Types

The field types available in Tracker are shown in Table 2-1. Those types that
display predefined values through the “Values” item in the field menus are
indicated. The “Values” menu is displayed when the user clicks the right
mouse button on a field.

Table 2-1 Tracker Field Types

Type Name Comments

boolean Holds boolean data (true/false). Displayed as either True or
False . Accepts entries of True, False, T , or F. The
“Values” menu item displays “True” and “False.”

dat e Tracker accepts a wide range of formats for dates and times. To
see the full range, refer to “Using Dates” in Chapter 6,
“Advanced Design Techniques.”

file Holds a file name. The “Values” menu item displays a pop-up
file selection dialog. If a file name is entered through the GUI,
the file must exist.

The file type has special implications for ClearCase® users
(see “Using file with ClearCase” below).

int Holds a 32-bit signed integer.

journal Holds multiple lines of text. Allows the system administrator
to maintain a history of the changes made to any request.
Instead of overwriting the current information, changes are
appended to the existing history, for as long as the request is
active. See “Using the journal Field” below.

list-of Holds a list of any of the other scalar field types.

16

Chapter 2: Using the Process Description Language (PDL)

Using file with ClearCase

When entering a file in a field of type file, Tracker responds as follows:

• for a plain file: it verifies that the file exists.

• for a file in a ClearCase Versioned Object Base (VOB): Tracker verifies
that the file exists, determines which version is selected by the current
ClearCase view, and records the version information in the file field.

The menu for file fields includes two items useful for obtaining information
about ClearCase files, available if the field has a valid value and the file
referred to is a VOB file. They are “Describe” and “History,” both accessible
from the “Actions” sub-menu. They use ToolTalk™ to communicate with
ClearCase. “Describe” executes the cleartool describe -long and
“History” executes the cleartool lshistory command on the file referred
to by the field. Both commands display their results in a tty window, created
as needed, which is separate from the Tracker application. Subsequent
command results appear there as well.

long-text Holds multiple lines of text. Intended for fields containing
explanations. There is no “Values” menu item but there is an
“Edit...” item for using an external editor.

one-of Holds an enumeration value, that is, one of a set of predefined
values. Values are separated by commas and can be legal
identifiers or quoted, single-line text. Its use is described in
detail below. The “Values” menu item displays either a
sub-menu or a pop-up selection dialog, depending on the
number of values.

short-text Used for single-line text. Intended for short entries.

Table 2-1 (continued) Tracker Field Types

Type Name Comments

Field Declarations

17

Using one-of Fields

The default one-of list is a closed set from which a user must select one of the
pre-defined values shown in the “Values” menu or dialog box. You can
specify an open one-of set by entering an ellipsis (...) immediately (no
comma) after the last value. Use open sets to specify the values used most
often and to allow entry of non-predetermined values.

A one-of field may contain any single-line text value. In PDL, one-of field values
may appear either as identifiers or as single-line quoted strings. A legal
identifier must begin with an alpha character (upper or lower case). It may
include letters, the underscore (_), and digits, in any order. You may not
begin a legal identifier with $, since the $ prefix marks predefined fields or
environment variables.

A single-line quoted string value may use the full character set. You can mix
legal identifiers with quoted literal strings in a one-of field definition. For
example;

x: one-of
 a, b, c, ’123’, ’sarah’, ’4.0.1’ ...

The short-text values let you pull in values from external programs by using
the exec commands (see “Using the exec Functions” in Chapter 6,
“Advanced Design Techniques”). It also lets you cross-assign values
between fields. You can use the setValue method to set the one-of field value
to short-text. For example, suppose that the Submitter field is a one-of field
with the values being a list of engineers in a particular group. You can set the
value to default to the current user of the application ($USER), which is a
short-text field.

If a one-of field has 25 values or less (default), Tracker creates a cascading
submenu off its “Values” menu item in the GUI. If there are more than 25
values, Tracker builds a selection dialog box that presents the user with a
scrolled list from which to choose a value.

To change the default setting for the number of fields required for a scrolled
list, you must set the maxAssistValues resource in the app_defaults file (see
“Personal Tracker Resources” in Chapter 6, “Advanced Design Techniques.”

18

Chapter 2: Using the Process Description Language (PDL)

Duplicated Values for one-of Fields

There are two limitations on using one-of fields:

• The same value cannot appear in more than one closed enumeration in
a one-of field. You can, however, share an entire enumeration between
two fields by listing both field names in the same declaration or by
using like (see below).

• You may not use the same identifier for a one-of field value and a state
identifier. If you do, Tracker produces an error message indicating that
the state identifier is a duplicate name. Transition states are discussed in
more detail in “Transition Declarations.”

Using the journal Field

Figure 2-2 shows the history of the actions taken on a request in a Tracker
application. The actions SUBMIT_BUG, ASSIGN, and RESOLVE are
recorded, along with the date and the submitter’s name. Note that you
cannot customize the format of the entryheader when you design your
application; Tracker creates the headings automatically.

Field Declarations

19

Figure 2-2 Entries in the Journal Field

You can write anything you like to the body of the journal entry using
setValue(). The RTS example PDL file stores only the transition name in the
journal entry body, using:

history.setValue($TRANSITION.text);

This is an example of a more complex journal entry:

tmpShortText.setValue(
execFilter(’echo “Transition from state $STATE_old
 to $STATE”’));
history.setValue(tmpShortText.value);

Figure 2-3 shows the field declaration for a journal field.

20

Chapter 2: Using the Process Description Language (PDL)

Declaring Fields with like

The key word like lets you share a field type between two fields and apply
different help text.

For example;

fieldname1: fieldtype1
 help { helpcardspec1};
fieldname2: like fieldname1
 help { helpcardspec2};

In the example, fieldname2 has the same type as fieldname1, that is, fieldtype1.
It uses a different help card specification, helpcardspec2.

Declaring Entities

At the beginning of the field declaration section, the following entry can
appear:

entity-class entityname;

Tracker fields in a PDL file are grouped into an entity for direct access from
DML. To specify a custom name for an entity, you must declare it here;
otherwise, the default name tracker_request is used.

The concept of entities in the database is covered in more detail in Chapter 3,
“Using the Data Manipulation Language (DML).”

Entity Identification

Tracker automatically assigns an entity identification number
($ENTITY_ID) to each new request as it is submitted to the database.
Because the ID number is assigned prior to the execution of any actions, its
value can be used in an action to set the value of other variables. For
example, where report_number is of type int :

actions {
 report_number.setValue($ENTITY_ID.value);
 ...
 }

Field Declarations

21

Fields Declared by Tracker

The following fields are predeclared and controlled solely by Tracker:

• $STATE holds the current state of the request.

• $TRANSITION is set to the name of the current transition.

• $ENTITY_ID is a unique integer assigned to each request when it is
entered into the system.

Environment variables are also available as predeclared fields. They can be
changed by the PDL and used in transition rules and actions through the
external methods (see “External Methods.” later in this chapter).

Field Declaration Example

The code segment in Figure 2-3 shows the field declarations for the PDL file
used to generate the rtsquery application.

Each declaration shows the field on the left and its type on the right. Notice
how the short-text type is used for short entries and how long-text is used for
the multiple-line fields. Fields with the one-of designator are followed by the
defined set of values.

22

Chapter 2: Using the Process Description Language (PDL)

Figure 2-3 Field declarations for the PDL file

fields {
 report_number: int;
 submitter: short-text;
 submit_date: date;
 recommendation: one-of
 DEFERRAL, REJECTION, RESOLUTION, DUPLICATION;
 type: one-of
 BUG, RFE;
 priority: one-of
 LOW, MEDIUM, HIGH;
 owner: short-text;
 project: one-of
#include "projects.h" // This include file contains the
 // list of projects. Edit it to
 // change the list of known projects.
 ;
 system: one-of
 SYSTEM_1, SYSTEM_2, SYSTEM_3;
 found_in: list-of short-text;
 summary: short-text;
 description: long-text;
 is_duplicate_of: int; //pr-num
 interested_parties:list-of short-text;
 due_date: date;
 close_date: date;
 reopen_date: date;
 resolved_in: list-of file;
 resolution_description:long-text;
 fixed_releases: list-of short-text;
 approver: short-text;
 history: journal

// These fields are not visible to the users
 czar: short-text;
 bboard: short-text;
 notify_list: list-of short-text;
}

Transition Declarations

23

Transition Declarations

Transitions are the operations performed on a request to change its state or
data. To declare a transition, do the following:

• Enter the name of the transition in the transitions section of the PDL
file. This name will appear in the Modes menu and will be enabled for
appropriate states.

• Define the change in state (if any) as a result of this transition.

• Define any rules required for the transition to take place.

• Define any actions that result from the operation.

• Define global actions and rules for your transition group. These are
specified at the bottom of the transitions section and are applied to all
transitions after the local rules or actions are applied to the individual
transition.

• Define on-line help as desired. You can define help for the transitions,
individually and as a group, for a set of rules belonging to a transition,
for a set of actions belonging to a transition, and for the global rules and
transitions.

Note: Wherever you provide help text for a rule or an action you can use
the key word include-pdl to include the actual rules or actions
declarations in the help card; this is recommended only for sophisticated
end users or for debugging transitions.

The format for the transitions section is shown in Figure 2-4. Reserved words
are shown in normal font; variables are shown in italics. On-line help
declarations are also shown.

24

Chapter 2: Using the Process Description Language (PDL)

Figure 2-4 Format for the Transitions Section in PDL File

Local transition
declarations

transitions {
help {

helpcardspec;
};
transitionname (priorstate => newstate) {

help {
helpcardspec

};
rules {

help {
helpcardspec

};
fieldname.method || fieldname.method || ...;
...
}
actions {

help {
helpcardspec

};
fieldname.method;
...
}

}
transitionname ...
...
rules {

help {
helpcardspec

};
fieldname.method || fieldname.method || ...;
...

}
actions {

help {
helpcardspec

};
fieldname.method;
...

}
}

Global rules and
actions declarations

transition
help declaration

rules help declaration

rule condition

rules declaration

actions declaration

actions help declaration

action

transition declaration

Transition group

other transitions

help declaration

global rules declaration

global rules
help declaration

global actions

global actions
help declaration

declaration

Transition Declarations

25

Transition Example

The following code segment provides an example of how transitions are
declared. The code segment is the declaration for the RESOLVE transition in
the rtsquery application. RESOLVE is used when a request has been executed
and needs to be signed off by the approving authority.

RESOLVE(AWAITING_RESPONSE=>AWAITING_APPROVAL) {
 help {
 help-title ’RESOLVE Transition’;
 short-help-title ’RESOLVE’;
 fixed-width-help-text’
Use RESOLVE to close out a request. RESOLVE takes a
request from the AWAITING_RESPONSE state to the
AWAITING_APPROVAL state.’;
 };
 rules {
 resolution_description.isSet;
 resolved_in.isSet;
 }
 actions {
 recommendation.setValue(RESOLUTION);
 }
}

The first line contains the transition name RESOLVE and the change of state,
from AWAITING_RESPONSE to AWAITING_APPROVAL.

The help declaration (which is optional) comes next. Notice that this
example has a full title and a short title. The fixed-width option is also used
in the help text declaration. This option is described in “Creating a Help
Declaration” later in this chapter.

Transition declarations can have a rules section for establishing information
required for the transition and an action section for specifying what takes
place as a result of the transition. Tracker also provides methods, that is,
operations on fields, that are useful in creating rules and actions.

In the example, the rules section contains two rules, both of which must be
true for the transition to be performed. They both use the isSet method.

26

Chapter 2: Using the Process Description Language (PDL)

The rule

resolution_description.isSet;

requires that the Resolution field in the main view be filled in.

The line

resolved_in.isSet;

requires that the Resolved in field in the RTS files view be entered.

The actions section has only one action in this example. It uses the setValue
method to change the Recommendation field to the value RESOLUTION,
signifying that the request has been resolved.

Declaring States

Request states are declared inside parentheses that follow transition names,
separated by the transition operator, =>, as follows:

(priorstate (priorstate)n => newstate)

These are the options for using the transition operator:

(=>statename) creates the request where none previously existed.

(priorstate=>newstate)
signifies a change from the prior state to the new state. Both
states must be specified.

(=>) signifies that any prior state is permitted and that there is no
change in state as a result of this transition.

(S1, S2, S3 ...=>S4)
the prior state can be any one of S1, S2, S3, etc. All prior states
go to one new state, that is, S4. For example, a number of
different states could all go to CLOSE. All states must be
specified.

 RTS transitions such as “NOTIFYME” and “EDIT” have no required states.
Transitions for creating new requests require a new state but no prior state.

Transition Declarations

27

Caution: If you use the same state in more than one transition, it must
match in case and spelling; otherwise, different versions of the name will be
interpreted as different states.

The rtsquery application (see Appendix B) defines these states:

• AWAITING_RESPONSE

• AWAITING_APPROVAL

• CLOSED

• DELETED

Declaring Rules and Actions

After the transition’s state change is declared, you declare the rules, if any,
and the resulting actions, if any. Tracker supplies predefined methods for
declaring rules and actions. Tracker also lets you use the following logical
operators (shown in Table 2-2), borrowed from the C language.

All the operators except the && (and) operator function in top-level rules.
The use of && is restricted to embedded expressions in the PDL file; for
example:
rules {
 x.is(x.setValue(name.isSet ? address.isSet && company.isSet :
 False));
 }

Table 2-2 Logical Operators

Operator Description

&& and

|| or

! not

?: ternary (if ... then ... else ...) For example,
priority.setValue(product_released.value ? 3 : 5)
sets priority to 3 if product_released is true or to 5 if
product_released is false .

28

Chapter 2: Using the Process Description Language (PDL)

For more information on anding top-level conditions, refer to “Rules” below.

In addition, Tracker automatically provides actions setting the $STATE field
to the new state and the $TRANSITION field to the transition name.

Rules

Rules are declared after the state declaration; they are preceded by the key
word rules and are enclosed by braces ({}). In the transition example, the
RESOLVE transition has these rules:

rules {
 resolution_description.isSet;
 resolved_in.isSet;
}

They require that there be entries in both the Resolution field and the Resolved
in field.

An individual rule is terminated by a semicolon (;) and consists of one or
more conditions. You define conditions using the boolean Tracker methods.
An individual condition can be ored with other conditions, using the
operator ||. This means that the entire rule (terminated by the semicolon) is
satisfied if any one (or more) of the individual conditions is satisfied. Rules
separated by semicolons (;) are effectively anded together, that is, all of the
rules must be satisfied in order to permit the transition.

If all conditions are not met, the transition will not be permitted (its Apply
button will not be enabled) and incorrect fields will be highlighted
accordingly. It is useful to think of a rule as having top-level and
secondary-level conditions. A top-level condition is the main part of a rule; the
secondary level refers to conditions inside nested expressions. When a rule
is not met, only the fields in top-level rules are highlighted. The fields at the
secondary level are not highlighted. For example, consider the rule:

owner.is(submitter.value);

The rule means that the owner value must be the same as the submitter. If this
condition is not met, then the owner field (which is a top-level rule) will be
highlighted. The submitter field is in a nested expression and will not be
highlighted. It is a good idea to explain such relationships between fields in

Transition Declarations

29

an on-line help card, either in the transition help card or the associated rule
help card if it exists.

Actions

Actions immediately follow rules. They are preceded by the key word
actions. Actions can change the values of fields. Like rules, they are defined
in terms of methods. Where rules mainly use boolean methods, actions use
boolean methods only to set values subject to conditions.

Predefined Methods

The predefined methods are presented in Table 2-3 through Table 2-8
according to these categories:

• external methods

• methods for testing field data

• methods for retrieving field data

• methods for making field comparisons

• methods for changing field values

• methods for field value computations

• methods for changing field characteristics

30

Chapter 2: Using the Process Description Language (PDL)

External Methods

Three methods provide access to shell commands (and environment
variables) external to the PDL: execCommand, execFilter, and execSelect. They
take a single string parameter and are not associated with fields. These
methods are described in Table 2-3. For more information, see “Using the
exec Functions” in Chapter 6, “Advanced Design Techniques.”

Here are some useful Tracker environment variables, accessible through the
external methods:

• $FIELD_LIST is set to name all the fields of the request (structured as a
string with names separated by spaces).

• $MODIFIED_FIELDS is set to name all fields that have changed.

• $<fieldname> is created for each field of the request, using the name of
the field as the name of the variable and generally containing the value
of the field.

• $<fieldname>_old holds the former value of the field if it changes. The
field name also appears in $MODIFIED_FIELDS.

Table 2-3 External Methods

Method Description

execCommand Returns the completion status of the command as a
boolean value. It is most useful when the output of the
command is not required by the PDL, but the exit status of
the command may control further PDL execution or
indicate the validity of field data in a rules section.

execFilter Returns the output of the command executed as a
long-text value. It is most useful in the actions section of
transitions. For example, use it to capture the output of a
command and assign it to a field.

execSelect Given a DML (data manipulation language) select
statement with semicolon (;) terminator, returns a
long-text value. The select statement is executed. If the
result is a single record, the value of the first field in the
select statement is the return value; otherwise, the return
value is the empty string.

Transition Declarations

31

• $<fieldname>_file contains the actual value of a field if it is too long for
the $<fieldname> variable. In this case, $<fieldname> contains the single !

character and $<fieldname>_file contains the actual field value(s).

• $<fieldname>_old_file holds the former value of a long field if it changes.
(In such a case, $<fieldname>_old contains the single ! character.)

Methods for Testing Field Data

The methods for testing field data are called against a field, for example:

description.isSet

They do not take parameters and do not accept the empty parentheses that
C uses: for example, description.isset() is incorrect. They are
predicates; they return a boolean result, so they can be used in rules. The
methods are listed in Table 2-4.

In addition, you can test any field of type boolean with the value method
(described in Table 2-11), as in this example:

boolfield.value;

If boolfield is true, then this rule will be satisfied; if boolfield is false, or
if it is unset, this rule will be unsatisfied (boolfield will be highlighted in
the GUI).

Table 2-4 Methods for Testing Field Data

Method Description

<fieldname>.changed Any field type. Determines whether it has been changed
during the current editing session.

<fieldname>.isSet Any field type. Determines whether the field is presently
set (some fields may not yet have been filled in).

<fieldname>.not Must be a field of type boolean . If the field is set to
True , then this says false; if the field is False , this says
true.

32

Chapter 2: Using the Process Description Language (PDL)

Methods for Retrieving Field Data

The methods in Table 2-5 return other types of data in addition to booleans.
They are used only inside expressions within parameter lists, typically in
conjunction with a boolean method. Since there are no side effects from these
methods, they are not appropriate for use as top-level methods in actions,
although this is legal.

Methods for Making Field Comparisons

The methods for making field comparisons are called against a field and take
an expression as a parameter.

Table 2-5 Methods for Retrieving Field Data

Method Description

<fieldname>.fname Any field type. Returns the name of the field.

<fieldname>.length Must be a field of type list . Returns the number of items
in a list.

<fieldname>.old Any field type. Returns the value of this field in the
database, even if the user has made changes (but has not
yet committed them to the database).

<fieldname>.size For a text string, tells how long it is.

<fieldname>.text Returns a text string representation of any kind of field.

<fieldname>.value Returns the value of the field, represented as the
appropriate type.

Transition Declarations

33

For example,

priority.isGreater(3)

tests whether the priority field is greater than the value 3. These methods are
shown in Table 2-6.

Table 2-6 Methods for Making Field Comparisons

Method Description

<fieldname>.is(expr) Checks to see if the value of the field is expr.

<fieldname>.is_cf(expr) fieldname and expr must be strings. Checks to see if
they’re the same value, but with case folding
(ignoring case).

<fieldname>.isLess(expr) Can be performed on most types, but only where
fieldname is the same type as expr. Checks whether
fieldname is less than expr, according to their types.

<fieldname>.isLessEq(expr) Can be performed on most types, but generally
only where fieldname is the same type as expr.
Checks whether fieldname is less than or equal to
expr, according to their types.

<fieldname>.isGreaterEq(expr) Can be performed on most types, but generally
only where fieldname is the same type as expr.
Checks whether fieldname is greater than or equal to
expr, according to type.

<fieldname>.isGreater(expr) Can be performed on most types, but generally
only where fieldname is the same type as expr.
Checks whether fieldname is greater than expr,
according to their types.

<fieldname>.isNot(expr) Can be performed on most types, but generally
only where fieldname is the same type as expr.
Checks whether fieldname is not equal to expr,
according to their types (opposite of “is”).

34

Chapter 2: Using the Process Description Language (PDL)

Methods for Field Value Computations

The methods for field value computations let you perform computations
using field values. They take an expression, which can contain nested
methods as well. For example, the action

due_date.is(due_date.setDefault(’now + 30:00:00:00’));

computes the value of the expression (’now + 30:00:00:00’), which is
equal to the current date plus 30 days, sets that value as a default in the date
field, and uses that value if another has not been entered.

These methods have two categories: methods that actually change the field
values and methods that perform calculations with field values.

Table 2-7 shows the methods for changing field values.

Table 2-7 Methods for Changing Field Values

Method Description

<fieldname>.setValue(expr) Sets the value of the field to expr.

<fieldname>.unsetValue Causes the field to have no assigned value. A
subsequent isSet method will return false .

<fieldname>.setDefault(expr) Sets the field to the value expr if the field value has
not yet been set.

<fieldname>.append(expr) Applies to lists only, adding expr to the end of the
list. Resulting expression is the list itself.

<fieldname>.remove(expr) Applies to lists only, removing the nth value from
the list where n = expr. Return expression is a
boolean : true if item is removed and false if n
is greater than the number of items in the list.

Transition Declarations

35

Table 2-8 shows the methods for performing calculations with field values.

Methods for Changing Field Characteristics

Currently, there is only one such method:
<fieldname>.setReadOnly

This method takes a boolean argument; it defaults to ReadOnly (true). It can
be invoked in any type of field and its action is to render the field read-only
in the GUI. This means the user cannot modify the data in the field, although
the PDL code itself may still do so.

The action of this method lasts only for the current transition. Once the
transition has been applied or cancelled, the field reverts to its original state.

Table 2-8 Methods for Calculating with Field Values

Method Description

<fieldname>.subscript(expr) Applies to lists only, returning the value of the
field whose subscript = expr. The result type is the
base type of the list.

If expr is greater than the number of items in the
list, the list field will be unset, that is, it will no
longer have values and isSet will return false .

<fieldname>.and(expr) Both must be boolean. Returns true if both are
true; false otherwise.

<fieldname>.or(expr) Both must be boolean. Returns true if either is
true; false otherwise.

<fieldname>.add(expr) Both must be integers. Returns the sum of the two.

<fieldname>.subtract(expr) Both must be integers. Returns the difference of
the two.

<fieldname>.multiply(expr) Both must be integers. Returns the product of the
two.

<fieldname>.divide(expr) Both must be integers. Returns the result of
dividing fieldname by expr.

36

Chapter 2: Using the Process Description Language (PDL)

View Declarations

The formats for Tracker windows are declared in the views section in the
PDL file. You can declare any number of views to be applied to the same data
in the request tracking system. You can also permit end users to customize
their windows.

View Format

The views section is identified by the key word views. The declaration of the
main view is first, followed by any auxiliary view declarations. Each view
has a name, a title declaration enclosed in parentheses, and a body section
enclosed by braces in which various labels, fields, and controls are declared.
The general format for the views section is shown in Figure 2-5.

Figure 2-5 Format for the Views Section of PDL File

Form area
declaration

views {
mainviewname (titletext) {

displayfeaturename: display (titletext) {
displayfeaturename: control-bar {
transitions transitionname, ...}

}
displayfeaturename: qresults (titletext) {

queryresultfields,...;
}
displayfeaturename: display (titletext) {

rowfeaturename: row { tuple, tuple, ...}
...

}
}
viewname (titletext) {

displayfeaturename: display (titletext) {
rowfeaturename: row { tuple, tuple, ...}
...

}
}
...

}

Query results

Control bar
declaration

Auxiliary view
declaration

Views key word
View name

area declaration

Title declaration

Main view
body section

Auxiliary view
body section

View Declarations

37

View Name

The main view name declared in the PDL file:

• appears in the title bar

• serves as the X11 application class name to

– retrieve resources from each user’s personal resource file (usually
~/.Xdefaults)

– select an application’s app-defaults file

– select the icon used for the application by 4Dwm

• is used to invoke the application (after conversion to all lower case)

The auxiliary view names appear as items in the Views menu in the main
view and also in their respective title bars.

