
Digital Media
Programming Guide

Document Number 007-1799-050

Digital Media Programming Guide
Document Number 007-1799-050

CONTRIBUTORS

Written by Patricia Creek and Don Moccia
Illustrated by Dany Galgani and Martha Levine
Engineering author contributions by Bent Hagemark, Chris Pirazzi, Angela Lai, Scott

Porter, Doug Scott, Mike Travis, Mark Segal, Bryan James, Doug Cook, Nelson
Bolyard, Candace Obert, Eric Bloch, Brian Beach, Dan Kinney, and Mike Portuesi

© 1996, Silicon Graphics, Inc.— All Rights Reserved
The contents of this document may not be copied or duplicated in any form, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

Silicon Graphics, Indigo, IRIS, OpenGL, and the Silicon Graphics logo are registered
trademarks and CHALLENGE, Cosmo Compress, Galileo Video, GL, Graphics
Library, Image Vision Library, IndigoVideo, Indigo2, Indigo2 Video, Indy, Indy Cam,
Indy Video, IRIS GL, IRIS Graphics Library, IRIS Indigo, IRIS InSight, IRIX, O2,
Personal IRIS, Sirius Video, and VINO are trademarks of Silicon Graphics, Inc. Aware
and the Aware logo are registered trademarks and MultiRate is a trademark of
Aware, Inc. Betacam and Sony are registered trademarks and Hi-8mm is a trademark
of Sony Corporation. Cinepak is a registered trademark of Radius, Inc. Indeo is a
registered trademark of Intel Corporation. Macintosh is a registered trademark and
AppleTalk and QuickTime are trademarks of Apple Computer, Inc. MII is a
trademark of Panasonic, Inc. Microsoft is a registered trademark of Microsoft, Inc.
Prosonus is a registered trademark of Prosonus. MIPS and R3000 are registered
trademarks of MIPS Technologies, Inc. Open Software Foundation is a registered
trademark and OSF/Motif is a trademark of the Open Systems Foundation. S-VHS
is a trademark of JVC, Inc. UNIX is a trademark of AT&T Bell Labs. X Window
System is a trademark of Massachusetts Institute of Technology.

iii

Contents

List of Examples ix

List of Figures xi

List of Tables xiii

About This Guide xv
What This Guide Contains xv
How to Use This Guide xvi

Where to Start xvi
Style Conventions xvi

How to Use the Sample Programs xvii
Suggestions for Further Reading xvii

References for Using Digital Media with Other Libraries xvii
References for Adding a User Interface to Your Program xviii
Technical References and Standards xviii

1. Introduction to the Digital Media Libraries 1
Digital Media Data Specification Facilities 2
Digital Media I/O Facilities 2

Audio I/O 3
Video I/O 3
MIDI I/O 4

Digital Media Live Data Transport Facilities 4
Digital Media File Operation and Conversion Facilities 4

Audio Files 5
Movie Files 5

Digital Media Data Conversion Facilities 6
Digital Media Playback Facilities 6

Movies 6

iv

Contents

2. Digital Media Essentials 9
About Digital Media 9

Sampling and Quantization 9
Parameters for Specifying Data Attributes 10

Digital Image Essentials 11
Color Concepts 11
Video Concepts 16

Digital Image Attributes 25
Image Dimensions 26
Pixel Aspect Ratio 26
Image Rate 27
Image Compression 27
Image Quality 34
Bitrate 35
Keyframe/Reference Frame Distance 35
Image Orientation 36
Image Interlacing 36
Image Layout 38
Image Pixel Attributes 38
Image Sample Rate 45

Digital Audio Essentials 46
Digital Audio Basics 46
Digital Audio Attributes and Parameters 46
Audio Channels 46
Audio Sample Rate 47
Audio Compression Scheme 48
Audio Sample Format 48
PCM Mapping 48
Audio Sample Width 49

Contents

v

Digital Media Synchronization Essentials 51
Timecodes 51
Unadjusted System Time and Media Stream Count 53
Synchronization and UST/MSC 54
Counting Video Fields with MSCs 56

Digital Media File Format Essentials 57
Image Containers 57
Audio Containers 57
Movie Containers 58

3. Digital Media Data Types and Parameter Lists 59
Digital Media Data Type Definitions 59

Digital Media Error Handling 59
Digital Media Parameter Types 61
Digital Media Parameter Lists 62

Creating and Destroying DMparams Lists 63
Setting and Getting Individual Parameter Values 65
Setting Parameter Defaults 67
Manipulating DMparams Lists 72
Compiling and Linking a Digital Media Library Application 77
Debugging a Digital Media Library Application 77

vi

Contents

4. Digital Media I/O 79
Video I/O Concepts 79

Devices 79
Nodes 80
Paths 82
Controls 85
Getting Video Source Controls 88
Setting Memory Drain Node Controls 90
Setting Video Capture Region Controls 93
 Signal Quality Controls 98
Video Events 100
Video I/O Model 101
Freezing Video 102

Audio I/O Concepts 110
Audio Library Programming Model 110
Audio Ports 111
Using ALconfig Structures to Configure ALports 111
Audio Sample Queues 114
Reading and Writing Audio Data 117

5. Digital Media Buffers 121
About Digital Media Buffers 121
DMbuffer Live Data Transport Paths 123

Memory to Video 125
Video to Memory 126
Memory to Image Converter 127
Image Converter to Memory 128
Memory to Movie File 129
Movie File to Memory 130
Memory to OpenGL 131
OpenGL to Memory 131

A Detailed Look at Recording Compressed Live Video to Disk 132

Contents

vii

6. Digital Media Data Conversion 137
About Digital Media Data Conversion 137
Using The Digital Media Converters 138
Image Data Conversion 139

The Digital Media Image Conversion Library 139
The Digital Media Color Space Library 155
Summary of the Digital Media Image Conversion Library 157

Audio Data Conversion 160
The Digital Media Audio Conversion Library 160
Summary of the Digital Media Audio Conversion Library 171

A. Digital Media Conversion Libraries 173
The Color Space Library 173
The DVI Audio Compression Library 177
The G.711 Audio Compression Library 179
The G.722 Audio Compression Library 181
The G.726 Audio Compression Library 183
The G.728 Audio Compression Library 185
The GSM Audio Compression Library 187
The MPEG-1 Audio Compression Library 189
The Audio Rate Conversion Library 192

Index 193

ix

List of Examples

Example 3-1 Creating and Destroying a DMparams List 64
Example 3-2 Setting Image Defaults 69
Example 3-3 Setting Audio Defaults 71
Example 3-4 Setting Individual Parameter Values 71
Example 3-5 Printing the Contents of a Digital Media DMparams List 76
Example 4-1 Configuring and Opening an ALport 113
Example 4-2 Opening Input and Output ALports 116

xi

List of Figures

Figure 1-1 Silicon Graphics Digital Media Programming Environment 1
Figure 2-1 Plot Simulating Human Visual Perception of Brightness vs. Color 13
Figure 2-2 Hue and Saturation 14
Figure 2-3 10 Pictures from a Film Camera Taken at 60 Pictures Per Second 19
Figure 2-4 10 Fields from a 60 Field Per Second Video 19
Figure 2-5 One Common Misinterpretation of Video Fields 20
Figure 2-6 Video is not Pairs of Fields of Identical Images with Alternate Scanlines

20
Figure 2-7 MPEG I, P, and B frames 30
Figure 2-8 Audio Samples and Frames 47
Figure 4-1 Video Image Parameter Controls 93
Figure 4-2 Tearing 103
Figure 4-3 Line Doubling on a Single Field 103
Figure 4-4 Interpolating Alternate Scan Lines from Adjacent Fields 104
Figure 4-5 Dropped Frame 107
Figure 4-6 Field Duplication 108
Figure 4-7 Field Replacement 108
Figure 5-1 DMbuffer Live Data Transport Paths 124
Figure 5-2 Compression Path Using DMbuffers 132
Figure 6-1 The Conversion Pipeline 139

xiii

List of Tables

Table 2-1 Pixel Packing Formats 41
Table 2-2 DM Pixel Packing Formats 43
Table 2-3 Image Data Types 44
Table 2-4 Pixel Interleaving Examples 45
Table 2-5 Audio Parameters 50
Table 2-6 Methods for Obtaining Unadjusted System Time 54
Table 2-7 Methods for Using UST/MSC 56
Table 3-1 Digital Media Parameter Data Types 61
Table 3-2 DM Library Routines for Setting Parameter Values 65
Table 3-3 DM Library Routines for Getting Parameter Values 66
Table 3-4 Image Defaults 68
Table 3-5 Audio Defaults 70
Table 3-6 Routines for Manipulating DMparams Lists and Entries 72
Table 4-1 Default Video Source 87
Table 4-2 Summary of VL Controls 99
Table 4-3 VL Event Masks 100
Table 4-4 Input Conversions for alReadFrames() 118
Table 4-5 Output Conversions for alWriteFrames() 119
Table 6-1 Digital Media Image Converters 140
Table 6-2 The Digital Media Image Conversion Library API 157
Table 6-3 Digital Media Audio Codecs 160
Table 6-4 The Digital Media Audio Conversion API 171
Table A-1 The Color Space Library API 173
Table A-2 The DVI Audio Library API 177
Table A-3 The G.711 Audio Compression Library API 179
Table A-4 The G.722 Audio Compression Library API 181
Table A-5 The G.726 Audio Compression Library API 183

xiv

List of Tables

Table A-6 The G.728 Audio Compression Library API 185
Table A-7 The GSM Audio Compression Library API 187
Table A-8 The MPEG-1 Audio Compression Library API 189
Table A-9 The Audio Rate Conversion Library API 192

xv

About This Guide

The Digital Media Programming Guide describes the Silicon Graphics® digital media
development environment (DMdev) software. The DMdev is a family of libraries that
provides application program interfaces (APIs) for digital media I/O, file operations,
playback, and conversions. This guide describes the libraries and gives technical
information on their design and proper use. A companion guide, Digital Media
Programmer’s Examples, contains code samples based on the DMdev to assist your
development efforts. It can viewed online using the IRIS InSight™ viewer.

Silicon Graphics also supplies end user desktop media tools, which use the DMdev.
Control panels, such as the Video Panel and the Audio Control Panel, are described in
the Media Control Panels User’s Guide. The Media Tools User’s Guide describes a suite of end
user tools for capturing, editing, recording, playing, compressing, and converting audio
data and images. You can view both documents from the InSight viewer.

What This Guide Contains

The Digital Media Programming Guide comprises the following sections:

Chapter 1, “Introduction to the Digital Media Libraries” gives an overview of the digital
media development environment.

Chapter 2, “Digital Media Essentials” provides a foundation for understanding digital
media data characteristics. It reviews how data is represented digitally and then explains
how to express data attributes in the digital media libraries.

Chapter 3, “Digital Media Data Types and Parameter Lists” explains how to use the
digital media data structures that facilitate data specification and setting, getting, and
passing parameters.

Chapter 4, “Digital Media I/O” describes using the digital media library routines that
facilitate real-time input and output between live media devices.

xvi

About This Guide

Chapter 5, “Digital Media Buffers” explains the Digital Media buffers (DMbuffers)
real-time visual data transport facility. The facility establishes a unified approach to
providing data flow between live video devices.

Chapter 6, “Digital Media Data Conversion” tells how to use the digital media
conversion libraries to implement data format conversion in your application.

Appendix A, “Digital Media Conversion Libraries” contains the APIs of the individual
image and audio conversion libraries. These libraries are not discussed in detail, but
reference pages to the member functions are cited.

How to Use This Guide

This guide is written for C language programmers that have some knowledge of digital
media concepts. Readers unfamiliar with the basic concepts can refer to Chapter 2,
“Digital Media Essentials,” or to the “Suggestions for Further Reading” listed below.

Where to Start

If you’re not sure which library to use for a certain application, read Chapter 1,
“Introduction to the Digital Media Libraries,” to get a brief overview of the uses and
features of each library.

If you want to find some code that does what you want your application to do, browse
through the Digital Media Programmer’s Examples online book to locate a sample program
that performs a particular task.

Style Conventions

These style conventions are used in this guide:

Bold functions, routines

Italics arguments, variables, commands, program and file names, book titles,
and emphasis

Courier function prototypes, sample code

Courier Bold user input entered from the keyboard

About This Guide

xvii

How to Use the Sample Programs

Code fragments and complete sample programs are used throughout this guide to
demonstrate programming concepts. Source code for the sample programs is provided
in the /usr/share/src/dmedia directory, which is further organized in directories according
to topic.

README files in each directory provide descriptions of the sample programs and
instructions for compiling and running them. You must have the IRIS Development
Option, dev, and the C language software, c, loaded before you can compile the sample
programs. Use the versions command to find out which software is loaded on your
system. See the release notes for each library for additional system software
requirements for those libraries.

You should copy any program that you intend to modify to your home directory before
making any changes.

Suggestions for Further Reading

This section lists references containing information on programming topics beyond the
scope of this guide, which you may find helpful for developing your digital media
application. Additional reference materials are listed in the introductory chapters for
each library.

References for Using Digital Media with Other Libraries

If you are planning to integrate your digital media application with calls from the
OpenGL™, IRIS Graphics Library™ (GL) or X Window System™ application, you may
want to consult the following manuals:

• OpenGL Programming Guide, by Jackie Neider, Tom Davis, and Mason Woo,
Addison-Wesley, 1994

• OpenGL Reference Manual, by Jackie Neider, Tom Davis, and Mason Woo,
Addison-Wesley, 1994

• Graphics Library Programming Guide, by Patricia McLendon Creek, Silicon Graphics,
1992

xviii

About This Guide

• Graphics Library Programming Tools and Techniques, by Patricia McLendon Creek and
Ken Jones, Silicon Graphics, 1993

• IRIS IM Programming Notes, by Patricia McLendon Creek and Ken Jones, Silicon
Graphics, 1993

• The X Window System, Volume 1: Xlib Programming Manual, O’Reilly and Associates,
1990

• The X Window System, Volume 4: X Toolkit Intrinsics, Motif Edition, O’Reilly and
Associates, 1990

• X Window System: The Complete Reference to Xlib, X Protocol, ICCCM, XLFD, Third
Edition, by Robert W. Scheifler and James Gettys, Digital Press, 1992

• X Window System Toolkit: The Complete Programmer’s Guide and Specification, Paul J.
Asente and Ralph R. Swick, Digital Press, 1992

References for Adding a User Interface to Your Program

The IRIS Digital Media don’t impose any particular user interface (UI), so you can use
any graphical UI toolkit, such as IRIS IM™ to build your interface. IRIS IM is Silicon
Graphics’ port of the industry-standard OSF/Motif™ software. Consult these OSF/Motif
manuals for more information:

• OSF/Motif Programmer’s Guide, Revision 1.2, Prentice-Hall, 1993

• OSF/Motif Programmer’s Reference, Revision 1.2, Prentice-Hall, 1992

• OSF/Motif Style Guide, Revision 1.2, Prentice-Hall, 1992

Technical References and Standards

The references listed below are some of the more important standards mentioned
throughout this book. For more complete listings, you can check the Web sites of
organizations such as the Society of Motion Picture & Television Engineers at
http://www.smpte.org/, and the International Telecommunication Union at
http://www.itu.ch/index.html.

SMPTE Standard for Television—Composite Analog Video Signal—NTSC for Studio
Applications, SMPTE 170M-1994, The Society of Motion Picture and Television Engineers

About This Guide

xix

SMPTE Standard for Television—10-Bit 4:2:2 Component and 4fsc NTSC Composite Digital
Signals—Serial Digital Interface, SMPTE 259M-1993, The Society of Motion Picture and
Television Engineers

SMPTE Standard for Television—Component Video Signal 4:2:2 - Bit-Parallel Digital Interface,
SMPTE 125M-1995, The Society of Motion Picture and Television Engineers

4:2:2 Digital Video: Background and Implementation Revised Edition, The Society of Motion
Picture and Television Engineers, l995

Recommendation ITU-R BT.601-5—Studio Encoding Parameters of Digital Television for
Standard 4:3 and Wide-Screen 16:9 Aspect Ratios, The International Telecommunication
Union, 1995

JPEG Still Image Data Compression Standard, by William B. Pennebaker and Joan L.
Mitchell, Van Nostrand Reinhold, 1993

1

Chapter 1

1. Introduction to the Digital Media Libraries

The digital media development environment (DMdev) is a family of libraries that
provides application program interfaces (APIs) for digital media I/O, file operations,
playback, and conversions.

Figure 1-1 shows how the libraries in the digital media development environment are
related to each other and to other development libraries. Lines in Figure 1-1 indicate
where some libraries make internal calls to other libraries.

Figure 1-1 Silicon Graphics Digital Media Programming Environment

 MIDI controlled
 software
 synthesis

DM File Operation API’s

Audio File Library

container formats

 OpenGL

3D / 2D rendering

image processing

DM Universal System
 Timer

DM Video I/O
 API

Video Library

digital video I/O
 device control

DM Audio I/O
 API
Audio Library

digital audio I/O
 device control

DM MIDI I/O
 API
MIDI Library

serial port I/O
interprocess
 streams

video texture maps

 DM Buffer Mechanism

device modulesdevice modules MIDI kernel
 module

global high−res clock
timestamps all media types

shared memory buffers
for streaming image data

 General MIDI
 sound set

Movie File Library
read write read write edit

AIFF / AIFF−C
WAVE

Sound Des II
Sun / NeXT

BICSF
VOC

IFF 8SVX

MPEG−1 audio

QuickTime

AVI

SGI movie

MPEG−1
 system
 video

SGI Movie codecs

QuickTime codecs

DM Image Conversion
 API

 Digital Media Library dmIC

DM Audio Conversion
 API

Digital Media Library dmAC
 audio
codecs / converters

 image
 codecs / converters

MPEG−1 audio MPEG−1 video

JPEG

Cinepak

Indeo

DVI audio
GSM
G.728
G.726
G.722
G.711

color space
 converters

sample rate
 converters

sample format
 converters

container formats

AVR
SampleVision

SoundFont 2

DM Playback API
 Movie Playback Library

2

Chapter 1: Introduction to the Digital Media Libraries

Together, the family of Digital Media Libraries encompass facilities for data format
description, live audio and video I/O with built-in conversion capabilities, file
operations such as reading, writing, and editing multimedia files, data conversion and
compression, and playback. The following sections describe these facilities.

Digital Media Data Specification Facilities

What distinguishes the Digital Media Libraries from other multimedia developer
software is the ability to accept any data regardless of format. You aren’t limited to
working with a particular format or the constraints it imposes. One of the things that
makes this possible are the extensive data specification facilities offered by the DMdev.

The DM Library, libdmedia.so, provides global data type and parameter definitions for
specifying digital media data attributes. You can use DM parameters to describe data
held in memory, passed among the Digital Media Libraries, and imported and exported
externally. File formats for on-disk data are described in “Digital Media File Operation
and Conversion Facilities.”

The DM Library features

• type definitions for digital media

• routines for creating and configuring digital media parameters

• routines for creating and configuring digital media buffers

• a debugging version of the library that lets you check for proper usage

See Chapter 3, “Digital Media Data Types and Parameter Lists,” for a complete
explanation of using the DM data types and parameters.

Digital Media I/O Facilities

The Audio Library (AL), the Video Library (VL), and the MIDI Library enable real-time
I/O by providing the interface between your application program, the workstation CPU,
and external devices. An overview of the digital media I/O capabilities follows, and
Chapter 4, “Digital Media I/O,” provides a complete explanation of using the digital
media I/O APIs.

Digital Media I/O Facilities

3

Audio I/O

The AL provides a device-independent C language API for programming audio I/O on
all Silicon Graphics workstations. It provides routines for configuring the audio
hardware, managing audio I/O between the application program and the audio
hardware, specifying attributes of digital audio data, and facilitating real-time
programming.

Use the AL for

• capturing audio from your workstation’s microphone, line-level inputs, or a digital
audio input source

• playing audio to your workstation’s internal speaker, line-level outputs,
headphones, or a digital output

• managing audio I/O between multiple audio devices

• adding audio to any application program

Video I/O

The VL provides an API for transporting live video on Silicon Graphics workstations
equipped with on-board video and video options. The VL enables live video flow into a
program.

Use the VL for

• displaying live video input in an onscreen window

• capturing video from your workstation’s camera input, S-video input, composite
analog inputs, or a digital input port into program memory

• playing video from program memory to your workstation’s analog or digital video
output

• combining video with computer graphics

Note: The range of video and VL capabilities you can use depends on the capabilities of
your workstation and the video options installed in it.

4

Chapter 1: Introduction to the Digital Media Libraries

MIDI I/O

The MIDI Library provides an API for sending, receiving, processing, and synthesizing
musical instrument digital interface (MIDI) messages through the serial interface of
Silicon Graphics workstations.

The MIDI Library enables

• content creation through an API to sound synthesizer and sequencer tools

• live interaction through a virtual 3D keyboard

Digital Media Live Data Transport Facilities

The digital media buffers live data transport system provides data types and operations
for sharing and exchanging time-sensitive visual data in real time between video I/O
devices, compression devices, graphics rendering and texturing operations, and the host
processor(s). It includes

• Digital media buffers (DMbuffers) for carrying digital representations of images

• Digital media buffer pools (DMbufferpools) for reserving, apportioning, and
allocating dedicated system and physical memory under direct application control
for live visual data processing/transport devices

See Chapter 4, “Digital Media I/O,” for a complete explanation of using DMbuffers.

Digital Media File Operation and Conversion Facilities

Both the Movie Library and the Audio File Library provide file operations (identifying,
opening, reading, writing, and editing files). These routines are capable of supporting a
variety of file formats. Note the distinction between a file or container format, which is
associated with media stored on disk (or tape), and the data format, which is a collection
of attributes that describes the data. File format information is typically contained in a
header that immediately precedes the data.

Digital Media File Operation and Conversion Facilities

5

Audio Files

The Audio File Library, libaudiofile, provides a uniform C language API for indentifying,
opening, reading, writing, and converting digital audio files of a variety of storage
formats.

Use the Audio File Library for

• identifying audio files (multimedia file recognition)

• opening and creating audio files

• seeking, reading, and writing audio files

• setting and retrieving information in audio file headers

• setting and retrieving characteristics of the audio file or the data it contains

• converting audio file formats

Movie Files

The Movie File Library, libmoviefile, provides a file format-independent C language API
for reading, writing, editing, and playing movies on Silicon Graphics workstations.

Use the Movie Library for:

• reading, writing, and editing movie files

• converting movie files from one container format to another

• compressing and decompressing movie files

• supporting movies embedded in applications programs

The Movie File Library provides a uniform interface to movies of various formats and
lets you convert movies from one format to another. Currently, the Movie Library
supports the following file formats:

• Apple® Computer QuickTime™ movie format, including uncompressed data, and
JPEG, Indeo®, Cinepak®, Apple Animation, and Apple Video, compression

• Microsoft® audio-video interleaved (AVI) format, including uncompressed data,
and JPEG, Indeo, and Cinepak compression

• MPEG-1 systems and video bitstreams

6

Chapter 1: Introduction to the Digital Media Libraries

• Silicon Graphics movie format

Note: The Digital Media Libraries do not provide a QuickTime API, rather, they provide
a file format-independent API that supports QuickTime and several other formats.

Note: Some QuickTime track types are not supported by the Movie File Library.

Digital Media Data Conversion Facilities

The Digital Media Library, libdmedia, provides data conversion support for real-time I/O
and file operations. Many of the file operations and real-time I/O routines perform
automatic data format conversions, by calling these lower level converter APIs, which
are also accessible directly from your application:

• dmAC, an audio conversion API that performs audio compression and
decompression and audio sample rate conversion

• dmIC, an image conversion API that performs image compression and
decompression and color space conversion.

Digital Media Playback Facilities

The Digital Media Libraries provide a playback API, capable of playing audio, video,
movies, and MIDI.

Movies

The Movie Playback Library, libmovieplay, is implemented using calls from the OpenGL
and Digital Media Libraries. It provides a scheduler and modules to communicate with
output devices. You can take advantage of its built-in playback support in your
application.

The movie library playback engine provides:

• asynchronous playback support

• flexible playback control (start, stop, speed, looping)

Digital Media Playback Facilities

7

• the ability to properly combine and blend multiple image and audio tracks

• software scaling of audio

The main advantage of the built-in playback support is that it performs audio and video
synchronization for you. Otherwise you would have to calculate the rate for each track
and determine the proper display timing. You can still take advantage of this
synchronization capability even if you want to use your own display method, by turning
off the movie library display and using your own event loop to respond to events. You
may also choose to create your own playback using routines from the other libraries.

9

Chapter 2

2. Digital Media Essentials

Before writing a digital media application, it’s essential to understand the basic attributes
of digital image, video, and audio data. This chapter provides a foundation for
understanding digital media data characteristics, and how to realize those qualities
when creating your application. It begins by reviewing how data is represented digitally
and then explains how to express data attributes in the Digital Media Libraries.

About Digital Media

Data input from analog devices must be digitized in order to store to, retrieve from, and
manipulate within a computer. Two of the most important concepts in digitizing are
sampling and quantization.

Sampling and Quantization

Sampling involves partitioning a continuous flow of information, whether with respect
to time or space (or both) into discrete pieces. Quantization involves representing the
contents of such a sample as an integer value. Both operations are performed to obtain a
digital representation.

The topic of exactly how many integers to use for quantizing and how many samples to
take (and when or where to take them) in representing a given continuum has received
much study because these choices affect the accuracy of the digital representation.
Mathematical formulas exist for determining the correct amount of sampling and
quantization needed to accurately recreate a continuous flow of data from its constituent
pieces. A treatise on sampling theory is beyond the scope of this book, but you should be
familiar with concepts such as the Nyquist theorem, pulse code modulation (PCM), and
so on. For more information about digitization and related topics, see:

• Poynton, Charles A. A Technical Introduction to Digital Video. New York: John Wiley
& Sons, 1995 (ISBN 0-471-12253-X)

• Watkinson, John. An Introduction to Digital Video, New York: Focal Press, 1994.

10

Chapter 2: Digital Media Essentials

Quantities such as the sampling rate and number of quantization bits are called attributes;
they describe a defining characteristic of the data which has a certain physical meaning.
An important point about data attributes is that while they thoroughly describe data
characteristics, they do not impose nor imply a particular file format. In fact, one file
format might encompass several types of data with several changeable attributes.

File format, also called container format, applies to data stored on disk or removable
media. Data stored in a particular file format usually has a file header that contains
information identifying the file format and auxiliary information about the data that
follows it. Applications must be able to parse the header in order to recognize the file at
a minimum, and to optionally open, read, or write the file. Similarly, data exported using
a particular file format usually has a header prepended to it when output.

In contrast, data format, which is described by a collection of attributes, is meaningful for
data I/O and exchange, and for data resident in memory. Because the Digital Media
Libraries provide extensive data type and attribute specification facilities, they offer lots
of flexibility for recognizing, processing, storing, and retrieving a variety of data formats.

Parameters for Specifying Data Attributes

Parameters in the DM Library include files (dmedia/dm_*.h) provide a common language
for specifying data attributes for the Digital Media Libraries. Not all of the libraries
require or use all of the DM parameters.

Most of the Digital Media Libraries provide their own library-specific parameters for
describing data attributes which are often only meaningful for the routines contained
within each particular library. These library-specific parameters are prefaced with the
initials of their parent library, rather than the initials DM. For example, the Video Library
defines its own image parameters in vl.h, which are prefaced with the initials VL.

Many of the parameters defined in the DM Library have clones in the other libraries
(except for the prefix initials). This makes it easy to write applications that use only one
library. Some libraries provide convenience routines for converting a list of DM
parameters to a list of library-specific parameters.

It’s essential to understand the physical meaning of the attributes defined by each
parameter. Knowing the meanings of the attributes enables you to get the intended
results from your application and helps you recognize and be able to use DM parameters
and their clones throughout the family of Digital Media Libraries.

Digital Image Essentials

11

The sections that follow describe the essential attributes of digital image and audio data,
their physical meanings, and the DM parameters that define them.

Digital Image Essentials

This section presents essential image concepts about color and video.

Color Concepts

Important color concepts discussed in this section are:

• Colorspace

• Intensity

• Gamma

• Luma and Luminance

• Chroma and Chrominance

Colorspace

Two dimensional digital images are composed of a number of individual picture
elements (pixels) obtained by sampling an image in 2D space. Each pixel contains the
intensity and, for color images, the color information for the region of space it occupies.

Color data is usually stored on a per component basis, with a number of bits representing
each component. A color expressed in RGB values is said to exist in the RGB colorspace.
To be more precise, a pixel is actually a vector in colorspace. There are other ways to
encode color data, so RGB is just one type of colorspace.

There are four colorspaces to know about for the Digital Media Libraries:

• full-range RGB with the following properties:

– component R, G, B

– each channel ranges [0.0 - 1.0]; mapped on to [0..2^n-1]

– alpha is [0.0 - 1.0]; mapped on to [0..2^n-1]

12

Chapter 2: Digital Media Essentials

• compressed-range RGB with the following properties:

– component R, G, B

– each channel ranges [0.0 - 1.0]; mapped on to [64..940] (10 bit mode) and
[16..235] (8 bit mode)

– alpha is [0.0 - 1.0]; mapped on to [64..940] (10 bit mode) and [16..235] (8 bit
mode)

• full-range YUV with the following properties:

– component Y, Cr, Cb

– Y (luma) channel ranges [0.0 - 1.0] mapped on to [0..2^n-1]

– Cb and Cr (chroma) channels range [-0.5 - +0.5] mapped on to [0..2^n-1]

– alpha is [0.0 - 1.0] mapped on to [0..2^n-1]

– color space is as defined in Rec 601 specification

• compressed-range YUV with the following properties:

– component Y, Cr, Cb

– Y (luma) channel ranges [0.0 - 1.0] mapped on to [64..940] (10 bit mode) and
[16..235] (8 bit mode)

– Cb and Cr (chroma) channels range [-0.5 - +0.5] mapped on to [64..960] (10 bit
mode) and [16..240] (8 bit mode)

– alpha is [0.0 - 1.0] mapped on to [64..940] (10 bit mode) and [16..235] (8 bit
mode)

– color space is as defined in Rec. 601 specification

On the display screen, each pixel is actually a group of three phosphors (red, green, and
blue) located in close enough proximity that they are perceived as a single color. There
are some issues with anomalies related to the physical properties of screens and
phosphors that are of interest for programmers.

Digital Image Essentials

13

Intensity

Humans perceive brightness in such a way that certain colors appear to be brighter or
more intense than others. For example, red appears to be brighter than blue, and green
appears to be brighter than either blue or red. Secondary colors (cyan, magenta, and
yellow), each formed by combining two primary colors, appear to be even brighter still.
This phenomenon is simulated in Figure 2-1.

Figure 2-1 is a plot that simulates the human eye’s response to the light intensity of
different wavelengths (colors) of light. Pure colors (red, green, blue, yellow, cyan, and
magenta) are plotted in YCrCb colorspace with brightness plotted along the horizontal
axis. The rightmost colors are perceived as brighter than the leftmost colors even though
all the colors are of equal brightness.

Figure 2-1 Plot Simulating Human Visual Perception of Brightness vs. Color

The brightness of a color is measured by a quantity called saturation. Figure 2-2 connects
the maximum saturation points of each color. The lines tracing the path of maximum
saturation from the values at each corner are called hue lines.

14

Chapter 2: Digital Media Essentials

Figure 2-2 Hue and Saturation

The program that generated Figure 2-1 and Figure 2-2, colorvu, uses the Colorspace API
described in “The Color Space Library” in Appendix A.

Both the human visual perception of light intensity and the physical equipment used to
convey the sensation of brightness in a computer display are inherently nonlinear, but in
different ways. As it happens, the differences actually complement each other, so that the
nonlinearity inherent in the way a computer display translates voltage to brightness
almost exactly compensates for the way the human eye perceives brightness, but some
correction is still necessary, as explained in the next section, “Gamma.”

Gamma

Cameras, computer displays, and video equipment must account for both the human
visual response and the physical realities of equipment in order to create a believable
image. Typically a gamma factor is applied to color values in order to correctly represent
the visual perception of color, but the way in which the gamma correction is applied, the
reason for doing so, and the actual gamma value used depends on the situation.

It is helpful to understand when in the image processing path gamma is applied.
Computers apply a gamma correction to output data in order to correctly reproduce
intensity when displaying visual data. Cameras compensate for the nonlinearity of
human vision by applying a gamma correction to the source image data as it is captured.

Digital Image Essentials

15

The key points to know when working with image data are whether the data has been
(or should be) gamma-corrected, and what is the value of the gamma factor. Silicon
Graphics monitors apply a default gamma correction of 1.7 when displaying RGB
images.

You can customize the gamma function by specifying gamma coefficients for image
converters as described in “The Digital Media Color Space Library” in Chapter 6.

Luma and Luminance

Video uses a nonlinear quantity, referred to as luma, to convey brightness. Luma is
computed as a weighted sum of gamma-corrected RGB components. Color science
theory represents the sensation of brightness as a linear quantity called luminance, which
is computed by adding the red, green, and blue components, each weighted by a linear
gamma factor that mimics human visual response.

In video and software documentation, the terms luma and luminance are often used
interchangeably, and the letter Y can represent either quantity. Some authors (Poynton
and others) use a prime symbol to denote a nonlinear quantity, and so represent luma as
Y’, and luminance as Y. This type of notation emphasizes the difference between a
nonlinear and linear quantity, but it is not common practice, so it is important to realize
that there are differences. Unless otherwise noted, in this document and in the Digital
Media Libraries, Y refers to the nonlinear luma.

Chroma and Chrominance

In order to supply the color information for video signal encoding, the luma value (Y) is
subtracted from the red and blue color components, giving two color difference signals:
B–Y (B minus Y) and R–Y (R minus Y), which together are called chroma. As in the case
of luma and luminance, the term chrominance is sometimes mistakenly used to refer to
chroma, but the two terms signify different quantities. In the strictest sense, chrominance
refers to a representation of a color value expressed independently of luminance, usually
in terms of chromaticity.

Chromaticity

Color science uses chromaticity values to express absolute color in the absence of
brightness. Chromaticity is a mathematical abstraction that is not represented in the
physical world, but is useful for computation. Chrominance is often expressed in terms
of chromaticity. A CIE chromaticity diagram is a (x, y) plot of colors in the wavelengths

16

Chapter 2: Digital Media Essentials

of visible light (400 nm to 700 nm). Color matching and similar applications require an
understanding of chromaticity, but you probably won’t need to use it for most
applications written using the Digital Media Libraries.

Video Concepts

Important video concepts to be familiar with include the distinction between digital and
analog video, video formats, black level, fields and interlacing. This section contains
these topics, which highlight key video concepts:

• YCrCb and Component Digital Video

• YUV and Composite Analog Video

• Black Level

• Video Fields

• Field Dominance

YCrCb and Component Digital Video

Because the human perception of brightness varies depending on color, some image
encoding formats can take advantage of that difference by separating image data into
separate components for brightness and color. One such method is the component digital
video standard established by ITU-R BT.601 (also formerly known as CCIR
Recommendation 601, or often simply Rec. 601).

For the digital video formats, Rec. 601 defines some basic properties common to digital
component video, such as pixel sampling rate and color space, regardless of how it is
transmitted. Then, the more specific documents (SMPTE 125M, SMPT259M, and ITU-R
BT.656) define how the data format defined by Rec. 601 is to be transmitted over various
kinds of links (serial, parallel) with various numbers of lines (525,or 625).

Component digital video uses scaled chroma values, called Cb and Cr, which are
combined with luma into a signal format called YCrCb. This YCrCb refers to a signal
format that is transmitted over a wire. It is related to, but separate from the YCrCb
colorspace used to store samples in computer memory.

Recommendation 601 defines methods for subsampling chroma values. The most
common subsampling method is 4:2:2, where there is one pair of Cb, Cr samples for

Digital Image Essentials

17

every other Y sample. In 4:4:4 subsampling, there is a luma sample for every chroma
sample.

YUV and Composite Analog Video

There are also composite analog video encoding signals, YUV and YIQ, which are based
on color difference signals. In analog composite video, the two color difference signals
(U,V or I,Q) are combined into a chroma signal which is then combined with the luma
for transmission. NTSC and PAL are the two main standards for encoding and
transmitting analog composite video. See SMPTE 170M for more information about
analog video broadcast standards.

The important point to realize about YUV is that, like YCrCb, it is calculated by scaling
color difference values, but different scale factors are used to obtain YUV than those used
for YCrCb. The YUV and YCrCb color spaces are extremely similar to each other, but
differ primarily in the ranges of acceptable values for the three components when
represented as digital integers. The values of Y, U and V are in the range 0..255 (the
SMPTE YUV ranges), while the range for Rec. 601 YCrCb is 16..235/240.

It is important to keep these differences in mind when selecting the colorspace for storing
data in memory. While the terms YUV and YCrCb are used interchangeably and describe
both video signals and a colorspace for encoding data in computer memory, they are
separate concepts. Knowing and being able to specify precisely the colorspace of input
data and the memory format you want are the keys to obtaining satisfactory results.

Analog video input to your workstation through an analog video connector is digitized
and often converted to YCrCb in memory. YCrCb is also the colorspace used in many
compression schemes (for example, MPEG and JPEG).On some Silicon Graphics video
devices and connectors, component analog such as BetaSP and MII formats are digitized
into a full-range YUV representation.

When working with analog video, the main points to be aware of are:

• bandwidth limitations (composite analog video uses a method devised to cope with
bandwidth restrictions of early transmission methods for broadcast color television)

• chroma/luma crosstalk

• chroma aliasing

Refer to the video references listed in the introduction of this guide for more information.

18

Chapter 2: Digital Media Essentials

Black Level

A common problem when importing video data for computer graphics display (or
outputting synthesized computer graphics to video), is that pictures can look darker than
expected or can look somewhat hazy because video and computer graphics use a
different color scale. In Rec. 601 video, the black level (blackest black) is 16, but in
computer graphics, 0 is blackest black. If a picture whose blackest black is 16 is displayed
by a system that uses 0 as the blackest black, the image colors are all grayed out as a result
of shifting the colors to this new scale. The best results are obtained by choosing the
correct colorspace. The black level is related to bias, which sets the reference level for a
color scale.

