
IRIS Performer™
Programmer’s Guide

Document Number 007-1680-030

IRIS Performer™ Programmer’s Guide
Document Number 007-1680-030

CONTRIBUTORS

Edited by Steven Hiatt
Illustrated by Dany Galgani
Production by Derrald Vogt
Engineering contributions by Sharon Clay, Brad Grantham, Don Hatch, Jim Helman,

Michael Jones, Martin McDonald, John Rohlf, Allan Schaffer, Chris Tanner, and
Jenny Zhao

© Copyright 1995, Silicon Graphics, Inc.— All Rights Reserved
This document contains proprietary and confidential information of Silicon
Graphics, Inc. The contents of this document may not be disclosed to third parties,
copied, or duplicated in any form, in whole or in part, without the prior written
permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and/
or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94039-7311.

Indigo, IRIS, OpenGL, Silicon Graphics, and the Silicon Graphics logo are registered
trademarks and Crimson, Elan Graphics, Geometry Pipeline, ImageVision Library,
Indigo Elan, Indigo2, Indy, IRIS GL, IRIS Graphics Library, IRIS Indigo, IRIS InSight,
IRIS Inventor, IRIS Performer, IRIX, Onyx, Personal IRIS, Power Series,
RealityEngine, RealityEngine2, and Showcase are trademarks of
Silicon Graphics, Inc. AutoCAD is a registered trademark of Autodesk, Inc.
X Window System is a trademark of Massachusetts Institute of Technology.

iii

Contents

Examples xv

Figures xix

Tables xxi

About This Guide xxv
Why Use IRIS Performer? xxv
What You Should Know Before Reading This Guide xxvi
How to Use This Guide xxvi

What This Guide Contains xxvii
Conventions xxviii

Bibliography xxix
Computer Graphics xxix
The IRIS GL and OpenGL Graphics Libraries xxx
X, Xt, IRIS IM, and Window Systems xxxi
Visual Simulation xxxii
Mathematics of Flight Simulation xxxii
Virtual Reality xxxiii
Geometric Reasoning xxxiii
Conference Proceedings xxxiii
Survey Articles in Magazines xxxiv
Internet Resources xxxv

iv

Contents

1. Getting Acquainted With IRIS Performer 3
Exploring the IRIS Performer Sample Scenes 3

Installing the Software 3
Exploring Code 9
Going Beyond Visual Simulation 10
Deciding Where to Start 10

2. IRIS Performer Basics 13
What Is IRIS Performer? 13

Applications 16
Features 16

Survey of Visual Simulation Techniques 19
Low-Latency Image Generation 21
Consistent Frame Rates 22
Rich Scene Content 23
Texture Mapping 25
Character Animation 26
Database Construction 28

Overview of the IRIS Performer Libraries 29
The libpf Visual Simulation Library 29
The libpr High-Performance Rendering Library 32
The libpfdu Geometry Builder Library 36
The libpfdb Loader Library 37

Database Formats and IRIS Performer 38
Graphics Libraries 40

OpenGL 40
Porting From IRIS GL to OpenGL 40
The pfWindow Windowing Functions 41
X and IRIS IM 41

v

pfObjects and the Class Hierarchy 42
Inheritance Graph 43
User Data 45
pfDelete() and Reference Counting 46
Copying Objects with pfCopy() 49
Determining Object Type 50

3. Building a Visual Simulation Application 55
Overview 55
Setting Up the Basic Elements 61

Using IRIS Performer Header Files 61
Initializing and Configuring IRIS Performer 62
Setting Up a Pipe 63
Frame Rate and Synchronization 63
Setting Up a Channel 64
Creating and Loading a Scene Graph 64
Simulation Loop 65

Performance 66
Compiling and Linking IRIS Performer Applications 67

4. Setting Up the Display Environment 73
Using Pipes 73

The Functional Stages of a Pipeline 73
Creating and Configuring a pfPipe 75
Example of pfPipe Use 77

Using pfPipeWindows 79
Creating, Configuring and Opening pfPipeWindow 79
pfPipeWindows in Action 90

vi

Contents

Using Channels 92
Creating and Configuring a pfChannel 92
Setting Up a Scene 92
Setting Up a Viewport 93
Setting Up a Viewing Frustum 93
Setting Up a Viewpoint 95
Example of Channel Use 98
Using Multiple Channels 100
Using Channel Groups 105

5. Nodes and Node Types 111
Nodes 112

Attribute Inheritance 112
pfNode 115
pfGroup 117

Working With Nodes 120
Instancing 120
Bounding Volumes 123

Node Types 125
pfScene Nodes 125
pfSCS Nodes 126
pfDCS Nodes 126
pfSwitch Nodes 127
pfSequence Nodes 128
pfLOD Nodes 130
pfLayer Nodes 131
pfLightPoint Nodes 132
pfLightSource Nodes 133
pfGeode Nodes 137
pfText Nodes 138
pfBillboard Nodes 140
pfPartition Nodes 144

Sample Program 146

vii

6. Database Traversal 153
Scene Graph Hierarchy 155

Database Traversals 155
State Inheritance 156
Database Organization 156

Application Traversal 157
Cull Traversal 158

Traversal Order 159
Visibility Culling 159
Organizing a Database for Efficient Culling 163
Sorting the Scene 166
Paths Through the Scene Graph 168

Draw Traversal 169
Controlling and Customizing Traversals 169

pfChannel Traversal Modes 169
pfNode Draw Mask 170
pfNode Cull and Draw Callbacks 171

Process Callbacks 174
Process Callbacks and Passthrough Data 176

Intersection Traversal 179
Testing Line Segment Intersections 179
Intersection Requests: pfSegSets 180
Intersection Return Data: pfHit Objects 180
Intersection Masks 181
Discriminator Callbacks 183
Line Segment Clipping 184
Traversing Special Nodes 185
Picking 185
Performance 185
Intersection Methods for Segments 186

viii

Contents

7. Frame and Load Control 191
Frame-Rate Management 191

Selecting the Frame Rate 192
Achieving the Frame Rate 192
Fixing the Frame Rate 193

Level-of-Detail Management 198
Level-of-Detail Models 199
Level of Detail States 202
Level-of-Detail Range Processing 204
Level-of-Detail Transition Blending 207
Terrain Level of Detail 209

Dynamic Load Management 210
Successful Multiprocessing With IRIS Performer 213

Review of Rendering Stages 214
Choosing a Multiprocessing Model 214
Asynchronous Database Processing 220
Rules for Invoking Functions While Multiprocessing 222
Multiprocessing and Memory 226
Shared Memory and pfInit() 226
pfDataPools 227
Passthrough Data 228

8. Creating Visual Effects 231
Using pfEarthSky 231
Atmospheric Effects 232
Light Points 236

pfLightPoint 236
pfLPointState 237

Spotlights and Shadows 242
Morphing 244

ix

9. Importing Databases 251
Overview of Performer Database Creation and Conversion 251
libpfdu - Utilities for Creation of Efficient
Performer Run-Time structures 252

pfdLoadFile - Loading Arbitrary Databases into Performer 252
Database Loading Details 254

Developing Custom Importers 257
Structure and interpretation of the Database File Format 258
Scene Graph Creation using Nodes as defined in libpf 258
Defining Geometry and Graphics State for libpr 258
Creation of a Performer Database Converter using libpfdu 259

Supported Database Formats 269
Description of Supported Formats 271

AutoDesk 3DS Format 271
Silicon Graphics BIN Format 271
Side Effects POLY Format 273
Brigham Young University BYU Format 275
Designer’s Workbench DWB Format 276
AutoCAD DXF Format 277
MultiGen OpenFlight Format 280
McDonnell-Douglas GDS Format 282
Silicon Graphics GFO Format 282
Silicon Graphics IM Format 284
AAI/Graphicon IRTP Format 285
Silicon Graphics Open Inventor Format 285
Lightscape Technologies LSA and LSB Formats 287
Medit Productions MEDIT Format 291
NFF Neutral File Format 292
Wavefront Technology OBJ Format 293
Silicon Graphics PHD Format 295
Silicon Graphics PTU Format 298
SIMNET S1000 Format 300
USNA Standard Graphics Format 302

x

Contents

Silicon Graphics SGO Format 303
USNA Simple Polygon File Format 307
Sierpinski Sponge Loader 308
Star Chart Format 308
3D Lithography STL Format 309
SuperViewer SV Format 311
Geometry Center Triangle Format 314
UNC Walkthrough Format 314

10. libpr Basics 317
Overview 317

Design Motivation 317
Key Features 318

Geometry 319
Geometry Sets 320
3D Text 328

Graphics State 333
Rendering Modes 335
Rendering Values 340
Enable / Disable 340
Rendering Attributes 341
Graphics Library Matrix Routines 352
Sprite Transformations 353
Display Lists 355
State Management 355
State Override 357
pfGeoState 357

Windows 363
Configuring the framebuffer of a pfWindow 367
pfWindows and GL Windows 370
Manipulating a pfWindow 372
Communicating with the Window System 374
More pfWindow Examples 374

libpr Sample Code 378

xi

Managing Nongraphic System Tasks 384
Clocks 384
Memory Allocation 385
Asynchronous I/O 391
Error-Handling and Notification 391
File Search Paths 393

11. Math Routines 397
Vector Operations 397
Matrix Operations 399
Quaternion Operations 404
Matrix Stack Operations 407
Creating and Transforming Volumes 408

Defining a Volume 408
Creating Bounding Volumes 410
Transforming Bounding Volumes 411

Intersecting Volumes 412
Point-Volume Intersection Tests 412
Volume-Volume Intersection Tests 412

Creating and Working With Line Segments 414
Intersecting With Volumes 415
Intersecting With Planes and Triangles 416
Intersecting With pfGeoSets 416

General Math Routine Example Program 419

12. Statistics 425
Interpreting Statistics Displays 426

Status Line 427
Stage Timing Graph 427
Load and Stress 430
CPU Statistics 430
Rendering Statistics 432
Fill Statistics 432

xii

Contents

Collecting and Accessing Statistics in Your Application 433
Displaying Statistics Simply 434
Enabling and Disabling Statistics for a Channel 435
Statistics in libpr and libpf—pfStats Versus pfFrameStats 435
Statistics Rules of Use 436
Reducing the Cost of Statistics 439
Statistics Output 440
Customizing Displays 442
Setting Update Rate 442
The pfStats Data Structure 443
Statistics Examples 443

13. Performance Tuning and Debugging 447
Performance-Tuning Overview 447
How IRIS Performer Helps Performance 449

Draw Stage and Graphics Pipeline Optimizations 449
Cull and Intersection Optimizations 451
Application Optimizations 452

Specific Guidelines for Optimizing Performance 453
Graphics Pipeline Tuning Tips 453
Process Pipeline Tuning Tips 457
Database Concerns 461
Special Coding Tips 466

Performance Measurement Tools 467
Using pixie and prof to Measure Performance 467
Using gldebug and ogldebug to Observe Graphics Calls 468
Using glprof to Find Performance Bottlenecks 469

Guidelines for Debugging 474
Shared Memory 474
Use the Simplest Process Model 475
Avoid Floating-Point Exceptions 475

xiii

Notes on Tuning for RealityEngine Graphics 476
Multisampling 476
Transparency 476
Texturing 477
Other Tips 478

14. Programming with C++ 481
Overview 481

Class Taxonomy 482
Programming Basics 483

Header Files 483
Creating and Deleting IRIS Performer Objects 486
Invoking Methods on IRIS Performer Objects 487
Passing Vectors and Matrices to Other Libraries 487

Porting from C API to C++ API 488
Typedefed Arrays vs. Structs 488
Interface Between C and C++ API Code 489

Subclassing pfObjects 490
Initialization and Type Definition 491
Defining Virtual Functions 492
Accessing Parent Class Data Members 493

Multiprocessing and Shared Memory 493
Initializing Shared Memory 493
Data Members and Shared Memory 494
libpf Objects and Multiprocessing 495

Performance Hints 496

A. Image Gallery 499

Glossary 509

Index 531

xv

Examples

Example 2-1 Objects and Reference-Counts 47
Example 2-2 Using pfDelete() with libpr Objects 47
Example 2-3 Using pfDelete() with libpf Objects 48
Example 2-4 Using pfCopy() 49
Example 2-5 General-Purpose Scene Graph Traverser 50
Example 3-1 Structure of an IRIS Performer Application 56
Example 4-1 pfPipes in Action 77
Example 4-2 Creating a pfPipeWindow 80
Example 4-3 pfPipeWindow with alternate configuration windows 84
Example 4-4 Custom initialization of pfPipeWindow state 85
Example 4-5 Configuration of a pfPipeWindow Framebuffer 89
Example 4-6 Opening and Closing a pfPipeWindow 90
Example 4-7 Using pfChannels 98
Example 4-8 Multiple Channels, One Channel per Pipe 103
Example 4-9 Channel-Sharing 107
Example 5-1 Making a Scene 116
Example 5-2 Hierarchy Construction Using Group Nodes 118
Example 5-3 Creating Cloned Instances 123
Example 5-4 Automatically Updating a Bounding Volume 124
Example 5-5 Using pfSwitch and pfSequence Nodes 129
Example 5-6 Marking a Runway With a pfLayer Node 132
Example 5-7 Setting Up Light Points 133
Example 5-8 pfLightSource Pointers and Multiple Inheritance 134
Example 5-9 Car Headlights as pfLightSource Nodes 134
Example 5-10 Adding pfGeoSets to a pfGeode 138
Example 5-11 Adding pfStrings to a pfText 139
Example 5-12 Setting Up a pfBillboard 142

xvi

Examples

Example 5-13 Setting Up a Partition 145
Example 5-14 Inheritance demonstration program 146
Example 6-1 Application Callback to Make a Pendulum 157
Example 6-2 pfNode Draw Callbacks 173
Example 6-3 Cull-Process Callbacks 175
Example 6-4 Using Passthrough Data to Communicate

With Callback Routines 177
Example 7-1 Frame Control Excerpt 198
Example 7-2 Setting LOD Ranges 205
Example 7-3 Default Stress Function 212
Example 8-1 How to Configure a pfEarthSky 231
Example 8-2 How to set up a pfLPointState 238
Example 8-3 Projected texture and shadow pfLightSources 243
Example 8-4 How to set up a pfMorph node. 245
Example 10-1 Loading Characters into a pfFont 330
Example 10-2 Setting up and drawing a pfString 330
Example 10-3 Using pfDecal() to draw road with stripes 339
Example 10-4 Pushing and Popping Graphics State 356
Example 10-5 Using pfOverride() 357
Example 10-6 Inheriting State 359
Example 10-7 Opening a pfWindow 364
Example 10-8 Creating a Statistics Window 374
Example 10-9 Using the Default Overlay Window 375
Example 10-10 Creating a Custom Overlay Window 376
Example 10-11 pfWindows and X Input 377
Example 10-12 Constructing a Colored Cube With libpr 378
Example 10-13 Constructing a Textured Cube With libpr 381
Example 11-1 Matrix and Vector Math Examples 403
Example 11-2 Quaternion Example 405
Example 11-3 Quick Sphere Culling Against a Set of Half-Spaces 414
Example 11-4 Intersecting a Segment With a Convex Polyhedron 416
Example 11-5 Intersection Routines in Action 419
Example 13-1 Drawing an Object Without Calling pfDraw() 465

xvii

Example 13-2 General Traversal 470
Example 13-3 Using the Traverser 474
Example 14-1 Legal Creation of Objects in C++ 486
Example 14-2 Illegal Creation of Objects in C++ 487
Example 14-3 Class Definition for a Subclass of pfDCS 491
Example 14-4 Overloading the libpf Application Traversal 492
Example 14-5 Changeable Static Data Member 495

xix

Figures

Figure 1-1 A Section of the New Jerusalem City Hall 4
Figure 2-1 IRIS Performer Library Hierarchy 15
Figure 2-2 Relationship of IRIS Performer to Database Formats 39
Figure 2-3 Partial Inheritance Graph of IRIS Performer Data Types 44
Figure 4-1 Single Graphics Pipeline 74
Figure 4-2 Dual Graphics Pipeline 75
Figure 4-3 Symmetric Viewing Frustum 94
Figure 4-4 Heading, Pitch, and Roll Angles 96
Figure 4-5 Single-Channel and Multiple-Channel Display 101
Figure 5-1 Nodes in the IRIS Performer Hierarchy 113
Figure 5-2 Shared Instances 121
Figure 5-3 Cloned Instancing 122
Figure 6-1 Culling to the Frustum 161
Figure 6-2 Sample Database Objects and Bounding Volumes 163
Figure 6-3 How to Partition a Database for Maximum Efficiency 165
Figure 6-4 Intersection Methods 187
Figure 7-1 Frame Rate and Phase Control 194
Figure 7-2 Level-of-Detail Node Structure 200
Figure 7-3 Level-of-Detail Processing 201
Figure 7-4 Stress Processing 211
Figure 7-5 Multiprocessing Models 219
Figure 8-1 Layered Atmosphere Model 233
Figure 9-1 BIN-Format Data Objects 272
Figure 9-2 Soma Cube Puzzle in DWB Form 277
Figure 9-3 The Famous Teapot in DXF Form 278
Figure 9-4 Spacecraft Model in FLIGHT Format 281

xx

Figures

Figure 9-5 GFO Database of Mies van der Rohe’s
German Pavilion 283

Figure 9-6 Aircar Database in IRIS Inventor Format 286
Figure 9-7 LSA-Format City Hall Database 289
Figure 9-8 LSB-Format Operating Room Database 291
Figure 9-9 Silicon Graphics Office Building as OBJ Database 294
Figure 9-10 Plethora of Polyhedra in PHD Format 296
Figure 9-11 Terrain Database Generated by PTU Tools 298
Figure 9-12 Model in SGO Format 304
Figure 9-13 Sample STLA Database 309
Figure 9-14 Early Automobile in SuperViewer SV Format 311
Figure 10-1 Primitives and Connectivity 324
Figure 10-2 pfGeoSet Structure 326
Figure 10-3 pfGeoState Structure 362
Figure 10-4 pfCycleBuffer and pfCycleMemory Overview 390
Figure 12-1 Stage Timing Statistics Display 426
Figure 12-2 Other Statistics Classes 431
Figure A-1 Simulated view of an atrium 499
Figure A-2 Another simulated view of the atrium 500
Figure A-3 Simulated view of a castle 501
Figure A-4 Simulated hallway view 502
Figure A-5 Simulated hotel lobby 503
Figure A-6 Simulated waiting room 504
Figure A-7 Simulated conference room 505
Figure A-8 Parliament stairway 506
Figure A-9 Unity Temple interior 507

xxi

Tables

Table 2-1 IRIS Performer Libraries 13
Table 2-2 Routines that Modify libpr Object Reference Counts 46
Table 4-1 pfPWinType Tokens 81
Table 4-2 Processes from which to call

main pfPipeWindow functions 88
Table 4-3 Attributes in the Share Mask of a Channel Group 106
Table 5-1 IRIS Performer Node Types 114
Table 5-2 pfGroup Functions 117
Table 5-3 DCS Transformations 127
Table 5-4 pfSequence Functions 128
Table 5-5 pfLOD Functions 130
Table 5-6 pfLayer Functions 131
Table 5-7 pfLightPoint Functions 132
Table 5-8 pfLightSource Functions 137
Table 5-9 pfGeode Functions 138
Table 5-10 pfText Functions 139
Table 5-11 pfBillboard Functions 141
Table 5-12 pfPartition Functions 145
Table 6-1 Traversal Attributes for the Major Traversals 154
Table 6-2 Cull Callback Return Values 171
Table 6-3 Intersection-Query Token Names 180
Table 6-4 Database Classes and Corresponding Node Masks 182
Table 6-5 Representing Traversal Mask Values 183
Table 6-6 Possible Traversal Results 184
Table 7-1 Frame Control Functions 193
Table 7-2 LOD Transition Zones 208
Table 7-3 Multiprocessing Models 215

xxii

Tables

Table 7-4 Trigger Routines and Associated Processes 225
Table 8-1 pfEarthSky Routines 234
Table 8-2 pfEarthSky Attributes 234
Table 9-1 Database-Importer Source Directories 251
Table 9-2 libpfdu database converter functions 252
Table 9-3 Loader Name Composition 254
Table 9-4 libpfdu database converter management functions 255
Table 9-5 pfdBuilder Modes and Attributes 268
Table 9-6 Supported Database Formats 269
Table 9-7 Geometric Definitions in LSA Files 288
Table 9-8 Object Tokens in the SGO Format 305
Table 9-9 Mesh Control Tokens in the SGO Format 306
Table 10-1 pfGeoSet Routines 320
Table 10-2 Geometry Primitives 321
Table 10-3 Attribute Bindings 327
Table 10-4 pfFont Routines 329
Table 10-5 pfString Routines 332
Table 10-6 pfGeoState Mode Tokens 335
Table 10-7 pfTransparency Tokens 336
Table 10-8 pfGeoState Value Tokens 340
Table 10-9 Enable and Disable Tokens 340
Table 10-10 Rendering Attribute Tokens 341
Table 10-11 Texture Image Sources 344
Table 10-12 Texture Load Modes 346
Table 10-13 Texture generation modes 348
Table 10-14 pfFog Tokens 350
Table 10-15 pfHlightMode() Tokens 351
Table 10-16 Matrix Manipulation Routines 353
Table 10-17 pfSprite rotation modes 354
Table 10-18 pfGeoState Routines 361
Table 10-19 pfWinType() Tokens 365
Table 10-20 pfWinFBConfigAttrs() Tokens 368
Table 10-21 Window System Types 371

xxiii

Table 10-22 pfWinMode() Tokens 373
Table 10-23 pfVClock Routines 385
Table 10-24 Memory Allocation Routines 386
Table 10-25 pfNotify Functions 392
Table 10-26 Error Notification Levels 392
Table 10-27 pfFilePath Routines 393
Table 11-1 Routines for 3-Vectors 398
Table 11-2 Routines for 4x4 Matrices 399
Table 11-3 Routines for Quaternions 405
Table 11-4 Matrix Stack Routines 407
Table 11-5 Routines to Create Bounding Volumes 410
Table 11-6 Routines to Extend Bounding Volumes 410
Table 11-7 Routines to Transform Bounding Volumes 411
Table 11-8 Testing Points for Inclusion in a Bounding Volume 412
Table 11-9 Testing Volume Intersections 413
Table 11-10 Intersection Results 413
Table 11-11 Available Intersection Tests 417
Table 11-12 Discriminator Return Values 418
Table 14-1 Corresponding routines in the C and C++ API 482
Table 14-2 Header Files for libpf Scene Graph Node Classes 483
Table 14-3 Header Files for Other libpf Classes 484
Table 14-4 Header Files for libpr Graphics Classes 484
Table 14-5 Header Files for Other libpr Classes 485
Table 14-6 Data and Functions Provided by User Subclasses 491

xxv

About This Guide

Welcome to the IRIS Performer™ application development environment.
IRIS Performer provides a programming interface (with ANSI C and C++
bindings) for creating real-time graphics applications and offers
high-performance rendering in an easy-to-use 3D graphics toolkit. IRIS
Performer interfaces to both the IRIS Graphics Library™ (also known as IRIS
GL™) and the OpenGL® graphics library; these libraries combine with the
IRIX™ operating system to form the foundation of a powerful suite of tools
and features for creating real-time 3D graphics applications on Silicon
Graphics systems.

Why Use IRIS Performer?

Use IRIS Performer for building visual simulation applications and virtual
reality environments, for rapid rendering in on-air broadcast and virtual set
applications, for assembly viewing in large simulation-based design tasks,
or to maximize the graphics performance of any application. Applications
that require real-time visuals, free-running or fixed-frame-rate display, or
high-performance rendering will benefit from using IRIS Performer.

IRIS Performer drastically reduces the work required to tune your
application’s performance. General optimizations include the use of
highly-tuned routines for all performance critical operations and the
reorganization of graphics data and operations for faster rendering. IRIS
Performer also handles Silicon Graphics architecture-specific tuning issues
for you by selecting the best rendering and multiprocessing modes at run
time based on the system configuration.

IRIS Performer is an integral part of the RealityEngine™ and Impact™
visual simulation systems and provides the interface to advanced features
available exclusively with RealityEngine graphics. IRIS Performer teamed
with RealityEngine or Impact provides a sophisticated image generation

xxvi

About This Guide

system in a powerful, flexible, and extensible software environment. IRIS
Performer is also tuned to operate at peak efficiency on each graphics
platform produced by Silicon Graphics; you don’t need the hardware
sophistication of RealityEngine graphics to benefit from IRIS Performer.

What You Should Know Before Reading This Guide

To use IRIS Performer, you should be comfortable programming in ANSI C
or C++. You should have a fairly good grasp of graphics programming
concepts (terms such as “texture map” and “homogeneous coordinate”
aren’t explained in this guide) and it will help if you’re familiar with at least
one of the graphics libraries. If you’re a newcomer to these topics, see the
references listed under “Bibliography” at the end of this introduction and
examine the glossary for definitions of terms or usage unique to IRIS
Performer.

On the other hand, though you need to know a little about graphics, you
don’t have to be a seasoned C (or C++) programmer, a graphics hardware
guru, or a graphics-library virtuoso to use IRIS Performer. IRIS Performer
puts the engineering expertise behind Silicon Graphics hardware and
software at your fingertips, so you can minimize your application
development time while maximizing the application’s performance and
visual impact.

How to Use This Guide

The best way to get started is to turn to Chapter 1, “Getting Acquainted With
IRIS Performer,” which takes you on a tour of some demo programs. These
programs let you see for yourself what IRIS Performer does. Even if you
aren’t developing a visual simulation application, you might want to look at
the demos to see high-performance rendering in action. At the end of
Chapter 1 you’ll find suggestions pointing to possible next steps;
alternatively, you can browse through the summary below to find a topic of
interest.

How to Use This Guide

xxvii

What This Guide Contains

This guide is divided into fourteen chapters and an appendix:

• Chapter 1, “Getting Acquainted With IRIS Performer,” takes you on a
tour of some demonstration databases using sample IRIS Performer
applications.

• Chapter 2, “IRIS Performer Basics,”provides a brief overview of IRIS
Performer—its features, applications, and component libraries—as well
as a brief survey of general visual simulation techniques.

• Chapter 3, “Building a Visual Simulation Application,” outlines the
structure of a visual simulation application.

• Chapter 4, “Setting Up the Display Environment,” describes how to set
up rendering pipelines, windows, and channels (cameras).

• Chapter 5, “Nodes and Node Types,” describes the data structures used
in IRIS Performer’s memory-based scene-definition databases.

• Chapter 6, “Database Traversal,” explains how to manipulate and
examine a scene graph.

• Chapter 7, “Frame and Load Control,” explains how to control frame
rate, synchronization, and dynamic load management. This chapter
also discusses the load management techniques of multiprocessing and
level-of-detail.

• Chapter 8, “Creating Visual Effects,” describes special features used in
visual environments, including spotlights, shadows, realistic earth and
sky models, and morphing.

• Chapter 9, “Importing Databases,” describes database formats and
sample conversion utilities.

• Chapter 10, “libpr Basics,” discusses the foundation on which IRIS
Performer is based and fundamental concepts for working with its
basic building blocks, the functions of the low-level library libpr that
gives IRIS Performer its speed.

• Chapter 11, “Math Routines,” details the comprehensive math support
provided as part of IRIS Performer.

• Chapter 12, “Statistics,” discusses the various kinds of statistics you can
collect and display about the performance of your application.

xxviii

About This Guide

• Chapter 13, “Performance Tuning and Debugging,” explains how to
use performance measurement and debugging tools and provides hints
for getting maximum performance.

• Chapter 14, “Programming with C++,” discusses the differences
between using the C and C++ programming interfaces.

• Appendix A, “Image Gallery,” contains some sample images created by
using IRIS Performer to display various scene databases.

Conventions

This guide uses the following typographical conventions:

Bold is used for function names, with parentheses appended to
the name. Also, bold lowercase letters represent vectors,
and bold uppercase letters denote matrices.

Italics indicates filenames, IRIX command names, command-line
option flags, variables, and book titles.

Fixed-width is used for code examples and system output.

Bold Fixed-width

indicates user input, items that you should type in from the
keyboard.

Note that in some cases it’s convenient to refer to a group of similarly named
IRIS Performer functions by a single name; in such cases an asterisk is used
to indicate all the functions whose names start the same way. For instance,
pfNew*() refers to all functions whose names begin with “pfNew”:
pfNewChan(), pfNewDCS(), pfNewESky(), pfNewGeode(), and so on.

Most code examples in this guide are written in C; some are in C++. All code
examples are available in both C and C++ forms in the source directory
/usr/share/Performer/src/pguide.

Bibliography

xxix

Bibliography

You should be familiar with most of the concepts presented in the first few
books listed here—notably Computer Graphics: Principles and Practice and the
IRIS GL or OpenGL books—to make the best use of IRIS Performer and this
programming guide. Most of the other books listed here, however, delve into
more advanced topics and are listed as further reading for those interested.
Information is also provided on electronic access to Silicon Graphics’ files
containing answers to frequently asked IRIS Performer questions.

Computer Graphics

For a general treatment of a wide variety of graphics-related topics, see:

• Foley, J.D., A. van Dam, S.K. Feiner, and J.F. Hughes. Computer Graphics:
Principles and Practice, 2nd Ed. Reading, Mass.: Addison-Wesley
Publishing Company, Inc., 1990.

• Newman, W.M., and R.F. Sproull, Principles of Interactive Computer
Graphics, 2nd Ed. New York: McGraw-Hill, Inc., 1979.

For specific topics of interest to developers using IRIS Performer, also see:

• Akeley, Kurt, “RealityEngine Graphics,” Computer Graphics Annual
Conference Series (SIGGRAPH), 1993. pp. 309-318.

• Rohlf, John and James Helman, “IRIS Performer: A High Performance
Multiprocessing Toolkit for Real-Time 3D Graphics,” Computer Graphics
Proceedings, Annual Conference Series (SIGGRAPH), 1994, pp. 381-394.

• Helman, James, Sharon Clay, Wes Hoffman, Eric Johnston, Michael
Jones, Michael Limber, and Philippe Tarbouriech, “Designing
Real-Time 3D Graphics for Entertainment,” Course Notes of 1995
SIGGRAPH Course #6, 1995.

• Shoemake, Ken. “Animating Rotation with Quaternion Curves,”
SIGGRAPH ‘85 Conference Proceedings Vol 19, Number 3, 1985.

xxx

About This Guide

The IRIS GL and OpenGL Graphics Libraries

For information about IRIS GL, see these Silicon Graphics publications:

• Graphics Library Programming Guide, Volumes I and II

• Graphics Library Programming Tools and Techniques

To order all three of the above manuals, call 1-800-800-SGI1 (in the U.S. and
Canada) and specify part number M4-GLGT-5.2. Outside the U.S. and
Canada, please contact your local sales office or distributor.

For information about OpenGL, see:

• Neider, Jackie, Tom Davis, and Mason Woo, OpenGL Programming
Guide. Reading, Mass.: Addison-Wesley Publishing Company, Inc.,
1993. A comprehensive guide to learning OpenGL.

• OpenGL Architecture Review Board, OpenGL Reference Manual.
Reading, Mass.: Addison-Wesley Publishing Company, Inc., 1993. A
compilation of OpenGL reference pages.

• The OpenGL Porting Guide, a Silicon Graphics publication shipped in
IRIS InSight™-viewable on-line format as part of the IRIS Developer
Option. Provides information on updating IRIS GL-based software to
use OpenGL.

Bibliography

xxxi

X, Xt, IRIS IM, and Window Systems

In conjunction with OpenGL, you may wish to learn about the X window
system, the Xt Toolkit Intrinsics library, and IRIS IM (though note that if you
use IRIS Performer’s pfWindow routines, windows are handled for you; in
that case you don’t need to know about any of these topics). For information
on X, Xt, and Motif, see the O’Reilly X Window System Series, Volumes 1,2,
4, and 5 (usually referred to simply as “O’Reilly” with a volume number):

• Nye, Adrian, Volume One: Xlib Programming Manual. Sebastopol,
California: O’Reilly & Associates, Inc., 1991.

• Volume Two: Xlib Reference Manual, published by O’Reilly &
Associates, Inc., Sebastopol, California.

• Volume Four: X Toolkit Intrinsics Programming Manual, by Adrian
Nye and Tim O’Reilly, published by O’Reilly & Associates, Inc.,
Sebastopol, California.

• Volume Five: X Toolkit Intrinsics Reference Manual, published by
O’Reilly & Associates, Inc., Sebastopol, California.

For information on IRIS IM, Silicon Graphics’ port of OSF/Motif, and on
making your application interact well with the Silicon Graphics desktop, see
these Silicon Graphics publications:

• IRIS IM Programming Guide

• Indigo Magic User Interface Guidelines

• Indigo Magic Desktop Integration Guide

All three of these books are shipped in IRIS InSight™-viewable on-line
format as part of the IRIS Developer Option.

xxxii

About This Guide

Visual Simulation

For information about visual simulation and the use of simulation systems
in training and research, see:

• Rolfe, J.M., and K.J. Staples, eds. Flight Simulation. Cambridge:
Cambridge University Press, 1986. Provides a comprehensive overview
of visual simulation from the basic equations of motion to the design of
simulator cabs, optical and display systems, motion bases, and
instructor/operator stations. Also includes a historical overview and an
extensive bibliography of visual simulation and aerodynamic
simulation references.

• Rougelot, Rodney S. “The General Electric Computer Color TV
Display,” in Faiman, M., and J. Nievergelt, eds. Pertinent Concepts in
Computer Graphics. Urbana, Ill.:University of Illinois Press, 1969,
pp. 261-281. This extensive report gives an excellent overview of the
origins of visual simulation. It shows many screen images of the
original systems developed for various NASA programs and includes
the first real-time textured image. This article provides the basis for
understanding the historical development of computer image
generation and real-time graphics.

• Schacter, Bruce J., ed. Computer Image Generation. New York: John Wiley
& Sons, Inc., 1983. Reviews the computer image generation process and
provides a detailed analysis of early approaches to system design and
implementation. The bibliography refers to early papers by the
designers of the first image-generation systems.

Mathematics of Flight Simulation

Stevens, Brian L., and Frank L. Lewis. Aircraft Control and Simulation. New
York: John Wiley & Sons, Inc., 1992. This book describes the complete
implementation of a flight-dynamics model for the F-16 fighter aircraft. It
provides the basic equations of motion and explains how the more complex
issues are handled in practice. Some source code, in FORTRAN, is included.

Bibliography

xxxiii

Virtual Reality

Kalawsky, Roy S. Science of Virtual Reality and Virtual Environments. Reading,
Mass.: Addison-Wesley Publishing Company, Inc., 1993.

Geometric Reasoning

These two books address geometric reasoning in general, rather than any
specifically computer-related or Performer-specific topics:

• Abbott, Edwin A. Flatland: A Romance of Many Dimensions, 6th Ed. New
York: Dover Publications, Inc., 1952. The story of A. Square and his
journeys among the dimensions.

• Polya, George. How to Solve It: A New Aspect of Mathematical Method, 2nd
Ed. Princeton, NJ: Princeton University Press, 1973.

Conference Proceedings

The proceedings of the I/ITSEC (Interservice/Industry Training,
Simulation, and Education Conference) are a primary source of published
visual simulation experience. In the past this conference has been known as
the National Training Equipment Center/Industry Conference (NTEC/IC)
and the Interservice/Industry Training Equipment Conference (I/ITEC).
Proceedings are available from the National Technical Information Service
(NTIS). Here are NTIS order numbers for several of the older proceedings:

• Seventh N/IC, November 1974: AD-A000-970 NTEC

• Eighth N/IC, November 1975: AD-A028-885 NTEC

• Ninth N/IC, November 1976: AD-A031-447 NTEC

• Tenth N/IC, November 1977: AD-A047-905 NTEC

• Eleventh N/IC, November 1978: AD-A061-381 NTEC

• First I/ITEC, November 1979: AD-A077-656 NTEC

• Third I/ITEC, November 1981: AD-A109-443 NTEC

xxxiv

About This Guide

The IMAGE Society is dedicated solely to the advancement of visual
simulation technology and its applications. It holds conferences and
workshops, the proceedings of which are an excellent source of advice and
guidance for visual simulation developers. The society can be reached
through electronic mail at image@acvax.inre.asu.edu. Some of the IMAGE
proceedings published by the Air Force Human Resources Lab AFHRL at
Williams AFB prior to the formation of the IMAGE Society are also available
from the NTIS. Order numbers are:

• IMAGE, May, 1977: AD-A044-582 AFHRL

• IMAGE II (closing), July, 1981: AD-A104-676 AFHRL

• IMAGE II (proceedings), November, 1981: AD-A110-226 AFHRL

The Society of Photo-Optical Instrumentation Engineers (SPIE) also has
articles of interest to visual simulation developers in their conference
proceedings. Some of the interesting publications are:

• Vol. 17, Photo-Optical Techniques in Simulators, April, 1969

• Vol. 59, Simulators & Simulation, March, 1975

• Vol. 162, Visual Simulation & Image Realism, August, 1978

Survey Articles in Magazines

• Aviation Week & Space Technology, January 17, 1983. Special issue on
visual simulation.

• Fischetti, Mark A., and Carol Truxal. “Simulating the Right Stuff.” IEEE
Spectrum, March, 1985, pp. 38-47.

• Schacter, Bruce. “Computer Image Generation for Flight Simulation.”
IEEE Computer Graphics & Applications, October, 1981, pp. 29-68.

• Schacter, Bruce, and Narendra Ahuja. “A History of Visual Flight
Simulation.” Computer Graphics World, May, 1980, pp. 16-31.

• Tucker, Jonathan B., “Visual Simulation Takes Flight.” High Technology
Magazine, December, 1984, pp. 34-47.

Bibliography

xxxv

Internet Resources

Answers to common questions.

• Silicon Graphics maintains a publicly accessible directory of questions
that developers often ask about IRIS Performer, along with answers to
those questions. Each question-and-answer pair is provided in a file of
its own, named by topic. To obtain any of these files, use anonymous ftp
to connect to sgigate.sgi.com; then cd to the directory
/pub/Performer/selected-topics and use ls to see a list of available topics.
Alternatively, use a World Wide Web browser to look at
ftp://sgigate.sgi.com/pub/Performer/selected-topics.

Electronic forum for discussions about IRIS Performer.

• The info-performer mailing list provides a forum for discussion of IRIS
Performer including technical and non-technical issues. Subscription
requests should be sent to info-performer-request@sgi.com. Much like
the comp.sys.sgi.* newsgroups on the Internet, it isn’t an official
support channel but is monitored by several interested SGI employees
familiar with the toolkit.

World Wide Web page.

• Silicon Graphics maintains a public Web page for IRIS Performer at
http://www.sgi.com/Technology/Performer.html. This page can be
accessed using a Web browser such as Netscape™. This guide, errata
and amendments may be made available through this page.

This chapter introduces you to some
of the sample IRIS Performer
applications and databases.

“Getting Acquainted With
IRIS Performer”

Chapter 1

3

Chapter 1

1. Getting Acquainted With IRIS Performer

A complete sample application, perfly, as well as many short example
programs are included with IRIS Performer. This chapter explains how to
use these applications so you can get acquainted with some of the features
of IRIS Performer. If you’re already somewhat familiar with IRIS Performer
or visual simulation in general, you might want to skip ahead to the
overview in Chapter 2, “IRIS Performer Basics,” or jump directly to
whatever chapter covers the specific topic you’re interested in.

Source code for perfly is provided beneath /usr/share/Performer/src/sample/C
in the perfly and common directories so that you can incorporate parts of these
programs into your own applications. (A C++ version can be found under
/usr/share/Performer/src/sample/C++).

Exploring the IRIS Performer Sample Scenes

The perfly application is a fairly basic visual simulation program that can
load and store scene databases in any of a wide variety of common formats
and display the resulting scenes. This section describes how to use perfly to
look at several sample databases provided with IRIS Performer.

perfly provides a graphical user interface with which you can control many
of the visual simulation features that are described in this guide, such as
time-of-day selection, haze density, and so on. These options all default to
reasonable values, so you don’t need to learn about them before using perfly.

Installing the Software

Follow the instructions in the IRIS Performer Release Notes to install the
software. This process places the appropriate libraries, header files, sample
databases, reference pages, on-line books and demonstration programs on
your system.

4

Chapter 1: Getting Acquainted With IRIS Performer

Figure 1-1 A Section of the New Jerusalem City Hall

Starting and Quitting perfly

To launch perfly, type

IRIS% perfly -d chamber.0.lsa

Note: Both OpenGL and IRIS GL versions of perfly are installed in /usr/sbin.
The perfly command invokes the one more appropriate for your particular
graphics hardware. To explicitly invoke the OpenGL or IRIS GL versions,
run perfly_ogl or perfly_igl, respectively.

The perfly program allows several motion models; the –d on the command
line tells the program to start in the Drive model, which provides an easy
way to drive or walk through a scene while maintaining a fixed height above
the ground.

When you want to quit perfly, either press the <Esc> key or click the “Quit”
button on the control panel.

Exploring the IRIS Performer Sample Scenes

5

Look Around

Look around the scene using the mouse. First, place the cursor in the center
of the simulation window. Now depress the middle mouse button and move
the mouse to the left and to the right to turn in place; you’ll continue to pivot
until you place the cursor back in the center of the screen.

Don’t despair if you inadvertently start moving around, lose sight of the
building, or otherwise lose position or control. Just move the cursor into the
control panel area and click the “Reset All” button on the control panel to get
back to the original setup.

Approach the Building

To approach the City Hall model, turn until you’re facing it (if you aren’t
already facing it) and then center the mouse in the screen. Depress the left
mouse button briefly to start accelerating forward. When you release the
button, you’ll continue gliding forward at constant speed and can hold
down the middle mouse button to steer.

Tap the middle mouse to stop in front of the building (if you actually entered
the building, remember the “Reset All” button). Now accelerate backward
by pressing the right button. When you’re as far back as you want to go, hold
down the left mouse button to gradually slow down, or tap the middle
mouse button to stop immediately.

Now use the left mouse button again to start moving forward and drive
slowly into the model. Notice that the walls closest to you are cut away at
first so you can see inside; once you’re completely inside the building, those
walls reappear. Drive around and explore the building. Tap the middle
mouse button to stop before you run into anything (but don’t worry—at this
point you’ll bounce off of any walls you hit). If the walls get in your way, you
can turn off collision detection with the button labeled “Collide” on the
control panel, or press the c key on the keyboard.

More Controls

To see the underlying geometry used to create the model, click the “Style”
button in the control panel, or press the w key on the keyboard. This changes
the display to wireframe mode. In this mode you can more easily see how

6

Chapter 1: Getting Acquainted With IRIS Performer

many polygons are used to represent an object. This information can be
helpful when you’re tuning a database, because it’s important to know when
the number of polygons becomes a limiting factor. To turn wireframe mode
off, just click the “Style” button (or press w) again. The W key can be used to
cycle through several different draw styles.

To close the entire control panel (and devote the entire screen to the model),
click the “GUI Off” button at the upper right of the control panel, or just
press the <F1> key. Press the <F1> key again to restore the control panel.

If you click the “Stats” button in the control panel, a transparent panel
showing scene statistics appears overlaid on the screen. The buttons next to
the “Stats” button allow you to choose one of the available statistical
displays. Try moving around in the scene while watching how the statistics
change. Note in particular that the number of triangles being considered for
rendering changes drastically depending on where you look; this
demonstrates IRIS Performer’s use of culling to ignore objects that are
completely outside the field of vision. For more information about culling,
see Chapter 6, “Database Traversal.” For more detailed information on the
statistics panels, see Chapter 12, “Statistics.”

Several other keys on the keyboard are active and can be used to control
perfly even when the control panel isn’t displayed. Pressing the “?” key will
print a list of most key sequences to the shell window. For full details, the file
/usr/share/Performer/src/sample/perfly/C/keybd.c contains a list of these key
sequences and their effects. Remember that you can always use the <Esc>

key to terminate perfly at any time.

The control panel’s field-of-view slider can be used to select a wide angle
view, up to 100 degrees.

As you travel through the building, try turning on the fog effect by clicking
the Fog button. Experiment with the fog density and other controls.
(Remember: If you’ve closed the control panel, the <F1> key will restore it.)

Flying

The Fly motion model provides an alternative to Drive. This model allows
full motion in three dimensions (unlike the Drive model, which doesn’t
allow vertical motion). The mouse in the Fly model is used in much the same
way to control motion, but when steering the vertical position of the mouse

Exploring the IRIS Performer Sample Scenes

7

in the window controls your vertical tilt. You can select this mode by
pressing the right mouse button on the button marked “Drive” and select
“Fly” from the menu.

As when driving, the left button makes you go forward and the right button
makes you go backward. As long as either button is pressed you’ll continue
to accelerate.

You turn holding the middle mouse button down and moving the cursor
away from the center of the simulation window. Moving the cursor left or
right causes left and right turns, respectively. Moving the cursor up or down
causes the view direction to tilt up or down, respectively. The rate of turning
and tilting is scaled by the distance of the cursor from the center of the
simulation window; that is, no change of direction occurs when the cursor is
at the center and full-speed rotation occurs at the edges of the window.

If you want to maintain a steady velocity rather than accelerating, hold
down the middle mouse button to steer while using the left and right
buttons to control the speed. To stop tap the middle mouse button.

Trackball

The trackball motion model provides a third option for controlling motion.
You can select this mode by pressing the right mouse button on the button
marked “Fly” and selecting “Trackball” from the menu.

In trackball mode, when you drag with the middle button the object rotates
about its center as if it were attached to a large trackball that fills the screen.
That is, dragging up and down causes rotation about the horizontal axis
parallel to the screen and dragging left and right causes rotation about the
vertical axis parallel to the screen.

By dragging with the left mouse, you can translate the object in the direction
you drag, left, right, up or down. By dragging with the right mouse, you can
translate the object in and out of the screen. In all cases, if you release the
mouse button while dragging, the motion continues on its own.

8

Chapter 1: Getting Acquainted With IRIS Performer

Motion Using Paths

There are other approaches to traveling through a scene than the models
described here. You can, for instance, build a specific path into the viewer, to
prevent the user from straying outside your model. The path model is
supported by a general path-following system in the libpfutil library. Many
simulation applications require path support for such objects as: cars, trucks,
and people (in driver-training software); waiting aircraft both on the ground
and in the air (in flight simulation); and opposing forces in military trainers.
Path support in libpfutil allows paths of varying speeds to be built from line
segments and arcs with automatic fillet construction between segments for
smooth transitions.

Instances

The bench objects in the City Hall scene were designed using the database
concept known as instancing, in which a single geometric object such as a
tree, house, car, or, in this case, bench, is used multiple times within a
database at different locations and with different positions or scale factors.
(In this case, the instances have been flattened to improve performance; each
bench is now a separate object.) See “Instancing” in Chapter 5 for
information on this topic.

Model Implementation and Database-Format Loaders

An important point about the implementation of this model is that the scene
was created using a database modeler and is still in its original format. This
demonstrates the data fusion capability of IRIS Performer: Databases need
not be converted to a standard file format before being read in to an IRIS
Performer application. Rather, unique file readers are constructed for each
format to be used. IRIS Performer can thus work with data from multiple
sources concurrently, using a common software interface, without needing
intermediate translation or conversion steps.

Because these database importers operate at run time, they’re able to supply
executable functions that extend the regular IRIS Performer processing to
whatever is required by various formats. This eliminates the least common
denominator limitation, where database constructs that can’t be represented
in the common format must be either deleted or reconstructed. Such
limitations are often encountered when all data must be converted to a fixed,

Exploring Code

9

shared file format. In the IRIS Performer paradigm, each importer can
provide new functions to support the required features that aren’t present in
IRIS Performer—extending full native support for each desired database
format.

To use the visual interface from perfly with your own databases, simply list
your databases on the perfly command line. perfly examines the extension
part of each filename to determine what format the file is in. File importers
are provided as examples with IRIS Performer (and supported by perfly) for
many file formats, including 3DStudio “3ds”, Designer’s Workbench “dwb”,
Medit Productions “medit”, MultiGen OpenFlight “flt”, SGI BIN and SGO
(“bin” and “sgo”, respectively), Wavefront “obj”, Open Inventor™ “iv”, the
STL stereolithography format, and so on.

If your files are in one or more of these formats, the perfly program can be
used to view them. If you have files in other formats, you will need to add
an importer for those formats to perfly before you can use it to view your
files. This is not a difficult or daunting task, but it does require an
understanding of most of IRIS Performer to be done properly. It should not
be undertaken until you have completed reading this book. When you want
to develop such file-importing routines, refer to Chapter 9, “Importing
Databases,” for instructions and a discussion of the provided sample
file-importers.

Exploring Code

Being a complete application makes perfly a good demonstration for IRIS
Performer in action, but it is also a large rather complex piece of code. A
better place to start exploring programming with IRIS Performer is the
sample code provided in /usr/share/Performer/src/sample/pguide. Under this
directory, you can find examples for programming many of the features
available in each of the libraries that make up IRIS Performer, using either C
or C++.

10

Chapter 1: Getting Acquainted With IRIS Performer

Going Beyond Visual Simulation

In perfly, you can view an object or scene from any angle and location, from
points either inside or outside of the scene. This is the part of the visual
simulation development task that IRIS Performer helps you create—the
visual part, what you see when you look out the window.

But there’s more to a simulation of reality than just visuals. Purely visual
simulations of travel have much the same feel whether the simulation is of a
boat, a car, a plane, or a magic carpet. In such simulations there’s no
nonvisual sensory input at all; the user simply watches scenery move past.
IRIS Performer leaves the nonvisual aspects—the feel of the simulation—up
to you. You determine the vehicle dynamics and construct an apparatus or
create code to mimic its behavior. You develop a method for manifesting the
physical sensation of how your simulation relates to its environment and
responds to stimuli.

When you integrate physical aspects of a simulator with the real-time
visuals created with IRIS Performer, the result can be a complete sensory
environment, both visual and physical—creating a convincing simulation of
reality. Since IRIS Performer puts the tools for rapid development of
real-time visuals into your hands, you can spend more time developing the
physical part of the simulation.

Another aspect of IRIS Performer that lies below the surface of the demos is
its ability to accelerate graphics to top-rated performance levels on Silicon
Graphics hardware. This means that IRIS Performer puts a virtual Silicon
Graphics hardware and software expert at your fingertips, providing all the
tools you need to custom-tune your graphics application for maximum
performance on your system.

Deciding Where to Start

Now that you’ve seen what IRIS Performer can do, it’s up to you to decide
how to proceed. You can read through the remainder of this programming
guide, beginning with the overview in Chapter 2, or you can skip directly to
a chapter that describes a specific task you need to perform.

This chapter provides a brief
overview of IRIS Performer’s
features and component libraries.

“IRIS Performer Basics”

Chapter 2

13

Chapter 2

2. IRIS Performer Basics

This chapter provides background for and an introduction to IRIS
Performer, including a survey of visual simulation techniques, descriptions
of features and libraries, and discussion of some of the specific details of IRIS
Performer structure and use.

What Is IRIS Performer?

IRIS Performer is an extensible software toolkit for creating real-time 3D
graphics. Typical applications are in the fields of visual simulation,
entertainment, virtual reality, broadcast video, and computer aided design.
IRIS Performer provides a flexible, intuitive, toolkit-based solution for
developers who want to optimize performance on Silicon Graphics systems.

The main components of the toolkit are four dynamic shared objects (DSOs), as
shown in Table 2-1, support files for those libraries (such as the header files),
and source code for sample applications.

Table 2-1 IRIS Performer Libraries

DSO Name Header File Description

libpf.so pf.h Main IRIS Performer library. Contains libpf,
which handles multiprocessed database
traversal and rendering, and libpr, which
performs the optimized rendering, state control,
and other functions fundamental to real-time
graphics.

libpfdu.so pfdu.h Library of scene and geometry building tools
which greatly facilitate the construction of
database loaders and converts. Tools include a
sophisticated triangle mesher and state sharing
for high performance databases.

14

Chapter 2: IRIS Performer Basics

Note that while this document refers often to the libpr library or libpr
“objects”, the library itself does not exist in isolation—it has been placed
within the libpf library to improve instruction-space layout and caching
behavior. However, libpr still provides an implementation and portability
abstraction layer that simplifies the following discussions.

In addition to the core libraries, IRIS Performer provides a suite of database
loaders in the form of dynamic shared objects. Each loader reads data files
or streams structured in a particular format and converts it into an IRIS
Performer scene graph. Loader libraries are named after their corresponding
file extension, for example, the Wavefront “obj” format loader is found in
libpfobj.so. Any number of file loaders may be accessed through the single
pfdLoadFile() function which uses special dynamic shared object features to
locate and use the proper loader corresponding to the extension of the file
being loaded.

Figure 2-1 illustrates the relationships between the IRIS Performer libraries
and the IRIS system software. All IRIS Performer features are provided as a
layer above the IRIX operating system and the graphics library. IRIS
Performer doesn’t isolate application programs from IRIX or the graphics
library, however. Even when using IRIS Performer to its fullest extent,
applications have free access to all system layers—including not only libpf,
libpr, and the libpfdu loader and builder libraries, but the graphics library and
IRIX as well.

libpfutil.so pfutil.h Utility-functions library.

libpfui.so pfui.h User interface library.

Table 2-1 (continued) IRIS Performer Libraries

DSO Name Header File Description

What Is IRIS Performer?

15

Figure 2-1 IRIS Performer Library Hierarchy

Developers are free to choose which of the libraries best suits their needs.
You may want to build your own toolkits on top of libpr (but you still link
with libpf, you just don’t use any libpf features), or you can take advantage of
the visual simulation development environment that libpf provides.

IRIS Performer defines a run-time-only database through its programming
interface; it doesn’t define an archival database or file format. Applications
import their databases into IRIS Performer run-time structures. You can
either write your own routines to do this or use one of the many database
loaders provided as sample source code. These examples show how to
import more than thirty popular database formats and how to export scene
graphs in the open Designer’s Workbench and Medit formats (see Chapter 9
for more information).

libpr

libpf

libpfui
libpdb

libpfdu

libpfutil

IRIX − REACT − Graphics

16

Chapter 2: IRIS Performer Basics

This guide describes IRIS Performer in a top-down fashion. Chapters 3
through 8 describe libpf, the visual simulation application development
library. Chapters 10 and 11 describe libpr, the high-performance rendering
library. Chapter 9 discusses libpfdu, the database utility library and libpfdb,
the format-specific collection of file load, convert, and store utilities.

Applications

IRIS Performer can be used in a variety of ways. You can use it as a complete
database processing and rendering system for applications such as flight
simulation, driver training, or virtual reality. It can also be used in
conjunction with layered application-development tools to perform the
low-level portion of the visual simulation development projects. In short,
applications can use part or all of the features provided by IRIS Performer.

For example, consider a driver training application that has already been
developed. This application consists of a database, simulation code, and
rendering code. The application can be ported to IRIS Performer in several
ways. If time is short and the bottleneck is in the rendering code, IRIS
Performer’s libpr library layer can take over the rendering task with minimal
effort. Alternatively, it may be better to create an importer to import the
existing database into IRIS Performer’s run-time format and gain the extra
features that libpf provides.

Features

This section lists the features of the libraries.

High-Performance Rendering Library (libpr) Features

libpr consists of a number of facilities generally required in most visual
simulation and real-time graphics applications:

• High-speed geometry rendering functions

• Efficient graphics state management

• Comprehensive lighting and texturing

• Simplified window creation and management.

What Is IRIS Performer?

17

• Immediate mode graphics

• Display list graphics

• Integrated 2D and 3D text display functions

• A comprehensive set of math routines

• Intersection detection and reporting

• Color table utilities

• Asynchronous filesystem I/O

• Shared memory allocation facilities

• High-resolution clocks and video-interval counters

Visual Simulation Application Library (libpf) Features

• Multiple graphics pipeline capability

• Multiple windows per graphics pipeline

• Multiple display channels per window

• Hierarchical scene graph construction and real-time editing

• Multiprocessing (parallel simulation, intersection, cull, and draw
processes, and asynchronous database management)

• System stress and load management

• Level-of-detail model switching, with fading

• Rapid culling to the viewing frustum

• Intersections and database queries

• Dynamic and static coordinate systems

• Fixed-frame-rate capability

• Shadows and spotlights

• Morphing

• Visual simulation features

– An environmental model

– Light points

18

Chapter 2: IRIS Performer Basics

– Animation sequences

– Sophisticated fog and haze control

– Landing light capabilities

– Billboarded geometry

Geometry Builder Library (libpfdu) Features

• Allows input in immediate mode fashion, simplifying database
conversion

• Produces optimized IRIS Performer data structures

– Tessellates input polygons including concave and recombines
triangles into high performance meshes.

– Automatically shares state structures between geometry when
possible.

– Produces scene graph containing optimized pfGeoSets and
pfGeoStates

Utility Library (libpfutil) Features

• Processor isolation routines

• GLX mixed mode utilities

• Device input and event handling, both IRIS GL and X versions

• Cursor control

• Simple and efficient GUI and widgets

• Scene graph traversal utilities

• Texture animation or “movies”

• Smoke and fire effect simulation

User Interface Library (libpfui) Features

• Trackball, fly, and drive motion models

• Collision models

Survey of Visual Simulation Techniques

19

Survey of Visual Simulation Techniques

Computers have generated interactive simulated virtual environments—
usually for training or entertainment—since the 1960s. Computer image
generation (CIG) has not always been a readily available technique, and
many special purpose approaches to visual simulation have been tried. For
example, the NASA Kennedy Space Center newspaper Spaceport News
described the Apollo 7 astronaut training visual simulator this way on
March 28, 1968:

Each simulator consists of an instructor’s station, crew

station, computer complex, and projectors to simulate the

stages of a flight. Engineers serve as instructors, instruments

keeping them informed at all times of what the pilot is doing.

Through the windows, infinity optics equipment duplicates the

scenery of space. The main components of a typical visual

display for each window includes a 71-centimeter fiber-plastic

celestial sphere embedded with 966 ball bearings of various

sizes to represent the stars from the first through fifth

magnitudes, a mission-effects projector to provide earth and

lunar scenes, and a rendezvous and docking projector which

functions as a realistic target during maneuvers. 1

Since such beginnings, the sense of reality that visual simulation systems can
provide has advanced significantly, due both to advances in hardware and
software and to a greater understanding of human perceptions.

1 In recognition of the ingenuity of this system, IRIS Performer includes a star database
with the locations and magnitudes of the 3010 brightest stars as seen from earth. View
the file “/usr/share/Performer/data/3010.star” with perfly while contemplating the
engineering effort required to accurately embed those 966 ball bearings.

20

Chapter 2: IRIS Performer Basics

This section outlines the major requirements of current visual simulation
systems. These requirements fall into six major groups, each covering
several related topics:

• Low latency image generation

Reducing perceived latency (the time between input and response)
requires reducing both actual latency and frame rate. You cannot avoid
latency, but you can minimize its effects by attention to hardware
design and software structure.

• Consistent frame rates

A fixed frame rate is essential to realistic visual simulation. Achieving
this goal, however, is very difficult because it requires using a fixed
graphics resource to view images of varying complexity. To design for
constant frame rates you must understand the required compromises in
hardware, database, and application design.

• Rich scene content

Customers nearly always want complex, detailed, and realistic images,
without sacrificing high update rates and low system cost. Thus,
providing interesting and natural scenes is usually a matter of tricks
and halfway measures; a naive implementation would be prohibitively
expensive in terms of machine resources.

• Texture mapping

Texture processing is arguably the most important incremental
capability of real-time image generation systems. Sophisticated texture
processing is the factor that most clearly separates the “major league”
from the “minor league” in visual simulation technology.

• Real-time character animation

Real-time character animation in entertainment systems is based on
features and capabilities originally developed for high-end flight
simulators. Creation of compelling entertainment experiences hinges
on the ability to provide engaging synthetic characters.

• Database construction

One of the key notions of real-time image generation systems is the fact
that they are often programmed largely by their databases. This
programming includes the design and specification of several
autonomous actions for later playback by the visual system.

Survey of Visual Simulation Techniques

21

Low-Latency Image Generation

The issue of latency is critical to comfortable perception of moving images
under interactive control. In the real world, the images that reach our brains
move smoothly and instantly in reaction to our own motion. In simulated
visual environments, such motion is usually depicted as a discrete series of
images generated at fixed time intervals. Furthermore, the image resulting
from a motion often is not presented until several frame intervals have
elapsed, creating a very unnatural latency. A typical human reaction to such
delayed images is a nausea commonly known as simulator sickness.

In visual simulation the terms “latency” and “transport delay” refer to the
time elapsed between stimulus and response. Confusion can enter the
picture because there are several important latencies.

The most general measure is the total latency, which measures the time
between user input (such as a pilot moving a control) and the display of a
new image computed using that input. For example, if the pilot of a flight
simulator initiates a sudden roll after smooth level flight, how long does it
take for a tilted horizon to appear?

The total time required is the sum of latencies of components within the
processing path of the simulation system. The basic component latencies
include the time required for each of these tasks:

• Input device measurement and reporting

• Vehicle dynamics computation

• Image generation computation

• Video display system scan-out

The latency that matters to the user of the system is the total time delay. This
overall latency controls the sense of realness the system can provide.

Another measure combines the latencies due to image generation and video
display into the visual latency. Questions of latency in visual simulation
applications usually refer to either total latency or visual latency. The
application developer selects the scope of the application, and then the
latency is decided by the choice of image generation mode, frame rate, and
video output format.

22

Chapter 2: IRIS Performer Basics

In many situations the perceived latency can be much less than the actual
latency. This is because the human perception of latency can be reduced by
anticipating the user’s inputs. This means that reducing perceived latency is
largely a matter of accurate prediction.

Consistent Frame Rates

To be acceptable by human observers, interactive graphics applications, and
immersive virtual environments in particular depend on a consistent frame
rate. Human perceptions are attuned to continuous update from natural
scenes but seem tolerant of discrete images presented at rates above 15
frames per second—as long as the frame rate is consistent. When latency
grows large or frame rates waver, headaches and nausea often result.

Attaining a constant frame rate for a constant scene is easy. What’s hard is
maintaining a constant frame rate through wildly varying scene content and
complexity. Designers of image generation systems use several approaches
to achieve a constant, programmer-selected, frame rate.

The first and most basic method is to draw all scenes in such a simple way
that they can be viewed from any location without altering the chosen frame
rate. This conservative approach is much like always driving in low gear just
in case a hill might be encountered. Implementing it simply means
identifying and planning for the worst case situation of graphics load.
Although this may be reasonable in some cases, in general it’s unacceptably
wasteful of system resources.

A second approach is to discard (cull) database objects that are positioned
completely outside the viewing frustum. This requires a pass through the
visual database to compare scene geometry with the current frame’s viewing
volume. Any objects completely outside the frustum can be safely discarded.
Testing and culling a complex object requires less time than drawing it.

When simple view-volume culling is insufficient to keep scene complexity
constant, it may be necessary to compute potential visibility of each object
during the culling process by considering other objects within the scene that
may occult the test object. High performance image generation systems use
comparable occlusion culling tests to reduce the polygon filling complexity
of real-time scenes.

Survey of Visual Simulation Techniques

23

Rich Scene Content

Several tricks and techniques can give the impression of rich scene content
without actually requiring large quantities of complex geometry.

Level of Detail Selection

Graphics systems can display only a finite number of geometric primitives
per frame at a specified frame rate. Because of these limitations, the
fundamental problem of database construction for real-time simulation is to
maximize visual cues and minimize scene complexity. With level of detail
selection, one of several similar models of varying complexity is displayed
based on how visible the object is from the eyepoint. Level of detail selection
is one of the best tools available for improving display performance by
reducing database complexity. For more detailed information, see
“Level-of-Detail Management” in Chapter 7.

Billboard Objects

Many of the objects in databases can be considered to have one or more axes
of symmetry. Trees, for example, tend to look nearly the same from all
horizontal directions of view. An effective approach to drawing such objects
with less graphic complexity is to place a texture image of the object onto a
single polygon and then rotate the polygon during simulation to face the
observer. These self-orienting objects are commonly called billboards. For
information on billboards, see “pfBillboard Nodes” in Chapter 5.

Animation Sequences

Animated events in simulation environments often have a sequence of
stages that follow each other without variation. Where this is the case, you
can often define this behavior in the database during database construction
and allow the behavior to be implemented by the real-time visual system
without intervention by the application process.

An example of this would be illuminated traffic signals in a driving
simulator database. There are three mutually exclusive states of the signal,
one with a green lamp, one with the amber, and one with the red. The
duration of each state is known and can be recorded in the database. With
these intervals built into the database, simulations can be performed without

24

Chapter 2: IRIS Performer Basics

requiring the simulation application to cycle the traffic signal from one state
to the next.

The simplest type of animation sequence is known as a geometry movie. It is
a sequence of exclusive objects that are selected for display based on elapsed
time from a trigger event. Advancement is tied to frames rather than time,
or is based on specific events within the database.

For further information on animation, see “pfSequence Nodes” in Chapter 5.

Antialiasing

Antialiased image generation can have a significant effect on image quality
in visual simulation. The difference, though subtle in some cases, has very
significant effects on the sense of reality and the suitability of simulators for
training. Military simulators often center on the goal of detecting and
recognizing small objects on the horizon. Aliased graphics systems produce
a “sparkle” or “twinkle” effect when drawing small objects. This artifact is
unacceptable in these training applications since the student will come to
subconsciously expect such effects to announce the arrival of an opponent
and this unfulfilled expectation can prove fatal.

The idea of antialiasing is for image pixels to represent an average or other
convolution of the image fragments within a pixel’s area rather than simply
be a sample taken at the pixel’s center. This idea is easily stated but difficult
to implement while maintaining high performance.

The RealityEngine antialiasing approach is termed multisampling. In this
system, each pixel is considered to be composed of multiple subpixels.
Multisampling stores a complete set of pixel information for each of the
several subpixels. This includes such information as color, transparency, and
(most importantly) a Z-buffer value.

Providing multiple independent Z-buffered subpixels (the so-called
sub-pixel Z-buffer) per image pixel allows opaque polygons to be drawn in an
arbitrary order since the subpixel Z-comparison will implement proper
visibility testing. Converting the multiple color values that exist within a
pixel into a single result can either be done as each fragment is rendered into
the multisampling buffer or after all polygons have been rendered. For best
visual result, transparent polygons are rendered after all opaque polygons
have been drawn.

Survey of Visual Simulation Techniques

25

Texture Mapping

The most powerful incremental feature of image generation systems beyond
the initial capability to draw geometry is texture mapping, the ability to apply
textures to surfaces. These textures consist of synthetic or photographic
images that are displayed in place of the surfaces of geometric primitives, to
modify their surface appearance, reflectance, or shading properties. For each
point on a texture-mapped surface, a corresponding pixel from the texture
map is chosen to display instead, giving the appearance of warping the
texture into the shape of the object’s surface.

Surface Appearance

The most obvious use of texture mapping is to generate the appearance of
surface details on geometric objects, without making those details into
actual geometry. One valuable and widely used addition to these texture
processing features is the concept of partly transparent textures. An example
of this is the use of billboards (see “pfBillboard Nodes” in Chapter 5). For
instance, to display a tree using textures and billboards, create a texture map
of a tree (from a photograph, perhaps), marking the background (any part of
the texture which does not show part of the tree) as transparent. Then, using
a flat rectangle for the billboard, map the texture to the billboard; the
transparent regions in the texture become transparent regions of the
billboard, allowing other geometry to show through.

Environment Mapping

You can use textures to simulate reflections (usually in a curved surface) of
a 3D environment such as a room by using the viewing vector and the
geometry’s surface normal to compute each screen pixel’s index into the
texture image. The texture used for this process, the environment map, must
contain images of the environment to be reflected.

Sophisticated Shading

You can use the environment mapping technique to implement lighting
equations by noting that the environment map image represents the image
seen in each direction from a chosen point. Interpreting this image as the
illumination reflected from an incident light source as a function of angle,
the intensities rather than the colors of the environment map can be used to

26

Chapter 2: IRIS Performer Basics

scale the colors of objects in the database in order to implement complex
lighting models (such as Phong shading) with high performance. You can
use this method to provide elaborate lighting environments in systems
where per-pixel shading calculations would not otherwise be available.

Projective Texture

You can also use texture mapping to project images such as aircraft landing
lights and vehicle headlights into images. These projective texture
techniques, when combined with the ability to use Z-buffer contents to
texture images, allow the generation of real-time images with true 3D cast
shadows.

Character Animation

Some interactive applications include animated characters as well as scenery
and objects. Character animation is a complex topic with its own needs and
techniques.

Morphing

“Terrain Level of Detail” in Chapter 7 describes the simplest active database
methodology for continuous terrain level of detail processing based on
interpolation between two elevations for vertices, a process also known as
morphing. Advanced Onyx/RealityEngine real-time image generation
hardware is capable of the interpolation of vertex position, colors, normal
vectors, and texture coordinates between two versions of a model using the
IRIS Performer pfMorph node. Morphing can be used to fill in motion
between a start position and an end position for an object or—in its fully
generalized form—parts of an animated character (such as facial
expressions).

Generalized Morphing

Simple pair-wise morphing is not sufficient to give animated characters
life-like emotional expressions and behavior. You need the ability to model
multiple expressions in an orthogonal manner and then combine them with
arbitrary weighting factors during real-time simulation.

Survey of Visual Simulation Techniques

27

One current approach to human facial animation is to build a geometric
model of an expressionless face, and then to distort this neutral model into
an independent target for each desired expression. Examples include faces
with frowns and smiles, faces with eye gestures, and faces with eyebrow
movement. Subtracting the neutral face from the smile face gives a set of
smile displacement vectors and increases efficiency by allowing removal of
null displacements. Completing this process for each of the other gestures
yields the input needed by a real-time system: a base or neutral model and a
collection of displacement vector sets.

In actual use, you would process the data in a straightforward manner. You
would specify the weights of each source model (or corresponding
displacement vector set) before each frame is begun. For example a
particular setting might be “62% grin and 87% arched eyebrows” for a
clownish physiognomy. The algorithmic implication is simply a weighted
linear combination of the indicated vectors with the base model.

These processing steps are made more complicated in practice by the
performance-inspired need to execute the operations in a multiprocessing
environment. Parallel processing is needed because users of this technology

• need to perform hundreds to thousands of interpolations per character

• desire several characters in animation simultaneously

• prefer animation update rates of 30 or 60 Hertz

• generate multiple independent displays from a single system

Taken together, these demands can require significant resources, even when
only vertex coordinates are interpolated. When colors, normals, and texture
coordinates are also interpolated, and especially when shared vertex
normals are recomputed, the computational complexity is correspondingly
increased.

The computational demands can be reduced when the rate of morphing is
less than the image update rate. The quality of the interpolated result can
often be improved by applying a non-linear interpolation operation such as
the eased cosine curves and splines found useful in other applications of
computer animation.

28

Chapter 2: IRIS Performer Basics

Skeleton Animation

A successful concept in computer-assisted 2D animation systems is the
notion of skeleton animation. In this method you interpolate a defining
skeleton and then position artwork relative to the interpolated skeleton. In
essence, the skeleton defines a deformation of the original 2D plane, and the
original image is transformed by this mapping to create the interpolated
image. This process can be extended directly into the three-dimensional
domain of real-time computer image generation systems and used for
character animation in entertainment applications.

Total Animation

The techniques of generalized morphing and skeleton animation can be
used in conjunction to create advanced entertainment applications with
life-like animated characters. One application of the two methods is to first
perform a generalized betweening operation that builds a character with the
desired pre-planned animation aspects, such as eye or mouth motion, and
then to set the matrices or other transformation operators of the skeleton
transformation operation to represent hierarchical motions such as those of
arms or legs. The result of these animation operations is a freshly posed
character ready for display.

Database Construction

Several companies produce database modeling tools that are well integrated
with IRIS Performer. A selection of these products are included and
described in the Friends of Performer distribution. The Friends of Performer
gift software is located in the /usr/share/Performer/friends directory. These
tools have been built to address many aspects of the database construction
process. Popular systems include tools that allow interactive design of
geometry, easy editing and placement of texture images, flexible file-based
instancing, and many other operations. Special-purpose tools also exist to
aid in the design of roadways, instrument panels, and terrain surfaces.

The reward of building complex databases that accurately and efficiently
represent the desired virtual environment is great, however, since real-time
image generation systems are only as good as the environments they’re used
to explore.

Overview of the IRIS Performer Libraries

29

Overview of the IRIS Performer Libraries

This section outlines the basic elements of each library.

The libpf Visual Simulation Library

libpf is the visual simulation development library. Functions from libpf make
calls to libpr functions; libpf thus provides a high-performance yet
easy-to-use interface to the hardware.

Multiprocessing Framework

libpf provides a pipelined multiprocessing model for implementing visual
simulation applications. The pipeline stages are

• application

• cull

• draw

The application stage updates and queries the scene. The cull stage traverses
the scene and adds all potentially visible geometry to a special libpr display
list, which is then rendered by the draw stage. Rendering pipelines can be
split into separate processes (from one to three) to tailor the application to
the number of available CPUs.

In addition, IRIS Performer provides an intersection stage, which may be
multiprocessed, that intersects line segments with the database for things
like collision detection and line-of-sight determination.

Multiprocess operation is largely transparent because IRIS Performer
manages the difficult multiprocessing issues—such as process timing,
synchronization, and data coherence—for you.

30

Chapter 2: IRIS Performer Basics

Pipes, Pipe Windows, and Channels (pfPipe, pfPipeWindow,
pfChannel)

libpf provides software constructs to facilitate rendering a visual database. A
pfPipe is a rendering pipeline that renders one or more pfChannels into one
or more pfPipeWindows. A pfChannel is a view into a visual database—
equivalent to a viewport within a pfPipeWindow.

IRIS Performer supports multiple pfChannels on a single pfPipeWindow,
multiple pfPipeWindows on a single pfPipe and multiple pfPipes per
machine for multichannel, multiwindow, and multipipe operation. Frame
synchronization between channels is provided for simulations that display
multiple simultaneous views on different hardware displays.

Visual Database (pfScene)

libpf supports a general database hierarchy, defined as a directed acyclic
graph of nodes. IRIS Performer provides specialized node types useful for
visual simulation applications:

Grouping Nodes

• pfScene: Root node of a visual database

• pfGroup: Branch node, which may have children

• pfSCS: Static coordinate system

• pfDCS: Dynamic coordinate system

• pfLayer: Coplanar geometry node

• pfLOD: Level-of-detail selection node

• pfSwitch: Select among children

• pfSequence: Sequenced animation node

• pfPartition: Collection of geometry organized for efficiency

• pfMorph: Combines (“morphs”) attributes like color, coordinates

Geometric Nodes

• pfGeode: Geometry node

• pfBillboard: Geometry that rotates to face the viewpoint

Overview of the IRIS Performer Libraries

31

• pfLightPoint: Luminescent light points

• pfText: Geometry based upon pfFont and pfString

• pfLightSource: User-manipulatable lights which support high-quality
spotlights and shadows

A visual database is a graph of nodes that is rooted by a pfScene. A pfScene
is viewed by a pfChannel, which in turn is culled and drawn by a pfPipe.
Scenes are typically, but not necessarily, constructed by the application at
database loading time. IRIS Performer supplies sample source code that
shows how to construct a scene from several popular database formats; see
Chapter 9 for more information.

IRIS Performer provides traversal functions that act on a pfScene or portions
thereof. These functions include

• comprehensive, user-directed intersections

• flattening modeling transformations for improved cull, intersection,
and rendering performance

• cloning a database subgraph to obtain model instancing which shares
geometry but not articulations

• deletion of scene-graph components

• printing for debugging purposes

The application can direct and customize traversals through the use of
identification masks on a per-node basis and through the use of function
callbacks.

Frame Control

IRIS Performer is designed to run at a fixed frame rate specified by the
application. IRIS Performer measures graphics load, and uses that
information to compute a stress value. Stress is applied to the model’s level
of detail to reduce scene complexity when nearing graphics overload
conditions.

IRIS Performer also provides frame synchronization between pfChannels
and the Geometry Pipeline™ hardware to ensure that displays are updated
in lockstep.

32

Chapter 2: IRIS Performer Basics

Special Features (pfEarthSky, pfSequence, pfLightPoint)

libpf provides an environmental model called a pfEarthSky, consisting of
ground and sky polygons, that efficiently clears the viewport before
rendering the scene. Atmospheric effects such as ground fog, haze, and
clouds are included.

Sequenced animations, using pfSequence nodes, allow the application to
efficiently render complex geometry sequences that aren’t easily modeled
otherwise. You can think of animation sequences as a series of “flip cards”
where the application controls which card is shown and for how long.

Light points, defined by pfLightPoint nodes, can be used to simulate runway
lights, approach lights, strobes, beacons, and street lights. The parameters
for a pfLightPoint include size, directionality, shape, color, and intensity.
IRIS Performer renders light points using modes appropriate to the
hardware. Enhanced support for light point simulation is provided by the
IRIS Performer pfLPointState mechanism, which substantially replaces the
use of pfLightPoint nodes in advanced visual simulation applications.

The libpr High-Performance Rendering Library

libpr is a low-level graphics library that supports a variety of functions useful
for any high-performance graphics application.

High-Performance Geometry Rendering (pfGeoSet)

Many graphics applications are limited by CPU overhead in sending
graphics commands to the Geometry Pipeline. A pfGeoSet is a collection of
like primitives such as points, lines, triangles, and triangle strips. pfGeoSets
use tuned rendering loops to eliminate the CPU bottleneck.

Efficient Graphics State Management (pfState)

IRIS Performer provides functions to control aspects of graphics library state
such as lighting, texture, and transparency. These functions operate in both
immediate and libpr display-list mode for direct mode changes as well as for
mode caching. IRIS Performer manages state changes to optimize graphics
library performance.

Overview of the IRIS Performer Libraries

33

Other state functions such as push, pop, and override allow extensive
control of graphics state.

Graphics State Encapsulation (pfGeoState)

A pfGeoState is an encapsulation of graphics state—a graphics context.
Applying a pfGeoState ensures that the graphics pipeline is configured
appropriately regardless of previous graphics state. pfGeoStates are very
efficient, simplifying and accelerating graphics state management.

Display Lists (pfDispList)

IRIS Performer supports special libpr display lists. They don’t use graphics
library objects, but rather a simple token/data mechanism that doesn’t cache
geometry data. These display lists cache only libpr state and rendering
commands. They also support function callbacks to allow applications to
perform special processing during display list rendering. Display lists can be
reused and are therefore useful for multiprocessing producer/consumer
situations in which one process generates a display list of the visible scene
while another one renders it. Note that you can also use OpenGL and IRIS
GL display lists in IRIS Performer applications.

Math Support

Extensive linear algebra and simple geometric functions are provided. Some
supported data types are point, segment, vector, plane, matrix, cylinder,
sphere, frustum, and quaternion.

Intersections

Functions are provided to perform intersections of segments with cylinders,
spheres, boxes, planes, and geometry. Intersection functions for spheres,
cylinders, and frustums are also provided.

Color Tables (pfColortable)

IRIS Performer supports global color tables that can define the colors used
by pfGeoSets. Color tables can be used for special effects such as infrared
lighting and can be switched in real time.

34

Chapter 2: IRIS Performer Basics

Asynchronous File I/O (pfFile)

A simple nonblocking file access method is provided to allow applications to
retrieve file data during real-time operation. This file I/O is very similar to
the standard IRIX file I/O functions.

Memory Allocation (pfMalloc(), pfDataPool)

IRIS Performer includes routines to allocate memory from the application
process heap or from shared memory arenas. Shared arenas must be used
when multiple processes need to share data. The application can create its
own shared memory arenas or use pfDataPools. pfDataPools are shared
arenas that can be shared by multiple processes. Applications can allocate
blocks of memory within pfDataPools, which can be individually locked and
unlocked to provide mutual exclusion between unrelated processes.

High-Resolution and Video-Rate Clocks (pfGetTime, pfVClock)

IRIS Performer includes high-resolution clock and video interval counter
routines. pfGetTime() returns the current time at the highest resolution that
the hardware supports. Processes can either share synchronized time values
with other processes or have their own individual clocks.

The video interval counter is tied to the video retrace rate and can
synchronize a process with any multiple of the video rate; this mechanism is
the basis for producing fixed frame rates.

Intuitive Interface

All the IRIS Performer commands have intuitive names that describe what
they do. These mnemonic names make it easy for you to learn and remember
the commands. The names may look a little strange to you if you’re
unfamiliar with this type of interface because they use a mixture of upper-
and lowercase letters. Naming conventions provide for consistency and
uniqueness, both for routines and symbolic tokens. Following similar
naming practices in the software that you develop will make it easier for you
and others on your team to understand and debug your code.

Overview of the IRIS Performer Libraries

35

Naming conventions for IRIS Performer are as follows:

• All command and token names, whether associated with libpf or libpr,
are preceded by the letters “pf”, denoting the IRIS Performer library.

• Command and type names are mixed-case, while token names are
uppercase. For example, “pfTexture” is a type name and
“PFTEX_SHARPEN” is a token name.

• In type names, the part following the “pf” is usually spelled out in
full—as is the case with “pfTexture”—but in some cases a shortened
form of the word is used. For example, “pfDispList” is the name of the
display-list type.

• Much of IRIS Performer’s interface involves setting parameters and
retrieving parameter values. For the sake of brevity, the word “Set” is
omitted from function names, so that instead of “pfSetMtlColor(),”
“pfMtlColor()” is the name of the routine used for setting the color of a
pfMaterial. “Get,” however, is not omitted from the names of routines
that get information, such as “pfGetMtlColor()”.

• Routine names are constructed by appending a type name to an
operation name. The operation name always precedes the type name.
In this case, the operation name is unabbreviated and the type name is
abbreviated. For example, the name of the routine that applies a
pfTexture is “pfApplyTex()”.

Compound type names are abbreviated by the first initial of the first
word and the entire second word. For example, to draw a display list,
which is type pfDispList, use pfDrawDList().

• Symbolic token names incorporate another abbreviation, usually
shorter, of the type name. For example:

– pfTexture tokens begin with “PFTEX_”.

– pfDispList tokens begin with “PFDL_”.

This convention ensures that tokens for a particular type have their
own name space.

• Other tokens and identifiers follow the conventions of ANSI C and C++
wherein a valid identifier consists of upper and lower-case alphabetic
characters, digits, and underscores, and the first character must not be a
digit. Further details of these coding conventions as they pertain to C++
programming are described in Chapter 14, “Programming with C++.”

36

Chapter 2: IRIS Performer Basics

The libpfdu Geometry Builder Library

libpfdu is a database-utilities library. It provides helpful functions for
constructing optimized IRIS Performer data structures and scene graphs. It’s
used mainly by database loaders which take an external file format
containing 3D geometry and graphics state and load them into IRIS
Performer optimized run-time only structures. Such utilities often prove
very useful; most modeling tools and file formats represent their data in
structures that correspond to the way users model data, but such data
structures are often mutually exclusive with effective and efficient IRIS
Performer run-time structures.

libpfdu contains many utilities—including DSO support for database loaders
and their modes, file path support, and so on—but the heart of libpfdu is the
notion of the IRIS Performer database builder. The builder is a tool that
allows users to input or output a collection of geometry and graphics state
in immediate mode.

Users send geometric primitives one at a time, each with its corresponding
graphics state, to the builder. When the builder has received all the data, the
user simply requests optimized IRIS Performer data structures which can
then be used as a part of a scene graph. The builder hashes geometry into
different ‘bins’ based on the geometry’s attribute binding types and
associated graphics state. It also keeps track of graphics state elements
(textures, materials, light models, fog, and so on) and shares state elements
whenever possible. Finally, the builder creates pfGeoSets that contain
triangle meshes created by running the original geometry through the
libpfdu triangle-meshing utility.

To go along with each pfGeoSet, the builder creates a pfGeoState (IRIS
Performer’s encapsulated state primitive) which has been optimized to
share as many attributes as possible with other pfGeoStates being built (and
possibly with the default pfGeoState that can be attached to a channel with
pfChanGState()).

Having created all of these primitives (pfGeoSets and pfGeoStates) the
builder will place them in a leaf node (pfGeode), and optionally create a
spatial hierarchy (for increased culling efficiency) by running the new
database through a spatial breakup utility function which is also contained
in libpfdu. Note that the builder also allows the user to extend the notion of a
graphics state by registering callback functionality through builder API and

Overview of the IRIS Performer Libraries

37

then treating this state or functionality like any other IRIS Performer state or
mode (although such uses of the builder are slightly more complicated). In
short, libpfdu is a collection of utilities that effectively act as a data funnel
where users enter flattened 3D graphics information and are given in return
fully functional and optimized IRIS Performer run-time structures.

Current libpfdu modules:

• breakup.c

• builder.c

• callbacks.c

• extensors.c

• geobuilder.c

• loadfile.c

• openfile.c

• rebuild.c

• share.c

• spatial.c

• tmesher.c

The libpfdb Loader Library

libpfdb is a collection of independent loaders, each of which loads a particular
file format into IRIS Performer. Among the formats supported are
OpenFlight, Designer’s Workbench, Medit, and Wavefront. Each of the
libpfdb loaders is located in its own source directory; the more complicated
loaders may include further source subdirectories. Users usually don’t call
these functions directly; instead, they call the libpfdu function pfdLoadFile()
which uses the extension part of the file name (the part after the “.”
character) to decide the format of the file and then automatically invokes the
proper loader from libpfdb.

38

Chapter 2: IRIS Performer Basics

Many file loaders have been developed, and most are available in source
form as part of the IRIS Performer distribution. Using these loaders as
templates, you can write custom loaders for whatever formats you require
in your applications.

Database Formats and IRIS Performer

Although IRIS Performer doesn’t define a file format, it does provide sample
source code for importing numerous other database formats into IRIS
Performer’s run-time structures. Figure 2-2 shows how databases are
imported into IRIS Performer: first a user creates a database with a modeling
program, then an IRIS Performer-based application imports that database
using one of the many importing routines. IRIS Performer routines then
manipulate and draw the database in real time.

Scene graphs can also be generated automatically by loaders with built-in
scene-graph generation algorithms. The “sponge” loader is an example of
such automatic generation; it builds a model of the Menger (Sierpinski)
Sponge, without requiring an input file.

Database Formats and IRIS Performer

39

Figure 2-2 Relationship of IRIS Performer to Database Formats

Designer
Workbench

pfdLoadFile-dwb()
Open

Inventor

pfdLoadFile-iv()

pfdLoadFile-flt()

Multigen

FLT
format

database

M
od

el
in

g
pr

og
ra

m
s

Re
sp

ec
tiv

e
Da

ta
ba

se
s

IR
IS

 P
er

fo
rm

er
-b

as
ed

im
po

rti
ng

 ro
ut

in
es

IRIS Performer

Scene created from
various databases

DWB
format

database

iv
format

database

40

Chapter 2: IRIS Performer Basics

Graphics Libraries

IRIS Performer supports two graphics library APIs: IRIS GL and OpenGL.
IRIS GL is supported as the primary graphics API for all systems prior to
Indigo2/Impact, such as the RealityEngine; Silicon Graphics recommends
using OpenGL on Impact and subsequent graphics hardware, although
OpenGL is supported on RealityEngine and many previous systems for
application development and porting purposes.

The main difference between IRIS Performer’s use of IRIS GL and of
OpenGL is in how it handles windows and input; there are relatively few
circumstances in which your IRIS Performer-based program will call
graphics library routines directly (this will usually only happen in draw
callbacks—see “pfNode Cull and Draw Callbacks” in Chapter 6). In fact,
most of the differences between IRIS GL and OpenGL are transparent to a
developer using IRIS Performer; the choice of which graphics library your
application ends up using depends mostly on which libraries you link with
at compile time.

The names of the IRIS GL-based libraries for IRIS Performer use the suffix
_igl; the names of the OpenGL-based libraries end in _ogl. For example, to
use the OpenGL version of libpf, you would link to libpf_igl.so.

For information on compiling and linking IRIS Performer applications, see
“Compiling and Linking IRIS Performer Applications” in Chapter 3.

OpenGL

OpenGL is a window-system-independent library of graphics functions.
Describing OpenGL in detail is beyond the scope of this guide; to learn about
OpenGL, see the books mentioned in the “Bibliography” on page xxix.

Porting From IRIS GL to OpenGL

If you have an IRIS Performer application that uses IRIS GL, you can port it
to use OpenGL with minimal work. Most of what you need to do is port the
window- and event-handling to use X; OpenGL doesn’t have any window
or event routines. The OpenGL Porting Guide provides more information on

Graphics Libraries

41

porting from IRIS GL to OpenGL, and the sample applications distributed
with IRIS Performer provide many examples of programs that compile and
run with either IRIS GL or OpenGL.

The pfWindow Windowing Functions

IRIS Performer provides window-system-independent window routines to
allow greater portability of applications. You can use these routines whether
your application uses IRIS GL windowing, mixed-model IRIS GL/X
windowing, or OpenGL with X. For information about these window
routines, see the pfWindow(3pf) reference page.

For sample programs involving windows and input handling, see
/usr/share/Performer/src/pguide/{libpr,libpf,libpfutil,libpfui}.

X and IRIS IM

The X Window System is a network-based, hardware-independent window
system for use with bitmapped graphics displays. In the X client/server
model, an X server running in the background handles input and output,
and informs client applications when various events occur. A special client,
the window manager, places windows on the screen, handles icons, and
manages the titles and borders of windows.

IRIS IM is Silicon Graphics’ port of OSF/Motif, a set of widgets for use with
Xt, the X toolkit intrinsics library.

With the pfWindow window functions that IRIS Performer provides, you
don’t need to know X or IRIS IM to use windows. However, if you want to
learn about those topics anyway, see the books mentioned in the
“Bibliography” on page xxix.

42

Chapter 2: IRIS Performer Basics

pfObjects and the Class Hierarchy

IRIS Performer provides an object-oriented programming interface to most
of its data structures. Only IRIS Performer functions can change the values
of elements of these data structures; for instance, you must call pfMtlColor()
to set the color of a pfMaterial structure rather than modifying the structure
directly. Instances of these “encapsulated” data types are referred to as
pfObjects. In addition, some simple data types are not encapsulated for
speed and easy access. Examples include pfMatrix and pfSphere. These are
referred to as “public” structs or arrays.

In order to allow some functions to apply to multiple data types, IRIS
Performer uses the concept of class inheritance. Class inheritance takes
advantage of the fact that different data types (classes) often share attributes.
For example, a pfGroup is a node which can have children. A pfDCS
(Dynamic Coordinate System) has the same basic structure as a pfGroup, but
also defines a transformation to apply to its children—in other words, the
pfDCS data type inherits the attributes of the pfGroup and adds new
attributes of its own. This means that all functions that accept a pfGroup*
argument will alternatively accept a pfDCS* argument.

For example, pfAddChild() takes a pfGroup* argument, but

pfDCS *dcs = pfNewDCS();
pfAddChild(dcs, child);

appends child to the list of children belonging to dcs.

Because the C language does not directly express the notion of classes and
inheritance, arguments to functions must be cast before being passed, e.g.
pfAddChild((pfGroup*)dcs, (pfNode*)child). In the example above, no such
casting is required because IRIS Performer provides macros that perform the
casting when compiling with ANSI C. (Note, however, that using automatic
casting eliminates type checking—the macros will cast anything to the
desired type. If you make a mistake and pass an unintended data type to a
casting macro, the results may be unexpected.)

No such trickery is required when using the C++ API, so full type checking
is always available at compile time.

pfObjects and the Class Hierarchy

43

Inheritance Graph

The relations between classes can be arranged in a directed acyclic
inheritance graph in which each child inherits all of its parent’s attributes, as
illustrated in Figure 2-3. IRIS Performer does not use multiple inheritance, so
each class has only one parent in the graph.

Note: It’s important to remember that an inheritance graph is different from
a scene graph. The inheritance graph shows the inheritance of data elements
and member functions among user-defined data types; the scene graph
shows the relationship among instances of nodes in a hierarchical scene
definition.

44

Chapter 2: IRIS Performer Basics

Figure 2-3 Partial Inheritance Graph of IRIS Performer Data Types

Some classes
found in libpf

Some classes
found in libpr

pfNode

pfChannel

pfMaterial

pfGeoSet

pfFrustum

pfObject

pfLight
pfPipe

pfObjects and the Class Hierarchy

45

IRIS Performer objects are divided into two groups: those found in the libpf
library and those found in the libpr library. These two groups of objects have
some common attributes, but also differ in some respects.

While IRIS Performer only uses single inheritance, some objects encapsulate
others, hiding the encapsulated object but also providing a functional
interface that mimics its original one. For example a pfChannel has a
pfFrustum, a pfFrameStats has a pfStats, and a pfPipeWindow has a
pfWindow. In these cases, the first object in each pair provides functions
corresponding to those of the second. For example, pfFrustum has a routine,

pfMakeSimpleFrust(frust, 45.0f);

and pfChannel has a corresponding routine,

pfMakeSimpleChan(channel, 45.0f);

All of the major classes in IRIS Performer are derived from the pfObject class.
It unifies the data types by providing common attributes and functions.
However, some distinctions remain between libpr objects and libpf objects,
due to memory and performance considerations.

User Data

The primary attribute of a pfObject is called “user data”; its primary
functions are pfDelete(), pfCopy(), and pfPrint().

Each pfObject contains a special pointer to void which is reserved for
application use. This pointer can be set with pfUserData() to point to a
user-supplied data structure. This user structure usually further describes
the pfObject by adding attributes that make sense to the application.Both
libpf and libpr objects have user data pointers.

46

Chapter 2: IRIS Performer Basics

pfDelete() and Reference Counting

Most kinds of data objects in IRIS Performer can be placed in a hierarchical
scene graph, using instancing (see “Instancing” in Chapter 5) when an object
is referenced multiple times. Scene graphs can become quite complex, which
can cause problems if you’re not careful. Deleting objects can be a
particularly dangerous operation, for example, if you delete an object that
another object still references.

Reference counting provides a bookkeeping mechanism that makes object
deletion safe: an object is never deleted if its reference count is greater than
zero. Only libpr objects have an explicit reference count. In libpf, pfNodes are
reference-counted by their parents in the scene graph, and all other libpf
objects (such as pfChannels and pfPipes) have no reference count because
you cannot currently delete them.

All libpr objects (such as pfGeoState and pfMaterial) have a reference count
that specifies how many other objects refer to it. A reference is made
whenever an object is attached to another using the IRIS Performer routines
shown in Table 2-2.

Table 2-2 Routines that Modify libpr Object Reference Counts

Routine Action

pfGSetGState Attaches a pfGeoState to a pfGeoSet

pfGStateAttr Attaches a state structure (such as a pfMaterial) to
a pfGeoState

pfGSetHlight Attaches a pfHighlight to a pfGeoSet

pfTexDetail Attaches a detail pfTexture to a base pfTexture

pfGSetAttr Attaches attribute and index arrays to a pfGeoSet

pfTexImage Attaches an image array to a pfTexture

pfAddGSet, pfReplaceGSet,
pfInsertGSet

Modify pfGeoSet/pfGeode association

pfObjects and the Class Hierarchy

47

When object A is attached to object B, the reference count of A is
incremented. Additionally, if A replaces a previously referenced object C,
then the reference count of C is decremented. Example 2-1 demonstrates
how reference counts are incremented and decremented.

Example 2-1 Objects and Reference-Counts

pfGeoState *gstateA, *gstateC;
pfGeoSet *gsetB;

/* Attach gstateC to gsetB. Reference count of gstateC
 * is incremented. */
pfGSetGState(gsetB, gstateC);

/* Attach gstateA to gsetB, replacing gstateC. Reference
 * count of gstateC is decremented and that of gstateA
 * is incremented. */
pfGSetGState(gsetB, gstateA);

This automatic reference counting done by IRIS Performer routines is
usually all you’ll ever need. However, the routines pfRef(), pfUnref(), and
pfGetRef() allow you to increment, decrement, and retrieve the reference
count of a libpr object should you wish to do so. (These routines also work
with objects allocated by pfMalloc(); see “Memory Allocation” in
Chapter 10 for more information).

An object whose reference count is less than or equal to 0 can be deleted with
pfDelete(). pfDelete() works for all libpr objects and all pfNodes but not for
other libpf objects like pfPipe and pfChannel. pfDelete() first checks the
reference count of an object. If the reference count is non-positive, pfDelete()
decrements the reference count of all objects that the current object
references, then it deletes the current object. pfDelete() doesn’t stop here but
continues down all reference chains, deleting objects until it finds one whose
count is greater than zero. Once all reference chains have been explored,
pfDelete returns a boolean indicating whether it successfully deleted the first
object or not. Example 2-2 illustrates the use of pfDelete() with libpr.

Example 2-2 Using pfDelete() with libpr Objects

pfGeoState *gstate0, *gstate1;
pfMaterial *mtl;
pfGeoSet *gset;

gstate0 = pfNewGState(arena); /* initial ref count is 0 */

48

Chapter 2: IRIS Performer Basics

gset = pfNewGSet(arena); /* initial ref count is 0 */
mtl = pfNewMtl(arena); /* initial ref count is 0 */

/* Attach mtl to gstate0. Reference count of mtl is
 * incremented. */
pfGStateAttr(gstate0, PFSTATE_FRONTMTL, mtl);

/* Attach mtl to gstate1. Reference count of mtl is
 * incremented. */
pfGStateAttr(gstate1, PFSTATE_FRONTMTL, mtl);

/* Attach gstate0 to gset. Reference count of gstate0 is
 * incremented. */
pfGSetGState(gset, gstate0);

/* This deletes gset, gstate0, but not mtl since gstate1 is
 * still referencing it. */
pfDelete(gset);

Example 2-3 illustrates the use of pfDelete() with libpf.

Example 2-3 Using pfDelete() with libpf Objects

pfGroup *group;
pfGeode *geode;
pfGeoSet *gset;

group = pfNewGroup(); /* initial parent count is 0 */
geode = pfNewGeode(); /* initial parent count is 0 */
gset = pfNewGSet(arena); /* initial ref count is 0 */

/* Attach geode to group. Parent count of geode is
 * incremented. */
pfAddChild(group, geode);

/* Attach gset to geode. Reference count of gset is
 * incremented. */
pfAddGSet(geode, gset);

/* This has no effect since the parent count of geode is 1.*/
pfDelete(geode);

/* This deletes group, geode, and gset */
pfDelete(group);

pfObjects and the Class Hierarchy

49

Some notes about reference counting and pfDelete():

• All reference count modifications are locked so that they guarantee
mutual exclusion when multiprocessing.

• Objects added to a pfDispList don’t have their counts incremented due
to performance considerations.

• In the multiprocessing environment of libpf, the successful deletion of a
pfNode doesn’t have immediate effect but is delayed one or more
frames until all processes in all processing pipelines are through with
the node. This accounts for the fact that pfDispLists don’t
reference-count their objects.

• pfUnrefDelete(obj) is shorthand for

pfUnref(obj);
pfDelete(obj);

• Objects whose count reaches zero are not automatically deleted by IRIS
Performer. You must specifically request that an object be deleted with
pfDelete() or pfUnrefDelete().

Copying Objects with pfCopy()

pfCopy() is currently implemented for libpr (and pfMalloc()) objects only.
Object references are copied and reference counts are modified
appropriately, as illustrated in Example 2-4.

Example 2-4 Using pfCopy()

pfGeoState *gstate0, *gstate1;
pfMaterial *mtlA, *mtlB;

gstate0 = pfNewGState(arena);
gstate1 = pfNewGState(arena);
mtlA = pfNewMtl(arena); /* initial ref count is 0 */
mtlB = pfNewMtl(arena); /* initial ref count is 0 */

/* Attach mtlA to gstate0. Reference count of mtlA is
 * incremented. */
pfGStateAttr(gstate0, PFSTATE_FRONTMTL, mtlA);

50

Chapter 2: IRIS Performer Basics

/* Attach mtlB to gstate1. Reference count of mtlB is
 * incremented. */
pfGStateAttr(gstate1, PFSTATE_FRONTMTL, mtlB);

/* gstate1 = gstate0. The reference counts of mtlA and mtlB
 * are 2 and 0 respectively. Note that mtlB is NOT deleted
 * even though its reference count is 0. */
pfCopy(gstate1, gstate0);

Determining Object Type

Sometimes you have a pointer to a pfObject but you don’t know what it
really is—is it a pfGeoSet, a pfChannel, or something else? pfGetType()
returns a pfType which specifies the type of a pfObject. This pfType can be
used to determine the class ancestry of the object. Another set of routines,
one for each class, returns the pfType corresponding to that class, e.g.
pfGetGroupClassType() returns the pfType corresponding to pfGroup.

