
Indigo Magic™ Desktop Integration Guide

Document Number 007-2006-080

Indigo Magic™ Desktop Integration Guide
Document Number 007-2006-080

CONTRIBUTORS

Written by Beth Fryer, Jed Hartman, and Ken Jones
Illustrated by Beth Fryer and Seth Katz
Edited by Christina Cary
Production by Derrald Vogt
Engineering contributions by Bob Blean, Susan Dahlberg, Susan Ellis, John

Krystynak, Jack Repenning, CJ Smith, Dave Story, Steve Strasnick, Steve Yohanan,
and Betsy Zeller

Cover design and illustration by Rob Aguilar, Rikk Carey, Dean Hodgkinson, Erik
Lindholm, and Kay Maitz

© Copyright 1994, Silicon Graphics, Inc.— All Rights Reserved
This document contains proprietary and confidential information of Silicon
Graphics, Inc. The contents of this document may not be disclosed to third parties,
copied, or duplicated in any form, in whole or in part, without the prior written
permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and/
or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94039-7311.

Silicon Graphics and IRIS are registered trademarks and IRIS, IRIS GL, IRIS IM, IRIS
InSight, IRIS ViewKit, IRIX, IconSmith, Indigo Magic, the Graphics Library, OpenGL,
and Open Inventor are trademarks of Silicon Graphics, Inc. PostScript is a registered
trademark of Adobe Systems, Inc. Motif and OSF/Motif are trademarks of the Open
Software Foundation. X Window System is a trademark of the Massachusetts
Institute of Technology.

iii

Contents

List of Examples xiii

List of Figures xv

List of Tables xvii

About This Guide xix
What This Guide Contains xix
How to Use This Guide xix
What You Should Know Before Reading This Guide xix
Suggested Reading xx
Font Conventions in This Guide xxi

Integrating an Application Into the Indigo Magic Desktop Environment:
An Introduction xxiii
About the Indigo Magic Desktop Environment xxiii
Integrating an Application xxv

PART ONE Getting the Right Look and Feel

1. Getting the Right Look and Feel: An Overview 5
About the Indigo Magic Look and Feel 5
Getting the Right Look and Feel: The Basic Steps 6

2. Getting the Indigo Magic Look 11

3. Using Schemes 15
Schemes Overview 15

Why You Should Use Schemes 16
Basic Scheme Concepts 16

iv

Contents

Using Schemes in Your Application 17
Turning on Schemes for Your Application 17
Special Considerations for Programming with Schemes 18
Assigning Non-Default Colors and Fonts to Widgets 19
Directly Accessing Colors and Fonts 20
Pre-Defined Scheme Resources and Symbolic Values 22

Testing Your Application with Schemes 26
Creating New Schemes 26
Hard-Coding a Scheme for an Application 27

4. Using the New and Enhanced Widgets 31
Using the New and Enhanced Widgets 31
Using the Widget Demos 31
The Enhanced Widgets 32

The File Selection Box Widget 33
The Scale (Percent Done Indicator) Widget 35
The Text and Text Field Widgets 36

The Mixed-Model Programming Widgets 37
The New Widgets 38

The Color Chooser Widget 38
The Dial Widget 44
The Thumbwheel Widget 47
The Finder Widget 49
The Graph Widget 53
The Springbox Widget 54
The Grid Widget 55

5. Window, Session, and Desk Management 63
Window, Session, and Desk Management Overview 63

Window Management 63
Session Management 64
Desk Management 65
Further Reading on Window and Session Management 65

v

Implementing an Application Model 66
Implementing the “Single Document, One Primary” Model 66
Implementing the “Single Document, Multiple Primaries” Model 67
Implementing the “Multiple Document, Visible Main” Model 67
Implementing the “Multiple Document, No Visible Main” Model 67

Interacting With the Window and Session Manager 68
Creating Windows and Setting Decorations 69
Handling Window Manager Protocols 75
Setting the Window Title 79
Controlling Window Placement and Size 79

6. Customizing Your Application’s Minimized Windows 85
Some Different Sources for Minimized Window Images 85
Creating a Minimized Window Image: The Basic Steps 86

Using snapshot to Get an RGB Format Image 87
Resizing the RGB Image Using imgworks 88

Setting the Minimized Window Label 89
Changing the Minimized Window Image 89

7. Interapplication Data Exchange 93
Data Exchange Overview 93

Primary Transfer Model Overview 94
Clipboard Transfer Model Overview 95
Interaction Between the Primary and Clipboard Transfer Models 95

Implementing the Primary Transfer Model 97
Data Selection 97
Requests for the Primary Selection 98
Loss of the Primary Selection 99
Inserting the Primary Selection 99

vi

Contents

Implementing the Clipboard Transfer Model 100
Cut Actions 100
Copy Actions 102
Requests for the Clipboard Selection 102
Paste Actions 102
Loss of the Clipboard Selection 103

Supported Target Formats 103

8. Monitoring Changes to Files and Directories 107
FAM Overview 107

Theory of Operation 108
FAM Libraries and Include Files 108

The FAM Interface 109
Opening and Closing a FAM Connection 109
Monitoring a File or Directory 109
Suspending, Resuming, and Canceling Monitoring 111
Detecting Changes to Files and Directories 112

Using FAM 115
Waiting for File Changes 115
Polling for File Changes 118

9. Providing Online Help With SGIHelp 123
Overview of SGIHelp 123

The Help Viewer 124
The SGIHelp Library and Include File 125
Help Document Files 126
Application Helpmap Files 126

The SGIHelp Interface 126
Initializing the Help Session 126
Displaying a Help Topic 127
Displaying the Help Index 129

vii

Implementing Help in an Application 130
Constructing a Help Menu 130
Implementing a Help Button 132
Providing Context-Sensitive Help 133

Application Helpmap Files 135
Helpmap File Conventions 136
Helpmap File Format 136
Widget Hierarchies in the Helpmap File 138

Writing the Online Help 140
Overview of Help Document Files 140
Viewing the Sample Help Document Files 141
Creating a Help Document File 141
Preparing to Build the Online Help 142
Building the Online Help 144
Finding and Correcting Build Errors 144

Producing the Final Product 145
Creating the Installable Subsystem 145
Incorporating the Help Subsystem into an Installable Product 146
Incorporating the Help Subsystem into a Product With a Custom
Installation Script 146

Bibliography of SGML References 147

10. Handling Users’ System Preferences 151
Handling the Mouse Double-Click Speed Setting 151
Using the Preferred Text Editor 152

PART TWO Creating Desktop Icons

11. Creating Desktop Icons: An Overview 157
About Indigo Magic Desktop Icons 157
Checklist for Creating an Icon 158

viii

Contents

Creating an Icon: The Basic Steps Explained in Detail 160
Step One: Tagging Your Application 160
Step Two: Drawing a Picture of Your Icon 161
Step Three: Programming Your Icon 162
Step Four: Compiling the Source Files 166
Step Five: Installing Your Application in the Icon Catalog 167
Step Six: Restarting the Desktop 167
Step Seven: Updating Your Installation Process 167

12. Using IconSmith 171
About IconSmith 172
Where to Put Your Completed Icon 173
Some Definitions 173
Starting IconSmith 174
IconSmith Menus 174
IconSmith Windows 175
Drawing With IconSmith 178

Drawing Paths 179
Drawing Filled Shapes 179
Deleting 179
Keeping the 3-D Look 179
Drawing for All Scales 180
Sharing Design Elements 181
Templates 181

Selecting 182
Partial 182
Deselect Part Paths 183
Select Next 183
Select All 183

Transformations 184
Scale 185
Scale X and Y 185
Rotate 185
Shear Y 185

ix

Concave Polygons 185
Constraints: Gravity (Object) Snap and Grid Snap 186

Controlling the Grid 187
Controlling Gravity 187

Icon Design and Composition Conventions 188
Importing Generic Icon Components (Magic Carpet) 188
Icon Size 189
Selecting Colors 189

Advanced IconSmith Techniques 190
Drawing a Circle 190
Drawing an Oval 192
Isometric Circles 193

13. File Typing Rules 201
A Table of the FTRs With Descriptions 202
Naming File Types: The TYPE Rule 203
Categorizing File Types: The SUPERTYPE Rule 204
Matching File Types With Applications: The MATCH Rule 205

Matching Tagged Files 206
Matching Files Without the tag Command 207

Matching Non-Plain Files: The SPECIALFILE Rule 212
Adding a Descriptive Phrase: The LEGEND Rule 212
Setting FTR Variables: The SETVAR Rule 213
Programming Open Behavior: The CMD OPEN Rule 214
Programming Alt-Open Behavior: The CMD ALTOPEN Rule 215
Programming Drag and Drop Behavior: The CMD DROP
and DROPIF Rules 216
Programming Print Behavior: The CMD PRINT Rule 218
Adding Menu Items: The MENUCMD Rule 218
Getting the Icon Picture: The ICON Rule 220

x

Contents

Creating a File Type: An Example 222
Open an FTR File for scribble 222
Add the FTRs to the scribble FTR File 222
Name the scribble FTR File and Put It in the Appropriate Directory 226
The scribble FTRs 227

14. Printing From the Desktop 231
About routeprint 231
Converting a File for Printing 232
The Print Conversion Rules 235

The CONVERT Rule 235
The COST Rule 236
The FILTER Rule 236

The Current Printer 238

15. Adding Your Application’s Icon to the Icon Catalog 241
About the Icon Catalog 241
Adding an Icon to the Icon Catalog 242
Updating Your Installation Process 243

A. Example Programs for New and Enhanced Widgets 247
Example Program for Color Chooser 247

Makefile for colortest.c 250
Example Program for Dial 250
Example Program for Drop Pocket 252

Makefile for Drop Pocket Example 253
Example Program for Finder 255
Example Program for History Button (Dynamenu) 257
Example Program for Thumbwheel 258
Example Program for File Selection Box 260

Makefile for File Selection Box Example Program 262

xi

B. Desktop Environment Variables 265

C. Online Help Examples 269
A Simple Help Document 269
Allowable Elements in a Help Document 278
An Example of Implementing Help in an Application 293

D. The Icon Description Language 311

E. Predefined File Types 317
Naming Conventions for Predefined File Types 317
The Predefined File Types and What They Do 317

SpecialFile 318
Directory 318
Ascii 318
Source Files 318
Binary 319
ImageFile 319
Executable 320
Scripts 320
GenericWindowedExecutable 320
LaunchExecutable 321
ttyExecutable 321
ttyLaunchExecutable 322
ttyOutExecutable 322
ttyLaunchOutExecutable 322

F. FTR File Directories 327

xiii

List of Examples

Example 3-1 Retrieving a Scheme Color Value 20
Example 4-1 An Example of Using the Grid Widget 57
Example 4-2 Another Example of Using the Grid Widget 58
Example 5-1 Creating a Main Primary Window 70
Example 5-2 Creating a Co-Primary Window 72
Example 5-3 Creating a Support Window 74
Example 5-4 Creating a Dialog 75
Example 5-5 Handling the Window Manager Quit Protocol 75
Example 5-6 Handling the Window Manager Delete Window Protocol in

Co-Primary Windows 77
Example 5-7 Handling the Window Manager Delete Window Protocol in

Support Windows and Dialogs 77
Example 5-8 Handling the Window Manager “Save Yourself”

Protocol 78
Example 7-1 Asserting Ownership of PRIMARY Selection 97
Example 7-2 Handling Cut Actions in the

Clipboard Transfer Model 100
Example 8-1 Using the Select Method With FAM to Detect Changes to

Files and Directories 116
Example 8-2 Using the Polling Method With FAM to Detect Changes to

Files and Directories 119
Example 8-3 Polling FAM Within an Xt Work Procedure 120
Example 9-1 Initializing a Help Session Using SGIHelpInit() 127
Example 9-2 Requesting a Specific Help Topic

Using SGIHelpMsg() 128
Example 9-3 Requesting a Help Topic for a Widget

Using SGIHelpMsg() 129
Example 9-4 Displaying a Help Index Using SGIHelpIndexMsg() 130
Example 9-5 Providing a Help Button 132

xiv

List of Examples

Example 9-6 Implementing Context-Sensitive Help 133
Example C-1 An Example of a Help Source File 269
Example C-2 A Description of the Elements Defined by

the Help DTD 278
Example C-3 An Example of Integrating SGIHelp With

an Application 293
Example C-4 Help Source File for Example Program 304
Example C-5 Helpmap for Example Program 308

xv

List of Figures

Figure i The Indigo Magic Desktop xxv
Figure 4-1 The File Selection Box Widget 33
Figure 4-2 The Color Chooser Widget 39
Figure 4-3 The ColorChooser Widget With HSV and RGB Sliders 40
Figure 4-4 The Dial Widget in Knob and Pointer Form 44
Figure 4-5 The Thumbwheel Widget 47
Figure 4-6 The Finder Widget 50
Figure 4-7 The Graph Widget 53
Figure 6-1 Minimized Window Image Examples 86
Figure 6-2 The snapshot Tool 87
Figure 9-1 The Help Viewer 124
Figure 9-2 The Help Index Window 125
Figure 12-1 The IconSmith Icon 174
Figure 12-2 The Main IconSmith Window With Popup Menus 175
Figure 12-3 The Palette (Selection Properties) Window 176
Figure 12-4 The Constraints Window 177
Figure 12-5 The Import Icon or Set Template Window 178
Figure 12-6 3-D Icon Axes 180
Figure 12-7 Splitting a Concave Polygon 186
Figure 12-8 A Path 190
Figure 12-9 Wheel Spokes 191
Figure 12-10 Connected Spokes 191
Figure 12-11 Finished 2-D Circle 191
Figure 12-12 An Oval 192
Figure 12-13 A Simple, Circular 2-D Icon 193
Figure 12-14 Imported Circles 194
Figure 12-15 Finished Isometric Circle 195

xvi

List of Figures

Figure 12-16 Simple, Isometric 2-D Icon 195
Figure 12-17 Icon Centered on Generic Component 196
Figure 12-18 Open Icon 197
Figure 14-1 File Conversions for Printing Standard Desktop Files 233
Figure 15-1 The Icon Catalog Window 242

xvii

List of Tables

Table 3-1 Pre-Defined Scheme Resources and Symbolic Values 22
Table 7-1 Additional Data Types Supported by Silicon Graphics 103
Table 13-1 File Typing Rules 202
Table 13-2 Numerical Representations in Match-Expressions 209
Table 13-3 Match-Expression Functions 210
Table 14-1 Conversion Costs for Print Conversion Rules 235
Table D-1 Icon Description Functions 313
Table E-1 Predefined File Type Naming Conventions 317

xix

About This Guide

This book explains how to integrate applications into the Indigo Magic™
Desktop environment. This book assumes that your applications run on
Silicon Graphics® workstations.

What This Guide Contains

This book is divided into two sections:

• Part One explains how to achieve the Silicon Graphics look and feel for
your application. (Guidelines for look and feel are provided in the
Indigo Magic User Interface Guidelines.)

• Part Two explains how to create Desktop icons for your application and
install them in the Icon Catalog.

How to Use This Guide

This book is a companion to the Indigo Magic User Interface Guidelines. Silicon
Graphics recommends that you read through the Indigo Magic User Interface
Guidelines first, then use the Indigo Magic Desktop Integration Guide to help
you implement the style guidelines.

What You Should Know Before Reading This Guide

This guide assumes that you are familiar with the material contained in the
OSF/Motif Style Guide and the Indigo Magic User Interface Guidelines manual.
It assumes also that you have some knowledge of programming in
IRIS® IM™ and Xt (or Xlib).

xx

About This Guide

Silicon Graphics provides both these manuals online. You can view them
from the IRIS InSight™ viewer. To use the IRIS InSight viewer, select
“On-line Books” from the Help toolchest.

Suggested Reading

Here are some books that provide information on some of the topics covered
in this guide:

• IRIS IM Programming Guide. (This book is included online with the
Silicon Graphics IRIS Development Option (IDO).)

• IRIS ViewKit Programmer’s Guide. (This book is included online with the
Silicon Graphics C++ option)

• Open Software Foundation. OSF/Motif Programmer’s Guide, Revision 1.2.
Englewood Cliffs: Prentice-Hall, Inc., 1992. (This book is included
online with the Silicon Graphics IDO.)

• Open Software Foundation. OSF/Motif Style Guide, Revision 1.2.
Englewood Cliffs: Prentice-Hall, Inc., 1992. (This book is included
online with the Silicon Graphics IDO.)

• Nye, Adrian and O’Reilly, Tim. The X Window System, Volume 4: X
Toolkit Intrinsics Programming Manual, OSF/Motif 1.2 Edition for X11,
Release 5. Sebastopol: O’Reilly & Associates, Inc., 1992. (This book is
included online with the Silicon Graphics IDO.)

• Nye, Adrian. The X Window System, Volume 1: Xlib Programming Manual
for Version 11 of the X Window System. Sebastopol: O’Reilly & Associates,
Inc., 1992. (This book is included online with the Silicon Graphics IDO.)

• Young, Doug. The X Window System, Programming and Applications with
Xt, OSF/Motif Edition, Second Edition. Englewood Cliffs: Prentice Hall,
Inc., 1994.

• Assente & Swick. The X Toolkit.

• Scheifler, Robert and Gettys, Jim. X Window System, Third Edition.
Digital Press, ISBN 1-55558-088-2.

• X/Open Company, Ltd. X/Open Portability Guide (set of 7 volumes).
Englewood Cliffs: Prentice Hall Publishing Company, ISBN
0-13-685819-8

Font Conventions in This Guide

xxi

Font Conventions in This Guide

These style conventions are used in this guide:

• Boldfaced text indicates that a term is an option flag, a data type, a
keyword, a function, or an X resource.

• Italics indicates that a term is a filename, a button name, a variable, an
IRIX command, a document title, or an image or subsystem name.

• “Quoted text” indicates menu items.

• Screen type is used for code examples and screen displays.

• Bold screen type is used for user input and nonprinting keyboard
keys.

• Regular text is used for menu and window names, and for X properties.

xxiii

Integrating an Application Into the Indigo
Magic Desktop Environment: An Introduction

This book describes how to integrate your application into the Indigo Magic
Desktop environment. It assumes that your application already runs on
Silicon Graphics workstations. This is strictly a how-to guide—refer to the
Indigo Magic User Interface Guidelines for style guidelines.

This introduction contains these sections:

• “About the Indigo Magic Desktop Environment” provides a brief
overview of the Indigo Magic Desktop and explains why it’s important
to integrate your application into the Desktop environment.

• “Integrating an Application” offers a brief, general list of the basic steps
for integration.

About the Indigo Magic Desktop Environment

The Indigo Magic Desktop environment provides a graphical user interface
(GUI) to the IRIX filesystem and operating system. This interface allows
users to interact with the workstation using a point-and-click interface,
based on icons and windows. The Desktop provides tools and services for
the users’ convenience, many of which are accessible directly from the
Desktop’s toolchests.

Integrating your application into the Desktop environment is an important
step in creating your product. Since users are already familiar with the
Desktop, they have certain expectations about how applications should look
and behave in the Desktop environment. By integrating your application
into the Desktop, you insure that these expectations are met—thus helping
your users get the most out of your application.

xxiv

Integrating an Application Into the Indigo Magic Desktop Environment: An Introduction

Figure i shows an example of the Indigo Magic Desktop. Take note of several
tools that are running:

• The Desks Overview window. With the Desks Overview window, users
can switch from one “desk,” or group of applications, to another. When
your application appears in a desk other than the one currently in use,
it’s in a state similar to the minimized state. You need to be careful
about what processes your application runs while in a minimized state.

• The Window Settings window. From the Window Settings window,
users can change aspects of window and session management. You
need to set up your application so that it works as users expect when
they change these settings.

• The Desktop Settings window. From this window, users can resize
Desktop icons and select a default text editor. You need to design your
icons so that they look reasonable in the maximum and minimum sizes,
and set up your application to use the user’s default editor where
appropriate.

• The Icon Catalog. Users can access icons from the different pages in the
Icon Catalog. The standard pages are: Applications, Demos, Desktop
Tools, and Media Tools. Since the Icon Catalog is one of the first places
users look when they need to find an application, you should add your
products icons to this catalog.

These are just a few examples of the kinds of things you’ll need to consider
to integrate your application into the Desktop Environment. This book
provides complete and detailed instructions for integration, while the Indigo
Magic User Interface Guidelines gives you style guidelines. For the best results,
use both books together.

Integrating an Application

xxv

Figure i The Indigo Magic Desktop

Integrating an Application

This section lists the basic steps for integrating an existing application into
the Indigo Magic Desktop environment. The steps are listed in a very general
way, to give you a brief overview of the process.

Desks Overview

Window Settings

Desktop Settings

Icon Catalog

window

window

window

xxvi

Integrating an Application Into the Indigo Magic Desktop Environment: An Introduction

If you’re writing a new application, here are a few tips:

• If possible, use IRIS ViewKit™. Refer to the IRIS ViewKit Programmer’s
Guide for instructions.

Note: IRIS ViewKit isn’t part of the IRIS Developer’s Option, it is
bundled with the C++ Development Option. In the United States and
Canada, call SGI Direct at 800-800-SGI1 (7441) for more information
about how to order the C++ Development Option; outside the United
States and Canada, please contact your local sales office or distributor.

• Don’t use IRIS GL™. Use OpenGL™ or Open Inventor™ instead.

Note: Open Inventor isn’t part of the IRIS Developer’s Option, it is a
separate option. In the United States and Canada, call SGI Direct at
800-800-SGI1 (7441) for more information about how to order the Open
Inventor Option; outside the United States and Canada, please contact
your local sales office or distributor.

To integrate your application into the Indigo Magic Desktop, follow these
steps:

1. If your application uses IRIS GL, port to OpenGL if possible. If it’s
impractical for you to port to OpenGL at this time, at least switch to
mixed-model IRIS GL programming, if you haven’t already done so.
(Mixed-model programs use Xt for event and window management).

For information on porting from IRIS GL to OpenGL and for switching
your program to mixed-model, refer to the OpenGL Porting Guide. This
manual is included online in the IRIS Developer’s Option (IDO). View
it using the IRIS InSight Viewer.

2. Set up your application to comply with the Indigo Magic look and feel:

• use the Enhanced IRIS IM™ look

• use Schemes

• use the new and enhanced IRIS IM widgets where appropriate

• set up your application for correct window, session, and desks
management

Integrating an Application

xxvii

• customize the minimize window image for your application
(optional)

• use the extensions provided in the Selection Library and the File
Alteration Monitor (optional)

These topics, as well as information on fonts, are covered in Part 1 of
this manual.

3. Create Desktop icons for your application and add them to the Icon
Catalog. You’ll need an icon for the application itself as well as icons for
any unusual data formats. See Part 2 of this manual for instructions.

4. Use swpkg to package your application so that your users can install it
easily. See the Software Packager User’s Guide for information for
instructions on using swpkg.

Chapter 1

PART ONE

Getting the Right Look and Feel I

Chapter 1

This chapter provides a checklist of
the steps you need to follow for your
application to have the Indigo Magic
look and feel.

Getting the Right Look and Feel:
An Overview

5

Chapter 1

1. Getting the Right Look and Feel: An Overview

This chapter contains these sections:

• “About the Indigo Magic Look and Feel” briefly explains the basics of
the Indigo Magic look and feel and tells you where to find more
detailed information.

• “Getting the Right Look and Feel: The Basic Steps” briefly lists the basic
steps for getting the right look and feel and tells you which chapter
covers each step.

About the Indigo Magic Look and Feel

One of the most important things you can do to integrate your application
into the Indigo Magic Desktop environment is to get the right look and feel.
This look and feel is largely based on IRIS IM, the Silicon Graphics port of
the industry-standard OSF/Motif™ toolkit. In particular, the look and feel is
based on an enhanced version of IRIS IM and on the 4Dwm window
manager (the Silicon Graphics mwm-based window manager). The Indigo
Magic User Interface Guidelines explains the differences between the Indigo
Magic look and feel and the OSF/Motif look and feel.

Users have certain expectations of how applications appear and behave in
the Indigo Magic Desktop environment, and by meeting these expectations,
you make your application much easier and more pleasant to use. The
chapters in this part of the manual explain how to set up your application to
provide the Indigo Magic look and feel.

6

Chapter 1: Getting the Right Look and Feel: An Overview

Getting the Right Look and Feel: The Basic Steps

Here are the basic steps for providing the right look and feel for your
application:

1. Recompile with IRIS IM version 1.2. If your application uses an earlier
version of IRIS IM, recompile to make sure that it runs correctly with
version 1.2. Refer to the IRIS IM 1.2 Release Notes for information on the
differences between version 1.2 and earlier versions of IRIS IM.

2. Use the Indigo Magic enhanced appearance. Turn on the Indigo Magic
“look,” which enhances the appearance of standard IRIS IM widgets
and gadgets. See Chapter 2, “Getting the Indigo Magic Look,” for
instructions.

3. Use schemes. The schemes mechanism is a simple method for
providing user-selectable default colors and fonts for your application.
For more information on Schemes, see Chapter 3, “Using Schemes.”

4. Use the new and extended widgets (optional). Silicon Graphics
provides some new IRIS IM widgets, extensions of some existing
widgets, and some mixed-model programming widgets (for use with
IRIS GL and OpenGL). For more information, see Chapter 4, “Using the
New and Enhanced Widgets.”

5. Set resources for correct window, session, and desks management. By
setting a few important resources, you insure that your application
includes the windowing, session management, and desks features that
users expect. For instructions, refer to Chapter 5, “Window, Session,
and Desk Management.”

6. Customize minimize icons. Silicon Graphics provides tools that allow
you to easily provide your own look for minimize icons (icons for
minimized windows). The tools for creating minimized windows are
discussed in Chapter 6, “Customizing Your Application’s Minimized
Windows.”

7. Implement interapplication data exchange. Interapplication data
exchange lets users cut and paste information between you application
and other applications. For more information, see Chapter 7,
“Interapplication Data Exchange.”.

Getting the Right Look and Feel: The Basic Steps

7

8. Monitor changes to the filesystem (optional). Silicon Graphics
provides a File Alteration Monitor (FAM) that your application can use
to monitor the filesystem. Chapter 8, “Monitoring Changes to Files and
Directories,” explains how to use FAM.

9. Provide online help. Silicon Graphics provides an online help system
for integrating help with your application. Chapter 9, “Providing
Online Help With SGIHelp,” describes how to use the online help
system.

Chapter 2

This chapter describes how to turn on
the Indigo Magic “look,” which
enhances the appearnce of standard
IRIS IM widgets and gadgets.

Getting the Indigo Magic Look

11

Chapter 2

2. Getting the Indigo Magic Look

The simplest step in integrating your application with the Desktop
environment is to turn on the Indigo Magic “look,” which enhances the
appearance of standard IRIS IM widgets and gadgets. “The Indigo Magic
Look: Graphic Features and Schemes” in Chapter 3 of the Indigo Magic User
Interface Guidelines describes the enhancements.

To turn on the Indigo Magic look for an application, simply set the
application’s sgiMode resource to “TRUE.” Typically, you should add this
line to the /usr/lib/X11/app-defaults file for your application:

appName*sgiMode: TRUE

where appName is the name of your application.

The standard IRIS IM library supports the Indigo Magic look. You don’t
need to link with a separate library or call a special function to enable the
Indigo Magic look. If you don’t turn on the Indigo Magic look, your
application’s widgets and gadgets have the standard IRIS IM appearance.

If your application uses the Indigo Magic look, it should also use schemes,
which are described in Chapter 3, “Using Schemes.” Silicon Graphics
designed its color and font schemes to work well with the Indigo Magic look.

Chapter 3

Schemes allow you to provide default
colors and fonts for your application,
while also ensuring that users can
easily select other color and font
collections according to their
individual needs and preferences.
This chapter explains why and how
you should use schemes in your
application.

Using Schemes

15

Chapter 3

3. Using Schemes

Schemes provide an easy way to apply a collection of resources to your
application. The scheme mechanism allows your users to select from
pre-packaged collections of colors and fonts that are designed to integrate
visually with the Indigo Magic Desktop and other applications. “Schemes
for Colors and Fonts” in Chapter 3 in Indigo Magic User Interface Guidelines
describes the guidelines for using schemes in the Indigo Magic environment.

This chapter contains the following sections:

“Schemes Overview” on page 15 provides an overview to schemes.

“Using Schemes in Your Application” on page 17 describes what you need
to do to use schemes in your application.

“Testing Your Application with Schemes” on page 26 provides tips for
testing how your application responds to different schemes.

“Creating New Schemes” on page 26 describes how to create new schemes.

“Hard-Coding a Scheme for an Application” on page 27 describes how to
force your application to use one specific scheme.

Schemes Overview

Schemes allow you to provide default colors and fonts for your application,
while also ensuring that users can easily select other color and font
collections according to their individual needs and preferences. Silicon
Graphics includes some standard system schemes with the X execution
environment, but end users can modify existing schemes or create new ones,
and you can create new schemes for use with your application.

16

Chapter 3: Using Schemes

This section provides an overview of schemes and explains why you should
use schemes in your application.

Why You Should Use Schemes

As a developer, it is impossible for you to choose colors and fonts for your
application that satisfy all users. Aside from the consideration of individual
taste, display characteristics vary and some users have various degrees of
colorblindness. Schemes allow users to select colors and fonts according to
their preferences and needs.

Although users can already use the X resource mechanism to customize
colors and fonts, it is very difficult and time-consuming for most end users
to do so, because the task requires knowledge of the internal structure of the
program. On the other hand, if your application supports schemes, users can
use the graphical Schemes Browser, schemebr (available from the “Colors”
option of the Customize menu in Desktop toolchest), to change colors and
fonts.

Using schemes also reduces the time and effort required to develop your
application. Instead of choosing your own colors and fonts and coding them
into your application, you can simply set a resource value to activate
schemes and get the distinctive Indigo Magic appearance.

Basic Scheme Concepts

A scheme simply maps specific colors and fonts to abstract resource names
according to the functions they serve in an application. So instead of using
specific colors like “blue” or “#123456” and specific fonts like
“-*-screen-medium-r-normal--13-*-*-*-*-*-iso8859-1,” your application can
use symbolic values like TextForeground, TextSelectedColor, and
FixedWidthFont. The exact definition of these symbolic values depends on
the scheme the user chooses to apply to your application. As long as your
application uses the symbolic color and font names for the purposes for
which they were intended, users or graphic designers can design a new
palette (a binding of the symbolic values to specific colors) and the result
should look good with your application.

Using Schemes in Your Application

17

Often, you don’t even need to deal with the symbolic colors and fonts
yourself. The schemes mechanism includes a map file that automatically
binds the symbolic values to the various IRIS IM widgets and widget
resources. One case where you might need to set a color or font explicitly is
if you need to highlight a component (for example, in a chart). The schemes
mechanism defines special symbolic values such as HighlightColor1
through HighlightColor8 for these purposes. (See “Directly Accessing
Colors and Fonts” on page 20 for more information on the symbolic values.)

Using Schemes in Your Application

This section describes how to write your application for use with schemes.

Turning on Schemes for Your Application

Silicon Graphics incorporates schemes in its implementation of Xt, so you
don’t need to link to a separate schemes library or call a special function to
use schemes. All you need to do to enable schemes is to include in your
application’s app-defaults file (in the /usr/lib/X11/app-defaults directory) the
line:

AppClass*useSchemes: all

where AppClass is your application’s class name. This activates all aspects of
schemes.

Note: To ensure that users don’t accidently override your settings, be sure
to prefix the useSchemes resource with your application’s class name.

To deactivate schemes, you can set:

AppClass*useSchemes: none

If you wish to activate schemes without using an app-defaults file, or if you
want to guarantee that the schemes setting can’t be changed by users, call the
function SgiUsesScheme():

void SgiUsesScheme(char *value)

18

Chapter 3: Using Schemes

value can be either “all” or “none”. This function requires that you include
the header file <X11/SGIScheme.h>.

Special Considerations for Programming with Schemes

The schemes map file automatically handles applying colors and fonts to
most IRIS IM widgets based on the widgets’ class names. Unfortunately, IRIS
IM doesn’t have unique class names for menu bars, menu panes, and option
menus. To allow schemes to be applied to these elements, your application
must follow some simple naming conventions for these widgets. Schemes
expect applications to name all menu bars “menuBar,” all option menus
“optionMenu,” and the pane of all option menus “optionPane.” Schemes
also recognize some other variations of these names, including “menu_bar,”
“menubar,” “menu_Bar,” and so on.

If you need to set a color or a font in your application, use the procedures
described in “Assigning Non-Default Colors and Fonts to Widgets” on
page 19 and “Directly Accessing Colors and Fonts” on page 20. Don’t hard
code colors or fonts in your application because they might not work with
the scheme that a user selects. For example, if you programmatically set a
text color to black and a user chooses a scheme that has a very dark
background, your text is unreadable. Also avoid setting colors that IRIS IM
normally computes. For example, if you hard code the top or bottom shadow
colors used by IRIS IM controls, these colors might not be correct if a user
changes the scheme.

There are obviously some cases for which this recommendation doesn’t
apply. The most common are windows in which you are rendering images.
For example, if your application uses OpenGL or some other library to
render an image in a window, the colors used in this window aren’t derived
from schemes.

Fonts are usually less critical than colors, although the best visual effects will
be produced if you use only the fonts defined in the schemes. You should be
aware that on low-resolution screens, the sizes of the fonts defined by
schemes can change. Therefore, you should design the layout of your
application to handle variable-sized fonts. This means you shouldn’t
hard-code x, y locations or fixed widths or heights for widgets in your
application. Instead use IRIS IM manager widgets such as the Form to
achieve a flexible layout that can respond to changes in font sizes.

Using Schemes in Your Application

19

Assigning Non-Default Colors and Fonts to Widgets

Sometimes, you might want to override the default color or font assigned to
a widget by a scheme. For example, all labels are set by default to use a bold
font (BoldLabelFont); however you might decide that a regular font
(PlainLabelFont) is more appropriate for some of your application’s labels.

To assign a non-default font or color to a widget, include a line in your
application’s app-defaults file mapping a different symbolic scheme resource
to that widget. For example, the following line assigns a regular label font
(rather than the default bold font) to a label in your application named
“simpleLabel”:

YourApp*simpleLabel*fontList: SGI_DYNAMIC PlainLabelFont

The symbol SGI_DYNAMIC identifies this resource as a dynamically
changeable scheme resource. The actual font assigned to PlainLabelFont
could potentially be different in each scheme. As the user changes schemes,
the correct resource is applied to your program.

Note: Remember to prefix the widget hierarchy with your application’s
class name to prevent users from accidentally overriding your setting.

You can use the same technique with colors. For example, suppose you have
two types of label widgets positioned on an IRIS IM XmDrawingArea
widget and you want to use color to give some significance to different
labels. Perhaps the application is some type of a flowchart and some of the
labels represent tasks in progress, while other represent tasks that have been
completed. The schemes map file already maps the symbolic scheme
resource DrawingAreaColor to the XmDrawingArea widget. The scheme
palette also provides colors that both provide a nice contrast against the
DrawingAreaColor and allow the current TextForeground color to be
readable. These colors are DrawingAreaContrast1, DrawingAreaContrast2,
DrawingAreaContrast3, and DrawingAreaContrast4. To specify the colors
of each label widget in your application, you could set the following
resources:

YourApp*label1*background: SGI_DYNAMIC DrawingAreaContrast1
YourApp*label2*background: SGI_DYNAMIC DrawingAreaContrast1
YourApp*label3*background: SGI_DYNAMIC DrawingAreaContrast2
...

20

Chapter 3: Using Schemes

Each scheme also contains a set of basic colors that you can use for simple
graphics, icons, and so on. These colors maintain their basic characteristics,
but change slightly from scheme to scheme to blend with the general flavor
of the scheme. For example, you could set a label widget to be “red” as
follows:

YourApp*label*background: SGI_DYNAMIC RedColor

The exact shade of red will change from scheme to scheme, but will always
be “reddish” and always fit with the other colors in the scheme.

If necessary, you can also use non-scheme colors and fonts, although Silicon
Graphics strongly recommends that you don’t do this. In particular, if you
hard-code a color, the user might select a scheme in which that color doesn’t
provide the contrast you desire. The color could even be “lost” among the
other scheme colors. Non-scheme fonts are less likely to cause problems, but
your application will still have an inconsistent appearance if it uses them.

You use the same methods to assign a non-scheme color or font that you
normally would in an X program. For example, you could set a font for a
label named “simpleLabel” in your app-defaults file as follows:

YourApp*simpleLabel*fontList: 6x12

Directly Accessing Colors and Fonts

When your application uses widgets only, the schemes map file
automatically retrieves all colors and fonts from the current scheme and
assigns them to your application’s widgets. However, you might need to
access some of the scheme’s colors or fonts directly from within a program.
For example, you might want to draw a bar chart or other display using
colors that look good no matter what scheme the user has selected.