View Title Section

Each view can have a title declaration, within the parentheses following the
view name. If the title declaration is empty, no title will be drawn above the
view. In declaring a title, you can use strings inside single quotes and field
names defined in the fields declaration section. The strings and field values
are assembled into a one-line title at the top of the entire view.

Fields that display in a title are not editable inside the title area. You can use
white space to separate items, in which case they are positioned next to each
other, or you can use one or more commas to separate them. To stretch a title
so that it reaches across the window, use commas; these add padding so that
all the comma-separated sections are of equal width.

View Body

The body of the view is enclosed in braces and declares the features of the
window, that is, labels, fields, controls, and associated on-line help. A
window is defined feature by feature from top to bottom. Tracker provides a
number of key words to make the process easier.

38

Chapter 2: Using the Process Description Language (PDL)

The key word display lets you define an area within the window. You can
specify a title, defined in the same way as the title of the entire view. You can
also select resources to control both the appearance of the display as a whole
and items within the display area. See “Feature Names” in the next section.

Within the view body, you can also declare the control bar, which contains
the Modes menu, button controls, and the query results area for displaying
request summaries matching the query criteria.

The key word row helps you organize fields and their labels, entered as
literal strings called tuples, into a row. Similar to title declarations, the items
in a row are specified with or without comma separators. Padding is added
at the commas, so that the groups separated by commas are evenly spaced.
If the row is inside a display, the first literal string in each group is treated as
a label. The width of a given column is expanded according to the longest
label in the display. Rows can be given names, which are used in resource
selection, but do not display any title text. Tuples are discussed in “Defining
a Request Form Area” later in this chapter.

User Interface Formatting

Tracker provides two mechanisms for formatting the interface:

• PDL key words for defining application-specific parts of the user
interface

• predefined feature names attached to X11 widgets

Display Key Words

Tracker supplies a number of key words to let you declare the standard
features of Tracker applications. These are the reserved words and their
meanings in PDL files.

views {}

Designates the start of the views section. All view specifications for this
application are inside the braces.

View Declarations

39

display () {}

Groups the items specified inside the braces as a defined (formatting)
area. The parentheses contain the title, if any.

control-bar ()
 {transitions ...}

Displays the control bar, including the Modes menu (see Figure 2-7).
The parentheses contain the title, if any. The braces contain the
transition commands in the Modes menu. If you want to include all of
the defined transitions, enter the key word transitions with no other
entries. If you want a subset of the transitions, enter them explicitly
after transitions . If you leave the braces empty, there will be no
transitions; effectively, you will have a query-only application.

These conditions will cause error messages:

• invalid transition names

• duplicate transition names in the list

• more than one control bar declaration

qresults ()
 {index ...}

Displays the query results area (see Figure 2-8). The parentheses
contain the title, if any. The title defaults to the field name. Insert fields
to be displayed in the summary line inside the braces after the key
word index . Data in this area is aligned in columns, and you can define
the width of each column, and add a custom title to it. For example, the
PDL file in the sample RTS system has this query results definition:

qresults() {
 index type:3:’Type’
 $ENTITY_ID:5:’ID#’
 $STATE:20:’State’
 owner:20:’Owner’
 summary::’Summary’;
 };

The first four field definitions are followed by a width (number of
characters) and a title string. The last column defaults to the total width
permissible. Any part of the field definition left blank will use the
default width and/or title. These field definitions need not be set out on
individual lines; they can be listed sequentially.

40

Chapter 2: Using the Process Description Language (PDL)

An error message is displayed if there is no qresults declaration or if
there is more than one.

In order for the users to sort on a field in the GUI, the field must be
placed in the declaration for the query result area. Users can only sort
on one field at a time.

row {...};

Displays items specified inside the braces in a row. Each row is divided
into a set of tuples, which is a combination of fields and/or
string-literal labels, typically one label and its associated field. The
tuples are separated by commas. A single column contains one tuple.

For more information, refer to “Defining a Request Form Area” later in
this chapter.

Feature Names

 A feature name identifies an element in the user interface and is attached to
the X11 widget that implements the display, which in turn retrieves
resources. Feature names precede the PDL key words (described in the
previous section) and are followed by colons. A number of useful
appearance variations are provided in the standard Tracker application
defaults file.

The feature names applied to views, displays, and rows are used to select
resources that fine tune the appearance and behavior of the interface. Due to
the hierarchical way in which X11 manages resources, a name attached to a
view or display can also be used to select resources for contained display
items that are nested several layers deep.

For example, if a view named viewOne contains an unnamed display, which
in turn contains an unnamed row, which finally contains a certain field, you
can specify resources for that field in the resource file or the application
defaults file by the name viewOne, and they will be correctly applied to the
field.

Specifying Application Resources

Resources specified by the application name itself generally take precedence
over those specified by the application class name. Resources specified in

View Declarations

41

individual users’ resource files generally take precedence over those
specified in the application defaults file.

Complete details on resource selection are located in the Xlib Programming
Manual for Version 11under “Managing User Preferences.”

A number of resources are defined in the Tracker application default file
(and included in the application defaults file generated for Tracker
applications). To use them, you must give the indicated name to the feature
you want controlled (or to a display or row that contains it). Predefined
feature names are illustrated in Table 2-9.

For more information on feature names, refer to “Using Dates” in Chapter 6,
“Advanced Design Techniques.”

Formatting Example

Figure 2-6 shows the declarations in the views section of a PDL file. The
rtsquery application has two views: RTSQuery and RTSFiles. The main view
has three customizable display areas: a control bar, a query results area, and
a request form area. The auxiliary view RTSfiles is used to list files so it has a
simple structure of three long-text fields and their labels.

Table 2-9 Predefined Feature Names

Names Description

oneRowList Defines a list field that is one row high.

fatBox Draws a high-visibility rectangle around the specified
display area to set it off from the rest of the interface.

oneRowLongText

twoRowLongText

fourRowLongText

eightRowLongText

sixteenRowLongText

Defines a long-text field to be the specified number of rows.

threeColumnDisplay

fourColumnDisplay

Defines a display area to be the specified number of
columns.

42

Chapter 2: Using the Process Description Language (PDL)

Figure 2-6 Typical Declarations in the Views Section of a PDL File

View label

Control bar

Request form area declaration

Query results area declaration

RTSQuery view declaration

RTSFiles view declaration

views {

RTSQuery(){
 display () {
 control-bar() {
 transitions SUBMIT_BUG, SUBMIT_RFE, ASSIGN,
 FORWARD, NOTIFYME, EDIT, DEFER, RESOLVE,
 REJECT, DUPLICATE, REDO, APPROVE, REOPEN,
 DELETE;
 };
 };
 Query_Results: qresults() {
 index type ' #' $ENTITY_ID, $STATE, owner,
 summary;
 };
 Header: display() {
 row{ 'Report #:' $ENTITY_ID,
 'Status:' $STATE,
 'Type:' type};
 row{ 'Submitter:' submitter,
 'Date:' submit_date,
 'Recommend:' recommendation};
 row{ 'Project:' project,
 'Priority:' priority,
 'Owner:' owner};
 oneRowList:
 row{ 'System:' system,
 'Notify:' interested_parties,
 'Due Date:' due_date};
 row{ 'Close Date:' close_date,
 'Reopen Date:' reopen_date,
 'Approver:' approver};
 row{ 'Summary:' summary};
 row{ 'Description:' ' '};
 fourRowLongText:
 row{ description};
 row{ 'Resolution:' ' '};
 fourRowLongText:
 row{ resolution_description};
 }
}
RTSFiles(type ' #' $ENTITY_ID, $STATE, owner,
 summary) {
 row{'Found in:' ' ', ' '};
 row{found_in};
 row{'Resolved in:' ' ', ' '};
 row{resolved_in};
 row{'Fixed Releases:' ' ',,,,,};
 row{fixed_releases};
 }
}

Resource tag

Resource tag

Resource tag

View Declarations

43

Defining a Control Bar

Control bars are identified by the reserved word control-bar. They use the
reserved word transitions to specify the selections in the Modes menu. In the
control bar, you have the ability to define which transitions are available in
the Modes menu (as shown in Figure 2-7).

Figure 2-7 Portion of PDL Defining Modes Menu

Defining a Query Results Area

Query results areas are indicated by the key word qresults(), which is
preceded by the tag for the area. Following qresults() is the declaration of
information to appear in each line of the list, enclosed by braces.

Figure 2-8 shows the part of the PDL file that declares the query results area
for rtsquery with the corresponding display area. Notice that the declaration
uses the two predefined fields $STATE and $ENTITY_ID. The numbers
enclosed by colons (:) indicate the width of each column.

RTSQuery(){
 display () {
 control-bar() {
 transitions SUBMIT_BUG, SUBMIT_RFE, ASSIG N
 FORWARD, RESOLVE, REJECT, DEFER,
 DUPLICATE, NOTIFYME, REDO, EDIT,
 APPROVE, REOPEN, DELETE;
 };

44

Chapter 2: Using the Process Description Language (PDL)

In the display area, numeric fields such as ID# are right-justified, and text
fields are left-justified.

Format

Tracker provides two icons in the query results area. A small rectangle next
to a request in the list indicates that the request has been displayed in the
form area. A check mark indicates that the request has been edited (see Bug
#1 in Figure 2-8).

Figure 2-8 Portion of PDL Defining Query Results Area

RTSQuery(){
 ...
 Query_Results: qresults() {
 index type:3:’Type’
 $ENTITY_ID:5:’ID#’
 $STATE:20:’State’
 owner:20:’Owner’
 summary::’Summary’
 };
 ...
 }

Type
Bug #
State
Owner

Summary

View Declarations

45

Setting Defaults

Two entries in the app-defaults file affect the query results area. The entry

*query_results.visibleItemCount:5

sets the number of lines to display at startup (request summaries) in the
query results to five. If your end users prefer a different initial size, you can
change this entry.

When you perform a query on the request database, Tracker retrieves the
first 50 entities that it finds so that it doesn’t need to perform another
retrieval until the user scrolls past the fiftieth line. The entry

*QueryFetchCount: 50

controls the number of summaries retrieved. Retrieving more entities slows
the initial query results area display but the trade-off is that you have more
entities to scroll through. If performance on queries becomes a problem, you
can adjust the fetch quantity.

Defining a Request Form Area

The rtsquery request form area uses the key word display to specify the items
that make up the form in the GUI. The form area in the main view body
section of the PDL file is identified by this key word (see Figure 2-5). Fields
are declared in the row in which they appear from left to right, separated by
commas.

Fields are declared in the form of tuples. Here is a description of a typical
lay-out for fields and labels. However, it is not the only way, and you can
experiment as much as you wish.

Each tuple contains the field name and a label. The label for the field is
entered first, enclosed in single quotes, followed by the name of the field as
declared at the beginning of the PDL file. Figure 2-9 shows the code in the
PDL file and the resulting view window.

46

Chapter 2: Using the Process Description Language (PDL)

Figure 2-9 Portion of PDL Defining Request Form Area

 display() {
 row{’Report #:’ $ENTITY_ID,
 ’Status:’ $STATE,
 ’Type:’ type,
 ’Submitter:’ submitter};
 row{’Date:’ submit_date,
 ’Recommend:’ recommendation,
 ’Project:’ project,
 ’Priority:’ priority};
 oneRowList:
 row{’Owner:’ owner,
 ’System:’ system,
 ’Notify:’ interested_parties,
 ’Due Date:’ due_date};
 row{’Close Date:’ close_date,
 ’Reopen Date:’ reopen_date,
 ’Approver:’ approver,
 ’Dup of:’ is_duplicate_of};
 row{’Summary:’ summary};
 }
 display() {
 row{’Description:’ ’ ’};
 fourRowLongText:
 row{description};
 }
 display() {
 row{’Resolution:’ ’ ’};
 fourRowLongText:
 row{resolution_description};
 }

View Declarations

47

Customizing the Request form Area

You can arrange the request form area in any way you like by using tuples
in the row statement. If a row consists of a single tuple, that tuple will be
expanded to fill the row. For example, this format

row{’Description’ ’hello there’}

fills the row. If you divide the row up into several tuples, the row width is
evenly divided among the tuples. For example, this format

row{’Description’ ’hello there’, , }

would cause the first tuple, consisting of ’Description’ and ’hello
there’ , to use one third of the full row width. The other two tuples are
empty, so the rest of the row will be empty.

You can use empty strings within a tuple to get a similar effect. For example,

row{’Found in:’ ’ ’, ’ ’};

creates two tuples of equal width in the row. The first tuple contains the text
“Found in:” plus a specified amount of space. The second tuple contains
only white space. If you use this format:

row{’Found in:’};

the text fills up the row completely.

To calculate the amount of space required for each item in a tuple, consider
these guidelines.

• Literal strings default to their actual width in characters, but may
expand to fill available space.

• Text and text field widgets (which are used to enter field data) have a
preferred width determined by the application defaults or other
resources.

• Tuple spacing is affected by the lay-out of corresponding tuples in the
rows above and below.

The tuple is laid out from left to right, with a single space between items. The
last item is then “attached” to the rightmost edge of the tuple and the tuple
is stretched to fill its allotted space in the row.

48

Chapter 2: Using the Process Description Language (PDL)

When the width of the tuple is adjusted, you may have a larger space
opening up between the rightmost item and its neighboring item to the left.
The amount of space created will depend on how wide the tuple is, which in
turn depends on the row width and number of tuples in the row. This
example shows how to use tuples to left-justify a label:

display() {
 row{’Resolution:’ ’ ’};
 fourRowLongText:
 row{resolution_description};
}

The first row contains one tuple with two items, the label ’Resolution:’

and the space ’ ’ . The label will occupy a 10-character space starting from
the left, and is separated from the space item by a 1-character space. The
space item then expands to fill the rest of the row.

In addition to your custom settings, Tracker adjusts the width of tuples so
that they form justified columns in a display. A tuple in a given column in a
row is always allotted the width of the widest item in that column.

For example, in this three-column display with three rows, the width of the
second column will be equivalent to the width of the ’Recommendation:’

tuple in the third row:

threeColumn: display() {
 row{’Report #:’ $ENTITY_ID,
 ’Status:’ $STATE,
 ’Priority:’ priority};
 row{’Type:’ type,
 ’Submitter:’ submitter,
 ’Owner:’ owner};
 row{’Date:’ submit_date,
 ’Closed:’ close_date,
 ’Recommendation:’ recommendation };
}

Figure 2-10 shows how display appears on the screen.

View Declarations

49

Figure 2-10 An example of a three-column display

Defining Field Pop-up Menus

When a user holds down the right mouse button over a field, a menu
appears displaying the commands “Reuse,” “Revert,” “Clear,” and,
optionally, “Values” as an aid to filling in the field.

The “Reuse” command reuses the last value displayed in the field.

The “Revert” command reverts to the prior value for the request.

The “Clear” command clears the field.

If the field type (as declared in the Fields section of the PDL file) uses the
“one-of” designator, then the selection “Value” appears with a rollover
menu that contains the declared set of values.

Users can select a value from the menu or type directly into the field.

You can “tear off” the rollover menu by clicking on the perforation line at the
top of the menu. It then appears as a freestanding menu (see Figure 2-11).

The field declaration and view declaration for the Status field are shown in
Figure 2-11, along with the resulting pop-up and rollover menus.

50

Chapter 2: Using the Process Description Language (PDL)

Figure 2-11 Portion of PDL Defining Status Field

fields {
 ...
 status: one-of
 AWAITING_RESPONSE, AWAITING_APPROVAL, CLOSED, DELETED;
 ...
 }

views {
 RTSQuery () {
 ...
 row{
 ...
 'Status:' status};

Help Declarations

51

Help Declarations

If you are making major modifications to the RTS applications or creating
your own tracking system, you need to provide on-line help to your users.
Tracker provides the same on-line help system available in all CASEVision
environments. If you are unfamiliar with the operation of on-line help,
please refer to the CASEVision Environment Guide.

On-line help is easily provided by making help declarations in the PDL files.
You can create help cards for such topics as:

• the entire application

• fields as a group and individually

• transitions as a group and individually

• rules and actions individually within transitions and globally

• all and individual views

• individual display areas

• control bar

• query results area

• rows in a display

Running tvgen (and rtsgen) automatically creates a hierarchy of on-line help
based on the help declarations. Users can search for help by topic or by
clicking the item on the screen while in context-sensitive help mode.

Creating a Help Declaration

To create a help declaration, use this general format:

help {
 help-title ’ fulltitle’;
 short-help-title ’ shorttitle’; //optional
 help-text ’ helpbody’;
};

52

Chapter 2: Using the Process Description Language (PDL)

The entry following help-title is the complete title for the help topic. This
title appears in the help index.

If you prefer a shorter version of the title in the graphic help browser, add the
short-help-title line with an abbreviated version of the title. The help
information is entered after the key word help-text . All of the text must be
enclosed within single quotes. By default, help text appears in proportional
font; if you prefer fixed width spacing for your help text, then use the key
word fixed-width-help-text in place of the key word help-text .

In addition, you can specify that the actual rules and actions declarations for
a transition appear in a help card by using the key word include-pdl ; this
is covered in more depth in the “Transition Declarations” section.

Note: If you wish to enter a single quote (apostrophe) in help text, you must
precede it with a backslash (\’).

For the sake of conciseness, the entries inside the braces following the key
word help are presented as the single term helpcardspec (short for help card
specification) in this guide.

Help Declaration Locations in the PDL File

The location of the help cards in the on-line help hierarchy is a function of
the declarations in the PDL file. The locations for help declarations are
shown in Figure 2-12 and Figure 2-13.

Figure 2-12 Help Locations at Beginning of PDL File

help { helpcardspec}

fields {
help { helpcardspec};
fieldname: fieldtype

help { helpcardspec};
...

}

top-level system help

top-level field help

individual field help

Help Declarations

53

Figure 2-13 Help Locations in Transitions and Views Sections

transitions {
help { helpcardspec};
transitionname (priorstate => newstate) {

help { helpcardspec};
rules {

help { helpcardspec};
fieldname.method || fieldname.method || ...;

}
actions {

help { helpcardspec};
fieldname.method;

}
}
...
rules {

help { helpcardspec};
fieldname.method || fieldname.method || ...;

}
actions {

help { helpcardspec};
fieldname.method;

}
}
views {

help { helpcardspec};
viewname (titletext) {

help { helpcardspec};
control-bar (titletext) {

help { helpcardspec};
transitions transitionname, ...

}
qresults (titletext) {

help { helpcardspec};
index listfields,...;

}
display (titletext) {

help { helpcardspec};
row {

help { helpcardspec};
tuple, tuple, ...

}
...

top-level transition help

individual transition help

rules help for individual transition

actions help for individual transition

global rules help

global actions help

application help

control-bar help

query results help

display area help

row help

for all transitions

for all transitions

individual view help

54

Chapter 2: Using the Process Description Language (PDL)

Help Implementation Strategy

In providing on-line help, you are not just documenting isolated
features—you are building a system for providing information to your
users. Users get information from the on-line help system in two modes:
context-sensitive mode and browsing mode. This section covers

• the help card hierarchy

• top-level help card strategy

• bottom-level help card strategy

The Help System Hierarchy

It is important to remember that on-line help has a hierarchical structure.
Figure 2-14 shows a typical Tracker hierarchy; it represents the hierarchy
from a user’s point of view. The stacked help cards in the diagram indicate
that there can be multiple help cards and subtrees at that location. The order
in which the help cards appear (top to bottom and left to right) correspond
to the sequence in which they are declared in the PDL files, except for the
help cards that are shown in the illustration in white. These cards are
actually declared elsewhere in the hierarchy, where they appear in gray; they
are in the hierarchy redundantly as a convenience for users.

Top-level Help Card Strategy

In a Tracker application, you must declare the top-level system help card (at
the beginning of the PDL file) and the top-level view help card (at the
beginning of the view declaration section). If these are missing, you will get
warning messages when tvgen (and rtsgen) is run; more importantly, your
end users may get error messages if they try to use on-line help.

At the top level, it is important to make the resulting hierarchy easy for users
to find what they are looking for. The top-level system help card file forms
the root of the on-line help hierarchy. Below it are the top-level cards for the
fields and transitions and the application help cards, which group the views.

Help Declarations

55

Figure 2-14 Typical Tracker On-line Help Hierarchy

Note that the help cards for individual fields and transitions (rules and
actions included) can appear redundantly in the hierarchy, under the
top-level field and transition cards and in the view subtrees that contain
them. These help cards are actually declared in the fields section and
transitions section of the PDL file respectively. These cards are shown in
Figure 2-14 in white.

It is a good idea to include a help card for the control-bar in each application.
The control-bar help card groups all relevant transition help cards as
subtopics under the control-bar help card. If the user selects any item in the
control-bar using context-sensitive help, help on the set of transitions
provided by the application will be readily available in the subtopics
window of the help viewer.

Field
help card

Row
help card

Top-level

Top-level Top-level

Transition
help card

Rules help Actions help

Field

transition
help card

field
help card

Application
help card

 card card

help card

Transition
help card

Rules help Actions help
 card card

Transition
help card

Rules help Actions help
 card card

system
help card

View
help card

Control-bar
help card

Query results
help card

Display
help card

Rules help
 cardRules help
 card

Rules help Actions help
 card card

Transition
help card

56

Chapter 2: Using the Process Description Language (PDL)

Bottom-level Help Card Strategy

At the bottom level, you should provide detailed information for the
individual transition cards on how the particular transition relates to the
overall tracking process. You can describe the rules and actions in the card
in the transition help card or separately in the associated rules and actions
help cards.

Use help declarations for individual fields to clarify the intended use of the
field and to give suggestions for using specific values for the field. The field
help declarations appear at the bottom of the view help hierarchy. They are
grouped under the containing row if you declare it; otherwise, they appear
under the containing display area. If you declare neither the containing row
nor display area, then the field help declarations are grouped directly under
the view help card.

After adding or changing help declarations in the PDL, you can review the
changes by running the application (after running tvgen and tvinstall) and by
selecting items in the “Help” menu. Select “Browser” in the help viewer
window to examine your help hierarchy.

Caution: tvgen does not remove help cards from the <databasedir>/tools/help
directory before generating new on-line help. If you rename (or remove) an
application in your system, you should remove the corresponding subtree in
<databasedir>/tools/help.

57

Chapter 3

3. Using the Data Manipulation Language (DML)

The data manipulation language (DML) provides an interface to the Tracker
database. It is similar to SQL and other fourth-generation database query
languages. DML runs on top of Raima Data Manager™ from Raima
Corporation. DML supports both database query and modification. DML
complements the Tracker graphical user interface (GUI) by enabling more
complex queries on the database, report generation, and batch database
modifications.

This chapter covers these topics:

• Overview

• Specifying literal values

• Select statement

• Insert statement

• Update statement

• Delete statement

• Locking statements

• Transaction statements

58

Chapter 3: Using the Data Manipulation Language (DML)

Tracker Database Overview

This section explains the structure of Tracker databases, tells you how to
invoke DML, relates DML to the rest of Tracker, and summarizes the basic
DML statements.

Caution: DML lets you modify data and enter new records directly. To
avoid the potential hazards of entering bad data, its modification features
should be used sparingly and by the Tracker system administrator only. If
you do change data using DML, make sure that any affected PDL files are
updated accordingly.

Database Structure

Unlike many database systems, a Tracker database has no explicit schema or
rigid structure, which lets it adapt readily to the changes that occur as an
application matures.

Data in a Tracker database is stored in fields. Each field has a name, a value,
and a type. The database field types are the same as the PDL field data types.

Fields are organized into entities or records. Each entity represents
something from the real world, such as a bug report, project list, or project
team, and the fields represent that item’s properties or attributes. Every
entity has a field named $ENTITY_ID that contains a permanent integer
value that is assigned automatically by the database upon creation.

Entity Classes

A single database can hold different classes of entities. Each entity class (only
one per PDL file) has a unique name, which is declared in the PDL file at the
beginning of the field declaration section. If no declaration is made, the name
defaults to tracker_request.