Video Fields

Video is sampled both spatially and temporally. Video is sampled and displayed such
that only half the lines needed to create a picture are scanned at a particular instant in
time. This is a result of the historical bandwidth limitations of broadcast video, but it is
an important video concept.

A video field is set of image samples, practically coincident in time, that is composed of
every other line of an image. Each field in a video sequence is sampled at a different time,
determined by the video signal’s field rate. Upon display, two consecutive fields are
interlaced, a technique whereby a video display scans every other line of a video image at
a rate fast enough to be undetectable to the human eye. The persistence of the phosphors
on the display screen holds the impression of the first set of scan lines just long enough
for them to be perceived as being shown simultaneously to the second set of scan lines.1

The human eye cannot detect and resolve the two fields in a moving image displayed in
this manner, but they are detectable in a still image, such as that shown when you pause
a videotape. When you attempt to photograph or videotape a computer monitor using a
camera, this effect is visible.

Most video signals in use today, including the major video signal formats you are likely
to encounter and work with on a Silicon Graphics computer (NTSC, PAL, and 525- and
625-line Rec. 601 digital video), are field-based rather than frame based. Correctly

1 Actually, this is only strictly true of tube-based display devices whose electron beams take a whole field
time to scan each line across the screen (from left-to-right then top-to-bottom). Array-based display
devices change the state of all the pixels on the screen (or all the pixels on a given line) simultaneously.

Digital Image Essentials

19

dealing with fields in software involves understanding the effects of temporal and spatial
sampling.

Suppose you have a automatic film advance camera that can take 60 pictures per second,
with which you take a series of pictures of a moving ball. Figure 2-3 shows 10 pictures
from that sequence (different colors are used to emphasize the different positions of the
ball in time). The time delay between each picture is a 60th of a second, so this sequence
lasts 1/6th of a second.

Figure 2-3 10 Pictures from a Film Camera Taken at 60 Pictures Per Second

Now suppose you take a modern NTSC video camera and shoot the same sequence.
NTSC video has 60 fields per second, so you might think that the video camera would
record the same series of pictures as Figure 2-3, but it does not. The video camera does
record 60 images per second, but each image consists of only half of the scanlines of the
complete picture at a given time, as shown in Figure 2-4, rather than a filmstrip of 10
complete images.

Figure 2-4 10 Fields from a 60 Field Per Second Video

Notice how the odd-numbered images contain one set of lines, and the even-numbered
images contain the other set of lines (if you can’t see this, click on the figure to bring up
an expanded view).

20

Chapter 2: Digital Media Essentials

Video data does not contain one complete image stored in every other frame, as shown
in Figure 2-5.

Figure 2-5 One Common Misinterpretation of Video Fields

Nor does video data contain two consecutive fields, each containing every other line of
an identical image, as shown in Figure 2-6.

Figure 2-6 Video is not Pairs of Fields of Identical Images with Alternate Scanlines

Data in video fields are temporally and spatially distinct. In any video sequence, half of
the spatial information is omitted for every temporal instant. This is why you cannot
treat video data as a sequence of intact image frames. See “Freezing Video” in Chapter 4
for methods of displaying still frames of motion video.

Other video formats, many of which are used for computer monitors, have only one field
per frame (often the term field is not used at all in these cases), which is called
noninterlaced or progressive scan. Sometimes, video signals have fields, but the fields are
not spatially distinct. Instead, the fields each contain the information for one color basis
vector (R, G, and B for example); such signals are called field sequential.

It is important to use precise terminology when writing software or communicating with
others regarding fields. Some terminology for describing fields is presented next.

Interlaced video signals have a natural two-field periodicity. F1 and F2 are the names
given to each field in the sequence. When viewing the waveform of a video field on an

Digital Image Essentials

21

oscilloscope, you can tell whether it is an F1 field or an F2 field by the shape of its sync
pulses.

ANSI/SMPTE 170M-1994 defines Field 1, Field 2, Field 3, and Field 4 for NTSC.

ANSI/SMPTE 125M-1992 defines the 525-line version of the bit-parallel digital Rec.-601
signal, using an NTSC waveform for reference. ANSI/SMPTE 259M-1993 defines the
525-line version of the bit-serial digital Rec.-601 signal in terms of the bit-parallel signal.
125M defines Field 1 and Field 2 for the digital signal.

Rec. 624-1-1978 defines Field 1 and Field 2 for 625-line PAL.

Rec. 656 Describes a 625-line version of the bit-serial and bit-parallel Rec.-601 digital
video signal. It defines Field 1 and Field 2 for that signal.

We define F1 as an instance of Field 1 or Field 3 and F2 as an instance of Field 2 or Field 4.

Field Dominance

Field dominance is relevant when transferring data in such a way that frame boundaries
must be known and preserved, such as:

• GPI/VLAN/LTC triggered capture or playback of video data

• edits on a VTR

• interpretation of fields in a VLBuffer for the purposes of interlacing or
de-interlacing.

Field dominance defines the order of fields in a frame and can be either F1 dominant or
F2 dominant.

F1 dominant specifies a frame as an F1 field followed by an F2 field. This is the protocol
recommended by all of the above specifications.

F2 dominant specifies a frame as an F2 field followed by an F1 field. This is the protocol
followed by several New York production houses for the 525-line formats only.

Most older VTRs cannot make edits on any granularity finer than the frame. The latest
generation of VTRs are able to make edits on arbitrary field boundaries, but can (and
most often are) configured only to make edits on frame boundaries. Video capture or
playback on a computer, when triggered, must begin on a frame boundary. Software

22

Chapter 2: Digital Media Essentials

must interlace two fields from the same frame to produce a picture. When software
deinterlaces a picture, the two resulting fields are in the same frame.

Regardless of the field dominance, if there are two contiguous fields in a VLBuffer, the
first field is always temporally earlier than the second one: under no circumstances
should the temporal ordering of fields in memory be violated.

The terms even and odd could refer to whether a field’s active lines end up as the even
scanlines of a picture or the odd scanlines of a picture. In this case, one needs to
additionally specify how the scanlines of the picture are numbered (beginning with 0 or
beginning with 1), and one may need to also specify 525 vs. 625 depending on the
context.

Even and odd could also refer to the number 1 or 2 in F1 and F2, which is of course a
totally different concept that only sometimes maps to the above. This definition seems
somewhat more popular.

For example:

• VL_CAPTURE_ODD_FIELDS captures F1 fields

• VL_CAPTURE_EVEN_FIELDS captures F2 fields

The way in which two consecutive fields of video should be interlaced together to
produce a picture depends on

• which field is an F1 field and which field is an F2 field

• whether the fields are from a 525- or 625-line signal.

It does not depend on

• the relative order of the fields, that is, which one is first

• anything relating to field dominance

Line numbering in memory does not necessarily correspond to the line numbers in a
video specification. Software line numbering can begin with either a 0 or 1. Picture line
numbering scheme in software is shown both 0-based (like the Movie Library) and
1-based.

Digital Image Essentials

23

For 525-line analog signals, the picture should be produced in this manner: (F1 has 243
active lines, F2 has 243 active lines, totalling 486 active lines)

 field 1 field 2 0-based 1-based
 (second half only)-----| l.283 0 1
 l.21 |----------------------- | 1 2
 | -----------------------| 2 3
 |----------------------- |-- F2 3 4
 F1 --| -----------------------| 4 5
 |----------------------- |
 | -----------------------|
 |----------------------- | 483 484
 | -----------------------| l.525 484 485
 l.263 |------(first half only) 485 486

For official 525-line digital signals, the picture should be produced in this manner: (F1
has 244 active lines, F2 has 243 active lines, totalling 487 active lines)

 field 1 field 2 0-based 1-based
 l.20 |----------------------- 0 1
 | -----------------------| l.283 1 2
 l.21 |----------------------- | 2 3
 | -----------------------| 3 4
 |----------------------- |-- F2 4 5
 F1 --| -----------------------| 5 6
 |----------------------- |
 | -----------------------|
 |----------------------- | 483 486
 | -----------------------| l.525 484 486
 l.263 |----------------------- 486 487

For practical 525-line digital signals, all current Silicon Graphics video hardware skips
line 20 of the signal and pretends that the signal has 486 active lines. As a result, you can
think of the digital signal as having exactly the same interlacing characteristics and line
numbers as the analog signal: (F1 has 243 active lines and F2 has 243 active lines, totalling
486 active lines)

24

Chapter 2: Digital Media Essentials

 field 1 field 2 0-based 1-based
 -----------------------| l.283 0 1
 l.21 |----------------------- | 1 2
 | -----------------------| 2 3
 |----------------------- |-- F2 3 4
 F1 --| -----------------------| 4 5
 |----------------------- |
 | -----------------------|
 |----------------------- | 483 484
 | -----------------------| l.525 484 485
 l.263 |----------------------- 485 486

For 625-line analog signals, the picture should be produced in this manner: (F1 has 288
active lines, F2 has 288 active lines)

 field 1 field 2 0-based 1-based
 l.23 |--(second half only)--- 0 1
 | -----------------------| l.336 1 2
 |----------------------- | 2 3
 F1 --| -----------------------| 3 4
 |----------------------- |-- F2 4 5
 | -----------------------|
 |----------------------- |
 | -----------------------| 573 574
 l.310 |----------------------- | 574 575
 ----(first half only)--| l.623 575 576

For 625-line digital signals, the picture should be produced in this manner: (F1 has 288
active lines, F2 has 288 active lines)

 field 1 field 2 0-based 1-based
 l.23 |----------------------- 0 1
 | -----------------------| l.336 1 2
 |----------------------- | 2 3
 F1 --| -----------------------| 3 4
 |----------------------- |-- F2 4 5
 | -----------------------|
 |----------------------- |
 | -----------------------| 573 574
 l.310 |----------------------- | 574 575
 -----------------------| l.623 575 576

All Field 1 and Field 2 line numbers match those in SMPTE 170M and Rec. 624. Both of
the digital specs use identical line numbering to their analog counterparts. However,
Video Demystified and many chip specifications use nonstandard line numbers in some

Digital Image Attributes

25

(not all) of their diagrams. Warning: 125M draws fictitious half-lines in figure 3 in very
strange places that do not correspond to where the half-lines fall in the analog signal.

Digital Image Attributes

This section describes digital image data attributes and how to use them.Image attributes
can apply to the image as a whole, to each pixel, or to a pixel component.

Parameters in dmedia/dm_image.h provide a common language for describing image
attributes for the digital media libraries. Not all of the libraries require or use all of the
DM image parameters. Clones of some DM image parameters can be found in vl.h.

Digital image attributes described in this section are:

• Image Dimensions

• Pixel Aspect Ratio

• Image Rate

• Image Compression

• Image Quality

• Bitrate

• Keyframe/Reference Frame Distance

• Image Orientation

• Image Interlacing

• Image Pixel Attributes, including

– Pixel Packing

– Pixel Component Data Type

– Pixel Component Data Type

– Pixel Component Order and Interleaving

• Image Layout

• Image Sample Rate

26

Chapter 2: Digital Media Essentials

These attributes and the parameters that represent them are discussed in detail in the
sections that follow.

Image Dimensions

Image size is measured in pixels: DM_IMAGE_WIDTH is the number of pixels in the x
(horizontal) dimension, and DM_IMAGE_HEIGHT is the number of pixels in the y
(vertical) dimension.

Video streams and movie files contain a number of individual images of uniform size.
The image size of a video stream or a movie file refers to the height and width of the
individual images contained within it, and is also often referred to as frame size.

Some image formats require that the image dimensions be integral multiples of some
factor, necessitating either cropping or padding of images that don’t conform to those
requirements.

Note: To determine the size of an image in bytes, use dmImageGetSize(3dm).

Pixel Aspect Ratio

Pixels aren’t always perfectly square, in fact they often aren’t.The shape of the pixel is
defined by the pixel aspect ratio. The pixel aspect ratio is obtained by dividing the pixel
height by the pixel width and is represented by DM_IMAGE_PIXEL_ASPECT.

Square pixels have a pixel aspect ratio of 1.0. Some video formats use nonsquare pixels,
but computer display monitors typically have square pixels, so a square/nonsquare
pixel conversion is needed for the image to look correct when displaying digital video
images on the graphics monitor.

In general graphics rendering and display devices typically generate/accept only square
pixels, but video I/O devices can typically generate/accept either square or nonsquare
formats. It is probably preferable to use/retain a nonsquare format for an application
whose purpose is to produce video, while it is probably preferable for an application
whose ultimate intent is producing computer graphics to use/retain a square format.
Whether a conversion is necessary or optimal depends on the original image source, the
final destination, and, to a certain extent, the hardware path transporting the signal.

Digital Image Attributes

27

For example, the digital sampling of analog video in accordance to Rec. 601 yields a
nonsquare pixel, while, on the other hand, graphics displays render each pixel as square.
This means that a Rec. 601 nonsquare or video input stream sent directly (without
filtering) to the workstation’s video output displays correctly on an external video
monitor, but does not display correctly when sent directly (without filtering) to an
onscreen graphics window.

Conversely, computer-originated digital video (640x480 and 768x576) displays
incorrectly when sent to video out in nonsquare mode, but displays correctly when sent
to an onscreen graphics window or to video out in square mode.

Some Silicon Graphics video devices sample natively using only one format, ether square
or nonsquare, and some Silicon Graphics video devices filter signals on certain
connectors. See the video device reference pages for details.

Some video options for Silicon Graphics workstations perform square/nonsquare
filtering in hardware; refer to your owner’s manual to determine whether your video
option supports this feature. Software filtering is also possible.

Image Rate

DM_IMAGE_RATE is the native display rate of a movie file in frames per second.

Image Compression

Compression is a method of encoding data more efficiently than raw data without
changing its content significantly.

A codec (compressor/decompressor) defines a compressed data format. In some cases
such as MPEG, the codec also defines a standard file format in which to contain data of
that format. Otherwise, there is a set of file formats which can hold data of that format.

A “stateful” algorithm works by encoding the differences between multiple frames, as
opposed to encoding each frame independently of the others. Stateful codecs are hard to
use in an editing environment but generally produce better compression results because
they get access to more redundancy in the data.

A “tile-based” algorithm (such as MPEG) divides the image up into (what is usually) a
grid of fixed sections, usually called blocks, macroblocks, or macrocells. The algorithm

28

Chapter 2: Digital Media Essentials

then compresses each region independently. Tile-based algorithms are notorious for
producing output with visible blocking artifacts at the tile boundaries. Some algorithms
specify that the output is to be blurred to help hide the artifacts.

A “transform-based” algorithm (such as JPEG) takes the pixels of the image (which
constitute the spatial domain) and transforms them into another domain—one in which
data is more easily compressed using traditional techniques (such as RLE, Lempel-Ziv,
or Huffman) than the spatial domain. Such algorithms generally do a very good job at
compressing images. The computational cost of the transformation is generally high, so:

• Transform-based algorithms are typically more expensive than spatial domain
algorithms.

• Transform-based algorithms are typically also tile-based algorithms (since the
computation is easier on small tiles), and thus suffer the artifacts of tile-based
algorithms.

For most compression algorithms, the compressed data stream is designed so that the
video can be played forward or backward, but some compression schemes, such as
MPEG, are predictive and so are more efficient for forward playback.

Note: In general, JPEG, MPEG, Cinepak, Apple Video and other video compression
algorithms are better for compressing camera-generated images; RLE, Apple Animation
and other color-cell techniques are better for compressing synthetic
(computer-generated) images.

JPEG Still Video Compression

Although any algorithm can be used for still video images, the JPEG (Joint Photographic
Experts Group)-baseline algorithm, which is referred to simply as JPEG for the remainder
of this guide, is the best for most applications. JPEG is denoted by the DM parameter
DM_IMAGE_JPEG.

JPEG is a compression standard for compressing full-color or grayscale digital
images.JPEG is a lossy algorithm, meaning that the compressed image is not a perfect
representation of the original image, but you may not be able to detect the differences
with the naked eye.

JPEG is the preferred standard for compressed digital nonlinear editing because each
image is coded separately (intra-coded).

Digital Image Attributes

29

JPEG is based on psychovisual studies of human perception: image information that is
generally not noticeable is dropped out, reducing the storage requirement anywhere
from 2 to 100 times. JPEG is most useful for still images; it is usable, but slow when
performed in software, for video. (Silicon Graphics hardware JPEG accelerators are
available for compressing video to and decompressing video from memory or for
compressing to and decompressing from a special video connection to a video board.
These JPEG hardware accelerators implement a subset of the JPEG standard (baseline
JPEG, interleaved YCrCb 8-bit components) especially for video-originated images on
Silicon Graphics workstations.

JPEG is typically used to compress each still frame during the writing or editing process,
with the intention being to apply another type of compression to the final version of the
movie or to leave it uncompressed. JPEG works better on high-resolution,
continuous-tone images such as photographs, than on crisp-edged, high-contrast images
like line drawings.

The amount of compression and the quality of the resulting image are independent of the
image data. The quality depends on the compression ratio. You can select the
compression ratio that best suits your application needs.

See also jpeg(4).

See also Pennebaker, William B. and Joan L. Mitchell, JPEG Still Image Data Compression
Standard, New York: Van Nostrand Reinhold, 1993 (ISBN 0-442-01272-1).

MPEG-1

MPEG-1 (ISO/IEC 11172) is the Moving Pictures Expert Group standard for compressing
audio, video, and systems bitstreams. Each bitstream type has its own syntax, as defined
by the standard.

The MPEG-1 systems specification defines multiplexing for compressed audio and video
bitstreams without performing additional compression. An MPEG-1 encoded systems
bitstream contains compressed audio and video data which has been packetized and
interleaved along with timestamp and decoder buffering requirements. MPEG-1 allows
for multiplexing of up to 32 compressed audio and 16 compressed video bitstreams.

MPEG-1 Video (ISO/IEC 11172-2) is a motion video compression standard that
minimizes temporal and spatial data redundancies in order to achieve good image
quality at higher compression ratios than either JPEG or MVC1.

30

Chapter 2: Digital Media Essentials

MPEG-1 video uses a technique called motion estimation or motion search that compresses
a video stream by comparing image data in nearby image frames. For example, if a video
shows the same subject moving against a background, it’s likely that the same
foreground image appears in adjacent frames, offset by a few pixels. Compression is
achieved by storing one complete image frame, which is called a keyframe or I frame, then
comparing an n×n block of pixels to nearby pixels in proximal frames, searching for the
same (or very similar) block of pixels, and then storing only the offset for the frames
where a match is located. Images from the intervening frames can then be reconstructed
by combining the offset data with the keyframe data.

There are two types of intervening frames:

• P (predictive) frames, which require information from previous P or I frames in
order to be decoded. P frames are also sometimes considered as forward reference
frames because they contain information that is needed to decode other P frames
later in the video bitstream.

• B (between) frames, which require information from both the previous and next P
or I frame.

Figure 2-7 shows the relationships between I, P, and B frames.

Figure 2-7 MPEG I, P, and B frames

For example, suppose an MPEG-1 video bitstream contains the sequence I0 P3 B1 B2 P6 B4
B5 P9 B7 B8, where the subscripts indicate the order in which the frames are to be
displayed. You must first display I0 and retain its information in order to decode P3, but
you cannot yet display P3 because you must first decode and display the two between
frames (B1 and B2), which also require information from P3, as well as from each other, in
order to be decoded. Once B1 and B2 have been decoded and displayed, you can then
display P3, but you must retain its information in order to decode P6, and so on.

MPEG is an asymmetric coding technique—compression requires considerably more
processing power than decompression because MPEG examines the sequence of frames
and compresses it in a optimized way, including compressing the difference between

I B B P B B P B B

Digital Image Attributes

31

frames using motion estimation.This makes MPEG well suited for video publishing,
where a video is compressed once and decompressed many times for playback. Because
MPEG is a predictive scheme, it is tuned for random access (editing) due to its
inter-coding or for forward playback rather than backward. MPEG is used on Video CD,
DVD, Direct TV, and is the proposed future standard for digital broadcast TV.

See also mpeg(4).

Run Length Encoding

Run-length encoding (RLE) compresses images by replacing pixel values that are
repeated for several pixels in a row with a single pixel at the first occurrence of a
particular value, followed by a run-length (a count of the number of subsequent pixels
of the same value) every time the color changes. Although this algorithm is lossless, it
doesn’t save as much space as the other compression algorithms—typically less than 2:1
compression is achieved. It is a good technique for animations where there are large areas
with identical colors. The Digital Media Libraries have two RLE methods:

DM_IMAGE_RLE
specifies lossless RLE encoding for 8-bit RGB data. It is the only
algorithm currently available to directly compress 8-bit RGB data.

DM_IMAGE_RLE24
specifies lossless RLE encoding for 24-bit RGB data.

Silicon Graphics Motion Video Compressor

Motion Video Compressor (MVC) is a Silicon Graphics proprietary algorithm that is a
good general-purpose compression scheme for movies. MVC is a color-cell compression
technique that works well for video, but can cause fuzzy edges in high-contrast
animation. There are 2 versions:

DM_IMAGE_MVC1
is a fairly lossy algorithm that does not produce compression ratios as
high as JPEG, but it is well suited to movies.

DM_IMAGE_MVC2
provides results similar to MVC1 in terms of image quality. MVC2
compresses the data more than MVC1, but takes longer to perform the
compression. Playback is faster for MVC2, because there is less data to
read in, and decompression is faster than for MVC1.

32

Chapter 2: Digital Media Essentials

QuickTime Compression

QuickTime is an Apple Macintosh® system software extension that can be installed in the
Macintosh to extend its capabilities so as to allow time-based (audio, video, and
animation) data for multimedia applications.

QuickTime movies store and play picture tracks and soundtracks independently of each
other, analogous to the way the Movie Library stores separate image and audio tracks.
You can’t work with pictures and sound as separate entities using the QuickTime Starter
Kit utilities on the Macintosh, but you can use the Silicon Graphics Movie Library to
work with the individual image and audio tracks in a QuickTime movie.

QuickTime movie soundtracks are playable on both Macintosh and Silicon Graphics
computers, but each has its own unique audio data format, so audio playback is most
efficient when using the native data format and rate for the computer on which the movie
is playing.

The Macintosh QuickTime system software extension includes five codecs:

• Apple None (uncompressed)

• Apple Photo (JPEG standard)

• Apple Animation

• Apple Video

• Apple Compact Video

Apple None

Apple None creates an uncompressed movie and can be used to change the number of
colors in the images and/or the recording quality. Both the number of colors and the
recording quality can affect the size of the movie.

To create an uncompressed QuickTime movie on the Macintosh, click on the “Apple
None” choice in the QuickTime Compression Settings dialog box.

Note: Because the Macintosh compresses QuickTime movies by default, you must set the
compression to Apple None and save the movie again to create an uncompressed movie.

Digital Image Attributes

33

Apple Photo

Apple Photo uses the JPEG standard. JPEG is best suited for compressing individual still
frames, because decompressing a JPEG image can be a time-consuming task, especially
if the decompression is performed in software. JPEG is typically used to compress each
still frame during the writing or editing process, with the intention to apply another type
of compression to the final version of the movie or to leave it uncompressed.

Apple Animation

Apple Animation uses a lossy run-length encoding (RLE) method, which compresses
images by storing a color and its run-length (the number of pixels of that color) every
time the color changes. Apple Animation is not a true lossless RLE method because it
stores colors that are close to the same value as one color. This method is most
appropriate for compressing images such as line drawings that have highly contrasting
color transitions and few color variations.

Apple Video

Apple Video uses a method whose objective is to decompress and display movie frames
as fast as possible. It compresses individual frames and works better on movies recorded
from a video source than on animations.

Note: Both Apple Animation and Apple Video compression have a restriction that the
image width and height be a multiple of 4. Before transferring a movie from a Macintosh
to a Silicon Graphics computer, make sure that the image size is a multiple of 4.

Cinepak

Cinepak (developed by Radius, Inc.), otherwise known as “Compact Video,” is a
compressed data format which can be stored inside Quicktime movies. It achieves better
compression ratios than Quicktime but takes much more CPU time to compress.

Cinepak is designed to control its own bitrate, and thus it is extremely common on the
world wide web and is also used in CD authoring.

Cinepak is not a transform-based algorithm. It uses techniques derived from “vector
quantization” (which technically is also what color-cell compression techniques like
MVC1 and MVC2 use) to represent small tiles of pixels using a small set of scalars.
Cinepak builds and constantly maintains a “codebook” which it uses to map the

34

Chapter 2: Digital Media Essentials

compressed scalars back into pixel tiles. The codebook evolves over time as the image
changes, thus this algorithm is quite stateful.

Indeo

Indeo (developed by Intel Corporation) is a compressed data format that can be used in
QuickTime and AVI movies.

Image Quality

Compressed data isn’t always a perfect representation of the original data. Information
can be lost in the compression process. A lossless compression method retains all of the
information present in the original data. Algorithms can be either numerically lossless or
mathematically lossless. Numerically lossless means that the data is left intact.
Mathematically lossless means that the compressed data is acceptably close to the
original data.

A lossy compression method does not preserve 100% of the information in the original
method.

Image quality is a measure of how true the compression is to the original image. Image
quality is one of the conversion controls that you can specify for an image converter.
Image quality is specified in both the spatial and temporal domains.

In a spatial approximation, pixels from a single image are compared to each other and
identical (or similar) pixels are noted as repeat occurrences of a stored representative
pixel. Spatial quality, denoted by DM_IMAGE_QUALITY_SPATIAL, conveys the
exactness of a spatial approximation.

In a temporal approximation, pixels from an image stream are compared across time and
identical (or similar) pixels are noted as repeat occurrences of a stored representative
pixel, but offset in time. Temporal quality, denoted by
DM_IMAGE_QUALITY_TEMPORAL, conveys the exactness of a temporal
approximation.

Some lossless algorithms may require a quality factor, so specify
DM_IMAGE_QUALITY_LOSSLESS.

Digital Image Attributes

35

Quality values range from 0 to 1.0, where 0 represents complete loss of the image fidelity
and 1.0 represents an lossless image fidelity. You can set both quality factors numerically,
or you can use the following rule-of-thumb factors to set quality informally:

Using these “fuzzy” quality factors can be useful if you application uses a thumbwheel
or slider to let the end user indicate quality. These quality factors can be assigned to
intermediate steps in the slider or thumbwheel to give the impression of infinitely
adjustable quality.

Bitrate

The compression ratio is a tradeoff between the quality and the bitrate. Adjusting either
one of these parameters effects the other, and, if both are set, bitrate usually takes
precedence in the Silicon Graphics Digital Media Libraries.

For applications that require a constant bitrate, such as applications that send data over
fixed data rate carriers or playback image streams at a minimum threshold rate, set
DM_IMAGE_BITRATE. The picture quality is then adjusted to achieve the stated rate.
Some Silicon Graphics algorithms guarantee the bitrate, some try to achieve the stated
rate, and some do not support a bitrate parameter.

Keyframe/Reference Frame Distance

Certain compression algorithms such as MPEG use a technique called motion estimation,
which compresses an image stream by storing a complete keyframe and then encoding
related image data in nearby image frames, as described in “MPEG-1.” Images from the
encoded frames are decoded based on the keyframes or other encoded frames that
precede or follow the frame being decoded.

DM_IMAGE_QUALITY_MIN approximately equal to 0 quality factor

DM_IMAGE_QUALITY_LOW approximately equal to 0.25 quality factor

DM_IMAGE_QUALITY_NORMAL approximately equal to 0.5 quality factor

DM_IMAGE_QUALITY_HIGH approximately equal to 0.75 quality factor

DM_IMAGE_QUALITY_MAX approximately equal to 0.99 quality factor

36

Chapter 2: Digital Media Essentials

The Digital Media Libraries have their own terminology to define the 3 different types of
frames possible in a motion estimation compression method:

Intra depends only on itself; contains all data needed to construct a complete
image. Also called I frame or keyframe.

Inter depends on a previous inter or intra frame. Also called reference frame,
P (predictive) frame, or delta frame.

Between depends on previous and next inter or intra frame; cannot be
reconstructed using another between frame. Also called B frame.

There are two parameters for setting the distance between keyframes and reference
frames:

Image Orientation

Image orientation refers to the relative ordering of the horizontal scan lines within an
image. The scanning order depends on the image source and can be either top-to-bottom
or bottom-to-top, but it is important to know which. The default
DM_IMAGE_ORIENTATION for images created on a Silicon Graphics workstation is
bottom-to-top, denoted by DM_IMAGE_BOTTOM_TO_TOP. Video and compressed
video is typically oriented top-to-bottom.

Image Interlacing

Interlacing is a video display technique that minimizes the amount of video data
necessary to display an image by exploiting human visual acuity limitations. Interlacing
weaves alternate lines of two separate fields of video at half the scan rate. For an
explanation of interlacing, see “Video Fields.”

Generally, interlacing refers to a technique for signal encoding or display, and
interleaving refers to a method of laying out the lines of video data in memory.

DM_IMAGE_KEYFRAME_DISTANCE specifies the distance between keyframes

DM_IMAGE_REFFRAME_DISTANCE specifies the distance between reference
frames

Digital Image Attributes

37

Interleaving can also refer to how the samples of an image’s different color basis vectors
are arranged in memory, or how audio and video are arranged together in memory.
Interleaving image pixel data is described in “Pixel Component Order and Interleaving.”

A movie file encodes pairs of fields into what it calls frames, and all data transfers are on
frame boundaries. A 2-field image in a movie file does not always represent a complete
video frame because it could be clipped, or not derived from video. This is further
complicated by that fact that both top-to-bottom and bottom-to-top ordering of video
lines in images is supported.

DM_IMAGE_INTERLACING describes the original interlacing characteristics of the
signal that produced this image (or lack of interlacing characteristics).

In a zero-based picture line numbering scheme for noninterlaced images:

• In a DM_IMAGE_INTERLACED_ODD image, the scanlines of the first field occupy
the odd-numbered lines (1, 3, 5, 7, and so on).

• In a DM_IMAGE_INTERLACED_EVEN image, the scanlines of the first field
occupy the even-numbered lines (0, 2, 4, 8, and so on).

In this sense, first field means the image that is first temporally and in memory.

Note: If the DM_IMAGE _ORIENTATION is DM_BOTTOM_TO_TOP instead of
DM_TOP_TO_BOTTOM, then all temporal ordering and memory ordering rules are
reversed.

For an example of how DM_IMAGE_INTERLACING relates to video, consider a
top-to-bottom buffer containing unclipped video data (a buffer containing all the video
lines described for analog 525, practical digital 525, analog 625, and digital 625-line
signals). The buffer’s DM_IMAGE_INTERLACING depends on many factors.

For a signal with F1 dominance, a frame consists of an F1 field followed by an F2 field
(temporally and in memory). The DM_IMAGE_INTERLACING parameter determines
which picture lines contain the first field’s data:

• for an analog or practical digital 525-line image, DM_IMAGE_INTERLACED_ODD

• for an analog or digital 625-line image, DM_IMAGE_INTERLACED_EVEN

38

Chapter 2: Digital Media Essentials

However, if the signal has F2 dominance, where a frame consists of F2 followed by F1,
the first field is now an F2 field so we have:

• for an analog or practical digital 525-line image,
DM_IMAGE_INTERLACED_EVEN

• for an analog or digital 625-line image, DM_IMAGE_INTERLACED_ODD

Image Layout

DM_IMAGE_LAYOUT describes how pixels are arranged in an image buffer. In the
DM_IMAGE_LAYOUT_LINEAR layout, lines of pixels are arranged sequentially. This is
the typical image layout for most image data.

DM_IMAGE_LAYOUT_GRAPHICS and DM_IMAGE_LAYOUT_MIPMAP are two
special layouts optimized for presentation to Silicon Graphics hardware. Both are
passthrough formats; they are intended for use with image data that is passed untouched
from a Silicon Graphics graphics or video input source directly to hardware. Use
DM_IMAGE_LAYOUT_GRAPHICS to format image data sent to graphics display
hardware. Use DM_IMAGE_LAYOUT_MIPMAP to format image data which represents
a texture mipmap that is sent to texture memory, such as a video texture.

Image Pixel Attributes

This section describes image attributes that are specified on a per pixel or per pixel
component basis. Understanding these attributes requires some familiarity with the
color concepts described in “Digital Image Essentials.”

Pixel Packing

Pixel packing formats define the bit ordering used for packing image pixels in memory.
Native packings are those packings which are supported directly in hardware. In other
words, native packings don’t require a software conversion.

DM_IMAGE_PACKING parameters describe pixel packings recognized by the dmIC
and Movie Library APIs. In addition to the DM_IMAGE_PACKING formats, there is also
a set of VL_PACKING parameters in vl.h that describe image packings. There are some
VL_PACKINGS that have no corresponding DM_IMAGE_PACKINGS.

Digital Image Attributes

39

For some packings, the DM_IMAGE_DATATYPE parameter controls how data is packed
within the pixel. For example, 10-bit per pixel data can be left or right-justified in a 16-bit
word.

The most common ways of packing data into memory are YCrCb and 32-bit RGBA.

YCrCb (4:2:2) Video Pixel Packing

Rec. 601 component digital video (4:2:2 subsampled) is composed of one 8-bit Y (luma)
component per pixel, and two chroma samples coincident with alternate luma samples,
supplying one 8-bit Cr component per two pixels, and one 8-bit Cb sample per two
pixels. This results in 2 bytes per pixel. This is the Silicon Graphics native format for
storing video image data in memory, which is represented by the
DM_IMAGE_PACKING parameter DM_IMAGE_PACKING_CbYCrY, and the
VL_PACKING parameter VL_PACKING_YVYU_422_8.

Note: The SMPTE 259M (specification for transmitting Rec. 601 over a link) digital video
stream contains 10 bits in each component. An 8-bit packing format such as
VL_PACKING_YVYU_422_8 uses only 8 of the 10 bits. This often generates acceptable
results for strictly video data, but in order to parse some forms of ancillary data (such as
embedded audio data) from a video stream, it is necessary to input all 10 bits. Because 10
bits is an atypical quantity for computers, the most common technique is to left-shift each
10-bit quantity to a 16-bit value, resulting in a 4-byte per component format called
VL_PACKING_YVYU_422_10, where the extra bits are zero-padded on input and
ignored on output. Storing data in this format takes more memory space, but may be
preferable to the cost of manipulating 10-bit packed data on the CPU.

The pixel packing is independent of the color space. The use of a packing named “YUV”
or “YVYU” does not imply that the data packed is YUV data, as opposed to YCrCb data.
When YCrCb data is being packed with a YUV packing, the Cr component is packed as
U, and the Cb component is packed as V. The VL_PACKING_YVYU_422_8 packing is the
only packing that is natively supported in hardware (requiring no software conversion)
on all VL video devices.

The 422 designation in the packing name means that the pixels are packed so that each
horizontally-adjacent pair of pixels share one common set of chroma (for example, UV,
or alternatively, CrCb) data. Each pixel has its own value of luma (Y) data. So, data is
packed in pairs of two pixels, two Y values, and one U and one V (or alternatively, one
Cr and one Cb) value pair, in each pixel pair. This pixel packing always has the number
of pixels in each row will always be even.

40

Chapter 2: Digital Media Essentials

The YUV and YCrCb color spaces are similar, but they differ primarily in the ranges of
acceptable values for the three components when represented as digital integers. The
values of Y, U and V are in the range 0..255 (the SMPTE YUV ranges), while the range for
Rec. 601 YCrCb is 16..235/240.

The set of VL packings presently defined does not enable the application to choose
between the YUV and Rec.-601 YCrCb color spaces. When an application specifies
VL_PACKING_YVYU_422_8, the resultant color space is either YUV or YCrCb,
depending on the device and the source node from which the data is coming. Most
external digital sources produce YCrCb data. IndyCam produces Rec. 601-compliant
YCrCb. There is no way to tell, from the VL_PACKING control, which of those two
spaces (YUV or YCrCb) is used.

Each of the different VL video devices has a different set of color spaces and packings
implemented in hardware. Any other color spaces and/or packings are implemented by
means of a software conversion. The table below shows which color-space and packing
combinations are implemented in hardware, or software, or not at all, for each device.

The chipset used in VINO and EV1 to convert analog input to digital pixels produces
YUV output, not YCrCb output. That is, the values of Y, U and V are in the range 0..255
(the SMPTE YUV ranges), not the smaller 16..235/240 range specified for Rec. 601 YCrCb.
For some devices that can’t convert color space in hardware, e.g. EV1, the VL converts
from YUV to RGBX/RGBA in software.

The VL routines used for this purpose assume the input is Rec. 601 YCrCb, not YUV,
regardless of what the hardware actually produces. Therefore, if the hardware doesn’t
support the desired color space, and you require an accurate color space conversion, then
specify pixels in a color space supported by the hardware, and do the color space
conversion using dmIC or similar software converter, rather than relying on an
automatic software colorspace conversion.

With Sirius Video, color space and packing are independent. Color space is chosen by the
settings of the VL_FORMAT on the memory drain node, according to table below, and
any packing can be applied to any color space, whether it makes sense or not. Color space
conversion occurs when the VL_FORMAT of the video source node and the
VL_FORMAT of the memory drain node imply different color spaces.

Digital Image Attributes

41

32-bit RGBA Graphics Pixel Packing

In 32-bit RGBA, the A may be a don’t care or it may be an alpha channel, synthesized on
the computer. This results in 4 bytes per pixel. In the VL, this is called
VL_PACKING_RGBA_8, VL_PACKING_RGB_8, and VL_PACKING_ABGR_8.

Table 2-1 shows the results in memory of reading pixels (or the source for writing pixels)
in various formats. Pixel 0 is the leftmost pixel read or written. An `x’ means don’t care
(this bit is not used).

Memory layout is presented in 32-bit words, with the MSB on the left and the LSB on the
right (read the bit numbers vertically).