Example 3-1 shows an example of a function that retrieves a color value
given a widget, the color resource name, and the color resource class.

Example 3-1 Retrieving a Scheme Color Value

Pixel getColorResource(Widget w, char *name, char *classname)
{

XtResource request_resources;

Using Schemes in Your Application

21

Display *dpy = XtDisplay (w);
int scr = DefaultScreen (dpy);
Colormap cmap = DefaultColormap (dpy, scr);
XColor color, ignore;
char *colorname;

request_resources.resource_name = (char *) name;
request_resources.resource_class = (char *) className;
request_resources.resource_type = XmRString;
request_resources.resource_size = sizeof (char *);
request_resources.default_type = XmRImmediate;
request_resources.resource_offset = 0;
request_resources.default_addr = (XtPointer) NULL;

XtGetSubresources(w,
(XtPointer) &colorname,
NULL, NULL,
&requested_resources,
1, NULL, 0);

if (colorname &&
XAllocNamedColor (dpy, cmap, colorname, &color,

&ignore))
return (color.pixel);

else
return (BlackPixel (dpy, scr));

}

You could then retrieve the color defined by the scheme resource
drawingAreaContrastColor1 using getColorResource() as follows:

color1 = getColorResource(barChartWidget,
"drawingAreaContrastColor1",
XmCForeground);

where barChartWidget is the widget that you’ll use the color in.

Tip: There is a far simpler method for retrieving a resource value if you’re
using the IRIS ViewKit toolkit. Instead of writing the getColorResource()
function listed in Example 3-1, you could simply call:

Pixel color1 = (Pixel) VkGetResource(barChartWidget,
 "drawingAreaContrastColor1",
 XmCForeground, XmRPixel,
 "Black");

22

Chapter 3: Using Schemes

You must handle some resources programmatically. For example, the Indigo
Magic User Interface Guidelines suggests that your application use a
different color for text fields that are not editable than it uses for editable text
fields. The IRIS IM text widget currently does not change colors
automatically when set to read only mode, so your application must handle
this itself. The correct color is provided by schemes as the symbolic name
ReadOnlyColor, and can be retrieved by the resource readOnlyColor.
Assuming that you’ve created the getColorResource() function listed in
Example 3-1, the following code illustrates this process:

ro = getColorResource(textw, "readOnlyColor",
XmCForeground);

XtVaSetValues(textw, XmNeditable, FALSE,
XmNbackgroundColor, ro,
NULL);

Tip: The equivalent IRIS ViewKit code would be:

Pixel ro = (Pixel) VkGetResource(textw, "readOnlyColor",
XmCForeground, XmRPixel,
"White");

XtVaSetValues(textw, XmNeditable, FALSE,
XmNbackgroundColor, ro,
NULL);

Pre-Defined Scheme Resources and Symbolic Values

Table 3-1 lists the pre-defined scheme resources and symbolic values. You
can use the resources to retrieve color and font values from within your
application as described in “Directly Accessing Colors and Fonts” on
page 20. You can use the symbolic values to assign colors and fonts to
widgets in resource files as explained “Assigning Non-Default Colors and
Fonts to Widgets” on page 19.

Table 3-1 Pre-Defined Scheme Resources and Symbolic Values

Resource Symbolic Value Intended Use

basicBackground BasicBackground Background of application

textForeground TextForeground Color of text characters

Using Schemes in Your Application

23

textBackground TextBackground Background of multi-line text
widgets

textFieldBackground TextFieldBackground Background of single-line text field
widgets

readOnlyBackground ReadOnlyBackground Background of read-only text and
text field widgets

textSelectedBackground TextSelectedBackground Background when text is selected
with the mouse

textSelectedForeground TextSelectedForeground Color of text characters when text is
selected with the mouse

disabledTextForeground DisabledTextForeground For future use, this color will indicate
disabled text instead of stippling.

scrolledListBackground ScrolledListBackground Background of scrolled list widgets

scrollBarTroughColor ScrollBarTroughColor Trough of scrollbar

scrollBarControlBackground ScrollBarControlBackground Scrollbar controls (thumb,
searchbutton)

buttonBackground ButtonBackground Background of push buttons

selectFillColor SelectFillColor Fill color for standard IRIS IM radio
and toggle buttons

selectColor SelectFillColor IRIS IM toggle and check fill color

checkColor CheckColor Indigo Magic toggle check mark
color

radioColor RadioColor Indigo Magic radio pip color

indicatorBackground IndicatorBackground Indigo Magic background color for
toggles and radios

Table 3-1 (continued) Pre-Defined Scheme Resources and Symbolic Values

Resource Symbolic Value Intended Use

24

Chapter 3: Using Schemes

warningColor WarningColor Background color for icons in
warning dialogs

errorColor ErrorColor Background color for icons in error
dialogs

informationColor InformationColor Background color for icons in
information dialogs

wMBackground WMBackground Window manager colors. Note that
4Dwm currently doesn’t pick up
foreground. “Active” colors are used
for window manager borders with
mouse focus.

wMActiveBackground WMActiveBackground

wMForeground WMForeground

wMActiveForeground WMActiveForeground

alternateBackground1 AlternateBackground1 Can be used as background color for
widgets or text areas. Guaranteed to
be different from one another,
contrast with basic background and
text background, and can have text
drawn on them.

alternateBackground2 AlternateBackground2

alternateBackground3 AlternateBackground3

alternateBackground4 AlternateBackground4

alternateBackground5 AlternateBackground5

alternateBackground6 AlternateBackground6

drawingAreaBackground DrawingAreaBackground Background of drawing area widgets
(typically used for graphs)

drawingAreaContrastColor1 DrawingAreaContrastColor1 Contrast colors for drawing areas
(typically used for graphs and trees).
These colors are guaranteed to be
different from one another, different
from the drawing area background,
and can have text drawn on them

drawingAreaContrastColor2 DrawingAreaContrastColor2

drawingAreaContrastColor3 DrawingAreaContrastColor3

drawingAreaContrastColor4 DrawingAreaContrastColor4

Table 3-1 (continued) Pre-Defined Scheme Resources and Symbolic Values

Resource Symbolic Value Intended Use

Using Schemes in Your Application

25

highlightColor1 HighlightColor1 Bright highlights suitable for small
color spots. The first four are
supposed to be in the same hue
family as the corresponding
DrawingAreaContrast colors so that
the pair may be used for doing
highlights in an annotated scrollbar.

These colors are typically used for
outlining and drawing graphs,
wherever a small amount of color
needs to be highly visible.

highlightColor2 HighlightColor2

highlightColor3 HighlightColor3

highlightColor4 HighlightColor4

highlightColor5 HighlightColor5

highlightColor6 HighlightColor6

highlightColor7 HighlightColor7

highlightColor8 HighlightColor8

redColor RedColor Colors that can be used for various
graphics purposes. These colors will
always approximate their names, but
may be slightly adjusted to blend
with each scheme. Typically used in
graphs and charts.

orangeColor OrangeColor

yellowColor YellowColor

greenColor GreenColor

blueColor BlueColor

brownColor BrownColor

purpleColor PurpleColor

boldLabelFont BoldLabelFont Bold labels, such as column headings

smallBoldLabelFont SmallBoldLabelFont Labels for tight packing situations

tinyBoldLabelFont TinyBoldLabelFont Labels where space is at a premium

plainLabelFont PlainLabelFont Button labels, also can be used for
values in “Name: Value” pairs

smallPlainLabelFont SmallPlainLabelFont Small buttons

obliqueLabelFont ObliqueLabelFont Menus

Table 3-1 (continued) Pre-Defined Scheme Resources and Symbolic Values

Resource Symbolic Value Intended Use

26

Chapter 3: Using Schemes

Testing Your Application with Schemes

For best results, you should be sure to test your application against all
available schemes, and watch for any anomalies. As an added precaution,
you might try using the Scheme Browser, schemebr, (available from the
“Colors” option of the Customize menu in Desktop toolchest) to create some
variations on existing schemes and see how your program will react. If you
have not added any resources and are not setting any colors or fonts in your
program or app-defaults files, any scheme should be reasonable. If you have
set colors directly in your application, you should watch carefully to see how
your application reacts as colors change. It is always possible to use the
scheme editor to create a very bad scheme, but if your program seems more
sensitive than others to changes, you should think more carefully about your
use of color.

Creating New Schemes

You can also include your own new schemes in your software distribution,
but there are several things to be aware of. First, the largest benefit of
schemes is the users’ ability to change to schemes of their choice, so even if
you create a scheme that you prefer for your application, you should still
make sure your program looks good with the existing schemes. Second, if
you install your scheme on a user’s system, the user might apply that
scheme to other applications. If you attempt to design a new scheme, you
should attempt to make sure the scheme works reasonably with other
applications on the desktop.

smallObliqueLabelFont SmallObliqueLabelFont Small menus

fixedWidthFont FixedWidthFont Text areas where fixed width is
mandatory, for example where it’s
important that columns line up

smallFixedWidthFont SmallFixedWidthFont Text where a fixed-width font is
appropriate but space is at a
premium

Table 3-1 (continued) Pre-Defined Scheme Resources and Symbolic Values

Resource Symbolic Value Intended Use

Hard-Coding a Scheme for an Application

27

The easiest way to design a new scheme is to use the Scheme Browser,
schemebr, available from the “Colors” option of the Customize menu in
Desktop toolchest. For best results, you should base your scheme on an
existing scheme, preferably one of the standard ones supported by Silicon
Graphics. Making only minor changes will reduce the chances that the new
scheme will not work with other programs. Once you have created and
saved your new scheme, you can retrieve the files from your
$HOME/.desktop-<hostname>/scheme directory, where <hostname> is the name
of your system. You can install your scheme in
/usr/local/schemes/<SchemeName>, where <SchemeName> is the name you
have chosen for your scheme. Once installed, this scheme will appear in the
Scheme Browser as a local scheme. You can also include this scheme with
your software distribution.

Hard-Coding a Scheme for an Application

In some rare situations, you might want your application to use one
particular scheme, not the one that the user selects. Silicon Graphics strongly
recommends that you not use this approach, but if your application has
special needs, the process is simple to do. Specify the value of the scheme
resource in your application’s app-defaults file using a complete path name.
For example:

YourApp*scheme: /usr/lib/X11/schemes/Milan

Chapter 4

This chapter discusses the new and
enhanced IRIS IM widgets, as well as
the mixed-model programming
widgets for using OpenGL in an IRIS
IM application.

Using the New and Enhanced Widgets

31

Chapter 4

4. Using the New and Enhanced Widgets

This chapter discusses the new and enhanced IRIS IM widgets, as well as the
mixed-model programming widgets for using OpenGL in an IRIS IM
application. This chapter contains these sections:

• “Using the New and Enhanced Widgets” explains how your
application can access the new and enhanced widgets.

• “Using the Widget Demos” explains how to use the provided demos to
experiment with some of the new and enhanced widgets.

• “The New Widgets” lists and discusses each of the new widgets.

• “The Enhanced Widgets” lists and discusses each of the enhanced
widgets.

• “The Mixed-Model Programming Widgets” discusses the mixed-model
programming widgets that Silicon Graphics provides for use with your
OpenGL or IRIS GL application.

Using the New and Enhanced Widgets

To use a new or enhanced widget, first switch on the Indigo Magic enhanced
look and schemes, as described in Chapter 2, “Getting the Indigo Magic
Look,” and Chapter 3, “Using Schemes,” respectively.

Using the Widget Demos

Silicon Graphics provides demos for some of the new and enhanced
widgets. These demos let you experiment with the different resources for
each widget.

32

Chapter 4: Using the New and Enhanced Widgets

The widget demos are in /usr/src/X11/motif/Sgm. The demos are part of the
motif_dev.sw.demoSgi subsystem—if you can’t find them on your system,
check to make sure this subsystem is installed.

Instructions for Building the Widget Demos

The demo tree is shipped with X11 Imakefiles, not Makefiles. To build the
demos:

1. Change to the IRIS IM demos build tree location.

% cd /usr/src/X11/motif/Sgm

2. Build the initial Makefile.

% ../mmkmf

3. Verify that the Makefile is OK.

% make Makefile

4. Update the rest of your Makefiles.

% make Makefiles

5. Clean the directory. If you don’t and this isn’t your first installation,
obsolete binaries might remain, giving unexpected results.

% make clean

6. Update Makefile dependencies. This is also a good confidence test that
everything is installed properly.

% make depend

7. Build the demos.

% make all

The Enhanced Widgets

Silicon Graphics provides enhanced versions of these existing IRIS IM
widgets:

• File Selection Box

• Scale (Percent Done Indicator)

• Text and Text Field

The Enhanced Widgets

33

This section describes how to use the enhancements to these widgets. For
guidelines on when to use these widgets, refer to the Indigo Magic User
Interface Guidelines.

The File Selection Box Widget

The FileSelectionBox widget (SgFileSelectionBox), shown in Figure 4-1, is
an enhanced version of the existing IRIS IM FileSelectionBox widget
(XmFileSelectionBox). The API is consistent with the IRIS IM version of the
widget, but the presentation is different.

Note: To get the enhanced FileSelectionBox, you need to set the
SgNuseEnhancedFSB resource to true (in addition to linking with -lSgm).
Typically, you should do this in your application’s app-defaults file.

Figure 4-1 The File Selection Box Widget

The FileSelectionBox traverses directories, shows files and subdirectories,
and selects files. It has three main areas:

File list The scrollable list in the enhanced FileSelectionBox contains
both files and directories.

File List

Finder

34

Chapter 4: Using the New and Enhanced Widgets

Finder widget
The text field displays the name and the DropPocket
displays the icon of the current directory or file. The user
can select a file or directory by typing its name in the text
field or dropping its icon on the DropPocket. The user can
also recall a previously-selected directory from the
DynaMenu. “The Finder Widget” on page 49 discusses the
Finder widget in more detail.

Command panel
The OK, Cancel, and Help buttons operate the same in the
enhanced FileSelectionBox as they do in the regular version.
The Filter button pops up a Filter Dialog, which allows the
user to enter a shell-style filename expression as filter
pattern. The enhanced FileSelectionBox displays only those
files in the current directory that match the given pattern.
(The FileSelectionBox continues to display any
subdirectories in the current directory.)

The programmatic interface to the enhanced FileSelectionBox differs from
the regular version in the following points:

• You can retrieve the Finder child of the FileSelectionBox using the
standard XmFileSelectionBoxGetChild(3X) by providing the defined
constant SgDIALOG_FINDER as the child. You should check the
returned widget for validity; it is NULL if the FileSelectionBox is not
enhanced.

• XmNdirMask is not guaranteed to be exactly the same as the regular
version of the FileSelectionBox in all situations. It does conform to the
definition in the XmFileSelectionBox(3X) reference page. Specifically,
the directory portion XmNdirMask may not be present in the enhanced
FileSelectionBox’s representation.

• XmNfileTypeMask behavior is different because there is no separate
directory list. In the enhanced FileSelectionBox

– XmFILE_REGULAR and XmFILE_ANY_TYPE show both files and
directories in the file list

– XmFILE_DIRECTORY shows only directories

For information about standard XmFileSelectionBox resources, behavior,
and callbacks, see the XmFileSelectionBox(3X) reference page. For detailed

The Enhanced Widgets

35

information on the FileSelectionBox widget, refer to the
SgFileSelectionBox(3X) reference page. For an example program using the
FileSelectionBox widget, see “Example Program for File Selection Box” on
page 260. See Chapter 10, “Dialogs,” in the Indigo Magic User Interface
Guidelines for guidelines on using dialogs in your application.

The Scale (Percent Done Indicator) Widget

The Scale widget (SgScale), is an enhanced version of the IRIS IM Scale
widget (XmScale). (The enhanced Scale widget is also referred to as the
Percent Done Indicator widget.) In addition to the standard XmScale
resources, the enhanced Scale widget provides the following new resources:

sliderVisual The visual representation of the slider. The default value,
XmETCHED_LINE, displays a single etched line across the
center of the slider and displays shadows on the edges of
the slider. The value XmSHADOWED doesn’t display the
etched line, but does display the shadows. The value
XmFLAT_FOREGROUND displays a “flat” slider with no
line and no shadows.

slidingMode When set to the default value, XmSLIDER, the slider can
move back and forth within the trough as in a regular Scale
widget. When set to XmTHERMOMETER, one end of the
slider is “anchored” to one end of the trough and the slider
grows and shrinks as the value changes. The
XmTHERMOMETER setting is useful for creating a
“percent done” indicator or other similar display.

editable If FALSE, the slider is insensitive to user input but does not
appeared “grayed out.” This is useful in conjunction with
the “percent done” mode to simply display a value. The
default value is TRUE, allowing the user to move the slider.

For more information on the enhanced Scale widget, refer to the SgScale(3X)
widget reference page. For more information on the unenhanced version of
the widget, refer to the XmScale(3X) reference page. See “Scales” in
Chapter 9 of the Indigo Magic User Interface Guidelines for guidelines on using
scales in your application.

36

Chapter 4: Using the New and Enhanced Widgets

The Text and Text Field Widgets

The Text and TextField widgets (SgText and SgTextField) are enhanced
versions of the IRIS IM Text and TextField widgets (XmText and
XmTextField). In addition to the standard XmText and XmTextField
resources, these widgets provide the following new resources:

selectionBackground
The background color for selected text.

selectionForeground
The foreground color for selected text.

errorBackground
The background color for text that you select with an “error
status” by using the SgTextSetErrorSelection() or
SgTextFieldSetErrorSelection() function (depending on
whether the widget is a SgText or SgTextField widget).

cursorVisibleOnFocus
If TRUE (the default), the widget displays the text cursor
only when the widget has focus. If FALSE, the cursor is
always visible even when the widget doesn’t have
keyboard focus.

The SgTextSetErrorSelection() and SgTextFieldSetErrorSelection()
functions operate almost identically to the XmTextSetSelection() and
XmTextFieldSetSelection() functions. You use them to select a range of text
as the primary selection. The only difference is that the selected text is drawn
with the background color specified by the errorBackground resource
instead of that specified by the selectionBackground resource.

For a detailed description of the new resources for the enhanced versions of
these widgets, refer to the SgText(3X) and SgTextField(3X) reference pages.
For information on the unenhanced versions of these widgets, refer to the
XmText(3X) and XmTextField(3X) reference pages. See “Text fields” in
Chapter 9 of the Indigo Magic User Interface Guidelines for guidelines on using
text fields in your application.

The Mixed-Model Programming Widgets

37

The Mixed-Model Programming Widgets

Silicon Graphics provides two sets of mixed-model programming widgets:
one set for use with OpenGL and one set for use with IRIS GL.

A mixed-model program, briefly, is an X program that creates one or more
subwindows that use OpenGL or IRIS GL for rendering. Such a program
uses Xlib or Xt calls for windowing, event handling, color maps, fonts, and
so on. A “pure” IRIS GL application, on the other hand, uses IRIS GL calls
for windowing, event handling, color maps, and fonts. (For a more detailed
discussion of mixed-model programming, refer to the OpenGL Porting
Guide.)

If you plan to port your IRIS GL application to OpenGL, a good first step is
to port it to mixed-model. The switch to OpenGL is then much easier. The
IRIS GL mixed-model widgets make it much easier to port pure IRIS GL
applications to mixed-model.

If you’re writing a new application, just start with OpenGL and the OpenGL
versions of the mixed-model widgets (or use Open Inventor™ instead of
OpenGL—Open Inventor handles all this for you).

The mixed-model widgets are:

The GlxDraw and GLwDrawingArea widgets are suitable for use with any
widget set. The GlxMDraw and GLwMDrawingArea widgets are designed
especially for use with IRIS IM.

This manual does not tell you how to create a mixed-model program. For
instructions on mixed-model programming, refer to the OpenGL Porting
Guide. (The OpenGL Porting Guide contains mixed-model programming
information that’s relevant for both IRIS GL and OpenGL programmers.)

You can find examples of many mixed-model programs for both OpenGL
and IRIS GL in the 4Dgifts directories. If you have trouble finding the
relevant directories, refer to the README file in /usr/people/4Dgifts. This

IRIS GL OpenGL

GlxDraw GLwDrawingArea

GlxMDraw GLwMDrawingArea

38

Chapter 4: Using the New and Enhanced Widgets

README file explains the contents and organization of the 4Dgifts
directories.

The New Widgets

Silicon Graphics provides these new widgets:

• Color Chooser

• Dial

• Finder

• Graph

• Grid

• Springbox

• Thumbwheel

For guidelines on when to use the different widgets (for example, when to
use a Thumbwheel or a Dial) refer to the Indigo Magic User Interface
Guidelines.

This section describes each important new IRIS IM widget. It doesn’t discuss
new widgets that are part of composite widgets, unless they are generally
useful.

The Color Chooser Widget

The ColorChooser widget (SgColorChooser) allows users to select colors in
RGB or HSV color spaces. Figure 4-2 shows the ColorChooser’s default
configuration.

The New Widgets

39

Figure 4-2 The Color Chooser Widget

The ColorChooser includes these components:

• Menus for setting options and sliders for the color chooser.

• A color hexagon that provides visual selection of the hue and saturation
components of a color in an HSV color space.

• Color sliders for each of the hue, saturation, value, red, green, and blue
color components. To make the color sliders visible, the user can select
items from the Sliders menu. (Figure 4-3 shows the ColorChooser with
all the sliders visible.) You can also display the color sliders
programmatically. Text fields show the exact value of each current color
component and allow users to set these values numerically.

• Two color swatches: one for showing the current selected color and one
for enabling the user to store a second color for reference.

• Three or four buttons. The default button labels are OK, Cancel, Help,
and Apply. If the parent of the ColorChooser widget is a DialogShell,
then the Apply button is managed; otherwise it is unmanaged.

40

Chapter 4: Using the New and Enhanced Widgets

Figure 4-3 The Color Chooser Widget With HSV and RGB Sliders

Users can select a color by manipulating the color hexagon and any of the six
sliders, or by changing the values in any of the text fields.

You must include the header file <Sgm/ColorC.h> in any source file that uses
a ColorChooser widget.

For more detailed information about the ColorChooser widget, refer to the
SgColorChooser(3X) reference page. For an example program using the
ColorChooser widget, see “Example Program for Color Chooser” on
page 247. You can also examine, compile, and experiment with the colorc
demonstration program in the directory /usr/src/X11/motif/Sgm/colorc. See
“The Indigo Magic Color Chooser—A Standard Support Window” in
Chapter 6 of the Indigo Magic User Interface Guidelines for guidelines on using
the ColorChooser widget in your application.

The New Widgets

41

Controlling the Color Chooser Interface

By default, the ColorChooser widget uses GL’s Gouraud shading to display
the colors in the hexagon and sliders. You can force the ColorChooser widget
not to use GL by setting the value of the SgNuseGl resource to FALSE. When
SgNuseGl is FALSE, the ColorChooser widget uses only X function calls. In
this case, it does not draw a color hexagon and it uses XmScale widgets
instead of the special color sliders.

When using GL, the ColorChooser normally shades the color hexagon and
color sliders so that each point is a true representation of the color that would
be selected if the user were to move the hexagon pointer or color slider to
that point. However, if the value of the SgNwysiwyg resource is FALSE then
the ColorChooser always displays the hexagon colors with a Value
(intensity) of 1 (maximum intensity), and the RGB sliders with a color range
of black to the maximum RGB color component value.

For example, if the current selected color RGB value is (100, 200, 50), then the
Red color slider displays the colors (0, 200, 50) through (255, 200, 50) if
SgNwysiwyg is TRUE, and (0, 0, 0) through (233, 0, 0) if SgNwysiwyg is
FALSE. (Note that the user can also toggle the value of SgNwysiwyg by
selecting the “WYSIWYG” option from the ColorChooser’s Options menu.)

The SgNshowSliders resource determines which of the color sliders are
visible. Possible values are:

SgValue Show only the slider for the color Value (the default)

SgRGB_and_Value
Show the Value and RGB sliders

SgRGB_and_HSV
Show all six sliders, the HSV and RGB sliders

The default labels (in the C locale) for the ColorChooser buttons are “OK,”
“Apply,” “Cancel,” and “Help.” You can change these by setting the values
of SgNokLabelString, SgNapplyLabelString, SgNcancelLabelString, and
SgNhelpLabelString respectively.

42

Chapter 4: Using the New and Enhanced Widgets

You can add additional children to the ColorChooser after creation—they’re
laid out in the following manner:

• The first child is used as a work area. The work area is placed just below
the menu bar.

• Buttons—All XmPushButton widgets or gadgets, and their subclasses
are placed after the OK button, in the order of their creation.

• The layout of additional children that are not in the above categories is
undefined.

Getting and Setting the Color Chooser’s Colors

In ColorChooser callback functions, the RGB color values are provided as
the r, g, and b parameters of the SgColorChooserCallbackStruct structure
passed to the functions. “Handling User Interaction With the Color
Chooser” describes the ColorChooser callbacks.

ColorChooser also provides several convenience routines for getting and
setting both the current color values and setting the stored color value.

SgColorChooserSetColor() sets both the current and the stored color values
to the same color:

void SgColorChooserSetColor(Widget w, short r, short g,
short b);

SgColorChooserGetColor() retrieves the current color values:

void SgColorChooserGetColor(Widget w, short *r, short *g,
short *b);

SgColorChooserSetCurrentColor() sets the current color but not the stored
color:

void SgColorChooserSetCurrentColor(Widget w, short r,
short g, short b);

SgColorChooserSetStoredColor() sets the stored color but not the current
color:

void SgColorChooserSetStoredColor(Widget w, short r,
short g, short b);

The New Widgets

43

For each function, w is the ColorChooser widget and r, g, and b are the red,
green, and blue values, respectively.

Handling User Interaction With the Color Chooser

The ColorChooser widget defines the following callback resources:

SgNapplyCallback
Invoked when the user activates the Apply button. The
callback reason is SgCR_APPLY.

SgNcancelCallback
Invoked when the user activates the Cancel button. The
callback reason is SgCR_CANCEL.

SgNokCallback
Invoked when the user activates the OK button. The
callback reason is SgCR_OK.

SgNvalueChangedCallback
Invoked when the user selects a color. The callback reason is
XmCR_VALUE_CHANGED. A color is selected when the
user changes the value of a color component with the color
hexagon, one of the color sliders, or one of the color
components text widgets.

SgNdragCallback
Specifies the list of callbacks called when the user drags the
mouse over the color hexagon or one of the color sliders to
select a color. The callback reason is XmCR_DRAG.

A pointer to a SgColorChooserCallbackStruct structure is passed to each
ColorChooser callback function:

typedef struct {
int reason;
XEvent *event;
short r, g, b;

} SgColorChooserCallbackStruct;

reason Indicates why the callback was invoked.

event Points to the XEvent that triggered the callback.

r Indicates the red color component of the currently selected
color.

44

Chapter 4: Using the New and Enhanced Widgets

g Indicates the green color component of the currently
selected color.

b Indicates the blue color component of the currently selected
color.

The Dial Widget

The Dial widget (SgDial), shown in Figure 4-4, is a new widget that allows
users to input or modify a value from within a range of values. Figure 4-4
shows two forms of the Dial widget, one with the input control in the shape
of a knob and the other in the shape of a pointer. The user can modify the
Dial’s value by spinning the knob or pointer. The Dial is usually surrounded
by tick marks (marked divisions around the perimeter of the Dial).

Figure 4-4 The Dial Widget in Knob and Pointer Form

You must include the header file <Sgm/Dial.h> in any source file that uses a
Dial widget.

For more detailed information about the Dial widget, refer to the SgDial(3X)
reference page. For an example program using the Dial widget, see
“Example Program for Dial” on page 250. You can also examine, compile,
and experiment with the dial demonstration program in the directory
/usr/src/X11/motif/Sgm/dial. See “Dials” in Chapter 9 of the Indigo Magic User
Interface Guidelines for guidelines on using the Dial widget in your
application.

Controlling the Dial Interface

You control the display characteristics of a Dial through widget resources.

The SgNdialVisual resource determines whether the Dial uses a knob or a
pointer. The default value, SgKNOB, specifies a knob and SgPOINTER
specifies a pointer. If you use a pointer, you can also specify the color of the

The New Widgets

45

small “indicator” at the center of the pointer using the SgNindicatorColor
resource; the default color is red.

You specify the position of the lowest value on the Dial with the
SgNstartAngle resource. The value, which must be between 0 and 360
inclusive, specifies the number of degrees clockwise from the top of the Dial.
The default value of 0 corresponds to the top of the Dial.

The SgNangleRange resource determines the range of the Dial in degrees.
The value, which must be between 0 and 360 inclusive, specifies the number
of degrees clockwise from the start angle of the Dial. The default value of 360
allows the Dial to rotate completely.

The Dial widget displays evenly spaced “tick marks” along the perimeter of
the Dial’s angle range. You control the number of tick marks with the
SgNdialMarkers resource; the default number is 16. The length of the tick
marks in pixels is determined by the SgNmarkerLength resource; the
default length is 8 pixels. The SgNdialForeground resource determines the
color of the tick marks; the default is red.

The resources XmNminimum and XmNmaximum determine the minimum
and maximum values of the Dial. The Dial takes on the minimum value at
the position specified by SgNstartAngle and takes on the maximum value
at the position SgNangleRange degrees clockwise from SgNstartAngle. The
value of XmNmaximum must be greater than or equal to the value of
XmNminimum. The default value of XmNminimum is 0 and the default
value of XmNmaximum is 360.

Getting and Setting the Dial’s Value

The XmNvalue resource, which must be a value between XmNminimum
and XmNmaximum inclusive, contains the current position of the Dial. You
can set or get the value of a Dial widget at any time by respectively setting
or getting its XmNvalue resource.

In Dial callback functions, the Dial value is provided as the position
parameter of the SgDialCallbackStruct structure passed to the functions.
“Detecting Changes in the Dial’s Value” describes the Dial callbacks.

46

Chapter 4: Using the New and Enhanced Widgets

Dial also provides a convenience routine, SgDialSetValue(), for setting the
value of XmNvalue:

void SgDialSetValue(Widget w, int value);

w is the Dial widget whose value you want to set and value is the new value.

You can get the current value of a Dial widget at any time by retrieving the
value of its XmNvalue resource. Dial also provides a convenience routine,
SgDialGetValue(), for getting the value of XmNvalue:

void SgDialGetValue(Widget w, int *value);

w is the Dial widget whose value you want to get. Upon returning, value
contains the Dial’s value.

Detecting Changes in the Dial’s Value

The Dial widget defines two callback list resources,
XmNvalueChangedCallback and XmNdragCallback. A Dial widget
invokes XmNvalueChangedCallback whenever its value changes either
programmatically (for example, by calling SgDialSetValue()) or through
user interaction. A Dial widget invokes XmNdragCallback whenever the
user clicks and drags, or “spins,” the Dial’s knob or pointer.

A pointer to a SgDialCallbackStruct structure is passed to each Dial callback
function:

typedef struct {
int reason;
XEvent *event;
int position;

} SgDialCallbackStruct;

The SgDialCallbackStruct parameters are:

reason The reason the callback was invoked. This value is
XmCR_VALUE_CHANGED in the event of a
XmNvalueChangedCallback and XmCR_DRAG in the
event of a XmNdragCallback.

event A pointer to the XEvent that triggered the callback

position The new Dial value

The New Widgets

47

The Thumbwheel Widget

The ThumbWheel widget (SgThumbWheel), shown in Figure 4-5, is a new
widget that allows users to input or modify a value, either from within a
range of values or from an unbounded (infinite) range.

Figure 4-5 The Thumbwheel Widget

A ThumbWheel has an elongated rectangular region within which a wheel
graphic is displayed. Users can modify the ThumbWheel’s value by
spinning the wheel. A ThumbWheel can also include a home button, located
outside the wheel region. This button allows users to set the ThumbWheel’s
value to a known position.

You must include the header file <Sgm/ThumbWheel.h> in any source file that
uses a Thumbwheel widget.

For detailed information on the ThumbWheel widget, refer to the
SgThumbWheel(3X) reference page. For an example program using the
ThumbWheel widget, see “Example Program for Thumbwheel” on
page 258. You can also examine, compile, and experiment with the
thumbwheel demonstration program in the directory
/usr/src/X11/motif/Sgm/thumbwheel. See “Thumbwheels” in Chapter 9 of the
Indigo Magic User Interface Guidelines for guidelines on using the
ThumbWheel widget in your application.

Controlling the ThumbWheel Interface

You control the display characteristics of a ThumbWheel through widget
resources.

The resources XmNminimum and XmNmaximum determine the minimum
and maximum values of the ThumbWheel. Setting XmNmaximum equal to

Home Button

Wheel

48

Chapter 4: Using the New and Enhanced Widgets

XmNminimum indicates an infinite range. The default value of
XmNminimum is 0 and the default value of XmNmaximum is 100.

The SgNangleRange resource specifies the angular range, in degrees,
through which the ThumbWheel is allowed to rotate. The default of 150
represents roughly the visible amount of the wheel. Thus clicking at one end
of the wheel and dragging the mouse to the other end would give roughly
the entire range from XmNminimum to XmNmaximum.

In conjunction with XmNmaximum and XmNminimum, the
SgNangleRange resource controls the fineness or coarseness of the wheel
control when it is not infinite. If this value is 0, the ThumbWheel has an
infinite range. If the range of the ThumbWheel is infinite, you can use the
SgNunitsPerRotation resource to specify the change in the ThumbWheel’s
value for each full rotation of the wheel.

If the value of SgNshowHomeButton is TRUE, the default, the
ThumbWheel displays a home button by the slider. The user can click on the
home button to set the value of the ThumbWheel to a known value, which is
specified by the SgNhomePosition resource. The default value of
SgNhomePosition is 50.

The XmNorientation resource determines whether the orientation of the
ThumbWheel is vertical, indicated by a value of XmVERTICAL, or
horizontal, indicated by a value of XmHORIZONTAL. The default value is
XmVERTICAL.

Getting and Setting the ThumbWheel’s Value

The XmNvalue resource contains the current position of the ThumbWheel.
XmNvalue must be a value between XmNminimum and XmNmaximum if
the ThumbWheel is not “infinite.” You can set or get the value of a
ThumbWheel widget at any time by respectively setting or getting its
XmNvalue resource.

In ThumbWheel callback functions, the ThumbWheel value is provided as
the value parameter of the SgThumbWheelCallbackStruct structure passed
to the functions. “Detecting Changes in the ThumbWheel’s Value” describes
the ThumbWheel callbacks.

The New Widgets

49

Detecting Changes in the ThumbWheel’s Value

The ThumbWheel widget defines two callback list resources,
XmNvalueChangedCallback and XmNdragCallback. A ThumbWheel
widget invokes XmNvalueChangedCallback whenever its value changes
either programmatically (that is, by setting the value of XmNvalue) or
through user interaction. A ThumbWheel widget invokes
XmNdragCallback whenever the user clicks and drags, or “spins,” the
ThumbWheel’s wheel.

A pointer to a SgThumbWheelCallbackStruct structure is passed to each
ThumbWheel callback function:

typedef struct { int reason;
XEvent * event;
int value;

} SgThumbWheelCallbackStruct;

The SgThumbWheelCallbackStruct parameters are:

reason The reason the callback was invoked. This value is
XmCR_VALUE_CHANGED in the event of a
XmNvalueChangedCallback and XmCR_DRAG in the
event of a XmNdragCallback.

event A pointer to the XEvent that triggered the callback.

position The new ThumbWheel value.

The Finder Widget

The Finder widget (SgFinder), shown in Figure 4-6, is a new widget that
accelerates text selection of long objects such as filenames. (A good way to
experiment with a Finder widget is to select “An Icon” from the Find
toolchest.)

50

Chapter 4: Using the New and Enhanced Widgets

Figure 4-6 The Finder Widget

The Finder widget is customizable for various applications (it’s not just for
looking at directories; see the SgFinder(3X) reference page for customization
details). The Finder widget includes four components:

Text field Displays the name of a file or directory.

Path navigation bar
Contains buttons representing each directory in the
pathname. When the user clicks on a path bar button, the
Finder sets the current directory to the directory listed
underneath that button. The path bar is created with an
SgZoomBar(3X) widget.

Recycle button When users click on the Recycle button, the recycle list
appears listing the directories that the user has selected
during the current Finder session. Selecting an item from
the recycle list changes the current directory to the selected
directory. The recycle button is created with an
SgDynaMenu(3X) widget.

Drop pocket Displays the Desktop file icon for the file listed in the text
field. The user can drop Desktop file icons into the drop
pocket to find the pathname for the file and drag icons out
of the drop pocket and put them on the Desktop. The
recycle button is created with an SgDropPocket(3X)
widget.