An entity can belong to only one entity class; its $ENTITY_ID uniquely
identifies it within its class. Since entities from different classes in the same
database can have the same $ENTITY_ID value, both the $ENTITY_ID and
the entity class must be known to uniquely identify an entity.

Tracker Database Overview

59

Entity Fields

Although the entities within a class tend to have the same set of fields, this
is not required by the Tracker database. An entity cannot have more than one
field with a given name. However, different entities can have fields with the
same name; fields with the same name can be of the same or different types.

As an example, the RTS database has two entity classes: one named
tracker_request (the default) and the other named project (see Figure 3-1).
Entities in the tracker_request entity class represent requests in the database.
Potentially, they can use all of the fields defined in the PDL.

Figure 3-1 RTS Database with Entity Classes

$ENTITY_ID: 4003
report_number: 500
submitter: jones
...

$ENTITY_ID: 4002
report_number: 500
submitter: jones
...

$ENTITY_ID: 4001
report_number: 500
submitter: jones
...

$ENTITY_ID: 4000
report_number: 500
submitter: jones
...

$ENTITY_ID: 2003
project_name: red
manager: smith

$ENTITY_ID: 2002
project_name: red
manager: smith

$ENTITY_ID: 2001
project_name: red
manager: smith

project entity class

tracker_request entity class

60

Chapter 3: Using the Data Manipulation Language (DML)

The actual information depends on which field values were entered. The
entities in the project entity class are used to keep track of project names and
managers.

When you enter a new entity into a database, you can enter a value for any
field declared in the PDL file. You can also enter new fields if you have a
special requirement.

Access to the Database

Queries from the graphical user interface are transmitted in DML to the
database and can access only fields defined in the associated PDL file. From
the DML interface, you can use PDL field definitions or you can define your
own fields.

Figure 3-2 illustrates the relation of the dml program to the two interfaces.

Figure 3-2 Relation of DML to Tracker and PDL

dml

Request
database

GUI (PDL)

dml> select ...

shell window

winterm

Tracker Database Overview

61

The dml Program

The program dml provides access to the Tracker database using the DML.
You can use dml interactively to post ad-hoc queries and to modify the
database, or as a script interpreter to generate reports or implement batch
processing of the Tracker database.

DML Shell Commands

Two shell commands, dmlrpt and dmlcount, are provided to demonstrate the
use of scripts. dmlrpt creates a list of entities containing specified fields.
dmlcount counts the entities in a database containing a given field condition.

dml, dmlrpt, and dmlcount are described in more detail in the man pages.

Controlling Database Access

The database designer or system administrator can control who is able to
make changes to a database through DML. This is done by means of the
UNIX file permissions on a file called Tracker.sec in the database directory.
The Tracker.sec file is the control point for access to the database. Its
permissions, which match those on the database, provide security for the
information in the database.

When a database is created, the creator can set the file permissions on
Tracker.sec to give read and/or write permission to selected people or groups.
Tracker sets the initial permissions to give ownership to the person who is
running tvgen.

Each database has its own Tracker.sec file, which may allow different users
access. For example, database A may have file permissions which give
read/write permission to the owner, but read permission only to everyone
else (-rw-r--r--), and database B may give read/write access to the
owner and specified group, but no access to others (-rw-rw----). A user
without read permission for a particular database cannot even start the DML
interpreter program, dml.

Note: If you use databases created with an earlier version of Tracker (version
1.0 or 1.0.1), you can add a Tracker.sec file to these databases if you wish.

62

Chapter 3: Using the Data Manipulation Language (DML)

Required Permissions

In order to use the select statement, a user must have read permission in the
database. To make any modifications using update, insert, or delete, a user
must have write permission in the database.

If the Tracker.sec file is deleted or missing, users are given access at the default
level, which is read-only. If authorized users have difficulty gaining
unrestricted access, check to see that:

• a Tracker.sec file with the correct file permissions is in the database
directory

• the server and the user’s system are running the same version of
Tracker

Access Through PDL

PDL already has the capability for restricting access to certain users. As a
database client, the GUI has read/write access to the database. It is
advisable, therefore, to continue writing PDL code to restrict user access
where desired. Restricting access to the database via DML does not eliminate
the need to control access via PDL.

DML Statements

This section describes how to specify literal values and documents these
DML statements:

• select

• insert

• update

• delete

• lock/unlock

• begin/end transaction

DML Statements

63

General Characteristics of DML Statements

All DML statements are terminated by a semi-colon character.

It is important when using DML to specify the names of the fields exactly,
since incorrect field names can be interpreted as non-existent or new. If you
don’t have a copy of the PDL field declarations handy, you can select a single
entity designating * as the field list and get the proper spellings. Refer to
“Select Statement” for more information.

Specifying Literal Values

For your convenience, DML provides alternatives for entering literal values
in statements:

Implicit typing Certain types of literal values can be entered in a simple
format and DML will interpret them automatically.

Explicit typing You can also enter the literals with their types to eliminate
ambiguity.

Nested select statements
DML also lets you use a nested select statement to specify a
list of integers.

Implicit Typing

DML provides implicit interpretation of certain types of literal values. Other
types must be specified explicitly. To eliminate ambiguity, you can always
specify types explicitly. The DML command line option -dml lets you turn
on value typing automatically, otherwise it defaults to value typing off.

The effect of using the command is that all field values retrieved from the
database are displayed with explicit type information. For example,

dml> value typing on;
dml> select $ENTITY_ID from tracker_request where $ENTITY_ID
<3;
$ENTITY_ID: int ’1’

64

Chapter 3: Using the Data Manipulation Language (DML)

If value typing is off, the same select query produces the result:

$ENTITY_ID: 1

Table 3-1 demonstrates those types that are typed implicitly.

Table 3-1 Implicit Typing Examples

Examples Comments and Implied Type

999

-1

Numbers are assumed to be integers, of
type int

’’
’your text’
'3 lines long with an
escaped apostrophe\'
in the second line.'

Text inside single quotes is taken as
short-text. Use a backslash (\) if you need
to embed an apostrophe.

true
false

boolean types

/usr/tmp/xxx
saturn:/usr/lib

file types

foobar Strings that don’t fall into any other
categories are assumed to be identifiers of
type one-of

1/20/93
Jun 10 1993 06:17PM
Wed Jun 10 18:19:22 PDT 1993

date types

(1,2,3)
(’a’,’b’,’c’)

Strings inside parentheses, separated by
commas, are assumed to be a list of some
type.These examples are respectively
 list-of int and list-of short-text.

DML Statements

65

Explicit Typing

Explicitly typed entries contain a field type name followed by a quoted
string. The quoted string must contain a literal value. Table 3-2 shows
examples of explicit typing.

Use explicit typing to lessen the chance of the literal being interpreted in an
unexpected way. Be sure, however, that the entry inside the quotes correctly
matches the specified type. Table 3-3 demonstrates the incorrect use of
explicit typing.

Table 3-2 Explicit Typing Examples

Examples Comments

int ’99’ Explicit integer.

long-text ’hello’ Explicit long-text specification. long-text cannot be
implicitly specified.

date ’1993’ Certain date formats are recognized only by using this
form. This example would be considered an integer if
not explicitly specified.

one-of ’select’ Lets you specify select as a string rather than as a DML
keyword.

short-text ’Joe\’s A backslash inside quotes lets you specify a literal
apostrophe.

(one-of ’RED’,
one-of ’GREEN’,
one-of ’BLUE’)

Explicitly typed literals can be used in lists.

Table 3-3 Illegal Formats

Examples Comments

int ’not-an-integer’ The quoted value has no valid integer interpretation.

date ’not-a-date’ The quoted value has no valid date interpretation.

boolean ’maybe’ The quoted value has no valid boolean
interpretation.

66

Chapter 3: Using the Data Manipulation Language (DML)

Select Statement

The select statement queries the Tracker database and returns field values. It
includes an optional order by statement that lets you sort the items within
each field in ascending or descending order.

The general form is:

select field-list from entity-class;

field-list names the Tracker fields returned by the query for each selected
entity. This form selects all entities of class entity-class. The optional
additions to this statement, shown in square brackets, are:

select field-list from entity-class
[order by field1 descending , field2, ...];

select field-list from entity-class [where condition];

The items in the fields listed in order by without a modifier will be sorted in
the default order, which is ascending. To sort in descending order, add the
keyword descending after the field name. The condition expression in the
second form determines which entities are selected by the query. For
example, the statement:

select $ENTITY_ID, Customer, Submit_date from bug where
Engineers_pri = 1;
order by Submit_date descending;

returns a table containing the $ENTITY_ID, Customer, and Submit_date fields
for all bugs with Engineers_pri equal to 1, and listed according to date of
submission. For example:

$ENTITY_ID: 40274
customer: acme
submit_date:Wed Jun 10 21:57:33 1992

$ENTITY_ID: 39567
customer: xyzco
submit_date: Fri May 29 10:09:00 1992

You can substitute an asterisk (*) for field-list in a select statement, which then
retrieves all fields for qualifying entities:

select * from bug where Engineers_pri = 1;

DML Statements

67

Typically, entities do not have data in all available fields. When performing
a query, the DML retrieves those fields named in the field list that do exist
and ignores the entity’s empty fields.

The condition expression can contain multiple field comparisons combined
using the and, or, and not operators and is not limited to equality
comparisons.

For example,

select $ENTITY_ID, Customer, Submit_date from bug where
(Engineers_pri > 1 and Type = BUG) or
(Engineers_pri < 4 and Type = RFE) or
(Type <> BUG and Type <> RFE and Priority = P1);

Table 3-4 lists the available comparison operators.

The following example further illustrates comparison operators:

select $ENTITY_ID from bug where
Engineers_pri = null and //unset fields match
Type = [BUG, TAKEN] and //Type=BUG or Type=TAKEN
Severity = [1, 5:10]; //Severity=1 or is
 //between 5 and 10

Table 3-4 Comparison Operators

Operator Name Applicable Types

=
<>

equal to
not equal to

All field types

<
<=
>
>=

less than
less than or equal to
greater than
greater than or equal to

int, short-text, long-text

match regular expression match long-text, journal fields

contains
contains any
contains only

list contains element
list contains any from list
list contains only from list

list-of fields

= null
<> null

unset or non-existent test
set or existing test

All field types

68

Chapter 3: Using the Data Manipulation Language (DML)

Value ranges take the form

[..., value: value, ...]

They are recognized only within value lists, that is, inside square brackets
([]). For example,

Severity = 5:10

is not legal; rather, you must use the following form:

Severity = [5:10]

The match comparison operator allows regular expression matching in text
fields. The regular expression must be supplied as a quoted string literal in
the form described by the regcmp(3X) man page. For example, the query:

select owner from bug where summary match '[Ww]indow';

retrieves all entities whose summary fields contain the word window or
Window.

The contains operator determines if a list-of field contains a specified list
element. For example, the query:

select * from project where engineers contains 'billy';

retrieves all project entities where the engineers field includes billy.

The contains any operator is similar to contains; it is used to specify multiple
list elements to be contained within the list-of field. Thus, the supplied literal
value must be a list itself. It is equivalent to Ored contains statements. For
example,

select * from project where engineers contains any
('billy', 'bob');

is equivalent to:

select * from project where engineers contains 'billy' or
engineers contains 'bob';

The contains only operator determines if the list-of field contains some subset
of elements from the supplied list. If a field contains any elements not found

DML Statements

69

in the supplied list, the entity is not selected. For example, the following
statement:

select * from project where engineers contains only
('fred', 'bob');

will select only entities whose engineers field is one of the following (ignoring
duplicate elements):

() // empty list
('fred')
('bob')
('fred', 'bob')
('bob', 'fred')

Both contains any and contains only can substitute a nested select statement for
a list. The nested select builds an integer list from the $ENTITY_ID fields of
the selected entities and uses that list in the enclosing expression.

For example, consider the clause

... where project_ids contains any (select $ENTITY_ID from
projects where name match ’TV’;

The $ENTITY_ID values for those projects matching the string TV are
substituted into the where clause.

Nested Select Statements

Nested select statements offer an alternative to specifying lists of integers in
DML statements. The select statement return value must be of type list-of int.

In evaluating a nested select, DML first executes the nested select statement,
then builds an integer list from the $ENTITY_ID fields of the selected
entities, and uses the list in the enclosing expression.

Currently, only the $ENTITY_ID fields of the selected entities can be used in
the enclosing expression. Even if the field list in the nested select selects
another field or fields, the $ENTITY_ID fields always construct the list that
evaluates the enclosing expression.

70

Chapter 3: Using the Data Manipulation Language (DML)

For example, consider the clause

... where project_ids = (select $ENTITY_ID from projects
where name match ’TV’;

The $ENTITY_ID values for those projects matching the string TV are
substituted into the where clause. The where clause is true if the variable
project_ids equals the list of qualifying projects.

Insert Statement

The insert statement is used to add new entities to the database. The two
general forms are:

insert into entity-class set field1 = value1, ... fieldN = valueN;

insert into entity-class set field1 = value1, ... fieldN = valueN
where condition;

Each field = value pair creates a field in the database and assigns it a value.
The insert statement automatically creates a $ENTITY_ID field and assigns it
a unique integer value within the class; it cannot appear explicitly in the list
of field assignments. For example, consider the statement:

insert into bug set Id = 45799, System = SCR,
Customer = 'John Doe, Inc.', Description = long-text
'Description with embedded newlines.';

It creates a new entity with five fields: the four specified explicitly and the
$ENTITY_ID field.

The second form of the insert statement adds a new entity to the database if
no entity matching the where clause already exists. If one or more entities
matching the where clause do exist, they are updated as if an update statement
had been executed and no new entity is created.

Update Statement

The update statement is used to modify existing entities. The general form is:

update entity-class set field1 = value1, ... fieldN = value1
where condition;

DML Statements

71

Each field assignment in the list is applied to all existing entities selected by
the condition expression. The condition expression is identical to that
described for the select statement. For example, the statement:

update bug set Engineers_pri = 3
where Engineers_pri = 2;

modifies all bugs with Engineers_pri equal to 2, changing the Engineers_pri
field to 3.

Delete Statement

The delete statement removes entities and their fields from the database. The
general form is:

delete entity-class where condition;

The where clause holds the condition necessary to delete the request from the
database. Use the delete statement with caution so that you don’t
inadvertently remove good data.

Locking Statements

The lock and unlock statements obtain shared, non-exclusive locks on the
specified entities. A locked entity can be modified only by the holder of the
lock, although other users can read its field values. Any attempt to update or
delete a locked entity will generate an error from the DML processor.

The general form of the statement is:

lock entity_class1 where condition1
[, entity_class2 where condition2 ...];

or

unlock entity_class1 where condition1
[, entity_class2 where condition2 ...];

The Tracker GUI automatically locks and unlocks entities as needed to
guarantee that the edits made by the user can be committed to the database.
All locks are released when the holder disconnects from a Tracker database.

72

Chapter 3: Using the Data Manipulation Language (DML)

Transaction Statements

The begin and end transaction statements are used to combine a series of
database modifications into an atomic operation; if any part of a transaction
cannot be performed, then none of it is performed. They are used as follows:

begin transaction;
 dml statement;
 dml statement;
 ...
end transaction;

You cannot nest transactions.

The use of transactions can have a dramatic effect on the performance of
certain database operations. For example, in creating a script to import a
large number of entities, say more than 100, performance can be improved
by grouping the insert statements into transactions with several insert
statements per transaction. Without grouping into explicit transactions, each
statement that modifies the database is treated as a transaction. By reducing
the total number of transactions through grouping, the resources needed to
accomplish a large task can be reduced.

73

Chapter 4

4. Tutorial—A Basic Tracking System

This chapter provides a tutorial based on sample1, a basic tracking system,
and covers these topics:

• Analyzing the sample1 PDL file

• Using tvgen and tvinstall to generate sample1

• Expanding the sample1 application

74

Chapter 4: Tutorial—A Basic Tracking System

Analyzing the sample1 PDL File

The sample1 tracking system is a useful tool that teaches you how to build
your own tracking system. The user interface for sample1 is shown in
Figure 4-1.

Figure 4-1 sample1 User Interface

sample1 PDL File

The PDL file sample1.pdl is located in /usr/Tracker/samples and is listed in
Figure 4-2.

Like all PDL files, sample1 has sections for field declarations, transition
declarations, and view declarations. sample1 is a simple application, so there
are no auxiliary views.

Analyzing the sample1 PDL File

75

Figure 4-2 sample1 PDL File

fields {
 submitter: short-text;
 submit_date: date;
 owner: short-text
 priority: one-of LOW, MEDIUM, HIGH;
 project: one-of PROJECT_1, PROJECT_2, PROJECT_3...;
 description: long-text;
 close_date: date;
}
transitions {
 SUBMIT(=>AWAITING_RESPONSE) {
 rules {
 description.isSet;
 }
 actions {
 submit_date.setValue(’now’);
 submitter.setValue($USER.value);
 }
 }
 RESOLVE(AWAITING_RESPONSE=>CLOSED) {
 rules {
 description.changed;
 }
 }
 REJECT(AWAITING_RESPONSE=>CLOSED) {
 rules {
 description.changed;
 }
 }
 EDIT(=>) {
 }
}
views {
 Sample1(){
 control-bar() {
 transitions;
 };
 qresults() {
 index $ENTITY_ID ’ ’, $STATE ’ ’, owner,
 ‘ submitted by ‘, submitter;
 };
 display() {
 row{’Report #:’ $ENTITY_ID, ’Status:’ $STATE,
 ’Owner:’ owner, ’Submitter:’ submitter};
 row{’Date:’ submit_date,’Project:’ project,
 ’Priority:’ priority, ’Closed:’ close_date};
 row{’Description:’ ’ ’};
 row{description};
 }
 }
}

Field declarations

Transition declarations

View declarations

76

Chapter 4: Tutorial—A Basic Tracking System

Let’s analyze the sample1 PDL file, piece by piece. For details on the
meaning of each term and its use, refer to Chapter 2, “Using the Process
Description Language (PDL).”

sample1 Field Declarations

The field declaration follows:

fields {
 submitter: short-text;
 submit_date: date;
 owner: short-text
 priority: one-of LOW, MEDIUM, HIGH;
 project: one-of PROJECT_1, PROJECT_2, PROJECT_3...;
 description: long-text;
 close_date: date;
}

The sample1 PDL file has seven field declarations:

submitter is a short-text field; it lets users enter any text with no
restrictions except size (one line only).

submit_date is a date type fields; Tracker ensures that the entry is in a
proper date format.

close_date is a date type field.

owner is a short-text field like submitter.

priority is one-of field, limiting the user to the three selections: LOW,
MEDIUM, and HIGH.

project is also a one-of field, but the ellipsis at the end makes it an
open rather than closed enumeration. Thus, users can select
one of the three selections or enter their own.

description is a long-text field, thus permitting multiple lines of text.

sample1 Transition Declarations

The transition declarations follow the field declarations in PDL files. Each
transition declaration requires a state change declaration, which can be

Analyzing the sample1 PDL File

77

simply the transition operator in a declaration (=>) , indicating no state
change with any current state valid. Rules and actions are optional.

The transition declarations for sample1 follow:

transitions {
 SUBMIT(=>AWAITING_RESPONSE) {
 rules {
 description.isSet;
 }
 actions {
 submit_date.setValue(’now’);
 submitter.setValue($USER.value);
 }
 }
 RESOLVE(AWAITING_RESPONSE=>CLOSED) {
 rules {
 description.changed;
 }
 }
 REJECT(AWAITING_RESPONSE=>CLOSED) {
 rules {
 description.changed;
 }
 }
 EDIT(=>) {
 }
}

sample1 has four transitions: SUBMIT, RESOLVE, REJECT, and EDIT.

SUBMIT takes a request from a nonexistent state to
AWAITING_RESPONSE. Its only rule is that there must be an entry in the
description field. This is accomplished through the isSet method:

description.isSet;

SUBMIT has two actions:

The declaration

submit_date.setValue(’now’);

has the effect of setting the submit_date field to the value of ‘now’, which
is replaced by the current date and time.

78

Chapter 4: Tutorial—A Basic Tracking System

The action declaration

submitter.setValue($USER.value);

forces the submitter field to the current user.

RESOLVE and REJECT have similar declarations. They both take a request
from AWAITING_RESPONSE to CLOSED. Both incorporate one rule; the
description must change. Its purpose is to cause the user to provide an
explanation when resolving or rejecting the request.

The EDIT transition is open-ended in nature. The state does not change and
EDIT can be applied to requests in any state. It has no rules or actions. You
can declare no rules or actions with empty braces with or without the key
words. In the example we simply use empty braces after the state
declaration.

sample1 View Declaration

 The view declaration for sample1 is as follows:

views {
 Sample1(){
 control-bar() {
 transitions;
 };
 qresults() {
 index $ENTITY_ID ’ ’, $STATE ’ ’, owner,
 ‘ submitted by ‘, submitter;
 };
 display() {
 row{’Report #:’ $ENTITY_ID, ’Status:’ $STATE,
 ’Owner:’ owner, ’Submitter:’ submitter};
 row{’Date:’ submit_date,’Project:’ project,
 ’Priority:’ priority, ’Closed:’ close_date};
 row{’Description:’ ’ ’};
 row{description};
 }
 }
}

The example has one view called Sample1 that has declarations for a
standard control bar, query results area, and request form area.

Generating a Tracker Application

79

The control bar is specified to use all four transitions, since the transitions

key word is used with no transition names specified.

The query results area sets up an index of the request number (equal to the
$ENTITY_ID variable), the state ($STATE), owner, and submitter. In the GUI,
the area is divided into four columns, each with a title indicating the type of
data it displays. The data in text columns is left-justified and vertically
aligned. Data in numeric columns is right-justified.

The first two rows have four fields, plus a label for each one. The first two
fields, Report # and Status, are predefined. The next six fields use field
declarations from the beginning of the PDL file. The string ’Description:’

is used as a label, padded with trailing white space (‘ ‘), as described in the
section on tuples (see “Defining a Request Form Area” in Chapter 2).

Generating a Tracker Application

Before you can run sample1, use tvgen to compile it and then use tvinstall to
create the links from the public directories to the application directories.
Here are the steps for generating sample:

1. Become super-user.

2. Create a test directory and copy the PDL file sample1.pdl from the
/usr/Tracker/samples directory to your test directory.

3. From any directory, type:

tvgen <yourTestDirPath>/db <yourTestDirPath>/sample1.pdl

where the expression <yourTestDirPath>is the absolute path to your test
directory. (If sample1.pdl is in your database directory, you can use a
relative path.)

Running tvgen creates a script called sample1 in
/yourTestDirPath/db/tools/bin, a number of database files in
/yourTestDirPath/db, help files in <yourTestDirPath>/db/tools/help, and an
app-defaults file called Sample1 in <yourTestDirPath>/db/tools/lib/X11.

4. Then type:

tvinstall <yourTestDirPath> /db/tools

80

Chapter 4: Tutorial—A Basic Tracking System

As before, <yourTestDirPath> must be an absolute path. Running
tvinstall has the following effects:

• All directories and executable files in
<yourTestDirPath>/db/tools/bin are linked into /usr/local/bin.

• All directories and files in <yourTestDirPath>/lib are linked into
/usr/local/lib.

• All files in <yourTestDirPath>/db/tools/lib/X11/app-defaults are linked
into /usr/lib/X11/app-defaults.

• All files in <yourTestDirPath>/db/tools/lib/images are linked into
/usr/lib/images.

• The files in<yourTestDirPath>/db/tools/help are linked into
/usr/lib/onlineHelp.

• The on-line help database is rescanned and any currently running
help server is killed.

5. To run sample1, at the shell prompt, type:

/usr/local/bin/sample1

You can add /usr/local/bin to your path so that in future you need only
type sample1 to run the application.

Note: The end users must rcp or NFS-mount the tools directory (...db/tools)
onto their own systems. They then install the default Tracker subsystems on
their systems and run tvinstall to set up the required links from the tools
directory to their systems.

Expanding the sample1 Application

The sample1 example assumes a simple tracking process in which the owner
closes his or her own requests. This section introduces the concept of an
approval authority, which adds a level of complexity to the application by
adding another transition state, APPROVE.

The two existing intermediate states are AWAITING_RESPONSE and
CLOSED. When a third intermediate state, AWAITING_APPROVAL, is
added, the other transitions may also have to be rerouted.