Table 2-1 Pixel Packing Formats

MSB LSB Packing Format

33222222
10987654

22221111
32109876

111111
54321098 76543210 <----Bit numbers

bbgggrrr bbgggrrr bbgggrrr bbgggrrr DM_IMAGE_PACKING_8BGR
VL_PACKING_RGB_332_P

aaaaaaaa bbbbbbbb gggggggg rrrrrrrr DM_IMAGE_PACKING_ABGR
VL_PACKING_RGBA_8

xxxxxxxx bbbbbbbb gggggggg rrrrrrrr DM_IMAGE_PACKING_XBGR
VL_PACKING_RGB_8

uuuuuuuu
uuuuuuuu

yyyyyyyy
yyyyyyyy

vvvvvvvv
vvvvvvvv

yyyyyyyy
yyyyyyyy

DM_IMAGE_PACKING_CbYCrY
VL_PACKING_YVYU_422_8

DM_IMAGE_PACKING_RBG323
VL_PACKING_RBG_323

xxxxxxxx xxxxxxxx xxxxxxxx bbgggrrr DM_IMAGE_PACKING_BGR233
VL_PACKING_RGB_332

xxxxxxxx xxxxxxxx xxxxxxxx rrrgggbb VL_PACKING_BGR_332

bbgggrrr
bbgggrrr

bbgggrrr
bbgggrrr

bbgggrrr
bbgggrrr

bbgggrrr
bbgggrrr

VL_PACKING_RGB_332_IP

rrrgggbb
rrrgggbb

rrrgggbb
rrrgggbb

rrrgggbb
rrrgggbb

rrrgggbb
rrrgggbb

VL_PACKING_BGR332_P

42

Chapter 2: Digital Media Essentials

xxxxxxx xxxxxxx bbbbbggg gggrrrrr VL_PACKING_RGB-565

bbbbbggg gggrrrrr bbbbbggg gggrrrrr VL_PACKING_RGB_565_P

rrrrrrrr
gggggggg

bbbbbbbb
rrrrrrrr

gggggggg
bbbbbbbb

rrrrrrrr
gggggggg

VL_PACKING_RGB_565_IP

xxbbbbbb bbbbgggg ggggggrr rrrrrrrr VL_PACKING_RGB_10

yyyyyyyy yyyyyyyy yyyyyyyy yyyyyyyy DM_IMAGE_PACKING_LUMINANCE
VL_PACKING_Y_8_IP

xxxxxxxx uuuuuuuu yyyyyyyy vvvvvvvv DM_IMAGE_PACKING_CbYCr
VL_PACKING_YUV_444_8

aaaaaaaa uuuuuuuu yyyyyyyy vvvvvvvv VL_PACKING_YUV_4444_8

xxuuuuuu uuuuyyyy yyyyyyvv vvvvvvvv VL_PACKING_YUV_444_10

rrrrrrrr gggggggg bbbbbbbb aaaaaaaa DM_IMAGE_PACKING_RGBA
VL_PACKING_ABGR_8

vvvvvvvv yyyyyyyy uuuuuuuu aaaaaaaa DM_IMAGE_PACKING_CbYCrA
VL_PACKING_AUYV_8

rrrrrrrr rrgggggg ggggbbbb bbbbbbaa VL_PACKING_A_2_BGR_10

vvvvvvvv vvyyyyyy yyyyuuuu uuuuuuaa VL_PACKING_A_2_UYV_10

uuuuuuuu uuyyyyyy yyyyaaaa aaaaaaxx VL_PACKING_AYU_AYV_10

Table 2-1 (continued) Pixel Packing Formats

MSB LSB Packing Format

Digital Image Attributes

43

Table 2-2 lists DM_IMAGE_PACKING formats.

Table 2-2 DM Pixel Packing Formats

Pixel Packing Format

DM_IMAGE_PACKING_RGB

DM_IMAGE_PACKING_BGR

DM_IMAGE_PACKING_RGBX

DM_IMAGE_PACKING_RGBA

DM_IMAGE_PACKING_XRGB

DM_IMAGE_PACKING_ARGB

DM_IMAGE_PACKING_XBGR

DM_IMAGE_PACKING_ABGR

DM_IMAGE_PACKING_RBG323

DM_IMAGE_PACKING_BGR233

DM_IMAGE_PACKING_XRGB1555

DM_IMAGE_PACKING_CbYCr

DM_IMAGE_PACKING_CbYCrA

DM_IMAGE_PACKING_CbYCrY

DM_IMAGE_PACKING_CbYCrYYY

DM_IMAGE_PACKING_LUMINANCE

DM_IMAGE_PACKING_LUMINANCE_ALPHA

44

Chapter 2: Digital Media Essentials

Pixel Component Data Type

DM_IMAGE_DATATYPE describes the number of bits per component and the
alignment of the bits within the pixel.Table 2-3 lists the data type parameters and the
attributes they describe.

Pixel Component Order and Interleaving

DM_IMAGE_ORDER describes the order of pixel components or blocks of components
within an image and has one of the following formats:

• DM_IMAGE_ORDER_INTERLEAVED orders pixels component-by-component

• DM_IMAGE_ORDER_SEQUENTIAL groups like components together line-by-line

• DM_IMAGE_ORDER_SEPARATE groups like components together per image

Table 2-3 Image Data Types

Image Data Type Parameter Attributes

DM_IMAGE_DATATYPE_BIT Nonuniform number of bits per component

DM_IMAGE_DATATYPE_CHAR 8 bits per component

DM_IMAGE_DATATYPE_SHORT10L 10 bits per component, left aligned

DM_IMAGE_DATATYPE_SHORT10R 10 bits per component, right aligned

DM_IMAGE_DATATYPE_SHORT12L 12 bits per component, left aligned

DM_IMAGE_DATATYPE_SHORT12R 12 bits per component, right aligned

Digital Image Attributes

45

Table 2-4 shows the resultant pixel component order for each interleaving method for
some example image formats.

Image Sample Rate

DM_IMAGE_RATE is the native display rate in frames per second of a movie file.

Table 2-4 Pixel Interleaving Examples

Packing Format Interleaved Sequential Separate

ABGR ABGRABGR
ABGRABGR
ABGRABGR

AAABBBGGGRRR
AAABBBGGGRRR

AAAAAAAA
BBBBBBBBB
GGGGGGGGG
RRRRRRRRR

444 YCrCb,

with CbYCr packing

CbYCrCbYCr
CbYCr

CbCbCbYYYCrCrCr

CbCbCbYYYCrCrCr

CbCbCbCbCbCb
YYYYYY
CrCrCrCrCrCr

420 YCrCb,

with CbYCrY
packing

CbYCrYYYCb
YCrYYYCbY
CrYYY

CbCbCbYYYYYYYYYYYYYCrCrCr
CbCbCbYYYYYYYYYYYYCrCrCr

CbCbCbCbCbCb
YYYYYYYYYYYY
YYYYYYYYYYYY
CrCrCrCrCrCr

46

Chapter 2: Digital Media Essentials

Digital Audio Essentials

This section describes audio file formats and digital audio data attributes.

Digital Audio Basics

The digital representation of an audio signal is generated by periodically sampling the
amplitude (voltage) of the audio signal. The samples represent periodic “snapshots” of
the signal amplitude. The Nyquist Theorem provides a way of determining the
minimum sampling frequency required to accurately represent the information (in a
given bandwidth) contained in an analog signal. Typically, digital audio information is
sampled at a frequency that is at least double the highest interesting analog audio
frequency. See The Art of Digital Audio or a similar reference on digital audio for more
information.

Digital Audio Attributes and Parameters

Parameters in dmedia/dm_audio.h provide a common language for describing digital
audio attributes for the digital media libraries.

Digital audio has the following attributes:

• audio channels

• audio compression scheme

• audio sample format (e.g., twos-complement binary, floating point)

• audio sample rate

• audio sample width (number of bits per sample)

• PCM mapping

Audio Channels

A sample frame is a set of audio samples that are coincident in time. A sample frame for
mono data is a single sample. A sample frame for stereo data consists of a left-right
sample pair.

Digital Audio Essentials

47

Stereo samples are interleaved; left-channel samples alternate with right-channel
samples. 4-channel samples are also interleaved, but each frame usually has two
left-right sample pairs, but there can be other arrangements.

Figure 2-8 shows the relationship between the number of channels and the frame size of
audio sample data.

Figure 2-8 Audio Samples and Frames

Audio Sample Rate

The sample rate is the frequency at which samples are taken from the analog signal.
Sample rates are measured in hertz (Hz). A sample rate of 1 Hz is equal to one sample
per second. For example, when a mono analog audio signal is digitized at a 48 kilohertz
(kHz) sample rate, 48,000 digital samples are generated for every second of the signal.

To understand how the sample rate relates to sound quality, consider the fact that a
telephone transmits voice-quality audio in a frequency range of about 320 Hz to 3.2 kHz.
This frequency range can be represented accurately with a sample rate of 6.4 kHz. The
range of human hearing, however, extends up to approximately 18–20 kHz, requiring a
sample rate of at least 40 kHz.

The sample rate used for music-quality audio, such as the digital data stored on audio
CDs is 44.1 kHz. A 44.1 kHz digital signal can theoretically represent audio frequencies
from 0 kHz to 22.05 kHz, which adequately represents sounds within the range of normal

L1 R1 L2 R2

L RLR

1-channel data

2-channel data

4-channel data

Frame

Frame

Frame

48

Chapter 2: Digital Media Essentials

human hearing. The most common sample rates used for DATs are 44.1 kHz and 48 kHz.
Higher sample rates result in higher-quality digital signals; however, the higher the
sample rate, the greater the signal storage requirement.

Audio Compression Scheme

All audio data on Silicon Graphics systems is considered to have a compression scheme.
The scheme may be an industry standard such as MPEG-1 audio, or it may be no
compression at all. For more information, see “The Digital Media Audio Conversion
Library” in Chapter 6.

Audio Sample Format

Uncompressed audio data is encoded in a digital data format called linear pulse code
modulation (PCM) (see the audio references for a definition of this term) to represent
digital audio samples.

The formats supported by the audio system are:

• 8-bit and 16-bit signed integer

• 24-bit signed, right-justified within a 32-bit integer

• 32-bit and 64-bit floating point

Note: The audio hardware supports 16-bit I/O for analog data and 24-bit I/O for
AES/EBU digital data.

For floating point data, the application program specifies the desired range of values for
the samples; for example, from −1.0 to 1.0. A method for relating data from one range of
values to data with a different range of values is described next.

PCM Mapping

PCM mapping describes the relationship between data with differing sample ranges. If
the input and output mappings are different, a conversion consisting of clipping and
transformation of values is necessary.

Digital Audio Essentials

49

PCM mapping defines a reference value, denoted by
DM_AUDIO_PCM_MAP_INTERCEPT, that is the midway point between a signal
swing. It is convenient to assign a value of zero to this point. Adding a slope value,
denoted by DM_PCM_MAP_SLOPE, to the intercept obtains the full-scale deflection.

The values DM_AUDIO_PCM_MAP_MINCLIP and DM_AUDIO_PCM_MAXCLIP
define the minimum and maximum legal PCM values. Input and output values are
clipped to these values. If maxclip <= minclip, then no clipping is done because all PCM
values are legal, even if they are outside the true full-scale range.

To transform a PCM value to a corresponding value in the range +1.0 to -1.0:

Audio Sample Width

The native data format used by the audio hardware is 24-bit two’s complement integers.
The audio hardware sign-extends each 24-bit quantity into a 32-bit word before
delivering the samples to the Audio Library.

Audio input samples delivered to the Audio Library from the Indigo, Indigo2, and Indy
audio hardware have different levels of resolution, depending on the input source that is
currently active; the AL provides samples to the application at the desired resolution.
You can also write your own conversion routine if desired.

Microphone/line-level input samples come from analog-to-digital (A/D) converters,
which have 16-bit resolution. These samples are treated as 24-bit samples with 0’s in the
low 8 bits.

AES/EBU digital input samples have either 20-bit or 24-bit resolution, depending on the
device that is connected to the digital input; for the 20-bit case (the most common),
samples are treated as 24-bit samples, with 0’s in the least significant 4 bits. The AL
passes these samples through to the application if 24-bit two’s complement is specified.
If two’s complement with 8-bit or 16-bit resolution is specified, the AL right-shifts the
samples so that they will fit into a smaller word size. For floating point data, the AL
converts from the 24-bit format to floating point, using a scale factor specified by the
application to map the peak integer values to peak float values.

For audio output, the AL delivers samples to the audio hardware as 24-bit quantities
sign-extended to fill 32-bit words. The actual resolution of the samples from a given
output port depends on the application program connected to the port. For example, an

50

Chapter 2: Digital Media Essentials

application may open a 16-bit output port, in which case the 24-bit samples arriving at
the audio processor will contain 0’s in their least significant 8 bits.

The Audio Library is responsible for converting between the output sample format
specified by an application and the 24-bit native format of the audio hardware. For 8-bit
or 16-bit integer samples, this conversion is accomplished by left-shifting each sample
written to the output port by 16 bits and 8 bits, respectively. For 32-bit or 64-bit floating
point samples, this con version is accomplished by rescaling each sample from the range
of floating point values that is specified by the application to the full 24-bit range and
then rounding the sample to the nearest integer value.

Table 2-5 lists the audio parameters and the valid values for each (not all values are
supported by all libraries).

Table 2-5 Audio Parameters

Parameter Type Values

DM_AUDIO_CHANNELS Integer 1, 2, or 4

DM_AUDIO_COMPRESSION String DM_AUDIO_UNCOMPRESSED (default)
DM_AUDIO_G711_U_LAW
DM_AUDIO_G711_A_LAW
DM_AUDIO_MPEG
DM_AUDIO_MPEG1
DM_AUDIO_MULTIRATE
DM_AUDIO_G722
DM_AUDIO_G726
DM_AUDIO_G728
DM_AUDIO_DVI
DM_AUDIO_GSM

DM_AUDIO_FORMAT DMaudioformat DM_AUDIO_TWOS_COMPLEMENT
(default)
DM_AUDIO_UNSIGNED
DM_AUDIO_FLOAT
DM_AUDIO_DOUBLE

DM_AUDIO_RATE Double Native rates are 8000, 11025, 16000, 22050,
32000, 44100, and 48000 Hz

DM_AUDIO_WIDTH Integer 8, 16, or 24

Digital Media Synchronization Essentials

51

Digital Media Synchronization Essentials

Most digital media applications use more than one medium in conjunction, for example,
audio and video. This section explains how the data can be related to each other for the
various digital media functions that perform capture and presentation of concurrent
media streams.

Timecodes

Timecodes are important for synchronizing and editing audio and video data.

There are different types of encoding methods, and standards. In general, a timecode
refers to a number represented as hours:minutes:seconds:frames. This numerical
representation is used in a variety of ways (in both protocols and user interfaces), but in
all cases the numbering scheme is the same. The SMPTE 12M standard provides
definitions and specifications for a variety of timecodes and timecode signal formats.

The numerical ranges for each field in a timecode are as follows:

hours 00 to 23

minutes 00 to 59

seconds 00 to 59

frames depends on the signal type

Some signals use a drop-frame timecode, where some "hours:minutes:seconds:frame"
combinations are not used; they are simply skipped in a normal progression of
timecodes.

A timecode can refer to a

• timer

• timestamp

• signal on wire

• signal on tape

One example application where timecode is used merely as a way to express a time is
mediaplayer, which displays the offset from the beginning of the movie either in seconds
or as a timecode.

52

Chapter 2: Digital Media Essentials

Another common computer application of timecode is as a timestamp on particular
frames in a movie file. The Silicon Graphics movie file format and the QuickTime format
offer the ability to associate each image in the file with a timecode. Sometimes these
timecodes are synthesized by the computer, and sometimes they were captured along
with the source material. These timecodes are often used as markers so that edited or
processed material can be later correlated with material edited or processed on another
machine. A/V professionals use an edit decision list (EDL) to indicate the timecodes
frames to be recorded.

Longitudinal Time Code

Longitudinal time code (LTC), sometimes ambiguously referred to as SMPTE time code,
is a self-clocking signal defined separately for 525- and 625-line video signals, where the
corresponding video signal itself is carried on another wire.The signal occupies its own
channel and resembles an audio signal in voltage and bandwidth.

LTC is the most common way of slaving one machine’s transport to that of another
machine (by ensuring that both machines are on the same frame, not by genlocking
signals on both machines). In some audio and MIDI applications, LTC is useful even
though there is no video signal.

In a LTC signal, there is one codeword for each video frame. Each LTC codeword
contains a timecode and other useful information.

See dmLTC(3dm) for routines for decoding LTC.

Vertical Interval Time Code

Vertical interval time code (VITC) is a standardized part of a 525- or 625-line video signal.
The code itself occupies some lines in the vertical blanking interval of each field of the
video signal (not normally visible on monitors). It’s a good idea to provide data
redundancy by recording the VITC on 2 non-consecutive lines in case of video dropout.

Each VITC codeword contains a timecode, and a group of flag bits that include

• Dropframe

• Colorframe

• Parity

• Field Mark

Digital Media Synchronization Essentials

53

The field mark bit is an F1/F2 field indicator; it is asserted for a specific field.

VITC also provides 32 user bits, where users can store information such as reel and shot
number. This information can be used to help index footage after it is shot, and under the
right circumstances (not always trivial), the original VITC recorded along with footage
can even tag along with that footage as it is edited, allowing one to produce an edit list
or track assets, given a final prototype edit.

See dmVITC(3dm) for routines for decoding VITC.

MIDI Time Code

MIDI time code is part of the standard MIDI protocol, which is carried over a serial
protocol that is also called MIDI. Production studios often need to synchronize the
transports of computers with the transports of multitrack audio tape recorders and
dedicated MIDI sequencers. Sometimes LTC is used for this, and sometimes the MIDI
time code is the clock signal of choice.

Time Code in AES Digital Audio Streams

The AES standard allows embedded timecodes in a digital audio signal.

Unadjusted System Time and Media Stream Count

The Digital media libraries provide their own temporal reference, called unadjusted
system time (UST). The UST is an unsigned 64-bit number that measures the number of
nanoseconds since the system was booted. UST values are guaranteed to be
monotonically increasing and are readily available for all the Digital Media Libraries.

Typically, the UST is used as a timestamp, that is, it is paired with a specific item or
location in a digital media stream. Because each type of media, and similarly each of the
libraries, possess unique attributes, the UST information is presented in a different

54

Chapter 2: Digital Media Essentials

manner in each library. Table 2-6 describes how UST information is provided by each of
the libraries.

Synchronization and UST/MSC

The media stream count (MSC), in conjunction with the UST, is used to synchronize
buffered media data streams. UST/MSC pairs are used with libraries, such as the Audio
Library and the Video Library, that provide timing information about the sampled data.
The MSC is a monotonically increasing, unsigned 64-bit number that is applied to each
sample in a media stream. This means the MSC of the most recent data sample has the
largest value. By using the UST/MSC facility, an application can schedule accurately the
use of data samples, and also can detect data underflow and overflow. To see how these
things are done, we must lay some groundwork.

A media stream can be seen as travelling a path. An input path comprises electrical
signals on an input jack (an electrical connection) being converted by a device to digital
data that is placed in an input buffer for use by an application. An output path goes from
the application to an output jack via an output buffer. As implied by this description, the
data placed in a buffer by the device (input path) or application (output path) has the
highest MSC and the data taken out by the application or device respectively has the
lowest.

There are two kinds of MSCs, device and frontier. The device MSC is the basis for the
other. An input device assigns a device MSC to a sample about to be placed in the input
buffer. An output device assigns one to a sample about to be removed from the output
buffer. The MSC of the sample at the application’s end of a buffer is the frontier MSC. It
is calculated based on the device MSC. In an input path, the frontier MSC is equal to the
device MSC minus the number of samples waiting in the input buffer. In an output path,
the frontier MSC equals the device MSC plus the number of waiting output buffer
samples.

Table 2-6 Methods for Obtaining Unadjusted System Time

Library UST Method

Digital Media Library dmGetUST() and dmGetUSTCurrentTimePair()

Audio Library ALgetframenumber() and ALgetframetime()

MIDI Library mdTell() and mdSetTimestampMode()

Video Library ustime field in the DMediaInfo structure

Digital Media Synchronization Essentials

55

What does using MSCs enable your application to do? Assuming the data stream going
to the buffer is not underflowing or overflowing, your application can precisely control
the sample flow by using MSCs to determine corresponding USTs. Your application can
synchronize data streams, such an audio stream and a video stream, by matching the
USTs of their samples. Also, it can compensate for IRIX™ scheduling interruptions by
using the USTs of the samples to controlling the contents of the buffer.

As shown below by the Video Library code sample, you can determine the time (UST) a
media stream sample came in from or went out to a jack by using the functions
vlGetFrontierMSC() and vlGetUSTMSCPair().

double ust_per_msc;
USTMSCpair pair;
stamp_t frontier_msc, desired_ust;
int err;

ust_per_msc = vlGetUSTPerMSC(server, path);
err = vlGetUSTMSCPair(server, path, video_node, &pair);
frontier_msc = vlGetFrontierMSC(server, path, memNode);
desired_ust = pair.ust + ((frontier_msc - pair.msc) * ust_per_msc);

This sample works for both input and output paths. In either case, the sample indicated
by desired_ust is the one with the frontier MSC. Thus for an input path, desired_ust is the
UST of the next sample to be taken from the buffer by your application. For an output
path, it is the UST of the next sample your application will place in the buffer. The USTs
of other samples in the buffer can be found by adjusting the calculation on the last line.

The above techniques assume that there is no data underflow or overflow to the buffer.
If there is an underflow or overflow condition, calculations like the above become
unreliable. This is because the frontier MSC is based on the current device MSC. It is not
a constant value attached to a specific data sample. Let’s use an overflow condition in an
input path as an example. The device MSC, and thus the frontier MSC, is increased by
one every time the device is ready to place a sample in the input buffer. Because the
buffer is full, the sample is discarded, but the MSCs retain their new values. Therefore,
the UST/MSC pair associated with a given sample has changed and calculations like the
one in the earlier code sample are no longer reliable.

This situation also demonstrates one of the advantages of the UST/MSC pairing. The
design enables your application to determine buffer overflow or underflow immediately,
based on the value of the frontier MSC. In the above example, your application can check
for data overflow immediately after putting data samples into the buffer by checking if
the difference between the current frontier MSC and the previous frontier MSC is greater

56

Chapter 2: Digital Media Essentials

than the number of samples just enqueued. If it is greater there is an overflow condition.
The size of the discrepancy is the actual magnitude of the overflow because putting the
samples into the buffer relieved the overflow. Your application can make analogous
determinations for input underflow, and output overflow and underflow. Notice that the
overflow condition can be found without waiting for the samples with the discontinuous
data to get to the front of the buffer. This allows your application to take corrective action
immediately.

Counting Video Fields with MSCs

The VL presents field numbers to a VL application in two contexts:

• For video-to-memory or memory-to-video paths whose VL_CAP_TYPE is set to
VL_CAPTURE_NONINTERLEAVED (fields separate, each in its own buffer), the
functions vlGetFrontierMSC() and vlGetUSTMSCPair() return MSCs which count
fields (in other VL_CAP_TYPEs, the returned MSCs do not count fields).

• For any video-to-memory path, the user can use vlGetDMediaInfo() to return the
DMediaInfo structure contained in an entry in a VLBuffer. This structure contains
a member called sequence which always counts fields (regardless of
VL_CAP_TYPE).

In both of these cases, there should be the following correlation:

• these values should be 0%2 if they represent an F1 field

• these values should be 1%2 if they represent an F2 field

This is a relatively new convention and is not yet implemented on all devices.

Table 2-7 Methods for Using UST/MSC

Function Description

vlGetFrontierMSC()
ALgetframenumber()

Get the frontier MSC associated with a particular node. See also
vlGetFrontierMSC(3dm) and ALgetframenumber(3dm).

vlGetUSTMSCPair()
ALgetframetime()

Get the time at which a field or frame came in or will go out. See also
vlGetUSTMSCPair(3dm) and ALgetframetime(3dm).

vlGetUSTPerMSC() Get the time interval between fields or frames in a path. See also
vlGetUSTPerMSC(3dm).

Digital Media File Format Essentials

57

Digital Media File Format Essentials

Image Containers

• RGB

• FIT

• GIF

• JFIF

• PNG

• PPM

• TIFF

• Photo CD

Audio Containers

Currently, the Digital Media Libraries support the following audio file formats:

• Raw audio data

• AIFF/AIFC

• WAVE

• NeXT .snd

• Sun .au

• Berkeley IRCAM/CARL (BICSF)

• Digidesign Sound Designer II

• Raw MPEG1 audio bitstream

• AVR

• IFF 8SVX

• VOC

• Samplevision

• Soundfont2

58

Chapter 2: Digital Media Essentials

In addition, the Digital Media Libraries recognize but do not support

• Sound Designer I

• NIST Sphere

Movie Containers

A movie is a collection of digital media data contained in tracks, temporally organized in
a storage medium, which is captured from and played to audio and video devices.
Saying that movies are composed of time-based data means that each piece of data is
associated (and usually timestamped) with a particular instant in time, and has a certain
duration in time. Movies can contain multiple tracks of different media.

Movies are generally stored in a file format that contains both a descriptive header and
the movie data. When a movie is opened, only the header information exists in memory.
A movie also has properties or attributes which are independent of the file format and
may not necessarily be stored in a file. This section describes movie file formats and
attributes.

Parameters in dmedia/dm_image.h and dmedia/dm_audio.h provide a common language for
specifying movie data attributes. The Movie Library also provides its own parameters in
libmovie/movifile.h.

The Movie Library currently supports these file formats:

• QuickTime

• MPEG-1 systems and video bitstreams

• Silicon Graphics movie format

59

Chapter 3

3. Digital Media Data Types and Parameter Lists

This chapter explains how to use digital media data structures that facilitate data
specification and setting, getting, and passing parameters.

Digital Media Data Type Definitions

The DM Library provides type definitions for digital media that are useful when
programming with the family of Digital Media Libraries. Data types and constant names
have an uppercase DM prefix; routines have a lowercase dm prefix.

The dmedia/dmedia.h header file provides these type definitions:

DMboolean integer for conditionals; DM_FALSE is 0 and DM_TRUE is 1

DMfraction integer numerator divided by integer denominator

DMstatus enumerated type consisting of DM_SUCCESS and DM_FAILURE

It is good programming practice to check the return values of functions. DMstatus
provides a way to check return values. When a function succeeds, DM_SUCCESS is
returned. When a function fails, DM_FAILURE is returned and a system error code is set
that can be interpreted using the functions described in the next section.

Digital Media Error Handling

Errors encountered while using the Digital Media Libraries can be diagnosed with the
help of two routines. The function dmGetError() retrieves the number, summary, and
detailed description of an error generated by the execution of the current process. The
current process in this case is the same as determined by getpid(). The companion
function, dmGetErrorForPID(), gets the same type of error information for a process
your application specifies.

60

Chapter 3: Digital Media Data Types and Parameter Lists

const char *dmGetError (int *errornum,
 char error_detail[DM_MAX_ERROR_DETAIL])
const char *dmGetErrorForPID (pid_t pid, int *errornum,
 char error_detail[DM_MAX_ERROR_DETAIL])

The functions dmGetError() and dmGetErrorForPID() enable your application to
handle in a consistent manner errors generated while using the digital media libraries.
Both functions return a pointer to a null-terminated character string that summarizes the
error. The setting of the errors by the libraries and the retrieval of them by your
application is guaranteed to be thread-safe. Only the most recent error for a given thread
is returned. If there are no errors, the functions return NULL.

The parameter pid in dmGetErrorForPID() is the id of the process in which to check for
an error. The last parameter in both functions, error_detail, is the address of a
null-terminated character array of size DM_MAX_ERROR_DETAIL. If one exists, a
detailed description of the error is loaded into the array. If you set error_detail to NULL,
no description is loaded. The remaining parameter, errornum, is a pointer to an integer
into which the number of the current error is loaded. If your application sets errornum to
NULL, no number is loaded. The error numbers returned in errornum fall into ranges
according to the digital media libraries that generated them. The currently defined error
ranges and their libraries are as follows:

0-999 UNIX® System (The error numbers are identical to
those returned by oserror(3C).)

1000-1999 Color Space Library in libdmedia

2000-2999 Movie Library in libmoviefile or libmovieplay

3000-3999 Audio File Library in libaudiofile

4000-4999 DMbuffer in libdmedia

5000-5999 Audio Converter in libdmedia

6000-6999 Image Converter in libdmedia

10000-10999 Global Digital Media Library in libdmedia

11000-11999 FX Plug-in Utility Library in libfxplugutils

12000-12999 FX Plug-in Manager Library in libfxplugmgr

Digital Media Parameter Types

61

Digital Media Parameter Types

The DM Library provides definitions for the digital media parameter data types.
Table 3-1 lists the digital media parameter type definitions that are defined in
dmedia/dm_params.h.

Table 3-1 Digital Media Parameter Data Types

Parameter Type Meaning

DM_TYPE_BINARY Binary data

DM_TYPE_ENUM Enumerated type

DM_TYPE_ENUM_ARRAY Array of enumerated types

DM_TYPE_FLOAT Floating point value (double)

DM_TYPE_FLOAT_ARRAY Array of floats

DM_TYPE_FLOAT_RANGE Range of floats

DM_TYPE_FRACTION Ratio

DM_TYPE_FRACTION_ARRAY Array of fractions

DM_TYPE_FRACTION_RANGE Range of fractions

DM_TYPE_INT Integer value

DM_TYPE_INT_ARRAY Array of integers

DM_TYPE_INT_RANGE Range of integers

DM_TYPE_LONG_LONG Long long (64-bits)

DM_TYPE_PARAMS DMparams list

DM_TYPE_STRING String

DM_TYPE_STRING_ARRAY Array of strings

DM_TYPE_TOC_ENTRY Table-of-contents entry for ring buffers

62

Chapter 3: Digital Media Data Types and Parameter Lists

Digital Media Parameter Lists

Parameter-value lists, which are contained in a DMparams structure supply
configuration information for digital media objects such as audio ports, movie tracks,
and video devices. A DMparams list is a list of pairs, where each pair contains the name
of a parameter and the corresponding value for that parameter.

You can use a DMparams list to

• configure a digital media structure upon initialization by passing a complete list
containing all the parameters and values needed to configure that object to a
creation routine

• change the settings of an existing digital media structure by providing a list of
parameters and corresponding values to replace

Most Digital Media Libraries provide convenience routines for setting, adjusting, and
getting relevant parameter values.

Every DMparams list that describes a format includes the parameter DM_MEDIUM to
indicate what kind of data it describes. DM_MEDIUM is an enumerated type consisting
of:

Another common parameter, DM_CODEC, is an enumerated type that describes
whether a codec is synchronous (DM_SYNC_CODEC) or asynchronous
(DM_ASYNC_CODEC). The compressor and decompressor of a synchronous codec are
linked such that there must be both uncompressed input available to the compressor and
compressed input available to the decompressor before either can generate output. An
asynchronous codec has no such linkage.

This section explains how to use the DM Library routines for

• creating and destroying DMparams lists

• creating default audio and image configurations

• setting and getting values in DMparams lists

DM_IMAGE which represents image data

DM_AUDIO which represents audio data

DM_TIMECODE which represents a timecode

DM_TEXT which represents text

Digital Media Parameter Lists

63

• manipulating DMparams lists

The routines described in this section follow the general rule that ownership of data is
not passed during procedure calls, except in the routines that create and destroy
DMparams lists. Functions that take strings copy the strings if they want to keep them.
Functions that return strings or other structures retain ownership and the caller must not
free them.

In the initialization section of your application, you create and use DMparams lists to
configure data structures for your application as described in the following steps:

1. Create an empty DMparams list by calling dmParamsCreate().

2. Set the parameter values by one of the methods listed below:

• Use a function that sets up a standard configuration for a particular type of
data: dmSetImageDefaults() for images, dmSetAudioDefaults() for audio.

• Use a generic function such as dmParamsSetInt() to set the values of individual
parameters within an empty DMparams list or one that has already been
initialized with the standard audio or image configuration. See “Setting and
Getting Individual Parameter Values” on page 65 for a description of this
method.

• Use a library function such as mvSetMovieDefaults() to set a group of
parameters specific to that library.

3. Free the DMparams list and its contents by calling dmParamsDestroy().

These steps are described in detail in the sections that follow.

Creating and Destroying DMparams Lists

Some libraries require you to allocate memory for DMparams lists, but with the DM
library, you need not allocate memory for DMparams lists, because memory
management is provided for you by the dmParamsCreate() and dmParamsDestroy()
routines. These routines work together as a self-contained block within which you create
the DMparams list, set the parameter value(s) and use them, and then destroy the
structure, freeing its associated memory.

Only the dmParamsCreate() function can create a DMparams list, and only the
dmParamsDestroy() function can free one. This means that DMparams lists are managed
correctly when every call to create one is balanced by a call to destroy one. The creation

64

Chapter 3: Digital Media Data Types and Parameter Lists

function can fail because of lack of memory, so it returns an error code. The destructor
can never fail.

To create an empty DMparams list, call dmParamsCreate(). Its function prototype is:

DMstatus dmParamsCreate (DMparams** returnNewList)

where:

returnNewList is a pointer to a handle that is returned by the DM Library

If there is sufficient memory to allocate the structure, a pointer to the newly created
structure is put into *returnNewList and DM_SUCCESS is returned; otherwise,
DM_FAILURE is returned.

When you have finished using the DMparams list, you must destroy it to free the
associated memory. To free both the DMparams list structure and its contents, call
dmParamsDestroy(). Its function prototype is:

void dmParamsDestroy (DMparams* params)

where:

params is a pointer to the DMparams list you want to destroy

Example 3-1 is a code fragment that creates a DMparams list called params, then calls a
Movie Library routine, mvSetMovieDefaults(), to initialize the default movie
parameters, and finally destroys the list, freeing both the structure and its contents.

Example 3-1 Creating and Destroying a DMparams List

DMparams* params;
if (dmParamsCreate(¶ms) != DM_SUCCESS) {
 printf("s\n", dmGetError(NULL, NULL));
 exit(1);
}
if (mvSetMovieDefaults(params, MV_FORMAT_SGI_3) != DM_SUCCESS) {
 printf(“s\n”, mvGetErrorStr(mvGetErrno()));
 exit(1);
}
dmParamsDestroy (params);

Digital Media Parameter Lists

65

Setting and Getting Individual Parameter Values

After creating an empty DMparams list or a default audio or image configuration, you
can use the routines described in this section to set and get values for individual elements
of a DMparams list.

There is a routine for setting and getting the parameter values for each parameter data
type defined in the DM Library, as listed in Table 3-1.

All of these functions store and retrieve entries in a DMparams list. They assume that the
named parameter is present and is of the specified type; the debugging version of the
library asserts that this is the case. All functions that can possibly fail return an error code
indicating success or failure. Insufficient memory is the only reason these routines can
fail. Type mismatch causes a failed assertion in the debug library and undefined results
in the non-debug library.

Table 3-2 lists the DM Library routines for setting parameter values. All the routines
except dmParamsSetBinary() require three arguments:

params a pointer to a DMparams list

paramName the name of the parameter whose value you want to set

value a value of the appropriate type for the given parameter

Table 3-2 DM Library Routines for Setting Parameter Values

Routine Purpose

dmParamsSetBinary() Sets the contents of a data buffer. See dmParamsSetInt(3dm).

dmParamsSetEnum() Sets the value of an enum parameter whose type is int.

dmParamsSetEnumArray() Sets the value of a parameter whose type is DMenumarray.

dmParamsSetFloat() Sets the value of a parameter whose type is double.

dmParamsSetFloatArray() Sets the value of a parameter whose type is DMfloatarray.

dmParamsSetFloatRange() Sets the value of a parameter whose type is DMfloatrange.

dmParamsSetFract() Sets the value of a parameter whose type is DMfraction.

dmParamsSetFractArray() Sets the value of a parameter whose type is DMfractionarray.

dmParamsSetFractRange() Sets the value of a parameter whose type is DMfractionrange.

66

Chapter 3: Digital Media Data Types and Parameter Lists

These routines return either DM_SUCCESS or DM_FAILURE.

Table 3-3 lists the DM Library routines for getting parameter values. All the routines
except dmParamsGetBinary() require two arguments:

params a pointer to a DMparams list

paramName the name of the parameter whose value you want to get

Routines that get values return either a pointer to a value or the value itself. For strings,
DMparams lists, and table-of-contents entries, the pointer that is returned points into the
internal data structure of the DMparams list. This pointer should never be freed and is
only guaranteed to remain valid until the next time the list is changed. In general, if you
need to keep a string value around after getting it from a DMparams list, it should be
copied.

dmParamsSetInt() Sets the value of a parameter whose type is int.

dmParamsSetIntArray() Sets the value of a parameter whose type is DMintarray.

dmParamsSetIntRange() Sets the value of a parameter whose type is DMintrange.

dmParamsSetLongLong() Sets the value of a parameter whose type is long long.

dmParamsSetParams() Sets the value of a parameter whose type is DMparam.

dmParamsSetString() Sets the value of a parameter whose type is a character string.

dmParamsSetStringArray() Sets the value of a parameter whose type is DMstringarray.

Table 3-3 DM Library Routines for Getting Parameter Values

Routine Purpose

dmParamsGetBinary() Returns a pointer to binary data. See dmParamsSetInt(3dm).

 dmParamsGetEnum() Returns an integer value for the given enum parameter.

dmParamsGetEnumArray() Returns a pointer to a value of type DMenumarray.

 dmParamsGetFloat() Returns a value of type double for the given parameter.

dmParamsGetFloatArray() Returns a pointer to a value of type DMfloatarray.

Table 3-2 (continued) DM Library Routines for Setting Parameter Values

Routine Purpose

Digital Media Parameter Lists

67

Setting Parameter Defaults

Setting Image Defaults

To initialize a DMparams list with the default image configuration, call
dmSetImageDefaults(), passing in the width and height of the image frame, and the
image packing format. Its function prototype is:

DMstatus dmSetImageDefaults (DMparams* params, int width,
 int height, DMpacking packing)

where:

params is a pointer to a DMparams list that was returned by dmParamsCreate()

width is the width of the image in pixels

height is the height of the image in pixels

packing is the image packing format

dmParamsGetFloatRange() Returns a pointer to a value of type DMfloatrange.

dmParamsGetFract() Returns a value of type DMfraction for the given parameter.

dmParamsGetFractArray() Returns a pointer to a value of type DMfractionarray.

dmParamsGetFractRange() Returns a pointer to a value of type DMfractionrange.

 dmParamsGetInt() Returns an integer value for the given parameter.

dmParamsGetIntArray() Returns a pointer to a value of type DMintarray for the parameter.

dmParamsGetIntRange() Returns a pointer to a value of type DMintrange for the parameter.

dmParamsGetLongLong() Returns a 64-bit long for the given parameter.

dmParamsGetParams() Returns a pointer to a value of type DMparams for the parameter.

dmParamsGetString() Returns a pointer to a value of type const char for the parameter.

dmParamsGetStringArray() Returns a pointer to a value of type DMstringarray.