You must include the header file <Sgm/Finder.h> in any source file that uses
a Finder widget.

For more detailed information on the Finder widget, refer to the
SgFinder(3X), SgDropPocket(3X), and SgDynaMenu(3X) reference pages.
For an example using the Finder widget, see “Example Program for Finder”
on page 255. You can also examine, compile, and experiment with the

Text field

Path navigation bar

Drop pocket

Recycle button
(DynaMenu)

(Zoom Bar)

The New Widgets

51

finderTest demonstration program in the directory
/usr/src/X11/motif/Sgm/finder. See “File Finder” in Chapter 9 of the Indigo
Magic User Interface Guidelines for guidelines on using the Finder widget in
your application.

Controlling the Finder Interface

If you don’t need the drop pocket feature of the Finder widget, you can set
the value of the resource SgNuseDropPocket to FALSE when you create the
widget. This bypasses the costs of setting up drag and drop and loading the
file icon libraries. Note that you can’t set this resource using XtSetValues();
if you don’t originally create a Finder widget with a drop pocket, you can’t
add one afterwards.

Similarly, if you don’t need the Recycle button, you can set the value of the
resource SgNuseHistoryMenu to FALSE. Note that you can’t set this
resource using XtSetValues(); if you don’t originally create a Finder widget
with a Recycle button, you can’t add one afterwards.

You can customize the appearance of the Recycle button by setting the value
of the SgNhistoryPixmap resource to the pixmap you want to display.

By default, the Finder widget determines where to place the buttons on the
path navigation bar by the location of the forward slash (/) character in the
text field. You can specify a different separator character by providing it as
the value of the SgNseparator resource. This feature is useful if you want to
use the Finder widget to display something other than filenames.

Getting and Setting Finder Values

You can retrieve the current value of the Finder’s text field with
SgFinderGetTextString():

char *SgFinderGetTextString(Widget w);

You can set the value of the text field with SgFinderSetTextString():

void SgFinderSetTextString(Widget w, char *value);

52

Chapter 4: Using the New and Enhanced Widgets

You can add an item to the “history list” of the Recycle button with
SgFinderAddHistoryItem():

void SgFinderAddHistoryItem(Widget w, char *str);

You can clear the Recycle button’s history list with SgFinderClearHistory():

void SgFinderClearHistory(Widget w);

You can access a widget component within a finder using
SgFinderGetChild():

Widget SgFinderGetChild(Widget w, int child);

child specifies the component and can take any of the following values:

SgFINDER_DROP_POCKET
The drop pocket

SgFINDER_TEXT
The text field

SgFINDER_ZOOM_BAR
The path navigation bar

SgFINDER_HISTORY_MENUBAR
The Recycle button

Handling User Interaction With the Finder

When the user clicks a button in the path navigation bar, the default action
of the Finder is to set the current directory to the directory listed underneath
that button. You can change this behavior by setting the
SgNsetTextSectionFunc resource to the handler you want to use. The
handler function must be of type SgSetTextFunc, which is defined in
<Sg/Finder.h>:

typedef void (*SgSetTextFunc)(Widget finder, int section);

The first argument is the Finder widget and the second is an integer
corresponding to the button pressed. Buttons are numbered sequentially
from the left, starting with 0. You can perform whatever operations you want
in this function, but typically you include a call to SgFinderSetTextString()
to set the value of the text field after the user clicks a button.

The New Widgets

53

Additionally, the Finder widget defines two callback list resources:

XmNactivateCallback
Invoked when the user clicks a path navigation bar button,
when the text field generates an activateCallback (for
example, the user presses the <Return> key in the text
field), or when you set the text string by calling
SgFinderSetTextString(). A pointer to an
XmAnyCallbackStruct structure is passed to each callback
function. The reason sent by the callback is
XmCR_ACTIVATE.

XmNvalueChangedCallback
Invoked when text is deleted from or inserted into the text
field. A pointer to an XmAnyCallbackStruct structure is
passed to each callback function. The reason sent by the
callback is XmCR_VALUE_CHANGED.

The Graph Widget

The Graph widget (SgGraph) allows you to display any group of widgets as
a graph, with each widget representing a node. Figure 4-7 shows an example
of a Graph widget.

Figure 4-7 The Graph Widget

The arcs used to connect the nodes are instances of an Arc widget (SgArc),
developed specifically for use with the Graph widget.

Node

Arc

54

Chapter 4: Using the New and Enhanced Widgets

The Graph widget allows you to display any group of widgets as a graph,
with each widget representing a node. The graph can be disconnected and
can contain cycles. The arcs used to connect the nodes are instances of an Arc
widget (SgArc), developed specifically for use with the Graph widget. Arcs
may be undirected, directed, or bidirected. Note that the Graph widget does
not understand the semantics of arc direction; in other words, for layout and
editing purposes, an Arc will always have a parent and a child regardless of
its direction.

The Graph widget has the ability to arrange all nodes either horizontally or
vertically according to an internal layout algorithm, and supports an edit
mode in which arcs and nodes may be interactively repositioned as well as
created. There is also a read-only mode in which all events are passed
directly to the children of the Graph widget. In edit mode, the Graph takes
over all device events for editing commands.

The Graph is a complex widget, and a full discuss of its resources, utility
functions, and capabilities is beyond the scope of this document. For
detailed information about the Graph and Arc widgets, refer to the
SgGraph(3X) and SgArc(3X) reference pages.

You must include the header file <Sgm/Graph.h> in any source file that uses
a Graph widget. You must include the header files <Sgm/Graph.h> and
<Sgm/Arc.h> in any source file that uses an Arc widget.

The Springbox Widget

The SpringBox widget (SgSpringBox) is a new container widget that
arranges its children in a single row or column based on a set of spring
constraints assigned to each child. You can use the SpringBox widget to
create layouts similar to those supported by the XmForm widget, but the
SpringBox widget is usually easier to set up.

The value of the SpringBox widget’s XmNorientation resource determines
its orientation. The default value, XmHORIZONTAL, specifies a horizontal
SpringBox and the value XmVERTICAL specifies a vertical SpringBox.

To use the SpringBox, you set constraint resources on each child of the
widget to specify the “springiness” for both the widget’s size and position
relative to its siblings.

The New Widgets

55

You control the springiness of a widget’s size by setting the values of its
XmNverticalSpring and XmNhorizontalSpring resources. A value of zero
means the child cannot be resized in that direction. For non-zero values, the
values are compared to the values of other springs in the overall system to
determine the proportional effects of any resizing. For example, a widget
with a springiness of 200 would stretch twice as much as a widget with a
springiness of 100. The default value of both resources is zero.

The values of the resources XmNleftSpring, XmNrightSpring,
XmNtopSpring, and XmNbottomSpring control the springiness of a
widget’s position in relation to its neighboring boundaries. By default, the
value of each of these springs is 50. A value of zero means that the SpringBox
widget cannot add additional space adjacent to that part of a widget. Larger
values are considered in relation to all other spring values in the system.

You must include the header file <Sgm/SpringBox.h> in any source file that
uses a SpringBox widget. For more detailed information on the SpringBox
widget, refer to the SgSpringBox(3X) reference page.

The Grid Widget

The Grid widget (SgGrid) is a new container widget that arranges its
children in a two-dimensional grid of arbitrary size. You can separately
designate each row and column of the grid as having a fixed size or as
having some degree of stretchability. You can also resize each child in either
or both directions, or force a child to a fixed size.

You must include the header file <Sgm/Grid.h> in any source file that uses a
Grid widget. For detailed information on the Grid widget, refer to the
SgGrid(3X) reference page.

Setting Grid Characteristics

You specify the number of rows and columns in a Grid by setting the values
of its XmNnumRows and XmNnumColumns resources, respectively. The
default value for each is 1. Note that you can set the size of a Grid only when
you create it; you can’t use XtSetValues() to change the number of rows or
columns in a Grid.

56

Chapter 4: Using the New and Enhanced Widgets

The XmNautoLayout resource determines the layout policy for a Grid. If its
value is TRUE (the default), all rows and columns that have a non-zero
resizability factor (described below) are sized according to the desired
natural size of the widgets in that row or column.

If XmNautoLayout is FALSE, all widgets in resizable rows or columns are
sized according to the resizability factor for that row or column. By default,
the resizability factor is “1” for all rows and columns, which results in each
cell in the grid having an equal size. You can change the resizability factor
for a row or column by calling SgGridSetRowMargin() or
SgGridSetColumnMargin() respectively:

SgGridSetRowResizability(Widget widget, int row, int factor);

SgGridSetColumnResizability(Widget widget, int column,
int factor);

widget is the Grid widget. The second argument specifies the row or column.
Rows are numbered sequentially from the top starting at 0; columns are
numbered sequentially from the left starting with 0. factor is the resizability
factor for the row or column. Setting this value to 0 establishes the specified
row or column as not resizable, regardless of the setting of XmNautoLayout.
Other values are taken relative to all other rows. For example, if a Grid has
three rows whose resizability factors are set to 100, 100, and 200, the first and
second rows will occupy one quarter of the space (100/(100+100+200)),
while the third row will occupy one half of the available space.

The XmNdefaultSpacing resource default spacing between rows and
columns. The default value is 4 pixels. You can override the value on a per
row/column basis using SgGridSetColumnMargin() or
SgGridSetRowMargin() respectively:

SgGridSetRowMargin(Widget widget, int row, Dimension margin);

SgGridSetColumnMargin(Widget widget, int column,
Dimension margin);

widget is the Grid widget. The second argument specifies the row or column.
margin specifies the margin in pixels between the row or column’s edges and
the widgets it contains. The margin is added to both sides of each row or
column, so adding a 1 pixel margin increases the relevant dimension of the
affected row or column by 2 pixels.

The New Widgets

57

You can display the boundaries of a Grid by setting the value of its
XmNshowGrid resource to TRUE. You might find this useful for debugging
resize specifications. The default value is FALSE.

Setting Constraints on the Child Widget of a Grid

The XmNrow and XmNcolumn resources of a Grid’s child widget specify
the row and column in which the Grid places the child. If you don’t specify
these values, the Grid widget places the child in a randomly selected
unoccupied cell.

The XmNresizeVertical and XmNresizeHorizontal resources determine
whether the Grid can resize the child to fill the cell in the vertical and
horizontal directions. The default value of TRUE allows the Grid to resize
the child.

If a child is a fixed size, and smaller than the cell that contains it, the child’s
position within the cell is determined by an XmNgravity resource. Gravity
may be any of the gravity values defined by Xlib except StaticGravity and
ForgetGravity. The default is NorthWestGravity. Note that gravity has no
effect if both XmNresizeVertical and XmNresizeHorizontal are TRUE.

Examples of Using the Grid Widget

Example 4-1 creates a grid of four buttons that all size (and resize) equally to
fill one quarter of their parent.

Example 4-1 An Example of Using the Grid Widget

createGrid(Widget parent)
{

int n;
Arg args[10];
Widget grid, child1, child2, child3, child4;

n = 0;
XtSetArg(args[n], XmNnumRows, 2); n++;
XtSetArg(args[n], XmNnumColumns, 2); n++;
grid = SgCreateGrid(parent, "grid", args, n);

child1 = XtVaCreateManagedWidget("child1",
xmPushButtonWidgetClass,

58

Chapter 4: Using the New and Enhanced Widgets

grid,
XmNrow, 0,
XmNcolumn, 0,
NULL);

child2 = XtVaCreateManagedWidget("child2",
xmPushButtonWidgetClass,
grid,
XmNrow, 0,
XmNcolumn, 1,
NULL);

child3 = XtVaCreateManagedWidget("child3",
xmPushButtonWidgetClass
grid,
XmNrow, 1,
XmNcolumn, 0,
NULL);

child4 = XtVaCreateManagedWidget("child4",
xmPushButtonWidgetClass
grid,
XmNrow, 1,
XmNcolumn, 1,
NULL);

XtManageChild(grid);
}

Example 4-2 creates four buttons. The top row has a fixed vertical size, while
the bottom row is resizable. The left column has a fixed size, but the right
column can be resized. The button in the lower right can be resized, but the
others cannot. The button in the lower left cell, which can be resized
vertically, floats in the middle of its cell. The button in the upper right stays
to the left of its cell.

Example 4-2 Another Example of Using the Grid Widget

createGrid(Widget parent) {
int n;
Arg args[10];
Widget grid, chidl1, child2, child3, child4;

n = 0;
XtSetArg(args[n], XmNnumRows, 2); n++;
XtSetArg(args[n], XmNnumColumns, 2); n++;
grid = SgCreateGrid(parent, "grid", args, n);

SgGridSetColumnResizability(grid, 0, 0);

The New Widgets

59

SgGridSetRowResizability(grid, 0, 0);

child1 = XtVaCreateManagedWidget("child1",
xmPushButtonWidgetClass,
grid,
XmNrow, 0,
XmNcolumn, 0,
NULL);

child2 = XtVaCreateManagedWidget("child2",
xmPushButtonWidgetClass,
grid,
XmNrow, 0,
XmNcolumn, 1,
XmNresizeHorizontal, FALSE,
XmNgravity, WestGravity,
NULL);

child3 = XtVaCreateManagedWidget("child3",
xmPushButtonWidgetClass,
grid,
XmNrow, 1,
XmNcolumn, 0,
XmNresizeVertical, FALSE,
XmNgravity, CenterGravity,
NULL);

child4 = XtVaCreateManagedWidget("child4",
xmPushButtonWidgetClass,
grid,
XmNrow, 1,
XmNcolumn, 1,
NULL);

XtManageChild(grid);
}

Chapter 5

Users expect applications to interact
with the window manager in a
consistent manner. This chapter
describes how to implment an
appropriate application model and
interact with the window and session
manager.

Window, Session, and Desk
Management

63

Chapter 5

5. Window, Session, and Desk Management

This chapter contains these sections:

• “Window, Session, and Desk Management Overview” on page 63
briefly discusses window, session, and desk management on Silicon
Graphics systems.

• “Implementing an Application Model” on page 66 describes how to
structure your application to follow one of the four application models.

• “Interacting With the Window and Session Manager” on page 68
describes how to create windows and interact with the window and
session manager.

Window, Session, and Desk Management Overview

This section briefly discusses features of window, session, and desk
management on Silicon Graphics systems. It also provides a list of references
for further reading on window and session management.

Window Management

4Dwm, which is based on mwm (the Motif™ Window Manager), is the
window manager typically used on Silicon Graphics workstations. It
provides functions that allow both users and programmers to control
elements of window states such as: placement, size, icon/normal display,
and input-focus ownership. In addition to window management, 4Dwm
provides session and desks management.

Chapter 3, “Windows in the Indigo Magic Environment,” of the Indigo Magic
User Interface Guidelines discusses the interactions and behaviors that your
application’s windows should support. “Interacting With the Window and

64

Chapter 5: Window, Session, and Desk Management

Session Manager” on page 68 describes how to comply with the style
guidelines.

See IRIS Essentials for more information about the features 4Dwm provides
for your users. See the mwm(1X) and 4Dwm(1X) reference pages for more
information about the features 4Dwm provides.

Session Management

Session management allows users to log out and have any running
applications automatically restart when they log back in. In 4Dwm, users
have the option of turning session management on (the default) or off.

For your application to be restarted via the 4Dwm session manager, your
application must register its initial state with the session manager and make
sure the current state is registered at all times.

Additionally, your application should restart in the same state it was in
when the user logged out (for example, the same windows open, the same
files open, and so on). To support this, you need to design your application
so that when the 4Dwm session manager restarts it, it can redisplay any of its
co-primary or support windows that were open when the user logged out,
reopen any data files that were open, and so on. You can support this either
by providing command line options to your application or other
mechanisms such as a state file that your application reads when it is
launched.

“Handling the Window Manager Save Yourself Protocol” on page 78
describes what your application needs to do to support session
management. “Session Management” in Chapter 3 of the Indigo Magic User
Interface Guidelines provides further guidelines for handling session
management.

Window, Session, and Desk Management Overview

65

Desk Management

Users can use “desks” to create multiple virtual screens.1 They can assign
any primary or support window to any desk, causing that window to appear
in the thumbnail sketch in the Desks Overview window.

“Desks” in Chapter 3 of the Indigo Magic User Interface Guidelines discusses
the important development concerns issues relating to desks. The key points
to keep in mind are:

• Transient windows appear on every desk and are not shown in the
Desks overview window—so choose your transient windows carefully.

• Application windows that are on a desk other than the current one are
in a state similar to the minimized state—processing continues
although the window is no longer mapped to the screen display. Keep
this in mind when selecting which operations should continue to be
processed when your application is in a minimized state.

• Users can select different backgrounds for different desks, so your
application should not create its own screen background.

Further Reading on Window and Session Management

For more information on window and session management with 4Dwm,
refer to the mwm(1X) and 4Dwm(1X) reference pages. You might also want to
look at IRIS Essentials, since this book explains important window and
session management features to your users.

For more information on window and session management with Xt, refer to
the chapters on Interclient Communication in these manuals:

• The X Window Systems Programming and Applications with Xt, OSF/Motif
Edition, Second Edition, by Doug Young

1 Because of a software patent dispute instituted by Xerox Corporation, the desks and
Desks Overview features of this version of the IRIX operating system are now optional
and may or may not be available to users after May 15, 1995. On this date, these
features will be disabled unless users have entered a license code obtained from Silicon
Graphics. See the Desktop Execution Environment (desktop_eoe) Release Notes for more
information on this subject.

66

Chapter 5: Window, Session, and Desk Management

• O’Reilly Volume Four, X Toolkit Intrinsics Programming Manual,
OSF/Motif Edition, by Adrian Nye and Tim O’Reilly

For more information on window and session management with Xlib, refer
to the chapters on Inter-Client Communication in O’Reilly Volume One, Xlib
Programming Manual, by Adrian Nye. For more detailed information, refer to
the Inter-Client Communications Conventions Manual (ICCCM). (The ICCCM
is reprinted as an appendix of O’Reilly Volume Zero, X Protocol Reference
Manual.)

More detailed information on window properties is available in the
OSF/Motif Programmer’s Guide, in the chapter on “Inter-Client
Communication Conventions.”

Implementing an Application Model

“Application Models” in Chapter 6 of the Indigo Magic User Interface
Guidelines describes four application models based on four different window
categories: main primary windows, co-primary windows, support
windows, and dialogs. It also describes how to select a model appropriate
for your application. This section provides suggestions for implementing
each application model, including recommended shell types for your
primary windows. “Interacting With the Window and Session Manager” on
page 68 describes how to create the windows and get them to look and
behave in the manner described in “Application Window Categories and
Characteristics” in Chapter 3 of the Indigo Magic User Interface Guidelines.

Implementing the “Single Document, One Primary” Model

This model is the simplest to implement. You can use the ApplicationShell
returned by XtAppInitialize() as your application’s main window. This
model requires no special treatment to handle schemes or for window or
session management.

Implementing an Application Model

67

Implementing the “Single Document, Multiple Primaries”
Model

The simplest way to implement this model is to use the ApplicationShell
returned by XtAppInitialize() as your application’s main window. You can
create co-primary windows as popup children of the main window using
TopLevelShells. This approach requires no special treatment to handle
schemes or for window or session management.

You can also choose the implement this model using the techniques
described in “Implementing the “Multiple Document, No Visible Main”
Model,” although this requires more work.

Caution: Don’t use XtAppCreateShell() to create co-primary windows. If
you do, the windows don’t pick up the resources specified in schemes.

Implementing the “Multiple Document, Visible Main”
Model

Once again, the simplest way to implement this model is to use the
ApplicationShell returned by XtAppInitialize() as your application’s main
window. You can create co-primary windows as popup children of the main
window using TopLevelShells. This approach requires no special treatment
to handle schemes or for window or session management.

You can also choose the implement this model using the techniques
described in “Implementing the “Multiple Document, No Visible Main”
Model,” although this requires more work.

Caution: Don’t use XtAppCreateShell() to create co-primary windows. If
you do, the windows don’t pick up the resources specified in schemes.

Implementing the “Multiple Document, No Visible Main”
Model

This model requires more careful consideration than the other models.
Presumably, the visible windows can be created and destroyed in any order;

68

Chapter 5: Window, Session, and Desk Management

therefore it is very difficult to use one as a main window and have the others
be children of it.

Instead, the best solution in this case is to leave the ApplicationShell
returned by XtAppInitialize() unrealized. You can then create the visible
co-primary windows as popup children of this invisible shell.

Session management requires a realized ApplicationShell widget so that
your application can store restart information in its XmNargv and XmNargc
resources. Because your application’s visible windows can be created and
destroyed dynamically, you should use ApplicationShells rather than
TopLevelShells for your visible windows. Then you can set the XmNargv
and XmNargc resources on any of them. (Another option would be to use
TopLevelShells for the visible windows and then explicitly create and set
WM_COMMAND and WM_MACHINE properties on the windows.)

One complication when using ApplicationShells is that by default, IRIS IM
automatically quits an application when it destroys an ApplicationShell. To
avoid this, you must set each window’s XmNdeleteResponse resource to
XmDO_NOTHING, and then explicitly handle the window manager’s
WM_DELETE_WINDOW protocol for each window. “Handling the
Window Manager Delete Window Protocol” on page 76 describes how to
implement these handlers.

Another complication is that the initial values of the XmNargv and
XmNargc resources are stored in the application’s invisible main window
rather than a visible window. This is also true for the XmNgeometry
resource if specified by the user. To avoid this, you should copy these values
from the invisible main window to your application’s first visible window.

Caution: Don’t use XtAppCreateShell() to create co-primary windows. If
you do, the windows don’t pick up the resources specified in schemes.

Interacting With the Window and Session Manager

Most communication between an application and a window manager takes
place through properties on an application’s top-level windows. The
window manager can also generate events that are available to the

Interacting With the Window and Session Manager

69

application. You can use Xlib functions to set properties and handle window
manager events.

In IRIS IM, shell widgets simplify communications with the window
manager. The application can set most window properties by setting shell
resources. Shells also select for and handle most events from the window
manager.

Because this guide assumes that you are programming in IRIS IM rather
than Xlib, this chapter describes the IRIS IM mechanisms for creating
windows and interacting with the window and session manager.

For detailed information about setting window properties using shell
resources, consult Chapter 11, “Interclient Communication,” in O’Reilly’s X
Toolkit Intrinsics Programming Manual and Chapter 16, “Interclient
Communication,” in the OSF/Motif Programmer’s Guide. For detailed
information about window properties and setting them using Xlib routines,
consult Chapter 12, “Interclient Communication,” in O’Reilly’s Xlib
Programming Manual.

Creating Windows and Setting Decorations

Chapter 6, “Application Windows,” in the Indigo Magic User Interface
Guidelines describes several application models based on four different
window categories: main primary windows, co-primary windows, support
windows, and dialogs. This section describes how to implement these
window categories with proper window decorations and window menu
entries.

To properly integrate with the Indigo Magic Desktop, you need to use the
appropriate shell widget for each widow category. This section describes
which shell widget to use for each window category. Then you need to
properly set the shell’s XmNmwmFunctions resource to control which
entries appear in the window menu and the XmNmwmDecorations
resource to remove the window’s resize handles, if appropriate.

70

Chapter 5: Window, Session, and Desk Management

Creating a Main Primary Window

Your application’s main primary window must be an ApplicationShell.
Typically, you use the ApplicationShell widget returned by
XtAppInitialize() as your application’s main primary window.

You should set the main primary window’s XmNmwmFunctions resource
to remove the “Close” option from the window menu. Also, if you don’t
want the user to be able to resize the window, you should set
XmNmwmFunctions to remove the “Size” and “Maximize” options and set
XmNmwmDecorations to remove the resize handles. Example 5-1 shows
how you can create a main primary window and set the resource values
appropriately.

“Main and Co-Primary Windows” in Chapter 6 of the Indigo Magic User
Interface Guidelines provides guidelines for using main primary windows.

Example 5-1 Creating a Main Primary Window

#include <Xm/Xm.h> /* Required by all Motif applications */
#include <Xm/MwmUtil.h> /* Required to set window menu and decorations */
#include <X11/Shell.h> /* Shell definitions */

void main (int argc, char **argv)
{

Widget mainWindow; /* Main window shell widget */
XtAppContext app; /* An application context, needed by Xt */
Arg args[10]; /* Argument list */
int n; /* Argument count */

/*
* Initialize resource value flags to include all window menu options and
* all decorations.
*/

long functions = MWM_FUNC_ALL;
long handleMask = MWM_DECOR_ALL;

n = 0;

/*
* The following lines REMOVE items from the window manager menu.
*/

Interacting With the Window and Session Manager

71

functions |= MWM_FUNC_CLOSE; /* Remove "Close" menu option */

/* Include the following two lines only if the window is *not* resizable */

functions |= MWM_FUNC_RESIZE; /* Remove "Size" menu option */
functions |= MWM_FUNC_MAXIMIZE; /* Remove "Maximize" menu option */

XtSetArg(args[n], XmNmwmFunctions, functions); n++;

/* Include the following two lines only if the window is *not* resizable */

handleMask |= MWM_DECOR_RESIZEH; /* Remove resize handles */

XtSetArg(args[n], XmNmwmDecorations, handleMask); n++

/*
* Initialize Xt and create shell
*/

mainWindow = XtAppInitialize (&app, "WindowTest", NULL, 0,
&argc, argv, NULL, args, n);

/* ... */

}

Creating a Co-Primary Window

Your application’s co-primary windows should be ApplicationShells or
TopLevelShells. “Implementing an Application Model” on page 66
describes which to choose depending on your application model. The easiest
way to implement these windows are as pop-up children of the shell widget
returned by XtAppInitialize() (which is typically your application’s main
primary window).

If the user can’t quit the application from a co-primary window, you should
set the window’s XmNmwmFunctions resource to remove the “Exit” option
from the window menu. Also, if you don’t want the user to be able to resize
the window, you should set XmNmwmFunctions to remove the “Size” and
“Maximize” options and set XmNmwmDecorations to remove the resize
handles. Example 5-2 shows how you can create a co-primary window and
set the resource values appropriately.

72

Chapter 5: Window, Session, and Desk Management

Note: The default action when IRIS IM destroys an ApplicationShell is to
quit your application. To avoid this if you are using ApplicationShells for
your co-primary windows, you must set each window’s
XmNdeleteResponse resource to XmDO_NOTHING, and then explicitly
handle the window manager’s WM_DELETE_WINDOW protocol for each
window. You might want to follow this approach even if you use
TopLevelShells for co-primary windows so that you can simply popdown
the window instead of deleting it. This can save time if you might redisplay
the window later. “Handling the Window Manager Delete Window
Protocol” on page 76 describes how to implement these handlers.

“Main and Co-Primary Windows” in Chapter 6 of the Indigo Magic User
Interface Guidelines provides guidelines for using co-primary windows.

Example 5-2 Creating a Co-Primary Window

#include <Xm/Xm.h> /* Required by all Motif applications */
#include <Xm/MwmUtil.h> /* Required to set window menu and decorations */
#include <X11/Shell.h> /* Shell definitions */

Widget mainWindow; /* Main window shell widget */
Widget coPrimary; /* Co-primary window shell widget */
Arg args[10]; /* Argument list */
int n; /* Argument count */

/*
* Initialize resource value flags to include all window menu options and
* all decorations.
*/

long functions = MWM_FUNC_ALL;
long handleMask = MWM_DECOR_ALL;

/* ... */

n = 0;

/*
* The following lines REMOVE items from the window manager menu.
*/

/* Remove the "Exit" window menu option if users can *not* quit from this window */

functions |= MWM_FUNC_QUIT;

Interacting With the Window and Session Manager

73

/* Include the following two lines only if the window is *not* resizable */

functions |= MWM_FUNC_RESIZE; /* Remove "Size" menu option */
functions |= MWM_FUNC_MAXIMIZE; /* Remove "Maximize" menu option */

XtSetArg(args, XmNmwmFunctions, functions); n++;

/* Include the following two lines only if the window is *not* resizable */

handleMask |= MWM_DECOR_RESIZEH; /* Remove resize handles */

XtSetArg(args, XmNmwmDecorations, handleMask); n++;

/* You need the following line only if you use an ApplicationShell for the window */

XtSetArg(args, XmNdeleteResponse, XmDO_NOTHING); n++;

/*
* Assume that the application has already created a main window and assigned its widget
* to the variable mainWindow
*/

coPrimary = XtCreatePopupShell("coPrimary", applicationShellWidgetClass,
mainWindow, args, n);

/* ... */

Creating a Support Window

Support windows are essentially custom dialogs. The easiest way to create a
support window is to use XmCreateBulletinBoardDialog() to create a
DialogShell containing a BulletinBoard widget, or use
XmCreateFormDialog() to create a DialogShell containing a Form widget.
You can then add appropriate controls and displays as children of the
BulletinBoard or Form.

Another advantage to using a DialogShell for support windows is that they
automatically have the proper window menu options and decorations. If
you don’t want the user to be able to resize the window—and you
implemented the support window as a customized dialog—you should set
XmNnoResize to “TRUE” to remove the “Size” and “Maximize” options

74

Chapter 5: Window, Session, and Desk Management

and to remove the resize handles. Example 5-3 shows how you can create a
support window and set the resource values appropriately.

“Support Windows” in Chapter 6 of the Indigo Magic User Interface Guidelines
provides guidelines for using support windows.

Example 5-3 Creating a Support Window

#include <Xm/Xm.h> /* Required by all Motif applications */
#include <Xm/MwmUtil.h> /* Required to set window menu and decorations */
#include <X11/Form.h> /* Form definitions */

Widget parentWindow; /* Parent window of support window */
Widget supportWindow; /* Support window */
Arg args[10]; /* Argument list */
int n; /* Argument count */

/* ... */

n = 0;

/* Include the following line only if the window is *not* resizable */

XtSetArg(args, XmNnoResize, TRUE); n++

supportWindow = XmCreateFormDialog(parentWindow, "supportWindow", args, n);

/* Create the window interface... */

Creating a Dialog

The easiest way to create dialogs is to use the IRIS IM convenience functions
such as XmCreateMessageDialog() and XmCreatePromptDialog(). These
functions automatically set most of the window characteristics required for
the Indigo Magic environment.

Dialogs automatically have the proper window menu options and
decorations. If you don’t want the user to be able to resize the dialog, you
should set XmNnoResize to “TRUE” to remove the “Size” and “Maximize”
options and to remove the resize handles. Example 5-4 shows an example of
creating a WarningDialog and setting the resource values appropriately.

Interacting With the Window and Session Manager

75

Chapter 10, “Dialogs,” in the Indigo Magic User Interface Guidelines provides
guidelines for using dialogs.

Example 5-4 Creating a Dialog

#include <Xm/Xm.h> /* Required by all Motif applications */
#include <Xm/MwmUtil.h> /* Required to set window menu and decorations */
#include <Xm/MessageB.h> /* Warning dialog definitions */

Widget parentWindow; /* Parent window of dialog */
Widget dialog; /* Dialog */
Arg args[10]; /* Argument list */
int n; /* Argument count */

/* ... */

n = 0;

/* Include the following line only if the window is *not* resizable */

XtSetArg(args, XmNnoResize, TRUE); n++

dialog = XmCreateWarningDialog (parentWindow, "warningDialog", args, n);

Handling Window Manager Protocols

This section describes how to handle window manager protocols, which
allow the window manager to send messages to your application. The
window manager sends these messages only if your application registers
callback function to handle the corresponding protocols.

Handling the Window Manager Quit Protocol

When a user selects the “Exit” option from a window menu, the window
manager sends a Quit message to your application. You should install a
callback routine to handle this event. Example 5-5 demonstrates installing
such a callback for the window specified by mainWindow.

Example 5-5 Handling the Window Manager Quit Protocol

Atom WM_QUIT_APP = XmInternAtom(XtDisplay(mainWindow),
"_WM_QUIT_APP",
FALSE);

76

Chapter 5: Window, Session, and Desk Management

XmAddWMProtocolCallback(mainWindow, WM_QUIT_APP,
quitCallback, NULL);

/* ... */

quitCallback(Widget w, XtPointer clientData,
XmAnyCallbackStruct cbs)

{
/* Quit application */

}

Note: You must install the quit callback for each window that contains an
“Exit” option in its window menu. Often the only such window is your
application’s main primary window.

The operations performed by the callback function should be the same as
those that occur when the user quits from within your application (for
example, by selecting an “Exit” option from a File menu). Your application
can prompt the user to save any files that are open, to perform any other
cleanup, or even to abort the quit.

Handling the Window Manager Delete Window Protocol

When a user selects the “Close” option from a window menu, the window
manager sends a Delete Window message to your application. How to
handle this message depends on whether the window is a co-primary
window, a dialog, or support window. (A main primary window should not
have a “Close” option on its window menu.)

To handle the Delete Window message with a co-primary window, you
should make sure to set the window’s XmNdeleteResponse resource to
XmDO_NOTHING. Otherwise, IRIS automatically deletes the window and,
if the window uses an ApplicationShell, quits the application.

The callback you install can ask for user confirmation and can decide to
comply or not comply with the request. If it decides to comply, your
application can either pop down or destroy the window. If you think that the
user might want to redisplay the window later, popping down the window
is usually the better choice because your application doesn’t have to
re-create it later. Example 5-6 shows an example of installing a callback to
handle the Delete Window message.

Interacting With the Window and Session Manager

77

Example 5-6 Handling the Window Manager Delete Window Protocol in
Co-Primary Windows

Atom WM_DELETE_WINDOW = XmInternAtom(XtDisplay(window),
"WM_DELETE_WINDOW",
FALSE);

XmAddWMProtocolCallback(window, WM_DELETE_WINDOW,
closeCallback, NULL);

/* ... */

closeCallback(Widget w, XtPointer clientData,
XmAnyCallbackStruct cbs)

{
/* Delete or pop down window */

}

For support windows and dialogs, you typically want to dismiss the
window when the user selects “Close.” Therefore, the default value of
XmNdeleteResponse, XmDESTROY, is appropriate. Additionally, you
should perform whatever other actions are appropriate for when that
support window or dialog is dismissed. Typically, you can accomplish this
by invoking the callback associated with the Cancel button, if it exists.
Example 5-7 shows an example of this.

Example 5-7 Handling the Window Manager Delete Window Protocol in
Support Windows and Dialogs

Atom WM_DELETE_WINDOW = XmInternAtom(XtDisplay(dialog),
"WM_DELETE_WINDOW",
FALSE);

XmAddWMProtocolCallback(dialog, WM_DELETE_WINDOW,
cancelCallback, NULL);

/* ... */

cancelCallback(Widget w, XtPointer clientData,
XmAnyCallbackStruct cbs)

{
/* Perform cancel operations */

}

78

Chapter 5: Window, Session, and Desk Management

Handling the Window Manager Save Yourself Protocol

The “Save Yourself” protocol is part of the session management mechanism.
The session manager sends a Save Yourself message to allow your
application to update the command needed to restart itself in its current
state. Currently, the session manager sends Save Yourself messages before
ending a session (that is, logging out) and periodically while a session is
active.

Your application doesn’t need to subscribe to the Save Yourself protocol.
Instead, your application can simply update the XmNargv and XmNargc
resources on one of its ApplicationShells whenever it changes state, for
example, when it opens or closes a file. The session manager re-saves its state
information whenever your application changes these resources. (Actually,
the session manager monitors the WM_COMMAND and WM_MACHINE
properties, which are set by the ApplicationShell whenever you change its
XmNargv and XmNargc resources.)

If you decide to use Save Yourself for session management, you can handle
the protocol on any realized ApplicationShell. Don’t use Save Yourself with
the unrealized main window of the “Multiple Document, No Visible Main”
application model. When the window manager sends a Save Yourself
message to your application, your application should update the value of
the XmNargv and XmNargc resources to specify the command needed to
restart the application in its current state. Once you’ve updated the
XmNargv and XmNargc resources, the session manager assumes that it can
safely kill your application. Example 5-8 shows how to handle Save Yourself
messages.

Note: Your application shouldn’t prompt the user for input when it receives
a Save Yourself message.

Example 5-8 Handling the Window Manager “Save Yourself” Protocol

Atom WM_SAVE_YOURSELF = XmInternAtom(XtDisplay(mainWindow),
"WM_SAVE_YOURSELF",
FALSE);

XmAddProtocols(mainWindow, &WM_SAVE_YOURSELF, 1);
XmAddWMProtocolCallback(mainWindow, WM_SAVE_YOURSELF,

saveYourselfCallback, NULL);

/* ... */

Interacting With the Window and Session Manager

79

saveYourselfCallback(Widget w, XtPointer clientData,
XmAnyCallbackStruct cbs)

{
/* Update this window’s XmNargv and XmNargc resources */

}

Your application might not be able to fully specify its state using command
line options. In that case, you can design your application to create a state file
to save its state and to read the state file when it restarts.