Since pfTypes are most frequently used to answer the question is object A of
class B, a helper function pfIsOfType() performs the test without the explicit
use of a pfType.

With these functions you can test for class type as shown in Example 2-5.

Example 2-5 General-Purpose Scene Graph Traverser

void
travGraph(pfNode *node)
{

if (pfIsOfType(node, pfGetDCSClassType()))
 doSomethingTransforming(node);

 /* If ’node’ is derived from pfGroup then recursively
 * traverse its children */
 if (pfIsOfType(node, pfGetGroupClassType()))
 for (i = 0; i < pfGetNumChildren(node); i++)
 travGraph(pfGetChild(node, i));
}

Because IRIS Performer allows subclassing of built-in types, when decisions
are made based on the type of an object, it is usually better to use
pfIsOfType() to test the type of an object rather than to test for the strict

pfObjects and the Class Hierarchy

51

equality of the pfTypes. Otherwise the code will not have reasonable default
behavior with file loaders or applications which use subclassing.

While the pfType returned from pfGetType() is useful to programs, it
doesn’t mean much to humans. pfGetTypeName() returns a
null-terminated ASCII string that clearly identifies an object’s type. For a
pfDCS, for instance, pfGetTypeName() returns the string “pfDCS”.

This chapter outlines the structure of
a simple visual simulation
application.

“Building a Visual Simulation
Application”

Chapter 3

55

Chapter 3

3. Building a Visual Simulation Application

This chapter outlines the steps involved in using libpf, the visual simulation
development library. The outline follows the development sequence of a
skeleton application program that introduces you to the basic concepts
involved in creating a visual simulation application with libpf. Each step at
which more complex constructions are possible gives a cross-reference to a
later section where you can learn more about the topic.

Overview

It takes only a few lines of code to set up an IRIS Performer libpf application.
Furthermore, once you have an application framework that you like you can
use it again to create other libpf applications.

Certain configuration and control routines are required in all applications,
while others depend on the features needed and the platform for which the
application is designed. The basic requirements for simple programs are the
same as for more complex programs, so you can learn the basic structure
from a very simple framework application and then build on it to suit your
needs.

Take a few moments to browse through the introductory program, simple.c,
shown in Example 3-1. If you want to compile this program, refer to the
section of this chapter titled “Compiling and Linking IRIS Performer
Applications.”

Note: Sample code built upon the framework presented in simple.c is
presented throughout the remainder of this guide, so familiarize yourself
with the concepts presented here before moving on to more advanced
subjects.

56

Chapter 3: Building a Visual Simulation Application

Example 3-1 shows the basic framework of an IRIS Performer application.

Example 3-1 Structure of an IRIS Performer Application

#include <stdlib.h>
#include <Performer/pf.h>
#include <Performer/pfutil.h>
#include <Performer/pfdu.h>

int
main (int argc, char *argv[])
{
 float t = 0.0f;
 pfScene *scene;
 pfNode *root;
 pfPipe *p;
 pfPipeWindow *pw;
 pfChannel *chan;
 pfSphere bsphere;

 if (argc < 2)
 {

pfNotify(PFNFY_FATAL, PFNFY_USAGE,
“Usage: simple file.ext\n”);

exit(1);
 }

 /* Initialize Performer */
 pfInit();

 /*
* Select multiprocessing mode based on
* number of processors
*/

 pfMultiprocess(PFMP_DEFAULT);

 /* Load all loader DSO’s before pfConfig() forks */
 pfdInitConverter(argv[1]);

 /*
* Initiate multi-processing mode set by pfMultiprocess
* FORKs for Performer processes, CULL and DRAW, etc.
* happen here.

 */
 pfConfig();

Overview

57

 /*
* Append to Performer search path, PFPATH, files in
* /usr/share/Performer/data
*/

 pfFilePath(“.:/usr/share/Performer/data”);

 /* Read a single file, of any known type. */
 if ((root = pfdLoadFile(argv[1])) == NULL)
 {
 pfExit();
 exit(-1);
 }

 /* Attach loaded file to a new pfScene. */
 scene = pfNewScene();
 pfAddChild(scene, root);

 /* Create a pfLightSource and attach it to scene. */
 pfAddChild(scene, pfNewLSource());

 /* Configure and open graphics window */
 p = pfGetPipe(0);
 pw = pfNewPWin(p);
 pfPWinType(pw, PFPWIN_TYPE_X);
 pfPWinName(pw, “IRIS Performer”);
 pfPWinOriginSize(pw, 0, 0, 500, 500);

 /* Open and configure the GL window. */
 pfOpenPWin(pw);

 /* Create and configure a pfChannel. */
 chan = pfNewChan(p);
 pfChanScene(chan, scene);
 pfChanFOV(chan, 45.0f, 0.0f);

 /* determine extent of scene’s geometry */
 pfGetNodeBSphere (root, &bsphere);
 pfChanNearFar(chan, 1.0f, 10.0f * bsphere.radius);

 /* Simulate for twenty seconds. */
 while (t < 20.0f)
 {

pfCoord view;
float s, c;

58

Chapter 3: Building a Visual Simulation Application

/* Compute new view position. */
t = pfGetTime();
pfSinCos(45.0f*t, &s, &c);
pfSetVec3(view.hpr, 45.0f*t, -10.0f, 0);
pfSetVec3(view.xyz, 2.0f * bsphere.radius * s,

-2.0f * bsphere.radius *c,
 0.5f * bsphere.radius);

pfChanView(chan, view.xyz, view.hpr);

/* Initiate cull/draw for this frame. */
pfFrame();

 }

 /* Terminate parallel processes and exit. */
 pfExit();
}

If you would like to compile simple.c and try it out, use the copy in
/usr/share/Performer/src/pguide/libpf/C; the Makefile in that directory provides
all the necessary compilation options. (For more information about IRIS
Performer compiler options, see the “Compiling and Linking IRIS Performer
Applications” section of this chapter.) Once you’ve compiled the code, try
executing it with some of the sample data files in /usr/share/Performer/data,
such as blimp.flt or sampler.nff.

Here’s a description of the steps involved in a simple IRIS Performer
application. Refer to the sample code in Example 3-1 as you read through
these steps.

1. Include the necessary system header files.

#include <stdlib.h>

2. Include the relevant IRIS Performer header files.

#include <Performer/pf.h>
#include <Performer/pfutil.h>
#include <Performer/pfdu.h>

Overview

59

3. Declare variables for the required elements.

pfScene a scene graph to be rendered on a channel

pfPipe a graphics pipeline to perform the rendering

pfChannel a view to be rendered on the designated pipe

You can configure IRIS Performer to use multiple scenes, multiple pipes
(if your system has them), and multiple channels per pipe. (See “Using
Multiple Channels” in Chapter 4.)

4. Initialize IRIS Performer.

pfInit();

This sets up the shared-memory arena used for multiprocessing,
initializes the high-resolution clock, and resets IRIS Performer’s state.

5. Configure IRIS Performer.

pfConfig();

This configures the number of pipes and starts processes based on the
selected multiprocessing model. The code in Example 3-1 uses the
defaults: a single pipe and a multiprocessing model that is tailored to
the number of processors on the machine.

6. Load or create the database.

root = pfdLoadFile(argv[1])

pfdLoadFile() loads a database from the disk using whichever file
importer seems appropriate (based on the three-letter extension at the
end of the given filename). There are other ways to set up scenes, too;
for instance, you can call a specific importing routine in place of
pfdLoadFile() if you want to load only databases of a particular format,
or you can create geometric objects directly using libpr and place them
in a database hierarchy. See “Geometry” in Chapter 10 for information
on constructing pfGeoSets, and “Scene Graph Hierarchy” in Chapter 6
for information on creating a scene graph.

7. Create a new scene for the channel to draw.

scene = pfNewScene();

60

Chapter 3: Building a Visual Simulation Application

8. Add the root of the database that you loaded or created in step 6 to the
scene.

pfAddChild(scene, root);

9. Initialize a graphics-rendering pipeline.

 p = pfGetPipe(0);
 pw = pfNewPWin(p);
 pfPWinType(pw, PFPWIN_TYPE_X);
 pfPWinName(pw, “IRIS Performer”);
 pfPWinOriginSize(pw, 0, 0, 500, 500);

 /* Open and configure the graphics window. */
 pfOpenPWin(pw);

This sets up a callback to open a graphics library window, sized and
positioned as specified in OpenPipeWin().

10. Specify the frame rate and the synchronization method.

Because neither a frame rate nor a synchronization method is specified
in simple.c, the application “free runs” without frame-rate control,
which is the default. See “Frame Rate and Synchronization” on page 63
and Chapter 7, “Frame and Load Control,” for more information on
controlling frame rates.

11. Create a channel on the specified pipe.

chan = pfNewChan(p);

A channel is a viewport into a pipe. Because simple.c doesn’t configure
any screen dimensions for the channel, it renders to the full window of
the pipe.

12. Configure the channel: set the viewpoint, field-of-view (FOV), and near
and far clipping planes (based on the size of the scene).

pfChanScene(chan, scene);
pfChanFOV(chan, 45.0f, 0.0f);
pfGetNodeBSphere (root, &bsphere);
pfChanNearFar(chan, 1.0f, 10.0f * bsphere.radius);

When you pass in zero as a field of view—in this case, the vertical
FOV—IRIS Performer matches the FOV to the aspect ratio of the
channel.

Setting Up the Basic Elements

61

13. Render the scene repeatedly until the specified time is up.

■ Set up the viewpoint for the next frame:

pfChanView(chan, view.xyz, view.hpr);

■ Initiate the next cull/draw cycle to render the frame:

pfFrame();

14. When the time is up, exit IRIS Performer.

pfExit();

The remainder of this chapter discusses portions of the outline in detail. You
may find it helpful to continue to refer to simple.c while you read the
following sections.

Setting Up the Basic Elements

This section describes how to set up the basic requirements of an IRIS
Performer libpf application.

Using IRIS Performer Header Files

The header files for the IRIS Performer libraries are in the
/usr/include/Performer directory. They include pf.h and pr.h (header files for
libpf and libpr, respectively), irisgl.h and opengl.h (to set up declarations for
whichever graphics library your application uses), and other header files for
use with the other IRIS Performer libraries.

The header files contain useful macros as well as function declarations,
including macros for transparently casting a variable from one data type to
another. (ANSI C requires that expressions used as function arguments be
cast to match function prototypes.) Some routines therefore accept more
than one type of argument, with automatic casting between usable types.
For example, a routine accepting a pfGroup as an argument can also take a
pfSwitch. In the code below, switch is automatically cast to a pfGroup* and
geode is automatically cast to a pfNode* by a macro within pf.h:

pfGeode *geode;
pfSwitch *switch;
pfAddChild(switch, geode);

62

Chapter 3: Building a Visual Simulation Application

Initializing and Configuring IRIS Performer

Before you can set up a pipe, you have to set up any areas of shared memory
that you intend to use, and you have to determine how many processors to
use (and in what configuration).

Initializing Shared Memory

IRIS Performer uses shared memory to share data among the application,
the visibility cull traversal, and the draw traversal, all of which can run in
parallel on different processors. pfInit() sets up the shared memory arena
from which libpf objects are allocated. The shared memory arena uses either
swap space or a file in the directory specified by the environment variable
PFTMPDIR. For more information on shared memory arenas, see “Memory
Allocation” in Chapter 10.

Initializing Processes

pfConfig() starts up multiple processes, which allow visibility culling and
drawing to run in parallel with the application process. The number of
processes created depends on the process model (specified by a call to
pfMultiprocess()), the number of processors, and the number of pipes (one
by default; call pfMultipipe() to specify more than one pipe). The order of
the calls is important—pfMultiprocess() and pfMultipipe() are effective
only if called between pfInit() and pfConfig().

The default is a single pipe running with one, two (separate draw process),
or three (separate cull and draw processes) processes, depending on the
number of processors on the machine. When you run the application from
the root login account, pfConfig() also sets nondegradable priorities for the
processes to improve the consistency of the run-time behavior.

For information on controlling multiple pipes, see “Using Pipes” in
Chapter 4. For information on multiprocessing, see “Successful
Multiprocessing With IRIS Performer” in Chapter 7.

In addition to setting up shared memory, pfInit() initializes a
high-resolution clock by calling pfInitClock(). Depending on the hardware,
this may start up a process to service the clock. The clock process consumes
few system resources because it sleeps most of the time.

Advanced

Setting Up the Basic Elements

63

Setting Up a Pipe

A pfPipe variable (also called a pipe) represents an IRIS Performer software
graphics pipeline. You gain access to a pipe using pfGetPipe(); for instance,

p = pfGetPipe(0);

sets p to point to the IRIS Performer graphics pipeline numbered zero.

IRIS Performer maintains its own representation of the global graphics state.
Therefore, changes that you make to the graphics state using graphics
library (IRIS GL or OpenGL) commands can create inconsistencies. IRIS
Performer provides state management routines that let you manipulate both
the graphics library state and the IRIS Performer state. When you want to
change graphics states, use these routines rather than their graphics library
counterparts.

See “Using Pipes” in Chapter 4 for more information on configuring
graphics on a pipe and “Graphics State” in Chapter 10 for more information
on controlling the graphics state.

Frame Rate and Synchronization

The frame rate is the number of times per second the application intends to
draw the scene. The period for a frame must be an integer multiple of the
video vertical retrace period, which is typically 1/60th of a second. Thus,
with a 60 Hz video rate, possible frame rates are 60 Hz, 30 Hz, 20 Hz, 15 Hz,
and so on. simple.c doesn’t specify a frame rate, so it attempts to free run at
the default rate of 60 Hz.

The synchronization mode or phase defines how the system behaves if
drawing takes more than the requested time. Free-running mode (the
default) is useful for applications that don’t require a fixed frame rate.
pfSync() delays the application until the next appropriate frame boundary.

See Chapter 7, “Frame and Load Control,” to learn more about frame rates,
phase, and synchronization modes.

64

Chapter 3: Building a Visual Simulation Application

Setting Up a Channel

A channel is a rendering viewport into a pipe. A pipe can have many
channels within it, but by default a channel occupies the full window of a
pipe. You can tell the channel to use a portion of the window using
pfChanViewport():

pfChanViewport(chan, left, right, bottom, top);

Channels support the standard viewing concepts such as eyepoint, view
direction, field of view, and near and far clipping planes.

For displays using multiple adjacent screens, you can slave channels
together to a single viewpoint. You can also use channels to control scene
management functions such as the switching of level-of-detail models based
on graphics stress and pixel size.

See “Using Channels” in Chapter 4 to learn more about setting up channels.

Creating and Loading a Scene Graph

Databases exist in a variety of formats. IRIS Performer doesn’t define a file
format for databases; instead, it supports extensible run-time scene
definitions of sufficient generality to support many database formats. Source
code for several file importers is included with IRIS Performer; the provided
importers are described in Chapter 9, “Importing Databases.”

Creating a Database

You can create a database with any modeler, or write your own modeler
using libpr routines. If you use a modeler that has its own database format,
you can develop a file importer for it by modifying one of the sample
importers. See Chapter 9, “Importing Databases,” for more information
about import routines.

If you write your own modeler using libpr routines, you don’t have to
convert the data structures for libpf to be able to use them. In this case, you
create a database by using a series of calls to construct geometry in
pfGeoSets, to define state and texture definitions in pfGeoStates, and to
construct a scene graph of pfNodes. The sample programs in Chapter 10,

Setting Up the Basic Elements

65

“libpr Basics,” show how to construct simple geometry. The source code for
the sample importers demonstrate the construction of more complex scenes.

Setting the Search Path for Database Files

Database files are often scattered about a file system, making file-loading
operations tedious. IRIS Performer provides a general mechanism for
defining multiple search paths.

When IRIS Performer attempts to open a file, it first tries the name as
specified. If that fails, it begins to search for the file using a search path, which
specifies where to look for data.

You can specify a search path using pfFilePath(path) or with the
environment variable PFPATH. You can specify any number of directories in
this way. The search path consists of a colon (:) separated list of absolute or
relative path names of the directories where data might reside. Directories
are searched in the order given, beginning with those specified in PFPATH,
followed by those specified by pfFilePath().

For example, the following function call tells IRIS Performer to search for
data first in the current directory, then in the data directory within the
current directory, and then in data directories one and two levels above the
current directory:

pfFilePath(".:./data:../data:../../data");

Calls to pfFindFile() with the name of the file you want to locate return the
complete pathname of the file if the result of the search is successful.

Simulation Loop

After the pipes and channels are configured and the scene is loaded, the
main simulation loop begins and manages scene updates, viewpoint
updates, scene intersection inquiries, and image generation.

The loop has two principal control calls: pfSync() and pfFrame().

66

Chapter 3: Building a Visual Simulation Application

The order of operations is this:

1. Call pfSync() to put the process to sleep until the next frame boundary.
This step is typically only used when viewpoint information is being
updated from a streaming input device such as a head-tracker.

2. Perform latency-critical operations such as setting the viewpoint or
reading positional input/output devices.

3. Call pfFrame() to initiate the next cull traversal.

4. Perform any time-consuming calculations that are required.

5. Return to step 1.

Time-consuming operations such as intersection inquiries and simulator
dynamics computations that are performed in the main simulation loop
should go after pfFrame() but before pfSync(). If these calculations are done
after pfSync() but before pfFrame(), the calculations can delay the start of
the cull process and thereby reduce the time available for the cull traversal
on multiprocessor systems.

Performance

This chapter doesn’t specifically discuss performance tuning (see
Chapter 13, “Performance Tuning and Debugging,” for detailed information
on that topic), but every IRIS Performer-based application should be written
with performance in mind. Speed is not something that you can easily build
into an application as a last-minute addendum; it’s something that you need
to consider as you structure your database, as you decide what needs to
happen in your main loop, and so on—during the design of your program
rather than after debugging it. Once you understand the basics of building a
visual simulation application, you should go on to learn how to enhance
performance by reading Chapter 13. It might be useful to skim Chapter 3
before reading any further, so that as you read more about the details of
building an application with IRIS Performer you’ll have performance issues
in mind from the start.

Compiling and Linking IRIS Performer Applications

67

Compiling and Linking IRIS Performer Applications

This section describes how to compile and link IRIS Performer applications.

Required Libraries

The following libraries are required when linking an executable:

libpf IRIS Performer visual simulation development library.
Comes in two version: libpf_ogl and libpf_igl, for OpenGL
and IRIS GL respectively.

libpr IRIS Performer high-performance rendering library. Exists
in both OpenGL and IRIS GL versions, and is contained
within the corresponding

libpf: libpf_ogl and libpf_igl, for OpenGL and IRIS GL respectively.

libpfdu IRIS Performer database library; does file handling, and
includes importers for a variety of data formats. Comes in
two version: libpfdu_ogl and libpfdu_igl, for OpenGL and
IRIS GL respectively.

libpfutil IRIS Performer utilities library; includes the
window-related functions. Comes in two version:
libpfutil_ogl and libpfutil_igl, for OpenGL and IRIS GL
respectively.

libimage Image library—required by libpr.

libGLU OpenGL utilities library—required by libpr with OpenGL.

libGL OpenGL graphics library; either this or the alternative libgl
(the IRIS GL graphics library) is required by libpf and libpr.

libXext

libGLw OpenGL widget library, for using OpenGL with IRIS IM.

libXm IRIS IM library; used for “Silicon Graphics look” windows.

libXt X toolkit intrinsics library; used by IRIS IM.

libXmu

libX11 X Window System ™ library—required by libgl and libpr.

68

Chapter 3: Building a Visual Simulation Application

libfm IRIS GL font manager—required by libpfutil with IRIS GL.

libm Math library—required by libpr.

libfpe Floating point exception library—required by libpr.

libmalloc Memory allocation library.

libC C++ library—required by libpf.

For an IRIS GL application using all of the libraries included with IRIS
Performer, the link line should include:

-lpfdu_igl -lpfui -lpfutil_igl -lpf_igl -limage -lgl -lXmu
-lX11 -lm -lfpe -lfm -lmalloc -lC

The corresponding line for an OpenGL application would be:

-lpfdu_ogl -lpfui -lpfutil_ogl -lpf_ogl -limage -lGLU -lGL
-lXext -lXmu -lX11 -lm -lfpe -lmalloc -lC

Dynamic Shared Objects (DSOs)

The standard libraries for IRIS Performer are distributed as dynamic shared
objects. Compared with static libraries, DSOs produce smaller applications
and allow sharing between multiple executables that are running
simultaneously. However, if you build an application using a DSO, that DSO
must be present on the target system at run time. The DSOs for IRIS
Performer 2.0 are in the performer_eoe subsystem on the IRIS Performer
CD-ROM.

Debug and Static Libraries

IRIS Performer also ships with the its libraries in different forms that might
be useful to developers. The debug versions are primarily intended for bug
reporting because they contain more symbol table information than the
optimized versions. The static versions are for use when distributing an
application to customers who may not have performer_eoe installed. If you
want to ensure that your customers will have all the libraries they need, you
should use static linking. Debug DSO, static optimized and static debug
versions of the libraries can be found in optional subsystems and are
installed under the directories /usr/lib/Performer/Debug,
/usr/lib/Performer/Static and /usr/lib/Performer/StaticDebug, respectively. The
“-L” option to cc, CC or ld can be used to link with the static libraries. Use of

Advanced

Compiling and Linking IRIS Performer Applications

69

the standard DSO or debug DSO is determined at run time through the
environment variable LD_LIBRARY_PATH.

Note: See Chapter 9, “Importing Databases,” for information concerning file
readers, which are normally accessed as DSOs at run time even when the
main IRIS Performer libraries have been statically linked. Also, when linking
statically, you should not use the -no_unresolved, option since IRIS Performer
may reference symbols such as OpenGL extensions which are not installed
on your machine.

Using Compiler Flags

Much of the sample code in this guide, many of the sample applications, and
most of the database-importing code are written in ANSI C. They should be
compiled using the –ansi flag to the C compiler.

Using –cckr instead of –ansi affects IRIS Performer in the following ways:

1. Because –cckr doesn’t support floating point constants denoted with
the f suffix, all constants defined with #define are double precision. The
promotion of floating point expressions to double precision can
decrease performance for some numerically intensive applications.

2. Because –cckr doesn’t allow a macro to have the same name as a
routine, the type-casting macros in pf.h are not available. Thus, when
you pass a pointer to a derived type such as pfGroup or pfGeode to a
routine that takes a generic type such as a pfNode, that argument must
be cast to a pfNode explicitly, as shown in the following example:

pfGeode *geode;
pfSwitch *switch;
pfAddChild((pfGroup *)switch, (pfNode *)geode);

MIPS-3, MIPS-4, and 64-Bit Compilation

If you are running version 6.2 or later of IRIX, you can compile and execute
OpenGL-based IRIS Performer applications in 64-bit mode.

To do this, you need to have installed the optional 64-bit versions of the IRIS
Performer libraries. All that is required then is to use the “-64” switch to the
compiler. This selects the compilation mode and causes libraries to be
searched for in /usr/lib64 instead of /usr/lib.

70

Chapter 3: Building a Visual Simulation Application

The 64-bit version of IRIS Performer is itself created using -mips3, so that
you can compile an application using either the MIPS-3 or MIPS-4
instruction set. MIPS-3 executables can run on R4400-based machines such
as Onyx and Indigo2 as well as on R8000-based machines such as
PowerOnyx and PowerIndigo2. MIPS-4 executables can only be run on
R8000-based (and subsequent) machines.

Under IRIX 6.2 and later, if you want to use the extended MIPS-3 or MIPS-4
instruction set in a 32-bit application, install the optional “new 32-bit” (N32)
version of IRIS Performer and use the “-n32” option to the compiler. The old
32-bit, new 32-bit and 64-bit versions of IRIS Performer can all be installed at
the same time as each is installed in a separate directory, /usr/lib, /usr/lib32
and /usr/lib64, respectively.

Note: IRIS GL does not exist in “N32” or 64-bit form; you must use OpenGL.

Using IRIS Performer From C++

IRIS Performer provides C++ bindings for all functions as well as C
bindings. Most of this guide does not include code examples in C++;
however, all sample programs are provided in the IRIS Performer
distribution in both C and C++ versions. The structure of a C++ program is
largely identical to that of a C program; for examples of IRIS Performer
programs using the C++ API, see the /usr/share/Performer/src/pguide/progs
and apps directories for examples of equivalent C and C++ programs.

See Chapter 14, “Programming with C++,” for a discussion of the
differences between programming using the C and C++ programming
interfaces.

This chapter describes how to create
a display environment by
configuring rendering pipelines,
channels, and viewpoints.

“Setting Up the Display Environment”

Chapter 4

73

Chapter 4

4. Setting Up the Display Environment

libpf is a visual-database processing and rendering system. The visual
database has at its root a pfScene (as described in Chapter 5 and Chapter 6).
A pfScene is viewed by a pfChannel, which is rendered to a pfPipeWindow
by a pfPipe. This chapter describes how to use pfPipes, pfPipeWindows, and
pfChannels.

Using Pipes

This section describes rendering pipelines (pfPipes) and their implementation
in IRIS Performer. Each rendering pipeline draws into one or more windows
(pfPipeWindows) associated with a single Geometry Pipeline. A minimum
of one rendering pipeline is required, although it is possible to have more
than one.

The Functional Stages of a Pipeline

This rendering pipeline comprises three primary functional stages:

APP Simulation processing, which includes reading input from
control devices, simulating the vehicle dynamics of moving
models, updating the visual database, and interacting with
other networked simulation stations.

CULL Traverses the visual database and determines which
portions of it are potentially visible (a procedure known as
culling), selects a level of detail for each model, sorts objects
and optimizes state management, and generates a display
list for the draw function.

DRAW Traverses the display list and issues graphics library
commands to a Geometry Pipeline in order to create an
image for subsequent display.

74

Chapter 4: Setting Up the Display Environment

Figure 4-1 shows the process flow for a single-pipe system. The application
constructs and modifies the scene definition (a pfScene) associated with a
channel. The traversal process associated with that channel’s pfPipe then
traverses the scene graph, building an IRIS Performer libpr display list. As
shown in the figure, this display list is used as input to the draw process that
performs the actual graphics library actions required to draw the image.

Figure 4-1 Single Graphics Pipeline

IRIS Performer also provides additional processes for application processing
tasks, such as database loading and intersection traversals, but these
processes are per-application and are asynchronous to the software
rendering pipeline(s).

An IRIS Performer application renders images using one or more pfPipes.
Each pfPipe represents an independent software-rendering pipeline. Most
IRIS systems contain only one Geometry Pipeline, so a single pfPipe is
usually appropriate. This single pipeline is often associated with a window
that occupies the entire display surface.

Alternative configurations include Onyx systems with RealityEngine2™
graphics (allowing up to three Geometry Pipelines). Applications can render
into multiple windows, each of which is connected to a single Geometry
Pipeline through a pfPipe rendering pipeline.

Scene Frame BufferTraversal/CullApplication Draw

Pipeline 0

Using Pipes

75

Figure 4-2 shows the process flow for a dual-pipe system. Notice both the
differences and similarities between these two figures. Each pipeline
(pfPipe) is independent in multiple-pipe configurations; the traversal and
draw tasks are separate, as are the libpr display lists that link them. In
contrast, these pfPipes are controlled by the same application process, and
in many situations access the same shared scene definition.

Figure 4-2 Dual Graphics Pipeline

Each of these stages can be combined into a single IRIX process or split into
multiple processes (pfMultiprocess) for enhanced performance on multiple
CPU systems. Multiprocessing and multiple pipes are advanced topics that
are discussed in “Successful Multiprocessing With IRIS Performer” in
Chapter 7.

Creating and Configuring a pfPipe

pfMultipipe() specifies the number of pfPipes desired. pfMultiprocess()
specifies the multiprocessing mode used by all pfPipes. These two routines
are discussed further in“Successful Multiprocessing With IRIS Performer” in
Chapter 7.

Scene Frame BufferTraversal/CullApplication DrawPipeline 1

Pipeline 0 Frame BufferTraversal/Cull Draw

Advanced

76

Chapter 4: Setting Up the Display Environment

pfPipes and their associated processes are created when pfConfig() is called.
They exist for the duration of the application. After pfConfig(), the
application can get handles to the created pfPipes using pfGetPipe(). The
argument to pfGetPipe() indicates which pfPipe to return and is an integer
between 0 and numPipes-1, inclusive. The pfPipe handle is then used for
further configuration of the pfPipe.

You may have application state associated with pfPipe stages and processes
that need special initialization. For this purpose, you may provide a stage
configuration callback for each pfPipe stage using pfStageConfigFunc(pipe,
stageMask, configFunc) and specify the pfPipe, the stage bitmask (including
one or more of PFPROC_APP, PFPROC_CULL, and PFPROC_DRAW), and
your stage configuration callback routine. At any time, you may call the
function pfConfigStage() from the application process to trigger the
execution of your stage configuration callback in the process associated with
that pfPipe’s stage. The stage configuration callback will be invoked at the
start of that stage within the current frame (the current frame in the
application process, and subsequent frames through the cull and draw
phases of the software rendering pipeline). Use a pfStageConfigFunc()
callback function to configure performer processes not associated with
pfPipes, such as the database process, PFPROC_DBASE, and the intersection
process, PFPROC_ISECT. A common process initialization task for real-time
applications is the selection and/or specification of a CPU on which to run.

The final part of pfPipe initialization is the specification of the graphics
hardware pipeline (or screen) and the creation of a window on that screen.
The screen of a pfPipe can be set explicitly using pfPipeScreen(). Under
single pipe operation, pfPipes can also inherit the screen of their first opened
window. Under multipipe operation, the screen of all pfPipes must be
determined before the pipes are configured by pfConfigStage() or the first
call to pfFrame(). Once the screen of a pfPipe has been set, it cannot be
changed. All windows of a pfPipe must be opened on the same screen. A
graphics window is associated with a pfPipe through the pfPipeWindow
mechanism, which is the subject of the next section, “Using
pfPipeWindows.” If you do not create a pfPipeWindow, IRIS Performer will
automatically create and open a full screen window with a default
configuration for your pfPipe.

Once you create and initialize a pfPipe, you can query information about its
configuration parameters. pfGetPipeScreen() returns the index number of
the hardware pipeline for the pfPipe, starting from zero. On single-pipe

Using Pipes

77

systems the return value will be zero. If no screen has been set, the return
value will be (-1). pfGetPipeSize() returns the full screen size, in pixels, of
the rendering area associated with a pfPipe.

Example of pfPipe Use

The sample source code shipped with IRIS Performer includes several
simple examples of pfPipe use in both C and C++. Specifically, look at the
following examples under the C and C++ directories in
/usr/share/Performer/src/pguide/libpf/, such as hello.c, simple.c, and multipipe.c.

Example 4-1 illustrates the basics of using pipes. The code in this example is
adapted from IRIS Performer sample programs.

Example 4-1 pfPipes in Action

main()
{

int i;

/* Initialize IRIS Performer */
pfInit();

 /* Set number of pfPipes desired -- THIS MUST BE DONE
 * BEFORE CALLING pfConfig().
 */
 pfMultipipe(NumPipes);

/* set multiprocessing mode */
pfMultiprocess(ProcSplit);

 ...
 /* Configure IRIS Performer and fork extra processes if
 * configured for multiprocessing.
 */
 pfConfig();

...

 /* Optional custom mapping of pipes to screens.
* This is actually the reverse as the default.
*//
for (i=0; i < NumPipes; i++)

 pfPipeScreen(pfGetPipe(i), NumPipes-(i+1));
 {

/* set up optional DRAW pipe stage config callback */
pfStageConfigFunc(-1 /* selects all pipes */,

78

Chapter 4: Setting Up the Display Environment

PFPROC_DRAW /* stage bitmask */,
ConfigPipeDraw /* config callback */);

/* Config func should be done next pfFrame */
pfConfigStage(i, PFPROC_DRAW);

}
InitChannels();

 ...
/* trigger the configuration and opening of pfPipes

* and pfWindows
*/

pfFrame();

 /* Application’s simulation loop */
 while(!SimDone())
 {
 ...
 }
}

/* CALLBACK FUNCTIONS FOR PIPE STAGE INITIALIZATION */
void
ConfigPipeDraw(int pipe, uint stage)
{
/* Application state for the draw process can be initialized

* here. This is also a good place to do real-time
* configuration for the drawing process, if there is one.
* There is no graphics state or pfState at this point so no
* rendering calls or pfApply*() calls can be made.
*/

pfPipe *p = pfGetPipe(pipe);
pfNotify(PFNFY_INFO, PFNFY_PRINT,

“Initializing stage 0x%x of pipe %d”, stage, pipe);
}

Using pfPipeWindows

79

Using pfPipeWindows

IRIS Performer can automatically create and open a full screen window with
a default configuration for your pfPipe. At the other extreme, you can create
and configure your own windows and set them on a pfPipe. Your window
may be pure IRIS GL, IRIS GLX (also known as mixed model), or OpenGL/X.
In all cases, the pfPipeWindow is the mechanism by which a pfPipe knows
about and keeps track of the windows to which it is to render. For all
window types, there is a single interface for creating, configuring, and
managing the windows.

In the simplest case, IRIS Performer will automatically create a
pfPipeWindow for the application and automatically open a full screen
window upon the first call to pfFrame(). This trivial case is demonstrated in
Example 4-1.

Creating, Configuring and Opening pfPipeWindow

In most cases, there are some window parameters, such as size and origin,
that you will want to set. You may also have custom graphics state that you
need to set to fully initialize your rendering window. This section describes
the basics for setting up windows through the pfPipeWindow mechanism.
Rendering to the pfPipeWindow is done through a pfChannel’s draw
process callback and is discussed in the next section in “Creating and
Configuring a pfChannel”.

A pfPipeWindow can be created for a pfPipe using pfNewPWin(pipe). If
you create a pfPipeWindow, then you are responsible for explicitly opening
it. The call to pfOpenPWin(pwin) from the application process will cause
the next call to pfFrame() to trigger the opening of the pfPipeWindow in the
draw process. A pfPipeWindow created in the application will be a
rubber-band window of undefined size for the user to stretch out. This is in
contrast to the full screen window that IRIS Performer creates on your behalf
in the fully automatic case. To easily get a full screen window, you can use
the pfPWinFullScreen() function. pfPWinOriginSize() can be used to set a
fixed position and size for the window. The code in Example 4-2, placed in
the application process, will create and open a window in the lower-left
corner of the screen of size 500 pixels on each side.

80

Chapter 4: Setting Up the Display Environment

Example 4-2 Creating a pfPipeWindow

main()
{

pfPipe *pipe;
pfPipeWindow *pwin;
pfInit();
....
pfConfig();
/* Create pfPipeWindow for pfPipe 0 */
pipe = pfGetPipe(0;
pwin = pfNewPWin(pipe);
/* Set the origin and size of the pfPipeWindow */
pfPWinOriginSize(pwin, 0, 0, 500, 500);
/* Tell IRIS Performer that the pfPipeWindow is ready to

* be opened
*/

pfOpenPWin(pwin);
/* trigger the opening of the pfPipeWindow

* in the draw process
*/

pfFrame();
...
while(!SimDone())

 {
 ...
 }
}

pfPipeWindows are actually built upon libpr pfWindows, but have added
support for handling the multiprocessed environment of libpf applications
and fit into the libpf display hierarchy of pfPipes, pfPipeWindows, and
pfChannels. Additionally, pfPipeWindows support the multiprocessing
environment of libpf by having a separate copy of each pfPipeWindow in
each pipeline process. All of the “windowness” of pfPipeWindows really
comes from the fact that there is a pfWindow internal to the pfPipeWindow.
Many of the basic support routines, such pfPWinFullScreen() and
pfWinFullScreen(), have very similar functionality for pfWindows and
pfPipeWindows. However, there are situations where pfPipeWindows are
able to provide the same functionality in a much more efficient manner.
Management of dynamic window origin and size is one case where
pfPipeWindows have a real advantage over pfWindows. pfPipeWindows
are able to take advantage of the multiprocessed libpf environment to always

Using pfPipeWindows

81

be able to return an accurate window size and origin relative to the window
parent. A process separate from the rendering process is notified by the
window system of changes in the pfPipeWindow’s size in an efficient
manner without impacting the window system or the rendering process.
Further details regarding setting and querying window origin and size are
discussed with pfWindows in Chapter 10, “libpr Basics.”

Note: pfPWin*() routines expect a pfPipeWindow and the pfWin*() routines
a pfWindow(). These routines are not interchangeable; pfWindow routines
cannot accept pfPipeWindows and visa versa. Some details of pfWindow
(and thus pfPipeWindow) functionality are discussed with pfWindows.

Windows have some intrinsic type attributes that must be set before the
window is opened. The selection of the screen of a window is determined by
the pfPipe that it is opened on, or set for both the pfWindow and its pfPipe
with the call pfPWinScreen(), or else when the window is finally opened.
The window system configuration of the window must also be set before the
window is opened. Windows under OpenGL operation will always be X
windows. However, under IRIS GL operation, a pfPipeWindow will by
default be a pure IRIS GL window. To render IRIS GL into an X window, the
X window type must be specified with the command, pfPWinType(pwin,
PFPWIN_TYPE_X). An open window must be closed for its type to be
changed. The window type argument is actually a bitmask and the type of a
pfPipeWindow can include the attributes listed in Table 4-1.

Table 4-1 pfPWinType Tokens

Token Type Attributes

PFPWIN_TYPE_X Rendering will be done to an X window. Ignored by
OpenGL as all OpenGL rendering is done to X
windows.

PFPWIN_TYPE_STATS The window’s normal drawing configuration will
support graphics statistics. This affects framebuffer
configuration and fill statistics.

PFPWIN_TYPE_SHARE The pfPipeWindow will automatically be attached
to the first pfPipeWindow of the parent pipe with
pfAttachPWin()

82

Chapter 4: Setting Up the Display Environment

pfPipeWindows have a target default framebuffer configuration. The ability
to meet this target will depend on the current graphics hardware
configuration, as well as their type. The following parameters are part of the
target default configuration and are listed in their order of priority. If the goal
framebuffer configuration cannot be created on the current graphics
hardware configuration, lower priority parameters will be downgraded as
specified.

• double buffered,

• RGB mode with eight bits per color component (four if eight cannot be
supported),

• z-buffer with depth of 24 bits,

• one bit stencil buffer (windows type PFWIN_TYPE_STATS will still
require 4 bits of stencil),

• multisample buffer of eight, four, or zero samples as available.

• four bit stencil buffer.

pfPipeWindows have IRIS Performer libpr rendering state automatically
initialized when they are opened. Additionally the following graphics state
is automatically initialized upon opening, or upon any call to pfInitGfx() for
an open window:

• in pure IRIS GL windows, the framebuffer configuration is restored to
default; however, if multisample buffers already exist, the default
multisampled configuration is used,

• RGB mode is enabled,

• z-buffer is enabled and a z range is set,

• viewport clipping is enabled,

• subpixel vertex accuracy is enabled,

• the viewing matrix is initialized to a two-dimensional one-to--one
mapping from eye coordinates to window coordinates.,

• the model matrix is initialized to the identity matrix and made the
current GL matrix,

• backface removal is enabled,

• smooth shading is enabled,

Using pfPipeWindows

83

• if the current graphics hardware platform supports multisampling,
multisampled antialiasing will be enabled with
pfAntialias(PFAA_ON),

• a default modulating texture environment is created,

• a default lighting model is created.

Custom framebuffer configuration for a pfPipeWindow can be specified
with pfPWinFBConfigAttrs(), pfPWinFBConfig(), and
pfChoosePWinFBConfig(). These routines have identical functionality as
each of the corresponding pfWindow routines. However, the function
pfChoosePWinFBConfig() has the constraint that it be called in the draw
process because it creates and stores internal data from the window server
that must be kept local to the process in which it is called. Table 4-2 lists the
different pfPipeWindow routines and describes multiprocessing constraints.

The flexibility in changing the framebuffer configuration of a pfPipeWindow
is GL dependent. IRIS GL supports reconfiguration of the framebuffer.
However, in GLX or OpenGL/X windows, it is considerably trickier. The
main window can remain in place but structures under it must be switched
or replaced. If multiple framebuffer configurations are likely to be desired,
multiple graphics contexts can be created for the window using pfWindows.
pfPipeWindows and pfWindows allow you to have a list of alternate
pfWindows that render to exactly the same screen area but may have
different framebuffer configuration. You can then select the current
configuration for a pfPipeWindow with pfPWinIndex(). There are two kinds
of common alternate configuration windows that can be created
automatically for you: overlay windows created in the overlay planes and
windows to support hardware fill statistics (discussed in Chapter 12,
“Statistics”). You can use pfPWinMode() to indicate that you would like
these windows created for you automatically. Special tokens to
pfPWinIndex() are used to select these common special alternate
configuration windows—PFWIN_GFX_WIN, PFWIN_OVERLAY_WIN and
PFWIN_STATS_WIN—where PFWIN_GFX_WIN selects the normal default
drawing window. Note that only a pfWindow, never a pfPipeWindow, can
be an alternate configuration window. Further details on creating and using
alternate configuration windows are discussed with pfWindows in
Chapter 10, “libpr Basics.” The source code in Example 4-3 is taken from
/usr/share/Performer/src/pguide/libpf/C/pipewin.c and demonstrates the
automatic creation and selection of overlay and statistics windows for a
pfPipeWindow. This also shows usage of pfChannels and interaction

84

Chapter 4: Setting Up the Display Environment

between pfPipeWindows and pfChannels that will be discussed further in
the Section “Creating and Configuring a pfChannel”.

Example 4-3 pfPipeWindow with alternate configuration windows

main()
{

pfPipe *pipe;
pfPipeWindow *pwin;
pfInit();
....
pfConfig();

/* Create pfPipeWindow for pfPipe 0 */
pipe = pfGetPipe(0);
pwin = pfNewPWin(pipe);
/* request automatic default overlay and stats windows */
pfPWinMode(pwin, PFWIN_HAS_OVERLAY, PF_ON);
pfPWinMode(pwin, PFWIN_HAS_STATS, PF_ON);
/* Open the main graphics window */
pfOpenPWin(pwin);
pfFrame();

while(!SimDone())
 {
 ...

if (Shared->winSel == PFWIN_STATS_WIN))
{

/* select statistics window and enable fill stats */
pfPWinIndex(Shared->pw, PFWIN_STATS_WIN);
pfFStatsClass(fstats,

PFSTATSHW_ENGFXPIPE_FILL, PFSTATS_ON);
pfEnableStatsHw(PFSTATSHW_ENGFXPIPE_FILL);

}
else

{
/* we are not doing statistics so turn them off */
pfFStatsClass(fstats,

PFSTATSHW_ENGFXPIPE_FILL, PFSTATS_OFF);
 pfDisableStatsHw(PFSTATSHW_ENGFXPIPE_FILL);

pfPWinIndex(Shared->pw, Shared->winSel);
...

 }
}

Using pfPipeWindows

85

/* Channel draw process drawing function */
void DrawFunc(void pfChannel *chan)
{

pfPipeWindow *pwin;
pwin = pfGetChanPWin(chan);
if (pfGetPWinIndex(pwin) == PFWIN_OVERLAY_WIN)
{

/* Draw overlay image */
DrawOverlay();
/* Put back the normal drawing window */
pfPWinIndex(pwin, PFWIN_GFX_WIN);
/* Indicate that we will now draw to the window */
pfSelectPWin(pwin);

}
/* call the main IRIS Performer drawing function */
pfDraw();

}

Notice that in Example 4-3, although the pfPipeWindow is doublebuffered,
the front and back color buffers are never swapped. This operation is done
automatically after all channels on the parent pfPipe have completed their
drawing for the given frame.

You may need to set additional window and graphics state to complete the
initialization of your pfPipeWindow. Calling pfOpenPWin() from the
application process does not give you the opportunity to do this. However,
with pfPWinConfigFunc(), you can supply a window configuration callback
function that will enable you to open and initialize your pfPipeWindow in
the draw process. A call to pfConfigPWin() will trigger one call of the
window configuration callback in the draw process upon the next call to
pfFrame(). pfConfigPWin() can be called at any time to trigger the calling of
the current window configuration function in the draw process. Example 4-4
demonstrates initializing a pfPipeWindow from a draw process callback. It
creates a special extra depth buffer and local light model for supporting IRIS
GL shadows (see the /usr/share/Performer/src/pguide/libpf/C/shadow.c
example).

Example 4-4 Custom initialization of pfPipeWindow state

main()
{

pfPipe *pipe;

86

Chapter 4: Setting Up the Display Environment

pfPipeWindow *pwin;
pfInit();
....
pfConfig();

/* Create pfPipeWindow for pfPipe 0 */
pipe = pfGetPipe(0);
pwin = pfNewPWin(pipe);
/* Set the configuration function for the pfPipeWindow */
pfPWinConfigFunc(pwin, OpenPipeWindow);
/* Indicate that OpenPipeWindow should be called in the

* draw process upon next call to pfFrame().
*/

pfConfigPWin(pwin);

/* trigger OpenPipeWindow to be called in the draw
* process
*/

pfFrame();
while(!SimDone())

 {
 ...
 }
}

/* Initialize graphics state in the draw process */
void
OpenPipeWindow(pfPipeWindow *pw)
{

 pfLightModel *lm;

/* Set some configuration stuff */
pfPWinOriginSize(pw, 0, 0, 500, 500);
/* Open the window - will give us initialized libpr and

* graphics state
*/

pfOpenPWin(pw);

/* Shadows require a 32 bit non-multisampled zbuffer */
 do

{
zbsize(32);
stensize(1);
mssize(numSamples, 32, 1);
gconfig();

Using pfPipeWindows

87

numSamples >>= 1;
} while (PF_ABS(getgconfig(GC_BITS_ZBUFFER)) < 32

&& numSamples > 0);

if (numSamples > 0)
multisample(1);

else
{

RGBsize(12);
mssize(0, 0, 0);
zbsize(32);
stensize(1);
gconfig();
multisample(0);

}
/* set up Local Light Model to go with shadows */
lm = pfNewLModel(NULL);
pfLModelLocal(lm, 1);
pfApplyLModel(lm);

}

Notice how in Example 4-4 the functions pfPWinOriginSize() and
pfOpenPWin() are now called in the draw process, as opposed to the
application process as in Example 4-2. In general, configuring or editing any
libpf object must be done in the application process. pfPipeWindows must be
created in the application process. However, pfPipeWindows may be
configured, edited, opened and closed in the pfPWinConfigFunc()
configuration callback which will be called in the draw process. Window
operations are best done in a configuration callback, though they can also be
done in the drawing callback for a pfChannel on the window. Any function
which aspires to directly affect the graphics context must be called in the
drawing process. Table 4-2 shows which processes (application or draw via
a configuration function) that pfPipeWindow calls can be made from and
further detail about these functions can be found in the discussion of
pfWindows in Chapter 10, “libpr Basics.”.

88

Chapter 4: Setting Up the Display Environment

Table 4-2 Processes from which to call main pfPipeWindow functions

pfPipeWindow Function Application Process Draw process

pfNewPWin() Yes. No.

pfPWinMode() Yes, Yes.

pfPWinIndex() Yes, Yes.

pfPWinConfigFunc() Yes. No.

pfOpenPWin()
pfClosePWin()
pfClosePWinGL()

Yes. Yes.

pfPWinOriginSize()
pfPWinFullScreen()

Yes. Yes.

pfGetPWinCurOriginSize()
pfGetPWinCurScreenOriginSize()

X — Yes.

IRIS GL — No.

Yes.

pfPWinFBConfigAttrs() Yes. Yes.

pfChoosePWinFBConfig() No. Yes.

pfPWinFBConfig() Yes, but the pfFBConfig*
must be valid for access in
the draw process.

Yes.

pfPWinType()
pfPWinScreen()
pfPWinShare()

Yes (before opened). Yes (before
opened).

pfPWinWSWindow()
pfPWinWSDrawable()

X — Yes.

IRIS GL — ID must be
valid in the draw process.

Yes,

pfPWinGLCxt() Yes, but the context must
be created in the draw
process.

Yes.

pfQueryWin()
pfMQueryWin()

No. Yes.

Using pfPipeWindows

89

Example 4-3 showed a case where custom IRIS GL code was used in the
pfPWinConfigFunc() callback to configure the framebuffer for a window.
However, IRIS Performer provides GL independent framebuffer
configuration utilities. In most cases, pfPWinFBConfigAttrs(pwin, attrs)
can be used to select a framebuffer configuration for your pfPipeWindow
based on the array of attribute tokens, attrs. If attrs is NULL, the default
framebuffer configuration will be selected. If attrs is not NULL, the rules for
default values follow the rules for configuring windows in OpenGL and X
which are different from values in the IRIS Performer default window
configuration. Window framebuffer configuration for pfPipeWindows is
identical to that of pfWindows and is discussed in more detail in Chapter 10,
“libpr Basics,” but the following is a simple example of the specification of
framebuffer configuration taken from the sample source code example
program /usr/share/Performer/src/pguide/libpf/C/pipewin.c:

Example 4-5 Configuration of a pfPipeWindow Framebuffer

static int FBAttrs[] = {
PFFB_RGBA,
PFFB_DOUBLEBUFFER,
PFFB_DEPTH_SIZE, 24,
PFFB_RED_SIZE, 8,
PFFB_SAMPLES, 8,
PFFB_STENCIL_SIZE, 1,
NULL,

};

main()
{

pfPipe *pipe;
pfPipeWindow *pwin;
pfInit();
....
pfConfig();

/* Create pfPipeWindow for pfPipe 0 */
pipe = pfGetPipe(0);
pwin = pfNewPWin(pipe);
/* Set the framebuffer configuration */
pfPWinFBConfigAttrs(Shared->pw, FBAttrs);
/* Indicate that the window is ready to open */
pfOpenPWin(pwin);
/* trigger the opening of the window in the draw */

90

Chapter 4: Setting Up the Display Environment

pfFrame();
...

}

If you want to do all of your own window creation and management you can
do so and just give IRIS Performer the handles to your windows with the
pfPWinWSDrawable() function; you may also provide a parent X window
with the pfPWinWSWindow() function. pfOpenPWin() will make use of
any windows that have already been provided. More details regarding the
creation and configuration of pfPipeWindows and pfWindows are discussed
in Chapter 10, “libpr Basics.”

pfPipeWindows in Action

pfPipeWindows allow for a reasonable amount of flexibility in the running
application. Management of channels in pfPipeWindows is discussed later
in this chapter in the Section “Using Multiple Channels“. pfPipeWindows
can be re-ordered on their parent pfPipe to control the order that they are
drawn in with the command pfMovePWin(pipe, index, pwin).
pfPipeWindows can be dynamically opened and closed in the application or
draw processes with pfOpenPWin() and pfClosePWin(). Additionally,
pfConfigPWin() can be re-issued at any time from the application process to
call the current window configuration function to dynamically open, close,
and reconfigure pfPipeWindows.

The following example is taken from the distributed source code example
file /usr/share/Performer/src/pguide/libpf/C/pipewin.c and demonstrates the
dynamic closing of a window from the application process in the simulation
loop and the reuse of pfConfigPWin() to reopen the window.

Example 4-6 Opening and Closing a pfPipeWindow

main()
{

...
/* main simulation loop */
while (!Shared->exitFlag)
{
/* wait until next frame boundary */
pfSync();
pfFrame();

Using pfPipeWindows

91

/* Set view parameters for next frame */
UpdateView();
pfChanView(chan, Shared->view.xyz, Shared->view.hpr);

/* Close pfPipeWindow */
if (Shared->closeWin == 1)
{

pfClosePWin(Shared->pw);
ct = pfGetTime();
Shared->closeWin = 2;

}
/* then wait two seconds and reconfig window */
else if ((Shared->closeWin == 2) &&

(pfGetTime() - ct > 2.0f))
{

pfConfigPWin(Shared->pw);
Shared->closeWin = 3;
pfNotify(PFNFY_NOTICE, PFNFY_PRINT, “OPEN”);

} }
...

}

You may want your windows to reside within a larger Motif interface and
window hierarchy. IRIS Performer supports this and allows you to run the
Motif main loop in a separate process so that you can maintain control of
your simulation loop. The Motif interface is created in its own process and
Motif event handlers and callbacks will be executed in that process. The
Motif callbacks set flags in shared memory to communicate with the main
application. Part of this communication is the sharing of X windows
between IRIS Performer and Motif. The example program
/usr/share/Performer/src/pguide/libpf/C/motif.c demonstrates the basic elements
of this integrated IRIS Performer-Motif hook-up.

92

Chapter 4: Setting Up the Display Environment

Using Channels

This section describes how to use pfChannels. A pfChannel is a view of a
graphics scene. A pfChannel is a required element for an IRIS Performer
application, because it establishes the visual frame of reference for what is
rendered in the drawing process.

Creating and Configuring a pfChannel

When you create a new pfChannel, it is attached to a pfPipe for the duration
of the application. The pfPipe renders the pfScene viewed by the pfChannel
into a pfPipeWindow that is managed by that pipe. The simplest method
uses one channel, one window, and one pipe. You can use multiple channels
in a single pfWindow on a pfPipe, thereby allowing channels to share
hardware resources. Using multiple channels is an advanced topic that is
discussed in the section of this chapter on “Using Multiple Channels.” For
now, focus your attention on understanding the concepts of setting up and
using a single channel.

Use pfNewChan() to create a new pfChannel and assign it to a pfPipe.
pfChannels are automatically assigned to the first pfPipeWindow of the
pfPipe. In the sample program, the following statement creates a new
channel and assigns it to pipe p.

chan = pfNewChan(p);

The primary function of a pfChannel is to define the view of a scene. A view
is fully characterized by a viewport, a viewing frustum, and a viewpoint. The
following sections describe how to set up the scene and view for a
pfChannel.

Setting Up a Scene

A pfChannel draws the pfScene set by pfChanScene(). A channel can draw
only one scene per frame but can change scenes from frame to frame. Other
pfChannel attributes such as LOD modifications affect the scene. These
attributes are described in “pfLOD Nodes” in Chapter 5.

Using Channels

93

A pfChannel also renders an environmental model known as pfEarthSky. A
pfEarthSky defines the method for clearing the channel viewport before
rendering the pfScene and also provides environmental effects, including
ground and sky geometry and fog and haze. A pfEarthSky is attached to a
pfChannel by pfChanESky().

Setting Up a Viewport

A pfChannel is rendered by a pfPipe into its pfPipeWindow. The screen area
that displays a pfChannel’s view is determined by the origin and size of the
window and the channel viewport specified by pfChanViewport. The
channel viewport is relative to the lower left corner of the window and
ranges from 0 to 1. By default, a pfChannel viewport covers the entire
window.

Suppose that you want to establish a viewport that is one-quarter of the size
of the window, located in the lower left corner of the window. Use
pfChanViewport(chan, 0.0, 0.25, 0.0, 0.25) to set up the one-quarter window
viewport for the channel chan.

You can then set up other channels to render to the other three-quarters of
the window. For example, you can use four channels to create a four-way
view for an architectural or CAD application. See “Using Multiple
Channels” on page 100 to learn more about multiple channels.

Setting Up a Viewing Frustum

A viewing frustum is a truncated pyramid that defines a viewing volume.
Everything outside this volume is clipped, while everything inside is
projected onto the viewing plane for display. A frustum is defined by

• field-of-view (FOV) in the horizontal and vertical dimensions

• near and far clipping planes

A viewing frustum is created by the intersections of the near and far clipping
planes with the top, bottom, left, and right sides of the infinite viewing
volume formed by the FOV and aspect ratio settings. The aspect ratio is the
ratio of the vertical and horizontal dimensions of the FOV.

94

Chapter 4: Setting Up the Display Environment

Figure 4-3 shows the parameters that define a symmetric viewing frustum.
To establish asymmetric frusta refer to the pfChannel(3pf) or pfFrustum(3pf)
reference pages for further details.

Figure 4-3 Symmetric Viewing Frustum

The viewing frustum is called symmetric when the vertical half-angles are
equal and the horizontal half-angles are equal.

Field-of-View

The FOV is the angular width of view. Use pfChanFOV(chan, horiz, vert) to
set up viewing angles in IRIS Performer. The quantities horiz and vert are the
total horizontal and vertical fields of view in degrees; usually you specify
one and let IRIS Performer compute the other. If you’re specifying one angle,
pass any amount less than or equal to zero, or greater than or equal to 180,
as the other angle. IRIS Performer automatically computes the unspecified
FOV angle to fit the pfChannel viewport using the aspect-ratio preserving
relationship

tan(vert/2) / tan(horiz/2) = aspect ratio

Vertical FOV

Horizontal FOV

y

xTop

Left

Right

Bottom

Line of sight

Aspect Ratio = =
x

y

tan(vertical FOV/2)
tan(horizontal FOV/2)

Eyepoint

Near

Far

Using Channels

95

That is, the ratio of the tangents of the vertical and horizontal half-angles is
equal to the aspect ratio. For example, if horiz is 45 degrees and the channel
viewport is twice as wide as it is high (so the aspect ratio is 0.5), then the
vertical field-of-view angle, vert, is computed to be 23.4018 degrees. If both
angles are unspecified, pfChanFOV() assumes a default value of 45 degrees
for horiz and computes the value of vert as described.

Clipping Planes

Clipping planes define the near and far boundaries of the viewing volume.
These distances describe the extent of the visual range in the view, because
geometry outside these boundaries is clipped, meaning that it isn’t drawn.

Use pfChanNearFar(chan, near, far) to specify the distance along the line of
sight from the viewpoint to the near and far planes that bound the viewing
volume. These clipping planes are perpendicular to the line of sight. For the
best visual acuity, choose these distances so that near is as far away as
possible from the viewpoint and far is as close as possible to the viewpoint.
Minimizing the range between near and far provides more resolution for
distance comparisons and fog computations.

Setting Up a Viewpoint

A viewpoint describes the position and orientation of the viewer. It is the
origin of the viewing location, the direction of the line of sight from the
viewer to the scene being viewed, and an up direction. The default
viewpoint is at the origin (0, 0, 0) looking along the +Y axis, with +Z up and
+X to the right.

Use pfChanView(chan, point, dir) to define the viewpoint for the
pfChannel identified by chan. Specify the view origin for point in x, y, z world
coordinates. Specify the view direction for dir in degrees by giving the
degree measures of the three Euler angles: heading, pitch, and roll.

Heading is a rotation about the z axis, pitch is a rotation about the x axis, and
roll is a rotation about the y axis. The value of dir is the product of the
rotations ROTy(roll) ∗ ROTx(pitch) ∗ ROTz(heading), where ROTa(angle) is a
rotation matrix about axis a of angle degrees.

96

Chapter 4: Setting Up the Display Environment

Angles have not only a degree value, but also a sense, + or –, indicating
whether the direction of rotation is clockwise or counterclockwise. Because
different systems follow different conventions, it is very important to
understand the sense of the Euler angles as they are defined by IRIS
Performer. IRIS Performer follows the right-hand rule. According to the
right-hand rule, counterclockwise rotations are positive. This means that a
rotation about the x axis by +90 degrees shifts the +Y axis to the +Z axis, a
rotation about the y axis by +90 degrees shifts the +Z axis to the +X axis, and
a rotation about the z axis by +90 degrees shifts the +X axis to the +Y axis.

Figure 4-4 shows a toy plane (somewhat reminiscent of the Ryan S-T) at the
origin of a coordinate system with the angles of rotation labeled for heading,
pitch, and roll. The arrows show the direction of positive rotation for each
angle.

Figure 4-4 Heading, Pitch, and Roll Angles

A roll motion tips the wings from side to side. A pitch motion tips the nose
up or down. A yaw motion steers the plane, changing its heading. Accurate
readings of these angles are critical information for a pilot during a flight,
and a thorough understanding of how the angles function together is
required for creation of an accurate flight simulation visual with IRIS
Performer. The same is also true of marine and other vehicle simulations.

X
+ Pitch

Y

Z

+ Heading

+ Roll

Using Channels

97

Alternatively, you can use pfChanViewMat(chan, mat) to create a 4x4
homogeneous matrix mat that defines the view coordinate system for
channel chan. The upper left 3x3 submatrix defines the coordinate system
axes, and the bottom row vector defines the origin of the coordinate system.
The matrix must be orthonormal, or the results will be undefined. You can
construct matrices using tools in the libpr library.

The origin and heading, pitch, and roll angles, or the view matrix, create a
complete view specification. The view specification can locate the eyepoint
frame-of-reference origin at any point in world coordinates. The gaze vector,
the eye’s +Y axis, can point in any direction. The up vector, the eye’s +Z axis,
can point in any direction perpendicular to the gaze vector.

You can query the system for the view and eyepoint-direction values with
pfGetChanView(chan, point, dir), or obtain the view matrix directly with
pfGetChanViewMat(chan, mat).

The view direction can be modified by one or more offsets, relative to the
eyepoint frame-of-reference. View offsets are useful in situations where
several channels render the same scene into adjacent displays for a wider
field-of-view or higher resolution. Offsets are also used for multiple viewer
perspectives, such as pilot and copilot views.

Use pfChanViewOffsets(chan, xyz, hpr) to specify additional translation
and rotation offsets for the viewpoint and direction; xyz specifies a
translation vector and hpr specifies a heading/pitch/roll rotation vector.
Viewing offsets are automatically added each frame to the view direction
specified by pfChanView() or pfChanViewMat().

For example, to create three different perspectives of the same scene as
displayed by three windows in an airplane cockpit, use azimuth offsets of 45,
0, and -45 for left, middle, and right views. To create vertical view groups
such as might be seen through the windscreen of a helicopter, use both
azimuth and elevation offsets. Once the view offsets have been set up, you
need only set the view once per frame. View offsets are applied after the
eyepoint position and gaze direction have been established. As with the
other angles, be aware that the conventions for measuring azimuth and
elevation angles vary between graphics systems, so you should verify that
the sense of the angles is correct.

98

Chapter 4: Setting Up the Display Environment

Example of Channel Use

Example 4-7 shows how to use various pfChannel-related functions. The
code is derived from IRIS Performer sample programs.

Example 4-7 Using pfChannels

main()
{
 pfInit();
 ...
 pfConfig();
 ...
 InitScene();
 InitPipe();
 InitChannel();

 /* Application main loop */
 while(!SimDone())
 {
 ...
 }
}

void InitChannel(void)
{
 pfChannel *chan;
 chan = pfNewChan(pfGetPipe(0));

 /* Set the callback routines for the pfChannel */
 pfChanTravFunc(chan, PFTRAV_CULL, CullFunc);
 pfChanTravFunc(chan, PFTRAV_DRAW, DrawFunc);

 /* Attach the visual database to the channel */
 pfChanScene(chan, ViewState->scene);

 /* Attach the EarthSky model to the channel */
 pfChanESky(chan, ViewState->eSky);

 /* Initialize the near and far clipping planes */
 pfChanNearFar(chan, ViewState->near, ViewState->far);

 /* Vertical FOV is matched to window aspect ratio. */
 pfChanFOV(chan, 45.0f/NumChans, -1.0f);

Using Channels

99

 /* Initialize the viewing position and direction */
 pfChanView(chan, ViewState->initView.xyz,
 ViewState->initView.hpr);
}

/* CULL PROCESS CALLBACK FOR CHANNEL*/
/* The cull function callback. Any work that needs to be
 * done in the cull process should happen in this function.
 */
void
CullFunc(pfChannel * chan, void *data)
{
 static long first = 1;

 if (first)
 {
 if ((pfGetMultiprocess() & PFMP_FORK_CULL) &&
 (ViewState->procLock & PFMP_FORK_CULL))
 pfuLockDownCull(pfGetChanPipe(chan));
 first = 0;
 }
 PreCull(chan, data);

 pfCull(); /* Cull to the viewing frustum */

 PostCull(chan, data);
}

/* DRAW PROCESS CALLBACK FOR CHANNEL*/
/* The draw function callback. Any graphics functionality

* outside IRIS Performer must be done here. I/O with pure
* IRIS GL devices must happen here.

 */
void
DrawFunc(pfChannel *chan, void *data)
{
 PreDraw(chan, data); /* Clear the viewport, etc. */

 pfDraw(); /* Render the frame */

 /* draw HUD, read IRIS GL devices, or whatever else needs
 * to be done post-draw.
 */
 PostDraw(chan, data);
}

100

Chapter 4: Setting Up the Display Environment

Using Multiple Channels

Each rendering pipeline can render multiple channels to multiple windows.
Each channel represents an independent viewpoint into either a shared or an
independent visual database. Different types of application can have vastly
different pipeline-window-channel configurations. This section describes
two basic extremes: visual simulation applications where there is typically
one window per pipeline, and highly interactive uses that require dynamic
window and channel configuration.

One Window per Pipe, Multiple channels per Window

Often there will is a single channel associated with each pipeline, as shown
in the top half of Figure 4-5. This section describes two important uses for
multiple-channel support—multiple pipelines per system and multiple
windows per pipeline—the second of which is illustrated in the bottom half
of Figure 4-5.

Using Channels

101

Figure 4-5 Single-Channel and Multiple-Channel Display

Frame Buffer

Pipeline

Channel 0

Pipeline

Channel n-1

Frame Buffer

Channel 0

Channel 1

Display
Device

Display
Device

Single Channel

Multiple Channel

102

Chapter 4: Setting Up the Display Environment

One situation that requires multiple channels occurs when inset views must
appear within an image. A simple example of this application is a driving
simulator in which the screen image represents the view out the windshield.
If a rear-view mirror is to be drawn, it must overlay the main forward view
to provide a separate view of the same database within the borders of the
simulated mirror’s frame.

Channels are physically rendered in the order that they are assigned to a
pfPipeWindow on their parent pfPipe. Channels, upon creation, are
assigned to the end of the channel list of the first window of their pfPipe. In
the driving simulator example, creating pipes and channels with the
following structure creates two channels on a single shared pipeline:

pipeline = pfGetPipe(0);
frontView = pfNewChan(pipeline);
rearView = pfNewChan(pipeline);

In this case, IRIS Performer’s actual drawing order becomes:

1. Clear frontView.

2. Draw frontView.

3. Clear rearView.

4. Draw rearView.

This default ordering results in the rear-view mirror image always
overlaying the front-view image, as desired. You can control and re-order
the drawing of channels within a pfPipeWindow with the
pfInsertChan(pwin, where, chan) and pfMoveChan(pwin, where, chan)
routines. More details about multiple channels and multiple window are
discussed in the next section.

When the host has multiple Geometry Pipelines, as supported on Onyx
RealityEngine2 systems, you can create a pfPipe and pfChannel pair for each
hardware pipeline. The following code fragment illustrates a two-channel,
two-pipeline configuration:

leftPipe = pfGetPipe(0);
leftView = pfNewChan(leftPipe);
rightPipe = pfGetPipe(1);
rightView = pfNewChan(rightPipe);

Using Channels

103

This configuration forms the basis for a high-performance stereo display
system, since there is a hardware pipeline dedicated to each eye and
rendering occurs in parallel.

The two-channel stereo-view application described in this example and the
inset-view application described in the previous example can be combined
to provide stereo views for a driving simulator with an inset rear-view
mirror. The correct management of each eye’s viewpoint and the mirror
reflection helps provide a convincing sense of physical presence within the
vehicle.

The third common multiple-channel situation involves support for multiple
video outputs per pipeline. To do this, first associate each pipeline with a set
of nonoverlapping channels, one for each desired view. Next, use one of the
following video-splitting methods:

• Use the Multi-Channel Option, available from Silicon Graphics for
systems such as the Onyx RealityEngine2, where you can create up to
six independent video outputs from a single Graphics Pipeline, with
each video output corresponding to one of the tiled channels.

• Connect multiple video monitors in series to a single pipeline’s video
output. Because each monitor receives the same display image, a
masking bezel is used to obscure all but the relevant portion of each
display surface.

The three multiple-channel concepts described here can be used in
combination. For example, use of three RealityEngine2 pipelines, each
equipped with the Multi-Channel Option, allows creation of up to 18
independent video displays. The channel-tiling method can also be used for
some or all of these displays.

Example 4-8 shows how to use multiple channels on separate pipes.

Example 4-8 Multiple Channels, One Channel per Pipe

pfChannel *Chan[MAX_CHANS];

void InitChannel(int NumChans)
{
 /* Initialize each channel on a separate pipe */
 for (i=0; i< NumChans; i++)
 Chan[i] = pfNewChan(pfGetPipe(i));

104

Chapter 4: Setting Up the Display Environment

 ...

 /* Make channel n/2 the master channel (can be any
 * channel).
 */
 ViewState->masterChan = Chan[NumChans/2];

 {
 long share;

 /* Get the default channel-sharing mask */
 share = pfGetChanShare(ViewState->masterChan);

 /* Add in the viewport share bit */
 share |= PFCHAN_VIEWPORT;

 if (GangDraw)
 {
 /* add GangDraw to channel share mask */
 share |= PFCHAN_SWAPBUFFERS_HW;
 }
 pfChanShare(ViewState->masterChan, share);
 }

 /* Attach channels */
 for (i=0; i< NumChans; i++)
 if (Chan[i] != ViewState->masterChan)
 pfAttachChan(ViewState->masterChan, Chan[i]);

 ...
 /* Continue with channel initialization */
}

Multiple Channels and Multiple Windows

For some interactive applications, you may want to be able to dynamically
control the configuration of Channels and Windows. IRIS Performer allows
you to dynamically create, open, and close windows, as described in the
previous section, “pfPipeWindows in Action“. You can also move channels
amongst the windows of the shared parent pfPipe, and re-order channels
within a pfPipeWindow. Channels can be appended to the end of a
pfPipeWindow channel list with pfAddChan() and removed with

Using Channels

105

pfRemoveChan(). A channel can only be attached to one pfPipeWindow —
no instancing of pfChannels is allowed. When a pfChannel is put on a
pfPipeWindow, it is automatically deleted from its previous pfPipeWindow.
A channel that is not assigned to a pfPipeWindow is not drawn (though it
may still be culled).

You can control and re-order the drawing of channels within a
pfPipeWindow with the pfInsertChan(pwin, where, chan) and
pfMoveChan(pwin, where, chan) routines. Both of these routines do a type
of insertion: pfInsertChan() will add chan to pwin’s channel list in front of
the channel in the list at location where. pfMoveChan() will delete chan from
it’s old location and move it to where in pwin’s channel list.

Using Channel Groups

In many multiple-channel situations, including the examples described in
the previous section, it is useful for channels to share certain attributes. For
the three-channel cockpit scenario, each pfChannel shares the same eyepoint
while the left and right views are offset using pfChanViewOffsets(). IRIS
Performer supports the notion of channel groups, which facilitate attribute
sharing between channels.

pfChannels can be gathered into channel groups that share like attributes. A
channel group is created by attaching one pfChannel to another, or to an
existing channel group. Use pfAttachChan() to create a channel group from
two channels or to add a channel to an existing channel group. Use
pfDetachChan() to remove a pfChannel from a channel group.

A channel share mask defines shared attributes for a channel group. The
attribute tokens listed in Table 4-3 are bitwise OR-ed to create the share
mask.

106

Chapter 4: Setting Up the Display Environment

Use pfChanShare() to set the share mask for a channel group. By default,
channels share all attributes except PFCHAN_VIEW_OFFSETS. When you
add a pfChannel to a channel group, it inherits the share mask of that group.

A change to any shared attribute is applied to all channels in a group. For
example, if you change the viewpoint of a pfChannel that shares
PFCHAN_VIEW with its group, all other pfChannels in the group will
acquire the same viewpoint.

Two attributes are particularly important to share in adjacent-display
multiple-channel simulations: PFCHAN_SWAPBUFFERS and
PFCHAN_LOD. PFCHAN_LOD ensures that geometry that straddles
displays is drawn the same way in each channel. In this case, all channels
will use the same LOD modifier when rendering their scenes so that LOD
behavior is consistent across channels. PFCHAN_SWAPBUFFERS ensures
that channels refresh the display with a new frame at the same time.
pfChannels in different pfPipes that share PFCHAN_SWAPBUFFERS will
frame-lock the pipelines together.

Table 4-3 Attributes in the Share Mask of a Channel Group

Token Shared Attributes

PFCHAN_FOV Horizontal and vertical fields of view

PFCHAN_VIEW View position and orientation

PFCHAN_VIEW_OFFSETS (x, y, z) and (heading, pitch, roll) offsets of the view
direction

PFCHAN_NEARFAR Near and far clipping planes

PFCHAN_SCENE All channels display the same scene

PFCHAN_EARTHSKY All channels display the same earth/sky model

PFCHAN_STRESS All channels use the same stress filter

PFCHAN_LOD All channels use the same LOD modifiers

PFCHAN_SWAPBUFFERS All channels swap buffers at the same time

Using Channels

107

Example 4-9 illustrates the use of multiple channels and channel-sharing.

Example 4-9 Channel-Sharing

pfChannel *Chan[MAX_CHANS];

main()
{
 pfInit();
 ...
 /* Set number of pfPipes desired. THIS MUST BE DONE
 * BEFORE CALLING pfConfig().
 */
 pfMultipipe(NumPipes);
 ...
 pfConfig();
 ...
 InitScene();

 InitChannels();

pfFrame();

 /* Application main loop */
 while(!SimDone())
 {
 ...
 }
}

void InitChannel(int NumChans)
{
 /* Initialize all channels on pipe 0 */
 for (i=0; i< NumChans; i++)
 Chan[i] = pfNewChan(pfGetPipe(0));

 ...

 /* Make channel n/2 the master channel (can be any
 * channel).
 */
 ViewState->masterChan = Chan[NumChans/2];

 ...

108

Chapter 4: Setting Up the Display Environment

 /* Attach all Channels as slaves to the master channel */
 for (i=0; i< NumChans; i++)
 if (Chan[i] != ViewState->masterChan)
 pfAttachChan(ViewState->masterChan, Chan[i]);

 pfSetVec3(xyz, 0.0f, 0.0f, 0.0f);
 /* Set each channel’s viewing offset. In this case use
 * many channels to create one multichannel contiguous
 * frustum with a 45˚ field of fiew.
 */
 for (i=0; i < NumChans; i++)
 {
 float fov = 45.0f/NumChans;

 pfSetVec3(hpr, (((NumChans - 1) * 0.5f) - i) * fov,
 0.0f, 0.0f);
 pfChanViewOffsets(Chan[i], xyz, hpr);
 }

 ...

 /* Now, just configure the master channel and all of the
 * other channels will share those attributes.
 */

 chan = ViewState->masterChan;
 pfChanTravFunc(chan, PFTRAV_CULL, CullFunc);
 pfChanTravFunc(chan, PFTRAV_DRAW, DrawFunc);
 pfChanScene(chan, ViewState->scene);
 pfChanESky(chan, ViewState->eSky);
 pfChanNearFar(chan, ViewState->near, ViewState->far);
 pfChanFOV(chan, 45.0f/NumChans, -1.0f);
 pfChanView(chan, ViewState->initView.xyz,
 ViewState->initView.hpr);
 ...
}

This chapter describes the structure
of IRIS Performer’s scene-definition
databases and component data types.

“Nodes and Node Types”

Chapter 5

111

Chapter 5

5. Nodes and Node Types

An application based on IRIS Performer usually reads in a visual database
from a file, then builds an internal data structure incorporating the
information in that database. This data structure is called a scene graph; each
element in the data structure is called a node. This chapter describes the types
of nodes IRIS Performer uses to represent scenes internally. IRIS Performer
provides many functions for creating, querying, modifying, and traversing
scene graphs; such functions are also described here.

Note that this chapter focuses on the data types themselves rather than
instances of those types. Chapter 6, “Database Traversal,” includes
discussion of traversing sample scene graphs, in terms of actual objects
rather than abstract data types. Objects in a scene graph (which is to say,
instances of node types) have a hierarchical relationship based on the way
the scene is laid out. The node types themselves, on the other hand, have an
entirely different kind of hierarchical relationship based on the ways in
which each node type is like other node types. (For instance, the pfBillboard
node type is a subclass of the general pfNode node type.) This concept is
discussed in more detail in the section of this chapter titled “Attribute
Inheritance” on page 112.

112

Chapter 5: Nodes and Node Types

Nodes

A scene is represented by a graph of nodes. libpf provides several specialized
node types that encapsulate many graphics and visual simulation features.
These node types belong to a type hierarchy (which is distinct from the
database hierarchy described in Chapter 6). The following sections describe
the node types.

Attribute Inheritance

The basic element of a scene hierarchy is the node. While IRIS Performer
supplies many specific types of nodes, it also uses a concept called class
inheritance, which allows different node types to share attributes. For
example, many types of nodes have children, but different node types
perform different types of operations on their children. Only one set of
routines is provided for adding and removing children, but all the node
types can use these routines in the same manner to perform these common
operations. This reduces the number of routines required and imposes a
logical structure on the node types. This logical structure is also known as a
class hierarchy, but it should not be confused with the scene hierarchy of
nodes—the derivation hierarchy contains data types, not objects.

IRIS Performer’s node hierarchy begins with the pfNode class, just as the
overall class hierarchy begins with the pfObject type (see “Nodes” on
page 112). All node types are subordinate to pfNode, and they inherit
pfNode’s attributes and the libpf routines for setting and getting attributes.
In general, a node type inherits the attributes and routines of all its parent
nodes in the type hierarchy.

Nodes

113

Figure 5-1 shows the type hierarchy for the libpf node types.

Figure 5-1 Nodes in the IRIS Performer Hierarchy

pfGeode pfText

pfBillboard

pfGroup pfLightPoint pfLightSource

pfNode

pfDCS

pfLOD pfSCS pfSwitch pfSequence pfMorphpfPartition pfLayerpfScene

114

Chapter 5: Nodes and Node Types

Table 5-1 lists the basic node class and gives a simple description for each
node type.

Table 5-1 IRIS Performer Node Types

Node Type Node Class Description

pfNode Abstract Basic node type

pfGroup Branch Groups zero or more children

pfScene Root Parent of the visual database

pfSCS Branch Static Coordinate System

pfDCS Branch Dynamic Coordinate System

pfSwitch Branch Selects among multiple children

pfSequence Branch Sequences through its children

pfLOD Branch Level-of-detail node

pfLayer Branch Renders coplanar geometry

pfLightPoint Leaf Contains light point specifications

pfLightSource Leaf Contains specifications for a light source

pfGeode Leaf Contains geometric specifications

pfBillboard Leaf Rotates geometry to face the eyepoint

pfPartition Branch Partitions geometry for efficient intersections

pfMorph Branch Morphs attribute data of its children

pfText Leaf Renders 2D and 3D text

Nodes

115

pfNode

As discussed in “Attribute Inheritance” on page 112, all libpf nodes are
arranged in a type hierarchy, which defines the inheritance of capabilities.
The base node class is pfNode; all other nodes inherit the attributes of a
pfNode. A pfNode is an abstract class, meaning that a pfNode can never be
explicitly created by the application. Its purpose is to provide a root to the
type hierarchy and to define the attributes that are common to all node
types.

pfNode Attributes

The following pfNode attributes are inherited by all other libpf node types:

• Node name

• Parent list

• Bounding geometry

• Intersection and traversal masks

• Callback functions and data

• User data

Bounding geometry, intersection masks, user data, and callbacks are
advanced topics that are discussed in Chapter 6, “Database Traversal.”

The routines that set, get, and otherwise manipulate these attributes can be
used by all libpf node types, as indicated by the keyword ‘Node’ in the
routine names. Nodes used as arguments to pfNode routines must be cast to
pfNode* to match parameter prototypes, as shown in this example:

pfNodeName((pfNode*) dcs, "rotor_rotation");

However, you usually don’t need to do this casting explicitly. When you use
the C API and compile with the –ansi flag (which is the usual way to compile
IRIS Performer applications), libpf provides macro wrappers around pfNode
routines that automatically perform argument casting for you. When you
use the C++ API, such type casting is not necessary.

116

Chapter 5: Nodes and Node Types

pfNode Operations

In addition to sharing attributes, certain basic operations are provided for all
node types. They include:

New Create and return a handle to a new node.

Get Get node attributes.

Set Set node attributes.

Find Find a node based on its name.

Print Print node data.

Copy Copy node data.

Delete Delete a node.

The Set operation is implied in the node attribute name. The names of the
attribute-getting functions contain the string “Get”.

An Example of Scene Creation

Example 5-1 illustrates the creation of a scene that includes two different
kinds of pfNodes. (For information about pfScene nodes, see “pfScene
Nodes” on page 125; for information about pfDCS nodes, see “pfDCS
Nodes” on page 126.)

Example 5-1 Making a Scene

pfScene *scene;
pfDCS *dcs1, *dcs2;

scene = pfNewScene(); /* Create a new scene node */
dcs1 = pfNewDCS(); /* Create a new DCS node */
dcs2 = pfNewDCS(); /* Create a new DCS node */
pfCopy(dcs2, dcs1); /* Copy all node attributes */
 /* from dcs1 to dcs2 */
pfNodeName(scene, "Scene_Graph_Root"); /* Name scene node */
pfNodeName(dcs1,"DCS_1"); /* Name dcs1 */
pfNodeName(dcs2,"DCS_2"); /* Name dcs2 */
...
/* Use a pfGet*() routine to determine node name */
printf("Name of first DCS node is %s.", pfGetNodeName(dcs1));
...

Nodes

117

/* Recursively free this node if it’s no longer referenced */
pfDelete(scene);
...

pfGroup

In addition to inheriting the pfNode attributes described in the “pfNode”
section of this chapter, a pfGroup also maintains a list of zero or more child
nodes that are accessed and manipulated using group operators. Children of
a pfGroup can be either branch or leaf nodes. Traversals process the children
of a pfGroup in left-to-right order.

Table 5-2 lists the pfGroup functions, with a description and a visual
interpretation of each.

Table 5-2 pfGroup Functions

Function Name Description Diagram

pfAddChild(group, child) Appends child to the list
for group.

pfInsertChild(group, index, child) Inserts child before the
child whose place in the
list is index.

pfRemoveChild(group, child) Detaches child from the
list and shifts the list to fill
the vacant spot. Returns 1
if child was removed.
Returns 0 if child was not
found in the list. Note
that the “removed” node
is only detached, not
deleted.

.

pfGetNumChildren(group) Returns the number of
children in group.

index = 2

4

118

Chapter 5: Nodes and Node Types

pfGroup nodes can organize a database hierarchy either logically or
spatially. For example, if your database contains a model of a town, a logical
organization might be to group all house models under a single pfGroup.
However, this kind of organization is less efficient than a spatial
organization, which arranges geometry by location. A spatial organization
improves culling and intersection performance; in the example of the town,
spatial organization would consist of grouping houses with their local
terrain geometry instead of with each other. Chapter 6 describes how to
spatially organize your database for best performance.

The code fragment in Example 5-2 illustrates building a hierarchy using
pfGroup nodes.

Example 5-2 Hierarchy Construction Using Group Nodes

scene = pfNewScene();

/* The following loop constructs a sample hierarchy by
 * adding children to several different types of group
 * nodes. Notice that in this case the terrain was broken
 * up spatially into a 4x4 grid, and a switch node is used
 * to cause only one vehicle per terrain node to be
 * traversed.
 */

for(j = 0; j < 4; j++)
 for(i = 0; i < 4; i++)
 {
 pfGroup *spatial_terrain_block = pfNewGroup();
 pfSCS *house_offset = pfNewSCS();
 pfSCS *terrain_block_offset = pfNewSCS();
 pfDCS *car_position = pfNewDCS();
 pfDCS *tank_position = pfNewDCS();
 pfDCS *heli_position = pfNewDCS();
 pfSwitch *current_vehicle_type;
 pfGeode *heli, *car, *tank;

 pfAddChild(scene, spatial_terrain_block);
 pfAddChild(spatial_terrain_block,
 terrain_block_offset);
 pfAddChild(spatial_terrain_block, house_offset);
 pfAddChild(spatial_terrain_block,
 current_vehicle_type);
 pfAddChild(current_vehicle_type, car_position);

Nodes

119

 pfAddChild(current_vehicle_type, tank_position);
 pfAddChild(current_vehicle_type, heli_position);
 pfAddChild(car_position, car);
 pfAddChild(tank_position, tank);
 pfAddChild(heli_position, heli);
 }

...

/* The following shows how one might use IRIS Performer to
 * manipulate the scene graph at run time by adding and
 * removing children from branch nodes in the scene graph.
 */

for(j = 0; j < 4; j++)
 for(i = 0; i < 4; i++)
 {
 pfGroup *this_terrain;
 this_terrain = pfGetChild(scene, j*4 + i);
 if (pfGetNumChildren(this_terrain) > 2)
 this_tank = pfGetChild(this_terrain, 2);
 if (is_tank_disable(this_tank))
 {
 pfRemoveChild(this_terrain, this_tank);
 pfAddChild(disabled_tanks, this_tank);
 }
 }
...

120

Chapter 5: Nodes and Node Types

Working With Nodes

This section describes the basic concepts involved in working with nodes. It
explains how shared instancing can be used to create multiple copies of an
object, and how changes made to a parent node propagate down to its
children. A sample program that illustrates these concepts is presented at the
end of the chapter.

Instancing

A scene graph is typically constructed at application initialization time by
creating and adding new nodes to the graph. If a node is added to two or
more parents it is termed instanced and is shared by all its parents. Instancing
is a powerful mechanism that saves memory and makes modeling easier.
libpf supports two kinds of instancing, which are described in the following
sections.

Shared Instancing

Shared instancing is the result of simply adding a node to multiple parents. If
an instanced node has children, then the entire subgraph rooted by the node
is considered to be instanced. Each parent shares the node; thus,
modifications to the instanced node or its subgraph are experienced by all
parents. Shared instances can be nested—that is, an instance can itself
instance other nodes.

In the following sample code, group0 and group1 share a node:

pfAddChild(group0, node);
pfAddChild(group1, node);

Figure 5-2 shows the structure created by this code. Before the instancing
operation, the two groups and the node to be shared all exist independently,
as shown in the left portion of the figure. After the two function calls shown
above, the two groups both reference the same shared hierarchy. (If the
original groups referenced other nodes, those nodes would remain
unchanged.) Note that each of the group nodes considers the shared
hierarchy to be its own child.

Working With Nodes

121

Figure 5-2 Shared Instances

Cloned Instancing

In many situations shared instancing isn’t desirable. Consider a subgraph
that represents a model of an airplane with articulations for ailerons,
elevator, rudder, and landing gear. Shared instances of the model result in
multiple planes that share the same articulations. Consequently, it’s
impossible for one plane to be flying with its landing gear retracted while
another is on a runway with its landing gear down.

Cloned instancing provides the solution to this problem by cloning—creating
new copies of variable nodes in the subgraph. Leaf nodes containing
geometry are not cloned and are shared to save memory. Cloning the
airplane model generates new articulation nodes, which can be modified
independently of any other cloned instance. The cloning operation,
pfClone(), is actually a traversal and is described in detail in Chapter 6.

Figure 5-3 shows the result of cloned instancing. As in the previous figure,
the left half of the drawing represents the situation before the operation, and
the right half shows the result of the operation.

Group 0 Group 1

n

Group 0

Group 1

n

122

Chapter 5: Nodes and Node Types

Figure 5-3 Cloned Instancing

The cloned instancing operation constructs new copies of each internal node
of the shared hierarchy, but uses the same shared instance of all the leaf
nodes. In use, this is an important distinction, because the number of
internal nodes may be relatively few, while the number and content of
geometry-containing leaf nodes is often quite extensive.

Nodes G1 and G2 in Figure 5-3 are the groups that form the root nodes after
the cloned instancing operation is complete. Node P is the parent or root
node of the instanced object, and D is a dynamic coordinate system
contained within it. Nodes A, B, and C are the leaf geometry nodes; they are
shared rather than copied.

Dynamic
coordinate
system

Leaf

G1 G2

P Root

D

A

B

C

P1

D1

A

B

C

P2

D2

G1

G2

Working With Nodes

123

The code in Example 5-3 shows how to create cloned instances.

Example 5-3 Creating Cloned Instances

pfGroup *g1, *g2, *p;
pfDCS *d;
pfGeode *a, *b, *c;

...
/* Create initial instance of scene hierarchy of p under
 * group g1: add a DCS to p, then add three pfGeode nodes
 * under the DCS.
 */
pfAddChild(g1,p);
pfAddChild(p,d);
pfAddChild(d,a);
pfAddChild(d,b);
pfAddChild(d,c);

...
/* Create cloned instance version of p under g2 */
pfAddChild(g2, pfClone(p,0));
/* Notice that pfGeodes are cloned by instancing rather than
 * copying. Also notice that the second argument to
 * pfClone() is 0; that argument is currently required by
 * IRIS Performer to be zero.
 */
...

Bounding Volumes

libpf uses bounding volumes for culling and to improve intersection
performance. libpf computes bounding volumes for all nodes in a database
hierarchy unless the bound is explicitly set by the application. The bounding
volume of a branch node encompasses the spatial extent of all its children.
libpf automatically recomputes bounds when children are modified.

By default, bounding volumes are dynamic; that is, libpf automatically
recomputes them when children are modified. For instance, in Example 5-4
when the DCS is rotated nothing more needs to be done to update the
bounding volume for g1.

124

Chapter 5: Nodes and Node Types

Example 5-4 Automatically Updating a Bounding Volume

pfAddChild(g1,dcs);
pfAddChild(dcs, helicopter);

...

pfDCSRot(dcs, heading+10.0f, pitch,roll);
...
pfDCSRot(dcs, heading, pitch - 5.0f, roll + 2.0f);

In some cases, you may not want bounding volumes to be recomputed
automatically. For example, in a merry-go-round with horses moving up
and down, you know that the horses stay within a certain volume. Using
pfNodeBSphere(), you can specify a bounding sphere within which the
horse always remains and tell IRIS Performer that the bounding volume is
“static”—not to be updated no matter what happens to the node’s children.
You can always force an update by setting the bounding volume to NULL
with pfNodeBSphere(), as follows:

pfNodeBSphere(node, NULL, NULL, PFBOUND_STATIC);

At the lowest level, within pfGeoSets, bounding volumes are maintained as
axially-aligned boxes. When you add a pfGeoSet to a pfGeode or directly
invoke pfGetGSetBBox() on the pfGeoSet, a bounding box is created for the
pfGeoSet. Neither the bounding box of the pfGeoSet nor the bounding
volume of the pfGeode is updated if the geometry changes inside the
pfGeoSet. You can force an update by setting the pfGeoSet bounding box
and then the pfGeode bounding volume to a NULL bounding box, as
follows:

• Recompute the pfGeoSet bounding box from the internal geometry:

pfGSetBBox(gset, NULL);

• Recompute the pfGeode bounding volume from the bounding boxes of
its pfGeoSets:

pfNodeBSphere(geode, NULL, PFBOUND_DYNAMIC);

Node Types

125

Node Types

This section describes the node types and the functions for working with
each node type.

pfScene Nodes

A pfScene is a root node that is the parent of a visual database. Use
pfNewScene() to create a new scene node. Before the scene can be drawn,
you must call pfChanScene(channel, scene) to attach it to a pfChannel.

Any nodes that are within the graph that is parented by a pfScene are culled
and drawn once the pfScene is attached to a pfChannel. Because pfScene is
a group, it uses pfGroup routines; however, a pfScene cannot be the child of
any other node. The following statement adds a pfGroup to a scene:

pfAddChild(scene, root);

In the simplest case, the pfScene is the only node you need to add. Once you
have a pfPipe, pfChannel, and pfScene, you have all the necessary elements
for generating graphics using IRIS Performer.

pfScene Default Rendering State

pfScene nodes may specify a global pfGeoState that all other pfGeoStates in
nodes below the pfScene will inherit from. Specification of this scene
pfGeoState is done via the function pfSceneGState(). This functionality
allows for the subtle optimization of pushing the most frequently used
pfGeoState attributes for a particular scene graph into a global state and
having the individual states inherit these attributes rather than specify them.
This can save Performer work during culling (by having to ‘unwrap’ fewer
pfGeoStates) and thus possibly increase frame rate. There are several
database utility functions in libpfdu designed to help with this optimization.
pfdMakeSceneGState() returns an ‘optimal’ pfGeoState based on a list of
pfGeoStates. pfdOptimizeGStateList() takes an existing global pfGeoState,
a new global pfGeoState, and a list of pfGeoState’s that should be optimized
and cause all attributes of pfGeoStates in the list of pfGeoStates to be
inherited if they are the same as the attribute in the new global pfGeoState.
Lastly pfdMakeSharedScene() will cause this optimization to happen for all
of the pfGeoStates under the pfScene that was passed into the function. For

126

Chapter 5: Nodes and Node Types

more information on pfGeoStates see Chapter 10, “libpr Basics,” which
discusses libpr in more detail. For more information of the creation and
optimization of databases see Chapter 9, “Importing Databases,” which
discusses building database converters and libpfdu.

pfSCS Nodes

A pfSCS is a branch node that represents a static coordinate system. A pfSCS
node contains a fixed modeling transformation matrix that cannot be
changed once it is created. pfSCS nodes are useful for positioning models
within a database. For example, a house that is modeled at the origin should
be placed in the world with a pfSCS because houses rarely move during
program execution.

Use pfNewSCS(matrix) to create a new pfSCS using the transformation
defined by matrix. To find out what matrix was used to create a given pfSCS,
call pfGetSCSMat().

For best graphics performance, matrices passed to pfSCS nodes (and the
pfDCS node type described in the next section) should be orthonormal
(translations, rotations, and uniform scales). Nonuniform scaling requires
renormalization of normals in the graphics pipe. Projections and other
non-affine transformations are not supported.

While pfSCS nodes are useful in modeling, using too many of them can
reduce culling, rendering, and intersection performance. For this reason,
libpf provides the pfFlatten() traversal. pfFlatten() will traverse a scene
graph and apply static transformations directly to geometry to eliminate the
overhead associated with managing the transformations. pfFlatten() is
described in detail in Chapter 6, “Database Traversal.”

pfDCS Nodes

A pfDCS is a branch node that represents a dynamic coordinate system. Use
a pfDCS when you want to apply an initial transformation to a node and also
change the transformation during the application. Use a pfDCS to articulate
moving parts and to show object motion.

Node Types

127

Use pfNewDCS() to create a new pfDCS. The initial transformation of a
pfDCS is the identity matrix. Subsequent transformations are set by
specifying a new transformation matrix, or by replacing the rotation, scale,
or translation in the current transformation matrix. The pfDCS transforms
each child C(i) to C(i)∗Scale∗Rotation∗Translation.

Table 5-3 lists functions for manipulating a pfDCS, including rotating,
scaling, and translating the children of the pfDCS.

pfSwitch Nodes

A pfSwitch is a branch node that selects one, all, or none of its children. Use
pfNewSwitch() to return a handle to a new pfSwitch. To select all the
children, use the PFSWITCH_ON argument to pfSwitchVal(). Deselect all
the children (turning the switch off) using PFSWITCH_OFF. To select a
single child, give the index of the child from the child list. To find out the
current value of a given switch, call pfGetSwitchVal(). Example 5-5 (in the
“pfSequence Nodes” section) illustrates a use of pfSwitch nodes to control
pfSequence nodes.

Table 5-3 DCS Transformations

Function Name Description

pfNewDCS Create a new pfDCS node.

pfDCSTrans Set the translation coordinates to x, y, z.

pfDCSRot Set the rotation transformation to h, p, r.

pfDCSCoord Rotate and translate by coord.

pfDCSScale Scale by a uniform scale factor.

pfDCSMat Use a matrix for transformations.

pfGetDCSMat Retrieve the current matrix for a given pfDCS.

128

Chapter 5: Nodes and Node Types

pfSequence Nodes

A pfSequence is a pfGroup that sequences through a range of its children,
drawing each child for a specified duration. Each child in a sequence can be
thought of as a frame in an animation. A sequence can consist of any number
of children, and each child has its own duration. You can control whether an
entire sequence repeats from start to end, repeats from end to start, or
terminates.

Use pfNewSeq() to create and return a handle to a new pfSequence. Once
the pfSequence has been created, use the group function pfAddChild() to
add the children that you want to animate.

Table 5-4 describes the functions for working with pfSequences.

Example 5-5 demonstrates a possible use of both switches and sequences.
First, sequences are set up to contain animation sequences for explosions,
fire, and smoke; then a switch is used to control which sequences are
currently active.

Table 5-4 pfSequence Functions

Function Description

pfNewSeq Create a new pfSequence node.

pfSeqTime Set the length of time to display a frame.

pfGetSeqTime Find out the time allotted for a given frame.

pfSeqInterval Set the range of frames and sequence type.

pfGetSeqInterval Find out interval parameters.

pfSeqDuration Control the speed and number of repetitions of the entire
sequence.

pfGetSeqDuration Retrieve speed and repetition information for the sequence.

pfSeqMode Start, stop, pause, and resume the sequence.

pfGetSeqMode Find out the sequence’s current mode.

pfGetSeqFrame Get the current frame.

Node Types

129

Example 5-5 Using pfSwitch and pfSequence Nodes

pfSwitch *s;
pfSequence *explosion1_seq, *explosion2_seq, *fire_seq,
 *smoke_seq;
...
s = pfNewSwitch();
explosion1_seq = pfNewSeq();
explosion2_seq = pfNewSeq();
fire_seq = pfNewSeq();
smoke_seq = pfNewSeq();

pfAddChild(s, explosion1_seq);
pfAddChild(s, explosion2_seq);
pfAddChild(s, fire_seq);
pfAddChild(s, smoke_seq);
pfSwitchVal(s, PFSWITCH_OFF);
...
if (direct_hit)
{
 pfSwitchVal(s, PFSWITCH_ON); /* Select all sequences */

 /* Set first explosion sequence to go double normal
 * speed and repeat 3 times. */
 pfSeqMode(explosion1_seq, PFSEQ_START);
 pfSeqDuration(explosion1_seq, 2.0f, 3);

 /* Set second explosion sequence to display first child
 * of sequence for 2 seconds before continuing. */
 pfSeqMode(explosion2_seq, PFSEQ_START);
 pfSeqTime(explosion2, 0.0f, 2.0f);

 /* Set fire to wait on first frame of sequence until .3
 * seconds after second explosion. */
 pfSeqMode(fire_seq, PFSEQ_START);
 pfSeqTime(fire_seq, 0.0f, 2.3f);

 /* Set smoke to wait until .1 seconds after fire. */
 pfSeqMode(smoke_seq, PFSEQ_START);
 pfSeqTime(smoke_seq, 0.0f, 2.4f);
}
else if (explosion && (expl_type == 0))
{
 pfSeqMode(explosion1_seq, PFSEQ_START);
 pfSwitchVal(s, 0);

130

Chapter 5: Nodes and Node Types

}
else if (explosion && (expl_type == 1))
{
 pfSeqMode(explosion2_seq, PFSEQ_START);
 pfSwitchVal(s, 1);
}
else if (fire_is_burning)
{
 pfSeqMode(fire_seq, PFSEQ_START);
 pfSwitchVal(s, 2);
}
else if (smoking)
{
 pfSeqMode(smoke_seq, PFSEQ_START);
 pfSwitchVal(s, 3);
}
else
 pfSwitchVal(s, PFSWITCH_OFF);
...

pfLOD Nodes

A pfLOD is a level-of-detail node. Level-of-detail switching is an advanced
concept that is discussed in Chapter 7, “Frame and Load Control.” A
level-of-detail node specifies how its children are to be displayed, based on
the visual range from the channel’s viewpoint. Each child has a defined
range, and the entire pfLOD has a defined center.

Table 5-5 describes the functions for working with pfLODs.

Table 5-5 pfLOD Functions

Function Description

pfNewLOD Create a level of detail node.

pfLODRange Set a range at which to use a specified child node.

pfGetLODRange Find out the range for a given node.

pfLODCenter Set the pfLOD center.

pfGetLODCenter Retrieve the pfLOD center.