Table 3-3 (continued) DM Library Routines for Getting Parameter Values

Routine Purpose

68

Chapter 3: Digital Media Data Types and Parameter Lists

Table 3-4 lists the parameters and values set by dmSetImageDefaults().

Determining the Buffer Size Needed to Store an Image Frame

To determine the image frame size for a given DMparams list, call dmImageFrameSize().
dmImageFrameSize() returns the number of bytes needed to store one uncompressed
image frame in the given format. Its function prototype is:

size_t dmImageFrameSize (const DMparams* params)

Table 3-4 Image Defaults

Parameter Default

DM_MEDIUM DM_IMAGE

DM_IMAGE_WIDTH width

DM_IMAGE_HEIGHT height

DM_IMAGE_RATE 15.0 frames per second (Hz)

DM_IMAGE_INTERLACING DM_IMAGE_NONINTERLACED

DM_IMAGE_PACKING packing

DM_IMAGE_ORIENTATION DM_BOTTOM_TO_TOP

DM_IMAGE_COMPRESSION DM_IMAGE_UNCOMPRESSED

Digital Media Parameter Lists

69

Example 3-2 is a code fragment that creates a DMparams list, fills in the image defaults,
and then frees the structure and its contents.

Example 3-2 Setting Image Defaults

DMparams* imageParams;

if (dmParamsCreate(&imageParams) != DM_SUCCESS) {
 printf("s\n", dmGetError(NULL, NULL));
 exit(1);
}
if (dmSetImageDefaults(imageParams,
 320, /* width */
 240, /* height */
 DM_PACKING_RGBX) != DM_SUCCESS) {
 printf("s\n", dmGetError(NULL, NULL));
 exit(1);
}
printf("%d bytes per image frame.\n",
 dmImageFrameSize(imageParams));
dmParamsDestroy(imageParams);

Setting Audio Defaults

To initialize a DMparams list with the default audio configuration, call
dmSetAudioDefaults(), passing in the desired sample width, sample rate, and number
of channels. Its function prototype is:

DMstatus dmSetAudioDefaults (DMparams* params, int width,
 double rate, int channels)

where:

params is a pointer to a DMparams list that was returned from
dmParamsCreate()

width is the number of bits per audio sample: 8, 16, or 24

rate is the audio sample rate; the native audio sample rates are 8000, 11025,
16000, 22050, 32000, 44100, and 48000 Hz

channels is the number of audio channels

dmSetAudioDefaults() returns DM_SUCCESS if there was enough memory available to
set up the parameters; otherwise, it returns DM_FAILURE.

70

Chapter 3: Digital Media Data Types and Parameter Lists

Table 3-5 lists the parameters and values set by dmSetAudioDefaults().

Determining the Buffer Size Needed to Store an Audio Frame

To determine the audio frame size for a given DMparams list, call dmAudioFrameSize().
dmAudioFrameSize() returns the number of bytes needed to store one audio frame (one
sample from each channel). Its function prototype is:

size_t dmAudioFrameSize (DMparams* params)

Table 3-5 Audio Defaults

Parameter Default

DM_MEDIUM DM_AUDIO

DM_AUDIO_WIDTH width

DM_AUDIO_FORMAT DM_AUDIO_TWOS_COMPLEMENT

DM_AUDIO_RATE rate

DM_AUDIO_CHANNELS channels

DM_AUDIO_COMPRESSION DM_AUDIO_UNCOMPRESSED

Digital Media Parameter Lists

71

Example 3-3 is a code fragment that creates a DMparams list, fills in the audio defaults,
and then frees the structure and its contents.

Example 3-3 Setting Audio Defaults

DMparams* audioParams;
if (dmParamsCreate(&audioParams) != DM_SUCCESS) {
 printf("s\n", dmGetError(NULL, NULL));
 exit(1);
}
if (dmSetAudioDefaults (audioParams,
 16, /* width (in bits/sample) */
 22050, /* sampling rate */
 2 /* # channels (stereo) */
) != DM_SUCCESS) {
 printf("s/n", dmGetError(NULL, NULL));
 exit(1);
}
printf("%d bytes per audio frame.\n",
 dmAudioFrameSize(audioParams));
dmParamsDestroy(audioParams);

Example 3-4 shows two equivalent ways of setting up a complete image format
description; the first sets the parameter values individually, the second creates a default
image configuration with the appropriate values.

Example 3-4 Setting Individual Parameter Values

DMparams* format;
dmParamsCreate(&format);
dmParamsSetInt (format, DM_IMAGE_WIDTH, 320);
dmParamsSetInt (format, DM_IMAGE_HEIGHT, 240);
dmParamsSetFloat (format, DM_IMAGE_RATE, 15.0);
dmParamsSetString(format, DM_IMAGE_COMPRESSION, DM_IMAGE_UNCOMPRESSED);
dmParamsSetEnum(format, DM_IMAGE_INTERLACING, DM_IMAGE_NONINTERLEAVED);
dmParamsSetEnum (format, DM_IMAGE_PACKING, DM_PACKING_RGBX);
dmParamsSetEnum (format, DM_IMAGE_ORIENTATION, DM_BOTTOM_TO_TOP
);dmParamsDestroy (format);

The following is equivalent:

DMparams* format;
dmParamsCreate (&format);
dmSetImageDefaults (format, 320, 240, DM_PACKING_RGBX);
dmParamsDestroy (format);

72

Chapter 3: Digital Media Data Types and Parameter Lists

Manipulating DMparams Lists

This section explains how to manipulate DMparams lists. Some of the tasks you can two
with DMparams lists include:

• testing two parameter values for equality

• copying either individual parameter-value pairs or entire DMparams lists

• determine how many parameter-value pairs are in a particular DMparams list

• getting information about parameter names, data types,

Table 3-6 lists the routines that perform operations on DMparams lists and the entries
within them.

The sections that follow explain how to use each routine.

Table 3-6 Routines for Manipulating DMparams Lists and Entries

Routine Purpose

dmParamsAreEqual() Determine if the values of two parameters are equal

dmParamsCopyAllElems() Copy the entire contents of one list to another

dmParamsCopyElem() Copy one parameter-value pair from one DMparams list to another

dmParamsGetElem() Get the name of a given parameter

dmParamsGetElemType() Get the data type of a given parameter

dmParamsGetNumElems() Get the number of parameters in a list

dmParamsGetType() Get the data type of the named parameter

dmParamsIsPresent() Determine if a given parameter is in the list

dmParamsRemoveElem() Remove a given parameter from the list

dmParamsScan() Scan all the entries of a digital media parameter list

Digital Media Parameter Lists

73

Determining DMparams Equivalence

The function dmParamsAreEqual() compares two DMparams structures and tests for
equality. Its function prototype is:

DMboolean dmParamsAreEqual (const DMparams *params1,
 const DMparams *params2)

If params1 and params2 have the same number of parameter-value pairs, and if the
parameters of the same name have the same type and value in both lists, then the
function returns DM_TRUE.

Determining the Number of Elements in a DMparams List

To perform any task that requires your application to loop through the contents of a
DMparams list (for example, to print out a list of parameters and their values) you need
to know how many parameters are in the list in order to set up a loop to step through the
entries one-by-one.

To get the total number of elements present in a DMparams list, call
dmParamsGetNumElems(). Its function prototype is:

int dmParamsGetNumElems (const DMparams* params)

The number of elements and their position in a list is guaranteed to remain stable unless
the list is changed by using one of the “set” functions, by copying an element into it, or
by removing an element from it.

There is also a convenience function, dmParamsScan(), for looping through the contents
of a DMparams list and performing the same operation on each element of the list. See
for more information on

Copying the Contents of One DMparams List into Another

To copy the entire contents of the fromParams list into the toParams list, call
dmParamsCopyAllElems(). Its function prototype is:

DMstatus dmParamsCopyAllElems (const DMparams* fromParams,
 DMparams* toParams)

74

Chapter 3: Digital Media Data Types and Parameter Lists

If there are any parameters of the same name in both lists, the corresponding value(s) in
the destination list are overwritten. DM_SUCCESS is returned if there is enough memory
to hold the copied data; otherwise, DM_FAILURE is returned. Type mismatch causes a
failed assertion in the debug version of the library.

Copying an Individual Parameter Value from One List into Another

If a parameter appears in more than one DMparams list, it is sometimes more convenient
to copy the individual parameter or group of parameters from one list to another, rather
than individually setting the parameter value(s) for each list.

To copy the parameter-value pair for the parameter named paramName from the
fromParams list into the toParams list, call dmParamsCopyElem(). Its function prototype
is:

DMstatus dmParamsCopyElem (const DMparams* fromParams,
 const char* paramName,
 DMparams* toParams)

If there is a preexisting parameter with the same name in the destination list, that value
is overwritten. DM_SUCCESS is returned if there is enough memory to hold the copied
element; otherwise, DM_FAILURE is returned.

Determining the Name of a Given Parameter

To get the name of the entry occupying the position given by index in the params list, call
dmParamsGetElem(). Its function prototype is:

const char* dmParamsGetElem (const DMparams* params, const int index)

The index must be from 0 to one less than the number of elements in the list.

Determining the Data Type of a Given Parameter

To get the data type of the value occupying the position given by index in the params list,
call dmParamsGetElemType(). Its function prototype is:

DMparamtype dmParamsGetElemType (const DMparams* params,
 const int index)

Similarly, to get the data type of the parameter given by name in the params list, call
dmParamsGetType(). Its function prototype is:

Digital Media Parameter Lists

75

DMparamtype dmParamsGetType (const DMparams* params,
 const char* paramName)

See Table 3-1 for a list of valid return values.

Determining if a Given Parameter Exists

To determine whether the element named paramName exists in the params list, call
dmParamsIsPresent(). Its function prototype is:

DMboolean dmParamsIsPresent (const DMparams* params,
 const char* paramName)

DM_TRUE is returned if paramName is in params; otherwise, DM_FALSE is returned.

Scanning a DMparams List

Instead of creating your own loop to cycle through the contents of a DMparams list, you
can use the convenience routine dmParamsScan(), which performs a specified operation
on each element of the list. Its function prototype is:

DMstatus dmParamsScan (const DMparams* params,
 DMstatus (*scanFunc) (const DMparams* params,
 const char* paramName,
 void* scanArg,
 DMboolean* stopScan),
 void* scanArg)

The function dmParamsScan() passes the name of each entry in a DMparams list and
scanArg as parameters to scanFunc. If scanFunc sets the value of stopScan to DM_TRUE,
dmParamsScan() stops the DMparams list scan and returns the value returned by
scanFunc. Otherwise, dmParamsScan() processes all elements in the list and returns
DM_SUCCESS.

Removing an Element from a DMparams List

To remove the paramName entry from the params list, call dmParamsRemoveElem(). Its
function prototype is:

const char* dmParamsRemoveElem (DMparams* params,
 const char* paramName)

The element named paramName must be present.

76

Chapter 3: Digital Media Data Types and Parameter Lists

Example 3-5 prints the contents of a DMparams list.

Example 3-5 Printing the Contents of a Digital Media DMparams List

void PrintParams(DMparams* params) {
 int i;
 int numElems = dmParamsGetNumElems(params);

 for (i = 0; i < numElems; i++) {
 const char* name = dmParamsGetElem(params, i);
 DMparamtype type = dmParamsGetElemType(params, i);
 printf(" %20s: ", name);
 switch(type) {
 case DM_TYPE_ENUM:
 printf("%d", dmParamsGetEnum(params, name));
 break;
 case DM_TYPE_INT:
 printf("%d", dmParamsGetInt(params, name));
 break;
 case DM_TYPE_STRING:
 printf("%s", dmParamsGetString(params, name));
 break;
 case DM_TYPE_FLOAT:
 printf("%f", dmParamsGetFloat(params, name));
 break;
 case DM_TYPE_FRACTION:
 DMfraction f = dmParamsGetFract(params, name);
 printf("%d/%d", f.numerator, f.denominator);
 break;
 case DM_TYPE_PARAMS:
 printf("... param list ... ");
 break;
 case DM_TYPE_TOC_ENTRY:
 printf("... toc entry ...");
 break;
 default:
 assert(DM_FALSE);
 }
 printf("\n");
 }
}

Digital Media Parameter Lists

77

Compiling and Linking a Digital Media Library Application

Applications that call DM Library routines must include the libdmedia header files to
obtain definitions for the library; however, these files are usually included in the header
file of the library you are using.

This code fragment includes all the libdmedia header files:

#include <dmedia/dmedia.h>
#include <dmedia/dm_audio.h>
#include <dmedia/dm_image.h>
#include <dmedia/dm_params.h>
#include <dmedia/dm_buffer.h>
#include <dmedia/dm_imageconvert.h>
#include <dmedia/dm_audioconvert.h>

Link with the DM Library when compiling an application that makes DM Library calls
by including -ldmedia on the link line. It’s likely that you’ll be linking with other libraries
as well, and because the linking order is usually specific, follow the linking instructions
for the library you are using.

Debugging a Digital Media Library Application

The debugging version of the DM Library checks for library usage violations by setting
assertions that state the requirements for a parameter or value.

To debug your DM application, link with the debugging version of the DM Library,
libdmedia.so.1, by setting your LD_LIBRARY_PATH environment variable to the
directory containing the debug library before linking with -ldmedia, and then run your
program. For example, use setenv LD_LIBRARY_PATH /usr/lib/debug to set the path.

Your application will abort with an error message if it fails an assertion. The message
explains the situation that caused the error and, by implication or by explicit description,
suggests a corrective action.

When you have finished debugging your application, you should relink with the
nondebugging library, libdmedia.a, because the runtime checks imposed by the
debugging library cause an undesirable size and performance overhead for a packaged
application.

79

Chapter 4

4. Digital Media I/O

This chapter explains how to use the digital media library routines that facilitate
real-time input and output between live media devices.

Video I/O Concepts

This section explains basic video I/O concepts.

Programming video I/O involves

• devices, for processing video (each including sets of nodes)

• nodes, for defining endpoints or internal processing points of a video transport path

• paths, for routing video data by connecting nodes

• ports, for producing or consuming video data

• controls, parameters for modifying the behavior of video nodes and transport paths

• events, for monitoring video I/O status

• buffers, for sending video data to and receiving video data from host memory; these
can be either VLbuffers or DMbuffers.

Each of these topics is discussed in a separate section.

The manner in which video data transfer is accomplished differs slightly depending on
the buffering method, but the essential concepts of using paths, nodes, control, and
events apply to both methods.

Devices

There are two types of video devices: external devices that are connected to a video jack
on the workstation and VL video devices which are internal video boards and options

80

Chapter 4: Digital Media I/O

for processing video data. The application should perform a query to determine which
external video devices are connected and powered on, by calling vlGetDeviceList(),

int vlGetDeviceList (VLServer svr, VLDevList *devlist)

which fills the supplied VLDevList structure with a list of available devices, including
the number of devices available and an array of VLDevice structures describing the
available devices. A VLDevice structure contains the index of the device, the device
name, the number of nodes available and a list of VLNodeInfo structures describing the
nodes available on that device.

To select the desired node, find the entry in the node list for the device name you want
in the return argument of vlGetDeviceList(), then pass in the corresponding node
number to vlGetNode().

Nodes

A node is an endpoint or internal processing element of the video transport path, such as
a video source like a camera, a video drain (such as to the workstation screen), a device
(video), or the blender in which video sources are combined for output to a drain.

Nodes have three attributes:

• type, which specifies the node’s function in a path

• class, which identifies the type of system resource associated with the node

• number, which differentiates among multiple node instances and typically
corresponds to the numbering of the video connectors on the video board

Node types are:

VL_SRC the origination point (source) of a video stream

VL_DRN the destination point (drain) to which video is sent

VL_INTERNALa mid-stream filter such as a blender

VL_DEVICE a special node for device-global controls shared by all paths

Note: For VL_DEVICE, set the node class to 0.

Putting a VL_DEVICE node on a path gives that path access to global
device controls that can effect all paths on the device.

Video I/O Concepts

81

Node classes are:

VL_VIDEO a hardware video port that connects to a piece of video equipment such
as a video tape deck or camera. All video devices have at least one port.
The VL_SRC node type signifies an input port; VL_DRN signifies an
output port.

VL_MEM a memory buffer used to send or receive video data

VL_GFX a direct connection between a video device and a graphics framebuffer

VL_SCREEN a direct connection between a video device and a graphics display
device, but different from VL_GFX because the video data does not
interact directly with the graphics framebuffer and cannot be
manipulated with graphics routines

VL_TEXTURE an interface to graphics hardware for transferring video data directly to
or from texture memory

VL_BLENDER a filter that operates on data flowing from source to drain

VL_CSC an interface to an optional realtime colorspace converter on systems
which support it (and which have the option board installed)

VL_FB an internal framebuffer node for freezing video on certain systems

Additional node classes may be available on certain video options; refer to the
documentation that came with your video option for details.

To create a video node, call vlGetNode(). Its function prototype is

VLNode vlGetNode (VLServer vlSvr, int type, int class, int number)

Upon successful completion, vlGetNode() returns a VL Node, a handle to a node, which
can be used to identify the node for functions that perform an action on a node.

To use the default node for a device, specify its number as VL_ANY:

nodehandle = vlGetNode(svr, VL_SRC, VL_VIDEO, VL_ANY);

82

Chapter 4: Digital Media I/O

Paths

A path is a route between video nodes for directing the flow of video data.

Using a path involves

• creating the path

• getting the device ID

• adding nodes (if needed)

• specifying the data transfer characteristics of the path

• setting up the data path

These steps are explained individually in the sections that follow.

Creating a Video Data Transfer Path

Use vlCreatePath() to create the video data transfer path. Its function prototype is

VLPath vlCreatePath (VLServer svr, VLDev dev, VLNode source, VLNode drain)

You can create a path using any available node by specifying the generic value VL_ANY
for the device. This code fragment creates a path if the device is unknown:

if ((path = vlCreatePath(vlSvr, VL_ANY, src, drn)) < 0) {
 vlPerror(_progName);
 exit(1);
}

This code fragment creates a path that uses a device specified by parsing a devlist:

if ((path = vlCreatePath(vlSvr, devlist.devices[devicenum].dev, src,
 drn)) < 0) {
 vlPerror(_progName);
 exit(1);
}

Note: If the path contains one or more invalid nodes, vlCreatePath() returns
VLBadNode.

Video I/O Concepts

83

Getting the Device ID

If you specify VL_ANY as the device when you create the path, use vlGetDevice() to
discover the device ID selected. Its function prototype is

VLDev vlGetDevice (VLServer vlSvr, VLPath path)

For example:

devicenum = vlGetDevice(vlSvr, path);
deviceName = devlist.devices[devicenum].name;
printf("Device is: %s/n", deviceName);

Adding Nodes to an Existing Video Path

You can add nodes to an existing path to provide additional processing or I/O
capabilities. For this optional step, use vlAddNode(). Its function prototype is

int vlAddNode (VLServer vlSvr, VLPath vlPath, VLNodeId node)

where

vlSvr names the server to which the path is connected

vlPath is the path as defined with vlCreatePath()

node is the node ID

Specifying Video Data Transfer Path Characteristics

Path attributes specify usage rules for video controls and data transfers. Even though the
names are the same, the intent and function of the usage attributes depend on whether
they specify control or stream (data) usage.

Control usage attributes are:

• VL_SHARE, meaning other paths can set controls on this node; this control is the
desired setting for other paths, including vcp, to work

Note: When using VL_SHARE, pay attention to events. If another user has changed
a control, a VLControlChanged event occurs.

• VL_READ_ONLY, meaning controls cannot be set, only read; for example, this
control can be used to monitor controls

84

Chapter 4: Digital Media I/O

• VL_LOCK, which prevents other paths from setting controls on this path; controls
cannot be used by another path

• VL_DONE_USING, meaning the resources are no longer required; the application
releases this set of paths for other applications to acquire

Stream (data) usage attributes are:

• VL_SHARE, meaning transfers can be preempted by other users; paths contend for
ownership

Note: When using VL_SHARE, pay attention to events. If another user has taken
over the node, a VLStreamPreempted event occurs.

• VL_READ_ONLY, meaning the path cannot perform transfers, but other resources
are not locked; set this value to use the path for controls

• VL_LOCK, which prevents other paths that share data transfer resources with this
path from transferring (except that 2 paths can share a video source when locked);
existing paths that share resources with this path will be preempted

• VL_DONE_USING, meaning the resources are no longer required; the application
releases this set of paths for other applications to acquire

Setting up a Video Transfer Data Path

Once the path has been created and usage attributes assigned, its settings do not go into
effect until the path is set up with vlSetupPaths(). Its function prototype is

int vlSetupPaths (VLServer vlSvr, VLPathList paths,
 u_int count, VLUsageType ctrlusage,
 VLUsageType streamusage)

where

vlSvr names the server to which the path is connected

paths specifies a list of paths you are setting up

count specifies the number of paths in the path list

ctrlusage specifies usage for path controls

streamusage specifies usage for the data

Video I/O Concepts

85

This example fragment sets up a path with shared controls and a locked stream:

if (vlSetupPaths(vlSvr, (VLPathList)&path, 1, VL_SHARE,
 VL_LOCK) < 0)
{
 vlPerror(_progName);
 exit(1);
}

Note: The Video Library infers the connections on a path if vlBeginTransfer() is called
and no drain nodes have been connected using vlSetConnection() (implicit routing). To
specify a path that does not use the default connections, use vlSetConnection() (explicit
routing).

• For each internal node on the path, all unconnected input ports are connected to the
first source node added to the path. Pixel ports are connected to pixel ports and
alpha ports are connected to alpha ports.

• For each drain node on the path, all unconnected input ports are connected to the
first internal node placed on the path, if there is an internal node, or to the first
source node placed on the path. Pixel ports are connected to pixel ports and alpha
ports are connected to alpha ports.

Note: Do not combine implicit and explicit routing.

Controls

Controls determine the behavior of a node or path and provide information about them.
Controls are specific to the path and node, and can also be device-dependent, depending
on the control type. In general, controls on a video node are independent of controls on
a memory or screen node. Even though controls on different types of nodes have the
same names, they have different meanings, different units, and different behavior,
depending on what node class they control.

The type definition of a VL control is:

typedef int VLControlType;

To get the value of a control, call vlGetControl():

int vlGetControl (VLserver svr, VLPath path, VLnode node,
 VLControlType type, VLControlValue *value)

86

Chapter 4: Digital Media I/O

The control is located according to the svr, path, node, and type and its value is returned in
a pointer to a VLControlValue structure:

typedef union {
 VLFraction fractVal;
 VLBoolean boolVal;
 int intVal;
 VLXY xyVal;
 char stringVal[96];
 float matrixVal[3][3];
 uint pad[24];
 VLExtendedValue extVal;
} VLControlValue;

typedef struct {
 int x, y;
} VLXY;

typedef struct {
 int numerator;
 int denominator;
} VLFraction;

To obtain information about the valid values for a given control, call vlGetControlInfo():

VLControlInfo *vlGetControlInfo (VLserver svr, VLPath path, VLnode node,
 VLControlType type)

The control is located according to the svr, path, node, and type and its value is returned in
a pointer to a VLControlInfo structure:

typedef struct __vlControlInfo {
 char name[VL_NAME_SIZE]; /* name of control */
 VLControlType type; /* e.g. WINDOW, HUE */
 VLControlClass ctlClass; /* SLIDER, DETENT, KNOB, BUTTON */
 VLControlGroup group; /* BLEND, VISUAL QUALITY, SYNC */
 VLNode node; /* associated node */
 VLControlValueType valueType; /* what kind of data */
 int valueCount; /* how many data items */
 int numFractRanges; /* number of ranges */
 VLFractionRange *ranges; /* range of values of control */
 int numItems; /* number of enumerated items */
 VLControlItem *itemList; /* the actual enumerations */
} VLControlInfo;

Video I/O Concepts

87

These controls are highly interdependent, so the order in which they are set is important.
In most cases, the value being set takes precedence over other values that were
previously set.

There are 2 types of controls: “path” controls and “device” controls. The distinction
between the two is detailed below.

Path controls are controls such as VL_SIZE, VL_OFFSET, and VL_ZOOM, which are
capable of actively controlling a transfer. These controls are private to a path and any
changes (with some exceptions) cause events to be sent only to the process owning the
path. These controls are active while the path is transferring, and retain their values
when the transfer is suspended for any reason. In practice, this means that the user
program can set up the desired transfer controls, and then restart a preempted transfer
without restoring controls to their previous values.

Device controls are controls such as VL_BRIGHTNESS and VL_CONTRAST, which are
outside the realm of a “path” and can possibly effect the data that another path is
processing. Because most of these controls directly affect some hardware change, they
retain their values after the paths are removed.

Establishing the Default Input Source

VL_DEFAULT_SOURCE specifies which of the input nodes is to be considered the
“default” input. This is automatically setup when the video driver is loaded according to
Table 4-1, which indicates which input signal(s) are active.

For example, if a VCR is connected to the SVideo input and it is powered on, then it is the
default input.

Table 4-1 Default Video Source

S-video Composite Camera Default_Source

yes x x svideo

no yes x composite

no no yes camera

no no no composite

88

Chapter 4: Digital Media I/O

When the VL_DEFAULT_SOURCE is changed, a VLDefaultSource event is sent to all
processes that have this event enabled in their vlEventMask.

Getting Video Source Controls

Most source controls are read-only values that are set either by the user (from the Video
Control Panel) or automatically, according to the characteristics of the video input signal.
However, reading the values of these controls is useful for obtaining information about
the input video stream that is necessary for setting controls on the drain node.

Getting Video Input Format Using the VL_FORMAT Control

The VL_FORMAT control on the video source node is usually set using the Video Control
Panel. It is often of no concern to a vid-to-mem application, except with Sirius video,
where it is used to determine color space conversion.

VL_FORMAT selects the input video format (use VL_MUXSWITCH if there are more
than one to select):

• VL_FORMAT_COMPOSITE selects analog composite video

• VL_FORMAT_SVIDEO selects analog composite video

• VL_FORMAT_DIGITAL_COMPONENT and
VL_FORMAT_DIGITAL_COMPONENT_SERIAL select digital video

• VL_FORMAT_DIGITAL_INDYCAM and VL_FORMAT_DIGITAL_CAMERA select
the connected camera

Getting Video Input Timing Using the VL_TIMING Control

The VL_TIMING control on the video source node is usually set from the Video Control
Panel. The input source timing also affects the value returned by the VL_SIZE control on
the video source node.

Use VL_TIMING to determine whether the input source timing is PAL or NTSC, and
whether the input pixels are square or not. Knowing whether the input signal is PAL or
NTSC timing is useful for setting the VL_RATE control on the memory drain node. (For
Sirius Video, it is also used to determine the value for the VL_TIMING control on the
memory drain node. An easy way to set the VL_TIMING value for the memory node is

Video I/O Concepts

89

to read the value of the VL_TIMING control from the video source node, and then set that
value into the VL_TIMING control for the memory node.

The VL_TIMING control is an integer value that adjusts the video filter for different
video standards.

The 525 (NTSC) or 625 (PAL) timing standards are specified and the pixels are considered
to be in the accepted video aspect ratio for those standards (also known as “non-square”)
for VL_TIMING_525_CCIR601 and VL_TIMING_625_CCIR601

The 525 (NTSC) or 625 (PAL) timing standards are specified and, depending on the VL
video device and the connector type, a non-square to square pixel filter can be engaged
so that in memory, the pixels are in a 1:1 aspect ratio (which is compatible with OpenGL)
for VL_TIMING_525_SQ_PIX and VL_TIMING_625_SQ_PIX.

When these timings are applied to a path that has a standard digital camera attached,
then the 525 (NTSC) or 625 (PAL) timing standards are interpreted to mean that the
external pixels are in a 1:1 aspect ratio, and there is no non-square format available for
the internal pixels. If a non-square imager becomes available, then non-square pixels will
be available. The pixel conversion applies a ratio of 11/10 for NTSC, and a ratio of 11/12
for PAL.

Note: The application program should always check the default VL_SIZE after a timing
change to determine the size of the resultant images.

Getting Video Input SIze Using the VL_SIZE Control

The VL_SIZE control on the video source node is a read-only control. The x and y values
returned by this control are affected by the setting of the VL_TIMING control on the
video source node. The x and y values of this control are not, in general, affected by the
settings of any controls in the memory drain node, including VL_ZOOM, VL_SIZE, and
VL_CAP_TYPE.

The x component value of this control reveals the width, in pixels, of the unzoomed,
unclipped video input images (in fields or frames, depending on the VL_CAP_TYPE).
The meaning of the y component value of the video source node’s VL_SIZE control
depends on the video device. On Sirius, the y value is the number of pixel rows in each
field, and includes the count of rows of pixel samples taken from the field’s Vertical
Retrace Interval. On EV1 and VINO, the y value is the number of pixel rows in each
frame (pair of fields), and does not include any pixel rows from the Vertical Retrace
Interval.

90

Chapter 4: Digital Media I/O

Setting Memory Drain Node Controls

This section describes setting controls on the memory drain node.

Setting the Memory Packing Controls Using the VL_PACKING control

A vid-to-mem application chooses the color space (that is. the set of components that
make up each pixel, for example: RGB, RGBA, YUV, YCrCb, Y, YIQ) and the particular
packing of those pixel components into memory using the VL_PACKING control (on all
video devices) and also with the VL_FORMAT control on Sirius video.

On all VL video devices except Sirius, VL_FORMAT is not applicable to memory drain
nodes, and VL_PACKING is used to select the color space as well as the pattern by which
the components are packed into memory buffers. Packings that imply RGB or RGBA
color spaces select those spaces. Packings that imply Y, or YUV or YCrCb color spaces
select one of those spaces.

Setting the Memory Capture Mode Using the VL_CAP_TYPE Control

On all VL video devices except Sirius, the capture mode can be set by the application. Its
setting determines whether the images in the buffers returned by the VL are individual
fields, or interleaved frames, or pairs of non-interleaved fields.

VL_CAP_TYPE specifies the capture mode:

• VL_CAPTURE_INTERLEAVED captures or sends buffers that contain both the F1
and F2 fields interlaced in memory. A side effect of changing from
“non-interleaved” to “interleaved” is that the VL_RATE will be halved.

• VL_CAPTURE_NONINTERLEAVED captures or sends buffers that contain only
one field each but are transferred in pairs keeping the F1 and even field of a picture
together. A side effect of this characteristic, if a transfer error occurs in the second
field, then the first is not transferred.

• VL_CAPTURE_FIELDS captures or sends buffers that contain only one field each
and are transferred individually. Since these are separate fields then VL_RATE is
effective on individual fields, and a single field may be dropped. Also, changing
from “interleaved” to “fields” causes the VL_RATE to be doubled.

• VL_CAPTURE_EVEN_FIELDS captures only the F1 fields. For output the field is
transferred during both field times.

Video I/O Concepts

91

• VL_CAPTURE_ODD_FIELDS captures only the F1 fields. For output the field is
transferred during both field times

There is no single VL_CAP_TYPE that is available, and implemented in the same way, on
all VL video devices. VL_CAPTURE_NONINTERLEAVED is available on all devices,
but has different meanings on different platforms. VL_CAPTURE_INTERLEAVED,
VL_CAPTURE_EVEN_FIELDS, and VL_CAPTURE_ODD_FIELDS are available and
common to all VL video devices except Sirius.

On Sirius Video, VL_CAP_TYPE is read-only, and is permanently set to
VL_CAPTURE_NONINTERLEAVED. Each captured buffer contains exactly one field,
unclipped, unzoomed, with n leading pixel rows of samples from the vertical retrace
interval.

EV1 implements VL_CAPTURE_NONINTERLEAVED differently from all other VL
video devices. On all VL video devices except EV1, when VL_CAP_TYPE is set to
VL_CAPTURE_NONINTERLEAVED, each image buffer that the VL gives to the
application contains one field, either F1 or F2, and VL_RATE (the rate at which these
buffers are returned) is in fields per second, not frames per second. But on EV1 video
devices, when VL_CAP_TYPE is set to VL_CAPTURE_NONINTERLEAVED, each
image buffer contains two non-interleaved fields, and VL_RATE is in frames per second.

Setting the Memory Capture Target Rate Using the VL_RATE Control

On all VL video devices except Sirius, VL_RATE sets the target rate (upper bound) of
image buffers per second to be captured and returned to the application. The VL will not
deliver more buffers per second than the rate you specify, but it can deliver less.

The contents of each image buffer is either a frame or a field, as determined by the
VL_CAP_TYPE control. Accordingly, VL_RATE is in units of fields per second or frames
per second, as determined by the VL_CAP_TYPE control.

VL_RATE is effective on a pair of fields, though it is still interpreted as a field rate. What
this means is that if a field is to be dropped because of the effects of VL_RATE, then both
fields are dropped (for output, if the VL_RATE causes some fields to be dropped, then
the preceding fields are repeated). Also, changing from “interleaved” to
“non-interleaved” mode causes the VL_RATE to be doubled.

VL_RATE is expressed as a fractional value (an integer numerator divided by an integer
denominator) and ranges from the maximum rate (60/1 for NTSC, 50/1 for PAL, and half
of each value for VL_CAPTURE_INTERLEAVED) down to 1/0xffff in any increment.

92

Chapter 4: Digital Media I/O

Both the numerator and denominator must be specified. The usual value for the
denominator is 1. Some devices convert the fraction to an integer number of images per
second by truncating rather than rounding, so using values that are equivalent to integer
values is the safest thing to do. Because VL_RATE is a fraction, vlGetControlInfo()
cannot be used to obtain the minimum or maximum values for VL_RATE.

Acceptable values are determined from the following list of devices:

• VL_CAPTURE_NONINTERLEAVED for all devices except EV1 and Sirius

– NTSC: all multiples of 10 and 12 between 10 and 60

– PAL: all multiples of 10 between 10 and 50

• VL_CAPTURE_NONINTERLEAVED (EV1)

– NTSC: all multiples of 5 and 6 between 5 and 30

– PAL: all multiples of 5 between 5 and 25

• VL_CAPTURE_INTERLEAVED, VL_CAPTURE_EVEN_FIELDS, and
VL_CAPTURE_ODD_FIELDS

– NTSC: all multiples of 5 and 6 between 5 and 30

– PAL: all multiples of 5 between 5 and 25

• VL_CAPTURE_NONINTERLEAVED for Sirius Video. This control is read-only. Its
value is determined by the setting of the VL_TIMING control on the memory node.

– NTSC: 60 fields per second

– PAL: 50 fields per second

VINO’s VL_RATE cannot be set to a value less than 5/1.

Video I/O Concepts

93

Setting Video Capture Region Controls

Figure 4-1 shows a diagram of an NTSC F1 field.

Figure 4-1 Video Image Parameter Controls

The data contained within the area labeled “Active Video” is the default data transferred
to and from memory, but the hardware and video driver allow the transfer to include
most all the portion of the “hidden” video, or the Horizontal and/or Vertical Ancillary
Data (HANC/VANC).

The following controls specify the capture region (all these controls are path controls):

• VL_ORIGIN is used on the screen capture device to specify the origin of the capture
area. For Video input, the VL_ORIGIN can be used to specify a “black fill” region.

• VL_OFFSET is used on a source or drain memory node to specify an (x, y) value that
signifies the upper left corner of the active video region. For input, the area to the
left and above the VL_OFFSET is omitted. For output, the same region is filled with
“black”.

Line #

4 138 858

21

263

265

VL_ORIGIN Vertical Ancillary Data (VANC)
 Blanking region including VITC, CC

 Blanking region

VL_OFFSET

Active Video

VL_SIZE

Horizontal
Ancillary Data

94

Chapter 4: Digital Media I/O

The VL_OFFSET values are in “ZOOMED” coordinates (see VL_ZOOM below).
VL_OFFSET has a default of 0,0. Negative values of VL_OFFSET specify
non-picture data such as horizontal and vertical ancillary data, which must be
decoded separately from the picture data.

Certain restrictions apply to the value of VL_OFFSET. The resultant offset must be
on a 2-pixel boundary, and the minimum offset is restricted to the values listed in
the reference pages for the VL video devices. See also “Using VL_SIZE and
VL_OFFSET on the Memory Drain Node,”for detailed information about these
values for memory drain nodes.

Note: The actual minimum offset is affected by VL_ZOOM and VL_ASPECT (see
VL_ASPECT below).

• VL_SIZE is used on a source or drain memory node to specify an (x, y) value that
defines the extent of the active video region. Adding the VL_SIZE coordinates to the
VL_OFFSET coordinates gives the coordinates of the lower right corner of the active
video region (VL_OFFSET + VL_SIZE = lower right corner). For input, the area to
the right and below this corner is omitted. For output, the same region is filled with
“black”.

The VL_SIZE values are in “ZOOMED” coordinates. See “Using VL_SIZE and
VL_OFFSET on the Memory Drain Node,”for details about VL_SIZE values.

Certain restrictions apply to the value of VL_SIZE: the resultant size must be on a 2
pixel boundary and the number of bytes to be transferred must be a multiple of 8.

The maximum VL_SIZE is defined by the total number of lines in the video
standard. Increasing the VL_SIZE beyond the maximum horizontal dimension
causes VL_OFFSET to assume negative values. Out of range values return vlErrno
VLValueOutOfRange.

The use of all these controls is explained in the sections that follow.

Using VL_SIZE and VL_OFFSET on the Memory Drain Node

This section discusses the VL_SIZE control and the VL_OFFSET control on the memory
drain node.