Setting the Window Title

To set the title of a main primary window or co-primary window in your
application, set the window’s title resource. If the title you specify uses a
non-default encoding, remember to also set the value of the titleEncoding
resource appropriately. For support windows and dialogs, set the value of
the XmNdialogTitle resource.

Choose the title according to the guidelines in the section “Window Title
Bar” in Chapter 3 of the Indigo Magic User Interface Guidelines. Update the
label so that it always reflects the current information. For example, if the
label reflects the name of the file the user is working on, you should update
the label when the user opens a different file.

Controlling Window Placement and Size

Users have the option of specifying window placement and size, either
through the -geometry option interactively using the mouse, or having
applications automatically place their windows on the screen. To support
automatic window placement, your application should provide default
placement information for its main primary and co-primary windows.
(Support windows and dialogs appear centered over their parent widget if
the value of their XmNdefaultPosition resources are TRUE, which is the
default.) You can also specify a default window size, minimum and
maximum window sizes, minimum and maximum aspect ratios, and
resizing increments for your windows. Typically, you should set these
resources in your application’s app-default file.

80

Chapter 5: Window, Session, and Desk Management

Controlling Window Placement

You should provide initial values for the window shell’s x and y resources
before mapping the window to specify its default location. The window
manager ignores these values if the user requests interactive window
placement or specifies a location using the -geometry option when invoking
your application. You should not use the window’s XmNgeometry resource
to control initial window placement, either in your application’s source code
or its app-default file.

“Window Placement” in Chapter 3 of the Indigo Magic User Interface
Guidelines provides guidelines for controlling window placement.

Controlling Window Size

If the user doesn’t specify a window size and you don’t explicitly set the
window size in your application, the initial size of the window is determined
by geometry management negotiations of the shell widget’s descendents.
Typically, the resulting size is just large enough for all of the descendent
widget to fit “comfortably.” Optionally, you can specify a default initial size
for a window by providing initial values for the window’s width and height
resources before mapping the window. You should not use the window’s
XmNgeometry resource to control initial window size, either in your
application’s source code or its app-default file.

You can also set several shell resources to specify minimum and maximum
window sizes, minimum and maximum aspect ratios, and resizing
increments for a window:

minHeight and minWidth
The desired minimum height and width for the window.

maxHeight and maxWidth
The desired maximum height and width for the window.

minAspectX and minAspectY
The desired minimum aspect ratio (X/Y) for the window.

maxAspectX and maxAspectY
The desired maximum aspect ratio (X/Y) for the window.

Interacting With the Window and Session Manager

81

baseHeight and baseWidth
The base for a progression of preferred heights and widths
for the window. The preferred heights are baseHeight plus
integral multiples of heightInc, and the preferred widths
are baseWidth plus integral multiples of widthInc. The
window can’t be resized smaller or larger than the values of
the min* and max* resources.

heightInc and widthInc
The desired increments for resizing the window.

“Window Size” in Chapter 3 of the Indigo Magic User Interface Guidelines
provides guidelines for controlling window size.

Chapter 6

A unique design helps users to
identify your application’s windows
easily when they are minimized. This
chapter describes how to create
images and labels for your
application’s minimized windows.

Customizing Your Application’s
Minimized Windows

85

Chapter 6

6. Customizing Your Application’s Minimized
Windows

Users can minimize (stow) your application’s window on the Desktop, by
clicking the minimize button in the top right corner of the window frame or
by selecting “Minimize” from the Window Menu. When a window is
minimized, it is replaced by a 100 x 100 pixel representation with an
identifying label of 13 characters or less. This is referred to as the minimized
window. (It is also commonly called an icon, but this document uses the term
minimized window to prevent confusing it with the Desktop icon.)

This chapter explains how to put the image of your choice on a minimized
window. It contains these sections:

• “Some Different Sources for Minimized Window Images” discusses
different sources from which you can generate a minimize icon picture.

• “Creating a Minimized Window Image: The Basic Steps” gives a
step-by-step explanation of how to customize your minimize icon.

• “Setting the Minimized Window Label” on page 89 describes how to set
the label of your minimized window.

• “Changing the Minimized Window Image” on page 89 mentions some
special considerations if you want to change the image in your
minimized window while your application is running.

Some Different Sources for Minimized Window Images

You can make a minimized window image out of any image that you can
display on your workstation monitor. This means that you can create a
picture using showcase or the drawing/painting tool of your choice, or you
can scan in a picture, or you can take a snapshot of some portion of your
application. You can even have an artist design your stow icons for you.
“Choosing an Image for Your Minimized Window” in Chapter 3 of the Indigo

86

Chapter 6: Customizing Your Application’s Minimized Windows

Magic User Interface Guidelines provides some guidelines for designing
minimized window images.

Figure 6-1 shows some different minimized window images that were
created in different ways. From left to right: the top row shows a scanned-in
photograph, a snapshot of the application itself, a scanned-in photograph
that was altered with imp, and scanned-in line art; the bottom row shows a
drawing representing the application, scanned-in line art, and two
artist-designed images.

Figure 6-1 Minimized Window Image Examples

Creating a Minimized Window Image: The Basic Steps

It’s important for users to be able to easily identify your application’s
windows when they are minimized, so you should define a specific image
and label for each primary and support window in your application. For
guidelines on selecting minimize images, see “Choosing an Image for Your
Minimized Window” in Chapter 3 of the Indigo Magic User Interface
Guidelines.

To make a minimized window image for your application:

1. Create an RGB image. If your image is already in RGB format, then all
you have to do is resize the image to an appropriate size (look at the
setting of the iconImageMaximum resource in 4Dwm to see the

Creating a Minimized Window Image: The Basic Steps

87

maximum size of the stow icon, currently 85x67). See “Resizing the
RGB Image Using imgworks” on page 88 for instructions on resizing
the image.

If your image is not in RGB format, you need to convert it to RGB. One
way to do this is to take a snapshot of your image. See “Using snapshot
to Get an RGB Format Image” on page 87 for instructions.

2. Scale the image to the correct size. See “Resizing the RGB Image Using
imgworks” on page 88 for instructions.

3. Name the image file. The filename should consist of two parts: first, the
application name (technically,. the res_name field of the WM_CLASS
property); and second, the .icon suffix. This gives you a name of the
form res_name.icon. For example, if your application’s name is
“chocolate,” the name of your image file should be:

chocolate.icon

4. Put the file in the /usr/lib/images directory.

Using snapshot to Get an RGB Format Image

You can use the snapshot tool to capture an image on your screen for use in
your image. To bring up snapshot, enter:

% snapshot

The snapshot tool, shown in Figure 6-2, appears.

Figure 6-2 The snapshot Tool

To use snapshot, follow these steps:

1. Bring up the desired image on your monitor.

2. Position the cursor over the snapshot tool. The cursor turns into a small
red camera.

3. While the cursor is still positioned over the snapshot tool, hold down the
<Shift> key. Don’t release it.

88

Chapter 6: Customizing Your Application’s Minimized Windows

4. Continuing to hold down the <Shift> key, move the cursor over to a
corner of the image you want to snap and, holding down the left mouse
button, drag the mouse to the opposite corner of the image. A red box is
formed around the image as you drag the cursor. Release the mouse
button when the box reaches the desired size.

5. After releasing the mouse button, you can adjust the red box from the
corners or the sides by holding the left mouse button down again and
resizing just as you would a window.

Everything in this red box is saved in the snapshot, so make sure you
don’t include any unwanted window borders or screen background. If
you have trouble telling what’s included in the box and what isn’t,
bring up the xmag tool by entering:

% xmag

The xmag window shows you a magnified view of the area around the
cursor.

6. When the red box is positioned exactly around the correct area of the
image, release the left mouse button and move the cursor back over the
snapshot tool.

7. Keeping the cursor positioned over the snapshot tool, release the
<Shift> key.

8. Press down the right mouse button to see the snapshot menu and select
“Save as snap.rgb” from the menu. The cursor turns into an hourglass
while snapshot saves your image.

9. To see the image you’ve snapped, enter:

% ipaste snap.rgb

If the image looks good, then you’re ready to resize it. See “Resizing the
RGB Image Using imgworks” on page 88 for instructions.

See the snapshot(1) reference page for more information about using snapshot.

Resizing the RGB Image Using imgworks

You can use imgworks to resize your RGB image to the appropriate size for a
minimized window image. The maximum size is determined by the value of
the iconImageMaximum resource in 4Dwm, which is currently 85x67.

Setting the Minimized Window Label

89

To find the imgworks icon, select “An Icon” from the Find toolchest. When the
Find an Icon window appears, type

imgworks

into the text field. The imgworks icon appears in the drop pocket. Drag the
icon to the Desktop and drop it. Then run imgworks by double-clicking the
icon.

To resize your image using imgworks, follow these steps:

1. Open your image file by selecting “Open” from the File menu and
selecting your file from the Image Works: Open Image… window. Your
image appears in the main window.

2. To scale the image, select “Scale…” from the Transformations menu.
The Image Works: Scale window appears.

3. Scale the image by typing in an appropriate scale factor. The
dimensions of the new image (in pixels) are listed in the Scale window.

4. When you’re happy with the dimensions listed in the Scale window,
click the Apply button. The resized image appears in the main window.
Save it by selecting “Save” from the File menu.

Refer to the imgworks(1) reference page for more information on imgworks.

Setting the Minimized Window Label

By default, the 4Dwm window manager reuses the title bar label for the
minimized window label. To explicitly set the label of the minimized
window, you simply need to change the value of the window’s
XmNiconName resource. See “Labeling a Minimized Window” in Chapter 3
for guidelines for choosing a label.

Changing the Minimized Window Image

Your application can also change its minimized window’s image while it is
running (for example, to indicate application status) by setting the window’s
XmNiconWindow resource. However, it can be very difficult to handle color

90

Chapter 6: Customizing Your Application’s Minimized Windows

images without causing visual and colormap conflicts. If you decide to
change the image, the image you install should: 1) use the default visual; and
2) use the existing colormap without creating any new colors (preferably,
your image should use only the first 16 colors in the colormap). This
potentially implies dithering or color quantization of your image.

Note: The 4Dwm window manager automatically handles your
application’s initial minimized window image (that is, the image
automatically loaded from the /usr/lib/images directory at application
start-up). If you don’t want to change this image while your application is
running, your application doesn’t need to do anything to support displaying
the image properly.

Chapter 7

Users expect to be able to exchange
data between applications using the
standard X mechanisms. This chapter
explains to how to support data
exchange in your application.

Interapplication Data Exchange

93

Chapter 7

7. Interapplication Data Exchange

This chapter describes how to implement the recommended data exchange
mechanisms in your applications. It contains these sections:

• “Data Exchange Overview” on page 93 provides a brief description of
how the Primary and Clipboard Transfer Models should work in your
application. You should implement both.

• “Implementing the Primary Transfer Model” on page 97 describes how
to implement the Primary Transfer Model in your application.

• “Implementing the Clipboard Transfer Model” on page 100 describes
how to implement the Primary Transfer Model in your application.

• “Supported Target Formats” on page 103 provides a table listing the
atom names of supported data formats, along with brief descriptions of
what each format is used for.

Data Exchange Overview

As detailed in Chapter 5, “Data Exchange on the Indigo Magic Desktop,” in
the Indigo Magic User Interface Guidelines, Silicon Graphics recommends that
your application support both the Primary and Clipboard Transfer Models.
The Primary Transfer Model allows users to copy data using mouse buttons,
whereas the Clipboard Transfer model allows users to use the “Cut,”
“Copy,” and “Paste” options from the Edit menu (or the corresponding
keyboard accelerators) to transfer data.

The data exchange model recommended by Silicon Graphics is based on the
standard mechanisms provided by the X and Xt. You can consult the
O’Reilly & Associates book The X Window System, Volume 4: X Toolkit
Intrinsics Programming Manual by Adrian Nye for more information on the
standard Xt data exchange methods.

94

Chapter 7: Interapplication Data Exchange

Note: Silicon Graphics recommends that you not use the IRIS IM clipboard
routines for handling data exchange.

Primary Transfer Model Overview

When the user selects some data in an application, the application should
highlight that data and assert ownership of the PRIMARY selection. Until
the application loses the PRIMARY selection, it should then be prepared to
respond to requests for the selected data in various target formats.
“Supported Target Formats” on page 103 describes the standard target
formats.

When the user selects data in another application, your application loses
ownership of the PRIMARY selection. In general, when your application
loses the primary selection, it should keep its current selection highlighted.
When a user has selections highlighted in more than one window at a time,
the most recent selection is always the primary selection. This is consistent
with the persistent always selection discussed in Section 4.2, “Selection
Actions,” in the OSF/Motif Style Guide, Release 1.2. There is an exception to
this guideline: those applications that use selection only for primary transfer,
for example, the winterm shell window. The only reason for users to select
text in a shell window is to transfer that text using the primary transfer
mechanism. In this case, when the winterm window loses the primary
selection, the highlighting is removed. This is referred to as nonpersistent
selection in Section 4.2, “Selection Actions,” in the OSF/Motif Style Guide,
Release 1.2.

The persistent always selection mechanism allows the user to have data
selected in different applications. The user can still manipulate selected data
using application controls. Furthermore, the user can reassert the selected
data as the PRIMARY selection by pressing <Alt-Insert>.

When the user clicks the middle mouse button (BTransfer) in your
application, your application should attempt to copy the primary selection
to the current location of the mouse pointer. First, your application should
request a list of target formats supported by the primary selection owner.
Then your application should select the most appropriate target format and
request the primary selection in that format.

Data Exchange Overview

95

“Supporting the Primary Transfer Model” in Chapter 5 of the Indigo Magic
User Interface Guidelines further discusses use of the Primary Transfer Model.

Clipboard Transfer Model Overview

When the user selects the “Copy” option from your application’s Edit menu
(or uses the keyboard accelerator), your application should assert ownership
of the CLIPBOARD selection. Until the application loses the CLIPBOARD
selection, it should then be prepared to respond to requests for the data
selected at the time your application took ownership of the CLIPBOARD
selection. (In other words, your application must somehow store the value
of the selection when the user performs the copy action; the application can
then provide this value even if the user subsequently changes the
application’s selection.)

When the user selects the “Cut” option for your application’s Edit menu (or
uses the keyboard accelerator), your application should assert ownership of
the CLIPBOARD selection. Your application must cut the selected data, but
it should store the data and be prepared to respond to requests for the data
until it loses ownership of the CLIPBOARD selection.

When the user selects the “Paste” option for your application’s Edit menu
(or uses the keyboard accelerator), your application should attempt to copy
the clipboard selection to the current location of the location cursor. First,
your application should request a list of target formats supported by the
clipboard selection owner. Then your application should select the most
appropriate target format and request the clipboard selection in that format.

“Supporting the Clipboard Transfer Model” in Chapter 5 of the Indigo Magic
User Interface Guidelines further discusses use of the Clipboard Transfer
Model.

Interaction Between the Primary and Clipboard Transfer
Models

Silicon Graphics recommends that you implement the Primary and
Clipboard Transfer Models so that they operate separately. The only
complication is maintaining data in the PRIMARY selection when the user
performs a cut action. Consider the following example:

96

Chapter 7: Interapplication Data Exchange

1. The user selects data in an application. The application asserts
ownership of the PRIMARY selection.

2. The user performs a cut action. The application asserts ownership of
the CLIPBOARD selection and removes the selected data from the
display.

3. The user goes to another application that already has data selected.

4. The user cuts the data selected in the second application. The second
application asserts ownership of the CLIPBOARD selection and
removes the selected data from the display.

The clipboard actions described above should not affect the PRIMARY
selection. In this example, the first application should retain ownership of
the PRIMARY selection and continue to be prepared to respond to requests
for the value of the PRIMARY selection. To support this, the application
should somehow store the value of the PRIMARY selection until it no longer
owns the PRIMARY selection.

To properly handle the situation described above, your application should
implement the following:

1. In the function that handles the Clipboard Transfer Model’s cut action,
test to see whether the application owns the PRIMARY selection. If it
does, you should preserve the selected data. If selections in your
application are typically small (for example, ASCII text), you might
simply copy the data to a buffer. If selections in your application are
typically large (for example, sound or movie clips), you might remove
the data from the display but retain pointers to it.

2. In the function that handles losing the PRIMARY selection, test to see
whether you have data preserved from a cut action. If so, and the
application currently doesn’t own the CLIPBOARD selection, you
should free that data or reset the pointers to it.

Implementing the Primary Transfer Model

97

Implementing the Primary Transfer Model

This section describes how to implement support for the Primary Transfer
Model in your application.

Note: Silicon Graphics recommends that you don’t use the IRIS IM
clipboard routines, because they are not as flexible as the Xt selection
routines.

Data Selection

When the user selects data in a window of your application, it should call
XtOwnSelection(3Xt) to assert ownership of the PRIMARY selection and
highlight the selected data.

The code fragment in Example 7-1 shows a simple example of asserting
ownership of the PRIMARY selection. For clarity, this example omits code
for manipulating the selection itself (for example, setting up pointers to the
selection).

“Selection” in Chapter 7 of the Indigo Magic User Interface Guidelines
discusses guidelines for allowing users to select data and for hightlighting
selected data.

Example 7-1 Asserting Ownership of PRIMARY Selection

Boolean ownPrimary;

/*
w is window in which selection occurred
event is pointer to event that caused selection

*/

void dataSelected(Widget w, XButtonEvent *event)
{
...
/*

Assert ownership of PRIMARY selection.

XA_PRIMARY is the slection.
event->time is timestamp of the event.
primaryRequestCallback is the function called

98

Chapter 7: Interapplication Data Exchange

whenever another application requests the
value of the PRIMARY selection.

lostPrimaryCallback is the function called whenever
the application loses the selection.

*/

ownPrimary = XtOwnSelection(w, XA_PRIMARY, event->time,
primaryRequestCallback,
lostPrimaryCallback,
NULL);

/*
If we successfully obtained ownership, highlight
the data; otherwise, clean up

*/

if (ownPrimary)
highlightSelection();

else
lostPrimaryCallback(w, XA_PRIMARY);

...
}

Requests for the Primary Selection

When you assert ownership of the PRIMARY selection, one of the
parameters you pass to XtOwnSelection() is a callback function to handle
requests for the value of the PRIMARY selection. When another application
requests the value of the PRIMARY selection, the Xt selection mechanism
invokes your application’s callback function.

The requesting application indicates a desired target format. Typically, a
requestor first asks for the special target format TARGETS. Your application
should respond with a list of target formats it supports. The requestor then
chooses an appropriate target format and requests the selection value in that
format. “Supported Target Formats” on page 103 describes some of the
common target formats your application should support.

Implementing the Primary Transfer Model

99

Loss of the Primary Selection

When your application loses the PRIMARY selection and your application
follows the persistent always selection model discussed in “Primary Transfer
Model Overview” on page 94, don’t remove the highlight from any selected
data. The user should still be able to cut or copy any selected data using the
Clipboard Transfer Model. If your application follows the nonpersistent
selection model as discussed in “Primary Transfer Model Overview,” you
should remove the highlight.

Your application should also test to see whether you have data preserved
from a cut action (see “Cut Actions” on page 100). If so, and your application
currently doesn’t own the CLIPBOARD selection, you should free that data
or reset the pointers to it. “Interaction Between the Primary and Clipboard
Transfer Models” on page 95 describes the rationale for this procedure.

Note: To comply with the Indigo Magic User Interface Guidelines, if the user
presses <Alt-Insert> in your application, you should reassert ownership
of PRIMARY for your application.

Inserting the Primary Selection

When the user clicks the middle mouse button in your application, it should
perform the steps described below.

1. Your application should ask the owner of the PRIMARY selection for a
list of its TARGETS, using XtGetSelectionValue() with selection
PRIMARY and target TARGETS.

2. Your application should look through the list of supported targets,
select the one that is appropriate for your application, and call
XtGetSelectionValue() again with that new target.

3. If the selection owner does not support TARGETS, then your
application should ask for the target STRING, if it can support that
target.

Silicon Graphics recommends that you support STRING, even if your
application doesn’t support text. For instance, a movie player could get
the selection as a string and try to parse it as a filename. That way users
could select a filename in a terminal emulator window and paste it into
another application.

100

Chapter 7: Interapplication Data Exchange

Implementing the Clipboard Transfer Model

This section describes how to implement support for the Clipboard Transfer
Model in your application.

Cut Actions

When the user performs a cut action, your application should:

1. Call XtOwnSelection(3Xt) to assert ownership of the CLIPBOARD
selection.

2. Remove the selected data from the display. Retain the selected data
until your application loses ownership of the CLIPBOARD selection.

3. Test to see whether the application owns the PRIMARY selection. If it
does, you should preserve the selected data, even after losing
ownership of the CLIPBOARD selection. You should retain the data
until your application also loses ownership of the PRIMARY selection.

If selections in your application are typically small (for example, ASCII
text), you might simply copy the data to a buffer. If selections in your
application are typically large (for example, sound or movie clips), you
might remove the data from the display but retain pointers to it.

The code fragment in Example 7-2 shows a simple example of handling a cut
action and asserting ownership of the CLIPBOARD selection. For clarity, this
example omits code for manipulating the selection itself (for example,
setting up pointers to the selection).

Example 7-2 Handling Cut Actions in the Clipboard Transfer Model

Boolean ownPrimary;
Boolean primaryPreserved;

/*
w is window in which selection occurred
event is pointer to event that caused selection
*/

void selectionCut(Widget w, XButtonEvent *event)
{
...

Implementing the Clipboard Transfer Model

101

/*
Assert ownership of CLIPBOARD selection.

XA_CLIPBOARD is the selection.
event->time is timestamp of the event.
clipboardRequestCallback is the function called

whenever another application requests the
value of the CLIPBOARD selection.

lostClipboardCallback is the function called whenever
the application loses the selection.

*/

ownClipboard = XtOwnSelection(w, XA_CLIPBOARD, event->time,
clipboardRequestCallback,
lostClipboardCallback,
NULL);

if (ownClipboard)
{
/*
 Retain the selected data until the application loses
ownership of the CLIPBOARD selection.

*/

preserveClipboardSelection();

/*
 If we also own the PRIMARY selection, we need to
preserve the selected data separately so that we can
continue to satisfy requests for the PRIMARY selection
even if we lose the CLIPBOARD selection.

*/

if (ownPrimary)
primaryPreserved = preservePrimarySelection();

}
...
}

102

Chapter 7: Interapplication Data Exchange

Copy Actions

When the user performs a copy action, your application should call
XtOwnSelection(3Xt) to assert ownership of the CLIPBOARD selection. No
other actions are required.

Requests for the Clipboard Selection

When you assert ownership of the CLIPBOARD selection, one of the
parameters you pass to XtOwnSelection() is a callback function to handle
requests for the value of the CLIPBOARD selection. When another
application requests the value of the CLIPBOARD selection, the Xt selection
mechanism invokes your application’s callback function.

The requesting application indicates a desired target format. Typically, a
requestor first asks for the special target format TARGETS. Your application
should respond with a list of target formats it supports. The requestor then
chooses an appropriate target format and requests the selection value in that
format. “Supported Target Formats” on page 103 describes some of the
common target formats your application should support.

Paste Actions

When the user selects “Paste” from the File menu, your application should:

1. Ask the owner of the CLIPBOARD selection for a list of its TARGETS,
using XtGetSelectionValue() with selection CLIPBOARD and target
TARGETS.

2. Look through the list of supported targets, select the one that is
appropriate for your application, and call XtGetSelectionValue() again
with that new target.

3. If the selection owner does not support TARGETS, then your
application should ask for the target STRING, if it can support that
target.

Supported Target Formats

103

Silicon Graphics recommends that you support STRING, even if your
application doesn’t support text. For instance, a movie player could get
the selection as a string and try to parse it as a filename. That way users
could select a filename in a terminal emulator window and paste it into
another application.

Loss of the Clipboard Selection

When your application loses the Clipboard selection, don’t remove the
highlight from any selected data. The user should still be able to cut or copy
any selected data. Your application can discard any data it had retained as a
result of a cut operation (see “Cut Actions” on page 100).

Supported Target Formats

Every application should support the TARGETS, TIMESTAMP, MULTIPLE,
and STRING targets. The Xt selection functions support the MULTIPLE
targets for you. XmuConvertStandardSelection() supports the
TIMESTAMP target. (Silicon Graphics recommends that applications use
XmuConvertStandardSelection() because it also supports HOSTNAME,
NAME, CLIENT_WINDOW, and a variety of other useful targets.) Your
application must support the TARGETS and STRING targets itself.

In addition, Silicon Graphics has defined other targets for data types used by
Silicon Graphics applications and libraries. Table 7-1 lists the atom names for
these Silicon Graphics data types.

Table 7-1 Additional Data Types Supported by Silicon Graphics

Name of Atom/Target Description

INVENTOR Data appropriate for inventor widgets. (This
is already defined by Inventor and
described in Inventor documentation.)

_SGI_RGB_IMAGE_FILENAME The name of a file that contains a Silicon
Graphics format image file. This is an rgb
file. The file is the responsibility of the
receiver, once the selection owner has
generated it.

104

Chapter 7: Interapplication Data Exchange

Caution: Xt implements a timeout when transferring data using the
selection mechanism. The default is five seconds. Often, this is inadequate
for applications transferring audio, image, or movie data. Therefore, if your
application supports receiving such selections, you should call
XtAppSetSelectionTimeout() to change the timeout to a larger value; 60 to
120 seconds is usually sufficient.

_SGI_AUDIO_FILENAME The name of a file that contains Silicon
Graphics format sound data, that can be
read using libaudiofile. The file is the
responsibility of the receiver, once the
selection owner has generated it.

_SGI_MOVIE_FILENAME The name of a file that contains a Silicon
Graphics format movie. This file can be
viewed with the Silicon Graphics movie
library or the movie widget. The file is the
responsibility of the receiver, once the
selection owner has generated it.

Table 7-1 (continued) Additional Data Types Supported by Silicon Graphics

Name of Atom/Target Description

Chapter 8

Typically, if applications need to
monitor the status of a file or
directory they must periodically poll
the filesystem. The File Alteration
Monitor (FAM) provides a more
efficient and convenient method.

Monitoring Changes to
Files and Directories

107

Chapter 8

8. Monitoring Changes to Files and Directories

The File Alteration Monitor (FAM) monitors changes to files and directories
in the filesystem and notifies interested applications of these changes. Your
application can use FAM to get an up-to-date view of the filesystem rather
than having to poll the filesystem.

This chapter contains these sections:

• “FAM Overview” on page 107 provides an overview to FAM including
the libraries and header files needed to use FAM in your application.

• “The FAM Interface” on page 109 describes the FAM API.

• “Using FAM” on page 115 provides a simple example demonstrating
FAM.

FAM Overview

Typically, if applications need to monitor the status of a file or directory, they
must periodically poll the filesystem. FAM provides a more efficient and
convenient method.

FAM consists of the FAM daemon, fam, and a library for interacting with this
daemon. An application can request fam to monitor any files or directories in
the filesystem. When fam detects changes to these files, it notifies the
application.

This chapter describes the required libraries and provides a basic list of steps
for using FAM. For more detailed information, refer to the fam(1M) and
FAM(3X) reference pages.

108

Chapter 8: Monitoring Changes to Files and Directories

Theory of Operation

FAM uses imon, a pseudo device, to monitor filesystem activity on your
system on a file-by-file basis. You can refer to the imon(7) reference page for
more information on its operation, but you should not attempt to access imon
directly.

When you provide FAM with the name of a file or directory to monitor, FAM
passes the request to imon, which begins monitoring the inode
corresponding to the pathname. When imon detects a change to an inode that
it is monitoring, it notifies FAM, which matches the inode to a corresponding
filename. FAM then generates a FAM event on a socket. Your application can
either monitor the socket or periodically poll FAM to detect FAM events.

This difference between FAM and imon can produce some unexpected
results. For example, if a user moves a file, FAM reports that the file is
deleted. The reason is that FAM monitors files by name and not inode, so it
doesn’t know that the file still exists.

As another example, consider the case where FAM is monitoring a file. If the
user deletes the file, FAM correctly reports that fact. However, if the user
then creates a new file with the same name, FAM doesn’t detect the new file.
This is because the new file doesn’t have the same inode (in most cases); imon
notifies FAM of the new file by inode, but FAM has no record of that inode
and so can’t match it to the filename. To prevent this from happening, you
should cancel monitoring on a file when FAM detects that it’s deleted. If you
need to detect the creation of a given file by name, you should monitor the
directory in which it will be created and watch for FAM events notifying the
creation of a file by that name in the directory.

FAM Libraries and Include Files

The FAM interface routines are in the libfam library. libfam depends on the
libC library. Be sure to specify -lfam before -lC in the compilation or linking
command.

You must include <fam.h> in any source file that uses FAM. You must also
include <sys/select.h> to use the socket routines to communicate with FAM.

The FAM Interface

109

The FAM Interface

This section describes the functions you use to access FAM from your
application.

Opening and Closing a FAM Connection

The function FAMOpen() opens a connection to fam:

int FAMOpen(FAMConnection* fc)

FAMOpen() returns 0 if successful and -1 if unsuccessful. FAMOpen()
initializes the FAMConnection structure passed to it, which you must use in
all subsequent FAM procedure calls in your application.

An element of the FAMConnection structure is the file descriptor associated
with the socket that FAM uses to communicate with your application. You
need this file descriptor to perform select() operations on the socket. You can
obtain the file descriptor using the FAMCONNECTION_GETFD() macro:

FAMCONNECTION_GETFD(fc)

Additionally, you should set a character string variable named appName to
the name of your application before calling FAMOpen().

The function FAMClose() closes a connection to fam:

int FAMClose(FAMConnection* fc)

FAMClose() returns 0 if successful and -1 if unsuccessful.

Monitoring a File or Directory

FAMMonitorDirectory() and FAMMonitorFile() tell FAM to start
monitoring a directory or file respectively:

int FAMMonitorDirectory(FAMConnection *fc,
char *filename,
FAMRequest* fr,
void* userData)

int FAMMonitorFile(FAMConnection *fc,

110

Chapter 8: Monitoring Changes to Files and Directories

char *filename,
FAMRequest* fr,
void* userData)

FAMMonitorDirectory() monitors not only changes that happens to the
contents of the specified directory file, but also to the files in the directory. If
the directory contains subdirectories, FAMMonitorDirectory() monitors
changes to the subdirectory files, but not the contents of those subdirectories.
FAMMonitorFile() monitors only what happens to the specified file. Both
functions return 0 if successful and -1 otherwise.

The first argument to these functions is the FAMConnection structure
initialized by FAMOpen(). The second argument is the full pathname of the
directory or file to monitor. Note that you can’t use relative pathnames.

The third argument is a FAMRequest structure that these functions initialize.
You can pass this structure to FAMSuspendMonitor(),
FAMResumeMonitor(), or FAMCancelMonitor() to respectively suspend,
resume, or cancel the monitoring of the file or directory. “Suspending,
Resuming, and Canceling Monitoring” on page 111 further describes these
functions.

The fourth argument is a pointer to any arbitrary user data that you want
included in the FAMEvent structure returned by FAMNextEvent() when
this file or directory changes.

FAM then generates FAM events whenever it detects changes in monitored
files or directories. “Detecting Changes to Files and Directories” on page 112
describes how to detect and interpret these events.

NFS-Mounted Files and Directories

FAM can monitor files and directories that are NFS-mounted, including
automounted files and directories. However, because imon doesn’t monitor
remote files and directories, FAM monitors NFS-mounted files and
directories by polling. The polling interval is determined by the -t argument
to the FAM daemon, fam, which is invoked by inetd(1M). The default system
configuration is to poll every six seconds, but system administrators can
change this value by editing /etc/inet.conf.

The FAM Interface

111

Note: Unlike local files and directories, FAM monitors NFS-mounted files
and directories by name rather than by inode.

Symbolic Links

If you specify the pathname of a symbolic link to FAMMonitorDirectory()
or FAMMonitorFile(), FAM monitors only the symbolic link itself, not the
target of the link. Although it might seem logical to automatically monitor
the target of a symbolic link, consider that if the target is on an automounted
filesystem, monitoring the target triggers and holds an automount.

There is no general solution for monitoring targets of symbolic links. You
might decide that it’s appropriate for your application to monitor a target
even if it’s automounted.

On the other hand, to avoid triggering and holding an automount, you can
manually follow symbolic links until you reach either a local target, which
you can then monitor, or a non-existent filesystem, in which case you might
decide not to monitor the target. Another option is to test the target once to
see if it is local, which triggers an automount only once if the target is
automounted.

Suspending, Resuming, and Canceling Monitoring

Once you’ve begun monitoring a file or directory, you can cancel monitoring
or temporarily suspend and later resume monitoring.

FAMSuspendMonitor() temporarily suspends monitoring a file or
directory. FAMResumeMonitor() resumes monitoring the file or directory.
Suspending file monitoring can be useful when your application does not
need to display information about a file (for example, when your application
is iconified).

Note: FAM queues any changes that occur to the file or directory while
monitoring is suspended. When your application resumes monitoring, FAM
notifies it of any changes that occurred.

112

Chapter 8: Monitoring Changes to Files and Directories

The syntax for these functions is:

int FAMSuspendMonitor(FAMConnection *fc, FAMRequest *fr);

int FAMResumeMonitor(FAMConnection *fc, FAMRequest *fr);

fc is the FAMConnection returned by FAMOpen(), and fr is the FAMRequest
returned by either FAMMonitorFile() or FAMMonitorDirectory(). Both
functions return 0 if successful and -1 otherwise.

When your application is finished monitoring a file or directory, it should
call FAMCancelMonitor():

int FAMCancelMonitor(FAMConnection *fc, FAMRequest *fr)

FAMCancelMonitor() instructs FAM to no longer monitor the file or
directory specified by fr. It returns 0 if successful and -1 otherwise.

Detecting Changes to Files and Directories

Whenever FAM detects changes in files or directories that it is monitoring, it
generates a FAM event. Your application can receive FAM events in one of
two ways:

The Select approach
Your application performs a select(2) on the file descriptor
in the FAMConnection structure returned by FAMOpen().
When this file descriptor becomes active, the application
calls FAMNextEvent() to retrieve the pending FAM event.

The Polling approach
Your application periodically calls FAMPending()
(typically when the system is waiting for input). When
FAMPending() returns with a positive return value, your
application calls FAMNextEvent() to retrieve the pending
FAM events.

FAMPending() has the following syntax:

int FAMPending(FAMConnection *fc)

The FAM Interface

113

It returns 1 if there is a FAM event queued, 0 if there is no queued event, and
-1 if there is an error. FAMPending() returns immediately (that is, it does not
wait for an event).

Once you have determined that there is a FAM event queued, whether by
using the select or polling approach, call FAMNextEvent() to retrieve it:

int FAMNextEvent(FAMConnection *fc, FAMEvent *fe)

FAMNextEvent() returns 0 if successful and -1 if there is an error. The first
argument to FAMNextEvent() is the FAMConnection structure initialized
by FAMOpen(). The second argument is a pointer to a FAMEvent structure,
which FAMNextEvent() fills in with information about the FAM event. The
format of the FAMEvent structure is:

typedef struct {
FAMConnection* fc;
FAMRequest fr;
char *hostname;
char *filename;
void *userdata;
FAMCodes code;
} FAMEvent;

fc is the FAMConnection structure initialized by FAMOpen().

fr is the FAMRequest structure returned by either FAMMonitorFile() or
FAMMonitorDirectory() when you requested that FAM monitor the file or
directory that changed.

hostname is an obsolete field. Don’t use it in your applications.

filename is the full pathname of the file or directory that changed.

userdata is the arbitrary data pointer that you provided when you called
either FAMMonitorFile() or FAMMonitorDirectory() to monitor this file or
directory.

code is an enumerated value of type FAMCodes that describes the change
that occurred. It can take any of the following values:

FAMChanged Some value of the file or directory that can be obtained with
fstat(1) changed.

114

Chapter 8: Monitoring Changes to Files and Directories

FAMDeleted A file or directory being monitored was deleted.

Caution: Whenever your application receives a
FAMDeleted event for a file or directory, it should cancel
monitoring of that file or directory. Otherwise, FAM can
generate spurious events.

FAMStartExecuting
An monitored, executable file started executing. This event
occurs every time the file is run, even if older processes are
still running.

FAMStopExecuting
An monitored, executable file that was running finished. If
multiple processes from an executable are running, this
event is generated only when the last one finishes.

FAMCreated A file was created in a directory being monitored.

Note: This event is generated only for files created in a
directory being monitored.