Expanding the sample1 Application

81

To incorporate an approver, follow these steps:

• declare a field named Approver

• add the Approver field to the main view

• add an intermediate state called AWAITING_APPROVAL and change
the affected transitions accordingly

• add a new transition named APPROVE

These steps are detailed in the following sections. You can edit your sample1
PDL file accordingly.

Adding a Field Declaration

To add a field declaration, you:

• specify an internal field name

• select a type for it

• edit the field declarations section of the PDL file.

A complete list of field types is provided in Table 2-1 in Chapter 2. In this
example, we add a field named approver of type short-text, (see Figure 4-3).

Figure 4-3 Adding a Field Declaration

fields {
 submitter: short-text;
 submit_date: date;
 owner: short-text
 priority: one-of LOW, MEDIUM, HIGH;
 project: one-of PROJECT_1, PROJECT_2, PROJECT_3...;
 description: long-text;
 close_date: date;
 approver: short-text;
}

New field

82

Chapter 4: Tutorial—A Basic Tracking System

Adding a Field to a View

Once you have defined a field, you need to add it to the user interface, by
editing the view declarations portion of the PDL file.

In this example, we add a tuple that comprises the approver field and the
“Approver” label. There are currently eight short fields in two groups of
four, plus the larger description field.

To keep things symmetrical, change the view to three rows of three fields
each, adding the approver field last (see Figure 4-4).

Figure 4-4 Changing a View Declaration

views {
 Sample1(){
 control-bar() {
 transitions;
 };
 qresults() {
 index $ENTITY_ID ’ ’, $STATE ’ ’, owner,
 ‘ submitted by ‘, submitter;
 };
 display() {
 row{’Report #:’ $ENTITY_ID, ’Status:’ $STATE,
 ’Owner:’ owner};
 row{’Submitter:’ submitter
 ’Date:’ submit_date,’Project:’ project];
 row{’Priority:’ priority, ’Closed:’ close_date
 ’Approver:’ approver;
 row{’Description:’ ’ ’};
 row{description};
 }
 }
}

New tuple

Expanding the sample1 Application

83

Adding a State

Adding a new state is tricky because it actually changes the process. All
transitions that enter or leave that state have to be changed accordingly.
NEED MORE EXPLANATION

 Figure 4-5 shows the state transitions of a request as sample1 was originally
designed.

Figure 4-5 Original State Transitions of a Request in sample1

To implement the notion of an approval authority, you need to add an
intermediate state called AWAITING_APPROVAL after the owner is
through with the request, and prior to its being closed. This is shown in
Figure 4-6.

AWAITING_RESPONSE

CLOSED

RESOLVEREJECT

SUBMIT

84

Chapter 4: Tutorial—A Basic Tracking System

Figure 4-6 State Transitions after Adding State

As a result, you need to change the RESOLVE and REJECT transitions so that
instead of going from AWAITING_RESPONSE to CLOSED, they go to
AWAITING_APPROVAL. The transition declarations are shown in
Figure 4-7.

SUBMIT

CLOSED

REJECT RESOLVE

APPROVE

AWAITING_APPROVAL

AWAITING_RESPONSE

Expanding the sample1 Application

85

Figure 4-7 Transition Declarations after New State

Adding a Transition

You now need to create a new transition called APPROVE that takes a
request from the AWAITING_APPROVAL state to CLOSED. To set a
condition requiring the approver to add an explanation to the description for
closing the request, add the rule:

description.changed;

You can also add an action:

close_date.setValue(’now’);

This sets the closed date to the date on which the APPROVE transition is
performed. Figure 4-8 shows the transitions section after you have added
the new rule and action.

transitions {
 SUBMIT(=>AWAITING_RESPONSE) {
 rules {
 description.isSet;
 }
 actions {
 submit_date.setValue(’now’);
 submitter.setValue($USER.value);
 }
 }
 RESOLVE(AWAITING_RESPONSE=>AWAITING_APPROVAL) {
 rules {
 description.changed;
 }
 }
 REJECT(AWAITING_RESPONSE=>AWAITING_APPROVAL) {
 rules {
 description.changed;
 }
 EDIT(=>) {
 }
}

Change CLOSED to
AWAITING_APPROVAL

Change CLOSED to
AWAITING_APPROVAL

86

Chapter 4: Tutorial—A Basic Tracking System

Figure 4-8 Transition Declarations after New Transition

transitions {
 SUBMIT(=>AWAITING_RESPONSE) {
 rules {
 description.isSet;
 }
 actions {
 submit_date.setValue(’now’);
 submitter.setValue($USER.value);
 }
 }
 RESOLVE(AWAITING_RESPONSE=>AWAITING_APPROVAL) {
 rules {
 description.changed;
 }
 }
 REJECT(AWAITING_RESPONSE=>AWAITING_APPROVAL) {
 rules {
 description.changed;
 }
 APPROVE(AWAITING_APPROVAL=>CLOSED) {
 rules {
 description.changed;
 }
 actions {
 close_date.setValue(’now’);
 }
 }
 EDIT(=>) {
 }
}

Add APPROVE
transition declaration

87

Chapter 5

5. Installing RTS Applications

This chapter explains how to install the RTS applications and describes the
basic customization.

Procedures for Installing RTS Applications

If you are installing RTS applications, you typically follow these steps.

1. Install the Tracker software (see Step One).

2. As superuser, run rtsgen by typing:

/usr/Tracker/RTS/rtsgen dbdir

See Step Two.

3. As superuser, run tvinstall to perform the necessary links:

tvinstall <dbdir>/tools

See Step Three.

4. As superuser, run rtsquery by typing:

/usr/local/bin/rtsquery

See Step Four.

5. Edit the projects.h file (see Step Five).

6. Edit the Tracker.pdl file (see Step Six).

7. Rerun rtsgen, tvinstall, and the applications to see the effects of your
changes (see Step Seven).

88

Chapter 5: Installing RTS Applications

Step One

The installation procedures are covered in depth in the CASEVision/Tracker
Release Notes and the IRIS® Software Installation Guide. You will need to install
all of the Tracker subsystems, the CASEVision environment, and ToolTalk.
The system that runs the database server needs the Tracker.sw.designer,
Tracker.sw.designerLinks, and Tracker.sw.rts subsystems as well.

After you have installed the Tracker software, you will have the following
PDL files in /usr/Tracker/RTS:

• Tracker.pdl

• rtsapprove.pdl

• rtssubmit.pdl

• rtsrespond.pdl

• projects.h

The Tracker.pdl file specifies the main application rtsquery; the others specify
the supplementary applications corresponding to their names. The projects.h
file holds project names and managers and is included by the Tracker.pdl file.

The installation process also installs the script file rtsgen in
/usr/Tracker/RTS. rtsgen generates the RTS applications, based on the PDL
files.

Step Two

The expression dbdir is the absolute path to your database directory. You
cannot use a relative path. If dbdir is not specified, then the files are stored in
/usr/Tracker/db.

Procedures for Installing RTS Applications

89

rtsgen allows these qualifiers:

• -v for verbose output

• -f for forced override of existing files

• -n for echo with no execution

• -h for help, that is, the usage note

• -d for debug mode, useful if you change the rtsgen script

The specified directory now contains the Tracker.pdl file, the other PDL files,
and the projects.h file; use these versions for subsequent modifications. This
directory also contains the database files, which are named Tracker with
various extensions appended.

The script files rtsquery, rtssubmit, rtsrespond, and rtsapprove are stored in
<dbdir>/tools/bin. The help files are stored in <dbdir>/tools/help. The four
app-defaults files Rtsapprove, Rtsquery, Rtsrespond, and Rtssubmit are stored in
<dbdir>/tools/lib/X11/app-defaults.

Step Three

tvinstall creates these links:

• <dbdir>/tools/bin => /usr/local/bin

• <dbdir>/tools/lib => /usr/local/lib

• <dbdir>/tools/lib/X11/app-defaults =>
/usr/lib/X11/app-defaults

• <dbdir>/tools/lib/images => /usr/lib/images

• <dbdir>/tools/help => /usr/lib/onlineHelp

In addition, the on-line help database is rescanned and any currently
running help server is killed.

Step Four

Note: You can add /usr/local/bin to your directory path so that in future you
need only type rtsquery to run the application.

90

Chapter 5: Installing RTS Applications

You should familiarize yourself with rtsquery and the supplementary
applications to see how the RTS applications accommodate your needs. For
additional information on their operation, refer to CASEVision/Tracker User’s
Guide, RTS Applications.

Step Five

The projects.h file contains placeholder values for projects and their
associated managers. The actual file follows:

//
// project.h
//
// This file is included by Tracker.pdl, the RTS PDL.
// Replace the sample data below with projects you wish
// to track. Make sure to separate the project name and
// project manager on each line with a comma and ’//’
// as is done in the sample data.

// Project Name Project Manager

 PROJECT_1, // manager1
 PROJECT_2, // manager2

// No comma on the last line!
 PROJECT_3 // manager3

Replace the PROJECT_* and manager* placeholders with values appropriate
to your organization. Use commas after the project names except for the last
one. Use a double slash (//) to separate the manager’s name from the project
name. The manager’s name is not used in the PDL file but is stored in the
database when you run rtsgen. Here is an example of a changed projects.h file:

// Project Name Project Manager

 Acme, // Robinson

 Framis // Uyeno

Procedures for Installing RTS Applications

91

Step Six

The Tracker.pdl file has a number of placeholder values that you need to
change.

Change the following #define statements:

#define CZAR ’root’
#define BBOARD ’root’

Set the CZAR symbol to the email address of the tracking system
administrator. Set the symbol BBOARD to the email address of the person
responsible for screening and assigning requests, if appropriate. For
example,

#define CZAR ’Nicholas’
#define BBOARD ’Howard’

Change the placeholder values in the System field declaration and its help
text:

system: one-of
 SYSTEM_1, SYSTEM_2, SYSTEM_3

Change the help text for the Project field.

Review the rule regarding the Due Date field for both the SUBMIT_BUG and
SUBMIT_RFE transitions. They both use the rule:

due_date.is(due_date.setDefault(’now +30:00:00:00’));

This rule sets the Due Date field to 30 days from the current date. Change the
value 30:00:00:00 as appropriate.

92

Chapter 5: Installing RTS Applications

Step Seven

Now that you have made some basic changes, you should have a feel for
modifying the RTS applications. The process is the same for major changes.

When the tracking system is ready for the end users, you need to make the
tools directory available to them, using NFS, rcp, rdist, or other means. The
users then need to run inst to install Tracker.sw.user and Tracker.sw.userLinks.
Finally, they must run tvinstall giving the tools directory as an argument to
create the necessary links.

93

Chapter 6

6. Advanced Design Techniques

This chapter tells you how to employ advanced techniques when designing
a system with Tracker. It covers the following topics:

• Using dates

• Customizing resources

• Using the exec functions

• Importing data

• Preparing translation scripts

94

Chapter 6: Advanced Design Techniques

Using Dates

Date and time information is an important part of bug and enhancement
request tracking systems, as it is for most database applications. The date on
which a request is submitted, the due date for resolving the problem, and the
actual fix date are just a few of the uses for date and time values in
Tracker-based applications.

Tracker provides the date field type to support date and time data storage
and manipulation. Date values are stored in Tracker databases, used in
queries, displayed, and entered in a variety of formats.

Representing Date Values

Date field values represent a point in time to the nearest second. They do not
represent a time interval such as six seconds or two days. Because they rely on
UNIX time data types and function calls, date values represent times only
since January 1st, 1970. Date values are ordered from this starting point, the
lowest value, and increase toward later dates. Therefore, a date that occurs
after a second date will have a higher value.

Input Formats

Internally, Tracker represents dates as integers—a convenient form for
storage and retrieval. For data entry purposes, however, other formats are
preferred.

Tracker provides a wide variety of date input formats. Dates can be supplied
with as little information as the year or month, or specified to the nearest
second. You can enter dates as a base time point plus or minus a time
interval. You can also specify expressions for the current year, month, day,
hour, or second.

Using Dates

95

Table 6-1 provides an example of the various values possible for a given
date, along with the Tracker interpretation.

Table 6-1 Date Interpretation Examples

Date Input Tracker Interpretation

7/28/93 Tue Jul 28 00:00:00 PDT 1993

July 28, 1993 Tue Jul 28 00:00:00 PDT 1993

July 28 1993 Tue Jul 28 00:00:00 PDT 1993

28-July-92 Tue Jul 28 00:00:00 PDT 1993

July 28 10:00 1993 Tue Jul 28 10:00:00 PDT 1993

10:00 July 28 1993 Tue Jul 28 10:00:00 PDT 1993

July 28 Tue Jul 28 00:00:00 PDT 1993

July 28 10PM Tue Jul 28 22:00:00 PDT 1993

July 28 10PM EDT Tue Jul 28 19:00:00 PDT 1993

July 1993 Wed Jul 1 00:00:00 PDT 1993

July Wed Jul 1 00:00:00 PDT 1993

1993 Wed Jan 1 00:00:00 PST 1993

10PM Tue Jul 28 22:00:00 PDT 1993

10:30:59 PM Tue Jul 28 22:30:59 PDT 1993

today Tue Jul 28 00:00:00 PDT 1993—Start of current day.
Equivalent to “this day.”

now Tue Jul 28 11:10:14 PDT 1993—Current time to the
nearest second.

this year Wed Jan 1 00:00:00 PST 1993—Start of current year.

this month Wed Jul 1 00:00:00 PDT 1993—Start of current month.

today + 30:00:00:00 Thu Aug 27 00:00:00 PDT 1993—30 days from today.

July 28 - 72:00:00 Sat Jul 25 00:00:00 PDT 1993—72 hours before July
28th of the current year.

96

Chapter 6: Advanced Design Techniques

Now let’s examine the rules Tracker uses to understand date input.

Year

The year can be expressed as a 4-digit number or as a 1- or 2- digit number
representing the year in the current century. For example, “92” means 1993,
“44” is illegal (1944 is before 1970), and “1” is illegal now, but anytime after
the beginning of the next century will mean “2001.”

Month

The month can be either a number from 1 to 12 or a month name or a 3-letter
month abbreviation. Case is not considered.

Day of the Month

The day of the month is expressed as a number from 1 to 31.

Day of the Week

The day of the week can be included in date input, but is not used to
interpret the date. In fact, the day of the week is ignored in date input. The
day of the week can be a day of the week name or a 3-letter abbreviation.

Time of Day

The syntax for specifying the time of day is:

HH [:MM [:SS]] [am_or_pm] [time zone]

The minute and second are optional, as are the AM or PM designator and the
time zone. If neither AM nor PM is included in the time of day, the hour is
interpreted on a 24-hour basis. If a time zone is not specified, the current
local time zone is used. The time zone can be either a 3-letter time zone name
or a 4-digit offset from GMT (now known as Coordinated Universal Time or
UTC).

Using Dates

97

The recognized time zones are shown in Table 6-2.

Date Plus or Minus Interval

You can specify a date in relative terms by adding or subtracting a time
interval from a given base date. The adjustment always follows the base date
and is specified as follows:

+ | - [[[DD:] HH:] MM:] SS

Table 6-2 Time Zone Interpretation

Time Zone Difference in Hours from GMT

GMT (Greenwich Mean Time) 0

GST (Greenwich Standard Time) 0

GDT (Greenwich Daylight Time) 0

EST (Eastern Standard Time) -5

EDT (Eastern Daylight Time) -4

CST (Central Standard Time) -6

CDT (Central Daylight Time) -5

MST (Mountain Standard Time) -7

MDT (Mountain Daylight Time) -6

PST (Pacific Standard Time) -8

PDT (Pacific Daylight Time) -7

BST (British Summer Time) 1

MET 1

EET 2

JST 9

98

Chapter 6: Advanced Design Techniques

Current Time References

The current date and time can be referenced in date input. Tracker supports
these current date and time reference forms:

• this second (also now)

• this minute

• this hour

• this day (also today)

• this month

• this year

Display Formats

Date display formats are as various as the input formats. Tracker designers
and end users can customize the date display formats to meet their
individual needs.

Tracker uses cftime(3C) to format date values for display. The
environment variable CFTIME is used to alter the date display format. See
the cftime(3C) man page for details on setting CFTIME environment
variable.

Comparing Dates

Tracker uses these operators to compare date values: <, <=, =, >=, >, and <>.
These are especially useful in DML. When a date field is compared with a
literal date value, the granularity of the literal date value controls the
granularity of the comparison. For example, consider the DML statement:

select * from tracker_request where due_date = July 1993;

The literal date value is specified only to the month. The query will therefore
match all due_date values anytime during that month, that is, from July 1 to
July 31. Consider the statement:

select * from tracker_request where due_date = July 28 1993;

Customizing Resources

99

The date value is a specific day and will match due dates from midnight to
23:59:59 of that day.

If the date is fully specified, as in:

select * from tracker_request where due_date = Jul 29
09:25:27 1993

then the match must be exact.

These date rules also apply to DML and the Tracker GUI.

Date Entry in PDL

Date values must be enclosed within single quotes when entered into PDL.
For example:

due_date.setValue(’now + 30:00:00:00’);

Date Entry in DML

You need not use quotation marks for date values in DML. Date values can
be quoted using the explicit typing conventions for DML, for example:

select * from tracker_request where reopen_date = date
’10:30PM’;

However, using quotes around date values is sometimes necessary to enable
the DML interpreter to parse the statement correctly.

Customizing Resources

As is true for any X11 application, CASEVision/Tracker applications such as
rtsquery have a large number of resources that control their appearance and
behavior. Default values for these resources are provided in an application
defaults file, stored in the directory

/usr/lib/X11/app-defaults

100

Chapter 6: Advanced Design Techniques

If you want to change any of these values for your own environment, you
can set new values for them in your own resource file:

~/.Xdefaults

However, handling resources in Tracker applications is slightly harder than
handling other X11 applications. The widget names, and even the name of
the application itself, are generally customized by the system designer, so
this guide cannot refer to them directly.

X11 resource customization is a complex subject. This section is not a
complete guide. One of the best sources for further information is the Xlib
Programming Manual, by Adrian Nye, Volume One of the O’Reilly X Window
System Series.

Naming Applications, Widgets, and Resources

Your first step in customizing resources is to determine the name of the
application, which is the name of the command that you type to bring up the
application. This name also appears in the window title bar when you run
the application. The main application shipped with Tracker is named
rtsquery, and that name is used throughout this section. You can also use a
name of your choice.

Everything in X11 has two names. The “name” mentioned above is actually
the instance name; there is also a class name. The class name is sometimes
shared by several instances (similar to a family name). This is more often
true of widget and resource names than of application names; it is never true
of Tracker application names.

Each auxiliary view (accessed from the main view’s Views menu) in an
application has an instance name, which appears in the title bar. The class
name of an auxiliary view is the class name of the IRIS IM™ widget used to
implement the view: XmForm; the auxiliary view class name is not related to
its instance name. (IRIS IM is Silicon Graphics’s port of the industry-
standard OSF/Motif™ for use on Silicon Graphics systems.)

All of the individual widgets that make up the application also have names,
both instance and class. The system designer may have assigned names to
some of the application’s widgets in the PDL file that defines the application.

Customizing Resources

101

You can use the UNIX command more to look at the application file,
/usr/local/bin/rtsquery, and see these names. Tracker automatically assigns
names to any widgets that are not specifically named by the designer. The
generated names are not easy to predict, so they will probably not be useful
to you.

Finally, the resources have both instance names and class names. The
instance name of a resource tells you what it actually does; the class name
generally tells you what kind of information it is. For example, the resource
useSmallFonts (instance name) controls whether rtsquery uses the smaller of
its two sets of fonts. The class name is boolean (as is true for many other
resources), which tells you that it takes values such as True and true (meaning
use small fonts), or False and false (meaning do not use small fonts).

Using Names

Names, especially the application names, are used throughout X11. In this
section only two uses are discussed.

Naming Application Default Files

You can use the application class name as the name of the application
defaults file. Since rtsquery’s class name is Rtsquery, its application defaults
file is in /usr/lib/X11/app-defaults/Rtsquery.

Setting Resource Values

You can also use all of these names to set resource values. To set a resource,
you name:

• the widget for which you want to set the resource

• the name of the resource itself

• the value to which you want the resource set

If the resource is used only by one widget, or if you want to set it for all
widgets that use it, you can omit the widget name; all widgets using that
resource will pick up the set value.

102

Chapter 6: Advanced Design Techniques

Since there are many widgets in an application, several widgets often end up
with the same name. To clarify which one you want, you can specify the
widget hierarchy that contains the particular widget. Widgets are arranged
inside one another, like a set of bowls in graduated sizes, and this structure
is directly reflected in the PDL text that you find in the application file. A
large widget makes up each whole window (called the view) and contains all
of the other widgets. Arranged inside and completely filling the view are
several display widgets, which create the sashes that allow you to change
their height. Inside each display widget are other widgets: control-bars, rows,
and so on. If you look at your application and the application file side by
side, you should have no trouble matching the features and identifying the
names that the system designer has assigned.

To set a resource for some widgets of a given kind, but not for others of the
same kind, you need to specify the names of some of the containing widgets,
as well as the name of the widget you actually wish to control. This is done
with a limited sort of wild-carding. For example, to exactly specify a
particular widget, you can specify the application name and all the widget
names down to the end, as in:

app.widgOne.widgTwo.widgThree.resource: value

Or, more commonly, you can leave out some or all of the widget names,
replacing them with an asterisk:

app*widgThree.resource: value

Since an application defaults file is only used by the “right” applications,
you don’t need to specify even the application name. Most resources are
specified like this:

*widgThree.resource: value

You can use this simple form in your ~/.Xdefaults file too, as long as you are
sure no other applications will use the value. But it is generally safer to
include the application name.

You can also set resources for all data of a particular type, which includes
data in lists that do not have widgets. To do this, you must concatenate the
type name (from the PDL fields section) and the resource itself:

Rtsquery*file_fileDisplayStyle: \
 FileDisplayVobStorage

Customizing Resources

103

Resources that you set in your own resource file usually take precedence
over settings in the application defaults file. However, precedence is also
based upon exactly how the resource is specified. To override a setting from
the application defaults file, follow these steps:

1. Copy the line from the application defaults file into your .Xdefaults file.

2. Add the application name before the asterisk.

3. Change the value (the part after the colon).

4. Reload your resources, either by logging out or by typing

xrdb -load ~/.Xdefaults

5. Restart the application.

Personal Tracker Resources

This section lists the resources you’ll most likely want to set in a Tracker
application.

instanceName: DefaultValue

Where appropriate, the description will mention which kinds of widgets use
this resource. Where this is not mentioned, the resources control the
behavior of the entire application.

executeStartupQuery: True

By default, if the file ~/.<appname>-query (or the file specified by the resource
*startupQueryFileName) is found upon startup, the query stored there (by
the application’s Query menu “Save As Default” item) is executed
immediately so that the application comes up displaying its results. Setting
this resource to False prevents this.

useInvalidDataDialogs: True

All widgets that display data from the database obey this resource. If invalid
data is entered into such a widget during an edit and this resource is set to
true , a highlight is drawn around the field and a dialog is popped up to
explain the error.

104

Chapter 6: Advanced Design Techniques

useInvalidQueryDialogs: True

All widgets that display data from the database obey this resource. If invalid
data is entered into such a widget during a query and this resource is set to
true , a highlight is drawn around the field and a dialog is popped up to
explain the error.

fileDisplayStyle: FileDisplayVobMount

All widgets that display data of type file obey this resource. File names that
name a file in a CASEVision/ClearCase Versioned Object Base (VOB) can be
displayed in two formats. The default format, FileDisplayVobMount , is a
standard ClearCase version-extended pathname, which includes the file
system path to the file and the version information, for example:

/vobs/CASE/usr/src/foo.c@@/main/37

This format is familiar to most users. If displayed on a system where the
VOB is mounted in another location, it will show the new location. If
displayed on a system without the VOB mounted, or even without
ClearCase installed, the string displayed to the last person who edited the
file will be used.

The other display format, FileDisplayVobStorage , shows where the VOB
is actually located, for example:

(vobhost:/storage/CASE)/usr/src/foo.c@@/main/37

This presentation can be useful to administrators investigating user
complaints that the first form names a file that doesn’t exist.

queryFetchCount: 50

This resource controls the number of entities retrieved from the database
each time the query results pane is updated. Setting this resource higher than
the default may improve the scrolling performance of query results. Setting
it too high may increase the delay before the first query results are displayed.