Node Types

131

pfLayer Nodes

A pfLayer is a leaf node that resolves the visual priority of coplanar
geometry. A pfLayer allows the application to define a set of base geometry
and a set of layer geometry (sometimes called decal geometry). The base
geometry and the decal geometry should be coplanar, and the decal
geometry must lie within the extent of the base polygons.

Table 5-6 describes the functions for working with pfLayers.

pfLayer nodes can be used to overlay any sort of markings on a given
polygon and are important to avoid flimmering. Example 5-6 demonstrates
how to display runway markings as a decal above of a coplanar runway.
This example uses the performance mode PFDECAL_BASE_FAST for
layering; as described in the reference page, other available modes are
PFDECAL_BASE_HIGH_QUALITY, PFDECAL_BASE_DISPLACE, and
PFDECAL_BASE_STENCIL.

pfLODTransition Set the width of a specified transition.

pfGetLODTransition Get the width of a specified transition.

Table 5-6 pfLayer Functions

Function Description

pfNewLayer Create a pfLayer node.

pfLayerMode Specify a hardware mode to use in drawing decals.

pfGetLayerMode Get current mode.

pfLayerBase Specify the child containing base geometry.

pfGetLayerBase Find out which child contains base geometry.

pfLayerDecal Specify the child containing decal geometry.

pfGetLayerDecal Find out which child contains decal geometry.

Table 5-5 (continued) pfLOD Functions

Function Description

132

Chapter 5: Nodes and Node Types

Example 5-6 Marking a Runway With a pfLayer Node

pfLayer *layer;
pfGeode *runway, *runway_markings;

...
/* avoid flimmering of runway and runway_markings */
layer = pfNewLayer();
pfLayerBase(layer, runway);
pfLayerDecal(layer, runway_markings);
pfLayerMode(layer, PFDECAL_BASE_FAST);

pfLightPoint Nodes

A pfLightPoint is a leaf node that represents a light point or set of light
points. Light points don’t provide overall illumination for a scene; rather,
they are discrete points that emanate light, such as street lights and runway
edge lights. A pfLightPoint can contain one or several light points that share
common attributes, such as color, intensity, direction, and shape.

The pfLPointState mechanism provides a more comprehensive approach to
light point simulation. pfLightPoint nodes are retained only for backward
compatibility with previous releases of IRIS Performer. New applications
should use pfLPointStates.

Table 5-7 describes the functions for working with pfLightPoints.

Table 5-7 pfLightPoint Functions

Function Description

pfNewLPoint Create a new pfLightPoint node.

pfLPointSize Set the size of the points in a node.

pfGetLPointSize Find out the size of the points in a node.

pfLPointColor Set the color of a specified point.

pfGetLPointColor Find out the color of a point.

pfLPointRot Set the direction and rotation.

pfGetLPointRot Find out the direction a point is facing.

Node Types

133

Example 5-7 demonstrates some operations on light points.

Example 5-7 Setting Up Light Points

pfLightPoint *lp;
pfVec4 red;
pfVec3 pos;
...
/* create a string of ten light points */
lp = pfNewLPoint(10);

/* set the size in screen pixels for each light */
pfLPointSize(lp, 1.0f);

/* set the light point color */
pfSetVec4(red, 1.0f, 0.0f, 0.0f, 1.0f);
pfLPointColor(lp, red);

/* set the direction the light points face */
pfLPointRot(lp, 270.0f, 30.0f, 0.0f);

/* Set the position of light point 5 */
pfSetVec3(pos,10.0f,10.0f,0.0f);
pfLPointPos(lp, 5, pos);
...

pfLightSource Nodes

A pfLightSource, unlike a pfLightPoint, provides light for a scene’s
geometry but is itself invisible.

pfLPointShape Set the horizontal and vertical envelope.

pfGetLPointShape Find out the shape of a point.

pfLPointPos Set the position of each point.

pfGetLPointPos Find out the position of a point.

Table 5-7 (continued) pfLightPoint Functions

Function Description

134

Chapter 5: Nodes and Node Types

Illuminating the geometry in a scene graph requires a light source which the
graphics hardware uses to compute surface shading. While the libpr
primitive pfLight (see “Lighting” on page 348) provides a hardware light
source, it isn’t a pfNode and so cannot benefit from the features provided by
a scene graph, such as transformation hierarchy, switches, and sequenced
animations.

The pfLightSource node allows you to add lighting information to your
scene graph. pfLightSource is multiply inherited; it’s derived from both
pfNode and pfLight, so you can use a pfLightSource* as an argument to a
function that requires a pfNode* or pfLight*, as illustrated in Example 5-8.

Example 5-8 pfLightSource Pointers and Multiple Inheritance

pfLightSource *lsource = pfNewLSource();

/* Set color to red */
pfLightColor(lsource, 1.0f, 0.0f, 0.0f);

/* Add light source to scene */
pfAddChild(scene, lsource);

In this example lsource is the pfLight* argument to pfLightColor() and the
pfNode* argument to pfAddChild().

The scope, or area of influence, of a pfLightSource is global and isn’t affected
by its location in the scene graph unless it is culled during the cull traversal.
If not culled, it illuminates everything in the pfScene of which it is a member
and doesn’t affect anything outside the pfScene besides custom geometry
rendered by the application in a channel draw callback.

A pfLightSource does inherit transformations and switch values from its
parents in the scene graph. Thus you can attach a light source to a moving
object and easily turn it on and off. Example 5-9 shows how you might
configure the headlights of a moving car:

Example 5-9 Car Headlights as pfLightSource Nodes

static pfNode* initCarGeometry(void);

 pfDCS *car = pfNewDCS();
 pfLightSource *leftHeadlight = pfNewLSource();
 pfLightSource *rightHeadlight = pfNewLSource();

Node Types

135

 /*
 * Set white light color. This isn’t really necessary
 * since pfLightSources are white by default.
 */
 pfLightColor(leftHeadlight, 1.0f, 1.0f, 1.0f);
 pfLightColor(rightHeadlight, 1.0f, 1.0f, 1.0f);

 /* Position headlights on front of car as local light
 * sources. */
 pfLightPos(leftHeadlight, -1.0f, 0.0f, 0.0f, 1.0f);
 pfLightPos(rightHeadlight, 1.0f, 0.0f, 0.0f, 1.0f);

 /*
 * Configure headlights as spotlights pointing in same
 * direction as car: +Y direction. Set the spotlights
 * to have falloff of 1 and angular spread of 30 degrees.
 */
 pfSpotLightDir(leftHeadlight, 0.0f, 1.0f, 0.0f);
 pfSpotLightCone(leftHeadlight, 1.0f, 30.0f);
 pfSpotLightDir(rightHeadlight, 0.0f, 1.0f, 0.0f);
 pfSpotLightCone(rightHeadlight, 1.0f, 30.0f);

 /*
 * Turn on headlights. This isn’t really necessary since
 * pfLightSources are on by default.
 */
 pfLightOn(leftHeadlight);
 pfLightOn(rightHeadlight);

 /* Create car geometry and add to car DCS */
 pfAddChild(car, initCarGeometry());

 /* Attach headlights to moving car. */
 pfAddChild(car, leftHeadlight);
 pfAddChild(car, rightHeadlight);

In Example 5-9, both the position and spotlight direction of the light sources
are transformed by the combination of the car’s pfDCS and all other pfDCS
or pfSCS nodes above it in the scene graph. Note that we specified to
pfLightPos() that the pfLightSource have a location with the fourth
coordinate nonzero. This defines a local light source; an infinite light source
has zero for its fourth coordinate. An infinite light source has only a
direction, not a location; it emits parallel rays because it is considered

136

Chapter 5: Nodes and Node Types

infinitely far away. (The sun, for example, is approximated as an infinite light
source.) Transformations change only the direction of an infinite light
source, not its position.

Also note in Example 5-9 that a pfSwitch isn’t necessary to turn a
pfLightSource on or off; you can directly switch a pfLightSource with
pfLightOn() and pfLightOff().

pfLightSources are treated specially when drawing a scene graph. All paths
leading to pfLightSources in a scene are traversed before the scene is
traversed. (For information about paths, see “Paths Through the Scene
Graph” in Chapter 6.) This special, initial traversal guarantees that the
graphics hardware will be configured with all pfLightSources so that they
will affect all geometry in the scene. In addition, these light sources are set
up before the channel draw callback is invoked, so they affect all custom
geometry rendered by the application both before and after pfDraw(). (See
“pfNode Cull and Draw Callbacks” in Chapter 6 for more on callbacks.)

By default, pfLightSource traversal is enabled and carried out by the cull
traversal. If you wish to bypass this traversal and thereby ignore all
pfLightSources in your scene, then set the PFCULL_IGNORE_LSOURCES
bit in the mode passed to pfChanTravMode() for the PFTRAV_CULL
traversal.

A pfLightSource has no default bounding volume, though you can assign it
one with pfNodeBSphere(). If a pfLightSource is assigned a bounding
volume it becomes subject to view frustum culling and will be discarded if
it is completely outside the view frustum of the pfChannel. If the light source
is found to be within the view frustum or it has an empty bounding volume
(the default), the pfLightSource will affect everything in view. By setting the
appropriate bounding sphere it is possible to roughly specify a light source
with limited influence.

Node Types

137

Table 5-8 describes the functions for working with pfLightSources.

pfGeode Nodes

pfGeode is short for geometry node and is the primary node for defining
geometry in libpf. A pfGeode contains a list of geometry structures called
pfGeoSets, which are part of the IRIS Performer libpr library. pfGeoSets
encapsulate graphics state and geometry and are described in the
“Geometry Sets” section of Chapter 10, “libpr Basics.” It is important to
understand that pfGeoSets are not nodes but are simply elements of a
pfGeode.

Table 5-8 pfLightSource Functions

Function Description

pfNewLSource Create a new pfLightSource node.

pfLightAmbient Set the ambient color for a pfLight.

pfGetLightAmbient Get the ambient color for a pfLight.

pfLightColor Set the color for a pfLight.

pfGetLightColor Find out the color of a pfLight.

pfSpotLightDir Aim a spotlight in the given direction.

pfGetSpotLightDir Determine the direction a spotlight is pointing.

pfSpotLightCone Set the width of a spotlight cone.

pfGetSpotLightCone Find out the width of a spotlight cone.

pfLightPos Set the position of a light.

pfGetLightPos Get the position of a light.

pfIsLightOn Determine whether a light is on or off.

pfLightOn Enable a light; execute saved-up modifications to the light.

pfLightOff Disable a light.

138

Chapter 5: Nodes and Node Types

Table 5-9 describes the functions for working with pfGeodes.

Example 5-10 shows how to attach several pfGeoSets to a pfGeode.

Example 5-10 Adding pfGeoSets to a pfGeode

pfGeode *car1;
pfGeoSet *muffler, *frame, *windows, *seats, *tires;

muffler = read_in_muffler_geometry();
frame = read_in_frame_geometry();
seats = read_in_seat_geometry();
tires = read_in_tire_geometry();

pfAddGSet(car1, muffler);
pfAddGSet(car1, frame);
pfAddGSet(car1, seats);
...

pfText Nodes

A pfText node is libpf leaf node that contains a set of libpr pfStrings that
should be rendered based on the libpf cull and draw traversals. In this sense
a pfText is similar to a pfGeode except that it renders 3-dimensional text
through the libpr pfString and pfFont mechanisms rather than rendering
standard 3-dimensional geometry via libpr pfGeoSet and pfGeoState

Table 5-9 pfGeode Functions

Function Description

pfNewGeode Create a pfGeode.

pfAddGSet Add a pfGeoSet.

pfRemoveGSet Remove a pfGeoSet.

pfInsertGSet Insert a pfGeoSet.

pfReplaceGSet Replace a pfGeoSet.

pfGetGSet Supply a pointer to the specified pfGeoSet.

pfGetNumGSets Determine how many pfGeoSets are in the given pfGeode.

Node Types

139

functionality. pfText nodes are useful for displaying 3-dimensional text and
other collections of geometry from a fixed index list. Table 5-10 lists the
major pfText functions.

Using the pfText facility is easy. Example 5-11 shows how a pfFont is
defined, how pfStrings are created that reference that font, and then how
those pfStrings are added to a pfText node for display. See the description of
pfStrings and pfFonts in Chapter 10, “libpr Basics,” for information on
setting up individual strings to input into a pfText node

Example 5-11 Adding pfStrings to a pfText

int nStrings,i;
char tmpBuf[8192];
char fontName[128];
pfFont *fnt = NULL;
/* Create a new text node
pfText *txt = pfNewText();

/* Read in font using libpfdu utility function */
scanf(“%s”,fontName);
fnt = pfdLoadFont(“type1”,fontName,PFDFONT_EXTRUDED);

/* Cant render pfText or libpr pfString without a pfFont */
if (fnt == NULL)

pfNotify(PFNFY_WARN,PFNFY_PRINT,
”No Such Font - %s\n”,fontName);

Table 5-10 pfText Functions

Function Description

pfNewText Create a pfText.

pfAddString Add a pfString.

pfRemoveString Remove a pfString.

pfInsertString Insert a pfString.

pfReplaceString Replace a pfString.

pfGetString Supply a pointer to the specified pfString.

pfGetNumStrings Determine how many pfStrings are in the given pfText.

140

Chapter 5: Nodes and Node Types

/* Read nStrings text strings from standard input and */
/* Attach them to a pfText */
scanf(“%d”,&nStrings);
for(i=0;i<nStrings;i++)
{

char c;
int j=0;
int done = 0;
pfString *curStr = NULL;

while(done < 2) /* READ STRING - END on ‘||’ */
{

c = getchar();
if (c == ‘|’)

done++;
else

done = 0;
tmpBuf[j++] = c;

}
tmpBuf[PF_MAX2(j-2,0)] = ‘\0’;

/* Create new libpr pfString structure to attach to pfText */
curStr = pfNewString(pfGetSharedArena());

/* Set the font for the libpr pfString */
pfStringFont(curStr, fnt);

/* Assign the char string to the pfString */
pfStringString(curStr, tmpBuf);

/* Add this libpr pfString to the pfText node */
/* Like adding a libpr pfGeoSet to a pfGeode */

pfAddString(txt, curStr);
}
pfAddChild(SceneGroup, txt);

pfBillboard Nodes

A pfBillboard is a pfGeode that rotates its children’s geometry to follow the
view direction or the eyepoint. Billboards are useful for portraying complex
objects that are roughly symmetrical in one or more axes. The billboard
rotates to always present the same image to the viewer using far fewer
polygons than a solid model uses. In this way, billboards reduce both

Node Types

141

transformation and pixel fill demands on the graphics subsystem at the
expense of some additional host processing. A classic example is a textured
billboard of a single quadrilateral representing a tree.

Because a pfBillboard is also a pfGeode, you can pass a pfBillboard
argument to any pfGeode routine. To add geometry, call pfAddGSet() (see
“pfGeode Nodes” on page 137). Each pfGeoSet in the pfBillboard is treated
as a separate piece of billboard geometry; each one turns so that it always
faces the eye point.

pfBillboards can be either constrained to rotate about an axis, as is done for
a tree or a lamp post, or constrained only by a point, as when simulating a
cloud or a puff of smoke. Specify the rotation mode by calling
pfBboardMode(); specify the rotational axis by calling pfBboardAxis().
Since rotating the geometry to the eyepoint doesn’t fully constrain the
orientation of a point-rotating billboard, modes are available to use the
additional degree of freedom to align the billboard in eye space or world
space. Usually the normals of billboards are specified to be parallel to the
rotational axis to avoid lighting anomalies.

pfFlatten() is highly recommended for billboards. If a billboard lies beneath
a pfSCS or pfDCS, an additional transformation is done for each billboard.
This can have a substantial performance impact on the cull process, where
billboards are transformed.

Table 5-11 describes the functions for working with pfBillboards.

Table 5-11 pfBillboard Functions

Function Description

pfNewBboard Create a pfBillboard node.

pfBboardPos Set a billboard’s position.

pfGetBboardPos Find out a billboard’s position.

pfBboardAxis Specify the rotation or alignment axis.

pfGetBboardAxis Find out the rotation or alignment axis.

pfBboardMode Specify a billboard’s rotation type.

pfGetBboardMode Find out a billboard’s rotation type.

142

Chapter 5: Nodes and Node Types

Example 5-12 demonstrates the construction of a pfBillboard node. The code
can be found in /usr/share/Performer/src/pguide/libpf/C/billboard.c.

Example 5-12 Setting Up a pfBillboard

static pfVec2 BBTexCoords[] ={{0.0f, 0.0f},
 {1.0f, 0.0f},

 {1.0f, 1.0f},
 {0.0f, 1.0f}};

static pfVec3 BBVertCoords[4] = /* XZ plane for pt bboards */
 {{-0.5f, 0.0f, 0.0f},
 { 0.5f, 0.0f, 0.0f},
 { 0.5f, 0.0f, 1.0f},
 {-0.5f, 0.0f, 1.0f}};

static pfVec3 BBAxes[4] = {{1.0f, 0.0f, 0.0f}, /* X */
 {0.0f, 1.0f, 0.0f}, /* Y */

 {0.0f, 0.0f, 1.0f}, /* Z */
{0.0f, 0.0f, 1.0f}}; /*world Zup*/

static int BBPrimLens[] = { 4 };

static pfVec4 BBColors[] = {{1.0, 1.0, 1.0, 1.0}};

/* Convert static data to pfMalloc’ed data */
static void*
memdup(void *mem, size_t bytes, void *arena)
{

void *data = pfMalloc(bytes, arena);
memcpy(data, mem, bytes);
return data;

}

/* For pedagogical use only. Reasonable performance
 * requires more then one pfGeoSet per pfBillboard.
 */

pfBillboard*
MakeABill(pfVec3 pos, pfGeoState *gst, long bbType)
{
 pfGeoSet *gset;

pfGeoState *gstate;
 pfBillboard *bill;

Node Types

143

 void *arena = pfGetSharedArena();

gset = pfNewGSet(arena);
gstate = pfNewGState(arena);

pfGStateMode(gstate, PFSTATE_ENLIGHTING, PF_OFF);
pfGStateMode(gstate, PFSTATE_ENTEXTURE, PF_ON);
/*.... Create/load texture map for billboard... */
pfGStateAttr(gstate, PFSTATE_TEXTURE, texture);
pfGSetGState(gset, gstate);

 pfGSetAttr(gset, PFGS_COORD3, PFGS_PER_VERTEX,
memdup(BBVertCoords, sizeof(BBVertCoords), arena),
NULL);

 pfGSetAttr(gset, PFGS_TEXCOORD2, PFGS_PER_VERTEX,
memdup(BBTexCoords, sizeof(BBTexCoords), arena),
NULL);

pfGSetAttr(gset, PFGS_COLOR4, PFGS_OVERALL,
memdup(BBColors, sizeof(BBColors), arena),
NULL);

 pfGSetPrimLengths(gset,
(int*)memdup(BBPrimLens, sizeof(BBPrimLens), arena));

 pfGSetPrimType(gset, PFGS_QUADS);
 pfGSetNumPrims(gset, 1);
 pfGSetGState(gset, gst);

 bill = pfNewBboard();
 switch (bbType)
 {
 case PF_X: /* axial rotate */
 case PF_Y:
 case PF_Z:
 pfBboardAxis(bill, BBAxes[bbType]);
 pfBboardMode(bill, PFBB_ROT, PFBB_AXIAL_ROT);
 break;
 case 3: /* point rotate */
 pfBboardAxis(bill, BBAxes[bbType]);
 pfBboardMode(bill, PFBB_ROT, PFBB_POINT_ROT_WORLD);
 break;
 }
 pfAddGSet(bill, gset);
 pfBboardPos(bill, 0, pos);

144

Chapter 5: Nodes and Node Types

 return bill;
}

pfPartition Nodes

A pfPartition is a pfGroup that organizes the scene graphs of its children into
a static data structure that can be more efficient for intersections. Currently,
partitions are only useful for data that lies more or less on an XY plane, such
as terrain. A pfPartition would therefore be inappropriate for a skyscraper
model.

Partition construction comes in two phases. After a piece of the scene graph
has been placed under the pfPartition, pfBuildPart() examines the spatial
arrangement of geometry beneath the pfPartition and determines an
appropriate origin and spacing for the grid. Because the search is exhaustive,
this examination can be time-consuming the first time through. Once a good
partitioning is determined, the search space can be restricted for future
database loads using the partition attributes.

The second phase is invoked by pfUpdatePart(), which distributes the
pfGeoSets under the pfPartition into cells in the spatial partition created by
pfBuildPart(). pfUpdatePart() needs to be called if any geometry under the
pfPartition node changes.

During intersection traversal, the segments in a pfSegSet (see “Intersection
Requests: pfSegSets” in Chapter 6) are scan-converted onto the grid,
yielding faster access to those pfGeoSets that potentially intersect the
segment. A pfPartition can be made to function as a normal pfGroup during
intersection traversal by OR-ing PFTRAV_IS_NO_PART into the intersection
traversal mode in the pfSegSet.

Node Types

145

Table 5-12 describes the functions for working with pfPartitions.

Example 5-13 demonstrates setting up and using a pfPartition node.

Example 5-13 Setting Up a Partition

pfGroup *terrain;
pfPartition *partition;
pfScene *scene;

...

terrain = read_in_grid_aligned_terrain();

...

/* create a default partitioning of a terrain grid */
partition = pfNewPart();
pfAddChild(scene, partition);
pfAddChild(partition, terrain);
pfBuildPart(partition);

...

/* use the partitions to perform efficient intersections
 * of sets of segments with the terrain */
for(i = 0; i < numVehicles; i++)

Table 5-12 pfPartition Functions

Function Description

pfNewPart Create a pfPartition.

pfPartVal Set the desired pfPartition value.

pfGetPartVal Find out the attributes of specified value.

pfPartAttr Set the desired pfPartition attribute.

pfGetPartAttr Find out the attributes of specified attribute.

pfBuildPart Construct a spatial partitioning based on the attributes.

pfUpdatePart Traverse the partition’s children and incorporate changes.

pfGetPartType Determine what kind of partition is being used.

146

Chapter 5: Nodes and Node Types

 pfNodeIsectSegs(partition, vehicle_segment_set[i],
 hit_struct);
...

Sample Program

The sample program shown in Example 5-14 demonstrates scene graph
construction, shared instancing, and transformation inheritance. The
program uses IRIS Performer objects and functions that are described fully
in later chapters.

This program reads the names of two objects from the command line,
although defaults are supplied if file names are not given. These files are
loaded and a second instance of each object is created. In each case, this
instance is made to orbit the original object, and the second pair are also
placed in orbit around the first. This program is “inherit.c” and is part of the
suite of IRIS Performer Programmer’s Guide example programs.

Example 5-14 Inheritance demonstration program

/*
 * inherit.c - transform inheritance example
 */

#include <math.h>
#include <Performer/pf.h>
#include <Performer/pfdu.h>

int
main(int argc, char *argv[])
{

pfPipe *pipe;
pfPipeWindow *pw;
pfScene *scene;
pfChannel *chan;
pfCoord view;
float z, s, c;
pfNode *model1, *model2;
pfDCS *node1, *node2;
pfDCS *dcs1, *dcs2, *dcs3, *dcs4;
pfSphere sphere;
char *file1, *file2;

Sample Program

147

/* choose default objects of none specified */
file1 = (argc > 1) ? argv[1] : “blob.nff”;
file2 = (argc > 1) ? argv[1] : “torus.nff”;

/* Initialize Performer */
pfInit();

pfFilePath(
“.”
“:./data”
“:../data”
“:../../data”
“:../../../data”
“:../../../../data”
“:/usr/share/Performer/data”);

/* Single thread for simplicity */
pfMultiprocess(PFMP_DEFAULT);

/* Load all loader DSO’s before pfConfig() forks */
pfdInitConverter(file1);
pfdInitConverter(file2);

/* Configure */
pfConfig();

/* Load the files */
if ((model1 = pfdLoadFile(file1)) == NULL)
{

pfExit();
exit(-1);

}
if ((model2 = pfdLoadFile(file2)) == NULL)
{

pfExit();
exit(-1);

}

/* scale models to unit size */
node1 = pfNewDCS();
pfAddChild(node1, model1);
pfGetNodeBSphere(model1, &sphere);
if (sphere.radius > 0.0f)

pfDCSScale(node1, 1.0f/sphere.radius);

148

Chapter 5: Nodes and Node Types

node2 = pfNewDCS();
pfAddChild(node2, model2);
pfGetNodeBSphere(model2, &sphere);
if (sphere.radius > 0.0f)

pfDCSScale(node2, 1.0f/sphere.radius);

/* Create the hierarchy */
dcs4 = pfNewDCS();
pfAddChild(dcs4, node1);
pfDCSScale(dcs4, 0.5f);

dcs3 = pfNewDCS();
pfAddChild(dcs3, node1);
pfAddChild(dcs3, dcs4);

dcs1 = pfNewDCS();
pfAddChild(dcs1, node2);

dcs2 = pfNewDCS();
pfAddChild(dcs2, node2);
pfDCSScale(dcs2, 0.5f);
pfAddChild(dcs1, dcs2);

scene = pfNewScene();
pfAddChild(scene, dcs1);
pfAddChild(scene, dcs3);
pfAddChild(scene, pfNewLSource());

/* Configure and open GL window */
pipe = pfGetPipe(0);
pw = pfNewPWin(pipe);
pfPWinType(pw, PFPWIN_TYPE_X);
pfPWinName(pw, “IRIS Performer”);
pfPWinOriginSize(pw, 0, 0, 500, 500);
pfOpenPWin(pw);

chan = pfNewChan(pipe);
pfChanScene(chan, scene);

pfSetVec3(view.xyz, 0.0f, 0.0f, 15.0f);
pfSetVec3(view.hpr, 0.0f, -90.0f, 0.0f);
pfChanView(chan, view.xyz, view.hpr);

/* Loop through various transformations of the DCS’s */

Sample Program

149

for (z = 0.0f; z < 1084; z += 4.0f)
{

pfDCSRot(dcs1,
(z < 360) ? (int) z % 360 : 0.0f,
(z > 360 && z < 720) ? (int) z % 360 : 0.0f,
(z > 720) ? (int) z % 360 : 0.0f);

pfSinCos(z, &s, &c);
pfDCSTrans(dcs2, 1.0f * c, 1.0f * s, 0.0f);

pfDCSRot(dcs3, z, 0, 0);
pfDCSTrans(dcs3, 4.0f * c, 4.0f * s, 4.0f * s);
pfDCSRot(dcs4, 0, 0, z);
pfDCSTrans(dcs4, 1.0f * c, 1.0f * s, 0.0f);

pfFrame();
}

/* show objects static for three seconds */
sleep(3);

pfExit();
exit(0);

}

This chapter explains how to
manipulate, traverse, and examine a
scene graph.

“Database Traversal”

Chapter 6

153

Chapter 6

6. Database Traversal

Chapter 5, “Nodes and Node Types,” described the node types used by libpf.
This chapter describes the operations that can be performed on the run-time
database defined by a scene graph. These operations typically work with
part or all of a scene graph and are known as traversals because they traverse
the database hierarchy. IRIS Performer supports four major kinds of
database traversals:

• Application

• Cull

• Draw

• Intersection

The application traversal updates the active elements in the scene graph for
the next frame. This includes processing active nodes such as pfMorph and
invoking user supplied callbacks for animations or other embedded
behaviors.

Visual processing consists of two basic traversals: culling and drawing. The
cull traversal selects the visible portions of the database and puts them into
a display list. The draw traversal then runs through that display list and
sends rendering commands to the Geometry Pipeline. Once you have set up
all the necessary elements, culling and drawing are automatic, although you
can customize each traversal for special purposes.

The intersection traversal computes the intersection of one or more line
segments with the database. The intersection traversal is user-directed.
Intersections are used to determine

• height above terrain

• line-of-sight visibility

• collisions with database objects

154

Chapter 6: Database Traversal

Like other traversals, intersection traversals can be directed by the
application through identification masks and function callbacks. Table 6-1
lists the routines and data types relevant to each of the major traversals;
more information about the listed traversal attributes can be found later in
this chapter and in the appropriate reference pages.

Table 6-1 Traversal Attributes for the Major Traversals

Traversal

Attribute

Application
PFTRAV_APP

Cull
PFTRAV_CULL

Draw
PFTRAV_DRAW

Intersection
PFTRAV_ISECT

Controllers pfChannel pfChannel pfChannel pfSegSet

Global
Activation

pfFrame()
pfSync()

pfAppFrame()

pfFrame() pfFrame() pfFrame()
pfNodeIsect-
Segs(), pfChan-
NodeIsectSegs()

Global
Callbacks

pfChanTrav-
Func()

pfChanTrav-
Func()

pfChanTrav-
Func()

pfIsectFunc()

Activation
within
Callback

pfApp() pfCull() pfDraw() pfFrame()
pfNodeIsect-
Segs(), pfChan-
NodeIsectSegs()

Path
Activation

NA pfCullPath() NA NA

Modes pfChanTrav-
Mode()

pfChanTrav-
Mode()

pfChanTrav-
Mode()

pfSegSet (also
discriminator
callback)

Node
Callbacks

pfNodeTrav-
Funcs()

pfNodeTrav-
Funcs()

pfNodeTrav-
Funcs()

pfNodeTrav-
Funcs()

Traverser
Masks

pfChanTrav-
Mask()

pfChanTrav-
Mask()

pfChanTrav-
Mask()

pfSegSet mask

Traversee
Masks

pfNodeTrav-
Mask()

pfNodeTrav-
Mask()

pfNodeTrav-
Mask()

pfNodeTrav-
Mask()

 pfGSetIsect-
Mask()

Scene Graph Hierarchy

155

Scene Graph Hierarchy

A visual database, also known as a scene, contains state information and
geometry. A scene is organized into a hierarchical structure known as a
graph. The graph is composed of connected database units called nodes.
Nodes that are attached below other nodes in the tree are called children.
Children belong to their parent node. Nodes with the same parent are called
siblings.

Database Traversals

The scene hierarchy supplies definitions of how items in the database relate
to one another. It contains information about the logical and spatial
organization of the database. The scene hierarchy is processed by visiting the
nodes in depth-first order and operating on them. The process of visiting, or
touching, the nodes is called traversing the hierarchy. The tree is traversed
from top to bottom and from left to right. IRIS Performer implements several
types of database traversals, including application, clone, cull, delete, draw,
flatten, and intersect. These traversals are described in more detail later in
this chapter.

The principal traversals (application, cull, draw and intersect) all use a
similar traversal mechanism that employs traversal masks and callbacks to
control the traversal. When a node is visited during the traversal, processing
is performed in the following order:

1. Prune the node based on the bitwise AND of the traversal masks of the
node and the pfChannel (or pfSegSet). If pruned, traversal continues
with the nodes siblings.

2. invoke the node’s pre-traversal callback, if any, and either prune,
continue, or terminate the traversal, depending on callback’s return
value.

3. Traverse, beginning again at step 1, the node’s children or geometry
(pfGeoSets). If the node is a pfSwitch, a pfSequence, or a pfLOD, the
state of the node affects which children are traversed.

4. Invoke the node’s post-traversal callback, if any.

156

Chapter 6: Database Traversal

State Inheritance

In addition to imposing a logical and spatial ordering of the database, the
hierarchy also defines how state is inherited between parent and child nodes
during scene graph traversals. For example, a parent node that represents a
transformation causes the subsequent transformation of each of its children
when it and they are traversed. In other words, the children inherit state,
which includes the current coordinate transformation, from their parent
node during database traversal.

A transformation is a 4x4 homogeneous matrix that defines a 3D
transformation of geometry, which typically consist of scaling, rotation, and
translation. The node types pfSCS and pfDCS both represent
transformations. Transformations are inherited through the scene graph
with each new transformation being concatenated onto the ones above it in
the scene graph This allows chained articulations and complex modeling
hierarchies.

The effects of state are propagated downward only, not from left to right nor
upward. This means that only parents can affect their children—siblings
have no effect on each other nor on their parents. This behavior results in an
easy-to-understand hierarchy that is well suited for high-performance
traversals.

Graphics state such as textures and materials are not inherited by way of the
scene graph, but are encapsulated in leaf geometry nodes called pfGeode
nodes, which are described in the section “Node Types” in Chapter 5.

Database Organization

IRIS Performer uses the spatial organization of the database to increase the
performance of certain operations such as drawing and intersections. It is
therefore recommended that you consider the spatial arrangement of your
database. What you might think of as a logical arrangement of items in the
database may not match the spatial arrangement of those items in the visual
environment, which can reduce IRIS Performer’s ability to optimize
operations on the database. See “Organizing a Database for Efficient
Culling” on page 163 for more information about spatial organization in a
visual database and the efficiency of database operations.

Application Traversal

157

Application Traversal

The application traversal is the first traversal that occurs during the
processing of the scene graph in preparation for rendering a frame. It is
initiated by calling pfAppFrame(). If pfAppFrame() is not explicitly called,
the traversal is automatically invoked by pfSync() or pfFrame(). An
application traversal can be invoked for each channel, but usually channels
share the same application traversal (see pfChanShare()).

The application traversal updates dynamic elements in the scene graph,
such as geometric morphing carried invoked by a pfMorph node. The
application traversal is also often used for implementing animations or other
custom processing when it is desirable to have those behaviors embedded in
the scene graph and invoked by IRIS Performer rather than requiring
application code to invoke them every frame.

The traversal proceeds as described in “Database Traversals”. The selection
of which children to traverse is also affected by the application traversal
mode of the channel, in particular the choice of all, none or one of the
children of pfLOD, pfSequence and pfSwitch nodes is possible. By default,
the traversal obeys the current selection dictated by these nodes.

The following example from the Open Inventor loader (this loader reads
both Open Inventor and VRML files) shows a simple callback changing the
transformation on a pfDCS every frame. This and other examples can be
found in /usr/share/Performer/src/lib/libpfiv/pfiv.C.

Example 6-1 Application Callback to Make a Pendulum

int
AttachPendulum(pfDCS *dcs, PendulumData *pd)
{

pfNodeTravFuncs(dcs, PFTRAV_APP, PendulumFunc, NULL);
pfNodeTravData(dcs, PFTRAV_APP, pd);

}

int
PendulumFunc(pfTraverser *trav, void *userData)
{

PendulumData *pd = (PendulumData*)userData;
pfDCS *dcs = (pfDCS*)pfGetTravNode(trav);

if (pd->on)

158

Chapter 6: Database Traversal

{
pfMatrix mat;
double now = pfGetFrameTimeStamp();
float frac, dummy;

pd->lastAngle += (now -
pd->lastTime)*360.0f*pd->frequency;

if (pd->lastAngle > 360.0f)
pd->lastAngle -= 360.0f;

// using sinusoidally generated angle
pfSinCos(pd->lastAngle, &frac, &dummy);
frac = 0.5f + 0.5f * frac;
frac = (1.0f - frac)*pd->angle0 + frac*pd->angle1;

pfMakeRotMat(mat,
frac, pd->axis[0], pd->axis[1], pd->axis[2]);

pfDCSMat(dcs, mat);
pd->lastTime = now;

}

return PFTRAV_CONT;
}

Cull Traversal

The cull traversal occurs in the cull phase of the libpf rendering pipeline and
is initiated by calling pfFrame(). A cull traversal is performed for each
pfChannel and determines the portion of the scene to be rendered. The
traversal processes the subgraphs of the scene that are both visible and
selected by nodes in the scene graph that control traversal (e.g. pfLOD,
pfSequence, pfSwitch). The visibility culling itself is performed by testing
bounding volumes in the scene graph against the channel’s viewing
frustum.

For customizing the cull traversal, libpf provides traversal masks and
function callbacks for each node in the database, as well as a function
callback in which the application can do its own culling of custom data
structures.

Cull Traversal

159

Traversal Order

The cull is a depth-first traversal of the database hierarchy beginning at a
pfScene, which is the hierarchy’s root node. For each node, a series of tests is
made to determine whether the traversal should prune the node—that is,
eliminate it from further consideration—or continue on to that node’s
children. The cull traversal processing is much as described earlier, in
particular the draw traversal masks are compared and the node is checked
for visibility before the traversal continues on to the nodes children:

1. Prune the node, based on the channel’s draw traversal mask and the
node’s draw mask.

2. Invoke the node’s pre-cull callback and either prune, continue, or
terminate the traversal, depending on callback’s return value.

3. Prune the node if its bounding volume is completely outside the
viewing frustum.

4. Traverse, beginning again at step 1, the node’s children or geometry
(pfGeoSets) if the node is completely or partially in the viewing
frustum. If the node is a pfSwitch, a pfSequence, or a pfLOD, the state
of the node affects which children are traversed.

5. Invoke the node’s post-cull callback.

The following sections discuss these steps in more detail.

Visibility Culling

Culling determines whether a node is within a pfChannel’s viewing frustum
for the current frame. Nodes that are not visible are pruned—omitted from
the list of objects to be drawn—so that the Geometry Pipeline doesn’t waste
time processing primitives that couldn’t possibly appear in the final image.

Hierarchical Bounding Volumes

Testing a node for visibility compares the bounding volume of each object in
the scene against a viewing frustum that is bounded by the near and far clip
planes and the four sides of the viewing pyramid. Both nodes (see
Chapter 5) and pfGeoSets (see Chapter 10) have bounding volumes that
surround the geometry that they contain. Bounding volumes are simple

160

Chapter 6: Database Traversal

geometric shapes whose centers and edges are easy to locate. Bounding
volumes are organized hierarchically so that the bounding volume of a
parent encloses the bounding volumes of all its children. You can specify
bounding volumes or let IRIS Performer generate them for you (see
“Bounding Volumes” in Chapter 5).

Figure 6-1 shows a frustum and three objects surrounded by bounding
boxes. Two of the objects are outside the frustum; one is within it. One of the
objects outside the frustum has a bounding box whose edges intersect the
frustum, as shown by the shaded area. The visibility test for this object
returns TRUE, because its bounding box does intersect the view frustum
even though the object itself doesn’t.

Cull Traversal

161

Figure 6-1 Culling to the Frustum

PFIS_FALSE

PFIS_ALL_IN

PFIS_TRUE

162

Chapter 6: Database Traversal

Visibility Testing

The cull traversal begins at the root node of a channel’s scene graph (the
pfScene node) and continues downward, directed by the results of the cull
test at each node. At each node the cull test determines the relationship of
the node’s bounding volume to the viewing frustum. Possible results are
that the bounding volume is entirely outside, is entirely within, is partially
within, or completely contains the viewing frustum.

If the intersection test indicates that the bounding volume is entirely outside
the frustum, the traversal prunes that node—that is, it doesn’t consider the
children of that node and continues with the node’s next sibling.

If the intersection test indicates that the bounding volume is entirely inside
the frustum, the node’s children are not cull tested because the hierarchical
nature of bounding volumes implies that the children must also be entirely
within the frustum.

If the intersection test indicates that the bounding volume is partially within
the frustum, or that the bounding volume completely contains the frustum,
the testing process continues with the children of that node. Because a
bounding volume is larger than the object it surrounds, it is possible for a
bounding volume to be partially within a frustum even when none of its
enclosed geometry is visible.

By default, IRIS Performer tests bounding volumes all the way down to the
pfGeoSet level (see Chapter 10, “libpr Basics”) to provide fine-grained
culling. However, if your application is spending too much time culling, you
can stop culling at the pfGeode level by calling pfChanTravMode(). Then if
part of a pfGeode is potentially visible, all geometry in that pfGeode is
drawn without cull-testing it first.

Visibility Culling Example

Figure 6-2 portrays a simple database that contains a toy block, train, and
car. The block is outside the frustum, the bounding volume of the car is
partially inside the frustum, and the train is completely inside the frustum.

Cull Traversal

163

Figure 6-2 Sample Database Objects and Bounding Volumes

Organizing a Database for Efficient Culling

Efficient culling depends on having a database whose hierarchy is organized
spatially. A good technique is to partition the database into regions, called
tiles. Tiling is also required for database paging. Instead of culling the entire
database, only the tiles that are within the view frustum need to be
traversed.

164

Chapter 6: Database Traversal

The worst case for the cull traversal performance is to have a very flat
hierarchy—that is, a pfScene with all the pfGeodes directly under it and
many pfGeoSets in each pfGeode—or a hierarchy that is organized by object
type (for example, having all trees in the database grouped under one pine
tree node, rather than arranged spatially).

Figure 6-3 shows a sample database represented by cubes, cones, pyramids,
and spheres. Organizing this database spatially, rather than by object type,
promotes efficient culling. This type of spatial organization is the most
effective control you have over efficient traversal.

Cull Traversal

165

Figure 6-3 How to Partition a Database for Maximum Efficiency

Board

Pyramids Cones Spheres Cubes

Board

Tile 1 Tile 9Tile 2 Tile 3 Tile 4 Tile 5 Tile 6 Tile 7 Tile 8

166

Chapter 6: Database Traversal

When modeling a database, you should consider other trade-offs as well.
Small amounts of geometry in each culling unit, whether pfGeode or
pfGeoSet, provide better culling resolution and result in sending less
non-visible geometry to the pipeline. Small pieces also improve the
performance of line-segment intersection inquiries (see“Database
Concerns” in Chapter 13). However, using many small pieces of geometry
can increase the traversal time and can also reduce drawing performance.
The optimal amount of geometry to place in each pfGeoSet depends on the
application, database, system CPU, and graphics hardware.

Custom Visibility Culling

Existence within the frustum isn’t the only criterion that determines an
object’s visibility. The item may be too distant to be seen from the viewpoint,
or it may be obscured by other objects between it and the viewer, such as a
wall or a hill. Atmospheric conditions can also affect object visibility. An
object that is normally visible at a certain distance may not be visible at that
same distance in dense fog.

Implementing more sophisticated culling requires knowledge of visibility
conditions and control over the cull traversal. The cull traversal can be
controlled through traversal masks, which are described in the section titled
“Controlling and Customizing Traversals.”

Knowing whether an object is visible requires either prior information about
the spatial organization of a database, such as cell-to-cell visibilities, or
run-time testing such as computing line-of-sight visibility (LOS). You can
compute simple LOS visibility by intersecting line segments that start at the
eyepoint with the database. See the “Intersection Traversal” section of this
chapter.

Sorting the Scene

During the cull traversal, a pfChannel can rearrange the order in which
pfGeoSets are rendered for improved performance and image quality. It
does this by binning and sorting. Binning is the act of placing pfGeoSets into
specific bins which are rendered in a specific order. IRIS Performer provides
two default bins: one for opaque geometry and one for blended, transparent
geometry. The opaque bin is drawn before the transparent bin so transparent

Cull Traversal

167

surfaces are properly blended with the background scene. Applications are
free to add new bins and specify arbitrary bin orderings.

Sorting is done on a per-bin basis. pfGeoSets within a given bin are sorted by
a specific criterion. Two useful criteria provided by IRIS Performer are
sorting by graphics state and sorting by range. When sorting by state,
pfGeoSets are sorted first by their pfGeoState, then by an
application-specified hierarchy of state modes, values, and attributes which
are identified by PFSTATE_* tokens and are described in the libpr chapter.
State sorting can offer a huge performance advantage since it greatly reduces
the number of mode changes carried out by the Geometry Pipeline. State
sorting is the default sorting configuration for the opaque bin.

Range sorting is required for proper rendering of blended, transparent
surfaces which must be rendered in back-to-front order so that each surface
is properly blended with the current background color. Front-to-back sorting
is also supported. The default sorting for the transparent bin is back-to-front
sorting (Note that the sorting granularity is per-pfGeoSet, not per-triangle so
transparency sorting is not perfect).

pfChannel bins are given rendering order and sorting configuration with
pfChanBinOrder() and pfChanBinSort() respectively. A bin’s order is
simply an integer identifying its place in the list of bins. An order less than 0
or PFSORT_NO_ORDER means that pfGeoSets which fall into the bin are
drawn immediately without any ordering or sorting. Multiple bins may
have the same order but the rendering precedence among these bins is
undefined.

A bin’s sorting configuration is given as a token identifying the major sorting
criterion and then an optional list of tokens, terminated with the
PFSORT_END token, that defines a state sorting hierarchy.

PFSORT_BY_STATE
pfGeoSets are sorted first by pfGeoState then by the state
elements found between the PFSORT_STATE_BGN and
PFSORT_STATE_END tokens, for example.

PFSORT_FRONT_TO_BACK
pfGeoSets are sorted by nearest to farthest range from the
eyepoint. Range is computed from eyepoint to the center of
the pfGeoSet’s bounding volume.

168

Chapter 6: Database Traversal

PFSORT_BACK_TO_FRONT
pfGeoSets are sorted by farthest to nearest range from the
eyepoint. Range is computed from eyepoint to the center of
the pfGeoSet’s bounding volume.

PFSORT_QUICK
A special, low-cost sorting technique. pfGeoSets must fall
into a bin whose order is 0 in which case they will be sorted
by pfGeoState and drawn immediately. This is the default
sorting mode for the PFSORT_OPAQUE_BIN bin.

For example, the specification:

static int sort[] = {PFSORT_STATE_BGN,
PFSTATE_TEXTURE, PFSTATE_FRONTMTL,
PFSORT_STATE_END, PFSORT_END};

pfChanBinSort(chan, PFSORT_OPAQUE_BIN, PFSORT_BY_STATE,
sort);

will sort the opaque bin by pfGeoState, then by pfTexture, then by
pfMaterial.

A pfGeoSet’s draw bin may be set directly by the application with
pfGSetDrawBin(). Otherwise IRIS Performer automatically determines if
the pfGeoSet belongs in the default opaque or transparent bins.

Paths Through the Scene Graph

You can define a chain, or path, of nodes in a scene graph using the pfPath
data structure. (Note that a pfPath has nothing to do with filesystem paths
as specified with the PFPATH environment variable or with specifying a
path for a user to travel through a scene.) Once you’ve specified a pfPath
with a call to pfNewPath(), you can traverse and cull that path as a subset of
the entire scene graph using pfCullPath(). Call he function pfCullPath()
must only from the cull callback function set by pfChanTravFunc()—see
“Process Callbacks” on page 174 for details. For more information about the
pfPath structure, see the pfPath(3pf) and pfList(3pf) reference pages.

When IRIS Performer looks for intersections, it can return a pfPath to the
node containing the intersection. This feature is particularly useful when
you’re using instancing, in which case you can’t use pfGetParent() to find

Draw Traversal

169

out where in the scene graph the given node is. Finding out the pfPath to a
given node is also useful in implementing picking—for an example, see the
source code in /usr/share/Performer/src/sample/apps/C/pickfly/picking.c, or
execute /usr/share/Performer/bin/pickfly if it is installed on your system. When
you click on an object in a scene, this program prints the path to the node
you’ve picked.

Draw Traversal

The cull traversal generates a libpr display list of geometry and state
commands (see “Display Lists” in Chapter 10), which describes the scene
that is visible from a pfChannel. The draw traversal simply traverses the
display list and sends commands to the Geometry Pipeline to generate the
image.

Traversing a pfDispList is much faster than traversing the database
hierarchy because the pfDispList flattens the hierarchy into a simple, efficient
structure. In this way, the cull traversal removes much of the processing
burden from the draw traversal; throughput greatly increases when both
traversals are running in parallel.

Controlling and Customizing Traversals

The result of the cull traversal is a display list of geometry to be rendered by
the draw traversal. What gets placed in the display list is determined by both
visibility and by other user-specified modes and tests.

pfChannel Traversal Modes

The PFTRAV_CULL argument to pfChanTravMode() modifies the culling
traversal. The cull mode is a bitmask that specifies the modes to enable, it is
formed by the logical OR of one or more of these tokens:

• PFCULL_VIEW

• PFCULL_GSET

170

Chapter 6: Database Traversal

• PFCULL_SORT

• PFCULL_IGNORE_LSOURCES

Culling to the view frustum is enabled by PFCULL_VIEW. Culling to the
pfGeoSet-level is enabled by PFCULL_GSET and can produce a tighter cull
that improves rendering performance at the expense of culling time.

PFCULL_SORT causes the cull to sort geometry by state—for example, by
texture or by material, in order to optimize rendering performance. It also
causes transparent geometry to be drawn after opaque geometry for proper
transparency effects.

By default, the enabled culling modes are PFCULL_VIEW | PFCULL_GSET
| PFCULL_SORT. It is recommended that these modes be enabled unless the
cull traversal becomes a significant bottleneck in the processing pipeline. In
this case, try disabling PFCULL_GSET first, then PFCULL_SORT.

Normally, a pfChannel’s cull traversal pre-traverses the scene, following all
paths from the scene to all pfLightSources in the scene so that light sources
can be set up before the normal scene traversal. If you with to disable this
pre-traversal, set the PFCULL_IGNORE_LSOURCES cull enable bit but
your pfLightSources will not illuminate the scene.

The PFTRAV_DRAW argument to pfChanTravMode() modifies the draw
traversal. A mode of PFDRAW_ON is the default and will cause the
pfChannel to be rendered. A mode of PFDRAW_OFF indicates that the
pfChannel should not be drawn and essentially turns off the pfChannel.

pfNode Draw Mask

Each node in the database hierarchy can be assigned a mask that dictates
whether the node is added to the display list and thereby whether it is
drawn. This mask is called the draw mask (even though it is evaluated in the
cull traversal) because it tells the cull process whether the node is drawable
or not.

The draw mask of a node is set with pfNodeTravMask(). The channel also
has a draw mask, which you set with pfChanTravMask(). By default, the
masks are all 1s, or 0xffffffff.

Controlling and Customizing Traversals

171

Before testing a node for visibility, the cull traversal ANDs the two masks
together. If the result is zero, the cull prunes the node. If the result is nonzero,
the cull proceeds normally. Mask testing occurs before all visibility testing
and function callbacks.

Masks allow you to draw different subgraphs of the scene on different
channels, to turn portions of the scene graph on and off, or to ignore hidden
portions of the scene graph while drawing but make them active during
intersection testing.

pfNode Cull and Draw Callbacks

One of the primary mechanisms for extending IRIS Performer is through the
use of function callbacks, which can be specified on a per-node basis. IRIS
Performer allows separate cull and draw callbacks, which are invoked both
before and after node processing. Node callbacks are set with
pfNodeTravFuncs().

Cull callbacks can direct the cull traversal, while draw callbacks are added
to the display list and later executed in the draw traversal for custom
rendering. There are pre-cull and pre-draw callbacks, invoked before a node
is processed, and post-cull and post-draw callbacks, invoked after the node
is processed.

The cull callbacks return a value indicating how the cull traversal should
proceed, as shown in Table 6-2.

Table 6-2 Cull Callback Return Values

Value Action

PFTRAV_CONT Continue and traverse the children of this node.

PFTRAV_PRUNE Skip the subgraph rooted at this node and continue.

PFTRAV_TERM Terminate the entire traversal.

172

Chapter 6: Database Traversal

Callbacks are processed by the cull traversal in the following order:

1. If a pre-cull callback is defined, then call the pre-cull callback to get a
cull result and find out whether traversal should continue. Possible
return values are listed in Table 6-2.

2. If the pre-cull callback returns PFTRAV_PRUNE, the traversal returns
to the parent and continues with the node’s siblings, if any. If the
callback returns PFTRAV_TERM, the traversal terminates immediately.
Otherwise, cull processing continues.

3. If the pre-cull callback doesn’t set the cull result using pfCullResult(),
and view-frustum culling is enabled, then perform the standard
node-within-frustum test and set the cull result accordingly.

4. If the cull result is PFIS_FALSE, skip the traversal of children. The
post-cull callback is invoked and traversal returns so that the parent
node can traverse any siblings.

5. If a pre-draw callback is defined, then place a libpr display-list packet in
the display list so that the node’s pre-draw callback will be called by the
draw process. If running a combined CULLDRAW traversal, invoke the
pre-draw callback directly instead.

6. Process the node, continuing the cull traversal with each of the node’s
children or adding the node’s geometry to a display list (for pfGeodes).
If the cull result was PFIS_ALL_IN, view-frustum culling is disabled
during the traversal of the children.

7. If a post-draw callback is defined, then place a libpr display-list packet
in the display list so that the node’s post-draw callback will be called by
the draw process. If running a combined CULLDRAW traversal, invoke
the post-draw callback directly instead.

8. If a post-cull callback is defined, then call the post-cull callback.

Draw callbacks are commonly used to place tags or change state while a
subgraph is rendered. Note that if the pre-draw callback is called, the
post-draw callback is guaranteed to be invoked. This way the callback can
restore any state modified by the pre-draw callback. This is useful for state
changes such as pfPushMatrix() and pfPopMatrix(), as shown in the
environment-mapping code that’s part of Example 6-2.

Controlling and Customizing Traversals

173

For doing customized culling, the pre-cull callback can determine whether a
PFIS_ALL_IN has already turned off view-frustum culling using
pfGetParentCullResult(), in which case it may not wish to do its own cull
testing. It can also find out the result of the standard cull test by calling
pfGetCullResult().

Cull callbacks can also be used to render geometry (pfGeoSets) or change
graphics state. Any libpr drawing commands are captured in a display list
and are later executed during the draw traversal (see “Display Lists” in
Chapter 10). However, direct graphics library calls can be made safely only
in draw function callbacks, because only the draw process of multiprocess
IRIS Performer configurations is known to be associated with a window.

Example 6-2 shows some sample node callbacks.

Example 6-2 pfNode Draw Callbacks

void
LoadScene(char *filename)
{
 pfScene *scene = pfNewScene();
 pfGroup *root = pfNewGroup();
 pfGroup *reflectiveGeodes = NULL;

 root = pfdLoadFile(filename);
 ...
 reflectiveGeodes =
 ReturnListofGeodesWithReflectiveMaterials(root);

 /* Use a node callback in the Draw process to turn on
 * and off graphics library environment mapping before
 * and after drawing all of the pfGeodes that have
 * pfGeoStates with reflective materials.
 */
 pfNodeTravFuncs(reflectiveGeodes, PFTRAV_DRAW,
 pfdPreDrawReflMap, pfdPostDrawReflMap);
}

/* This callback turns on graphics library environment
 * mapping. Because it changes graphics state it must be a
 * Draw process node callback. */
long
pfdPreDrawReflMap(pfTraverser *trav, void *data)
{

174

Chapter 6: Database Traversal

 texgen(TX_S, TG_SPHEREMAP, 0);
 texgen(TX_T, TG_SPHEREMAP, 0);
 texgen(TX_S, TG_ON, NULL);
 texgen(TX_T, TG_ON, NULL);
 return NULL;
}

/* This callback turns off graphics library environment
 * mapping. Because it also changes graphics state it also
 * must be a Draw process node callback. Also notice that
 * it is important to return the graphics library’s state to
 * the state at which it was in before the preNode callback
 * was even made.
 */
long
pfdPostDrawReflMap(pfTraverser *trav, void *data)
{
 texgen(TX_S, TG_OFF, NULL);
 texgen(TX_T, TG_OFF, NULL);
 return NULL;
}

Process Callbacks

libpf processes a visual database with a software-rendering pipeline
composed of application, cull, and draw stages. The system of process
callbacks allows you to insert your own custom culling and drawing
functions into the rendering pipeline. Furthermore, these callbacks are
invoked by the proper process when your IRIS Performer application is
configured for multiprocessing.

By default, IRIS Performer culls and draws all active pfChannels when
pfFrame() is called. However, you can specify cull and draw function
callbacks so that pfFrame() will cause IRIS Performer to call your custom
functions instead. These functions have the option of using the default IRIS
Performer processing in addition to their own custom processing.

When multiprocessing is used, the rendering pipeline works on multiple
frames at once. For example, when the draw process is rendering frame n,
the cull process is working on frame n+1, and the application process is

Process Callbacks

175

working on frame n+2. This situation requires careful management of data
so that data generated by the application is propagated to the cull process
and then to the draw process at the right time. IRIS Performer manages data
that is passed to the process callbacks to ensure that the data is
frame-coherent and isn’t corrupted.

Example 6-3 illustrates the use of a cull-process callback.

Example 6-3 Cull-Process Callbacks

InitChannels()
{
 ...
 /* create and configure all channels*/
 ...
 /* define callbacks for cull and draw processes */
 pfChanTravFunc(chan, PFTRAV_CULL, CullFunc);
 pfChanTravFunc(chan, PFTRAV_DRAW, DrawFunc);
 ...
}

/* The Cull callback. Any work that needs to be done in the
 * Cull process should happen in this function.
 */
void
CullFunc(pfChannel * chan, void *data)
{
 static long first = 1;

 /* Lock down whatever processor the cull is using when
 * the cull callback is first called.
 */
 if (first)
 {
 if ((pfGetMultiprocess() & PFMP_FORK_CULL) &&
 (ViewState->procLock & PFMP_FORK_CULL))
 pfuLockDownCull(pfGetChanPipe(chan));
 first = 0;
 }

 /* User-defined pre-cull processing. Application-
 * specific cull knowledge might be used to provide
 * things like line-of-sight culling.
 */
 PreCull(chan, data);

176

Chapter 6: Database Traversal

 /* standard Performer culling to the viewing frustum */
 pfCull();

 /* User-defined post-cull processing; this routine might
 * be used to do things like record cull state from this
 * cull to be used in future culls.
 */
 PostCull(chan, data);
}

/* The draw function callback. I/O with IRIS GL devices must
 * happen here. Any graphics library functionality outside
 * IRIS Performer must be done here.
 */
void
DrawFunc(pfChannel *chan, void *data)
{
 /* pre-Draw tasks like clearing the viewport */
 PreDraw(chan, data);

 pfDraw(); /* render the frame */

 /* draw HUD, read IRIS GL devices, and so on */
 PostDraw(chan, data);
}

Process Callbacks and Passthrough Data

Cull and draw callbacks are specified on a per-pfChannel basis using the
functions pfChanTravFunc() with PFTRAV_CULL and PFTRAV_DRAW,
respectively. pfAllocChanData() allocates passthrough data, data which is
passed down the rendering pipeline to the callbacks.

In the cull phase of the rendering pipeline, IRIS Performer invokes the cull
callback with a pointer to the pfChannel that is being culled and a pointer to
the pfChannel’s passthrough data buffer. The cull callback may modify data
in the buffer. The potentially modified buffer is then copied and passed to
the user’s draw callback.

Process Callbacks

177

Default IRIS Performer processing is triggered by pfCull() and pfDraw(). By
default, pfFrame() calls pfCull() first, then calls pfDraw(). If process
callbacks are defined, however, pfCull() and pfDraw() are not invoked
automatically and must be called by the callbacks to use IRIS Performer’s
default processing. pfCull() should be called only in the cull callback; it
causes IRIS Performer to cull the current channel and to generate a display
list suitable for rendering.

Channels culled by pfCull() may be drawn in the draw callback by
pfDraw(). It is legal for the draw callback to call pfDraw() more than once.
Multi-pass renderings performed with multiple calls to pfDraw() are typical
when you use accumulation buffer techniques.

When the draw callback is invoked, the window will have already been
properly configured for drawing the pfChannel. Specifically, the viewport,
perspective, and viewing matrices are set to their correct values. User
modifications of these values are not reset by pfDraw(). If a draw callback is
specified, IRIS Performer doesn’t automatically clear the viewport; it leaves
that responsibility to the application. pfClearChan() can be called from the
draw callback to clear the channel viewport. If chan has a pfEarthSky(), then
the pfEarthSky() is drawn. Otherwise, the viewport is cleared to black and
the z-buffer is cleared to its maximum value.

You should call pfPassChanData() to indicate that user data should be
passed through the rendering pipeline, which propagate the data
downstream to cull and draw callbacks. The next call to pfFrame() copies the
channel buffer into internal buffers, so that the application is then free to
modify data in the buffer without fear of corruption. The pfPassChanData()
function should be called only when necessary, since calling it imposes some
buffer-copying overhead. In addition, passthrough data should be as small
as possible to reduce the time spent copying data.

The code fragment in Example 6-4 is an example of cull and draw callbacks
and the passthrough data that is used to communicate with them.

Example 6-4 Using Passthrough Data to Communicate With Callback Routines

typedef struct
{
 long val;
} PassData;

178

Chapter 6: Database Traversal

void cullFunc(pfChannel *chan, void *data);
void drawFunc(pfChannel *chan, void *data);

int main()
{
 PassData *pd;

 /* allocate passthrough data */
 pd = (PassData*)pfAllocChanData(chan,sizeof(PassData));

 /* initialize channel callbacks */
 pfChanTravFunc(chan, PFTRAV_CULL, cullFunc);
 pfChanTravFunc(chan, PFTRAV_DRAW, drawFunc);

 /* main simulation loop */
 while (1)
 {
 pfSync();
 pd->val = 0;
 pfPassChanData(chan);
 pfFrame();
 }
}

void
cullFunc(pfChannel *chan, void *data)
{
 PassData *pd = (PassData*)data;

 pd->val++;
 pfCull();
}

void
drawFunc(pfChannel *chan, void *data)
{
 PassData *pd = (PassData*)data;
 fprintf(stderr, "%ld\n", pd->val);
 pfClearChan(chan);
 pfDraw();
}

This example would, regardless of the multiprocessing mode, have the
values 0, 1, and 1 for pd->val at the points where pfFrame(), pfCull(), and

Intersection Traversal

179

pfDraw() are called. In this way, control data can be sent down the pipeline
from the application, through the cull, and on to the draw process with
frame synchronization without regard to the active multiprocessing mode.

When configured as a process separate from the draw, the cull callback
should not attempt to send graphics commands to an IRIS Performer
window because only the draw process is attached to the window. Callbacks
should not modify the IRIS Performer database, but they can use pfGet()
routines to inquire about database information. The draw callback should
not call swapbuffers() (or an equivalent function when using OpenGL)
because IRIS Performer must control buffer swapping in order to manage
the necessary frame and channel synchronization. However, if you need
special control over buffer swapping, use pfPipeSwapFunc() to register a
function as the given pipe’s buffer-swapping function. Once your function
is registered, it will be called instead of swapbuffers() and may then invoke
either of these functions.

Intersection Traversal

You can make spatial inquiries in IRIS Performer by testing the intersection
of line segments with geometry in the database. For example, a single line
segment pointing straight down from the eyepoint can determine your
height above terrain, four such segments can simulate the four tires of a car,
and segments swept out by points on a moving object can determine
collisions with other objects.

Testing Line Segment Intersections

The testing of each line segment or group of spatially grouped segments
requires a traversal of part or all of a scene graph. You make these inquiries
using pfNodeIsectSegs(), which intersects the specified group of segments
with the subgraph rooted at the specified node. pfChanNodeIsectSegs()
functions similarly, but includes a channel so that the traversal can make
decisions based on the level-of-detail specified by pfLOD nodes.

180

Chapter 6: Database Traversal

Intersection Requests: pfSegSets

A pfSegSet is a structure that embodies an intersection request.

typedef struct _pfSegSet
{
 long mode;
 void* userData;
 pfSeg segs[PFIS_MAX_SEGS];
 ulong activeMask;
 ulong isectMask;
 void* bound;
 long (*discFunc)(pfHit*);
} pfSegSet;

The segs field is an array of line segments making up the query. You tell
pfNodeIsectSegs() which segments to test with by setting the
corresponding bit in the activeMask field. If your pfSegSet contains many
closely-grouped line segments, you can specify a bounding volume using
the data structure’s bound field. pfNodeIsectSegs() can use that bounding
volume to more quickly test the request against bounding volumes in the
scene graph. The userData field is a pointer with which you can point to other
information about the request that you might want access to in a callback.
The other fields are described below. The pfSegSet isn’t modified during the
traversal.

Intersection Return Data: pfHit Objects

Intersection information is returned in pfHit objects. These can be queried
using pfQueryHit() and pfMQueryHit(). Table 6-3 lists the items that can be
queried from a pfHit object.

Table 6-3 Intersection-Query Token Names

Query Token Description

PFQHIT_FLAGS Status and validity information

PFQHIT_SEGNUM Index of the segment in pfSegSet request

PFQHIT_SEG Line segment as currently clipped

PFQHIT_POINT Intersection point in object coordinates

Intersection Traversal

181

The PFQHIT_FLAGS field is bit vector with bits that indicate whether an
intersection occurred and whether the point, normal, primitive and
transformation information is valid. For some types of intersections only
some of the information has meaning; for instance, for a pfSegSet bounding
volume intersecting a pfNode bounding sphere, the point information may
not be valid.

Queries can be performed singly by calling pfQueryHit() with a single
query token, or several at a time by using pfMQueryHit() with an array of
tokens. In the latter case, the return information is placed in the specified
order into a return array.

Intersection Masks

Before using pfNodeIsectSegs() to intersect the geometry in the scene
graph, you must set intersection masks for the nodes in the scene graph and
correspondingly in your search request.

PFQHIT_NORM Geometric normal of an intersected triangle

PFQHIT_VERTS Vertices of an intersected triangle

PFQHIT_TRI Index of an intersected triangle

PFQHIT_PRIM Index of an intersected primitive in pfGeoSet

PFQHIT_GSET pfGeoSet of an intersection

PFQHIT_NODE pfGeode of an intersection

PFQHIT_NAME Name of pfGeode

PFQHIT_XFORM Current transformation matrix

PFQHIT_PATH Path in scene graph of intersection

Table 6-3 (continued) Intersection-Query Token Names

Query Token Description

182

Chapter 6: Database Traversal

Setting the Intersection Mask

pfNodeTravMask() sets the intersection masks in a subgraph of the scene
down through GeoSets. For example:

pfNodeTravMask(root, PFTRAV_ISECT, 0x01,
 PFTRAV_SELF | PFTRAV_DESCEND, PF_SET)

sets the intersection mask of all nodes and GeoSets in the scene graph to
0x01. A subsequent intersection request would then use 0x01 as the mask in
pfNodeIsectSegs(). A description of how to use this mask follows.

Specifying Different Classes of Geometry

Databases can contain different classes of objects, and only some of those
may be relevant for a particular intersection request. For example, the
wheels on a truck follow the ground, even through a small pond; therefore,
you only want to test for intersection with the ground and not with the
water. For a boat, on the other hand, intersections with both water and the
lake bottom have significance.

To accommodate distinctions between classes of objects, each node and
GeoSet in a scene graph has an intersection mask. This mask allows
traversals, such as intersections, to either consider or ignore geometry by
class.

For example, you could use four classes of geometry to control tests for
collision detection of a moving ship, collision detection for a falling bowling
ball, and line-of-sight visibility. Table 6-4 matches database classes with the
pfNodeTravMask and pfGSetIsectMask values used to support the traversal
tests listed above.

Table 6-4 Database Classes and Corresponding Node Masks

Database Class Node Mask

Water 0x01

Ground 0x02

Pier 0x04

Clouds 0x08

Intersection Traversal

183

Once the mask values at nodes in the database have been set, intersection
traversals can be directed by them. For example, the line segments for ship
collision detection should be sensitive to the water, ground, and pier, while
a those for a bowling ball would ignore intersections with water and the
clouds, testing only against the ground and pier. Line-of-sight ranging
should be sensitive to all the geometry in the scene. Table 6-5 lists the
traversal mask values and mask representations that would achieve the
proper intersection tests.

The intersection traversal prunes a node as soon as it gets a zero result from
doing a bitwise AND of the node intersection mask and the traversal mask
specified by the pfSegSet’s isectMask field. Thus, all nodes in the scene graph
should normally be set to be the bitwise OR of the masks of their children.
After setting the class-specific masks for different subgraphs of the scene,
this can be accomplished by calling

pfNodeTravMask(root, PFSET_OR, PFTRAV_SET_FROM_CHILD, 0x0);

which sets each node’s mask by OR-ing 0x0 with the current mask and the
masks of the node’s children.

Note that this traversal, like that used to update node bounding volumes, is
unusual in that it propagates information up the graph from leaf nodes to
root.

Discriminator Callbacks

If you need to make a more sophisticated discrimination than node masks
allow about when an intersection is valid, IRIS Performer can issue a
callback on each successful intersection and let you decide whether the
intersection is valid in the current context.

Table 6-5 Representing Traversal Mask Values

Intersection Class Mask Value Mask Representation

Ship 0x07 (Water | Ground | Pier)

Bowling ball 0x06 (Ground | Pier)

Line-of-sight ranging 0x0f (Water | Ground | Pier | Clouds)

184

Chapter 6: Database Traversal

If a callback is specified in pfNodeIsectSegs(), then at each level where an
intersection occurs—for example, with bounding volumes of libpf pfGeodes
(mode PFTRAV_IS_GEODE), libpr GeoSets (mode PFTRAV_IS_GSET), or
individual geometric primitives (mode PFTRAV_IS_PRIM)—IRIS
Performer invokes the callback, giving it information about the candidate
intersection. The value you return from the callback determines whether the
intersection should be ignored and how the intersection traversal should
proceed.

If the return value includes the bit PFTRAV_IS_IGNORE, the intersection is
ignored. The intersection traversal itself can also be influenced by the
callback. The traversal is subject to three possible fates, as detailed in
Table 6-6.

Line Segment Clipping

Usually, the intersection point of most interest is the one that is nearest to the
beginning of the segment. By default, after each successful intersection, the
end of the segment is clipped so that the segment now ends at the
intersection point. Upon the final return from the traversal, it contains the
closest intersection point.

However, if you want to examine all intersections along a segment you can
use a discriminator callback to tell IRIS Performer not to clip segments—
simply leave out the PFTRAV_IS_CLIP_END bit in the return value. If you
want the farthest intersection point, you can use PFTRAV_IS_CLIP_START
so that after each intersection the new segment starts at the intersection point
and extends outward.

Table 6-6 Possible Traversal Results

Set Bits Meaning

PFTRAV_CONT Continue the traversal inside this
subgraph or GeoSet.

PFTRAV_PRUNE Continue the traversal but skip the
rest of this subgraph or GeoSet.

PFTRAV_TERM Terminate the traversal here.

Intersection Traversal

185

Traversing Special Nodes

Level-of-detail nodes are intersected against the model for range zero, which
is typically the highest level-of-detail. If you want to select a different model,
you can turn off the intersection mask for the LOD node and place a switch
node in parallel (having the same parent and children as the LOD) and set it
to the desired model.

Sequences and switches intersect using the currently active child or children.
Billboards are not intersected against, since no eyepoint is defined for
intersection traversals.

Picking

pfChanPick() provides a simpler interface to intersection testing by using a
mouse to select geometry. It uses pfNodeIsectSegs() and reserves the high
bit, PFIS_PICK_MASK, of the intersection mask in the scene graph for its
own use. Setting up picking with pfNodePickSetup() sets this bit in the
intersection mask throughout the specified subgraph, but doesn’t enable
caching inside pfGeoSets (see the “Performance” section of this chapter).

pfChanPick() has an extra feature: It can either return the closest intersection
(PFPK_M_NEAREST) or return all pfHits along the picking ray
(PFPK_M_ALL).

Performance

The intersection traversal uses the hierarchical bounding volumes in the
scene graph to allow culling of the database and then processes candidate
GeoSets by testing against their internal geometry. For this reason, the
hierarchy should reflect the spatial organization of the database.
High-performance culling has similar requirements (see Chapter 13).

Performance Trade-offs

IRIS Performer currently retains no information about spatial organization
of data within GeoSets, so each triangle in the GeoSet must be tested.
Although large GeoSets are good for rendering performance in the absence

186

Chapter 6: Database Traversal

of culling, spatially localized GeoSets are best for culling (since a GeoSet is
the smallest culling unit), and spatially localized GeoSets with few
primitives are best for intersections.

Front Face/Back Face

One way to speed up intersection testing is to turn on
PFTRAV_IS_CULL_BACK. When this flag is enabled, only front-facing
geometry is tested.

Enabling Caching

Precomputing information about normals and projections speeds up
intersections inside GeoSets. For the best performance, you should enable
caching in GeoSets when you set the intersection masks with
pfNodeTravMask().

If the geometry within a GeoSet is dynamic, such as waves on a lake, caching
can cause incorrect results. However, for geometry that changes only rarely,
you can use pfGSetIsectMask() to recompute the cache as needed.

Intersection Methods for Segments

Normally, when intersecting down to the primitive level each line segment
is separately tested against each bounding volume in the scene graph, and
after passing those tests is intersected against the pfGeoSet bounding box.
Segments that intersect the bounding box are eventually tested against
actual geometry.

When a pfSegSet has a spatially localized group of at least several line
segments, you can speed up the traversal by providing a bounding volume.
You can use pfCylAroundSegs() to create a bounding cylinder for the
segments, and place a pointer to the resulting cylinder in the pfSegSet’s
bound field; then OR the PFTRAV_IS_BCYL bit into the pfSegSet’s mode field.

If only a rough volume-volume intersection is required, you can specify a
bounding cylinder in the pfSegSet without any line segments at all and
request discriminator callbacks at the PFTRAV_IS_NODE or
PFTRAV_IS_GSET level.

Intersection Traversal

187

Figure 6-4 illustrates some aspects of this process. The portion of the figure
labeled A represents a single segment; B is a collection of nonparallel
segments, not suitable for tightly bounding with a cylinder; and C shows
parallel segments surrounded by a bounding cylinder. In the bottom portion
of the figure, the bounding cylinder around the segments intersects the
bounding box around the object; each segment in the cylinder thus must be
tested individually to see if any of them intersect.

Figure 6-4 Intersection Methods

This chapter explains how to control
frame rate, synchronization, and
dynamic load management.

“Frame and Load Control”

Chapter 7

191

Chapter 7

7. Frame and Load Control

This chapter describes how to manage the display operations of a visual
simulation application to maintain the desired frame rate and visual
performance level.In addition this chapter covers advanced topics including
multiprocessing and shared memory management.

Frame-Rate Management

A frame is the period of time in which all processing must be completed
before updating the display with a new image, for example, a frame rate of
60Hz means the display is updated 60 times per second and the time extent
of a frame is 16.7ms. The ability to fit all processing within a frame depends
on several variables, some of which are:

• the number of pixels being filled

• the number of transformations and modal changes being made

• the amount of processing required to create a display list for a single
frame

• the quantity of information being sent to the graphics subsystem

Through intelligent management of Silicon Graphics CPU and graphics
hardware, IRIS Performer minimizes the above variables in order to achieve
the desired frame rate. However, in some cases, peak frame rate is less
important than a fixed frame rate. Fixed frame rate means that the display is
updated at a consistent, unvarying rate. While a simple step towards
achieving a fixed frame rate is to reduce the frame rate expectation, we shall
explore other (less Draconian) mechanisms in this chapter that do not
adversely impact frame rates.

As discussed in the following sections, IRIS Performer lets you select the
frame rate and has built-in functionality to maintain that frame rate and
control overload situations when the draw time exceeds or grows

192

Chapter 7: Frame and Load Control

uncomfortably close to a frame time. While these methods can be effective,
they do require some cooperation from the run-time database. In particular,
databases should be modeled with levels-of-detail and be spatially
arranged.

Selecting the Frame Rate

IRIS Performer is designed to run at the fixed frame rate as specified by
pfFrameRate(). Selecting a fixed frame rate does not in itself guarantee that
each frame can be completed within the desired time. It is possible that some
frames might require more computation time than is allotted by the frame
rate. By taking too long, these frames cause dropped or skipped frames. A
situation in which frames are dropped is called an overload or overrun
situation. A system that is close to dropping frames is said to be in stress.

Achieving the Frame Rate

The first step towards achieving a frame rate is to make sure that the scene
can be processed in less than a frame’s time—hopefully much less than a
frame’s time. Although minimizing the processing time of a frame is a huge
effort, rife with tricks and black magic, certain techniques stand out as IRIS
Performer’s main weapons against slothful performance:

• Multiprocessing. The use of multiple processes on multi-CPU systems
can drastically increase throughput.

• View culling. By trivially rejecting portions of the database outside the
viewing volume, performance can be increased by orders of
magnitude.

• State sorting. Many graphics pipelines are sensitive to graphics mode
changes. Sorting a scene by graphics state greatly reduces mode
changes, increasing the efficiency of the hardware.

• Level-of-detail. Objects that are far away project to a relatively small
area of the display so fewer polygons can be used to render the object
without substantial loss of image quality. The overall result is fewer
polygons to draw and improved performance.

Frame-Rate Management

193

Multiprocessing and level-of-detail is discussed in this chapter while view
culling and state sorting are discussed in Chapter 6, “Database Traversal.”
More information on sorting in the context of performance tuning can be
found in Chapter 13, “Performance Tuning and Debugging.”

Fixing the Frame Rate

Frame intervals are fixed periods of time but frame processing is variable in
nature. Because things change in a scene, such as when objects come into the
field of view, frame processing cannot be fixed. In order to maintain a fixed
frame rate, the average frame processing time must be less than the frame
time so that fluctuations don’t exceed the selected frame time. Alternately,
the scene complexity can be automatically reduced or increased so that the
frame rate stays within a user-defined “sweet spot”. This mechanism
requires that the scene be modeled with levels-of-detail (pfLOD nodes).

Each frame, IRIS Performer calculates the system load for each frame. Load
is calculated as the percentage of the frame period it took to process the
frame. Then if the default IRIS Performer fixed frame rate mechanisms are
enabled, load is used to calculate system stress, which is in turn used to
adjust the level of detail (LOD) of visible models. LOD management is IRIS
Performer’s primary method of managing system load.

Table 7-1 shows the IRIS Performer functions for controlling frame
processing.

Table 7-1 Frame Control Functions

Function Description

pfFrameRate Set the desired frame rate.

pfSync Synchronize processing to frame boundaries.

pfFrame Initiate frame processing.

pfPhase Control frame boundaries.

pfChanStressFilter Control how stress is applied to LOD ranges.

pfChanStress Manually control the stress value.

194

Chapter 7: Frame and Load Control

Figure 7-1 shows a frame-timing diagram that illustrates what occurs when
frame computations are not completed within the required interval. The
solid vertical lines in Figure 7-1 represent frame-display intervals. The
dashed vertical lines represent video refresh intervals.

Figure 7-1 Frame Rate and Phase Control

In this example, the video scan rate is 60 Hz and the frame rate is 20 Hz. With
the video hardware running at 60 Hz, each of the 20 Hz frames should be
scanned to the video display three times, and the system should wait for
every third vertical retrace signal before displaying the next image. The
numbers across the top of the figure represent the refresh count modulo
three. New images are displayed on refreshes whose count modulo three is
zero, as shown by the solid lines.

pfGetChanLoad Determine the current system load.

pfChanLODAttr Control how LOD is performed, including global LOD
adjustment and blending (fade).

Table 7-1 (continued) Frame Control Functions

Function Description

1/60TH
1/20TH

Overrun Floating

Locked

Time in seconds

0 1 2 0 1 2 0 1 2 0
Refresh count
modulo three

Frame display interval

Video
refresh
interval

Frame-Rate Management

195

In the first frame of this example, the new image isn’t yet completed when
the third vertical retrace signal occurs; the same image must therefore be
displayed again during the next interval. This situation is known as frame
overrun, because the frame computation time extends past a refresh
boundary.

Frame Synchronization

Because of the overrun, the frame and refresh interval timing is no longer
synchronized; it’s out of phase. A decision must be made either to display
the same image for the remaining two intervals, or to switch to the next
image even though the refresh isn’t aligned on a frame boundary. The
frame-rate control mode, discussed in the next section, determines which
choice is selected.

Knowing that the situation illustrated in Figure 7-1 is a possibility, you can
specify a frame control mode to indicate what you would like the system to
do when a frame overrun occurs.

To specify a method of frame-rate control, call pfPhase(). There are three
available choices:

• Free run without phase control (PFPHASE_FREE_RUN) tells the
application to run as fast as possible—to display each new frame as
soon as it’s ready, without attempting to maintain a constant frame rate.

• Free run without phase control but with a limit on the maximum frame
rate (PFPHASE_LIMIT) tells the application to run no faster than a
specified rate.

• Fixed frame rate with floating phase (PFPHASE_FLOAT) allows the
drawing process to display a new frame (using swapbuffers(3G)) at
any time, regardless of frame boundaries.

• Fixed frame rate with locked phase (PFPHASE_LOCK) requires the
draw process to wait for a frame boundary before displaying a new
frame.

Free-Running Frame-Rate Control

The simplest form of frame-rate control, called free-running, is to have no
control at all. This uncontrolled mode draws frames as quickly as the

196

Chapter 7: Frame and Load Control

hardware is able to process them. In free-running mode, the frame rate may
be 60 Hz in the areas of low database complexity, but could drop to a slower
rate in views that place greater demand on the system. Use
pfPhase(PFPHASE_FREE_RUN) to specify a free-running frame rate.

In applications in which real-time graphics provide the majority of visual
cues to an observer, the variable frame rates produced by the free-running
mode may be undesirable. The variable lag in image update associated with
variable frame rate can lead to motion sickness for the simulation
participants, especially in motion platform-based trainers or immersive
head-mounted displays. For these and other reasons it is usually preferable
to maintain a steady, consistent frame-update rate.

Fixed Frame-Rate Control

Assume that the overrun frame in Figure 7-1 completes processing during
the next refresh period, as shown. After the overrun frame, the simulation is
still running at the chosen 20-Hz rate and is updating at every third vertical
retrace. If a new image is displayed at the next refresh, its start time lags by
1/60th of a second, and therefore it is out of phase by that much.

Subsequent images are displayed when the refresh count modulo three is
one. As the simulation continues and additional extended frames occur, the
phase continues to drift. This mode of operation is called floating phase, as
shown by the frame in Figure 7-1 labeled Floating. Use
pfPhase(PFPHASE_FLOAT) to select floating-phase frame control.

The alternative to displaying a new image out of phase is to display the old
image for the remainder of the current update period, then change to the
new image at the normal time. This locked phase extends each frame overrun
to an integral multiple of the selected frame time, making the overrun more
evident but also maintaining phase throughout the simulation. This timing
is shown by the frame in Figure 7-1 labeled Locked. Although this mode is the
most restrictive, it is also the most desirable in many cases. Use
pfPhase(PFPHASE_LOCK) to select phase-locked frame control.

For example, a 20-Hz phase-locked frame rate is selected by specifying:

pfPhase(PFPHASE_LOCK);
pfFrameRate(20.0f);

Frame-Rate Management

197

These specifications prevent the system from switching to a newly
computed image until a display period of 1/20th second has passed from the
time the previous image was displayed. The frame rate remains fixed even
when the Geometry Pipeline finishes its work in less time. Fixed frame-rate
display therefore involves setting the desired frame rate and selecting one of
the two fixed-frame-rate control modes.

Frame Skipping

When multiple frame times elapse during the rendering of a single frame,
the system must choose which frame to draw next. If the per-frame display
lists are processed in strict succession even after a frame overrun, the visual
image slowly recedes in time and the positional correlation between display
and simulation is lost. To avoid this problem, only the most recent frame
definition received by the draw process is sent to the Geometry Pipeline, and
all intervening frame definitions are abandoned. This is known as dropping
or skipping frames and is performed in both of the fixed frame-rate modes.

Because the effects of variable frame rates, phase variance, and frame
dropping are distracting, you should choose a frame rate with care. Steady
frame rates are achieved when the frame time allows the worst-case view to
be computed without overload. The structure of the visual database,
particularly in terms of uniform “complexity density,” can be important in
maximizing the system frame rate. See “Organizing a Database for Efficient
Culling” in Chapter 6 and Figure 6-3 for examples of the importance of
database structure.

Maintaining a fixed frame rate involves managing future system load by
adjusting graphics display actions to compensate for varying past and
present loads. The theory behind load management and suggested methods
for dealing with variable load situations are discussed in the
“Level-of-Detail Management” section of this chapter.

198

Chapter 7: Frame and Load Control

Sample Code

Example 7-1 demonstrates a common approach to frame control. The code is
based on part of the main.c source file used in the perfly sample application.

Example 7-1 Frame Control Excerpt

/* Set the desired frame rate. */
pfFrameRate(ViewState->frameRate);

/* Set the MP synchronization phase. */
pfPhase(ViewState->phase);

/* Application main loop */
while (!SimDone())
{
 /* Sleep until next frame */
 pfSync();

 /* Should do all latency-critical processing between
 * pfSync() and pfFrame(). Such processing usually
 * involves changing the viewing position.
 */
 PreFrame();

 /* Trigger cull and draw processing for this frame. */
 pfFrame();

 /* Perform non-latency-critical simulation updates. */
 PostFrame();
}

Level-of-Detail Management

All graphics systems have finite capabilities that affect the number of
geometric primitives that can be displayed per frame at a specified frame
rate. Because of these limitations, maximizing visual cues while minimizing
the polygon count in a database is often an important aspect of database
development. Level-of-detail processing is one of the most beneficial tools
available for managing database complexity for the purpose of improving
display performance.

Level-of-Detail Management

199

The basic premise of LOD processing is that objects that are barely visible,
either because they are located a great distance from the eyepoint or because
atmospheric conditions reduce visibility, don’t need to be rendered in great
detail in order to be recognizable. This is in stark contrast to brutishly
mandating that all polygons be rendered regardless of their contribution to
the visual scene. Both atmospheric effects and the visual effect of perspective
decrease the importance of details as range from the eyepoint increases. The
predominant visual effect of distance is the perspective foreshortening of
objects, which makes them appear to shrink in size as they recede into the
distance.

To save rendering time, objects that are visually less important in a frame can
be rendered with less detail. The LOD approach to optimizing the display of
complex objects is to construct a number of progressively simpler versions
of an object and to select one of them for display as a function of range.

This requires you to create multiple models of an object with varying levels
of detail. You also must supply a rule to determine how much detail is
appropriate for a given distance to the eyepoint. The sections that follow
describe how to create multiple LOD models and how to control when the
changeover to a different LOD occurs.

Level-of-Detail Models

Most objects comprise smaller objects that become visually insignificant at
ranges where the conglomerate object itself is still quite prominent. For
example, a complex model of an automobile might have door handles, side-
and rear-view mirrors, license plates, and other small details.

A short distance away, these features may no longer be visible, even though
the car itself is still a visually significant element of the scene. It is important
to realize that as a group, these small features may contain as many polygons
as the larger car itself, and thus have a detrimental effect on rendering speed.

You can construct two LOD models simply by providing one model that
contains all of the detailed features and another model that contains only the
car body itself and none of the detailed features. A more sophisticated
scheme uses multiple LOD models that are grouped under an LOD node.

200

Chapter 7: Frame and Load Control

Figure 7-2 shows an LOD node with multiple children numbered 1 through
n. In this case, the model named LOD 1 is the most detailed model and
models LOD 2 through LOD n represent progressively coarser models. Each
of these LOD models might contain children that also have LOD
components. Associated with the LOD node is a list of ranges that define the
distance at which each model is appropriate to display. There is no limit to
the number of levels of detail that can be used.

Figure 7-2 Level-of-Detail Node Structure

The object can be transformed as needed. During the culling phase of frame
processing, the distance from the eyepoint to the object is computed and
used (with other factors) to select which LOD model to display.

The IRIS Performer pfLOD node contains a value known as the center of
LOD processing. The LOD center point is an x, y, z location that defines the
point used in conjunction with the eyepoint for LOD range-switching
calculations, as described in the “Level-of-Detail Range Processing” section
of this chapter.

Figure 7-3 shows an example in which multiple LOD models grouped under
a parent LOD node are used to represent a toy racecar.

Level
of Detail

Node

LOD 1 LOD 2 LOD n

Level-of-Detail Management

201

Figure 7-3 Level-of-Detail Processing

Figure 7-3 demonstrates that each car in a row of identical cars placed at
increasing range from the eyepoint is drawn using a different child of the
tree’s LOD node.

LOD 1

LOD 2

LOD n

Switch
 ranges

Blend
zones

202

Chapter 7: Frame and Load Control

The double-ended arrows indicate a switch range for each level of detail.
When the car is closer to the eyepoint than the first range, nothing is drawn.
When the car is between the first and second ranges, LOD 1 is drawn. When
the car is between the second and third ranges, LOD 2 is drawn.

This range bracketing continues until the final range is passed, at which
point nothing is drawn. The pfLOD node’s switch range list contains one
more entry than the number of child nodes to allow for this range
bracketing.

IRIS Performer provides the ability to specify a blend zone for each switch
between LOD models. Such that pfLOD nodes now also hold a list of these
transition distances over which Performer should ‘blend’ between
neighboring LODs. These blend zones will be discussed in more detail in
“Level-of-Detail Transition Blending” on page 207.

Level of Detail States

IRIS Performer 2.0 supports a new concept along with the aforementioned
standard LOD node which contains switch ranges and transition zones. This
new concept is one of an LOD state—the pfLODState. A pfLODState is an
essence a way of creating classes or priorities among LODs. A pfLODstate
contains eight parameters used to modify four different ways in which
Performer calculates LOD switch ranges and LOD transition distances. LOD
states contain the following parameters:

• Scale for LODs switch Ranges.

• Offset for LODs switch Ranges.

• Scale for the effect of Stress of switch Ranges.

• Offset for the effect of Stress on switch Ranges.

• Scale for the transition distances per LOD switch

• Offset for the transition distances per LOD switch

• Scale for the effect of Stress on transition distances

• Offset for the effect of Stress on transition distances

Level-of-Detail Management

203

These LOD states can then be attached to either single or multiple LOD
nodes such that the LOD behavior of groups or classes of objects can be
different and be easily modified. The reference pages for pfLODLODState()
and pfLODLODStateIndex() contain detailed information on how to attach
pfLODStates.

LOD states are useful because in a particular scene there often exists an
object of focus such as a sign, a target, or some other object of particular
visual significance that needs to be treated specially with regard to visual
importance and thus LOD behavior. It stands to reason, that this particular
object (or small group of objects) should be at the highest detail possible
despite being farther away than other elements in the scene which might not
be as visually significant. In fact, it might be feasible to diminish the detail of
these less important objects (like rocks and trees) in favor of the other more
important objects (despite these objects being further relatively in range). In
this case one would just create two LOD states. The first would be for the
important objects and would effectively disable the effect of stress on these
nodes as well as scale the switch ranges such that the object(s) would
maintain more detail for further ranges. The second LOD state would be
used to make the objects of less importance be more responsive to system
stress and possibly scale their switch ranges such that they would show even
less detail than normal. In this way, LOD states allow biasing among
different LODs to maintain desirable rendering speeds while maintaining
the visual integrity of various objects depending on their subjective
importance (rather than solely on their current visual significance).

In some multichannel applications, LOD states are used to control the action
of LODs in different viewing channels that have different visual significance
criteria—for instance one channel might be a normal channel while a second
might represent an infra-red display. Rather than simple use of LOD states,
it is also possible to specify a list of LOD states to a channel and use indexes
from this list for particular LODs (via pfChanLODStateList() and
pfLODLODStateIndex()). In this way, in the normal channel a car’s
geometry might be particularly important while in the infra-red channel, the
hot exhaust of the same car might be much more important to observe. This
type of channel dependent LOD can be set up by using two distinct and
different LOD states for the same index in the lists of LOD states specified
for unique channels.

204

Chapter 7: Frame and Load Control

Note that because IRIS Performer performs LOD calculations in a range
squared space as much as possible for efficiency reasons, LOD computation
becomes more costly when LOD states contain scales that are not equal to 1.0
or offsets not equal to 0.0 for transitions or switch ranges—these offsets force
IRIS Performer to perform otherwise avoidable square roots calculations in
order to correctly calculate the effects of scale and offset on the LOD.

Level-of-Detail Range Processing

The LOD switch ranges present in LOD nodes are processed before being
used to make the level of detail selection. The goal of range setting is to
switch LODs as objects reach certain levels of perceptibility. The size of a
channel in pixels, the field of view used in viewing, and the distance from
the observer to the display surface all affect object perceptibility.

IRIS Performer uses a channel size of 1024x1024 pixels and a 45-degree field
of view as the basis for calculating LOD switching ranges. The screen space
size of a channel and the current field of view are used to compute an LOD
scale factor that is updated whenever the channel size or the field of view
changes.

There is an additional global LOD scale factor that can be used to adjust
switch ranges based on the relationship between the observer and the
display surface. The default global scale factor is 1.

Note that LOD switch ranges are also effected by LOD states that have been
attached to either a particular LOD or to a channel that contains the LOD.
These LOD states provide the mechanism to apply both a scale and an offset
for an LODs switch ranges and to the effect of system stress on those switch
ranges. See “Level of Detail States” on page 202 for more information of
pfLODStates.

Ultimately a LODs switch range without regard to system stress can be
computed as follows:

switch_range[i] =
(range[i] *

LODStateRangeScale *
ChannelLODStateRangeScale +
LODStateRangeOffset +
ChannelLODStateRangeOffset) *

Level-of-Detail Management

205

ChannelLODScale *
ChannelSizeAndFOVFactor;

If IRIS Performer channel stress processing is active, the computed range is
modified as follows:

switch_range[i] *=
(ChannelLODStress *
LODStateRangeStressScale *
ChannelLODStateRangeStressScale +
LODStateRangeStressOffset +
ChannelLODStateRangeStressOffset);

Example 7-2 illustrates how to set LOD ranges. The code in this example is
derived from /usr/share/Performer/src/sample/apps/C/lod/lod.c, the main source
module for the sample program lod.

Example 7-2 Setting LOD Ranges

/* setLODRanges() -- sets the ranges for the LOD node. The
 * ranges from 0 to NumLODs are equally spaced between min
 * and max. The last range, which determines how far you
 * can get from the object and still see it, is set to
 * visMax.
 */
void
setLODRanges(pfLOD *lod,float min, float max, float visMax)
{
 int i;
 float range, rangeInc;

 rangeInc = (max - min)/(ViewState->shellLOD + 1);
 for (range = min, i = 0; i < ViewState->shellLOD; i++)
 {
 ViewState->range[i] = range;
 pfLODRange(lod, i, range);
 range += rangeInc;
 }
 ViewState->range[i] = visMax;
 pfLODRange(lod, i, visMax);
}

/* generateShellLODs() -- creates shell LOD nodes according
 * to the parameters specified in the shared data structure.
 */

206

Chapter 7: Frame and Load Control

void
generateShellLODs(void)
{
 int i;
 pfGroup *grp;
 pfVec4 clr;
 long numLOD = ViewState->shellLOD;
 long numPnts = ViewState->shellPnts;
 long numPcs = ViewState->shellPcs;

 for (i = 1; i <= numLOD; i++)
 {
 if (ViewState->shellColor == SHELL_COLOR_SING)
 pfSetVec4(clr, 0.9f, 0.1f, 0.1f, 1.0f);
 else
 /* set the color. highest level = RED;
 * middle LOD = GREEN; lowest LOD = BLUE
 */
 pfSetVec4(clr,
 (i <= (long)floor((double)(numLOD/2.0f)))?
 (-2.0f/numLOD) * i + 1.0f + 2.0f/numLOD:
 0.0f,
 (i <= (long)floor((double)(numLOD/2)))?
 (2.0f/numLOD) * (i - 1):
 (-2.0f/numLOD) * i + 2.0f,
 (i <= (long)floor((double)(numLOD/2)))?
 0.0f:
 (2.0f/numLOD) * i - 1.0f,
 1.0f);

 /* build a shell GeoSet */
 grp = createShell(numPcs, numPnts,
 ViewState->shellSweep, &clr,
 ViewState->shellDraw);
 normalizeNode((pfNode *)grp);

 /* add geode as another level of detail node */
 pfAddChild(ViewState->LOD, grp);

 /* simplify the geometry, but don’t have less than
 * 4 points per circle or less than 3 pieces */
 numPnts = (numPnts > 7) ? numPnts-4 : 4;
 numPcs = (numPcs > 6) ? numPcs-4 : 3;
 }
}

Level-of-Detail Management

207

...
 ViewState->LOD = pfNewLOD();

 generateShellLODs();

 /* get the LOD’s extents */
 pfGetNodeBSphere(ViewState->LOD, &(ViewState->bSphere));
 pfLODCenter(ViewState->LOD, ViewState->bSphere.center);
 /* set ranges for LODs; there should be (num LODs + 1)
 * range entries */
 setLODRanges(ViewState->LOD, ViewState->minRange,
 ViewState->maxRange, ViewState->max);

Level-of-Detail Transition Blending

An undesirable effect called popping occurs when the sudden transition from
one LOD to the next LOD is visually noticeable. This distracting image
artifact can be ameliorated with a slight modification to the normal
LOD-switching process.

In this modified method a transition per LOD switch is established rather
than making a sudden substitution of models at the indicated switch range.
These transitions specify distances over which to blend between the
previous and next LOD. These zones are considered to be centered at the
specified LOD switch distance, as shown by the horizontal shaded bars of
Figure 7-3. Note that Performer limits the transition distances to be equal to
the shortest distance between the switch range and the two neighboring
switch ranges. For more information, see the pfLODTransition() reference
page.

As the range from eyepoint to LOD center-point transitions the blend zone,
each of the neighboring LOD levels is drawn by using transparency to
composite samples taken from the present LOD model with samples taken
from the next LOD model. For example, at the near, center, and far points of
the transition blend zone between LOD 1 and LOD 2, samples from both
LOD 1 and LOD 2 are composited until the end of the transition zone is
reached, where all the samples are obtained from LOD 2.

208

Chapter 7: Frame and Load Control

Table 7-2 lists the transparency factors used for transitioning from one LOD
range to another LOD range.

LOD transitions are made smoother and much less noticeable by applying a
blending technique rather than making a sudden transition. Blending allows
LOD transitions to look good at ranges closer to the eye than LOD popping
allows. Decreasing switch ranges in this way improves the ability of LOD
processing to maximize the visual impact of each polygon in the scene
without creating distracting visual artifacts.

The benefits of smooth LOD transition have an associated cost. The expense
lies in the fact that when an object is within a blend zone, two versions of that
object are drawn. This causes blended LOD transitions to increase the scene
polygon complexity during the time of transition. For this reason, the blend
zone is best kept to the shortest distance that avoids distracting
LOD-popping artifacts. Currently, fade level of detail is supported only on
RealityEngine™ graphics systems.

Note that the actual ‘blend’ or ‘fade’ distance used by Performer can also be
adjusted by the LOD priority structures called pfLODStates. pfLODStates
hold an offset and scale for the size of transition zones as well as an offset
and scale for how system stress can affect the size of the transition zones. See
“Level of Detail States” on page 202 for more information on pfLODStates.

Note also, that there exists a global LOD transition scale on a per channel
basis that can affect all transition distances uniformly.

Thus for an LOD with 5 switch ranges R0, R1, R2, R3, R4 to switch between
four models (M0, M1, M2, M3), there are 5 transition zones T0 (fade in M0),
T1 (blend between M0 and M1), T2 (blend between M1 and M2), T3 (blend
between M2 and M3), T4 (fade out M3). The actual fade distances (without
regard to channel stress) are as follows.

Table 7-2 LOD Transition Zones

Distance LOD 1 LOD 2

Near edge of blend zone 100% opaque 0% opaque

Center of blend zone 50% opaque 50% opaque

Far edge of blend zone 0% opaque 100% opaque

Level-of-Detail Management

209

fadeDistance[i] =
(transition[i] *

LODStateTransitionScale *
ChannelLODStateTransitionScale +
LODStateTransitionOffset +
ChannelLODStateTransitionOffset) *

ChannelLODFadeScale;

If Performer management of channel stress is turned on then the above fade
distance is modified as follows:

fadeDistance[i] /=
(ChannelStress *
LODStateTransitionStressScale *
ChannelLODStateTransitionStressScale +
LODStateTransitionStressOffset +
ChannelLODStateTransitionStressOffset);

Terrain Level of Detail

In creating LOD models and transitions for objects, it’s often safe to assume
that the entire model should transition at the same time. It’s quite reasonable
to make features of an automobile such as door handles disappear from the
scene at the same time even when the passenger door is slightly closer than
the driver’s door. It is much less clear that this approach would work for
very large objects such as an aircraft carrier or a space station, and it’s clearly
not acceptable for objects that span a large extent, such as a terrain surface.

Attempts to handle large-extent objects with discrete LOD tools focus on
breaking the big object into myriad small objects and treating each small
object independently. This works in some cases but often fails at the junction
between two or more independent objects where cracks or seams exist when
different detail levels apply to the objects. Some terrain processing systems
have attempted to provide a hierarchy of crack filling geometry that is
enabled based on the LOD selections of two neighboring terrain patches.
This “digital grout” becomes untenable when more than a few patches share
a common vertex.