FAMAcknowledge
FAM generates a FAMAcknowledge event in response to a
call to FAMCancelMonitor().

Note: Currently, FAMNextEvent() might not initialize the
filename field in a FAMAcknowledge event. You should use
the request number to find the file or directory these events
reference.

FAMExists When the application requests that a file be monitored, FAM
generates a FAMExists event for that file (if it exists). When
the application requests that a directory be monitored, FAM
generates a FAMExists event for that directory (if it exists)
and every file contained in that directory.

FAMEndExist When the application requests a file or directory be
monitored, FAM generates a FAMEndExist event after the
last FAMExists event. (Therefore if you monitor a file, FAM
generates a single FAMExists event followed by a
FAMEndExist event.)

Using FAM

115

Note: Currently, FAMNextEvent() might not initialize the
filename field in a FAMEndExist event. You should use the
request number to find the file or directory these events
reference.

Using FAM

As noted in “Detecting Changes to Files and Directories” on page 112, there
are two ways that your application can check for changes in files in
directories that it monitors: 1) using select() to wait until the FAM socket is
active, indicating a change; or 2) using FAMPending() to periodically poll
FAM. This section describes how to use both approaches.

Waiting for File Changes

Follow these steps to use FAM in your application, using the select approach
to detect changes:

1. Call FAMOpen() to create a connection to fam. This routine returns a
FAMConnection structure used in all FAM procedures.

2. Call FAMMonitorFile() and FAMMonitorDirectory() to tell fam which
files and directories to monitor.

3. Select on the fam socket file descriptor and call FAMNextEvent() when
the fam socket is active.

4. When the application is finished monitoring a file or directory, call
FAMCancelMonitor(). If you want to temporarily suspend monitoring
of a file or directory, call FAMSuspendMonitor(). When you’re ready to
start monitoring again, call FAMResumeMonitor().

5. When the application no longer needs to monitor files and directories,
call FAMClose() to release resources associated with files still being
monitored and to close the connection to fam. This step is optional if
you simply exit your application.

116

Chapter 8: Monitoring Changes to Files and Directories

Example 8-1 demonstrates this process in a simple program.

Example 8-1 Using the Select Method With FAM to Detect Changes to Files and
Directories

/*
* monitor.c -- monitor arbitrary file or directory
 * using fam
*/

#include <fam.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <sys/select.h>

/* event_name() - return printable name of fam event code */

const char *event_name(int code)
{

static const char *famevent[] = {
"",
"FAMChanged",
"FAMDeleted",
"FAMStartExecuting",
"FAMStopExecuting",
"FAMCreated",
"FAMMoved",
"FAMAcknowledge",
"FAMExists",
"FAMEndExist"

};
static char unknown_event[10];

if (code < FAMChanged || code > FAMEndExist)
{

sprintf(unknown_event, "unknown (%d)", code);
return unknown_event;

}
return famevent[code];

}

void main(int argc, char *argv[])
{

int i, nmon, rc, fam_fd;

Using FAM

117

FAMConnection fc;
FAMRequest *frp;
struct stat status;
FAMEvent fe;
fd_set readfds;

/* Allocate storage for requests */

frp = malloc(argc * sizeof *frp);
if (!frp)
{

perror("malloc");
exit(1);

}

/* Open fam connection */

if ((FAMOpen(&fc)) < 0)
{

perror("fam");
exit(1);

}

/* Request monitoring for each program argument */

for (nmon = 0, i = 1; i < argc; i++)
{

if (stat(argv[i], &status) < 0)
{

perror(argv[i]);
status.st_mode = 0;

}
if ((status.st_mode & S_IFMT) == S_IFDIR)

rc = FAMMonitorDirectory(&fc, argv[i], frp + i,
NULL);

else
rc = FAMMonitorFile(&fc, argv[i], frp + i, NULL);

if (rc < 0)
{

perror("FAMMonitor failed");
continue;

}
nmon++;

}
if (!nmon)

118

Chapter 8: Monitoring Changes to Files and Directories

{
fprintf(stderr, "Nothing monitored.\n");
exit(1);

}

/* Initialize FAM socket data structures */

fam_fd = FAMCONNECTION_GETfd(&fc);
FD_ZERO(&readfds);
FD_SET(fam_fd, &readfds);

/* Loop forever. */

while(1)
{

if (select(fam_fd + 1, &readfds,
NULL, NULL, NULL) < 0)

{
perror("select failed");
exit(1);

}
if (FD_ISSET(fam_fd, &readfds))
{

if (FAMNextEvent(&fc, &fe) < 0)
{

perror("FAMNextEvent");
exit(1);

}
printf("%-24s %s\n", fe.filename,

event_name(fe.code));
}

}
}

Polling for File Changes

Follow these steps to use FAM in your application, using the polling
approach to detect changes:

1. Call FAMOpen() to create a connection to fam. This routine returns a
FAMConnection structure used in all FAM procedures.

2. Call FAMMonitorFile() and FAMMonitorDirectory() to tell fam which
files and directories to monitor.

Using FAM

119

3. Call FAMPending() to determine when there is a pending FAM event
and then call FAMNextEvent() when an event is detected.

4. When the application is finished monitoring a file or directory, call
FAMCancelMonitor(). If you want to temporarily suspend monitoring
of a file or directory, call FAMSuspendMonitor(). When you’re ready to
start monitoring again, call FAMResumeMonitor().

5. When the application no longer needs to monitor files and directories,
call FAMClose() to free resources associated with files still being
monitored and to close the connection to fam. This step is optional if
you simply exit your application.

For example, you could use the polling approach in the monitor.c program
listed in Example 8-1 by deleting the code pertaining to the FAM socket and
replacing the while loop with the code shown in Example 8-2.

Example 8-2 demonstrates this process in a simple program.

Example 8-2 Using the Polling Method With FAM to Detect Changes to Files
and Directories

while(1)
{

rc = FAMPending(&fc);
if (rc == 0)

break;
else if (rc == -1)

perror("FAMPending");
if (FAMNextEvent(&fc, &fe) < 0)
{

perror("FAMNextEvent");
exit(1);

}
printf("%-24s %s\n", fe.filename,

event_name(fe.code));
}

120

Chapter 8: Monitoring Changes to Files and Directories

This is a particularly useful approach if you want to poll for changes from
within an Xt work procedure. Example 8-3 shows the skeleton code for such
a work procedure.

Example 8-3 Polling FAM Within an Xt Work Procedure

Boolean monitorFiles(XtPointer clientData)
{

int rc = FAMPending(&fc);

if (rc == 0)
return(FALSE);

else if (rc == -1)
XtAppError(app_context, "FAMPending error");

if (FAMNextEvent(&fc, &fe) < 0)
{

XtAppError(app_context, "FAMNextEvent error");
}

handleFileChange(fe);
return(FALSE);

}

Chapter 9

This chapter describes how to use
Silicon Graphics’ online help system,
SGIHelp, to deliver the online help
for your product.

Providing Online Help With SGIHelp

123

Chapter 9

9. Providing Online Help With SGIHelp

This chapter describes how to use the Silicon Graphics online help system,
SGIHelp, to deliver the online help for your product. It describes how to
prepare the help and integrate it into your application. It contains the
following sections:

• “Overview of SGIHelp” on page 123 provides an overview of the help
system.

• “The SGIHelp Interface” on page 126 describes the SGIHelp API.

• “Implementing Help in an Application” on page 130 provides some
examples of implementing online help in an application.

• “Application Helpmap Files” on page 135 describes the format and use
of application helpmap files.

• “Writing the Online Help” on page 140 describes how to write the
source files containing your application’s online help.

• “Producing the Final Product” on page 145 describes how to compile
your help files into viewable form and package them for installation on
your users’ systems.

• “Bibliography of SGML References” on page 147 is a bibliography for
further reading.

The section “Online Help” in Chapter 4 of the Indigo Magic User Interface
Guidelines provides interface and content guidelines for adding online help
to your application.

Overview of SGIHelp

The SGIHelp system consists of a help viewer, a help library and include file,
help document files, and optional application helpmap files.

124

Chapter 9: Providing Online Help With SGIHelp

Note: To develop online help for your application, you must install the
insight_dev product, which contains the SGIHelp library and include file,
help generation tools, examples, and templates.

The Help Viewer

The SGIHelp viewer, sgihelp(1), also referred to as the help server, displays
help text in easy-to-use browsing windows. Figure 9-1 shows an example of
a help window.

Figure 9-1 The Help Viewer

sgihelp can also display an index of all help topics available in a help
document and allow the user to select a particular topic from the list.
Figure 9-2 shows an example of a help index.

Overview of SGIHelp

125

Figure 9-2 The Help Index Window

sgihelp is a separate application that gets started automatically whenever an
application makes a help request. Neither users nor your application should
ever need to explicitly start sgihelp. After the user closes all help windows,
sgihelp remains running in the background for a few minutes. If it receives no
other help requests within that time, it automatically exits.

The SGIHelp Library and Include File

The Silicon Graphics help library, libhelpmsg, handles communication with
the help server. libhelpmsg depends on the libX11 library. Be sure to specify
-lhelpmsg before -lX11 in the compilation or linking command.

For example, to compile a file hellohelp.c++ to produce the executable
hellohelp, you would enter:

CC -o hellohelp hellohelp.c++ -lhelpmsg -lX11

126

Chapter 9: Providing Online Help With SGIHelp

You must include <helpapi/HelpBroker.h> in any source file that accesses
online help. Both the library and include file were developed in C, and can
be used with either the C or C++ programming languages.

Help Document Files

Help document files contain the actual help text in Standard Generalized
Markup Language (SGML) format. In addition to text, help documents can
contain graphics and hypertext links to other help topics.

Application Helpmap Files

Application helpmap files are optional; an application can request specific
help topics directly. Applications helpmap files provide a level of indirection
that allows you to structure your help presentation independently of your
application code. The SGIHelp library also uses helpmaps to make it easier
for you to implement context-sensitive help in your application.

Note: You must provide a helpmap for your application if you want a help
index.

The SGIHelp Interface

This section describes the functions you use to access the help server from
your application.

Initializing the Help Session

Before calling any other help functions, your application must first call
SGIHelpInit():

int SGIHelpInit (Display *display, char *appClass, char *separator);

display The application’s Display structure.

appClass The application’s class name. Use the same name as you
provide to XtAppInitialize().

The SGIHelp Interface

127

separator The separator character used by the application to separate
the widget hierarchy when a context-sensitive help request
is made. At this time, you must use the period (.).

SGIHelpInit() does not start or communicate with the help server process;
it simply initializes data structures for the other SGIHelp functions.
SGIHelpInit() returns 1 on success, and 0 on failure.

Example 9-1 shows an example of how to use SGIHelpInit().

Example 9-1 Initializing a Help Session Using SGIHelpInit()

#include <Xm/Xm.h>
#include <helpapi/HelpBroker.h>

void main (int argc, char **argv)
{

Widget mainWindow; /* Main window shell widget */
XtAppContext app; /* An application context,

* needed by Xt
*/

int status; /* Return status */

/* ... */

mainWindow = XtAppInitialize (&app, "MyApp", NULL, 0,
&argc, argv, NULL,
NULL, 0);

/* Initialize the help session */

status = SGIHelpInit(XtDisplay(mainWindow),
"MyApp", ".");

/* ... */
}

Displaying a Help Topic

To request display of a help topic from within your application, call
SGIHelpMsg():

int SGIHelpMsg (char *key, char *book, char *userData);

128

Chapter 9: Providing Online Help With SGIHelp

key Specifies either 1) the ID of a particular help topic in a help
document, or 2) a widget hierarchy.

If you provide a help ID, the help server displays the help
topic identified in the help document specified by the book
argument. You must provide a help book name in this case.
See “Writing the Online Help” on page 140 for an
explanation of help IDs.

If you provide a widget hierarchy, the help server looks in
the application’s helpmap file to find a mapping. If it
doesn’t find an exact match, it uses a fallback algorithm to
determine which is the “closest” hierarchy found. Typically
you use this technique to provide context-sensitive help.
See “Application Helpmap Files” on page 135 for more
information about the helpmap file.

book Gives the short name of the help document containing the
application’s help information. See “Writing the Online
Help” for a description of help document short names.

If you set this to NULL or asterisk (*), the help server looks
in the application’s helpmap file for the book name. In this
case, a helpmap file must exist. See “Application Helpmap
Files” for more information about the helpmap file.

userData Reserved for future use. You should always set this field to
NULL.

If a copy of the help server is not already running, SGIHelpMsg()
automatically starts the server. SGIHelpMsg() returns 1 on success, and 0 on
failure.

Example 9-2 shows an example of using SGIHelpMsg() to display the help
topic identified by the help ID “help_save_button” in the help document
with the short name “MyAppHelp.”

Example 9-2 Requesting a Specific Help Topic Using SGIHelpMsg()

#include <helpapi/HelpBroker.h>

/* Assume initialization of help session is complete */

/*
* This call displays the help topic with a key of

The SGIHelp Interface

129

* "help_save_button" (found in the "HelpId=" field).
* It will look for this section in the help document
* "MyAppHelp".
*/

status = SGIHelpMsg("help_save_button", "MyAppHelp", NULL);

Example 9-3 shows an example of using SGIHelpMsg() to request help
given a widget hierarchy. In this case, the application must have a helpmap
file, and the help file must contain an entry mapping the given hierarchy to
a help topic for this call to succeed.

Example 9-3 Requesting a Help Topic for a Widget Using SGIHelpMsg()

#include <helpapi/HelpBroker.h>

/* Assume initialization of help session is complete */

/*
* This call displays the help topic specified by the
* mapping for the widget hierarchy
* "MyApp.mainWindow.controlPane.searchButton"
* as given in the application's helpmap file.
*/

status = SGIHelpMsg("MyApp.mainWindow.controlPane",
NULL, NULL);

Displaying the Help Index

The SGIHelpIndexMsg() call causes the help server to look for the
application’s helpmap file and to display the Help Index window:

int SGIHelpIndexMsg (char *key, char *book);

key You should always set this field to NULL or “index.”

book Reserved for future use. You should always set this field to
NULL.

The index displays all the help topics in the helpmap file in the order they
appear in the file. You must have a helpmap file for this call to work properly.

130

Chapter 9: Providing Online Help With SGIHelp

See “Application Helpmap Files” on page 135 for more information about
the helpmap file. SGIHelpIndexMsg() returns 1 on success, and 0 on failure.

Example 9-4 shows an example of how to use SGIHelpIndexMsg().

Example 9-4 Displaying a Help Index Using SGIHelpIndexMsg()

/* Assume initialization of help session is complete */

/*
* This call will look in the application’s helpmap
* file for a list of topics to display to the user in
* sgihelp’s index window.
*/

status = SGIHelpIndexMsg("index", NULL);

Implementing Help in an Application

The section “Supplying Online Help Information” in Chapter 4 of the Indigo
Magic User Interface Guidelines describes the user interfaces to online help
that your application should provide. In summary, these services are:

• Help menus in all application windows with menu bars

• Help buttons in all applications without menu bars

• Context-sensitive help available through both the help menus and the
<Shift+F1> keyboard accelerator.

This section contains specific suggestions for implementing these help
interfaces to your application.

Constructing a Help Menu

For those windows in your application with a menu bar, you should provide
a Help menu. “Providing Help Menu Entries” in Chapter 4 of the Indigo
Magic User Interface Guidelines recommends that the following entries appear
in the Help menu:

Implementing Help in an Application

131

“Click for Help”
Provides context-sensitive help. This option should also use
the <Shift+F1> keyboard accelerator. When a user selects
“Click for Help,” the cursor should turn into a question
mark (?). The user can then move the cursor over an item or
area of interest and click. Your application should then
display a help topic describing the purpose of the item or
area.

“Providing Context-Sensitive Help” on page 133 provides
detailed instructions for implementing context-sensitive
help.

“Overview” Displays overview information. The main primary window
should provide an overview of the application. For other
windows, this option should appear as “Overview for
<window name>” and provide an overview of the current
window only.

A separator

A list of topics and tasks
This section should contain a list of topics and tasks that the
user can perform in your application. When the user selects
one of the options, your application should display a help
topic for that item. To reduce the size of this section, you can
move some of the tasks to submenus.

You can hard code the entries in this section or, if you have
a helpmap file for your application, you can parse the
helpmap and dynamically create the task and subtask
entries.

A separator

“Index” Displays Help Index window for the application. You must
have an application helpmap file to support this option.

“Keys & Shortcuts”
Displays the application’s accelerator keys, keyboard
shortcuts, and other actions in the application.

A separator

132

Chapter 9: Providing Online Help With SGIHelp

“Product Information”
Displays a dialog box showing the name, version, and any
copyright information or other related data for your
application. Typically, you should present this information
using an IRIS IM dialog rather than using online help.

See the program listing in Example C-4 for an example of creating a Help
menu.

Implementing a Help Button

For those windows in your application that don’t contain a menu bar, you
should provide a Help button. Example 9-5 shows how you can use the
SGIHelp API to communicate with the help server from a pushbutton within
your application. “Providing Help through the Help Button” in Chapter 4 of
the Indigo Magic User Interface Guidelines provides guidelines for when to
implement a Help button.

Example 9-5 Providing a Help Button

/* required include file for direct communication with help server */
#include <helpapi/HelpBroker.h>
#include <Xm/Xm.h>

/* ... */

/* initialize help server information */
SGIHelpInit(display, "MyWindowApp", ".");

...

/* create help pushbutton for your window */
Widget helpB = XmCreatePushButton(parent, "helpB", NULL, 0);
XtManageChild(helpB);

XtAddCallback(helpB, XmNactivateCallback,
(XtCallbackProc)helpCB, (XtPointer)NULL);

/* ... */

/* help callback */
void helpCB(Widget w, XtPointer clientData, XtPointer callData)
{

Implementing Help in an Application

133

/*
* communicate with the help server; developer
* may wish to pass the "key" in as part of the
* callback’s callData parameter...
*/
SGIHelpMsg("key", "book", NULL);

}

Providing Context-Sensitive Help

To provide context-sensitive help from within your application, you need to
write code that tracks the cursor and interrogates the widget hierarchy.
Additionally, you need to make a mapping between what the user has
clicked, and the help card that’s displayed.

The best way to provide the mapping is with the application helpmap file.
The SGIHelp library provides a fallback algorithm for finding help topics
that simplifies the process mapping widgets to topics. If the help system
can’t find an exact match to the widget string in the helpmap file, it drops the
last widget from the string and tries again. The help system reiterates this
process until it finds a match in the helpmap file. This eliminates the need to
explicitly map a help topic for every widget in your application. Instead you
can map a help topic to a higher-level manager widget and have that topic
mapped to all of its descendent widgets as well.

For more information on the structure of application helpmap files, see
“Application Helpmap Files” on page 135.

Example 9-6 shows the code used to implement context-sensitive help in the
example program listed in Example C-4, which simply installs
clickForHelpCB() as the callback function for the “Click for Help” option of
the Help menu. As long as you create a helpmap file for your application,
you can use this routine as listed in your application as well.

Example 9-6 Implementing Context-Sensitive Help

void clickForHelpCB(Widget wid, XtPointer clientData, XtPointer callData)
{

static Cursor cursor = NULL;
static char path[512], tmp[512];
Widget shell, result, w;

134

Chapter 9: Providing Online Help With SGIHelp

strcpy(path, "");
strcpy(tmp, "");

/*
* create a question-mark cursor
*/

if(!cursor)
cursor = XCreateFontCursor(XtDisplay(wid), XC_question_arrow);

XmUpdateDisplay(_mainWindow);

/*
* get the top-level shell for the window
*/

shell = _mainWindow;
while (shell && !XtIsShell(shell)) {

shell = XtParent(shell);
}

/*
* modal interface for selection of a component;
* returns the widget or gadget that contains the pointer
*/

result = XmTrackingLocate(shell, cursor, FALSE);

if(result) {
w = result;

/*
* get the widget hierarchy; separate with a '.';
* this also puts them in top-down vs. bottom-up order.
*/

do {
if(XtName(w)) {

strcpy(path, XtName(w));

if(strlen(tmp) > 0) {
strcat(path, ".");
strcat(path, tmp);

}

strcpy(tmp, path);
}

w = XtParent(w);

Application Helpmap Files

135

} while (w != NULL && w != shell);

/*
* send msg to the help server-widget hierarchy;
* OR
* provide a mapping to produce the key to be used
*
* In this case, we'll let the sgihelp process do
* the mapping for us, with the use of a helpmap file
*
* Note that parameter 2, the book name, can be found
* from the helpmap file as well. The developer need
* not hard-code it, if a helpmap file is present for
* the application.
*
*/
if(strlen(path) > 0) {

SGIHelpMsg(path, NULL, NULL);
}

}
}

Application Helpmap Files

Application helpmap files provide a level of indirection that allows you to
structure your help presentation independently of your application code.
You don’t have to create a helpmap for your application, but doing so gives
you the following benefits:

• Your application can display a Help Index window, allowing the user to
select a particular topic directly from the list.

• You can write the code that generates your application’s Help menu to
create the “list of topics and tasks” options dynamically from the
helpmap. You can then add and restructure your task help without
recompiling your application. See “Constructing a Help Menu” on
page 130 for details on the Help menu’s list of topics.

• You can provide context-sensitive without hard-coding in your source
code a help topic to each widget. The SGIHelp library provides a
fallback algorithm for finding help topics that simplifies the process
mapping widgets to topics. If the help system can’t find an exact match
to the widget string in the helpmap file, it drops the last widget from

136

Chapter 9: Providing Online Help With SGIHelp

the string and tries again. The help system reiterates this process until it
finds a match in the helpmap file. This eliminates the need to explicitly
map a help topic for every widget in your application. Instead you can
map a help topic to a higher-level manager widget and have that topic
mapped to all of its descendent widgets as well. See “Providing
Context-Sensitive Help” on page 133 for information on implementing
context-sensitive help in your application.

Helpmap File Conventions

Helpmap files are ASCII text files. The name of your application helpmap
file must be “appClass.helpmap”, where appClass is your application’s class
name as provided in your application’s call to SGIHelpInit(). See
“Initializing the Help Session” on page 126 for more information on
SGIHelpInit().

If you create a helpmap file for your application, you must create a
subdirectory named help in the directory containing your help document
and put all of your document’s figures in that subdirectory. See “Preparing
to Build the Online Help” on page 142 for more information.

Helpmap File Format

Each entry, or help topic, in a helpmap consists of a single line containing at
least six fields, each field separated by semicolons:

type;book;title;level;helpID;widget-hierarchy[;widget-hierarchy …]

All fields are required for each entry. Their purpose is as follows:

type The type of help topic. Its value can be:

0 A context-sensitive topic.

1 The overview topic.

2 A task-oriented entry that could show up in the
“list of topics and tasks” area of the Help menu.
See “Constructing a Help Menu” on page 130 for
details on the Help menu’s list of topics.

3 The Keys and Shortcuts topic.

Application Helpmap Files

137

book The name of the help document that contains this help
topic. Help topics can reside in different books. Each
individual help topic can point to only one help book.

title The title of the help topic. This appears in the Help Index
window. If your application parses the helpmap file to
generate the “list of topics and tasks” area of the Help
menu, you can use this as the label for the menu option.

level A number determining the topic level. A value of 0
indicates a main topic, a value of 1 a sub-topic, a value of 2
a sub-sub-topic, and so forth. This produces an
expandable/collapsible outline of topics for the Help Index
window.

If your application parses the helpmap file to generate the
“list of topics and tasks” area of the Help menu, you can
also use these values to construct “roll-over” submenus as
part of a Help menu.

helpID The unique ID, as specified by the “HelpID” attribute, of the
specific help topic in the help document.

widget-hierarchy
One or more fully-qualified widget specifications for use
with context-sensitive help. You can provide multiple
specifications, delimited by semicolons, to associate
different areas with the same topics.

For example, the following entry in Swpkg.helpmap specifies the overview
topic:

1;IndigoMagic_IG;Overview;0;Overview;Swpkg.swpkg.overview

The following entries from Swpkg.helpmap specify several context-sensitive
help topics. In this case, the first entry appears as a main topic in the Help
Index window and the next three appear as sub-topics:

0;Swpkg_UG;Using the swpkg Menus;0;menu.bar;Swpkg.swpkg.menuBar
0;Swpkg_UG;The File Menu;1;menu.bar.file;Swpkg.swpkg.menuBar.File
0;Swpkg_UG;The View menu;1;menu.bar.view;Swpkg.swpkg.menuBar.View
0;Swpkg_UG;The Help menu;1;menu.bar.help;Swpkg.swpkg.menuBar.helpMenu

The following shows a more complex hierarchy from Swpkg.helpmap:

138

Chapter 9: Providing Online Help With SGIHelp

2;Swpkg_UG;Tagging Files;0;tag.files.worksheet;Swpkg.swpkg
2;Swpkg_UG;Selecting Product Files;1;file.browser;Swpkg.swpkg.view.viewPanedWindow.viewForm.\
leftForm.filesBody.addBody.FileListAdd.selectionGrid
0;Swpkg_UG;Setting the Browsing Directory;2;file.browser.dirfield;Swpkg.swpkg.view.\
viewPanedWindow.viewForm.leftForm.filesBody.addBody.FileListAdd.directoryLabel;Swpkg.swpkg.\
view.viewPanedWindow.viewForm.leftForm.filesBody.addBody.FileListAdd.directoryTextField
0;Swpkg_UG;Selecting Files From the File List;2;file.browser.filelist;Swpkg.swpkg.view.\
viewPanedWindow.viewForm.leftForm.filesBody.addBody.FileListAdd.scrolledWindow.filesList;\
Swpkg.swpkg.view.viewPanedWindow.viewForm.leftForm.filesBody.addBody.FileListAdd.\
scrolledWindow.VertScrollBar

Note: The backslashes (\) indicate linewraps; they do not actually appear in
the helpmap file. Each helpmap entry must be a single line.

In the example above, the first entry is a task-oriented topic (2 in the type
field). swpkg parses the helpmap file to create its Help menu, so “Tagging
Files” appears as a selection. The second entry is also a task-oriented topic.
It’s a sub-topic of the first entry and appears in a submenu off the “Tagging
Files” selection. The last two entries are marked as context-sensitive only (0
in the type field). These entries don’t appear anywhere in the application’s
Help menu, but they do appear as sub-sub-topics in the Help Index window.
Also note that the last two entries have two widget specifications, providing
context-sensitive help for two different widgets.

Note: The order of the entries in the application helpmap file determines the
order in which help topics appear in the Help Index window.

Widget Hierarchies in the Helpmap File

At least one widget hierarchy must accompany every point in the
application helpmap file. That one (default) point should be set to
“application_classname.top-level_shell”.

Note that the application class name must always be the first component of
a widget hierarchy string. All widget ID’s within the string must be
delimited by a period (.).

Widget hierarchies can be as fine-grained as you wish to make them. A
fall-back algorithm is in place (to go to the closest available entry) when the
user clicks a widget in context-sensitive help mode. For example, suppose
your application includes a row or set of buttons. When the user asks for

Application Helpmap Files

139

help on a button, you pass that widget string to SGIHelp. If the widget string
is not found in the mappings, the last widget is dropped off the string (in this
case, the widget ID for the button itself). The new string is compared to all
available mappings. This loop continues until something is found. At the
very least, you should fall back to an “Overview” card.

To get a sample widget hierarchy (help message) from an application, you
can run the SGIHelp help server process in debug mode. Before doing this,
you need to add the SGIHelp API call, SGIHelpMsg(), to your application
and implement context-sensitive help. Make sure that you send a widget
hierarchy string for the “key” parameter in the SGIHelpMsg() call. (See
“Providing Context-Sensitive Help within an Application” and
“Understanding Available Calls” for details on this call.)

To get a sample widget hierarchy from an application that implements
context-sensitive help, follow these steps:

1. Bring up a shell.

2. Make sure the help server process isn’t running. Type:

% /etc/killall sgihelp

3. Type the following to make the help server process run in the
foreground in debug mode:

% /usr/sbin/sgihelp -f -debug

4. Run your application, and then choose “Click for Help” from the help
menu. The cursor should change into a question mark (?), or whatever
cursor you’ve implemented for context sensitive help.

5. Click a widget or an area of the application.

6. Check the shell from which SGIHelp is being run. You should see a line
such as:

REQUEST= client="Overview" command="view" book=""
keyvalue="DesksOverview.MainView.Frame.viewport.Bboard"
separator="." user_data=""

The “keyvalue” field contains the widget hierarchy that you can add to
the helpmap file. Remember to add the application class name to the
front of the string. For the example above, the full widget hierarchy
string would be:

Overview.DesksOverview.MainView.Frame.viewport.Bboard

140

Chapter 9: Providing Online Help With SGIHelp

Writing the Online Help

This section describes how you prepare the online help document. It
provides an explanation of the standard format you must use, as well as the
steps you take to actually prepare the file.

For guidelines on structuring and writing your online help text, see “Writing
Online Help Content for SGIHelp” in Chapter 4 of the Indigo Magic User
Interface Guidelines.

Overview of Help Document Files

Help document files contain the actual help text in Standard Generalized
Markup Language (SGML) format. When you write the online help for your
product, you need to embed SGML tags to describe the structure of your
document.

The file /usr/share/Insight/XHELP/samples/sampleDoc/sample.sgm is an
example of a file with embedded SGML tags. (Example C-1 also lists this
file.) Notice the tags surrounded by angle brackets (<>). These tags describe
how each item fits into the structure of the overall document. For example,
a paragraph might be tagged as a list item, and a word within that paragraph
may be tagged as a command.

The Document Type Definition (DTD) outlines the tagging rules for your
online documentation. In other words, it specifies which SGML tags are
allowed, and in what combination or sequence. The file
/usr/share/Insight/XHELP/dtd/XHELP.dtd lists the legal structure for your
online help.

A DTD can be difficult to read, so you might instead want to look at the file
/usr/share/Insight/XHELP/samples/XHELP_elements/XHELP_elements.sgm,
which lists the legal elements in a help document and describes when to use
them in your documents. (Example C-2 also lists this file.)

For a more complete understanding of SGML, refer to the bibliography in
“Bibliography of SGML References” on page 147. It lists several of the many
books on SGML.

Writing the Online Help

141

Viewing the Sample Help Document Files

Before beginning to write your own help documents, you might find it
helpful to examine the source of the sample help documents and then view
resulting online versions. You can compile and view the help documents in
Insight. To do so, follow these steps:

1. Go to a directory in which you want to build the sample help book.

2. Copy the necessary directories and files by entering:

% cp -r /usr/share/Insight/XHELP/samples .

3. Enter:

% cd samples/sampleDoc

4. Build the file sample.sgm by entering:

% make help

5. To view this file, enter:

% iiv -b . -v sample

6. Change to the exampleApp directory by entering:

% cd ../exampleApp

7. Build the file exampleAppXmHelp.sgm by entering:

% make help

8. To view this file, enter:

% iiv -b . -v exampleAppXmHelp

Creating a Help Document File

To create the help document file for your application:

1. Create a new directory for the online help, then go to this directory.

2. Create a text file and name the file “title.sgm”, where title is one word
that identifies the online help.

3. Write the online help.

You can include figures as described in the example help documents. If your
document contains figures, create a subdirectory named either figures or

142

Chapter 9: Providing Online Help With SGIHelp

online in your help document directory and put all of your document’s
figures in that subdirectory.

Preparing to Build the Online Help

After writing your online help you must build it, similarly to the way you
compile a program. When you build the online help, you transform the raw
SGML file into a viewable, online document. To get started, you need to
create two files: a Makefile and a spec file. The Makefile specifies:

• the name of file that contains the online help

• the name you want to assign to the help book

• the version number of the product

The spec file specifies:

• the title of your product

• the official release and version numbers

• other information that is used when you create the final, installable
images

To create these files, follow these steps:

1. Go to the directory that contains the online help file.

2. Copy /usr/share/Insight/XHELP/templates/Makefile_xhelp by typing:

cp /usr/share/Insight/XHELP/templates/Makefile_xhelp Makefile

3. Copy /usr/share/Insight/XHELP/templates/spec_xhelp by typing:

cp /usr/share/Insight/XHELP/templates/spec_xhelp spec

4. Edit the Makefile:

■ Next to the label TITLE, type the name of the file that contains the
online help.

■ Next to the label FULL_TITLE, type the name you want to assign to
the help book. This name can contain several words, and is used
only if you decide to display the help as a “book” on the Insight
bookshelf.

Writing the Online Help

143

■ Next to the label VERSION, type the version number for the
product.

■ Next to the label HIDDEN, remove the comment character (#) if
you want the online help to appear as a book on an Insight
bookshelf. Change this if you want users to be able to browse the
help information using Insight, and not just from within your
application.

5. Edit the spec file:

■ Replace the string ${RELEASE} with the release number for the
product. This should match what you’ve entered in the Makefile for
the VERSION.

■ Replace the string <ProductName> with a one-word name for the
product.

■ Replace the string <Shortname> with the TITLE you specified in
the Makefile.

■ Replace the string <SHORTNAME> with the TITLE you specified
in the Makefile. Capitalize all letters.

■ Replace the string <SHORTNAME_HELP> with the TITLE
followed by “_HELP”.

■ Replace the string <Book title> with the FULL_TITLE you
specified in the Makefile.

Once you have edited these files, the directory containing your help
document should contain:

• your help document

• the Makefile

• the spec file

• if you included figures in your help document, a subdirectory named
either figures or online containing all of the figures

• if you created a helpmap file for you application, a subdirectory named
help containing the helpmap file

144

Chapter 9: Providing Online Help With SGIHelp

Building the Online Help

Once you have written the online help and done the preparation described
in “Preparing to Build the Online Help” on page 142, you can build and view
the online help. To do so, follow these steps:

1. Go to the directory that contains the online help files.

2. Enter:

% make help

If the help is formatted properly, the online help will build. You should
see a file called booklist.txt and a directory called books.

If the SGML file contains errors, you will see them displayed in the
shell window. See “Finding and Correcting Build Errors” for details.

3. View the book by typing

% iiv -b . -v title

Where title is the value of TITLE from the Makefile.

Finding and Correcting Build Errors

The SGML tags come in pairs. Each pair contains an opening tag and a
closing tag, and the tag applies to everything between the opening tag and
the closing tag. If you use these tags incorrectly, you’ll get error messages
when you build the help file. The most common errors are the result of
misspelled tag names, mismatched end tags, or tags used out of sequence.

Some examples of common error messages are:

mkhelperror: not authorized to add tag ’PAR’, ignoring content.

This error appears if you specify an invalid tag. In this case, the invalid tag
is “PAR.” The valid tag name is “PARA.”

mkhelperror: Start-tag for ’HELPLABEL’ is not valid in this context.
mkhelp Location: Line 37 of entity ’#DOCUMENT’
Context: ’hor point for the link
syntax.</>&#RS;</HelpTopic>&#RS;&#RS;<Helplabel>’...
 ’<Anchor Id="AI003">Using Notes, Warnings or Tips Within a P’
 FQGI: DOCHELP

Producing the Final Product

145

This error message occurs when the parser sees a tag it isn’t expecting. In this
case it found a HELPLABEL that was not preceded by a HELPTOPIC start
tag. The error message specifies the line number of the error (37), the context
in the file, and the Fully Qualified Generic Identifier (FQGI) of the context.
You can probably ignore the FQGI; it describes where the error occurs within
the SGML structure.

mkhelperror: No ’WARNING’ is open, so an end-tag for it is not valid.
The last one was closed at line 46.
mkhelp Location: Line 46 of entity ’#DOCUMENT’
Context: ’<warning>Missing open para. This is a
warning.</></warning>’...
 ’&#RS;<note><para>For your information, this is a note.</></note’
 FQGI: DOCHELP,DESCRIPTION,PARA,PARA

This message can occur if you close items with the generic end tag, </>. In
this case, the </> closes the <warning> because the start tag for <para> is
missing. This may occur if you leave out a start tag or accidentally spell it
incorrectly.

If you want additional information about the errors, use the command make
verify. It produces a more detailed error log.

Producing the Final Product

This section describes how to package your online help as a subsystem that
users can install using Software Manager (swmgr), the Silicon Graphics
software installation utility.

Creating the Installable Subsystem

After you’ve finished writing and building your online help, you need to
package it so that users can install it with the rest of your product. To do so:

1. Go to the directory that contains the online help.

2. Enter:

% make images

146

Chapter 9: Providing Online Help With SGIHelp

This produces a directory called images. This directory contains all of
the files you need to let users install the online help using Software
Manager.

Incorporating the Help Subsystem into an Installable
Product

If you use the Software Packager utility (swpkg) to package your product so
that users can install it using Software Manager, you need to merge the
online help subsystem with the rest of your product. Consult the Software
Packager User’s Guide for detailed instructions for using swpkg.