The VL_SIZE control on the memory drain node determines the number of rows of
pixels, and the number of pixels in each row, in each image buffer (field or frame) that
the VL returns to the application. If zooming (decimation) is being done, the VL_SIZE
control on the memory drain node specifies the size of the image after it has been
decimated.

Video I/O Concepts

95

The VL_SIZE control on the memory drain node can be used to “clip” a region out of an
image by setting the X and/or Y components to values that are smaller than the size of
the captured (and decimated, if applicable) image.

When the (possibly decimated) image is being clipped, the clipped region does not have
to come from the upper left hand corner of the (possibly decimated) source image. The
VL_OFFSET control on the memory drain node determines the number of top pixel rows
to skip and the number of leading pixels to skip in each row to find the first pixel in the
(possibly decimated) image to place in the image buffer, the first pixel of the clipping
region.

When zooming (decimation) is being used, VL_OFFSET is always in coordinates of the
zoomed image. It is as if the entire source image is decimated down, and then the
clipping function is applied to the decimated image. In practice, the hardware usually
clips before decimating, but the VL API always specifies the VL_OFFSET in the
coordinates of the decimated (virtual) image.

On all VL devices except Sirius, the vertical (Y) component of VL_OFFSET may be
specified with a negative value. This causes the clipping region to include row of samples
taken before the top of the image, e.g. rows from the Vertical Retrace Interval. This
feature is usually used with VL_ZOOM of 1/1, since the information in the Vertical
Retrace Interval isn’t an image and doesn’t make sense to decimate or average, at least
not in the vertical direction.

The VL imposes these requirements on the values of VL_OFFSET and VL_SIZE:

• The sum of the vertical components of VL_OFFSET and VL_SIZE must not exceed
the height of the virtual (zoomed) image, and

• The sum of the horizontal components of VL_OFFSET and VL_SIZE must not
exceed the width of the virtual (zoomed) image. When an attempt to set either one
of these controls would violate either of the rules above, the call to vlSetControl()
fails with the vlErrno VLValueOutOfRange, and the offending component
(horizontal or vertical) is set to the largest non-negative value that does not violate
the rule, or to zero if no such non-negative value exists.

VL_OFFSET and VL_SIZE cannot be both set in one atomic operation. A change in either
component of either control could violate one of the rules above (or below), especially
after VL_ZOOM is set to a smaller fraction. It may be necessary to alternately and
repeatedly set VL_OFFSET and VL_SIZE until no VLValueOutOfRange errors are
reported.

96

Chapter 4: Digital Media I/O

Every VL video device places additional limitations on the range of acceptable values of
VL_SIZE and VL_OFFSET. Each device has different limitations.

• Sirius doesn’t clip at all. VL_SIZE and VL_OFFSET are read-only in Sirius.

• EV1 supports clipping only in the vertical (Y) direction. The entire width of the
(possibly decimated) image is always placed in the image buffer.
Application-specified horizontal clipping values are ignored.

• VINO imposes an additional list of requirements on VL_SIZE and VL_OFFSET. See
below. VINO imposes the following additional clipping requirements:

• The right side edge of the clipped image must always coincide with the right side
edge of the virtual (possibly decimated) image. That is, the clipped image must
always come from the right side of the (possibly decimated) source image.
Consequently, when vlSetControl is called to set the VL_OFFSET or VL_SIZE
control on a memory node, if the sum of the horizontal components of the (new)
settings of VL_OFFSET and VL_SIZE is less than the width of the virtual (zoomed)
image, the vlSetControl call will succeed, and the horizontal component of the other
control will be adjusted so that the sum of the two components exactly equals the
width of the virtual (zoomed) image. This is done only in the horizontal direction.

• Each pixel row in the image buffer must be a multiple of 8-bytes in length. This
means that the horizontal component of VL_SIZE must be a multiple of 2, 4, or 8
pixels, depending on the pixel packing (size of the individual pixels in memory).

Using VL_ZOOM on the Memory Drain Node

VL_ZOOM controls the expansion or decimation of the video image. Values greater than
one expand the video; values less than one perform decimation. The only value of
VL_ZOOM that works on all VL devices is 1/1. Acceptable values for vid-to-mem
applications follow.

VINO may exhibit the following effects at these decimation factors: 1/4, 1/5, 1/6, 1/7,
and 1/8:

• Y values that are not adjacent horizontally are averaged together

• the decimated images appear extremely green.

As a workaround, the VINO driver implements decimation by 1/4 and 1/6 by
decimating in hardware by 1/2 or 1/3, and then decimates by an additional factor of 1/2
in software. This produces acceptable looking images, but at significant cost in CPU time.

Video I/O Concepts

97

The three other VL_ZOOM factors, 1/5, 1/7, and 1/8 all exhibit the green image effect
described above.

For example, the listed zoom factors on VINO may behave as follows:

1/1, 1/2, 1/3 implemented in hardware, looks OK.

1/4, 1/6 implemented partially in hardware, partially in software. Looks OK, but
slower and uses 10% of an R4600 CPU.

1/5, 1/7, 1/8 implemented in hardware. Exhibits green shift.

For example, the listed zoom factors on EV1 may behave as follows:

1/1, 1/2, 1/4, 1/8
works OK for vid-to-mem

1/3, 1/5, 1/7 works only for vid-to-screen, not vid-to-mem, and only with
VL_CAPTURE_INTERLEAVED

2/1, 4/1 works only for vid-to-screen, not vid-to-mem.

Note: Sirius and Galileo 1.5 only accept a 1/1 zoom factor (Sirius and Galileo 1.5 don’t
zoom).

VL_ZOOM specifies the decimation of the input video to some fraction of its original
size. Scaling from 1/1 down to 1/256 is available; the actual increments are: 256 to 1/256.
The actual zoom value is affected by VL_ASPECT.

Note: VL_ZOOM is available only on the VL_DRN/VL_MEM (input) node.

VL_SYNC selects the type of sync used for video output. The choices are:

• VL_SYNC_INTERNAL means that the timing for the output is generated using an
internal oscillator appropriate for the timing required (NTSC or PAL).

• VL_SYNC_GENLOCK means that the timing for the output is “genlocked” to the
VL_SYNC_ SOURCE.

• VL_SYNC_SOURCE selects which sync source is used when VL_SYNC is set to
VL_SYNC_GENLOCK.

 VL_LAYOUT specifies the pixel layout (same as DM_IMAGE_LAYOUT):

• VL_LAYOUT_LINEAR means that video pixels are arranged in memory linearly.

98

Chapter 4: Digital Media I/O

• VL_LAYOUT_GRAPHICS means that video pixels are arranged in memory in a
Pbuffer fashion that is compatible with the O2 OpenGL.

• VL_LAYOUT_MIPMAP means that video pixels are arranged in memory in a
texture or mipmapped fashion that is compatible with the O2 OpenGL.

 Signal Quality Controls

The following signal quality controls are available (as supported by the video device):

• VL_BRIGHTNESS

• VL_CONTRAST

• VL_H_PHASE

• VL_HUE

• VL_SATURATION

• VL_RED_SETUP

• VL_GREEN_SETUP

• VL_GRN_SETUP

• VL_BLUE_SETUP

• VL_BLU_SETUP

• VL_ALPHA_SETUP

• VL_V_PHASE

Each of these controls is defined if they are provided in the analog encoder or decoder.
They are not available in the digital domains.

VL_SIGNAL can be either VL_SIGNAL_NOTHING, VL_SIGNAL_BLACK, or
VL_SIGNAL_REAL_IMAGE

VL_FLICKER_FILTER enables or disables the “flicker” filter.

 VL_DITHER_FILTER enables or disables the “dither” filter.

 VL_NOTCH_FILTER enables or disables the “notch” filter.

Video I/O Concepts

99

To determine default values, use vlGetControl() to query the values on the video source
or drain node before setting controls. For all these controls, it pays to track return codes.
If the value returned is VLValueOutOfRange, the value set is not what you requested.

Table 4-2 summarizes the VL controls. For each control the ASCII name of the control, the
type of value it takes, and the node types and classes to which it can be applied is listed.

The ASCII name is used to assign values to controls in the VL Resources file and can also
be found in the control table returned by vlGetControlList().

Table 4-2 Summary of VL Controls

Control ASCII Name Value Node Type/Class

VL_DEFAULT_SOURCE default_input intVal VL_SRC/VL_VIDEO

VL_TIM ING timing intVal VL_SRC/VL_VIDEO

VL_ORIGIN origin xyVal VL_ANY/VL_MEM

VL_SIZE size xyVal VL_ANY/VL_MEM

VL_RATE fieldrate fractVal VL_ANY/VL_MEM

VL_ZOOM zoom fractVal VL_ANY/VL_MEM

VL_ASPECT aspect fractVal VL_ANY/VL_MEM

VL_CAP_TYPE fieldmode intVal VL_ANY/VL_MEM

VL_PACKING packing intVal VL_ANY/VL_MEM

VL_FORMAT format intVal VL_SRC/VL_VIDEO,
VL_ANY/VL_MEM

VL_SYNC sync intVal VL_DRN/VL_VIDEO

VL_SYNC_SOURCE sync_source intVal VL_DRN/VL_VIDEO

VL_LAYOUT layout intVal VL_ANY/VL_MEM

VL_SIGNAL signal intVal VL_DRN/VL_VIDEO

VL_FLICKER_FILTER flicker_filter boolVal VL_SRC/VL_SCREEN

VL_DITHER_FILTER dither_filter boolVal VL_SRC/VL_VIDEO

VL_NOTCH_FILTER notch_filter boolVal VL_DRN/VL_VIDEO

100

Chapter 4: Digital Media I/O

The following list is a key to which nodes the control can be applied:

• VL_SRC/VL_VIDEO - source video node

• VL_DRN/VL_VIDEO - drain video node

• VL_ANY/VL_VIDEO - source or drain video node

• VL_SRC/VL_SCREEN - source screen node

• VL_SRC/VL_MEM - source memory node

• VL_DRN/VL_MEM - drain memory node

• VL_ANY/VL_MEM - source or drain memory node

Video Events

Video events provide a way to monitor the status of a video I/O stream. Typically, a
number of events are combined into an event mask that describes the events of interest.
Use vlSelectEvents() to specify the events you want to receive. Its function prototype is

int vlSelectEvents(VLServer vlSvr, VLPath path, VLEventMask eventmask)

where

vlSvr names the server to which the path is connected

path specifies the data path.

eventmask specifies the event mask; Table 4-3 lists the possibilities

Table 4-3 lists and describes the VL event masks.

Table 4-3 VL Event Masks

Symbol Meaning

VLStreamBusyMask Stream is locked

VLStreamPreemptedMask Stream was grabbed by another path

VLStreamChangedMask Video routing on this path has been changed by another path

VLAdvanceMissedMask Time was already reached

VLSyncLostMask Irregular or interrupted signal

Video I/O Concepts

101

When transferring video, the main event is a VLTransferComplete.

Video I/O Model

In the traditional video I/O model, you use the buffering, data transfer, and event
handling routines supplied by the VL. One of the consequences of this approach is that
it might require you to copy data passed outside the VL. (See the next chapter for the
DMbuffers I/O method for O2 workstations.)

A basic VL application has the following components:

 Preliminary path setup:

• vlOpenVideo() - open the video server

VLSequenceLostMask Field or frame dropped

VLControlChangedMask A control has changed

VLControlRangeChangedMask A control range has changed

VLControlPreemptedMask Control of a node has been preempted, typically by another
user setting VL_LOCK on a path that was previously set with
VL_SHARE

VLControlAvailableMask Access is now available

VLTransferCompleteMask Transfer of field or frame complete

VLTransferFailedMask Error; transfer terminated; perform cleanup at this point,
including vlEndTransfer()

VLEvenVerticalRetraceMask Vertical retrace event, even field

VLOddVerticalRetraceMask Vertical retrace event, odd field

VLFrameVerticalRetraceMask Frame vertical retrace event

VLDeviceEventMask Device-specific event, such as a trigger

VLDefaultSourceMask Default source changed

Table 4-3 (continued) VL Event Masks

Symbol Meaning

102

Chapter 4: Digital Media I/O

• vlGetDeviceList() - discover which devices and nodes are connected to this system.

• vlGetNode() - get the source and drain nodes

• vlCreatePath() - create a video path with the source and drain nodes specified.

• vlSetupPath() - set the path up to be usable given the access requested.

• vlDestroyPath() - remove a video path.

 Specific control settings:

• vlSetControl() - set various parameters associated with the video transfer.

• vlGetControl() - get various parameters associated with the video transfer.

 Preparing to capture or output video to/from memory:

• vlCreateBuffer() - create a VLbuffer

• vlRegisterBuffer() - register this buffer with the path

 Starting and controlling the video transfer:

• vlBeginTransfer() - initiate the transfer

• vlEndTransfer() - terminate the transfer

• vlNextEvent() - handle events from the video device

• vlGetNextValid() - get incoming buffers with captured video

• vlPutValid() - send outgoing buffers with inserted video

Freezing Video

Showing a still frame from a recorded video sequence (either uncompressed or
compressed using JPEG) presents an enigma. Displaying a still frame requires a complete
set of spatial information at a single instant of time—the data is simply not available to
display a still frame correctly.

One way to display a still frame is to combine the lines from two adjacent fields, as shown
in Figure 4-2. No matter which pair of fields you choose, the resulting still frame exhibits
artifacts.

Video I/O Concepts

103

Figure 4-2 Tearing

Figure 4-2 shows a display artifact known as tearing or fingering, which is an inevitable
consequence of putting together an image from bits of images snapped at different times.
You don’t notice the artifact if the fields are flashed in rapid succession at the field rate,
but when you try to freeze motion and show a frame, the effect is visible. You wouldn’t
notice the artifact if the objects being captured were not moving between fields.

These types of artifacts cause trouble for most compressors. If you are capturing still
frames in order to pass frame-sized images on to a compressor, you definitely should
avoid tearing. A compressor will waste lots of bits trying to encode the high-frequency
information in the tearing artifacts and fewer bits encoding your actual picture.
Depending on the size and quality of compressed image you want, you might consider
sending every other field (perhaps decimated horizontally) to the compressor, rather
than trying to create frames that will compress well.

Another possible technique for producing still-frames is to double the lines in a single
field, as shown in Figure 4-3.

Figure 4-3 Line Doubling on a Single Field

104

Chapter 4: Digital Media I/O

This looks a little better, but there is an obvious loss of spatial resolution (as evidenced
by the visible “jaggies” and vertical blockiness).

To some extent, this can be reduced by interpolating adjacent lines in one field to get the
lines of the other field, as shown in Figure 4-4.

Figure 4-4 Interpolating Alternate Scan Lines from Adjacent Fields

There are an endless variety of more elaborate tricks you can use to come up with good
still frames, all of which come under the heading of “de-interlacing methods.” Some of
these tricks attempt to use data from both fields in areas of the image that are not moving
(so you get high spatial resolution), and double or interpolate lines of one field in areas
of the image that are moving (so you get high temporal resolution). Many of the tricks
take more than two fields as input. Since the data is simply not available to produce a
spatially complete picture for one instant, there is no perfect solution. But depending on
why you want the still frame, the extra effort may well be worth it.

When a CRT-based television monitor displays interlaced video, it doesn’t flash one
frame at a time on the screen. During each field time (each 50th or 60th of a second), the
CRT lights up the phosphors of the lines of that field only. Then, in the next field interval,
the CRT lights up the phosphors belonging to the lines of the other field. So, for example,
at the instant when a pixel on a given picture line is refreshed, the pixels just above and
below that pixel have not been refreshed for a 50th or 60th of a second, and will not be
refreshed for another 50th or 60th of a second.

So if that’s true, then why don’t video images don’t flicker or jump up and down as
alternate fields are refreshed?

Video I/O Concepts

105

This is partially explained by the persistence of the phosphors on the screen. Once
refreshed, the lines of a given field start to fade out slowly, and so the monitor is still
emitting some light from those lines when the lines of the other field are being refreshed.
The lack of flicker is also partially explained by a similar persistence in your visual
system.

Unfortunately though, these are not the only factors. Much of the reason why you do not
perceive flicker on a video screen is that good-looking video signals themselves have
built-in characteristics that reduce the visibility of flicker. It is important to understand
these characteristics, because when you synthesize images on a computer or process
digitized images, you must produce an image that also has these characteristics. An
image which looks good on a non-interlaced computer monitor can easily look abysmal
on an interlaced video monitor.

A complete understanding of when flicker is likely to be perceivable and how to get rid
of it requires an in-depth analysis of the properties of the phosphors of a particular
monitor (not only their persistence but also their size, overlap, and average viewing
distance), it requires more knowledge of the human visual system, and it may also
require an in-depth analysis of the source of the video (for example, the persistence, size,
and overlap of the CCD elements used in the camera, the shape of the camera’s aperture,
etc.). This description is only intended to give a general sense of the issues.

Standard analog video (NTSC and PAL) has characteristics (such as bandwidth
limitations) which can introduce many similar artifacts to the ones we are describing here
into the final result of video output from a computer. These artifacts are beyond the scope
of this document, but are also important to consider when creating data to be converted
to an analog video signal. Examples of this would be antialiasing (blurring) data in a
computer to avoid chroma aliasing when the data is converted to analog video.

Here are some of the major areas to be concerned about when creating data for video
output:

• Abrupt Vertical Transitions: One-Pixel-High Lines

First of all, typical video images do not have abrupt vertical changes. For example,
say you output an image that is entirely black except for one, one-pixel-high line in
the middle.

106

Chapter 4: Digital Media I/O

Since the non-black data is contained on only one line, it will appear in only one
field. A video monitor will only update the image of the line 30 times a second, and
it will flicker on and off quite visibly. To see this on a video-capable machine, run
videoout, turn off the anti-flicker-filter, and point videoout’s screen window at the
image above.

You do not have to have a long line for this effect to be visible: thin, non-antialiased
text exhibits the same objectionable flicker.

Typical video images are more vertically blurry; even where there is a sharp vertical
transition (the bottom of an object in sharp focus, for example), the method typical
cameras use to capture the image will cause the transition to blur over more than
one line. It is often necessary to simulate this blurring when creating synthetic
images for video.

• Abrupt Vertical Transitions: Two-Pixel-High Lines

These lines include data in both fields, so part of the line is updated each 50th or
60th of a second. Unfortunately, when you actually look at the image of this line on
a video monitor, the line appears to be solid in time, but it appears to jump up and
down, as the top and bottom line alternate between being brighter and darker. You
can also see this with the videoout program.

• Flicker Filter

The severity of both of these effects depends greatly on the monitor and its
properties, but you can pretty much assume that someone will find them
objectionable. One partial solution is to vertically blur the data you are outputting.
Turning on the “flicker filter” option to videoout will cause some boards (such as
ev1) to vertically prefilter the screen image by a simple 3-tap (1/4,1/2,1/4) filter.
This noticeably improves (but does not remove) the flickering effect.

There is no particular magic method that will produce flicker-free video. The more you
understand about the display devices you care about, and about when the human vision
system perceives flicker and when it does not, the better a job you can do at producing a
good image.

Synthetic Imagery Must Also Consist of Fields

When you modify digitized video data or synthesize new video data, the result must
consist of fields with all the same properties, but temporally offset and spatially
disjointed. This may not be trivial to implement in a typical renderer without wasting
lots of rendering resources (rendering 50/60 images a second, throwing out unneeded
lines in each field) unless the developer has fields in mind from the start.

Video I/O Concepts

107

You might think that you could generate synthetic video by taking the output of a
frame-based renderer at 25/30 frames per second and pulling two fields out of each
frame image. This will not work well: the motion in the resulting sequence on an
interlaced video monitor will noticeably stutter, due to the fact that the two fields are
scanned out at different times, yet represent an image from a single time. Your renderer
must know that it is rendering 50/60 temporally distinct images per second.

Playing Back “Slow,” or Synthesizing Dropped Fields

Two tasks which are relatively easy to do with frame-based data, such as movies, are
playing slowly (by outputting some frames more than once) or dealing with frames that
are missing in the input stream by duplicating previous frames. Certainly there are more
elaborate ways to generate better-looking results in these cases, and they too are not so
hard on frame-based data.

Suppose you are playing a video sequence, and run up against a missing field as shown
in Figure 4-5 (the issues we are discussing also come up when you want to play back
video slowly).

Figure 4-5 Dropped Frame

To keep the playback rate of the video sequence constant, you need to put some video
data in that slot, so which field do you choose? Suppose you chose to duplicate the
previously displayed field (field 2), as shown in Figure 4-6.

108

Chapter 4: Digital Media I/O

Figure 4-6 Field Duplication

You could also try duplicating field 4 or interpolating between 2 and 4, but with all of
these methods there is a crucial problem: those fields contain data from a different spatial
location than the missing field. If you viewed the resulting video, you would
immediately notice that the image visually jumps up and down at this point. This is a
large-scale version of the same problem that made the two-pixel-high line jump up and
down: your eye is very good at picking up on the vertical “motion” caused by an image
being drawn to the lines of one field, then being drawn again one picture line higher, into
the lines of the other field. You would see this even if the ball was not in motion.

Suppose you instead choose to fill in the missing field with the last non-missing field that
occupies the same spatial locations, as shown in Figure 4-7.

Figure 4-7 Field Replacement

Now you have a more obvious problem: you are displaying the images temporally out
of order. The ball appears to fly down, fly up again for a bit, and then fly down. Clearly,
this method is not good for video which contains motion. But for video containing little
or no motion, it would work pretty well, and would not suffer the up-and-down jittering
of the previous approach.

Which of these two methods is best thus depends on the video being used. For
general-purpose video where motion is common, you’d be better off using the first
technique, the “temporally correct” technique. For certain situations such as computer

Video I/O Concepts

109

screen capture or video footage of still scenes, however, you can often get guarantees that
the underlying image is not changing, and the second technique, the “spatially correct”
technique, is best.

As with de-interlacing methods, there are many more elaborate methods for
interpolating fields which use more of the input data. For example, you could interpolate
2 and 4 and then interpolate the result of that vertically to guess at the content of the other
field’s lines. Depending on the situation, these techniques may or may not be worth the
effort.

Still Frames on Video Output

The problem of getting a good still frame from a video input has a counterpart in video
output. Suppose you have a digitized video sequence and you want to pause playback
of the sequence. Either you, the video driver, or the video hardware must continue to
output video fields even though the data stream has stopped, so which fields do you
output?

If you choose the “temporally correct” method and repeatedly output one field
(effectively giving you the “line-doubled” look described above), then you get an image
with reduced vertical resolution. But you also get another problem: as soon as you pause,
the image appears to jump up or down, because your eye picks up on an image being
drawn into the lines of one field, and then being drawn one picture line higher or lower,
into the lines of another field. Depending on the monitor and other factors, the paused
image may appear to jump up and down constantly or it may only appear to jump when
you enter and exit pause.

If you choose the “spatially correct” method and repeatedly output a pair of fields, then
if there happened to be any motion at the instant where you paused, you will see that
motion happening back and forth, 60 times a second. This can be very distracting.

There are, of course, more elaborate heuristics that can be used to produce good looking
pauses. For example, vertically interpolating an F1 to make an F2 or vice versa works
well for slow-motion, pause, and vari-speed play. In addition, it can be combined with
inter-field interpolation for “super slow-motion” effects.

110

Chapter 4: Digital Media I/O

Audio I/O Concepts

This section describes how to get audio data in and out of the computer.

Audio Library Programming Model

Programming audio I/O involves three basic concepts:

Audio device(s) The audio hardware used by the AL, which is shared among audio
applications. Audio devices contains settings pertaining to the
configuration of both the internal audio system and the external
electrical connections.

ALport A one-way (input or output) audio data connection between an
application program and the host audio system. An ALport contains:

• an audio sample queue, which stores audio sample frames
awaiting input or output

• settings pertaining to the attributes of the digital audio data it
transports

Some of the settings of an ALport are static; they cannot be changed once
the ALport has been opened. Other settings are dynamic; they can be
changed while an ALport is open.

ALconfig An opaque data structure for configuring these settings of an ALport:

• audio device (static setting)

• size of the audio sample queue (static setting)

• number of channels (static setting)

• format of the sample data (dynamic setting)

• width of the sample data (dynamic setting)

• range of floating point sample data (dynamic setting)

To enable audio input and output, your application must create and configure the
required audio I/O connections. This section describes how to set up and use the Audio
Library facilities that provide audio I/O capability.

Audio I/O Concepts

111

Audio Ports

An ALport provides a one-way (input or output) interface between an application
program and the host audio system. More than one ALport can be opened by the same
application; the number of ALports that can be active at the same time depends on the
hardware and software configurations you are using. Open ALports use CPU resources,
so be sure to close an ALport when I/O is completed and free the ALconfig when it is no
longer needed.

An ALport consists of a queue, which stores audio data awaiting input or output, and
static and dynamic state information.

Audio I/O is accomplished by opening an audio port and reading audio data from or
writing audio data to the port. For audio input, the hardware places audio sample frames
in an input port’s queue at a constant rate, and your application program reads the
sample frames from the queue. Similarly, for audio output, your application writes audio
sample frames to an output port’s queue, and the audio hardware removes the sample
frames from the queue. A minimum of two ALports are necessary to provide input and
output capability for an audio application.

Using ALconfig Structures to Configure ALports

You can open an ALport with the default configuration or you can customize an
ALconfig for configuring an ALport suited to your application needs.

The default ALconfig has:

• a buffer size of 100,000 sample frames

• stereo data

• a two’s complement sample format

• a 16-bit sample width

These settings provide an ALport that is compatible with CD- and DAT-quality data, but
if your application requires different settings, you must create an ALconfig with the
proper settings before opening a port. The device, channel, and queue-size settings for
an ALport are static—they cannot be changed after the port has been opened.

112

Chapter 4: Digital Media I/O

The steps involved in configuring and opening an ALport are listed below, followed by
a sample code fragment that illustrates each of these steps. The sample program is
followed by subsections that describe these concepts more fully and explain the use of
each routine listed here.

1. Turn off the default error handler by passing a 0 to ALseterrorhandler().

2. If the default ALconfig settings are satisfactory, you can simply open a default
ALport by using 0 for the configuration in the alOpenPort() routine; otherwise,
create a new ALconfig by calling alNewConfig().

3. If nondefault values are needed for any of the ALconfig settings, set the desired
values as follows:

■ Call alSetChannels() to change the number of channels.

■ Call alSetQueueSize() to change the sample queue size.

■ Call alSetSampFmt() to change the sample data format.

■ Call alSetWidth() to change the sample data width.

■ Call alSetFloatMax() to set the maximum amplitude of floating point data (not
necessary for integer data formats).

4. Open an ALport by passing the ALconfig to the alOpenPort() routine.

5. Create additional ALports with the same settings by using the same ALconfig to
open as many ports as are needed.

Audio I/O Concepts

113

Example 4-1 demonstrates how to configure and open an output ALport that accepts
floating point mono sample frames.

Example 4-1 Configuring and Opening an ALport

ALconfig audioconfig;
ALport audioport;
int err;

void audioinit /* Configure an audio port */
{
ALseterrorhandler(0);
audioconfig = alNewConfig();

alSetSampFmt(audioconfig, AL_SAMPFMT_FLOAT);
alSetFloatMax(audioconfig, 10.0);
alSetQueueSize(audioconfig, 44100);
alSetChannels(audioconfig,AL_MONO);

audioport = alOpenPort("surreal","w",audioconfig);
if (audioport == (ALport) 0) {
 err = oserror();

 if (err == AL_BAD_NO_PORTS) {
 fprintf(stderr, " System is out of audio ports\n");
 } else if (err == AL_BAD_DEVICE_ACCESS) {
 fprintf(stderr, " Couldn’t access audio device\n");
 } else if (err == AL_BAD_OUT_OF_MEM) {
 fprintf(stderr, " Out of memory\n");
 }
 exit(1);

}

The sections that follow explain how to use ALconfigs in greater detail.

Creating a New ALconfig

To create a new ALconfig structure that is initialized to the default settings, call
alNewConfig(). Its function prototype is:

ALconfig alNewConfig (void)

The ALconfig that is returned can be used to open a default ALport, or you can modify
its settings to create the configuration you need. In Example 4-1, the channel, queue size,

114

Chapter 4: Digital Media I/O

sample format, and floating point data range settings of an ALconfig named audioconfig
are changed.

alNewConfig() returns an ALconfig structure upon successful completion; otherwise, it
returns 0 and sets an error code that you can retrieve by calling oserror(3C). Possible
errors include:

Audio ports are opened and closed by using alOpenPort() and alClosePort()
respectively. Unless you plan to use the default port configuration, you should set up an
ALconfig structure by using alNewConfig() and then use the routines for setting
ALconfig fields, such as alSetChannels(), alSetQueueSize(), and alSetWidth() before
calling alOpenPort().

Audio Sample Queues

Audio sample frames are placed in the sample queue of an ALport to await input or
output. The audio system uses one end of the sample queue; the audio application uses
the other end.

During audio input, the audio hardware continuously writes audio sample frames to the
tail of the input queue at the selected input rate, for example, 44,100 sample pairs per
second for 44.1 kHz stereo data. If the application can’t read the sample frames from the
head of the input queue at least as fast as the hardware writes them, the queue fills up
and some incoming sample data is irretrievably lost.

During audio output, the application writes audio sample frames to the tail of the queue.
The audio hardware continuously reads sample frames from the head of the output
queue at the selected output rate, for example, 44,100 sample pairs per second for 44.1
kHz stereo data, and sends them to the outputs. If the application can’t put sample
frames in the queue as fast as the hardware removes them, the queue empties, causing
the hardware to send 0-valued sample frames to the outputs (until more data is
available), which are perceived as pops or breaks in the sound.

For example, if an application opens a stereo output port with a queue size of 100,000,
and the output sample rate is set to 48 kHz, the application needs to supply (2 × 48,000 =
96,000) sample frames to the output port at the rate of at least 1 set of sample frames per
second, because the port contains enough space for about one second of stereo data at

AL_BAD_OUT_OF_MEM insufficient memory available to allocate
the ALconfig structure

Audio I/O Concepts

115

that rate. If the application fails to supply data at this rate, an audible break occurs in the
audio output.

On the other hand, if an application tries to put 40,000 sample frames into a queue that
already contains 70,000 sample frames, there isn’t enough space in the queue to store all
the new sample frames, and the program will block (wait) until enough of the existing
sample frames have been removed to allow for all 40,000 new sample frames to be put in
the queue. The AL routines for reading and writing block; they do not return until the
input or output is complete.

To allocate and initialize an ALport structure, call alOpenPort(). Its function prototype is:

ALport alOpenPort (char *name, char *direction, ALconfig config)

where:

name is an ASCII string used to identify the port for humans (much like a
window title in a graphics program). The name is limited to 20
characters and should be both descriptive and unique, such as an
acronym for your company name or the application name, followed by
the purpose of the port

direction specifies whether the port is for input or output:

config is an ALconfig that you have previously defined or is
null (0) for the default configuration.

Upon successful completion, alOpenPort() returns an ALport structure for the named
port; otherwise, it returns a null-valued ALport, and sets an error code that you can
retrieve by calling oserror(3C). Possible errors include:

"r" configures the port for reading (input)

"w" configures the port for writing (output)

AL_BAD_CONFIG config is either invalid or null

AL_BAD_DIRECTION direction is invalid

AL_BAD_OUT_OF_MEM insufficient memory available to allocate
the ALport structure

AL_BAD_DEVICE_ACCESS audio hardware is inaccessible

AL_BAD_NO_PORTS no audio ports currently available

116

Chapter 4: Digital Media I/O

alClosePort() closes and deallocates an audio port—any sample frames remaining in the
port will not be output. Its function prototype is:

int alClosePort (ALport port)

where:

port is the ALport you want to close

Example 4-2 opens an input port and an output port and then closes them.

Example 4-2 Opening Input and Output ALports

input_port = alOpenPort("waycoolinput", "r", 0);
if (input_port == (ALport) 0 {

err = oserror();
if (err == AL_BAD_NO_PORTS) {

fprintf(stderr, " System is out of audio ports\n");
} else if (err == AL_BAD_DEVICE_ACCESS) {

fprintf(stderr, " Couldn’t access audio device\n");
} else if (err == AL_BAD_OUT_OF_MEM) {

fprintf(stderr, " Out of memory: port open failed\n");
}
exit(1);

}
...
output_port = alOpenPort("killeroutput", "w", 0);
if (input_port == (ALport) 0 {

err = oserror();
if (err == AL_BAD_NO_PORTS) {

fprintf(stderr, " System is out of audio ports\n");
} else if (err == AL_BAD_DEVICE_ACCESS) {

fprintf(stderr, " Couldn’t access audio device\n");
} else if (err == AL_BAD_OUT_OF_MEM) {

fprintf(stderr, " Out of memory: port open failed\n");
}
exit(1);

...
alClosePort(input_port);
alClosePort(output_port);

Audio I/O Concepts

117

Reading and Writing Audio Data

This section explains how an audio application reads and writes audio sample frames to
and from ALports.

Audio input is accomplished by reading audio data sample frames from an input
ALport’s sample queue. Similarly, audio output is accomplished by writing audio data
sample frames to an output ALport’s sample queue.

alReadFrames() and alWriteFrames() provide mechanisms for transferring audio
sample frames to and from sample queues. They are blocking routines, which means that
a program will halt execution within the alReadFrames() or alWriteFrames() call until
the request to read or write sample frames can be completed.

Reading Sample Frames from an Input ALport

alReadFrames() reads a specified number of sample frames from an input port to a
sample data buffer, blocking until the requested number of sample frames have been
read from the port. Its function prototype is:

int alReadFrames (const ALport port, void *samples, const int framecount)

where:

port is an audio port configured for input

samples is a pointer to a buffer into which you want to transfer the sample frames
read from input. samples is treated as one of the following types,
depending on the configuration of the ALport:

framecount is the number of sample frames to read

To prevent blocking, samplecount must be less than the return value of alGetFilled().

char * for integer sample frames of width AL_SAMPLE_8

short * for integer sample frames of width AL_SAMPLE_16

long * for integer sample frames of width AL_SAMPLE_24

float * for floating point sample frames

double * for double-precision floating point sample frames

118

Chapter 4: Digital Media I/O

Note: When the application is reading sample frames into an ALport that has channels
set to 4, samplecount must be an integer multiple of the frame size, or an error will be
returned and no sample frames will be transferred.

When 4-channel data is input on systems that do not support 4 line-level electrical
connections, that is, when setting AL_CHANNEL_MODE to AL_4CHANNEL is not
possible, alReadFrames() will provide 4 sample frames per frame, but the second pair of
sample frames will be set to 0.

Table 4-4 shows the input conversions that are applied when reading mono, stereo, and
4-channel input in stereo mode (default) and in 4-channel mode hardware
configurations. Each entry in the table represents a sample frame.

Note: If the summed signal is greater than the maximum allowed by the audio system,
it is clipped (limited) to that maximum, as indicated by the Clip function.

Writing Sample Frames to an Output ALport

Sample frames placed in an output queue are played by the audio hardware after a
specific amount of time, which is equal to the number of sample frames that were present
in the queue before the new sample frames were written, divided by the (sample rate ×
number of channels) settings of the ALport.

Table 4-4 Input Conversions for alReadFrames()

Input

Hardware Configuration

Indigo, and Indigo 2 or Indy in
Stereo Mode

Indigo 2 or Indy in 4-channel Mode

Frame at
physical inputs

(L1, R1) (L1, R1, L2, R2)

Frame as read by
a mono port

(L1 + R1) /2 (Clip (L1 + L2), Clip (R1 + R2)) /2

Frame as read by
a stereo port

(L1, R1) (Clip (L1 + L2), Clip (R1 + R2))

Frame as read by
a 4-channel port

(L1, R1, 0, 0) (L1, R1, L2, R2)

Audio I/O Concepts

119

alWriteFrames() writes a specified number of sample frames to an output port from a
sample data buffer, blocking until the requested number of sample frames have been
written to the port. Its function prototype is:

int alWriteFrames (ALport port, void *samples, long framecount)

where:

port is an audio port configured for input

samples is a pointer to a buffer from which you want to transfer the sample
frames to the audio port

framecount is the number of sample frames you want to read

Note: When the application is writing sample frames from an ALport that has channels
set to 4, samplecount must be an integer multiple of the frame size, or an error will be
returned and no sample frames will be transferred.

Table 4-5 shows the output conversions that are applied when writing mono, stereo, and
4-channel data to stereo mode (default) and 4-channel mode hardware configurations.

Table 4-5 Output Conversions for alWriteFrames()

Hardware Configuration

Output Frame as
Written into Port

Indigo, and Indigo 2 or Indy in
Stereo Mode

Indigo 2 or Indy in
4-channel Mode

Mono Port (L1) (L1, L1) (L1, L1, 0, 0)

Stereo Port (L1, R1) (L1, R1) (L1, R1, 0, 0)

4-channel
Port

(L1, R1, L2, R2) (Clip (L1 + L2), Clip (R1 +
R2))

(L1, R1, L2, R2)

121

Chapter 5

5. Digital Media Buffers

This chapter describes the Digital Media buffers (DMbuffers) real-time visual data
transport facility, which is currently supported on O2 workstations. Time-sensitive
visual data is moved through system memory using DMbuffers. This method provides a
unified approach to facilitating data flow between live video devices. DMbuffers provide
a pipelined I/O model—the application can direct the flow of multiple images on
multiple paths simultaneously. This chapter builds on video I/O concepts presented in
Chapter 4, “Digital Media I/O.”

About Digital Media Buffers

DMbuffers feature

• an operating system-generic live image data storage and transport facility

• a library-transparent interface that allows real-time data interchange with
compression/decompression (dmIC) and OpenGL

• an application-centered nonblocking I/O method that provides event processing by
means of a single select() loop

• a software-configurable memory allocation method that provides the dedicated
memory and throughput resources to suit visual data transport requirements using
general-purpose system memory

Because the bandwidth of digital video signals far exceeds the bandwidth of typical data
storage devices and communications links, video is usually compressed when storing to
disk or sending over a network. This software interface supports specialized multimedia
hardware on O2 workstations which further boosts visual data processing performance.

DMbuffers and DMbufferpools provide the method for allowing your application to
allocate and use general-purpose system memory for transporting visual data.