Customizing Resources

105

maxAssistValues: 25

This resource applies to the layout of the field value options in the GUI. If the
number of options is 25 (the default) or fewer, they appear on a rollover
submenu reached from the “Values” menu item on the field menu. If there
are more than 25 options, Tracker displays them in a scrolling list. You can
set the default at which the scrolling list appears to any number you choose.

keyboardFocusPolicy: explicit

This setting means that you must click the mouse button in a field before you
can enter data. Setting it to pointer means that you can type into whichever
field is under the mouse pointer.

XmForm.traversalOn: True

This setting means that you can move from one input field to another using
<Ctrl Tab> (move forward) and <Shift Tab> (move backward). <Tab> also
moves you forward from single line fields, but in multiline fields it merely
inserts a tab. Setting it to False means you must move the mouse pointer to
another field to enter data in it.

scheme: Lascaux

A scheme is a set of coordinated colors, fonts, and other properties. A
number of schemes are provided in the CASEVision environment (installed
along with Tracker). You select which scheme your CASEVision applications
use by setting this resource. The default scheme, Lascaux, matches many
other IRIX tools. You can preview the other schemes with cvscheme, which is
also a part of CASEVision. (For more information, see the cvscheme man page
or the CASEVision Environment Guide.)

useSmallFonts: True

Every scheme provides two entire sets of fonts. By default, Tracker
applications use the set of smaller fonts because Tracker windows tend to be
large and cluttered with the larger fonts. If you prefer the bigger fonts, set
this resource to False .

106

Chapter 6: Advanced Design Techniques

Using the exec Functions

The Tracker PDL provides many built-in facilities for implementing
applications. It supports data, process, and GUI definition. The PDL does
not, however, provide everything an application designer might need to
implement Tracker applications. Some applications may require resources
external to the PDL. The exec functions let you access external resources, thus
allowing hybrid applications to be constructed.

The exec functions are PDL functions that provide access to UNIX commands
and the DML language. The next section examines the exec functions for
UNIX command access.

Executing UNIX Commands from PDL

Two exec functions provide access to UNIX commands. They are
execCommand and execFilter. execCommand executes a UNIX command and
returns its exit status. execFilter also executes a UNIX command, but it
returns the standard output of the command instead of the exit status.

The execCommand and execFilter functions are very useful in implementing
Tracker applications, and the next example uses execFilter to demonstrate
this. Suppose you define a field, id_string, that you wish to contain a short
identifying string for each bug. You want this field to be filled in
automatically upon submission of the bug report with the $ENTITY_ID field
value and the submitter field value, as follows:

4-john

This cannot be accomplished with the standard methods provided for PDL
fields, but you can use execFilter to execute the UNIX command echo and save
the result into the id_string field. The PDL source to do this looks like this:

actions {
 id_string.setValue(
 execFilter(“/bin/echo $ENTITY_ID-$submitter”));

}

Both execFilter and execCommand make the values of all fields available in
environment variables. Thus $ENTITY_ID and $submitter reference
environment variables hold the values of the two fields $ENTITY_ID and

Using the exec Functions

107

submitter respectively. Both also store all long-text field values in temporary
files. The name of the temporary file is made available in an environment
variable named <fieldname>_file, and the value of the environment variable
fieldname is set to the special value ! (exclamation point) to signify the field’s
special treatment.

Both execFilter and execCommand make other information available in
environment variables. The variable FIELD_LIST contains the names of all
the request fields. The variable MODIFIED_FIELDS contains the names of
all fields whose values have been changed by the current transition, either
by user actions or by PDL methods like setValue. For those fields in the
MODIFIED_FIELDS list, the old values are also available in variables named
<fieldname>_old, or in the temporary file named in the <fieldname>_old_file
variable for long-text fields.

For an example usage of the execCommand function, see the RTS main
application PDL file, /usr/Tracker/RTS/Tracker.pdl. This file uses execCommand
to execute the shell script rts_notify. See the shell script for examples of using
environment variables to access field data.

Executing DML Select Statements

The execSelect function is used to execute a DML select statement against the
Tracker database from PDL. Its argument is the complete select statement
text, and its return value is the result of the query.

This example of execSelect usage appears in /usr/Tracker/RTS/Tracker.pdl:

tempShortText.
 setValue(execFilter(’echo “select manager from project
 where name = ”$project”;”’));
owner.setValue(owner.isSet ?
 owner.value :
 (project.isSet ?
owner.setValue(execSelect(tempShortText.value)) :
owner.setValue(execFilter(’/bin/echo $bboard’))));

In this example, execSelect retrieves the name of the project manager from the
database. The request is then conditionally assigned to the project manager.
First the select statement itself is constructed using execFilter with echo to
insert the project field’s value into the select statement text.

108

Chapter 6: Advanced Design Techniques

The result of this execFilter is stored in a temporary scratch field and then
later used as the argument to execSelect. The result of the execSelect is then
used to set the value of the owner field.

The execSelect function is useful only when the result of the query is a single
field value from a single request. If the select statement results in more than
one request being selected, then execSelect returns no value. If more than one
field is selected, only the first field mentioned in the select statement is
returned.

Importing Data

Most users do not have the luxury of creating a new request tracking system.
By the time you decide you need a product like Tracker, you already have a
collection of defect reports. Once you have formalized your tracking process
into a Tracker system, you will need to copy the information from your old
system into your new Tracker system.

If your old system is on-line and capable of producing text files in a fairly
consistent format, you should be able to build a tool to import your data into
your Tracker system. This section presents one such tool, which was used at
Silicon Graphics to import the entire Silicon Graphics bug history, over
40,000 bugs, from a previous system into our Tracker system. The example
uses real data, including one of the actual bugs filed against Tracker during
early development (now fixed).

You may find it easy to do your import in a two-step process:

1. Move the data into Tracker.

2. Use dml(1) interactively to clean up any minor problems that arise
during import.

This is usually quicker than polishing your import script until it’s flawless
and loading and reloading the database while you test it. You can make your
script do the entire job, if the effort seems justified. The script presented here
is in continuous unattended use, importing data on an hourly basis from the
old system (which is still in use in some parts of Silicon Graphics). Some of
the lessons learned while developing this script may save you some trouble
in developing your script.

Importing Data

109

Basics

The basic approach you’ll use is to translate your data into the Tracker Data
Manipulation Language (DML). DML is similar to many fourth generation
database languages, such as SQL. It lets you enter, examine, and modify the
data in the database. You can write an application that reads your current
database directly, translates the data into DML, and feeds the DML to the
interpreter, dml. More likely, however, you’ll need to go through an
intermediate text format, as outlined here.

First take a look at the DML aspects that are particularly important during
an import; if you’re able to translate directly from one to the other, that may
be all you will need.

Explicit Typing

When importing data, it’s best to explicitly type the data. This is an optional
DML feature because most data values are automatically recognized as
belonging to a particular type; however, explicit typing, can clear up
ambiguities, such as the difference between short-text and long-text values.
More importantly, while you’re importing data from another system, some
data might not match expectations—either Tracker’s expectations, or the
expectations you had when you wrote the import script. Explicit typing
helps to ensure that such surprises don’t slip past you into the Tracker
database. Even if you take the approach recommended above, you’ll at least
want to know that there is a problem.

Explicit typing is accomplished by enclosing the data item in single quotes
(apostrophes), and preceding it with the type name, that is, the name used
to declare the field in the PDL file. Both long-text and short-text string types
already require the surrounding quotes; you need to add only the
type-name.

Duplicate Suppression

Your first attempt to import a large database may not be flawless, but you
should be able to import a majority of your data easily, and then focus on the
few reports with difficulties. You don’t want to discard the reports you’ve
inserted correctly, yet you don’t want to turn one real report into two records
in the database.

110

Chapter 6: Advanced Design Techniques

You should focus your attention on getting the import script right, rather
than on remembering exactly which reports worked and which failed. The
DML includes a very useful construct for this sort of situation, the insert

... where statement (this is not in standard SQL).

A normal insert statement creates a new record unconditionally, which is
fine for the first time, but not so good when you’re doing updates. The
update ... where statement updates records already in the database, but
does nothing if the record described in the where clause doesn’t already
exist. If only these two statements were available, you would be required to
know the exact state of your database at all times and to adjust your import
process accordingly. This is inconvenient during an import.

The insert ... where statement solves the problem. It’s a synthesis of the
insert statement and the update statement: if one or more records can be
found that match the where clause, then it behaves as an update statement,
changing the existing record(s) and creating no new ones. If, however, no
such record exists, insert ... where behaves as an insert statement,
creating one new record with all the values included in the statement.

When you’re importing a block of data using your import script, you’ll
probably encounter a few reports that cause problems in some way. Often,
you can make a minor enhancement to your import script, and re-import the
same block of reports. If you’ve written your script to use insert ...

where , the reports that succeeded before will merely update themselves to
the same values; the reports that failed before will be inserted now.

To use insert ... where effectively, you’ll need to know the field(s) of the
incoming reports that uniquely identify them. (Your Tracker database
assigns an $ENTITY_ID uniquely to each report, but you won’t know that
value for the incoming data, so it can’t be used here.) Your old system may
already have a sequence number or something similar. If not, you may be
able to create a unique key using several fields. For example, if your old
system records who originally submits a given report, and also records the
time of submission fairly precisely, the submitter plus submission time will
probably be unique because no single person can submit more than one
report per second.

Importing Data

111

Multiline Data

Some fields values may cover more than one line. For example, nearly every
system has at least one field where the problem is described, which is usually
more than a single line. Similarly, lists of items can span several lines. The
example presented here uses nawk(1) to translate the text, however, and nawk
is primarily line-oriented. A problem arises: you’ll be writing this nawk
script to recognize certain lines that identify fields and their values in the
input, but you don’t want to be misled by similar text buried within a body
of text.

The solution used here is to notice when a multiline item begins; its
beginning is easily recognized in the same way any other field value is
recognized. A flag is set, indicating that the parsing is currently somewhere
within a multiline item. A few rules concerned with noticing the end of such
an item appear at the top of the script (so that they’re considered before the
general rules); these rules match only while the flag is set. These rules are
principally responsible for recognizing the end of the multiline data.

Embedded Quotes

The string data itself may contain quotes besides the quotes used to delimit
it. The DML requires that such a quote has a backslash in front of it, like this:
(\’). This in turn makes backslashes special: they, too, require backslashes in
front of them.

Performance Considerations

If you have so many defect reports to import that you’re considering writing
a script to do it, you can probably determine how long this script will take to
run. You can improve the performance of your script by making it surround
groups of insertions in transactions; otherwise, each individual insertion
will be a transaction by itself, which is time-consuming for the server. The
exact number of reports you include in a given transaction isn’t too critical
in this context; grouping at least ten together is advantageous, but above that
the rate of gain begins to fall off. If you make the transactions too large (say,
hundreds of reports), things will slow down because the server grows too
large (storing the pending transaction) and begins to page unduly.
Twenty-five reports per transaction seemed to be a good compromise.

112

Chapter 6: Advanced Design Techniques

Text Output from Your Old Database

Your first requirement is to deal with the text output from your old database.
The details of the format are not too important, since you’ll be writing a
translator anyway; make sure, though, that the format is easy to translate:

• Start each new field on a separate line.

• Start each line with the name of the field as you’ve declared it in the
PDL.

• Use consistent punctuation style.

• If at all possible, enquote the string values in this text so that strings
begin and end with an apostrophe, and embedded apostrophes are
escaped with backslashes.

The input format for this example is shown in Figure 6-1. Several details of
this format are worth pointing out:

• The line of asterisks is part of the output; it precedes each report (called
incidents in this system).

• The incident_id is the unique identifier for the old system.

• The data is enquoted, but is not entirely consistent; some integers are
quoted, some are not.

• Fields whose values are potentially multiline (such as description) have
a double colon; all other fields have a single colon.

• There are many fields in this form. In fact, the system as a whole has
even more than these; when a field is blank for a given report, this text
copy simply ignores that field.

Finally, notice that the first two lines of the description can be easily
mistaken for field values. The older system that was being replaced here was
based upon netnews and email messages—simple text messages that were
read by an administrator to sort out details such as priority and assigned
engineer. This stylized form of text entry made that job easier.

Importing Data

113

Figure 6-1 Input Format

incident_id : 106064
submitter : ‘jackr’
submitter_machine : ‘dblues’
opened_date : ‘May 04 1993 03:00AM’
category : ‘software’
classification : ‘rfe’
summary : ‘RFE: Mouse motion posts redundant popups’
priority : ‘4’
reproducible : T
SGI_only : T
message_id : ‘kcamfic@sgi.sgi.com’
newsgroups : ‘sgi.engr.case.bugs’
released_product : T
reported_by_customer : T
tvbug_id : 38969
description :: ‘assign to: jackr
priority: 4
When there\’s a syntax error in the entry form, every time
the mouse passes through that field, another copy of the
error message is popped up.

Since we expect mouse motion while these alerts are up
(context-sensitive help and so on), this is tacky. Perhaps
each pane or field could keep track of whether it already
has an alert up? Does the Vk message thingie return the
widget ID (so you could check if it\’s still alive)?’
resolution_id : 106064
project : ‘tracker’
status : ‘closed’
dev_priority : ‘4’
assigned_engineer : ‘johnt’
fixed_by : ‘jackr’
closed_date : ‘May 21 1993 01:13AM’
age : 79
fix_description :: ‘fixed by previous take’
modified_date : ‘May 21 1993 12:13PM’
modified_user : ‘jackr’

114

Chapter 6: Advanced Design Techniques

Preparing Translation Scripts

Keep your PDL file handy while preparing your translation script so that
you can easily generate the code necessary to include the explicit typing. The
fields section of the PDL file used in this system follows.

fields {
 Product : short-text;
 SGI_only : boolean;
 alpha : short-text;
 assigned_engineer : short-text;
 assigned_group : short-text;
 category : one-of software, hardware,
 documentation ...;
 classification : one-of bug, rfe, note;
 closed_date : date;
 command : short-text;
 description : long-text;
 doc_affected : short-text;
 fix_descriptio : long-text;
 fix_policy : short-text;
 fixed_by : short-text;
 incident_id : int;
 irix_release : short-text;
 machine : short-text;
 message_id : short-text;
 model_cpu : short-text;
 model_gfx : short-text;
 modified_date : date;
 modified_user : short-text;
 newsgroups : list-of one-of sgi_engr_case_bugs,
 sgi_bugs_compilers,
 sgi_bugs_dogwood,
 sgi_bugs_cypress,
 sgi_bugs_printware,
 sgi_bugs_lonestar
 ...;
 opened_date : date;
 peripheral : short-text;
 priority, dev_priority, CSD_priority : int;
 product_version : short-text;
 project : short-text;
 released_product : boolean;
 reported_by_customer : boolean;

Preparing Translation Scripts

115

 reproducible : boolean;
 resolution_id : short-text;
 submitter : short-text;
 submitter_domain : short-text;
 submitter_machine : short-text;
 summary : short-text;
 to_incident_id : short-text;
 importdate : date;
}

The Translation Script

The translation tool in this case is merely a nawk script that recognizes each
field by name and translates each one in a separate nawk production. This
approach enables you to clearly recognize when an unexpected field comes
along. This inflates the script quite a bit, with repetitious and uninteresting
text. Most of the useful details are either at the head or at the tail.

Here are a few highlights of the script, the text of which follows immediately
afterwards.

• The script expects to be run with one or more file names in its
command line. A verbose flag, -v , may be provided first, producing
some diagnostic output. You’ll probably be doing a lot of diagnosing of
this script, as you learn what your data actually looks like (instead of
what you thought it looked like); you can include any debugging aids.

• A collection of nawk functions are defined at the beginning:

• rpt() merely reports a message to stderr so that it doesn’t get mixed
into the output stream, which is probably being fed to dml.

• error() reports a message, annotated as an error, which is an
important distinction, even when you’re both the author and the
user of the script.

• barf() reports an error and also arranges to skip the rest of the
current incident.

• beginbug() performs initial tasks at the beginning of each bug.

• where() emits the where clause of the insert ... where statement
used to put the data into the Tracker database. As you’ll see below,

116

Chapter 6: Advanced Design Techniques

the incident_id is noted when encountered in the body of the input,
so it may be used here. where() is only used from within.

• endbug(), performs necessary closing tasks. The counters
maintained here keep track of when to close one transaction and
open another.

• intval(), enumval(), boolval(), strval(), lstrval(), and dateval() all
reformat the input format into the proper format for each particular
data type.

• startLongText() is called whenever a long-text field is encountered.
The test at the top checks if the field actually has only one line of
text. If there are several lines, then the flag InLongText is set.

• Two productions follow, guarded with by the InLongText flag. They
recognize two different kinds of transitions from one report to the
next.

• The (skipbug == True) production implements the skipping of
unparsable data set up by barf(). A production guarded by the flag
InBugHeader is concerned with skipping the blank lines that follow
the line of asterisks that begin a bug. The final InLongText line
recognizes and passes through the lines that make up the body of a
long-text field. They also notice the end of the field (notice the
careful handling of apostrophes and back slashes).

• A long string of trivial productions follows, each of which
recognizes one particular field and calls the appropriate formatting
routine (intval() and the other routines described above).

• Eventually, the exception conditions are handled (delineated by a
long comment line consisting of hash marks).

• The END production is executed by nawk when it runs out of input
data. In addition to ending the current bug as it would have if a
new bug had been encountered, END deals with the possibility that
the input set is not an exact multiple of the number of reports being
bundled into a transaction. In this case, the end transaction is not
printed by endbug; this would result in an error, and the entire
transaction would not be performed, so END adds it.

Preparing Translation Scripts

117

Here is the translation script.

#!/bin/ksh

if [[“$1” = -v]] ; then
 shift
 verbose=-v
else
 verbose=
fi
/usr/bin/nawk ‘
func rpt(msg) {
 system(“echo >&2 “ msg);
}
func error(msg) {
 rpt(“ERROR: “msg);
}
func barf(reason) {
 error(“\\\”” FILENAME “\\\”, line “ FNR “: error: “ reason);
 skipbug = True;
 next;
}
func beginbug() {
 if (counter == 0) {
 printf “begin transaction;\n”;
 }
 printf “insert into tracker_request set \n”;
}
func where() {
 printf “ where incident_id = “incident_id;
 printf “;\n”
}
func endbug() {
 # Do nothing on first pass (a trick to handle startup)
 # Elsewise, print the where-clause.
 # Once in a while, also end the transaction (and set
counter == 0,
to trigger beginbug() to start a new one).
 if (counter == -1) {
 counter = 0;
 }
 else if (counter == 24) {
 printf “importdate = date ‘\’’”importdate”’\’’\n”;
 where();
 printf “end transaction;\n”;

118

Chapter 6: Advanced Design Techniques

 counter = 0;
 fullcount += 1;
 }
 else {
 printf “importdate = “importdate”\n”;
 where();
 counter += 1;
 fullcount += 1;
 }
 incident_id = 0;
 tvbug_id = 0;
}
func intval() {
 gsub(“‘\’’”,””,$0);
 return “int ‘\’’”$3”’\’’”;
};
func enumval() {
 gsub(“‘\’’”,””);
 gsub(“,”,”’\’’, one-of ‘\’’”);
 $1 = ““;
 $2 = ““;
 $3 = “one-of ‘\’’”$3;
 return $0”’\’’”;
};
func boolval() {
 gsub(“‘\’’”,””,$0);
 if ($3 = 1) {
 return “boolean ‘\’’True’\’’”;
 }
 else {
 return “boolean ‘\’’False’\’’”;
 };
};
func strval() {
 $1 = ““$1;
 $2 = “= short-text”;
 return $0;
};
func lstrval() {
 $1 = ““$1;
 $2 = “= long-text”;
 return $0;
};
func dateval() {
 $1 = “date”;

Preparing Translation Scripts

119

 $2 = ““;
 gsub(“AM”,””,$0);
 gsub(“PM”,””,$0);
 return $0;
};
func startLongText() {
 if ($0 ~ /.*[^\\]’\’’$/) {
 print “,”;
 }
 else{
 InLongText = True;
 }
}
BEGIN {
 True = 1;
 False = 0;
 # Set things to recognize the new one
 InBugHeader = True;
 InLongText = False;
 skipbug = False;
 counter = -1;
 fullcount = 0;
}
(InLongText != True) && ($0 ~ /^Results for pvquery
command:/) {
 if (verbose==”-v”) {
 rpt(“\””$0”\””);
 }
 next;
};
(InLongText != True) && ($0 ~
/^*****************************\
************************$/) {
 endbug();
 beginbug();
 skipbug = False;
 InBugHeader = True;
 next;
}
(skipbug == True) {next;}
(InBugHeader == True) && ($0 ~ /^$/) {
 # Skip
 InBugHeader = False;
 next;
}

120

Chapter 6: Advanced Design Techniques

(InLongText == True){
 print $0;
 if (($0 ~ /^’\’’[]*$/) ||
 ($0 ~ /.*[^\\]’\’’[]*$/) ||
 ($0 ~ /.*[^\\]\\\\’\’’[]*$/)) {
 print “,”;
 InLongText = False;
 };
 next;
}
/^tvbug_id : / {
 tvbug_id = $3;
 next;
}
/^incident_id : / {
 # integer
 incident_id = intval();
 print “incident_id = “intval()”,”;
 #rpt(“Incident: “incident_id);
 next;
}
/^CSD_priority : ‘\’’/ {
 print “CSD_priority = “intval()”,”;
 next;
}
/^SGI_only : / {
 # bool
 print “SGI_only = “boolval()”,”;
 next;
}
/^age : / {
 next; # Ignore this computed value
}
/^alpha : ‘\’’/ {
 print strval()”,”;
 next;
}
/^assigned_engineer : ‘\’’/ {
 print strval()”,”;
 next;
}
/^assigned_group : ‘\’’/ {
 print strval()”,”;
 next;
}

Preparing Translation Scripts

121

/^category : ‘\’’/ {
 # software (hardware?)
 print “category = “enumval()”,”;
 next;
}
/^classification : ‘\’’/ {
 # bug, rfe
 print “classification = “enumval()”,”;
 next;
}
/^closed_date : ‘\’’/ {
 # date
 print “closed_date = “dateval()”,”;
 next;
}
/^command : ‘\’’/ {
 # person
 print strval()”,”;
 next;
}
/^description :: ‘\’’/ {
 # long-text
 print lstrval();
 startLongText();
 next;
}
/^dev_priority : ‘\’’/ {
 print “dev_priority = “intval()”,”;
 next;
}
/^doc_affected : ‘\’’/ {
 print strval()”,”;
 next;
}
/^fix_description :: ‘\’’/ {
 print lstrval();
 startLongText();
 next;
}
/^fix_policy : ‘\’’/ {
 gsub(“-”,”_”,$0)
 print strval()”,”;
 next;
}
/^fixed_by : ‘\’’/ {

122

Chapter 6: Advanced Design Techniques

 # person
 print strval()”,”;
 next;
}
/^irix_release : ‘\’’/ {
 # short-text
 print strval()”,”;
 next;
}
/^machine : ‘\’’/ {
 # string
 print strval()”,”;
 next;
}
/^message_id : ‘\’’/ {
 # short-text
 print strval()”,”;
 next;
}
/^model_cpu : ‘\’’/ {
 # string
 print strval()”,”;
 next;
}
/^model_gfx : ‘\’’/ {
 # string
 print strval()”,”;
 next;
}
/^modified_date : ‘\’’/ {
 # date
 print “modified_date = “dateval()”,”;
 next;
}
/^modified_user : ‘\’’/ {
 # person
 print strval()”,”;
 next;
}
/^newsgroups : ‘\’’/ {
 # list-of one-of
 gsub(“\\.”,”_”,$0);
 print “newsgroups = (“enumval()”),”;
 next;
}

Preparing Translation Scripts

123

/^opened_date : ‘\’’/ {
 # date
 print “opened_date = “dateval()”,”;
 next;
}
/^peripheral : ‘\’’/ {
 print strval()”,”;
 next;
}
/^priority : ‘\’’/ {
 print “priority = “intval()”,”;
 next;
}
/^product : / {
 # list-of short-text?
 $1 = “Product”;
 print strval()”,”;
 next;
}
/^product_version : ‘\’’/ {
 # person
 print strval()”,”;
 next;
}
/^project : ‘\’’/ {
 print strval()”,”;
 next;
}
/^released_product : / {
 # bool
 print “released_product = “boolval()”,”;
 next;
}
/^reported_by_customer : / {
 # bool
 print “reported_by_customer = “boolval()”,”;
 next;
}
/^reproducible : / {
 # bool
 print “reproducible = “boolval()”,”;
 next;
}
/^resolution_id : / {
 # integer

124

Chapter 6: Advanced Design Techniques

 print “resolution_id = “intval()”,”;
 next;
}
/^status : ‘\’’/ {
 print “$STATE = “enumval()”,”;
 next;
}
/^submitter : ‘\’’/ {
 # login
 print strval()”,”;
 next;
}
/^submitter_domain : ‘\’’/ {
 # string
 print strval()”,”;
 next;
}
/^submitter_machine : ‘\’’/ {
 # string
 print strval()”,”;
 next;
}
/^summary : ‘\’’/ {
 # short-text
 print strval()”,”;
 next;
}
##
/^No incidents match criteria$/ {exit;}
/^$/ {next;}
/^[^]* :: ‘\’’/{
 # untested
 error(“Unrecognized long text in incident “ incident_id
 “: “ $0);
 print strval();
 startLongText();
 next;
}
{
 error(“Unrecognized short text in incident “ incident_id “:
“ $0);
 print strval()”,”;
 next;
}
END{

Preparing Translation Scripts

125

 endbug();
 if (counter != 0) {
 # endbug wont have noticed we need a transend here.
 print “end transaction;”;
 };

 if (verbose==”-v”) {
 rpt(“Total incidents imported: “fullcount);
 }
}
‘ importdate=”$(/bin/date)” verbose=${verbose} “$@”

The Resulting DML

Here is the DML text produced for the sample incident, after passing
through the filter.

begin transaction;
insert into tracker_request set
 incident_id = int ‘106064’,
 submitter = short-text ‘jackr’,
 submitter_machine = short-text ‘dblues’,
 opened_date = date ‘May 04 1993 03:00’,
 category = one-of ‘software’,
 classification = one-of ‘rfe’,
 summary = short-text ‘RFE: Mouse motion posts redundant
syntax-warning popups’,
 priority = int ‘4’,
 reproducible = boolean ‘True’,
 SGI_only = boolean ‘True’,
 message_id = short-text ‘kcamfic@sgi.sgi.com’,
 newsgroups = (one-of ‘sgi_engr_case_bugs’),
 released_product = boolean ‘True’,
 reported_by_customer = boolean ‘True’,
 description = long-text ‘assign to: jackr
priority: 4
When there\’s a syntax error in the entry form, every time
the mouse passes through that field, another copy of the
error message is popped up.