You don’t need to use swpkg to create spec or IDB files for your online help
subsystem. By following the instructions in “Preparing to Build the Online
Help” on page 142, you created the spec file. The process of building your
online help, described in “Building the Online Help” on page 144
automatically created an IDB file and tagged the files; set the permissions
and destinations; and assigned the necessary attributes. The online help
build tools use “/” as the Source and Destination Tree Root directories when
generating the IDB file. (The Software Packager User’s Guide defines all of
these terms.)

If you’ve not already created the spec and IDB files for the rest of your
product using swpkg, you can use swpkg to open the existing help subsystem
spec and IDB files, and expand them as needed to handle the rest of your
product. Consult the Software Packager User’s Guide for instructions.

If you’ve already created the spec and IDB files for your product, you can
merge the help subsystem with the existing files as described in “Combining
Existing Products Into a Single Product” in Chapter 7 of the Software Packager
User’s Guide.

Incorporating the Help Subsystem into a Product With a
Custom Installation Script

If you don’t use swpkg to package your product for installation with
Software Manager, do one of the following.

Bibliography of SGML References

147

• If users install your product using the tar command, have them use tar
to copy the online help images as well. After copying the images, the
user needs to type:

inst -af <inst_product>

where inst_product is the location of the images.

• If you’ve created a script, enhance the script so that it extracts all of the
help images onto disk, and then invokes the command:

inst -af <inst_product>

where inst_product is the location of the images.

Bibliography of SGML References

1. *SoftQuad, Inc. The SGML Primer. SoftQuad’s Quick Reference Guide to
the Essentials of the Standard: The SGML Needed for Reading a DTD and
Marked-Up Documents and Discussing Them Reasonably. Version 2.0.
Toronto: SoftQuad Inc., May 1991. 36 pages. Available from SoftQuad
Inc.; 56 Aberfoyle Crescent, Suite 810; Toronto, Ontario; Canada M8X
2W4; TEL: +1 (416) 239-4801; FAX: +1 (416) 239-7105.

2. Bryan, Martin. SGML: An Author’s Guide to the Standard Generalized
Markup Language. Wokingham/Reading/New York: Addison-Wesley,
1988. ISBN: 0-201-17535-5 (pbk); LC CALL NO: QA76.73.S44 B79 1988.
380 pages. A highly detailed and useful manual explaining and
illustrating features of ISO 8879. The book: (1) shows how to analyze
the inherent structure of a document; (2) illustrates a wide variety of
markup tags; (3) shows how to design your own tag set; (4) is copiously
illustrated with practical examples; (5) covers the full range of SGML
features. Technical and non-technical authors, publishers, typesetters
and users of desktop publishing systems will find this book a valuable
tutorial on the use of SGML and a comprehensive reference to the
standard. It assumes no prior knowledge of computing or typography
on the part of its readers.

3. Goldfarb, Charles F. The SGML Handbook. Edited and with a foreword
by Yuri Rubinsky. Oxford: Oxford University Press, 1990. ISBN:
0-19-853737-1. 688 pages. This volume contains the full annotated text
of ISO 8879 (with amendments), authored by IBM Senior Systems
Analyst and acknowledged “father of SGML,” Charles Goldfarb. The
book was itself produced from SGML input using a DTD which is a

148

Chapter 9: Providing Online Help With SGIHelp

variation of the “ISO.general” sample DTD included in the annexes to
ISO 8879. The SGML Handbook includes: (1) the up-to-date amended
full text of ISO 8879, extensively annotated, cross-referenced, and
indexed; (2) a detailed structured overview of SGML, covering every
concept; (3) additional tutorial and reference material; and (4) a unique
“push- button access system” that provides paper hypertext links
between the standard, annotations, overview, and tutorials.

4. Herwijnen, Eric van. Practical SGML. Dordrecht/Hingham, MA:
Wolters Kluwer Academic Publishers. 200 pages. ISBN: 0-7923- 0635-X.
The book is designed as a “practical SGML survival-kit for SGML users
(especially authors) rather than developers,” and itself constitutes an
experiment in SGML publishing. The book provides a practical and
painless introduction to the essentials of SGML, and an overview of
some SGML applications. See the reviews by (1) Carol Van Ess-Dykema
in Computational Linguistics 17/1 (March 1991) 110-116, and (2)
Deborah A. Lapeyre in <TAG> 16 (October 1990) 12-14.

5. Smith, Joan M.; Stutely, Robert S. SGML: The Users’ Guide to ISO 8879.
Chichester/New York: Ellis Horwood/Halsted, 1988. 173 pages. ISBN:
0-7458-0221-4 (Ellis Horwood) and ISBN: 0-470-21126-1 (Halsted). LC
CALL NO: QA76.73.S44 S44 1988. The book (1) supplies a list of some
200 syntax productions, in numerical and alphabetical sequence; (2)
gives a combined abbreviation list; (3) includes highly useful subject
indices to ISO 8879 and its annexes; (4) supplies graphic representations
for the ISO 8879 character entities; and (5) lists SGML keywords and
reserved names. An overview of the book may be found in the SGML
Users’ Group Newsletter 9 (August 1988).

6. ISO 8879:1986. Information Processing—Text and Office System—Standard
Generalized Markup Language (SGML). International Organization for
Standardization. Ref. No. ISO 8879:1986 (E). Geneva/New York, 1986.
A subset of SGML became a US FIPS (Federal Information Processing
Standard) in 1988. The British Standards Institution adopted SGML as a
national standard (BS 6868) in 1987, and in 1989 SGML was adopted by
the CEN/CENELEC Standards Committees as a European standard,
#28879. Australia has dual numbered versions of ISO 8879 SGML and
ISO 9069 SDIF (AS 3514—SGML 1987; AS 3649—1990 SDIF).

7. ISO 8879:1986 / A1:1988 (E). Information Processing—Text and Office
Systems—Standard Generalized Markup Language (SGML), Amendment 1.
Published 1988-07-01. Geneva: International Organization for
Standardization, 1988.

Chapter 10

Users can set several prefences for
system operation in the Indigo Magic
Desktop. This chapter describes how
to use these preference settings.

Handling Users’ System Preferences

151

Chapter 10

10. Handling Users’ System Preferences

This chapter describes how your application can recognize and use various
system preferences that users can set through Desktop control panels.
Whenever possible, your application should follow these preferences to
provide a consistent interface for your users. In particular, this chapter
contains:

“Handling the Mouse Double-Click Speed Setting” describes how to
recognize the preferred mouse double-click speed.

“Using the Preferred Text Editor” describes how to use the preferred visual
text editor whenever your application needs to let users edit text.

Handling the Mouse Double-Click Speed Setting

The Mouse Settings control panel (available from the “Customize” submenu
of the Desktop toolchest) allows users to set various parameters that affect
the operation of the mouse. The setting of importance to applications is
“Click Speed,” which determines the maximum interval between
double-clicks. “Click Speed” sets the *multiClickTime X resource.

In most cases, you don’t need to do anything to handle this setting. IRIS IM
widgets automatically use the multiClickTime value as appropriate. Only if
your application needs to handle double-clicks explicitly (for example, to
select a word in a word processing application) does it need to call
XtGetMultiClickTime() to determine the double-click time. See the
XtGetMultiClickTime(3Xt) reference page for more information on
XtGetMultiClickTime().

Note: Don’t call XtSetMultiClickTime(), which sets the double-click time
for the entire display.

152

Chapter 10: Handling Users’ System Preferences

Using the Preferred Text Editor

The Desktop Settings control panel (available from the “Customize”
submenu of the Desktop toolchest) contains a “Default Editor” setting,
which allows users to select a preferred visual editor for editing ASCII text.
This sets the value of the WINEDITOR environment variable.

Whenever your application needs to let users edit text, you should:

1. Call getenv() to check whether the WINEDITOR environment variable
is set. See the getenv(3c) reference page for more information on
getenv().

2. If WINEDITOR is set, save the text to edit in a temporary file. Typically,
you should check the value of the environment variable TMPDIR and,
if it is set, put the temporary file in that directory.

3. Execute the editor, providing it the new of the temporary file as an
argument.

4. When the user quits the editor, read the temporary file and delete it.

Chapter 1

PART TWO

Creating Desktop Icons II

Chapter 11

This chapter provides a checklist of
the steps you need to follow to create
Desktop icons for your application.

Creating Desktop Icons: An Overview

157

Chapter 11

11. Creating Desktop Icons: An Overview

This chapter offers an overview of the basic steps for creating Indigo Magic
Desktop icons and adding them to the Icon Catalog. If you don’t feel you
need much background information, you can skip to the brief list of
instructions provided in “Checklist for Creating an Icon” on page 158.

This chapter contains these sections:

• “About Indigo Magic Desktop Icons” on page 157 briefly discusses the
Indigo Magic Desktop and lists what kinds of icons you’ll need to
provide for your application.

• “Checklist for Creating an Icon” on page 158 lists the basic steps for
drawing, programming, compiling, and installing an icon.

• “Creating an Icon: The Basic Steps Explained in Detail” on page 160
explains each of the basic icon creation steps in more detail.

Note: Minimized windows, which represent running applications, aren’t
Desktop icons. To learn how to customize the image on a minimized
window, refer to Chapter 6, “Customizing Your Application’s Minimized
Windows.”

About Indigo Magic Desktop Icons

Files on the Desktop are represented by icons. Users can manipulate these
icons to run applications, print documents, and perform other actions.
“How Users Interact with Desktop Icons” in Chapter 1 of the Indigo Magic
User Interface Guidelines describes some of the common user interactions.

The Desktop displays different icons to represent the different types of files.
For example, the default icon for binary executables is the “magic carpet,”
and the default icon for plain text files is a stack of pages.

158

Chapter 11: Creating Desktop Icons: An Overview

When you create your own application, by default the Desktop uses an
appropriate “generic” icon to represent the application and its associated
data files (for example, the magic carpet icon for the executable and the stack
of pages icon for text files). You can also design your own custom icons to
promote product identity and to indicate associated files.

Another advantage of creating custom icons is that you can program them to
perform certain actions when users interact with them on the Desktop. For
example, you can program a custom data file icon so that when a user opens
it, the Desktop launches your application and opens the data file.

The Desktop determines which icon to display for a particular file by finding
a matching file type. A file type consists of a set of File Typing Rules (FTRs) that
describe which files belong to the file type and how that type’s icon looks
and acts on the Desktop.

The Desktop reads FTRs from compiled versions of special text files called
FTR files. An FTR file is a file in which one or more file types are defined
(typically, you define more than one file type in a single file). FTR files can
also contain print conversion rules, which define any special filters needed to
print given file types. Chapter 13, “File Typing Rules,” discusses the syntax
of FTRs, and Chapter 14, “Printing From the Desktop,” discusses print
conversion rules.

Checklist for Creating an Icon

To provide a comprehensive Desktop icon interface for your application:

1. Tag your application. You need to tag the application with its own
unique identification number so that the Desktop has a way of
matching the application with the corresponding FTRs. See “Step One:
Tagging Your Application” on page 160 for instructions.

2. Draw a picture of your icon. Create a distinctive Desktop icon to help
users distinguish your application from other applications on the
Desktop. Optionally, create an icon for the data files associated with
your application. Use the IconSmith application to draw your icons.
IconSmith allows you to draw an icon and then convert it into the icon
description language used by the Desktop. IconSmith is the only tool

Checklist for Creating an Icon

159

you can use to create an icon picture. For guidelines on designing icons,
see the Indigo Magic User Interface Guidelines. For information on how to
use IconSmith, see Chapter 12, “Using IconSmith.”

3. Program your icon. Create the FTRs to define your icons’ Desktop
interaction. Chapter 13, “File Typing Rules,” describes FTRs in detail.
Before programming your icon, think about what users expect from the
application and, with that in mind, decide how you want the icon to
behave within the Desktop. Before you make these decisions, read the
icon programming guidelines in “Defining the Behavior of Icons with
FTRs” in Chapter 2 of the Indigo Magic User Interface Guidelines. In
particular:

■ Program your Desktop icon to run your application with the most
useful options. Include instructions for launching your application
when the user opens the icon; opens the icon while holding down
the <Alt> key; and drags and drops other icons on the application
icon.

■ If there are several useful combinations of options that users might
want to use when invoking your application, you can incorporate
them into a Desktop menu. (These Desktop menu items appear
only when the icon is selected.) Users can then select the menu item
that corresponds to the behavior they want—without having to
memorize a lot of option flags.

■ Where appropriate, provide print conversion rules that describe how
to convert a data file for printing into a type recognized by the
Desktop. To print output, users can then just select the appropriate
data file icon and choose “Print” from the Desktop menu rather
than having to remember specialized filter information. Chapter 14,
“Printing From the Desktop,” describes print conversion rules.

4. Compile the source files. Compile the .otr files, which contain the
compiled source for all existing FTRs. For more information on .otr files,
see “Step Four: Compiling the Source Files” on page 166.

5. Add your application to the Icon Catalog. This makes it easier for your
users to locate your icon in the Icon Catalog and helps maintain a
consistent look for your application in the Desktop. Chapter 15,
“Adding Your Application’s Icon to the Icon Catalog,” explains how to
do this.

160

Chapter 11: Creating Desktop Icons: An Overview

6. Restart the Desktop. You can view your changes after you restart the
Desktop. “Step Six: Restarting the Desktop” on page 167 explains how
to restart the Desktop.

7. Update your installation process. If you want to install your
application on other Silicon Graphics workstations, include in your
installation all of the files that you created in the preceding steps.
Silicon Graphics recommends you use swpkg to package your files for
installation. See the Software Packager User’s Guide for information for
instructions on using swpkg. See “Step Seven: Updating Your
Installation Process” on page 167 for guidelines.

Note: You cannot create your own device, host, or people icons. These are
special icons used by the Desktop and can currently be created only by
Silicon Graphics.

Creating an Icon: The Basic Steps Explained in Detail

This section describes in detail each of the basic steps listed in “Checklist for
Creating an Icon” on page 158.

Step One: Tagging Your Application

The first step is to tag the application with its own unique identification
number so that the Desktop has a way of matching the application with the
corresponding FTRs. The easiest way to tag your application is to use the tag
command. In order to use tag, your application must be an executable or a
shell script, and you must have write and execute permissions for the file.

Note: You do not tag data or configuration files used by your application.
Instead, you provide rules as described in “Matching Files Without the tag
Command” on page 207 to identify these files.

If your application does meet the criteria for using the tag command, then
select a tag number from your block of registered tag numbers. If you do not
have a block of registered tag numbers, get one by sending an e-mail request
to Silicon Graphics at this mail address:

workspacetags@sgi.com

Creating an Icon: The Basic Steps Explained in Detail

161

After Silicon Graphics sends you a block of registered tag numbers, use the
tag(1) command to assign one to your application. To do this, change to the
directory containing your application and enter:

% tag tagnumber filename

where tagnumber is the number you’re assigning to the application and
filename is the name of the application. For more detailed information on the
tag command, see the tag(1) reference page.

Step Two: Drawing a Picture of Your Icon

The next step is to create the picture for your icon. An icon picture generally
consists of a unique badge plus a generic component (for example, the “magic
carpet” designating executables). The badge is the part of the icon picture
that appears in front of the generic component and that uniquely identifies
your application. The generic components are pre-drawn and installed by
default when you install the Indigo Magic Desktop environment.

“Designing the Appearance of Icons” in Chapter 2 of the Indigo Magic User
Interface Guidelines provides guidelines for drawing your icon images. If
possible, consult with a designer or graphics artist to produce an attractive,
descriptive icon. Chapter 12, “Using IconSmith,” describes exactly how to
draw such an icon. Save the badge in a file called <<IconName>>.fti, where
IconName is any name you choose. Choose a meaningful name (such as the
name of the application or data format). If you have separate pictures
representing the open and closed states of the icon, it’s a good idea to name
them <<IconName>>.open.fti and <<IconName>>.closed.fti, respectively.

After drawing your badge with IconSmith (described in Chapter 12) save
the picture—the filename should end in .fti—and put the saved file in the
correct directory. The appropriate directory depends on where you put your
FTR files:

• If you put your FTR (.ftr) files in the /usr/lib/filetype/install directory
(where you typically should install your FTR files), then put your badge
(.fti) files in the /usr/lib/filetype/install/iconlib directory.

• If you put your FTR files in one of the other directories listed in
Appendix F, then put your badge file in a subdirectory of that directory.
Name the subdirectory iconlib if the subdirectory doesn’t already exist.

162

Chapter 11: Creating Desktop Icons: An Overview

Step Three: Programming Your Icon

Programming an icon means creating a file type. Each file type consists of a
set of file typing rules, each of which defines some aspect of the look or
behavior of the icon. Your file type includes rules that name the file type, tell
the Desktop where to find the associated icon files, what to do when users
double-click the icon, and so on. Chapter 13, “File Typing Rules,” describes
how to create the FTR file that defines your file type. “Defining the Behavior
of Icons with FTRs” in Chapter 2 of the Indigo Magic User Interface Guidelines
describes the types of behaviors your icons should support.

(This section assumes that you are writing your FTRs completely from
scratch. You might prefer instead to modify an existing file type. To learn
how to find the FTRs for an existing icon, see “Add the FTRs: An Alternate
Method” on page 164.)

Where to Put FTR Files

Most FTR files that are not created at Silicon Graphics belong in the
/usr/lib/filetype/install directory. There are also specific FTR directories set
aside for site administration. For a list of all FTR directories, see Appendix F,
“FTR File Directories.”

If you want to have a look at some existing FTR files, check out the
/usr/lib/filetype/install directory.

Naming FTR Files

If you have an existing FTR file, you can add the new file type to this file.
Otherwise, you need to create a new FTR file, which you should name
according to the standard naming convention for application vendors’ FTR
files. The convention is:

vendor-name[.application-name].ftr

where vendor-name is the name of your company and application-name is the
name of your application.

Creating an Icon: The Basic Steps Explained in Detail

163

Name the File Type

Each file type must have a unique name. To help insure that your file type
name is unique, base it as closely as possible on your application name.

As an extra check, you can search for your file type name in the
/usr/lib/filetype directory, to make sure that the name is not already in use:

1. Change to the /usr/lib/filetype directory:

% cd /usr/lib/filetype

2. Search for the file type name:

% grep "your_name_here" */*.ftr

where your_name_here is the name you’ve selected for your file type.

If you find another file type of the name you have chosen, pick a new name.

Add the FTRs

To create a file type, either add the file type definition to an existing FTR file
or create a new FTR file. You can define all the necessary file types for your
application in a single FTR file.

Each file type definition must include:

• the TYPE rule, to tell the Desktop that you are declaring and naming a
new type (the TYPE rule must go on the first line of the FTRs)—a type is
a unique type of icon, such as an email icon

• the LEGEND rule, to provide a text description when users view icons
as a list

• the MATCH rule, to allow the Desktop to match files with the
corresponding file type

• the ICON rule, to tell the Desktop how to draw the icon to use for this
file type

In addition to these basic components, you can add other FTRs as necessary.

164

Chapter 11: Creating Desktop Icons: An Overview

Add the FTRs: An Alternate Method

If you don’t want to write the file type from scratch, you can modify an
existing file type.

The first step is to choose a file type that produces icon behavior similar to
what you want from your new file type (that is, does the same thing when
you double-click the icon, acts the same way when you drop the icon on
another icon, and so on.)

To find the set of FTRs that define the file type for the an icon, first locate the
icon on the Desktop. If the icon isn’t already on the Desktop select “An Icon”
from the Find toolchest and use the Find an Icon window to find the icon.
(When the icon appears in the drop pocket, drag it onto the Desktop.

Select the icon by clicking the left mouse button on it, then hold down the
right mouse button to get the Desktop menu. When the menu appears, select
the “Get Info” menu item. A window appears. In the window, look at the
line labeled, “Type.”

For example, if you’d selected the jot icon, the line would read:

Type: jot text editor

The string “jot text editor” is produced by the LEGEND rule; you can use
this string to find the FTRs that define the jot file type. To do this, open a shell
and follow these steps:

1. Change to the /usr/lib/filetype directory

% cd /usr/lib/filetype

2. Search for “jot text editor”

% grep "jot text editor" */*.ftr

The system responds with this line:

system/sgiutil.ftr LEGEND jot text editor

This tells you that the jot FTRs are in the /usr/lib/filetype/system directory in a
file named sgiutil.ftr. Now you can open the sgiutil.ftr file using the text editor
of your choice, and search for the “jot text editor” string again. This tells you
exactly where the jot FTRs are in the sgiutil.ftr file.

Creating an Icon: The Basic Steps Explained in Detail

165

Note: If jot file type did not have its own icon, this search would not give
you the filename.

Now you can go to the file with the jot FTRs and copy them into the FTR file
for your new file type. Then rename and modify these copied FTRs to fit
your new file type, as described in “Step Three: Programming Your Icon” on
page 162.

An Example File Type

Here is an example of a simple file type definition:

TYPE scrimshaw
 MATCH tag == 0x00001005;
 LEGEND the scrimshaw drawing program
 SUPERTYPE Executable
 CMD OPEN $LEADER
 CMD ALTOPEN launch -c $LEADER
 ICON {
 if (opened) {
 include("../iconlib/generic.exec.open.fti");

 } else {
 include("../iconlib/generic.exec.closed.fti");
 }
 include("/iconlib/scrimshaw.fti");
 }

Here’s a brief description of what each of these lines does:

• The first line contains the TYPE rule, which you use to name the file
type. In this case, the file type is named, scrimshaw. Always place the
TYPE rule on the first line of your FTRs. The TYPE rule is described in
“Naming File Types: The TYPE Rule” on page 203.

• The second line contains the MATCH rule. Use the MATCH rule to tell
the Desktop which files belong to this file type. In this example, we are
just writing in the identification (tag) number that we have already
assigned to the application. The MATCH rule is described in “Matching
File Types With Applications: The MATCH Rule” on page 205.

• The third line contains the LEGEND rule. Use this rule to provide a
brief descriptive phrase for the file type. This phrase appears when
users view a directory in list form. It also appears when users select the
“Get File Info” item from the Desktop pop-up menu. In this case, the

166

Chapter 11: Creating Desktop Icons: An Overview

descriptive phrase is “the scrimshaw drawing program.” The LEGEND
rule is described in “Adding a Descriptive Phrase: The LEGEND Rule”
on page 212.

• The fourth line contains the SUPERTYPE rule. Use this rule to name a
file type superset for your FTRs. In this example, the SUPERSET is
“Executable.” The SUPERTYPE rule is described in “Categorizing File
Types: The SUPERTYPE Rule” on page 204.

• The fifth line contains the CMD OPEN rule. This rule tells the Desktop
what to do when users double-click the icon. In this example,
double-clicking the icon opens the scrimshaw application. The
$LEADER variable is a Desktop environment variable. The Desktop
environment variables are listed and defined in Appendix B, “Desktop
Environment Variables.” The CMD OPEN rule is described in
“Programming Open Behavior: The CMD OPEN Rule” on page 214.

• The sixth line contains the CMD ALTOPEN rule. This rule tells the
Desktop what to do when users double-click the icon while holding
down the <Alt> key. In this example, the Desktop runs launch(1), which
brings up a text edit window so that users can type in command-line
arguments to the scrimshaw executable. Again, $LEADER is a Desktop
environment variable. These are listed in Appendix A. For more
information on the launch command, see the launch(1) reference page.
The CMD ALTOPEN rule is described in “Programming Alt-Open
Behavior: The CMD ALTOPEN Rule” on page 215.

• The final lines contain the ICON rule. These lines tell the Desktop
where to find the generic component of the open and closed versions of
the “scrimshaw” icon. Note that this rule combines the generic
component for open and closed executables with the unique
“scrimshaw” badge that identifies it as a distinctive application. The
ICON rule is described in “Getting the Icon Picture: The ICON Rule” on
page 220.

Step Four: Compiling the Source Files

The Desktop compiles FTR source files into files called .otr (and .ctr) files.
These files are kept in the /usr/lib/filetype directory.

Any time you add or change FTRs (or print conversion rules) you must
recompile the .otr and .ctr files by following these steps:

Creating an Icon: The Basic Steps Explained in Detail

167

1. Change to the /usr/lib/filetype directory:

% cd /usr/lib/filetype

2. Become superuser:

% su

3. Recompile the files:

make -u

(If you don’t use the -u option when you make the files, some of your
changes might not take effect.)

To activate the new FTRs, quit and restart the Desktop. For instructions on
restarting the Desktop, see “Step Six: Restarting the Desktop” on page 167.

Step Five: Installing Your Application in the Icon Catalog

Add your icon to the Icon Catalog, using the iconbookedit command. See
Chapter 15 for instructions on using the iconbookedit command. “Making
Application Icons Accessible” in Chapter 2 of the Indigo Magic User Interface
Guidelines describes the Icon Catalog and how to select the appropriate page
of the Icon Catalog for your application.

Step Six: Restarting the Desktop

In order to view your changes and additions, you must restart the Desktop.
To restart the Desktop, first kill it by typing:

% /usr/lib/desktop/telldesktop quit

Then, restart the Desktop by selecting “Home Directory” from the Desktop
toolchest.

Step Seven: Updating Your Installation Process

Silicon Graphics recommends you use swpkg to package your files for
installation. Refer to the Software Packager User’s Guide for information on
how to package your application for installation.

168

Chapter 11: Creating Desktop Icons: An Overview

Your installation process must:

• Tag the executables it produces (“Step One: Tagging Your Application”
on page 160 explains how to tag executables). With swpkg, you can do
this using the exitop attribute from the Add Attributes worksheet. Set
up the exitop attribute to run the tag command (assuming you’re using
the tag command to tag your executable). See Chapter 6, “Adding
Attributes,” in the Software Packager User’s Guide for instructions.

• Copy .fti and .ftr files to the appropriate directories (“Where to Put FTR
Files” on page 162 and “Where to Put Your Completed Icon” on
page 173 explain which directories these files belong in). With swpkg,
you can do this by setting the appropriate destination directory and
destination filename for each file, using the Edit Permissions and
Destinations worksheet. See Chapter 5, “Editing Permissions and
Destinations,” in the Software Packager User’s Guide for instructions.

• Invoke make in /usr/lib/filetype to update the Desktop's database (“Step
Four: Compiling the Source Files” on page 166 explains how to update
the database). With swpkg, you can do this using the exitop attribute
from the Add Attributes worksheet. Set up the exitop attribute to run
the make command. See Chapter 6, “Adding Attributes,” in the Software
Packager User’s Guide for instructions.

• Add your icon to the Icon Catalog, using the iconbookedit command. See
Chapter 15 for instructions on using the iconbookedit command.

See the make(1), sh(1), and tag(1) reference pages for more information on
these commands.

Chapter 12

This chapter explains how to use the
IconSmith tool to draw a Desktop
icon for your application.

Using IconSmith

171

Chapter 12

12. Using IconSmith

This chapter explains how to use the IconSmith tool to draw an icon for your
application. This chapter contains these sections:

• “About IconSmith” on page 172 briefly describes the IconSmith tool.

• “Where to Put Your Completed Icon” on page 173 explains where to
put your icon file, after you’ve finished drawing your icon.

• “Some Definitions” on page 173 defines some terms you’ll need to use
IconSmith.

• “Starting IconSmith” on page 174 explains how to start the IconSmith
tool.

• “IconSmith Menus” on page 174 discusses IconSmith’s main menus:
the IconSmith menu and the Preview menu.

• “IconSmith Windows” on page 175 describes IconSmith’s windows: the
main window, the Palette window, the Constraints window, and the
Import Icon (Set Template) window.

• “Drawing With IconSmith” on page 178 describes IconSmith’s drawing
tools.

• “Selecting” on page 182 describes IconSmith’s selection features.

• “Transformations” on page 184 describes IconSmith’s transformation
features.

• “Concave Polygons” on page 185 explains how to construct concave
polygons in IconSmith.

• “Constraints: Gravity (Object) Snap and Grid Snap” on page 186
explains how to use IconSmith’s gravity snap and grid snap features to
guide your drawing.

172

Chapter 12: Using IconSmith

• “Icon Design and Composition Conventions” on page 188 explains
how to make sure that your icon complies with the basic icon design
and composition conventions described in “Designing the Appearance
of Icons” in Chapter 2 of the Indigo Magic User Interface Guidelines.

• “Advanced IconSmith Techniques” on page 190 describes some
advanced techniques, such as drawing circles and ovals in IconSmith.

About IconSmith

IconSmith is a program for drawing Desktop icons. Icons drawn with
IconSmith are saved in an icon description language. The icon description
language is described in Appendix D, “The Icon Description Language.”

Designed for the specific requirements of the Desktop, Iconsmith produces
icons that draw quickly and display properly on the Desktop on all Silicon
Graphics workstations.

An icon picture generally consists of a unique badge plus a generic
component (for example, the “magic carpet” designating executables). The
badge is the part of the icon picture that appears in front of the generic
component and that uniquely identifies your application. The generic
components are pre-drawn and installed by default when you install the
Indigo Magic Desktop environment.

You don’t need to draw the generic components of your icons. When using
IconSmith to draw your icon badge, you can import the generic component
as a template as described in “Importing Generic Icon Components (Magic
Carpet)” on page 188.

Note: Iconsmith is not a general-use drawing application. Use it only to
draw Desktop icons.

Where to Put Your Completed Icon

173

Where to Put Your Completed Icon

After drawing your badge with IconSmith, save the badge—the filename
should end in .fti—and put the saved file in the correct directory:

• If you put your FTR (.ftr) files in the /usr/lib/filetype/install directory
(where you typically should install your FTR files), then put your icon
(.fti) files in the /usr/lib/filetype/install/iconlib directory.

• If you put your FTR files in one of the other directories listed in
Appendix F, then put your badge in a subdirectory of that directory.
Name the subdirectory iconlib if the subdirectory doesn’t already exist.

Some Definitions

IconSmith uses some terms that may not be familiar to you. This section
defines some terms used in the rest of this chapter.

Caret

The caret is a small red and blue cross. The caret always shows the location
of the last mouse click—when you click the left mouse button, the caret
appears where the cursor is pointed. Unlike the cursor, the caret shows the
effects of grids and gravity (described in “Constraints: Gravity (Object) Snap
and Grid Snap” on page 186).

Transformation Pin

The Transformation Pin indicates the point from which an object is scaled or
sheared and around which an object is rotated. It is a blue and white cross,
larger than the caret. It can be dropped anywhere to affect a transform.

Vertex

A vertex is a selectable point, created when the mouse is clicked in the
IconSmith window while the <Ctrl> key is held down.

174

Chapter 12: Using IconSmith

Path

A path is one or more line segments between vertices. Paths can be open or
closed, filled or unfilled.

Starting IconSmith

To start IconSmith from the Desktop, double-click the IconSmith icon,
shown in Figure 12-1.

Figure 12-1 The IconSmith Icon

To start IconSmith from the command line, type:

% /usr/sbin/iconsmith

IconSmith Menus

The IconSmith main window, shown in Figure 12-2, provides two menus,
the IconSmith menu and the Preview menu:

• Access the IconSmith menu by holding down the right mouse button
anywhere in the drawing area.

• Access the Preview menu by holding the right mouse button down
within the blue preview square located in the lower left-hand corner of
the IconSmith main window.

IconSmith Windows

175

Figure 12-2 The Main IconSmith Window With Popup Menus

IconSmith Windows

Besides the main window, IconSmith provides three other primary
windows: the Palette (Selection Properties) window, the Constraints window,
and the Import Icon or Set Template window.

Clicking the Palette button displays the Palette window, shown in
Figure 12-3.

176

Chapter 12: Using IconSmith

Figure 12-3 The Palette (Selection Properties) Window

Clicking the Constraints button displays the Constraints window, shown in
Figure 12-4.

IconSmith Windows

177

Figure 12-4 The Constraints Window

Clicking the Import Icon button displays the Import Icon or Set Template
window, shown in Figure 12-5

178

Chapter 12: Using IconSmith

Figure 12-5 The Import Icon or Set Template Window

Drawing With IconSmith

IconSmith provides tools for drawing paths, selecting colors, importing
design elements from other icons, drawing shapes, and using template
images.

When drawing in IconSmith, it is easy to select the wrong object. One
technique that you can use is to draw adjacent icon components separately
to prevent confusion when selecting and editing an object. When you have
finished working with the parts, you can move them together.

There is an “Undo” option in the IconSmith popup menu. To bring up the
IconSmith popup menu, hold down the right mouse button. You can undo
up to nine operations using the <F1> key. To redo something you have
undone, hold the <Shift> key and press the <F1> key.

No single polygon can contain more than 255 vertices.

Drawing With IconSmith

179

Drawing Paths

To draw a path with IconSmith:

1. Select a starting point by clicking the left mouse button.

2. Move the mouse to a new position.

3. Hold down the <Control> key and click the left mouse button.

This process creates a line segment. To add more line segments connected to
the first, repeat steps 2 and 3 as many times as necessary. To create a
disconnected line segment, repeat from step 1.

Drawing Filled Shapes

In IconSmith, you can fill a closed path (one in which the beginning and end
points meet) with a color. To draw a filled shape, make sure that you have
selected a fill color from the Palette menu, and proceed to draw. When you
finish creating the closed path, the shape is filled with the current fill color.
You can change the fill color of a path by selecting the path and then selecting
a new fill color.

Fill does not work properly with concave closed paths, nor with paths in
which the beginning point does not meet the end point. See “Concave
Polygons” on page 185.

Deleting

To delete any path or vertex, select it and press the <Back Space> key, or use
“Delete” in the IconSmith popup menu.

Keeping the 3-D Look

Icons created by Silicon Graphics are drawn in the same isometric view, which
provides an illusion of 3-D, even though the polygons composing the icons
are 2-D. If you draw icons facing the screen at right angles, they look 2-D. To
generate a 3-D effect, draw “horizontal” lines so that they move up 1 unit in
the y-axis for every 2 units they extend along the true x-axis. See Figure 12-6.

180

Chapter 12: Using IconSmith

Figure 12-6 3-D Icon Axes

Use the same projection that the original icon set uses. Icons tilted in the
wrong direction look off-balance, and destroy the 3-D appearance. For your
convenience, IconSmith provides an isometric grid. By following the
diagonals of this grid, as shown, you can create an icon that fits in exactly
with other isometric icons in the Desktop. You can count along these
diagonal grid dots, to help measure, align, or center pieces of your icon.

Drawing for All Scales

Desktop icons can be displayed in many sizes. It is easier to draw an icon
that looks good small, but you might consider the details that appear when
a user enlarges your icon.

IconSmith includes two features useful in designing your icon for display at
all sizes, the Preview box and the slider on the right side of the drawing area.

The Preview Box

You can use the Preview box to see your icon design in common sizes and
background colors. The Preview box is the blue box in the lower left corner
of the main IconSmith window. By default, the Preview box shows your
drawing at the default Desktop icon display size and no background color.
You can change the icon size and background color in this window using the
Preview box popup menu.

Drawing With IconSmith

181

Changing Drawing Size

You can change the size of your design in the IconSmith drawing area using
the slider on the right side of the drawing area. Use the slider to look at your
design at all sizes. At particularly small sizes, some features may not be
visible. At large sizes, design imperfections may appear.

Sharing Design Elements

You can import design elements such as circles into your badge. Importing
elements where possible saves you work and makes it easy to include
common design elements in all the icons for one application.

To import an existing icon or icon element, click the Import button. This
brings up the Import Icon or Set Template window. Use the “Import to Icon
Editing Layer” area to specify the icon file you want.

Generic and sample material can be found in the /usr/lib/filetype/iconlib
directory. For example, to import a sample circle, type in the filename:

/usr/lib/filetype/iconlib/sample.circle.fti

Other icons can be found in:

• /usr/lib/filetype/default/iconlib

• /usr/lib/filetype/system/iconlib

• /usr/lib/filetype/vadmin/iconlib

All icons are potential sources for design elements. However, if you are
designing a unique set of executable or document badges, you should make
use of templates as described in “Templates” on page 181 and “Icon Design
and Composition Conventions” on page 188.

Templates

You can use templates for tracing or to help you design your icons. You can
import a template so that you can see it in the IconSmith drawing window,
without saving or displaying as part of the design. This is most useful for

182

Chapter 12: Using IconSmith

getting position information while you are designing a unique badge to use
in conjunction with the generic executable and document icons.

You cannot move or change an icon template in IconSmith.

To display a template, click the Import button. In the Import Icon or Set
Template window, type the name of the template icon file you want in the
area labeled “Set Template Layer.” Note that three template images are
available from buttons in this window. These template images are the most
often used, and they are discussed in “Icon Design and Composition
Conventions” on page 188.