A DMbufferpool is a custom storage facility created by the application. Video I/O
devices, compression devices and algorithms, and graphics devices have direct access to

122

Chapter 5: Digital Media Buffers

this storage on a compartmental basis called a DMbuffer. The application can define
what this compartment represents, but in general, a DMbuffer represents an image. An
image can be in the form of raw uncompressed pixel data for a video field or frame, or in
the form of a picture’s worth of compressed data (JPEG, MPEG, or so on).

When creating the storage facility, the application describes its data requirements in a
DMparams structure. The application also queries every device that plans on using the
facility about their needs, and obtains from them a DMparams list describing their
requirements for allocating and apportioning memory. Using this information, the
storage facility(DMbufferpool) is configured with the proper number, size, and type
compartments (DMbuffers) sufficient for containing the data and its associated
bookkeeping information.

Because a DMbuffer is created according to all necessary data and device requirements,
and with universal content descriptors, every device that needs access to it can tell what’s
stored inside and can share and use the contents without making modifications.

To transfer the contents of a compartment, it is much easier and faster to transport only
a pointer to the storage location rather than moving the actual contents. DMbuffers are
really placeholders which contain only the pointers to the actual data; the data itself is
stored elsewhere. When data is transferred, only pointers describing the data are passed,
not the actual data. This means that the process doesn’t have to handle or copy the data
in order to transport it.

DMbufferpools contain a fixed number of DMbuffers, all the same size. It’s up to you to
decide how many DMbuffers to use, but, in general, three DMbuffers are sufficient for
most applications: one to receive data, one to send data, and one available in case of
contention between the sending and receiving processes.

DMbuffers give the application access to memory which is

• reserved at start-up and guaranteed for the life of the application

• not visited by the page daemon and therefore can’t be swapped

When an image needs to be transported, a DMbuffer is allocated from the pool. Once
allocated, a DMbuffer can go to a video I/O device, an image converter, or graphics I/O
in any order, regardless of the order of allocation. Multiple DMbuffers with independent
agendas can coexist. When the transfer is complete, a DMbuffer can be returned to the
pool for reuse or retained for future use. It is not necessary to keep the same DMbuffer
waiting to complete processing before accepting more input because another DMbuffer
can be allocated from the pool.

DMbuffer Live Data Transport Paths

123

Compared with the traditional VLbuffers, DMbuffers

• use the same event mechanism to deliver input and output buffer events to the
application, rather than using different file descriptors for input and output

• deliver data buffers ordered with VL events on the video input path

• allow buffers to be sent to video multiple times, held by the application, or
reordered

Currently, the DM buffers method is supported by:

• Image Converter Library (dmIC)

• Video Library

• Movie Library

• OpenGL

DMbuffers have the following attributes:

• Type

• Size

• MSC/UST

DMbuffer Live Data Transport Paths

This section presents the framework for eight types of live data transport paths that can
be realized using DMbuffers:

• Memory to Video

• Video to Memory

• Memory to Image Converter

• Image Converter to Memory

• Memory to Movie File

• Movie File to Memory

• Memory to OpenGL

• OpenGL to Memory

124

Chapter 5: Digital Media Buffers

Figure 5-1 shows the eight live data transport paths that can use DMbuffers.

Figure 5-1 DMbuffer Live Data Transport Paths

Each path can be used as a stage in a more complex path. For example:

video-to-memory—>memory-to-dmIC—>dmIC-to-memory—>memory-to-movie file

are the 4 paths involved in recording compressed live video to disk.

In general, the calls outlined in this section simply move data around; they do not
directly encode, decode, or otherwise process the images. This means that data is
typically passed untouched along these pathways.

Note: The outlines presented in this section are intended to provide a sketch of the calls
necessary for each path; the sequence of the calls may vary within each step and the
actual coding may involve more routines. See the reference pages for details about using
these routines.

DMbufferpool of DMbuffers

Disk (movie file)

OpenGL

Compression (dmIC)

Video I/O (VL)

Application Memory

DMbuffer Live Data Transport Paths

125

Memory to Video

This section presents a basic sketch for memory to video output.

1. Open video output by calling:

vlOpenVideo(3dm), to open the video server

vlGetNode(3dm), to get the video drain node (VL_DRN, VL_VIDEO)

vlGetNode(3dm), to get the memory source node (VL_SRC, VL_MEM)

2. Create a DMbufferpool for output of video fields or frames by calling:

dmBufferSetPoolDefaults(3dm), to initialize the DMparams list

vlDMPoolGetParams(3dm), to determine the video I/O device requirements

dmBufferCreatePool(3dm), to create a pool using list modified by previous query

3. Associate the DMbufferpool with this path by calling:

vlDMPoolRegister(3dm)

4. Prepare the pool to use select() to be notified of a free DMbuffer by calling:

vlGetTransferSize(3dm), to get the size of one field or frame in this path

dmBufferSetPoolSelectSize(3dm), to set the memory available threshold for
waking from select

dmBufferGetPoolFD(3dm), to get the input file descriptor for the buffer pool

5. Get a video output path file descriptor (for notification of errors/drops) by calling:

vlGetFD(3dm)

6. Start the video flow by calling:

vlBeginTransfer(3dm)

7. Get notification of a free DMbuffer in the output pool by calling:

select(2)

8. Fill the DMbuffer with pixel data from the desired DMbuffer path

9. Enqueue the DMbuffer for video output by calling:

vlDMBufferSend(3dm)

126

Chapter 5: Digital Media Buffers

Video to Memory

This section presents a basic sketch for video input to memory using DMbuffers:

1. Open video input by calling:

vlOpenVideo(3dm), to open the video server

vlGetNode(3dm), to get the video source node (VL_SRC, VL_VIDEO)

vlGetNode(3dm), to get the memory drain node (VL_DRN, VL_MEM)

2. Create a DMbufferpool for input of video fields or frames by calling:

dmBufferSetPoolDefaults(3dm), to initialize the DMparams list

vlDMPoolGetParams(3dm), to determine the video I/O device requirements

dmBufferCreatePool(3dm), to create a pool with a list modified by previous query

3. Associate the DMbufferpool with this path by calling:

vlDMPoolRegister(3dm)

4. Get a video input file descriptor (for use with select(2)) by calling:

vlPathGetFD(3dm)

5. Start the video flow by calling:

vlSelectEvents(3dm), to select events, namely VLTransferCompleteMask, and
VLSequenceLostMask at a minimum, and others that the process might require

vlBeginTransfer(3dm), to initiate video transfer

6. Get notification of each new field or frame by calling:

select(2), to wait for an event

7. Get a new field or frame in the form of a DMbuffer by calling:

vlEventRecv(3dm), to dequeue the next VLEvent

vlEventToDMBuffer(3dm), to convert the VLEvent into a DMbuffer

DMbuffer Live Data Transport Paths

127

Memory to Image Converter

1. Find the appropriate image converter by calling:

dmICGetNum(3dm), to get the number of image converters installed in the system

dmICGetDescription(3dm), to get the description of a given converter, then search
them all (using the total returned) to find the index of the one that performs the
desired conversion

2. Create the image converter context/instance by calling:

dmICCreate(3dm)

3. Configure the image converter by calling:

dmSetImageDefaults(3dm), to initialize the DMparams list with image defaults

dmICSetSrcParams(3dm), to configure the source (input) image parameters

dmICSetDstParams(3dm), to configure the destination (output) image parameters

dmICSetConvParams(3dm), to configure the conversion algorithm (quality, etc.)

4. Create a DMbufferpool for the image converter input by calling:

dmBufferSetPoolDefaults(3dm), to initialize the DMparams list

dmICGetSrcPoolParams(3dm), to modify the list to reflect the image converter’s
buffering requirements (other DMbuffer paths using this pool must also be queried
for their requirements before creating the buffer pool)

dmBufferCreatePool(3dm), to create a buffer pool with the required attributes

5. Prepare the pool to use select() to be notified of a free DMbuffer by calling:

dmBufferSetPoolSelectSize(3dm), to set the memory available threshold for
waking from select

dmBufferGetPoolFD(3dm), to get the buffer pool file descriptor

6. Get notification of a free DMbuffer in the input pool by calling:

select(2), to wait for a free DMbuffer

dmBufferAllocate(3dm), to allocate a DMbuffer

7. Fill the DMbuffer with pixel data (if encoding) or bits (if decoding) by calling:

dmBufferMapData(3dm), to get a pointer to the data area of the DMbuffer

128

Chapter 5: Digital Media Buffers

dmBufferSetSize(3dm), to set the image size, which is possibly obtained from one
of: dmImageFrameSize(3dm), vlTransferSize(3dm), mvGetTrackDataInfo(3dm),
or mvGetTrackDataFieldInfo(3dm)

dmBufferSetUSTMSCpair(3dm), to set the sequence number of this image

8. Enqueue the DMbuffer for input to the converter by calling:

dmICSend(3dm)

Image Converter to Memory

1. Find the appropriate image converter by calling:

dmICGetNum(3dm), to get the number of image converters installed in the system

dmICGetDescription(3dm), to get the description of a given converter, then search
them all (using the total returned) to find the index of the one that performs the
desired conversion

2. Create the image converter context/instance by calling:

dmICCreate(3dm)

3. Configure the image converter by calling:

dmSetImageDefaults(3dm), to initialize the DMparams list with image defaults

dmICSetSrcParams(3dm), to configure the source (input) image parameters

dmICSetDstParams(3dm), to configure the destination (output) image parameters

dmICSetConvParams(3dm), to configure the conversion algorithm (quality, etc.)

4. Create a DMbufferpool for the image converter output by calling:

dmBufferSetPoolDefaults(3dm), to initialize the DMparams list

dmICGetDstPoolParams(3dm), to modify the list to reflect the destination
parameters (other DMbuffer paths using this pool must also be queried for their
requirements before creating the buffer pool)

dmBufferCreatePool(3dm), to create a pool with the required attributes

dmICSetDstPool(3dm), to attach this pool to the image converter

5. Get a converter file descriptor for notification of new output from the image
converter by calling:

dmICGetDstQueueFD(3dm)

DMbuffer Live Data Transport Paths

129

6. Get notification of a new DMbuffer of converted data by calling:

select(2)

7. Get the new DMbuffer by calling:

dmICReceive(3dm), to dequeue the converted image from the converter

dmBufferGetUSTMSCpair(3dm), to get the sequence number of this image

dmBufferGetSize(3dm), to get the size of the image data in bytes

dmBufferMapData(3dm), to get a pointer to the image data

Memory to Movie File

1. Open or create a movie file with an image track using one of the following methods:

■ Create a new movie file by calling:

mvCreateFile(3dm), to get a handle to the new movie file

mvAddTrack(3dm), to insert an empty image track into the movie file

■ Open an existing movie file by calling:

mvOpenFile(3dm), to get a handle to the existing movie

mvFindTrackByMedium(3dm), to find the movie’s image (DM_IMAGE) track

mvGetTrackLength(3dm), to find the playing time of the current track

2. Determine the image size by calling:

dmBufferMapData(3dm), to get a pointer to the image

dmBufferGetSize(3dm), to get the size of the image in bytes

Note: Perform these operations twice for field-based data (once per field)

3. Save the image to the movie file using one of the following methods (pass the
pointer and the size returned in the previous step to the function):

■ Write the data from a single DMbuffer as a frame by calling:

mvInsertTrackData(3dm)

■ Write the data from 2 DMbuffers (one per field) by calling:

mvInsertTrackDataFields(3dm)

130

Chapter 5: Digital Media Buffers

Movie File to Memory

1. Open a movie file for reading by calling:

mvOpenFile(3dm)

mvFindTrackByMedium(3dm), to find the DM_IMAGE track

mvGetImageWidth(3dm), to get the width of the image

mvGetImageHeight(3dm), to get the height of the image

mvGetTrackMaxFieldSize(3dm), to get the size (in bytes) of the largest compressed
field, which can be used for configuring DMbuffer size when creating a buffer pool

2. Get a free DMbuffer by calling:

dmBufferAllocate(3dm), to allocate a DMbuffer

dmBufferMapData(3dm), to get a pointer to the data area of the DMbuffer

3. Get the movie file index for the desired image by calling:

mvGetTrackDataIndexAtTime(3dm)

4. Import the compressed image data into memory using one of the following
methods:

■ If image data is stored as a frame, call:

mvGetTrackDataInfo(3dm), to get the size of the compressed data

mvReadTrackData(3dm), to copy the compressed data from the movie file
directly into the DMbuffer

■ If image data is stored as fields, call:

mvGetTrackDataFieldInfo(3dm), to get the sizes of the compressed fields

mvReadTrackDataFields(3dm), to copy the 2 compressed fields directly into 2
DMbuffers

5. Set the DMbuffer size(s) by calling:

dmBufferSetSize(3dm)

DMbuffer Live Data Transport Paths

131

Memory to OpenGL

This section presents a sketch of transporting video images to a window on the graphics
display.

1. Get a pointer to the image data in a DMbuffer by calling:

dmBufferMapData(3dm)

2. Display image in a graphics context (window or offscreen buffer) by calling:

glPixelZoom(zoomx, -zoomy), to set a negative y zoom indicating top-to-bottom
orientation (needed for video)

glDrawPixels(), using

GL_YCRCB_422_SGIX, (to convert from YCrCb to RGB)

GL_INTERLACE_SGIX (as supported— an OpenGL interlacing extension for
sending two noninterlaced fields of video to an interlaced graphics display by
automatically interlacing alternate lines from two video fields)

OpenGL to Memory

The OpenGL can render to offscreen memory (pbuffer) which can be accessed directly as
a DMbuffer.

1. Create an OpenGL/X pbuffer by calling:

glXCreateGLXPbufferSGIX()

2. Relate the two buffers by calling:

glXMakeCurrent()

glXAssociateDMPbufferSGIX() with pbuffer, dmbuffer

132

Chapter 5: Digital Media Buffers

A Detailed Look at Recording Compressed Live Video to Disk

This section explains how to get video into memory using DMbuffers. Refer to the
sample program dmplay.dmic in Video Capture with Compression in Chapter 4 of
“Digital Media Programmer’s Examples” for a demonstration of this method.

Figure 5-2 shows the video compression path.

Figure 5-2 Compression Path Using DMbuffers

The first step in video I/O is getting the video data into a DMbuffer. Once you have a
buffer of video data, you can send it to dmIC to compress it, send it to graphics for
display, applying effects along the way, or write it to a movie file. You can create separate
threads for the video input and image conversion to ensure that the processing remains
event-driven. In addition, the DMbuffers method provides the capability of performing
multiple image conversion operations simultaneously within the same application with
no performance penalty.

Compression

DM buffers

Uncompressed
data

Compressed
data

A Detailed Look at Recording Compressed Live Video to Disk

133

Getting video into memory requires

• a video source (input) node

• a memory drain (output) node

• a path that connects the two nodes

• an video input DMbufferpool associated with the memory drain node

This method of compressing video into memory also uses

• an input DMbufferpool on the input to the DM image converter (this is the DM
buffer pool associated with the memory drain node)

• an output DMbufferpool to contain the output from the converter

The first three items are the same regardless of whether you use a DMbuffer or a
VLbuffer to transport visual data, and are explained in Chapter 4.

The basic model for video input to memory using DMbuffers is:

1. Initialize the DMparams list by calling dmBufferSetPoolDefaults(3dm).

2. Query each device about its requirements for memory allocation:

■ Determine video I/O device requirements using vlDMPoolGetParams(3dm)

■ Determine image converter requirements using dmICGetSrcPoolParams(3dm)
and dmICGetDstPoolParams(3dm) as described in “3. Creating Data Buffers
Using the Image Conversion API” in Chapter 6.

3. Create buffer pools using the DMParams lists returned by the previous queries, by
calling dmBufferCreatePool(3dm).

4. Register the input buffer pool as the video input destination (drain) by calling
vlDMPoolRegister(3dm).

This application can be divided into the following major areas (each of which is further
broken down into detailed steps):

• Video initialization, which involves

– opening a connection to the video server (vlOpenVideo())

– if necessary, determining which device the application will use (vlGetDevice(),
vlGetDeviceList())

– getting input information, such as the size of the video images

134

Chapter 5: Digital Media Buffers

Note: Image size (in pixels) can be determined from the video timing and packing.
Use dmImageGetSize() to determine the size of an image in bytes. The dmplay.dmic
program first sets the capture mode to noninterlaced to get the size of each field, and
then resets the capture mode to interlaced before initiating video transfer.

• Creating and setting up a video data transfer path, which involves

– specifying nodes on the data path (vlGetNode())

– creating a path connecting the specified nodes (vlCreatePath())

– setting up the hardware for the path (vlSetupPaths())

• Getting and setting controls for video data transfer, which involves

– getting input parameters (controls) for the nodes on the path (vlGetControl())

– setting output parameters (controls) for the nodes on the path (vlSetControl())

• Creating and registering DMbufferpools to handle video data, which involves

– initializing the DMparams list by calling dmBufferSetPoolDefaults()

– querying each device about its requirements for memory allocation:

Determine video I/O device requirements using vlDMPoolGetParams().

Determine image converter requirements using dmICGetSrcPoolParams() and
dmICGetDstPoolParams() as described in “3. Creating Data Buffers Using the
Image Conversion API” in Chapter 6.

– creating buffer pools using the DMParams lists modified by the previous
queries, by calling dmBufferCreatePool()

– registering the input buffer pool as the video input destination (drain) by
calling vlDMPoolRegister()

• Transfer initiation, which involves:

– setting the video transfer mode using VL_CAP_TYPE

– specifying path-related events to be captured by calling vlSelectEvents()

– obtaining a VL file descriptor to wait upon by calling vlGetFD()

– initiating the video transfer by calling vlBeginTransfer()

A Detailed Look at Recording Compressed Live Video to Disk

135

• Main loop, which involves

– waiting for video events using select()

– dequeueing the next video event using vlEventReceive()

– obtaining the video field or frame as a DMbuffer for further transport to the
appropriate destination (dmIC, OpenGL, etc.) using vlEventtoDMbuffer()

• Cleanup, which involves

– freeing the DMBuffers and destroying the DMbufferpools

137

Chapter 6

6. Digital Media Data Conversion

The file input/output routines of digital media libraries, such as the Audio File Library
and the Movie Library, use digital media converters to provide automatic data format
conversion. This chapter describes how to use the digital media conversion libraries to
create and use these converters in your application.

About Digital Media Data Conversion

Digital media data conversion includes compression and decompression based on
industry standards, such as JPEG and MPEG-1. It also encompasses transforming image
color spaces, changing audio sample rates, and other basic data modifications. There are
two generalized conversion libraries to effect digital media data conversions: the Image
Conversion Library for video data, and the Audio Conversion Library for audio data.
Applications can access these libraries to convert streams of digital media data. (Because
they incur some overhead, the conversion libraries usually are not used for small
amounts of data like single still images.)

The conversion library APIs provide an interface to codecs (compressor-decompressors)
such as JPEG or MPEG-1, to the Color Space Library and to other transformation
libraries. The codecs and transformation libraries do the actual data conversions. Codecs
may be either software modules or hardware devices with software interfaces. The
hardware codecs are faster, but the software codecs may offer more options. If your
application chooses a software codec in lieu of a hardware one, you may want to have
your application notify the user of this fact. For more information about specific codecs
see Chapter 2, “Digital Media Essentials.”

The digital media conversion libraries offer a number of benefits:

• They permit memory-to-memory data format conversions. These are more flexible
than conversions between memory and I/O devices because the converted data is
retained in memory for reuse.

• They integrate the use of software codecs, hardware codecs, and transformation
libraries.

138

Chapter 6: Digital Media Data Conversion

• They enable applications to perform conversions by merely specifying three sets of
parameters:

– one that describes the source data format

– one that describes the destination data format

– one that gives codec-specific settings

• They enable an application to use a number of codecs simultaneously.

• They have a modular design that allows codecs to be loaded dynamically as the
application needs them.

• They allow applications to obtain a codec’s parameters and default values, and to
change these values appropriately.

Using The Digital Media Converters

A digital media converter is the encoder (compressor) or decoder (decompressor) of a codec.
Converters are grouped by the conversion library that uses them. As you might expect,
the Image Conversion Library uses the converters for image data, while the Audio
Conversion Library uses the converters for audio data. Despite these groupings,
converters are used in similar ways.

An application creates a converter instance by using the API of either of the conversion
libraries. A converter instance includes a converter, any necessary transformation
libraries, an input and an output buffer, and state information in the form of parameters
that describe the input data, output data, and conversion process. A number of converter
instances can use the same converter simultaneously. A converter instance that includes
an encoder takes uncompressed data, applies the transformation libraries needed to
make the data usable to the encoder, and then uses the encoder to produce the converted
data. A converter instance with a decoder reverses this process.

A converter instance can be viewed as a pipeline. On one end of the pipeline is
uncompressed data in some specified format. On the other end is data in the format
native to the converter. The uncompressed data is the pipeline’s input if the converter is
a encoder, otherwise it is the output. The pipeline processing is done by the
transformation libraries and the converter. When multiple transformation libraries are
needed, the conversion libraries make sure that they are used in an order that best
maintains the quality of the data.

Image Data Conversion

139

Figure 6-1 The Conversion Pipeline

To perform a data conversion your application follows these five steps:

1. Create a converter instance

2. Configure the converter instance

3. Create data buffers for the converter instance (image conversion only)

4. Convert the data using the converter instance

5. Destroy the converter instance

To use the digital media conversion libraries to create a converter instance, you must link
your application with libdmedia.so.

Image Data Conversion

This section describes the Digital Media Image Conversion Library and its converters.
What follows is a discussion of how to use the Image Conversion API to execute the five
steps of an image data conversion.

The Digital Media Image Conversion Library

The API of the Digital Media Image Conversion Library provides an interface for
memory-to-memory image conversion that is independent of the algorithm. The Image
Conversion Library, see also dmic(4), enables you to create an image converter instance
based on a codec’s encoder or decoder. Table 6-1 lists commonly installed codecs that can
be accessed through the Image Conversion API. As shown in the table, these codecs
usually have both types of converters, and may be performed by hardware on properly

Transformation

library, e.g. CSL

StateConverter

e.g. JPEG encoder Info

Uncompressed
Data

Compressed
Data

Converter Instance

140

Chapter 6: Digital Media Data Conversion

equipped systems. The columns “DM_IC_ENGINE Value” and “DM_IC_ID Value”
contain identification values that are used with dmICGetDescription() as described in
the section “1. Creating a Converter Instance Using the Image Conversion API.”

In addition to the operations done by the codecs, an image converter instance may also
perform transformations involving

• color space

• size

Table 6-1 Digital Media Image Converters

Codec Name DM_IC_ENGINE Values DM_IC_ID Value

Apple QuickTime Animation “The Apple Animation compressor”
“The Apple Animation decompressor”

‘rle ‘

Cinepak ”The Cinepak compressor”
“The Cinepak decompressor”

‘cvid’

Intel Indeo “The Indeo Video compressor”
“The Indeo Video decompressor”

‘IV32’

H.261 “The H261 software encoder”
“The H261 software decoder”

‘h261’

JPEG “Software JPEG Encoder”
“Software JPEG Decoder”
“Vice”

‘jpeg’

MPEG-1 Video “Vice” ‘mpeg’

Motion Video Compressor 1 “The MVC1 compressor”
”The MVC1 decompressor”

‘mvc1’

Motion Video Compressor 2 ”The MVC2 compressor”
”The MVC2 decompressor”

‘mvc2’

8-bit Run Length Encode “The RLE compressor”
“The RLE decompressor”

‘rle1’

24-bit Run Length Encode “The RLE24 compressor”
“The RLE24 decompressor”

‘rle2’

Apple QuickTime Video ”The Apple Video compressor”
”The Apple Video decompressor”

rpza’

Image Data Conversion

141

• clipping

• orientation

• interlacing

• image rate

For some of these, the image converter instance calls the Color Space Library during the
conversion process. This library is discussed in “The Digital Media Color Space Library.”
Also shown is how the Image Conversion Library provides access to it independently of
a converter instance.

As the next five sections demonstrate, The Image Conversion Library enables you to
effectively use codecs and the Color Space Library by following the five steps listed in
“Using The Digital Media Converters.” To use the Image Conversion API, you must
include these header files:

#include <dmedia/dmedia.h>
#include <dmedia/dm_imageconvert.h>

1. Creating a Converter Instance Using the Image Conversion API

The Image Conversion Library allows you to choose among the image converters in the
system. To find a converter and create an instance of it, the Image Conversion Library
enables you to do the following:

• Get the number of image converters present in the system with dmICGetNum()

• Get the description of a specific converter with dmICGetDescription()

• Choose a converter based on your application’s conversion needs with
dmICChooseConverter()

• Create a converter instance with dmICCreate()

Note: Many of the Image Conversion Library functions return a DMstatus value. The
value is DM_SUCCESS if they succeed, DM_FAILURE if not. After a receiving a
DM_FAILURE, your application can call the function dmGetError() or
dmGetErrorForPID() to return an error message and error number. See “Digital Media
Error Handling” in Chapter 3 for more information.

Use the function dmICGetNum() to find the number of image converters available:

int dmICGetNum (void)

142

Chapter 6: Digital Media Data Conversion

The function returns an integer that is the number of available image converters.

Use the function dmICGetDescription() to obtain the description of a converter:

DMstatus dmICGetDescription (int i, DMparams *converterParams)

The parameter i, which is the index of the converter, is the key to the description
returned. The converter’s index is an integer between 0 and n-1 where n is the number of
image converters returned by dmICGetNum(). The parameter converterParams points to
a previously created DMparams data structure. If dmICGetDescription() is successful,
the data structure contains six parameters whose values characterize the converter.

Tip: The application controls the creation and destruction of DMparams structures. See
the upcoming section “Using the Image Conversion API” for examples.

To extract the converter’s description from the structure pointed to by converterParams,
you submit parameter keywords to the appropriate DMparams-querying functions. The
left side of the following table lists the six parameter keywords and the relevant
DMparams-querying functions. On the right side are possible values returned by the
querying functions.

DM_IC_ID
and dmParamsGetInt()

The codec’s DM_IC_ID value, as shown in
Table 6-1

DM_IC_ENGINE
and dmParamsGetString()

The codec’s DM_IC_ENGINE value, as shown
in Table 6-1

DM_IC_VERSION
and dmParamsGetInt()

The codec’s version number, for example 1.

DM_IC_REVISION
and dmParamsGetInt()

The codec’s revision number, for example 2.

DM_IC_CODE_DIRECTION
and dmParamsGetEnum()

DM_IC_CODE_DIRECTION_UNDEFINED
DM_IC_CODE_DIRECTION_ENCODE
DM_IC_CODE_DIRECTION_DECODE

DM_IC_SPEED
and dmParamsGetEnum()

DM_IC_SPEED_UNDEFINED
DM_IC_SPEED_REALTIME
DM_IC_SPEED_NONREALTIME

Image Data Conversion

143

Note: Although they are not shown here, DMparams-querying functions have
corresponding setting functions. For example, dmParamsSetEnum() corresponds with
dmParamsGetEnum(). However, some parameter values, such as those above, cannot be
set by your application. See Chapter 3, “Digital Media Data Types and Parameter Lists,”
for a discussion of using DMparams.

Your application should check the value of DM_IC_CODE_DIRECTION to determine if
the codec is an encoder or decoder. The contents of DM_IC_ID and DM_IC_ENGINE
may not have enough information to make this decision. If the value of DM_IC_SPEED
is DM_IC_SPEED_REALTIME, the codec is suitable for real-time encoding or decoding.
Usually, this indicates a hardware codec.

Use the function dmICChooseConverter() to choose a converter based on parameter
values:

int dmICChooseConverter (DMparams *srcParams, DMparams *dstParams,
 DMparams *convParams)

The function returns the index of the converter that matches the requirements specified
by the DMparams structures pointed to by srcParams, dstParams, and convParams. For
dmICChooseConverter() to succeed, either the DM_IC_CODE_DIRECTION and
DM_IC_ID parameters must be set in convParams, or the DM_IMAGE_COMPRESSION
parameter must be set in srcParams and dstParams.

This function opens the converter that matches the specified parameters and values. If
dmICChooseConverter() is successful, srcParams, dstParams, and convParams can be used
as inputs to dmICSetSrcParams(), dmICSetDstParams(), and dmICSetConvParams()
respectively. (See “2. Configuring a Converter Instance Using the Image Conversion
API.”) The converter chosen is guaranteed to be optimal only for the given parameters.
If the user changes any of the parameter values, your application may need to call
dmICChooseConverter() again.

Use the function dmICCreate() to create an image converter instance:

DMstatus dmICCreate (int i, DMimageconverter *converter)

This function opens the converter corresponding to i, an index returned by
dmICChooseConverter(), and initializes converter (the address of a previously declared
DMimageconverter variable) with the handle (the address of a pointer) of a converter
instance. The handle is declared as follows:

typedef struct _DMimageconverter *DMimageconverter;

144

Chapter 6: Digital Media Data Conversion

An application normally may open multiple converter instances based on one or more
converters. However, some converters may limit the number of instances based on them.
A converter is always used as part of a converter instance.

Tip: Because converters can be loaded dynamically, a converter’s index can vary from
system to system, or even from time to time on the same system. Before using an index,
your application should use either dmICGetDescription() to check its validity, or
dmICChooseConverter() to establish its value. Once determined, the value of the index
will not change while an application is running.

The code that follows the comment “// 1. Creating a converter instance” in the section
“Using the Image Conversion API” makes use of some of the above functions.

2. Configuring a Converter Instance Using the Image Conversion API

Once a converter instance has been created, it must be configured. The application does
this by using DMparams data structures to specify a set of source parameters, a set of
destination parameters, and, optionally, a set of conversion parameters. The source
parameters describe the image data that is the converter instance’s input. The input is
uncompressed data if the converter is a compressor, otherwise it is in the format native
to the converter. The destination parameters describe the converter instance’s output. The
output is in the format native to the converter if the converter is a compressor, otherwise
it is uncompressed data. The conversion parameters fine tune settings that are specific to
the converter.

The Image Conversion Library enables you to do the following:

• Get the source, destination, and conversion parameters, and their default settings,
with dmICGetDefaultSrcParams(), dmICGetDefaultDstParams(), and
dmICGetDefaultConvParams()

• Get the actual settings of the source, destination, and conversion parameters with
dmICGetSrcParams(), dmICGetDstParams(), and dmICGetConvParams()

• Change the settings of the source, destination, and conversion parameters with
dmICSetSrcParams(), dmICSetDstParams(), and dmICSetConvParams()

In each of the nine functions described in this section, the first parameter, converter, is a
DMimageconverter previously initialized by dmICCreate(). The second parameter is a
pointer to a DMparams structure.

Image Data Conversion

145

Use the functions dmICGetDefaultSrcParams(), dmICGetDefaultDstParams(), and
dmICGetDefaultConvParams() to get the default parameter settings:

DMstatus dmICGetDefaultSrcParams (DMimageconverter converter,
 DMparams *srcParams)

DMstatus dmICGetDefaultDstParams (DMimageconverter converter,
 DMparams *dstParams)

DMstatus dmICGetDefaultConvParams (DMimageconverter converter,
 DMparams *convParams)

After each of these functions returns, the DMparams structure contains the parameters,
along with their default values, that your application can set for the converter instance
indicated by converter using the setting functions described in this section. Although the
conversion parameters, pointed to by convParams, vary markedly from converter to
converter, those shown below are supported by many. The left side of the table lists each
conversion parameter and its DMparams-querying function. Possible values for the
parameter are listed on the right. For a more complete discussion of retrieving parameter
values, see Chapter 3, “Digital Media Data Types and Parameter Lists.”.

Use the functions dmICGetSrcParams(), dmICGetDstParams(), and
dmICGetConvParams() to get the actual parameter settings:

DMstatus dmICGetSrcParams (DMimageconverter converter,
 DMparams *srcParams)

DMstatus dmICGetDstParams (DMimageconverter converter,
 DMparams *dstParams)

DMstatus dmICGetConvParams (DMimageconverter converter,
 DMparams *convParams)

DM_IMAGE_BITRATE
and dmParamsGetInt()

An integer value that indicates the rate, in bits
per second, of a compressed video stream.

DM_IMAGE_QUALITY_SPATIAL
and dmParamsGetFloat()

DM_IMAGE_QUALITY_NORMAL
DM_IMAGE_QUALITY_LOSSLESS
several others.

DM_IMAGE_QUALITY_TEMPORAL
and dmParamsGetFloat()

DM_IMAGE_QUALITY_NORMAL
DM_IMAGE_QUALITY_LOSSLESS
several others.

146

Chapter 6: Digital Media Data Conversion

After these functions return successfully, the DMparams structures contain the
parameters and values that describe the input image, the output image, and the
conversion settings for the data in the buffer obtained by the last successful call to
dmICReceive(). The parameters are not defined prior to a successful call to
dmICReceive(). See the section “4. Converting Data Using the Image Conversion API”
for more information on dmICReceive().

Use the functions dmICSetSrcParams(), dmICSetDstParams(), and
dmICSetConvParams() to change the parameter values:

DMstatus dmICSetSrcParams (DMimageconverter converter,
 DMparams *srcParams)

DMstatus dmICSetDstParams (DMimageconverter converter,
 DMparams *dstParams)

DMstatus dmICSetConvParams (DMimageconverter converter,
 DMparams *convParams)

The parameters and values to be used are specified in the DMparams structures pointed
to by srcParams, dstParams, and convParams. The settings describe the input image, the
output image, and the conversion settings for the data in the buffer that will be sent by
the next dmICSend() operation. See the section “4. Converting Data Using the Image
Conversion API” for more information on dmICSend().

The left side of the following table lists the image conversion parameters that must be
specified in the source and destination DMparams structures. Also listed are the
appropriate DMparams-setting functions. Possible values of the parameters are listed on
the right. See dm_image.h for all the image parameters, and Chapter 3, “Digital Media
Data Types and Parameter Lists” for a complete discussion of them.

DM_IMAGE_WIDTH
and dmParamsSetInt()

Image pixel width, e.g. 640.

DM_IMAGE_HEIGHT
and dmParamsSetInt()

Image pixel height, e.g. 480.

DM_IMAGE_PACKING
and dmParamsSetEnum()

DM_IMAGE_PACKING_RGBX
many others.

DM_IMAGE_ORIENTATION
and dmParamsSetEnum()

DM_IMAGE_TOP_TO_BOTTOM
DM_IMAGE_BOTTOM_TO_TOP

Image Data Conversion

147

The code that follows the comment “// 2. Configuring a converter instance” in the
section “Using the Image Conversion API” makes use of some of the above functions.

3. Creating Data Buffers Using the Image Conversion API

The Image Conversion Library uses a buffering system to transmit data between your
application and the converter instance. Typically, a data buffer contains a single video
image, either compressed or uncompressed. You use the Image Conversion Library to
create an source (input) buffer pool and an destination (output) buffer pool. Your
application allocates individual buffers from the source buffer pool, and uses them to
send data to the converter instance. The converter instance returns processed data to
your application with buffers it creates from the destination buffer pool. The buffer pools,
which are fixed in size, are created during an application’s initialization. Before creating
the buffer pools with dmBufferCreatePool(), your application must make sure they
satisfy the requirements of all the libraries that are going to use them. This last point is
explained more fully below with the functions dmICGetSrcPoolParams() and
dmICGetDstPoolParams().

The Image Conversion Library allows you to determine the buffering requirements of a
converter instance prior to creating a buffer pool. To find a converter instance’s buffering
needs, the Image Conversion Library enables you to do the following:

• Get the source and destination pool requirements with dmICGetSrcPoolParams()
and dmICGetDstPoolParams()

• Select the buffer pool from which to receive data with dmICSetDstPool()

Use the functions dmICGetSrcPoolParams() and dmICGetDstPoolParams() to
determine a converter instance’s buffering needs:

DMstatus dmICGetSrcPoolParams (DMimageconverter converter,
 DMparams *poolParams)

DMstatus dmICGetDstPoolParams (DMimageconverter converter,
 DMparams *poolParams)

The converter instance indicated by converter modifies the DMparams structure pointed
to by poolParams to describe its buffering needs. Your application should also pass this
poolParams to other libraries that may share the same buffer pool. For example, if the
buffer pool must be shared with the Video Library or the Graphics Library, poolParams
should be passed to vlDMPoolGetParams() or dmBufferGetGLPoolParams(). This
function returns an error if it detects that requirements set in poolParams by another
library conflict with those of the converter instance.

148

Chapter 6: Digital Media Data Conversion

Use dmICSetDstPool() to choose the buffer pool for a converter instance’s output:

DMstatus dmICSetDstPool (DMimageconverter converter,
 DMbufferpool *pool)

The variable pool points to the destination buffer pool from which the converter instance,
converter, allocates output buffers. Your application is responsible for creating and
disposing of pool. The function returns an error if the converter instance does not meet
the requirements of pool. This function must be called prior to dmICSend() or
dmICReceive(), which are described in the next section.

The code that follows the comment “// 3. Creating data buffers for the converter
instance” in the section “Using the Image Conversion API” makes use of some of the
above functions.

4. Converting Data Using the Image Conversion API

During the actual conversion process, your application sends data buffers to a converter
instance, and receives buffers of processed data from it. A converter instance has a source
and destination queue to handle buffer traffic. Your application allocates, fills, and sends
data buffers to the source queue. The instance attaches the buffers in the queue, that is
prevents them from being deleted, until it can process the data. The destination queue,
containing data buffers created by the instance from the destination buffer pool selected
with dmICSetDstPool(), holds the processed data until your application is ready to
receive it. The source and destination queues allow the converter instance to interact
asynchronously with your application.

The Image Conversion Library enables your application to do the following:

• Send data to and receive it from a converter instance with dmICSend() and
dmICReceive()

• Use a file descriptor to be notified of data arriving from a converter instance with
dmICGetDstQueueFD()

• Determine the number of buffers that are ready to be received from the converter
instance with dmICGetDstQueueFilled() and the number that are ready to be
processed by the converter instance with dmICGetSrcQueueFilled()

Use the function dmICSend() to send data to a converter instance for conversion:

DMstatus dmICSend (DMimageconverter converter, DMbuffer srcBuffer,
 int numRefBuffers, DMbuffer *refBuffers)

Image Data Conversion

149

This function adds the data buffer srcBuffer to the input queue of the converter instance
converter. It is an asynchronous operation, and the conversion may not have taken place
when dmICSend() returns. However, if it is no longer needed by your application, the
buffer can be freed with dmBufferFree() immediately after dmICSend() returns. The
buffer is attached by the converter instance until it can be used, and will not be deleted
until the converter instance is finished with it. The integer numRefBuffers is the number
of reference buffers in an array pointed to by refBuffers. The converter instance uses the
reference buffers to interpret subsequent buffers which are coded in terms of them.