An alternate approach—the active surface definition—treats the entire
terrain as a single connected (and coherent) surface. The essence of the
approach is that a triangle representing terrain either is judged to be

210

Chapter 7: Frame and Load Control

sufficiently accurate or is recursively subdivided. The general manner of
subdivision is to introduce one or more vertices along the sides of the
original triangle. Connecting these new vertices to make triangles leads to
the subdivision of the original triangle into multiple triangles. After
subdivision, the algorithm perturbs the vertex positions. If the resulting
triangles are not yet sufficiently fine, the subdivision process is applied to
each one in turn based on range and other fidelity criteria.

Arbitrary Morphing

Terrain level of detail using an interpolative active surface definition is a
restricted form of the more general notion of object morphing. Morphing of
models such as the car in a previous example can simply involve scaling a
small detail to a single point and then removing it from the scene. Morphing
is possible even when the topologies of neighboring pairs do not match. Both
models and terrain can have vertex, normal, color, and appearance
information interpolated between two or more representations. The
advantages of this approach include: reduced graphics complexity since
blending is not used, constant intersection truth for collision and similar
tasks, and monotonic database complexity that makes system load
management much simpler.

Dynamic Load Management

Because the effects of variable image update rates can be objectionable,
many simulation applications are designed to operate at a fixed frame rate.
One approach to selecting this fixed frame rate is to select an update rate
constrained by the most complex portion of the visual database. Although
this conservative approach may be acceptable in some cases, IRIS Performer
supports a more sophisticated approach using dynamic LOD scaling.

Using multiple LOD models throughout a database provides the traversal
system with a parameter that can be used to control the polygonal
complexity of models in the scene. The complexity of database objects can be
reduced or increased by adjusting a global LOD range multiplier that
determines which LOD level is drawn.

Dynamic Load Management

211

Using this facility, a closed-loop control system can be constructed that
adjusts the LOD-switching criteria based on the system load, also called
stress, in order to maintain a selected frame rate.

Figure 7-4 illustrates a stress-processing control system.

Figure 7-4 Stress Processing

In Figure 7-4, the desired and actual frame times are compared by the stress
filter. Based on the user-supplied stress parameters, the stress filter adjusts
the global LOD scale factor by increasing it when the system is overloaded
and decreasing it when the system is underloaded. In this way, the system
load is monitored and adjusted before each frame is generated.

The degree of stability for the closed-loop control system is an important
issue. The ideal situation is to have a critically damped control system—that
is, one in which just the right amount of control is supplied to maintain the

Stress

Parameters

Desired Frame Time

Stress Filter

(Set LOD)

Traversal

(Use LOD)

Rendering

Frame
Buffer

Actual Frame Time

212

Chapter 7: Frame and Load Control

frame rate without introducing undesirable effects. The effects of
overdamped and underdamped systems are visually distracting. An
underdamped system oscillates, causing the system to continuously
alternate between two different LOD models without reaching equilibrium.
Overdamped systems may fail to react within the time required to maintain
the desired frame rate. In practice, though, dynamic load management
works well, and simple stress functions can handle the slowly changing
loads presented by many databases.

The default stress function is controlled with user-selectable parameters.
These parameters are set using the function pfChanStressFilter().

The default stress function is implemented by the code fragment in
Example 7-3.

Example 7-3 Default Stress Function

/* current load */
curLoad = drawTime * frameRate * frameFrac;

/* integrated over time */
if (curLoad < lowLoad)
 stressLevel -= stressParam * stressLevel;
else
if (curLoad > highLoad)
 stressLevel += stressParam * stressLevel;

/* limited to desired range */
if (stressLevel < 1.0)
 stressLevel = 1.0;
else
if (stressLevel > maxStress)
 stressLevel = maxStress;

The parameters lowLoad and highLoad define a “comfort zone” for the control
system. The first if-test in the code fragment demonstrates that this comfort
zone acts as a dead band. Instantaneous system load within the bounds of
the dead band doesn’t result in a change in the system stress level. If the size
of the comfort zone is too small, oscillatory distress is the probable result. It
is often necessary to keep the highLoad level below the 100% point so that
blended LOD transitions don’t drive the system into overload situations.

Successful Multiprocessing With IRIS Performer

213

For those applications in which the default stress function is either
inappropriate or insufficient, you can compute the system stress yourself
and then set the stress load factor. Your filter function can access the same
system measures that the default stress function uses, but it’s also free to
keep historical data and perform any feedback-transfer processing that
application-specific dynamic load management may require.

The primary limitation of the default stress function is that it has a reactive
rather than predictive nature. One of the major advantages of user-written
stress filters is their ability to predict future stress levels before increased or
decreased load situations reach the pipeline. Often the simulation
application knows, for example, when a large number of moving models
will soon enter the viewing frustum. If their presence is anticipated, then
stress can be artificially increased so that no sudden LOD changes are
required as they actually enter the field of view.

Successful Multiprocessing With IRIS Performer

This section describes an advanced topic that applies only to systems with
more than one CPU. If you don’t have a multiple-CPU system, you may
want to skip this section.

IRIS Performer uses multiprocessing to increase throughput for both
rendering and intersection detection. Multiprocessing can also be used for
tasks that run asynchronously from the main application like database
management. Although IRIS Performer hides much of the complexity
involved, you need to know something about how multiprocessing works in
order to use multiple processors well.

Advanced

214

Chapter 7: Frame and Load Control

Review of Rendering Stages

Recall from Chapter 3 that an IRIS Performer application renders images
using one or more pfPipes as independent software-rendering pipelines.
The flow through the rendering pipeline can be modeled using these
functional stages:

Intersection Test for intersections between segments and geometry to
simulate collision detection or line-of-sight for example.

Application Do requisite processing for the visual simulation
application, including reading input from control devices,
simulating the vehicle dynamics of moving models,
updating the visual database, and interacting with other
networked simulation stations.

Cull Traverse the visual database and determine which portions
of it are potentially visible, perform level-of-detail selection
for models with multiple representations, and build sorted,
optimized display list for the draw stage.

Draw Issue graphics library commands to a Geometry Pipeline in
order to create an image for subsequent display.

You can partition these stages into separate parallel processes in order to
distribute the work among multiple CPUs. Depending on your system type
and configuration, you can use any of several available multiprocessing
models.

Choosing a Multiprocessing Model

Use pfMultiprocess() to specify which functional stages, if any, should be
forked into separate processes. The multiprocessing mode is actually a
bitmask where each bit indicates that a particular stage should be configured
as a separate process. For example, the bit PFMP_FORK_DRAW means the

Successful Multiprocessing With IRIS Performer

215

draw stage should be split into its own process. Table 7-3 lists some
convenience tokens that represent common multiprocessing modes:

You can also use pfMultiprocess() to specify the method of communication
between the cull and draw stages, using the bitmasks PFMP_CULLoDRAW
and PFMP_CULL_DL_DRAW.

Table 7-3 Multiprocessing Models

Model Name Description

PFMP_APPCULLDRAW Combine the application, cull, and draw stages into a
single process. In this model, all of the stages execute
within a single frame period. This is the
minimum-latency mode of operation.

PFMP_APP_CULLDRAW

or

PFMP_FORK_CULL

Combine the cull and draw stages in a process that is
separate from the application process. This model
provides a full frame period for the application
process, while culling and drawing share this same
interval. This mode is appropriate when the host’s
simulation tasks are extensive but graphic demands
are light, as might be the case when complex vehicle
dynamics are performed but only a simple dashboard
gauge is drawn to indicate the results.

PFMP_APPCULL_DRAW

or

PFMP_FORK_DRAW

Combine the application and cull stages in a process
that is separate from the draw process. This mode is
appropriate for many simulation applications when
application and culling demands are light. It allocates
a full CPU for drawing and has the APP and CULL
stages share a frame period. Like the
PFMP_APP_CULLDRAW mode, this mode has a
single frame period of pre-draw latency.

PFMP_APP_CULL_DRAW

or

PFMP_FORK_CULL |

PFMP_FORK_DRAW

Perform the application, cull, and draw stages as
separate processes. This is the full
maximum-throughput multiprocessing mode of IRIS
Performer operation. In this mode, each pipeline
stage is allotted a full frame period for its processing.
Two frame periods of latency exist when using this
high degree of parallelism.

216

Chapter 7: Frame and Load Control

Cull-Overlap-Draw Mode

Setting PFMP_CULLoDRAW specifies that the cull and draw processes for
a given frame should overlap—that is, that they should run concurrently.
For this to work, the cull and draw stages must be separate processes
(PFMP_FORK_DRAW must be true). In this mode the two stages
communicate in the classic producer-consumer model, by way of a
pfDispList that is configured as a ring (FIFO) buffer; the cull process puts
commands on the ring while the draw process simultaneously consumes
these commands.

The main benefit of using PFMP_CULLoDRAW is reduced latency, since the
number of pipeline stages is reduced by one and the resulting latency is
reduced by an entire frame time. The main drawback is that the draw
process must wait for the cull process to begin filling the ring buffer.

Forcing Display-List Generation

When the cull and draw stages are in separate processes, they communicate
through a pfDispList; the cull process generates the display list, and the
draw process traverses and renders it. (The display list is configured as a
ring buffer when using PFMP_CULLoDRAW mode, as described in the
“Cull-Overlap-Draw Mode” section).

However, when the cull and draw stages are in the same process (as occurs
with the PFMP_APPCULLDRAW or PFMP_APP_CULLDRAW
multiprocessing models) a display list isn’t required and by default one will
not be used. Leaving out the pfDispList eliminates overhead. When no
display list is used, the cull trigger function pfCull() has no effect; the cull
traversal takes place when the draw trigger function pfDraw() is invoked.

In some cases you may want an intermediate pfDispList between the cull
and draw stages even though those stages are in the same process. The most
common situation that calls for such a setup is multipass rendering, when
you want to cull only once but render multiple times. With
PFMP_CULL_DL_DRAW enabled, pfCull() generates a pfDispList that can
be rendered multiple times by multiple calls to pfDraw().

Successful Multiprocessing With IRIS Performer

217

Intersection Pipeline

The intersection pipeline is a two-stage pipeline consisting of the application
and the intersection stages. The intersection stage may be configured as a
separate process by setting the PFMP_FORK_ISECT bit in the bitmask given
to pfMultiprocess(). When configured as such, the intersection process is
triggered for the current frame when the application process calls pfFrame().
Then in the special intersection callback set with pfIsectFunc(), you can
invoke any number of intersection requests with pfNodeIsectSegs().

The intersection process is asynchronous so that if it does not finish within a
frame time it does not slow down the rendering pipeline(s).

Multiple Pipelines

By default, IRIS Performer uses a single pfPipe, which in turn draws one or
more pfChannels into one or more pfPipeWindows. If you want to use
multiple rendering pipelines, as on two- or three-Geometry Pipeline Onyx
RealityEngine2 systems, use pfMultipipe() to specify the number of pfPipes
required. When using multiple pipelines, the PFMP_APPCULLDRAW and
PFMP_APPCULL_DRAW modes are not supported and IRIS Performer
defaults to the PFMP_APP_CULL_DRAW multiprocessing configuration.
Regardless of the number of pfPipes, there is always a single application
process which triggers the rendering of all pipes with pfFrame().

Multithreading

For additional multiprocessing and attendant increased throughput, the
CULL stage of the rendering pipeline may be multithreaded. Multithreading
means that a single pipeline stage is split into multiple processes, or threads
which concurrently work on the same frame. Use pfMultithread() to
allocate a number of threads for the cull stage of a particular rendering
pipeline.

 Cull multithreading takes place on a per-pfChannel basis, that is, each
thread does all the culling work for a given pfChannel. Thus, an application
with only a single channel will not benefit from multithreading the cull and
an application with multiple, equally complex channels will benefit most by
allocating a number of cull threads equal to the number of channels.

218

Chapter 7: Frame and Load Control

However, it is legal to allocate fewer cull threads if you do not have enough
CPUs—in this case the threads are assigned to channels on a need basis.

Order of Calls

The multiprocessing model set by pfMultiprocess() is used for each of the
rendering pipelines. In programs that configures the application stage as a
separate process, all IRIS Performer calls must be made from the process that
calls pfConfig() or the results are undefined. Both pfMultiprocess(),
pfMultithread(), and pfMultipipe() must be called after pfInit() but before
pfConfig(). pfConfig() configures IRIS Performer according to the required
number of pipelines and the desired multiprocessing and multithreading
modes, forks the appropriate number of processes, and then returns control
to the application. pfConfig() should be called only once during each IRIS
Performer application.

Comparative Structure of Models

Figure 7-5 shows timing diagrams for each of the process models. The
vertical lines are frame boundaries. Five frames of the simulation are shown
to allow the system to reach steady-state operation.

Boxes represent the functional stages and are labeled as follows:

An application process for the nth frame

Cn cull process for the nth frame

Dn draw process for the nth frame

Only one of these models can be selected at a time, but they are shown
together so that you can compare their structures.

Successful Multiprocessing With IRIS Performer

219

Figure 7-5 Multiprocessing Models

A0 C0 D0 A1 C1 D1 A2 C2 D2 A3 C3 D3 A4 C4 D4

A0 A1

C0

A2

C1

A3

C2

A4

C3D0

A0

C0

D0

A1

C1

D1

A2

C2

D2

A3

C3

A4

A0

C0

D0

A1

C1

D1

A2

C2

D2

A3

C3

A4

D3

C1 C2 C3

Start Frame 0 Frame 1 Frame 2 Frame 3 Frame 4

APP
A

CULL
C

DRAW
D

Host
Simulation
Process

Cull
Process

(traversal)

Draw
Process

Period=1/Frame Rate

PFMPAPPCULLDRAW

PFMP_APP_CULLDRAW

P0

P1

PFMP_APP_CULL_DRAW

P0

P1

P2

P0

P1

P2

PFMP_APP_CULL0DRAW

A0 C0 A1 C1 A2 C2 A3 C3 A4 C4

D0 D1 D2 D3
PFMPAPPCULL_DRAW

P0

P1

D1 D2 D3

Time

220

Chapter 7: Frame and Load Control

Notice that when a stage is split into its own process, the amount of time
available for all stages increases. For example, in the case where the
application, cull, and draw stages are 3 separate processes, it is possible for
total system performance to be tripled over the single process configuration.

Asynchronous Database Processing

Many databases are too large to fit into main memory. A common solution
to this problem is called database paging where the database is divided into
manageable chunks on disk and loaded into main memory when needed.
Usually chunks are paged in just before they come into view and are deleted
from the scene when they are comfortably out of viewing range.

All this paging from disk and deleting from main memory takes a lot of time
and is certainly not amenable to maintaining a fixed frame rate. The solution
supported by IRIS Performer is asynchronous database paging in which a
process, completely separate from the main processing pipeline(s), handles
all disk I/O and memory allocations and deletions. To facilitate
asynchronous database paging, IRIS Performer provides the pfBuffer
structure and the DBASE process.

DBASE Process

The database (or DBASE) process is forked by pfConfig() if the
PFMP_FORK_DBASE bit was set in the mode given to pfMultiprocess().
The database process is triggered when the application process calls
pfFrame() and invokes the user-defined callback set with pfDBaseFunc().
The database process is totally asynchronous. If it exceeds a frame time it
does not slow down any rendering or intersection pipelines.

The DBASE process is intended for asynchronous database management
when used with pfBuffer.

pfBuffer

A pfBuffer is a logical buffer which isolates database changes to a single
process, avoiding disastrous collisions on data from multiple processes. In
typical use, a pfBuffer is created with pfNewBuffer(), made current with
pfSelectBuffer() and merged with the main IRIS Performer buffer with

Successful Multiprocessing With IRIS Performer

221

pfMergeBuffer(). While the DBASE process is intended for pfBuffer use,
other processes forked by the application may also use different pfBuffers in
parallel for multithreaded database management. By ensuring that only a
single process uses a given pfBuffer at a given time and following a few
scoping rules discussed below, the application can safely and efficiently
implement asynchronous database paging

A pfNode is said to have buffer scope or be “in” a particular pfBuffer. This is
an important concept because it affects what you can do with a given node.
A newly-created node is automatically “in” the currently active pfBuffer
until that pfBuffer is merged using pfMergeBuffer(). At that instant, the
pfNode is moved into the main IRIS Performer buffer, otherwise known as
the application buffer.

A rule in pfBuffer management is that a process may only access nodes that
are in its current pfBuffer. As a result, a database process may not directly
add a newly created subgraph of nodes to the main scene graph because all
nodes in the main scene graph have application buffer scope only—they are
isolated from the database pfBuffer. This may seem inconvenient at first but
it eliminates catastrophic errors like, for example, the application process
traverses a group at the same time you add a child, changing its child list and
causing the traversal to chase a bad pointer.

Remedies to the inconveniences stated above are the pfBufferAddChild(),
pfBufferRemoveChild() and pfBufferClone() routines. The first two
routines are identical to their non-buffer counterparts pfAddChild() and
pfRemoveChild() except the buffer versions do not happen immediately.
Other functions, pfBufferAdd(), pfBufferInsert(), pfBufferReplace(), and
pfBufferRemove(), perform the buffer-oriented delayed-action versions of
the corresponding non-buffer pfList functions. In all cases the add, insert,
replace, or removal request is placed on a list in the current pfBuffer and is
processed later at pfMergeBuffer() time.

pfBufferClone() supports the notion of maintaining a “library” of common
objects like trees or houses in a special library pfBuffer. The main database
process then clones objects from the library pfBuffer into the database
pfBuffer, possibly pfFlatten()ing them for improved rendering performance.
pfBufferClone() is identical to pfClone() except the buffer version requires
that the source pfBuffer be specified and that all cloned nodes have scope in
the source pfBuffer.

222

Chapter 7: Frame and Load Control

pfAsyncDelete

We’ve discussed how to create subgraphs for database paging: create and
select a current pfBuffer, create nodes and build the subgraph, call
pfBufferAddChild() and finally pfMergeBuffer() to incorporate the
subgraph into the application’s scene. But what about freeing the memory of
old, unwanted subgraphs? For this we turn to pfAsyncDelete().

pfDelete() is the normal mechanism for deleting objects and freeing their
associated memory. However, pfDelete() can be a very costly routine since
it must traverse, unreference, and register a deletion request for every IRIS
Performer object it encounters which has a 0 reference count.
pfAsyncDelete(), in conjunction with a forked DBASE process, moves the
burden of deletion to the asynchronous database process so that all
rendering and intersection pipelines are not adversely affected.

pfAsyncDelete() may be called from any process and places an
asynchronous deletion request on a global list that is processed later by the
DBASE stage when its trigger routine, pfDBase() is called. A major
difference from pfDelete() is that pfAsyncDelete() does not immediately
check the reference count of the object to be deleted and so does not return a
value indicating whether the deletion was successful or not. At this time
there is no way of querying the result of a pfAsyncDelete() request so care
should be taken that the object to be deleted has no reference counts or
memory leaks will result.

Rules for Invoking Functions While Multiprocessing

There are some restrictions on which functions can be called from an IRIS
Performer process while multiple processes are running. Some specialized
processes (such as the process handling the draw stage) can call only a few
specific IRIS Performer functions, and can’t call any other kinds of functions.
This section lists general and specific rules concerning function invocation in
the various IRIS Performer and user processes.

In this section, the term “the draw process” refers to whichever process is
handling the draw stage, regardless of whether that process is also handling
other stages. Similarly, “the cull process” and “the application process” refer
to the processes handling the cull and application stages, respectively.

Successful Multiprocessing With IRIS Performer

223

This is a general list of the kinds of routines you can call from each process:

application configuration routines, creation and deletion routines, set
and get routines, and trigger routines such as
pfAppFrame(), pfSync(), pfFrame()

database creation and deletion routines, set and get routines,
pfDBase(), pfMergeBuffer()

cull pfCull(), pfCullPath(), IRIS Performer graphics routines

draw pfClearChan(), pfDraw(), pfDrawChanStats(), IRIS
Performer graphics routines, graphics library routines

More specific elaborations:

• You should call configuration routines only from the application
process, and only after pfInit() and before pfConfig(). pfInit() must be
the first IRIS Performer call except for those routines that configure
shared memory (see “Memory Allocation” in Chapter 10).
Configuration routines don’t take effect until pfConfig() is called. These
are the configuration routines:

– pfMultipipe()

– pfMultiprocess()

– pfMultithread()

– pfHyperpipe()

• You should call creation routines, such as pfNewChan(),
pfNewScene(), and pfAllocIsectData(), only in the application process
after calling pfConfig() or in a process which has an active pfBuffer.
There is no restriction on creating libpr objects like pfGeoSets and
pfTextures.

• pfDelete() should only be called from the application or database
processes. pfAsyncDelete() may be called from any process.

• Read-only routines—that is, the pfGet*() functions—can be called from
any IRIS Performer process. However, if a forked draw process queries
a pfNode, the data returned will not be frame-accurate. (See
“Multiprocessing and Memory” on page 226.)

224

Chapter 7: Frame and Load Control

• Write routines—functions that set parameters—should be called only
from the application process or a process with an active pfBuffer. It is
possible to call a write routine from the cull process, but it isn’t
recommended since any modifications to the database will not be
visible to the application process if it is separate from the cull (as when
using PFMP_APP_CULLDRAW or PFMP_APP_CULL_DRAW).
However, for transient modifications like custom level-of-detail
switching, it is reasonable for the cull process to modify the database.
The draw process should never modify any pfNode.

• IRIS Performer graphics routines should be called only from the cull or
draw processes. These routines may modify hardware graphics state.
They are the routines which can be captured by an open pfDispList.
(See “Display Lists” in Chapter 10.) If invoked in the cull process, these
routines are captured by an internal pfDispList and later invoked in the
draw process; but if they are invoked in the draw process they
immediately affect the current window. These graphics routines can be
roughly partitioned into those that

– apply a graphics entity: pfApplyMtl(), pfApplyTex(), and
pfLightOn()

– enable or disable a graphics mode: pfEnable(), pfDisable()

– set or modify graphics state: pfTransparency(), pfPushState(),
pfMultMatrix()

– draw geometry or modify the screen: pfDrawGSet(),
pfDrawString(), pfClear()

• Graphics library routines should be called only from the draw process.
Since there is no open display list to capture these commands, an open
window is required to accept them.

Successful Multiprocessing With IRIS Performer

225

• “Trigger” routines should be called only from the appropriate processes
(see Table 7-4).

• User-spawned processes created with sproc() can trigger parallel
intersection traversals through multiple calls to pfNodeIsectSegs() and
pfChanNodeIsectSegs().

• Functions pfApp(), pfCull(), pfDraw(), and pfDBase() are only called
from within the corresponding callback specified by pfChanTravFunc()
or pfDBaseFunc().

Table 7-4 Trigger Routines and Associated Processes

Trigger Routine Process/Context

pfAppFrame
pfSync
pfFrame

APP/main loop

pfPassChanData
pfPassIsectData

APP/main loop

pfApp APP/channel APP callback

pfCull
pfCullPath

CULL/channel CULL callback

pfDraw
pfDrawBin

DRAW/channel DRAW callback

pfNodeIsectSegs
pfChanNodeIsectSegs

ISECT/callback or APP/main loop

pfDBase DBASE/callback

226

Chapter 7: Frame and Load Control

Multiprocessing and Memory

In IRIS Performer, as is often true of multiprocessing systems, memory
management is the most difficult aspect of multiprocessing. Most data
management problems in an IRIS Performer application can be partitioned
into three categories:

• Memory visibility. IRIS Performer uses fork(), which—unlike sproc()—
generates processes that don’t share the same address space. The
processes also cannot share global variables that are modified after the
fork() call. After calling fork(), processes must communicate through
explicit shared memory.

• Memory exclusion. If multiple processes read or write the same chunk
of data at the same time, consequences can be dire. For example, one
process might read the data while in an inconsistent state and end up
dumping core while dereferencing a NULL pointer.

• Memory synchronization. IRIS Performer is configured as a pipeline
where different processes are working on different frames at the same
time. This pipelined nature is illustrated in Figure 7-5, which shows
that, for instance, in the PFMP_APP_CULL_DRAW configuration the
application process is working on frame n while the draw process is
working on frame n-2. If, in this case, if we have only a single memory
location representing the viewpoint, then it is possible for the
application to set the viewpoint to that of frame n and the draw process
to incorrectly use that same viewpoint for frame n-2. Properly
synchronized data is called frame accurate.

Fortunately, IRIS Performer transparently solves all of the above problems
for most IRIS Performer data structures and also provides powerful tools
and mechanisms that the application can use to manage its own memory.

Shared Memory and pfInit()

As described in “Initializing and Configuring IRIS Performer” in Chapter 3,
pfInit() creates a shared memory arena that is shared by all processes
spawned by IRIS Performer and all user processes that are spawned from
any IRIS Performer process. A handle to this arena is returned by
pfGetSharedArena() and should be used as the arena argument to routines
that create data that must be visible to all processes. Routines that accept an

Successful Multiprocessing With IRIS Performer

227

arena argument are the pfNew*() routines found in the libpr library and the
IRIS Performer memory allocator, pfMalloc(). In practice, it is usually safest
to create libpr objects like pfGeoSets and pfMaterials in shared memory. libpf
objects like pfNodes are always created in shared memory.

Allocating shared memory does not by itself solve the memory visibility
problem discussed above. You must also make sure that the pointer that
references the memory is visible to all processes. IRIS Performer objects,
once incorporated into the database via routines like pfAddGSet(),
pfAddChild(), and pfChanScene(), automatically ensure that the object
pointers are visible to all IRIS Performer processes.

However, pointers to application data must be explicitly shared. A common
way of doing this is to allocate the shared memory after pfInit() but before
pfConfig() and to reference the memory with a global pointer. Since the
pointer is set before pfConfig() forks any processes, these processes will all
share the pointer’s value and can thereby access the same shared memory
region. However, if this pointer value changes in a process, its value will not
change in any other process, since forked processes don’t share the same
address space.

Even with data visible to all processes, data exclusion is still a problem. The
usual solution is to use hardware spin locks so that a process can lock the
data segment while reading or writing data. If all processes must acquire the
lock before accessing the data, then a process is guaranteed that no other
processes will be accessing the data at the same time. All processes must
adhere to this locking protocol, however, or exclusion isn’t guaranteed.

In addition to a shared memory arena, pfInit() creates a semaphore arena
whose handle is returned by pfGetSemaArena(). Locks can be allocated
from this semaphore arena by usnewlock() and can be set and unset by
ussetlock() and usunsetlock(), respectively.

pfDataPools

pfDataPools—named shared memory arenas with named allocation
blocks—provide a complete solution to the memory visibility and memory
exclusion problems, thereby obviating the need to set global pointers
between pfInit() and pfConfig(). For more information about pfDataPools,
see “Datapools” on page 388.

228

Chapter 7: Frame and Load Control

Passthrough Data

The techniques discussed thus far don’t solve the memory synchronization
problem. Performer’s libpf library provides a solution in the form of
passthrough data. When using pipelined multiprocessing, data must be
passed through the processing pipeline so that data modifications reach the
appropriate pipeline stage at the appropriate time.

Passthrough data is implemented by allocating a data buffer for each stage
in the processing pipeline. Then, at well-defined points in time, the
passthrough data is copied from its buffer into the next buffer along the
pipeline. This copying guarantees memory exclusion, but you should
minimize the amount of passthrough data to reduce the time spent copying.

Allocate a passthrough data buffer for the rendering pipeline using
pfAllocChanData(); for data to be passed down the intersection pipeline,
call pfAllocIsectData(). Data returned from pfAllocChanData() is passed to
the channel cull and draw callbacks that are set by pfChanTravFunc(). Data
returned from pfAllocIsectData() is passed to the intersection callback
specified by pfIsectFunc().

Passthrough data isn’t automatically passed through the processing
pipeline. You must first call pfPassChanData() or pfPassIsectData() to
indicate that the data should be copied downstream. This requirement
allows you to copy only when necessary—if your data hasn’t changed in a
given frame, simply don’t call a pfPass*() routine, and you’ll avoid the copy
overhead. When you do call a pfPass*() routine, the data isn’t immediately
copied but is delayed until the next call to pfFrame(). The data is then copied
into internal IRIS Performer memory and you’re free to modify your
passthrough data segment for the next frame.

Modifications to all libpf objects—such as pfNodes and pfChannels—are
automatically passed through the processing pipeline, so frame-accurate
behavior is guaranteed for these objects. However, in order to save
substantial amounts of memory, libpr objects such as pfGeoSets and
pfGeoStates don’t have frame-accurate behavior; modifications to such
objects are immediately visible to all processes. If you want frame-accurate
modifications to libpr objects you must use the passthrough data
mechanism, use a frame-accurate pfSwitch to select among multiple copies
of the objects you want to change or use the pfCycleBuffer memory type
described in “CycleBuffers” on page 389.

This chapter describes special visual
features such as lighting, backdrops,
and fog.

“Creating Visual Effects”

Chapter 8

231

Chapter 8

8. Creating Visual Effects

This chapter describes how to use environmental, atmospheric, lighting, and
other visual effects to enhance the realism of your application.

Using pfEarthSky

A pfEarthSky is a special set of functions that clears a pfChannel’s viewport
efficiently and implements various atmospheric effects. A pfEarthSky is
attached to a pfChannel with pfChanESky(). Several pfEarthSky definitions
can be created, but only one can be in effect for any given channel at a time.

A pfEarthSky can be used to draw a sky and horizon, to draw sky, horizon,
and ground, or just to clear the entire screen to a specific color and depth.
The colors of the sky, horizon, and ground can be changed in real time to
simulate a specific time of day. At the horizon boundary, the ground and sky
share a common color, so that there is a smooth transition from sky to
horizon color. The width of the horizon band can be defined in degrees.

A pfChannel’s earth-sky model is automatically drawn by IRIS Performer
before the scene is drawn unless the pfChannel has a draw callback set with
pfChanTravFunc(). In this case it is the application’s responsibility to clear
the viewport. Within the callback pfClearChan() draws the channel’s
pfEarthSky.

Example 8-1 shows how to set up an pfEarthSky().

Example 8-1 How to Configure a pfEarthSky

pfEarthSky *esky;
pfChannel *chan;

sky = pfNewESky();
pfESkyMode(esky, PFES_BUFFER_CLEAR, PFES_SKY_GRND);
pfESkyAttr(esky, PFES_GRND_HT, -1.0f);

232

Chapter 8: Creating Visual Effects

pfESkyColor(esky, PFES_GRND_FAR, 0.3f, 0.1f, 0.0f, 1.0f);
pfESkyColor(esky, PFES_GRND_NEAR, 0.5f, 0.3f, 0.1f,1.0f);
pfChanESky(chan, esky);

Atmospheric Effects

The complexities of atmospheric effects on visibility are approximated
within IRIS Performer using a multiple-layer sky model, set up as part of the
pfEarthSky function. In this design, individual layers are used to represent
the effects of ground fog, clear sky, and clouds. Figure 8-1 shows the identity
and arrangement of these layers.

Atmospheric Effects

233

Figure 8-1 Layered Atmosphere Model

The lowest layer consists of ground fog, extending from the ground up to a
user-selected altitude. The fog thins out with increasing altitude,
disappearing entirely at the bottom of the general visibility layer. This layer
extends from the top of the ground fog layer to the bottom of the cloud

General
visibility

Upper
transition
zone

Clouds

Lower
transition
zone

General
visibility

Groung fog

234

Chapter 8: Creating Visual Effects

layer’s lower transition zone, if such a zone exists. The transition zone
provides a smooth transition between general visibility and the cloud layer.
(If there is no cloud layer, then general visibility extends upward forever.)
The cloud layer is defined as an opaque region of near-zero visibility; you
can set its upper and lower boundaries. You can also place another transition
zone above the cloud layer to make the clouds gradually thin out into clear
air.

Set up the atmospheric simulation with the commands listed in Table 8-1

You can set any pfEarthSky attribute, mode, or color in real time. Selecting
the active pfFog definition can also be done in real time. However, changing
the parameters of a pfFog once they are set isn’t advised when in
multiprocessing mode.

The default characteristics of a pfEarthSky are listed in Table 8-2.

Table 8-1 pfEarthSky Routines

Function Action

pfNewESky Create a pfEarthSky

pfESkyMode Set the render mode

pfESkyAttr Set the attributes of the earth and sky models

pfESkyColor Set the colors for earth and sky and clear

pfESkyFog Set the fog functions

Table 8-2 pfEarthSky Attributes

Attribute Default

Clear method PFES_FAST (full screen clear)

Clear color 0.0 0.0 0.0

Sky top color 0.0 0.0 0.44

Sky bottom color 0.0 0.4 0.7

Ground near color 0.5 0.3 0.0

Atmospheric Effects

235

By default, an earth-sky model isn’t drawn. Instead, the channel is simply
cleared to black and the Z-buffer is set to its maximum value. This default
action also disables all other atmospheric attributes. To enable atmospheric
effects, select PFES_SKY, PFES_SKY_GRND, or PFES_SKY_CLEAR when
turning on the earth-sky model.

Clouds are disabled when the cloud top is less than or equal to the cloud
bottom. Cloud transition zones are disabled when clouds are disabled.

Fog is enabled when either the general or ground fog is set to a valid pfFog.
If ground fog isn’t enabled, no ground fog layer will be present and fog will
be used to support general visibility. Setting a fog attribute to NULL disables
it. See “Fog” on page 350 for further information on fog parameters and
operation.

Ground far color 0.4 0.2 0.0

Horizon color 0.8 0.8 1.0

Ground fog NULL (no fog)

General visibility NULL (no fog)

Cloud top 20000.0

Cloud bottom 20000.0

Cloud bottom color 0.8 0.8 0.8

Cloud top color 0.8 0.8 0.8

Transition zone bottom 15000.0

Transition zone top 25000.0

Ground height 0

Horizon angle 10 degrees

Table 8-2 (continued) pfEarthSky Attributes

Attribute Default

236

Chapter 8: Creating Visual Effects

The earth-sky model is an attribute of the channel and thus accesses
information about the viewer’s position, current field of view, and other
pertinent information directly from pfChannel. To set the pfEarthSky in a
channel, use pfChanESky().

Light Points

pfLightPoint

Note: pfLightPoint nodes have been obsoleted in favor of the libpr attribute,
pfLPointState described in “pfLPointState” on page 237. However, the
pfLightPoint node is still available for convenience.

A pfLightPoint is a pfNode that contains one or more light points. Light
points are used in flight simulation applications to simulate runway
lighting, taxiway lights, and street lights. The light points in a pfLightPoint
node share all attributes except point location. A pfLightPoint node can be
thought of as representing a string of similar point lights.

pfNewLPoint() creates and returns a handle to a pfLightPoint node.
pfLPointSize() sets the screen size for all points in a pfLightPoint. The size
is specified in pixels and is used as the argument to the IRIS GL function
pntsizef() or the OpenGL function glPointSize().

Whenever possible, graphics library antialiased points are used to represent
light points, but the actual representation depends on the graphics hardware
being used. See the IRIS GL pntsizef() reference page or the OpenGL
glPointSize() reference page for a description of available light point sizes
on your IRIS hardware.

pfLPointColor() sets the color for a specified light point in the given
pfLightPoint node. Each light in a pfLightPoint can be turned off by setting
its red, green, and blue values to 0.0, or by setting its alpha value to 0.0
(which makes it completely transparent). Light points with a color of zero
will not be considered for rendering.

Light Points

237

pfLPointRot() and pfLPointShape() control the direction and shape of all
the lights points in a pfLightPoint. The direction of the light points in lpoint
is the positive Y axis, rotated about the X axis by elev and then rotated about
the Z axis by azim. Roll affects only the light envelope. pfLPointShape() is
used to set the intensity distribution of the light points (their visibility
envelope). A pfLightPoint can have any one of three envelope shapes:
omnidirectional, unidirectional, or bidirectional. If a light point is
omnidirectional, it can be seen from any direction with the same intensity.
This is the fastest light to process and draw using IRIS Performer.

Unidirectional and bidirectional lights have an elliptical cone of intensity.
The intensity falloff from the center of the cone to the edge is exponential and
is also set with pfLPointShape().

pfLPointPos() is used to set the position of each light point in a pfLightPoint.
A runway strobe could be implemented with a pfLightPoint containing a
single point and repositioning that point at regular intervals. A rotating
beacon could be created using a single point and rotating it each frame using
pfLPointRot().

pfLPointState

A pfLPointState is a libpr attribute which, when attached to an appropriately
configured pfGeoState will cause pfGeoSets of type PFGS_POINTS to be
rendered as light points. pfLPointStates are intended to obsolete
pfLightPoints since they provide a more powerful mechanism for
simulating light points. Special features of the pfLPointState include:

• Perspective point size -- points farther away look smaller than those
closer to the eye.

• Perspective fading -- points whose computed size is less than an
application-defined threshold are made more transparent, rather than
shrinking the point any further.

• Fog punch-through.

• Directionality including bi-directional points with different front and
back colors.

238

Chapter 8: Creating Visual Effects

Since pfLPointState uses the pfGeoState mechanism, light points can appear
different to different pfChannels by using indexed pfGeoStates and
pfGeoState tables. For example, a light point may look brighter in an
infra-red channel than in an out-the-window channel.

One improvement over pfLightPoints is that point directions are supplied
by a pfGeoSet’s normals so a single pfLPointState can be used for many light
points with differing directions. A further improvement is in performance.
pfLPointStates can use texture mapping to simulate either directionality or
both perspective fading and fog punch-through. This frees the CPU from
making these expensive calculations. Example 8-2 is a portion of the sample
program, lpstate.c found in /usr/share/Performer/src/pguide/libpf/C.

Example 8-2 How to set up a pfLPointState

#define NPOINTS2 30
#define NPOINTS (NPOINTS2 * (NPOINTS2 - 2))

static pfGeode*
initLPoints(void)
{
 pfLPointState *lps;
 pfTexGen *tgen;
 pfTexture *tex;
 pfGeoState *gst;
 pfGeode *gd;
 pfGeoSet *gs;
 pfVec3 *norms, *colors, *coords;
 pfMatrix squash, squashInvTransp;
 float phi, dphi, theta, dtheta;
 int i, j, k;
 void *arena = pfGetSharedArena();

 /*---- Set up pfLPointState ----*/

 lps = pfNewLPState(arena);

 /* Enable perspective size computation */
 pfLPStateMode(lps, PFLPS_SIZE_MODE, PF_ON);

 /* Clamp point size between .25 and 4 pixels */
 pfLPStateVal(lps, PFLPS_SIZE_MIN_PIXEL, .25f);
 pfLPStateVal(lps, PFLPS_SIZE_MAX_PIXEL, 4.0f);

Light Points

239

 /* Real-world point size is .15 meters */
 pfLPStateVal(lps, PFLPS_SIZE_ACTUAL, .15f);

 /* Fade points smaller than 2 pixels */
 pfLPStateVal(lps, PFLPS_TRANSP_PIXEL_SIZE, 2.0f);

 /* Linear fade, scaled by .6 and alpha clamped at .1 */
 pfLPStateVal(lps, PFLPS_TRANSP_EXPONENT, 1.0f);
 pfLPStateVal(lps, PFLPS_TRANSP_SCALE, .6f);
 pfLPStateVal(lps, PFLPS_TRANSP_CLAMP, .1f);

 /* Points are fogged as if 4 times closer than they really
are */
 pfLPStateVal(lps, PFLPS_FOG_SCALE, .25f);

 /* Compute true, slant range from eye to points */
 pfLPStateMode(lps, PFLPS_RANGE_MODE, PFLPS_RANGE_MODE_TRUE);

 /* Points are bidirectional with purple back color */
 pfLPStateMode(lps, PFLPS_SHAPE_MODE,

PFLPS_SHAPE_MODE_BI_COLOR);
 pfLPStateBackColor(lps, 1.f, 0.0f, 1.f, 1.0f);

 /*
 * Point shape is 15 horiz and 60 degrees vertical with
 * no roll, falloff of 1 and ambient intensity of .1
 */
 pfLPStateShape(lps, 15.0f, 60.0f, 0.0f, 1, .1f);

 /*---- Set up pfGeoState ----*/

 gst = pfNewGState(arena);

 /* Specify high-quality transparency */
 pfGStateMode(gst, PFSTATE_TRANSPARENCY,

 PFTR_BLEND_ALPHA | PFTR_NO_OCCLUDE);
 pfGStateVal(gst, PFSTATE_ALPHAREF, 0.0f);
 pfGStateMode(gst, PFSTATE_ALPHAFUNC, PFAF_GREATER);

 pfGStateMode(gst, PFSTATE_ENFOG, 0);
 pfGStateMode(gst, PFSTATE_ENLIGHTING, 0);
 pfGStateMode(gst, PFSTATE_ENTEXTURE, 1);
 pfGStateMode(gst, PFSTATE_ENLPOINTSTATE, 1);
 pfGStateAttr(gst, PFSTATE_LPOINTSTATE, lps);

240

Chapter 8: Creating Visual Effects

 /*---- Configure texturing ----*/

 tgen = pfNewTGen(arena);
 tex = pfNewTex(arena);

#define USE_TEXTURE_MAPPING_FOR_DIRECTIONALITY
#ifdef USE_TEXTURE_MAPPING_FOR_DIRECTIONALITY
 /*
 * Use texture mapping for directionality. CPU computes size
 * and range and fog attenuation
 */
 pfLPStateMode(lps, PFLPS_DIR_MODE, PFLPS_DIR_MODE_TEX);
 pfLPStateMode(lps, PFLPS_TRANSP_MODE,

PFLPS_TRANSP_MODE_ALPHA);
 pfLPStateMode(lps, PFLPS_FOG_MODE, PFLPS_FOG_MODE_ALPHA);
 pfuMakeLPStateShapeTex(lps, tex, 256);
 pfGStateAttr(gst, PFSTATE_TEXTURE, tex);
 pfTGenMode(tgen, PF_S, PFTG_SPHERE_MAP);
 pfTGenMode(tgen, PF_T, PFTG_SPHERE_MAP);
#else
 /*
 * Use texture mapping for range and fog attenuation. CPU
 * computes size and directionality.
 */
 pfLPStateMode(lps, PFLPS_DIR_MODE, PFLPS_DIR_MODE_ALPHA);
 pfLPStateMode(lps, PFLPS_TRANSP_MODE,

PFLPS_TRANSP_MODE_TEX);
 pfLPStateMode(lps, PFLPS_FOG_MODE, PFLPS_FOG_MODE_TEX);
 pfuMakeLPStateRangeTex(lps, tex, 256, pfNewFog(NULL));
 pfGStateAttr(gst, PFSTATE_TEXTURE, tex);
 pfTGenPlane(tgen, PF_S, 0.0f, 0.0f, 1.0f, 0.0f);
 pfTGenPlane(tgen, PF_T, 0.0f, 0.0f, 1.0f, 0.0f);
 pfTGenMode(tgen, PF_S, PFTG_EYE_PLANE_IDENT);
 pfTGenMode(tgen, PF_T, PFTG_EYE_PLANE_IDENT);
#endif
 pfGStateAttr(gst, PFSTATE_TEXGEN, tgen);
 pfGStateMode(gst, PFSTATE_ENTEXGEN, 1);

 /* Make PFGS_POINTS pfGeoSet arranged in a sphere */

 gd = pfNewGeode();
 gs = pfNewGSet(arena);
 pfGSetPrimType(gs, PFGS_POINTS);
 pfGSetNumPrims(gs, NPOINTS);

Light Points

241

 colors = pfMalloc(sizeof(pfVec3) * NPOINTS, arena);
 coords = pfMalloc(sizeof(pfVec3) * NPOINTS, arena);
 norms = pfMalloc(sizeof(pfVec3) * NPOINTS, arena);
 pfGSetAttr(gs, PFGS_NORMAL3, PFGS_PER_VERTEX, norms, NULL);
 pfGSetAttr(gs, PFGS_COLOR4, PFGS_PER_VERTEX, colors, NULL);
 pfGSetAttr(gs, PFGS_COORD3, PFGS_PER_VERTEX, coords, NULL);

 pfGSetGState(gs, gst);
 pfAddGSet(gd, gs);

 /* Squash sphere into an ellipse so perspective point size
is more easily seen

 */
 pfMakeRotMat(squash, 90.0f, 1.0f, 0.0f, 0.0f);
 pfPostScaleMat(squash, squash, 1.0f, 2.0f, .5f);
 pfInvertAffMat(squashInvTransp, squash);
 pfTransposeMat(squashInvTransp, squashInvTransp);

 dphi = 180.0f / (NPOINTS2-1);
 dtheta = 360.0f / NPOINTS2;

 phi = dphi;
 for (k=0, i=0; i<NPOINTS2 - 2; i++)
 {

float ct, st, sp, cp;

 theta = 0.0f;
 pfSinCos(phi, &sp, &cp);

 for (j=0; j<NPOINTS2; j++, k++)
 {

 pfSetVec4(colors[k], 1.0f, 1.0f, 1.0f, 1.0f);

 pfSinCos(theta, &st, &ct);
 pfSetVec3(norms[k], ct * sp, st * sp, cp);
 pfScaleVec3(coords[k], 10.0f, norms[k]);

 pfXformPt3(coords[k], coords[k], squash);
 pfXformVec3(norms[k], norms[k], squashInvTransp);
 pfNormalizeVec3(norms[k]);

 theta += dtheta;
}

 phi += dphi;

242

Chapter 8: Creating Visual Effects

 }
 return gd;
}

Spotlights and Shadows

A pfLightSource node’s primary purpose is to represent a graphics library
light source (pfLight) in a scene graph. The position and orientation of the
light source is affected by transformations inherited through the scene graph
providing a simple means of moving lights about. In conjunction with an
object’s material properties (pfMaterial) and the global lighting model
(pfLightModel), illumination is computed at geometry vertices by the
Geometry Pipeline.

While this kind of “bread-and-butter” lighting is very efficient it does not
adequately simulate certain important lighting effects. In particular,
per-pixel spotlights and shadows are not supported by the default lighting
mechanism. On graphics library implementations which support texture
mapping, the pfLightSource node supports per-pixel spotlights and opera
lighting through a technique called projective texturing and also support
shadows if shadow map hardware is available. In practice, default lighting is
used in conjunction with projected texturing since the latter does not
consider geometry normals but the former does.

Both projected texturing and shadows require a pfFrustum which defines
the “viewing volume” of the light source. The frustum’s eye point is located
at the pfLightSource position and the frustum’s view direction is aligned
along the pfLightSource’s +Y axis. You can think of the frustum as a slide
projector whose eyepoint is the projector’s bulb and whose view plane is the
slide holder and the projected texture map is the slide. A pfLightSource’s
frustum is set with pfLSourceAttr() with the PFLS_PROJ_FRUSTUM
identifying token.

In addition to a frustum, projected texturing requires a texture map supplied
with pfLSourceAttr() with PFLS_PROJ_TEX identifying token. This texture
map can be anything but is usually a texture with identical intensity and
alpha components which represent the soft-edged circle of a spotlight.
Colored spotlights are simulated by coloring the pfLightSource with
pfLSourceColor() rather than coloring the texture map. Opera lighting,
where an actual color slide is projected onto the set, is simulated with a

Spotlights and Shadows

243

texture map consisting of red, green, blue, and alpha components (this is
supported only if the pfLightSource is the only one that is projecting a
texture).

Shadows do not require the application to supply a texture map; rather, one
is automatically created by IRIS Performer. However, the size of the shadow
map has an important effect on the quality of the shadows and may be set
with the PFLS_SHADOW_SIZE token to pfLSourceVal(). For high quality
shadows, the pfLightSource’s frustum must encompass the entire scene that
is to be shadowed as tightly as possible. If the frustum’s field-of-view or far
to near clipping plane ratio becomes too large, the shadows will become
blocky and incorrect. One way to improve shadow quality is to increase the
size of the shadow map but this will decrease performance.

Projected textures and shadows both use texture mapping so if your scene is
texture mapped, multiple rendering passes are required to combine the
projected texture with the normal scene textures. In pfDraw(), pfChannels
assume the scene is textured and automatically render the scene multiple
times. However, if your scene is not textured you can avoid a complete
rendering pass by setting the PFMPASS_NONTEX_SCENE bit in the
PFTRAV_MULTIPASS mode given to pfChanTravMode().

Example 8-3 is a code snippet which shows how to set up both projected
texture and shadowing pfLightSources.

Example 8-3 Projected texture and shadow pfLightSources

pfFrustum *shadFrust;
pfLightSource *shad, *proj;
pfDCS *shadDCS, *projDCS;
pfTexture *tex;

// Create and configure shadow frustum
shadFrust = pfNewFrust(arena);
pfMakeSimpleFrust(shadFrust, 60.0f);
pfFrustNearFar(shadFrust, 1.0f, 100.0f);

/* Create and configure red shadow casting light source */
shad = pfNewLSource();
pfLSourceMode(shad, PFLS_SHADOW_ENABLE, 1);
pfLSourceAttr(shad, PFLS_PROJ_FRUST, shadFrust);
pfLSourceColor(shad, PFLT_DIFFUSE, 1.0f, 0.0f, 0.0f);
pfLSourceVal(shad, PFLS_INTENSITY, .5f);

244

Chapter 8: Creating Visual Effects

pfLSourcePos(shad, 0.0f, 0.0f, 0.0f, 1.0f); /* make local */

/* Create and configure blue spotlight */
proj = pfNewLSource();
tex = pfNewTex(arena);
pfLoadTexFile(tex, “spotlight.inta”);
pfLSourceMode(proj, PFLS_PROJTEX_ENABLE, 1);
pfLSourceAttr(proj, PFLS_PROJ_FRUST, shadFrust);
pfLSourceAttr(proj, PFLS_PROJ_TEX, tex);
pfLSourceColor(proj, PFLT_DIFFUSE, 0.0f, 0.0f, 1.0f);
pfLSourceVal(proj, PFLS_INTENSITY, .5f);
pfLSourcePos(proj, 0.0f, 0.0f, 0.0f, 1.0f); /* make local */

/* Add to DCSes so we can move lights around */
shadDCS = pfNewDCS();
pfAddChild(shadDCS, shad);
pfAddChild(scene, shadDCS);

projDCS = pfNewDCS();
pfAddChild(projDCS, proj);
pfAddChild(scene, projDCS);

For scenes with multiple pfLightSources you can scale the contribution from
each source with the PFLS_INTENSITY value so that the total illumination
from all sources does not exceed one. Otherwise lighted geometry may
become saturated and not look real.

pfLightSources which are located near the eyepoint and which project a
texture to simulate spotlights can attenuate the spotlight based on range by
using a pfFog to define the falloff ramp. The pfFog is set with the
PFLS_PROJ_FOG token to pfLSourceAttr() and should have the same color
as the lighting ambient.

Morphing

Morphing is the smooth transition from one particular appearance to another.
Morphing can refer to images or geometry colors, texture coordinate or
coordinates. For example, you could “morph” the following:

• the image of a person’s face into that of another person

• color to simulate a flickering fire

Morphing

245

• texture coordinates to simulate rippling ocean waves

• coordinates to make a 3D model of a face smile or frown.

pfMorph is a group node that supports the morphing of lists of numbers.
These numbers could be colors, coordinates, or pixels -- it is up to you to
decide what to morph.

Conceptually, pfMorph combines multiple input lists of numbers into a
single output list. This output may be used arbitrarily but is most often used
as a pfGeoSet attribute array, be it colors, normals, texture coordinates, or
coordinates. The combination is linear, that is, the input lists are scaled by a
value (which has no restricted range) and then summed together to produce
the output. One example of geometric morphing is in facial animation where
multiple input faces with canonical expressions: smiley, frowny, surprised,
are combined to produce a face with a mixture of expressions.

pfMorphs can handle multiple sets of input->output lists so a single
pfMorph could, for example, morph the normals and coordinates of an
animated figure. An input->output set is called a morph attribute since a set
typically corresponds to a pfGeoSet attribute. Morph attributes are specified
with pfMorphAttr(). Example 8-4 is a snippet of the morph.c test program
in /usr/share/Performer/src/pguide/libpf/C/ shows how to configure a pfMorph
node that morphs the normals and coordinates of a pfGeoSet.

Example 8-4 How to set up a pfMorph node.

/* Sinusoidally modify morph weights to oscillate between
* cube and sphere.
*/
static void
breatheMorph(pfMorph *morph, double t)
{
 float s = (sinf(t) + 1.0f) / 2.0f;
 float weights[2];

 weights[0] = s;
 weights[1] = 1.0f - s;

 pfMorphWeights(morph, 0, weights); /* coordinate weights*/
 pfMorphWeights(morph, 1, weights); /* normal weights */
}

246

Chapter 8: Creating Visual Effects

static pfMorph*
initMorph(void)
{
 pfGeoSet *gset;
 pfGeode *geode;
 pfGeoState *gstate;
 pfMaterial *mtl;
 pfMorph *morph;
 ushort *icoords, *inorms;
 pfVec3 *coords, *ncoords, *norms, *nnorms;
 float *srcs[2];
 int i, nSph;
 void *arena = pfGetSharedArena();

 morph = pfNewMorph();
 geode = pfNewGeode();
 gset = pfdNewSphere(400, arena);
 gstate = pfNewGState(arena);

 mtl = pfNewMtl(arena);
 pfMtlColor(mtl, PFMTL_DIFFUSE, 1.0f, 0.0f, 0.0f);
 pfMtlColor(mtl, PFMTL_SPECULAR, 1.0f, 1.0f, 1.0f);
 pfMtlColorMode(mtl, PFMTL_BOTH, PFMTL_CMODE_OFF);
 pfMtlShininess(mtl, 32);

 pfGStateAttr(gstate, PFSTATE_FRONTMTL, mtl);
 pfGStateMode(gstate, PFSTATE_ENLIGHTING, 1);
 pfGSetGState(gset, gstate);

 pfAddGSet(geode, gset);
 pfAddChild(morph, geode);

 /*
 * NULL forces recomputation of bound. Force it to be static
 * to avoid expensive recomputation. Static bound should
 * encompass the extent of all morph possibilities.
 */
 pfGSetBBox(gset, NULL, PFBOUND_STATIC);
 pfNodeBSphere(geode, NULL, PFBOUND_STATIC);

 pfGetGSetAttrLists(gset, PFGS_COORD3, (void**)&coords,
&icoords);
 pfGetGSetAttrLists(gset, PFGS_NORMAL3, (void**)&norms,
&inorms);
 nSph = pfGetSize(coords) / sizeof(pfVec3);

Morphing

247

 ncoords = pfMalloc(pfGetSize(coords), arena);
 nnorms = pfMalloc(pfGetSize(norms), arena);

 for (i=0; i<nSph; i++)
 {

int max;
float t;

/* Find which face of the cube this vertex maps to */
if (PF_ABS(coords[i][PF_X]) > PF_ABS(coords[i][PF_Y]))
{
 if (PF_ABS(coords[i][PF_X]) > PF_ABS(coords[i][PF_Z]))

max = PF_X;
 else

max = PF_Z;
}
else
{
 if (PF_ABS(coords[i][PF_Y]) > PF_ABS(coords[i][PF_Z]))

max = PF_Y;
 else

max = PF_Z;
}

/* Compute cube normals and coordinates */
pfSetVec3(nnorms[i], 0.0f, 0.0f, 0.0f);
if (coords[i][max] < 0.0f)
{
 t = -1.0f / coords[i][max];
 pfScaleVec3(ncoords[i], t, coords[i]);
 nnorms[i][max] = -1.0f;
}
else
{
 t = 1.0f / coords[i][max];
 pfScaleVec3(ncoords[i], t, coords[i]);
 nnorms[i][max] = 1.0f;
}

 }

 /* Morph attribute 0 is coordinates */
 srcs[0] = (float*)coords;
 srcs[1] = (float*)ncoords;
 pfMorphAttr(morph, 0, 3, nSph, NULL, 2, srcs, NULL, NULL);

248

Chapter 8: Creating Visual Effects

 pfGSetAttr(gset, PFGS_COORD3, PFGS_PER_VERTEX,
 (void*)pfGetMorphDst(morph, 0), icoords);

 /* Morph attribute 1 is normals */
 srcs[0] = (float*)norms;
 srcs[1] = (float*)nnorms;
 pfMorphAttr(morph, 1, 3, nSph, NULL, 2, srcs, NULL, NULL);

 pfGSetAttr(gset, PFGS_NORMAL3, PFGS_PER_VERTEX,
 (void*)pfGetMorphDst(morph, 1), inorms);

 return morph;
}

This chapter describes a variety of
database formats and their
corresponding conversion utilities.

“Importing Databases”

Chapter 9

251

Chapter 9

9. Importing Databases

Overview of Performer Database Creation and Conversion

Once you’ve learned how to create visual simulation applications with IRIS
Performer your next task is to import visual databases into those
applications. Import and export functions for more than 30 popular database
formats are provided with IRIS Performer to ease this effort. This chapter
describes the steps involved in creating custom loaders for other data
formats and then reviews each of these pre-existing file-loading utilities.
Along the way, it also describes several utility functions in the IRIS
Performer database utility library that can make the process of database
conversion easier for you.

Source code is provided for most of the tools discussed in this chapter. In
most cases the loaders are short, easy to understand, and easy to modify.
Table 9-1 lists the subdirectories of /usr/share/Performer/src/lib where you can
find the source code for the database processing tools.

Before you can import a database, you must create it. Some simulation
applications create data procedurally; for examples of this approach, see the
“Silicon Graphics PHD Format” on page 295 or “Sierpinski Sponge Format”
sections of this chapter. In most cases, however, you must create visual
databases manually. Several software packages are available to help with
this task, and most such systems facilitate geometric modeling, texture
creation, and interactive specification of colors and material properties.

Table 9-1 Database-Importer Source Directories

Directory Name Directory Contents

libpfdu General database processing tools and utilities

libpfdb Load, convert, and store specific database formats

libpfutil Additional utility functions

252

Chapter 9: Importing Databases

Some advanced systems support level-of-detail specification, animation
sequences, motion planning for jointed objects, automated roadway and
terrain generation, and other specialized functions.

libpfdu - Utilities for Creation of Efficient Performer Run-Time structures

There are several layers of support in IRIS Performer for loading 3-D models
and 3-D environments into IRIS Performer run-time scene graphs. In fact,
IRIS Performer 2.0 contains the new libpfdu library devoted to the import of
data into (and export of data from) IRIS Performer run-time structures. Note
that two database exporters have already been written for the Medit and
DWB database formats.

At the top level of the API, IRIS Performer provides a standard set of
functions to read in files and convert databases of unknown type. This
functionality is centered around the notion of a database converter. A
database converter is an abstract entity that knows how to perform some or
all of a set of database format conversion functions with a particular
database format. Moreover, converters must follow certain API guidelines
for standard functionality such that they can be easily integrated into IRIS
Performer in a run-time environment without IRIS Performer needing any a
priori knowledge of a particular converter’s existence. This run-time
integration is done through the use of dynamic shared object (DSO) libraries.

pfdLoadFile - Loading Arbitrary Databases into Performer

libpfdu provides the following general routines to operate on 3-D databases.

Table 9-2 libpfdu database converter functions

Function Name Description

pfdLoadFile Load a database file into an IRIS Performer scene graph

pfdStoreFile Store a run-time scene graph into a database file

libpfdu - Utilities for Creation of Efficient Performer Run-Time structures

253

The database loader utility library, libpfdu, provides a convenient function
named pfdLoadFile() that can import database files stored in any supported
format - see Table 9-6 for a list of supported formats.

Loading database files with pfdLoadFile() is easy. The function prototype is

pfNode *pfdLoadFile(char *fileName);

pfdLoadFile() tests the filename-extension portion of fileName (the substring
starting at the last period in fileName, if any) for one of the format-name
codes listed in Table 9-6, then calls the appropriate importer.

The file-format selection process is implemented using dynamic loading of
DSOs, which are IRIX Dynamic Shared Objects. This process allows new
loaders that are developed as database formats change to be used with IRIS
Performer-based applications without requiring recompilation of the IRIS
Performer application. The details of the loading process internal to
pfdLoadFile() include searching for the named file using the current IRIS
Performer file path, extraction of the file-type extension, translation of the
extension using a registered alias facility, formation of the DSO name,
searching through a list of user-defined and standard directories for that
DSO, dynamic loading of the indicated DSO using dlopen(), formation of a
loader function name, finding that function within the DSO using dlsym(),
and finally, invocation of the loader function.

pfdConvertFrom Convert an external run-time format into an IRIS
Performer scene graph

pfdConvertTo Convert an IRIS Performer scene graph into an external
run-time format

Table 9-2 (continued) libpfdu database converter functions

Function Name Description

254

Chapter 9: Importing Databases

The loader function name is constructed from two components, a prefix and
the loader suffix. The prefix is always “pfdLoadFile_” and the suffix is
simply the file extension string. Examples of several complete loader
function names are shown in Table 9-3.

Several shell environment variables are used in the loader location process.
These are PFLD_LIBRARY_PATH, LD_LIBRARY_PATH, and PFHOME.
Confusion about loader locations can be resolved by consulting the sources
mentioned above to understand the use of these directory lists and reading
the following section, “Database Loading Details” on page 254. When the
pfNotifyLevel is set to PFNFY_DEBUG or greater, the DSO and loader
function names are printed as database are loaded, as is the name of each
directory that is searched for the DSO.

The IRIS Performer sample programs, including perfly, use pfdLoadFile() for
database importing. This allows them to simultaneously load and display
databases in many disparate formats. As you develop your own database
loaders, follow the source code examples in any of the libpfdb loaders. Then
you will be able to load your data into any IRIS Performer application. You
will not need to rebuild perfly or other applications to view your databases.

Database Loading Details

Details about the database loading process are described further in this
section, the pfdLoadFile reference page, and the source code which is in
/usr/share/Performer/src/lib/libpfdu/pfdLoadFile.c.

pfdLoadFile(), pfdStoreFile(), pfdConvertFrom(), and pfdConvertTo()
exist only as a level of indirection to allow a user to manipulate all databases

Table 9-3 Loader Name Composition

File Extension Loader Function Name

dwb pfdLoadFile_dwb

flt pfdLoadFile_flt

medit pfdLoadFile_medit

obj pfdLoadFile_obj

libpfdu - Utilities for Creation of Efficient Performer Run-Time structures

255

regardless of format through a central API. They are in fact merely a
mechanism for creating an open environment for data sharing among the
multitudes of 3-dimensional database formats. In fact, each of these routines
merely determines via file type extension which database converter to load
as a run-time DSO and then calls the appropriate functionality from that
converter’s DSO. All converters must provide API that is exactly the same as
the corresponding libpfdu API with _EXT added to the routine names (for
example, for “.medit” files, the suffix is “_medit”). Note that multiple
physical extensions can be mapped to one converter extension via calls to
pfdAddExtAlias(). Several aliases are pre-defined upon initialization of
libpfdu. For example, VRML “.wrl” files are mapped to Inventor “.iv” so that
the Open Inventor 2.1 loader can be used to import them

It is also important to note that because each of these converters are unique
entities that they each may have state that is important to their proper
function. Moreover, their database format may allow for multiple IRIS
Performer interpretations and so there exists API (see Table 9-4) not only to
initialize and exit database converters, but also to set and get modes,
attributes, and values that might affect the converter’s methodology:

Once again each converter provides the equivalent routines with _EXT
added to the function name.

Table 9-4 libpfdu database converter management functions

Function Name Description

pfdInitConverter Initialize a database conversion DSO

pfdExitConverter Exit a database conversion DSO

pfdConverterMode Specify a mode for a specific conversion DSO

pfdGetConverterMode Get a mode setting from a specific conversion DSO

pfdConverterAttr Specify an attribute for a conversion DSO

pfdGetConverterAttr Get an attribute setting from a conversion DSO

pfdConverterVal Specify a value for a conversion DSO

pfdGetConverterVal Get a value setting from a conversion DSO

256

Chapter 9: Importing Databases

For example, the converter for the Open Inventor format would define the
function pfdInitConverter_iv() if it needed to be initialized before it was
used. Likewise, it would define the function pfdLoadFile_iv() to read an
Open Inventor “.iv” file into an IRIS Performer scene graph.

Note: Because each converter is an individual entity (DSO) and deals with
a particular type of database, it may be the case that a converter will not
provide all of the functionality listed above, but rather only a subset. For
instance, most converters that come with IRIS Performer 2.0 only implement
their version of pfdLoadFile but not pfdStoreFile, pfdConvertFrom, or
pfdConvertTo. However, users are free to add this functionality to the
converters via compliant API and IRIS Performer’s libpfdu will immediately
recognize this functionality. Also, libpfdu traps access to non-existent
converter functionality and returns gracefully to the calling code while
notifying the user that the functionality could not be found.

Finding and initializing a Converter

When one of the general database converter functions is called, it in turn
calls the corresponding routine provided by the converter, passing on the
arguments it was given.

But the first time a converter is called, a search occurs to identify the
converter and the functions it provides. This is accomplished as follows.

• Parse the extension - what appears after the final “.” in the filename.
This is referred to as EXT in the following bulleted items.

• Check to see if any alias was created for the EXT extension with
pfdAddExtAlias(). If a translation is defined, EXT is replaced with that
extension.

• Check the current executable to see if the symbol pfdLoadFile_EXT is
already defined, i.e. if the loader was statically linked into the
executable or a DSO was previously loaded by some other mechanism.
If not, the search continues.

– Generate a DSO library name to search for using on the extension
prototype “libpfEXT_{igl,ogl}{-g,}.so”. This means the following
strings will be constructed based upon whether OpenGL or IRIS
GL is being used with IRIS Performer:

libpfEXT_igl.so for the optimized IRIS GL loader

Developing Custom Importers

257

libpfEXT_igl-g.so for the debug IRIS GL loader

libpfEXT_ogl.so for the optimized OpenGL loader

libpfEXT_ogl-g.so for the debug OpenGL loader

– Look for the DSO in several places including:

.
$PFLD_LIBRARY_PATH
$LD_LIBRARY_PATH
$PFHOME/usr/lib{,32,64}/libpfdb
$PFHOME/usr/share/Performer/lib/libpfdb

– Open the DSO via dlopen().

• Once the object has been found, processing continues.

– Query all libpfdu converter functionality from the symbol table of
the DSO using dlsym() with function names generated by
appending _EXT to the name of the corresponding pfd routine
name. This symbol dictionary is retained for future use.

– Invoke the converter’s initialization function,
pfdInitConverter_EXT(), if it exists.

Developing Custom Importers

Having fully described how database converters can be integrated into IRIS
Performer and the types of functionality they provide, the next undertaking
is actually implementing a converter from scratch. IRIS Performer 2.0 makes
a great effort at allowing the quick and easy development of effective and
efficient database converters.

While creating a new file loader for IRIS Performer isn’t inherently difficult,
it does require a solid understanding of the following issues:

• The structure and interpretation of the data file to be read

• The scene graph concepts and nodes of libpf

• The geometry and attribute definition objects of libpr

258

Chapter 9: Importing Databases

Structure and interpretation of the Database File Format

In order to effectively convert a database into an IRIS Performer scene graph
it is important to have a substantial understanding of several concepts
related to the original database format:

• the parsing of the file based on the database format

• the data types represented in the format and their IRIS Performer
correspondence

• the scene graph structure of the file (if any)

• the method of graphics state definition and inheritance defined in the
format.

Before trying to convert sophisticated 3-D database formats into IRIS
Performer it is important to have a thorough grasp of how every structure in
the format needs to affect how IRIS Performer performs its run-time
management of a scene graph. However, although it requires a great deal of
understanding to convert complex behaviors of external formats into IRIS
Performer, it is still very straight forward to migrate basic structure,
geometry, and graphics state into efficient IRIS Performer run-time
structures via the functionality provided in the IRIS Performer database
builder - pfdBuilder.

Scene Graph Creation using Nodes as defined in libpf

Creating an IRIS Performer scene graph requires a definite knowledge of the
following IRIS Performer libpf node types - pfScene, pfGroup and pfGeode.

These nodes can be used to define a minimally functional IRIS Performer
scene graph. See Chapter 5 for more details on libpf and IRIS Performer scene
graphs and node types.

Defining Geometry and Graphics State for libpr

In order to input geometry and graphics into IRIS Performer, it is important
to have an understanding of how IRIS Performer’s low level rendering
objects work in libpr, IRIS Performer’s performance rendering library. The
main libpr rendering primitives are a pfGeoSet and a pfGeoState. A

Developing Custom Importers

259

pfGeoSet is a collection of like geometric primitives that can all be rendered
in exactly the same way in one large continuous chunk. A pfGeoState is a
complete definition of graphics mode settings for the rendering hardware
and software. It contains many attributes such as texture and material. Given
a pfGeoSet and a corresponding pfGeoState, libpr can completely and
efficiently render all of the geometry in the pfGeoSet. For a more detailed
description of pfGeoSets and pfGeoStates see Chapter 10 which goes into
detail on all libpr primitives and how IRIS Performer will use them.

However, realizing that IRIS Performer’s structuring of geometry and
graphics state is optimized for rendering speed and not for modelling ease
or general conceptual partitioning, IRIS Performer now contains a new
mechanism for translating external graphics state and geometry into
efficient libpr structures. This new mechanism is the pfdBuilder that exists in
libpfdu.

The pfdBuilder allows the immediate mode input of graphics state and
primitives through very simple and exposed data structures. After having
received all of the relevant information, the pfdBuilder builds efficient and
somewhat optimized libpr data structures and returns a low-level libpf node
that can be attached to an IRIS Performer scene graph. The pfdBuilder is the
recommended method of importing data from non IRIS Performer-based
formats into IRIS Performer.

Creation of a Performer Database Converter using libpfdu

Creating a new format converter is very simple process. More than thirty
database loaders are shipped with IRIS Performer in source code form to
serve as practical examples of this process. The loaders read formats that
range from trivial to complex, and should serve as an instructive starting
point for those developing loaders for other formats. These loaders can be
found in the directory /usr/share/Performer/src/lib/libpfdb/libpf*.

This section describes the libpfdu framework for creating a 3-D database
format converter. Let’s consider writing a converter for a simple ASCII
format that is called the Imaginary Immediate Mode format with the file
type extension “.iim”. This format is much like the more elaborate “.im”
format loader used at SGI for the purposes of testing basic IRIS Performer
functionality.

260

Chapter 9: Importing Databases

The first thing to do is set up the routine that pfdLoadFile() will call when it
attempts to load a file with the extension “.iim”.

extern pfNode *pfdLoadFile_iim(char *fileName)
{
}

This function needs to perform several basic actions:

1. Find and open the given file.

2. Reset the libpfdu pfdBuilder for input of new geometry and state.

3. Setup any pfdBuilder modes that the converter needs enabled.

4. Setup local data structures that can be used to communicate geometry
and graphics state with the pfdBuilder.

5. Setup a libpf pfGroup which can hold all of the logical partitions of
geometry in the file (or hold a subordinate collection of nodes as a
general scene graph if the format supports it).

6. Optionally set up a default state to use for geometry with unspecified
graphics state.

7. Parse the file which entails:

• Filling in the local geometry and graphics state data structures.

• Passing them to the pfdBuilder as inputted from the file

• Ask the pfdBuilder to build the data structures into IRIS Performer
data structures when a logical partition of the file has ended.

• Attach the IRIS Performer node returned by the build to the higher
level group which will hold the entire IRIS Performer
representation of this file. Note that this step becomes more
complex if the format supports the notion of hierarchy only in that
the appropriate libpf nodes must be created and attached to each
other via pfAddChild() to build the hierarchy. In this case requests
are made for the builder to build after inputting all of the geometry
and state found in a particular leaf node in the database.

8. Delete local data structures used to input geometry and graphics state.

9. Close the file.

Developing Custom Importers

261

10. Perform any optional optimization of the IRIS Performer scene graph.
Optimizations might include calls to pfdFreezeTransforms(),
pfFlatten() or pfdCleanTree().

11. Return the pfGroup containing the entire IRIS Performer representation
of the database file.

Steps 1-8 expand the function outline to the following:

extern pfNode *pfdLoadFile_iim(char *fileName)
{

FILE* iimFile;
pfdGeom* polygon;
pfGroup* root;

/* Performer has utility for finding and opening file */
if ((iimFile = pfdOpenFile(fileName)) == NULL)
return NULL;

/* Clear builder from previous converter invocations */
pfdResetBldrGeometry();
pfdResetBldrState();

/* Call pfdBldrMode for any needed modes here */

/* Create polygon structure */
/* holds one N-sided polygon where N is < 300 */
polygon = pfdNewGeom(300);

/* Create pfGroup to hold entire database */
/* loaded from this file */
root = pfNewGroup();

/* Specify state for geometry with no graphics state */
/* As well as default enables, etc. This routine */
/* should invoke pfdCaptureDefaultBldrState()*/
SetupDefaultGraphicsStateIfThereIsOne();

/* Do all the real work in parsing the file and */
/* converting into Performer */
ParseIIMFile(iimFile, root, polygon);

/* Delete local polygon struct */
pfdDelGeom(polygon);

262

Chapter 9: Importing Databases

/* Close File */
fclose(iimFile);

/* Optimize IRIS Performer scene graph */
/* via use of pfFlatten, pfdCleanTree, etc. */
OptimizeGraph(root);

return (pfNode*)root;
}

Now, for at the heart of the file loader lies the ParseIIMFile() function. The
specifics of parsing a file are completely dependent on the format so the
parsing will be left as an exercise to the reader. However, the following code
fragments should show a framework for what goes into integrating the
parser with the pfdBuilder framework for geometry and graphics state data
conversion. Note that several possible graphics state inheritance models
might be used in external formats and that the pfdBuilder is designed to
support all of them:

• The default pfdBuilder state inheritance is that of immediate mode
graphics state. Immediate mode state is specified through calls to
pfdBldrStateMode(), pfdBldrStateAttr(), and pfdBldrStateVal().

• There also exists a pfdBuilder state stack for hierarchical state
application to geometry. This is accomplished through the use of
pfdPushBldrState() and pfdPopBldrState() in conjuncture with the
normal use of the immediate mode pfdBuilder state API.

• Lastly, there is a pfdBuilder named state list that can be used to define a
number of ‘named materials’ or ‘named state definitions’ that can then
be recalled in one API called (for instance a user might define a ‘brick’
state with a red material and a brick texture. Later he might just want to
say ‘brick’ is the current state and then input the walls of several
buildings). This type of state naming is accomplished by fully
specifying the state to be named via the immediate mode API, and then
calling pfdSaveBldrState(). This state can then be recalled via
pfdLoadBldrState().

ParseIIMFile(FILE *iimFile, pfGroup *root, pfdGeom *poly)
{

while((op = GetNextOp(iimFile)) != NULL)
{

switch(op)
{

Developing Custom Importers

263

case GEOMETRY_POLYGON:
polygon->numVerts = GetNumVerts(iimFile);

/* Determine if polygon has Texture Coords */
if (pfdGetBldrStateMode(PFSTATE_ENTEXTURE)==PF_ON)

polygon->tbind = PFGS_PER_VERTEX;
else

polygon->tbind = PFGS_OFF;

/* Determine if Polygon has normals */
if (AreThereNormalsPerVertex() == TRUE)

polygon->nbind = PFGS_PER_VERTEX;
else if

(pfdGetBldrStateMode(PFSTATE_ENLIGHTING)==PF_ON)
polygon->nbind = PFGS_PER_PRIM;

else
polygon->nbind = PFGS_OFF;

/* Determine if Polygon has colors */
if (AreThereColorsPerVertex() == TRUE)

polygon->cbind = PFGS_PER_VERTEX;
else if (AreThereColorsPerPrim() == TRUE)

polygon->cbind = PFGS_PER_PRIM;
else

polygon->cbind = PFGS_OFF;
for(i=0;i<polygon->numVerts;i++)

 {
/* Read ith Vertex into local data structure */
polygon->coords[i][0] = GetNextVertexFloat();
polygon->coords[i][1] = GetNextVertexFloat();
polygon->coords[i][2] = GetNextVertexFloat();

/* Read texture coord for ith vertex if any */
if (polygon->tbind == PFGS_PER_VERTEX)
{

polygon->texCoords[i][0] = GetNextTexFloat();
polygon->texCoords[i][1] = GetNextTexFloat();

}

/* Read normal for ith Vertex if normals bound*/
if (polygon->nbind == PFGS_PER_VERTEX)
{

polygon->norms[i][0] = GetNextNormFloat();
polygon->norms[i][1] = GetNextNormFloat();
polygon->norms[i][2] = GetNextNormFloat();

264

Chapter 9: Importing Databases

}
/* Read only one normal per prim if necessary */
else if ((polygon->nbind == PFGS_PER_PRIM) &&

(i == 0))
{

polygon->norms[0][0] = GetNextNormFloat();
 polygon->norms[0][1] = GetNextNormFloat();

polygon->norms[0][2] = GetNextNormFloat();
}

/* Get Color for the ith Vertex if color bound*/
if (polygon->cbind == PFGS_PER_VERTEX)
{

polygon->colors[i][0] =
GetNextColorFloat();

polygon->colors[i][1] =
GetNextColorFloat();

polygon->colors[i][2] =
GetNextColorFloat();

}
/* Get one color per prim if necessary */
else if ((polygon->cbind == PFGS_PER_PRIM) &&

 (i == 0))
{

polygon->colors[0][0] =
GetNextColorFloat();

polygon->colors[0][1] =
GetNextColorFloat();

polygon->colors[0][2] =
GetNextColorFloat();

}
}
/* Add this polygon to pfdBuilder */

 /* Because it is a single poly, 1 */
/* is specified here */
pfdAddBldrGeom(1);
break;

case GRAPHICS_STATE_TEXTURE:
{

char *texName;
pfTexture *tex;
texName = ReadTextureName(iimFile);
if (texName != NULL)
{

/* Get prototype tex from pfdBuilder*/

Developing Custom Importers

265

tex =
pfdGetTemplateObject(pfGetTexClassType())

;

/* This clears that object to default */
pfdResetObject(tex);

/* If just the name of a pfTexture is */
/* set, pfdBuilder will auto find & Load */
/* the texture*/
pfTexName(tex,texName);

/* This is the current pfdBuilder */
/* texture and texturing is on */
pfdBldrStateAttr(PFSTATE_TEXTURE,tex);
pfdBldrStateMode(PFSTATE_ENTEXTURE, PF_ON);

}
else
{

/* No texture means disable texturing */
/* And set current texture to NULL */
pfdBldrStateMode(PFSTATE_ENTEXTURE,PF_OFF);
pfdBldrStateAttr(PFSTATE_TEXTURE, NULL);

}
}
break;

case GRAPHICS_STATE_MATERIAL:
{

pfMaterial *mtl;
mtl = pfdGetTemplateObject(pfGetMtlClassType());
pfdResetObject(mtl);
pfMtlColor(mtl, PFMTL_AMBIENT,

GetAmRed(), GetAmGreen(), GetAmBlue());
pfMtlColor(mtl, PFMTL_DIFFUSE,

GetDfRed(), GetDfGreen(), GetDfBlue());
pfMtlColor(mtl, PFMTL_SPECULAR,

GetSpRed(), GetSpGreen(), GetSpBlue());
pfMtlShininess(mtl, GetMtlShininess());
pfMtlAlpha(mtl, GetMtlAlpha());
pfdBldrStateAttr(PFSTATE_FRONTMTL, mtl);
pfdBldrStateAttr(PFSTATE_BACKMTL, mtl);

}
break;

case GRAPHICS_STATE_STORE:
pfdSaveBldrState(GetStateName());

266

Chapter 9: Importing Databases

break;
case GRAPHICS_STATE_LOAD:

pfdLoadBldrState(GetStateName());
break;

case GRAPHICS_STATE_PUSH:
pfdPushBldrState();
break;

case GRAPHICS_STATE_POP:
pfdPopBldrState();
break;

case GRAPHICS_STATE_RESET:
pfdResetBldrState();
break;

case GRAPHICS_STATE_CAPTURE_DEFAULT:
pfdCaptureDefaultBldrState();
break;

case BEGIN_LEAF_NODE:
/* Not really necessary because it is */
/* destroyed on build*/
pfdResetBldrGeometry();
break;

case END_LEAF_NODE:
{

pfNode *nd = pfdBuild();
if (nd != NULL)

pfAddChild(root,nd);
}
break;

}
}

}

One of the fundamental structures involved in the above routine outline is
the pfdGeom structure which users fill in with information about a single
primitive, or a single strip of primitives. The pfdGeom structure is essential
in communicating with the pfdBuilder and is defined as follows:

typedef struct _pfdGeom
{
 int flags;
 int nbind, cbind, tbind;

 int numVerts;
 short primtype;

Developing Custom Importers

267

 float pixelsize;

 /* Non-indexed attributes */
/* ..do not set if poly is indexed */

 pfVec3 *coords;
 pfVec3 *norms;
 pfVec4 *colors;
 pfVec2 *texCoords;

 /* Indexed attributes */
/* ..do not set if poly is non-indexed */

 pfVec3 *coordList;
 pfVec3 *normList;
 pfVec4 *colorList;
 pfVec2 *texCoordList;

 /* Index lists*/
/* ..do not set if poly is non-indexed */

 ushort *icoords;
 ushort *inorms;
 ushort *icolors;
 ushort *itexCoords;

 struct _pfdGeom *next;
} pfdGeom;

See the pfdGeoBuilder(3pf) reference pages for more information on using
this structure along with its sister structure, the pfdPrim.

The above should provide a well-defined framework for creating a database
converter that can be used with any IRIS Performer applications via the
pfdLoadFile() functionality.

268

Chapter 9: Importing Databases

However, it is also important to note that there are a multitude of pfdBuilder
modes and attributes that can be used to affect some of the basic methods
that the builder actually uses:

Table 9-5 pfdBuilder Modes and Attributes

Function Name Token Description

pfd{Get}BldrMode PFDBLDR_MESH_ENABLE

PFDBLDR_MESH_SHOW_TSTRIPS

PFDBLDR_MESH_INDEXED

PFDBLDR_MESH_MAX_TRIS

PFDBLDR_MESH_RETESSELLATE

PFDBLDR_MESH_LOCAL_LIGHTING

PFDBLDR_AUTO_COLORS

PFDBLDR_AUTO_NORMALS

PFDBLDR_AUTO_ORIENT

PFDBLDR_AUTO_ENABLES

PFDBLDR_AUTO_CMODE

PFDBLDR_AUTO_DISABLE_TCOORDS_BY_STATE

PFDBLDR_AUTO_DISABLE_NCOORDS_BY_STATE

PFDBLDR_AUTO_LIGHTING_STATE_BY_NCOORDS

PFDBLDR_AUTO_LIGHTING_STATE_BY_MATERIALS

PFDBLDR_AUTO_TEXTURE_STATE_BY_TEXTURES

PFDBLDR_AUTO_TEXTURE_STATE_BY_TCOORDS

PFDBLDR_BREAKUP

PFDBLDR_BREAKUP_SIZE

PFDBLDR_BREAKUP_BRANCH

PFDBLDR_BREAKUP_STRIP_LENGTH

PFDBLDR_SHARE_MASK

PFDBLDR_ATTACH_NODE_NAMES

PFDBLDR_DESTROY_DATA_UPON_BUILD

PFDBLDR_PF12_STATE_COMPATIBLE

PFDBLDR_BUILD_LIMIT

PFDBLDR_GEN_OPENGL_CLAMPED_TEXTURE_COORDS

PFDBLDR_OPTIMIZE_COUNTS_NULL_ATTRS

pfd{Get}BldrAttr PFDBLDR_NODE_NAME_COMPARE

PFDBLDR_STATE_NAME_COMPARE

Supported Database Formats

269

Because the pfdBuilder is released as source code, it is easy to add further
functionality and more modes and attributes to even further customize this
central functionality.

In fact, because the pfdBuilder acts as a “data funnel” in converting data into
IRIS Performer run-time structures, it is easy to control the behavior of many
standard conversion tasks through merely globally setting builder modes
which will subsequently affect all converters that use the pfdBuilder to
process their data.

Supported Database Formats

Vendors of several leading database construction and processing tools have
provided database-loading software for you to use with IRIS Performer. This
section describes these loaders, the loaders developed by the IRIS Performer
engineering team, and several loaders developed in the IRIS Performer user
community for other database formats.

Importing your databases is simple if they’re in formats for which IRIS
Performer database loaders have already been written. Each of the loaders
listed in Table 9-6 is included with IRIS Performer. If you want to import or
export databases in any of these formats, refer to the appropriate section of
this chapter for specific details about the individual loaders.

Table 9-6 Supported Database Formats

Name Description

3ds AutoDesk 3DStudio binary data

bin SGI format used by powerflip

bpoly Side Effects Software PRISMS binary data

byu Brigham Young University CAD/FEA data

dwb Coryphaeus Software Designer’s Workbench data

dxf AutoDesk AutoCAD ASCII format

flt11 MultiGen public domain Flight v11 format

flt14 MultiGen OpenFlight v14 format

270

Chapter 9: Importing Databases

gds McDonnell-Douglas GDS things data

gfo Old SGI radiosity data format

im Simple IRIS Performer data format

irtp AAI/Graphicon Interactive Real-Time PHIGS

iv SGI Open Inventor format (VRML 1.0 superset)

lsa Lightscape Technologies ASCII radiosity data

lsb Lightscape Technologies binary radiosity data

medit Medit Productions medit modeling data

nff Eric Haines’ ray tracing test data

obj Wavefront Technologies data format

pegg Radiosity research data format

phd SGI polyhedron data format

poly Side Effects Software PRISMS ASCII data

ptu Simple IRIS Performer terrain data format

s1k US ARMY SIMNET database format

sgf US Naval Academy standard graphics format

sgo Paul Haeberli’s graphics data format

spf US Naval Academy simple polygon format

sponge Sierpinski sponge 3D fractal generator

star Astronomical data from Yale University star chart

stla 3D Structures ASCII stereolithography data

stlb 3D Structures binary stereolithography data

stm Michael Garland’s terrain data format

sv John Kichury’s i3dm modeler format

Table 9-6 (continued) Supported Database Formats

Name Description

Description of Supported Formats

271

Description of Supported Formats

AutoDesk 3DS Format

The AutoDesk 3DS format is used by the 3DStudio program and by a
number of 3D file-interchange tools. The IRIS Performer loader for 3DS files
is located in the /usr/share/Performer/src/lib/libpfdb/libpf3ds directory. This
loader uses an auxiliary library, 3dsftk.a, to parse and interpret the 3ds file.

pfdLoadFile() uses the function pfdLoadFile_3ds() to import data from
3DStudio files into IRIS Performer run-time data structures:

Silicon Graphics BIN Format

The Silicon Graphics BIN format is supported by both Showcase™ and the
powerflip demonstration program. BIN files are in a simple format that
specifies only independent quadrilaterals.

The image in Figure 9-1 shows several of the BIN-format objects provided in
the IRIS Performer sample data directory.

tri University of Minnesota Geometry Center data

unc University of North Carolina walkthrough data

Table 9-6 (continued) Supported Database Formats

Name Description

272

Chapter 9: Importing Databases

Figure 9-1 BIN-Format Data Objects

The source code for the BIN-format importer pfdLoadFile_bin() is provided
in the file pfbin.c. This code shows how easy it can be to implement an
importer. Since pfdLoadFile_bin() is based on the pfdBuilder() utility
function, it will build efficient triangle-strip pfGeoSets from the
quadrilaterals of a given BIN file. The BIN format has the following
structure:

1. A 4-byte magic number, 0x5432, which identifies the file as a BIN file.

2. A 4-byte number that contains the number of vertices, which is four
times the number of quadrilaterals.

3. Four bytes of zero.

4. A list of polygon data for each vertex in the object. The data consists of
three floating-point words of information about normals, followed by
three floating-point words of vertex information.

Description of Supported Formats

273

The BIN format uses these data structures:

typedef struct
{
 float normal[3];
 float coordinate[3];
} Vertex;

typedef struct
{
 long magic;
 long vertices;
 long zero;
 Vertex vertex[1];
} BinFile;

pfdLoadFile() uses the function pfdLoadFile_bin() to import data from BIN
format files into IRIS Performer run-time data structures:

The pfdLoadFile_bin() function composes a random color for each file it
reads. The chosen color has red, green, and blue components uniformly
distributed within the range 0.2 to 0.7 and is fully opaque.

Side Effects POLY Format

The Side Effects software PRISMS database modeler format supports both
ASCII and binary forms of the POLY format. The IRIS Performer loader for
ASCII “.poly” files is located in the /usr/share/Performer/src/lib/libpfdb/libpfpoly
directory. The binary format “.bpoly” loader is located in the directory
/usr/share/Performer/src/lib/libpfdb/libpfbpoly. These formats are equivalent in
content and differ only in representation.

The POLY format is an easy to understand ASCII data representation with
the following structure:

1. A text line containing the keyword “POINTS”

2. One text line for each vertex in the file. Each line begins with a vertex
number, followed by a colon, followed by the X, Y, and Z axis
coordinates of the vertex, optional additional information, and a
new-line character. The optional information includes color

274

Chapter 9: Importing Databases

specification in the form “c(R,G,B,A)”, a normal vector of the form
“n(NX,NY,NZ)”, or a texture coordinate in the form “uv(S,T)” where
each of the values shown are floating point numbers.

3. A text line containing the keyword “POLYS”

4. One text line for each polygon in the file. Each line begins with a
polygon number, followed by a colon, followed by a series of vertex
indices, optional additional information, an optional “<“ character, and
a new-line. The optional information includes color specification in the
form “c(R,G,B,A)”, a normal vector of the form “n(NX,NY,NZ)”, or a
texture coordinate in the form “uv(S,T)” where the values in
parentheses are floating point numbers.

Here is a sample POLY format file for a cube with colors, texture coordinates,
and normals specified at each vertex:

POINTS
1: -0.5 -0.5 -0.5 c(0, 0, 0, 1) uv(0, 0) n(0, -1, 0)
2: -0.5 -0.5 0.5 c(0, 0, 1, 1) uv(0, 0) n(0, -1, 0)
3: 0.5 -0.5 0.5 c(1, 0, 1, 1) uv(1, 0) n(0, -1, 0)
4: 0.5 -0.5 -0.5 c(1, 0, 0, 1) uv(1, 0) n(0, -1, 0)
5: -0.5 -0.5 0.5 c(0, 0, 1, 1) uv(0, 0) n(0, 0, 1)
6: -0.5 0.5 0.5 c(0, 1, 1, 1) uv(0, 1) n(0, 0, 1)
7: 0.5 0.5 0.5 c(1, 1, 1, 1) uv(1, 1) n(0, 0, 1)
8: 0.5 -0.5 0.5 c(1, 0, 1, 1) uv(1, 0) n(0, 0, 1)
9: -0.5 0.5 0.5 c(0, 1, 1, 1) uv(0, 1) n(0, 1, 0)
10: -0.5 0.5 -0.5 c(0, 1, 0, 1) uv(0, 1) n(0, 1, 0)
11: 0.5 0.5 -0.5 c(1, 1, 0, 1) uv(1, 1) n(0, 1, 0)
12: 0.5 0.5 0.5 c(1, 1, 1, 1) uv(1, 1) n(0, 1, 0)
13: -0.5 -0.5 -0.5 c(0, 0, 0, 1) uv(0, 0) n(0, 0, -1)
14: 0.5 -0.5 -0.5 c(1, 0, 0, 1) uv(1, 0) n(0, 0, -1)
15: 0.5 0.5 -0.5 c(1, 1, 0, 1) uv(1, 1) n(0, 0, -1)
16: -0.5 0.5 -0.5 c(0, 1, 0, 1) uv(0, 1) n(0, 0, -1)
17: -0.5 -0.5 -0.5 c(0, 0, 0, 1) uv(0, 0) n(-1, 0, 0)
18: -0.5 0.5 -0.5 c(0, 1, 0, 1) uv(0, 1) n(-1, 0, 0)
19: -0.5 0.5 0.5 c(0, 1, 1, 1) uv(0, 1) n(-1, 0, 0)
20: -0.5 -0.5 0.5 c(0, 0, 1, 1) uv(0, 0) n(-1, 0, 0)
21: 0.5 0.5 0.5 c(1, 1, 1, 1) uv(1, 1) n(1, 0, 0)
22: 0.5 0.5 -0.5 c(1, 1, 0, 1) uv(1, 1) n(1, 0, 0)
23: 0.5 -0.5 -0.5 c(1, 0, 0, 1) uv(1, 0) n(1, 0, 0)
24: 0.5 -0.5 0.5 c(1, 0, 1, 1) uv(1, 0) n(1, 0, 0)
POLYS
1: 1 2 3 4 <
2: 5 6 7 8 <

Description of Supported Formats

275

3: 9 10 11 12 <
4: 13 14 15 16 <
5: 17 18 19 20 <
6: 21 22 23 24 <

pfdLoadFile() uses the functions pfdLoadFile_poly() and
pfdLoadFile_bpoly() to import data from “.poly” and “.bpoly” format files
into IRIS Performer run-time data structures:

Brigham Young University BYU Format

The Brigham Young University “.byu” format is used as an interchange
format by some finite element analysis packages. The IRIS Performer loader
for “.byu” files is located in the /usr/share/Performer/src/lib/libpfdb/libpfbyu
directory.

The format of a BYU file consists of four parts as defined below:

1. A text line containing four counts: the number of parts, the number of
vertices, the number of polygons, and the number of elements in the
connectivity array.

2. The part definition list, containing the starting polygon number and
ending polygon number (one pair per line) for parts lines.

3. The vertex list, which has the X, Y, Z coordinates of each vertex in the
database packed two per line. This means that vertices 1 and 2 are on
the first line, 3 and 4 are on the second, and so on for (vertices + 1)/2
lines of text in the file.

4. The connectivity array, with an entry for each polygon. These entries
may span multiple lines in the input file and each consists of three or
more vertex indices with the last negated as an end of list flag. For
example, if the first polygon were a quad, the connectivity array might
start with “1 2 3 -4” to define a polygon that connects the first four
vertices in order.

276

Chapter 9: Importing Databases

The following BYU format file defines two adjoining quads:

2 6 2 0
1 1
2 2
0 0 0 10 0 0
10 10 0 0 10 0
10 10 10 0 10 10
1 2 3 -4
4 3 5 -6

pfdLoadFile() uses the function pfdLoadFile_byu() to import data from
“.byu” format files into IRIS Performer run-time data structures.

Designer’s Workbench DWB Format

The binary DWB format is used for input and output by the Designer’s
Workbench, EasyT, and EasyScene database modeling tools produced by
Coryphaeus Software. DWB is an advanced database format that directly
represents many of IRIS Performer’s attribute and hierarchical scene graph
concepts.

An importer for this format, named pfdLoadFile_dwb(), has been provided
by Coryphaeus Software for your use. The loader code and its associated
documentation are in the /usr/share/Performer/src/lib/libpfdb/libpfdwb
directory.

The image in Figure 9-2 shows a model of the Soma Cube puzzle invented
by Piet Hein. The model was created using Designer’s Workbench. Each of
the pieces is stored as an individual DWB-format file. Do you see how to
form the 3 x 3 cube at the lower left from the seven individual pieces?

Description of Supported Formats

277

Figure 9-2 Soma Cube Puzzle in DWB Form

pfdLoadFile() uses the function pfdLoadFile_dwb() to load Designer’s
Workbench files into IRIS Performer run-time data structures.

AutoCAD DXF Format

The DXF format originated with Autodesk’s AutoCAD database modeling
system. The version recognized by the pfdLoadFile_dxf() database importer
is a subset of ASCII Drawing Interchange Format (DXF) Release 12. The
binary version of the DXF format, also known as DXF, isn’t supported.
Source code for the importer is in the file
/usr/share/Performer/src/lib/libpfdb/libpfdxf/pfdxf.c. pfdLoadFile_dxf() was
derived from the DXF-to-DKB data file converter developed and placed in
the public domain by Aaron A. Collins.

278

Chapter 9: Importing Databases

The image in Figure 9-3 shows a DXF model of the famous Utah teapot. This
model was loaded from DXF format using the pfdLoadFile_dxf() database
importer.

Figure 9-3 The Famous Teapot in DXF Form

The DXF format has an unusual though well-documented structure. The
general organization of a DXF file is

1. HEADER section with general information about the file

2. TABLES section to provide definitions for named items, including:

■ LTYPE, the line-type table

■ LAYER, the layer table

■ STYLE, the text-style table

■ VIEW, the view table

■ UCS, the user coordinate-system table

Description of Supported Formats

279

■ VPORT, the viewport configuration table

■ DIMSTYLE, the dimension style table

■ APPID, the application identification table

3. BLOCKS section containing block definition entities

4. ENTITIES section containing entities and block references

5. END-OF-FILE

Within each section are groups of values, where each value is defined by a
two-line pair of tokens. The first token is a numeric code indicating how to
interpret the information on the next line. For example, the sequence

10
1.000
20
5.000
30
3.000

defines a “start point” at the XYZ location (1, 5, 3). The codes 10, 20, and 30
indicate, respectively, that the primary X, Y, and Z values follow. All data
values are retained in a set of numbered registers (10, 20, and 30 in this
example), which allows values to be reused. This simple state-machine type
of run-length coding makes DXF files space-efficient at the cost of making
them harder to interpret.

pfdLoadFile() uses the function pfdLoadFile_dxf() to load DXF format files
into IRIS Performer run-time data structures.

Several widely available technical books provide full details of this format if
you need more information. Chief among these are AutoCAD Programming,
2nd Edition, by Dennis N. Jump, Windcrest Books, 1991, and AutoCAD: The
Complete Reference, Second Edition, by Nelson Johnson, Osborne
McGraw-Hill, 1991.

280

Chapter 9: Importing Databases

MultiGen OpenFlight Format

The OpenFlight format is a binary format used for input and output by the
MultiGen and ModelGen database modeling tools produced by MultiGen. It
is a comprehensive format that can represent nearly all of IRIS Performer’s
advanced concepts, including object hierarchy, instancing, level-of-detail
selection, light-point specification, texture mapping, and material property
specification.

MultiGen has provided an OpenFlight-format importer, pfdLoadFile_flt(),
for your use. The loaders and associated documentation are in the
directories /usr/share/Performer/src/lib/libpfdb/libpfflt11 and libpfflt14. Refer to
the Readme files in these directories for important information about the
loaders and for help in contacting MultiGen for information about
pfdLoadFile_flt() or the OpenFlight format.

The image in Figure 9-4 shows a model of a spacecraft created by Viewpoint
Animation Engineering using MultiGen. This OpenFlight format model was
loaded into IRIS Performer using pfdLoadFile_flt().

Description of Supported Formats

281

Figure 9-4 Spacecraft Model in FLIGHT Format

pfdLoadFile() uses the function pfdLoadFile_flt() to load OpenFlight
format files into IRIS Performer run-time data structures.

Files in the OpenFlight format are structured as a linear sequence of records.
The first few bytes of each record are a header containing an op-code, the
length of the record, and possibly an ASCII name for the record. The first
record in the file is a special “database header” record whose op-code, stored
as a 2-byte short integer, has the value 1. This opcode header can be used to
identify OpenFlight-format files. By convention, these files have a “.flt”
filename extension.

pfdLoadFile_flt() makes use of several environment variables when locating
data and texture files. These variables and several additional functions,
including pfdConverterMode_flt(), pfdGetConverterMode_flt(), and
pfdConverterAttr_flt() assist in OpenFlight file processing.

282

Chapter 9: Importing Databases

McDonnell-Douglas GDS Format

The “.gds” format (also known as the “Things” format) is used in at least one
CAD system, and a minimal loader for this format has been developed for
IRIS Performer users. The IRIS Performer loader for “.gds” files is located in
the /usr/share/Performer/src/lib/libpfdb/libpfgds directory.

The GDS format subset accepted by the pfdLoadFile_gds() function is easy
to describe. It consists of the following five sequential sections in an ASCII
file.

1. The number of vertices, which is given following a “YIN” tag.

2. The vertices, with one X, Y, Z triple per line for vertices lines.

3. The number zero on a line by itself.

4. The number of polygons on a line by itself.

5. A series of polygon definitions, each of which is represented on two or
more lines. The first line contains the number one and the name of a
material to use for the polygon. The next line or lines contain the
indices for the polygons vertices. The first number on the first line is the
number of vertices. This is followed by that number of vertex indices on
that, and possibly subsequent, lines.

pfdLoadFile() uses the function pfdLoadFile_gds() to load “.gds” format
files into IRIS Performer.