Selecting

Before you edit, move, delete, or change the color of an object or vertex, you
have to tell IconSmith which object you want. This can be difficult in a
complex composition. Here are some tips that can make the task easier:

• To select an object or vertex, move the cursor on top of the object and
click the left mouse button. The vertices highlight blue and white when
the object is selected. To move the vertex or object, double-click, hold
down the left mouse button and move with the mouse. The vertices
highlight green and yellow when you can move the object.

• You can select more than one object or vertex by holding down the
<Shift> key during the selection process. To move the objects or
vertices, move only one and the rest will follow.

• You can select all vertices in an area with your mouse. Hold down the
left mouse button and sweep the cursor across the vertices you want.
The area you select is indicated by a box. When you let go of the left
mouse button, all vertices are selected.

• You can deselect a vertex by holding down the <Shift> key and
clicking the vertex.

Partial

When you use the mouse to select an area with objects in it, you might
include only some vertices of some objects. When you toggle Partial on,

Selecting

183

objects partially selected are highlighted. When you toggle Partial off,
partially selected objects are ignored.

Deselect Part Paths

In compositions with many objects, you can use “Deselect Part Paths” to
make selection easier. When selecting the objects in the drawing area, you
can also select adjacent objects, then deselect what you don’t want. Hold the
<Shift> key down and click one vertex of each object you don’t want. This
deselects the vertex, which makes the object partially selected. Then you can
use “Deselect Part Paths” from the IconSmith popup menu to deselect the
entire object.

Select Next

“Select Next” allows you to select a vertex that is covered by another vertex.
When two or more trajectories each have a vertex at a common location, such
as two triangles with a coincident edge, the “Select Next” operator is useful
for selecting a trajectory other than the top one. “Select Next” is also useful
in images with tiled parts, where most vertices share a location.

Select a shared vertex by clicking its location. That vertex is highlighted in
yellow and green (and the red and blue caret appears at that spot). The other
vertices of the trajectory selected are highlighted in white to indicate the
trajectory to which the selected vertex belongs. Now each time you choose
“Select Next” from the IconSmith menu, you step through all the other
vertices of all the other trajectories which have a vertex at that point.

Select All

You can select all vertices in the main IconSmith window drawing area using
the “Select All” option in the IconSmith popup menu. You can select all
vertices in an area by holding down the left mouse button and sweeping out
a box to surround the desired area.

184

Chapter 12: Using IconSmith

Transformations

The Transform buttons let you shrink, enlarge, stretch, and rotate portions of
your icon design. These features can make drawing easier and more precise.

To use any Transform button, follow this procedure.

1. Choose the Transform option you want.

2. Choose a point in the main IconSmith window drawing area as a
reference point for the transformation by positioning the cursor and
clicking the left mouse button.

3. Bring up the IconSmith popup menu and select “Push Pin” from the
Transform Pin rollover menu.

4. To select an entire object for transformation, hold down the <Alt> key
and double-click the object you want to transform. Otherwise, you may
select individual vertices by holding down the <Alt> and <Shift> keys
while clicking each desired vertex. Do not release the <Alt> key when
you have finished selecting vertices.

5. While still holding down the <Alt> key, position the cursor inside the
object you want to transform. Press and hold down the left mouse
button and move the mouse to transform the object.

For example, here is how you enlarge a circle:

1. Choose “Scale” from the Transform menu.

2. Choose a point on the perimeter of the circle.

3. Bring up the IconSmith popup menu and select “Move to Caret” from
the “Transform Pin” rollover menu.

4. Hold down the <Alt> key and double-click the circle. All vertices on
the circle are now highlighted in green and yellow.

5. Continue to hold down the <Alt> key. Position the cursor on a vertex of
the circle. Press and continue to hold down the left mouse button while
you sweep the mouse out of the circle. The circle perimeter follows the
cursor, enlarging the circle.

6. Release the left mouse button and <Alt> key when the circle is the size
you want.

Concave Polygons

185

Scale

The Scale button changes the size of an object without changing its shape.

Scale X and Y

The buttons marked Scale X and Scale Y limit scaling transformations to
either horizontal or vertical, respectively. Unlike the Scale button, the Scale
XY button allows you to stretch your object both horizontally and vertically.

Rotate

Using the Rotate button, you can rotate a selected object around the
Transform Pin.

Shear Y

The Shear Y transformation transforms rectangles into parallelograms with
one pair of sides parallel to the y axis. The Shear Y button is useful for
transforming art that is drawn in a face-on view to an isometric view.

Note that strictly speaking, the Shear Y transformation performs two
transformations: shear in y and scale in x.

Concave Polygons

Do not use concave polygons when designing your icons; the Desktop does
not display concave polygons properly. If your icon does not display as you
designed it, check for concave polygons. You must break any such polygons
into two or more convex polygons. One method for creating concave
polygons is to draw the polygon with no fill color to serve as an outline, and
then draw several separate convex polygons to fill the outline, as shown in
Figure 12-7.

186

Chapter 12: Using IconSmith

Figure 12-7 Splitting a Concave Polygon

By default, IconSmith, like the Desktop, does not fill concave polygons
properly. If you would prefer to have concave polygons filled properly while
drawing your icon design, you can tell IconSmith to draw concave polygons.
Bring up the IconSmith popup menu with the right mouse button. Select
“Concave” and pull out the rollover menu. Select “No GL Check” from the
rollover menu. IconSmith will not check for concave polygons until you
select “GL Check” from the Concave menu.

Constraints: Gravity (Object) Snap and Grid Snap

You can use gravity snap and grid snap to guide your drawing in IconSmith,
allowing you to align and compose objects perfectly. This makes drawing
easier and more precise. Grid snap causes the caret to “snap” to vertices or
to the edges of the grid pattern displayed behind the objects you are editing.
Gravity snap causes the caret to snap to vertices and the edges of objects you
have already drawn. It is a good idea to make use of these features to ensure
that your icon looks clean and precise at all sizes.

Gravity snap and grid snap features are controlled by the Constraints
window. When using the Constraints window, remember to click either the
Apply or Accept button to implement your changes. The Accept button
implements your changes and closes the Constraints window, and the Apply
button leaves the window on your screen.

Constraints: Gravity (Object) Snap and Grid Snap

187

Controlling the Grid

To change the grid behavior, use the buttons in the “Grid Constraints”
portion of the Constraints window. In the main IconSmith window, the Snap
button under the heading “Grid” lets you turn on or off the grid setting
you’ve made using the Constraints window. The Show button lets you
display or hide the grid.

The following setting choices are available for the grid in the Constraints
window:

• Grid Basis buttons control the shape of the grids. IconSmith includes
two types of grids. The isometric grid provides guidance in the
perspective described in “Keeping the 3-D Look” on page 179.
IconSmith also provides a traditional square grid. To change the type of
grid you are using, select a Grid Basis button, and then click the Apply
button.

• Snap to Grid buttons change the grid into lines or lines and vertices.
These changes are reflected in the appearance of the grid after you click
the Apply button.

• Grid Spacing controls the distance between points in the grid. You can
type in the number of pixels you want, or base the distance on a
selected line in your icon design. When you copy an object using
“Duplicate,” the copy is placed one grid space down and to the right
from the original (or the previous copy). You can use Grid Spacing to
control where IconSmith places duplicate objects.

• Snap Influence allows you to adjust the area influenced by the “magnetic
field” of the grid.

Controlling Gravity

The controls in the “Gravity Constraints” portion of the Constraints window
control how gravity snap behaves. In the main IconSmith window, the Snap
button under the “Gravity” heading lets you turn on or off the influence of
gravity on objects.

• Snap to Object allows you assemble objects in your design smoothly.
The object’s edge, vertex, or both attract other objects when they are
moved within range of gravity.

188

Chapter 12: Using IconSmith

• Snap Influence allows you to determine the range, in pixels, of the
gravity influence of objects in your design.

Icon Design and Composition Conventions

The standard set of Desktop icons has been designed to establish a clear,
predictable visual language for end users. As you extend the Desktop by
adding your own application-specific icons, it is important to make sure that
your extensions fit the overall look of the Desktop and operate in a manner
consistent with the rest of the Desktop. “Designing the Appearance of Icons”
in Chapter 2 of the Indigo Magic User Interface Guidelines contains extensive
guidelines for designing the look of your icon.

Importing Generic Icon Components (Magic Carpet)

Many icons share common components. One example is the “magic carpet”
component used as a background component by most executable files;
individual applications can add unique badges.

Rather than redrawing the common “generic” component in each individual
icon, you can instead draw only the unique badges, and then use the ICON
directive in the FTR file to combine the badge with the generic component.
“Getting the Icon Picture: The ICON Rule” in Chapter 13 describes how to
do this. An advantage to this approach is that you don’t have to create
separate icons to identify open or closed states. You can simply create the
unique badge and then set up the FTR file to include either the generic open
component or the generic closed component as appropriate.

While designing your icon, you can import the appropriate generic
component as a template using the “Set Template Layer” of the “Import or
Set Template” window; this helps you achieve the correct icon placement
and perspective. When you import a component into the template layer, the
component is displayed in the drawing area, but not saved as part of the
icon. When you are finished, you can save your icon in a .fti file, and combine
it with the generic component in the FTR file.

If you import a generic component using the “Icon Editing Layer” section of
the “Import or Set Template” window, the component becomes part of your

Icon Design and Composition Conventions

189

icon. In general, you shouldn’t do this. Instead, you should draw only the
badge. Then in your FTR file, you use the ICON rule to display the
appropriate generic component before displaying your badge. (See “Getting
the Icon Picture: The ICON Rule” on page 220 for information on the ICON
rule.)

Icon Size

The blue boundary box in the IconSmith drawing area indicates the area of
your design that draws in the Desktop and is sensitive to mouse input. You
must confine your icon to the area within this boundary. You can display or
hide the box by using the Show button under Bounds in the main IconSmith
window.

Selecting Colors

You can select or change the color of any outlined or filled object by using the
features in the Selection Properties window. To bring up this window, click
the Palette button. The currently selected outline and fill colors are displayed
under the “Current Colors” heading.

There are two palettes in the Selection Properties window: one for the
outline color, and another for the fill color. The outline color palette consists
of the first 16 entries in the IRIS color map. The fill color palette gives you 128
colors created by dithering between the color values of the first 16 colormap
entries.

In addition to the colors on these palette, there are three special colors
available that you should use extensively when drawing your icon. The
Desktop changes these colors to provide visual feedback when users select,
locate, drag, and otherwise interact with your icon. Theese colors and their
uses are:

Icon Color Use extensively for drawing the main icon body

Outline Color Use for outlining and line work in your icon

Shadow Color Use for contrasting drop shadows below your icon

190

Chapter 12: Using IconSmith

Select outline and fill colors displayed in the palettes by clicking them. If you
want subsequent objects to use your color selections, click “Apply to Pen.”
If you current objects to be updated with colors already in your pen, click an
existing object with the left mouse button, and then select “Get from Pen”
from the Selection Properties window. The object will get the outline and fill
colors currently assigned to the pen.

For more information on the use of color in designing icons, refer to “Icon
Colors” in Chapter 2 of the Indigo Magic User Interface Guidelines.

Advanced IconSmith Techniques

This section contains hints that make common IconSmith operations easier.
This section also provides a step-by-step example of creating an icon.

Drawing a Circle

Here is a trick for drawing a circle using lines:

1. Draw a path the length of the radius of the circle you want. Figure 12-8
shows an example.

Figure 12-8 A Path

2. Select “Grid Spacing” of 0 pixels in the Constraints window.

3. Duplicate the line 12 times. Because grid spacing is set to 0, the
duplicate lines stack.

4. Select one vertex, bring up the IconSmith popup menu, and select
“Push Pin” from the Transform Pin rollover menu.

5. Click the Rotate button from the Transform menu.

Advanced IconSmith Techniques

191

6. Hold down the <Alt> key and select the other vertex of the stack of
paths.

7. Sweep out each path until the figure resembles a wheel, as shown in
Figure 12-9.

Figure 12-9 Wheel Spokes

8. Connect the outside vertices, as shown in Figure 12-10.

Figure 12-10 Connected Spokes

9. Delete the inside “spoke” paths, to get a circle like the one in
Figure 12-11.

Figure 12-11 Finished 2-D Circle

192

Chapter 12: Using IconSmith

Circles and other shapes can be time-consuming to create. Another way of
adding circles to your icon is to import a circle from another icon or from the
icon parts library. See “Sharing Design Elements” on page 181 for more
information.

Drawing an Oval

To create an oval, stretch the circle you have already drawn.

1. Double-click a circle.

2. Bring up the IconSmith menu, and select “Move to Caret” from the
Transform Pin menu.

3. Place the pin directly above the circle.

4. Select Scale Y from the Transform menu.

5. Hold down the <Alt> key and use the mouse to stretch the circle to the
oval shape you want. Figure 12-12 shows an example.

Figure 12-12 An Oval

You can now assemble the parts to make a simple icon, as shown in
Figure 12-13.

Advanced IconSmith Techniques

193

Figure 12-13 A Simple, Circular 2-D Icon

Isometric Circles

The circular icon created above is not a good central icon design because it
is not isometric. The circle looks awkward in the context of isometric icons.
Here are two ways to make the same design in isometric space.

Isometric Transformation

You can use the Shear Y button with an isometric grid to make any object
seem 3-D.

1. Duplicate your circle.

2. Click Shear Y in the Transform menu.

3. Bring up the IconSmith menu, and select “Push Pin” from the
Transform Pin menu.

4. Place the pin on one of the vertices at the bottom of the circle.

5. Hold down the <Alt> key and align the bottom line of the circle using
the grid.

Import Existing Object

If another icon contains the shape you need, recycle it.

194

Chapter 12: Using IconSmith

1. Click the Import button.

2. Import the icon file /usr/lib/filetype/iconlib/sample.big.3circles.fti. You
should now have the design shown in Figure 12-14 in your IconSmith
drawing area.

Figure 12-14 Imported Circles

3. Delete all parts of this icon except the lower right circle.

Using either method, you can create an isometric circle, shown in
Figure 12-15. Starting with the isometric circle, you can easily create
isometric ovals, using the procedure in “Drawing an Oval” on page 192.

Advanced IconSmith Techniques

195

Figure 12-15 Finished Isometric Circle

The final, isometric version of the icon is shown in Figure 12-16.

Figure 12-16 Simple, Isometric 2-D Icon

Finishing Your Icon

A finished application icon is actually three or four .fti files: one or two
badges, plus generic components for the open (running) and closed (not
running) icon states. You need to badges rather than one if you want to
animate your icon by changing its appearance which the user double-clicks
it. Figure 12-18 shows a possible open version for the example icon created
in the previous section. When the icon appears on the Desktop, the generic
executable icon component appears if you correctly define the ICON rule in
the FTR file, as discussed in “Getting the Icon Picture: The ICON Rule” on
page 220.

196

Chapter 12: Using IconSmith

To see how your finished application icon will appeat on the Destop:

1. Import the generic closed executable component using the Import
button. In the “Import” dialogue box, under “Set Template Layer”,
press the Closed Application button. The generic icon component
appears under your closed badge design.

2. Center your design on the generic component template you have
imported, as shown in the example illustrated in Figure 12-17.

Figure 12-17 Icon Centered on Generic Component

3. (Optional, but recommended.) Follow the same two steps to create an
open badge. You might want to give the appearance of animation by
changing your design slightly and saving the changed version as an
open badge.

Advanced IconSmith Techniques

197

Figure 12-18 Open Icon

4. Save your icon designs to files with the suffix .fti.

For a discussion of icon file installation, see “Where to Put Your Completed
Icon” on page 173. To learn how to integrate your icon into an FTR file, see
“Getting the Icon Picture: The ICON Rule” on page 220.

Chapter 13

The Desktop uses file typing rules
(FTRs) to evaluate all files that are
presented within the Desktop. This
chapter describes each of the file
typing rules in detail, and offers
suggestions for good file typing style
and strategies.

File Typing Rules

201

Chapter 13

13. File Typing Rules

The Desktop uses file typing rules (FTRs) to evaluate all files that are
presented within the Desktop. This chapter describes each of the file typing
rules in detail, and offers suggestions for good file typing style and
strategies. “Defining the Behavior of Icons with FTRs” in Chapter 2 in Indigo
Magic User Interface Guidelines describes the behaviors your icon should
support.

This chapter contains these sections:

• “A Table of the FTRs With Descriptions” on page 202 provides a
reference table listing the FTRs along with brief descriptions.

• “Naming File Types: The TYPE Rule” on page 203 describes the TYPE
rule, used to name a file type.

• “Categorizing File Types: The SUPERTYPE Rule” on page 204 describes
the SUPERTYPE rule, used to categorize file types.

• “Matching File Types With Applications: The MATCH Rule” on
page 205 describes the MATCH rule, used to match the application
with the corresponding file type.

• “Matching Non-Plain Files: The SPECIALFILE Rule” on page 212
describes the SPECIALFILE rule, used to match non-plain files.

• “Adding a Descriptive Phrase: The LEGEND Rule” on page 212
describes the LEGEND rule, used to provide a brief phrase describing
the application or data file.

• “Setting FTR Variables: The SETVAR Rule” on page 213 describes how
to set variables that affect the way your icon behaves.

• “Programming Open Behavior: The CMD OPEN Rule” on page 214
describes the CMD OPEN rule, used to define what happens when
users open the icon.

• “Programming Alt-Open Behavior: The CMD ALTOPEN Rule” on
page 215 describes the CMD ALTOPEN rule, used to define what

202

Chapter 13: File Typing Rules

happens when users double-click your icon while pressing the <Alt>
key.

• “Programming Drag and Drop Behavior: The CMD DROP and DROPIF
Rules” on page 216 describes the CMD DROP rule, used to define what
happens when a user drags another icon and drops it on top of your
application’s icon

• “Programming Print Behavior: The CMD PRINT Rule” on page 218
describes the CMD PRINT rule, used to tell the Desktop what to do
when a user selects your icon, then selects “Print” from the Desktop
popup menu.

• “Adding Menu Items: The MENUCMD Rule” on page 218 describes
the MENUCMD rule, used to add menu items to the Desktop menu

• “Getting the Icon Picture: The ICON Rule” on page 220 describes how
to tell the Desktop where to find the file(s) containing the picture(s) of
the icon for a file type

• “Creating a File Type: An Example” on page 222 provides a detailed
example of how to program an icon.

A Table of the FTRs With Descriptions

Table 13-1 lists the file typing rules along with brief descriptions.

Table 13-1 File Typing Rules

File Typing Rules Function

TYPE Declares a new type.

SUPERTYPE Tells the Desktop to treat the file as a subset of
another type under certain circumstances.

MATCH Lets the Desktop determine if a file is of the declared
type.

SPECIALFILE Tells the Desktop to use the file typing rule only on
non-plain files.

LEGEND Provides a text description of the file type.

SETVAR Sets variables that affect operation of your icon.

Naming File Types: The TYPE Rule

203

All file types must begin with a TYPE rule. Aside from that, the rules can
appear in any order; however, the most efficient order for parsing is to
include the MATCH rule second and the ICON rule last.

Naming File Types: The TYPE Rule

It is important that your file type have a unique name so that it doesn’t
collide with Silicon Graphics types or types added by other developers. A
good way to generate a unique file type name is to base your file type name
on your application name (which is presumably unique). Another method is
to include your company’s initials or stock symbol in the file type name. You
can also use the grep(1) command to search through existing .ftr files:

% grep name /usr/lib/filetype/*/*.ftr

CMD OPEN Defines a series of actions that occur when a user
double-clicks the mouse on an icon or selects “open”
from the main menu.

CMD ALTOPEN Defines a series of actions that occur when a user
alt-double-clicks the mouse on an icon.

CMD DROP Defines a series of actions that occur when a user
“drops” one icon on top of another.

DROPIF Defines a set of file types that the icon will allow to be
dropped on it.

CMD PRINT Defines a series of actions that occur when a user
chooses “Print” from the Desktop or Directory View
menus.

MENUCMD Defines menu entries that appear in the Desktop
menu and the Selected toolchest when an icon is
selected.

ICON Defines the appearance (geometry) of the file type’s
icon.

Table 13-1 (continued) File Typing Rules

File Typing Rules Function

204

Chapter 13: File Typing Rules

Substitute your proposed new type name for the words name. If grep doesn’t
find your name, then go ahead and use it.

You name a file type by using the TYPE rule. You can define more than one
file type in a single file, as long as each new file type begins with the TYPE
rule. The TYPE rule always goes on the first line of the file type definition.
Here is the syntax and description for the TYPE rule:

Syntax: TYPE type-name

Description: type-name is a one-word ASCII string. You can use an legal
C language variable as a type name. Choose a name that is
in some way descriptive of the file type it represents. All
rules that follow a TYPE declaration apply to that type, until
the next TYPE declaration is encountered in the FTR file.
Each TYPE declaration must have a unique type name.

Example: TYPE GenericExecutable

Categorizing File Types: The SUPERTYPE Rule

Use the SUPERTYPE rule to tell other file types that your file type should be
treated as a “subset” of a larger type such as executables or directories. For
example, you can create an executable with a custom icon, then use the
SUPERTYPE rule to tell other Desktop file types that the icon represents an
executable.

Note: In general, file types don’t “inherit” icons, rules, or any other behavior
from SUPERTYPEs. Directories are a special case. The Desktop
automatically handles the DROP, OPEN, and ALTOPEN behavior for all
directories marked as “SUPERTYPE Directory.” You can’t override the
DROP, OPEN, or ALTOPEN behavior if you include “SUPERTYPE
Directory.”

You can use any existing file type as a SUPERTYPE. Appendix E,
“Predefined File Types,” lists some of the file types defined by Silicon
Graphics. You can generate a complete list of file types installed on your
system using the grep(1) command:

% grep TYPE /usr/lib/filetype/*/*.ftr

Matching File Types With Applications: The MATCH Rule

205

Note: The list of file types generated by the above command is very long and
unsorted.

Here is the syntax and description for the SUPERTYPE rule:

Syntax: SUPERTYPE type-name [type-name …]

Description: type-name is the TYPE name of any valid file type. Use
SUPERTYPE to identify the file type as a “subset” of one or
more other file types. This information can be accessed by
other file types by calling isSuper(1) from within their CMD
rules (OPEN, ALTOPEN, and so on). A file type can have
multiple SUPERTYPEs. (For example, the Script file type
has both Ascii and SourceFile SUPERTYPES.) See the
isSuper(1) reference page for more information.

Example: SUPERTYPE Executable

A common use for SUPERTYPEs is to allow users to drag data files onto
other application icons to open and manipulate them. For example, if your
application uses ASCII data files but you create a custom data type for those
files, you can include in the file type declaration:

SUPERTYPE Ascii

This allows users to drag your application’s data files onto any text editor to
open and view them. If your application creates images files, you could
make a similar declaration to allow users to drag data file icons to
appropriate image viewers such as ipaste(1).

Matching File Types With Applications: The MATCH Rule

The Desktop needs some way to figure out which FTRs pair up with which
files. Your FTRs will not work if they don’t include some way for the Desktop
to match them with the appropriate files. To do this, include the MATCH
rule in your file type definition. This section explains how to use the MATCH
rule to identify your files. The method you use depends on the kind of file
you are matching and on the file permissions. First, here’s the MATCH rule
syntax and description:

Syntax: MATCH match-expression;

206

Chapter 13: File Typing Rules

Description: match-expression is a logical expression that should evaluate
to true if, and only if, a file is of the type declared by TYPE.
The match-expression must consist only of valid MATCH
functions, as described later in this section. The
match-expression can use multiple lines, but must
terminate with a semicolon (;). Multiple match-expressions
are not permitted for a given type. The MATCH rule is
employed each time a file is encountered by the Desktop, to
assign a type to that file.

Example: MATCH tag == 0x00001005;

Matching Tagged Files

The easiest way to match your application with its FTRs is to use the tag(1)
command to assign a unique number to the application itself. You can then
label the associated FTRs with this same unique number, using the MATCH
rule, as shown in the example above.

There are a few situations in which you cannot use tag to label your files. You
cannot use tag if

• your file is neither an executable nor a shell script

• you don’t have the necessary permissions to change the file

For more information on matching your files without using the tag
command, see “Matching Files Without the tag Command” on page 207.

To tag your application and its associated FTRs using the tag command,
follow these steps:

1. The tag command attaches an identification number to your
application. Before you tag your application, select a number that is not
already in use. Silicon Graphics assigns each company (or individual
developer) a block of ID numbers for tagging files. If your company
doesn’t already have an assigned block of numbers, just send a request
to Silicon Graphics. The best way is to e-mail your request to this
address:

workspacetags@sgi.com

Matching File Types With Applications: The MATCH Rule

207

2. Once you have your block of numbers, you can select a number from
the block of numbers assigned to your company. Make sure that you
select a number that no one else in your company is using.

3. After you select a unique tag number for your application, go to the
directory that contains your application and tag it using the tag
command. This is the syntax:

% tag number filename

Replace the word number with the number that you are assigning to the
application and filename with the name of your application. For more
information on the tag command, see the tag(1) reference page.

4. After tagging the application itself, include the tag in your application’s
FTRs, using the MATCH rule. Just include a line like this in your FTR
file:

MATCH tag == number;

where number is the unique tag number assigned to your application.

You can also use the tag command to automatically assign a tag number for
a predefined file type. Silicon Graphics provides a set of generic types, called
predefined types, that you can use for utilities that do not require a
personalized look. These predefined file types come complete with icons,
FTRs, and tag numbers. Use the appropriate tag command arguments to get
the desired file type features. For more information on tag arguments, see the
tag(1) reference page. The predefined file types are listed in Appendix E,
“Predefined File Types.”

Matching Files Without the tag Command

If you cannot use the tag command to match your application with the
corresponding FTRs, you need to write a sequence of expressions that check
files for distinguishing characteristics. Once you have written a sequence of
expressions that adequately defines your application file, include that
sequence in your FTR file, using the MATCH rule. For example, you can use
this MATCH rule to match a C source file:

MATCH glob("*.c") && ascii;

The glob function returns TRUE if the filename matches the string within the
quotes. The ascii function returns TRUE if the first 512 bytes of the file are all

208

Chapter 13: File Typing Rules

printable ASCII characters. (Table 13-3 lists all of the available
match-expression functions.) The && conditional operator tells the Desktop
that the functions on either side of it must both return TRUE for a valid
match. See “Valid Match-Expressions” on page 208 for a list of all of the
operators, constants, and numerical representations that you can use in your
match-expressions.

Writing Effective Match Expressions

The most effective way to order match-expressions in a single MATCH rule
is to choose a set of expressions, each of which tests for a single characteristic,
and conjoin them all using “and” conditionals (&&).

The order in which you list the expressions in a MATCH rule is important.
Order the expressions so that the maximum number of files are “weeded
out” by the first expressions. This is advised because the conditional
operator, &&, stops evaluation as soon as one side of the conditional is found
to be false. Therefore, the more likely an expression is to be false, the further
to the left of the MATCH rule you should place it.

For instance, in the previous MATCH expression example, it is more efficient
to place the glob("*.c") expression first because there are many more ASCII
text files than there are files that end in .c.

Since the Desktop scans FTR files sequentially, you must make sure that your
match rule is specific enough not to “catch” any unwanted files. For
example, suppose you define a type named “myDataFile” using this
MATCH rule:

MATCH ascii;

Now every text file in your system will be defined as a file of type
“myDataFile.”

Valid Match-Expressions

This section describes the syntax and function of valid match-expressions.
You can use these C language operators in a match-expression:

+ -

* /

Matching File Types With Applications: The MATCH Rule

209

You can use these C language conditional operators in a match-expression:

The ‘==’ operator works for string comparisons in addition to numerical
comparisons.

You can use these constants in a match-expression:

true false

You can represent numbers in match-expressions in decimal, octal, or
hexadecimal notation. See Table 13-2.

& |

^ !

% ()

&& ||

== !=

< >

<= >=

Table 13-2 Numerical Representations in Match-Expressions

Representation Syntax

decimal num

octal 0num

hexadecimal 0xnum

210

Chapter 13: File Typing Rules

Functions

Table 13-3 lists the valid match-expression functions.

Table 13-3 Match-Expression Functions

Function Syntax Definition

ascii Returns TRUE if the first 512 bytes of the file are all printable
ASCII characters.

char(n) Returns the nth byte in the file as a signed character; range is
-128 to 127.

dircontains("string") Returns TRUE if the file is a directory and contains the file
named by string (see below for more information).

glob("string") Returns TRUE if the file’s name matches string; allows use of
the following expansions in string for pattern matching: { } []
* ? and backslash (see sh(1) filename expansion).

linkcount Returns the number of hard links to the file.

long(n) Returns the nth byte in the file as a signed long integer; range
is -231 to 231 - 1.

mode Returns the mode bits of the file (see chmod(1)).

print(expr or
"string")

Prints the value of the expression expr or string to stdout each
time the rule is evaluated; used for debugging. Always
returns true.

short(n) Returns the nth byte of the file as a signed short integer; range
is -32768 to 32767.

size Returns the size of the file in bytes.

string(n,m) Returns a string from the file that is m bytes (characters) long,
beginning at the nth byte of the file.

uchar (n) Returns the nth byte of the file as an unsigned character;
range is 0 to 255.

Matching File Types With Applications: The MATCH Rule

211

Using dircontains()

In order to use the dircontains() function, you need to include these two
lines in your FTR file:

SUPERTYPE SpecialFile
SPECIALFILE

You can declare more than one SUPERTYPE in a file type, so the following
would be a legal FTR file:

TYPE scrimshawToolsDir
MATCH dircontains(".toolsPref");
LEGEND Scrimshaw drawing tools directory
SUPERTYPE Directory
SUPERTYPE SpecialFile
SPECIALFILE
ICON {

if (opened) {
include("../iconlib/generic.folder.open.fti");

} else {
include("../iconlib/generic.folder.closed.fti");

}
include("iconlib/scrimshaw.tools.dir.fti");

}

Predefined File Types

For some applications, you may not want to create a unique file type and
icon. Several predefined file types exist and you can use them as necessary.
If you use a predefined file type for your application, tag can automatically
assign it a tag number. Just use the appropriate command line arguments as

tag Returns the specific Desktop application tag injected into an
executable file by the tag injection tool (see the tag(1) reference
page.) Returns -1 if the file is not a tagged file.

ushort(n) Returns the nth byte of the file as an unsigned short integer;
range is 0 to 65535.

Table 13-3 (continued) Match-Expression Functions

Function Syntax Definition

212

Chapter 13: File Typing Rules

described in the tag(1) reference page. The predefined file types and their tag
numbers are listed in Appendix E.

Matching Non-Plain Files: The SPECIALFILE Rule

SPECIALFILE is used to distinguish a file typing rule used for matching
non-plain files. Device files and other non-plain files can cause damage to
physical devices if they are matched using standard file typing rules (which
might alter the device state by opening and reading the first block of the file).

Syntax: SPECIALFILE

Description: Special files are matched using only rules containing
SPECIALFILE, which are written so as not to interfere with
actual physical devices. Similarly, plain files are not
matched using rules containing a SPECIALFILE rule.

Example: SPECIALFILE

Note: When you include the SPECIALFILE rule in your file type, you should
also include the line:

SUPERTYPE SpecialFile

The SUPERTYPE declaration allows applications to use isSuper(1) to test
whether your file type is a SPECIALFILE.

Adding a Descriptive Phrase: The LEGEND Rule

Use the LEGEND rule to provide the Desktop with a short phrase that
describes the file type. This phrase appears when users view your icon’s
directory as a list. It also appears when a user selects your icon, then selects
the “Get File Info” item from the Desktop menu. Make your legend simple
and informative and keep it to 25 characters or less.

Here is the syntax and description for the LEGEND rule:

Syntax: LEGEND text-string

Setting FTR Variables: The SETVAR Rule

213

Description: text-string is a string that describes the file type in plain
language that a user can understand. Legends that are
longer than 25 characters might be truncated in some
circumstances.

Example: LEGEND C program source file

You might also see a LEGEND rule that is prepended with a number
between two colons—something like this:

LEGEND :290:image in RGB format

The colons and the number between them are used for internationalization.
For more information, refer to “Internationalizing File Typing Rule Strings”
in Chapter 4 of the Topics in IRIX Programming.

Setting FTR Variables: The SETVAR Rule

The SETVAR rule allows you to set variables that affect operation of your
icon.

Syntax: SETVAR variable value

Description: variable is a FTR variable and value is the value to assign to
the variable. Currently, there are two FTR variable
supported: noLaunchEffect and noLaunchSound. Set
noLaunchEffect to True to turn off the visual launch effect
when the user opens your icon. Set noLaunchSound to True
to turn off the launch sound effect when the user opens your
icon.

Example: SETVAR noLaunchEffect True

214

Chapter 13: File Typing Rules

Programming Open Behavior: The CMD OPEN Rule

Use the CMD OPEN rule to tell the Desktop what to do when a user opens
your icon. Users can open an icon in any of these ways:

• double-clicking it

• selecting it and then choosing the “Open” item from the Desktop
popup menu (the Desktop menu is the menu that appears when you
hold down the right mouse button while the cursor is over the Desktop
background)

• selecting it and then choosing the “Open Icon” selection in the Selected
tool chest.

Note: Directories are a special case. The Desktop automatically handles the
OPEN behavior for all files marked as “SUPERTYPE Directory.” You can’t
override the OPEN behavior if you include “SUPERTYPE Directory.”

Here is the syntax and description for the CMD OPEN rule:

Syntax: CMD OPEN sh-expression[; sh-expression; … ; sh-expression]

Description: The OPEN rule should reflect the most frequently used
function that would be applied to a file of the given type.
sh-expression can be any valid Bourne shell expression. Any
expression can use multiple lines. Any number of
expressions can be used, and must be separated by
semicolons (;). The final expression should not end with a
semicolon. Variables can be defined and used as in a Bourne
shell script, including environment variables. See
Appendix B for a list of special environment variables set by
the Desktop. These environment variables can be used to
refer to the currently selected icons within the Desktop or
Directory View.

Example: CMD OPEN $WINEDITOR $SELECTED

The CMD OPEN rule for the “Makefile” file type is a more complex example:

TYPE Makefile
...
CMD OPEN echo "make -f $LEADER |& tee $LEADER.log; rm $LEADER.run" \

> $LEADER.run; winterm -H -t make -c csh -f $LEADER.run

Programming Alt-Open Behavior: The CMD ALTOPEN Rule

215

Programming Alt-Open Behavior: The CMD ALTOPEN Rule

By using the CMD ALTOPEN rule, you can tell the Desktop what to do when
users double-click your icon while pressing the <Alt> key.

Note: Directories are a special case. The Desktop automatically handles the
ALTOPEN behavior for all files marked as “SUPERTYPE Directory.” You
can’t override the ALTOPEN behavior if you include “SUPERTYPE
Directory.”

Here is the syntax and description for the CMD ALTOPEN rule:

Syntax: CMD ALTOPEN sh-expression[; sh-expression; … ;
sh-expression]

Description: The ALTOPEN rule provides added functionality for power
users. Typically, you set ALTOPEN to pop up a launch
window to let the user edit arguments. sh-expression can be
any valid Bourne shell expression. Any expression can use
multiple lines. Any number of expressions can be used, and
must be separated by semicolons (;). The final expression
should not end with a semicolon. Variables can be defined
and used as in a Bourne shell script, including environment
variables. See Appendix B for a list of special environment
variables set by the Desktop. These environment variables
can be used to refer to the currently selected icons within the
Desktop or Directory View.

Example: CMD ALTOPEN launch -c $LEADER $REST

The CMD ALTOPEN rule for the “SGIImage” file type is a more complex
example:

TYPE SGIImage
CMD OPEN if test -x /usr/sbin/imgview

then
imgview $LEADER $REST

else
ipaste $LEADER $REST

fi

216

Chapter 13: File Typing Rules

Programming Drag and Drop Behavior: The CMD DROP and DROPIF Rules

Users can perform certain functions by dragging an icon and dropping it on
top of another icon. For example, users can move a file from one directory to
another by dragging the icon representing the file and dropping it onto the
icon representing the new directory. You use the CMD DROP rule to tell the
Desktop what to do when a user drags another icon and drops it on top of
your application’s icon.

Note: Directories are a special case. The Desktop automatically handles the
DROP behavior for all files marked as “SUPERTYPE Directory.” You can’t
override the DROP behavior if you include “SUPERTYPE Directory.”

Here is the syntax and description for the CMP DROP rule:

Syntax: CMD DROP sh-expression[; sh-expression; … ; sh-expression]

Description: The DROP rule is invoked whenever a selected (file) icon is
“dropped” onto another icon in the Desktop or Directory
View windows. When this happens, the Desktop checks to
see if the file type being dropped upon has a DROP rule to
handle the files being dropped. In this way, you can write
rules that allow one icon to process the contents of other
icons. Simply drag the selected icons that you want
processed and put them on top of the target icon (that is, the
one with the DROP rule).