126

Chapter 6: Advanced Design Techniques

Since we expect mouse motion while these alerts are up
(context-sensitive help and so on), this is tacky. Perhaps
each pane or field could keep track of whether it already
has an alert up? Does the Vk message thingie return the
widget ID (so you could check if it\’s still alive)?’
,
resolution_id = int ‘106064’,
 project = short-text ‘tracker’,
 $STATE = one-of ‘closed’,
 dev_priority = int ‘4’,
 assigned_engineer = short-text ‘johnt’,
 fixed_by = short-text ‘jackr’,
 closed_date = date ‘May 21 1993 01:13’,
 fix_description = long-text ‘fixed by previous take’
,
 modified_date = date ‘May 21 1993 12:13’,
 modified_user = short-text ‘jackr’,
 importdate = Wed Jul 22 16:37:16 PDT 1993
 where incident_id = int ‘106064’;
end transaction;

127

Chapter 7

7. Configuration Management

This chapter describes the integration of Atria® Software’s ClearCase
configuration management system with Silicon Graphics Inc.’s Tracker
bug-tracking tools. The ClearCase/Tracker Integration provides each
application with tools for exchanging information about bugs and
bug-fixing activity. It updates the Tracker database automatically, and
provides reporting capabilities for both the ClearCase and Tracker user.

This integration is designed to work specifically with the RTS sample
application, and is dependent on the state and field names used in RTS. It
can be modified to work with custom-designed applications by changing
information in the trigger scripts, which are described later in this chapter.

Note: The integration system files are contained in the Tracker.sw.clearcase
subsystem. You can install this subsystem only if you have ClearCase
already installed. For more information, see the Tracker 2.0 Release Notes.

This chapter covers these topics:

• The purpose of the integration

• The integration architecture

• The trigger scripts

• Checkout and checkin triggers

• Some typical tasks performed with the integration

128

Chapter 7: Configuration Management

The checkout /checkin Model

The checkout/checkin model is ClearCase’s standard mechanism for
managing the growth of an element’s version tree: checkout creates an
editable copy of a file in a user’s view; checkin adds a new version to the
element’s version tree.

The ClearCase/Tracker Integration extends this model to include
information about bug fixing. When checking out a file, a developer enters a
bug number. The checkout succeeds only if the bug number can be validated
against an existing Tracker bug report. Information about the checkout is
recorded in a ClearCase versioned object base, or VOB, in the form of an event
record and attributes (see Figure 7-1). In the Tracker database, the update
appears in the “Resolved in:” field.

Figure 7-1 Updating ClearCase and Tracker Databases

When checking in a file, a developer enters a bug number again. This begins
the same validation sequence that was performed before: the checkin
succeeds only if a corresponding Tracker bug report exists. Both the VOB

ClearCase
versioned object
base (VOB)

Tracker
database

ClearCase commands
update VOB database with
event records and attributes

The Tracker database is
updated at checkout

Bug Report

Events
ClearCase

WIP=46

Resolved in:

129

database and Tracker database are updated to reflect the file’s change in
condition.

Not every checkin constitutes a “fix,” however. The developer can create
“checkpoint” (intermediate) versions of a source file during the course of
bug-fixing work. Only the final version “fixes” the bug, not the intermediate
versions.

A developer can also cancel a checkout with the uncheckout command,
removing information about the checkout from both the VOB database and
Tracker database.

The integration does not impose a hard connection between a ClearCase
checkin (a state transition) and a “fixed bug” (a status). It includes tools to
create a closer connection, but the decision to call a bug “fixed” remains a site
policy decision.

Updating Databases

When you install the ClearCase/Tracker Integration, it prepares ClearCase
VOBs for use with Tracker (see Figure 7-2). The integration creates attribute
types and trigger types in ClearCase VOBs. The attribute types are used to
track changes to source files as they proceed through the bug-fixing
life-cycle, from “work in progress” (WIP attribute) to “fixed” (FIXES
attribute).

Figure 7-2 Database Modifications by ClearCase/Tracker Integration

Attribute Types:

• WIP
• FIXES

Trigger Types:

• tracker_pre_co_trig
• tracker_post_co_trig
• tracker_pre_ci_trig
• tracker_post_ci_trig
• tracker_pre_unco_trig

ClearCase VOB Database

130

Chapter 7: Configuration Management

The trigger types implement the mechanism through which ClearCase and
Tracker communicate and update their databases. For details on this
mechanism, see “The Integration Architecture” in the next section.

Using the Reporting Capabilities

The integration provides ClearCase users with tools for tracking status:

• The find_wip script lists every version of an element with the WIP
attribute. For example:

% find_wip base.c
base.c@@/main/CHECKEDOUT WIP 3
base.c@@/main/ports/2 WIP 6

• The find_fixes script lists every bug that a particular version of an
element fixes, using values of the FIXES attribute. For example:

% find_fixes base.c
Version base.c@@/main/5 fixes the following bugs:
23 6 3

Note: Each version can have only one instance of the FIXES attribute, but
this does not mean that it can fix only one bug. For more details, see “Using
the find_fixes Utility” later in this chapter.

Configuration Tools

The ClearCase/Tracker Integration includes a tool for enforcing site policies.
It takes the form of an editable “policy file” (default: policy_vars.sh), which
defines UNIX environment variables used by the integration software. The
environment variables, which can be set in one or more policy files, include:

• bug number request policy:
determines if a user must specify a bug number when checking out or
checking in a file

• user validation policy:
determines if a user must be authorized to work on a bug, or if anyone
can work on the bug (no validation)

The Integration Architecture

131

• “incomplete cycle” policy:
determines how the system responds when operations occur out of
order; for example, if the checkin bug number is different from the
checkout bug number

A complete list of the environment variables and their purpose is given in
Appendix A, “The policy_vars.sh File.”

You can set other environment variables in the policy file, such as the Tracker
Administrator’s name, the character used to “checkpoint” element versions
(“no bug-fix” character), and other general items.

You can also let different groups of ClearCase users have different policy
files. For example, you might set up a policy file for a new development
group that does not require users to enter a bug number. Or, you could set
up a policy file that updates a completely different Tracker database.

Setting Up a bug_task Utility

The integration allows ClearCase users to set up a work environment called
a bug task. The bug_task utility establishes task parameters, which include a
bug number and a ClearCase view-tag.

The bug_task utility creates a process that is attached to a specified view.
While working in that process, you need not enter a bug number during
checkout or checkin; the task’s bug number is used automatically.

The Integration Architecture

UNIX shell scripts, DML macros, and ClearCase triggers form the basis of
the integration mechanism. Together, they allow ClearCase and Tracker to
exchange information and affect each other’s behavior. The integration
creates global-element triggers in each VOB database, including:

• a pre-op and post-op checkout trigger:
(tracker_pre_co_trig, tracker_post_co_trig

• a pre-op and post-op checkin trigger:
tracker_pre_ci_trig, tracker_post_ci_trig

132

Chapter 7: Configuration Management

• a pre-op uncheckout trigger:
tracker_pre_unco_trig

Each trigger runs a shell script. The pre-op trigger exit status determines if
the operation proceeds or is cancelled.

The Trigger Scripts

The trigger scripts described in the following sections depend on several
Tracker-specific scripts that access the Tracker database. If you want to use
the integration for a customized database, you must modify the scripts
accordingly.

All integration files, including the scripts, are located in /usr/atria/tracker.
Table 7-1 lists each script and its purpose.

Table 7-1 Script Files

Script Name Purpose

validate_bug Verifies that:

- the bug number entered by a user actually exists in the
Tracker database

- it is an “open” bug, that is, AWAITING_RESPONSE

inform_ci Informs Tracker about a checkin to fix a bug. It updates the
“resolved_in” field of the bug and adds the name of the
checked-in file to the “resolved_in” list.

inform_co,
inform_unco

Inform Tracker about a checkout or uncheckout. They
make no change to the Tracker database. They are provided
so that the system administrator can extend the integration
if desired.

The Integration Architecture

133

checkout Triggers

The shell script run by the pre-op checkout trigger prompts you for a bug
number, and then invokes a DML macro to validate the request with Tracker.
The validation comprises these checks:

• the bug number exists

• no illegal state prevents the checkout

If these conditions are met, the script exits with a success status, and the
checkout proceeds. The shell script run by the post-op checkout trigger
attaches the WIP=bug_number attribute to the checked-out version.
Figure 7-3 illustrates the checkout mechanism.

Figure 7-3 Checkout Mechanism

foo.c@@/main/CHECKEDOUT

ClearCase VOB
database

Tracker
database

% cleartool checkout -nc foo.c

Bug Report

Events
ClearCase

DML (read)pre-operation trigger verifies request

post-operation trigger attaches WIP
attribute

Bug ID: 7
Assigned to
 Jones

Everything OK? checkout succeeds!

pre-operation trigger requests bug number:
What bug number will you be fixing? 7

WIP=7

bug exist?
no illegal state?

134

Chapter 7: Configuration Management

If the checkout request cannot be validated (for example, because the user
was unauthorized to work on the bug), the pre-op trigger exits with a failure
status, and the checkout is cancelled.

checkin Triggers

The shell script run by the pre-op checkin trigger checks the specified
version for the WIP attribute and, if it exists, prompts you for the bug
number that the version fixes. Entering the “no bug-fix” character (by
default, 0) “checkpoints” the version: the checkin proceeds with no change
to the attribute or to the Tracker database. Attribute manipulations by the
post-op checkin trigger are suppressed.

Entering a bug number invokes the same validation procedure that occurs at
checkout. If the request is valid, the script exits with a success status, and the
checkin proceeds.

The shell script run by the post-op checkin trigger removes all
WIP=bug_number attributes from the element.

Note: It is possible for many versions to have the same WIP attribute value.

Then, it attaches the FIXES=bug_number attribute to the checked-in version.
The script also invokes a DML macro to update the Tracker database with a
bug report. If several versions had the WIP=bug_number attribute, the DML
macro deletes the corresponding checkout records from Tracker, leaving
only the most recent checkout record intact.

Figure 7-4 illustrates the checkin mechanism.

If a checkin request cannot be validated, the pre-op trigger exits with a
failure status, and the checkin is cancelled. The post-op trigger sends mail to
the Tracker Administrator explaining the problem and showing the failed
DML commands. The Administrator can rerun these commands at a later
time.

For more details, see “Recovering from Database Update Failures” later in
this chapter.

The Integration Architecture

135

Figure 7-4 Checkin Mechanism

uncheckout Trigger

The shell script run by the pre-op uncheckout trigger checks the specified
version for the WIP attribute. If the version does not have a WIP attribute,
the uncheckout proceeds normally.

The uncheckout command itself removes the WIP attribute (if any) from the
checked-out version; there is no need for the trigger to perform this
operation.

ClearCase VOB
database

Tracker
database

% cleartool checkin -nc foo.c

Bug Report

Events
ClearCase

pre-operation trigger verifies request

post-operation trigger replaces WIP
attribute with FIXES attribute and writes
bug report

FIXES=7 WIP=7

Bug ID: 7

Everything OK? checkin succeeds!

pre-operation trigger requests bug number:
What bug number have you fixed? 7

bug exist?
no illegal state?

DML (read)

DML (write)

136

Chapter 7: Configuration Management

Using the ClearCase/Tracker Integration

This section presents some typical usage scenarios for the
ClearCase/Tracker Integration.

Scenario 1: A Typical Bug-fixing Session

A customer-reported problem has been assigned bug number 6 in Tracker.
The bug involves several source files, including parser.h, main.c, and base.c.
Using ClearCase, a developer begins working on parser.h.

1. The developer checks out parser.h, and provides the bug number:

% cleartool checkout -nc parser.h
What bug number will you be fixing? (0 for none) 6
Tracker: Successful verification.
Created attribute "WIP" on "parser.h@@/main/CHECKEDOUT".
Checked out "parser.h" from version "/main/4".

2. After editing the file, he “checkpoints” the element by entering the “no
bug-fix” character:

% cleartool checkin -c "checkpoint" parser.h
What bug number have you fixed? (0 for none) [6] 0
Checked in "parser.h" version "/main/5".

3. The developer checks out parser.h again, and resumes working on bug
6. Instead of entering an explicit bug number, he accepts the default
value by pressing <Enter> :

% cleartool checkout -c "resume conditionalizing work"
parser.h
What bug number will you be fixing? (0 for none) [6]
RETURN
Tracker: Successful verification.
Created attribute "WIP" on "parser.h@@/main/CHECKEDOUT".
Checked out "parser.h" from version "/main/5".

4. Before getting to work, he checks status with the find_wip utility to see if
parser.h has been edited to fix other bugs:

% find_wip parser.h
parser.h@@/main/5 WIP 6
parser.h@@/main/CHECKEDOUT WIP 6

Using the ClearCase/Tracker Integration

137

5. The developer checks in parser.h, indicating that it fixes bug 6:

% cleartool checkin -c "conditionalized parameters"
parser.h
What bug number have you fixed? (0 for none) [6] < Rtn>
Tracker: Successful verification.
Removed attribute "WIP" from
 "/tut_vobs/soap/parser.h@@/main/6".
Removed attribute "WIP" from
 "/tut_vobs/soap/parser.h@@/main/5".
Created attribute "FIXES" on
 "/tut_vobs/soap/parser.h@@/main/6".
Checked in "parser.h" version "/main/6".

6. The developer verifies that the bug fix was recorded in the VOB:

% find_fixes parser.h
Version parser.h@@/main/6 fixes the following bugs:
6

Scenario 2: Setting Up a Bug Task

Note: A developer is assigned to work on bug 5. The fix involves several
files, so he or she decides to set up a bug task to make the job easier. The
project leader has instructed everyone to make fixes in the bug-fix view.

1. The developer runs the bug_task utility to establish task parameters and
start the task:

% bug_task
What bug number will you be fixing? 5
What view will you be using? [arb] bugfix
Starting task to fix bug "5" in view "bugfix".
Please exit shell when done.

Note: bug_task stores the bug number in the TASK_BUGNUM
environment variable. You can set this environment variable manually,
and not be prompted for a bug number when you checkout or checkin a
file.

2. Before getting started, the developer checks the view:

% cleartool pwv
Working directory view: bugfix
Set view: bugfix

138

Chapter 7: Configuration Management

3. The developer checks out the first of several files involved with the fix:

% c leartool checkout -nc main.c
Tracker: Successful verification.
Created attribute "WIP" on "main.c@@/main/CHECKEDOUT"
Checked out "main.c" from version "/main/5".

4. The developer checks in the file when ready:

% cleartool checkin -c "fixed init error" main. c
Tracker: Successful verification.
Removed attribute "WIP" from "/vobs/soap/main.c@@/main/6".
Created attribute "FIXES" on "/vobs/soap/main.c@@/main/6".
Checked in "main.c" version "/main/6".

5. When all files have been checked in, the developer terminates the
bug_task by exiting the process:

% exit
% cleartool pwv
Working directory view: arb
Set view: arb

Scenario 3: Cancelling Work In Progress

A developer checks out a file with the wrong bug number, and cancels the
checkout.

1. The developer performs the checkout, specifying bug 4:

% cleartool checkout -nc base.c
What bug number will you be fixing? (0 for none) 4
Tracker: Successful verification.
Created attribute "WIP" on "base.c@@/main/CHECKEDOUT"
Checked out "base.c" from version "/main/1".

2. The developer checks the file’s status with find_wip, and realizes the
mistake:

% find_wip base.c
base.c@@/main/CHECKEDOUT WIP 4

(The mistake might just as easily have been noticed at checkout time.)

Using the ClearCase/Tracker Integration

139

3. The developer cancels the checkout, and checks the file’s status again:

% cleartool uncheckout -rm base.c
Checkout cancelled for "base.c".
% find_wip base.c
There are no WIP attributes on this element.

Scenario 4: An Incomplete Cycle

A site allows developers to checkout a file with one bug number and check
it in with another (an “incomplete cycle”). A developer checks a file out and
begins working on bug 3. Later, he or she checks the file in as the fix for bug 4.

1. The developer checks out the file, specifying bug number 3:

% cleartool checkout -nc base.c
What bug number will you be fixing? (0 for none) 3
Tracker: Successful verification.
Created attribute "WIP" on "base.c@@/main/CHECKEDOUT"
Checked out "base.c" from version "/main/2".

2. The developer really fixes bug 4, so he or she checks the file in with that
bug number. When warned about the incomplete cycle, he or she
indicates the intention of continuing anyway:

% cleartool checkin -c "increased buffer size" base.c
What bug number have you fixed? (0 for none) [3] 4
Tracker: Warning: A check out has not been done.
Do you wish to continue despite the warnings? [no] yes
Changing WIP value from 3 to 4
Removed attribute "WIP" from
 "/tut_vobs/soap/base.c@@/main/CHECKEDOUT".
Created attribute "WIP" on
 "/tut_vobs/soap/base.c@@/main/CHECKEDOUT".
Removing Checkout record for 3 from Bugtracking Database

Removed attribute "WIP" from
 "/tut_vobs/soap/base.c@@/main/3".
Created attribute "FIXES" on
 "/tut_vobs/soap/base.c@@/main/3".
Checked in "base.c" version "/main/3".

140

Chapter 7: Configuration Management

Scenario 5: An Illegal State

The Tracker Administrator has defined an illegal state that prevents a file
from being checked in if the bug is closed. A developer tries to checkin a
bugfix, but the Tracker bug status is “CLOSED”:

% cleartool checkin -c "changed ifdef, line 15" base.h
What bug number have you fixed? (0 for none) [7] 7
Tracker: Error: Bug Status CLOSED for bugid 7 is illegal for
checkin
cleartool: Warning: Trigger "tracker_pre_ci_trig" has
refused to let checkin proceed.
cleartool: Error: Unable to check in "base.h".

To checkin the file, the developer must specify another bug number,
“checkpoint” the version (for example, by entering 0), or cancel the checkout
with the uncheckout command.

Scenario 6: Using an Alternate Policy File

A site has two Tracker databases: one for tracking alpha project bugs, another
for tracking beta project bugs. The alpha project team uses the default policy
file, policy_vars.sh. The beta project team uses an alternate policy file,
/usr/atria/tracker/alt_policy_vars.sh.

The integration software uses policy_vars.sh automatically, unless the
ALT_POLICY environment variable is set. Therefore, alpha team members
begin work with no special preparation. beta team members set the
ALT_POLICY environment variable in their shell startup script:

setenv ALT_POLICY /usr/atria/tracker/alt_policy_vars.sh
 (C shell)

ALT_POLICY=/usr/atria/tracker/alt_policy_vars.sh
 (Bourne shell)
export ALT_POLICY

Using the find_fixes Utility

141

Scenario 7: Bypassing the Integration

A site allows developers to omit the bug number when they checkout or
checkin a file. The “no bugfix” character is 0 (the default value). A new
project has started, and the development team wants to bypass the
integration mechanism altogether. Each team member sets the
TASK_BUGNUM environment variable to 0:

% setenv TASK_BUGNUM 0 (C shell)
% TASK_BUGNUM=0 (Bourne shell)
% export TASK_BUGNUM

As an alternative, each team member starts a bug task with bug number 0.

Using the find_fixes Utility

The find_fixes utility compiles a list of bug fixes from values of the FIXES
attribute. It uses the following algorithm to determine the list of bugs that a
particular version of an element fixes:

• First, it lists the FIXES attribute value for the specified version (if any).

• Then, it lists the FIXES attribute value for any of that version’s
ancestors.

• Finally, it lists the FIXES attribute value for any merge contributor that
produced the specified version, or any of its ancestors.

find_fixes recursively processes merge contributor versions to determine
their list of bug fixes: it examines their ancestor versions, any merge
contributors that produced them, and so on.

To illustrate the find_fixes algorithm, consider the version tree in Figure 7-5.
Several versions have the FIXES attribute — some on the main branch, others
on subbranches.

142

Chapter 7: Configuration Management

Figure 7-5 Complex Version Tree with FIXES Attributes

find_fixes returns the following list of bug fixes for the latest version on the
main branch:

% find_fixes foo.c
Version foo.c@@/main/5 fixes the following bugs:
45 23 4

The listing includes bug 45 because that fix was merged into an ancestor
version of foo.c@@/main/LATEST, which itself, fixes bug 23 (also listed). It
includes bug 4 because that fix was also made in one of foo.c’s ancestor
versions.

find_fixes returns the list of bug fixes below for the latest version on the
branch2 branch:

% find_fixes foo.c@@/main/branch2/LATEST
Version foo.c@@/main/branch2/2 fixes the following bugs
17 4

The listing includes bug 17 because the latest version on the branch2 branch
fixes that bug. It includes bug 4 because that fix was made in an ancestor
version of foo.c@@/main/branch2/2.

branch3

branch1

FIXES=9

branch2

1

2

3

main
branch

0

1

2

34

5

0

0

1

2

0

1

2

merger

FIXES=23 FIXES=45

FIXES=4

FIXES=17

Recovering from Database Update Failures

143

Neither listing includes bug 9, however (fixed on the branch3 branch),
because neither of the specified versions have “inherited” that fix.

Recovering from Database Update Failures

If the Tracker database cannot be updated during a ClearCase checkout,
checkin, or uncheckout (for example, because the Tracker database server
went down), ClearCase triggers send mail to the Tracker Administrator
(value of BUGTRACK_ADMIN environment variable).

Figure 7-6 shows a typical mail message, which explains the problem and
includes the DML macro that failed.

Figure 7-6 Typical Mail Message to Tracker Administrator

You can recover the lost transaction (for example, a ClearCase checkin) by
rerunning the DML macro manually.