Silicon Graphics GFO Format

The GFO format is the simple ASCII format of the barcelona database that is
provided in the IRIS Performer sample database directory. This database
represents the famous German Pavilion at the Barcelona Exhibition of 1929,
which was designed by Ludwig Mies van der Rohe and is shown in
Figure 9-5.

Description of Supported Formats

283

Figure 9-5 GFO Database of Mies van der Rohe’s German Pavilion

The source code for the GFO-format loader is provided in the file
/usr/share/Performer/src/lib/libpfdb/libpfgfo/pfbin.c.

pfdLoadFile() uses the function pfdLoadFile_gfo() to load GFO format files
into IRIS Performer run-time data-structures.

When working with GFO files, remember that hardware lighting isn’t used
since all illumination effects have already been accounted for with the
ambient color at each vertex.

The GFO format defines polygons with a color at every vertex. It is the
output format of an early radiosity system. Files in this format have a simple
ASCII structure, as indicated by the following abbreviated GFO file:

scope {
v3f {42.9632 8.7500 0.9374}
cpack {0x8785a9}
v3f {42.9632 8.0000 0.9374}

284

Chapter 9: Importing Databases

cpack {0x8785a9}
...
v3f {-1.0000 -6.5858 10.0000}
cpack {0xffffff}
polygon {cpack[0] v3f[0] cpack[1] v3f[1] cpack[2] v3f[2] cpack[3] v3f[3] }
polygon {cpack[4] v3f[4] cpack[5] v3f[5] cpack[6] v3f[6] cpack[7] v3f[7] }
...
polygon {cpack[7330] v3f[7330] cpack[7331] v3f[7331] cpack[7332] v3f[7332]
cpack[7333] v3f[7333] }
instance {
polygon[0]
polygon[1]
...
polygon[2675]
}
}

This example is taken from the file barcelona-l.gfo, one of only two known
databases in the GFO format. The importer uses functions from the libpfdu
library (such as those from the pfdBuilder) to generate efficient shared
triangle strips. This increases the speed with which GFO databases can be
drawn and reduces the size and complexity of the loader, since the builder’s
functions hide the details of the pfGeoSet construction process.

Silicon Graphics IM Format

The “.im” format is a simple format developed for test purposes by the IRIS
Performer engineering team. As new features are added to IRIS Performer,
the “.im” loader is extended to allow experimentation and testing. A recent
example of this is support for pfText, pfString, and pfFont objects which can
be seen by running perfly on the sample data file fontsample.im. The IRIS
Performer “.im” loader is in the /usr/share/Performer/src/lib/libpfdb/libpfim
directory.

Here is an example IM format file that creates an extruded 3D text string.
Copy this to a file ending in the extension “.im” and load it into Perfly. For a
complete example of how text is handled in IRIS Performer, use Perfly to
examine the file /usr/share/Performer/data/fontsample2.im.

breakup 0 0.0 0 0
new root top
end_root

Description of Supported Formats

285

new font mistr-extruded Mistr 3
end_font

new str_text textnode mistr-extruded 1
Hello World||
end_text

attach top textnode

pfdLoadFile() uses the function pfdLoadFile_im() to load “.im” format files
into IRIS Performer run-time data structures:

pfdLoadFile_im() searches the current IRIS Performer file path for the
named file and returns a pointer to the pfNode parenting the imported scene
graph, or NULL if the file isn’t readable or doesn’t contain a valid database.

AAI/Graphicon IRTP Format

The AAI/Graphicon “.irtp” format is used by the TopGen database
modeling system and by the Graphicon-2000 image generator. The name
IRTP is an acronym for Interactive Real-Time PHIGS. The IRIS Performer
“.irtp” loader is in the /usr/share/Performer/src/lib/libpfdb/libpfirtp directory.
Though loader does not support the more arcane IRTP features, such as
binary separating planes or a global matrix table, it has served as a basis for
porting applications to IRIS Performer and the RealityEngine.

pfdLoadFile() uses the function pfdLoadFile_irtp() to load IRTP format files
into IRIS Performer run-time data-structures.

Silicon Graphics Open Inventor Format

The Open Inventor object-oriented 3D-graphics toolkit defines a persistent
data format that is also a superset of the VRML networked graphics data
format. The image in Figure 9-6 shows a sample Open Inventor data file.

286

Chapter 9: Importing Databases

Figure 9-6 Aircar Database in IRIS Inventor Format

The model in Figure 9-6 represents one design for the perennial “personal
aircar of the future” concept. It was created, using Imagine, by Mike
Halvorson of Impulse, and was modeled after the Moller 400 as described in
Popular Mechanics.

The Open Inventor data-file loader provided with IRIS Performer reads both
binary and ASCII format Open Inventor data files. Open Inventor scene
graph description files in both formats have the suffix “.iv” appended to
their file names.

Here is a simple Open Inventor file that defines a cone:

#Inventor V2.1 ascii

Separator {
 Cone {
 }
}

Description of Supported Formats

287

The source code for the Open Inventor format importer is provided in the
libpfdb/libpfiv source directory.

pfdLoadFile() uses the function pfdLoadFile_iv() to load Open Inventor
format files into IRIS Performer run-time data-structures. Because VRML is
a subset of Open Inventor 2.1, if you have Open Inventor 2.1 installed, you
can also read VRML “.wrl” files using pfdLoadFile(). IRIS Performer also
comes with an Inventor loader that works with Open Inventor 2.0, if Open
Inventor 2.1 is not installed.

Lightscape Technologies LSA and LSB Formats

The Lightscape Visualization system is a product of Lightscape
Technologies, Inc., and is designed to compute accurate simulations of
global illumination within complex 3D environments. The output files
created with Lightscape Visualization can be read into IRIS Performer for
real-time visual exploration.

Lightscape Technologies provides importers for two of their database
formats, the simple ASCII LSA format and the comprehensive binary LSB
format. These loaders are in the /usr/share/Performer/src/lib/libpfdb/libpflsa and
libpflsb directories, in the files pflsa.c and pflsb.c.Files in the LSA format are in
ASCII and have the following components:

1. a 4x4 view matrix representing a default transformation

2. counts of the number of independent triangles, independent
quadrilaterals, triangle meshes, and quadrilateral meshes in the file

3. geometric data definitions

288

Chapter 9: Importing Databases

There are four types of geometric definitions in LSA files. The formats of
these definitions are as shown in Table 9-7.

The Cn values in Table 9-7 refer to colors in the format accepted by the IRIS
GL function cpack(); these colors should be provided in decimal form. The
X, Y, and Z values are vertex coordinates. Polygon vertex ordering in LSA
files is consistently counter-clockwise, and polygon normals are not
specified. The first few lines of the LSA sample file chamber.0.lsa provide an
example of the format:

 0.486911 0.03228900 0.979046 0.9596590
-1.665110 0.00944197 0.286293 0.2806240
 0.000000 1.92730000 -0.017805 -0.0174524
 0.240398 -5.54670000 13.021200 13.4945000

1782 4751 0 0

t 4.35 -7.3677 2.57 6188666 6.5 -9.3 2.57 5663353 4.35 -9.3 2.57 5728890
t 6.5 -9.3 2.57 5663353 4.35 -7.3677 2.57 6188666 6.5 -8.2463 2.57 6057596

The count line indicates that the file contains 1782 independent triangles and
4751 independent quadrilaterals, which together represent 11,284 triangles.
The image in Figure 9-7 shows this database, the New Jerusalem City Hall.
This was produced by A. J. Diamond of Donald Schmitt and Company,
Toronto, Canada, using the Lightscape Visualization system.

Table 9-7 Geometric Definitions in LSA Files

Geometric Type Format

Triangle t X1 Y1 Z1 C1 X2 Y2 Z2 C2 X3 Y3 Z3 C3

Triangle mesh tm n
X1 Y1 Z1 C1
X2 Y2 Z2 C2
...

Quadrilateral q X1 Y1 Z1 C1 X2 Y2 Z2 C2 X3 Y3 Z3 C3 X4 Y4 Z4 C4

Quadrilateral mesh qm n
X1 Y1 Z1 C1
X2 Y2 Z2 C2
...

Description of Supported Formats

289

Figure 9-7 LSA-Format City Hall Database

pfdLoadFile() uses the function pfdLoadFile_lsa() to load LSA format files
into IRIS Performer run-time data-structures.

Files in the LSB binary format have a very different structure from LSA files.
Representing not just polygon data, they contain much of the structural
information present in the “.ls” files used by the Lightscape Visualization
system, including material, layer, and texture definitions as well as a
hierarchical mesh definition for geometry. This information is structured as
a series of data sections, which include:

• the signature, a text string that identifies the file

• the header, which contains global file information

• the material table, defining material properties

290

Chapter 9: Importing Databases

• the layer table, defining grouping and association

• the texture table, referencing texture images

• geometry in the form of clusters

The format of the geometric clusters is somewhat complicated. A cluster is a
group of coplanar surfaces called patches that share a common material,
layer, and normal. Each patch shares at least one edge with another patch in
the cluster. Each patch defines either a convex quadrilateral or a triangle, and
patches represent quad-trees called nodes. Each node points to its corner
vertices and its children. The leaf nodes point to their corner vertices and the
child pointers can optionally point to the vertices that split an edge of the
node. Only the locations of vertices that are corners of the patches are stored
in the file; other vertices are created by subdividing nodes of the quad-tree
as the LSB file is loaded. The color information for each vertex is unique and
is specified in the file.

The image in Figure 9-8 shows an LSB-format database developed during
the design of a hospital operating room. This database was produced by the
DeWolff Partnership of Rochester, New York, using the Lightscape
Visualization system.

Description of Supported Formats

291

Figure 9-8 LSB-Format Operating Room Database

pfdLoadFile() uses the function pfdLoadFile_lsb() to load LSB format files
into IRIS Performer run-time data-structures.

When working with Lightscape Technologies files, remember that hardware
lighting isn’t needed because all illumination effects have already been
accounted for with the ambient color at each vertex.

Medit Productions MEDIT Format

The “.medit” format is used by the Medit database modeling system
produced by Medit Productions. The Performer “.medit” loader is in the
/usr/share/Performer/src/lib/libpfdb/libpfmedit directory.

pfdLoadFile() uses the function pfdLoadFile_medit() to load MEDIT
format files into IRIS Performer run-time data-structures.

292

Chapter 9: Importing Databases

NFF Neutral File Format

The “.nff” format was developed by Eric Haines as a way to provide
standard procedural databases for evaluating ray tracing software. IRIS
Performer includes an extended NFF loader with superquadric torus
support, a named build keyword, and numerous small bug fixes. The “.nff”
loader is located in the /usr/share/Performer/src/lib/libpfdb/libpfnff directory.

The file /usr/share/Performer/data/sampler.nff uses each of the NFF data types.
It is an excellent way to explore the “Show Tree”, “Draw Style”, and
“Highlight Mode” features of Perfly. It is included here:

#-- torus
f .75 .00 .25 .6 .8 20 0
t 5 5 0 0 0 1 2 1
build torus

#-- cylinder
f .00 .75 .25 .6 .8 20 0
c
15 5 -3 2
15 5 3 2
#-- put a disc on the top and bottom of the cylinder
d 15 5 -3 0 0 -1 0 2
d 15 5 3 0 0 1 0 2
build cylinder

#-- cone
f .00 .25 .75 .6 .8 20 0
c
25 5 -3 3
25 5 3 0
#-- put a disc on the bottom of the cone
d 25 5 -3 0 0 -1 0 3
build cone

#-- sphere
f .75 .00 .75 .6 .8 20 0
s 5 15 0 3
build sphere

#-- hexahedron
f .25 .25 .50 .6 .8 20 0
h 13 13 -2 17 17 2

Description of Supported Formats

293

build hexahedron

#-- superquadric sphere
f .80 .10 .30 .6 .8 20 0
ss 25 15 0 2 2 2 .1 .4
build superquadric_sphere

#-- disc (washer shape)
f .20 .20 .90 .6 .8 20 0
d 5 25 0 0 0 1 1 2.5
build disc

#-- grid (height field)
f .80 .80 .10 .6 .8 20 0
g 4 4 12 18 22 28 0 4
0 0 0 0
0 1 0 0
0 0 -1 0
0 0 0 0
build grid

#-- superquadric torid
f .40 .20 .60 .6 .8 20 0
st 25 25 0 0.5 0.5 0.5 .33 .33 3
build superquadric_torid

#-- polygon with no normals
f .20 .20 .20 .6 .8 20 0
p 4
-5 -5 -10
35 -5 -10
35 35 -10
-5 35 -10
build polygon

pfdLoadFile() uses the function pfdLoadFile_nff() to load NFF format files
into IRIS Performer run-time data-structures.

Wavefront Technology OBJ Format

The OBJ format is an ASCII data representation read and written by the
Wavefront Technology Model program. A number of database models in this
format have been placed in the public domain, making this a useful format

294

Chapter 9: Importing Databases

to have available. IRIS Performer provides the function pfdLoadFile_obj()
to import OBJ files. The source code for pfdLoadFile_obj() is in the file pfobj.c
in the /usr/share/Performer/src/lib/libpfdb/libpfobj loader source directory.

The OBJ-format database shown in Figure 9-9 models an office building
that’s part of the Silicon Graphics corporate campus in Mountain View,
California.

Figure 9-9 Silicon Graphics Office Building as OBJ Database

Files in the OBJ format have a flexible all-ASCII structure, with simple
keywords to direct the parsing of the data. This format is best illustrated
with a short example that defines a texture-mapped square:

#-- ‘v’ defines a vertex; here are four vertices
v -5.000000 5.000000 0.000000
v -5.000000 -5.000000 0.000000
v 5.000000 -5.000000 0.000000
v 5.000000 5.000000 0.000000

#-- ‘vt’ defines a vertex texture coordinate; four are given

Description of Supported Formats

295

vt 0.000000 1.000000 0.000000
vt 0.000000 0.000000 0.000000
vt 1.000000 0.000000 0.000000
vt 1.000000 1.000000 0.000000

#-- ‘usemtl’ means select the material definition defined
#-- by the name MaterialName
usemtl MaterialName

#-- ‘usemap’ means select the texturing definition defined
#-- by the name TextureName
usemap TextureName

#-- ‘f’ defines a face. This face has four vertices ordered
#-- counter-clockwise from the upper left in both geometric
#-- and texture coordinates. Each pair of numbers separated
#-- by a slash indicates vertex and texture indices,
#-- respectively, for a polygon vertex.
f 1/1 2/2 3/3 4/4

pfdLoadFile() uses the function pfdLoadFile_obj() to load Wavefront OBJ
files into IRIS Performer run-time data-structures.

Silicon Graphics PHD Format

The PHD format was created to describe the geometric polyhedron
definitions derived mathematically by Andrew Hume and by the Kaleido
program of Zvi Har’El. This format describes only the geometric shape of
polyhedra; it provides no specification for color, texture, or appearance
attributes such as specularity.

The IRIS Performer sample data directories contain numerous polyhedra in
the PHD format. The image in Figure 9-10 shows many of the polyhedron
definitions laboriously computed by Andrew Hume.

296

Chapter 9: Importing Databases

Figure 9-10 Plethora of Polyhedra in PHD Format

The source code for the PHD-format importer is in the file
/usr/share/Performer/src/lib/libpfdb/libpfpoly/pfphd.c.

PHD format files have a line-structured ASCII form; an initial keyword
defines the contents of each line of data. The file format consists of a filename
definition (introduced by the keyword file) followed by one or more object
definitions.

Object definitions are bracketed by the keywords object.begin and object.end
and contain one or more polygon definitions. Objects can have a name in
quotes following the object.begin keyword; such a name is used by the loader
for the name of the corresponding IRIS Performer node.

Polygon definitions are bracketed by the keywords polygon.begin and
polygon.end and contain three or more vertex definitions.

Description of Supported Formats

297

Vertex definitions are introduced by the vertex keyword and define the X, Y,
and Z coordinates of a single vertex.

The following is a PHD-format definition of a unit-radius tetrahedron
centered at the origin of the coordinate axes. It is derived from the database
developed by Andrew Hume but has since been translated, scaled, and
reformatted.

file 000.phd
object.begin "tetrahedron"
polygon.begin
vertex -0.090722 -0.366647 0.925925
vertex 0.544331 -0.628540 -0.555555
vertex 0.453608 0.890430 0.037037
polygon.end
polygon.begin
vertex -0.907218 0.104757 -0.407407
vertex -0.090722 -0.366647 0.925925
vertex 0.453608 0.890430 0.037037
polygon.end
polygon.begin
vertex -0.090722 -0.366647 0.925925
vertex -0.907218 0.104757 -0.407407
vertex 0.544331 -0.628540 -0.555555
polygon.end
polygon.begin
vertex 0.453608 0.890430 0.037037
vertex 0.544331 -0.628540 -0.555555
vertex -0.907218 0.104757 -0.407407
polygon.end
object.end

pfdLoadFile() uses the function pfdLoadFile_phd() to load PHD format
files into IRIS Performer run-time data-structures.

The pfdLoadFile_phd() function composes a color with red, green, and blue
components uniformly distributed within the range 0.2 to 0.7 that is
consistent for each polygon with the same number of vertices within a single
polyhedron.

298

Chapter 9: Importing Databases

Silicon Graphics PTU Format

The PTU format is named for the IRIS Performer Terrain Utilities, of which the
pfdLoadFile_ptu() function is the sole example at the present time. This
function accepts as input the name of a control file (the file with the “.ptu”
filename extension) that defines the desired terrain parameters and
references additional data files.

The database shown in Figure 9-11 represents a portion of the Yellowstone
National Park. This terrain database was generated completely by the IRIS
Performer Terrain Utility data generator from digital terrain elevation data
and satellite photographic images. Image manipulation is performed using
the Silicon Graphics ImageVision Library™ functions.

Figure 9-11 Terrain Database Generated by PTU Tools

The PTU control file has a fixed format that doesn’t use keywords. The
contents of this file are simply ASCII values representing the following data
items:

Description of Supported Formats

299

1. The name to be assigned to the top-level pfNode built by
pfdLoadFile_ptu().

2. The number of desired levels-of-detail (LOD) for the resulting terrain
surface. The pfdLoadFile_ptu() function will construct this many
versions of the terrain, each representing the whole surface but with
exponentially fewer numbers of polygons in each version.

3. The numbers of highest-LOD tiles that will tessellate the entire terrain
surface in the X and Y axis directions.

4. Two numeric values that define the mapping of texture image pixels to
world-coordinate terrain geometry. These values are the number of
meters per texel (texture pixel) of filtered grid post data in the X and Y
axis dimensions.

5. The name of an image file that represents terrain height at regularly
spaced sample points in the form of a monochrome image whose
brightness at each pixel indicates the height at that sample point.
Additional arguments are the number of samples in the input image in
the X and Y directions, as well as the desired number of samples in
these directions. The pfdLoadFile_ptu() function resamples the grid
posts from the original to the desired resolution by filtering the height
image using SGI ImageVision Library functions.

6. The name of an image file that represents the terrain texture image at
regularly spaced sample points. Subsequent arguments are the number
of samples in the image in the X and Y directions as well as the desired
number of samples in these directions. This image will be applied to the
terrain geometry. The scale values provided in the PTU file allow the
terrain grid and texture image to be adjusted to create an orthographic
alignment.

7. An optional second texture-image filename that serves as a detail
texture when the terrain is viewed on RealityEngine systems. This
texture is used in addition to the base texture image.

8. An optional detail-texture spline-table definition. The blending of the
primary texture image and the secondary detail texture is controlled by
a blend table defined by this spline function. The spline table is optional
even when a detail texture is specified. Detail texture and its associated
blend functions are applicable only on RealityEngine systems.

300

Chapter 9: Importing Databases

The source code for the PTU-format importer is provided in the file
/usr/share/Performer/src/lib/libpfdb/libpfptu/pfptu.c.

pfdLoadFile() uses the function pfdLoadFile_ptu() to load PTU format files
into IRIS Performer run-time data-structures.

SIMNET S1000 Format

The S1000 format is used by the United States ARMY SIMNET distributed
simulation system for armored vehicle training. The IRIS Performer “.s1k”
loader is in the /usr/share/Performer/src/lib/libpfdb/libpfs1k directory. It consists
of two libraries, an IRIS Performer loader library developed by Todd R.
Pravata of Texas Instruments, Inc., in Plano Texas and an S1000 data format
toolkit that may be requested from the following source:

Frank Abbruscato
Director of Data Support Division
Digital Processing Center
US Army Topographic Engineering Center
7701 Telegraph Road
Alexandria, VA 22310-3864
phone: 703-355-2954
email: fabbrusc@tec.army.mil

The Texas Instruments S1K Loader is built on top of the S1000 Data Base API
developed by Loral Advanced Distributed Simulation. The S1000 API is
used to access the following S1000 data base elements:

• 3-D polygons for terrain, micro-terrainand culture.

• Model instance data

• Model geometry

• Texture patterns

• General data base information

Description of Supported Formats

301

The following S1000 database structures are not accessed by the loader since
they are two-dimensional representations of the database terrain and
features:

• Pole sets

• Defragmented Terrain Areal Features

The S1K Loader does not currently support loading dynamic models (with
articulated parts), though support is planned in future releases.

Control File

The S1000 data base loader uses the concept of a “control file” to control the
database load. An S1K control file is an ascii file that substitutes for the
formatted database file common to other loaders. The control file must have
a “.s1k” file suffix to be recognized as an S1K control file. Keyword and
parameter value pairs specified by the user are placed in the control file to
tailor the database load to the user’s requirements. Examples of control file
parameters are:

S1KPROJ <project_directory>
PROJECT <project_name>
ASSEMBLY_PREFIX <assembly_prefix>
SEARCH_WINDOW <xmin> <ymin> <xmax> <ymax>
ORIGIN <x> <y>
UTM
VIEWING_MODE [OTW | THERMAL | BOTH]
INCLUDE_INACTIVE_POLYGONS
MODEL_FILTER <filter_regexp>
VTX_NORMALS
LEAF_SIZE_MAX <integer_size>

Project selection

The minimum control file specifies which project to load. The default is to
load the entire project. The assembly prefix is assumed to be the same as the
project name unless the user has specified a different assembly prefix. The
control file also allows the user to specify the S1K project directory. If the
project directory is specified in the control file then this setting overrides the
environment variable setting S1KPROJ if any. The user may load a portion
of the entire S1000 data base by specifying the coordinates of a search

302

Chapter 9: Importing Databases

window (see the S1000 API User’s Manual for details about search window
selection).

Coordinate system specification

The database load occurs in either assembly (ASSY) coordinates or UTM.
The S1000 data base origin (the ASSY origin) is at the southwest corner of the
assembly. If UTM coordinates are selected then the search window is
assumed to be given in UTM coordinates and the output will be in UTM
coordinates. The user may however establish his own local reference frame
by specifying an origin for the output database. Again, if UTM is specified,
the origin is assumed to be given in UTM, otherwise ASSY. The S1000 API
provides the capability to convert from UTM to assembly coordinates. The
assembly coordinate frame is a topocentric rectangular grid located at the
southwest corner of the assembly area.

Loader details

The loader creates a scene graph spatially organized as a quadtree. Each leaf
node contains LAND and MICROTERRAIN polygons, NETWORK
elements and other data. pfdLoadFile() uses the function pfdLoadFile_s1k()
to load S1000 format files into IRIS Performer run-time data-structures.

USNA Standard Graphics Format

The “.sgf” format is used at the United States Naval Academy as a standard
graphics format for geometric data. The loader was developed based on the
description of the standard graphics format as described by David F. Rogers
and J. Alan Adams in the book Mathematical Elements for Computer Graphics.
The IRIS Performer “.sgf” format loader is located in the directory
/usr/share/Performer/src/lib/libpfdb/libpfsgf.

Here is the vector definition for four stacked squares in SGF form:

0, 0, 0
1, 0, 0
1, 1, 0
0, 1, 0
0, 0, 0
1.0e37, 1.0e37, 1.0e37

Description of Supported Formats

303

0, 0, 1
1, 0, 1
1, 1, 1
0, 1, 1
0, 0, 1
1.0e37, 1.0e37, 1.0e37
0, 0, 2
1, 0, 2
1, 1, 2
0, 1, 2
0, 0, 2
1.0e37, 1.0e37, 1.0e37
0, 0, 3
1, 0, 3
1, 1, 3
0, 1, 3
0, 0, 3
1.0e37, 1.0e37, 1.0e37

pfdLoadFile() uses the function pfdLoadFile_sgf() to load SGF format files
into IRIS Performer run-time data-structures.

Silicon Graphics SGO Format

The Silicon Graphics Object format is used by several cool utility programs
and was one of the first database formats supported by IRIS Performer. The
image in Figure 9-12 shows a model generated by Paul Haeberli and loaded
into perfly by the pfdLoadFile_sgo() database importer.

304

Chapter 9: Importing Databases

Figure 9-12 Model in SGO Format

Objects in the SGO format have per-vertex color specification and multiple
data formats. Objects contained in SGO files are constructed from three data
types:

• lists of quadrilaterals

• lists of triangles

• triangle meshes

Objects of different types can be included as data within one SGO file.

The SGO format has the following structure:

1. A magic number, 0x5424, which identifies the file as an SGO file.

2. A set of data for each object. Each object definition begins with an
identifying token, followed by geometric data. There can be multiple
object definitions in a single file. An end-of-data token terminates the
file.

Description of Supported Formats

305

The layout of an SGO file is

<SGO-file magic number>
<data-type token for object #1>
<data for object #1>
<data-type token for object #2>
<data for object #2>
...
<data-type token for object #n>
<data for object #n>
<end-of-data token>

Each of the identifying tokens is 4 bytes long. Table 9-8 lists the symbol,
value, and meaning for each token.

The next word following any of the three object types is the number of 4-byte
words of data for that object. The format of this data varies depending on the
object type.

For quadrilateral list (OBJ_QUADLIST) and triangle list (OBJ_TRILIST)
objects, there are nine words of floating-point data for each vertex, as
follows:

1. Three words that specify the components of the normal vector at the
vertex.

2. Three words that specify the red, green, and blue color components,
scaled to the range 0.0 to 1.0.

3. Three words that specify the X, Y, and Z coordinates of the vertex itself.

Table 9-8 Object Tokens in the SGO Format

Symbol Value Meaning

OBJ_QUADLIST 1 Independent quadrilaterals

OBJ_TRILIST 2 Independent triangles

OBJ_TRIMESH 3 Triangle mesh

OBJ_END 4 End-of-data token

306

Chapter 9: Importing Databases

In quadrilateral lists, vertices are in groups of four, so there are 4 X 9 = 36
words of data for each quadrilateral. In triangle lists, vertices are in groups
of three, for 3 X 9 = 27 words per triangle.

The triangle mesh, OBJ_TRIMESH, is the most complicated of the three
object data types. Triangle mesh data consists of a set of vertices followed by
a set of mesh-control commands. Triangle mesh data has the following
format:

1. A long word that contains the number of words in the complete
triangle mesh data packet.

2. A long word that contains the number of floating-point words required
by the vertex data, at nine words per vertex.

3. The data for each vertex, consisting of nine floating-point words
representing normal, color, and coordinate data.

4. A list of triangle mesh controls.

The triangle mesh controls, each of which is one word in length, are listed in
Table 9-9.

The triangle-mesh controls are interpreted sequentially. The first control
must always be OP_BGNTMESH, which initiates the mesh-decoding logic.
After each mesh control is a word (of type long integer) that indicates how
many vertex indices follow. The vertex indices are in byte offsets, so to access
vertex n, you must use the byte offset n X 9 X 4. See the graphics library
reference books listed under “Bibliography” on page xxix for more
information on triangle meshes (particularly see the IRIS GL books, if you’re
using IRIS GL, for information on the swap-triangle-mesh concept).

Table 9-9 Mesh Control Tokens in the SGO Format

Symbol Value Meaning

OP_BGNTMESH 1 Begin a triangle strip.

OP_SWAPTMESH 2 Exchange old vertices.

OP_ENDBGNTMESH 3 End, then begin a strip.

OP_ENDTMESH 4 Terminate triangle mesh.

Description of Supported Formats

307

pfdLoadFile() uses the function pfdLoadFile_sgo() to load SGO format files
into IRIS Performer run-time data-structures.

You can find the source code for the SGO-format importer in the file pfsgo.c.
This importer doesn’t attempt to decode any triangle meshes present in
input files; instead, it terminates the file conversion process as soon as an
OBJ_TRIMESH data-type token is encountered. If you use SGO-format files
containing triangle meshes you’ll need to extend the conversion support to
include the triangle mesh data type.

USNA Simple Polygon File Format

The “.spf” format is used at the United States Naval Academy as a simple
polygon file format for geometric data. The loader was developed based on
the description in the book Mathematical Elements for Computer Graphics. The
IRIS Performer “.spf” loader is in the
/usr/share/Performer/src/lib/libpfdb/libpfspf directory.

The following “.spf” format file is defined in that book.

polygon with a hole
14,2
4,4
4,26
20,26
28,18
28,4
21,4
21,8
10,8
10,4
10,12
10,20
17,20
21,16
21,12
9,1,2,3,4,5,6,7,8,9
5,10,11,12,13,14

If you look at this file in Perfly you will see that the hole is not cut out of the
letter “A” as might be desired. Such computational geometry computations
are not considered the province of simple database loaders.

308

Chapter 9: Importing Databases

pfdLoadFile() uses the function pfdLoadFile_spf() to load SPF format files
into IRIS Performer run-time data-structures.

Sierpinski Sponge Loader

The Sierpinski Sponge (a.k.a. Menger Sponge) loader is not based on a data
format but rather is a procedural data generator. The loader interprets the
portion of the user provided “file name” before the period and extension as
an integer which specifies the number of recursive subdivisions desired in
data generation. For example, providing the pseudo filename “3.sponge” to
perfly will result in the Sponge loader being invoked and generating a
sponge object using three levels of recursion, resulting in a 35712 polygon
database object. The IRIS Performer “.sponge” loader can be found in the
/usr/share/Performer/src/lib/libpfdb/libpfsponge directory.

pfdLoadFile() uses the function pfdLoadFile_sponge() to load Sponge
format files into IRIS Performer run-time data-structures.

Star Chart Format

The “.star” format is a distillation of astronomical data from the Yale
Compact Star Chart. The sample data file /usr/share/Performer/data/3010.star
contains data from the YCSC that has been reduced to a list of the 3010
brightest stars as seen from Earth and positioned as 3010 points of light on a
unit-radius sphere. The IRIS Performer “.star” loader can read this data and
is provided as a convenience for making dusk, dawn, and night-time scenes.
The loader is in the /usr/share/Performer/src/lib/libpfdb/libpfstar directory.

Data in a “.star” file is simply a series of ASCII lines with the “s” (for star)
keyword followed by X, Y, and Z coordinates, brightness, and an optional
name. Here are the 10 brightest stars (excluding Sol) in the “.star” format:

s -0.18746032 0.93921369 -0.28763914 1.00 Sirius
s -0.06323564 0.60291260 -0.79529721 1.00 Canopus
s -0.78377002 -0.52700269 0.32859191 1.00 Arcturus
s 0.18718566 0.73014212 0.65715599 1.00 Capella
s 0.12507832 -0.76942003 0.62637711 0.99 Vega
s 0.13051330 0.68228769 0.71933979 0.99 Capella
s 0.19507207 0.97036278 -0.14262892 0.98 Rigel
s -0.37387931 -0.31261155 -0.87320572 0.94 Rigil Kentaurus

Description of Supported Formats

309

s -0.41809806 0.90381104 0.09121194 0.94 Procyon
s 0.49255905 0.22369388 -0.84103900 0.92 Achernar

pfdLoadFile() uses the function pfdLoadFile_star() to load Star format files
into IRIS Performer run-time data-structures.

3D Lithography STL Format

The STL format is used to define 3D solids to be imaged by 3D lithography
systems. STL defines objects as collections of triangular facets, each with an
associated face normal. The ASCII version of this format is known as STLA
and has a very simple structure.

The image in Figure 9-13 shows a typical STLA mechanical CAD database.
This model is defined in the bendix.stla sample data file.

Figure 9-13 Sample STLA Database

310

Chapter 9: Importing Databases

The source code for the STLA-format loader is in the files
/usr/share/Performer/src/lib/libpfdb/libpfstla/pfstla.c.

STLA-format files have a line-structured ASCII form; an initial keyword
defines the contents of each line of data. An STLA file consists of one or more
facet definitions, each of which contains

1. the facet normal, indicated with the facet normal keyword

2. the facet vertices, bracketed by outer loop and endloop keywords

3. the endloop keyword

Here is an excerpt from nut.stla, one of the STLA files provided in the IRIS
Performer sample data directories. These are the first two polygons of a
524-triangle hex-nut object:

facet normal 0 -1 0
 outer loop
 vertex 0.180666 -7.62 2.70757
 vertex -4.78652 -7.62 1.76185
 vertex -4.436 -7.62 0
 endloop
endfacet
facet normal -0.381579 -0.921214 -0.075915
 outer loop
 vertex -4.48833 -7.59833 0
 vertex -4.436 -7.62 0
 vertex -4.78652 -7.62 1.76185
 endloop
endfacet

Use this function to import data from STLA-format files into IRIS Performer
run-time data structures:

pfNode *pfdLoadFile_stla(char *fileName);

pfdLoadFile_stla() searches the current IRIS Performer file path for the file
named by the fileName argument and returns a pointer to the pfNode that
parents the imported scene graph, or NULL if the file isn’t readable or
doesn’t contain recognizable STLA format data.

Description of Supported Formats

311

SuperViewer SV Format

The SuperViewer (SV) format is one of the several database formats that the
I3DM database modeling tool can read and write. The I3DM modeler was
developed by John Kichury of Silicon Graphics and is provided with IRIS
Performer. The source code for the SV format importer is in the file pfsv.c.

The passenger vehicle database shown in Figure 9-14 was modeled using
I3DM and is stored in the SV database format.

Figure 9-14 Early Automobile in SuperViewer SV Format

Within SV files, object geometry and attributes are described between text
lines that contain the keywords model and endmodel. For example:

model wing
geometry and attributes

endmodel

312

Chapter 9: Importing Databases

Any number of models can appear within a SuperViewer file. The geometry
and attribute data mentioned above each consist of one of the following
types:

• 3D Polygon with vertex normals and optional texture coordinates

poly3dn <num_vertices> [textured]
x1 y1 z1 nx1 ny1 nz1 [s1 t1]
x2 y2 z2 nx2 ny2 nz2 [s2 t2]
...

Where

– Xn Yn Zn are the nth vertex coordinates

– Nxn Nyn Nzn are the nth vertex normals

– Sn Tn are the nth texture coordinates

• 3D Triangle mesh with vertex normals and optional texture coordinates

tmeshn <num_vertices> [textured]
x1 y1 z1 nx1 ny1 nz1 [s1 t1]
x2 y2 z2 nx2 ny2 nz2 [s2 t2]
...

Where

– Xn Yn Zn are the nth vertex coordinates

– Nxn Nyn Nzn are the nth vertex normals

– Sn Tn are the nth texture coordinates

• Material definition. If the material directive exists before a model
definition, it is taken as a new material specification. Its format is:

material n Ar Ag Ab Dr Dg Db Sr Sg Sb Shine Er Eg Eb

Where

– n is an integer specifying a material number

– Ar Ag Ab is the ambient color

– Dr Dg Db is the diffuse color

– Sr Sg Sb is the specular color

– Shine is the material shininess

– Er Eg Eb is the emissive color

Description of Supported Formats

313

If the material directive exists within a model description, the format is:

material n

Where n is an integer specifying which material (as defined by the
material description above) is to be assigned to subsequent data.

• Texture definition. If the texture directive exists before a model
definition it is taken as a new texture specification. Its format is:

texture n TextureFileName

If the texture directive exists within a model description, the format is:

texture n

Where n is an integer specifying which texture (as defined by the
texture description above) is to be assigned to subsequent data.

• Backface polygon display mode. The backface directive is specified
within model definitions to control backface polygon culling:

backface mode

Where a mode of “on” allows the display of backfacing polygons and a
mode of “off” suppresses their display.

In actual use the SV format is somewhat self-documenting. Here is part of
the SV file apple.sv from the /usr/share/Performer/data directory:

material 20 0.0 0.0 0 0.400000 0.000000 0 0.333333 0.000000 0.0 10.0000 0 0 0
material 42 0.2 0.2 0 0.666667 0.666667 0 0.800000 0.800000 0.8 94.1606 0 0 0
material 44 0.0 0.2 0 0.000000 0.200000 0 0.000000 0.266667 0.0 5.0000 0 0 0

texture 4 prchmnt.rgb
texture 6 wood.rgb

model LEAF
material 44
texture 4
backface on
poly3dn 4 textured
 1.35265 1.35761 13.8338 0.0686595 -0.234553 -0.969676 0 1
 0.88243 0.96366 14.0329 0.0502096 -0.376701 -0.924973 0 0.75
-4.44467 1.24026 13.5669 0.0363863 -0.337291 -0.940697 0.0909091 0.75
-2.37938 2.17479 13.3626 0.0363863 -0.337291 -0.940697 0.0909091 1
poly3dn 4 textured
-2.37938 2.17479 13.3626 0.0363863 -0.337291 -0.940697 0.0909091 1
-4.44467 1.24026 13.5669 0.0363863 -0.337291 -0.940697 0.0909091 0.75

314

Chapter 9: Importing Databases

-9.23775 2.34664 13.1475 0.0344832 -0.284369 -0.958095 0.181818 0.75
-6.69592 3.94535 12.6716 0.0344832 -0.284369 -0.958095 0.181818 1

This excerpt specifies material properties and references texture images
stored in the files prchmnt.rgb and wood.rgb, and then defines two polygons.

pfdLoadFile() uses the function pfdLoadFile_sv() to load SuperViewer files
into IRIS Performer run-time data-structures.

Geometry Center Triangle Format

The “.tri” format is used at the University of Minnesota’s Geometry Center
as a simple geometric data representation. The loader was developed by
inspection of a few sample files. The IRIS Performer “.tri” loader is in the
/usr/share/Performer/src/lib/libpfdb/libpftri directory.

These files have a very simple format: a line per vertex with position and
normal given on each line as 6 ASCII numeric values. The file is simply a
series of these triangle definitions. Here are the first two triangles from the
data file /usr/share/Performer/data/mobrect.tri:

1.788180 1.000870 0.135214 0.076169 -0.085488 0.993423
1.574000 0.925908 0.146652 0.089015 -0.086072 0.992304
1.793360 0.634711 0.099409 0.076402 -0.111845 0.990784
0.836848 -0.595230 0.197960 0.156677 0.044503 0.986647
0.709638 -0.345676 0.210010 0.157642 0.021968 0.987252
0.581200 -0.535321 0.234807 0.145068 0.030985 0.988936

pfdLoadFile() uses the function pfdLoadFile_tri() to load “.tri” format files
into IRIS Performer run-time data-structures.

UNC Walkthrough Format

The “.unc” format was once used at the University of North Carolina as a
format for geometric data in an architectural walkthrough application. The
loader was developed based on inspection of a few sample files. The IRIS
Performer “.unc” loader is in the /usr/share/Performer/src/lib/libpfdb/libpfunc
directory.

pfdLoadFile() uses the function pfdLoadFile_unc() to load UNC format
files into IRIS Performer run-time data-structures.

This chapter discusses the rendering
library that forms IRIS Performer’s
foundation.

“libpr Basics”

Chapter 10

317

Chapter 10

10. libpr Basics

Earlier chapters of this guide described libpf, IRIS Performer’s high-level
visual simulation development library. Much of libpf is built on top of libpr,
the high-performance rendering and utility library described in this chapter.

Overview

libpr provides many useful system- and hardware-oriented utilities as well
as a high-performance interface to the graphics libraries. This interface
eliminates the guesswork of the tuning process by providing optimized data
structures and performance-tuned renderers.

The interface is intuitive, easy to learn, and flexible enough to let you plug
any application into the hooks provided by libpr to access the full set of
graphics library features. libpr is platform-independent, so you can realize
performance gains across the entire Silicon Graphics product line.

Note: Both libpr and libpf object files are incorporated into a single library,
called libpf, so the routines can be arranged in memory to improve caching
behavior. However, libpr is still conceptually a stand-alone library and is
referred to a such in the following discussion.

Design Motivation

A great deal of specialized knowledge is required to tune the performance of
any piece of software. A primary design goal of IRIS Performer is to provide
you with that knowledge in the form of an easy-to-use toolkit. The design
decisions implemented in libpr combine an understanding of subtle
machine-level implications with hands-on experience in tuning a variety of
applications.

318

Chapter 10: libpr Basics

Applications that you develop using IRIS Performer will approach peak
performance on both current and future hardware and software releases, so
you don’t have to spend a lot of time porting and tuning your code every
time you make an upgrade to your system.

Key Features

libpr is a fundamental set of building blocks in much the same way that a
graphics library is. It doesn’t impose a multiprocessing orientation, nor is it
targeted to any specific type of application; its only goal is optimizing the
use of SGI graphics hardware. It can be used freely in conjunction with either
the IRIS GL or the OpenGL graphics library. The library has four basic
components:

• high-performance immediate-mode geometry rendering

• efficient management of Graphics Pipeline state

• fast and flexible analytic intersection-detection support

• common low-level programming utilities such as statistics gathering,
window management, real-time clocks, and shared memory.

Some important features of libpr are that it

• encapsulates graphics library state in objects

• has a limited notion of hierarchy

• doesn’t extend or manage all graphics library functions

• allows you to intermix graphics library and libpr calls freely

• provides functionality not available in lower-level graphics libraries

• is an easy porting target for applications

libpr provides highly optimized loops for rendering a wide variety of
immediate-mode geometric primitives like points, lines, triangles, and
triangle strips. Geometry appearance (is it textured, lit, transparent?) is
determined by the current state of the Geometry Pipeline when the
geometry is rendered. Efficient management of this state is crucial for best
performance. To achieve the best performance, state changes must be
minimized and rendering loops must be free of decisions. libpr employs two
primary mechanisms for accomplishing this, pfGeoSet and pfGeoState.

Geometry

319

Simply put, a pfGeoSet encapsulates 3D geometry while a pfGeoState
encapsulates the appearance parameters known as pipeline state. A pfGeoSet
is drawn—its vertices and other attributes are sent to the graphics library to
be processed and ultimately rasterized on the screen. A pfGeoState is
applied—its encapsulated state is used to configure the graphics library for a
particular appearance, such as lit, textured, and fogged. A pfGeoSet can, and
usually does, reference a pfGeoState thereby defining a both geometry and
specific appearance attributes. When the pfGeoSet is then drawn, its
associated pfGeoState is automatically applied first so that the geometry is
rendered with the proper appearance.

Some specific libpr features and primitives discussed in this chapter are
listed below:

• Fast rendering of geometry with a pfGeoSet,

• 3D Fonts with pfFont and pfString,

• Efficient state management with pfGeoStates and pfStates,

• Rendering effects with pfDecal for coplanar geometry, pfFog,
pfLPointState, and pfHighlight,

• Texturing with pfTexture, pfTexEnv, and pfTexGen,

• Lighting with pfLight, pfLightModel, and pfMaterial,

• 3D transformations with pfSprites and pfMatrix,

• Flexible and efficient immediate mode display lists with pfDispList,

• Windowing with pfWindows,.

• Real-time clocks, and,

• Memory management with pfMemory, pfList, pfObject, pfDataPool,
pfCycleMemory and pfCycleBuffer.

Geometry

All libpr geometry is defined by modular units that employ a flexible
specification method. These basic groups of geometric primitives are termed
pfGeoSets.

320

Chapter 10: libpr Basics

Geometry Sets

A pfGeoSet is a collection of geometry that shares certain characteristics. All
items in a pfGeoSet must be of the same primitive type (whether they’re
points, lines, or triangles) and share the same set of attribute bindings (you
can’t specify colors-per-vertex for some items and colors-per-primitive for
others in the same pfGeoSet). A pfGeoSet forms primitives out of lists of
attributes that may be either indexed or nonindexed. An indexed pfGeoSet
uses a list of unsigned short integers to index an attribute list. (See
“Attributes” on page 325 for information about attributes and bindings.)

Indexing provides a more general mechanism for specifying geometry than
hard-wired attribute lists and also has the potential for substantial memory
savings as a result of shared attributes. Nonindexed pfGeoSets are
sometimes easier to construct, usually a bit faster to render, and may save
memory (since no extra space is needed for index lists) in situations where
vertex sharing isn’t possible. A pfGeoSet must be either completely indexed
or completely nonindexed; it’s not legal to have some attributes indexed and
others nonindexed.

Note: libpf applications can include pfGeoSets in the scene graph with the
pfGeode (Geometry Node).

Table 10-1 lists a subset of the routines that manipulate pfGeoSets.

Table 10-1 pfGeoSet Routines

Function Description

pfNewGSet Create a new pfGeoSet.

pfDelete Delete a pfGeoSet.

pfCopy Copy a pfGeoSet.

pfGSetGState Specify the pfGeoState to be used.

pfGSetGStateIndex Specify the pfGeoState index to be used.

pfGSetNumPrims Specify the number of primitive items.

pfGSetPrimType Specify the type of primitive.

pfGSetPrimLengths Set the length of strip primitives.

Geometry

321

Primitive Types

All primitives within a given pfGeoSet must be of the same type. To set the
type of all primitives in a pfGeoSet named gset, call pfGSetPrimType(gset,
type). Table 10-2 lists the primitive type tokens, the primitive types that they
represent, and the number of vertices in a coordinate list for that type of
primitive.

pfGSetAttr Set the attribute bindings.

pfGSetDrawMode Specify draw mode, e.g., flat shading or wireframe.

pfGSetLineWidth Set the line width for line primitives.

pfGSetPntSize Set the point size for point primitives.

pfGSetHlight Specify highlighting type for drawing.

pfDrawGSet Draw a pfGeoSet.

pfGSetBBox Specify a bounding box for the geometry.

pfGSetIsectMask Specify an intersection mask for pfGSetIsectSegs.

pfGSetIsectSegs Intersect line segments with pfGeoSet geometry.

pfQueryGSet Determine the number of triangles or vertices.

pfPrint Print the pfGeoSet contents.

Table 10-2 Geometry Primitives

Token Primitive Type Number of Vertices

PFGS_POINTS Points numPrims

PFGS_LINES Independent line segments 2 * numPrims

PFGS_LINESTRIPS Strips of connected lines Sum of lengths array

PFGS_FLAT_LINESTRIPS Strips of flat-shaded lines Sum of lengths array

PFGS_TRIS Independent triangles 3 * numPrims

Table 10-1 (continued) pfGeoSet Routines

Function Description

322

Chapter 10: libpr Basics

where the parameters in the last column represent:

numPrims is the number of primitive items in the pfGeoSet, as set by
pfGSetNumPrims().

lengths is the array of strip lengths in the pfGeoSet, as set by
pfGSetPrimLengths() (note that length is measured here in
terms of number of vertices).

Connected primitive types (line strips, triangle strips, and polygons) require
a separate array that specifies the number of vertices in each primitive.
Length is defined as the number of vertices in a strip for STRIP primitives
and is the number of vertices in a polygon for the POLYS primitive type. The
number of line segments in a line strip is numVerts - 1, while the number of
triangles in a triangle strip and polygon is numVerts - 2. Use
pfGSetPrimLengths() to set the length array for strip primitives.

The number of primitives in a pfGeoSet is specified by
pfGSetNumPrims(gset, num). For strip and polygon primitives, num is the
number of strips or polygons in gset.

pfGeoSet Draw Mode

In addition to the primitive type, pfGSetDrawMode() further defines how a
primitive is drawn. Triangles, triangle strips, quadrilaterals and polygons
can be specified as either filled or as wireframe, where only the outline of the
primitive is drawn. Use the PFGS_WIREFRAME argument to
enable/disable wireframe mode. Another argument, PFGS_FLATSHADE,
specifies how the primitive should be shaded. If flat shading is enabled, each
primitive or element in a strip is shaded with a single color.

PFGS_TRISTRIPS Strips of connected triangles Sum of lengths array

PFGS_FLAT_TRISTRIPS Strips of flat-shaded triangles Sum of lengths array

PFGS_QUADS Independent quadrilaterals 4 * numPrims

PFGS_POLYS Independent polygons Sum of lengths array

Table 10-2 (continued) Geometry Primitives

Token Primitive Type Number of Vertices

Geometry

323

pfGeoSets are normally processed in immediate mode which means that
pfDrawGSet() sends attributes from the user-supplied attribute arrays to
the Graphics Pipeline for rendering. However, this kind of processing is
subject to some overhead, particularly if the pfGeoSet contains few
primitives. In some cases it may help to use GL display lists (this is different
from the libpr display list type pfDispList) or compiled mode. In compiled
mode, pfGeoSet attributes are copied from the attribute lists into a special
data structure called a display list during a compilation stage. This data
structure is highly optimized for efficient transfer to the graphics hardware.
However, compiled mode has some major disadvantages:

• compilation is usually costly

• a display list must be recompiled whenever its pfGeoSet’s attributes
change

• the display list uses extra memory

In general, immediate-mode will offer excellent performance with minimal
memory usage and no restrictions on attribute volatility which is a key
aspect in may advanced applications.. Despite this, experimentation may
show cases where compiled mode offers a performance benefit.

To enable or disable compiled mode, call pfGSetDrawMode() with the
PFGS_COMPILE_GL token. When enabled, compilation is delayed until the
next time the pfGeoSet is drawn with pfDrawGSet(). Subsequent calls to
pfDrawGSet() will then send the compiled pfGeoSet to the graphics
hardware.

Primitive Connectivity

A pfGeoSet requires a coordinate array that specifies the world coordinate
positions of primitive vertices. This array is either indexed or not, depending
on whether a coordinate index list is supplied. If the index list is supplied,
it’s used to index the coordinate array; if not, the coordinate array is
interpreted in a sequential order.

A pfGeoSet’s primitive type dictates the connectivity from vertex to vertex
to define geometry. Figure 10-1 shows a coordinate array consisting of four
coordinates, A, B, C, and D, and the geometry resulting from different
primitive types. This example uses index lists that index the coordinate
array. Note that the flat-shaded line strip and flat-shaded triangle strip

324

Chapter 10: libpr Basics

primitives have the vertices listed in the same order as for the
smooth-shaded varieties.

Figure 10-1 Primitives and Connectivity

A

B

C

D

XA, YA, ZA
XB, YB, ZB
XC, YC, ZC
XD, YD, ZD

XN, YN, ZN

O

1

2

3

...

n

Vertex list

PointsPrimitive
type

Geometry

Index list

Line segments Line strips

0

1

2

3

0

3

1

2

0

1

3

2

2

3

0

1

3

2

1

0

Independent
triangles

Primitive
type

Geometry

Index list

Quadrilaterals Triangle strips Polygons

0

1

3

3

1

2

0

1

2

3

0

1

3

2

...

n

0

1

2

3

...

n

Geometry

325

Attributes

The definition of a primitive isn’t complete without attributes. In addition to
a primitive type and count, a pfGeoSet references four attribute arrays (see
Figure 10-2):

• colors (red, green, blue, alpha)

• normals (Nx, Ny, Nz)

• texture coordinates (S, T)

• vertex coordinates (X, Y, Z)

(A pfGeoState is also associated with each pfGeoSet; see “Graphics State” on
page 333 and Figure 10-3 for details.) The four components listed above can
be specified with pfGSetAttr() and in two ways: by indexed specification—
using a pointer to an array of components and a pointer to an array of
indices; or by direct specification—providing a NULL pointer for the
indices, which indicates that the indices are sequential from the initial value
of zero. The choice of indexed or direct components applies to an entire
pfGeoSet; that is, all of the supplied components within one pfGeoSet must
use the same method. However, you can emulate partially indexed
pfGeoSets by using indexed specification and making each nonindexed
attribute’s index list be a single shared “identity mapping” index array
whose elements are 0, 1, 2, 3,…, N-1 where N is the largest number of
attributes in any referencing pfGeoSet. (You can share the same array for all
such emulated pfGeoSets.). The direct method avoids one level of
indirection and may have a performance advantage compared with indexed
specification for some combinations of CPU and graphics subsystem.

Note: it is highly recommended that pfMalloc() be used to allocate your
arrays of attribute data. This will allow IRIS Performer to reference-count the
arrays and delete them when appropriate. It will also allow you to easily put
your attribute data into shared memory for multiprocessing by specifying an
arena such as pfGetSharedArena() to pfMalloc(). While perhaps
convenient, it is very dangerous to specify pointers to static data for
pfGeoSet attributes. Early versions of IRIS Performer permitted this but it is
strongly discouraged and may have undefined and unfortunate
consequences.

326

Chapter 10: libpr Basics

Figure 10-2 pfGeoSet Structure

3,1,8,3,2...

Normal

index

GeoStateprimitive typeprimitive countcolor array
color index

normal arraynormal indextexture coord array
texture coord indexvertex coord arrayvertex coord index

pfGeoSet

Normal

array
0:nx ny nz1:nx ny nz2:nx ny nz

o,1,3,2,8,2...

Color

index

Color

array
0: R G B A1: R G B A2: R G B A

0,1,2,3,4,5...

Tex coord

index

Tex coord

array
0: S T
1: S T2: S T

11,4,8,2,6...

Vertex

index

Vertex

array
0: X Y Z1: X Y Z2: X Y Z

Geometry

327

Attribute Bindings

Attribute bindings specify where in the definition of a primitive an attribute
has effect. You can leave a given attribute unspecified; otherwise, its binding
location is one of the following:

• overall (one value for the entire pfGeoSet)

• per primitive

• per vertex

Only certain binding types are supported for some attribute types.

Table 10-3 shows the attribute bindings that are legal for each type of
attribute.

Attribute lists, index lists, and binding types are all set by pfGSetAttr().

For FLAT primitives (PFGS_FLAT_TRISTRIPS, PFGS_FLAT_LINESTRIPS),
the PFGS_PER_VERTEX binding for normals and colors has slightly
different meaning. In these cases, per-vertex colors and normals should not
be specified for the first vertex in each line strip or for the first two vertices
in each triangle strip since FLAT primitives use the last vertex of each line
segment or triangle to compute shading.

pfGeoSet Operations

There are many operations you can perform on pfGeoSets. pfDrawGSet()
“draws “the indicated pfGeoSet by sending commands and data to the
Geometry Pipeline, unless IRIS Performer’s display-list mode is in effect. In

Table 10-3 Attribute Bindings

Binding Token Color Normal Texture
Coordinate

Coordinate

PFGS_OVERALL Yes Yes No No

PFGS_PER_PRIM Yes Yes No No

PFGS_PER_VERTEX Yes Yes Yes Yes

PFGS_OFF Yes Yes Yes No

328

Chapter 10: libpr Basics

display-list mode, rather than sending the data to the pipeline, the current
pfDispList “captures” the pfDrawGSet() command. The given pfGeoSet is
then drawn along with the rest of the pfDispList with the pfDrawDList()
command.

When the PFGS_COMPILE_GL mode of a pfGeoSet is not active
(pfGSetDrawMode()), pfDrawGSet() uses rendering loops tuned for each
primitive type and attribute binding combination to reduce CPU overhead
in transferring the geometry data to the hardware pipeline. Otherwise,
pfDrawGSet() sends a special, compiled data structure.

Table 10-1 lists other operations that you can perform on pfGeoSets.
pfCopy() does a shallow copy, copying the source pfGeoSet’s attribute
arrays by reference and incrementing their reference counts. pfDelete() frees
the memory of a pfGeoSet and its attribute arrays (if those arrays were
allocated with pfMalloc() and provided their reference counts reach zero).
pfPrint() is strictly a debugging utility and will print a pfGeoSet’s contents
to a specified destination. pfGSetIsectSegs() allows intersection testing of
line segments against the geometry in a pfGeoSet; see “Intersecting With
pfGeoSets” in Chapter 11 for more information on that function.

3D Text

In addition to the pfGeoSet, libpr offers two other primitives which together
are useful for rendering a specific type of geometry—three-dimensional
characters. See Chapter 5, “Nodes and Node Types” and the description for
pfText nodes for an example of how to set up three-dimension text within the
context of libpf.

pfFont

The basic primitive supporting text rendering is the libpr pfFont primitive. A
pfFont is essentially a collection of pfGeoSets in which each pfGeoSet
represents one character of a particular font. pfFonts also contain metric
data, such as a per-character spacing, the three-dimensional escapement
offset used to increment a text ‘cursor’ after the character has been drawn.
Thus, pfFonts maintain all of the information that is necessary to draw any
and all valid characters of a font. However, note that pfFonts are passive and
have little functionality on their own, for example you cannot draw a

Geometry

329

pfFont—it simply provides the character set for the next higher-level text
data object, the pfString.

Table 10-4 lists some routines that are used with a pfFont.

Table 10-4 pfFont Routines

Function Description

pfNewFont Create a new pfFont.

pfDelete Delete a pfFont.

pfFontCharGSet Set the pfGeoSet to be used for a specific character of
this pfFont.

pfFontCharSpacing Set the 3D spacing to be used to update a text cursor
after this character has been rendered.

pfFontMode Specify a particular mode for this pfFont.

Valid Modes to set:

PFFONT_CHAR_SPACING — specify whether to use
fixed or variable spacings for all characters of a pfFont.
Possible values are
PFFONT_CHAR_SPACING_FIXED and
PFFONT_CHAR_SPACING_VARIABLE, the latter
being the default.

PFFONT_NUM_CHARS — specify how many
characters are in this font.

PFFONT_RETURN_CHAR — specify the index of the
character that is considered a ‘return’ character and
thus relevant to line justification.

pfFontAttr Specify a particular attribute of this pfFont.

Valid Attributes to set:

PFFONT_NAME - name of this font.

PFFONT_GSTATE - pfGeoState to be used when
rendering this font.

PFFONT_BBOX - bounding box that bounds each
individual character.

PFFONT_SPACING - Set the overall character spacing
if this is a fixed width font (also the spacing used if one
hasn’t been set for a particular character).

330

Chapter 10: libpr Basics

Example 10-1 Loading Characters into a pfFont

/* Setting up a pfFont */
pfFont *ReadFont(void)
{

pfFont *fnt = pfNewFont(pfGetSharedArena());
for(i=0;i<numCharacters;i++)
{

pfGeoSet* gset = getCharGSet(i);
pfVec3* spacing = getCharSpacing(i);

pfFontCharGSet(fnt, i, gset);
pfFontCharSpacing(fnt, i, spacing);

}
}

pfString

Simple rendering of three-dimensional text can be done using a pfString. A
pfString is an array of font indices stored as 8-bit bytes, 16-bit shorts, or
32-bit integers. Each element of the array contains an index to a particular
character of a pfFont structure. A pfString can not be drawn until it has been
associated with a pfFont object via a call to pfStringFont(). To render a
pfString once it references a pfFont, call the function pfDrawString().

pfStrings support the notion of ‘flattening’ to trade off memory for faster
processing time. This will cause individual, non-instanced geometry to be
used for each character, eliminating the cost of translating the text cursor
between each character when drawing the pfString.

Example 10-2 Setting up and drawing a pfString

/* Create a string a rotate it for 2.5 seconds */
void
LoadAndDrawString(const char *text)
{

pfFont *myfont = ReadMyFont();
pfString *str = pfNewString(NULL);
pfMatrix mat;
float start,t;

/* Use myfont as the 3-d font for this string */
pfStringFont(str, fnt);

Geometry

331

/* Center String */
pfStringMode(str, PFSTR_JUSTIFY, PFSTR_MIDDLE);

/* Color String is Red */
pfStringColor(str, 1.0f, 0.0f, 0.0f, 1.0f);

/* Set the text of the string */
pfStringString(str, text);

/* Obtain a transform matrix to place this string */
GetTheMatrixToPlaceTheString(mat);
pfStringMat(str, &mat);

/* optimize for draw time by flattening the transforms */
pfFlattenString(str);

/* Twirl text for 2.5 seconds */
start = pfGetTime();
do
{

pfVec4 clr;
pfSetVec4(clr, 0.0f, 0.0f, 0.0f, 1.0f);

/* Clear the screen to black */
pfClear(PFCL_COLOR|PFCL_DEPTH, clr);

t = (pfGetTime() - start)/2.5f;
t = PF_MIN2(t, 1.0f);

pfMakeRotMat(mat, t * 315.0f, 1.0f, 0.0f, 0.0f);
pfPostRotMat(mat, mat, t * 720.0f, 0.0f, 1.0f, 0.0f);

t *= t;
pfPostTransMat(mat, mat, 0.0f,

150.0f * t + (1.0f - t) * 800.0f, 0.0f);

pfPushMatrix();
pfMultMatrix(mat);

/* DRAW THE INPUT STRING */
pfDrawString(str);

pfPopMatrix();

pfSwapWinBuffers(pfGetCurWin());

332

Chapter 10: libpr Basics

} while(t < 2.5f);
}

Table 10-5 lists the key routines used to manage pfStrings.

Table 10-5 pfString Routines

Function Description

pfNewString Create a new pfString

pfDelete Delete a pfString.

pfStringFont Set the pfFont to use when drawing this pfString.

pfStringString Set the character array that this pfString will represent/render.

pfDrawString Draw this pfString

pfFlattenString Flatten all positional translations and the current specification
matrix into individual pfGeoSets so that more memory is used,
but no matrix transforms or translates have to be done between
each character of the pfString.

pfStringColor Set the color of the pfString.

pfStringMode Specify a particular mode for this pfString.

Valid Modes to set:

PFSTR_JUSTIFY — set the line justification and has the
following possible values: PFSTR_FIRST or PFSTR_LEFT,
PFSTR_MIDDLE or PFSTR_CENTER, and PFSTR_LAST or
PFSTR_RIGHT.

PFSTR_CHAR_SIZE — set the number of bytes per character in
the input string and has the following possible values:
PFSTR_CHAR, PFSTR_SHORT, PFSTR_INT.

pfStringMat Specify a transform matrix that will affect the entire character
string when the pfString is drawn

pfStringSpacing
Scale

Specify a scale factor for the escapement translations that happen
after each character is drawn. This routine is useful for changing
the spacing between characters and even between lines.

Graphics State

333

Graphics State

The graphics libraries are immediate-mode state machines; if you set a
mode, all subsequent geometry is drawn in that mode. For the best
performance, mode changes need to be minimized and managed carefully.
libpr manages a subset of graphics library state and identifies bits of state as
graphics state elements. Each state element is identified with a PFSTATE token,
e.g., PFSTATE_TRANSPARENCY corresponds to the transparency state
element. State elements are loosely partitioned into three categories: modes,
values and attributes.

Modes are the graphics state variables, such as transparency and texture
enable, that have simple values like ON and OFF. An example of a mode
command is pfTransparency(mode).

Values are not modal, rather they are real numbers which signify a threshold
or quantity. An example of a value is the reference alpha value specified with
the pfAlphaFunc() command.

Attributes are references to encapsulations (structures) of graphics state.
They logically group the more complicated elements of state, such as
textures and lighting models. Attributes are structures that are modified
through a procedural interface and must be applied to have an effect. For
example, pfApplyTex(tex) applies the texture map, tex, to subsequently
drawn geometry.

In libpr, there are three methods of setting state:

• immediate mode

• display list mode

• pfGeoState mode

Like the graphics libraries, libpr supports the notion of both immediate and
display-list modes. In immediate mode, graphics mode changes are sent
directly to the Geometry Pipeline, i.e., they have immediate effect. In
display-list mode, graphics mode changes are captured by the currently
active pfDispList, which can be drawn later. libpr display lists differ from
graphics library objects because they capture only libpr commands and are
reusable. libpr display lists are useful for multiprocessing applications in

334

Chapter 10: libpr Basics

which one process builds up the list of visible geometry and another process
draws it. “Display Lists” on page 355 describes libpr display lists.

A pfGeoState is a structure that encapsulates all the graphics modes and
attributes that libpr manages. You can individually set the state elements of
a pfGeoState to define a graphics context. The act of applying a pfGeoState
with pfApplyGState() configures the state of the Geometry Pipeline
according to the modes, values, and attributes set in the pfGeoState. For
example, the following code fragment shows equivalent ways (except for
some inheritance properties of pfGeoStates described later) of setting up
some lighting parameters suitable for a glass surface:

/* Immediate mode state specification */
pfMaterial *shinyMtl;
pfTransparency(PFTR_ON);
pfApplyMtl(shinyMtl);
pfEnable(PFEN_LIGHTING);

/* is equivalent to: */

/* GeoState state specification */
pfGeoState *gstate;
pfGStateMode(gstate, PFSTATE_TRANSPARENCY, PFTR_ON);
pfGStateAttr(gstate, PFSTATE_FRONTMTL, shinyMtl);
pfGStateMode(gstate, PFSTATE_ENLIGHTING, PF_ON);
pfApplyGState(gstate);

In addition, pfGeoStates have unique state inheritance capabilities that make
them very convenient and efficient; they provide independence from
ordered drawing. pfGeoStates are described in the “pfGeoState” section of
this chapter.

Libpr routines have been designed to produce an efficient structure for
managing graphics state. You can also set graphics state directly through the
GL. However, libpr will have no record of these settings and will not be able
to optimize them and may make incorrect assumptions about current
graphics state if the resulting state does not match the libpr record when libpr
routines are called. Therefore, it is best to use the libpr routines whenever
possible to change graphics state and to restore libpr state if you go directly
through the GL.

Graphics State

335

The following sections will describe the rendering geometry and state
elements in detail. There are three types of state elements: modes, values and
attributes. Modes are simple settings that take a set of integer values that
include values for enabling and disabling the mode. Modes may also have
associated values that allow a setting from a defined range. Attributes are
complex state structures that encapsulate a related collection of modes and
values. Attribute structures will not include in their definition an enable or
disable as the enabling or disabling of a mode is orthogonal to the particular
related attribute in use.

Rendering Modes

libpr manages a subset of the rendering modes found in the graphics
libraries. In addition, libpr abstracts certain concepts like transparency,
providing a higher-level interface that hides the underlying implementation
mechanism.

libpr provides tokens that identify the modes that it manages. These tokens
are used by pfGeoStates and other state-related functions like pfOverride().
The following table enumerates the PFSTATE_ tokens of supported modes,
each with a brief description and default value.

Table 10-6 lists and describes the mode tokens.

Table 10-6 pfGeoState Mode Tokens

Token Name Description Default Value

PFSTATE_TRANSPARENCY Transparency modes PFTR_OFF

PFSTATE_ALPHAFUNC Alpha function PFAF_ALWAYS

PFSTATE_ANTIALIAS Antialiasing mode PFAA_OFF

PFSTATE_CULLFACE Face culling mode PFCF_OFF

PFSTATE_DECAL Decaling mode for
coplanar geometry

PFDECAL_OFF

PFSTATE_SHADEMODEL Shading model PFSM_

GOURAUD

PFSTATE_ENLIGHTING Lighting enable flag PF_OFF

336

Chapter 10: libpr Basics

The mode control functions described in the following sections should be
used in place of their graphics library counterparts so that IRIS Performer
can correctly track the graphics state. Use pfGStateMode() with the
appropriate PFSTATE token to set the mode of a pfGeoState.

Transparency

You can control transparency using pfTransparency(). Possible transparency
modes are:

PFSTATE_ENTEXTURE Texturing enable flag PF_OFF

PFSTATE_ENFOG Fogging enable flag PF_OFF

PFSTATE_ENWIREFRAME pfGeoSet wireframe
mode enable flag

PF_OFF

PFSTATE_ENCOLORTABLE pfGeoSet colortable
enable flag

PF_OFF

PFSTATE_ENHIGHLIGHTIN
G

pfGeoSet highlighting
enable flag

PF_OFF

PFSTATE_ENLPOINTSTATE pfGeoSet light point
state enable flag

PF_OFF

PFSTATE_ENTEXGEN Texture coordinate
generation enable flag

PF_OFF

Table 10-7 pfTransparency Tokens

Transparency mode Description

PFTR_OFF Transparency disabled.

PFTR_ON
PFTR_FAST

Use the fastest, but not necessarily the
best, transparency provided by the
hardware.

PFTR_HIGH_QUALITY Use the best, but not necessarily the
fastest, transparency provided by the
hardware.

Table 10-6 (continued) pfGeoState Mode Tokens

Token Name Description Default Value

Graphics State

337

In addition, the flag PFTR_NO_OCCLUDE may be logically OR-ed into the
transparency mode in which case geometry will not write depth values into
the frame buffer. This will prevent it from occluding subsequently rendered
geometry. Enabling this flag improves the appearance of unordered,
blended transparent surfaces.

There are two basic transparency mechanisms: screen-door transparency
which requires hardware multisampling and blending. Blending offers very
high quality transparency but for proper results requires that transparent
surfaces be rendered in back-to-front order after all opaque geometry has
been drawn. When using transparent texture maps to “etch” geometry or if
the surface has constant transparency, screen-door transparency is usually
good enough. Blended transparency is usually required to avoid “banding”
on surfaces with low transparency gradients like clouds and smoke.

Shading Model

Selects flat shading or Gouraud (smooth) shading. pfShadeModel() takes
one of two tokens: PFSM_FLAT or PFSM_GOURAUD. One some graphics
hardware flat shading can offer a significant performance advantage.

Alpha Function

pfAlphaFunc() is an extension of the IRIS GL function afunction(3g) and the
OpenGL function glAlphaFunc(); it allows IRIS Performer to keep track of
the hardware mode. The alpha function is a pixel test that compares the
incoming alpha to a reference value and uses the result to determine
whether or not the pixel is rendered. The reference value must be specified
in the range [0, 1]. For example, a pixel whose alpha value is 0 is not rendered
if the alpha function is PFAF_GREATER and the alpha reference value is also

PFTR_MS_ALPHA Use screen-door transparency when
multisampling. Fast but limited number
of transparency levels.

PFTR_BLEND_ALPHA Use alpha-based blend with background
color. Slower but high number of
transparency levels.

Table 10-7 (continued) pfTransparency Tokens

Transparency mode Description

338

Chapter 10: libpr Basics

0. Note that rejecting pixels based alpha can be faster than using
transparency alone. A common technique for improving the performance of
filling polygons is to set an alpha function that will reject pixels of low
(possibly non-zero) contribution. Alpha function is typically used for
see-through textures like trees.

Decals

On Z-buffer based graphics hardware, coplanar geometry can cause
unwanted artifacts due to the finite numerical precision of the hardware
which cannot accurately resolve which surface has visual priority. This can
result in flimmering, a visual “tearing” or “twinkling” of the surfaces.
pfDecal() is used to accurately draw coplanar geometry on IRIS platforms
and it supports two implementation methods, each with its advantages:

The stencil decaling method uses a hardware resource known as a stencil
buffer and requires that a single stencil plane (see IRIS GL stencil() and
OpenGL glStencilOp() man pages) be available for IRIS Performer. This
method offers the highest image quality but requires that geometry be
coplanar and rendered in a specific order which reduces opportunities for
the performance advantage of sorting by graphics mode.

A potentially faster method is the displace decaling method. In this case, each
layer is displaced towards the eye so it “hovers” slightly above the preceding
layer. Displaced decals need not be coplanar, can be drawn in any order but
the displacement may cause geometry to incorrectly “poke through” other
geometry.

Decals consist of base geometry and layer geometry. The base defines the depth
values of the decal while layer geometry is simply “inlaid” on top of the
base. Multiple layers are supported but limited to 8 when using displaced
decals. Realize that these layers imply superposition; there is no limit to the
number of polygons in a layer, only to the number of distinct layers.

The decal mode indicates whether the subsequent geometry is base or layer
and the decal method to use. For example, a mode of
PFDECAL_BASE_STENCIL means that subsequent geometry is to be
considered as base geometry and drawn using the stencil method. All
combinations of base/layer and displace/stencil modes are supported but
you should make sure to use the same method for a given base-layer pair.

Graphics State

339

Example 10-3 illustrates the use of pfDecal().

Example 10-3 Using pfDecal() to draw road with stripes

pfDecal(PFDECAL_BASE_STENCIL);

/* ... draw underlying geometry (roadway) here ...*/

pfDecal(PFDECAL_LAYER_STENCIL);

/* ... draw coplanar layer geometry (stripes) here ... */

pfDecal(PFDECAL_OFF);

Note: libpf applications can use the pfLayer node to include decals within a
scene graph.

Frontface / Backface

pfCullFace() controls which side of a polygon (if any) is discarded in the
Geometry Pipeline. Polygons are either front-facing or back-facing. A
front-facing polygon is described by a counterclockwise order of vertices in
screen coordinates, and a back-facing one has a clockwise order.
pfCullFace() has four possible arguments:

PFCF_OFF Disable face-orientation culling

PFCF_BACK Cull back-facing polygons

PFCF_FRONT Cull front-facing polygons

PFCF_BOTH Cull both front- and back-facing polygons

In particular, backface culling is highly recommended since it offers a
significant performance advantage for databases where polygons are never
be seen from both sides (databases of “solid” objects or with constrained
eyepoints).

340

Chapter 10: libpr Basics

Antialiasing

pfAntialias() is used to turn the antialiasing mode of the hardware on or off.
Currently, antialiasing is implemented differently by each different graphics
system. Antialiasing can produce artifacts as a result of the way IRIS
Performer and the active hardware platform implement the feature. See the
reference page for pfAntialias() for implementation details.

Rendering Values

Some modes may also have associated values. These values are set through
pfGStateVal(). Table 10-8 lists and describes the value tokens.

Enable / Disable

pfEnable() and pfDisable() control certain rendering modes. Certain modes
do not have effect when enabled but require that other attribute(s) be
applied. Table 10-9 lists and describes the tokens and also lists the attributes
required for the mode to become truly active.

Table 10-8 pfGeoState Value Tokens

Token Name Description Range Default Value

PFSTATE_ALPHAREF Set the alpha function
reference value.

0.0 - 1.0 0.0

Table 10-9 Enable and Disable Tokens

Token Action Attribute(s) Required

PFEN_LIGHTING Enable or disable
lighting.

pfMaterial
pfLight
pfLightModel

PFEN_TEXTURE Enable or disable
texture.

pfTexEnv
pfTexture

PFEN_FOG Enable or disable fog. pfFog

Graphics State

341

By default all modes are disabled.

Rendering Attributes

Rendering attributes are state structures that are manipulated through a
procedural interface. Examples include pfTexture, pfMaterial, and pfFog.
libpr provides tokens that enumerate the graphics attributes it manages.
These tokens are used by pfGeoStates and other state-related functions like
pfOverride(). Table 10-10 lists and describes the tokens.

PFEN_WIREFRAME Enable or disable
pfGeoSet wireframe
rendering.

none

PFEN_COLORTABLE Enable or disable
pfGeoSet colortable
mode.

pfColortable

PFEN_HIGHLIGHTING Enable or disable
pfGeoSet highlighting.

pfHighlight

PFEN_TEXGEN Enable or disable
automatic texture
coordinate generation.

pfTexGen

PFEN_LPOINTSTATE Enable or disable
pfGeoSet light points

pfLPointState

Table 10-10 Rendering Attribute Tokens

Attribute Token Description Apply Routine

PFSTATE_LIGHTMODEL Lighting model pfApplyLModel

PFSTATE_LIGHTS Light source definitions pfLightOn

PFSTATE_FRONTMTL Front-face material pfApplyMtl

PFSTATE_BACKMTL Back-face material pfApplyMtl

PFSTATE_TEXTURE Texture pfApplyTex

Table 10-9 (continued) Enable and Disable Tokens

Token Action Attribute(s) Required

342

Chapter 10: libpr Basics

Rendering attributes control which attributes are applied to geometric
primitives when they’re processed by the hardware. All IRIS Performer
attributes consist of a control structure, definition routines, and an apply
function, pfApply* (except for lights which are “turned on”).

Each attribute has an associated pfNew*() routine that allocates storage for
the control structure. When sharing attributes across processors in a
multiprocessor application, you should pass the pfNew*() routine a shared
memory arena from which to allocate the structure. If you pass NULL as the
arena, the attribute is allocated from the heap and isn’t sharable in a
non-shared address space (fork()) multiprocessing application.

All attributes can be applied directly, referenced by a pfGeoState or captured
by a display list. When changing an attribute, that change isn’t visible until
the attribute is reapplied. Detailed coverage of attribute implementation is
available in the reference pages.

Texture

IRIS Performer supports texturing through pfTextures and pfTexEnvs,
which are roughly analogous to graphics library textures (see texdef2d() for
IRIS GL, or glTexImage2D() for OpenGL) and texture environments (see
IRIS GL’s tevdef(3g) or OpenGL’s glTexEnv()). A pfTexture defines a texture
image, format, and filtering. A pfTexEnv specifies how the texture should
interact with the colors of the geometry it’s applied to. You need both to

PFSTATE_TEXENV Texture environment pfApplyTEnv

PFSTATE_FOG Fog model pfApplyFog

PFSTATE_COLORTABLE Color table for pfGeoSets pfApplyCtab

PFSTATE_HIGHLIGHT Definition of pfGeoSet
highlighting style

pfApplyHlight

PFSTATE_LPOINTSTATE pfGeoSet light point definition pfApplyLPState

PFSTATE_TEXGEN Texture coordinate generation
definition

pfApplyTGen

Table 10-10 (continued) Rendering Attribute Tokens

Attribute Token Description Apply Routine

Graphics State

343

display textured data, but you don’t need to specify them both at the same
time. For example, you could have pfGeoStates each of which had a different
texture specified as an attribute and still use an overall texture environment
specified with pfApplyTEnv().

A pfTexture is created by calling pfNewTex(). If the desired texture image
exists as a disk file in IRIS libimage format (the file often has a “.rgb” suffix),
you can call pfLoadTexFile() to load the image into CPU memory and set the
image format. Otherwise, pfTexImage() lets you directly provide an image
array in the same external format as specified on the pfTexture and as
expected by texdef2d() in IRIS GL and glTexImage2D() in OpenGL. IRIS GL
and OpenGL both expect packed texture data with each row beginning on a
long word boundary. However, IRIS GL and OpenGL expect the individual
components of a texel to be packed in opposite order. For example, IRIS GL
expects four component texels to be packed as ABGR OpenGL expects the
texels to be packed as RGBA. If you provide your own image array in a
multiprocessing environment, it should be allocated from shared memory
(along with your pfTexture) to allow different processes to access it.

Note: The size of your texture must be an integral power of two on each side.
IRIS GL scales up your textures to the next power of two, making them take
up to four times more space in hardware texture memory! OpenGL simply
refuses to accept badly sized textures. You can rescale your texture images
with the izoom or imgworks programs (shipped with IRIX 5.3 in the
eoe2.sw.imagetools and imgtools.sw.tools subsystems; and with IRIX 6.2 in
the eoe.sw.imagetools and imgworks.sw.tools subsystems).

Your texture source does not have to be a static image. pfTexLoadMode()
can be used to set one of the sources listed in Table 10-11 with
PFTEX_LOAD_BASE. Note that sources other than CPU memory may not
be supported on all graphics platforms, or may have some special
restrictions. The sample program,
/usr/share/Performer/src/pguide/libpr/C/movietex.c demonstrates the use of
different texture sources for playing texture or video movies on pfGeoSet

344

Chapter 10: libpr Basics

“screens”. Changing your image source may cause your texture to go
through the formatting stage upon the next pfApplyTex().

Texture storage is limited only by virtual memory, but for real-time
applications you must consider the amount of texture storage the graphics
hardware supports. Textures that don’t fit in the graphics subsystem will be
paged as needed when pfApplyTex() is called. Libpr provides routines for
managing hardware texture memory so that a real-time application does not
have to get a surprise texture load. pfIsTexLoaded(), called from the
drawing process, will tell you if the pfTexture is currently properly loaded
in texture memory. pfIdleTex() can be used to free up the hardware texture
memory owned by a pfTexture.

pfLoadTex(), called from the drawing process, can be used to explicitly load
a texture into graphics hardware texture memory (which will include doing
any necessary formatting of the texture image). By default, pfLoadTex() will
load the entire texture image, including any required minification or
magnification levels, into texture memory. pfSubloadTex() and
pfSubloadTexLevel() can also be used in the drawing process to do an
immediate load of texture memory managed by the given pfTexture and
these routines allow you to specify all loading parameters (source, origin,
size, etc.). This is useful for loading different images for the same pfTexture
in different graphics pipelines.

A special pfTexFormat() formatting mode, PFTEX_SUBLOAD_FORMAT,
allows part or all of the image in texture memory owned by the pfTexture to
be replaced via pfApplyTex(), pfLoadTex(), or pfSubloadTex(), without
having to go through the expensive reformatting phase. This allows you to
quickly update the image of a pfTexture in texture memory. The
PFTEX_SUBLOAD_FORMAT used with an appropriate pfTexLoadSize()

Table 10-11 Texture Image Sources

PFTEX_SOURCE_ Token Texture image is take from:

IMAGE CPU memory location specified by pfTexLoadImage() or
pfTexImage().

FRAMEBUFFER framebuffer location offset from window origin as
specified by pfTexLoadOrigin().

VIDEO Sirius video texture drain.

Graphics State

345

and pfTexLoadOrigin() allows you to control what part of the texture will
be loaded by subsequent calls to pfLoadTex() or pfApplyTex(). There are
also different loading modes that cause pfApplyTex() to automatically
reload or subload a texture from a specified source. If you want the image of
a pfTexture to be updated upon every call to pfApplyTex(), you can set the
loading mode of the pfTexture with pfTexLoadMode() to be
PFTEX_BASE_AUTO_REPLACE. pfTexLoadImage() allows you to
continuously update the memory location of an IMAGE source texture
without triggering any reformatting of the texture.

Note: In IRIS GL, the SUBLOAD format (same as the FAST_DEFINE format
on old versions of IRIS Performer) can only be used on non-MIPmapped
textures. The fast texture loading uses the IRIS GL subtexload() and
OpenGL glTexSubImage() calls. In IRIS GL, subload sizes must be integral
multiples of 32.

Hint: There are additional texture formatting modes that can improve
texture performance. Of most importance is the 16-bit texel internal formats.
These formats cause the resulting texels to have 16 bits of resolution instead
of the standard 32. These formats can have dramatically faster texture fill
performance and cause the texture to take up half the hardware texture
memory. Therefore, they are strongly recommended and are used by default.
There are different formats for each possible number of components to give
a choice of how the compression is to be done. These formats are described
in the pfTexFormat(3pf) reference page.

There may also be formatting modes for internal or external image formats
that IRIS Performer does not have a token for. However, the GL value can be
specified. Specifying GL values will make your application GL specific and
may also cause future porting problems, so it should only be done if
absolutely necessary.

pfTextures also allow you to define a set of textures that are mutually
exclusive, should always be applied to the same set of geometry, and thus
that can share the same location in hardware texture memory. With
pfTexList(tex, list) you can specify a list of textures to be in a texture set
managed by the base texture, tex. The base texture is what gets applied with
pfApplyTex(), or assigned to geometry through pfGeoStates. With
pfTexFrame(), you can select a given texture from the list (-1 selects the base
texture and is the default). This allows you to define a texture movie where
each image is the frame of the movie. You can have an image on the base

346

Chapter 10: libpr Basics

texture to display when the movie is not playing. There are additional
loading modes for pfTexLoadMode() described in Table 10-12 to control
how the textures in the texture list share memory with the base texture.

Texture list textures can share the exact graphics texture memory as the base
texture but this has the restriction that the textures must all be the exact same
size and format as the base texture. Texture list textures can also indicate that
they are mutually exclusive which will cause the texture memory of
previous textures to be freed before applying the new texture. This method
has no restrictions on the texture list, but is less efficient than the previous
method. Finally, texture list textures can be treated as completely
independent textures that should all be kept resident in memory for rapid
access upon their application.

pfTexFilter() sets a desired filter on a pfTexture. The minification and
magnification texture filters are described with bitmask tokens. If filters are
partially specified, IRIS Performer will fill in the rest with machine
dependent fast defaults. The PFTEX_FAST token can be included in the
bitmask to allow IRIS Performer to make machine dependent substitutions
where there are large performance differences.

There are a variety of texture filter functions that can improve the look of
textures when they are minified and magnified. By default, textures use
MIPmapping when minified (though this costs an extra 1/3 in storage space
to store the minification levels). Each level of minification or magnification
of a texture is twice the size of the previous level. Minification levels are

Table 10-12 Texture Load Modes

PFTEX_LOAD_
 modeToken

Load mode values Description:

BASE BASE_APPLY
BASE_AUTO_SUBLOAD

Loading of image is done as required
for pfApply, or automatically
subloaded upon every pfApply.

LIST LIST_APPLY
LIST_AUTO_IDLE
LIST_AUTO_SUBLOAD

Loading of list texture image is as
separate apply, causes freeing of
previous list texture in hardware
texture memory, or is subloaded into
memory managed by the base
texture.

Graphics State

347

indicated with positive numbers and magnification levels are indicated with
non-positive numbers. The default magnification filter for textures is
bilinear interpolation. The use of detail textures and sharpening filters can
improve the look of magnified textures. Detailing actually uses an extra
detail texture that you provide that is based on a specified level of
magnification from the corresponding base texture. The detail texture can be
specified with the pfTexDetail() command. By default, MIPmap levels are
generated for the texture automatically. OpenGL operation allows for the
specification of custom MIPmap levels. Both MIPmap levels and detail
levels can be specified with pfTexLevel(). The level number should be a
positive number for a minification level and a non-positive number for a
magnification (detail) level. If you are providing your own minification
levels, you must provide all log2(MAX(texSizeX, texSizeY)) minification
levels. There is only one detail texture for a pfTexture.

The magnification filters use spline functions to control their rate of
application as a function of magnification, and specified level of
magnification for detail textures. These splines can be specified with
pfTexSpline(). The specification of the spline is a set of control points that
are pairs of non-decreasing magnification levels (specified with non-positive
numbers) and corresponding scaling factors. Magnification filters can be
applied to all components of a texture, only the RGB components of a
texture, or to just the alpha components. OpenGL does not allow different
magnification filters (between detail and sharpen) for RGB and alpha
channels.

Note: The specification of detail textures may have GL dependencies and
magnifications filters may not be available on all hardware configurations.
The pfTexture reference page describes these details.

Automatic Texture Coordinate Generation

Automatic texture coordinate generation is provided with the pfTexGen
state attribute. pfTexGen closely corresponds to IRIS GL’s texgen() and
OpenGL’s glTexGen() functions. When texture coordinate generation is
enabled, a pfTexGen applied with pfApplyTGen() will automatically
generate texture coordinates for all rendered geometry. Texture coordinates
are generated from geometry vertices according to the texture generation
mode set with pfTGenMode(). Available modes and their function are listed

348

Chapter 10: libpr Basics

in Table 10-13. Some modes refer to a plane which is set with
pfTGenPlane().

Lighting

IRIS Performer lighting is an extension of graphics library lighting (see
lmdef(3g) for IRIS GL or glLight() and related functions in OpenGL), but
IRIS Performer divides the actions of lmdef() into lights and light models,
just as OpenGL does. The light embodies the color, position, and type (for
example, infinite or spot) of the light. The light model specifies the
environment for infinite (the default) or local viewing, and two-sided
illumination. pfLights and pfLightModels are created by calling
pfNewLight() and pfNewLModel(), respectively.

The transformation matrix that is on the matrix stack at the time the light is
applied controls the interpretation of the light source direction:

1. To attach a light to the viewer (like a miner’s head-mounted light), call
pfLightOn() only once with an identity matrix on the stack.

2. To attach a light to the world (like the sun or moon), call pfLightOn()
every frame with only the viewing transformation on the stack.

3. To attach a light to an object (like the headlights of a car), call
pfLightOn() every frame with the combined viewing and modeling
transformation on the stack.

Table 10-13 Texture generation modes

PFTG_ Mode Token Texture coordinates are calculated as...

OBJECT_PLANE distance of vertex from plane in object coordinates

EYE_PLANE distance of vertex from plane in eye coordinates. The
plane is transformed by the inverse of the ModelView
matrix when the pfTexGen is applied.

EYE_PLANE_IDENT distance of vertex from plane in eye coordinates. The
plane is not transformed by the inverse of the ModelView
matrix when the pfTexGen is applied

SPHERE_MAP an index into a 2D reflection map based on vertex position
and normal. Specifics of the calculation are found in the
graphics libraries’ man pages.

Graphics State

349

The number of lights you can have turned on at any one time is limited by
PF_MAX_LIGHTS, just as is true with the graphics libraries.

Note: In IRIS GL, attenuation is also part of the light model definition. In
OpenGL, attenuation is defined per-light. There is separate libpr API for
setting each of these: pfLModelAtten() for IRIS GL and pfLightAtten() for
OpenGL. You can use pfQueryFeature() with a feature specifier value of
PFQFTR_LMODEL_ATTENUATION or PFQFTR_LIGHT_ATTENUATION
to find out which is supported in the current run-time environment.

Note: libpf applications can include light sources in a scene graph with the
pfLightSource node.

Materials

IRIS Performer materials are an extension of graphics library materials (see
lmdef(3g) for IRIS GL or glMaterial() for OpenGL). pfMaterials encapsulate
the ambient, diffuse, specular, and emissive colors of an object as well as its
shininess and transparency. A pfMaterial is created by calling pfNewMtl().
As with any of the other attributes, a pfMaterial can be referenced in a
pfGeoState, captured by a display list, or invoked as an immediate mode
command.

pfMaterials, by default, allow object colors to set the ambient and diffuse
colors. This allows the same pfMaterial to be used for objects of different
colors, removing the need for material changes and thus improving
performance. This mode can be changed with pfMtlColorMode(mtl, side,
PFMTL_CMODE_*). IRIS GL only supports the front material tracking the
current color while OpenGL allows front or back materials to track the
current color. If the same material is used for both front and back materials,
there is no difference in functionality.

Color Tables

A pfColortable substitutes its own color array for the normal color attribute
array (PFGS_COLOR4) of a pfGeoSet. This allows the same geometry to
appear differently in different views simply by applying a different
pfColortable for each view. By leaving the selection of color tables to the
global state, you can use a single call to switch color tables for an entire

350

Chapter 10: libpr Basics

scene. In this way, color tables can simulate time-of-day changes, infrared
imaging, psychedelia, and other effects.

pfNewCtab() creates and returns a handle to a pfColortable. As with other
attributes, you can specify which color table to use in a pfGeoState or you
can use pfApplyCtab() to set the global color table, either in immediate
mode or in a display list. For an applied colortable to have effect, colortable
mode must also be enabled.

Fog

A pfFog is created by calling pfNewFog(). As with any of the other
attributes, a pfFog can be referenced in a pfGeoState, captured by a display
list, or invoked as an immediate mode command. Fog is the atmospheric
effect of aerosol water particles that occlude vision over distance. The IRIS
hardware can simulate this phenomenon in several different fashions. A fog
color is blended with the resultant pixel color based on the range from the
viewpoint and the fog function. pfFog supports several different fogging
methods. Table 10-14 lists the pfFog tokens and their corresponding actions.

pfFogType() uses these tokens to set the type of fog. A detailed explanation
of fog types is given in the reference page for pfFog(3pf) and the IRIS GL
fogvertex(3g) and OpenGL glFog(3g) reference pages.

Table 10-14 pfFog Tokens

pfFog Token Action

PFFOG_VTX_LIN Compute fog linearly at vertices.

PFFOG_VTX_EXP Compute fog exponentially at vertices (ex).

PFFOG_VTX_EXP2 Compute fog exponentially at vertices (ex squared).

PFFOG_PIX_LIN Compute fog linearly at pixels.

PFFOG_PIX_EXP Compute fog exponentially at pixels (ex).

PFFOG_PIX_EXP2 Compute fog exponentially at pixels (ex squared).

PFFOG_PIX_SPLINE Compute fog using a spline function at pixels.

Graphics State

351

You can set the near and far edges of the fog with pfFogRange(). For
exponential fog functions, the near edge of fog is always zero in eye
coordinates. The near edge is where the onset of fog blending occurs, and the
far edge is where all pixels are 100% fog color.

The token PFFOG_PIX_SPLINE selects a spline function to be applied when
generating the hardware fog tables. This is further described in the
pfFog(3pf) reference page. Spline fog allows the user to define an arbitrary
fog ramp that can more closely simulate real-world phenomena like horizon
haze.

For best fogging effects the ratio of the far to the near clipping planes should
be minimized. In general, it’s more effective to add a small amount to the
near plane than to reduce the far plane.

Highlights

IRIS Performer provides a mechanism for highlighting geometry with
alternative rendering styles, useful for debugging and interactivity. A
pfHighlight, created with pfNewHlight(), encapsulates the state elements
and modes for these rendering styles. A pfHighlight can be applied to an
individual pfGeoSet with pfGSetHlight(), or can be applied to multiple
pfGeoStates through a pfGeoState or pfApplyHlight(). The highlighting
effects are added to the normal rendering phase of the geometry.
pfHighlights make use of special outlining and fill modes and have a
concept of a foreground color and a background color that can both be set
with pfHlightColor(). The available rendering styles can be combined by
OR-ing together tokens for pfHlightMode() and are described in
Table 10-15.

Table 10-15 pfHlightMode() Tokens

PFHL_ Mode Bitmask Token Description

LINES Outlines the triangles in the highlight foreground
color according to pfHlightLineWidth().

LINESPAT
LINESPAT2

Outlines triangles with patterned lines in the
highlight foreground color, or in two colors using the
background color.

352

Chapter 10: libpr Basics

For a demonstration of the highlighting styles, see the sample program,
/usr/share/Performer/pguide/src/libpr/C/hlcube.c.

Graphics Library Matrix Routines

IRIS Performer provides extensions to the standard graphics library
matrix-manipulation functions. These functions are similar to their graphics
library counterparts, with the exception that they can be placed in IRIS

FILL Draws geometry with the highlight foreground color.
Combined with SKIP_BASE, this is a fast
highlighting mode.

FILLPAT
FILLPAT2

Draws the highlighted geometry as patterned with
one or two colors.

FILLTEX Draw highlighting fill pass with a special highlight
texture.

LINES_R
FILL_R

Reverses the highlighting foreground and
background colors for lines and fill, respectively.

POINTS Renders the vertices of the geometry as points
according to pfHlightPntSize().

NORMALS Displays the normals of the geometry with lines
according to pfHlightNormalLength().

BBOX_LINES
BBOX_FILL

Displays the bounding box of the pfGeoSet as
outlines and/or filled box. Combined with
PFHL_SKIP_BASE, this is a fast highlighting mode.

SKIP_BASE Causes the normal drawing phase of the pfGeoSet to
be skipped. This is recommended when using
PFHL_FILL or PFHL_BBOX_FILL.

Table 10-15 (continued) pfHlightMode() Tokens

PFHL_ Mode Bitmask Token Description

Graphics State

353

Performer display lists. Table 10-16 lists and describes the matrix
manipulation routines.

Sprite Transformations

A sprite is a special transformation used to efficiently render complex
geometry with axial or point symmetry. A classic sprite example is a tree
which is rendered as a single, texture-mapped quadrilateral. The texture
image is of a tree and has an alpha component whose values which “etches”
the tree shape into the quad. In this case, the sprite transformation rotates the
quad around the tree trunk axis so that it always faces the viewer. Another
example is a puff of smoke which again is a texture-mapped quad but is
rotated about a point to face the viewer so it appears the same from any
viewing angle. The pfSprite transformation mechanism supports both these
simple examples as well as more complicated ones involving arbitrary 3D
geometry.

A pfSprite is a structure which is manipulated through a procedural
interface. It is different from “attributes” like pfTexture and pfMaterial since
it affects transformation, rather than state related to appearance. A pfSprite
is activated with pfBeginSprite(). This enables “sprite mode” and any
pfGeoSet that is drawn before sprite mode is ended with pfEndSprite() will
be transformed by the pfSprite. First, the pfGeoSet is translated to the

Table 10-16 Matrix Manipulation Routines

Routines Action

pfScale Concatenate a scaling matrix.

pfTranslate Concatenate a translation matrix.

pfRotate Concatenate a rotation matrix.

pfPushMatrix Push down the matrix stack.

pfPushIdentMatrix Push the matrix stack and load an identity matrix on top.

pfPopMatrix Pop the matrix stack.

pfLoadMatrix Add a matrix to the top of the stack.

pfMultMatrix Concatenate a matrix.

354

Chapter 10: libpr Basics

location specified with pfPositionSprite(). Then, it is rotated, either about
the sprite position or axis depending on the pfSprite’s configuration. Note
that pfBeginSprite(), pfPositionSprite() and pfEndSprite() are display
listable and this will be captured by any active pfDispList.

A pfSprite’s rotation mode is set by specifying the PFSPRITE_ROT token to
pfSpriteMode(). In all modes, the Y axis of the geometry is rotated to point
to the eye position. Rotation modes are listed below.

Rather than using the graphics hardware’s matrix stack, pfSprites transform
small pfGeoSets on the CPU for improved performance. However, when a
pfGeoSet contains a certain number of primitives it becomes more efficient
to use the hardware matrix stack. While this threshold is dependent on the
CPU and graphics hardware used, you may specify it with the
PFSPRITE_MATRIX_THRESHOLD token to pfSpriteMode(). The
corresponding value is the minimum vertex requirement for hardware
matrix transformation. Any pfGeoSet with fewer vertices will be
transformed on the CPU. If you want a pfSprite to affect non-pfGeoSet
geometry you should set the matrix threshold to zero so that the pfSprite will
always use the matrix stack. When using the matrix stack, pfBeginSprite()
pushes the stack and pfEndSprite() pops the matrix stack so the sprite
transformation is limited in scope.

pfSprites are dependent on the viewing location and orientation and the
current modeling transformation. You can specify these with calls to
pfViewMat() and pfModelMat() respectively. Note that libpf-based
applications need not call these routines since libpf does it automatically.

Table 10-17 pfSprite rotation modes

PFSPRITE_ Rotation Token Rotation Characteristics

AXIAL_ROT Geometry’s Z axis is rotated about the axis specified
with pfSpriteAxis().

POINT_ROT_EYE Geometry is rotated about the sprite position with
the object coordinate Z axis constrained to the
window coordinate Y axis, i.e., geometry’s Z axis
stays “upright”.

POINT_ROT_WORLD Geometry is rotated about the sprite position with
the object coordinate Z axis constrained to the sprite
axis.

Graphics State

355

Display Lists

libpr supports display lists, which can capture and later execute libpr
graphics commands. pfNewDList() creates and returns a handle to a new
pfDispList. A pfDispList can be selected as the current display list with
pfOpenDList(), which puts the system in display list mode. Any subsequent
libpr graphics commands, such as pfTransparency(), pfApplyTex(), or
pfDrawGSet(), are added to the current display list. Commands are added
until pfCloseDList() returns the system to immediate mode. It is not legal to
have multiple pfDispLists open at a given time but a pfDispList may be
reopened in which case commands are appended to the end of the list.

Once a display list is constructed, it can be executed by calling
pfDrawDList(), which traverses the list and sends commands down the
Geometry Pipeline.

pfDispLists are designed for multiprocessing, where one process builds a
display list of the visible scene and another process draws it. The function
pfResetDList() facilitates this by making pfDispLists reusable. Commands
added to a reset display list overwrite any previously entered commands. A
display list is typically reset at the beginning of a frame and then filled with
the visible scene.

pfDispLists support concurrent multiprocessing, where the producer and
consumer processes simultaneously write and read the display list. The
PFDL_RING argument to pfNewDList() creates a ring buffer or FIFO-type
display list. pfDispLists automatically ensure ring buffer consistency by
providing synchronization and mutual exclusion to processes on ring buffer
full or empty conditions.