The dmICSend() function returns errors if the queue is full, or if any of the parameters
are invalid. If the requirements of the source, destination, and conversion parameters set
previously cannot be met during the instance’s processing, an error is returned on a
subsequent call to dmICReceive().

Use the function dmICReceive() to receive data from a converter instance:

DMstatus dmICReceive (DMimageconverter converter,
 DMbuffer *dstBuffer)

This function removes a completed data buffer, pointed to by dstBuffer, from the output
queue of converter. The buffer is automatically attached to the caller. When your
application no longer needs it, the buffer must be freed with dmBufferFree(). The
function returns an error of DM_IC_Q_EMPTY if there are no buffers ready.

Use the function dmICGetDstQueueFD() to obtain a file descriptor associated with the
data from a converter instance:

int dmICGetDstQueueFD (DMimageconverter converter)

The function returns the file descriptor associated with the converter instance converter.
Your application can use this file descriptor with select() or poll() to be notified when
data is available to be retrieved with dmICReceive(). The code sample in “Using the
Image Conversion API” shows an example of this technique.

Use dmICGetDstQueueFilled() to determine how many data buffers have been
processed by a converter instance and are now available to your application. Use the
function dmICGetSrcQueueFilled() to find how many data buffers have been sent to the
converter instance, but not processed:

int dmICGetDstQueueFilled (DMimageconverter converter)
int dmICGetSrcQueueFilled (DMimageconverter converter)

150

Chapter 6: Digital Media Data Conversion

The function dmICGetDstQueueFilled() returns an integer that is the number of buffers
from converter that can be removed by dmICReceive(). The dmICGetSrcQueueFilled()
function returns an integer that is the number of buffers that have been sent to converter
with dmICSend() and have yet to be processed. Buffers that are being processed by the
converter instance are not counted by either function.

The code following the comment “// 4. Converting the data using a converter instance”
in the section “Using the Image Conversion API” uses some of the above functions.

5. Destroying a Converter Instance Using the Image Conversion API

The Image Conversion Library enables you to free a converter instance’s resources with
dmICDestroy():

void dmICDestroy (DMimageconverter converter)

This function closes the converter instance indicated by converter. The converter
instance’s internal storage and other resources are freed and converter is no longer valid.

The code that follows the comment “// 5. Destroying a converter instance” in the next
section uses this function.

Using the Image Conversion API

What follows is a code sample that demonstrates the use of the Image Conversion API.

#include <stdio.h>
#include <unistd.h>
#include <dmedia/dmedia.h>
#include <dmedia/dm_image.h>
#include <dmedia/dm_buffer.h>
#include <dmedia/dm_imageconvert.h>

//
// main()
//
int main(int argc, char *argv[])
{
 int nNumConverters = 0;
 DMimageconverter ImgCvt;
 DMparams *pParams;
 DMbufferpool InPool, OutPool;
 DMbuffer InBuffer, OutBuffer;

Image Data Conversion

151

 int i;

// 1. Creating a converter instance

 // Get the number of converters
 nNumConverters = dmICGetNum();
 if (nNumConverters <= 0) {
 fprintf(stderr, “ICGetNum() = (%d)\n”, nNumConverters);
 return(-1);
 }

 // Open the first converter
 if (dmICCreate(0, &ImgCvt) != DM_SUCCESS) {
 fprintf(stderr, “ICCreate() failed.\n”);
 return(-1);
 }

 // Get description of first converter and print it
 dmParamsCreate(&pParams);
 if (dmICGetDescription(0, pParams) != DM_SUCCESS) {
 fprintf(stderr, “GetDescription() Failed\n”);
 return(-1);
 }
 PrintDescription(pParams);
 dmParamsDestroy(pParams);

// 2. Configuring a converter instance

 // Set SrcParams and print
 dmParamsCreate(&pParams);
 dmSetImageDefaults(pParams, 320, 240, DM_IMAGE_PACKING_RGBX);
 if (dmICSetSrcParams(ImgCvt, pParams) != DM_SUCCESS) {
 fprintf(stderr, “SetSrcParams() Failed\n”);
 return(-1);
 }
 if (dmICGetSrcParams(ImgCvt, pParams) != DM_SUCCESS) {
 fprintf(stderr, “GetSrcParams() Failed\n”);
 }
 PrintImageParams(pParams, “Src”);
 dmParamsDestroy(pParams);

 // Set DstParams and print
 dmParamsCreate(&pParams);
 dmSetImageDefaults(pParams, 160, 120, DM_IMAGE_PACKING_RGBX);
 if (dmICSetDstParams(ImgCvt, pParams) != DM_SUCCESS) {

152

Chapter 6: Digital Media Data Conversion

 fprintf(stderr, “SetDstParams() Failed\n”);
 return(-1);
 }
 if (dmICGetDstParams(ImgCvt, pParams) != DM_SUCCESS) {
 fprintf(stderr, “GetDstParams() Failed\n”);
 }
 PrintImageParams(pParams, “Dst”);
 dmParamsDestroy(pParams);

// 3. Creating data buffers for the converter instance

 // Create Pool
 dmParamsCreate(&pParams);
 dmBufferSetPoolDefaults(pParams, 5, 1024, DM_TRUE, DM_FALSE);
 if (dmBufferCreatePool(pParams, &InPool) != DM_SUCCESS) {
 fprintf(stderr, “Create Input Pool Failed\n”);
 return(-1);
 }
 if (dmBufferCreatePool(pParams, &OutPool) != DM_SUCCESS) {
 fprintf(stderr, “Create Output Pool Failed\n”);
 return(-1);
 }
 dmParamsDestroy(pParams);

 if (dmICSetDstPool(ImgCvt, OutPool) != DM_SUCCESS) {
 fprintf(stderr, “SetDstPool() Failed\n”);
 return(-1);
 }

// 4. Converting data using the converter instance

 // We loop twice to test whether the codec does a coredump
 // when no src/dst/conv params are sent.
 // A real application would not have this arbitrary cut off.
 for (i = 0 ; i < 2; ++i) {
 dmBufferAllocate(InPool, &InBuffer);

 if (dmICSend(ImgCvt, InBuffer, 0, NULL) != DM_SUCCESS) {
 fprintf(stderr, “ICSend() Failed\n”);
 return(-1);
 }

 if (dmBufferFree(InBuffer) != DM_SUCCESS) {
 fprintf(stderr, “dmBufferFree() Failed\n”);
 return(-1);

Image Data Conversion

153

 }

 {
 int FD;
 fd_set fdset;

 FD = dmICGetDstQueueFD(ImgCvt);
 FD_ZERO(&fdset);
 FD_SET(FD, &fdset);
 fprintf(stderr, “Waiting on FD %d\n”, FD);
 select(FD+1, &fdset, NULL, NULL, NULL);
 }
 if (dmICReceive(ImgCvt, &OutBuffer) != DM_SUCCESS) {
 fprintf(stderr, “ICReceive() Failed\n”);
 return(-1);
 }
 // OutBuffer can now be sent anywhere a DMbuffer is accepted.
 // We just free it here.
 if (dmBufferFree(OutBuffer) != DM_SUCCESS) {
 fprintf(stderr, “dmBufferFree() Failed\n”);
 return(-1);
 }
 }

// 5. Destroying a converter instance

 // Close converter
 dmICDestroy(ImgCvt);
 return(0);
}

//
// PrintDescription()
// Prints the description obtained by dmICGetDescription().
//
void PrintDescription(DMparams *pParams)
{
 fprintf(stderr, “Name: %s\n”,
 dmParamsGetString(pParams, DM_IC_ENGINE));
 switch(dmParamsGetEnum(pParams, DM_IC_SPEED)) {
 case DM_IC_SPEED_UNDEFINED:
 fprintf(stderr, “Speed Undefined\n”);
 break;
 case DM_IC_SPEED_REALTIME:
 fprintf(stderr, “Speed Real Time\n”);

154

Chapter 6: Digital Media Data Conversion

 break;
 case DM_IC_SPEED_NONREALTIME:
 fprintf(stderr, “Speed Not Real Time\n”);
 break;
 default:
 fprintf(stderr, “Speed Unknown\n”);
 }
 switch(dmParamsGetEnum(pParams, DM_IC_CODE_DIRECTION)) {
 case DM_IC_CODE_DIRECTION_UNDEFINED:
 fprintf(stderr, “Code Direction Undefined\n”);
 break;
 case DM_IC_CODE_DIRECTION_ENCODE:
 fprintf(stderr, “Code Direction Encode\n”);
 break;
 case DM_IC_CODE_DIRECTION_DECODE:
 fprintf(stderr, “Code Direction Decode\n”);
 break;
 default:
 fprintf(stderr, “Code Direction Unknown\n”);
 }
 fprintf(stderr, “Version: %d\n”,
 dmParamsGetInt(pParams, DM_IC_VERSION));
 fprintf(stderr, “Revision: %d\n”,
 dmParamsGetInt(pParams, DM_IC_REVISION));
}

//
// PrintImageParams()
// Prints the descriptions obtained by dmICGetxxxParams().
//
void PrintImageParams(DMparams *pParams, const char *pOrigin)
{
 fprintf(stderr, “Width: %d Height: %d\n”,
 dmParamsGetInt(pParams, DM_IMAGE_WIDTH),
 dmParamsGetInt(pParams, DM_IMAGE_HEIGHT));
 switch(dmParamsGetEnum(pParams, DM_IMAGE_PACKING)) {
 case DM_IMAGE_PACKING_RGBX:
 fprintf(stderr, “RGBX Packing\n”);
 break;
 case DM_IMAGE_PACKING_XBGR:
 fprintf(stderr, “XBGR Packing\n”);
 break;
 case DM_IMAGE_PACKING_RGBA:
 fprintf(stderr, “RGBA Packing\n”);
 break;

Image Data Conversion

155

 case DM_IMAGE_PACKING_ABGR:
 fprintf(stderr, “ABGR Packing\n”);
 break;
 default:
 fprintf(stderr, “Unknown Packing\n”);
 }
}

The Digital Media Color Space Library

The Digital Media Color Space Library is a lower level library that is called by the Image
Conversion Library. It provides the support for many of the parameter keyword
operations discussed in “2. Configuring a Converter Instance Using the Image
Conversion API,”such as DM_IMAGE_WIDTH, DM_IMAGE_HEIGHT,
DM_IMAGE_PACKING, DM_IMAGE_ORDER, DM_IMAGE_ORIENTATION, and
DM_IMAGE_MIRROR. More explicitly, the Color Space Library enables your
application to do the following

• Convert between these color spaces: RGB, YCrCb, and Y

• Convert between many packings, such as DM_IMAGE_PACKING_RGB,
DM_IMAGE_PACKING_CbYCr, and DM_IMAGE_PACKING_LUMINANCE

• Convert between many data types, such as DM_IMAGE_DATATYPE_BIT,
DM_IMAGE_DATATYPE_CHAR, and DM_IMAGE_DATATYPE_SHORT10L

• Provide gamma correction for the RGB components of source and destination data

• Adjust the hue, saturation, brightness, contrast, bias, and scale of individual
components

• Enable colorimetry adjustments of specific monitors

Normally, your application does not need to call the Color Space Library directly. The
Image Conversion Library calls it as determined by the values in the source, destination,
and conversion parameters of your converter instance. However, to enable easy access to
the Color Space Library for conversions involving only uncompressed data, the Image
Conversion Library provides the convenience function dmICAnyToAny().

Use dmICAnyToAny() to make color space conversions on uncompressed data:

DMstatus dmICAnyToAny (void *pBufferSrc, void *pBufferDst,
 DMparams *pParamsSrc, DMparams *pParamsDst,
 DMparams *pParamsConv)

156

Chapter 6: Digital Media Data Conversion

The two variables pBufferSrc and pBufferDst, are pointers to the source and destination
data which is uncompressed. Under some circumstances, pBufferSrc and pBufferDst, can
be the same, allowing in-place data conversions. See dmColor(3dm) for more
information. The variables pParamsSrc, pParamsDst, and pParamsConv, are pointers to
DMparams structures which are set as shown in “Using the Image Conversion API.” For
example, the next sample changes the packing of a 640-by-480 pixel image from CbYCrY
to XBGR:

/* Points to the source and destination buffers. */
void *pBufferSrc, *pBufferDst;

/* Points to the source and destination parameters. */
DMparams *pParamsSrc, pParamsDst;

/* Allocate buffers and fill source buffer. */
...
/* Do other preliminary processing */
...

/* Set the source parameters. */
dmParamsCreate(&pParamsSrc);
dmParamsSetInt(pParamsSrc, DM_IMAGE_WIDTH, 640);
dmParamsSetInt(pParamsSrc, DM_IMAGE_HEIGHT,480);
dmParamsSetEnum(pParamsSrc, DM_IMAGE_PACKING,
 DM_IMAGE_PACKING_CbYCrY);

/* Set the destination parameters. */
dmParamsCreate(&pParamsDst);
dmParamsSetInt(pParamsDst, DM_IMAGE_WIDTH, 640);
dmParamsSetInt(pParamsDst, DM_IMAGE_HEIGHT,480);
dmParamsSetEnum(pParamsDst, DM_IMAGE_PACKING,
 DM_IMAGE_PACKING_XBGR);

/* Do the conversion and clean up. */
dmICAnyToAny(pBufferSrc, pBufferDst,
 pParamsSrc, pParamsDst, NULL);
dmParamsDestroy(pParamsSrc);
dmParamsDestroy(pParamsDst);

For more information about the Color Space Library, see “The Color Space Library” in
Appendix A.

Image Data Conversion

157

Summary of the Digital Media Image Conversion Library

These are the functions of the Digital Media Image Conversion Library API. More details
about specific functions, such as the errors they return, can be found by looking at the
reference pages mention in the “Description” column.

Table 6-2 The Digital Media Image Conversion Library API

Function Description

int
dmICGetNum (
void)

Return the number of image converters
available. See also dmICGetNum(3dm).

int
dmICChooseConverter (
DMparams *srcParams,
DMparams *dstParams,
DMparams *convParams)

Return the index of an image converter that
matches the specified image parameters. See also
dmICChooseConverter(3dm).

DMstatus
dmICGetDescription (
int i, DMparams *converterParams)

Get the description of the converter indicated by
index i. See also dmICGetDescription(3dm).

DMstatus
dmICCreate (
int i, DMimageconverter *converter)

Create an instance of image converter i. See also
dmICCreate(3dm).

void
dmICDestroy (
DMimageconverter converter)

Destroy the image converter instance. See also
dmICDestroy(3dm).

DMstatus
dmICGetSrcParams (
DMimageconverter converter,
DMparams *srcParams)

Get the actual settings of source parameters of an
image converter instance. See also
dmICGetSrcParams(3dm).

DMstatus
dmICSetSrcParams (
DMimageconverter converter,
DMparams *srcParams)

Change the settings of source parameters of an
image converter instance. See also
dmICSetSrcParams(3dm).

DMstatus
dmICGetDefaultSrcParams (
DMimageconverter converter,
DMparams *srcParams)

Get the source parameters and default values of
an image converter instance. See also
dmICGetDefaultSrcParams(3dm).

158

Chapter 6: Digital Media Data Conversion

DMstatus
dmICGetDstParams (
DMimageconverter converter,
DMparams *dstParams)

Get the actual settings of destination parameters
of an image converter instance. See also
dmICGetDstParams(3dm).

DMstatus
dmICSetDstParams (
DMimageconverter converter,
DMparams *dstParams)

Change the settings of destination parameters of
an image converter instance. See also
dmICSetDstParams(3dm).

DMstatus
dmICGetDefaultDstParams (
DMimageconverter converter,
DMparams *dstParams)

Get the destination parameters and default
values of an image converter instance. See also
dmICGetDefaultDstParams(3dm).

DMstatus
dmICGetConvParams (
DMimageconverter converter,
DMparams *convParams)

Get the actual settings of conversion parameters
of an image converter instance. See also
dmICGetConvParams(3dm).

DMstatus
dmICSetConvParams (
DMimageconverter converter,
DMparams *convParams)

Change the settings of conversion parameters of
an image converter instance. See also
dmICSetConvParams(3dm).

DMstatus
dmICGetDefaultConvParams (
DMimageconverter converter,
DMparams *convParams)

Get the conversion parameters and default
values of an image converter instance. See also
dmICGetDefaultConvParams(3dm).

DMstatus
dmICGetSrcPoolParams (
DMimageconverter converter,
DMparams *poolParams)

Get the input buffering needs of the image
converter instance. See also
dmICGetSrcPoolParams(3dm).

DMstatus
dmICGetDstPoolParams (
DMimageconverter converter,
DMparams *poolParams)

Get the output buffering needs of the image
converter instance. See also
dmICGetDstPoolParams(3dm).

Table 6-2 (continued) The Digital Media Image Conversion Library API

Function Description

Image Data Conversion

159

DMstatus
dmICSetDstPool (
DMimageconverter converter,
DMbufferpool pool)

Set the pool from which converter allocates each
output DMbuffer. See also
dmICSetDstPool(3dm).

int
dmICGetDstQueueFD (
DMimageconverter converter)

Get the queue file descriptor of the image
converter instance. See also
dmICGetDstQueueFD(3dm).

int
dmICGetDstQueueFilled (
DMimageconverter converter)

Get the number of buffers ready to be received
from the converter instance. See also
dmICGetDstQueueFilled(3dm).

int
dmICGetSrcQueueFilled (
DMimageconverter converter)

Get the number of buffers sent to the converter
instance, but not yet processed. See also
dmICGetSrcQueueFilled(3dm).

int
dmICSend (
DMimageconverter converter,
DMbuffer srcBuffer, int numRefBuffers,
DMbuffer *refBuffers)

Transfer source buffer and reference buffers to
the image converter instance. See also
dmICSend(3dm).

DMstatus
dmICReceive (
DMimageconverter converter,
DMbuffer *dstBuffer)

Transfer data from the image converter instance.
See also dmICReceive(3dm).

DMstatus
dmICAnyToAny (
void *src, void *dst, DMparams *srcParams,
DMparams *dstParams,
DMparams *convParams)

A convenience function.

Table 6-2 (continued) The Digital Media Image Conversion Library API

Function Description

160

Chapter 6: Digital Media Data Conversion

Audio Data Conversion

This section describes the Digital Media Audio Conversion Library, its converters, and
how to use the Audio Conversion API to execute the four steps of an audio data
conversion.

The Digital Media Audio Conversion Library

The Digital Media Audio Conversion Library provides data format conversion for
applications that do real-time audio capture, playback and file conversion. It makes it
possible to efficiently move data between any audio producer and any audio consumer,
regardless of their native formats. The library provides a single API for performing
memory-to-memory sound compression and conversion. Table 6-1 lists commonly
installed codec options that can be accessed through the Audio Conversion API. The
“DM_AUDIO_COMPRESSION Value” column contains the identification values that
are used with dmACSetParams() as described in “Configuring a Converter Instance
Using the Audio Conversion API.”

Table 6-3 Digital Media Audio Codecs

DM_AUDIO_COMPRESSION
Value

Description

DM_AUDIO_DVI Intel’s Digital Video Interactive. See also “The DVI Audio
Compression Library” in Appendix A.

DM_AUDIO_G711_ALAW
DM_AUDIO_G711_ULAW

International Telecommunication Union Standard G.711.
See “The G.711 Audio Compression Library” in Appendix A.

DM_AUDIO_G722 International Telecommunication Union Standard G.722.
See “The G.722 Audio Compression Library” in Appendix A.

DM_AUDIO_G726 International Telecommunication Union Standard G.726.
See “The G.726 Audio Compression Library” in Appendix A.

DM_AUDIO_G728 International Telecommunication Union Standard G.728.
See “The G.728 Audio Compression Library” in Appendix A.

DM_AUDIO_GSM Global System for Mobile Telecommunications. See “The GSM
Audio Compression Library” in Appendix A.

Audio Data Conversion

161

In addition to the compression and decompression done by the codecs, an audio
converter instance may also perform such transformations as

• converting between different numerical representations, such as unsigned integer
and two’s complement signed integer

• converting between big-endian and little-endian byte orders

• audio sampling rate conversion (see “The Audio Rate Conversion Library” in
Appendix A)

• converting between different numbers of interleaved channels, such as mono and
stereo

• Pulse Code Modulation (PCM) mapping

As the next sections demonstrate, The Audio Conversion Library enables you to
effectively use the codecs and transformation libraries by following the steps listed in
“Using The Digital Media Converters.” To use the Audio Conversion API, you must use
these header files:

#include <dmedia/dm_audioconvert.h>
#include <dmedia/dm_audioutil.h>

Creating a Converter Instance Using the Audio Conversion API

Use dmACCreate() to create an audio converter instance:

DMstatus dmACCreate (DMaudioconverter* converter)

This function creates and initializes converter, a handle to a DMaudioconverter instance.
All the Audio Conversion Library functions use this handle which is declared as follows:

typedef struct _DMaudioconverter *DMaudioconverter;

DM_AUDIO_MPEG1 MPEG-1 Audio. See “The MPEG-1 Audio Compression
Library” in Appendix A.

DM_AUDIO_MULTIRATE Aware MultiRate near-lossless compression.

Table 6-3 (continued) Digital Media Audio Codecs

DM_AUDIO_COMPRESSION
Value

Description

162

Chapter 6: Digital Media Data Conversion

Note: All of the Audio Conversion Library functions return a DMstatus value of
DM_SUCCESS if they succeed, DM_FAILURE if not. After a receiving a DM_FAILURE,
your application can call the function the function dmGetErrorForPID() or
dmGetError() to return an error message and error number. See “Digital Media Error
Handling” in Chapter 3 for more information.

Configuring a Converter Instance Using the Audio Conversion API

Once a converter instance has been created, it must be configured. As with the Image
Conversion Library, your application does this by using DMparams data structures to
specify a set of source parameters, a set of destination parameters, and, optionally, a set
of conversion parameters.

The Audio Conversion Library enables you to do the following:

• Configure an audio converter instance by setting the source, destination, and
conversion parameters with dmACSetParams()

• Get the source, destination, and conversion parameter settings of a configured
audio converter instance with dmACGetParams()

• Reset an audio converter instance to its original configuration with dmACReset()

Use dmACSetParams() to set the DMaudioconverter parameter values:

DMstatus dmACSetParams (DMaudioconverter converter,
 DMparams *sourceparams, DMparams *destparams,
 DMparams *conversionparams)

The handle converter indicates an audio converter instance created by a previous call to
dmACCreate(). The DMparams structures pointed to by sourceparams and destparams
describe the formats of the audio data prior to and after conversion. The variable
conversionparams points to a DMparams structure that contains parameters specific to the
conversion process. The variables destparams and conversionparams are optional and may
be set to NULL.

Use dmACGetParams() to get the DMaudioconverter parameter values:

DMstatus dmACGetParams (DMaudioconverter converter,
 DMparams *sourceparams, DMparams *destparams,
 DMparams *conversionparams)

The handle converter indicates an audio converter instance previously configured by a
call to dmACSetParams(). The DMparams structures pointed to by sourceparams and

Audio Data Conversion

163

destparams describe the formats of the audio data prior to and after conversion. The
variable conversionparams points to a DMparams structure that contains parameters
specific to the conversion process. The variables destparams and conversionparams are
optional and may be set to NULL.

Use dmACReset() to reset a DMaudioconverter handle to its original configuration:

DMstatus dmACReset (DMaudioconverter converter)

The handle converter indicates an audio converter instance already configured by a call
to dmACSetParams().

The next three sections describe the DMparams structures for source, destination, and
conversion parameters in more detail. They are followed by a section that discusses
parameters relevant to specific converters.

Source Parameters

The source parameters, which describe the data to be converted, are contained in the
DMparams structure indicated by sourceparams. The source parameters that must be
specified are shown below. There are no default values. The parameters and their
DMparams-setting functions follow the bullets. Legal values for the parameters follow
the dashes.

• DM_AUDIO_FORMAT and dmParamsSetEnum():

DM_AUDIO_TWOS_COMPLEMENT

DM_AUDIO_UNSIGNED

DM_AUDIO_FLOAT

DM_AUDIO_DOUBLE

• DM_AUDIO_WIDTH and dmParamsSetInt():

The width of the data in bits. An integer value between 1 and 32.

• DM_AUDIO_BYTE_ORDER and dmParamsSetEnum():

DM_AUDIO_BIG_ENDIAN

DM_AUDIO_LITTLE_ENDIAN

• DM_AUDIO_CHANNELS and dmParamsSetInt():

The number of audio channels. An integer value greater than 0.

164

Chapter 6: Digital Media Data Conversion

• DM_AUDIO_RATE and dmParamsSetFloat():

The audio sampling rate in Hz. A DM_TYPE_FLOAT value greater than 0.0.

• DM_AUDIO_COMPRESSION and dmParamsSetString():

DM_AUDIO_UNCOMPRESSED or one of the values shown in Table 6-1.

Destination Parameters

The destination parameters, which describe the output audio data, are contained in the
DMparams structure indicated by destparams. Any destination parameter not specified
defaults to its source parameter value, except DM_AUDIO_COMPRESSION which
defaults to DM_AUDIO_UNCOMPRESSED.

There is a set of four parameters for PCM mapping whose values, although they can be
set for source data, are normally specified only for destination data. The parameters are
based on a model where there is a PCM value that corresponds to zero voltage and a
differential value that corresponds to full voltage. The set consists of the following
parameters, which are shown with their DMparams setting functions and appropriate
values.

• DM_AUDIO_PCM_MAP_SLOPE and dmParamsSetFloat():

The full voltage PCM value. (Default is 32767.0)

• DM_AUDIO_PCM_MAP_INTERCEPT and dmParamsSetFloat():

The zero voltage PCM value. (Default is 0.0)

• DM_AUDIO_PCM_MAP_MAXCLIP and dmParamsSetFloat():

Clip all PCM values to this maximum value. (Default is 32767.0)

• DM_AUDIO_PCM_MAP_MINCLIP and dmParamsSetFloat():

Clip all PCM values to this minimum value. (Default is -32768.0)

The function dmACSetParams() automatically sets their default input and output values
from the input and output data format specifications. Your application needs to set them
only if it has special mapping requirements, such as input data with a fixed offset like a
DC bias. If your application sets any of these four parameters, it must set all of them. See
afIntro(3dm) for more information on PCM mapping.

Audio Data Conversion

165

Conversion Parameters

The conversion parameters, which modify the codec settings and other aspects of the
conversion process, are contained in the DMparams structure indicated by
conversionparams. There are five categories of conversion parameters.

1. The Processing Mode Parameter

This parameter, whose keyword is DM_AUDIO_PROCESS_MODE, is used to
determine the converter's Processing mode. It can also be used to set the processing
mode when both the input and output data are uncompressed. There are two
processing modes: push and pull. In pull mode, your application requests a given
number of output frames. Decompression must use pull mode and your application
uses a buffer length parameter to specify how many frames of uncompressed data
the converter instance should put in the output buffer of dmACConvert(). In push
mode, your application gives the converter a specified number of input frames.
Compression requires push mode and your application specifies how many frames
of uncompressed data are in the input buffer. The two settings for
DM_AUDIO_PROCESS_MODE are

• DM_AUDIO_PROCESS_PULL and dmParamsGetInt()

• DM_AUDIO_PROCESS_PUSH and dmParamsGetInt()

2. Buffer Length Parameters

The three buffer length parameters are used to determine the number of frames in
the input or output buffers. Your application specifies them only during
compression, decompression, or rate conversion because the input and output
buffer lengths are equal at all other times. Your application must set the parameter
DM_AUDIO_MAX_REQUEST_LEN prior to calling dmACConvert() to specify the
largest buffer the converter instance will have to process. Your application then calls
dmACGetParams() to find the value of DM_AUDIO_MIN_INPUT_LEN or
DM_AUDIO_MIN_OUTPUT_LEN. If the converter instance is in pull mode,
DM_AUDIO_MIN_INPUT_LEN gives the minimum number of frames the
converter instance requires in the input buffer. If the instance is in push mode,
DM_AUDIO_MIN_OUTPUT_LEN gives the minimum number of frames the
instance requires in the output buffer. Your application then allocates buffers
appropriate to these sizes. The parameters, DMparams functions, and typical values
are as follows:

• DM_AUDIO_MAX_REQUEST_LEN and dmParamsSetInt():

An integer value greater than 0. This value can only be set.

166

Chapter 6: Digital Media Data Conversion

• DM_AUDIO_MIN_INPUT_LEN and dmParamsGetInt():

An integer value that your application can only read.

• DM_AUDIO_MIN_OUTPUT_LEN and dmParamsGetInt():

An integer value that your application can only read.

3. The Dithering Parameter

The dithering parameter, whose keyword is DM_AUDIO_DITHER_ALGORITHM,
is used only when data is converted from a larger to a smaller data type. An
example of such a conversion would be going from a floating point to a 16-bit
integer representation. The dithering algorithm is applied to reduce the
quantization error distortion inherent in reducing resolution. The two possible
values are as follows:

• DM_AUDIO_DITHER_NONE (default)

• DM_AUDIO_DITHER_LSB_TPDF (Least Significant Bit - Triangular Probability
Density Function)

4. Rate Conversion Parameters

There are three parameters that affect the rate conversion algorithm. They are used
only when the input and output sampling rates are not equal. The three parameters,
their DMparams setting functions, and their possible values are shown below. See
dmAudioRateConverterSetParams(3dm) for more information about them.

• DM_AUDIO_RC_ALGORITHM and dmParamsSetString():

DM_AUDIO_RC_JITTER_FREE (default)

DM_AUDIO_RC_POLYNOMIAL_ORDER_1

DM_AUDIO_RC_POLYNOMIAL_ORDER_3

• DM_AUDIO_RC_JITTER_FREE_STOPBAND_ATTENUATION and
dmParamsSetFloat():

DM_AUDIO_RC_JITTER_FREE_STOPBAND_ATTENUATION_78_DB
(default)

DM_AUDIO_RC_JITTER_FREE_STOPBAND_ATTENUATION_96_DB

DM_AUDIO_RC_JITTER_FREE_STOPBAND_ATTENUATION_120_DB

• DM_AUDIO_RC_JITTER_FREE_TRANSITION_BANDWIDTH and
dmParamsSetFloat():

Audio Data Conversion

167

DM_AUDIO_RC_JITTER_FREE_TRANSITION_BANDWIDTH_1_PERCENT

DM_AUDIO_RC_JITTER_FREE_TRANSITION_BANDWIDTH_10_PERCENT

DM_AUDIO_RC_JITTER_FREE_TRANSITION_BANDWIDTH_20_PERCENT

5. The Channel Conversion Parameter

The channel conversion or channel matrix parameter is used to mix the channels
associated with a track. The matrix is a one-dimensional array composed of a
two-dimensional array in row-major order, where each row represents an output
channel and each column represents an input channel. See the
afSetChannelMatrix(3dm) reference page for a detailed explanation. The parameter
keyword and its DMparams-setting function are as follows:

• DM_AUDIO_CHANNEL_MATRIX and dmParamsSetFloatArray():

A DMfloatarray of double-precision floating point numbers.

Converting Data Using the Audio Conversion API

Use dmACConvert() to convert the audio data’s format, sampling rate, and
compression:

DMstatus dmACConvert (DMaudioconverter converter, void *inbuffer,
 void *outbuffer, int *in_amount,
 int *out_amount)

This function performs the data format, sampling rate, and compression or
decompression specified by dmACSetParams(). The variable converter is a handle to an
audio converter instance previously created with dmACCreate() and configured with
dmACSetParams(). The variables inbuffer and outbuffer point to the buffers that contain
the audio data prior to and after conversion. As described in “Configuring a Converter
Instance Using the Audio Conversion API,” your application may need to determine the
number of frames these buffers must hold using the DM_AUDIO_MIN_INPUT_LEN or
DM_AUDIO_MIN_OUTPUT_LEN parameters. If inbuffer is NULL, the converter
instance flushes any internal buffers to the output buffer.

The variable in_amount points to an integer containing the number of frames (bytes if the
data is compressed) of input data available to the converter instance. This can be any
value greater than 0. In pull mode, dmACConvert() resets this value to the number of
frames (bytes) read from inbuffer by the converter instance. (To review the push and pull
modes, see the conversion parameter discussion in “Configuring a Converter Instance
Using the Audio Conversion API.”) The pointer out_amount indicates an integer

168

Chapter 6: Digital Media Data Conversion

containing the number of frames (bytes if the data is compressed) of converted data your
application wants from the converter instance. The initial value is ignored in push mode.
After processing the data, dmACConvert() resets the out_amount value to the number of
frames (bytes) actually placed into outbuffer. If the conversion involved rate conversion,
compression, or decompression, this value can vary significantly from the in_amount
value. It can even be zero when the in_amount value was positive.

Compression Parameters

The compression parameters modify individual audio converters listed in Table 6-1. The
parameters and their values are listed below. For more information about using specific
parameters, please refer to the relevant reference pages.

• Digital Video Interactive (DVI) has one parameter.

DM_DVI_AUDIO_BITS_PER_SAMPLE specifies the compression algorithm. Its
possible values are

• DM_DVI_AUDIO_3BITS_PER_SAMPLE

• DM_DVI_AUDIO_4BITS_PER_SAMPLE (default)

• ITU-T G722 has three parameters.

DM_AUDIO_CODEC_MAX_BYTES_PER_BLOCK

DM_AUDIO_CODEC_FRAMES_PER_BLOCK

DM_AUDIO_CODEC_FILTER_DELAY

• ITU-T G722 has two parameters.

DM_AUDIO_BITRATE is an integer in units of bits per second with one of the
following values: 16000, 24000, 32000, 40000.

DM_G726_NATIVE_FORMAT specifies the input or output sample data format. Its
possible values are

• AUDIO_ENCODING_ULAW

• AUDIO_ENCODING_ALAW

• AUDIO_ENCODING_LINEAR

• ITU-T G728 has one parameter.

DM_G728_POSTFILTERING_FLAG selects a decoder with or without post filtering.
Its possible values are

Audio Data Conversion

169

• DM_G728_POSTFILTERING_YES

• DM_G728_POSTFILTERING_NO

• Global System for Mobile Telecommunications (GSM) has three parameters.

DM_AUDIO_CODEC_MAX_BYTES_PER_BLOCK

DM_AUDIO_CODEC_FRAMES_PER_BLOCK

DM_AUDIO_CODEC_FILTER_DELAY

• MPEG-1 Audio has seven parameters for encoding and decoding.

DM_AUDIO_RATE is the input or output sampling rate given in Hz. It is a double
with possible values of 32000, 44100 (default), and 48000.

DM_AUDIO_FORMAT is the format of each input or output sample. The only
supported value is DM_AUDIO_TWOS_COMPLEMENT

DM_AUDIO_WIDTH is the width of each input or output sample. The only
supported value is DM_AUDIO_WIDTH_16

DM_AUDIO_CHANNELS is the number of channels in the input or output data. It
is an integer value of 1 or 2 (default).

DM_MPEG1_AUDIO_LAYER is a flag specifying the basic algorithm to be used.
There are two possible values.

• DM_MPEG1_AUDIO_LAYER1

• DM_MPEG1_AUDIO_LAYER2 (default)

DM_AUDIO_CHANNEL_POLICY indicates how multiple channels should be
treated. There are three possible values.

• DM_AUDIO_STEREO - The channels are part of a single multichannel signal.

• DM_AUDIO_JOINT_STEREO (default) - The algorithm may attempt to exploit
redundancy between channels for greater coding gain.

• DM_AUDIO_INDEPENDENT - The separate channels are unrelated and
should be processed separately.

DM_AUDIO_BIT_RATE specifies the desired bit rate, in bits per second, for the
compressed data.

170

Chapter 6: Digital Media Data Conversion

Supported values with DM_MPEG1_AUDIO_LAYER1 are 32000, 64000, 96000,
128000, 160000, 192000, 224000, 256000 (default), 288000, 320000, 352000, 384000,
416000, and 448000. Supported values with DM_MPEG1_AUDIO_LAYER2 are
32000, 48000, 56000, 64000, 80000, 96000, 112000, 128000, 160000, 192000, 224000,
256000 (default), 320000, and 38400

• MPEG-1 Audio has four parameters to use with encoding only.

DM_MPEG1_AUDIO_PSYCHOMODEL selects which psychoacoustic model to use
for calculating the safe masking thresholds for quantizing noise. There are two
possible values.

• DM_MPEG1_AUDIO_PSYCHOMODEL1

• DM_MPEG1_AUDIO_PSYCHOMODEL2

DM_MPEG1_AUDIO_PSYCHOMODEL1_ALPHA is a float value that specifies the
alpha parameter for DM_MPEG1_AUDIO_PSYCHOMODEL1. It has a possible
value within (0.0, 2.0]. Default is 2.0.

DM_MPEG1_AUDIO_BITRATE_POLICY is a flag used for the interpretation of
DM_AUDIO_BIT_RATE. There are two possible values.

• DM_MPEG1_AUDIO_FIXRATE (default)

• DM_MPEG1_AUDIO_CONSTANT_QUALITY

DM_MPEG1_AUDIO_CONST_QUAL_NMR is the desired mask-to-noise ratio in
decibels. It is a float value with a value within (-13.0, 13.0]. The default is 0.0.

• MPEG-1 Audio has three parameters to use with decoding only.

DM_MPEG1_AUDIO_DECIMATION_SCALE specifies the decimation factor
applied to reduce the complexity of decoding. It has three possible values.

• DM_MPEG1_AUDIO_BANDWIDTH_FULL (default)

• DM_MPEG1_AUDIO_BANDWIDTH_HALF

• DM_MPEG1_AUDIO_BANDWIDTH_QUARTER

DM_MPEG1_AUDIO_SCALE_FILTERSHAPE specifies the filter shape applied to
reduce the complexity of decoding. It has three possible values.