Administrator,

The operation "checkin" of the file "/view/pete/vobs/testvob/foo.c@@/main/2
failed to be recorded in the Tracker database "/usr/tmp/RTS".

peteo was working on bug "1".

The exact DML statement that failed was:

update tracker_request set resolved_in =
(file ’/view/pete/vobs/testvob/foo.c@@/main/2’) where $ENTITY_ID = 1;

This message sent automatically by the ClearCase/Tracker
bugtracking integration trigger.

DML macro

144

Chapter 7: Configuration Management

Preparing VOB Databases

1. Set a view:

% cleartool setview < any view-tag >

2. As the VOB owner or root user, run the vob_prep script over each VOB to
be integrated with Tracker. The script takes one or more full pathname
arguments; you can specify any pathname within the VOB. For
example, these commands prepare three VOBs for use with Tracker:

% su
Password: <enter root password>
vob_prep /vobs/scomp /vobs/soap /vobs/gui
Installing types for ClearCase/Tracker integration into
/vobs/scomp.

Created trigger type "tracker_pre_co_trig".
Created trigger type "tracker_post_co_trig".
Created trigger type "tracker_pre_ci_trig".
Created trigger type "tracker_post_ci_trig".
Created trigger type "tracker_pre_unco_trig".
Created attribute type "WIP".
Created attribute type "FIXES".
 .
 . similar output for /vobs/soap and /vobs/gui
 .

3. (optional) Instruct other ClearCase users to run vob_prep over any of
their own VOBs that they want integrated with Tracker.

145

Appendix A

A. The policy_vars.sh File

This appendix lists the environment variables contained in the policy_vars.sh
file that you can use to configure the ClearCase/Tracker Integration. They
are listed in three tables:

• Tracker-specific environment variables

• environment variables that help establish and enforce site policies

• environment variables that set miscellaneous system parameters

146

Appendix A: The policy_vars.sh File

Table A-1 lists the Tracker-specific environmental variable that can be set in
the policy_vars.sh file. This variable is also used by commands such as dml.

Table A-2 lists the policy environmental variables in the policy_vars.sh file.

Table A-1 Tracker-Specific Environmental Variables

Environmental Variable Description Values

TVBUGBASE UNIX directory for Tracker
database.

any UNIX pathname
default: /usr/Tracker/db

Table A-2 Policy Environmental Variables

Environmental Variable Description Values

BUGNUM_REQ_CO must user enter a bug
number on checkout?

TRUE, FALSE
default: FALSE

BUGNUM_REQ_CI must user enter a bug
number on checkin?

TRUE, FALSE
default: FALSE

BUG_NONE no bugfix string; used only if
BUGNUM_REQ_CO and
BUGNUM_REQ_CI both
have “FALSE” value

any character string
default: "0"

BUGTRACK_ADMIN user to receive mail when
update of Tracker database
fails

Tracker Administrator’s
UNIX login name, or any
other valid UNIX login
name
default: root

147

Table A-3 lists miscellaneous environmental variables.

CYCLE determines handling of an
incomplete cycle (for example,
user enters one bug number
on checkout, and another bug
number on checkin)

NONE: allow incomplete
cycle
WARN: display message
and proceed
ERROR: abort ClearCase
operation
default: WARN

VALIDATE_BUG bug-validation command,
executed at checkout and
checkin

validate_bug $CYCLE
validate_bug $CYCLE
$CLEARCASE_USER

default: first form (no
validation of username
against “Assigned to” field
in Tracker database)

Table A-3 Miscellaneous Environmental Variables

Environmental Variable Description Values

MKTYPE_COMMENT creation comment for
meta-data types

any character string
default: “Created for use
with bug tracking triggers.”

PRE_CI_TRIG
POST_CI_TRIG
PRE_CO_TRIG
POST_CO_TRIG
PRE_UNCO_TRIG

ClearCase pre-operation
and post-operation trigger
type names for checkin,
checkout, and uncheckout
commands

any valid ClearCase trigger
name
defaults: tracker_pre_ci_trig
tracker_post_ci_trig
tracker_pre_co_trig
tracker_post_co_trig
tracker_pre_unco_trig

WIP_NAME “work in progress”
attribute type

any valid ClearCase
attribute name
default: WIP

FIXES_NAME “fixed problem” attribute
type

any valid ClearCase
attribute name
default: FIXES

Table A-2 (continued) Policy Environmental Variables

Environmental Variable Description Values

148

Appendix A: The policy_vars.sh File

149

Appendix B

B. RTS PDL Files with On-line Help

This appendix contains the code listings for the RTS PDL files with the
on-line help text embedded. These files are also available in
/usr/Tracker/RTS. The files are:

• Tracker.pdl (the main file for rtsquery)

• rtsapprove.pdl

• rtsrespond.pdl

• rtssubmit.pdl

150

Appendix B: RTS PDL Files with On-line Help

Tracker.pdl

///
//
// File: Tracker.pdl
// Description: RTS default pdl
// This is the master pdl file that defines the fields
// and transitions for the RTS. Each RTS app includes
// another pdl file that defines its views.
// Author: Pete Orelup
// Created: Fri Apr 10 09:29:49 PDT 1992
// Language: Text
//
// (C) Copyright 1992, Silicon Graphics, Inc.
//
// Permission to use, copy, modify, and distribute this software for
// any purpose except publication and without fee is hereby granted,
// provided that the above copyright notice appear in all copies of
// the software.
//

// This define should be changed to the login name or mail alias of
// the Tracker facilitator.

#define CZAR 'root'

// This define should be changed to contain the login name or mail
// alias for the person (or persons) responsible for assigning owner
// to reports entered without an owner or project field.

#define BBOARD 'root'

//
// Top-level Help
//
help {
 help-title 'Request Tracking System Overview';
 short-help-title 'RTS Overview';
 help-text'
The Request Tracking System (RTS) provides four applications for
accessing requests (bugs or RFEs) in request database:

Tracker.pdl

151

 * rtsquery - the main application, it provides full functionality
 * rtssubmit - a specialized application for submitting new
 requests
 * rtsrespond - a specialized application for responding to
 requests you have received
 * rtsapprove - a specialized application for approving requests
 after resolution or rejection by the owner

Note that all applications permit you to browse requests in the
database. Only rtsquery provides all the details; the others supply
subsets of the request data.'; }

//
// Field Declarations
//
fields {
 help {
 help-title 'Field Entry';
 short-help-title 'Field Entry';
 help-text'
All fields in RTS display a menu if the right mouse button is held
down while the cursor is in the field. If there are predefined values
for the field, a selection called "Values" displays that accesses a
cascading menu with the value selections. For more help, look up the
specific field.

When you select a transition from the Modes menu, all required fields
are highlighted. If you enter an invalid value for a field, the field
becomes highlighted when you leave it.

When conducting queries, you can enter an exact value or an expression
using one of these operators:

 = <> < <= > >= equality and inequality operators
 match regular expression match
 contains [any | only] specific list value; choice of values;
 multiple
 specific values
 = null | <> null test whether value is set (exists) or
 not
 [val1, val2, ... valN] test whether value is equal to one of
 a list of values
 [startrange:endrange, ...] range of values';
 };

152

Appendix B: RTS PDL Files with On-line Help

//
// Report Number Field
//
 report_number: int // Equal to $ENTITY_ID by
 // default
 help {
 help-title 'Report # Field';
 short-help-title 'Report # Field';
 help-text'
The Report # field displays the ID assigned to the request. You
cannot change this value.

When you are in query mode, the field becomes editable and you can
enter a specific value, a range of values, or an expression.

See also RTS Fields help.';
 };

//
// Submitter Field
//
 submitter: short-text // person
 help {
 help-title 'Submitter Field';
 short-help-title 'Submitter Field';
 help-text'
The Submitter field displays the person who created the request. Any
text string is valid.

When you are in query mode, you can enter a specific value, a range of
values, or an expression.

See also Field Entry help card.';
 };

//
// Date Field
//
 submit_date: date
 help {
 help-title 'Date Field';
 short-help-title 'Date Field';
 help-text'
The Date field contains the date on which the request is submitted.

Tracker.pdl

153

When you submit a request, the current date is entered automatically.
When entering dates, you can use such forms as: mm/dd/yy; month day,
year; day-month-year; day month; time. You can also enter the
variables "today" and "now". You can use additive expressions such as
(today + days) and (month day - hh:mm:ss).

When performing queries involving dates, you can enter: a range, such
as [date:date]; an operator such as < (before) or > (after); the
variables "this year" and "this month"; or any of the previously
mentioned expressions. For a complete list of date options, see the
man page for cftime.

See also Field Entry help card.';
 };

//
// Recommendation Field
//
 recommendation: one-of
 DEFERRAL, REJECTION, RESOLUTION, DUPLICATION
 help {
 help-title 'Recommendation Field';
 short-help-title 'Recommendation Field';
 help-text'
The Recommendation field indicates the recommended disposition of the
request as of the most recent transition: DEFER (DEFERRAL), REJECT
(REJECTION), RESOLVE (RESOLUTION), and DUPLICATE (DUPLICATION). These
recommendations are entered automatically by the transition.

See also Field Entry help card.';
 };

//
// Type Field
//
 type: one-of
 BUG, RFE
 help {
 help-title 'Type Field';
 short-help-title 'Type Field';
 help-text'
The Type field indicates the type of request: BUG for bug report and
RFE for request for enhancement. Your tracking system administrator
may have implemented additional types. To check for these, hold down
the right mouse button while the cursor is in the type field and

154

Appendix B: RTS PDL Files with On-line Help

select "Values" to display all allowable types.

See also Field Entry help card.';
 };
//
// Priority Field
//
 priority: one-of
 LOW, MEDIUM, HIGH
 help {
 help-title 'Priority Field';
 short-help-title 'Priority Field';
 help-text'
The Priority field indicates the designated priority for this request.
The standard values are LOW, MEDIUM, and HIGH. Your tracking system
administrator may have implemented different priorities. To check for
these, hold down the right mouse button while the cursor is in the
priority field and select "Values" to display all allowable
priorities.

See also Field Entry help card.';
 };
//
// Owner Field
//
 owner: short-text // person
 help {
 help-title 'Owner Field';
 short-help-title 'Owner Field';
 help-text
'The Owner field displays the person responsible for implementing this
request. Any text string is valid.

When you are in query mode, you can enter a specific value, a range of
values, or an expression.

See also Field Entry help card.';
 };

Tracker.pdl

155

//
// Project Field
//
 project: one-of
#include "projects.h" // This include file contains the list of
 // projects.
 // Edit it to change the list of known
 // projects.

 help {
 help-title 'Project Field';
 short-help-title 'Project Field';
 help-text'
The Project field indicates the project to which the request is
assigned. The placeholder values: PROJECT_1, PROJECT_2, and PROJECT_3
are installed initially. Your tracking system administrator has
probably implemented different project names. To check for these, hold
down the right mouse button while the cursor is in the project field
and select "Values" to display all allowable projects.

See also Field Entry help card.';
 };

//
// System Field
//
 system: one-of
 SYSTEM_1, SYSTEM_2, SYSTEM_3
 help {
 help-title 'System Field';
 short-help-title 'System Field';
 help-text
'The System field indicates the system to which the request is
assigned. The placeholder values: SYSTEM_1, SYSTEM_2, and SYSTEM_3 are
installed initially. Your tracking system administrator has probably
implemented different system names. To check for these, hold down the
right mouse button while the cursor is in the system field and select
"Values" to display all allowable systems.

See also Field Entry help card.';
 };

156

Appendix B: RTS PDL Files with On-line Help

//
// Found in Field
//
 found_in: list-of short-text // list-of product
 help {
 help-title 'Found in Field';
 short-help-title 'Found in Field';
 help-text'
The Found in field indicates the location(s) of the bug or
enhancement.

See also Field Entry help card.';
 };
//
// Summary Field
//
 summary: short-text
 help {
 help-title 'Summary Field';
 short-help-title 'Summary Field';
 help-text'
The Summary field describes the request in a single line. When you
submit a request, this field defaults to the first line of the request
description, unless you have made an overriding entry. You can edit
this line at any time. The summary line information appears in the
query results area during queries.

See also Field Entry help card.';
 };

//
// Description Field
//
 description: long-text
 help {
 help-title 'Description Field';
 short-help-title 'Description Field';
 help-text'
The Description field contains a complete explanation of the request.
You can enter as many lines as needed. If you have set either the
$WINEDITOR or $EDITOR environment variables, then the right-button
menu for the field will have an "Edit..." selection that lets you
enter the description in your default editor and import it into the
field.

Tracker.pdl

157

See also Field Entry help card.';
 };

//
// Dup of Field
//
 is_duplicate_of: int // pr-num
 help {
 help-title 'Dup of Field';
 short-help-title 'Dup of Field';
 help-text'
The Dup of field is only used when you are executing the DUPLICATE
transition. You use DUPLICATE when you feel that a new request is a
duplicate of a previous request. If so, you must enter the report
number of the previous request in the dup of field in order to mark
the new request as a duplicate.

See also Field Entry help card.';
 };

//
// Notify Field
//
 interested_parties: list-of short-text // list-of person
 help {
 help-title 'Notify Field';
 short-help-title 'Notify Field';
 help-text'
The Notify field is used to add interested parties to the list of
people to be notified when changes occur to the request. Initially,
the list contains the submitter, owner, and tracking system
administrator.

See also Field Entry help card.';
 };

//
// Due Date Field
//
 due_date: date
 help {
 help-title 'Due Date';
 short-help-title 'Due Date';
 help-text'
The Due Date field contains the date by which the request is intended

158

Appendix B: RTS PDL Files with On-line Help

to be fixed. When you submit a request, the current date plus 30 days
is entered automatically. Your tracking system administrator may have
implemented a different default date.

When entering dates, you can use such forms as: mm/dd/yy; month day,
year; day-month-year; day month; time. You can also enter the
variables "today" and "now". You can use additive expressions such as
(today + days) and (month day - hh:mm:ss).

When performing queries involving dates, you can enter: a range, such
as [date:date]; an operator such as < (before) or > (after); the
variables "this year" and "this month"; or any of the previously
mentioned expressions. For a complete list of date options, see the
man page for cftime.
See also Field Entry help card.';
 };

//
// Close Date Field
//
 close_date: date
 help {
 help-title 'Close Date';
 short-help-title 'Close Date';
 help-text'
The Close date field contains the date on which the request is closed.
When you approve a request, the current date is entered automatically.

When entering dates, you can use such forms as: mm/dd/yy; month day,
year; day-month-year; day month; time. You can also enter the
variables "today" and "now". You can use additive expressions such as
(today + days) and (month day - hh:mm:ss).

When performing queries involving dates, you can enter: a range, such
as [date:date]; an operator such as < (before) or > (after); the
variables "this year" and "this month"; or any of the previously
mentioned expressions. For a complete list of date options, see the
man page for cftime.

See also Field Entry help card.';
 };

Tracker.pdl

159

//
// Reopen Field
//
 reopen_date: date
 help {
 help-title 'Reopen Date';
 short-help-title 'Reopen Date';
 help-text'
The Reopen date field contains the date on which the deferred request
is to be reopened.

When entering dates, you can use such forms as: mm/dd/yy; month day,
year; day-month-year; day month; time. You can also enter the
variables "today" and "now". You can use additive expressions such as
(today + days) and (month day - hh:mm:ss).

When performing queries involving dates, you can enter: a range, such
as [date:date]; an operator such as < (before) or > (after); the
variables "this year" and "this month"; or any of the previously
mentioned expressions. For a complete list of date options, see the
man page for cftime.

See also Field Entry help card.';
 };

//
// Resolved In Field
//
 resolved_in: list-of file // list-of file
 help {
 help-title 'Resolved In Field';
 short-help-title 'Resolved In';
 help-text'
The Resolved in field lets you enter files used to implement the
request. You can select the file access format through the
right-button menu. The text format lets you enter files as text
strings inside parenthese separated by spaces. The list format lets
you enter and delete files in a scrollable list.

See also Field Entry help card.';
 };

160

Appendix B: RTS PDL Files with On-line Help

//
// Resolution Field
//
 resolution_description: long-text
 help {
 help-title 'Resolution Field';
 short-help-title 'Resolution';
 help-text'
The Resolution field contains ane explanation of implementation of the
request. You can enter as many lines as needed. If you have set either
the $WINEDITOR or $EDITOR environment variables, then the right-button
menu for the field will have an "Edit..." selection that lets you
enter the resolution explanation in your default editor and import it
into the field.

See also Field Entry help card.';
 };

//
// Fixed In Field
//
 fixed_releases: list-of short-text // list-of
 // product
 help {
 help-title 'Fixed In Field';
 short-help-title 'Fixed In';
 help-text'
The Fixed in field lets you identify the product release in which the
request is implemented

See also Field Entry help card.';
 };

//
// Approver Field
//
 approver: short-text // person
 help {
 help-title 'Approver Field';
 short-help-title 'Approver';
 help-text'
The Approver field identifies the person with approval authority over
this request.

Tracker.pdl

161

See also Field Entry help card.';
 };

//
// Non-displayable Fields
//

 // These fields are not visible to the users
 czar: short-text; // person
 bboard: short-text; // person
 notify_list: list-of short-text; // list-of
 // person
 tempShortText: short-text;
}

//
// Transition Section
//

transitions {
 help {
 help-title 'Transition Overview';
 short-help-title 'Transitions';
 help-text'
To perform operations in the RTS applications, you choose the desired
editing mode from the Modes menu, edit the appropriate fields, and
click the <apply command> button (the third from the left in the
control area) to execute the operation or the Cancel button to void
it.

The RTS process begins with submitting a request, using either the
SUBMIT_BUG or SUBMIT_RFE transition, which puts the request in the
AWAITING_RESPONSE state. The next step is screening the request. Use
REJECT if the request is invalid, DEFER to postpone the fix, DUPLICATE
if an earlier request covers the suggestion, or RESOLVE to indicate
that the request has been executed.

At this point, the request is in the AWAITING_APPROVAL state. The
approver can issue a REDO if the request has not been satisfied, which
returns the request to the AWAITING_RESPONSE state. If the fix is
satisfactory, then the approver issues the APPROVE transition which
takes the request to the CLOSED state. When a DEFERRed request is
APPROVEd, it enters the CLOSED state, but will be REOPENed by the
owner later.

162

Appendix B: RTS PDL Files with On-line Help

After a waiting period, the tracking system administrator removes the
request from the database using the DELETE transition.';
 };

//
// SUBMIT_BUG Transition
//

 SUBMIT_BUG(=>AWAITING_RESPONSE) {
 help {
 help-title 'SUBMIT_BUG Transition';
 short-help-title 'SUBMIT_BUG';
 help-text'
SUBMIT_BUG creates a new request of type BUG.

Prior state: non-existent New state: AWAITING_RESPONSE
Default fields:

1. The Date field is set to the current date.
2. The Type field is set to BUG.
3. The Submitter field is set to the current user.
4. The Summary field is set to the first line of the description.

Rule requirements:

1. The description field must have an entry.

Actions:

1. The owner is set to the entered value or if not entered to the
project manager if known or otherwise to the tracking system
administrator.';
 };
 rules {
 description.isSet;
 submit_date.is(submit_date.setDefault('now'));
 type.is(type.setDefault(BUG));
 submitter.is(submitter.setDefault($USER.value));
 summary.is(summary.setDefault(description.value));
 // Expect some action in one month
 due_date.is(due_date.setDefault('now +30:00:00:00'));
 }

Tracker.pdl

163

 actions {
 bboard.setValue(BBOARD);
 // If the owner is not set but a project was entered, then
 // set the owner to the project manager. If no project
 // was entered, then set owner to the bug board.
 tempShortText.
 setValue(execFilter(
'echo "select manager from project where name = \'$project\';"'));
 owner.setValue(owner.isSet ?
 owner.value :
 (project.isSet ?
 owner.setValue(execSelect(tempShortText.value)) :
 owner.setValue(execFilter('/bin/echo $bboard'))));
 tempShortText.setValue('');
 }
 }

//
// SUBMIT_RFE Transition
//

 SUBMIT_RFE(=>AWAITING_RESPONSE) {
 help {
 help-title 'SUBMIT_RFE Transition';
 short-help-title 'SUBMIT_RFE';
 help-text'
SUBMIT_RFE creates a new request of type RFE.

Prior state: non-existent New state: AWAITING_RESPONSE

Default fields:

1. The Date field is set to the current date.
2. The Type field is set to RFE.
3. The Submitter field is set to the current user.
4. The Summary field is set to the first line of the description.

Rule requirements:

1. The description field must have an entry.

164

Appendix B: RTS PDL Files with On-line Help

Actions:

1. The owner is set to the entered value or if not entered to the
 project manager if known or otherwise to the tracking system
 administrator.';
 };

 rules {
 description.isSet;
 submit_date.is(submit_date.setDefault('now'));
 type.is(type.setDefault(RFE));
 submitter.is(submitter.setDefault($USER.value));
 summary.is(summary.setDefault(description.value));
 // Expect some action in one month
 due_date.is(due_date.setDefault('now +30:00:00:00'));
 }
 actions {
 bboard.setValue(BBOARD);
 // If the owner is not set but a project was entered, then
 // set the owner to the project manager. If no project
 // was entered, then set owner to the bug board.
 tempShortText.
 setValue(execFilter(
'echo "select manager from project where name = \'$project\';"'));
 owner.setValue(owner.isSet ?
 owner.value :
 (project.isSet ?
 owner.setValue(execSelect(tempShortText.value)) :
 owner.setValue(execFilter('/bin/echo $bboard'))));
 tempShortText.setValue('');
 }
 }

//
// ASSIGN Transition
//

 ASSIGN(AWAITING_RESPONSE=>AWAITING_RESPONSE) {
 help {
 help-title 'ASSIGN Transition';
 short-help-title 'ASSIGN';
 help-text'
ASSIGN establishes the owner and a due date for the request.

Tracker.pdl

165

Prior state: AWAITING_RESPONSE New state: AWAITING_RESPONSE

Default fields: none

Rule requirements:

1. There must be an entry in the Owner field.
2. There must be an entry in the Due Date field.

Actions: none';
 };
 rules {
 owner.isSet;
 due_date.isSet;
 }
 }

//
// FORWARD Transition
//
 FORWARD(AWAITING_RESPONSE=>AWAITING_RESPONSE) {
 help {
 help-title 'FORWARD Transition';
 short-help-title 'FORWARD';
 help-text'
FORWARD establishes a change in ownership of the request.

Prior state: AWAITING_RESPONSE New state: AWAITING_RESPONSE

Default fields: none

Rule requirements:

1. The Owner field must be changed.

Actions: none';
 };
rules {
 owner.changed;
 }
 }

166

Appendix B: RTS PDL Files with On-line Help

//
// RESOLVE Transition
//

 RESOLVE(AWAITING_RESPONSE=>AWAITING_APPROVAL) {
 help {
 help-title 'RESOLVE Transition';
 short-help-title 'RESOLVE';
 help-text'
RESOLVE is issued by the request owner to indicate that the request
has been executed and is ready for approval.

Prior state: AWAITING_RESPONSE New state: AWAITING_APPROVAL

Default fields: none

Rule requirements:

1. There must be an entry in the Resolution field.
2. There must be one or more valid files entered in the Resolved in
 field.

Actions:

1. The Recommendation field is set to RESOLUTION.';
 };
 rules {
 resolution_description.isSet;
 resolved_in.isSet;
 }
 actions {
 recommendation.setValue(RESOLUTION);
 }
 }

//
// REJECT Transition
//

 REJECT(AWAITING_RESPONSE=>AWAITING_APPROVAL) {
 help {
 help-title 'REJECT Transition';
 short-help-title 'REJECT';
 help-text'

Tracker.pdl

167

REJECT is issued by the request owner to indicate that the request is
not considered and needs to be confirmed (through the APPROVE
transition) as such by the approver.

Prior state: AWAITING_RESPONSE New state: AWAITING_APPROVAL

Default fields: none

Rule requirements:

1. There must be an entry in the Resolution field.

Actions:

1. The Recommendation field is set to REJECTION.';
 };
 rules {
 resolution_description.isSet;
 }
 actions {
 recommendation.setValue(REJECTION);
 }
 }

//
// DEFER Transition
//

 DEFER(AWAITING_RESPONSE=>AWAITING_APPROVAL) {
 help {
 help-title 'DEFER Transition';
 short-help-title 'DEFER';
 help-text'
DEFER is issued by the request owner to indicate that the request
should be postponed to the suggested date. This postponement needs to
be confirmed (through the APPROVE transition) by the approver.