State Management

pfState is a structure that represents the entire libpr graphics state. A pfState
maintains a stack of graphics states that can be pushed and popped to save
and restore state. The top of the stack describes the current graphics state of
a window as it’s known to IRIS Performer.

pfInitState() initializes internal libpr state structures and should be called at
the beginning of an application before any pfStates are created.
Multiprocessing applications should pass a usinit() semaphore arena

356

Chapter 10: libpr Basics

pointer to pfInitState(), such as pfGetSemaArena(), so IRIS Performer can
safely manage state between processes. pfNewState() creates and returns a
handle to a new pfState, which is typically used to define the state of a single
window. If using pfWindows, discussed in “Windows” on page 363, a
pfState is automatically created for the pfWindow when the window is
opened and the current pfState is switched when the current pfWindow
changes. pfSelectState() can be used to efficiently switch a different
complete pfState. pfLoadState() will force the full application of a pfState.

Pushing and Popping State

pfPushState() pushes the state stack of the currently active pfState,
duplicating the top state. Subsequent modifications of the state through libpr
routines are recorded in the top of stack. Consequently, a call to pfPopState()
restores the state elements that were modified after pfPushState().

The code fragment in Example 10-4 illustrates how to push and pop state.

Example 10-4 Pushing and Popping Graphics State

/* set state to transparency=off and texture=brickTex */
pfTransparency(PFTR_OFF);
pfApplyTex(brickTex);

/* ... draw geometry here using original state ... */

/* save old state. establish new state */
pfPushState();
pfTransparency(PFTR_ON);
pfApplyTex(woodTex);

/* ... draw geometry here using new state ...*/

/* restore state to transparency=off and texture=brickTex */
pfPopState();

Graphics State

357

State Override

pfOverride() implements a global override feature for libpr graphics state
and attributes. pfOverride() takes a mask that indicates which state
elements to affect and a value specifying whether the elements should be
overridden. The mask is a bitwise OR of the state tokens listed previously.

The values of the state elements at the time of overriding become fixed and
cannot be changed until pfOverride() is called again with a value of zero to
release the state elements.

The code fragment in Example 10-5 illustrates the use of pfOverride().

Example 10-5 Using pfOverride()

pfTransparency(PFTR_OFF);
pfApplyTex(brickTex);

/*
 * Transparency will be disabled and only the brick texture
 * will be applied to subsequent geometry.
 */
pfOverride(PFSTATE_TRANSPARENCY | PFSTATE_TEXTURE, 1);
/* Draw geometry */

/* Transparency and texture can now be changed */
pfOverride(PFSTATE_TRANSPARENCY | PFSTATE_TEXTURE, 0);

pfGeoState

A pfGeoState encapsulates all the rendering modes, values, and attributes
managed by libpr. See “Rendering Modes” on page 335, “Rendering Values”
on page 340, and “Rendering Attributes” on page 341 for more information.
pfGeoStates provide a mechanism for combining state into logical units and
define the appearance of geometry. For example, you can set a brick-like
texture and a reddish-orange material on a pfGeoSet and use it when
drawing brick buildings.

358

Chapter 10: libpr Basics

Local and Global State

There are two levels of rendering state: local and global. A record of both is
kept in the current pfState. The local state is that defined by the settings of
the current pfGeoState. The rendering state and attributes of a pfGeoState
can be either locally set or globally inherited. If all state elements are set
locally, a pfGeoState becomes a full graphics context—that is, all state is then
defined at the pfGeoState level. Global state elements are set with libpr
immediate mode routines like pfEnable(), pfApplyTex(), pfDecal(),
pfTransparency() or by drawing a pfDispList containing these commands
with pfDrawDList(). Local state elements are set by applying a pfGeoState
with pfApplyGState() (note that pfDrawGSet() automatically calls
pfApplyGState() if the pfGeoSet has an attached pfGeoState). The state
elements applied by a pfGeoState are those modes, enables, and attributes
that are explicitly set on the pfGeoState.

Note: By default, all state elements are inherited from the global state.
Inherited state elements are evaluated faster than values that have been
explicitly set.

While it can be useful to have all state defined at the pfGeoState level, it
usually makes sense to inherit most state from global default values and
then explicitly set only those state elements that are expected to change
often.

Examples of useful global defaults are lighting model, lights, texture
environment, and fog. Highly variable state is likely to be limited to a small
set such as textures, materials, and transparency. For example, if the majority
of your database is lighted, simply configure and enable lighting at the
beginning of your application. All pfGeoStates will be lighted except the
ones for which you explicitly disable lighting. Then attach different
pfMaterials and pfTextures to pfGeoStates to define specific state
combinations.

Note: Caution should be used when enabling modes in the global state.
These modes may have cost even when they have no visible effect.
Therefore, geometry that cannot use these modes should have a pfGeoState
that explicitly disables the mode. Modes to be especially careful of include
the texturing enable and transparency.

Graphics State

359

You specify that a pfGeoState should inherit state elements from the global
default with pfGStateInherit(gstate, mask). mask is a bitmask of tokens that
indicates which state elements to inherit. These tokens are listed in the
“Rendering Modes”, “Rendering Values”, and “Rendering Attributes”
sections of this chapter. For example, PFSTATE_ENLIGHTING |
PFSTATE_ENTEXTURE makes gstate inherit the enable modes for lighting
and texturing.

A state element ceases to be inherited when it is set in a pfGeoState.
Rendering modes, values, and attributes are set with pfGStateMode(),
pfGStateVal(), and pfGStateAttr(), respectively. For example, to specify that
gstate is transparent and textured with treeTex, use

pfGStateMode(gstate, PFSTATE_TRANSPARENCY, PFTR_ON);
pfGStateAttr(gstate, PFSTATE_TEXTURE, treeTex);

Applying pfGeoStates

Use pfApplyGState() to apply the state encapsulated by a pfGeoState to the
Geometry Pipeline. The effect of applying a pfGeoState is similar to applying
each state element individually. For example, if you set a pfTexture and
enable a decal mode on a pfGeoState, applying it essentially calls
pfApplyTex() and pfDecal(). If in display-list mode, pfApplyGState() is
captured by the current display list.

State is (logically) pushed before, and popped after, pfGeoStates are applied,
so that pfGeoStates don’t inherit state from each other. This is a very
powerful and convenient characteristic since as a result, pfGeoStates are
order-independent, and you don’t have to worry about one pfGeoState
corrupting another. The code fragment in Example 10-6 illustrates how
pfGeoStates inherit state.

Example 10-6 Inheriting State

/* gstateA should be textured */
pfGStateMode(gstateA, PFSTATE_ENTEXTURE, PF_ON);

/* gstateB inherits the global texture enable mode */
pfGStateInherit(gstateB, PFSTATE_ENTEXTURE);

/* Texturing is disabled as the global default */
pfDisable(PFEN_TEXTURE);

360

Chapter 10: libpr Basics

/* Texturing is enabled when gstateA is applied */
pfApplyGState(gstateA);
/* Draw geometry that will be textured */

/* The global texture enable mode of OFF is restored
so that gstateB is NOT textured. */
pfApplyGState(gstateB);
/* Draw geometry that will not be textured */

The actual pfGeoState pop is a lazy pop that doesn’t happen unless a
subsequent pfGeoState requires the global state to be restored. This means
that the actual state between pfGeoStates isn’t necessarily the global state. If
a return to global state is required, call pfFlushState() to restore the global
state. Any modification to the global state made using libpr functions—
pfTransparency(), pfDecal(), and so on—becomes the default global state.

For best performance, set as little local pfGeoState state as possible. You can
accomplish this by setting global defaults that satisfy the majority of the
requirements of the pfGeoStates being drawn. By default, all pfGeoState
state is inherited from the global default.

pfGeoSets and pfGeoStates

There is a special relationship between pfGeoSets and pfGeoStates. Together
they completely define both geometry and graphics state. You can attach a
pfGeoState to a pfGeoSet with pfGSetGState() to specify the appearance of
geometry. Whenever the pfGeoSet is drawn with pfDrawGSet(), the
attached pfGeoState is first applied using pfApplyGState().

This combination of routines allows the application to combine geometry
and state in high-performance units which are unaffected by rendering
order. To further increase performance, sharing pfGeoStates among
pfGeoSets is encouraged.

Graphics State

361

pfGeoState Routines

Table 10-18 lists and describes the pfGeoState routines.

pfGeoState Structure

Figure 10-3 diagrams the conceptual structure of a pfGeoState.

Table 10-18 pfGeoState Routines

Function Description

pfNewGState Create a new pfGeoState.

pfCopy Make a copy of the pfGeoState.

pfDelete Delete the pfGeoState.

pfGStateMode Set a specific state mode.

pfGStateVal Set a specific state value.

pfGStateAttr Set a specific state attribute.

pfGStateInherit Specify which state elements are inherited from the
global state.

pfApplyGState Apply pfGeoState’s non-inherited state elements to
graphics.

pfGetCurGState Return the current pfGeoState in effect.

pfGStateFuncs Assign pre/post callbacks to pfGeoState

pfApplyGStateTable Specify table of pfGeoStates used for indexing.

362

Chapter 10: libpr Basics

Figure 10-3 pfGeoState Structure

pfFog

pfTexGen

color
start
end

pfTexture

sizecomponentcountimagemodesdetail texture

pfTexture

sizecomponentcountimagemodesdetail texture

light model
lights [8]front materialback material
texturetexture enviromentcolor table

fog model

modes
values

texture generationpfLPointState

pfGeoState

on/off tagambientcolorpositiondirectionspreadexponent

pfLight

pfLight

Model

pfColortable

table addresstable size

pfTexEnv
texture indexblendmodes

attenuation

ambient

local/infinite flag

two-side flag

alphaambientdiffuseemissionshininessspecular

pfMaterial

alphaambientdiffuseemissionshininessspecular

pfMaterial

Windows

363

Windows

Rendering to the graphics hardware requires a window. A window is an
allocated area of the screen with associated framebuffer resources. The X
window system manages the use of shared resources amongst the different
windows. Windows can be requested directly from an X window server.
With a bit of interfacing, both IRIS GL and OpenGL graphics contexts can
render into X windows. An X window with an IRIS GL graphics context is
called a mixed model IRIS GL (GLX) window. An X window with an
OpenGL graphics context is called an OpenGL/X window. An X window
can only have one graphics context at a time rendering to it. IRIS GL
supports a third option: pure IRIS GL windows. Pure IRIS GL windows are
convenient and flexible for rendering purposes but can not be used as X
windows in X applications. If, for example, you want to put your rendering
window inside a larger Motif window, you will need an X window. Libpr
provides utilities to shield you from the differences between the different
types of windows and guide you in your dealings with the window system.
Applications that use the IRIS Performer window utilities can be completely
portable between IRIS GL and OpenGL and sill have the option of using
pure IRIS GL windows if desired when running in IRIS GL. You’ll be able to
use your windows in X applications, or direct your rendering to a
pre-created window. The libpr windowing support centers around the
pfWindow.

pfWindows are structures for managing any of the different kinds of
windows and associated pfState. pfWindows provide an efficient
windowing interface between your application and the window system.
pfWindows shield you from the functional and performance differences
between the different graphics libraries and the different window system
interfaces and allow you to configure, manipulate, and query IRIS GL, IRIS
GL mixed model (GLX), and OpenGL/X windows through a GL and
window system independent interface. pfWindows also keep track of your
graphics state: they include a pfState which is automatically initialized when
you open a window, and switched for you when you change windows.

IRIS Performer will automatically configure and initialize your window so
that it will be ready to start rendering efficiently. In the simplest case,
pfWindows make creating a graphics application that can run on any Silicon
Graphics machine with IRIS GL or OpenGL a snap. pfWindows do not limit
your ability to configure any part or all of your windowing environment

364

Chapter 10: libpr Basics

yourself; you can use the libpr pfWindows to manage your GL windows
even if you create and configure the actual windows yourself.

A pfWindow structure is created with pfNewWin(). It can then be
immediately opened with pfOpenWin(). Example 10-7 shows the most
basic pfWindow operations in libpr program: to open and clear a pfWindow
and swap front and back color buffers.

Example 10-7 Opening a pfWindow

int main (void)
{

pfWindow *win;
/* Initialize Performer */
pfInit();
pfInitState(NULL);

/* Create and open a Window */
win = pfNewWin(NULL);
pfWinName(win, “Hello from IRIS Performer”);

 pfOpenWin();

/* Rendering loop */
while (1)
{

/* Clear to black and max depth */
pfClear(PFCL_COLOR | PFCL_DEPTH, NULL);
...
pfSwapWinBuffers(win);

}
}

The pfWindow in Example 10-7 will have the following configuration:

Window system interface
OpenGL windows will be an X window using the
OpenGL/X interface. IRIS GL windows will be pure IRIS
GL.

Screen: The pfWindow will open a window on the screen specified
by the DISPLAY environment variable, or else on screen 0.

Windows

365

Position and size:
The position and size will be undefined and the window
will come up as a rubber-bend for the user to place and
stretch.

Framebuffer configuration:
The window will be doublebuffered RGBA with depth and
stencil buffers allocated. The size of these buffers will
depend on the available resources of the current graphics
hardware platform. GLX and OpenGL/X windows will
also have multisample buffers allocated if they are available
on current hardware platform.

Libpr state: A pfState will be created and initialized with all modes
disabled and no attributes set.

Graphics state: The pfWindow will be in RGBA color mode with subpixel
vertex positioning, depth testing and viewport clipping
enabled. The Viewing projection will be a two-dimensional
one-one orthographic mapping from eye coordinates to
window coordinates with distances to near and far clipping
planes -1 and 1, respectively. The model matrix will be the
current matrix and will be initialized to the identity matrix.

Typically, pfWindows go through a bit more initialization than that of
Example 10-7. The type of pfWindow type, set with pfWinType() is a
bitmask that selects the window system interface and the type of rendering
window. The default window type is a normal graphics rendering window
and is pure IRIS GL under IRIS GL operation and X under OpenGL.
operation. Table 10-19 lists the possible selectors that can be OR-ed together
for specification of the window type.

Table 10-19 pfWinType() Tokens

PFWIN_TYPE_
Bitmask Token

Description

X Window will be an X window, as opposed to a pure IRIS GL
window. This only has effect under IRIS GL operation.

STATS Window will have framebuffer resources to accommodate
hardware statistics modes. This type cannot be combined with
PFWIN_TYPE_OVERLAY or PFWIN_TYPE_NOPORT.

366

Chapter 10: libpr Basics

The selection of screen can be done explicitly with pfWinScreen(), or
implicitly by opening a connection to the window system using
pfOpenScreen() with the desired screen as the default screen. A window
system connection can communicate with any screen on the system; the
default screen only determines the screen for windows that do not have a
screen explicitly set for them. Only one window system connection should
be opened for a process. See “Communicating with the Window System”
later in this section for details on efficient interaction with the window
system.

The position and/or size, is set with pfWinOriginSize(). If the x and y
components of the origin are (-1), the window will open with position
undefined for the user to place. If the x or y components of the size are (-1),
the window will open with both position and size undefined (the default) for
the user to place and stretch. The X window manager may override negative
origins and place the window at (0,0). If the window is already opened when
pfWinOriginSize() is called, the window will be reconfigured to the
specified origin and size upon the next pfSelectWin(). Similarly,
pfWinFullScreen() will cause a window to open as full screen or to become
full screen upon the next call to pfSelectWin(). A full screen window will
have its border automatically removed so that the drawing area truly gets
the full rendering surface. The routines for querying the position and size
work a bit differently than the pattern established by the rest of libpr get and
set pairs of routines. This is because a user may change the origin or size
independently of the program and under certain conditions, querying the
true current X window size and origin can be expensive. pfGetWinOrigin()
and pfGetWinSize() will always be fast and will return the last explicitly set
origin and size, such as by pfOpenWin(), pfWinOriginSize(), or

OVERLAY Window will have only overlay planes for rendering. This type
cannot be combined with PFWIN_TYPE_STATS or
PFWIN_TYPE_NOPORT.

NOPORT Window will have a graphics context but no physical window
or graphics or framebuffer rendering resources and will not be
placed on the screen. This token should not be used in
combination with any other type token.

Table 10-19 (continued) pfWinType() Tokens

PFWIN_TYPE_
Bitmask Token

Description

Windows

367

pfWinFullScreen(). If the window origin or size has been changed, but not
through a pfWindow routine, the values returned by pfGetWinOrigin() and
pfGetWinSize() may not be correct. pfGetWinCurOriginSize() will return
an accurate size and origin relative to the pfWindow parent. For pure IRIS
GL windows, this will also be reasonably fast; however, for X windows, it
will be expensive and should not be done in real-time situations. The parent
of an IRIS GL window is always the screen, but not so with X windows.
pfGetWinCurScreenOriginSize() will return the size and the
screen-relative origin of the pfWindow. If the pfWindow is an X window, this
command will be quite expensive and is not recommended accept for rare
use or initialization purposes.

pfPipeWindows, discussed in Chapter 4, “Setting Up the Display
Environment,” take advantage of the multiprocessed libpf environment to
always be able to return an accurate window size and origin relative to the
window parent. A process separate from the rendering process is by the
window manager of changes in the pfPipeWindow’s size in an efficient
manner without impacting the window system or the rendering process.
However, even for pfPipeWindows, getting a screen-relative origin can be an
expensive operation.

Hint: Users are strongly encouraged to write programs that are
window-relative and do not depend on knowing the current exact location
of a window relative to its parent or screen.

Configuring the framebuffer of a pfWindow

IRIS Performer provides a default framebuffer configurations for the current
graphics hardware platform for the standard window types: normal
rendering, statistics (stats), and overlay. You may want to define your own
framebuffer configuration, such as single-buffered, stereo, etc. You can use
utilities in libpr to help you with this task, or create your own framebuffer
configuration structure with X utilities, or even create the window yourself
and apply it to the pfWindow. pfOpenWin() will respect any specified
framebuffer configuration. Additionally, pfOpenWin() uses any window or
graphics context that is assigned to it and only creates what is undefined.

368

Chapter 10: libpr Basics

pfWinFBConfigAttrs() can be used to specify an array of framebuffer
attribute tokens listed in Table 10-20. The tokens are exactly like the
OpenGL/X tokens and the same attribute list can be used for all window
types: pure IRIS GL, mixed model IRIS GL, and OpenGL/X windows. Note
that if an attribute array is specified, the tokens modify configuration with
no attributes set, not the default IRIS Performer framebuffer configuration.

Table 10-20 pfWinFBConfigAttrs() Tokens

PFFB_ Token Value Description

BUFFER_SIZE integer > 0 The size of the color index buffer

LEVEL integer > 0 The color plane level:
normal color planes have level = 0

overlay color planes have level > 0

underlay color planes have level < 0

There may be only one or no levels for
overlay and underlay color planes on
some graphics hardware configurations.

RGBA Boolean:
true if
present

Use RGBA color planes (instead of color
index)

DOUBLEBUFFER Boolean:
true if
present

Use double-buffered color buffers

STEREO Boolean:
true if
present

Allocate left and right stereo color buffers
(allocates back left and back right if
DOUBLEBUFFER is specified.

AUX_BUFFER integer > 0 Number of additional color buffers to
allocate

RED_SIZE
GREEN_SIZE
BLUE_SIZE
ALPHA_SIZE

integer > 0 Minimum number of bits color for
components R, G, and B will all be the
same and be the maximum specified.
Alpha may be different.

DEPTH_SIZE integer > 0 Number of bits in the depth buffer

Windows

369

You may get back a framebuffer configuration that is better than the one you
requested. IRIS Performer will give you back the maximum framebuffer
configuration that meets your request that will not add any serious
performance degradations. There are specific machine dependent instances
where when possible, for performance reasons, we do limit the framebuffer
configuration. See the pfChooseWinFBConfig() reference page for the
specific details.

If you desire more control over the exact framebuffer configuration of your
pfWindow, you have several options. For pure IRIS GL windows you can
make GL framebuffer configuration calls, such as RGBsize(), zbsize(), and
mssize(), directly. You can tell IRIS Performer to not do any window
configuration by setting an empty attribute array. For X windows you can
provide the appropriate framebuffer description for the current GL
operation to the pfWindow using pfWinFBConfig(). X uses visuals to
describe available framebuffer configurations. You can select the visual for
your window and set it on the pfWindow with pfWinFBConfig().
XVisualInfo pointer with XGetVisualInfo() will return a list of all visuals on
the system and you can search through them to find the appropriate
configuration.

STENCIL integer > 0 Number of bits allocated for stencil. One
is used by pfDecal rendering and three or
four are used by the hardware fill
statistics in pfStats.

ACCUM_RED_SIZE
ACCUM_GREEN_SIZE
ACCUM_BLUE_SIZE
ACCUM_ALPHA_SIZE

integer > 0 Number of bits per RGBA component for
the accumulation color buffer.

USE_GL Boolean:
true if
present

Accepted for compatibility with X
routines. Has no effect.

Table 10-20 (continued) pfWinFBConfigAttrs() Tokens

PFFB_ Token Value Description

370

Chapter 10: libpr Basics

libpr also offers utilities for creating framebuffer configurations (pfFBConfig)
independently of a pfWindow. pfChooseFBConfig() takes an attribute array
of tokens from Table 10-20 and will return a pfFBConfig structure that can be
used with your pfWindows, or with X Windows created outside of libpr, such
as with Motif.

You can use pfQuerySys() to query particular framebuffer resources in the
current hardware configuration and then use pfQueryWin() to query your
resulting framebuffer configuration.

There is a special utility for supporting mixed model IRIS GL (GLX)
windows. GLX windows use a special attribute array returned by
GLXgetconfig() and expected by GLXlink() for creating a framebuffer
configuration and graphics window. You can set and get this special
GL-dependent attribute array with pfWinFBConfigData() and
pfGetWinFBConfigData(), respectively. This configuration array is useful
for hooking up GLX windows with X windows from other toolkits or with
Motif. Under OpenGL operation, pfWinFBConfigData() just expects a
configuration attribute array appropriate for glXChooseVisual() or
pfChooseWinFBConfig().

pfWindows and GL Windows

libpr allows you direct access to the GL and X window handles, or to create
your own windows and set them on the pfWindow.

You can create your own windows (and/or in the case of OpenGL/X,
graphics contexts) and set them on the pfWindow. You can then call
pfOpenWin() to make sure everything is hooked up correctly, apply any
specified origin and size, and to initialize your IRIS Performer state. Under
pure IRIS GL operation, a window and a graphics context are the same thing.
A pure IRIS GL window is created with the winopen() command and can be
assigned to the pfWindow with pfWinWSDrawable(), or pfWinGLCxt().

pfOpenWin() will automatically call pfInitGfx() and will automatically
create a new pfState for your window. If you have your own window
management and do not call pfOpenWin() then you should definitely call
pfInitGfx() to initialize the window’s graphics state for IRIS Performer
rendering and you will also need to call pfNewState() to create a pfState for
IRIS Performer’s state management.

Windows

371

For X windows, IRIS Performer maintains two windows and a graphics
context. The top level X window is the one that placed on the screen and is
the one that you should use in your application for selecting X events. This
top level window is very lightweight and has minimal resources allocated to
it. IRIS Performer then maintains a separate X window that is a child of the
parent X window and is the one that is attached to the graphics context. This
allows you to select different framebuffer resources for the same drawing
area by just selecting a different graphics window and graphics context pair
for the parent X window. pfWindows directly support this functionality and
this is discussed in the next section, “Manipulating a pfWindow“. Finally,
with OpenGL, you may choose to draw to a different X Drawable than a
window. X windows are created with the X function XCreateWindow().
Mixed model IRIS GL windows have an X window serve as both the
graphics drawable and the GL context. OpenGL graphics contexts are
created with glXCreateContext(). The parent X Window can be set with
pfWinWSWindow(), the graphics window or X Drawable is set with
pfWinWSDrawable(), and the OpenGL graphics context is set with
pfWinGLCxt(). For compatibility between GLs, IRIS Performer defines the
following GL and Window System independent types defined in Table 10-21
If you create your own window but want to use pfQueryWin() you must
also provide the framebuffer configuration information with
pfWinFBConfig() and pfWinFBConfigData() for OpenGL and GLX
respectively. pfQueryWin() uses the internally stored visual, and in the case
of GLX, the attribute array given to the GLX call GLXlink(). .

Table 10-21 Window System Types

pfWS Type X Type pfWindow Set/Get Routine

pfWSWindow Window pfWinWSWindow()
pfGetWinWSWindow()

pfWSDrawable Drawable pfWinWSDrawable()
pfGetWinWSDrawable()

pfGLContext IRIS GL:
int

OpenGL:
GLXContext

pfWinGLCxt()
pfGetWinGLCxt()

pfFBConfig XVisualInfo* pfWinFBConfig()
pfGetWinFBConfig()

pfWSConnection Display pfGetCurWSConnection()

372

Chapter 10: libpr Basics

Manipulating a pfWindow

Windows are opened with pfOpenWin() and closed with pfCloseWin().
When a window is closed, its graphics context is deleted. If you have
multiple windows, you select the window to draw to with pfSelectWin().
Windows can be dynamically resized with the same sizing commands
discussed previously for setting up the window.

IRIS Performer supports multiple framebuffer configurations for the same
drawing area in a GL independent fashion with alternate configuration
windows. An IRIS Performer alternate configuration window has the same
window parent (pfWinWSWindow()) but may have a different drawable
and graphics context. There are standard alternate configuration windows
for overlay and statistics windows that can be automatically created upon
demand. For pure IRIS GL, alternate configuration windows must have their
graphics context be the same as the base window. The rest of this section
assumes the use of X windows in either GLX or OpenGL/X.

An alternate configuration window is created as a full pfWindow and is an
alternate configuration window by virtue of being given to a base window
in a pfList of alternate configuration windows, or being directly assigned as
one of the standard alternate configuration windows with either of
pfWinOverlayWin() or pfWinStatsWin(). A pfWindow may be an alternate
configuration window of only one base window at a time; alternate
configuration windows may not be instanced between base windows. The
sharing of window attributes between alternate configuration windows,
such as the parent X window and GL objects (for OpenGL windows), must
be set with pfWinShare() on the base window and applied to the alternate
configuration windows with pfAttachWin(). You select the desired alternate
configuration window to draw into with pfWinIndex() and provide an
index into your alternate configuration window list or one of the standard
indices (PFWIN_GFX_WIN, PFWIN_OVERLAY_WIN, or
PFWIN_STATS_WIN). PFWIN_GFX_WIN is the default window index and
selects the base window. If the alternate configuration window has not been
opened, it will be opened automatically upon being selected for rendering.
Example 10-9 demonstrates creating a pfWindow using the default overlay
window. The graphics drawable and graphics context of an alternate
configuration window of a pfWindow can be closed with pfCloseWinGL().
This can be called on the base window, in which case the active alternate
configuration window’s GL window and context will be closed, or it can be
called on the alternate configuration window pfWindow directly. The main

Windows

373

parent window will remain on the screen and a new alternate configuration
window can be applied to it or pfOpenWin() can be called to create a new
graphics window and context.

There are some modes you can set that can effect the general look and
behavior of your window and alternate configuration windows. These
boolean modes can be individually set and changed at any time with
pfWinMode() and the tokens in Table 10-22.

Table 10-22 pfWinMode() Tokens

PFWIN_ Token Description

NOBORDER Window will be without normal window system border

HAS_OVERLAY Overlay alternate configuration window will be managed by
the pfWindow. pfOpenWin() will automatically create an
overlay window if one has not already been set.
pfWinIndex(win, PFWIN_OVERLAY_WIN) will also
automatically create and open an overlay window if one has
not already been set. This mode only has effect for X windows.

HAS_STATS Statistics alternate configuration window will be managed by
the pfWindow. pfOpenWin() will automatically create a
statistics window if one has not already been set.
pfWinIndex(win, PFWIN_OVERLAY_WIN) will also
automatically create and open a statistics window if one has
not already been set and if the current window cannot support
statistics.This mode only has effect for X windows.

AUTO_RESIZE The graphics window and active alternate configuration
windows are automatically resized to match the parent
pfWinWSWindow(). This mode is enabled by default and
only has effect for X windows.

ORIGIN_LL The origin of the pfWindow, for placement purposes, will be
the lower-left corner. X uses the upper left corner as the origin
and pure IRIS GL uses the lower-level. This mode is enabled by
default.

EXIT The application will receive a DeleteWindow message upon
selection of the “Exit” from the window system menu on the
window border. This mode only has effect for X windows.

374

Chapter 10: libpr Basics

Communicating with the Window System

You can communicate with a local or remote window server by means of a
window system connection, a pfWSConnection (in X, also known as a
Display connection). You can use your pfWSConnection for selecting X
events for your window, as is demonstrated in Example 10-11.

Libpr offers several utilities for creating a connection to a window server. A
given connection can communicate with any screen managed by that
window server so usually a process only needs one connection. A process
should not share the connection of another process, so you will need a
connection per process. Typically, there is exactly one window server on a
machine but that is not required. Libpr maintains a pfWSConnection for the
current process. By default, this connection obeys the setting of the DISPLAY
environment variable which can point to a window server on a local or a
remote machine. The current connection can be requested with
pfGetCurWSConnection(), and can be set with pfSelectWSConnection(). It
is recommended that whenever possible, this connection be used to limit the
total number of open connections. pfOpenScreen() is a convenient
mechanism for opening a connection with a specified default screen.
pfOpenWSConnection() allows you to specify the exact name specifying
the desired target for the connection. Both pfOpenScreen() and
pfOpenWSConnection() allow you to specify if you would like the new
connection to automatically be made the current libpr pfWSConnection; this
is recommended.

More pfWindow Examples

Example 10-8 demonstrates creating a window that will support a desired
fill statistics configuration. This example is taken from the sample program
/usr/share/Performer/src/pguide/libpr/C/fillstats.c. Statistics are the topic of
Chapter 12, “Statistics.”

Example 10-8 Creating a Statistics Window

int main (void)
{

pfWindow *win;
int bits, sten;
/* Initialize Performer */
pfInit();

Windows

375

pfInitState(NULL);

/* set up number of bits needed for stats before
* window is made so that it will have the right number
*/

pfQuerySys(PFQSYS_MAX_STENCIL_BITS,&sten);
bits = PF_MIN2(4, sten);
pfStatsHwAttr(PFSTATSHW_FILL_DCBITS, bits);

/* Initialize GL */
win = pfNewWin(NULL);
pfWinOriginSize(win, 100, 100, 500, 500);
pfWinName(win, “Iris Performer”);
pfWinType(win, PFWIN_TYPE_X | PFWIN_TYPE_STATS);
pfOpenWin(win);
....

}

Example 10-9 demonstrates the creation of a window with a default overlay
window.

Example 10-9 Using the Default Overlay Window

int main (void)
{

pfWindow *win, *over;
/* Initialize Performer */
pfInit();
pfInitState(NULL);

/* Initialize the window. */
win = pfNewWin(NULL);
pfWinOriginSize(win, 100, 100, 500, 500);
pfWinName(win, “Iris Performer”);
pfWinType(win, PFWIN_TYPE_X);
pfWinMode(win, PFWIN_HAS_OVERLAY, 1);
pfOpenWin(win);
/* First select and draw into the overlay window */
pfWinIndex(win, PFWIN_OVERLAY_WIN);
/* Select causes the index to be applied */
pfSelectWin(win);
...
/* Then select the main gfx window */
pfWinIndex(win, PFWIN_GFX_WIN);
pfSelectWin(win);

376

Chapter 10: libpr Basics

...
}

Example 10-10 demonstrates creating a custom overlay window and is taken
from the sample program /usr/share/Performer/src/pguide/libpr/C/winfbconfig.c.

Example 10-10 Creating a Custom Overlay Window

static int OverlayAttrs[] = {
 PFFB_LEVEL, 1, /* Level 1 indicates overlay visual */
 PFFB_BUFFER_SIZE, 8,
 None,
};

int main (void)
{

pfWindow *win, *over;
/* Initialize Performer */
pfInit();
pfInitState(NULL);

/* Initialize the window. */
win = pfNewWin(NULL);
pfWinOriginSize(win, 100, 100, 500, 500);
pfWinName(win, “Iris Performer”);
pfWinType(win, PFWIN_TYPE_X);
pfWinMode(win, PFWIN_HAS_OVERLAY, 1);

over = pfNewWin(NULL);
pfWinName(over, “Iris Performer Overlay”);
pfWinType(over, PFWIN_TYPE_X | PFWIN_TYPE_OVERLAY);
/* See if we can get the desired overlay visual */
if (!(pfChooseWinFBConfig(over, OverlayAttrs)))

pfNotify(PFNFY_NOTICE, PFNFY_PRINT,
“pfChooseWinFBConfig failed for OVERLAY win”);

pfOpenWin(win);
/* First select and draw into the overlay window */
pfWinIndex(win, PFWIN_OVERLAY_WIN);
/* Select causes the index to be applied */
pfSelectWin(win);
...
/* Then select the main gfx window */
pfWinIndex(win, PFWIN_GFX_WIN);
pfSelectWin(win);
...

Windows

377

}

Example 10-11 demonstrates the selection of X input events on a pfWindow.
This example is taken from /usr/share/Performer/src/pguide/libpr/C/hlcube.c.
See the /usr/share/Performer/src/pguide/libpf/C/complex.c sample program for a
detailed example of using either GL or forked X input on pfWindows.

Example 10-11 pfWindows and X Input

pfWSConnection Dsp;

void main (void)
{

pfWindow *win;
pfWSWindow xwin;

/* Initialize Performer */
pfInit();
pfInitState(NULL);

/* Initialize the window. */
win = pfNewWin(NULL);
pfWinOriginSize(win, 100, 100, 500, 500);
pfWinName(win, “Iris Performer”);
pfWinType(win, PFWIN_TYPE_X);
pfOpenWin(win);
...
/* set up X input event handling on pfWindow */
Dsp = pfGetCurWSConnection();
xwin = pfGetWinWSWindow(win);
XSelectInput(Dsp, xwin, KeyPressMask);
XMapWindow(Dsp, xwin);
XSync(Dsp,FALSE);
...
do_events(win);

}
static void
do_events(pfWindow *win)
{

while (1) {
while (XPending(dsp))
{

XEvent event;
XNextEvent(Dsp, &event);
switch (event.type)

378

Chapter 10: libpr Basics

{
case KeyPress:

....
}

}
}

libpr Sample Code

Example 10-12 shows how to make a colored cube. This example is derived
from source code in /usr/share/Performer/src/pguide/libpr/C/colorcube.c.

Example 10-12 Constructing a Colored Cube With libpr

/*
 * colorcube.c - routine for constructing colored cube geoset

*/

#include <Performer/pr.h>
#include <stdlib.h>

#defineCUBE_SIZE1.0f

pfGeoSet*
MakeColorCube(void *arena)
{

pfGeoSet *gset;
pfGeoState *gst;

pfVec4 *scolors;
pfVec3 *snorms, *scoords;
ushort *nindex, *vindex, *cindex;

/*
* Data arrays to be passed to pfGSetAttr should be
* allocated from heap memory...
*/
scolors = (pfVec4 *)pfMalloc(4 * sizeof(pfVec4), arena);
pfSetVec4(scolors[0], 1.0f, 0.0f, 0.0f, 0.5f);
pfSetVec4(scolors[1], 0.0f, 1.0f, 0.0f, 0.5f);
pfSetVec4(scolors[2], 0.0f, 0.0f, 1.0f, 0.5f);
pfSetVec4(scolors[3], 1.0f, 1.0f, 1.0f, 0.5f);

libpr Sample Code

379

snorms = (pfVec3 *)pfMalloc(6 * sizeof(pfVec3), arena);
pfSetVec3(snorms[0], 0.0f, 0.0f, 1.0f);
pfSetVec3(snorms[1], 0.0f, 0.0f, -1.0f);
pfSetVec3(snorms[2], 0.0f, 1.0f, 0.0f);
pfSetVec3(snorms[3], 0.0f, -1.0f, 0.0f);
pfSetVec3(snorms[4], 1.0f, 0.0f, 0.0f);
pfSetVec3(snorms[5], -1.0f, 0.0f, 0.0f);

scoords = (pfVec3 *)pfMalloc(8 * sizeof(pfVec3), arena);
pfSetVec3(scoords[0], -CUBE_SIZE, -CUBE_SIZE,

CUBE_SIZE);
pfSetVec3(scoords[1], CUBE_SIZE, -CUBE_SIZE, CUBE_SIZE);
pfSetVec3(scoords[2], CUBE_SIZE, CUBE_SIZE, CUBE_SIZE);
pfSetVec3(scoords[3], -CUBE_SIZE, CUBE_SIZE, CUBE_SIZE);
pfSetVec3(scoords[4], -CUBE_SIZE, -CUBE_SIZE,

-CUBE_SIZE);
pfSetVec3(scoords[5], CUBE_SIZE, -CUBE_SIZE,

-CUBE_SIZE);
pfSetVec3(scoords[6], CUBE_SIZE, CUBE_SIZE, -CUBE_SIZE);
pfSetVec3(scoords[7], -CUBE_SIZE, CUBE_SIZE,

-CUBE_SIZE);

nindex = (ushort *)pfMalloc(6 * sizeof(ushort), arena);
nindex[0] = 0; nindex[1] = 5; nindex[2] = 1;
nindex[3] = 4; nindex[4] = 2; nindex[5] = 3;

vindex = (ushort *)pfMalloc(24 * sizeof(ushort), arena);
vindex[0] = 0; vindex[1] = 1; /* front */
vindex[2] = 2; vindex[3] = 3;
vindex[4] = 0; vindex[5] = 3; /* left */
vindex[6] = 7; vindex[7] = 4;
vindex[8] = 4; vindex[9] = 7; /* back */
vindex[10] = 6; vindex[11] = 5;
vindex[12] = 1; vindex[13] = 5; /* right */
vindex[14] = 6; vindex[15] = 2;
vindex[16] = 3; vindex[17] = 2; /* top */
vindex[18] = 6; vindex[19] = 7;
vindex[20] = 0; vindex[21] = 4; /* bottom */
vindex[22] = 5; vindex[23] = 1;

cindex = (ushort *)pfMalloc(24 * sizeof(ushort), arena);
cindex[0] = 0; cindex[1] = 1;
cindex[2] = 2; cindex[3] = 3;
cindex[4] = 0; cindex[5] = 1;
cindex[6] = 2; cindex[7] = 3;

380

Chapter 10: libpr Basics

cindex[8] = 0; cindex[9] = 1;
cindex[10] = 2; cindex[11] = 3;
cindex[12] = 0; cindex[13] = 1;
cindex[14] = 2; cindex[15] = 3;
cindex[16] = 0; cindex[17] = 1;
cindex[18] = 2; cindex[19] = 3;
cindex[20] = 0; cindex[21] = 1;
cindex[22] = 2; cindex[23] = 3;

/* Allocate the pfGeoSet out of the same arena. */
gset = pfNewGSet(arena);

/*
* set the coordinate, normal and color arrays
* and their corresponding index arrays
*/

pfGSetAttr(gset, PFGS_COORD3, PFGS_PER_VERTEX,
scoords, vindex);

pfGSetAttr(gset, PFGS_NORMAL3, PFGS_PER_PRIM,
norms, nindex);

pfGSetAttr(gset, PFGS_COLOR4, PFGS_PER_VERTEX,
scolors, cindex);

pfGSetPrimType(gset, PFGS_QUADS);
pfGSetNumPrims(gset, 6);

/*
* create a new geostate from shared memory,
* disable texturing and enable transparency
*/

gst = pfNewGState(arena);
pfGStateMode(gst, PFSTATE_ENTEXTURE, 0);
pfGStateMode(gst, PFSTATE_TRANSPARENCY, 1);

pfGSetGState(gset, gst);
return gset;

}

libpr Sample Code

381

Example 10-13 demonstrates construction of a textured cube. This example
can be found in the file /usr/share/Performer/src/pguide/libpr/C/texcube.c.

Example 10-13 Constructing a Textured Cube With libpr

/*
 * texcube.croutine for constructing a textured cube geoset

*/

#include <Performer/pr.h>

#define CUBE_SIZE1.0f

pfGeoSet*
MakeTexCube(void *arena)
{

pfGeoSet *gset;
pfGeoState *gst;
pfTexture *tex;
pfTexEnv *tenv;
pfVec3 *verts, *norms;
pfVec2 *tcoords;
ushort *vindex, *nindex, *tindex;

/*
* Data arrays to be passed to pfGSetAttr should be
* allocated from heap memory...
/
verts = (pfVec3 *)pfMalloc(8 * sizeof(pfVec3), arena);
pfSetVec3(verts[0], -CUBE_SIZE, -CUBE_SIZE, CUBE_SIZE);
pfSetVec3(verts[1], CUBE_SIZE, -CUBE_SIZE, CUBE_SIZE);
pfSetVec3(verts[2], CUBE_SIZE, CUBE_SIZE, CUBE_SIZE);
pfSetVec3(verts[3], -CUBE_SIZE, CUBE_SIZE, CUBE_SIZE);
pfSetVec3(verts[4], -CUBE_SIZE, -CUBE_SIZE, -CUBE_SIZE);
pfSetVec3(verts[5], CUBE_SIZE, -CUBE_SIZE, -CUBE_SIZE);
pfSetVec3(verts[6], CUBE_SIZE, CUBE_SIZE, -CUBE_SIZE);
pfSetVec3(verts[7], -CUBE_SIZE, CUBE_SIZE, -CUBE_SIZE);

vindex = (ushort *)pfMalloc(24 * sizeof(ushort), arena);
vindex[0] = 0; vindex[1] = 1; /* front */
vindex[2] = 2; vindex[3] = 3;
vindex[4] = 0; vindex[5] = 3; /* left */
vindex[6] = 7; vindex[7] = 4;
vindex[8] = 4; vindex[9] = 7; /* back */
vindex[10] = 6; vindex[11] = 5;

382

Chapter 10: libpr Basics

vindex[12] = 1; vindex[13] = 5; /* right */
vindex[14] = 6; vindex[15] = 2;
vindex[16] = 3; vindex[17] = 2; /* top */
vindex[18] = 6; vindex[19] = 7;
vindex[20] = 0; vindex[21] = 4; /* bottom */
vindex[22] = 5; vindex[23] = 1;

norms = (pfVec3 *)pfMalloc(6 * sizeof(pfVec3), arena);
pfSetVec3(norms[0], 0.0f, 0.0f, 1.0f);
pfSetVec3(norms[1], 0.0f, 0.0f, -1.0f);
pfSetVec3(norms[2], 0.0f, 1.0f, 0.0f);
pfSetVec3(norms[3], 0.0f, -1.0f, 0.0f);
pfSetVec3(norms[4], 1.0f, 0.0f, 0.0f);
pfSetVec3(norms[5], -1.0f, 0.0f, 0.0f);

nindex = (ushort *)pfMalloc(6 * sizeof(ushort), arena);
nindex[0] = 0; nindex[1] = 5; nindex[2] = 1;
nindex[3] = 4; nindex[4] = 2; nindex[5] = 3;

tcoords = (pfVec2 *)pfMalloc(4 * sizeof(pfVec2), arena);
pfSetVec2(tcoords[0], 0.0f, 0.0f);
pfSetVec2(tcoords[1], 1.0f, 0.0f);
pfSetVec2(tcoords[2], 1.0f, 1.0f);
pfSetVec2(tcoords[3], 0.0f, 1.0f);

tindex = (ushort *)pfMalloc(24 * sizeof(ushort), arena);
tindex[0] = 0; tindex[1] = 1;
tindex[2] = 2; tindex[3] = 3;
tindex[4] = 0; tindex[5] = 1;
tindex[6] = 2; tindex[7] = 3;
tindex[8] = 0; tindex[9] = 1;
tindex[10] = 2; tindex[11] = 3;
tindex[12] = 0; tindex[13] = 1;
tindex[14] = 2; tindex[15] = 3;
tindex[16] = 0; tindex[17] = 1;
tindex[18] = 2; tindex[19] = 3;
tindex[20] = 0; tindex[21] = 1;
tindex[22] = 2; tindex[23] = 3;

/* Allocate the pfGeoSet out of the same arena */
gset = pfNewGSet(arena);

/*
* set the coordinate, normal and color arrays
* and their corresponding index arrays

libpr Sample Code

383

*/
pfGSetAttr(gset, PFGS_COORD3, PFGS_PER_VERTEX,

verts, vindex);
pfGSetAttr(gset, PFGS_NORMAL3, PFGS_PER_PRIM,

norms, nindex);
pfGSetAttr(gset, PFGS_TEXCOORD2, PFGS_PER_VERTEX,

tcoords, tindex);
pfGSetPrimType(gset, PFGS_QUADS);
pfGSetNumPrims(gset, 6);

/*
* create a geostate from the arena, enable
* texturing (in case that’s not the default), and
* set the geostate for this geoset
*/

gst = pfNewGState(arena);
pfGStateMode(gst, PFSTATE_ENTEXTURE, 1);
pfGSetGState(gset, gst);

/*
* create a new texture from shared memory,
* load a texture file and add texture to geostate
*/

tex = pfNewTex(arena);
pfLoadTexFile(tex, “brick.rgba”);
pfGStateAttr(gst, PFSTATE_TEXTURE, tex);

/* Create a new texture environment from the arena. */
tenv = pfNewTEnv(arena);
/* Decal the texture since the geoset has no color to

* modulate.
*/

pfTEnvMode(tenv, PFTE_DECAL);
/* set the texture environment for this pfGeoState *./
pfGStateAttr(gst, PFSTATE_TEXENV, tenv);

return gset;
}

384

Chapter 10: libpr Basics

Managing Nongraphic System Tasks

This section describes routines that manage nongraphic tasks such as clocks,
memory, I/O, and error handling.

Clocks

IRIS Performer provides clock support for timing operations.

High-Resolution Clock

IRIS Performer provides access to a high-resolution clock that reports
elapsed time in seconds. To start a clock, call pfInitClock() with the initial
time in seconds—usually 0.0—as the parameter. Subsequent calls to
pfInitClock() reset the time to whatever value you specify. To read the time,
call pfGetTime(). This function returns a double-precision floating point
number representing the seconds elapsed from initialization added to the
latest reset value.

The resolution of the clock depends on your system type and configuration.
In most cases, the resolved time interval is under a microsecond, and so is
much less than the time required to process the pfGetTime() call itself.
Exceptions are older Power Series™ machines with IO2 boards and some
Personal Iris™ computers. You can use the IRIX hinv command to see
whether your Power Series system has an IO2 board or an IO3 board
installed. Onyx, Crimson™, Indigo2™, Indigo®, and Indy™ systems all
provide submicrosecond resolution. On a machine that uses a fast hardware
counter, the first invocation of pfInitClock() forks off a process that
periodically wakes up and checks the counter for wrapping. This additional
process can be suppressed using pfClockMode().

If IRIS Performer cannot find a fast hardware counter to use, it defaults to the
time-of-day clock, which typically has a resolution between one and ten
milliseconds. This clock resolution can be improved by using fast timers. See
the ftimer(1) reference page for more information on fast timers.

By default, processes forked after the first call to pfInitClock() share the
same clock and will all see the results of any subsequent pfInitClock(). All
such processes receive the same time.

Managing Nongraphic System Tasks

385

Unrelated processes can share the same clock by calling pfClockName()
with a clock name before calling pfInitClock(). This provides a way to name
and reference a clock. By default, unrelated processes don’t share clocks.

Video Refresh Counter (VClock)

The video refresh counter (VClock) is a counter that increments once for
every vertical retrace interval. There is one VClock per system. In systems
where multiple graphics pipelines are present, but not genlocked
(synchronized, see the setmon(3) reference page), screen 0 is used as the
source for the counter. A process can be blocked until a certain count, or the
count modulo some value (usually desired number of video fields per
frame) is reached.

Table 10-23 lists and describes the pfVClock routines.

When using pfVClockSync(), the calling routine is blocked until the current
count modulo rate is offset. The VClock functions can be used to synchronize
several channels or pipelines.

Memory Allocation

You can use IRIS Performer memory-allocation functions to allocate
memory from the heap, from shared memory, and from datapools.

Table 10-23 pfVClock Routines

Function Action

pfInitVClock Initialize the clock to a value.

pfGetVClock Get the current count.

pfVClockSync Block the calling process until a count is reached.

386

Chapter 10: libpr Basics

Table 10-24 lists and describes the IRIS Performer shared memory routines.

Allocating Memory With pfMalloc()

pfMalloc() can allocate memory either from the heap or from a shared
memory arena. Multiple processes can access memory allocated from a
shared memory arena, whereas memory allocated from the heap is visible
only to the allocating process. Pass a shared-memory arena pointer to
pfMalloc() to allocate memory from the given arena. pfGetSharedArena()
returns the pointer for the arena allocated by pfInitArenas(), or NULL if the
given memory was allocated from the heap. Alternately, an application can
create its own shared memory arena; see the acreate(3P) reference page for
information on how to create an arena.

To allocate memory from the heap, pass NULL to pfMalloc() instead of an
arena pointer.

Under normal conditions pfMalloc() never returns NULL. If the allocation
fails, pfMalloc() generates a pfNotify() of level PFNFY_FATAL, so unless
the application has set a pfNotifyHandler(), the application will exit.

Memory allocated with pfMalloc() must be freed with pfFree(), not with the
standard C library’s free() function. Using free() with data allocated by
pfMalloc() will have devastating results.

Memory allocated with pfMalloc() has a reference count (see“pfDelete() and
Reference Counting” in Chapter 2 for information on reference counting).

Table 10-24 Memory Allocation Routines

Function Action

pfInitArenas Create arenas for shared memory and semaphores.

pfSharedArenaSize Specify the size of a shared memory arena.

pfGetSharedArena Get the shared memory arena pointer.

pfGetSemaArena Get the shared semaphore/lock arena pointer.

pfMalloc Allocate from an arena or the heap.

pfFree Release memory allocated with pfMalloc().

Managing Nongraphic System Tasks

387

For example, if you use pfMalloc() to create attribute and index arrays,
which you then attach to pfGeoSets using pfGSetAttr(), IRIS Performer
automatically tracks the reference counts for the arrays, letting you delete
the arrays much more easily than if you create them without pfMalloc(). All
the reference-counting routines (including pfDelete()) work with data
allocated using pfMalloc(). Note, however, that pfFree() doesn’t check the
reference count before freeing memory; use pfFree() only when you’re sure
the data you’re freeing isn’t referenced.

pfGetSize() returns the size in bytes of any data allocated by pfMalloc().
Since the size of such data is known, pfCopy() also works on allocated data.

Although pfMalloc()-allocated data behaves in many ways like a pfObject
(see “Nodes” in Chapter 5), such data doesn’t contain a user data pointer.
This omission avoids requiring an extra word to be allocated with every
piece of pfMalloc() data.

Note: All libpr objects are allocated using pfMalloc(), so you can use
pfGetArena(), pfGetSize(), and pfFree() on all such objects. However, it’s
recommended that you use pfDelete() instead of pfFree() for libpr objects, in
order to maintain reference-count checking.

Shared Arenas

pfInitArenas() creates two arenas, one for the allocation of shared memory
with pfMalloc() and one for the allocation of semaphores and locks with
usnewlock() and usnewsema(). The arenas are visible to all processes forked
after pfInitArenas() is called.

Applications using libpf don’t need to explicitly call pfInitArenas(), since it’s
invoked by pfInit().

The shared memory arena can be allocated by memory-mapping either
swap space (/dev/zero, the default) or an actual disk file (in the directory
specified by the environment variable PFTMPDIR). The latter requires
sufficient disk space for as much of the shared memory arena as will be used,
and disk files are somewhat slower than swap space in allocating memory.

By default, IRIS Performer creates a large shared memory arena of 256 MB.
Though this approach makes large numbers appear when you run ps(1), it

388

Chapter 10: libpr Basics

doesn’t consume any substantial resources, since swap or file system space
isn’t actually allocated until accessed (that is, until pfMalloc() is called).

Because IRIS Performer cannot increase the size of the arena after
initialization, an application requiring a larger shared memory arena should
call pfSharedArenaSize() to specify the maximum amount of memory to be
used. Arena sizes as large as 1.7 GB are usually acceptable; but you may need
to set the virtual-memory-use and memory-use limits, using the shell limit
command or setrlimit(), to allow your application to use that much memory.

Allocating Locks and Semaphores

An application requiring lockable pieces of memory should consider using
pfDataPools, described below. Alternatively, when a lock or semaphore is
required in an application that has called pfInitArenas(), you can call
pfGetSemaArena() to get an arena pointer, and you can allocate locks or
semaphores using usnewlock() and usnewsema().

Datapools

Datapools, or pfDataPools, are also a form of shared memory, but they work
differently from pfMalloc(). Datapools allow unrelated processes to share
memory and lock out access to eliminate data contention. They also provide
a way for one process to access memory allocated by another process.

Any process can create a datapool by calling pfCreateDPool() with a name
and byte size for the pool. If an unrelated process needs access to the
datapool, it must first put the datapool in its address space by calling
pfAttachDPool() with the name of the datapool. The datapool must reside
at the same virtual address in all processes. If the default choice of an address
causes a conflict in an attaching process pfAttachDPool() will fail. To avoid
this pfDPoolAttachAddr() can be called before pfCreateDPool() to specify
a different address for the datapool.

Any attached process can allocate memory from the datapool by calling
pfDPoolAlloc(). Each block of memory allocated from a datapool is
assigned an ID so that other processes can retrieve the address using
pfDPoolFind().

Managing Nongraphic System Tasks

389

Once you’ve allocated memory from a datapool, you can lock the memory
chunk (not the entire pfDataPool) by calling pfDPoolLock() before accessing
the memory. This locking mechanism works only if all processes wishing to
access the datapool memory use pfDPoolLock() and pfDPoolUnlock().
After a piece of memory has been locked using pfDPoolLock(), any
subsequent pfDPoolLock() call on the same piece of memory will block until
the next time a pfDPoolUnlock() is called for that memory.

pfDataPools are pfObjects, so call pfDelete() to delete them. Calling
pfReleaseDPool() unlinks the file used for the datapool—it doesn’t
immediately free up the memory that was used or prevent further
allocations from the datapool; it just prevents processes from attaching to it.
The memory is freed when the last process referring to the datapool
pfDelete()s it.

CycleBuffers

A multiprocessed environment often requires that data be duplicated so that
each process can work on its own copy of the data without adversely
colliding with other processes. pfCycleBuffer is a memory structure which
supports this programming paradigm. A pfCycleBuffer consists of one or
more pfCycleMemories which are equally-sized memory blocks. The
number of pfCycleMemories per pfCycleBuffer is global and is set once with
pfCBufferConfig(), and is typically equal to the number of processes
accessing the data.

Each process has a global index, set with pfCurCBufferIndex(), which
indexes a pfCycleBuffer’s array of pfCycleMemories. When each process has
a different index (and its own address space), mutual exclusion is ensured if
the process limits its pfCycleMemory access to the currently indexed one.

The “cycle” term of pfCycleBuffer refers to its suitability for pipelined
multiprocessing environments where processes are arranged in stages like
an assembly line and data propagates down one stage of the pipeline each
frame. In this situation, the array of pfCycleMemories can be visualized as a
circular list. Each stage in the pipeline accesses a different pfCycleMemory
and at frame boundaries the global index in each process is advanced to the
next pfCycleMemory in the chain. In this way, data changes made in the
head of the pipeline are propagated through the pipeline stages by “cycling”
the pfCycleMemories.

390

Chapter 10: libpr Basics

Figure 10-4 pfCycleBuffer and pfCycleMemory Overview

Cycling the memory buffers works if each current pfCycleMemory is
completely updated each frame. If this is not the case, buffer cycling will
eventually access a “stale” pfCycleMemory whose contents were valid some
number of frames ago but are invalid now. pfCycleBuffers manage this by
frame-stamping a pfCycleMemory whenever pfCBufferChanged() is
called. The global frame count is advanced with pfCBufferFrame() which
also copies most recent pfCycleMemories into “stale” pfCycleMemories
thereby automatically keeping all pfCycleBuffers current.

0

2

1

pfCycleBuffer

pfCycleMemories

2

1

0

App

1

0

2

App

Cull

Draw

App

Cull

Draw Cull

DrawFrame n

Frame n+1

Frame n+2

Managing Nongraphic System Tasks

391

A pfCycleBuffer consisting of pfCycleMemories of nbytes size is allocated
from memory arena with pfNewCBuffer(nbytes, arena). To initialize all the
pfCycleMemories of a pfCycleBuffer to the same data call pfInitCBuffer().
pfCycleMemory is derived from pfMemory so you can use inherited
routines like pfCopy, pfGetSize, and pfGetArena() on pfCycleMemories.

While pfCycleBuffers may be used for application data, their primary use is
as pfGeoSet attribute arrays, e.g., coordinates or colors. pfGeoSets accept
pfCycleBuffers (or pfCycleMemory) references as attribute references and
automatically select the proper pfCycleMemory when drawing or
intersecting with the pfGeoSet.

Note: libpf applications need not call pfCBufferConfig() or
pfCBufferFrame() since the libpf routines pfConfig() and pfFrame() call
these respectively.

Asynchronous I/O

A nonblocking file interface is provided to allow real-time programs access
to disk files without affecting program timing. The system calls
pfOpenFile(), pfCloseFile(), pfReadFile(), and pfWriteFile() work in an
identical fashion to their IRIX counterparts open(), close(), read(), and
write().

When pfOpenFile() or pfCreateFile() is called, a new process is created
using sproc(), which manages access to the file. Subsequent calls to
pfReadFile(), pfWriteFile(), and pfSeekFile() place commands in a queue
for the file manager to execute and return immediately. To determine the
status of a file operation, call pfGetFileStatus().

Error-Handling and Notification

IRIS Performer provides a general method for handling errors both within
IRIS Performer and in the application. Applications can control
error-handling by installing their own error-handling functions. You can
also control the level of importance of an error.

392

Chapter 10: libpr Basics

Table 10-25 lists and describes the functions for setting notification levels.

pfNotify() allows an application to signal an error or print a message that
can be selectively suppressed. pfNotifyLevel() sets the notification level to
one of the values listed in Table 10-26.

The environment variable PFNFYLEVEL can be set to override the value
specified in pfNotifyLevel(). Once the notification level is set via
PFNFYLEVEL it can not be changed by an application.

Once the notify level is set, only those messages with a priority greater than
or equal to the current level are printed or handed off to the user function.
Fatal errors cause the program to exit unless the application has installed a
handler with pfNotifyHandler().

Setting the notification level to PFNFY_FP_DEBUG has the additional effect
of trapping floating point exceptions such as overflows or operations on

Table 10-25 pfNotify Functions

Function Action

pfNotifyHandler Install user error-handling function.

pfNotifyLevel Set the error-notification level.

pfNotify Generate a notification.

Table 10-26 Error Notification Levels

Token Meaning

PFNFY_ALWAYS Always print regardless of notify level

PFNFY_FATAL Fatal error

PFNFY_WARN Serious warning

PFNFY_NOTICE Warning

PFNFY_INFO Information and floating point exceptions

PFNFY_DEBUG Debug information

PFNFY_FP_DEBUG Floating point debug information

Managing Nongraphic System Tasks

393

invalid floating point numbers. It may be a good idea to use a notification
level of PFNFY_FP_DEBUG while testing your application, so that you will
be informed of all floating-point exceptions that occur.

File Search Paths

IRIS Performer provides a mechanism to allow referencing a file via a set of
path names. Applications can create a search list of path names in two ways:
the PFPATH environment variable and pfFilePath(). (Note that the PFPATH
environment variable controls file search paths and has nothing to do with the
pfPath data structure.)

Table 10-27 describes the routines for working with pfFilePaths.

Pass a search path to pfFilePath() in the form of a colon-separated list of path
names. Calling pfFilePath() a second time replaces the current path list
rather than appending to it.

The environment variable PFPATH is also a colon-separated list of path
names, similar to the PATH variable. pfFindFile() searches the paths in
PFPATH first, then those given in the most recent pfFilePath() call; it returns
the complete pathname for the file if the file is found. IRIS Performer
applications should use pfFindFile() (either directly or through routines
such as pfdLoadFile()) to look for input data files.

pfGetFilePath() returns the last search path specified by a pfFilePath() call.
It doesn’t return the path specified by the PFPATH environment variable—
if you want to find out that value, call getenv(3c).

Table 10-27 pfFilePath Routines

Routine Action

pfFilePath Create a search path.

pfFindFile Search for the file using the search path.

pfGetFilePath Supply current search path.

This chapter details IRIS Performer’s
comprehensive set of mathematical
functions.

“Math Routines”

Chapter 11

397

Chapter 11

11. Math Routines

This chapter describes the IRIS Performer math routines. Math routines let
you create, modify, and manipulate vectors, matrices, line segments, planes,
and bounding volumes such as spheres, boxes, and cylinders.

Vector Operations

A basic set of mathematical operations is provided for setting and
manipulating floating point vectors of length 2, 3, and 4. The types of these
vectors are pfVec2, pfVec3 and pfVec4, respectively. The components of a
vector are denoted by PF_X, PF_Y, PF_Z, and PF_W with indices of 0, 1, 2,
and 3, respectively. In the case of 4-vectors, the PF_W component acts as the
homogeneous coordinate in transformations.

IRIS Performer supplies macro equivalents for many of the routines
described in this section. Inlining the macros instead of calling the routines
can substantially improve performance.

Table 11-1 lists the routines, what they do (in mathematical notation), and
the macro equivalents (where available) for working with 3-vectors. Most of
the same operations are also available for 2-vectors and 4-vectors,
substituting “2” or “4” for “3” in the routine names. The only operations not
available for 2-vectors are vector cross-products, point transforms, and
vector transforms; the only operations unavailable for 4-vectors are vector
cross-products and point transforms. (That is, there are no such routines as
pfCrossVec2(), pfCrossVec4(), pfXformPt2(), pfXformPt4(), or
pfXformVec2().)

398

Chapter 11: Math Routines

Note: For the duration of this chapter, bold lowercase letters represent
vectors and bold uppercase letters represent matrices. “X” indicates cross
product, “.” denotes dot product, and vertical bars indicate the magnitude of
a vector.

Table 11-1 Routines for 3-Vectors

Routine Effect Macro Equivalent

pfSetVec3(d, x, y, z) d = (x, y, z) PFSET_VEC3

pfCopyVec3(d, v) d = v PFCOPY_VEC3

pfNegateVec3(d,v) d = -v PFNEGATE_VEC3

pfAddVec3(d, v1, v2) d = v1 + v2 PFADD_VEC3

pfSubVec3(d, v1, v2) d = v1 - v2 PFSUB_VEC3

pfScaleVec3(d, s, v) d = sv PFSCALE_VEC3

pfAddScaledVec3(d, v1, s, v2) d = v1 + sv2 PFADD_SCALED_VEC3

pfCombineVec3(d,s1,v1,s2,v2) d = s1v1 + s2v2 PFCOMBINE_VEC3

pfNormalizeVec3(d) d = d/|d| none

pfCrossVec3(d, v1, v2) d = v1 X v2 none

pfXformPt3(d, v, m) d = vM, where
v = (vx, vy, vz,) and M
is the 4x3 submatrix.

none

pfFullXformPt3(d, v, m) d = vM/dw, where
v = (vx, vy, vz, 1)

none

pfXformVec3(d, v, m) d = vM, where
v = (vx, vy, vz, 0)

none

pfDotVec3(v1, v2) v1
. v2 PFDOT_VEC3

pfLengthVec3(v) |v| PFLENGTH_VEC3

pfSqrDistancePt3(v1, v2) |v2 - v1|2 PFSQR_DISTANCE_PT3

pfDistancePt3(v1, v2) |v2 - v1| PFDISTANCE_PT3

Matrix Operations

399

Matrix Operations

A pfMatrix is a 4x4 array of floating-point numbers that is used primarily to
specify a transformation in homogeneous coordinates (x, y, z, w). Table 11-2
describes the IRIS Performer mathematical operations that act on matrices.

pfEqualVec3(v1, v2) returns TRUE if
v1 = v2, FALSE
otherwise

PFEQUAL_VEC3

pfAlmostEqualVec3(v1,v2,tol) returns TRUE if each
element of v1 is
within tol of the
corresponding
element of v2, FALSE
otherwise

PFALMOST_EQUAL_VEC3

Table 11-2 Routines for 4x4 Matrices

Routine Effect Macro Equivalent

pfMakeIdentMat(d) D = I PFMAKE_IDENT_MAT

pfMakeVecRotVecMat(d,v1,v2) D = M such that
v2 = v1M.

v1, v2 normalized.

none

pfMakeQuatMat(d, q)) D = M, where M is
the rotation of the
quaternion q.

none

pfMakeRotMat(d, deg, x, y, z) D = M, where M
rotates by deg
around (x, y, z)

none

pfMakeEulerMat(d, h, p, r) D = RPH, where R,
P, and H are the
transforms for roll,
pitch, and heading.

none

Table 11-1 (continued) Routines for 3-Vectors

Routine Effect Macro Equivalent

400

Chapter 11: Math Routines

pfMakeTransMat(d, x, y, z) D = M, where M
translates by (x, y, z)

PFMAKE_TRANS_MAT

pfMakeScaleMat(d, x, y, z) D = M, where M
scales by (x, y, z)

PFMAKE_SCALE_MAT

pfMakeCoordMat(d, c) D = M, where M
rotates by (h, p, r)
and translates by
(x, y, z), with h, p, r, x,
y, and z all specified
by c

none

pfGetOrthoMatQuat(s, q) returns, in q, a
quaternion with the
rotation specified by
s.

none

pfGetOrthoMatCoord(s, d) returns, in d, the
rotation and
translation specified
by s

none

pfSetMatRow(d, r, x, y, z, w) Set rth row of D
equal to (x, y, z, w)

PFSET_MAT_ROW

pfGetMatRow(m, r, x, y, z, w) (*x, *y, *z, *w) = rth
row of M

PFGET_MAT_ROW

pfSetMatCol(d, c, x, y, z, w) Set cth column of D
equal to (x, y, z, w)

PFSET_MAT_COL

pfGetMatCol(m, c, x, y, z, w) (*x, *y, *z, *w) = cth
column of M

PFGET_MAT_COL

pfSetMatRowVec3(d, r, v) Set rth row of D
equal to v

PFSET_MAT_ROWVEC3

pfGetMatRowVec3(m, r, d) d = rth row of M PFGET_MAT_ROWVEC3

pfSetMatColVec3(d, c, v) Set cth column of D
equal to v

PFSET_MAT_COLVEC3

pfGetMatColVec3(m, c, d) d = cth column of M PFGET_MAT_COLVEC3

Table 11-2 (continued) Routines for 4x4 Matrices

Routine Effect Macro Equivalent

Matrix Operations

401

pfCopyMat(d, m) D = M PFCOPY_MAT

pfAddMat(d, m1, m2) D = M1 + M2 none

pfSubMat(d, m1, m2) D = M1 - M2 none

pfMultMat(d, m1, m2) D = M1M2 none

pfPostMultMat(d, m) D = DM none

pfPreMultMat(d, m) D = MD none

pfTransposeMat(d, m) D = MT none

pfPreTransMat(d, m, x, y, z) D = TM, where T
translates by (x, y, z)

none

pfPostTransMat(d, x, y, z, m) D = MT, where T
translates by (x, y, z)

none

pfPreRotMat(d, deg, x, y, z, m) D = RM, where R
rotates by deg
around (x, y, z)

none

pfPostRotMat(d, m, deg, x, y, z) D = MR, where R
rotates by deg
around (x, y, z)

none

pfPreScaleMat(d, x, y, z, m) D = SM, where S
scales by (x, y, z)

none

pfPostScaleMat(d, m, x, y, z) D = MS, where S
scales by (x, y, z)

none

pfInvertFullMat(d, m)) D = M-1 for general
matrices

none

pfInvertAffMat(d, m) D = M-1, with M
affine

none

pfInvertOrthoMat(d, m) D = M-1, with M
orthogonal

none

pfInvertOrthoNMat(d, m) D = M-1, with M
orthonormal

none

Table 11-2 (continued) Routines for 4x4 Matrices

Routine Effect Macro Equivalent

402

Chapter 11: Math Routines

Some of the math routines that take a matrix as an argument are restricted to
affine, orthogonal, or orthonormal matrices, these restrictions being noted
by Aff, Ortho and OrthoN, respectively. (If such a restriction isn’t noted in a
libpr routine name, the routine can take a general matrix.)

An affine transformation is one that leaves the homogeneous coordinate
unchanged—that is, in which the last column is (0,0,0,1). An orthogonal
transformation is one that preserves angles. It can include translation,
rotation, and uniform scaling, but no shearing or nonuniform scaling. An
orthonormal transformation is an orthogonal transformation that preserves
distances; that is, one that contains no scaling.

In the visual simulation library, libpf, most routines require the matrix to be
orthogonal, although this isn’t noted in the routine names.

The standard order of transformations for a hierarchical scene involves
postmultiplying the transformation matrix for a child by the matrix for the
parent. For instance, assume your scene involves a hand attached to an arm
attached to a body. To get a transformation matrix H for the hand,
postmultiply the arm’s transformation matrix (A) by the body’s (B): H = AB.
To transform the hand object (at location h in hand coordinates) to body
coordinates, calculate h’ = hH.

pfInvertIdentMat(d, m) D = M-1, with M
equal to the identity
matrix

none

pfEqualMat(d, m) returns TRUE if
D = M, FALSE
otherwise

PFEQUAL_MAT

pfAlmostEqualMat(d, m, tol) returns TRUE if each
element of D is
within tol of the
corresponding
element of M,
FALSE otherwise

PFALMOST_EQUAL_MAT

Table 11-2 (continued) Routines for 4x4 Matrices

Routine Effect Macro Equivalent

Matrix Operations

403

Example 11-1 Matrix and Vector Math Examples

/*
 * test Rot of v1 onto v2
 */
{

pfVec3 v1, v2, v3;
pfMatrix m1;

MakeRandomVec3(v1);
MakeRandomVec3(v2);
pfNormalizeVec3(v1);
pfNormalizeVec3(v2);
pfMakeVecRotVecMat(m1, v1, v2);
pfXformVec3(v3, v1, m1);
AssertEqVec3(v3, v2, “Arb Rot To”);

}

/*
 * test inversion of Affine Matrix
 */
{

pfVec3 v1, v2, v3;
pfMatrix m1, m2, m3;

MakeRandomVec3(v3);
pfMakeScaleMat(m2, v3[0], v3[1], v3[2]);
pfPreMultMat(m1, m2);

MakeRandomVec3(v1);
pfNormalizeVec3(v1);
MakeRandomVec3(v2);
pfNormalizeVec3(v2);
pfMakeVecRotVecMat(m1, v1, v2);
s = pfLengthVec3(v2)/pfLengthVec3(v1);
pfPreScaleMat(m1, s, s, s, m1);

MakeRandomVec3(v1);
pfNormalizeVec3(v1);
MakeRandomVec3(v2);
pfNormalizeVec3(v2);
pfMakeVecRotVecMat(m2, v1, v2);

MakeRandomVec3(v3);
pfMakeTransMat(m2, v3[0], v3[1], v3[1]);

404

Chapter 11: Math Routines

pfPreMultMat(m1, m2);

pfInvertAffMat(m3, m1);
pfPostMultMat(m3, m1);
AssertEqMat(m3, ident, “affine inverse”);

Quaternion Operations

A pfQuat is the IRIS Performer data structure (a pfVec4) whose for floating
point values represent the components of a quaternion. Quaternions have
many beneficial properties. The most relevant of these is their ability to
represent 3D rotations in a manner that allows relatively simple yet
meaningful interpolation between rotations. Much like multiplying two
matrices, multiplying two quaternions results in the concatenation of the
transformations. For more information on quaternions, see the article by Sir
William Rowan Hamilton “On quaternions; or on a new system of imaginaries in
algebra,” in the Philosophical Magazine, xxv, pp. 10-13 (July 1844), or refer to
the sources noted in the pfQuat(3pf) reference page.

The properties of spherical linear interpolation makes quaternions much
better suited than matrices for interpolating transformation values from
keyframes in animations. The most common usage then is to use
pfSlerpQuat() to interpolate between two quaternions representing two
rotational transformations. The quaternion that results from the
interpolation can then be passed to pfMakeQuatMat() to generate a matrix
for use in a subsequent IRIS Performer call such as pfDCSMat(). While
converting a quaternion to a matrix is relatively efficient, converting a matrix
to a quaternion with pfGetOrthoMatQuat() is expensive and should be
avoided when possible.

Quaternion Operations

405

Because a pfQuat is also a pfVec4, all of the pfVec4 routines and macros may
be used on pfQuats as well.

Example 11-2 Quaternion Example

/*
 * test quaternion slerp
 */

pfQuat q1, q2, q3;
pfMatrix m1, m2, m3, m3q;

Table 11-3 Routines for Quaternions

Routine Effect Macro Equivalent

pfMakeRotQuat(q, a, x, y, z) Sets q to rotation of a
degrees about (x, y, z)

none

pfGetQuatRot(q, a, x, y, z) Sets *a to angle and
(*x, *y, *z) to axis of
rotation represented
by q

none

pfConjQuat(d, q) d = conjugate of q PFCONJ_QUAT

pfLengthQuat(q) returns length of q PFLENGTH_QUAT

pfMultQuat(d, q1, q2) d = q1 * q2 PFMULT_QUAT

pfDivQuat(d, q1, d2) d = q1 / q1 PFDIV_QUAT

pfInvertQuat(d, q1) d = 1 / q1

pfExpQuat(d, q) d = exp(q) none

pfLogQuat(d, q) d = ln(q) none

pfSlerpQuat(d, t, q1, q2) d = interpolation with
weight t between q1
(t=0.0) and q2 (t=1.0)

none

pfSquadQuat(d, t, q1, q2, a, b) d = quadratic
interpolation
between q1 and q2

none

pfQuatMeanTangent(d, q1, q2,
q3)

d = mean tangent of
q1, q2 and q3.

none

406

Chapter 11: Math Routines

pfVec3 axis;
float angle1, angle2, angle, t;

MakeRandomVec3(axis);
pfNormalizeVec3(axis);
angle1 = -drand48()*90.0f;
angle2 = drand48()*90.0f;
t = drand48();

pfMakeRotMat(m1, angle1, axis[0], axis[1], axis[2]);
pfMakeRotQuat(q1, angle1, axis[0], axis[1], axis[2]);
pfMakeQuatMat(m3q, q1);

pfMakeRotMat(m2, angle2, axis[0], axis[1], axis[2]);
pfMakeRotQuat(q2, angle2, axis[0], axis[1], axis[2]);
pfMakeQuatMat(m3q, q2);
AssertEqMat(m2, m3q, “make rot quat q2”);

angle = (1.0f-t) * angle1 + t * angle2;
pfMakeRotMat(m3, angle, axis[0], axis[1], axis[2]);

pfMakeRotQuat(q1, angle1, axis[0], axis[1], axis[2]);
pfMakeRotQuat(q2, angle2, axis[0], axis[1], axis[2]);
pfSlerpQuat(q3, t, q1, q2);
pfMakeQuatMat(m3q, q3);
AssertEqMat(m3q, m3, “quaternion slerp”);

{

Matrix Stack Operations

407

Matrix Stack Operations

IRIS Performer allows you to create a stack of transformation matrices,
which is called a pfMatStack.

Table 11-4 lists and describes the matrix stack routines. Note that none of
these routines has a macro equivalent. The matrix at the top of the matrix
stack is denoted “TOS,” for “Top of Stack.”

Table 11-4 Matrix Stack Routines

Routine Operation

pfNewMStack Allocate storage.

pfResetMStack Reset the stack.

pfPushMStack Duplicate the TOS and push it on the stack.

pfPopMStack Pop the stack.

pfPreMultMStack Premultiply the TOS by a matrix.

pfPostMultMStack Postmultiply the TOS by a matrix.

pfLoadMStack Set the TOS matrix.

pfGetMStack Get the TOS matrix.

pfGetMStackTop Get a pointer to the TOS matrix.

pfGetMStackDepth Return the current depth of the stack.

pfPreTransMStack Premultiply the TOS by a translation.

pfPostTransMStack Postmultiply the TOS by a translation.

pfPreRotMStack Premultiply thee TOS by a rotation.

pfPostRotMStack Postmultiply the TOS by a rotation.

pfPreScaleMStack Premultiply the TOS by a scale factor.

pfPostScaleMStack Postmultiply the TOS by a scale factor.

408

Chapter 11: Math Routines

Creating and Transforming Volumes

libpr provides a number of volume primitives, including sphere, box,
cylinder, half-space (plane), and frustum. libpf uses the frustum primitive for
a view frustum, and uses other volume primitives for bounding volumes:

• Nodes use bounding spheres.

• pfGeoSets use bounding boxes.

• Segments use bounding cylinders.

Defining a Volume

This section describes how to define geometric volumes.

Spheres

Spheres are defined by a center and a radius, as shown by the pfSphere
structure’s definition:

typedef struct {
 pfVec3 center;
 float radius;
} pfSphere;

A point p is in the sphere with center c and radius r if |p - c|< r.

Axially Aligned Boxes

An axially aligned box is defined by its two corners with the smallest and
largest values for each coordinate. Its edges are parallel to the X, Y, and Z
axes. It’s represented by the pfBox data structure:

typedef struct {
 pfVec3 min;
 pfVec3 max;
} pfBox;

A point (x, y, z) is in the box if minx < x < maxx, miny < y < maxy, and
minz < z < maxz, .

Creating and Transforming Volumes

409

Cylinders

A cylinder is defined by its center, radius, axis, and half-length, as shown by
the definition of the pfCylinder data structure:

typedef struct {
 pfVec3 center;
 float radius;
 pfVec3 axis;
 float halfLength;
} pfCylinder;

A point p is in the cylinder with center c, radius r, axis a, and half-length h,
if (p - c) • a < h and | (1 - (p - c) • a) (p - c) | < r.

Half-spaces (Planes)

A half-space is defined by a plane with a normal pointing away from the
interior. It’s represented by the pfPlane data structure:

typedef struct {
 pfVec3 normal;
 float offset;
} pfPlane;

A point p is in the half-space with normal n and offset d if p • n < d.

Frusta

Unlike the other volumes, a pfFrustum isn’t an exposed structure. You can
allocate storage for a pfFrustum using pfNewFrust() and you can set the
frustum using pfMakePerspFrust() or pfMakeOrthoFrust().

410

Chapter 11: Math Routines

Creating Bounding Volumes

The easiest and most efficient way to create a volume is to use one of the
bounding operations. The routines in Table 11-5 create a bounding volume
that encloses other geometric objects.

Bounding volumes can also be defined by extending existing volumes, but
in many cases the tightness of the bounds created through a series of extend
operations is substantially inferior to that of the bounds created with a single
pf*Around*() operation.

Table 11-6 lists and describes the routines for extending bounding volumes.

Table 11-5 Routines to Create Bounding Volumes

Routine Bounding Volume

pfBoxAroundPts Box enclosing a set of points

pfBoxAroundBoxes Box enclosing a set of boxes

pfBoxAroundSpheres Box enclosing a set of spheres

pfCylAroundSegs Cylinder around a set of segments

pfSphereAroundPts Sphere around a set of points

pfSphereAroundBoxes Sphere around a set of boxes

pfSphereAroundSpheres Sphere around a set of spheres

Table 11-6 Routines to Extend Bounding Volumes

Routine Operation

pfBoxExtendByPt Extend a box to enclose a point.

pfBoxExtendByBox Extend a box to enclose another box.

pfSphereExtendByPt Extend a sphere to enclose a point.

pfSphereExtendBySphere Extend a sphere to enclose a sphere.

Creating and Transforming Volumes

411

Transforming Bounding Volumes

Transforming the volumes with an orthonormal transformation—that is,
with no skew or nonuniform scaling, is straightforward for all of the
volumes except for the axially aligned box. A straight transformation of the
vertices doesn’t suffice because the new box would no longer be axially
aligned, so an aligned box must be created that encloses the transformed
vertices. Hence a transformation of a box isn’t generally reversed by
applying the inverse transformation to the new box.

Table 11-7 lists and describes the routines that transform bounding volumes.

Table 11-7 Routines to Transform Bounding Volumes

Routine Operation

pfOrthoXformPlane Transform a plane or half-space.

pfOrthoXformFrust Transform a frustum.

pfXformBox Transform and extend a bounding box.

pfOrthoXformCyl Transform a cylinder.

pfOrthoXformSphere r Transform a sphere.

412

Chapter 11: Math Routines

Intersecting Volumes

IRIS Performer provides a number of routines that test for intersection with
volumes.

Point-Volume Intersection Tests

The point-volume intersection test returns PFIS_TRUE if the specified point
is in the volume and PFIS_FALSE otherwise. Table 11-8 lists and describes
the routines that test a point for inclusion within a bounding volume.

Volume-Volume Intersection Tests

IRIS Performer provides a number of volume-volume tests that are used
internally for bounding-volume tests when culling to a view frustum or
when testing a group of line segments against geometry in a scene (see
“Intersecting With pfGeoSets” on page 416). You can intersect spheres,
boxes, and cylinders against half-spaces and against frustums for culling.
You can intersect cylinders against spheres for testing grouped segments
against bounding volumes in a scene.

Table 11-8 Testing Points for Inclusion in a Bounding Volume

Routine Test

pfBoxContainsPt Point inside a box

pfSphereContainsPt Point inside a sphere

pfCylContainsPt Point inside a cylinder

pfHalfSpaceContainsPt Point inside a half-space

pfFrustContainsPt Point inside a frustum

Intersecting Volumes

413

Table 11-9 lists and describes the routines that test for volume intersections.

The volume-volume intersection tests are designed to quickly locate empty
intersections for rejection during a cull. If the complete intersection test is too
time-consuming, the result PFIS_MAYBE is returned, to indicate that the two
volumes might intersect.

The returned value is a bitwise OR of tokens, as shown in Table 11-10.

Table 11-9 Testing Volume Intersections

Routine Action: Test if A Inside B

pfHalfSpaceContainsSphere Sphere inside a half-space

pfFrustContainsSphere Sphere inside a frustum

pfSphereContainsSphere Sphere inside a sphere

pfSphereContainsCyl Cylinder inside a sphere

pfHalfSpaceContainsCyl Cylinder inside a half-space

pfFrustContainsCyl Cylinder inside a frustum

pfHalfSpaceContainsBox Box inside a half-space

pfFrustContainsBox Box inside a frustum

pfBoxContainsBox Box inside a box

Table 11-10 Intersection Results

Test Result Meaning

PFIS_FALSE No intersection

PFIS_MAYBE Possible intersection

PFIS_MAYBE | PFIS_TRUE A contains at least part of B

PFIS_MAYBE | PFIS_TRUE | PFIS_ALL_IN A contains all of B

414

Chapter 11: Math Routines

This arrangement allows simple code such as that shown in Example 11-3.

Example 11-3 Quick Sphere Culling Against a Set of Half-Spaces

long
HSSContainsSphere(pfPlane **hs, pfSphere *sph, long numHS)
{
 long i, isect;

 isect = ~0;

 for (i = 0 ; i < numHS ; i++)
 {
 isect &= pfHalfSpaceContainsSphere(sph,hs[i]);
 if (isect == PFIS_FALSE)
 return isect;
 }
 /* if not ALL_IN all half spaces, don’t know for sure */
 if (!(isect & PFIS_ALL_IN))
 isect &= ~PFIS_TRUE;
 return isect;
}

Creating and Working With Line Segments

A pfSeg represents a line segment starting at position pos, extending for a
distance length in the direction dir:

typedef struct {
 pfVec3 pos;
 pfVec3 dir;
 float length;
} pfSeg;

The routines that operate on pfSegs assume that dir is of unit length and that
length is positive; otherwise, the results of operations are undefined.

You can create line segments in three different ways:

• Specify a point and a direction directly in the structure—pfSeg().

• Specify two endpoints: pfMakePtsSeg().

Creating and Working With Line Segments

415

• Specify one endpoint and an orientation in polar coordinates—
pfMakePolarSeg().

• Specify starting and ending distances along an existing segment—
pfClipSeg().

Intersection tests are the most important operations that use line segments.
You can test the intersection of segments with volumes (half-spaces, spheres,
and boxes), with 2D geometry (planes and triangles), and with geometry
inside pfGeoSets.

Intersecting With Volumes

IRIS Performer supports intersections of segments with three types of
convex volumes. pfHalfSpaceIsectSeg() intersects a segment with the
half-space defined by a plane with an outward facing normal.
pfSphereIsectSeg() intersects with a sphere and pfBoxIsectSeg() intersects
with an axially aligned box.

The intersection test of a segment and a convex volume can have one of five
results:

• The segment lies entirely outside the volume.

• The segment lies entirely within the volume.

• The segment lies partially inside the volume with the starting point
inside.

• The segment lies partially inside the volume with the ending point
inside.

• The segment lies partially inside the volume with both endpoints
outside.

As with the volume-volume tests, the segment-volume intersection routines
return a value that is the bitwise OR of some combination of the tokens
PFIS_TRUE, PFIS_ALL_IN, PFIS_START_IN, and PFIS_MAYBE. (When
PFIS_TRUE is set PFIS_MAYBE is also set for consistency with those routines
that do quick intersection tests for culling.)

The functions take two arguments that return the distances along the
segment of the starting and ending points. The return values are designed so

416

Chapter 11: Math Routines

that you can AND them together for testing for the intersection of a segment
against the intersection of a number of volumes. For example, a convex
polyhedron is defined as the intersection of a set of half-spaces.
Example 11-4 shows how to intersect a segment with a polyhedron.

Example 11-4 Intersecting a Segment With a Convex Polyhedron

long
HSSIsectSeg(pfPlane **hs, pfSeg *seg, long nhs, float *d1,
 float *d2)
{
 long retval = 0xffff;
 for (long i = 0 ; i < nhs ; i++)
 {
 retval &= pfHalfSpaceIsectSeg(hs[i], seg, d1, d2);
 if (retval == 0)
 return 0;
 pfClipSeg(seg, *d1, *d2);
 }
 return retval;
}

Note that these routines do not actually clip the segment. If you want the
segment to be clipped to the interior of the volume, you must call
pfClipSeg(), as in the example above.

Intersecting With Planes and Triangles

Intersections with planes and triangles are simpler than those with volumes.
pfPlaneIsectSeg() and pfTriIsectSeg() return either PFIS_TRUE or
PFIS_FALSE, depending on whether an intersection has occurred. The
distance of the intersection along the segment is returned in one of the
arguments.

Intersecting With pfGeoSets

You can intersect line segments with the drawable geometry that’s within
pfGeoSets by calling pfGSetIsectSegs(). The operation is very similar to that
of pfNodeIsectSegs(), except that rather than operating on an entire scene
graph, only the triangles within the pfGeoSet are “traversed.”

Creating and Working With Line Segments

417

pfGSetIsectSegs() takes a pfSegSet and tests to see whether any of the
segments intersect the polygons inside the specified pfGeoSet. By default,
information about the closest intersection along each segment is returned as
a set of pfHit objects, one for each line segment in the request. Each pfHit
object indicates the location of the intersection, the normal, and what
element was hit. This element identification includes the index of the
primitive within the pfGeoSet and the triangle index within the primitive
(for tristrips and quads primitives), as well as the actual triangle vertices.

You can also extract information from a pfHit object using pfQueryHit() and
pfMQueryHit(). (See “Intersection Requests: pfSegSets” and “Intersection
Return Data: pfHit Objects” in Chapter 6 for more information about
pfSegSets and pfHit objects.) The principal difference between those
routines and pfGSetIsectSegs() is that with pfGSetIsectSegs() information
concerning the libpf scene graph (such as transformation, geode, name, and
path) is never used.

Two types of intersection testing are possible, as shown in Table 11-11.

You can use PFTRAV_IS_GSET for crude collision detection and
PFTRAV_IS_PRIM for fine-grained testing. You can enable both bits and
dynamically choose whether to go down to the primitive level by using a
discriminator callback (see “Discriminator Callbacks”). pfGSetIsectSegs()
performs only primitive-level testing for pfGeoSets consisting of triangles
(PFGS_TRIS), quads (PFGS_QUADS), and tristrips (PFGS_TRISTRIPS), and
all are decomposed into triangles.

Intersection Masks

Each pfGeoSet has an intersection mask that you set using
pfGSetIsectMask(). The mask in the pfGeoSet is useful when pfGeoSets are
embedded in a larger data structure; it allows you to define pfGeoSets to

Table 11-11 Available Intersection Tests

Test Name Function

PFTRAV_IS_GSET Intersect the segment with the bounding box of the pfGeoSet.

PFTRAV_IS_PRIM Intersect the segment with the polygon-based primitives
inside the pfGeoSet.

418

Chapter 11: Math Routines

belong to different classes of geometry for intersection—for example, water,
ground, foliage. pfGSetIsectSegs() also takes a mask, and an intersection
test is performed only if the bitwise AND of the two masks is nonzero.

Discriminator Callbacks

If a callback is specified in pfGSetIsectSegs(), that function is invoked when
a successful intersection occurs, either with the bounding box of the
pfGeoSet or with a primitive. The discriminator can decide what action to
take based on the information about the intersection contained in a pfHit
object. The return value from the discriminator determines whether the
current intersection is valid and should be copied into the return structure,
whether the rest of the geometry in the pfGeoSet is examined, and whether
the segment should be clipped before continuing.

Unless the return value includes the bit PFTRAV_IS_IGNORE, the
intersection is considered successful and is copied into the array of pfHit
structures for return.

The bits of the PFTRAV_* tokens determine whether to continue, as shown
in Table 11-12.

The bits PFTRAV_IS_CLIP_END and PFTRAV_IS_CLIP_START cause the
segment to be clipped at the end or at the start using the intersection point.
By default, in the absence of a discriminator, segments are end-clipped at
each successful intersection at the finest level (bounding box or primitive
level) requested. Hence, the closest intersection point is always returned.

The discriminator is passed a pfHit. You can use pfQueryHit() to examine
information about the intersection, including which segment number within
the pfSegSet the intersection is for and the current segment as clipped by
previous intersections.

Table 11-12 Discriminator Return Values

Result Meaning

PFTRAV_CONT Continue examining geometry inside the pfGeoSet.

PFTRAV_PRUNE Terminate the traversal now.

PFTRAV_TERM Terminate the traversal now.

General Math Routine Example Program

419

General Math Routine Example Program

Example 11-5 demonstrates the use of many of the available IRIS Performer
math routines.

Example 11-5 Intersection Routines in Action

/*
 * simple test of pfCylIsectSeg

*/
{

pfVec3 tmpvec;
pfSetVec3(pt1, -2.0f, 0.0f, 0.0f);
pfSetVec3(pt2, 2.0f, 0.0f, 0.0f);

pfMakePtsSeg(&seg1, pt1, pt2);

pfSetVec3(cyl1.axis, 1.0f, 0.0f, 0.0f);
pfSetVec3(cyl1.center, 0.0f, 0.0f, 0.0f);
cyl1.radius = 0.5f;
cyl1.halfLength = 1.0f;

isect = pfCylIsectSeg(&cyl1, &seg1, &t1, &t2);

pfClipSeg(&clipSeg, &seg1, t1, t2);
AssertFloatEq(clipSeg.length, 2.0f, “clipSeg.length”);
pfSetVec3(tmpvec, 1.0f, 0.0f, 0.0f);
AssertVec3Eq(clipSeg.dir, tmpvec, “clipSeg.dir”);
pfSetVec3(tmpvec, -1.0f, 0.0f, 0.0f);
AssertVec3Eq(clipSeg.pos, tmpvec, “clipSeg.pos”);

}
/*
 * simple test of pfTriIsectSeg
 */
{

pfVec3 tr1, tr2, tr3;
pfSeg seg;
float d = 0.0f;
long i;

for (i = 0 ; i < 30 ; i++)
{
float alpha = 2.0f * drand48() - 0.5f;
float beta = 2.0f * drand48() - 0.5f;
float lscale = 2.0f * drand48();

420

Chapter 11: Math Routines

float target;
long shouldisect;

MakeRandomVec3(tr1);
MakeRandomVec3(tr2);
MakeRandomVec3(tr3);
MakeRandomVec3(pt1);
pfCombineVec3(pt2, alpha, tr2, beta, tr3);
pfCombineVec3(pt2, 1.0f, pt2, 1.0f - alpha - beta, tr1);

pfMakePtsSeg(&seg, pt1, pt2);
target = seg.length;
seg.length = lscale * seg.length;

isect = pfTriIsectSeg(tr1, tr2, tr3, &seg, &d);
shouldisect = (alpha >= 0.0f &&

beta >= 0.0f &&
 alpha + beta <= 1.0f &&
 lscale >= 1.0f);

if (shouldisect)
if (!isect)

printf(“ERROR: missed\n”);
else

AssertFloatEq(d, target, “hit at wrong distance”);
 else if (isect)

printf(“ERROR: hit\n”);
}

/*
* simple test of pfCylContainsPt
*/

{
pfCylinder cyl;
pfVec3 pt;
pfVec3 perp;

pfSetVec3(cyl.center, 1.0f, 10.0f, 5.0f);
pfSetVec3(cyl.axis, 0.0f, 0.0f, 1.0f);
pfSetVec3(perp, 1.0f, 0.0f, 0.0f);
cyl.halfLength = 2.0f;
cyl.radius = 0.5f;

pfCopyVec3(pt, cyl.center);
if (!pfCylContainsPt(&cyl, pt))

printf(“center of cylinder not in cylinder!!!!\n”);

General Math Routine Example Program

421

pfAddScaledVec3(pt, cyl.center, 0.9f*cyl.halfLength,
cyl.axis);

if (!pfCylContainsPt(&cyl, pt))
printf(“0.9*halfLength not in cylinder!!!!\n”);

pfAddScaledVec3(pt, cyl.center, -0.9f*cyl.halfLength,
cyl.axis);

if (!pfCylContainsPt(&cyl, pt))
printf(“-0.9*halfLength not in cylinder!!!!\n”);

pfAddScaledVec3(pt, cyl.center, -0.9f*cyl.halfLength,
cyl.axis);

pfAddScaledVec3(pt, pt, 0.9f*cyl.radius, perp);
if (!pfCylContainsPt(&cyl, pt))

printf(printf(“-0.9*halfLength not in cylinder!!\n”);

pfAddScaledVec3(pt, cyl.center, 0.9f*cyl.halfLength,
cyl.axis);

pfAddScaledVec3(pt, pt, -0.9f*cyl.radius, perp);
if (!pfCylContainsPt(&cyl, pt))

printf(“-0.9*halfLength not in cylinder!!!!\n”);

pfAddScaledVec3(pt, cyl.center, 1.1f*cyl.halfLength,
cyl.axis);

if (pfCylContainsPt(&cyl, pt))
printf(“1.1*halfLength in cylinder!!!!\n”);

pfAddScaledVec3(pt, cyl.center, -1.1f*cyl.halfLength,
cyl.axis);

if (pfCylContainsPt(&cyl, pt))
printf(“-1.1*halfLength in cylinder!!!!\n”);

pfAddScaledVec3(pt, cyl.center, -0.9f*cyl.halfLength,
cyl.axis);

pfAddScaledVec3(pt, pt, 1.1f*cyl.radius, perp);
if (pfCylContainsPt(&cyl, pt))

 printf(“1.1*radius in cylinder!!!!\n”);

pfAddScaledVec3(pt, cyl.center, 0.9f*cyl.halfLength,
cyl.axis);

pfAddScaledVec3(pt, pt, -1.1f*cyl.radius, perp);
if (pfCylContainsPt(&cyl, pt))

printf(“1.1*radius in cylinder!!!!\n”);
}

This chapter discusses the various
kinds of available statistics on the
performance of your application.

“Statistics”

Chapter 12

425

Chapter 12

12. Statistics

This chapter describes the IRIS Performer profiling utilities. Statistics are
available on nearly every aspect of IRIS Performer’s operation and can be
used to diagnose both functionality and performance problems, as well as
for writing benchmarks and for load management. For more detailed
information on interpreting statistics to tune the performance of your
application, refer to Chapter 13, “Performance Tuning and Debugging.”

To collect most IRIS Performer statistics, all you have to do is enable them;
IRIS Performer then collects them automatically for you in pfStats and
pfFrameStats data structures (for libpr and libpf, respectively). You can query
the contents of these structures from your program, or write the data to files.
A libpf application can also display the contents of a pfFrameStats structure
in a channel by calling pfDrawChanStats() or pfDrawFStats(). The statistics
drawn for a channel are the statistics accumulated in the channel’s own
pfFrameStats. Such a display isn’t necessary for statistics collection. The
pointer to the pfFrameStats structure for a channel can be gotten with
pfGetChanFStats(). You can then control which statistics for the channel are
being accumulated.

Most of the IRIS Performer demo programs display some subset of these
statistics. This chapter first explains some of the complex graphical displays
and then discusses how to display statistics from a libpf-based application.
Subsequent sections explain how to access and manipulate statistics from
within an application. Topics include enabling and disabling statistics
classes, printing, querying, and copying statistics data, as well as some basic
examples showing common uses of statistics. At the end of this chapter is a
discussion of the different statistics classes for libpr and libpf, along with
details of their use.

426

Chapter 12: Statistics

Interpreting Statistics Displays

Many types of statistics can be displayed in a channel. Most such displays
consist simply of labeled numbers and are fairly self-explanatory; however,
some of the displays, such as the stage timing graph, warrant further
explanation.

IRIS Performer tracks the time spent in the application, cull, and draw stages
of the rendering pipeline. The basic statistics display shows a timing graph
for each stage of the past several frames, as well as showing the current
frame rate and load information. This profiling diagram is useful for
optimizing both the database and application structure.

Figure 12-1 shows a sample stage timing graph from an IRIS Performer
demo program. It might be helpful to refer to a running example as well—
by turning on a statistics display in perfly, for instance—while reading this
section.

Figure 12-1 Stage Timing Statistics Display

The statistics diagram in Figure 12-1 is the simplest of the standard statistics
displays. There are several other standard display formats, each
emphasizing other classes of statistics. Statistics collection, though highly
optimized, can take extra time in IRIS Performer operations. Because of this,
you have a great deal of fine control over exactly what statistics are currently
being collected and what statistics are being displayed. Statistics are divided
into classes (separated into vertically stacked boxes in a display), and into
modes within each class. The next several sections describe the classes shown
in a typical statistics display.

Interpreting Statistics Displays

427

Status Line

The top line of a standard statistics display, above the box that the rest of the
statistics are drawn in, shows the current average frame rate followed by a
slash and the target frame rate. (To set a target frame rate, call
pfFrameRate().) The rest of that status line indicates what frame-rate control
method you’re using (FLOAT, FREE, LIMIT, or LOCK—for details, see
“Achieving the Frame Rate” in Chapter 7), your multiprocess model (set
with pfMultiprocess()), and the average time (in milliseconds) spent in the
channel draw callback. An optional part of the status line indicates the
number of triangles in the scene.

Stage Timing Graph

The main part of the timing display is the stage timing graph, occupying the
top portion of the statistics display. The red vertical lines (the darker ones in
Figure 12-1) mark video retrace intervals, which occur at the video refresh
rate of the system (commonly 60 times per second); a field is the period of
time between two video retrace boundaries. The green vertical lines (the
lighter ones in the figure) indicate frame boundaries. Note that frame
boundaries are always on field boundaries and are an integral number of
fields.

The segmented horizontal line segments in the top portion of the timing
graph show the time taken by each of the IRIS Performer pipeline stages:
i (intersection), a (application), c (cull), and d (draw) for each of the four
frames shown (0 through 3). On screen, all stages belonging to a given frame
are drawn in one color; different colors indicate different frames. The stages
of the most recent frame, at the right of the graph, are marked a0, c0, and d0;
previous frames have higher numbers (so “a-1” indicates the application
stage of the immediately previous frame).

All stages performed by the same IRIX process are connected by vertical
lines. If two stages are performed by different processes, they are not
connected by a vertical line. In most multiprocessing modes, a stage of one
frame occurs at the same time as another stage for a different frame, so that
(for instance) d0 is directly below c-1 in the graph. The exception is the
PFMP_CULLoDRAW model, in which the cull and draw stages for a given
frame are performed in tandem; in this mode d0 is directly below c0 in the

428

Chapter 12: Statistics

graph. (In Figure 12-1, the PFMP_APP_CULL_DRAW model was used and
all stages are part of separate processes.)

These stage timings are helpful when choosing a process model and
balancing the cull and draw tasks for a database. Furthermore, the timing
graph can show you how close you are to an improvement in frame rate as
you view the database.