• DM_MPEG1_AUDIO_DEFAULT_FILTER (default)

• DM_MPEG1_AUDIO_FILTER_SHAPE1

• DM_MPEG1_AUDIO_FILTER_SHAPE2

Audio Data Conversion

171

DM_MPEG1_AUDIO_COMBINE_CHANS_FLAG enables single channel output. It
is an integer with a default value of 0, that is JOINT_STEREO mode. A value of 1
forces the decoder to produce single channel output.

• MPEG-1 Audio has three parameters to use only in query mode.

DM_AUDIO_CODEC_FRAMES_PER_BLOCK is an integer that specifies how
many sample frames are put into each compressed data block.

DM_AUDIO_CODEC_MAX_BYTES_PER_BLOCK is an integer that indicates the
maximum number of bytes that will compose a compressed data block.

DM_AUDIO_CODEC_FILTER_DELAY is an integer that indicates the delay, in
sample frames, introduced by compression and decompression processing.

Destroying a Converter Instance Using the Audio Conversion API

The Audio Conversion library provides the function dmACDestroy() to destroy an
audio converter instance:

DMstatus dmACDestroy (DMaudioconverter converter)

The function frees the memory associated with the DMaudioconverter handle. The
handle is not valid after this call returns.

Summary of the Digital Media Audio Conversion Library

These are the functions of the Digital Media Audio Conversion Library API. More details
about specific functions, such as the errors they return, can be found by looking at the
reference pages mention in the “Description” column.

Table 6-4 The Digital Media Audio Conversion API

Function Description

DMstatus
dmACConvert (
DMaudioconverter converter, void *inbuffer,
void *outbuffer, int *in_amount,
int *out_amount)

Convert the audio data format, sampling rate,
and compression. See also dmACConvert(3dm).

DMstatus
dmACCreate (
DMaudioconverter *converter)

Create a DMaudioconverter handle to use for
audio format conversion. See also
dmACCreate(3dm).

172

Chapter 6: Digital Media Data Conversion

DMstatus
dmACDestroy (
DMaudioconverter converter)

Destroy a DMaudioconverter handle used for
audio format conversion. See also
dmACDestroy(3dm).

DMstatus
dmACReset (
DMaudioconverter converter)

Reset a DMaudioconverter handle to its default
state. See also dmACReset(3dm).

DMstatus
dmACSetParams (
DMaudioconverter converter,
DMparams *sourceparams,
DMparams *destparams,
DMparams *conversionparams)

Set the DMaudioconverter parameter values. See
also dmACSetParams(3dm).

DMstatus
dmACGetParams (
DMaudioconverter converter,
DMparams *sourceparams,
DMparams *destparams,
DMparams *conversionparams)

Get the DMaudioconverter parameter values.
See also dmACGetParams(3dm).

Table 6-4 (continued) The Digital Media Audio Conversion API

Function Description

173

Appendix A

A. Digital Media Conversion Libraries

This appendix contains the APIs of the individual image and audio conversion libraries.
These libraries are not discussed in detail. As discussed in Chapter 6, “Digital Media
Data Conversion,” most developers need only use the Image Conversion Library and the
Audio Conversion Library. Those two libraries call the libraries described in this
appendix as needed.

The Color Space Library

The Color Space Library (CSL) provides developers with the ability to convert the color
spaces, packings, subsamplings, and data types of images. It also enables them to
perform operations on image data, such as adjusting contrast. Like the Image Conversion
Library, the CSL uses parameters describing the source and destination images as well as
the conversion settings to create a color converter The image parameters are set using a
DMparams structure using dmColorSetSrcParams() and dmColorSetDstParams(). The
conversion parameters are set with dmColorSetConvParams(). In most cases, only the
source and destination packings need to be specified; all other values will default to
appropriate values. The CSL supports the RGB, YCrCb, and Y (Luminance) color spaces.

Table A-1 The Color Space Library API

Function Description

DMstatus
dmColorConvert (
const DMcolorconverter converter,
void *srcImage, void *dstImage)

Perform the image conversion
See also dmColorConvert(3dm).

DMstatus
dmColorCreate (
DMcolorconverter *converter)

Create and initialize the color converter.
See also dmColorCreate(3dm).

DMstatus
dmColorDestroy (
const DMcolorconverter converter)

Destroy the color converter.
See also dmColorDestroy(3dm).

174

Appendix A: Digital Media Conversion Libraries

DMstatus
dmColorGetError (
const DMcolorconverter converter, int *error)

Return the value of the error flag.
See also dmColorGetError(3dm).

const char *
dmColorGetErrorString (
const int error)

Returns a text error message.
See also dmColorGetErrorString(3dm).

DMstatus
dmColorGetSrcSize (
const DMcolorconverter converter, int *size)

Get the source image size in bytes.
See also dmColorGetSrcSize(3dm).

DMstatus
dmColorGetDstSize (
const DMcolorconverter converter, int *size)

Get the destination image size in bytes.
See also dmColorGetSrcSize(3dm).

DMstatus
dmColorGetTransformMatrix (
const DMcolorconverter converter,
const int format, double matrix[])

Get the transform matrix.
See also dmColorGetTransformMatrix(3dm).

DMstatus
dmColorPrecompute (
const DMcolorconverter converter)

Perform any required early computations.
See also dmColorPrecompute(3dm).

DMstatus
dmColorSetBrightness (
const DMcolorconverter converter,
const float brightness)

Set the brightness delta value.
See also dmColorSetBrightness(3dm).

DMstatus
dmColorGetBrightness (
const DMcolorconverter converter,
float *brightness)

Get brightness delta value. See also
dmColorSetBrightness(3dm).

DMstatus
dmColorSetContrast (
const DMcolorconverter converter,
const float contrast)

Set the contrast multiplier. See also
dmColorSetContrast(3dm).

Table A-1 (continued) The Color Space Library API

Function Description

The Color Space Library

175

DMstatus
dmColorGetContrast (
const DMcolorconverter converter,
float *contrast)

Get the contrast multiplier. See also
dmColorSetContrast(3dm).

DMstatus
dmColorSetDefaultAlpha (
const DMcolorconverter converter,
const float defaultAlpha)

Set the default alpha value of the source image.
See also dmColorSetDefaultAlpha(3dm).

DMstatus
dmColorGetDefaultAlpha (
const DMcolorconverter converter,
float *defaultAlpha)

Get the default alpha value of the source image.
See also dmColorSetDefaultAlpha(3dm).

DMstatus
dmColorSetHue (
const DMcolorconverter converter,
const float hue)

Set the hue rotation. See also
dmColorSetHue(3dm).

DMstatus
dmColorGetHue (
const DMcolorconverter converter,
float *hue)

Get the hue rotation. See also
dmColorSetHue(3dm).

DMstatus
dmColorSetSaturation (
const DMcolorconverter converter,
const float saturation)

Set the saturation multiplier. See also
dmColorSetSaturation(3dm).

DMstatus
dmColorGetSaturation (
const DMcolorconverter converter,
float *saturation)

Get the saturation multiplier. See also
dmColorGetSaturation(3dm).

DMstatus
dmColorSetSrcParams (
const DMcolorconverter converter,
DMparams *imageParams)

Set the source image parameters. See also
dmColorSetSrcParams(3dm).

Table A-1 (continued) The Color Space Library API

Function Description

176

Appendix A: Digital Media Conversion Libraries

DMstatus
dmColorSetDstParams (
const DMcolorconverter converter,
DMparams *imageParams)

Set the destination image parameters. See also
dmColorSetSrcParams(3dm).

DMstatus
dmColorGetSrcParams (
const DMcolorconverter converter,
DMparams *imageParams)

Get the source image parameters. See also
dmColorSetSrcParams(3dm).

DMstatus
dmColorGetDstParams (
const DMcolorconverter converter,
DMparams *imageParams)

Get the destination image parameters. See also
dmColorSetSrcParams(3dm).

DMstatus
dmColorSetSubsamplingFilter (
const DMcolorconverter converter,
const int subsamplingFilter)

Set the subsampling filter type. See also
dmColorSetSubsamplingFilter(3dm).

DMstatus
dmColorGetSubsamplingFilter (
const DMcolorconverter converter,
int *subsamplingFilter)

Get the subsampling filter type. See also
dmColorSetSubsamplingFilter(3dm).

Table A-1 (continued) The Color Space Library API

Function Description

The DVI Audio Compression Library

177

The DVI Audio Compression Library

The DVI Audio Compression Library is based on Intel’s Digital Video Interactive audio
compression technology for multimedia applications. It implements the IMA (Interactive
Multimedia Association) recommendations for ADPCM compression and
decompression based on Intel’s DVI algorithm.

Table A-2 The DVI Audio Library API

Function Description

DMstatus
dmDVIAudioDecode (
DMDVIaudiodecoder handle,
unsigned char *ibuf, short *obuf,
int nsamples)

Do ADPCM decompression based on Intel’s DVI
algorithm. See also dmDVIAudioDecode(3dm).

DMstatus
dmDVIAudioDecoderCreate (
DMDVIaudiodecoder *decoder)

Allocate a new DMDVIaudiodecoder structure.
See also dmDVIAudioDecoderCreate(3dm).

DMstatus
dmDVIAudioDecoderDestroy (
DMDVIaudiodecoder handle)

Deallocate a DMDVIaudiodecoder. See also
dmDVIAudioDecoderDestroy(3dm).

DMstatus
dmDVIAudioDecoderSetParams (
DMDVIaudiodecoder handle,
DMparams *params)

Set parameter values for a DMDVIaudiodecoder
structure. See also
dmDVIAudioDecoderSetParams(3dm).

DMstatus
dmDVIAudioDecoderGetParams (
DMDVIaudiodecoder handle,
DMparams *params)

Get parameter values for a
DMDVIaudiodecoder structure. See also
dmDVIAudioDecoderGetParams(3dm).

DMstatus
dmDVIAudioDecoderReset (
DMDVIaudiodecoder handle)

Fill buffers of a DMDVIaudiodecoder structure
with zeroes. See also
dmDVIAudioDecoderReset(3dm).

DMstatus
dmDVIAudioEncode (
DMDVIaudioencoder handle, short *ibuf,
unsigned char *obuf, int nsamples)

Do ADPCM compression based on Intel’s DVI
algorithm. See also dmDVIAudioEncode(3dm).

178

Appendix A: Digital Media Conversion Libraries

DMstatus
dmDVIAudioEncoderCreate (
DMDVIaudioencoder *encoder)

Allocate a new DMDVIaudioencoder structure.
See also dmDVIAudioEncoderCreate(3dm).

DMstatus
dmDVIAudioEncoderDestroy (
DMDVIaudioencoder handle)

Deallocate a DMDVIaudioencoder structure. See
also dmDVIAudioEncoderDestroy(3dm).

DMstatus
dmDVIAudioEncoderSetParams (
DMDVIaudioencoder handle,
DMparams *params)

Set parameter values for DMDVIaudioencoder
structure. See also
dmDVIAudioEncoderSetParams(3dm).

DMstatus
dmDVIAudioEncoderGetParams (
DMDVIaudioencoder handle,
DMparams *params)

Get parameter values for DMDVIaudioencoder
structure. See also
dmDVIAudioEncoderGetParams(3dm).

DMstatus
dmDVIAudioEncoderReset (
DMDVIaudioencoder handle)

Fill buffers of a DMDVIaudioencoder structure
with zeroes. See also
dmDVIAudioEncoderReset(3dm).

Table A-2 The DVI Audio Library API

Function Description

The G.711 Audio Compression Library

179

The G.711 Audio Compression Library

This library implements International Telecommunication Union Standard (ITU-T,
formerly CCITT) G.711 for compression and decompression. The standard is for 64 Kb/s,
8 kHz, 16-bit pulse code modulation (PCM) audio encoding of voice frequencies.

Table A-3 The G.711 Audio Compression Library API

Function Description

void
dmG711MulawEncode (
short *samples, unsigned char *mulawdata,
int numsamples)

Convert a 16-bit linear PCM value to an 8-bit
µ-law value. See also dmG711(3dm).

void
dmG711MulawDecode (
unsigned char *mulawdata, short *samples,
int numsamples)

Convert an 8-bit µ-law value to a 16-bit linear
PCM value. See also dmG711(3dm).

void
dmG711MulawZeroTrapEncode (
short *samples, unsigned char *mulawdata,
int numsamples)

Do ITU G.711 µ-law compression with zero trap
during compression. See also dmG711(3dm).

void
dmG711MulawZeroTrapDecode (
unsigned char *mulawdata, short *samples,
int numsamples)

Same as dmG711MulawDecode(). See also
dmG711(3dm).

void
dmG711AlawEncode (
short *samples, unsigned char *Alawdata,
int numsamples)

Convert a 16-bit linear PCM value to an 8-bit
Α-law value. See also dmG711(3dm).

void
dmG711AlawDecode (
unsigned char *Alawdata, short *samples,
int numsamples)

Convert an 8-bit Α-law value to a 16-bit linear
PCM value. See also dmG711(3dm).

void
dmG711MulawToAlaw (
unsigned char *mulawdata,
unsigned char *Alawdata, int numsamples)

Convert µ -law data to A-law data. See also
dmG711(3dm).

180

Appendix A: Digital Media Conversion Libraries

void
dmG711AlawToMulaw (
unsigned char *Alawdata,
unsigned char *mulawdata, int numsamples)

Convert A-law date to µ-law data. See also
dmG711(3dm).

void
dmSunMulawEncode (
short *samples, unsigned char *mulawdata,
int numsamples)

Convert a 16-bit linear PCM value to an 8-bit
µ-law value using the conversion tables of Sun
Microsystems. See also dmG711(3dm).

void
dmSunMulawDecode (
unsigned char *mulawdata, short *samples,
int numsamples)

Convert an 8-bit µ-law value to a 16-bit linear
PCM value using the conversion tables of Sun
Microsystems. See also dmG711(3dm).

void
dmNeXTMulawEncode (
short *samples, unsigned char *mulawdata,
int numsamples)

Convert a 16-bit linear PCM value to an 8-bit
µ-law value using the conversion tables of NeXT
Computers. See also dmG711(3dm).

void
dmNeXTMulawDecode (
unsigned char *mulawdata, short *samples,
int numsamples)

Convert an 8-bit µ-law value to a 16-bit linear
PCM value using the conversion tables of NeXT
Computers. See also dmG711(3dm).

Table A-3 (continued) The G.711 Audio Compression Library API

Function Description

The G.722 Audio Compression Library

181

The G.722 Audio Compression Library

This library implements International Telecommunication Union Standard (ITU-T,
formerly CCITT) G.722 for compression and decompression. The standard is for 7 kHz
audio encoding within 64 Kb/s.

Table A-4 The G.722 Audio Compression Library API

Function Description

DMstatus
dmG722Decode (
DMG722decoder handle,
unsigned char *ibuf, short *obuf,
int nsamples)

Do G.722 decompression. See also
dmG722Decode(3dm).

DMstatus
dmG722DecoderCreate (
DMG722decoder *decoder, int maxsamples,
int decodemode)

Allocate a new DMG722decoder structure. See
also dmG722DecoderCreate(3dm).

DMstatus
dmG722DecoderDestroy (
DMG722decoder handle)

Deallocate a DMG722decoder structure. See also
dmG722DecoderDestroy(3dm).

DMstatus
dmG722DecoderGetParams (
DMG722decoder handle,
DMparams *params)

Get parameter values for a DMG722decoder
structure. See also
dmG722DecoderGetParams(3dm).

DMstatus
dmG722DecoderReset (
DMG722decoder handle)

Fill buffers of a DMG722decoder structure with
zeroes. See also dmG722DecoderReset(3dm).

DMstatus
dmG722Encode (
DMG722encoder handle, short *ibuf,
unsigned char *obuf, int nsamples)

Do G.722 compression. See also
dmG722Encode(3dm).

DMstatus
dmG722EncoderCreate (
DMG722encoder *encoder, int maxsamples)

Allocate a new DMG722encoder structure. See
also dmG722EncoderCreate(3dm).

DMstatus
dmG722EncoderDestroy (
DMG722encoder handle)

Deallocate a DMG722Encoder structure. See also
dmG722EncoderDestroy(3dm).

182

Appendix A: Digital Media Conversion Libraries

DMstatus
dmG722EncoderGetParams (
DMG722encoder handle,
DMparams *params)

Get parameter values for aDMG722encoder
structure. See also
dmG722EncoderGetParams(3dm).

DMstatus
dmG722EncoderReset (
DMG722encoder handle)

Fill buffers of a DMG722encoder structure with
zeroes. See also dmG722EncoderReset(3dm).

Table A-4 (continued) The G.722 Audio Compression Library API

Function Description

The G.726 Audio Compression Library

183

The G.726 Audio Compression Library

This library implements International Telecommunication Union Standard (ITU-T,
formerly CCITT) G.726 for ADPCM compression and decompression. The standard is for
a compressed data bit stream of 40, 32, 24, or 16 Kb/s and a decompressed A-law, µ-law,
or linear PCM data stream of 64 Kb/s.

Table A-5 The G.726 Audio Compression Library API

Function Description

DMstatus
dmG726Decode (
DMG726decoder handle,
unsigned char *inBuffer, short *outBuffer,
int numSamples)

Do G.726 ADPCM decompression. See also
dmG726Decode(3dm).

DMstatus
dmG726DecoderCreate (
DMG726decoder *decoder, int bitRate,
int outputMode)

Allocate a new DMG726decoder structure. See
also dmG726DecoderCreate(3dm).

DMstatus
dmG726DecoderDestroy (
DMG726decoder handle)

Deallocate a DMG726decoder structure. See also
dmG726DecoderDestroy(3dm).

DMstatus
dmG726DecoderSetParams (
DMG726decoder handle,
DMparams *params)

Set a DMG726decoder structure’s parameter
values. See also
dmG726DecoderSetParams(3dm).

DMstatus
dmG726DecoderGetParams (
DMG726decoder handle,
DMparams *params)

Get a DMG726decoder structure’s parameter
values. See also
dmG726DecoderGetParams(3dm).

DMstatus
dmG726DecoderReset (
DMG726decoder handle)

Fill a DMG726decoder structure’s internal
buffers with zeroes. See also
dmG726DecoderReset(3dm).

DMstatus
dmG726Encode (
DMG726encoder handle, short *ibuf,
unsigned char *obuf, int numSamples)

Do G.726 ADPCM compression. See also
dmG726Encode(3dm).

184

Appendix A: Digital Media Conversion Libraries

DMstatus
dmG726EncoderCreate (
DMG726encoder *encoder, int bitRate,
int outputMode)

Allocate a new DMG726encoder structure. See
also dmG726EncoderCreate(3dm).

DMstatus
dmG726EncoderDestroy (
DMG726encoder handle)

Deallocate a DMG726Encoder structure. See also
dmG726EncoderDestroy(3dm).

DMstatus
dmG72EncoderSetParams (
DMG726encoder handle,
DMparams *params)

Set a DMG726encoder structure’s parameter
values. See also
dmG726EncoderSetParams(3dm).

DMstatus
dmG726EncoderGetParams (
DMG726encoder handle,
DMparams *params)

Get a DMG726decoder structure’s parameter
values. See also
dmG726EncoderGetParams(3dm).

DMstatus
dmG726EncoderReset (
DMG726encoder handle)

Fill a DMG726encoder structure’s internal
buffers with zeroes. See also
dmG726EncoderReset(3dm).

Table A-5 (continued) The G.726 Audio Compression Library API

Function Description

The G.728 Audio Compression Library

185

The G.728 Audio Compression Library

This library implements International Telecommunication Union Standard (ITU-T,
formerly CCITT) G.728 for the audio encoding used in videoconferencing. The standard
controls the coding of speech at 16 Kb/s using Low-Delay Code Excited Linear
Prediction (LD-CELP).

Table A-6 The G.728 Audio Compression Library API

Function Description

DMstatus
dmG728Decode (
DMG728decoder handle,
unsigned char *ibuf, short *obuf,
int nsamples)

Do ITU G.728 decompression (LD-CELP).
See also dmG728Decode(3dm).

DMstatus
dmG728DecoderCreate (
DMG728decoder *decoder)

Allocate a new DMG728decoder structure. See
also dmG728DecoderCreate(3dm).

DMstatus
dmG728DecoderDestroy (
DMG728decoder handle)

Deallocate a DMG728decoder structure. See also
dmG728DecoderDestroy(3dm).

DMstatus
dmG728DecoderGetParams (
DMG728decoder handle,
DMparams *params)

Get the parameter values of a DMG728decoder
structure. See also
dmG728DecoderGetParams(3dm).

DMstatus
dmG728DecoderSetParams (
DMG728decoder handle,
DMparams *params)

Set the parameter values of a DMG728decoder
structure. See also
dmG728DecoderSetParams(3dm).

DMstatus
dmG728DecoderReset (
DMG728decoder handle)

Fill internal buffers of a DMG728decoder
structure with zeroes. See also
dmG728DecoderReset(3dm).

DMstatus
dmG728Encode (
DMG728encoder handle, short *ibuf,
unsigned char *obuf, int nsamples)

Do G.728 compression (LD-CELP) . See also
dmG728Encode(3dm).

186

Appendix A: Digital Media Conversion Libraries

DMstatus
dmG728EncoderCreate (
DMG728encoder *encoder)

Allocate a new DMG728encoder structure. See
also dmG728EncoderCreate(3dm).

DMstatus
dmG728EncoderDestroy (
DMG728encoder handle)

Deallocate a DMG728Encoder structure. See also
dmG728EncoderDestroy(3dm).

DMstatus
dmG728EncoderGetParams (
DMG728encoder handle,
DMparams *params)

Get the parameter values of a DMG728encoder
structure. See also
dmG728EncoderGetParams(3dm).

DMstatus
dmG728EncoderReset (
DMG728encoder handle)

Fill the internal buffers of a DMG728encoder
structure with zeroes. See also
dmG728EncoderReset(3dm).

Table A-6 (continued) The G.728 Audio Compression Library API

Function Description

The GSM Audio Compression Library

187

The GSM Audio Compression Library

This library implements the European Global System for Mobile telecommunication
(GSM) 06.10 provisional standard used for digital cellular phones. The standard, prI-ETS
300 036, describes full-rate speech transcoding which uses RPE–LTP (Regular–Pulse
Excitation Long–Term Predictor)) coding at 13 Kb/s.

Table A-7 The GSM Audio Compression Library API

Function Description

DMstatus
dmGSMDecode (
DMGSMdecoder handle,
unsigned char *ibuf, short *obuf,
int numSamples)

Do GSM decoding. See also
dmGSMDecode(3dm).

DMstatus
dmGSMDecoderCreate (
DMGSMdecoder *decoder)

Allocate a new DMGSMdecoder structure. See
also dmGSMDecoderCreate(3dm).

DMstatus
dmGSMDecoderDestroy (
DMGSMdecoder handle)

Deallocate a DMGSMdecoder structure. See also
dmGSMDecoderDestroy(3dm).

DMstatus
dmGSMDecoderGetParams (
DMGSMdecoder handle,
DMparams *params)

Get the parameter values of a DMGSMdecoder
structure. See also
dmGSMDecoderGetParams(3dm).

DMstatus
dmGSMDecoderReset (
DMGSMdecoder handle)

Fill internal buffers of a DMGSMdecoder
structure with zeroes. See also
dmGSMDecoderReset(3dm).

DMstatus
dmGSMEncode (
DMGSMencoder handle, short *ibuf,
unsigned char *obuf, int numSamples)

Do GSM encoding. See also
dmGSMEncode(3dm).

DMstatus
dmGSMEncoderCreate (
DMGSMencoder *encoder)

Allocate a new DMGSMencoder structure. See
also dmGSMEncoderCreate(3dm).

DMstatus
dmGSMEncoderDestroy (
DMGSMencoder handle)

Deallocate a DMGSMEncoder structure. See also
dmGSMEncoderDestroy(3dm).

188

Appendix A: Digital Media Conversion Libraries

DMstatus
dmGSMEncoderGetParams (
DMGSMencoder handle,
DMparams *params)

Get the parameter values of a DMGSMencoder
structure. See also
dmGSMEncoderGetParams(3dm).

DMstatus
dmGSMEncoderReset (
DMGSMencoder handle)

Fill internal buffers of a DMGSMencoder
structure with zeroes. See also
dmGSMEncoderReset(3dm).

Table A-7 (continued) The GSM Audio Compression Library API

Function Description

The MPEG-1 Audio Compression Library

189

The MPEG-1 Audio Compression Library

This library implements the Moving Pictures Experts Group MPEG-1 audio standard.
The standard is designed for encoding non-interlaced material and is optimized for
single-speed CD-ROM bit rates (about 1.5 Mb/s). The compression is based on subband
coding with adaptive quantization. Input data is divided into different frequency bands
which are weighted by their perceptual importance. Mono and stereo sources are
supported at sampling rates of 32, 44.1 and 48 kHz. Allowable bit rates range from 32 to
448 Kb/s.

Table A-8 The MPEG-1 Audio Compression Library API

Function Description

DMstatus
dmMPEG1AudioDecode (
DMMPEG1audiodecoder decoder,
unsigned char *cmpData, short *output,
int fmtBytes)

Decode a single compressed block of data
created by a call to dmMPEG1AudioEncode().
See also dmMPEG1AudioDecode(3dm).

DMstatus
dmMPEG1AudioDecoderCreate (
DMMPEG1audiodecoder *decoder)

Allocate a new DMMPEG1audiodecoder
structure. See also
dmMPEG1AudioDecoderCreate(3dm).

DMstatus
dmMPEG1AudioDecoderDestroy (
DMMPEG1audiodecoder decoder)

Deallocate an DMMPEG1audiodecoder
structure. See also
dmMPEG1AudioDecoderDestroy(3dm).

DMstatus
dmMPEG1AudioDecoderGetParams (
DMMPEG1audiodecoder decoder,
DMparams *params)

Get the parameter values for a
DMMPEG1audiodecoder structure. See also
dmMPEG1AudioDecoderGetParams(3dm).

DMstatus
dmMPEG1AudioDecoderSetParams (
DMMPEG1audiodecoder decoder,
DMparams *params)

Set the parameter values for a
DMMPEG1audiodecoder structure. See also
dmMPEG1AudioDecoderSetParams(3dm).

DMstatus
dmMPEG1AudioDecoderReset (
DMMPEG1audiodecoder handle)

Fill the internal buffers of an
DMMPEG1audiodecoder structure with zeros.
See also dmMPEG1AudioDecoderReset(3dm).

190

Appendix A: Digital Media Conversion Libraries

DMstatus
dmMPEG1AudioEncode (
DMAudioRateConverter encoder,
short *sampBuf, unsigned char *output,
int frameBytes)

Compress a single block of audio data using
MPEG-1 audio compression algorithm. See also
dmMPEG1AudioEncode(3dm).

DMstatus
dmMPEG1AudioEncoderCreate (
DMMPEG1audioencoder *encoder)

Allocate a new DMMPEG1audioencoder
structure. See also
dmMPEG1AudioEncoderCreate(3dm).

DMstatus
dmMPEG1AudioEncoderDestroy (
DMMPEG1audioencoder encoder)

Deallocate a DMMPEG1audioencoder structure.
See also
dmMPEG1AudioEncoderDestroy(3dm).

DMstatus
dmMPEG1AudioEncoderGetParams (
DMMPEG1audioencoder encoder,
DMparams *params)

Get the parameter values for an
DMMPEG1audioencoder structure. See also
dmMPEG1AudioEncoderGetParams(3dm).

DMstatus
dmMPEG1AudioEncoderSetParams (
DMMPEG1audioencoder encoder,
DMparams *params)

Set the parameter values for an
DMMPEG1audioencoder structure. See also
dmMPEG1AudioEncoderSetParams(3dm).

DMstatus
dmMPEG1AudioEncoderReset (
DMMPEG1audioencoder handle)

Fill the internal buffers of a
DMMPEG1audioencoder with zeros. See also
dmMPEG1AudioEncoderReset(3dm).

DMstatus
dmMPEG1AudioFilterStateCreate (
DMMPEG1audiofilterstate *filterState)

Allocate a new DMMPEG1audiofilterstate
structure. See also
dmMPEG1AudioFilterSateCreate(3dm).

DMstatus
dmMPEG1AudioFilterStateDestroy (
DMMPEG1audiofilterstate filterState)

Free a DMMPEG1audiofilterstate structure. See
also dmMPEG1AudioFilterSateDestroy(3dm).

DMstatus
dmMPEG1AudioFilterStateRestore (
void *coder,
DMMPEG1audiofilterstate filterState)

Restore a DMMPEG1audiofilterstate structure.
See also
dmMPEG1AudioFilterSateRestore(3dm).

Table A-8 (continued) The MPEG-1 Audio Compression Library API

Function Description

The MPEG-1 Audio Compression Library

191

DMstatus
dmMPEG1AudioFilterStateSave (
void *coder,
DMMPEG1audiofilterstate filterState)

Save a DMMPEG1audiofilterstate structure. See
also dmMPEG1AudioFilterSateSave(3dm).

DMstatus
dmMPEG1AudioHeaderGetBlockBytes (
DMMPEG1audiodecoder decoder,
unsigned char *cmpData, int *blockSize)

Get the expected length in bytes of a compressed
data block. See also
dmMPEG1AudioHeaderGetBlockBytes(3dm).

DMstatus
dmMPEG1AudioHeaderGetParams (
unsigned char *cmpData,
DMparams *params)

Get decoder parameter information from the
header of a compressed MPEG-1 audio data
block. See also
dmMPEG1AudioHeaderGetParams(3dm).

Table A-8 (continued) The MPEG-1 Audio Compression Library API

Function Description

192

Appendix A: Digital Media Conversion Libraries

The Audio Rate Conversion Library

This library enables the sampling rate conversion of single-channel, 32-bit, floating point
audio data.

Table A-9 The Audio Rate Conversion Library API

Function Description

DMstatus
dmAudioRateConvert (
DMaudiorateconverter handle, float *inbuf,
float *outbuf, int inlen, int *numout)

Convert the data sampling rate. See also
dmAudioRateConvert(3dm).

DMstatus
dmAudioRateConverterCreate (
DMaudiorateconverter *converter)

Allocate a new DMaudiorateconverter structure.
See also dmAudioRateConverterCreate(3dm).

DMstatus
dmAudioRateConverterDestroy (
DMaudiorateconverter handle)

Deallocate an DMaudiorateconverter structure.
See also dmAudioRateConverterDestroy(3dm).

DMstatus
dmAudioRateConverterGetParams (
DMaudiorateconverter handle,
DMparams *params)

Get the parameter values of a
DMaudiorateconverter structure. See also
dmAudioRateConverterGetParams(3dm).

DMstatus
dmAudioRateConverterSetParams (
DMaudiorateconverter handle,
DMparams *params)

Set the parameter values of a
DMaudiorateconverter structure. See also
dmAudioRateConverterSetParams(3dm).

DMstatus
dmAudioRateConverterReset (
DMaudiorateconverter handle,
float resetval)

Fill the internal buffers of a
DMaudiorateconverter structure with a constant
value. See also
dmAudioRateConverterReset(3dm).

193

opening and closing, 116
example, 116

static settings, 111
ALreadsamps(), 117

conversions, 118
ALwritesamps(), 119
analog-to-digital (A/D) converters, 49
assertions

DM Library, 77
audio

buffer size, 70
configurations, 111
connections, 110
conversions, 50
defaults, 69

port, 111
devices, 110
digitizing, 46
formats, 48
frames, 46-47

illustrated, 47
input, 117-118

4-channel, 117
conversions, 118

interleaving, 47
native formats, 49
Nyquist Theorem, 46
output, 118-119

conversions, 119
parameters, 50

Numbers

4-channel audio
frames

illustrated, 47
input, 117
output, 119

A

AES
resolutions, 48, 49

ALcloseport(), 116
ALconfigs, 111

creating, 113
default, 111
defined, 110

allocating
buffers

audio, 70
image, 67

parameter-value lists, 63
ALnewconfig(), 113
ALopenport(), 115
ALports, 111-116

allocating and initializing, 115
closing and deallocating, 116
configuring, 111

example, 113
defined, 110
features, 111

Index

194

Index

ports, 111-116
allocating and initializing, 115
closing and deallocating, 116
configuring, 111
default, 111
defined, 110
example, 113
names, 115
opening and closing, 116

example, 116
static settings, 111

quality, 47
queues, 114
reading and writing data, 117-119
resolutions, 49
sampling, 46
time required for output, 118
writing samples, 118-119

audio I/O, 117-119
Audio Library

ALconfigs, 110
ALports, 110
initializing, 116
programming

model, 110

B

buffers
audio

size, 70
image

size, 68

C

channels
audio

defaults, 111
checking

parameters, 75
compiling

DM Library, 77
compression

computer versus camera images, 28
configurations

audio default, 69
image default, 67

configuring
ALports, 111

example, 113
parameter-value lists, 69

connections
audio, 110

conversions
audio, 50

input, 118
output, 119

copying
parameters, 74
parameter-value lists, 74

counting
parameter-value list entries, 73

creating
ALconfigs, 113
parameter-value lists, 64

ctrlusage, 84

D

data structures
Audio Library, 110

debugging
DM Library, 77

decimation, 96

195

Index

defaults
audio, 69

channels, 111
ports, 111

images, 67
delay

audio, 118
deleting

parameters, 75
device, 79

ID, getting, 83
devices

audio, 110
digital media

parameter types, 61
type definitions, 59

digitizing
audio, 46

dm_audioconvert.h, 77
dm_audio.h, 77
dm_buffer.h, 77
dm_imageconvert.h, 77
dm_image.h, 77
DM_MEDIUM, 62
dm_params.h, 61, 77
dmedia.h, 59, 77
DM Library, 76

assertions, 77
compiling and linking, 77
debugging, 77
getting and setting parameters, 65-71

example, 71
header files, 77
include files, 77
initializing, 62-76
parameter-value lists, 62-76

defined, 62
example, 76

type definitions, 59
dmParamsCopyAllElems(), 73
dmParamsCopyElem(), 74
dmParamsCreate(), 64
dmParamsGetElem(), 74
dmParamsGetElemType(), 74
dmParamsGetEnum(), 66
dmParamsGetFloat(), 66
dmParamsGetFract(), 67
dmParamsGetInt(), 67
dmParamsGetNumElems(), 73
dmParamsGetParams(), 67
dmParamsGetString(), 67
dmParamsIsPresent(), 75
dmParamsRemoveElem(), 75
dmParamsSetEnum(), 65
dmParamsSetFloat(), 65
dmParamsSetFract(), 65
dmParamsSetInt(), 65, 66
dmParamsSetParams(), 66
dmParamsSetString(), 66
dmSetAudioDefaults(), 69
dmSetImageDefaults(), 67
drain, 80

E

errors
allocating audio configurations, 114

event
masks, 100-101
specifying path-related, 100

explicit routing, 85

196

Index

F

features
ALports, 111

formats
audio, 48

default, 111
native, 49

parameter-value lists, 62
frames

audio, 46-47
illustrated, 47

freeing
parameter-value lists, 64

G

getting
parameters, 66

name, 74
total, 73
type, 74

Graphics Library, recommended reading, xvii

H

handles
ALconfigs, 113
parameter-value lists, 64

header files
dm_params.h, 61
dmedia.h, 59
DM Library, 77

hertz (Hz), 47

I

images
buffer size, 68
defaults, 67

implicit and explicit routing, 85
See also connection

include files
DM Library, 77

initializing
Audio Library, 116
DM Library, 62-76

input
audio, 117-118

4-channel, 117
conversions, 118

interleaving
audio, 47

I/O
audio, 117-119

J

JPEG, 28

L

-ldmedia, 77
libmovie. See Movie Library
libraries

DM Library, 76
Movie Library, 5

linear pulse code modulation (PCM), 48
lossless

definition, 34
lossy

definition, 34

197

Index

M

media
type definitions, 59
types, 62

microphones
resolution, 49

Motif, recommended reading, xviii
Movie Library

purpose, 5
MPEG, 29
music-quality audio, 47
MVC1, 31

N

names
audio ports, 115
parameters, 74

node, 79
adding, 83

Nyquist Theorem, 46

O

output
audio, 118-119

conversions, 119

P

parameters
audio, 50
checking, 75
copying from parameter-value lists, 74
deleting, 75
getting

type, 74
getting and setting, 66
names, 74
removing, 75

parameter-value lists
configuring, 69

audio, 69
image, 67

copying, 74
creating and destroying, 63-64

example, 64
defined, 62
destroying, 64
DM, 62-76
example, 76
formats, 62
getting and setting values, 65-71
number of elements, 73
removing parameters, 75

path, 79
creating, 82
creating and setting up, 82
setting up, 83-85
specifying events, 100

ports
audio, 111-116

allocating and initializing, 115
closing and deallocating, 116
configuring, 111
defaults, 111
defined, 110
example, 113
names, 115
opening and closing, 116

example, 116
static settings, 111

programming
models

Audio Library, 110

198

Index

Q

queues
audio, 114

defaults, 111

R

reading
audio data, 117-118

removing
parameters, 75

resolutions
AES, 48
audio, 49

S

sample widths
audio

default, 111
sampling

audio, 46
sampling rates

audio, 47
setting

audio defaults, 69
example, 71

image defaults, 67
example, 69

parameters, 66
by copying, 74

sizing
audio

buffers, 70
images

buffers, 68
source, 80

stereo
audio frames

illustrated, 47
streamusage, 84

T

time
required for audio hardware to play samples, 118

troubleshooting
audio

configurations, 114
types

digital media parameters, 61
media, 59, 62
parameters

getting, 74

U

user interface, xviii

V

video
drain, 80
source, 80

VL_ZOOM, 96
vlAddNode(), 83
vlCreatePath(), 82
vlGetControl(), 99
vlGetDevice(), 83
vlGetNode(), 81
vlSelectEvents(), 100
vlSetConnection(), 85

199

Index

vlSetupPaths(), 84
voice-quality audio, 47

W

writing
audio samples, 118-119

X

X11, recommended reading, xvii

Z

zoom, 96

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-1799-050.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 415-965-0964

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