Prior state: AWAITING_RESPONSE New state: AWAITING_APPROVAL

Default fields: none

Rule requirements:

1. There must be an entry in the Resolution field.
2. There must be an entry in the Reopen date field.

168

Appendix B: RTS PDL Files with On-line Help

Actions:

1. The Recommendation field is set to DEFERRAL.';
 };
 rules {
 resolution_description.isSet;
 reopen_date.isSet;
 }
 actions {
 recommendation.setValue(DEFERRAL);
 }
 }

//
// DUPLICATE Transition
//

 DUPLICATE(AWAITING_RESPONSE=>AWAITING_APPROVAL) {
 help {
 help-title 'DUPLICATE Transition';
 short-help-title 'DUPLICATE';
 help-text'
DUPLICATE is issued by the request owner to indicate that an earlier
request made the same suggestion and that this request is unnecessary.
The DUPLICATE transition needs to be confirmed (through the APPROVE
transition) by the approver.

Prior state: AWAITING_RESPONSE New state: AWAITING_APPROVAL

Default fields: none
Rule requirements:

1. There must be an entry in the Resolution field.
2. There must be an entry in the Dup of field, indicating the earlier
 transition that was duplicated.

Actions:

1. The Recommendation field is set to DUPLICATION.';
 };
 rules {
 resolution_description.isSet;
 is_duplicate_of.isSet;
 }

Tracker.pdl

169

 actions {
 recommendation.setValue(DUPLICATION);
 }
 }

//
// NOTIFY Transition
//

 NOTIFYME(=>) {
 help {
 help-title 'NOTIFY Transition';
 short-help-title 'NOTIFY';
 help-text'
NOTIFYME adds a new user to the list of users to be informed when
changes occur to this request.

Prior state: any New state: any

Default fields: none

Rule requirements: none

Actions:

1. The name in the Notify field is added to the list of interested
 parties for this request.';
 };
 actions {
 interested_parties.append($USER.text);
 }
 }
//
// REDO Transition
//
REDO(AWAITING_APPROVAL=>AWAITING_RESPONSE) {
 help {
 help-title 'REDO Transition';
 short-help-title 'REDO';
 help-text'
An approver issues a REDO when a request has not been adequately
satisfied so that the request is returned to the owner.

Prior state: AWAITING_APPROVAL New state: AWAITING_RESPONSE

170

Appendix B: RTS PDL Files with On-line Help

Default fields: none

Rule requirements: none

Actions: none';
 };
 rules {
 }
 actions {
 }
 }
//
// EDIT Transition
//
 EDIT(=>) {
 help {
 help-title 'EDIT Transition';
 short-help-title 'EDIT';
 help-text'
EDIT lets you change the current values of fields in the request.
Prior state: any New state: any

Default fields: none

Rule requirements: none

Actions: none';
 };
 rules {
 }
 actions {
 }
 }
//
// APPROVE Transition
//

 APPROVE(AWAITING_APPROVAL=>CLOSED) {
 help {
 help-title 'APPROVE Transition';
 short-help-title 'APPROVE';
 help-text'
APPROVE is only accessible to those authorized to approve requests.
APPROVE changes the state of the request from AWAITING_APPROVAL to
CLOSED. Prior state: AWAITING_APPROVAL New state: CLOSED

Tracker.pdl

171

Default fields: none

Rule requirements: none

Actions:

1. The Approver field is set to the entered value or if none, to the
 current user.
2. The Close date field is set to the current date.';
 };
 actions {
 approver.setValue(approver.isSet ?
 approver.value :
 $USER.value);
 close_date.setValue('now');
 }
 }

//
// REOPEN Transition
//

 REOPEN(CLOSED=>AWAITING_RESPONSE) {
 help {
 help-title 'REOPEN Transition';
 short-help-title 'REOPEN';
 help-text'
REOPEN is used to open a request that has been deferred.

Prior state: CLOSED New state: AWAITING_RESPONSE

Default fields: none

Rule requirements: none

Actions: none ';
 };
 }

172

Appendix B: RTS PDL Files with On-line Help

//
// DELETE Transition
//

 DELETE(CLOSED=>DELETED) {
 help {
 help-title 'DELETE Transition';
 short-help-title 'DELETE';
 help-text'
DELETE is used to remove a request from the request database. It is
valid for the tracking system administrator only.

Prior state: CLOSED New state: DELETED

Default fields: none

Rule requirements:

1. Current user must be the tracking system administrator.

Actions: none ';
 };
 rules {
 $USER.is(CZAR);
 }
 }

//
// Global Rules and Actions for All Transitions
//

 rules {
 help {
 help-title 'Global Rules and Actions';
 short-help-title 'Global Rules and Actions';
 help-text'

These rules and actions are applied to all transitions.

Rule requirements:

1. Report number cannot be changed after the request has been
 submitted.
2. The Recommendation field cannot be edited. It is set
 automatically.

Tracker.pdl

173

Actions:

1. Add the owner and submitter to the list of interested parties to be
 notified when changes occur to the request.';
 };

 // The report_number can only be changed as part of
 // submission.
 $TRANSITION.is(SUBMIT_BUG) ||
 $TRANSITION.is(SUBMIT_RFE) ||
 !report_number.changed;

 !recommendation.changed;
 }

 actions {
 // If the report_number is not set, then set it to the value
 // of the $ENTITY_ID field.
 // report_number.setValue(report_number.isSet ?
 // report_number.value : $ENTITY_ID.value);
 // Execute the notifier to send mail as appropriate.
 //
 czar.setValue(CZAR);

 notify_list.setValue(interested_parties.value);
 notify_list.append(owner.value);
 notify_list.append(submitter.value);
 execCommand('/usr/local/lib/rts_notify');
 };
}
views {
 help {
 help-title 'rtsquery Views';
 short-help-title 'rtsquery Views';
 help-text
'The rtsquery view lets you access the request database. It has four
main areas. From top to bottom these are:

 * menu bar - for accessing menus
 * control bar - select editing mode from the mode menu, enter
 data in the appropriate fields, and complete transaction by
 clicking the command (third button from left). Right four
 buttons are for selecting requests in query results area.
 * query results area - lists requests resulting from a query
 * request form area - contains detailed request information

174

Appendix B: RTS PDL Files with On-line Help

The rtsfiles view is an auxiliary view of the rtsquery application.
It contains a request form area with three fields. These fields list
the files associated with a request. For more help, look up the help
cards for the individual fields. ';
 };
 RTSQuery(){
 display () {
 control-bar() {
 help {
 help-title 'Control Bar';
 short-help-title 'Control Bar';
 help-text'
The control bar consists of the Modes menu, the Cancel and <apply
command> buttons, and the four query list control buttons.

To perform operations in the RTS applications, you choose the desired
mode from the Modes menu, edit the appropriate fields, and click the
<apply command> button (the third from the left in the control area)
to execute the operation or the Cancel button to void it. The <apply
command> button label changes as the mode, selected from the Modes
menu, changes.

The list control buttons control the selection of requests in the
query results area.';

 };
 // Include all transitions
 transitions;
 };
 };
 qresults() {
 index type, '#' $ENTITY_ID, $STATE, owner, summary;
 };

 fourColumn: display() {
 row{'Report #:' $ENTITY_ID,
 'Status:' $STATE,
 'Type:' type,
 'Submitter:' submitter};
 row{'Date:' submit_date,
 'Recommend:' recommendation,
 'Project:' project,
 'Priority:' priority};

Tracker.pdl

175

 oneRowList:
 row{'Owner:' owner,
 'System:' system,
 'Notify:' interested_parties,
 'Due Date:' due_date};
 row{'Close Date:' close_date,
 'Reopen Date:' reopen_date,
 'Approver:' approver,
 'Dup of:' is_duplicate_of};
 row{'Summary:' summary};
 }
 display() {
 row{'Description:' ' '};
 fourRowLongText:
 row{description};
 }
 display() {
 row{'Resolution:' ' '};
 fourRowLongText:
 row{resolution_description};
 }
 }
 RTSFiles(type ' #' $ENTITY_ID ' ' $STATE ' ' owner ' ' summary) {
 display() {
 row{'Found in:' ' ', ' '};
 row{found_in};
 }
 display() {
 row{'Resolved in:' ' ', ' '};
 row{resolved_in};
 }
 display() {
 row{'Fixed Releases:' ' ',,,,};
 row{fixed_releases};
 }
 }
}

176

Appendix B: RTS PDL Files with On-line Help

rtsapprove.pdl

//
//
// File: approve.pdl
// Description: RTS approval pdl
// This pdl file defines the report approval app's GUI
// Author: Pete Orelup
// Created: Fri Apr 10 09:29:49 PDT 1992
// Language: PDL
//
// (C) Copyright 1992, Silicon Graphics, Inc.
//
// Permission to use, copy, modify, and distribute this software for
// any purpose except publication and without fee is hereby granted,
// provided that the above copyright notice appear in all copies of
// the software.
//
//
//

views {
 RTSApprove(){
 help {
 help-title 'rtsapprove View';
 short-help-title 'rtsapprove View';
 help-text
'The rtsapprove window is a supplementary application for approving
fixed requests. The transitions available in rtsapprove are: APPROVE,
NOTIFYME, REDO, and EDIT.

It has four main areas. From top to bottom these are:

 * menu bar - for accessing menus
 * control bar - select editing mode from the mode menu, enter data
 in the appropriate fields, and complete transaction by clicking
 the command (third button from left). Right four buttons are for
 selecting requests in query results area.
 * query results area - lists requests resulting from a query
 * request form area - contains detailed request information
 relevant for responding to requests. This includes a Resolution
 field for explaining the fix to the request and a Resolved in
 field that identifies the files that have changed as a result of
 the request.';
 };

rtsapprove.pdl

177

 control-bar() {
 help {
 help-title 'Control Bar';
 short-help-title 'Control Bar';
 help-text'
The control bar consists of the Modes menu, the Cancel and <apply
command> buttons, and the four query list control buttons.

To perform operations in the RTS applications, you choose the desired
mode from the Modes menu, edit the appropriate fields, and click the
<apply command> button (the third from the left in the control area)
to execute the operation or the Cancel button to void it. The <apply
command> button label changes as the mode, selected from the Modes
menu, changes.

The list control buttons control the selection of requests in the
query results area.';
 };
 transitions APPROVE, NOTIFYME, REDO, EDIT;
 };
 display () {
 qresults() {
 index type, '#' $ENTITY_ID, $STATE, owner, summary;
 };
 };
 display() {
 row{'Report #:' $ENTITY_ID,
 'Status:' $STATE};
 row{'Submitter:' submitter,
 'Date:' submit_date};
 row{'Type:' type,
 'Recommend:' recommendation};
 row{'Project:' project,
 'Priority:' priority};
 oneRowList:
 row{'System:' system,
 'Notify:' interested_parties};
 row{'Owner:' owner,
 'Due Date:' due_date};
 row{'Duplicate of:' is_duplicate_of,
 'Re-Open Date:' reopen_date};
 row{'Approver:' approver, };
 row{'Summary:' summary};
 }
 display() {

178

Appendix B: RTS PDL Files with On-line Help

 row{'Description:' ' '};
 fourRowLongText:
 row{description};
 }
 display() {
 row{'Resolution:' ' '};
 fourRowLongText:
 row{resolution_description};
 }
 display() {
 row{'Resolved in:' ' '};
 row{resolved_in};
 }
 }
}

rtsrespond.pdl

179

rtsrespond.pdl

//
//
// File: respond.pdl
// Description: RTS response pdl
// This pdl file defines the report response app's GUI
// Author: Pete Orelup
// Created: Fri Apr 10 09:29:49 PDT 1992
// Language: PDL
//
// (C) Copyright 1992, Silicon Graphics, Inc.
//
// Permission to use, copy, modify, and distribute this software for
// any purpose except publication and without fee is hereby granted,
// provided that the above copyright notice appear in all copies of
// the software.
//
///
//

views {
 RTSRespond(){
 help {
 help-title 'rtsrespond View';
 short-help-title 'rtsrespond View';
 help-text
'The rtsrespond window is a supplementary application for responding
to requests in the request database. It is intended for request
owners. The transitions available in rtsrespond are: NOTIFYME,
FORWARD, EDIT, DEFER, RESOLVE, REJECT, and DUPLICATE.

It has four main areas. From top to bottom these are:

 * menu bar - for accessing menus
 * control bar - select editing mode from the mode menu, enter data
 in the appropriate fields, and complete transaction by clicking
 the command (third button from left). Right four buttons are for
 selecting requests in query results area.
 * query results area - lists requests resulting from a query
 * request form area - contains detailed request information
 relevant for responding to requests. This includes a Resolution
 field for explaining the fix to the request and a Resolved in
 field that identifies the files that have changed as a result of
 the request.';

180

Appendix B: RTS PDL Files with On-line Help

 };
 control-bar() {
 help {
 help-title 'Control Bar';
 short-help-title 'Control Bar';
 help-text'
The control bar consists of the Modes menu, the Cancel and <apply
command> buttons, and the four query list control buttons.

To perform operations in the RTS applications, you choose the desired
mode from the Modes menu, edit the appropriate fields, and click the
<apply command> button (the third from the left in the control area)
to execute the operation or the Cancel button to void it. The <apply
command> button label changes as the mode, selected from the Modes
menu, changes.

The list control buttons control the selection of requests in the
query results area.';
 };
 transitions NOTIFYME, FORWARD, EDIT, DEFER, RESOLVE,
 REJECT, DUPLICATE;
 };
 display () {
 qresults() {
 index type, '#' $ENTITY_ID, $STATE, owner, summary;
 };
 };
 display() {
 row{'Report #:' $ENTITY_ID,
 'Status:' $STATE};
 row{'Submitter:' submitter,
 'Date:' submit_date};
 row{'Type:' type,
 'Recommend:' recommendation};
 row{'Project:' project,
 'Priority:' priority};
 oneRowList:
 row{'System:' system,
 'Notify:' interested_parties};
 row{'Owner:' owner,
 'Due Date:' due_date};
 row{'Duplicate of:' is_duplicate_of,
 'Re-Open Date:' reopen_date};
 row{'Approver:' approver, };
 row{'Summary:' summary};

rtsrespond.pdl

181

 }
 display() {
 row{'Description:' ' '};
 fourRowLongText:
 row{description};
 }
 display() {
 row{'Resolution:' ' '};
 fourRowLongText:
 row{resolution_description};
 }
 display() {
 row{'Resolved in:' ' '};
 row{resolved_in};
 }
 }
}

182

Appendix B: RTS PDL Files with On-line Help

rtssubmit.pdl

//
//
// File: submit.pdl
// Description: RTS submittal pdl
// This pdl file defines the report submission app's GUI
// Author: Pete Orelup
// Created: Fri Apr 10 09:29:49 PDT 1992
// Language: PDL
//
// (C) Copyright 1992, Silicon Graphics, Inc.
//
// Permission to use, copy, modify, and distribute this software for
// any purpose except publication and without fee is hereby granted,
// provided that the above copyright notice appear in all copies of
// the software.
//
//
//

views {
 RTSSubmit(){
 help {
 help-title 'rtssubmit View';
 short-help-title 'rtssubmit View';
 help-text '
The rtssubmit window is a supplementary application for creating new
requests in the request database. The transitions available in
rtssubmit are: SUBMIT_BUG, SUBMIT_RFE, ASSIGN, FORWARD, NOTIFYME, and
EDIT.

It has four main areas. From top to bottom these are:

 * menu bar - for accessing menus
 * control bar - select editing mode from the mode menu, enter data
 in the appropriate fields, and complete transaction by clicking
 the command (third button from left). Right four buttons are for
 selecting requests in query results area.
 * query results area - lists requests resulting from a query
 * request form area - contains detailed request information
 relevant for submitting requests. This includes a Found in field
 for identifying the location of the request.';
 };

rtssubmit.pdl

183

 control-bar() {
 help {
 help-title 'Control Bar';
 short-help-title 'Control Bar';
 help-text'
The control bar consists of the Modes menu, the Cancel and <apply
command> buttons, and the four query list control buttons.

To perform operations in the RTS applications, you choose the desired
mode from the Modes menu, edit the appropriate fields, and click the
<apply command> button (the third from the left in the control area)
to execute the operation or the Cancel button to void it. The <apply
command> button label changes as the mode, selected from the Modes
menu, changes.

The list control buttons control the selection of requests in the
query results area.';
 };
 transitions SUBMIT_BUG, SUBMIT_RFE, ASSIGN, FORWARD,
 NOTIFYME, EDIT;
 };
 display () {
 qresults() {
 index type ' #' $ENTITY_ID ' ', $STATE ' ', owner ' ',
 summary;
 };
 };
 display() {
 row{'Report #:' $ENTITY_ID,
 'Status:' $STATE};
 row{'Submitter:' submitter,
 'Date:' submit_date};
 row{'Type:' type,
 'Recommend:' recommendation};
 row{'Project:' project,
 'Priority:' priority};
 oneRowList:
 row{'System:' system,
 'Notify:' interested_parties};
 row{'Owner:' owner,
 'Due Date:' due_date};
 row{'Summary:' summary};
 }
 display() {
 row{'Description:' ' '};

184

Appendix B: RTS PDL Files with On-line Help

 fourRowLongText:
 row{description};
 }
 display() {
 row{'Found in:' ' '};
 oneRowList:
 row{found_in};
 }
 }
}

185

Index

Symbols

#define, 12
#ifdef, 12
#include, 12

A

action
defined, 4

actions, 23
operators, 27

add method, 35
and method, 35
append method, 34
application

defined, 2
application resources, specifying, 40
attribute types, 129
auxiliary view

defined, 3
AWAITING_APPROVAL state, 27
AWAITING_RESPONSE state, 27

B

begin statement, 72
boolean field type, 15

bug number request policy, 130, 146
bug_task utility, 131

C

changed method, 31
checkin command, 128, 146, 147
checkin triggers, 134
checkout command, 128, 146, 147
checkout triggers, 133
checkout/checkin model, 128
ClearCase, see configuration management, 127
CLOSED state, 27
configuration management

attribute types, 129
bug number request policy, 130, 146
bug_task utility, 131
checkin command, 128, 146, 147
checkin triggers, 134
checkout command, 128, 146, 147
checkout triggers, 133
checkout/checkin model, 128
database update failure recovery, 143
FIXES attribute, 129, 130, 134, 141, 147
incomplete cycle policy, 131, 147
policy file, 130, 146
trigger scripts, 132

inform_ci, 132
inform_co, 132
inform_unco, 132

186

Index

validate_bug, 132
trigger types, 130
uncheckout command, 129, 135, 147
uncheckout triggers, 135
user validation policy, 130
WIP attribute, 129, 130, 133, 134, 135, 147

control bar, 4
declaration, 43

control-bar, 39
controlling database access, 62

D

data manipulation language, 5, 57, 72
database access, 60

controlling, 62
database security, 62
database structure, 58
database update failure recovery, configuration

management, 143
date field type, 15
delete statement, 71
DELETED state, 27
design procedures in Tracker, 7
display, 38
display, 39
display area

defined, 4
display key words, 38
divide method, 35
DML, 57 through 72

defined, 5
dml program, 61
DML statements, 62
dmlcount script, 61
dmlrpt script, 61

E

eightRowLongText, 41
end statement, 72
entity class

general format, 20
$ENTITY field, 21

nested select statements, 69
environment variables, 21
execCommand method, 30
execFilter method, 30
execSelect method, 30
explicit typing, 65

F

fatBox, 41
feature names, 40
field

defined, 4
field characteristics, changing, 35
field declaration, 15 through 21

defined, 13
example, 76, 81

field pop-up menus, 49
field type

boolean, 15
date, 15
file, 15
int, 15
journal, 15, 18
list-of, 15
one-of, 16, 18
short-text, 16

$FIELD_LIST, 30
file field type, 15
find_fixes, 130, 141

187

find_wip, 130
FIXES attribute, 129, 130, 134, 141, 147
fname method, 32
form area declaration, 45
fourColumnDisplay, 41
fourRowLongText, 41

G

generating PDL files, 6
global rules and actions, 23

H

help declaration, 51 through 56

I

implicit typing, 63
incomplete cycle policy, 131, 147
index, 39
insert statement, 70
int field type, 15
is method, 33
is_cf method, 33
isGreater method, 33
isGreaterEq method, 33
isLess method, 33
isLessEq method, 33
isNot method, 33
isSet method, 31

J

journal field type, 15, 18

L

length method, 32
list-of field type, 15
literal value specification, 63

explicit typing, 65
implicit typing, 63

lock statement, 71
logical operators, 27

M

method, read-only, 35
methods

add, 35
and, 35
append, 34
changed, 31
divide, 35
execCommand, 30
execFilter, 30
execSelect, 30
fname, 32
is, 33
is_cf, 33
isGreater, 33
isGreaterEq, 33
isLess, 33
isLessEq, 33
isNot, 33
isSet, 31

188

Index

length, 32
multiply, 35
not, 31
old, 32
or, 35
remove, 34
setDefault, 34
setReadOnly, 35
setValue, 34
size, 32
subscript, 35
subtract, 35
text, 32
transitions, 29 through 35
unsetValue, 34
value, 32

methods, testing data, 31
Modes menu, 4
$MODIFIED_FIELDS, 30
multiply method, 35

N

nested select statement, 69
not method, 31

O

old method, 32
on-line help, 23
one-of field type, 16, 18
oneRowList, 41
oneRowLongText, 41
operators

transitions, 27
or method, 35

P

PDL, 11, 50
defined, 5
key words, 38

PDL file, 11
definitions, 11
example, 74
field declaration, 13, 15, 21
general format, 14, 52
generation, 6
help declaration, 51, 56
supplementary applications, 13
transition declaration, 13
view declaration, 13

policy file, 130, 146
policy_vars.sh, 130, 146
predeclared fields, 21
predefined feature names, 40
printing query results, see CASEVision/Tracker User’s

Guide
process description language, 5, 11 through 50

Q

qresults, 39, 43
query results declaration, 43
query results, printing, see CASEVision/Tracker User’s

Guide

R

read-only fields, 35
remove method, 34
request

defined, 1

189

row, 40
rule

defined, 4
rules

operators, 27
transition declarations, 23

S

sample1 example, 73 through 86
scrolling list, 105
security, database, 62
security,database, 61, 62
select statement, 66

nested, 69
setDefault method, 34
setReadOnly method, 35
setValue method, 34
short-text field type, 16
sixteenRowLongText, 41
size method, 32
sorting feature, 40
specifying application resources, 40
state change, 23, 26, 27
state declaration

example, 83
$STATE field, 21, 28
state transition diagram, 8
subscript method, 35
subtract method, 35
supplementary application, 13

defined, 2

T

testing field data, methods, 31
text method, 32
threeColumnDisplay, 41
top-level rules, operators, 27
Tracker

database access, 60
database security, 61, 62
database structure, 58

Tracker design procedures, 7
Tracker.sec, 61
Tracker.sec, 62
transaction statements, 72
transition

defined, 4
example, 25
methods, 29 through 35
operators, 27

transition declaration
actions, 23
control bar, 43
defined, 13
example, 76, 85
field pop-up menus, 49
form area, 45
general format, 24
global rules and actions, 23
on-line help, 23
query results, 43
rules, 23
state change, 23, 26 through 27
views, 36 through 50

$TRANSITION field, 21
transitions, 39
transitions, 39

190

Index

trigger scripts, 132
inform_ci, 132
inform_co, 132
inform_unco, 132
validate_bug, 132

trigger types, 130
tuples, 38

definition, 40
tvgen, 6

example, 79
twoRowLongText, 41

U

uncheckout command, 129, 135, 147
uncheckout triggers, 135
unlock statement, 71
unsetValue method, 34
update statement, 70
user validation policy, 130

V

value method, 32
versioned object bases (VOBs), 128, 129, 144
view

body, 37
defined, 2
format, 36
name, 37
title, 37

view declaration, 36 through 50
defined, 13
example, 78

views, 38
VOBs, see versioned object bases

W

WIP attribute, 129, 130, 133, 134, 135, 147

X

X widgets, 40

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-1664-020.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 650-932-0801

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