The timing lines for each stage are broken into pieces displayed at slightly
different heights and thicknesses to show the time taken by significant
subtasks within each stage. Raised segments reflect time spent in user code,
intermediate lines reflect time spent in IRIS Performer code, and lowered
lines reflect time waiting on other operations.

The application stage is divided into five subsegments:

• The time spent in the application’s main loop between the pfFrame()
call and the pfSync() call (drawn as a raised line).

• The time spent cleaning the scene graph during pfSync().

• The time spent sleeping in pfSync() while waiting for the next frame
boundary (drawn as a low thin pale dotted line).

• The time spent in the application code between calling pfSync() and
calling pfFrame() (drawn as bright raised line).

• The time spent in pfFrame() cleaning the scene graph after any changes
that might have been made in the previous subsegment, and then
checking intersections.

• The time spent waiting while the cull process copies updated
information from the application and starts the cull stage for the
now-finished frame (drawn as a low thin line).

The cull stage is divided into only two subsegments:

• The time spent receiving updates from the application (in some
multiprocessing models, this overlaps with the last subsegment of the
application stage).

• The time spent in the channel cull callback, including time spent in
pfCull() (drawn as raised line).

Interpreting Statistics Displays

429

The draw stage has four subsegments:

• The time spent in the channel draw callback before the call to pfDraw()
(a very short thick dark raised segment. This will include the time for
your call to pfClearChan(). However, under normal circumstances, this
segment shouldn’t be visible at all). Operations taking place during this
time should only be latency-critical. This line should be extremely short
unless you have a very good reason.

• The time spent in pfDraw() (the main thick segment).

• The time spent in the channel draw callback after pfDraw() (another
short thick dark raised segment;). Additionally, the last channel drawn
on the pipe will include the time for the graphics pipeline to finish its
drawing. Even if you have no operations after pfDraw() in you draw
callback, this line for the last channel might look quite long, particularly
if you are very fill-limited. It is possible for rendering calls issued in the
previous section to fill up the graphics FIFO and have calls issued on
this section have to wait while the graphics pipeline processes the
commands and FIFO drains, making the time look longer than
expected.

• The time spent waiting for the graphics pipeline to finish drawing the
current frame, draw the channel statistics (for all channels), and swap
color buffers. This line may look quite long as the color buffers can only
be swapped on a vertical retrace boundary. Thus, this pale dotted line
will always reach to the start of the next field.

Below the stage timing lines, the average time for each stage (in
milliseconds) is shown. Note that the time given for the draw stage is the
same as the time shown for the draw stage on the status line above the
statistics box.

430

Chapter 12: Statistics

Load and Stress

The lower portion of the channel statistics diagram shows the recent history
of graphics load and stress management. The load measure is based on the
amount of time taken to draw previous frames in the channel relative to the
specified goal frame time. A wavy red horizontal line is drawn to show the
last three seconds of graphics load. A pair of white horizontal lines represent
the upper and lower bounds of graphics load for invoking stress
management. Thus, when the red line wanders outside the boundaries set
by the white lines, stress management is invoked.

Stress management causes scaling of LODs in the database to meet the target
frame rate with maximum scene detail. The last three seconds of stress are
shown in white while stress management is running. Thus, the channel
statistics graph can be used to tune the upper and lower bounds of the
hysteresis band for invoking stress management and for tuning LODs of
objects in the database.

CPU Statistics

CPU statistics, illustrated (with some other statistics) in Figure 12-2, give
you information on system usage and load. The numbers shown correspond
exactly to numbers given by osview; they’re updated every update period
just like other statistics (see “Setting Update Rate” on page 442 for
information on how to change the update rate). These numbers represent
averages (per second) across all CPUs; thus, if one or more CPUs is busy
with some other task, the CPU statistics shown may not accurately reflect
IRIS Performer CPU use. Note that the top line of the CPU statistics panel
shows the total number of frames during the last update period, and the
total time elapsed during that period.

Interpreting Statistics Displays

431

Figure 12-2 Other Statistics Classes

432

Chapter 12: Statistics

Rendering Statistics

Several other classes of statistics can be shown, each representing a different
aspect of rendering performance. Some of these classes show:

• Data about visible geometry, including a histogram showing the
percentage of triangles in the scene that are part of strips of a given
length (from 1 to 14). Quads are counted as strips of length two;
independent triangles count as strips of length one. This histogram is
mostly useful as a diagnostic to see how well your database is
structured for drawing efficiency; if it shows too many very short strips
you may want to go back and restructure your database. (As a general
rule of thumb, consider a “very short strip” to be one that’s less than 4
triangles long but that number may vary depending on your database).
To enable these statistics on a channel do:

pfFStatsClass(pfGetChanFStats(chan),
PFSTATS_ENGFX, PFSTATS_ON);

• A summary of the graphics state operations (including loading of
textures), and of the number of operations that have recently been
performed on the transformation stack (also part of the GFX stats class),
the number of libpf nodes being drawn, in several categories (including
billboards, light points, and geodes), plus the number of nodes of each
type evaluated in the application and cull stages which can be enabled
with

pfFStatsClass(pfGetChanFStats(chan),
PFSTATS_ENDB, PFSTATS_ON);

• Cull statistics, including how many nodes and pfGeoSets are being
tested, how many are accepted, and how many are rejected by the libpf
culling task, enabled with

pfFStatsClass(pfGetChanFStats(chan),
PFFSTATS_ENDB, PFSTATS_ON);

Fill Statistics

The fill statistics display indicates how many millions of pixels have been
drawn since the last statistics update. (For information on setting the length
of time between statistics updates, see “Setting Update Rate” on page 442).

Collecting and Accessing Statistics in Your Application

433

It also computes the average depth complexity of the image, which is the
average number of times each pixel was touched per frame.

The depth complexity of a scene is also be displayed in the main channel.
Each pixel will be colored according to how many times that pixel was
written to during display, rather than according to the current rendering
modes. The colors used range from dark blue (not written to at all) to bright
pink (written over many times). This color scheme is used in calculating fill
statistics; the coloring is done whenever you gather fill statistics, even when
you aren’t displaying the totals in your channel statistics display.

Stencil planes are used to store the number of times a pixel is written and
thus to calculate fill statistics. If n stencil planes are available, no more than
2n writes to any given pixel will be counted. By default, the calculation of fill
statistics uses three stencil planes; to change that default, call
pfStatsHwAttr().

Fill statistics are part of the libpr pfStats statistics but can be enabled on both
pfStats and pfFrameStats classes. To enable fill statistics you simply do:

pfStatsClass(statsptr,
PFSTATSHW_ENGFXPIPE_FILL, PFSTATS_ON);

To enable fill statistics for a channel’s pfFrameStats do:

pfFStatsClass(pfGetChanFStats(chan),
PFSTATSHW_ENGFXPIPE_FILL, PFSTATS_ON);

Examples of fill statistics can be found in perfly and in
/usr/share/Performer/src/pguide/libpr/C/fillstats.c.

Collecting and Accessing Statistics in Your Application

If you just want to bring up a statistics display in your application, you may
not need to know details about the data structures used for statistics. If,
however, you want to do more complicated statistics-handling (including
collecting statistics without displaying them), you need more advanced
information. This section provides a general overview of statistics
manipulation, followed by subsections containing specific information.

434

Chapter 12: Statistics

If you use libpf, a wide variety of statistics-manipulation functions is
available. If you use libpr, however, you must do some things on your own.
For instance, you have to bind your own pfStats structure in which to
accumulate statistics.

Furthermore, you can’t access some kinds of statistics except through libpf
calls—for instance, you can’t get culling statistics using libpr calls. If you
want full access to statistics, you must use libpf. There are, however, libpr
routines that allow you to do your own cumulative totaling and averaging
of collected statistics.

To create your own statistics display, enable the statistics classes you want to
use and disable any modes you don’t want to use. Then enable any relevant
hardware, if necessary, with pfEnableStatsHw().

To ensure the accuracy of timing with your rendering statistics, you want to
flush the graphics pipeline before calling pfGetTime(). You can do this in
IRIS GL with finish() and in OpenGL with glFinish(). These calls are
expensive and shouldn’t be done more than at the start and end of drawing
in frame.

Displaying Statistics Simply

To put up a simple statistics display, all you have to do is call the function
pfDrawChanStats() and pass it a pointer to the pfChannel whose statistics
you want to display. The pfDrawChanStats() routine can be called from any
process within the application; the statistics will be displayed in the channel
specified.

If you want to display one channel’s statistics in another channel, call
pfDrawFStats(); for an example of this technique, as well as the enabling
and disabling of every statistics class, see the statistics programming
example in the file /usr/share/Performer/src/pguide/libpf/C/stats.c.

By default, a statistics display shows all enabled statistics. If you want to
show only a subset of the statistics you’re collecting, call
pfChanStatsMode() with an enabling bitmask indicating which classes are
to be displayed.

Collecting and Accessing Statistics in Your Application

435

Enabling and Disabling Statistics for a Channel

For efficiency, you may want to turn off statistics collection for a given
channel when you’re not displaying that channel’s statistics. In particular,
the stage timing statistics are enabled by default, so if you’re using a channel
whose statistics you don’t care about, you should disable statistics for that
channel. To turn off statistics for a channel, call:

pfFStatsClass(pfGetChanFStats(chan),
PFSTATS_ALL, PFSTATS_OFF);

Use the same function with different parameters to enable all or specific
classes of statistics for a channel. You can specify which classes to enable in
order to minimize statistics collection overhead.

Statistics in libpr and libpf —pfStats Versus pfFrameStats

libpf statistics accumulate into a pfFrameStats structure to later be displayed,
printed, queried, or otherwise operated on. The pfFrameStats structure
actually contains four buffers of statistics: a buffer for the previous frame’s
statistics, a buffer of averaged statistics for the previous update period, a
buffer of accumulated statistics for the current update period, and a buffer
of statistics being accumulated for the current frame.

The pfFrameStats structure is built upon the libpr pfStats structure, so the
pfFrameStats API includes routines to duplicate the functionality of pfStats.
The duplicated API exists because the routines cannot be intermixed. pfStats
routines can only be used on pfStats structures and pfFrameStats routines
can only be called with pfFrameStats structures. However, pfstats classes
and class modes (designated with the PFSTATS_ prefix) can be enabled on a
pfFrameStats structure.

The pfStats statistics classes include the system and hardware statistics for
the graphics pipeline and the CPU, as well the pixel fill statistics and
rendering statistics on geometry, graphics state, and matrix transformations.
Some of the libpr statistics commands, such as
pfEnableStatsHw(PFSTATSHW_ENGFXPIPE_FILL), require an active
graphics context and thus should only be called from the draw process.
However, these commands are usually never necessary in a libpf application

436

Chapter 12: Statistics

because the pfFrameStats operation will handle these commands
automatically.

Statistics Class Structures

The pfFrameStats structure and the pfStats structure are both inherited from
the pfObject structure. Thus, you can use the pfObject routines (pfCopy(),
pfPrint(), pfDelete(), pfUserData(), pfGetType(), and so on) with pfStats
and pfFrameStats structures. However, some pfObject routines will not
support all of the semantics of a pfStats or pfFrameStats structure, so some
pfStats versions of a few of these routines take extra arguments. These
routines will have a pfFrameStats version as well. In particular,
pfCopyStats() and pfCopyFStats() should be used to copy pfStats and
pfFrameStats structures, respectively.

Routines that have “FStats” in their names (rather than just “Stats”) expect
to be passed a full pfFrameStats structure rather than a pfStats structure. The
pfFrameStats API includes additional routines beyond pfStats for
supporting libpf statistics. For example, pfDrawFStats() to display statistics
in a channel and pfFStatsCountNode() to accumulate the static database
statistics for the scene graph rooted at the provided node. Additionally,
pfFrameStats has special support for the multiprocessed environment of
libpf and ensures that the statistics operations are all done in the correct
process. All modifying of a pfFrameStats structure, including enabling and
disabling of classes, printing, and copying, should all be done in the
application process. pfDrawFStats() and pfDrawChanStats() can be called
in either the application process or the draw process.

Statistics Rules of Use

Enabling and disabling of statistics and setting of modes and attributes on a
statistics structure should always be done in the application process; the
settings will automatically be passed down the process pipeline. To enable
classes of statistics on a pfFrameStats, call pfFStatsClass() and provide a
statistics structure, a bitmask of statistics-enabling tokens (tokens with
“STATS_EN” in their names) for the desired classes, and the token
PFSTATS_ON. Obtain the statistics structure from the desired channel by
calling pfGetChanFStats(). For example,

Collecting and Accessing Statistics in Your Application

437

pfFStatsClass(pfGetChanFStats(chan), PFFSTATS_ENCULL |
PFFSTATS_ENDB, PFSTATS_ON);

enables the cull statistics and database statistics classes, leaving settings
alone for any other classes. Notice that the classes specific to pfFrameStats
have a PFFSTATS_ prefix. You can use PFSTATS_SET instead of
PFSTATS_ON to enable only the specified classes (disabling any others that
might already be enabled).

Statistics Tokens

There are five main types of statistics tokens:

• Statistics class enable bitmasks, used for selecting a set of classes to
enable with pfStatsClass(). These bitmasks are also used when printing
with pfPrint() or copying with pfCopy() and pfCopyStats(), as well as
with the pfResetStats(), pfClearStats(), pfAverageStats(), and
pfAccumulateStats() routines (and their pfFrameStats counterparts).
These tokens are of the form PFSTATS_EN* and PFFSTATS_EN* for
pfStats and pfFrameStats class respectively. The PFSTATS_ALL token
will select all statistics classes, and also all statistics buffers in the case
of a pfFrameStats structure. The token PFSTATS_EN_MASK selects all
pfStats classes and the token PFFSTATS_EN_MASK selects all
pfFrameStats statistics classes, which includes all pfStats classes.

• Value tokens, used to specify how to set a value for a specified pfStats
or pfFrameStats class enable or mode. Value tokens include
PFSTATS_ON, PFSTATS_OFF, and PFSTATS_DEFAULT. Another value
token, PFSTATS_SET, is used to specify that the entire class enable or
mode bitmask should be set to the specified mask. These tokens are
used in conjunction with the class bitmasks and the class name tokens
for pfStatsClass() and pfStatsClassMode().

• Class name tokens, used to name a specific class. For instance, these
tokens can be passed to pfStatsClassMode() to set individual modes of
a statistics class.

• Class mode tokens, of which each statistics class has its own, and which
have the form PFSTATS_class_mode and PFFSTATS_class_mode for
pfStats and pfFrameStats class modes, respectively.

438

Chapter 12: Statistics

• Statistics query tokens, used with pfQueryStats(), pfMQueryStats(),
pfQueryFStats(), and pfMQueryFStats(). These tokens are of the form
PFSTATSVAL_* and PFFSTATSVAL_* and have matching pfStatsVal*
types for holding the returned data. The token PFFSTATS_BUF_MASK
selects the pfFrameStats statistics buffers.

Statistics Buffers

You can only access the PREV and CUM statistics buffers from the IRIS
Performer application process. Statistics from desired buffers in other
processes should be queried in the application process and then passed
down the process pipeline, which you can do using the channel data utility.

The AVG buffer is copied down the process pipeline at the end of each
update period and so is available to by queried by other processes. The CUR
statistics buffer is the current working area and contains the statistics
accumulated so far from previous stages current frame; the contents of the
CUR buffer is very dependent on the multiprocess configuration (but is
almost always empty in the application process, so queries should access the
PREV buffer). Statistics that are added to the CUR buffer via copying,
accumulation, or immediate mode collection (such as with
pfStatsCountGSet() and pfFStatsCountNode()) will be propagated down
the process pipeline and then back up to the application process to be
included in the PREV buffer.

In a libpf application, most statistics collection is completely automatic. The
application must simply enable the desired classes of statistics via
pfStatsClass() and/or pfStatsClassMode().

The IRIS Performer processes are responsible for actually opening the
pfFrameStats structure in which to accumulate the enabled statistics classes,
as well as for managing any statistics hardware resources. All types of libpf
statistics can be accumulated without ever making specific calls to open a
structure for accumulation or enabling statistics hardware.

When using only libpr statistics, however, one must explicitly open a pfStats
structure for statistics accumulation by calling pfOpenStats().

Hardware statistics resources must also be managed by an application using
only libpr statistics. Statistics function calls that have “HW” in their names,
such as pfEnableStatsHw() and pfStatsHwAttr(), directly access system

Collecting and Accessing Statistics in Your Application

439

hardware (such as graphics hardware and CPU); be careful to make such
calls only from the relevant process. pfEnableStatsHw() expects
PFSTATSHW_EN* bitmask tokens. Statistics classes which have
corresponding statistics hardware have a PFSTATSHW_ prefix in their token
names.

In a libpf application, IRIS Performer takes care of enabling the correct
hardware modes that correspond to enabled classes of statistics. For more
information about specific statistics classes, see the pfFrameStats(3pf) and
pfStats(3pf) reference pages.

Reducing the Cost of Statistics

Collecting and displaying statistics can have a big impact on performance.
This section describes ways to reduce that impact.

Enabling Only Statistics of Interest

Each channel has its Process Frame Times (PFTIMES) statistics class enabled
by default. This class maintains a short history of process frames times, as
well as averaging frame times over the default update period of two
seconds.

To minimize unnecessary overhead, turn off statistics on channels when
you’re not using them. To turn off all statistics for a channel, call
pfFStatsClass() in the application process with the statistics structure of the
given channel:

pfFStatsClass(pfGetChanFStats(chan), PFSTATS_ALL,
PFSTATS_OFF);

Each statistics class has default mode settings. The short history of process
frame time is used to draw the timing graph. By default, this history consists
of four frames of each IRIS Performer process (app, cull, draw, intersections).

Maintaining this short history of statistics can be disabled by calling
pfStatsClassMode() with the token PFFSTATS_PFTIMES_HIST:

pfStatsClassMode(fstats, PFFSTATS_PFTIMES,
PFFSTATS_PFTIMES_HIST, PFSTATS_OFF);

440

Chapter 12: Statistics

This is useful if you’re only interested in the average frame times of each task
with minimal overhead and you don’t need to display the timing graph.
However, for most applications, the overhead incurred by keeping the
timing history is not noticeable.

Controlling Update Rate

The update rate controls how often statistics are averaged and new results
are made available in the AVG buffer for display or query. Change the
update rate by calling

pfFStatsAttr(fstats, {PFFSTATS_UPDATE_FRAMES,
PFFSTATS_UPDATE_SECS}, val);

When the update rate is nonzero, statistics are accumulated every frame.
When the update period is set to zero, no statistics accumulation or
averaging is done and only statistics in the PREV and CUR buffers are
maintained.

When statistics are accumulated and averaged, the averaging happens only
in the application process, but accumulation is done in each IRIS Performer
process.

Statistics Output

Once you’ve collected some statistics, you need to be able to access and
manipulate them.

Printing

To print the contents of pfStats and pfFrameStats structures, use the general
pfPrint() routine. The verbosity-level parameter to pfPrint() sets the level of
detail to use in printing statistics. Statistics class-enable bitmasks can be used
to select a subset of statistics to print. For instance, to print only the enabled
statistics:

pfPrint(stats, pfGetStatsClass(stats, PFSTATS_ALL),
PFPRINT_VB_INFO, 0);

When printing the contents of pfFrameStats structures, you can select which
buffers are to be printed: PREV, CUR, AVG, or CUM. The selected statistics

Collecting and Accessing Statistics in Your Application

441

from all selected buffers are printed. The following call prints the currently
enabled statistics from the previous frame and from the averaged statistics
buffer:

pfPrint(stats, PFFSTATS_BUF_PREV | PFFSTATS_BUF_AVG |
pfGetStatsClass(stats, PFSTATS_ALL),
PFPRINT_VB_INFO, 0);

Copying

You can copy entire pfStats and pfFrameStats structures with the general
pfCopy() command. pfCopy() copies all of the statistics data, as well as
information on mode settings and which classes are enabled. The source and
destination structures must be of the same type. If both statistics structures
are pfFrameStats structures, then all statistics from all buffers are copied.

The pfCopyStats() and pfCopyFStats() routines copies only statistics data
(not class enables or mode settings) and accepts a class enable bitmask to
select statistics classes for the copy. For example:

pfCopyStats(statsA, statsB, pfGetStatsClass(statsB,
PFSTATS_ALL));

For a pfFrameStats structure, a PFFSTATS_BUF_* token can be included in
the stats enable bitmask to select the buffer to be accessed. If no buffer is
specified, the CUR buffer is used. For example,

pfCopyFStats(fstats, stats, PFFSTATS_BUF_PREV |
pfGetStatsClass(stats, PFSTATS_ALL));

copies the currently enabled classes of stats to the PREV pfStats in fstats.

In this case, it’s an error to select more than one statistics buffer, so
PFSTATS_ALL cannot be used as the select. If you specify two pfFrameStats
structures, the buffer select is used for both structures; if you select multiple
buffers then each selected statistics class from each selected buffer is copied.
The pfCopyFStats() routine allows you to copy between two different
buffers of two pfFrameStats structures.

This routine takes explicit specification of PFFSTATS_BUF_* selects for
source and destination. Any PFFSTATS_BUF_* included with the class
enable bitmask is simply ignored, making it safe to specify PFSTATS_ALL.
This routine will not accept a pfStats structure.

442

Chapter 12: Statistics

Querying

pfQueryStats() and pfMQueryStats() (and corresponding pfFrameStats
versions) can be used to get values of out a pfStats or pfFrameStats structure
and into an exposed structure.

These routines are useful when you want to use specific statistics for your
own custom load management or for benchmarking, and you can use them
to implement your own custom statistics utility routines. pfQueryStats()
and pfMQueryStats() both take a pfStats (or pfFrameStats for
pfQueryFStats() and pfMQueryFStats()) and return the number of bytes
written to the provided destination buffer. pfQueryStats() takes a token that
specifies a single query, while pfMQueryStats() expects a token buffer for
multiple queries. If an error is encountered, both query routines
immediately halt and return with the total number of bytes successfully
written.

There are specific tokens for querying individual values or entire classes of
statistics. The query tokens are of the form PFSTATSVAL_* and
PFFSTATSVAL_*, and the corresponding exposed structure names are of the
form pfStatsVal* and pfFStatsVal*. Queries on pfFrameStats structures with
PFFSTATSVAL_* tokens expect a PFFSTATS_BUF_* select token to be ORed
with the query select. It’s an error to include more than one pfFrameStats
buffer select token. If no buffer select token is provided, the CUR buffer will
be queried. The statistics query tokens and structures are defined in prstats.h
and pfstats.h.

Customizing Displays

The standard statistics displays have several parameters hard-wired in. For
instance, you can’t change the colors used in such displays. If you want to
use different colors, you’ll have to use your own display routines.

Setting Update Rate

To set the frequency at which statistics are automatically collected, use
pfFStatsAttr(). See the pfFrameStats(3pf) reference page for details. If you
want to turn off cumulative statistics collection (and thus running averages)
entirely, set the update rate to zero. (Note that doing this will change your

Collecting and Accessing Statistics in Your Application

443

statistics display; in particular, your actual frame rate will be changed to
“???” and other averages will not be displayed.)

The pfStats Data Structure

The pfStats data structure contains four statistics buffers: one for current
statistics, one for previous statistics, one for cumulative statistics, and one
for averages.

If you’re using libpf calls to have IRIS Performer keep track of statistics for
you, you should always look at the previous-stats buffer; the current-stats
buffer is kept in a state of flux, and if you look at it you’re likely to find
meaningless numbers there.

If, on the other hand, you’re using libpr and keeping track of your own
statistics, the current-stats buffer does contain accurate information.

Statistics Examples

This section contains some examples of statistics calls.

Setting statistics class enables and modes

Set all stats class enables on a pfStats to their default values:

pfStatsClass(stats, PFSTATS_ALL, PFSTATS_DEFAULT);

Set all modes for the PFSTATS_GFX class on a pfFrameStats to their default
values:

pfFStatsClassMode(fstats, PFSTATS_GFX, PFSTATS_ALL,
PFSTATS_DEFAULT);

Note that pfStatsClassMode() takes a class name as its class specifier
(second argument) and not a bitmask. However, you can use
PFSTATS_CLASS to refer to the modes of all classes;

pfFStatsClassMode(fstats, PFSTATS_MODE, PFSTATS_ALL,
PFSTATS_DEFAULT);

444

Chapter 12: Statistics

sets all modes of all pfStats classes to their default values. For pfFrameStats
classes, there is PFFSTATS_CLASS:

Set the entire class enable mask to all PFSTATS_ALL, effectively enabling all
statistics classes:

pfFStatsClass(fstats, PFFSTATS_ALL, PFSTATS_SET);

Force off all modes of the PFSTATS_GFX class of a pfStats:

pfStatsClassMode(stats, PFSTATS_GFX, PFSTATS_OFF,
PFSTATS_SET);

To track triangle strip lengths on a pfFrameStats, enable the graphics
statistics class mode:

pfFStatsClassMode(fstats, PFSTATS_GFX,
PFSTATS_GFX_TSTRIP_LENGTHS, PFSTATS_ON);

This chapter explains how to use
performance measurement and
debugging tools and provides hints
for deriving maximum performance
from your applications.

“Performance Tuning and Debugging”

Chapter 13

447

Chapter 13

13. Performance Tuning and Debugging

This chapter provides some basic guidelines to follow when tuning your
application for optimal performance. It also describes how to use debugging
tools like pixie, prof, gldebug, and glprof to debug and tune your applications.
It concludes with some specific notes on tuning applications on systems with
RealityEngine graphics.

Performance-Tuning Overview

This section contains some general performance-tuning principles. Some of
these issues are discussed in more detail later in this chapter.

• Remember that high performance doesn’t come by accident. You must
design your programs with speed in mind for optimal results.

• Tuning graphical applications, particularly IRIS Performer applications,
requires a pipeline-based approach. You can think of the graphics
pipeline as comprising three separate stages; the pipeline runs only as
fast as the slowest stage, so improving the performance of the pipeline
requires improving the slowest stage’s performance. The three stages
are:

– The host (or CPU) stage, in which routines are called and general
processing is done by the application. This stage can be thought of
as a software pipeline, sometimes called the rendering pipeline, itself
comprising up to three sub-stages—the application, cull, and draw
stages—as discussed at length throughout this guide.

448

Chapter 13: Performance Tuning and Debugging

– The transformation stage, in which transformation matrices are
applied to objects to position them in space (this includes matrix
operations, setting graphics modes, transforming vertices,
handling lighting, and clipping polygons).

– The fill stage, which includes clearing the screen and then drawing
and filling polygons (with operations such as Gouraud shading,
z-buffering, and texture mapping).

• You can estimate your expected frame rate based on the makeup of the
scene to be drawn and graphics speeds for the hardware you’re using.
Be sure to include fill rates, polygon transform rates, and time for mode
changes, matrix operations, and screen clear in your calculations.

• Measure both the performance of complex scenes in your database and
of individual objects and drawing primitive to verify your
understanding of the performance requirements.

• Use the IRIS Performer diagnostic statistics to evaluate how long each
stage takes and how much it does. See Chapter 12, “Statistics,” for more
information. These statistics are referred to frequently in this chapter.

• Use system tools to help profile and analyze your application. The IRIS
GL glprof utility (described in “Using glprof to Find Performance
Bottlenecks” on page 469) will profile the rendering of an IRIS GL
programs and show what was drawn and help figure out what stage of
the graphics hardware pipeline is the significant bottleneck.

• Tuning an application is an incremental process. As you improve one
stage’s performance, bottlenecks in other stages may become more
noticeable. Also, don’t be discouraged if you apply tuning techniques
and find that your frame rate doesn’t change—frame rates only change
by a field at a time (which is to say in increments of 16.67 milliseconds
for a 60 Hz display), while tuning may provide speed increases of finer
granularity than that. To see performance improvements that don’t
actually increase frame rate, look at the times reported by IRIS
Performer statistics on the cull and draw processes (see Chapter 12 for
more information).

• See the graphics library books listed in the “Bibliography” on page xxix
for information about how to get peak performance from your graphics
hardware, beyond what IRIS Performer does for you.

How IRIS Performer Helps Performance

449

How IRIS Performer Helps Performance

IRIS Performer uses many techniques to increase application performance.
Knowing about what IRIS Performer is doing and how it affects the various
pipeline stages may help you write more efficient code. This section lists
some of the things IRIS Performer can do for you.

Draw Stage and Graphics Pipeline Optimizations

During drawing, IRIS Performer

• Sets up an internal record of what routines and rendering methods are
fastest for the current graphics platform. This information can be
queried in any process with pfQueryFeature(). You can use this
information at run time when setting state properties on your
pfGeoStates.

• Has machine-dependent fast options for commands that are very
performance sensitive. Use the _ON and _FAST mode settings
whenever possible to get machine-dependent high-performance
defaults. Some examples include:

• pfAntialias(PFAA_ON)

• pfTransparency(PFTR_ON)

• pfDecal(PFDECAL_BASE_FAST)

• pfTexFilter(tex, filt, PFTEX_FAST)

• pfTevMode(tev, PFTEV_FAST)

• Sets up default modes for drawing, multiprocessing, statistics, and
other areas, that are chosen to provide high scene quality and
performance. Some rendering defaults differ from GL defaults:
backface elimination is enabled by default (pfCullFace(PFCF_BACK))
and lighting materials use lmcolor() in IRIS GL and glColorMaterial()
in OpenGL to minimize the number of materials required in a database
(pfMtlColorMode(mtl, side, PFMTL_CMODE_AD)).

• Uses a large number of specialized routines for rendering different
kinds of objects extremely quickly. There’s a specialized drawing
routine for each possible pfGeoSet configuration (each choice of
primitive type, attribute bindings, and index selection). Each time you

450

Chapter 13: Performance Tuning and Debugging

change from one pfGeoSet to another, one of these specialized routines
is called. However, this happens even if the new pfGeoSet has the same
configuration as the old one, so larger pfGeoSets are more efficient than
smaller ones—the function-call overhead for drawing many small
pfGeoSets can reduce performance. As a rule of thumb, a pfGeoSet
should contain at least 4 triangles, and preferably between 8 and 64. If
the pfGeoSet is too large, it can reduce the efficiency of other parts of
the process pipeline.

• Caches state changes, because applying state changes is costly in the
draw stage. IRIS Performer accumulates state changes until you call
one of the pfApply*() functions, at which point it applies all the
changes at once. Note that this differs from the graphics libraries, in
which state changes are immediate. If you have several state changes to
make in IRIS Performer, set up all the changes before applying them,
rather than using the one-change-at-a-time approach (with each change
followed by an apply operation) that you might expect if you’re used to
graphics library programming.

• Evaluates state changes lazily—that is, it avoids making any redundant
changes. When you apply a state change, IRIS Performer compares the
new graphics state to the previous one to see if they’re different. If they
are, it checks whether the new state sets any modes. If it does, IRIS
Performer checks each mode being set to see whether it’s different from
the previous setting. To take advantage of this feature, share
pfGeoStates and inherit states from the global state wherever possible.
Set all the settings you can at the global level and let other nodes inherit
those settings, rather than setting each node’s attributes redundantly.
To do this within a database, you can set up pfGeoStates with your
desired global state and apply them to the pfChannel or pfScene with
pfChanGState() or pfSceneGState(). You can do this through the
database loader utilities in libpfdu trivially for a given scene with
pfdMakeSharedScene(), or have more control over the process with
pfdDefaultGState(), pfdMakeSceneGState(), and
pfdOptimizeGStateList().

• Provides an optimized immediate mode rendering display list data
type, pfDispList, in libpr. The pfDispList type reduces host overhead in
the drawing process and requires much less memory than a graphics
library display list. libpf uses pfDispLists to pass results from the cull
process to the draw process when the PFMP_CULL_DL_DRAW mode
is turned on as part of the multiprocessing model. For more

How IRIS Performer Helps Performance

451

information about display lists, see “Display Lists” in Chapter 10; for
more information about multiprocessing, see “Successful
Multiprocessing With IRIS Performer” in Chapter 7.

Cull and Intersection Optimizations

To help optimize culling and intersection, IRIS Performer

• Provides pfFlatten() to resolve instancing (via cloning) and static
matrix transformations (by pre-transforming the cloned geometry). It
can be especially important to flatten small pfGeoSets; otherwise matrix
transformations must be applied to each small pfGeoSet at significant
computational expense. Note that flattening resolves only static
coordinate systems, not dynamic ones, but that where desired, pfDCS
nodes can be converted to pfSCS nodes automatically using the IRIS
Performer utility function pfdFreezeTransforms(), which allows for
subsequent flattening. Using pfFlatten(), of course, increases
performance at the cost of greater memory use. Further, the function
pfdCleanTree() can be used to remove needless nodes: identity matrix
pfSCS nodes, single child pfGroup nodes, and the like.

• Uses bounding spheres around nodes for fast culling—the intersection
test for spheres is much faster than that for bounding boxes. If a node’s
bounding sphere doesn’t intersect the viewing frustum, there’s no need
to descend further into that node. There are bounding boxes around
pfGeoSets; the intersection test is more expensive but provides greater
accuracy at that level.

• Provides the pfPartition node type to partition geometry for fast
intersection testing. Use a pfPartition node as the parent for anything
that needs intersection testing.

• Provides level-of-detail (LOD) capabilities in order to draw simpler
(and thus cheaper) versions of objects when they’re too far away for the
user to discern small details.

• Allows intersection performance enhancement via precomputation of
polygon plane equations within pfGeoSets. This pre-computation is in
the form of a traversal that is nearly always appropriate—only in cases
of non-intersectable or dynamically changing geometry might these
cached plane equations be disadvantageous. This optimization is

452

Chapter 13: Performance Tuning and Debugging

performed by pfuCollideSetup() using the PFTRAV_IS_CACHE bit
mask value.

• Sorts pfGeoSets by graphics state in the cull process, in order to
minimize state changes and flatten matrix transformations, when libpf
creates display lists to send to the draw process (as occurs in the
PFMP_CULL_DL_DRAW multiprocessing mode). This procedure takes
extra time in the cull stage, but can greatly improve performance when
rendering a complex scene that uses many pfGeoStates. The sorting is
enabled by default; it can be turned off and on by calling the function
pfChanTravMode(chan, PFTRAV_CULL, mode) and including or
excluding the PFCULL_SORT token. See “pfChannel Traversal Modes”
in Chapter 6 and “Sorting the Scene” in Chapter 6 for more information
on sorting.

Application Optimizations

During the application stage, IRIS Performer

• Divides the application process into two parts: the latency-critical
section (which includes everything between pfSync() and pfFrame()),
where last-minute latency-critical operations are performed before the
cull of the current frame can start; and the noncritical portion, after
pfFrame() and before pfSync(). The critical section is displayed in the
channel statistics graph drawn with pfDrawChanStats()

• Provides an efficient mechanism to automatically propagate database
changes down the process pipeline, and provides pfPassChanData()
for passing custom application data down the process pipeline.

• Minimizes overhead copying database changes to the cull process by
accumulating unique changes and updating the cull once inside
pfFrame(). This updated period is displayed in the MP statistics of the
channel statistics graph drawn with pfDrawChanStats().

• Provides a mechanism for performing database intersections in a
forked process: pass the PFMP_FORK_ISECT flag to pfMultiprocess()
and declare an intersection callback with pfIsectFunc().

• Provides a mechanism for performing database loading and editing
operations in a forked process, such as the DBASE process: pass the
PFMP_FORK_DBASE flag to pfMultiprocess() and declare an
intersection callback with pfDBaseFunc().

Specific Guidelines for Optimizing Performance

453

Specific Guidelines for Optimizing Performance

While IRIS Performer provides inherent performance optimization, there are
specific techniques you can use to increase performance even more. This
section contains some guidelines and advice pertaining to database
organization, code structure and style, managing system resources, and
rules for using IRIS Performer.

Graphics Pipeline Tuning Tips

Tuning the graphics pipeline requires identifying and removing bottlenecks
in the pipeline. You can remove a bottleneck either by minimizing the
amount of work being done in the stage that has the bottleneck or, in some
cases, by reorganizing your rendering to more effectively distribute the
workload over the pipeline stages. This section contains specific tips for
finding and removing bottlenecks in each stage of the graphics pipeline. For
more information on this topic, refer to the graphics library documentation
(see “The IRIS GL and OpenGL Graphics Libraries” on page xxx for
information on ordering these books).

Host Bottlenecks

Here are some ways to minimize the time spent in the host stage of the
graphics pipeline:

• Function calls, loops, and other programming constructs require a
certain amount of overhead. To make such constructs cost-effective,
make sure they do as much work as possible with each invocation. For
instance, drawing a pfGeoSet of triangle strips involves a nested loop,
iterating on strips within the set and triangles within each strip; it
therefore makes sense to have several triangles in each strip and several
strips in each set. If you put only two triangles in a pfGeoSet, you’ll
spend all that loop overhead on drawing those two triangles, when you
could be drawing many more with little extra cost. The channel
statistics can display (as part of the graphics statistics) a histogram
showing the percentage of your database that is drawn in triangle strips
of certain lengths.

454

Chapter 13: Performance Tuning and Debugging

• Only bind vertex attributes that are actually in use. For example, if you
bind per-vertex colors on a set of flat-shaded quads, the software will
waste work by sending those colors to the graphics pipeline, which will
ignore them. Similarly, it’s pointless to bind normals on an unlit
pfGeoSet.

• Nonindexed drawing has less host overhead than indexed drawing
because indexed drawing requires an extra memory reference to get the
vertex data to the graphics pipeline. This is most significant for
primitives that are easily host-limited, such as independent polygons or
very short triangle strips. However, indexed drawing can be very
helpful in reducing the memory requirements of a very large database.

• Enable state sorting for pfChannels (this is the default). By sorting, the
CPU does not need to examine as many pfGeoStates. The graphics
channel statistics can be used to report the pfGeoSet-to-pfGeoState
drawing ratio.

Transform Bottlenecks

A transform bottleneck can arise from expensive vertex operations, from a
scene that’s typically drawn with many very tiny polygons, from a scene
modeled with inefficient primitive types, or from excessive mode or
transform operations. Here are some tips on reducing such bottlenecks:

• Connected primitives will have better vertex rates than independent
primitives, and quadrilaterals are typically much more efficient in
vertex operations than independent triangles are.

• The expensive vertex operations are generally lighting calculations. The
fastest lighting configuration is always one infinite light. Multiple
lights, local viewing models, and local lights have (in that order)
dramatically increasing cost. Two-sided lighting also incurs some
additional transform cost. On some graphics platforms, texturing and
fog can add further significant cost to per-vertex transformation. The
channel graphics statistics will tell you what kinds of lights and light
models are being used in the scene.

• Matrix transforms are also fairly expensive, and definitely more costly
than one or two explicit scale, translate, or rotate operations. When
possible, flatten matrix operations into the database with pfFlatten().

• The most frequent causes of mode changes are shademodel() (or
glShadeModel()), textures, and object materials. The speed of these

Specific Guidelines for Optimizing Performance

455

changes depends on the graphics hardware; however, material changes
do tend to be expensive. Sharing materials among different objects can
be increased with the use of pfMtlColorMode() that is
PFMTL_CMODE_AD by default. However, on some older graphics
platforms (such as the Elan, Extreme, and VGX), the use of
pfMtlColorMode() (which actually calls the IRIS GL function lmcolor()
or the OpenGL function glColorMaterial()) has some associated
per-vertex cost and should be used with some caution.

• If you cull stage is not a bottleneck, make sure your pfChannels sort the
scene by graphics state. Even if you are running in single process mode,
the extra time taken to sort the database is often more than offset by the
savings in rendering time. See “Sorting the Scene” in Chapter 6 for
more details on how to configure sorting.

Fill Bottlenecks

Here are some methods of dealing with fill-stage bottlenecks:

• One technique to hide the cost of expensive fill operations is to fill the
pipeline from the back forward so that no part is sitting idle waiting for
an upstream stage to finish. The last stage of the pipeline is the fill
stage, so by drawing backgrounds or clearing the screen via
pfClearChan() first, before pfDraw(), you can keep the fill stage busy.
In addition, if you have a couple of large objects that reliably occlude
much of the scene, drawing them very early on can both fill up the
back-end stage and also reduce future fill work, because the occluded
parts of the scene will fail a z-buffer test and will not have to write z
values to the z-buffer or go on to more complex fill operations.

• Use the pfStats fill statistics (available for display through the channel
statistics) to visualize your depth complexity and get a count of how
many pixels are being computed each frame.

• Be aware of the cost of any fill operations you use and their relative cost
on the relevant graphics hardware configuration. Quick experiments
you can do to test for a fill limitation include:

– Rendering the scene into a smaller window, assuming that doing so
will not otherwise affect the scene drawn (a non-zero pfChannel
LOD scale will cause a change in object LODs when you shrink the
window.)

– Using pfOverride() to force the disabling of an expensive fill mode

456

Chapter 13: Performance Tuning and Debugging

If either of these tests causes a significant reduction in the time to draw
the scene, then a significant fill bottleneck probably exists.

Note: Some features may invoke expensive modes that need to be used
with caution on some hardware platforms. pfAntialias() and
pfTransparency() enable blending if multisampling isn’t available.
Globally enabling these functions on machines without multisampling
can produce significant performance degradation due to the use of
blending for an entire scene. Blending of even opaque objects incurs its
full cost. pfDecal() may invoke stenciling (particularly if you have
requested the decal mode PFDECAL_BASE_HIGH_QUALITY or if
there is no faster alternative on the current hardware platform), which
can cause performance degradations on some system. pfFeature() can
be used to verify the availability and speed of these features on the
current graphics platform.

• The cost of specific fill operations can vary greatly depending on the
graphics hardware configuration. As a rule of thumb, flat shading is
much faster than Gouraud shading because it reduces both fill work
and the host overhead of specifying per-vertex colors. Z-buffering is
typically next in cost, and then stencil and blending. On a
RealityEngine , the use of multisampling can add to the cost of some of
these operations, specifically z-buffering and stenciling. See
“Multisampling” on page 476 for more information. Texturing is
considered free on RealityEngine and Impact systems but is relatively
expensive on a VGX and is actually done in the host stage on lower-end
graphics platforms, such as Extreme and XZ. Some of the low-end
graphics platforms also implement z-buffering on the host.

• You may not be able to achieve benchmark-level performance in all
cases for all features. For instance, if you frequently change modes and
you use short triangle strips, you get much less than the peak triangle
mesh performance quoted for the machine. Fill rates are sensitive to
both modes, mode changes, and polygon sizes. As a general rule of
thumb, assume that fill rates average around 70% of peak on general
scenes to account for polygon size and position as well as for pipeline
efficiency.

Specific Guidelines for Optimizing Performance

457

Process Pipeline Tuning Tips

These simple tips will help you optimize your IRIS Performer process
pipeline:

• Use pfMultiprocess() to set the appropriate process model for the
current machine.

• You usually shouldn’t specify more processes with pfMultiprocess()
than there are CPUs on the system. The default multiprocess mode
(PFMP_DEFAULT) attempts an optimal configuration for the number
of unrestricted CPUs. However, if there are fewer processors than
significant tasks (consider APP, CULL, DRAW, ISECT, DBASE) you will
want experiment with the different two-process models to find the one
that will yield the best overall frame rate. Use of pfDrawChanStats(),
described in Chapter 12, “Statistics,” will greatly help with this task.

• Put only latency-critical tasks between the pfSync() and pfFrame()
calls. For example, put latency-critical updates, like changes to the
viewpoint, after pfSync() but before pfFrame(). Put time-consuming
tasks, such as intersection tests and system dynamics, after pfFrame().

• You will also want to refer to the IRIX REACT™ documentation for
setting up a real-time system.

• For maximum performance, use the IRIS Performer utilities in libpfutil
for setting non-degrading priorities and isolating CPUs
(pfuPrioritizeProcs(), pfuLockDownProc(), pfuLockDownApp(),
pfuLockDownCull(), pfuLockDownDraw()). These facilities require
that the application runs with root permissions. The source code for
these utilities is in /usr/share/Performer/src/lib/libpfutil/lockcpu.c. For an
example of there use, see the sample source code in
/usr/share/Performer/src/pguide/libpf/C/bench.c. For more information
about priority scheduling and real-time programming, see the chapter
of the IRIX System Programming Guide entitled “Using Real-Time
Programming Features.” and the IRX REACT™ technical report.

• Make sure you aren’t generating any floating-point exceptions.
Floating-point exceptions can cause an individual computation to incur
tens of times its normal cost. Furthermore, a single floating point
exception can lead to many further exceptions in computations that use
the exceptional result and can even propagate performance
degradation down the process pipeline. IRIS Performer will detect and
tell you about the existence of floating point exceptions if your

458

Chapter 13: Performance Tuning and Debugging

pfNotifyLevel() is set to PFNFY_INFO or PFNFY_DEBUG. You can
then run your application in dbx and your application will stop when it
encounters an exception, enabling you to trace the cause.

• Minimize the amount of channel data allocated by pfAllocChanData()
and call pfPassChanData() only when necessary to reduce the
overhead of copying the data. Copying pointers instead of data is often
sufficient.

Cull Process Tips

Here are a couple of suggestions for tuning the cull process:

• The default channel culling mode enables all types of culling. If your
cull process is your most expensive task, you may want to consider
doing less culling operations. When doing database culling, always use
view-frustum culling (PFCULL_VIEW), and usually use graphics
library mode database sorting (PFCULL_SORT) and pfGeoSet culling
(PFCULL_GSET) as well:

pfChanTravMode(chan, root,
PFCULL_VIEW | PFCULL_GSET | PFCULL_SORT);

A cull-limited application might realize a quick gain from turning off
pfGeoSet culling. If you think your database has few textures and
materials, you might turn off sorting. However, if possible it would be
better to try improving cull performance by improving database
construction. “Efficient Intersection and Traversals” on page 460
discusses optimizing cull traversals in more detail.

• Look at the channel culling statistics for:

– A large amount of the database being traversed by the culling
process and being trivially rejected as not being in the viewing
frustum. This can be improved with better spatial organization of
the database.

– A large number of database nodes being non-trivially culled. This
can be improved with better spatial organization and breakup of
large pfGeodes and pfGeoSets.

– A surprising number of LODs in their fade state (the fade
computations can be expensive, particularly if channel stress
management has been enabled).

Specific Guidelines for Optimizing Performance

459

• Balance the database hierarchy with the scene complexity: the depth of
the hierarchy, the number of pfGeoStates, and the depth of culling. See
“Balancing Cull and Draw Processing with Database Hierarchy” on
page 462 for details.

• pfNodes that have significant evaluation in the cull stage include
pfBillboards, pfLightPoints, pfLightSources, and pfLODs.

Draw Process Tips

Here are some suggestions specific to the draw process:

• Minimize host work done in the draw process before the call to
pfDraw(). Time spent before the call to pfDraw() is time that the
graphics pipeline is idle. Any graphics library (or X) input processing
or mode changes should be done after pfDraw() to take effect the
following frame.

• Use only one pfPipe per hardware graphics pipeline and preferably one
pfPipeWindow per pfPipe. Use multiple channels within that
pfPipeWindow to manage multiple views or scenes. It’s fairly
expensive to simultaneously render to multiple graphics windows on a
single hardware graphics pipeline and is not advisable for a real-time
application.

• Pre-define and pre-load all of the textures in the database into hardware
texture memory by using a pfApplyTex() function on each pfTexture.
You can do this texture-applying in the pfConfigStage() draw callback
or (for multipipe applications to allow parallelism) the pfConfigPWin()
callback. This approach avoids the huge performance impact that
results when textures are encountered for the first time while drawing
the database and must then be downloaded to texture memory. Utilities
are provided in libpfutil to apply textures appropriately; see the
pfuDownloadTexList() routine in the distributed source code file
/usr/share/Performer/src/lib/libpfutil/tex.c. The perfly application
demonstrates this; see the perfly source file generic.c in either the
C-language (/usr/share/Performer/src/sample/C/common) or C++ language
(/usr/share/Performer/src/sample/C++/common) versions of perfly.

• Minimize the use of pfSCSs and pfDCSs and nodes with draw callbacks
in the database since aggressive state sorting is kept local to subtrees
under these nodes.

460

Chapter 13: Performance Tuning and Debugging

• Don’t do any graphics library input handling in the draw process.
Instead, use X input handling in an asynchronous process. IRIS
Performer provides utilities for asynchronous input handling in libpfutil
with source code provided in /usr/share/Performer/src/lib/libpfutil/input.c.
For a demonstration of asynchronous X input handling, see provided
sample applications, such as perfly, and also the distributed sample
programs /usr/share/Performer/src/pguide/libpf/C/motif.c and
/usr/share/Performer/src/pguide/libpfui/C/motifxformer.c.

Efficient Intersection and Traversals

Here are some tips on optimizing intersections and traversals:

• Use pfPartition nodes on pieces of the database that will be handed to
intersection traversal. These nodes impose spatial partitioning on the
subgraph beneath them, which can dramatically improve the
performance of intersection traversals.

Note: Subgraphs under pfDCS, pfLOD, pfSwitch, and pfSequence
nodes are not partitioned so intersection traversals of these subgraphs
will not be affected.

• Use intersection caching. For static objects, enable intersection caching
at initialization—first call pfNodeTravMask(), specifying intersection
traversal (PFTRAV_ISECT), and then include PFTRAV_IS_CACHE in
the mode for intersections. You can turn this mode on and off for
dynamic objects as appropriate.

• Use intersection masks on nodes to eliminate large sections of the
database when doing intersection tests. Note that intersections are
sproc()-safe in the current version of IRIS Performer; you can check
intersections in more than one process.

• Bundle segments for intersections with bounding cylinders. You can
pass as many as 32 segments to each intersection request. If the request
contains more than a few segments and if the segments are close
together, the traversal will run faster if you place a bounding cylinder
around the segments using pfCylAroundSegs() and pass that
bounding cylinder to pfNodeIsectSegs(). The intersection traversal will
use the cylinder rather than each segment when testing the segments
against the bounding volumes of nodes and pfGeoSets.

Specific Guidelines for Optimizing Performance

461

Database Concerns

Optimizing your databases can provide large performance increases.

libpr Databases

The following tips will help you achieve peak performance when using libpr:

• Minimize the number of pfGeoStates by sharing as much as possible.

• Initialize each mode in the global state to match the majority of the
database, in order to set as little local state for individual pfGeoStates as
possible.

• Use triangle strips wherever possible; they produce the largest number
of polygons from a given number of vertices, so they use the least
memory and are drawn the fastest of the primitive types.

• Use the simplest possible attribute bindings and use flat-shaded
primitives wherever possible. If you’re not going to need an object’s
attributes, don’t bind them—anything you bind will have to be sent to
the pipeline with the object.

• Flat-shaded primitives and simple attribute bindings reduce the
transformation and lighting requirements for the polygon. Note that
the flat-shaded triangle-strip primitive renders faster than a regular
triangle strip, but you have to change the index by two to get the colors
right (that is, you need to ignore the first two vertices when coloring)
See “Attribute Bindings” in Chapter 10 for more information.

• Use nonindexed drawing wherever possible, especially for
independent polygon primitives and short triangle strips.

• When building the database, avoid fragmentation in memory of data to
be rendered. Minimize the number of separate data and index arrays.
Keep the data and index arrays for pfGeoSets contiguous and try to
keep separate pfGeoSets contiguous to avoid small, fragmented
pfMalloc() memory allocations.

• The ideal size of a pfGeoSet (and of each triangle strip within the
pfGeoSet) depends a great deal on the specific CPU and system
architecture involved; you may have to do benchmarks to find out
what’s best for your machine. For a general rule of thumb, use at least 4
triangles per strip on any machine, and 8 on most. Use 5 to 10 strips in
each pfGeoSet, or a total of 24 to 100 triangles per pfGeoSet.

462

Chapter 13: Performance Tuning and Debugging

libpf Databases

When you’re using libpf, the following tips can improve the performance of
database tasks:

• Use pfFlatten(), especially when a pfScene contains many small
instanced objects and billboards. Use pfdCleanTree() and (if
application considerations permit) pfdFreezeTransforms() to minimize
the cull traversal processing time and maximize state sorting scope.

• Initialize each mode in the scene pfGeoState to match the majority of
the database, in order to set as little local state for individual
pfGeoStates as possible. The utility function pfdMakeSharedScene()
provides an easy to use mechanism for this task.

• Minimize the number of very small pfGeoSets (that is, those containing
four or fewer total triangles). Each tiny pfGeoSet means another
bounding box to test against if you’re culling down to the pfGeoSet
level (that is, when PFCULL_GSET is set with pfChanTravMode()) as
well as another item to sort during culling. (If your pfGeoSets are large,
on the other hand, you should definitely cull down to the pfGeoSet
level.)

• Be sparing in the use of pfLayers. Layers imply that pixels are being
filled with geometry that is not visible. If fill performance is a concern,
this should be minimized in the modeling process by cutting layers into
their bases when possible. However, this will produce more polygons
which require more transform and host processing so it should only be
done if it will not greatly increase database size.

• Make the hierarchy of the database spatially coherent so that culling
will be more accurate and geometry that is outside the viewing frustum
will not be drawn. (See Figure 6-3 for an example of a spatially
organized database.)

Balancing Cull and Draw Processing with Database Hierarchy

Construct your database to minimize the draw-process time spent
traversing and rendering the culled part of the database without the
cull-process time becoming the limiting performance factor. This process
involves making tradeoffs as a simpler cull means a less efficient draw stage.
This section describes these tradeoffs and some good rules to follow to give
you a good start.

Specific Guidelines for Optimizing Performance

463

If the cull and draw processes are performed in parallel, the goal is to
minimize the larger of the culling and drawing times. In this case, an
application can spend approximately the same amount of time on each task.
However, if both culling and drawing are performed in the same process, the
goal is to optimize the sum of these two times, and both processes must be
streamlined to minimize the total frame time. Important parameters in this
optimization include the number of pfGeoSets, the average branching factor
of the database hierarchy, and the enabled channel culling traversal modes.
The pfDrawChanStats() function (see Chapter 12, “Statistics”) can easily
provide diagnostic information to aid in this tuning.

The average number of immediate children per node can directly affect the
culling process. If most nodes have a high number of children, the bounding
spheres are more likely to intersect the viewing frustum and all those nodes
will have to be tested for visibility. At the other extreme, a very low number
of children per node will mean that each bounding sphere test can only
eliminate a small part of the database and so many nodes may still have to
be traversed. A good place to start is with a quad-tree type organization
where each node has about four children and the bounding geometry of
sibling nodes are adjacent but have minimal intersection. In the ideal case,
projected to a two-dimensional plane on the ground, the spatial extent of
each node and its parents would form a hierarchy of boxes.

The transition from pfGeodes to pfGeoSets is an important point in the
database structure. If there are many very small pfGeoSets within a single
pfGeode, not culling down to pfGeoSets can actually improve overall frame
time because the cost of drawing the tiny pfGeoSets may be small relative to
the time spent culling them. Adding more pfGeodes to break up the
pfGeoSets can help by providing a slightly more accurate cull at less cost
than considering each pfGeoSet individually. In addition, pfGeodes are
culled by their bounding spheres, which is faster than the culling of
pfGeoSets which are culled by their bounding boxes.

The size (both spatial extend and number of triangles) can also directly
impact culling and drawing performance. If pfGeoSets are relatively large,
there will be fewer to cull so pfGeoSet culling can probably be afforded.
pfGeoSets with more triangles will draw faster. However, pfGeoSets with
larger spatial extent are more likely to have geometry that is being drawn
that is outside of the viewing frustum which wastes time in the graphics
stage. Breaking up some of the large pfGeoSets can improve graphics
performance by allowing a more accurate cull.

464

Chapter 13: Performance Tuning and Debugging

With some added cost to the culling task, the use of Level-of-Detail nodes
(pfLODs) can make a tremendous difference in graphics performance and
image quality. LODs allow objects to be automatically drawn with a
simplified version when they are in a state that yields little contribution to
the scene (such as being far from the eyepoint). This allows you to have
many more objects in your scene than if you always were drawing all objects
at full complexity. However, you do not want the cull to be testing all LODs
of an object every frame when only one will be used. Again, proper use of
hierarchy can help. pfLODs (non-fading) can be inserted into the hierarchy
with actual object pfLODs grouped beneath them. If the parent LOD is out
of range for the current viewpoint, the child LODs will never be tested. The
pfLODs of each object can be placed together under a pfGroup so that no
LOD tests for the object will be done if the object is outside of the viewing
frustum.

Calling pfFlatten(), pfdFreezeTransforms(), or pfdCleanTree() to remove
extraneous nodes can often help culling performance. Use pfFlatten() to
de-instance and apply pfSCS node transformations to leaf geometry—
resulting in less work during the cull traversal. This will allow both better
database sorting for the draw, and also better caching of matrix and
bounding information which can speed up culling. When these scene graph
modifications are not acceptable, you may reduce cull time by turning off
culling of pfGeoSets but this will directly impact rendering performance by
forcing the rendering of geometry that is outside the viewing frustum.

Tip: Making the scene into a graphics library object in the draw callback can
show the result of the cull, which can give a visual check of what is actually
being sent to the graphics subsystem. Check for objects that are far from the
viewing frustum, which can indicate that the pfGeodes or pfGeoSets need to
be broken up. Additionally, the rendering time of the GL object should be
compared to the pfDraw() rendering time to see if the pfGeoSets have
enough triangles in them to not incur host overhead. Alternately, the view
frustum can be made larger than that used in the cull to allow simple cull
volume visualization during real-time simulation. The IRIS Performer sample
program perfly supports this option. Press the z key while in perfly to enable
cull volume visualization and inspect the resulting images for excessive
off-screen geometric content. Such content is a clear sign that the database
could profitably be further subdivided into smaller components.

Specific Guidelines for Optimizing Performance

465

The code fragment in Example 13-1, taken from the sample program
/usr/share/Performer/src/pguide/libpf/C/bench.c, makes an IRIS GL object and
then temporarily draws that instead of calling pfDraw().

Example 13-1 Drawing an Object Without Calling pfDraw()

if (SharedFlags->glObject == MAKE_GL_OBJECT)
{
 static have_obj = 0;

 fprintf(stderr, "Making object\n");
 if (have_obj)
 delobj(1);
 makeobj(1); /* OpenGL: glNewList() */
 pfDraw();
 closeobj(); /* OpenGL: glEndList() */
 SharedFlags->glObject = DRAW_GL_OBJECT;
 have_obj = 1;
}
else if (SharedFlags->glObject == DRAW_GL_OBJECT)
 callobj(1); /* OpenGL: glCallList() */
else if (SharedFlags->glObject == PERF_DRAW)
 pfDraw();

Graphics and Modeling Techniques to Improve Performances

On machines with fast texture mapping, texture should be used to replace
complex geometry. Complex objects, such as trees, signs, and building
fronts, can be effectively and efficiently represented by textured images on
single polygons in combination with applying pfAlphaFunc() to remove
parts of the polygon that don’t appear in the image. Using texture to reduce
polygonal complexity can often give both an improved picture and
improved performance. This is because

• The image texture provides scene complexity, and the texture hardware
handles scaling of the image with MIP-map interpolation functions for
minification (and, on RealityEngine systems, Sharpen and DetailTexture
functions for magnification).

• Using just a few textured polygons rather than a complex model
containing many individual polygons reduces system load.

In order to represent a tree or other 3D object as a single textured polygon,
IRIS Performer can rotate polygons to always face the eyepoint. An object of

466

Chapter 13: Performance Tuning and Debugging

this type is known as a billboard and is represented by a pfBillboard node.
As the viewer moves around the object, the textured polygon rotates so that
the object appears three-dimensional. For more information on billboards,
see “pfBillboard Nodes” in Chapter 5.

To determine if the current graphics platform has fast texture mapping, look
for a PFQFTR_FAST return value from:

pfFeature(PFQFTR_TEXTURE, &ret);

pfAlphaFunc() with a function PFAF_GEQUAL and a reference value
greater than zero can be used whenever transparency is used to remove
pixels of low contribution and avoid their expensive processing phase.

Special Coding Tips

For maximum performance, routines that make extensive use of the IRIS
Performer linear algebra routines should use the macros defined in prmath.h
to allow the compiler to in-line these operations.

Use single- rather than double-precision arithmetic where possible and
avoid the use of short-integer data in arithmetic expressions. Append an ‘f’
to all floating point constants used in arithmetic expressions.

BAD In this example, values in both of the expressions involving
the floating point variable x are promoted to double
precision when evaluated:

float x;
if (x < 1.0)
 x = x + 2.0;

GOOD In this example, both of the expressions involving the
floating point variable x remain in single-precision mode,
because there is an ‘f’ appended to the floating point
constants:

float x;
if (x < 1.0f)
 x = x + 2.0f;

Performance Measurement Tools

467

Performance Measurement Tools

Performance measurement tools can help you track the progress of your
application by gathering statistics on certain operations. IRIS Performer
provides run-time profiling of the time spent in parts of the graphics
pipeline for a given frame. The pfDrawChanStats() function displays
application, cull, and draw time in the form of a graph drawn in a channel;
see Chapter 12, “Statistics,” for more information on that and related
functions. There are advanced debugging and tuning tools available from
Silicon Graphics that can be of great assistance. WorkShop product in the
CASEVision™ tools provides a complete development environment for
debugging and tuning of host tasks. The Performance Co-Pilot™ helps you
to tune host code in a real-time environment. There is also the WindView™
product from WindRiver that works with IRIX REACT to do full system
profiling in a real-time environment. However, progress can be made with
the basic tools that are in the IRIX development environment: prof, pixie, and
glprof. The IRIS GL debugging utility, gldebug, can also be used to aid in
performance tuning, as can the OpenGL equivalent, ogldebug. This section
briefly discusses getting started with these tools.

Note: See the graphics library manuals, available from Silicon Graphics, for
complete instructions on using these graphics tools. See the IRIX System
Programming Guide to learn more about pixie and prof.

Using pixie and prof to Measure Performance

You can use the IRIX performance analysis utilities pixie and prof to tune the
application process. Use pixie for basic-block counting and use prof for
program counter (PC) sampling. PC sampling gives run-time estimation of
where significant amounts of time are spent, whereas basic-block counting
will report the number of times a given instruction is executed.

To isolate statistics for the application process, even in single-process
models, run the application through pixie or prof in APP_CULL_DRAW
mode to separate out the process of interest. Both pixie and prof can generate
statistics for an individual process.

When using IRIS Performer DSO libraries with prof you may want to provide
the -dso option to prof with the full pathname of the library of interest to
have IRIS Performer routines included in the analysis. When using pixie you

468

Chapter 13: Performance Tuning and Debugging

will need to have the.pixie versions of the DSO libraries in your
LD_LIBRARY_PATH. Additionally, you will need a.pixie version of the
loader DSO for your database in your LD_LIBRARY_PATH. You may have
to pixie the loader DSO separately since pixie will not find it automatically
if your executable was not linked with it. When using prof to do PC
sampling, link with unshared libraries exclusively and use the –p option to
ld. Then set the environment variable PROFDIR to indicate the directory in
which to put profiling data files.

When profiling, run the program for a while so that the initialization will not
be significant in the profiling output. When running a program for profiling,
run a set number of frames and then use the automatic exit described below.

Using gldebug and ogldebug to Observe Graphics Calls

You can use the graphics utilities gldebug (IRIS GL) and ogldebug (OpenGL)
to both debug and tune IRIS Performer applications. The application must
be run in single-process mode in order to use gldebug but ogldebug can
handling multiprocessed programs.

Use gldebug or ogldebug to:

• Show which graphics calls are being issued

• Look for frequent mode changes, or unnecessary mode settings that can
be caused if your initialization of the global state doesn’t match the
majority of the database

• Look for unnecessary vertex bindings such as unneeded per-vertex
colors, or normals for a flat-shaded object

Follow these steps to examine one frame of the application in a gldebug
session:

1. Start up profiler of choice:

IRIS% gldebug -i ignore -s -F your_prog_name prog_options

OPEN% ogldebug your_prog_name prog_options

2. Turn off output and breakpoints from the control panel.

3. Set a breakpoint at swapbuffers() or glXSwapBuffers().

Performance Measurement Tools

469

4. Click the “Continue” button and go to the frame of interest.

5. Turn on breakpoints.

Execution stops at swapbuffers() (or glXSwapBuffers()).

6. Turn on all trace output.

7. Click the “Continue” button.

Execution stops at the next swapbuffers(), outputting one full scene to
GLdebug.history (or progname.pid.trace for ogldebug).

8. Quit and examine the output.

Note: Since IRIS Performer avoids unnecessary mode settings, recording
one frame shows modes that are set during that frame, but it doesn’t reflect
modes that were set previously. It’s therefore best to have a program that can
come up in the desired location and with the desired modes, then grab the
first two frames: one for initialization, and one for continued drawing.

Using glprof to Find Performance Bottlenecks

You can use the IRIS GL graphics-profiling utility glprof to estimate where
there are graphics bottlenecks so that you can tune the database. You don’t
have to relink the program or run it in single-process mode to use glprof.

Use glprof to:

• See if certain views or individual objects are inherently fill- or
transform-limited

– If a scene or object is fill-limited, there can be more complex
geometry in the LOD(s).

– If a scene or object is transform-limited, you need to simplify or add
LOD(s), especially for small objects.

• See significant mode changes

• Get additional scene graphics state and fill statistics such as the number
of pixels fixed with polygons of different sizes and different modes

Note that since only glprof simulates the graphics pipeline, it may not always
be entirely accurate in predicting performance.

470

Chapter 13: Performance Tuning and Debugging

You can use predraw callbacks on nodes to output glprof_object tags that will
appear in a glprof trace. This method has the disadvantage of turning off
sorting, which may increase the number of mode changes and also the
balance of bottlenecks in the scene because it may change the drawing order.
However, it has the advantage of giving per-object drawing statistics, and it
indicates whether a specific object is fill- or transform-limited.

Example 13-2 shows sample code for a traversal that installs and removes
the glprof object tags taken from trav.c. The example demonstrates
general-user traversal code, then uses this traversal to install and remove
glprof callbacks. This code is simplified from that found in
/usr/src/Performer/src/lib/libpfutil/trav.c.

Example 13-2 General Traversal

void
InitMyTraverser(MyTraverser *trav)
{
 trav->preFunc = NULL;
 trav->postFunc = NULL;
 trav->mstack = NULL;
 trav->data = NULL;
 trav->node = NULL;
 trav->depth = 0;
}

/* handle return value for pruning or terminating */
#define PFU_DO_RET(_ret) \
 switch (_ret) \
 { \
 case PFTRAV_PRUNE: \
 trav->node = prevNode; \
 if (needPop) \
 pfPopMStack(trav->mstack); \
 return PFTRAV_CONT; \
 case PFTRAV_TERM: \
 trav->node = prevNode; \
 if (needPop) \
 pfPopMStack(trav->mstack); \
 return PFTRAV_TERM; \
 }

int
MyTraverse(pfNode *node, MyTraverser *trav)

Performance Measurement Tools

471

{
 int i;
 int numChild = 1;
 int ret = PFTRAV_CONT, needPop = 0;
 pfNode *prevNode = trav->node;

 if (node == NULL)
 {
 pfNotify(PFNFY_WARN, PFNFY_USAGE,
 “MyTraverse() Null node”);
 return PFTRAV_CONT;
 }
 /*
 * for SCS and DCS push the transform on the stack
 */
 if (pfIsOfType(node, pfGetSCSClassType()) &&
 trav->mstack)
 {
 pfMatrix mat;

 pfGetSCSMat((pfSCS *)trav->node, mat);

 pfPushMStack(trav->mstack);
 pfPreMultMStack(trav->mstack, mat);
 needPop = 1;
 }

 /* call pre-traversal callback */
 trav->node = (pfNode *)node;
 if (trav->preFunc)
 ret = (*trav->preFunc)(trav);

 PFU_DO_RET(ret);

 /* after preFunc, in case topology changed */
 if (pfIsOfType(node, pfGetGroupClassType()))
 {
 numChild = pfGetNumChildren(node);
 if (pfIsOfType(node, pfGetGroupClassType()))
 for (i = 0 ; i < numChild ; i++)
 {
 trav->depth++;
 ret = MyTraverse((pfNode*)pfGetChild(group,

i), trav);
 trav->depth--;

472

Chapter 13: Performance Tuning and Debugging

 PFU_DO_RET(ret);
 }
 }

 PFU_DO_RET(ret);

 /* call post traversal callback */
 trav->node = node;
 if (trav->postFunc)
 ret = (*trav->postFunc)(trav);

 PFU_DO_RET(ret);

 if (needPop)
 pfPopMStack(trav->mstack);

 return PFTRAV_CONT;
}

/***
 * Traversals and callbacks for installing and removing
 * pre-draw callbacks (pfNodeTravFuncs) for generating GL

* Prof tags during drawing
 * WARNING: removes any existing pre or post-draw callbacks
 ***/

/*
 * glprof pre-draw traversal callback
 * issues glprof_object calls
 */
static int
cbGLProf(pfTraverser *trav, void *data)
{
 const pfNode *node = pfGetTravNode(trav);
 const char *nn;
 static char name[80];

 if (node != NULL &&
 (nn = pfGetNodeName(node))
 {
 /* if it exists, use the node name for the tag */
 strncpy(name, nn, 79);
 }
 else
 {

Performance Measurement Tools

473

 /* otherwise, use the node type string for the tag */
 strncpy(name, pfGetTypeName((pfObject *)node), 79);
 }
 glprof_object(name);
 return 0;
}

/*
 * callback for placing glprof callbacks as
 * pre-draw callbacks on nodes
 */
static int
cbPutGLProfTag(MyTraverser *trav)
{
 pfNode *node = trav->node;
 if (node != NULL &&
 ((pfIsOfType(node, pfGetGeodeClassType()))
 pfNodeTravFuncs(node, PFTRAV_DRAW, cbGLProf, NULL);
 return PFTRAV_CONT;
}

/*
 * callback to remove the pre-draw glprof tag callbacks
 */
static int
cbRmGLProfTag(MyTraverser *trav)
{
 pfNode *node = trav->node;
 if (node != NULL &&
 (pfIsOfType(node, pfGetGeodeClassType()) ||
 pfIsOfType(node, pfGetGroupClassType()))
 pfNodeTravFuncs(node, PFTRAV_DRAW, NULL, NULL);
 return PFTRAV_CONT;
}

/* glprof object tag traversal */
void
DoGLProfTraversal(pfNode *node, int mode)
{
 MyTraverser trav;
 InitMyTraverser(&trav);

 pfNotify(PFNFY_INFO, PFNFY_PRINT,
 “doing travGLProf: mode = %d”, mode);

474

Chapter 13: Performance Tuning and Debugging

 if (mode) /* place glprof tag callbacks */
 trav.preFunc = cbPutGLProfTag;
 else /* remove the callbacks */
 trav.preFunc = cbRmGLProfTag;

 MyTraverse(node, &trav);
}

Use this traverser in a program with a code fragment like that in
Example 13-3.

Example 13-3 Using the Traverser

{
 /* mode = 1 - install glprof tag node callbacks
 * mode = 0 - remove glprof tag node callbacks
 */
 DoGLProfTraversal((pfNode *)scene, DBGT_GLPROF, mode);
}

Guidelines for Debugging

This section lists some general guidelines to keep in mind when debugging
IRIS Performer applications.

Shared Memory

Because malloc() doesn’t allocate memory until that memory is used, core
dumps may occur when arenas don’t find enough disk space for paging. The
IRIX kernel can be configured to actually allocate space upon calling
malloc(), but this change is pervasive and has performance ramifications for
fork() and exec(). Reconfiguring the kernel is not recommended, so be aware
that unexplained core dumps can result from inadequate disk space.

Be sure to initialize pointers to shared memory and all other nonshared
global values before IRIS Performer creates the additional processes in the
call to pfConfig(). Values put in global variables initialized after pfConfig()
will only be visible to the process that set them.

Guidelines for Debugging

475

For detailed information about other aspects of shared memory, see
“Memory Allocation” in Chapter 10.

Use the Simplest Process Model

When debugging an application that uses a multiprocess model, first use a
single-process model to verify the basic paths of execution in the program.
You don’t have to restructure your code; simply select single-process
operation by calling pfMultiprocess(PFMP_APPCULLDRAW) to force all
tasks to initiate execution sequentially on a frame-by-frame basis.

If an application fails to run in multiprocess mode but runs smoothly in
single-process mode, you may have a problem with the initialization and use
of data that’s shared among processes.

If you need to debug one of multiple processes, use

IRIS% dbx -p progname

while the process is running. This will show the related processes and allow
you to choose a process to trace. The application process will always be the
process with the lowest process id. In order after that will be the (default)
clock process, then the cull process, and then the draw.

Once the program works, experiment with the different multiprocess
models to achieve the best overall frame rate for a given machine. Don’t
specify more processes than CPUs. Use pfDrawChanStats() to compare the
frame timings of the different stages and frame times for the different
process models.

Avoid Floating-Point Exceptions

Arrange error handling for floating-point operations. To see floating-point
errors, turn debug messages on and enable floating-point traps. Set
pfNotifyLevel(PFNFY_DEBUG).

The goal is to have no NaN (Not a Number), INF (infinite value), or
floating-point exceptions resulting from numerical computations.

476

Chapter 13: Performance Tuning and Debugging

Notes on Tuning for RealityEngine Graphics

This section contains some specific notes on performance tuning with
RealityEngine graphics.

Multisampling

Multisampling provides full-scene antialiasing with performance sufficient
for a real-time visual simulation application. However, it isn’t free and it
adds to the cost of some other fill operations. With RealityEngine graphics,
most other modes are free until you add multisampling— multisampling
requires some fill operations to be performed on every subpixel. This is most
noticeable with z-buffering and stenciling operations, but also applies to
blendfunction() and glBlendFunc(). Texturing is an example of a fill
operation that can be free on a RealityEngine and isn’t affected by the use of
multisampling.

The multisampling hardware reduces the cost of subpixel operations by
optimizing for pixels that are fully opaque. Pixels that have several
primitives contributing to their result are thus more expensive to evaluate
and are called complex pixels. Scenes usually end up having a very low ratio
of complex pixels.

Multisampling offers an additional performance optimization that helps
balance its cost: a virtually free screen clear. Technically, it doesn’t really clear
the screen but rather allow you to set the z values in the framebuffer to be
undefined. Therefore, use of this clear requires that every pixel on the screen
be rendered every frame. This clear is invoked with a pfEarthSky using the
PFES_TAG option to pfESkyMode(). Refer to the pfEarthSky(3pf) reference
page for more detailed information.

Transparency

There are two ways of achieving transparency on a RealityEngine: blending,
and screen-door transparency with multisampling.

Blended transparency, using the IRIS GL blendfunction() routine (or the
OpenGL glBlendFunc() equivalent), can be used with or without

Notes on Tuning for RealityEngine Graphics

477

multisampling. Blending doesn’t increase the number of complex pixels, but
is expensive for complex pixels.

To reduce the number of pixels with very low alpha, one can use a
pfAlphaFunc() that ignores pixels of low alpha, such as alpha less than 3 or
4. This will slightly improve fill performance and probably not have a
noticeable effect on scene quality. Many scenes can use values as high as 60
or 70 without suffering degradation in image quality. In fact, for a scene with
very little actual transparency, this can reduce the fuzzy edges on textures
that simulate geometry (such as trees and fences) that arise from
MIP-mapping.

Screen-door transparency gives order-independent transparent effects and
is used for achieving the fade-LOD effect. It’s a common misperception that
screen-door transparency on RealityEngine gives you n levels of
transparency for n multisamples. In fact, n samples gives you 4n levels of
transparency, because RealityEngine uses 2-pixel by 2-pixel dithering.
However, screen-door transparency causes a dramatic increase in the
number of complex pixels in a scene, which can affect fill performance.

Texturing

Texturing is free on a RealityEngine if you use a 16-bit texel internal texture
format. There are 16-bit texel formats for each number of components. These
formats are used by default by IRIS Performer but can be set on a pfTexture
with pfTexFormat(). Using a 32-bit texel format will yield half the fill rate of
the 16-bit texel formats.

Do not use huge ranges of texture coordinates on individual triangles. This
can incur both an image quality degradation and a severe performance
degradation. Keep the maximum texture coordinate range for a given
component on a single triangle under (1 << (13-log2(TexCSize)) where
TexCSize is the size in the dimension of that component.

The use of Detail Texture and Sharpen can greatly improve image quality.
Minimize the number of different detail and sharpen splines (or just use the
internal default splines). Applying the same detail texture to many base
textures can incur a noticeable cost when base textures are changed. Detail
textures are intended to be derived from a high-resolution image that
corresponds to that of the base texture.

478

Chapter 13: Performance Tuning and Debugging

Other Tips

Two final notes on RealityEngine performance:

• Changing the width of antialiased lines and points is expensive.

• pfMtlColorMode() (which calls the IRIS GL function lmcolor() or the
OpenGL function glColorMaterial()) has a huge performance benefit.

This chapter discusses the differences
in programming using the C and
C++ programming interfaces.

“Programming with C++”

Chapter 14

481

Chapter 14

14. Programming with C++

This chapter provides an overview of some of the differences between
programming IRIS Performer using the C++ Application Programming
Interface (C++ API) rather than the C-language Application Programming
Interface (C API) which is described in the earlier chapters of this guide.

Overview

Although this guide uses the C API throughout, the C++ API is in every way
equal and in some cases superior in functionality and performance to the C
API.

Every function available in the C API is available in the C++ API. All of the
C API routines tightly associated with a class have a corresponding member
function in the C++ API, e.g. pfGetDCSMat() becomes pfDCS::getMat().
Routines not closely associated with a class are the same in both APIs.
Examples include high-level global functions such as pfMultiprocess() and
pfFrame() and low-level graphics functions such as pfAntialias().

Most of the routines associated with a class can be divided into three
categories: setting an attribute, getting attribute and acting on the object. In
the C API, sets were usually expressed as pf<Class><Attribute>, gets as
pfGet<Class><Attribute> and simple actions as pf<Action><Class>, where
<Class> is the abbreviation for the full name of the class. In some cases
where there was no room for confusion or this usage was awkward, the
routine names were shortened, e.g. pfAddChild().

The principal difference in the naming of member functions in the C++ API
and the corresponding routine name in t he C-language API is in the naming
of member functions where the “pf” prefix and the <Class> identifier are
dropped. In addition, the word “set” or “get” is prefixed when attribute
values are being set or retrieved. Hence, value setting functions are usually

482

Chapter 14: Programming with C++

have names of the form pfClass::set<Attribute>, value getting functions are
named pfClass::get<Attribute>, and actions appear as pfClass::<Action>.

Note: Member function whose names begin with “pf_”, “pr_” or “nb_” are
internal functions and should not be used by applications.

Class Taxonomy

There are three main types of C++ classes in IRIS Performer. The following
description is based on this categorization of the main types: public structs,
libpr classes, and libpf classes. A fourth distinct class is pfType, the class used
to represent the type of libpr and libpf classes.

Public Structs

These classes are public structs with exposed data members. They include
pfVec2, pfVec3, pfVec4, pfMatrix, pfQuat, pfSeg, pfSphere, pfBox,
pfCylinder and pfSegSet.

libpr Classes

These classes derive from pfMemory. When multiprocessing, all processes
share the same copy of the object’s data members.

libpf Classes

These classes derive from pfUpdatable and when multiprocessing, each
APP, CULL and ISECT process has a unique copy of the object’s. data
members.

Table 14-1 Corresponding routines in the C and C++ API

C Routine C++ Member Function Description

pfMtlColor() pfMaterial::setColor() Set material color

pfGetMtlColor() pfMaterial::getColor() Get material color

pfApplyMtl() pfMaterial::apply() Apply the material

Programming Basics

483

pfType Class

As with the C API, information about the class hierarchy is maintained with
pfType objects.

Programming Basics

Header Files

The C++ include files for libpf and libpr are in /usr/include/Performer/pf and
/usr/include/Performer/pr, respectively. An application using a class should
include the corresponding header file.

Table 14-2 Header Files for libpf Scene Graph Node Classes

libpf Class Include File

pfBillboard <Performer/pf/pfBillboard.h>

pfDCS <Performer/pf/pfDCS.h>

pfGeode <Performer/pf/pfGeode.h>

pfGroup <Performer/pf/pfGroup.h>

pfLOD <Performer/pf/pfLOD.h>

pfLayer <Performer/pf/pfLayer.h>

pfLightPoint <Performer/pf/pfLightPoint.h>

pfLightSource <Performer/pf/pfLightSource.h>

pfMorph <Performer/pf/pfMorph.h>

pfNode <Performer/pf/pfNode.h>

pfPartition <Performer/pf/pfPartition.h>

pfSCS <Performer/pf/pfSCS.h>

pfScene <Performer/pf/pfScene.h>

pfSequence <Performer/pf/pfSequence.h>

484

Chapter 14: Programming with C++

pfSwitch <Performer/pf/pfSwitch.h>

pfText <Performer/pf/pfText.h>

Table 14-3 Header Files for Other libpf Classes

libpf Class Include File

pfBuffer <Performer/pf/pfBuffer.h>

pfChannel <Performer/pf/pfChannel.h>

pfEarthSky <Performer/pf/pfEarthSky.h>

pfLODState <Performer/pf/pfLODState.h>

pfPipe <Performer/pf/pfPipe.h>

pfPipeWindow <Performer/pf/pfPipeWindow.h>

pfTraverser
pfPath

<Performer/pf/pfTraverser.h>

Table 14-4 Header Files for libpr Graphics Classes

libpr Class Include File

pfColortable <Performer/pr/pfColortable.h>

pfDispList <Performer/pr/pfDispList.h>

pfFog <Performer/pr/pfFog.h>

pfFont <Performer/pr/pfFont.h>

pfGeoSet
pfHit

<Performer/pr/pfGeoSet.h>

pfGeoState <Performer/pr/pfGeoState.h>

pfHighlight <Performer/pr/pfHighlight.h>

pfLPointState <Performer/pr/pfLPointState.h>

Table 14-2 (continued) Header Files for libpf Scene Graph Node Classes

libpf Class Include File

Programming Basics

485

pfLight
pfLightModel

<Performer/pr/pfLight.h>

pfMaterial <Performer/pr/pfMaterial.h>

pfSprite <Performer/pr/pfSprite.h>

pfState <Performer/pr/pfState.h>

pfString <Performer/pr/pfString.h>

pfTexture
pfTexGen
pfTexEnv

<Performer/pr/pfTexture.h>

Table 14-5 Header Files for Other libpr Classes

libpr Class Include File

pfCycleBuffer
pfCycleMemory

<Performer/pr/pfCycleBuffer.h>

pfDataPool <Performer/pr/pfDataPool.h>

pfFile <Performer/pr/pfFile.h>

pfSphere
pfBox
pfCylinder
pfPolytope
pfFrustum
pfSeg
pfSegSet

<Performer/pr/pfGeoMath.h>

pfVec2
pfVec3
pfVec4
pfMatrix
pfQuat
pfMatStack

<Performer/pr/pfLinMath.h>

pfList <Performer/pr/pfList.h>

Table 14-4 (continued) Header Files for libpr Graphics Classes

libpr Class Include File

486

Chapter 14: Programming with C++

Creating and Deleting IRIS Performer Objects

The IRIS Performer base classes all provide operator new and operator
delete. All libpr and libpf objects must be explicitly created with operator
new and deleted with operator delete. Objects of these classes cannot be
created statically, on the stack or in arrays.

The default new operator creates objects in the current shared memory
arena, if one exists. libpr objects and public structs have an additional new
operator that takes an arena argument. This new operator allows allocation
from the heap (indicated by an arena of NULL) or from a shared memory
arena created by the application with IRIX acreate().

Example 14-1 Legal Creation of Objects in C++

// legal creation of libpf objects
pfDCS *dcs = new pfDCS; // only way

// legal creation of libpr objects
pfGeoSet *gs = new pfGeoSet; // from default arena
pfGeoSet *gs = new(NULL) pfGeoSet; // from heap

// legal creation of public structs
pfVec3 *vert = new pfVec3; // from default arena
pfVec3 *verts = new pfVec3[10]; // array from default
static pfVec3 vert(0.0f, 0.0f, 0.0f); // static

pfMemory <Performer/pr/pfMemory.h>

pfObject <Performer/pr/pfObject.h>

pfStats <Performer/pr/pfStats.h

pfType <Performer/pr/pfType.h

pfWindow <Performer/pr/pfWindow.h

Table 14-5 (continued) Header Files for Other libpr Classes

libpr Class Include File

Programming Basics

487

Example 14-2 Illegal Creation of Objects in C++

// illegal creation of libpf objects
pfDCS *dcs = new(NULL) pfDCS; // not in shared mem
pfDCS *dcs = new pfDCS[10]; // array

// illegal creation of libpr objects
pfGeoSet *gs = new pfGeoSet[10]; // array

// illegal creation of public structs
pfVec3 *vert = new(NULL) pfVec3[10];// array, non-default new

Caution: This last item in Example 14-2 is illegal because C++ does not
provide a mechanism to delete arrays of objects allocated with a new
operator defined to take additional arguments, e.g. operator new(size_t s,
void *arena). Attempting to delete an array of objects allocated in this
manner can cause unpredictable and fatal results such as the invocation of
the destructor a large number of times on pointers inside and outside of the
original allocation.

All objects of classes derived from pfObject or pfMemory are reference
counted and must be deleted using pfDelete(), rather than the delete
operator. pfDelete() checks the reference count of the object and when
multiprocessing, delays the actual deletion until other processes are done
with the object. To decrement the reference count and delete with a single
call use pfUnrefDelete().

Public structs such as pfVec3, pfSphere, etc. may be deleted either with
pfDelete() or the delete operator.

Invoking Methods on IRIS Performer Objects

Since libpr and libpf objects are allocated, they can only be maintained by
reference.

Passing Vectors and Matrices to Other Libraries

Passing arrays of floats is very common in graphics programming. Calls to
IRIS GL or OpenGL often require an array of floats or a matrix. In the C API,

488

Chapter 14: Programming with C++

the data types such as pfMatrix are arrays and so can be passed straight
through to OpenGL routines, e.g.

pfMatrix ident;
pfMakeIdentMat(ident);
glLoadMatrix(ident);

In the C++ API, the data field of the pfMatrix must be passed instead, e.g.

pfMatrix ident;
ident.makeIdent();
glLoadMatrix(ident.mat);

Porting from C API to C++ API

When compiled with C++, IRIS Performer supports three usages of the API:

1. Pure C++ API. This is the default style of usage.

2. Pure C API. This can be achieved by defining the token
PF_CPLUSPLUS_API to be 0, e.g. by adding the line:

#define PF_CPLUSPLUS_API 0

in source files before they include any IRIS Performer header files. In
this mode all data types are the same as when compiling with C.

3. C++ API and C API. This mode can be enabled by defining the token
PF_C_API to be 1, e.g. by adding the line

#define PF_C_API 1

in source files before they include any IRIS Performer header files. In
this mode, both C++ and C functions are available and data types are
C++. See the section below concerning passing certain data types.

Typedefed Arrays vs. Structs

In the C API, the pfVec2, pfVec3, pfVec4, pfMatrix and pfQuat data types are
all typedefed arrays. In the C++ API, they are all structs. When converting C
code to use the C++ API or when compiling CAPI code with both APIs
enabled, be sure to change routines in your code that pass objects of these
types. In the C++ API, you almost always want to pass arguments of these
types by reference rather than by value.

Porting from C API to C++ API

489

For example, the C API routine

void MyVectorAdd(pfVec2 dst, pfVec2 v1, pfVec2 v2)
{

dst[0] = v1[0] + v2[0];
dst[1] = v1[1] + v2[1];

}

should be rewritten for the C++ API to pass by reference

void MyVectorAdd(pfVec2& dst, pfVec2& v1, pfVec2& v2)
{

dst[0] = v1[0] + v2[0];
dst[1] = v1[1] + v2[1];

}

or

void MyVectorAdd(pfVec2* dst, pfVec2* v1, pfVec2* v2)
{

dst->vec[0] = v1->vec[0] + v2->vec[0];
dst->vec[1] = v1->vec[1] + v2->vec[1];

}

Without this change, time will be wasted copying v1 and v2 by value and the
result will not be returned to the routine calling MyVectorAdd().

Interface Between C and C++ API Code

The same difference in passing conventions applies if you are calling a C
function from code that uses the C++ API. Functions passing typedefed
arrays with the C API must have a different prototype for use with the C++
API. Macros for use in C prototypes bilingual can be found in
/usr/include/Performer/prmath.h.

#if PF_CPLUSPLUS_API
#define PFVEC2 pfVec2&
#define PFVEC3 pfVec3&
#define PFVEC4 pfVec4&
#define PFQUAT pfQuat&
#define PFMATRIX pfMatrix&
#else
#define PFVEC2 pfVec2
#define PFVEC3 pfVec3

490

Chapter 14: Programming with C++

#define PFVEC4 pfVec4
#define PFQUAT pfQuat
#define PFMATRIX pfMatrix
#endif /* PF_CPLUSPLUS_API */

These macros are used in the C API prototypes for IRIS Performer that pass
typedefed arrays, e.g.

extern float pfDotVec2(const PFVEC2 v1, const PFVEC2 v2);

But they are not necessary or appropriate for when passing pointers to
typedefed arrays in C, e.g.

extern void pfFontCharSpacing(pfFont *font, int ascii,
pfVec3 *spacing);

because a pointer to a struct is passed in the same manner as a pointer to an
array.

Subclassing pfObjects

With the C API, the main mechanism for extending the functionality of the
classes provided in IRIS Performer is the specification of the user data
pointer on pfObjects with pfUserData() and the specification of callbacks on
pfNodes with pfNodeTravFuncs() and pfNodeTravData(). The C++ API
also supports these mechanisms, but also provides the additional capacity to
subclass new data types from the classes defined in IRIS Performer.
Subclassing allows additional member data fields and functions to be added
to IRIS Performer classes. At it’s simplest, subclassing merely provides a
way of adding additional data fields that is more elegant than hanging new
data structures off of a pfObject’s user data pointer. But in some uses,
subclassing also allows significantly more control over the functional
behavior of the new object because virtual functions can be overloaded to
bypass, replace or augment the processing handled by the parent class from
IRIS Performer.

Subclassing pfObjects

491

Initialization and Type Definition

The new object should provide two static functions, a constructor that
initializes the instances pfType* and a static data member for the type system
as shown in the following table;

The init() member function should initialize any data structures that are
related to the class as a whole, as opposed to any particular instance. The
most important of these is the entry of the class into the type system. For
example, the Rotor class defined in the Open Inventor loader (see Rotor.h and
Rotor.C in /usr/share/Performer/src/lib/libpfdb/libpfiv) is a subclass of pfDCS. It’s
initialization function merely enters the class into the type system.

Example 14-3 Class Definition for a Subclass of pfDCS

public Rotor : public pfDCS
{

static void init();
static pfType* getClassType(){ return classType; };
static pfType* classType;

}

pfType *Rotor::classType = NULL;

Rotor::Rotor()
{

setType(classType); // set the type of this instance
...

}

void
Rotor::init()

Table 14-6 Data and Functions Provided by User Subclasses

Class Data or Function Function

static void init() Initialize the new class

static pfType* getClassType() Returns the pfType* of the new class

static pfType* classType Stores the pfType* of the new class

constructor Sets the pfType* for each instance

492

Chapter 14: Programming with C++

{
if (classType == NULL)
{

pfDCS::init();
classType =

new pfType(pfDCS::getClassType(), “Rotor”);
}

}

As described in the section below, the initialization function, Rotor::init()
should be called before pfConfig().

Defining Virtual Functions

Below is the example of the Rotor class which specifies the traversal function
for the libpf application traversal. When overloading a traversal function, it
is usually desirable to invoke the parent class function, in this case,
pfDCS::app(). It is not currently possible to overload libpf’s intersection or
culling traversals. See “libpf Objects and Multiprocessing” on page 495.

Example 14-4 Overloading the libpf Application Traversal

int
Rotor::app(pfTraverser *trav)
{

if (enable)
{
pfMatrix mat;

double now = pfGetFrameTimeStamp();

// use delta and renorm for large times
prevAngle += (now - prevTime)*360.0f*frequency;
if (prevAngle > 360.0f)

prevAngle -= 360.0f;
mat.makeRot(prevAngle, axis[0], axis[1], axis[2]);
setMat(mat);
prevTime = now;

}

return pfDCS::app(trav);
}

int

Multiprocessing and Shared Memory

493

Rotor::needsApp(void)
{

return TRUE;
}

The same behavior could also be implemented in either the C or C++ IRIS
Performer API using a callback function specified with pfNodeTravFuncs().

Note: Classes of pfNodes that need to be visited during the application
traversal even in the absence of any application callbacks should define the
virtual function needsApp() to return TRUE.

Accessing Parent Class Data Members

Accesses to parent class data is made through the functions on the parent
class. Data members on built-in classes should never be accessed directly.

Multiprocessing and Shared Memory

Initializing Shared Memory

In general to assure safe multiprocess operation with any DSOs providing
C++ virtual functions or defining new pfTypes. Initialization should be
carried out in the following sequence:

1. Call pfInit(). This initializes the type system and for libpf applications
sets up shared memory.

2. Initialize any application-supplied classes:

a) Load any application-specific C++ DSOs

b) Call pfdInitConverter() to initialize and load any converter DSOs.

c) Enter any user-supplied pfTypes into the type system, e.g. call

Rotor::init()

3. Call pfConfig(). This forks off other processes as specified by
pfMultiprocess()

4. Create libpf and libpr objects.

494

Chapter 14: Programming with C++

Note: Pure libpr applications that do their own multiprocessing outside of
IRIS Performer with fork() should explicitly create shared memory with
pfInitArenas() before calling pfInit(). Otherwise, the type system will not be
visible in the address space of other processes.

More on Shared Memory and the Type System

IRIS Performer objects or other objects that use pfTypes can only be shared
between related processes. Related processes are those created with fork() or
sproc() from the main process after pfInit() in a libpf application, e.g.
processes created by pfConfig().

New pfTypes should be added before pfConfig() forks off other processes so
that the static data member containing the class type is visible in all
processes, otherwise pf<Class>::getClassType() will return NULL in other
processes. This effectively precludes the creation of subclasses of IRIS
Performer objects after pfConfig().

Virtual Address Spaces and Virtual Functions

When using virtual functions, it’s very important that the object code reside
at the same address in all processes. Normally, this is not an issue since the
object code for all IRIS Performer classes is loaded (whether statically linked
or loaded as dynamic shared objects, DSOs) before pfConfig() is called to
fork off processes. For user-defined C++ classes with virtual functions, it’s
important that the object code reside at the same virtual address space in all
processes that access them. For this reason, the DSOs for any user-defined
classes should be loaded before pfConfig() regardless of whether they use
the pfType system or not.

Data Members and Shared Memory

Non-static Member Data

The default operator new for objects derived from pfObject causes all
instances to be created in shared memory, so that objects will be visible to
other related processes that need to see them.

Advanced

Advanced

Multiprocessing and Shared Memory

495

Static Member Data

Classes having static data members that may change value and need to be
visible from all processes, should allocate shared memory for the data (e.g.
pfMalloc or new pfMemory) and set the static data member to point to this
memory before pfConfig() as shown in the following example.

Example 14-5 Changeable Static Data Member

class Rotor : public pfDCS
{

static int* instanceCount;
}
Rotor::instanceCount = NULL;

void Rotor::init()
{
...

instanceCount = new(sizeof(int)) pfMemory;
*instanceCount = 0;

}
Rotor::Rotor()
{
...

(*instanceCount)++; // increment the creation counter
}

A static data member whose value is set before pfConfig() and never
changes thereafter does not need to be allocated from shared memory. The
classType member of Rotor is an example of this since the class should be
initialized, i.e. Rotor::init() called, before pfConfig().

libpf Objects and Multiprocessing

The multiprocessing behavior of libpf objects (i.e. those deriving from
pfNode or pfUpdatable) differs from that of libpr objects. Both are typically
created in shared memory, but with a libpr object, all processes share the
same data members, while libpf objects have a built in multiprocessing data
mechanism that provides different copies in the APP, CULL and ISECT
stages of the IRIS Performer pipeline. The term multibuffering refers to the
maintenance and frame-accurate updating of these data.

Advanced

496

Chapter 14: Programming with C++

With a user-defined subclass of a libpf class, the original data elements of the
libpf parent class are still multibuffered. However, the parallel multibuffer
copies maintained in the other processes are instances of the parent class
rather than the subclass. This is not normally visible to the application, since
even for callbacks in the CULL and ISECT processes, the application always
works from the pointer to the copy used in the APP process, in part so that
objects can be identified by comparison of pointers. However, this difference
would be visible if the virtual traversal functions for culling or intersection
were overloaded. These virtual functions should not be overloaded by the
subclass since they will not have any effect when the CULL or ISECT stages
are in separate processes. Node callbacks specified with pfNodeTravFuncs()
should be used instead.

Subclassing will be vastly simplified and more flexible in a future release.

Performance Hints

Constructor Overhead

It’s quite natural to frequently construct and destroy arrays of public structs
such as pfVec3 on the stack. Beware, even though the constructors for these
classes are empty, it still requires a function call for each element of the array.
The same applies to classes such which contain arrays of structs, e.g.
pfSegSet contains an array of pfSegs.

Math Operators

Assignment operators, e.g. “+=”, are significantly faster than their
corresponding binary operators, e.g. “+” because the latter involves
constructing a temporary object for the return value.

Advanced

This appendix contains images
created using IRIS Performer and
various scene models.

Image Gallery

Appendix A

499

Appendix A

A. Image Gallery

This appendix contains views of some of the models that come with IRIS
Performer. The images in this chapter were created using the Lightscape
Visualization System, available from Lightscape Technologies, Inc. in San
Jose, California. For information on Lightscape software, call 408-246-1155.

Figure A-1 Simulated view of an atrium

500

Appendix A: Image Gallery

The image in Figure A-1 was created by A.J. Diamond, Donald Schmitt and
Company, Toronto. For information, call 416-862-8800. The database that the
image illustrates is part of the IRIS Performer software distribution.

Figure A-2 Another simulated view of the atrium

The image in Figure A-2 was also created by A.J. Diamond, Donald Schmitt
and Company, from the same database.

501

Figure A-3 Simulated view of a castle

The image in Figure A-3 was created by Advanced Graphics Applications,
Toronto. For more information, call 905-279-3838. The database that the
image illustrates is part of the Friends of Performer software distribution.

502

Appendix A: Image Gallery

Figure A-4 Simulated hallway view

The image in Figure A-4 was created by A.J. Diamond, Donald Schmitt and
Company.

503

Figure A-5 Simulated hotel lobby

The image in Figure A-5 was created by Design Vision Inc., Toronto. For
more information, call 416-585-2020.

504

Appendix A: Image Gallery

Figure A-6 Simulated waiting room

The image in Figure A-6 was created by Digital Architecture, Isao Nagaoka
and Joe Henke, New York. For information, call 212-587-4148.

505

Figure A-7 Simulated conference room

The image in Figure A-7 was created by Advanced Graphics Applications.

506

Appendix A: Image Gallery

Figure A-8 Parliament stairway

The image in Figure A-8 was created by A.J. Diamond, Donald Schmitt and
Company.

507

Figure A-9 Unity Temple interior

The image in Figure A-9 was created by Lightscape Technologies, Inc. The
database that the image illustrates is a model of the Unity Church and
community house project designed by Frank Lloyd Wright in 1906. This
database is part of the IRIS Performer software distribution.

509

Glossary

alias

An alternate extension for a file type as processed by the pfdLoadFile()
utility. For example, VRML “.wrl” files are in a sense an alias for Open
Inventor “.iv” files since the Open Inventor loader can read VRML files as
well. Once the alias is established, files with alternate extensions will be
loaded by the designated loader.

application buffer

The main (and usually only) buffer of libpf data structures such as the nodes
in the scene graph. Alternate buffers may be created and data can be
constructed in these new buffers from parallel processes to support high-
performance asynchronous database paging during real-time simulation.

arena

An area (allocation area) from which shared memory is allocated. Usually
the arena is the default one created by pfInit() or pfInitArenas(), but some
objects (e.g. those in libpr) may be created in any arena returned by acreate().
IRIS Performer calls that accept an arena pointer as an argument can also
accept the NULL pointer, indicating that the memory should be allocated
from the heap. See also heap.

asynchronous database paging

An advanced method of scene-graph creation, asynchronous database
paging allows desired data to be read from a disk or network connection and
IRIS Performer internal data structures to be built for this data using one or
more processes running on separate CPUs rather than performing these
tasks in the application process. Once the data structures are created in these
database processes, they must be explicitly merged into the application
buffer.

510

Glossary

attribute binding

The binding of an attribute specifies how often an attribute is specified and
the scope of each specification. For example given a collection of triangles for
rendering, a color can be specified with each vertex of each triangle, with
each triangle or once for the entire collection of triangles.

base geometry

The object with the lowest visual priority in a pfLayer node’s list of children.
This would be the runway, for example, in a runway and stripes airport
database example. See also layer geometry.

bezel

The beveled border region surrounding any item, but most notably, around
the edge of a CRT monitor.

billboard

Geometry that rotates to follow the eyepoint. This is often simply a single
texture mapped quadrilateral used to represent an object that has roughly
cylindrical or spherical symmetry, such as a tree or a puff of smoke,
respectively. IRIS Performer supports billboards that can rotate about an axis
for cylindrical objects or a point for spherical objects.

binning

The action of the sort phase of libpf’s cull traversal that segregates drawable
geometry into major sections (such as opaque and transparent) before the
per-bin sorting based in the contents of associated pfGeoStates, so that state
changes can be reduced by drawing groups of similar geometry sequentially
while still drawing semitransparent objects in the desired order within the
frame.

bins

The unique collections into which the cull traversal segregates drawable
geometry. The number of bins is defined by calls to pfChanBinSort() and
pfChanBinOrder(). Typical bins are those for opaque and transparent
geometry, where opaque objects are rendered first for superior image quality
when using blended transparency.

511

bounding volume

A convex region that encompasses a geometric object or a collection of such
objects. IRIS Performer pfGeoSets have axis-aligned bounding boxes which
are rectangular boxes whose faces are along the X, Y, or Z axes. Each IRIS
Performer pfGeode has a bounding sphere that contains the bounding box
of each pfGeoSet in the pfGeode. Performer group nodes have hierarchical
bounding spheres that contain (bound) the geometry in their descendent
nodes. The purpose of bounding volumes is to allow a quick test of a region
for being off-screen or out of range of intersection search vectors.

buffer scope

All IRIS Performer nodes are created in a pfBuffer, either the primary
application buffer or in an alternate returned by pfNewBuffer(). Only one
pfBuffer is considered “current,” and this buffer can be selected using
pfSelectBuffer(). All new nodes are created in the current pfBuffer and will
be visible only in the current buffer until that pfBuffer is merged into the
application buffer using pfMergeBuffer(). A process cannot access nodes
that do not have scope in its current buffer except through the special
“buffer” commands: pfBufferAddChild(), pfBufferRemoveChild(), and
pfBufferClone(). Thus they are said to have buffer scope.

channel

A visual channel specifies how a geometric scene should be rendered to the
display device. This includes the viewport area on the screen as well as the
location, orientation and field of view associated with the viewer or camera.

channel group

A set of channels that share attributes such as the eyepoint or callbacks.
When a shared attribute is set on any member of the group, all members get
the new value. Channel groups are most commonly used for adjacent
displays making up a panorama.

channel share mask

A bit mask indicating the attributes that are shared by all channels in a
channel group. Typical shared attributes are field of view, view specification,
near and far clipping distances, the scene to be drawn, stress parameters,
level of detail parameters, the earth/sky model, and swapbuffer timing.

512

Glossary

children

IRIS Performer’s hierarchical scene graph of pfNodes has internal nodes
derived from the pfGroup class, and each node attached below a pfGroup
type node is known as a child of that node. The complete list of child nodes
are collectively termed the children of that node.

class hierarchy

The provenance through which IRIS Performer classes are defined. This
class hierarchy defines the data elements and member functions of these
data types through the notion of class inheritance as described below.

class inheritance

Class inheritance describes the process of defining one object as a special
version of another. For example, a pfSwitch node is a special version of a
pfGroup node in that it has control information about which children are
active for drawing or intersection. In all other respects, a pfSwitch has the
same capabilities as a pfGroup, and the Performer API supports this notion
directly in both the C and C++ API by allowing a pfSwitch node to be used
wherever a pfGroup is called for in a function argument. This same
flexibility is supported for all derived types.

clipped

Geometry is said to be clipped when some or all of its geometric extent
crosses one or more clipping planes and the portion of the geometry beyond
the clipping plane is mathematically trimmed and discarded.

clipping planes

The normal clipping planes are those that define the viewing frustum. These
are the left, right, top, bottom, near, and far clipping planes. All rendered
geometry is clipped to the intersection of the half-spaces defined by these
planes and only the portion inside all six is displayed by the graphics
hardware.

cloned instancing

The style of instancing that creates a (possibly partial) copy of a node
hierarchy rather than simply making a reference to the parent node. This
allows pfDCS nodes and other internal nodes to be changed in the copy
without changing those in the original. Also see shared instancing.

513

cloning

Making a copy of a data structure recursively copying down to some
specified level. In IRIS Performer pfCopy() creates a shallow copy. pfClone()
creates a deeper copy that creates new copies of internal nodes, but not of
leaf nodes. This means that the pfDCS, pfSwitch, and other internal nodes in
the cloned hierarchy are separate from those in the original.

compiled mode

IRIS Performer pfGeoSets are designed for rapid immediate-mode
rendering and in most situations outperform IRIS GL and OpenGL display
list usage. In those cases where GL display lists are desired, pfGeoSets may
be placed in compiled mode, whereby a GL display list will be created the
first time the pfGeoSet is rendered and this display list will be used for
subsequent renderings until the pfGeoSet compiled mode flag is explicitly
reset. Once a pfGeoSet is compiled, any changes to its data arrays by the
pfMorph node or other means will not be effective until the compiled-mode
flag is cleared.

complex pixels

Pixels for which several different geometric primitives contribute to the
pixel’s assigned color value. Such pixels are rare in typical scenes, and only
exist at edges of polygons unless multisample blending is in use. When this
blending mode is used, then all pixels rendered as neither fully opaque nor
fully transparent are complex pixels.

critically damped

A closed-loop control system notion where the feedback transfer function is
just right: not so slow that the system goes out of range before correction is
applied and not so fast that overcorrection causes rapid swings or variation.
This should be the goal of any user specified stress management function.

cull

See culling.

cull volume visualization

The visual display of the culling volume, usually the same as the viewing
frustum, to which the scene is culled before rendering. Normally the
projected culling volume fills the display area. By rendering with a larger
field of view or from a eye point that differs from the origin of the frustum,

514

Glossary

the tightness of culling can be determined for database tuning. The culling
volume itself is often drawn in wireframe.

culling

Discarding database objects that are not visible. Usually this refers to
discarding objects located outside the current viewing frustum. This is done
by comparing the bounding volume of these database objects with the six
planes that bound the frustum. Objects completely outside may be safely
discarded. See also occlusion culling.

data fusion

IRIS Performer’s ability to read data in a variety of different database
formats and convert it into the internal IRIS Performer scene database
format. Further, the ability of these different formats to provide special
run-time behavior via callback functions or node subclassing and to have
these different data formats all active in their native modes simultaneously

database paging

Loading databases from disk or network into memory for traversal during
real-time simulation. Database paging is implicit in large area simulations
due to the huge database sizes inherent in any high-resolution earth
database. A frequent component of database paging is texture paging, in
which new textures are downloaded to the graphics system at the same time
new geometry is loaded from disk.

debug libraries

IRIS Performer libraries compiled with debugging symbols left in are known
as debug libraries. These libraries provide greater and more accurate stack
trace information when examining core dumps, such as during application
development.

decal geometry

Objects that appear “above” other objects in pfLayer geometry. In a runways
and stripes example, the stripes would be the decal geometry. There can be
multiple layers of decals with successively higher visual priorities. See layer
geometry.

515

depth complexity

The “pixel rendering load” of a frame which is defined as the total number
of pixels written divided by the number of pixels in the image. For example,
an image of two full-screen polygons would have a depth complexity of 2. It
is often observed that different types of simulation images have predictable
depth complexities, with values ranging from a low of 2.5 for high altitude
flight simulation to 4 or more for ground-based simulations. These figures
can serve as a guide when configuring hardware and estimating frame rates
for visual simulation systems. IRIS Performer fill statistics provide detailed
accounting and real-time visualization of depth complexity, as seen in perfly.

displace decaling

An implementation method for decal geometry that uses a Z-displacement
to render coplanar geometry. The actual displacement used is a combination
of a fixed offset and a range-based scaled offset which are combined to
produce the effective offset.

display List

A list into which graphics commands are placed for efficient traversal. Both
IRIS Performer and the underlying graphics libraries (OpenGL or IRIS GL)
have their own display list structures.

draw mask

A bit-mask specified for both pfNodes and pfChannels which together
selects a subset of the scene graph for rendering. The node and channel draw
masks are logically AND-ed together during the CULL traversal which
prunes the node if the result is zero. Draw masks may be used to
“categorize” the scene graph where each bit represents a particular
characteristic. Each node contains these masks, binary values whose bits
serve as flags to indicate if the node and its children are considered
drawable, intersectable, pickable, and so on. Most of these bits are available
for application use.

drop

Refers to frame processing. When in locked or fixed phase and a processing
stage takes too long, the frame is dropped and not rendered. Dropped
frames are a sure sign of system overload.

516

Glossary

DSO

See dynamic shared object.

dynamic

Something that is updated automatically when one of its attributes or
children in a scene graph changes. Often refers to the update of hierarchical
bounding volumes in the scene graph.

dynamic shared object

A Library which is not copied into the final application executable file but is
instead loaded dynamically (that is, when the application is launched). Since
DSOs are shared, only one copy of a given DSO is loaded into memory at a
time, no matter how many applications are using it. DSOs also provide the
dynamic binding mechanism used by the IRIS Performer database loaders.

Euler angles

A set of three angles used to represent a rotation.
See heading, pitch and roll.

fixed frame rate

Rendering images at a consistent chosen frame rate. Fixed frame rates are a
central theme of visual simulation and are supported in IRIS Performer via
the PFPHASE_LOCK and PFPHASE_FLOAT modes. Maintaining a fixed
frame rate in databases of varying complexity is difficult and is the task of
IRIS Performer stress processing, which changes LOD scales based in
measured system load.

flatten

Flattening consists of taking multiple instances of a single object and
converting them into separate objects (deinstancing) and then applying any
static transformations defined by pfSCS nodes to the copied geometry; this
action improves performance at a cost in memory space.

flimmering

The visual artifact associated with improperly drawing coplanar Z-buffered
geometry. The term is derived from the German verb flimmern, which is has
synonyms flitter, flicker, sparkle, twinkle, and vibrate (as in, die Augen
flimmern mir, my eyes are swimming.) One way to understand flimmering is
to consider the screen space interpolation of Z-depth values, wherein a

517

discrete difference of depth must be interpolated across a discrete number of
pixels (or sub-pixels). When two polygons that would be coplanar in an
infinite precision real-number context are considered in this discrete
interpolation space, it is clear that the interpolated depth values will differ
when the delta-Z to delta-pixels ratios are relatively prime. The image that
results is essentially a Moirè pattern showing the modular relationship of the
differences in the least significant bits of interpolated depth between the
polygons. The libpr pfDecal() function and libpf pfLayer() node exist to
handle the drawing of coplanar geometry without flimmering.

floating phase

The style of frame overload management where the next frame after an
overloaded frame is allowed to start at any vertical retrace boundary rather
than being forced to wait for a specific boundary as in the LOCKED phase.

frame

The term frame is used to mean “image” in most IRIS Performer contexts.
The image being rendered by the hardware is drawn into a “frame buffer”
which is simply an image memory. This image, when delivered via video
signals to a monitor or projector, exists as one or two video fields. In the
one-field case, also known as non-interlaced, each row of the image is read
from the frame buffer and generated as video in sequential order. In the
interlaced method, the first field of display comprises alternate lines, one
field for the odd lines and one field for the even lines. In this mode a frame
consists of two fields, as the norm for NTSC broadcast video. Also, the frame
is the unit of work in Performer; the main loop in any Performer application
consists of calls to pfFrame().

frame accurate

In a pipelined multiprocessing model, at any particular time the different
stages of the pipeline is working on different frames. Data in the pipeline is
called frame accurate when a change made to the data in a particular frame
is not visible in downstream stages of the pipeline until those stages begin
processing that frame. Processing of libpf objects are frame accurate because
multiple copies of data are retained for the different pipeline stages.

free-running

The unconstrained phase relationship of image generation where frame
rendering is initiated as soon as the previous frame is complete without
consideration of a minimum or maximum frame rate.

518

Glossary

frustum

A truncated pyramid—two parallel rectangular faces, one smaller than the
other, and four trapezoidal faces that connect the edges of one rectangular
face with the corresponding edges of the other rectangular face. Note that it
is pronounced as it is spelled and contains only one “r” despite common
misuse. Also, the plural of frustum is frusta, which does not contain an “s”.

gaze vector

The +Y axis from the eyepoint—informally, the direction the eye is facing.

graph

A network of nodes connected by arcs. An IRIS Performer scene graph is so
termed due to its having this form. In particular, a Performer scene graph
must be an acyclic graph. See also scene graph.

graphics context

The set of modes and other attributes maintained by IRIS GL or OpenGL in
both system software and the hardware graphics pipeline that defines how
subsequent geometry is to be rendered. It is this information which must be
saved and restored when drawing occurs in multiple windows on a single
graphics pipeline.

graphics state elements

Individual libpr state components, such as material color, line stipple
pattern, point size, current texture definition, and the other elements that
comprise the graphics context.

heading

In the context of X-axis to the right, Y-axis forward, and Z-axis up, then
heading is rotation about the Z-axis. This is the disturbing rotation that
pivots your car clockwise or counterclockwise during a skid. Heading is also
known as yaw, but IRIS Performer uses the term heading to keep the H, P,
and R abbreviations distinct from X, Y, and Z. Also see Euler angles.

heap

The process heap is the normal area from which memory is allocated by
malloc() when more memory is required, sbrk() is automatically called to
increase the process virtual memory. Also see arena.

519

identity matrix

A square matrix with ones down the main diagonal and zeroes everywhere
else. This matrix is the multiplicative identity in matrix multiplication.

immediate mode rendering

Immediate mode rendering operations are those which immediately issue
rendering commands and transfer data directly to the graphics hardware
rather than compiling commands and data into data structures such as
display lists. See compiled mode.

instancing

An object in the scene is called instanced if there is more than one path
through the scene graph that reaches it. Instancing is most commonly used
to place the same model in more than one location by instancing it under
more than one pfDCS transformation node.

intersection pipeline

Like the rendering pipeline, IRIS Performer supports a two-stage
multiprocessing pipeline between the APP and ISECT processes. See also
rendering pipeline.

latency

The amount of time between an input and the response to that input. For
example rendering latency is usually defined as the time from which the
eyepoint is set until the display devices scans out the last pixel of the first
field corresponding to that eye point.

latency-critical

Operations which must be performed during the current frame and which
will reliably finish quickly. An example of this would be reading the current
position of a head-tracking device from shared memory.

layer geometry

Objects that appear “above” other objects in pfLayer geometry. In a runways
and stripes example, the stripes would be the decal geometry. There can be
multiple layers of decals with successively higher visual priorities. See also
base geometry.

520

Glossary

level of detail

The idea of representing a single object, such as a house, with several
different geometric models (a cube, a simple house, and a detailed house, for
example) that are designed for display at different distances. The models
and ranges are designed such that the viewer is unaware of the substitutions
being made. This is possible because distant objects appear smaller and thus
can be rendered with less detail. The IRIS Performer pfLOD node and the
associated pfLODState implement this scheme.

libpf

One of IRIS Performer’s two core libraries. libpf manages multiprocessing
and scene graph traversals. Built on top of libpr. Multiple copies of libpf
objects are automatically maintained so that the APP, CULL and ISECT
stages of the processing pipeline do not collide

libpfdu

IRIS Performer’s database utilities library. Layered on top of libpf and libpr.
Includes functions for building and optimizing geometry before putting it
into a scene graph.

libpfutil

IRIS Performer’s general utility library which is distributed in source form
for both usage and information.

libpr

One of IRIS Performer’s two core libraries. libpr manages graphics state and
rendering, while also providing a number of math and shared memory
utility functions. Provides the foundation for libpf. All processes share the
same copy of libpr objects.

libpr classes

The low-level structured data types of libpr. These objects—with the
exception of pfCycleBuffers—lack the special multibuffered multiprocess
data exclusion support that libpf objects provide.

light point

A point of light such as a star or a runway light. Accurate display of light
points requires that they attenuate and fog differently than other geometry
(see punch through). In flight simulation, light points often have additional
parameters concerning angular distributions of illumination.

521

load

The processing burden of rendering a frame. This includes both processing
performed on the host CPU and in the graphics subsystem. It is the
maximum of these times (sum in single process mode) that is used to
compute the system stress level for adjusting pfLODState values.

locked phase

A style of frame overload processing where drawing may only begin on
specific vertical retraces, namely those that are an integer multiple of the
basic frame rate.

morph attribute

One of the collections of arrays of floating point data used in the pfMorph
node’s linear combination processing. This process multiplies each element
of each source array by a changeable weight value for that source array and
sums the result of these products to produce the destination array.

morphing

The mathematical manipulation of pfGeoSet data (positions, normals,
colors, texture coordinates) to cause a shape-shifting behavior. This is very
useful for animated characters, continuous terrain level of detail, for smooth
object level of detail, and for a number of advanced applications. In IRIS
Performer, morphing is provided by the pfMorph node.

multiple inheritance

Deriving a class from more than one other class. This is in contrast to single
inheritance in which a type hierarchy is a tree. IRIS Performer does not use
multiple inheritance.

multithreaded

In the context of IRIS Performer culling, multithreading is an option for
increased parallelism when multiple pfChannels exist in a single IRIS
Performer rendering pipeline. In this case, multiple cull processes are
created to work on culling the channels of a pfPipe in parallel. For example,
a single IRIS Performer pipeline stage (such as the CULL) is multithreaded
when configured as multiple, concurrent processes. These “threads” are not
arranged in pipeline fashion but work in parallel on the same frame.

522

Glossary

mutual exclusion

Controlling access to a data structure so that two or more threads in a
multiprocessing application cannot simultaneously access a data structure.
Mutual exclusion i s often required to prevent a partially updated data
structure from being accessed while it is in an invalid state.

node

An IRIS Performer libpf data object used to represent the structure of a visual
scene. Nodes are either leaf nodes that contain geometry via libpr, or are
internal nodes derived from pfGroup that control and define part of the
scene hierarchy.

nonblocking file access

A method of obtaining data from a file without having to wait for any other
processes to finish using the file. Such accesses involve a two-step
transaction in which the application first indicates the task to be performed
and is given a handle. This handle can later be used to inquire about the
status of the file action: is it in progress, has it completed, or has there been
an error.

non-degrading priorities

Process priorities are used by the operating system to decide when and for
how long processes should run. A non-degrading priority specifies that the
process scheduling should not take into account how long the process has
been running when deciding whether to let another process run. The use of
non-degrading priorities is important for real-time performance.

occlusion culling

The discarding of objects which are not visible because they are occluded by
other closer objects in the scene, e.g. a city behind a mountain. See also
culling.

opera lighting

The generic term for a powerful carbon-arc lamp producing an intense light
such as that invented by John H. Kliegl and Anton T. Kliegl for use in public
staged events and cinematographic undertakings that is often mounted
within a dual-gimballed exoskeletal framework to afford the lamp sufficient
freedom of orientation that the projected beam can be made to track and
highlight performers as they move across a stage. The temperature of the

523

thermal plasma that develops between the carbon electrodes of such arc
lamps can be determined by spectroscopic investigation of its dissociated
condition, and has been found to be between 20,000˚C and 50,000˚C. The
term can also refer to a stage-lighting technique that projects an image of a
background scene onto the stage or screen. Accurate visual simulation of
both of these light types (as well as common vehicle headlights, airplane
landing lights, and searchlights) is provided by the projected texture
capability of the pfLightSource node.

overload

A condition where the time taken to process a frame is longer than the
desired frame rate allows. This causes the goal of a fixed-frame rate to be
unattainable, and thus is an undesired situation.

overrun

A synonym for overload in the context of fixed frame rate rendering.

pair-wise morphing

The geometric blending of two topologically equivalent objects. Usually this
is done by specifying weights for each object, e.g. 90% of object A plus 10%
of object B. Each vertex in the resulting object is a linear interpolation
between the vertices in the original object. See morphing.

parent

The IRIS Performer node directly above a given node is known as the parent
node.

passthrough data

Data which is passed down the steps in the rendering pipeline until it
reaches a callback. Such data provides the mechanism whereby an
application can communicate information between the app, cull, and draw
stages in a pipelined manner without code changes in single-CPU and
multiprocessing applications.

path

A series of nodes from a scene graph’s root down to a specific node defines
a path to that node. When there are multiple paths to a node (and thus the
scene graph is really a graph rather than a tree) this path can be important
when interpreting an intersection or picking request. For example, if a car

524

Glossary

model uses instancing for the tires, just knowing that a tire is picked is not
sufficient for further processing.

perfly

The application distributed with IRIS Performer that serves as a
demonstration program installed in /usr/sbin as well as a programming
example found in /usr/share/Performer/src/sample/apps/C and
/usr/share/Performer/src/sample/apps/C++ for the C and C++ versions,
respectively.

phase

An application’s synchronization mode—defining how the system behaves
if the processing and drawing time for a given frame extends past the time
allotted for a frame. See also locked phase and floating phase.

pipe

Used to refer to both an IRIS Performer software rendering pipeline and to a
graphics hardware rendering pipeline, such as a RealityEngine. See rendering
pipeline.

pitch

In the context of X-axis to the right, Y-axis forward, and Z-axis up, then pitch
is rotation about the X-axis. This is the rotation that would raise or lower the
nose of an aircraft. Also see Euler angles.

popping

The term for the highly noticeable instantaneous switch from one level of
detail to the next when morph or blend transitions are not used. This
problem is distracting and should be eliminated in high-quality simulation
applications.

process callbacks

The mechanism through which a developer takes control of processing
activities in the various IRIS Performer traversals and major processing
stages: the application traversal, the cull traversal, the draw traversal, and
the intersection traversal all provide a mechanism for registered process
callbacks. These are user functions that are invoked at the beginning of the
indicated processing stage, and in the process handling the traversal.

525

projective texturing

A texture technique that allows texture images to be projected onto polygons
in the same manner as a slide or movie projector would exhibit keystone
distortion when images are cast non-obliquely onto a wall or screen. This
effect is perfect for projected headlights and similar lighting effects.

prune

To eliminate a node from further consideration during culling.

punch through

Decreasing the rate at which intensely luminous objects such as light points
are attenuated as a function of distance. Normal fogging is inappropriate for
such objects because up close they are actually much brighter than can be
rendered given the dynamic range of the frame buffer and raster display
devices.

reference counting

The counter within each pfObject and pfMemory object that keeps track of
how many other data structures are referencing the particular instance. The
primary purpose is to indicate when an object may be safely deleted because
it is no longer referenced.

rendering pipeline

An IRIS Performer rendering pipeline, represented in an application by a
pfPipe. Typically a rendering pipeline has three stages APP, CULL and
DRA.W. These stages may be handled in separate processes or combined
into one or two processes.

right-hand rule

Derived from a simple visual example for the direction of positive rotation
about an axis, the right-hand rule states that the curled fingers of the right
hand indicate the direction of positive rotation when the right hand is placed
about the desired axis with the thumb pointing in the positive direction. The
positive angle is the one that rotates the primary axes toward each other. For
example, a positive rotation (counter clockwise) about the X-axis takes the
positive Y-axis into the position previously occupied by the positive Z-axis.

526

Glossary

roll

In the context of X-axis to the right, Y-axis forward, and Z-axis up, then roll
is rotation about the Y-axis. This is the rotation that would raise and lower
the wings of an aircraft, leading to a turn. Also see Euler angles.

scene

A collection of geometry to be rendered into a pfChannel.

scene complexity

The complexity of the scene for rendering purposes, in particular the
amount of geometry, transformations, and graphics state changes in the
scene.

scene graph

A hierarchical assembly of IRIS Performer nodes linked by explicit
attachment arcs that constitutes a virtual world definition for traversal and
subsequent display.

search path

A list of directory names given to IRIS Performer to specify where to look for
data files which aren’t specified as full path names.

sense

An indication of whether a positive angle is interpreted as representing a
clockwise or counterclockwise rotation with respect to an axis. All CCW
rotations in IRIS Performer are specified by positive (+) angles and negative
angles represent CW rotations.

shadow map

A special texture map created by rendering a scene from the view of a light
source and then recording the depth at each pixel. This Z-map is then used
with projective texturing in a second pass to implement cast shadows. The
entire process is automated by the IRIS Performer pfLightSource node.

shared instancing

The simplest form of instancing whereby two or more parent nodes share the
same node as a child. In this situation, any change made to the child will be
seen in each instance of that node. Also see cloned instancing.

527

shininess

The coefficient of specular reflectivity assigned to a pfMaterial that governs
the appearance of highlights on geometry to which it is bound.

siblings

The name given to nodes that have the same parent in a scene graph.

skip

Refers to frame processing. See drop.

sorting

The grouping together of geometry with similar graphics state for more
efficient rendering with fewer graphics state changes. IRIS Performer sorts
during scene graph traversal.

spacing

The relative motion required to move the starting point for subsequent
pfFont rendering after drawing a particular character pfGeoSet in a pfFont.
This motion is a pfVec3 to allow arbitrary escapement for character sets that
use vertical rather than horizontal text layouts. Note that for vertically
oriented fonts, the origin should be such that motion by the spacing value
crosses the character: in other words, the origin should be on the left for
left-to-right fonts and at the top for top-to-bottom fonts, on the bottom for
bottom-to-top fonts, and on the right for right-to-left fonts.

spatial organization

The grouping together of geometric objects that are spatially close to each
other in the scene graph. For optimal culling performance, the scene should
be organized spatially.

sprite

A transformation that rotates a piece of geometry, usually textured, so that it
always faces the eye point.

stage

This is a section of the IRIS Performer software rendering pipeline and is one
of application, culling, or drawing. Sometimes used to refer to either of the
two non-pipeline tasks of intersection and asynchronous database
processing.

528

Glossary

state

State refers to attributes used to render an object that are managed during
traversal. State commonly falls into two areas, traversal state that affects
which portions of the scene graph are traversed and graphics state that
affects how something is rendered. Graphics state includes the current
transformation, the graphics modes managed by pfGeoStates and other state
such as stenciling.

stencil decaling

An implementation method for pfLayer nodes that uses an extra bit per pixel
in the frame buffer to record the Z-buffer pass or fail status of the base
geometry. This bit is then used as a visibility determination (rather than the
Z-buffer test) for each of the layers, which are rendered in bottom (lowest
visual priority) to top (highest visual priority) order. Z-buffer updating is
disabled during the stencil rendering operation, and is restored when the
pfLayer node has been completely rendered. Stencil-bit processing is the
highest quality mode of pfLayer operation.

stress

IRIS Performer stress processing is the closed-loop feedback mechanism that
monitors cull and draw times to determine how pfLODState range scale
factors should be adjusted to compensate for system load in order to
maintain a chosen frame rate.

subgraph

A connected subset of a scene graph; usually, the set consisting of all
descendents of a particular node.

texel

Short for “texture element”—a pixel of a texture.

texture mapping

Displaying a texture as though it were the surface of a given polygon.

tile

A section of a spatially subdivided database or a rectangular subregion of a
larger texture image.

529

transformation

Homogeneous 4x4 matrices that define 3D transformations—some
combination of scaling, rotation, and translation.

transition distance

The distance at which one level-of-detail model is switched for another.
When fading or morphing between levels-of-detail, the distance at which
50% of each model is rendered. See level of detail.

traversals

One of IRIS Performer’s pre-order visitations of a hierarchical scene graph.
Traversals for application, culling, and intersection processing are internal to
libpf and user-written traversals are supported by the pfuTraverser tools.

traversing

See traversals.

trigger routine

A routine that initiates a traversal or the invocation of a callback in another
process. pfCull() triggers the cull traversal. pfFrame() triggers processing
for the current frame.

up vector

The +Z axis of the eyepoint, defining the display’s “up” direction. Must be
perpendicular to the gaze vector.

view volume visualization

The display of the viewing frustum for a particular channel; usually done by
rendering a wireframe version of the frustum with a different eye point or
field-of-view. See cull volume visualization.

viewing frustum

The frustum containing the portion of the scene database visible from the
current eyepoint.

viewpoint

The location of the camera or eye used to render the scene.

530

Glossary

viewport

The portion of the framebuffer used for rendering. Each pfChannel has a
viewport in the framebuffer of its corresponding pfPipeWindow.

visual

An construct that the X Window System uses to identify framebuffer
configurations.

widget

A manipulable or decorative element of a graphical user interface. Much of
the programming for GUI elements is associated with defining the reaction
of widgets to user mouse and keyboard events.

window manager

A special X window system client which handles icons, window placement,
and window borders and titles.

531

Index

Numbers

3DS format. See formats
64-bit compilation, 69

A

Abbot, Edwin A., xxxiii
Abbruscato, Frank, 300
accessing GL, 334
acreate(), 386, 486, 509
activation of traversals, 154
active database

animation sequences, 23
as programming language, 20
billboards, 23, 140
level of detail, 23
morphing terrain, 26
skeleton, 28
total animation, 28

active scene graph. See application traversal
Adams, J. Alan, 302
Advanced Graphics Applications, 501, 505
affine transformations, 402
Ahuja, Narendra, xxxiv
airplane, 96
Akeley, Kurt, xxix
alias, definition, 509
allocating memory. See memory

alpha function, 337
animation, 26, 128-130

characters, 27
pfMorph node, 153
sequences, 23
skeleton, 28
total, 28
using quaternions for, 404

antialiasing, 24, 340
APP, 73
application areas

broadcast video, 13
driver training, 16
entertainment, 13
flight simulation, 16
rapid rendering, xxv
simulation based design, xxv
virtual reality, xxv, 13, 16
virtual sets, xxv
visual simulation, xxv, 13

application buffer, 221
defined, 509

application development tools, 16
application traversal, 157
applying pfGeoStates, 359
arenas, 386-388

defined, 509
See also shared memory

arithmetic, precision of, 466
array allocation of pfObjects

guaranteed failure, 486

532

Index

aspect ratio matching, 93
assembly mock-up, xxv
assignment operators, 496
asynchronous database paging, definition, 509
asynchronous database processing, 220
asynchronous deletion, 222
asynchronous I/O, 391
atmospheric effects

enabling, 235
atmospheric model, 32
attribute binding, definition, 510
attributes

bindings, 327, 461
flat-shaded, 327
overview, 325
traversals, 154

AutoCAD, 277
automatic type casting, 42
average statistics, 443

See also statistics
axes, default, 95
axially aligned boxes, 408

B

base geometry, 338
definition, 510

basic-block counting, 467
behaviors, 157
bezel, definition, 510
bidirectional lights, 237

See also lighting
billboards, 23, 140, 466

defined, 510
implementation using sprites, 353

binary operators, 496

BIN format. See formats
binning, definition, 510
bins, 24
bins, definition, 510
blended transparency, 337
bottlenecks, 453-456

fill, 455
host, 453
transform, 454

bounding volumes
defined, 511
See also volumes

boxes, axially aligned, 408
broadcast video, 13
buffer scope, 221

defined, 511
BYU format. See formats

C

C++, 70
C++, See IRIS Performer C++ API
C++ code examples, xxviii
caching

intersections, 460
state changes, 450

callbacks
culling, 168, 171-174
customized culling, 158
discriminators for intersections, 418
draw, 171-174
function, 171
node, 171
post-cull, 172
post-draw, 172
pre-cull, 172
pre-draw, 172
process, 174

533

CASEVision, 467
casting, 61
C code examples, xxviii
channels

channel share group
definition, 511

channel share groups, 105
configuring, 92-108
creating, 92, ??-92
definition, 511
multiple, rendering, 100
setting up, 64
share mask, definition, 511

character animation, 26
children, of a node, definition, 512
circular references. See references, circular
classes

libpf
pfBillboard, 23, 114, 140, 483
pfBuffer, 220, 484
pfChannel, 73, 92, 484
pfDCS, 114, 126, 156, 483
pfEarthSky, 32, 93, 231, 484
pfFrameStats, 425
pfGeode, 114, 137, 483
pfGroup, 114, 483
pfLayer, 114, 131, 483
pfLightPoint, 32, 114, 132, 483
pfLightSource, 26, 114, 133, 483
pfLOD, 114, 130, 483
pfLODState, 484
pfMorph, 26, 114, 153, 483
pfNode, 112, 114, 115, 116, 119, 483
pfPartition, 114, 144, 483
pfPath, 484
pfPipe, 73, 75, 484
pfPipeWindow, 73, 79, 484
pfScene, 73, 114, 125, 483
pfSCS, 114, 126, 156, 483
pfSequence, 114, 128, 483

pfSwitch, 114, 127, 484
pfText, 114, 484
pfTraverser, 484

libpfdu
pfdBuilder, 262
pfdGeom, 266
pfdPrim, 267

libpr
pfBox, 408, 485
pfColortable, 484
pfCycleBuffer, 389, 485
pfCycleMemory, 389, 485
pfCylinder, 409, 485
pfDataPool, 388, 485
pfDispList, 33, 450, 484
pfFile, 485
pfFog, 484
pfFont, 328, 484
pfFrustum, 485
pfGeoSet, 32, 320, 450, 484
pfGeoState, 33, 484
pfHighlight, 484
pfHit, 417, 484
pfLight, 485
pfLightModel, 485
pfList, 485
pfLPointState, 32, 132, 237, 484
pfMaterial, 485
pfMatrix, 399, 485
pfMatStack, 407, 485
pfMemory, 486
pfObject, 486
pfPlane, 409
pfPolytope, 485
pfQuat, 404, 485
pfSeg, 414, 485
pfSegSet, 180, 485
pfSphere, 408, 485
pfSprite, 353, 485
pfState, 32, 485
pfStats, 425, 443, 486

534

Index

pfString, 330, 485
pfTexEnv, 485
pfTexGen, 485
pfTexture, 485
pfType, 486
pfVec2, 397, 485
pfVec3, 397, 485
pfVec4, 397, 485
pfWindow, 486

class hierarchy, definition, 512
class inheritance, 42

definition, 512
Clay, Sharon, xxix
clearing the screen, 32
clipped, definition, 512
clipping planes, definition, 512
clocks

high-resolution, 384
cloned instancing, 121-123

definition, 512
cloning, 31
cloning, definition, 513
close(), 391
closed loop control system, 210
color tables, 33
compiled mode, 323

definition, 513
compiler flags, 69
compiling IRIS Performer applications, 67
complex pixels, definition, 513
computer aided design, xxv
conferences

I/ITSEC, xxxiii
IMAGE, xxxiv
SIGGRAPH, xxix
SPIE, xxxiv

configuration
pfChannel, 92

pfFrustum, 93
pfPipe, 75
pfPipeWindow, 79
pfScene, 92
viewpoint, 95
viewport, 93

configuring IRIS Performer, 62
configuring IRIS Performer. See pfConfig()
containment, frustum, 162
conventions

naming, 35
typographical, xxviii

coordinate systems, 95
dynamic. See pfDCS nodes
static. See pfSCS nodes

coplanar geometry, 131, 338
copying pfObjects, 49
core dump

from aggregate pfObject allocation, 486
from mixing malloc() and pfFree(), 386
from mixing pfMalloc() and free(), 386
from static pfObject allocation, 486
from unshared pfObject allocation, 486

Coryphaeus
Designer’s Workbench, 15
DWB format, 37, 252

counter, video, 34, 385
counting, basic-block, 467
CPU statistics, 430
critically damped, definition, 513
CULL, 73
culling, 6

callbacks, 158
definition, 514
efficient, 163
multithreading, 217
traversal, 158-??
traversals. See traversals

535

cull-overlap-draw multiprocessing model, 216
cull volume visualization, definition, 513
cumulative statistics, 443

See also statistics
current statistics, 443

See also statistics
cycle buffers, 228, 389
cylinders

as bounding volumes’, 409
bounding, 460

D

DAG. See directed acyclic graph, 30
database builder, 36
database construction, 36
database loaders, 157, 491
database paging, 163, 220

definition, 514
databases, 28

creating, 64
formats. See formats
importing, 8, 14, 251
optimization, 462
organization, 156, 163
See also traversals
traversals, 153-187

databases, as programming languages, 20
data files, 58
data fusion, 8

defined, 514
datapools. See pfDataPool data structures
Davis, Tom, xxx
dbx, 475

See also debugging
DCS. See pfDCS nodes
debugging

dbx, 475
gldebug, 468
guidelines, 474-475
ogldebug, 468
shared memory and, 474

debug libraries, definition, 514
decal geometry, definition, 514
decals. See coplanar geometry
deleting objects, 46
deletion, 31
demonstration programs, xxviii
depth buffer

shadows, 85
depth complexity, definition, 515
Designer’s Workbench, 15
Design Vision, Inc., 503
detail texture, 465
DeWolff Partnership, 290
Diamond, A. J., 288, 500, 502, 506
Digital Architecture, 504
directed acyclic graph, 30
directional lights, 237

See also lighting
disable

graphics modes, 340
discriminator callbacks

for intersections, 418
displace decaling, 338

defined, 515
display, stereo, 103
displaying statistics. See statistics
display list, 355, 450

GL display list usage, 33
IRIS Performer internal, 33

display list mode, 323
display lists, definition, 515
dlopen(), 253, 257

536

Index

dlsym(), 253, 257
documentation

IRIS GL references, xxx
OpenGL references, xxx

Donald Schmitt and Company, 288, 500, 506
double-precision arithmetic, 466
DRAW, 73
draw mask, 170
draw mask, definition, 515
draw traversals. See traversals
drive motion model, 4
driver training, 16
drop, definition, 515
DSO

libpf, 13
libpfdu, 13
libpfui, 14
libpfutil, 14
libpr, 13

DWB format. See formats
DXF format. See formats
dynamic, definition, 516
dynamic coordinate systems. See pfDCS nodes
dynamics, simulation of, xxxii
dynamic shared objects, 13

defined, 516

E

earth/sky model, 93
effects, atmospheric, enabling, 235
elastomeric propulsion system, 96
enabling

atmospheric effects, 235
fog, 235

graphics modes, 340
statistics classes, 436

entertainment, 13
environmental effects, 6
environmental model, 93
environment mapping, 25
environment model, 32
environment variables

DISPLAY, 374
LD_LIBRARY_PATH, 254, 468
PFHOME, 254
PFLD_LIBRARY_PATH, 254
PFNFYLEVEL, 392
PFPATH, 65, 393
PFTMPDIR, 387
PROFDIR, 468
S1KPROJ, 301

error-handling
floating-point operations, 475
notification levels, 391

Euler angles, 95
defined, 516

example code, 41, 58, 142, 157, 169, 205, 238, 245, 251,
254, 259, 343, 352, 374, 376, 377, 378, 381, 433, 434,
443, 457, 459, 460, 465, 470, 491, 524

examples, 77, 83
simple.c, 55

exceptions, floating-point, 475
exec(), 474
extending bounding volumes, 410
extensibility

callback functions, 493
subclassing

help
subclassing objects, 490

user data, 45

537

F

face culling, 339
faces, simulating, 27
Feiner, Steven K., xxix
field, video, 427
field of view, 93
files

formats. See formats
loading. See databases

fill statistics, 432
See also statistics

Fischetti, Mark. A., xxxiv
fixed frame rates, 191

defined, 516
flags, compiler, 69
flat-shaded primitives, 322
flat shading, 323
flatten, definition, 516
flattening, 31
FLIGHT format. See formats
flight motion model, 6
flight simulation, xxxii, 16
flimmering, 338, 516
floating phase, definition, 517
floating-point exceptions, 457, 475
fog, 6

atmospheric effects, 233
configuring, 350-351
data structures, 234, 350
enabling, 235
performance cost, 454

Foley, James D., xxix
forbidden fruit

See reserved functions, 482
fork(), 226, 474, 494
formats

3DS, 271
BIN, 271
BYU, 275
DWB, 276
DXF, 277
FLIGHT, 280, 281
GDS, 282
GFO, 282
IM, 284
IRTP, 285
LSA, 287
LSB, 287
MEDIT, 291
NFF, 292
OBJ, 293
Open Inventor, 285
PHD, 295
POLY, 273
PTU, 298
S1000, 300
SGF, 302
SGO, 303
SPF, 307
SPONGE, 308
STAR, 308
STL, 309
SV, 311
TRI, 314
UNC, 314
VRML, 285

FOV. See field of view, 93
fractal geometry, 38
frame accurate, definition, 517
frames

definition, 517
management, 191
overrun, 195
rate, 63
synchronization, 195

free(), 386

538

Index

free-store management, 46
Friends of Performer, 28
frustum, 93

as camera. See channel
as culling volume, 409
definition of, 518

FTP, xxxv
function callbacks, 171

G

gaze vector, definition, 518
GDS format. See formats
genlock, 385
geometry, 30

coplanar. See coplanar geometry
definition, pfGeoSet, 32
nodes, 137
rendering state, pfGeoState, 33
rotating, 140, 465
volumes. See volumes

geometry movie, 24
getenv(), 393
getting started, xxv
GFO format. See formats
gift software, xxviii
gldebug, 467, 468
GLdebug.history, 469
gldebug utility, 468
global state, 358
glprof, 467
glprof utility, 469
glXChooseVisual(), 370
GLXgetconfig(), 370
GLXlink(), 370, 371

graph
defined, 518
directed acyclic, 30
stage timing. See stage timing graph

graphical user interface, 3
graphics

attributes, 333
load. See load management
modes, 333, 335
pipelines. See pipelines
state, 333
state elements, definition, 518
statistics, 432

See also statistics
values, 333, 340

graphics context, definition, 518
graphics libraries

database sorting, 458
input handling, 459, 460
IRIS GL, xxv
linking, 40
objects, 464
OpenGL, xxv
overview, 40-41
See also IRIS GL, OpenGL

graphics state, 32
ground, 32
grout, digital, 209
GUI, 3

H

Haeberli, Paul, 303
Haines, Eric, 292
half-spaces, 409
Halvorson, Mike, 286
Hamilton, Sir William Rowan, 404

539

handling flimmering, 131
Har’El, Zvi, 295
header files, 61, 483
heading, 95

defined, 518
headlights, 134
heap, 509

defined, 518
Hein, Piet, 276
Helman, James, xxix
help, 93, 131

64-bit compilation, 69
accessing the FTP site, xxxv
accessing the mailing list, xxxv
accessing the web page, xxxv
C++ argument passing, 488
channel groups, 105
channels, 92
clearing a channel, 177
compiling and linking, 67
constant frame rates, 22
database formats, 269
database paging, 220
default shared arena size, 387
display lists, 322
drawing a background, 231
drawing text, 138
finding files, 65
flimmering, 516
frame rates, 191
Friends of Performer, 28
geometry specification, 319
getting started, 3
graphics attributes, 333
inheriting transformations, 146
initializing IRIS Performer, 62
instancing, 120
interfacing C and C++ code, 489

IRIX 6.2 issues, 70
level of detail, 198
life-like character animation, 26
lighting, 133
main simulation loop, 65
morphing, 244
multiple pipelines, 74
multiprocess configuration, 75
node callback functions, 171
nodes, 111
overview of chapter contents, xxvii
performance tuning, 447
pipes, 73
sample code, 9
sample programs explained, 55
scene graphs, 155
scene graph structure, 163
shadows, 242
shared memory, 385
spotlights, 242
traversals, 153
understanding process models, 218
understanding statistics, 426
using libpr, 317
using the C++ API, 70
viewports, 93
view specification, 97
where to start, xxv
windows, 76, 79
writing a loader, 259

help compiler flags, 69
help process callback functions, 174
Henke, Joe, 504
high-resolution clocks, 34, 384
Hoffman, Wes, xxix
home page, xxxv
Hughes, John F., xxix
Hume, Andrew, 295

540

Index

I

I3DM modeler, 311
identity matrix, definition, 519
I/ITSEC, xxxiii
illegal C++ object creation examples, 487
image computation rate, 63
IMAGE Society, xxxiv
IM format. See formats
immediate-mode, 323
immediate mode rendering, definition, 519
Impact, xxv
importing databases. See databases
include files, 61, 483
indexed pfGeoSets, 320
Indigo2/Impact, xxv
industrial simulation, xxv
INF (infinite value) exception, 475
info-performer, xxxv
inheriting

attributes, 112
classes, 42
state, 156

initializing
C++ virtual functions, 493
IRIS Performer. See pfInit()
multiprocessing, 62
pfType system, 493
shared memory, 62

in-lining math functions, 466
input handling, 459, 460
inset views, 102
installing IRIS Performer, 3
instancing, 120

cloned, 121-123
definition, 519
shared, 120

inst images
performer_eoe, 68

intensity, of light points, 237
internal API, 482
interpolation, MIP-map, 465
intersections, 31

caching, 460
masks, 181, 417
performance, 460
pipeline, definition, 519
See also discriminator callbacks
tests

geometry sets, 416
planes, 416
point-volume, 412
segments, 415, 418
segment-volume, 415
triangles, 416
volume-volume, 412

traversals. See traversals
I/O

asynchronous, 391
handling, 459, 460

IRIS GL, xxv
documentation, xxx
functions

afunction(), 337
blendfunction(), 476
finish(), 434
fogvertex(), 350
lmcolor(), 449, 455, 478
lmdef(), 348, 349
mssize(), 369
pntsizef(), 236
RGBsize(), 369
shademodel(), 454
stencil(), 338
subtexload(), 345
swapbuffers(), 179
tevdef(), 342

541

texdef2d(), 342, 343
texgen(), 347
winopen(), 370
zbsize(), 369

library and application suffix, 40
porting from, 40

IRIS IM, 41, 91
IRIS Image Vision Library, 298
IRIS Inventor. See Open Inventor
IRIS Performer

and C++, 70
applications

compiling and linking, 67
setting up, 55
structure of, 58-61

bibliography, xxix-xxxiv
C++ API, 481

accessor functions, 481
header files, 483
member functions, 481
new, 486
object creation, 486
object deletion, 486
public structs, 482
reserved functions, 482
static class data, 495
subclassing, 490
using both C and C++ API, 488
using the C API with C++, 488

C API, 481
differences between C and C++
error-handling, 391
features, 16-18
FTP site, xxxv
getting started, xxvii
graphics libraries, 40
initializing

See pfInit()
installing, 3
introduction, xxv

libraries, 13, 29-38
mailing list, xxxv
naming conventions, 35
ordering documentation, xxx
release notes, 3
sample programs, 3
type system, 50, 482, 483, 491
web page, xxxv
why use IRIS Performer, xxv

IRIX kernel, 474
IRTP format. See formats

J

Johnson, Nelson, 279
Johnston, Eric, xxix
Jones, Michael, xxix
Jump, Dennis N., 279

K

Kalawsky, Roy S., xxxiii
Kaleido, polyhedron generator, 295
kernel, 474
keyframing

using quaternions for, 404
Kichury, John, 311

L

latency, 21
controlling, 457
defined, 519
total, 21
transport delay, 21
visual, 21

542

Index

latency-critical
definition, 519
updates, 457

layer geometry, 338
definition, 519

layering, internal software structure, 14
level of detail, 23

blended transitions, 208
cannonical channel resolution, 204
cannonical field of view, 204
defined, 520
stress management
switching, 130
use in optimization, 451

Lewis, Frank L., xxxii
libpf, 13

defined, 520
overview, 17

libpfdb, 251
libpfdu, 13, 251, 252

defined, 520
geometry builder, 36
overview, 18

libpfui, 14
drive model, 4
flight model, 6
overview, 18

libpfutil, 14, 251
defined, 520
overview, 18

libpr, 13
and libpf, 317
defined, 520
description, 317
graphics state, 333
overview, 16

libpr classes, 520
library names, 40
lighting

directional, 237
intensity, 237
light points, 132, 236
light sources, 133
overview, 348

light points, 32
definition, 520

Lightscape Technologies, 287, 499
Limber, Michael, xxix
linear algebra, 33
line segments, 414

See also pfSegSet data structures
linking IRIS Performer applications, 67
link libraries, 13
load, definition, 521
loaders, 259
loading databases, 37
loading files. See databases
load management, 31

level-of-detail scaling, 210-213
statistics, 430

local state, 358
locked phase, definition, 521
locks, allocating, 388
LOD (level of detail)

managing, 198-208
See also level of detail
See also load management

Loral Advanced Distributed Simulation, 300
LSA. See formats
LSB. See formats

M

macros, 466
PFADD_SCALED_VEC3, 398
PFADD_VEC3, 398

543

PFALMOST_EQUAL_MAT, 402
PFALMOST_EQUAL_VEC3, 399
PFCOMBINE_VEC3, 398
PFCONJ_QUAT, 405
PFCOPY_MAT, 401
PFCOPY_VEC3, 398
PFDISTANCE_PT3, 398
PFDIV_QUAT, 405
PFDOT_VEC3, 398
PFEQUAL_MAT, 402
PFEQUAL_VEC3, 399
PFGET_MAT_COL, 400
PFGET_MAT_COLVEC3, 400
PFGET_MAT_ROW, 400
PFGET_MAT_ROWVEC3, 400
PFLENGTH_QUAT, 405
PFLENGTH_VEC3, 398
PFMAKE_IDENT_MAT, 399
PFMAKE_SCALE_MAT, 400
PFMAKE_TRANS_MAT, 400
PFMATRIX, 489
PFMULT_QUAT, 405
PFNEGATE_VEC3, 398
PFQUAT, 489
PFSCALE_VEC3, 398
PFSET_MAT_COL, 400
PFSET_MAT_COLVEC3, 400
PFSET_MAT_ROW, 400
PFSET_MAT_ROWVEC3, 400
PFSET_VEC3, 398
PFSQR_DISTANCE_PT3, 398
PFSUB_VEC3, 398
PFVEC2, 489
PFVEC3, 489
PFVEC4, 489

magic carpet, 10
mailing list, xxxv
making databases, 36
malloc(), 474

See also memory, pfMalloc()

masks, intersection, 181, 417
materials, 349
math functions, 33
math routines, 397-421

in-lining, 466
matrices

4 by 4, 399
affine, 402
composition order, 402
manipulating, 352
stack functions, 407

matrix routines
transformations, 399

matrix. See transformation
measuring performance, 467-474
MEDIT format. See formats
Medit Productions

Medit, 252
Medit format, 37
Medit modeler, 15

member functions, 481
overloaded, 490

memory
allocating, 386-??, 474
multiprocessing, 226
shared. See shared memory

memory mapping, for shared arena, 387
Menger sponge, 38, 308
minification, 465
MIP-map interpolation functions, 465
mixed model programming, 79
mode changes, 454
modelers

AutoCAD, 277
Designer’s Workbench, 276
EasyScene, 276
EasyT, 276
I3DM, 311

544

Index

Imagine, 286
Kaleido, 295
Model, 293
ModelGen, 280
MultiGen, 280

models, 28, 58
Moller 400 aircar, 286
morph attribute, definition, 521
morphing, 26, 244

characters, 27
defined, 521
terrain, 26

Motif, 91
motion models

drive, 4
flight, 6

motion sickness. See simulator sickness
multibuffering, 495
Multi-Channel Option, 103
MultiGen OpenFlight format, 37
multiple channels, 97, 103, 105

rendering, 100
multiple hardware pipelines, 74
multiple inheritance

avoidance of, 45
definition, 521

multiple pipelines. See pipelines
multiprocessing

display-list generation, forcing, 216
functions, invoking during, 222-225
initializing, 62
memory management, 226-228
models of, 214-219

cull-overlap-draw, 216
timing diagrams, 218

order of calls, 218
pipelines, 174
pipelines, multiple, 217

uses for, 213
multisampling, 24, 476
multithreading, 217

defined, 521
mutual exclusion, definition, 522

N

Nagaoka, Isao, 504
naming conventions, for IRIS Performer, 35
NaN (Not a Number) exception, 475
Neider, Jackie, xxx
Newman, William M., xxix
NFF format. See formats
node draw mask, 170
nodes

callbacks, 171
defined, 522
overview, 30-31
pruning, 159
sequences, 128

nonblocking access, definition, 522
nonblocking file interface, 391
non-degrading priorities, definition, 522
notification levels for errors, 391
Nye, Adrian, xxxi

O

O’Reilly, Tim, xxxi
object derivation, 42
object type, 50
OBJ format. See formats
occlusion culling, definition, 522
ogldebug, 467, 468, 469

545

ogldebug utility, 468
Onyx/RealityEngine2, xxv
Onyx RealityEngine. See RealityEngine graphics
open(), 391
OpenGL, xxv

documentation, xxx
functions

glAlphaFunc(), 337
glBlendFunc(), 476
glColorMaterial(), 449, 455, 478
glFinish(), 434
glFog(), 350
glLight(), 348
glMaterial(), 349
glPointSize(), 236
glShadeModel(), 454
glStencilOp(), 338
glTexEnv(), 342
glTexGen(), 347
glTexImage2D(), 342, 343
glTexSubImage(), 345
glXCreateContext(), 371

library and application suffix, 40
overview, 40-41
porting to, 40

Open Inventor, 157, 256, 285
loader, C++ implementation, 491

opera lighting, 242
defined, 522

operator
delete, 486
new, 486

optimial pfGeoSet size, 450
optimization

database parameters, 463
ordered rendering, 24
organization of databases. See databases
orthogonal transformations, 402
orthonormal transformations, 402, 411

overload, definition, 523
overrun, definition, 523
overrun, frame, 195

P

parent, of a node, defined, 523
partitions, 144
pass-through data

defined, 523
passthrough data, 176, 228
paths

definition, 523
search paths, 65, 393
through a simulated scene, 8
through scene graph, 168

perfly, 3, 198, 254, 426, 433
definition, 524
demo program, 3

performance, 66
costs

lighting, 454
multisampling, 476

intersection, 460
measurement, 467-??, 467, ??-474
tuning

database structure, 461-466
graphics pipeline, 453-456
guidelines, specific, 453-466
optimizations, built-in, 449-452
overview, 447-448
process pipeline, 457-460
RealityEngine graphics, 476-478

Performance Co-Pilot, 467
Performer. See IRIS Performer
Performer Terrain Utilities, 298
pfBillboard, 140
pfBillboard nodes, 466

546

Index

pfBox, 408
pfChannel data structures. See channels
pfCylinder, 409
pfDataPool data structures, 388

multiprocessing with, 227
pfdBuilder, 36, 284
pfDCS nodes, 451
pfDispList data structures, 355
pfFog data structures, 234, 350

See also fog
pfFont, 328
pfFrameStats data structures, 425

See also pfStats data structures
pfGeode, 137
pfGeoSet, 320

and bounding volumes, 408
compilation, 323
connectivity, 323
draw modes, 322
intersection mask, 417
intersections with segments, 416
primitive types, 321

pfGeoSet data structures
adding to pfGeode nodes, 46, 137

pfGeoState data structures
applying, 359
attaching to pfGeoSets, 360
overview, 357-362

pf.h header file, 61
pfHit, 417
pfLayer, 131
pfLightPoint, 132
pfLightPoint nodes, 236
pfLightSource, 133
pfLOD nodes, 130
pfMatrix, 399
pfMatStack, 407

pfMorph, 26, 153
PFNFYLEVEL environment variable, 392
pfNode, 115, 119

and bounding volumes, 408
pfNode data structures, 112-119

attributes, 115
operations, 116

pfObject data structures, 42-51
actual type of, 50

pfPartition, 144
pfPath data structures, 168
PFPATH environment variable, 65, 393
pfPipe

configuration, 75
data structures. See pipelines

pfPlane, 409
pfScene nodes, 92
pfSCS, 126
pfSCS nodes, 451
pfSeg, 414

and bounding volumes, 408
pfSegSet

data structure, definition, 180
intersection with, 417

pfSequence, 128
pfSphere, 408
pfState data structures, 355
pfString, 330
pfSwitch, 127
pfTexEnv data structures. See texturing
pfTexture data structures. See texturing
pfVec2, 397
pfVec3, 397
pfVec4, 397
pfWindow functions, 41
phase, 63

defined, 524

547

PHD format. See formats
PHIGS, 285
Phong shading, 25
physics of flight, xxxii
physiognomy, clownish, 27
pipe, definition, 524
pipelines

functional stages, 73
multiple, 217, 385
multiprocessing, 174
overview, 73
setting up, 63

pipe windows, 79
pitch, 95

defined, 524
pixie, 467
pixie, 467
plant walkthroughs, xxv
point lights. See light points, 32
point-volume intersection tests, 412
Polya, George, xxxiii
POLY format. See formats
poor programming practices

array allocation of pfObjects, 486
popping

definition, 524
in LOD transitions, 207

porting graphics library calls, 40
positive rotation, 96
Pravata, Todd R., 300
precision clocks, 34
previous statistics, 443

See also statistics
pr.h header file, 61
primitives

attributes, 325
connectivity, 323

flat-shaded, 322
types, 321

printing, 31
process callbacks, 174

defined, 524
processor isolation, 457
process priority, 457
prof, 467
profiling

glprof, 469
prof, 467

program counter sampling, 467
projective texture, 26, 242

defined, 525
prune, definition, 525
pruning nodes, 159
PTU format. See formats
public structs, 482
punch through, definition, 525

Q

quaternion, 404
references, xxix
spherical linear interpolation, 404
use in C++ API, 482

R

radiosity, 499
rapid rendering, for on-air broadcast, xxv
REACT, 457, 467
read(), 391
RealityEngine, 24
RealityEngine graphics, xxv

pipelines, multiple, 217

548

Index

tuning, 476-478
real-time programming, 457
reference count, definition, 525
reference counting, 46
references, circular. See circular references
reflections, 25
refresh rate, 194
release notes, 3
rendering

modes, 335
multiple channels, 100
stages of, 214

rendering pipelines
definition, 525
See pipelines

rendering values, 340
reserved functions, 482
right hand rule, 96
right-hand rule, defined, 525
Rogers, David F., 302
Rohlf, John, xxix
Rolfe, J. M., xxxii
roll, 95

defined, 526
rotating geometry to track eyepoint, 140, 465
rotations

quaternion, 404
Rougelot, Rodney S., xxxii
routines

pfAccumulateStats(), 437
pfAddChan(), 104
pfAddChild(), 117, 221, 260
pfAddGSet(), 46, 138, 139
pfAddMat(), 401
pfAddScaledVec3(), 398
pfAddVec3(), 398
pfAllocChanData(), 176, 228, 458

pfAllocIsectData(), 228
pfAlmostEqualMat(), 402
pfAlmostEqualVec3(), 399
pfAlphaFunc(), 333, 337, 465, 466
pfAlphaFunction(), 477
pfAntialias(), 83, 340, 449, 456, 481
pfApp(), 225
pfAppFrame(), 157
pfApplyCtab(), 342, 350
pfApplyFog(), 342
pfApplyGState(), 334, 358, 359, 360, 361
pfApplyGStateTable(), 361
pfApplyHlight(), 342, 351
pfApplyLModel(), 341
pfApplyLPState(), 342
pfApplyMtl(), 224, 341
pfApplyTEnv(), 342, 343
pfApplyTex(), 224, 333, 341, 344, 345, 358, 459
pfApplyTGen(), 342, 347
pfAsynchDelete(), 222
pfAttachChan(), 105
pfAttachDPool(), 388
pfAttachPWin(), 81
pfAttachWin(), 372
pfAverageStats(), 437
pfBboardAxis(), 141
pfBboardMode(), 141
pfBboardPos(), 141
pfBeginSprite(), 353, 354
pfBoxAroundBoxes(), 410
pfBoxAroundPts(), 410
pfBoxAroundSpheres(), 410
pfBoxContainsBox(), 413
pfBoxContainsPt(), 412
pfBoxExtendByBox(), 410
pfBoxExtendByPt(), 410
pfBoxIsectSeg(), 415
pfBufferAddChild(), 221, 511
pfBufferClone(), 221, 511
pfBufferRemoveChild(), 221, 511
pfBuildPart(), 144, 145

549

pfCBufferChanged(), 390
pfCBufferConfig(), 389, 391
pfCBufferFrame(), 390, 391
pfChanBinOrder(), 167, 510
pfChanBinSort(), 167, 510
pfChanESky(), 93, 231, 236
pfChanFOV(), 94
pfChanGState(), 36, 450
pfChanLODAttr(), 194
pfChanLODLODStateIndex(), 203
pfChanLODStateList(), 203
pfChanNearFar(), 95
pfChanNodeIsectSegs(), 179
pfChanPick(), 185
pfChanScene(), 92, 125
pfChanShare(), 82, 106, 157
pfChanStatsMode(), 434
pfChanStress(), 193
pfChanStressFilter(), 193, 212
pfChanTravFunc(), 168, 176, 228
pfChanTravFuncs(), 231
pfChanTravMask(), 170
pfChanTravMode(), 162, 169, 170, 452, 462
pfChanView(), 95, 97
pfChanViewMat(), 97
pfChanViewOffsets(), 105
pfChanViewport(), 64
pfChooseFBConfig(), 370
pfChoosePWinFBConfig(), 83, 88
pfChooseWinFBConfig(), 369, 370
pfClear(), 224
pfClearChan(), 177, 231, 429, 455
pfClearStats(), 437
pfClipSeg(), 415, 416
pfClockMode(), 384
pfClockName(), 385
pfClone(), 221
pfCloseDList(), 355
pfCloseFile(), 391
pfClosePWin(), 88, 90
pfClosePWinGL(), 88

pfCloseWin(), 372
pfCloseWinGL(), 372
pfCombineVec3(), 398
pfConfig(), 59, 62, 76, 218, 220, 391, 474, 493, 495
pfConfigPWin(), 85, 90, 459
pfConfigStage(), 76, 459
pfConjQuat(), 405
pfCopy(), 45, 49, 328, 387, 441
pfCopyFStats(), 436, 441
pfCopyGSet(), 320
pfCopyGState(), 361
pfCopyMat(), 401
pfCopyStats(), 436, 437, 441
pfCopyVec3(), 398
pfCreateDPool(), 388
pfCreateFile(), 391
pfCrossVec3(), 398
pfCull(), 177, 216, 225, 428
pfCullFace(), 339, 449
pfCullPath(), 168
pfCullResult(), 172
pfCurCBufferIndex(), 389
pfCylAroundSegs(), 410, 460
pfCylContainsPt(), 412
pfdAddExtAlias(), 255
pfDBase(), 222, 225
pfDBaseFunc(), 220, 452
pfdBldrStateAttr(), 262
pfdBldrStateMode(), 262
pfdBldrStateVal(), 262
pfdCleanTree(), 261, 451, 462, 464
pfdConverterAttr(), 255
pfdConverterMode(), 255
pfdConverterVal(), 255
pfdConvertFrom(), 253
pfdConvertTo(), 253
pfDCSCoord(), 127
pfDCSMat(), 127
pfDCSRot(), 127
pfDCSScale(), 127
pfDCSTrans(), 127

550

Index

pfdDefaultGState(), 450
pfDecal(), 338, 358, 449, 456, 517
pfDelete(), 45, 46, 47, 222, 320, 328, 329, 361, 387,

389
datapools, 389

pfDetachChan(), 105
pfdExitConverter(), 255
pfdFreezeTransforms(), 451, 462, 464
pfdGetConverterAttr(), 255
pfdGetConverterMode(), 255
pfdGetConverterVal(), 255
pfdInitConverter(), 255, 493
pfDisable(), 224, 340
pfDistancePt3(), 398
pfDivQuat(), 405
pfdLoadBldrState(), 262
pfdLoadFile(), 14, 37, 59, 252, 253, 254, 257, 267,

393
pfdMakeSceneGState(), 125, 450
pfdMakeSharedScene(), 125, 450, 462
pfdOptimizeGStateList(), 125, 450
pfDotVec3(), 398
pfDPoolAlloc(), 388
pfDPoolAttachAddr(), 388
pfDPoolFind(), 388
pfDPoolLock(), 389
pfDPoolUnlock(), 389
pfdPopBldrState(), 262
pfdPushBldrState(), 262
pfDraw(), 177, 216, 225, 243, 429, 455, 459, 464
pfDrawChanStats(), 425, 434, 436, 452, 463, 467,

475
pfDrawDList(), 328, 355, 358
pfDrawFStats(), 425, 434, 436
pfDrawGSet(), 224, 321, 323, 327, 328, 358, 360
pfDrawString(), 224, 330, 332
pfdSaveBldrState(), 262
pfdStoreFIle(), 252
pfEarthSky(), 177
pfEnable(), 224, 340, 358
pfEnableStatsHw(), 434, 435, 438

pfEndSprite(), 353, 354
pfEqualMat(), 402
pfEqualVec3(), 399
pfESkyAttr(), 234
pfESkyColor(), 234
pfESkyFog(), 234
pfESkyMode(), 234, 476
pfExpQuat(), 405
pfFeature(), 456, 466
pfFilePath(), 65, 393
pfFindFile(), 393
pfFlatten(), 126, 221, 261, 451, 454, 462, 464
pfFlattenString(), 332
pfFlushState(), 360
pfFogRange(), 351
pfFogType(), 350
pfFontAttr(), 329
pfFontCharGSet(), 329
pfFontCharSpacing(), 329
pfFontMode(), 329
pfFrame(), 65, 79, 85, 157, 158, 174, 177, 193, 217,

220, 228, 391, 428, 452, 481
pfFrameRate(), 192, 193, 427
pfFree(), 386, 387
pfFrustContainsBox(), 413
pfFrustContainsCyl(), 413
pfFrustContainsPt(), 412
pfFrustContainsSphere(), 413
pfFSatsClass(), 436
pfFStatsAttr(), 442
pfFStatsClass(), 433, 439
pfFStatsCountNode(), 436, 438
pfFullXformPt3(), 398
pfGetArena(), 387
pfGetBboardAxis(), 141
pfGetBboardMode(), 141
pfGetBboardPos(), 141
pfGetChanFStats(), 425, 436
pfGetChanLoad(), 194
pfGetChanView(), 97
pfGetChanViewMat(), 97

551

pfGetChanViewOffsets, 97
pfGetCullResult(), 173
pfGetCurGState(), 361
pfGetCurWSConnection(), 371, 374
pfGetDCSMat(), 127
pfGetFilePath(), 393
pfGetFileStatus(), 391
pfGetGSet(), 138, 139
pfGetLayerBase(), 131
pfGetLayerDecal(), 131
pfGetLayerMode(), 131
pfGetLightAmbient(), 137
pfGetLightColor(), 137
pfGetLightPos(), 137
pfGetLODCenter(), 130
pfGetLODRange(), 130
pfGetLPointColor(), 132
pfGetLPointPos(), 133
pfGetLPointRot(), 132
pfGetLPointShape(), 133
pfGetLPointSize(), 132
pfGetMatCol(), 400
pfGetMatColVec3(), 400
pfGetMatRow(), 400
pfGetMatRowVec3(), 400
pfGetMStack(), 407
pfGetMStackDepth(), 407
pfGetMStackTop(), 407
pfGetNumChildren(), 117
pfGetNumGSets(), 138, 139
pfGetOrthoMatCoord(), 400
pfGetOrthoMatQuat(), 400
pfGetParent(), 168
pfGetParentCullResult(), 173
pfGetPartAttr(), 145
pfGetPartType(), 145
pfGetPipe(), 76
pfGetPipeScreen(), 76
pfGetPipeSize(), 77
pfGetPWinCurOriginSize(), 88
pfGetPWinCurScreenOriginSize(), 88

pfGetQuatRot(), 405
pfGetRef(), 47
pfGetSCSMat(), 126
pfGetSemaArena(), 227, 386, 388
pfgetSemaArena(), 356
pfGetSeqDuration(), 128
pfGetSeqFrame(), 128
pfGetSeqInterval(), 128
pfGetSeqMode(), 128
pfGetSeqTime(), 128
pfGetSharedArena(), 226, 325, 386
pfGetSize(), 387
pfGetSpotLightCone(), 137
pfGetSpotLightDir(), 137
pfGetSwitchVal(), 127
pfGetTime(), 34, 384
pfGetType(), 50
pfGetTypeName(), 51
pfGetVClock(), 385
pfGetWinCurOriginSize(), 367
pfGetWinCurScreenOriginSize(), 367
pfGetWinFBConfig(), 371
pfGetWinFBConfigData(), 370
pfGetWinGLCxt(), 371
pfGetWinOrigin(), 366
pfGetWinSize(), 366
pfGetWinWSDrawable(), 371
pfGetWinWSWindow(), 371
pfGSetAttr(), 46, 321, 325, 387
pfGSetBBox(), 321
pfGSetDrawMode(), 321, 322, 323, 328
pfGSetGState(), 46, 320, 360
pfGSetGStateIndex(), 320
pfGSetHlight(), 46, 321, 351
pfGSetIsectMask(), 186, 321, 417
pfGSetIsectSegs(), 321, 328, 416, 417, 418
pfGSetLineWidth(), 321
pfGSetNumPrims(), 320, 322
pfGSetPntSize(), 321
pfGSetPrimLengths(), 320, 322
pfGSetPrimType(), 320

552

Index

pfGStateAttr(), 46, 359, 361
pfGStateFuncs(), 361
pfGStateInherit(), 359, 361
pfGStateMode(), 336, 359, 361
pfGStateVal(), 340, 361
pfHalfSpaceContainsBox(), 413
pfHalfSpaceContainsCyl(), 413
pfHalfSpaceContainsPt(), 412
pfHalfSpaceContainsSphere(), 413
pfHalfSpaceIsectSeg(), 415
pfHlightColor(), 351
pfHlightLineWidth(), 351
pfHlightMode(), 351
pfHlightNormalLength(), 352
pfHlightPntSize(), 352
pfHyperpipe(), 223
pfIdleTex(), 344
pfIndex(), 428
pfInit(), 59, 62, 218, 226, 387, 493, 494, 509
pfInitArenas(), 386, 387, 388, 494, 509
pfInitCBuffer(), 391
pfInitClock(), 384
pfInitGfx(), 82, 370
pfInitState(), 355, 356
pfInitVClock(), 385
pfInsertChan(), 102, 105
pfInsertChild(), 117
pfInsertGSet(), 46, 138, 139
pfInvertAffMat(), 401
pfInvertFullMat(), 401
pfInvertIdentMat(), 402
pfInvertOrthoMat(), 401
pfInvertOrthoNMat(), 401
pfInvertQuat(), 405
pfIsectFunc(), 217, 228, 452
pfIsLightOn(), 137
pfIsOfType(), 50
pfIsTexLoaded(), 344
pfLayer(), 517
pfLayerBase(), 131
pfLayerDecal(), 131

pfLayerMode(), 131
pfLengthQuat(), 405
pfLengthVec3(), 398
pfLightAmbient(), 137
pfLightAtten(), 349
pfLightColor(), 137
pfLightOff(), 137
pfLightOn(), 137, 224, 341, 348
pfLightPos(), 137
pfLModelAtten(), 349
pfLoadMatrix(), 353
pfLoadMStack(), 407
pfLoadState(), 356
pfLoadTex(), 344
pfLoadTexFile(), 343
pfLODCenter(), 130
pfLODLODState(), 203
pfLODLODStateIndex(), 203
pfLODRange(), 130
pfLODTransition(), 207
pfLogQuat(), 405
pfLPointColor(), 132, 236
pfLPointPos(), 133, 237
pfLPointRot(), 132, 237
pfLPointShape(), 133, 237
pfLPointSize(), 132, 236
pfLSourceAttr(), 242, 244
pfLSourceColor(), 242
pfLSourceVal(), 243
pfMakeCoordMat(), 400
pfMakeEulerMat(), 399
pfMakeOrthoFrust(), 409
pfMakePerspFrust(), 409
pfMakePolarSeg(), 415
pfMakePtsSeg(), 414
pfMakeQuatMat(), 399
pfMakeRotMat(), 399
pfMakeRotOntoMat(), 399
pfMakeRotQuat(), 405
pfMakeScaleMat(), 400
pfMakeTransMat(), 400

553

pfMalloc(), 47, 227, 325, 386-??, 386, 387, 388, 461
pfMergeBuffer(), 221, 511
pfModelMat(), 354
pfMorphAttr(), 245
pfMoveChan(), 102, 105
pfMovePWin(), 90
pfMQueryFStats(), 438, 442
pfMQueryHit(), 180, 181, 417
pfMQueryStats(), 438, 442
pfMtlColorMode(), 349, 449, 455, 478
pfMultipipe(), 217, 218
pfMultiprocess(), 75, 214, 215, 217, 218, 220, 427,

452, 475, 481, 493
pfMultithread(), 217, 218
pfMultMat(), 401
pfMultMatrix(), 224, 353
pfMultQuat(), 405
pfNegateVec3(), 398
pfNewBboard(), 141
pfNewBuffer(), 220, 511
pfNewCBuffer(), 391
pfNewChan(), 92
pfNewCtab(), 350
pfNewDCS(), 127
pfNewDList(), 355
pfNewDPool(), 388
pfNewESky(), 234
pfNewFog(), 350
pfNewFont(), 329
pfNewFrust(), 409
pfNewGeode(), 138, 139
pfNewGSet(), 320
pfNewGState(), 361
pfNewHlight(), 351
pfNewLayer(), 131
pfNewLight(), 348
pfNewLModel(), 348
pfNewLOD(), 130
pfNewLPoint(), 132, 236
pfNewLSource(), 137
pfNewMaterial(), 349

pfNewMStack(), 407
pfNewMtl(), 349
pfNewPart(), 145
pfNewPath(), 168
pfNewPWin(), 79, 88
pfNewScene(), 125
pfNewSCS(), 126
pfNewSeq(), 128
pfNewState(), 356, 370
pfNewString(), 332
pfNewSwitch(), 127
pfNewTex(), 343
pfNewWin(), 364
pfNodeBSphere(), 124
pfNodeIsectSegs(), 179, 180, 181, 185, 217, 416, 460
pfNodeTravData(), 490
pfNodeTravFuncs(), 171, 490, 493, 496
pfNodeTravMask(), 170, 182, 186, 460
pfNormalizeVec3(), 398
pfNotify(), 386, 392
pfNotifyHandler(), 386, 392
pfNotifyLevel(), 392, 458, 475
pfOpenDList(), 355
pfOpenFile(), 391
pfOpenPWin(), 79, 85, 87, 88, 90
pfOpenScreen(), 366, 374
pfOpenStats(), 438
pfOpenWin(), 364, 367, 370, 372, 373
pfOpenWSConnection(), 374
pfOrthoXformCyl(), 411
pfOrthoXformFrust(), 411
pfOrthoXformPlane(), 411
pfOrthoXformSphere(), 411
pfOverride(), 335, 341, 357, 455
pfPartAttr(), 145
pfPassChanData(), 177, 228, 452, 458
pfPassIsectData(), 228
pfPhase(), 193, 195
pfPipeScreen(), 76
pfPlaneIsectSeg(), 416
pfPopMatrix(), 172, 353

554

Index

pfPopMStack(), 407
pfPopState(), 356
pfPositionSprite(), 354
pfPostMultMat(), 401
pfPostMultMStack(), 407
pfPostRotMat(), 401
pfPostRotMStack(), 407
pfPostScaleMat(), 401
pfPostScaleMStack(), 407
pfPostTransMat(), 401
pfPostTransMStack(), 407
pfPreMultMat(), 401
pfPreMultMStack(), 407
pfPreRotMat(), 401
pfPreRotMStack(), 407
pfPreScaleMat(), 401
pfPreTransMat(), 401
pfPrint(), 45, 321, 328, 440
pfPushIdentMatrix(), 353
pfPushMatrix(), 172, 353
pfPushMStack(), 407
pfPushState(), 224, 356
pfPWinConfigFunc(), 85, 87, 88, 89
pfPWinFBConfig(), 83, 88
pfPWinFBConfigAttrs(), 83, 88, 89
pfPWinFullScreen(), 79, 80, 88
pfPWinGLCxt(), 88
pfPWinIndex(), 83, 88
pfPWinMode(), 83, 88
pfPWinOriginSize(), 79, 87, 88
pfPWinScreen(), 81, 88
pfPWinShare(), 88
pfPWinType(), 81, 88
pfPWinWSDrawable(), 88, 90
pfPWinWSWindow(), 88, 90
pfQuatMeanTangent(), 405
pfQueryFeature(), 349, 449
pfQueryFStats(), 438, 442
pfQueryGSet(), 321
pfQueryHit(), 180, 181, 417, 418
pfQueryStats(), 438, 442

pfQuerySys(), 370
pfQueryWin(), 370, 371
pfReadFile(), 391
pfRef(), 47
pfReleaseDPool(), 389
pfRemoveChan(), 105
pfRemoveChild(), 117, 221
pfRemoveGSet(), 138, 139
pfReplaceGSet(), 46, 138, 139
pfResetDList(), 355
pfResetMStack(), 407
pfResetStats(), 437
pfRotate(), 353
pfScale(), 353
pfScaleVec3(), 398
pfSceneGState(), 125, 450
pfSeekFile(), 391
pfSegIsectPlane(), 416
pfSegIsectTri(), 416
pfSelectBuffer(), 220, 511
pfSelectState(), 356
pfSelectWin(), 366
pfSelectWSConnection(), 374
pfSeqDuration(), 128
pfSeqInterval(), 128
pfSeqMode(), 128
pfSeqTime(), 128
pfSetMatCol(), 400
pfSetMatColVec3(), 400
pfSetMatRow(), 400
pfSetMatRowVec3(), 400
pfSetVec3(), 398
pfShadeModel(), 337
pfSharedArenaSize(), 386, 388
pfSlerpQuat(), 405
pfSphereAroundBoxes(), 410
pfSphereAroundPts(), 410
pfSphereAroundSpheres(), 410
pfSphereContainsCyl(), 413
pfSphereContainsPt(), 412
pfSphereContainsSphere(), 413

555

pfSphereExtendByPt(), 410
pfSphereExtendBySphere(), 410
pfSphereIsectSeg(), 415
pfSpotLightCone(), 137
pfSpotLightDir(), 137
pfSpriteAxis(), 354
pfSpriteMode(), 354
pfSqrDistancePt3(), 398
pfSquadQuat(), 405
pfStageConfigFunc(), 76
pfStatsClass(), 433, 438
pfStatsClassMode(), 437, 438, 439
pfStatsCountGSet(), 438
pfStatsHwAttr(), 433, 438
pfStringColor(), 332
pfStringFont(), 330
pfStringMat(), 332
pfStringMode(), 332
pfSubloadTex(), 344
pfSubloadTexLevel(), 344
pfSubMat(), 401
pfSubVec3(), 398
pfSwitchVal(), 127
pfSync(), 63, 65, 157, 193, 428, 452
pfTevMode(), 449
pfTexDetail(), 46, 347
pfTexFilter(), 346, 449
pfTexFormat(), 344, 345, 477
pfTexFrame(), 345
pfTexImage(), 46, 343, 344
pfTexLevel(), 347
pfTexList(), 345
pfTexLoadImage(), 345
pfTexLoadMode(), 343, 345, 346
pfTexLoadOrigin(), 344
pfTexLoadSize(), 344
pfTexSpline(), 347
pfTGenMode(), 347
pfTGenPlane(), 348

pfTranslate(), 353
pfTransparency(), 224, 333, 336, 358, 449, 456
pfTransposeMat(), 401
pfTriIsectSeg(), 416
pfuCollideSetup(), 452
pfuDownloadTexList(), 459
pfuLockDownApp(), 457
pfuLockDownCull(), 457
pfuLockDownDraw(), 457
pfuLockDownProc(), 457
pfUnref(), 47
pfUnrefDelete(), 49
pfUpdatePart(), 144, 145
pfuPrioritizeProcs(), 457
pfUserData(), 45, 490
pfVClockSync(), 385
pfViewMat(), 354
pfWinFBConfig(), 371
pfWinFBconfig(), 369
pfWinFBConfigAttrs(), 368
pfWinFBConfigData(), 370, 371
pfWinFullScreen(), 80, 366
pfWinGLCxt(), 370, 371
pfWinIndex(), 372, 373
pfWinMode(), 373
pfWinOriginSize(), 366
pfWinOverlayWin(), 372
pfWinScreen(), 366
pfWinShare(), 372
pfWinStatsWin(), 372
pfWinType(), 365
pfWinWSDrawable(), 370, 371
pfWinWSWindow(), 371, 372, 373
pfWriteFile(), 391
pfXformBox(), 411
pfXformPt3(), 398
pfXformVec3(), 398

runway lights, 32
Ryan S-T airplane, 96

556

Index

S

S1000 data base API, 300
S1000 format. See formats
sample code, 9, 41, 58, 77, 89, 90, 91, 142, 157, 169,

205, 238, 245, 251, 254, 259, 343, 352, 374, 376, 377,
378, 381, 433, 434, 443, 457, 459, 460, 465, 470, 491,
524

sample data, 58
sample programs, 254, 524

perfly, 3
sample source directory, xxviii
sampling, program counter, 467
scan rate, 194
scene, definition, 526
scene complexity, definition, 526
scene graph, 64

defined, 526
state inheritance, 156

scene graphs, 155
scene hraph, 30
Schacter, Bruce J., xxxii, xxxiv
screen-door transparency, 337
SCS. See pfSCS nodes
search paths, 65, 393

definition, 526
segments, 414

See also pfSegSet
semaphores, allocating, 388
sense, definition of, 526
setmon(), 385
setrlimit(), 388
SGF format. See formats
SGO format. See formats
shading, 25

flat, 337
Gouraud, 337

shadow map, 242
defined, 526

shadows, 85, 242
shared arena, memory mapping, 387
shared instancing, 120

defined, 526
shared memory

allocation, 486
arenas, 386-388
datapools, 388
debugging and, 474
initializing, 62

sharing channel attributes, 105
sharpen texture, 465
shininess, definition, 527
Shoemake, Ken, xxix
siblings, of a node, defined, 527
Sierpinski sponge, 38, 251, 308
SIGGRAPH, xxix
Silicon Graphics Object format. See formats
SIMNET, 300
simple.c example program, 55
simulation based design, xxv
simulation loop, 65
simulator sickness, 21
single inheritance, 45
single-precision arithmetic, 466
skeleton animation, 28
sky, 32
Software Systems, 280
Soma cube puzzle, 276
sorting, 24

defined, 527
sorting for transparency, 337
source code, 9, 58, 77, 83, 89, 90, 91, 142, 157, 169, 205,

238, 245, 251, 254, 259, 343, 352, 374, 376, 377, 378,
381, 433, 434, 443, 457, 459, 460, 465, 470, 491, 524

557

sample code, 28
source code examples, xxviii
source code tour, 55
spacing

character, 328
definition, 527

sparkle, 24
spatial organization, 163

definition, 527
SPF format. See formats
spheres

as bounding volumes, 408
SPIE, xxxiv
SPONGE format. See formats
spotlights, 242
sprite, 353

defined, 527
sproc(), 226, 391, 460, 494
Sproull, Robert F., xxix
stack, 486
stage, definition, 527
stages of rendering, 214
stage timing graph, 426, 427

See also statistics
Staples, J. K., xxxii
STAR format. See formats
state

changes, 450
defined, 528
inheritance, 156
local and global, 358

state elements, 333
state management, 32
state specification

global, 358
local, 358

static coordinate systems. See pfSCS nodes

static data in C++ classes, 495
statistics, 6, 425-444

average, 443
CPU, 430
cumulative, 443
current, 443
data structures, 425, 443
displaying, 425, 426, 434
enabling, 436
fill, 432
graphics, 432
previous, 443
stage timing

defaults, 435
graph, 427

use in applications, 434
stencil decaling, 338

defined, 528
stereo display, 103
Stevens, Brian L., xxxii
STL format. See formats
stress, definition, 528
stress management, 31, 210
stress management. See load management
structures

libpfdu
pfdBuilder, 284

subclassing, 490
subgraph, definition, 528
subpixels, 24
subpixel Z-buffer, 24
SuperViewer, 311
SV format. See formats
switch nodes, 127
synchronization mode, 63
synchronization of frames, 195
system load management, 31

558

Index

T

Tarbouriech, Philippe, xxix
tearing, 338
testing

intersections. See intersections
visibility, 162

Texas Instruments, 300
texel, definition, 528
text, 138
texture

detail, 465
environment mapping, 25
magnification, 465
minification, 465
overview, 25-26
sharpen, 465

texture mapping, defined, 528
texturing

overview, 342
performance cost, 454, 476
RealityEngine graphics, 477
representing complex objects, 465

tile, defined, 528
time of day clockclocks

available types, 34
timing, 34
tokens

APP_CULL_DRAW, 467
PF_MAX_LIGHTS, 349
PF_OFF, 335, 336
PFAA_OFF, 335
PFAF_ALWAYS, 335
PFAF_GREATER, 337
PFBOUND_STATIC, 124
PFCF_BACK, 339
PFCF_BOTH, 339
PFCF_FRONT, 339
PFCF_OFF, 335, 339

PFCHAN_EARTHSKY, 106
PFCHAN_FOV, 106
PFCHAN_LOD, 106
PFCHAN_NEARFAR, 106
PFCHAN_SCENE, 106
PFCHAN_STRESS, 106
PFCHAN_SWAPBUFFERS, 106
PFCHAN_VIEW, 106
PFCHAN_VIEW_OFFSETS, 106
PFCULL_GSET, 169, 170
PFCULL_IGNORE_LSOURCES, 136, 170
PFCULL_SORT, 170, 452
PFCULL_VIEW, 169, 170
PFDECAL_BASE_STENCIL, 338, 339
PFDECAL_LAYER_STENCIL, 339
PFDECAL_OFF, 335, 339
PFDL_RING, 355
PFDRAW_OFF, 170
PFDRAW_ON, 170
PFEN_COLORTABLE, 341
PFEN_FOG, 340
PFEN_HIGHLIGHTING, 341
PFEN_LIGHTING, 340
PFEN_LPOINTSTATE, 341
PFEN_TEXGEN, 341
PFEN_TEXTURE, 340
PFEN_WIREFRAME, 341
PFES_BUFFER_CLEAR, 231
PFES_FAST, 234
PFES_GRND_FAR, 232
PFES_GRND_HT, 231
PFES_GRND_NEAR, 232
PFES_SKY, 235
PFES_SKY_CLEAR, 235
PFES_SKY_GRND, 231, 235
PFFB_ACCUM_ALPHA_SIZE, 369
PFFB_ACCUM_BLUE_SIZE, 369
PFFB_ACCUM_GREEN_SIZE, 369
PFFB_ACCUM_RED_SIZE, 369
PFFB_ALPHA_SIZE, 368
PFFB_AUX_BUFFER, 368

559

PFFB_BLUE_SIZE, 368
PFFB_BUFFER_SIZE, 368
PFFB_DEPTH_SIZE, 368
PFFB_DOUBLEBUFFER, 368
PFFB_GREEN_SIZE, 368
PFFB_RED_SIZE, 368
PFFB_RGBA, 368
PFFB_STENCIL, 369
PFFB_STEREO, 368
PFFB_USE_GL, 369
PFFOG_PIX_EXP, 350
PFFOG_PIX_EXP2, 350
PFFOG_PIX_LIN, 350
PFFOG_PIX_SPLINE, 350, 351
PFFOG_VTX_EXP, 350
PFFOG_VTX_EXP2, 350
PFFOG_VTX_LIN, 350
PFFONT_BBOX, 329
PFFONT_CHAR_SPACING, 329
PFFONT_CHAR_SPACING_FIXED, 329
PFFONT_CHAR_SPACING_VARIABLE, 329
PFFONT_GSTATE, 329
PFFONT_NAME, 329
PFFONT_NUM_CHARS, 329
PFFONT_RETURN_CHAR, 329
PFFONT_SPACING, 329
PFGS_COLOR4, 349
PFGS_COMPILE_GL, 323, 328
PFGS_FLAT_LINESTRIPS, 321, 327
PFGS_FLAT_TRISTRIPS, 322, 327
PFGS_FLATSHADE, 322
PFGS_LINES, 321
PFGS_LINESTRIPS, 321
PFGS_OFF, 327
PFGS_OVERALL, 327
PFGS_PER_PRIM, 327
PFGS_PER_VERTEX, 327
PFGS_POINTS, 237, 321
PFGS_POLYS, 322
PFGS_QUADS, 322, 417
PFGS_TRIS, 321, 417

PFGS_TRISTRIPS, 322, 417
PFGS_WIREFRAME, 322
PFHL_BBOX_FILL, 352
PFHL_BBOX_LINES, 352
PFHL_FILL, 352
PFHL_FILL_R, 352
PFHL_FILLPAT, 352
PFHL_FILLPAT2, 352
PFHL_FILLTEX, 352
PFHL_LINES, 351
PFHL_LINES_R, 352
PFHL_LINESPAT, 351
PFHL_LINESPAT2, 351
PFHL_NORMALS, 352
PFHL_POINTS, 352
PFHL_SKIP_BASE, 352
PFIS_ALL_IN, 172, 173, 413, 415
PFIS_FALSE, 172, 412, 413, 416
PFIS_MAYBE, 413, 415
PFIS_PICK_MASK, 185
PFIS_START_IN, 415
PFIS_TRUE, 412, 413, 415, 416
PFLS_INTENSITY, 244
PFLS_PROJ_FOG, 244
PFLS_PROJ_FRUSTUM, 242
PFLS_PROJ_TEX, 242
PFLS_SHADOW_SIZE, 243
PFMP_APP_CULL_DRAW, 215, 217, 224, 226, 428
PFMP_APP_CULLDRAW, 215, 216, 224
PFMP_APPCULL_DRAW, 215, 217
PFMP_APPCULLDRAW, 215, 216, 217, 475
PFMP_CULL_DL_DRAW, 215, 216, 450, 452
PFMP_CULLoDRAW, 215, 216, 427
PFMP_FORK_CULL, 215
PFMP_FORK_DBASE, 220
PFMP_FORK_DRAW, 214, 215, 216
PFMP_FORK_ISECT, 217
PFMPASS_NONTEX_SCENE, 243
PFMTL_CMODE_AD, 455
PFNFY_ALWAYS, 392
PFNFY_DEBUG, 254, 392, 475

560

Index

PFNFY_FATAL, 386, 392
PFNFY_FP_DEBUG, 392, 393
PFNFY_INFO, 392
PFNFY_NOTICE, 392
PFNFY_WARN, 392
PFPB_LEVEL, 368
PFPHASE_FLOAT, 195
PFPHASE_FREE_RUN, 195
PFPHASE_LIMIT, 195
PFPHASE_LOCK, 195
PFPK_M_ALL, 185
PFPK_M_NEAREST, 185
PFPROC_APP, 76
PFPROC_CULL, 76
PFPROC_DBASE, 76
PFPROC_DRAW, 76
PFPROC_ISECT, 76
PFPWIN_TYPE_NOPORT, 366
PFPWIN_TYPE_OVERLAY, 366
PFPWIN_TYPE_SHARE, 81
PFPWIN_TYPE_STATS, 81, 365
PFPWIN_TYPE_X, 81, 365
PFQFTR_LIGHT_ATTENUATION, 349
PFQFTR_LMODEL_ATTENUATION, 349
PFQHIT_FLAGS, 180, 181
PFQHIT_GSET, 181
PFQHIT_NAME, 181
PFQHIT_NODE, 181
PFQHIT_NORM, 181
PFQHIT_PATH, 181
PFQHIT_POINT, 180
PFQHIT_PRIM, 181
PFQHIT_SEG, 180
PFQHIT_SEGNUM, 180
PFQHIT_TRI, 181
PFQHIT_VERTS, 181
PFQHIT_XFORM, 181
PFSM_FLAT, 337
PFSM_GOURAUD, 335, 337
PFSORT_BACK_TO_FRONT, 168
PFSORT_BY_STATE, 167

PFSORT_END, 167
PFSORT_FRONT_TO_BACK, 167
PFSORT_NO_ORDER, 167
PFSORT_QUICK, 168
PFSORT_STATE_BGN, 167
PFSORT_STATE_END, 167
PFSPRITE_AXIAL_ROT, 354
PFSPRITE_MATRIX_THRESHOLD, 354
PFSPRITE_POINT_ROT_EYE, 354
PFSPRITE_POINT_ROT_WORLD, 354
PFSPRITE_ROT, 354
PFSTATE_ALPHAFUNC, 335
PFSTATE_ALPHAREF, 340
PFSTATE_ANTIALIAS, 335
PFSTATE_BACKMTL, 341
PFSTATE_COLORTABLE, 342
PFSTATE_CULLFACE, 335
PFSTATE_DECAL, 335
PFSTATE_ENCOLORTABLE, 336
PFSTATE_ENFOG, 336
PFSTATE_ENHIGHLIGHTING, 336
PFSTATE_ENLIGHTING, 335, 359
PFSTATE_ENLPOINTSTATE, 336
PFSTATE_ENTEXGEN, 336
PFSTATE_ENTEXTURE, 336, 359
PFSTATE_ENWIREFRAME, 336
PFSTATE_FOG, 342
PFSTATE_FRONTMTL, 341
PFSTATE_HIGHLIGHT, 342
PFSTATE_LIGHTMODEL, 341
PFSTATE_LIGHTS, 341
PFSTATE_LPOINTSTATE, 342
PFSTATE_SHADEMODEL, 335
PFSTATE_TEXENV, 342
PFSTATE_TEXGEN, 342
PFSTATE_TEXTURE, 341
PFSTATE_TRANSPARENCY, 333, 335
PFSTATS_ENGFX, 432
PFSTATS_ON, 432
PFSTR_CENTER, 332
PFSTR_CHAR, 332

561

PFSTR_CHAR_SIZE, 332
PFSTR_FIRST, 332
PFSTR_INT, 332
PFSTR_JUSTIFY, 332
PFSTR_LAST, 332
PFSTR_LEFT, 332
PFSTR_MIDDLE, 332
PFSTR_RIGHT, 332
PFSTR_SHORT, 332
PFSWITCH_OFF, 127
PFSWITCH_ON, 127
PFTEX_BASE_APPLY, 346
PFTEX_BASE_AUTO_REPLACE, 345
PFTEX_BASE_AUTO_SUBLOAD, 346
PFTEX_FAST, 346
PFTEX_FAST_DEFINE, superceeded, 345
PFTEX_LIST_APPLY, 346
PFTEX_LIST_AUTO_IDLE, 346
PFTEX_LIST_AUTO_SUBLOAD, 346
PFTEX_LOAD_BASE, 343, 346
PFTEX_LOAD_LIST, 346
PFTEX_SOURCE_FRAMEBUFFER, 344
PFTEX_SOURCE_IMAGE, 344
PFTEX_SOURCE_VIDEO, 344
PFTEX_SUBLOAD_FORMAT, 344
PFTG_EYE_PLANE, 348
PFTG_EYE_PLANE_IDENT, 348
PFTG_OBJECT_PLANE, 348
PFTG_SPHERE_MAP, 348
PFTR_BLEND_ALPHA, 337
PFTR_FAST, 336
PFTR_HIGH_QUALITY, 336
PFTR_MS_ALPHA, 337
PFTR_NO_OCCLUDE, 337
PFTR_OFF, 335, 336
PFTR_ON, 336
PFTRAV_CONT, 171, 184, 418
PFTRAV_CULL, 136, 169, 176
PFTRAV_DRAW, 176
PFTRAV_IS_BCYL, 186
PFTRAV_IS_CACHE, 452

PFTRAV_IS_CLIP_END, 184, 418
PFTRAV_IS_CLIP_START, 184, 418
PFTRAV_IS_CULL_BACK, 186
PFTRAV_IS_GEODE, 184
PFTRAV_IS_GSET, 184, 186, 417
PFTRAV_IS_IGNORE, 184, 418
PFTRAV_IS_NO_PART, 144
PFTRAV_IS_NODE, 186
PFTRAV_IS_PRIM, 184, 417
PFTRAV_MULTIPASS, 243
PFTRAV_PRUNE, 171, 172, 184, 418
PFTRAV_TERM, 171, 172, 184, 418
PFWIN_AUTO_RESIZE, 373
PFWIN_EXIT, 373
PFWIN_GFX_WIN, 83, 372
PFWIN_HAS_OVERLAY, 373
PFWIN_HAS_STATS, 373
PFWIN_NOBORDER, 373
PFWIN_ORIGIN_LL, 373
PFWIN_OVERLAY_WIN, 83, 372, 373
PFWIN_STATS_WIN, 83, 372
PFWIN_TYPE_NOPORT, 365, 366
PFWIN_TYPE_OVERLAY, 365
PFWIN_TYPE_STATS, 366

total animation, 28
total latency, 21
tour through simple.c, 55
transformations

affine, 402
definied, 529
inheritance through scene graph, 156
order of composition, 402
orthogonal, 402
orthonormal, 402, 411
specified by matrices, 399

transition distance, definition, 529
transparency, 24, 336, 476-477
transparency in textures, 25
transport delay, 21

562

Index

traversals, 31
activation, 154
application, 157
attributes, 154
culling, 153, 158-166

customizing, 158, 166
node pruning, 159
visibility testing, 159-163

database. See databases
definition, 529
draw, 153, 169
intersection, 153, 179-187
overview, 31

triangle meshing, 36
TRI format. See formats
trigger routine, definition, 529
Truxal, Carol, xxxiv
Tucker, Johanathan B., xxxiv
twinkle, 24
type, actual, of objects, 50
type system

multiprocessing implications, 494
typographical conventions, xxviii

U

UNC format. See formats
unidirectional lights, 237
unidirectional lights. See also lighting
University of Minnesota Geometry Center, 314
University of North Carolina, 314
updatable objects, 495
update rate, 63
updates, latency-critical, 457
up vector, defined, 529
user data, 45
user interfaces, 41

using te builder, 36
usinit(), 355
usnewlock(), 227, 387, 388
usnewsema(), 387, 388
ussetlock(), 227
usunsetlock(), 227

V

van Dam, Andries, xxix
van der Rohe, Ludwig Mies, 283
VClock. See video counter
vector routines, 397
vectors

2-component, 397
3-component, 397
4-component, 397

vehicly simulation, xxxii
video counter, 34, 385
video field, 427
video retrace period, 63
video scan rate, 194
video splitting, 103
view

matrix, 97
offset, 97

viewing angles, 95
viewing frustum

definition, 529
intersection with, 162

viewing offsets, 97
viewing parameters, 93, 95
viewpoint, 95

definition, 529
viewports, 93

defined, 530

563

views, inset, 102
view volume visualization, definition, 529
virtual addresses and multiprocessing, 494
virtual functions, address space issues, 494
virtual reality, xxv, 13, 16
virtual reality markup language, 157

See also VRML, 157
virtual set, xxv
visibility culling, 159-163
visual, defined, 530
visual latency, 21
visual priority. See coplanar geometry
visual programming, 16
visual simulation, xxv, 13

overview, 19-28
visual simulation, origins of, xxxii
volumes

bounding, 123-124
boxes, 408
creating, 410
cylinders, 408, 460
dynamic, 123
extending, 410
hierarchical, 159
intersection testing, 412
spheres, 408
visibility testing, 162

boxes, axially aligned, 408
cylinders, 409
geometric, 408
half-spaces, 409
intersections. See intersections
primitives, 408
spheres, 408
transforming, 411

VRML, 157, 255, 285, 287

W

Wavefront, 293
OBJ format, 37

widget, defined, 530
windows, 41, 76, 79
WindRiver, 467
WindView, 467
wireframe, 322
Woo, Mason, xxx
wood, balsa, 96
WorkShop, 467
world’s fair, 1929, Barcelona Spain, 282
Wright, Frank Lloyd, 507
write(), 391
www.sgi.com, xxxv

X

XCreateWindow(), 371
X windows, 91
X window system, xxxi, 41

Y

Yale Compact Star Chart, 308
Yellowstone National Park, 298

Z

z-fighting, 338

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-1680-030.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 415-965-0964

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