Example: CMD DROP $TARGET $SELECTED

By default, the CMD DROP rule handles all icons dropped on the target icon.
However, if you include a DROPIF rule in your file type, only those icons
whose file types are listed in the DROPIF rule are accepted as drop
candidates; the Desktop doesn’t allow the user to drop other types of icons
on the target icon. Here is the syntax and description for the DROPIF rule:

Syntax: DROPIF file-type [; file-type; … ; file-type]

Description: Specifies the allowable file types that a user can drop on the
icon.

Example: DROPIF MailFile

Using the DROPIF rule in conjunction with the CMD DROP rule is a good
practice to follow the ensure that the file types of selected icons are

Programming Drag and Drop Behavior: The CMD DROP and DROPIF Rules

217

compatible with the selected icon. You can also use the environment
variables set by the Desktop, listed in Appendix B, to determine other
attributes of the selected icons.

For example, the following CMD DROP and DROPIF rules accept only a
single icon with the type “MyAppDataFile”:

DROPIF MyAppDataFile
CMD DROP if [$ARGC -gt 1]

inform "Only one data file allowed."
else

$TARGET $SELECTED

In the example above, the DROPIF rule prevents users from dropping any
file on the target icon except those with the type “MyAppDataFile.” The
CMD DROP rule is invoked only after a successful drop. It checks the value
of the environment variable ARGC to see how many icons were dropped on
the target icon. If more than one icon were dropped, it displays an error
message; if only one was dropped, it invokes the application with the
dropped file as an argument.

Note: The DROPIF rule doesn’t “follow” SUPERTYPES. If you specify a file
type in a DROPIF rule, only files of that type are accepted, not files that have
that type as a SUPERTYPE.

If you want to handle all files with a given SUPERTYPE, you must use
isSuper(1) to test for that SUPERTYPE in the CMD DROP rule. The following
CMD DROP definition demonstrates this by accepting one or more files with
an “Ascii” SUPERTYPE:

CMD DROP okfile=’true’
for i in $SELECTEDTYPELIST
do

if isSuper Ascii $i > /dev/null
okfile=’true’

else
okfile=’false’

fi
done
if [$okfile = ’true’]

$TARGET $SELECTED
else

xconfirm "$TARGET accepts only ASCII files."
fi

218

Chapter 13: File Typing Rules

Programming Print Behavior: The CMD PRINT Rule

Use the CMD PRINT rule to tell the Desktop what to do when a user selects
your icon, then selects “Print” from the Desktop popup menu. Here is the
syntax and description for the CMD PRINT rule; see also Chapter 14,
“Printing From the Desktop,” for information on writing rules to convert
your new file type into one of the printable types.

Syntax: CMD PRINT sh-expression[; sh-expression; … ; sh-expression]

Description: sh-expression can be any valid Bourne shell expression. Any
expression can use multiple lines. Any number of
expressions can be used, and must be separated by
semicolons (;). The final expression should not end with a
semicolon. Variables can be defined and used as in a Bourne
shell script, including environment variables. See
Appendix B for a list of special environment variables set by
the Desktop. These environment variables can be used to
refer to the currently selected icons within the Desktop or
Directory View. The recommended method of
implementing the PRINT rule is to use routeprint, the
Desktop’s print-job routing utility, as in the example below.
routeprint uses print conversion rules to automatically
convert the selected files into formats accepted by the
system’s printers. See the routeprint(1) reference page for
details on its syntax. See Chapter 14 for information on
setting up print conversion rules.

Example: CMD PRINT routeprint $LEADER $REST

Adding Menu Items: The MENUCMD Rule

Use the MENUCMD rule to add items to both the Desktop menu and the
Selected toolchest menu. The Desktop menu is the menu that appears when
you hold down the right mouse button while the cursor is positioned on the
Desktop. The Selected toolchest menu is the menu that appears when you
hold down the right mouse button while the cursor is positioned over the
Selected toolchest.

Adding Menu Items: The MENUCMD Rule

219

Menu items added to the Desktop menu and the Selected toolchest menu
appear only when the icon is selected (highlighted in yellow) on the
Desktop.

You can add as many menu items as you like by adding multiple
MENUCMD rules to your file type. Any menu items added using the
MENUCMD rule are added both to the Desktop menu and the Selected
toolchest menu—you can’t add menu items to just one of these menus.

 Here is the syntax and description for the MENUCMD rule:

Syntax: MENUCMD "string" sh-expression[; sh-expression; … ;
sh-expression]

Description: MENUCMD inserts the menu entry string into the Desktop
or Directory View menu if a single file of the appropriate
type is selected, or if a group of all of the same, appropriate
type is selected. If the menu entry is chosen, the actions
described by the sh-expressions are performed on each of the
selected files.

Example: MENUCMD "Empty Dumpster" compress $LEADER $REST

You might also see a MENUCMD rule that is prepended with a number
between two colons—something like this:

MENUCMD :472:"make install" winterm -H -t ’make install’ \
-c make -f $LEADER install

The colons and the number between them are used for internationalization.
For more information, refer to “Internationalizing File Typing Rule Strings”
in Chapter 4 of the Topics in IRIX Programming.

To add more than one menu item to the Desktop popup menu, just add a
MENUCMD rule for each item. For example, the “Makefile” file type
includes all of the following MENUCMD rules:

MENUCMD "make install" winterm -H -t ’make install’ \
-c make -f $LEADER install

MENUCMD "make clean" winterm -H -t ’make clean’ \
-c make -f $LEADER clean

MENUCMD "make clobber" winterm -H -t ’make clobber’ \
-c make -f $LEADER clobber

MENUCMD "Edit" $WINEDITOR $LEADER $REST

220

Chapter 13: File Typing Rules

Getting the Icon Picture: The ICON Rule

Use the ICON rule, described in this section, to tell the Desktop where to find
the file(s) containing the picture(s) of the icon for a file type. The simplest
way to do this is to provide the full IRIX pathname. For example, if the .fti
file is in the directory called /usr/lib/filetype/install/iconlib, you would simply
write that pathname directly into your FTR file.

If you prefer not to use the absolute pathname in your FTR, you can use a
relative pathname, as long as the icon file resides anywhere within the
/usr/lib/filetype directory structure. To make use of relative pathnames, list the
pathname relative to the directory containing the FTR file that contains the
ICON rule. If you choose to do this, take care to keep path names used in
FTR files synchronized with icon locations.

The Desktop sets Boolean status variables to indicate the state of an icon. You
can use conditional statements that test these variables to alter the
appearance of an icon based on its state. The state variables are: opened,
which is True when the icon is opened; and selected, which is True when the
icon is selected.

As described in “Importing Generic Icon Components (Magic Carpet)” in
Chapter 12, a common technique is to draw a unique badge to identify an
application and then combine that badge with a generic icon component.
This works well if you also use conditional statements to change the
appearance of an icon depending on its state. You can then combine the
unique badge with a generic icon component appropriate to the icon’s state.
The example shown below demonstrates this technique.

Use the basic format from the example below to tell the Desktop where to
find your icon files (the files that you created using IconSmith). Here is the
syntax and description for the ICON rule:

Syntax: ICON icon-description-routine

Description: icon-description-routine is a routine written using the icon
description language, detailed below. The routine can
continue for any number of lines. The ICON rule is invoked
any time a file of the specified type needs to be displayed in
the Desktop or Directory View. The rule is evaluated each
time the icon is painted by the application that needs it.

Getting the Icon Picture: The ICON Rule

221

Example: ICON {

if (opened) {
include("../iconlib/generic.exec.open.fti");
} else {
include("../iconlib/generic.exec.closed.fti");
}
include("iconlib/ack.fti");

}

The example above shows you exactly how to write the standard ICON rule.
The first line invokes the ICON rule. The next two lines tell the Desktop
where to find the parts of the icon representing the open and closed “magic
carpet” that makes up the generic executable icons. The unique badge is in a
file named ack.fti.

Note: You must include your badge after including the generic component
so that it appears over the generic components when displayed on the
Desktop.

If you had two separate badges, one for the open and one for the closed state,
your ICON rule would appear as:

ICON {
if (opened) {

include("../iconlib/generic.exec.open.fti");
include("iconlib/ack.open.fti");

} else {
include("../iconlib/generic.exec.closed.fti");
include("iconlib/ack.closed.fti");

}
}

Notice that this example gives the pathname of the icon files (.fti files) relative
to the directory in which the FTR file is located. You can use the full
pathname if you prefer. Your icon description routine would then look like
this, assuming that ack.fti was placed in /usr/lib/filetype/install/iconlib:

ICON {
if (opened) {

include("/usr/lib/filetype/iconlib/genericexec.open..fti");
else {

include("/usr/lib/filetype/iconlib/generic.exec.close.fti");
}

222

Chapter 13: File Typing Rules

include("/usr/lib/filetype/install/iconlib/ack.fti");
}

Creating a File Type: An Example

This section provides an example that demonstrates how to write a file type.
In this example, assume we’re writing a file type for a simple text editor
called scribble and that we’ve decided on these behaviors for the scribble icon:

• When a user double-clicks the scribble icon, the Desktop runs the
application.

• When a user drops another icon onto the scribble icon, the Desktop
brings up the scribble application with the file represented by the
dropped icon. Users can then use the scribble application to edit this file.

Note: We’re making no provision for rejecting icons that represent files
unsuitable for editing. You could enhance the scribble file type by
including a line that tells the Desktop to notify users when they drop an
icon of the wrong type onto the scribble icon.

(This section assumes that we’re writing the file type completely from
scratch. You might prefer instead to modify an existing file type. To learn
how to find the FTRs for an existing icon, see “Add the FTRs: An Alternate
Method” on page 164.)

Open an FTR File for scribble

For the purposes of this example, assume we’re creating a new FTR file,
rather than adding to an existing one. We just open a new file using any
editor we choose, then type in whatever file typing rules we decide to use.

Add the FTRs to the scribble FTR File

Now that we’ve opened a file for the FTRs, we just type in the FTRs we need
to program the icon. The file type has to begin with the TYPE rule on the first
line. The TYPE rule names the file type. This section discusses each line we
use to create the file type.

Creating a File Type: An Example

223

Line 1: Name the File Type

Each file type has to have a unique name. Since our application is called
scribble, assume that we decide to name the new file type
“scribbleExecutable.” By basing the file type name on the application name,
we help insure a unique file type name.

Before using the name, scribbleExecutable, we search for it in the
/usr/lib/filetype directory, to make sure that the name is not already in use:

1. Change to the /usr/lib/filetype directory:

% cd /usr/lib/filetype

2. Search for the name scribbleExecutable:

% grep "scribbleExecutable" */*.ftr

Assume that we do not find an existing file type with the name
“scribbleExecutable,” so that’s what we name the new file type.

Now we use the TYPE rule to name the file type by typing this line into our
FTR file:

TYPE scribbleExecutable

For more information on the TYPE rule, see “Naming File Types: The TYPE
Rule” on page 203.

Line 2: Classify the Icon

Next we use the SUPERTYPE rule to tell the Desktop what type of file the
icon represents. Since scribble is an executable, we add this line to the FTRs:

SUPERTYPE Executable

For more information on the SUPERTYPE rule, see “Categorizing File Types:
The SUPERTYPE Rule” on page 204.

Line 3: Match the File Type

Now we add the scribble executable’s tag number to the file type definition
by adding this line to the FTRs:

MATCH tag == 0x00001001;

224

Chapter 13: File Typing Rules

This step assumes that we’ve already tagged the executable itself, as
described in “Step One: Tagging Your Application” on page 160.

(Since scribble is an executable, we’re able to use the tag command to tag it. If
we were unable to use the tag command to assign an identification number
to the application itself, we would need a slightly more complicated
MATCH rule to match the application with its FTRs. For more information,
see “Matching File Types With Applications: The MATCH Rule” on page 205
and “Matching Non-Plain Files: The SPECIALFILE Rule” on page 212.)

Line 4: Provide a Descriptive Phrase

Next we use the LEGEND rule to provide a legend for the file type. The
legend is a brief descriptive phrase that appears when users view a directory
as a list or select “Get File Info” from the Desktop menu. It should be simple,
informative, and 25 characters or less. To add the legend for scribble, add this
line to the FTRs:

LEGEND scribble text editor

For more information on using the LEGEND rule, see “Adding a Descriptive
Phrase: The LEGEND Rule” on page 212.

Line 5: Define Icon-Opening Behavior

We use the CMD OPEN rule to tell the Desktop what to do when users open
the scribble icon. In this example we want the Desktop to run the scribble
application when the icon is opened, so we include this line in the FTRs:

CMD OPEN $LEADER $REST

$LEADER refers to the opened application, in this case scribble. The Desktop
uses $LEADER to open $REST. In this case, $REST means any other selected
icons in the same window. $LEADER and $REST are Desktop environmental
variables. These variables are listed and described in Appendix B, “Desktop
Environment Variables.”

For more information on using the CMD OPEN rule, see “Programming
Open Behavior: The CMD OPEN Rule” on page 214.

Creating a File Type: An Example

225

Line 6: Define Drag and Drop Behavior

We use the CMD DROP rule to tell the Desktop what to do when users drop
another icon onto the scribble icon. In this example we want the Desktop to
open the scribble application with the contents of the dropped file, so we
include this line in the FTRs:

CMD DROP $TARGET $SELECTED

$TARGET refers to the icon that the user dropped another icon on, in this
case scribble; $SELECTED refers to the icon that the user dropped onto the
scribble icon. $TARGET and $SELECTED are Desktop environmental
variables. These variables are listed and described in Appendix B.

For more information on the CMD DROP rule, see “Programming Drag and
Drop Behavior: The CMD DROP and DROPIF Rules” on page 216.

Line 7: Define Alt-Open Behavior

We use the ALTOPEN rule to tell the Desktop what to do when users open
the scribble icon while holding down the <Alt> key. In this example, we want
the Desktop to run the launch(1) program, so we include this line in the FTRs:

CMD ALTOPEN launch -c $LEADER $REST

Again, $LEADER refers to the opened application, scribble and $REST refers
to any other selected icons in the same window. launch runs the launch
program, and -c is a command line argument to launch.

For more information on the CMD ALTOPEN rule, see “Programming
Alt-Open Behavior: The CMD ALTOPEN Rule” on page 215. See the
launch(1) reference page for more information about using the launch
command.

226

Chapter 13: File Typing Rules

Line 8: Add the Icon Picture

We use the ICON rule to tell the Desktop where to find the picture for the
scribble icon. Assume we have an icon picture in the file
/usr/local/lib/install/iconlib/scribble.fti. In this example, we add these lines to
the FTRs:

ICON{
if (opened) {
 include("../iconlib/generic.open.fti");
} else {
 include("../iconlib/generic.closed.fti");
}
include("iconlib/scribble.fti");
}

These lines tell the Desktop how to find pictures for the scribble icon in the
opened and closed states.The pathname of the icon (.fti) files is listed relative
to the location of the FTR file containing the ICON rule. Relative pathnames
work as long as the icon files are located within the /usr/lib/filetype directory
structure. Alternatively, you can use the absolute pathnames to the files:

• /usr/local/lib/iconlib/generic.open.fti

• /usr/local/lib/iconlib/generic.closed.fti

• /usr/local/lib/iconlib/scribble.fti

For more information on the ICON rule, see “Getting the Icon Picture: The
ICON Rule” on page 220.

Name the scribble FTR File and Put It in the Appropriate
Directory

Assume the name of our company is Shakespeare. Then according to the
naming conventions in “Naming FTR Files” on page 162, we should name
our FTR file Shakespeare.scribble.ftr. We put the file in the /usr/lib/filetype/install
directory.

Creating a File Type: An Example

227

The scribble FTRs

Here is the set of FTRs that we created to define the file type called
“scribbleExecutable.”

TYPE scribbleExecutable
 SUPERTYPE Executable
 MATCH tag == 0x00001001;
 LEGEND scribble text editor
 CMD OPEN $LEADER $REST
 CMD ALTOPEN launch -c $LEADER $REST
 CMD DROP $TARGET $SELECTED
 ICON {
 if (opened) {
 include("../iconlib/generic.open.fti");
 } else {
 include("../iconlib/generic.closed.fti");
 }
 include("iconlib/scribble.fti"):
}

Chapter 14

This chapter describes how to create
print conversion rules so that users
can print your application’s data files
from the desktop.

Printing From the Desktop

231

Chapter 14

14. Printing From the Desktop

This chapter contains these sections:

• “About routeprint” on page 231 discusses the routeprint command,
which converts files into printable form.

• “Converting a File for Printing” on page 232 explains how the Desktop
converts a file for printing.

• “The Print Conversion Rules” on page 235 explains the print
conversion rules.

• “The Current Printer” on page 238 discusses the Desktop’s concept of
the current, or default, printer and the Desktop environment variable
$CURRENTPRINTER.

About routeprint

To print a file, the Desktop invokes the routeprint(1) command. routeprint
knows how to convert most files into printable form, even if the conversion
requires several steps.

You can show routeprint how to convert your application’s data files into
printable format by adding one or more CONVERT rules to your
application’s FTR file.

This chapter explains the process routeprint uses to convert data files into a
printable format, what file types routeprint already recognizes, and how to
write your own print CONVERT rule to allow your application to tap into
routeprint’s powerful printing capabilities.

232

Chapter 14: Printing From the Desktop

Converting a File for Printing

The Desktop already has rules for printing many types of files, such as
ASCII, PostScript®, and RGB image files. The easiest method for printing a
file of arbitrary format is to break down the printing process into small,
modular steps.

For example, instead of writing dozens of specialized rules to print reference
pages directly for each kind of printer, you can instead convert reference
pages to nroff format and then convert the nroff format to the format required
for the current printer.

The diagram shown in Figure 14-1 illustrates the steps by which some of the
supported Desktop file types are converted for printing. Each box represents
one or more file types; the arrows between them indicate the steps by which
the file types are converted. The values associated with the arrows represent
the cost of the conversion. This concept is talked about more in “Print Costs”
on page 234 later in this chapter.

Converting a File for Printing

233

Figure 14-1 File Conversions for Printing Standard Desktop Files

This modular approach to printing has two major advantages:

• The modular steps are reusable. Because you can reuse each modular
printing step, you write fewer rules.

• routeprint can pick the most efficient route for printing. There is often
more than one sequence of conversion steps to print a file. routeprint
chooses the sequence of steps that provides the best possible image
quality.

This modular, multi-step conversion to printable form is called the print
conversion pipeline, a series of IRIX commands that process a copy of the file’s
data in modular increments. The print conversion rules are designed to take
advantage of this method of processing printable files.

234

Chapter 14: Printing From the Desktop

In addition, applications or software packages can add new arcs to the
CONVERT rule database whenever they define new types or have a better
way of converting existing types. For example, Impressario includes a filter
to go directly from NroffFile to PostScriptFile—this new filter has a lower
cost than the default conversion, which goes from NroffFile to Ascii to
PostScriptFile.

The Desktop already has rules for printing a large number of file types. You
can use grep to list all of these print conversions definitions by typing:

% grep -i convert /usr/lib/filetype/*/*.ftr

Note: The list of print conversion definitions generated by the above
command is long and unsorted.

Print Costs

Frequently, there is more than one set of steps that routeprint can use to print
your file. To compare different ways of printing a file of a particular type,
routeprint associates cost numbers with each conversion, then chooses the
series of conversions with the lowest total cost. The cost of a conversion
represents image degradation and processing cost, and is specified by a
number between 0 and 1000 inclusive. The higher the cost of a conversion,
the more routeprint attempts to avoid that conversion method if it has
alternative methods.

The Print Conversion Rules

235

The conventions for determining the cost assigned to a given conversion are
described in Table 14-1.

The Print Conversion Rules

There are three parts to a complete print conversion rule:

• the CONVERT rule

• the COST rule

• the FILTER rule

The CONVERT Rule

Syntax: CONVERT source-type-name destination-type-name

Description: source-type-name is the file type you are converting from.
destination-type-name is the file type you are converting to.

Example: CONVERT NroffFile PostScriptFile

Do not use the convert rule to convert directly to a new printer type; convert
to a standard Desktop file type instead. Silicon Graphics reserves the right to
alter printer types, so converting to a standard file type (for example,
PostScriptFile) is a more portable solution. Appendix E, “Predefined File
Types,” lists some of the file types defined by Silicon Graphics. You can

Table 14-1 Conversion Costs for Print Conversion Rules

Cost Reason

0 Equivalent filetypes, or a SETVAR rule (described in “The Print
Conversion Rules”)

50 Default conversion cost

125 Trivial data loss, or conversion is expensive

200 Minor data loss, but conversion is not expensive

300 Noticeable data loss and conversion is expensive

500 Obvious data loss (for example, color to monochrome)

236

Chapter 14: Printing From the Desktop

generate a complete list of file types installed on your system using the
grep(1) command:

% grep TYPE /usr/lib/filetype/*/*.ftr

Note: The list of file types generated by the above command is very long and
unsorted.

The COST Rule

Syntax: COST non-negative-integer

Description: non-negative-integer represents the arc cost, or incremental
cost of the conversion. This cost is used to reflect processing
complexity or can also be used inversely to reflect the
output quality. When routeprint selects a conversion
sequence, it takes the arc costs into account, choosing the
print conversion sequence with the least total cost. The
COST rule is required; if you omit it, routeprint assumes the
cost of the conversion is zero, which may result in an
inappropriate choice of printers. The default cost is 50.

Example: COST 50

The FILTER Rule

Syntax: FILTER filter-expression

Description: The FILTER rule represents part of an IRIX pipeline that
prepares a file for printing. filter-expression can be any single
IRIX command line expression, and generally takes the
form of one or more piped commands. In the general case,
the first command within a single FILTER rule receives
input from stdin; the last command in the rule sends its
output to stdout. routeprint concatenates all the FILTER rules
in the print conversion pipeline to form one continuous
command that sends the selected file to its destination
printer.

The Print Conversion Rules

237

There are three special cases in creating FILTER rules:

• “first” case

• “last” case

• “setvar” case

In a “first” case rule, the FILTER rule is the very first rule in the print
conversion pipeline. In this case, routeprint passes the list of selected files to
the first command in the FILTER rule as arguments. If a first case FILTER rule
begins with a command that does not accept the files in this fashion, prepend
the cat command to your rule:

FILTER cat | tbl - | psroff -t

The files will then be piped to the next command’s stdin.

In a “last” case rule, the FILTER rule is the very last rule in the print
conversion pipeline. This rule contains a command that sends output
directly to a printer (such as lp). Last-case rules are already provided for
many file types. To ensure compatibility between your application and
future printing software releases, you should refrain from writing your own
last-case rules. Instead, write rules that convert from your file type to any of
the existing file types, and let the built-in print conversion rules do the rest.

In a “setvar” case rule, the FILTER rule is used to set an environment
variable used later in the print conversion pipeline. The first CONVERT rule
in the example below sets a variable that defines an nroff macro used in the
second rule. In all setvar cases, stdin is passed to stdout transparently. Thus,
you can include setvar as part of the pipeline in a single FILTER rule.

CONVERT mmNroffFile NroffFIle
COST 1
FILTER setvar MACRO=mm

CONVERT NroffFile PostScriptFile
COST 50
FILTER eqn | tbl | psroff -$MACRO -t

238

Chapter 14: Printing From the Desktop

The Current Printer

The current printer is the system default printer that the user sets with the
Print Manager or, alternatively, the printer specified by the -p option to
routeprint. If no default is set and -p is not used, an error message is returned
by routeprint to either stdout or a notifier window (if the -g option to
routeprint was set). The Desktop environment variable $CURRENTPRINTER
is set to the currently selected default printer.

Chapter 15

The Icon Catalog (or Icon Book)
contains pages that store desktop
icons. By adding your application’s
icon to the Icon Catalog, it increases
your application’s visibility and
makes it easier for users to invoke
your application.

Adding Your Application’s Icon
to the Icon Catalog

241

Chapter 15

15. Adding Your Application’s Icon to the Icon
Catalog

This chapter explains how to add your Desktop icon to the Desktop’s Icon
Catalog. This chapter contains these sections:

• “About the Icon Catalog” on page 241 describes the Icon Catalog and
explains how to open it.

• “Adding an Icon to the Icon Catalog” on page 242 explains how to add
your icon to the Icon Catalog.

• “Updating Your Installation Process” on page 243 explains how to
update your installation process so that your icon is installed in the Icon
Catalog on your users’ workstations.

About the Icon Catalog

The Icon Catalog (or Icon Book) contains named pages that store icons. The
pages are named according to type. For example, some current page names
are Applications, Demos, and Control Panels. Users can create their own
custom pages containing collections of icons.

To open the Icon Catalog, choose an item from the Icon Catalog menu on the
Find toolchest. Figure 15-1 shows the DesktopTools page of the Icon Catalog.

242

Chapter 15: Adding Your Application’s Icon to the Icon Catalog

Figure 15-1 The Icon Catalog Window

Adding an Icon to the Icon Catalog

Before you can add an icon to the Icon Catalog, you must create the icon
using IconSmith and the appropriate FTR rules, as described earlier in this
guide. Once you’ve done this, use the iconbookedit command to add or
remove icons from the Icon Catalog. The iconbookedit command accepts a file
that contains a layout for the Icon Catalog window. This layout file declares
which icons should be in the window. To add your application’s icon to the
Icon Catalog, enter:

% iconbookedit -add "Category:File Name:myApplication" -syspage whichPage

where myApplication is your application name and path and whichPage is a
particular page in the Icon Catalog. For example, suppose your application
is called pastry and it’s in /usr/sbin. To add the pastry application to the
Applications page of the Icon Catalog (assuming you’ve already created the
icon), you would enter:

% iconbookedit -add "Category:File Name:/usr/sbin/pastry" -syspage Applications

Similarly, you can remove an icon using the -remove flag.

Updating Your Installation Process

243

For more information on the Icon Catalog and how to edit it, see the
iconbook(1M) and iconbookedit(1M) reference pages. To determine which Icon
Catalog page is appropriate for your application, see “Putting Icons into the
Icon Catalog” in Chapter 2 of the Indigo Magic User Interface Guidelines.

Updating Your Installation Process

Set up your installation process to execute the iconbookedit command, as
described above, so that your icon appears in the Icon Catalog on your users’
workstations when they install your application.

To do this (assuming you’re using swpkg to package your product for
installation), select the exitop attribute on the Add Attributes worksheet and
specify the iconbookedit command described earlier:

iconbookedit -add "Category:File Name:myApplication" -syspage whichPage

where myApplication is your application name and path and whichPage is a
particular page in the Icon Catalog.

See Chapter 6, “Adding Attributes,” in the Software Packager User’s Guide for
instructions for more information on setting the exitop attribute in swpkg.

Appendix A

This appendix contains example
programs for some of the new and
extended IRIS IM widgets.

Example Programs For New and
Enhanced Widgets

247

Appendix A

A. Example Programs for New and Enhanced
Widgets

This appendix contains example programs for some of the new and
extended IRIS IM widgets.

Makefiles are provided for some of these examples, but to use these
examples, you need to:

• Link with -lXm and -lSgm, making sure to put the -lSgm before -lXm.
(To replace an unenhanced widget with the enhanced version of that
widget in an existing program, you need to re-link.)

LLDLIBS = -lSgm -lXm -lXt -lX11 -lPW

You must include -lSgm to get the enhanced look and the new widgets.
If you do not include -lfileicon, you will get a runtime error, since the
runtime loader won’t be able to find needed symbols. The -lXm
represents the enhanced version of libXm (IRIS IM).

• Run the program with these resources:

*sgiMode: true
*useSchemes: all
*scheme: Base

(Set them in your .Xdefaults file or create a file for your application in
/usr/lib/X11/app-defaults.)

Example Program for Color Chooser

/*
 * colortest.c --
 * demonstration of quick-and-easy use of the color
 * chooser widget.
 */

#include <stdio.h>

248

Appendix A: Example Programs for New and Enhanced Widgets

#include <Xm/Xm.h>

#include <Xm/Label.h>
#include <Xm/Form.h>
#include <Sgm/ColorC.h>

static void ColorCallback();
Widget label, colorc;
XtAppContext app;

#if 0

int sgidladd()
{
 return 1;
}
#endif

main (argc, argv)
int argc;
char *argv[];
{
 Widget toplevel, form;
 Arg args[25];
 int ac = 0;

 toplevel = XtVaAppInitialize(&app, argv[0], NULL, 0, &argc, argv, NULL, NULL);
 if (toplevel == (Widget)NULL) {
 printf("AppInitialize failed!\n");
 exit(1);
 }

 colorc = SgCreateColorChooserDialog(toplevel, "colorc", NULL, 0);
 XtAddCallback(colorc, XmNapplyCallback, ColorCallback, (XtPointer)NULL);
 XtManageChild(colorc);

 form = XmCreateForm(toplevel, "Form", NULL, 0);
 XtManageChild(form);

 label = XmCreateLabel(form, "I am a color!", NULL, 0);
 XtManageChild(label);
 ac = 0;

 XtRealizeWidget(toplevel);

Example Program for Color Chooser

249

 XtAppMainLoop(app);
}

void ColorCallback(w, client_data, call_data)
Widget w;
XtPointer client_data, call_data;
{
 Pixel white; /* fallback */
 SgColorChooserCallbackStruct *cbs =(SgColorChooserCallbackStruct *)call_data;
 Display *dpy = XtDisplay(label);
 Screen *scr = XtScreen(label);
 /*
 * If we were willing to use private structure members,
 * we could be sure to get the correct colormap by using
 * label->core.colormap. For this demo, however,
 * the default colormap will suffice in most cases.
 */
 Colormap colormap = XDefaultColormapOfScreen(scr);
 XColor mycolor;
 Arg args[1];

 white = WhitePixelOfScreen(scr);

 mycolor.red = (unsigned short)(cbs->r<<8);
 mycolor.green = (unsigned short)(cbs->g<<8);
 mycolor.blue = (unsigned short)(cbs->b<<8);
 mycolor.flags = (DoRed | DoGreen | DoBlue);

 if (XAllocColor(dpy, colormap, &mycolor)) {
 XtSetArg(args[0], XmNbackground, mycolor.pixel);
 }
 else {
 fprintf(stderr, "No more colors!\n"); fflush(stderr);
 XtSetArg(args[0], XmNbackground, white);
 }

 XtSetValues(label, args, 1);
}

250

Appendix A: Example Programs for New and Enhanced Widgets

Makefile for colortest.c

ROOT = /
MYLIBS =
XLIBS = -lSgw -lSgm -lXm -lXt -lX11 -lgl
SYSLIBS = -lPW -lm -ll -ly
INCLUDES = -I. -I$(ROOT)usr/include

LDFLAGS = -L -L. -L$(ROOT)usr/lib $(MYLIBS) $(XLIBS) $(SYSLIBS)

all: colortest

colortest: colortest.o
 cc -o colortest colortest.o $(LDFLAGS)

colortest.o: colortest.c
 cc -g $(INCLUDES) -DDEBUG -D_NO_PROTO -c colortest.c

Example Program for Dial

/*
 * Mytest.c --
 * create and manage a dial widget.
 * Test its resource settings through menu/button actions.
 */

#include <stdio.h>
#include <Xm/Xm.h>
#include <Xm/Form.h>
#include <Xm/DialogS.h>
#include <Xm/Label.h>
#include <Sgm/Dial.h>

/*
 * Test framework procedures and globals.
 */

#ifdef _NO_PROTO
static void DragCallback();
#else
static void DragCallback(Widget w, void *client_data, void *call_data);
#endif /* _NO_PROTO */

Example Program for Dial

251

XtAppContext app;

main (argc, argv)
int argc;
char *argv[];
{
 Widget toplevel, form, dial, label;
 Arg args[25];
 int ac = 0;

 /*
 * Create and realize our top level window,
 * with all the menus and buttons for user input.
 */
 toplevel = XtVaAppInitialize(&app, "Dialtest", NULL, 0, &argc, argv, NULL, NULL);
 if (toplevel == (Widget)NULL) {
 printf("AppInitialize failed!\n");
 exit(1);
 }

 form = XmCreateForm(toplevel, "Form", NULL, 0);

 /* Set up arguments for our widget. */
 ac = 0;
 XtSetArg(args[ac], XmNleftAttachment, XmATTACH_FORM); ac++;
 XtSetArg(args[ac], XmNrightAttachment, XmATTACH_FORM); ac++;
 XtSetArg(args[ac], XmNtopAttachment, XmATTACH_FORM); ac++;

 /*
 * We use all-default settings.
 * Do not set any of the dial-specific resources.
 */
 dial = SgCreateDial(form, "dial", args, ac);
 XtManageChild(dial);

 ac = 0;
 XtSetArg(args[ac], XmNleftAttachment, XmATTACH_FORM); ac++;
 XtSetArg(args[ac], XmNrightAttachment, XmATTACH_FORM); ac++;
 XtSetArg(args[ac], XmNtopAttachment, XmATTACH_WIDGET); ac++;
 XtSetArg(args[ac], XmNtopWidget, dial); ac++;
 XtSetArg(args[ac], XmNbottomAttachment, XmATTACH_FORM); ac++;
 XtSetArg(args[ac], XmNlabelString, XmStringCreateSimple("0")); ac++;
 label = XmCreateLabel(form, "valueLabel", args, ac);
 XtManageChild(label);

252

Appendix A: Example Programs for New and Enhanced Widgets

 /*
 * Set up callback for the dial.
 */
 XtAddCallback(dial, XmNdragCallback, DragCallback, label);

 XtManageChild(form);
 XtRealizeWidget(toplevel);
 XtAppMainLoop(app);
}

void DragCallback(w, client_data, call_data)
Widget w;
XtPointer client_data, call_data;
{
 SgDialCallbackStruct *cbs = (SgDialCallbackStruct *) call_data;
 Widget label = (Widget)client_data;
 static char new_label[256];
 Arg args[2];
 int ac = 0;

 if ((cbs != NULL) && (label != (Widget)NULL)) {
 sprintf(new_label, "%d", cbs->position);
 XtSetArg(args[ac], XmNlabelString, XmStringCreateSimple(new_label)); ac++;
 XtSetValues(label, args, ac);
 }
}

Example Program for Drop Pocket

/*
 * Demonstrate the use of the DropPocket
 */

#include <Xm/Form.h>
#include <Xm/PushB.h>
#include <Sgm/DropPocket.h>

static void droppedCB(Widget w, XtPointer clientData, XtPointer cbs) {
 SgDropPocketCallbackStruct * dcbs = (SgDropPocketCallbackStruct *)cbs;
 char * name;

 if (dcbs->iconName)
 if (!XmStringGetLtoR(dcbs->iconName, XmFONTLIST_DEFAULT_TAG, &name))

Example Program for Drop Pocket

253

 name = NULL;

 printf("Dropped file: %s\nFull Data: %s\n", name, dcbs->iconData);
 XtFree(name);
}

main(int argc, char * argv[]) {
 Widget toplevel, exitB, dp, topRC;
 XtAppContext app;

 XtSetLanguageProc(NULL, (XtLanguageProc)NULL, NULL);
 toplevel = XtVaAppInitialize(&app, "DropPocket", NULL, 0, &argc, argv, NULL, NULL);
 topRC = XtVaCreateManagedWidget("topRC", xmFormWidgetClass, toplevel, NULL);
 dp = XtVaCreateManagedWidget("dp",
 sgDropPocketWidgetClass, topRC,
 XmNtopAttachment, XmATTACH_FORM,
 XmNbottomAttachment, XmATTACH_FORM,
 XmNleftAttachment, XmATTACH_FORM,
 XmNrightAttachment, XmATTACH_FORM,
 XmNheight, 100,
 XmNwidth, 100,
 NULL);
 XtAddCallback(dp, SgNiconUpdateCallback, droppedCB, NULL);
 XtRealizeWidget(toplevel);
 XtAppMainLoop(app);
}

Makefile for Drop Pocket Example

#!smake
#
include /usr/include/make/commondefs

HFILES = \\p DropPocketP.h \\p DropPocket.h

CFILES = \\p DropPocket.c

TARGETS = dpt

CVERSION = -xansi
MALLOC = /d2/stuff/lib/Malloc
CVERSION = -xansi
OPTIMIZER = -g

254

Appendix A: Example Programs for New and Enhanced Widgets

#-I$(MALLOC) -wlint,-pf -woff 813,826,828

LLDLIBS = -lSgm -lXm -lXt -lX11 -lPW
#LLDLIBS = -u malloc -u XtRealloc -u XtMalloc -u XtCalloc -L /d2/stuff/lib
 -ldbmalloc -lSgm -lXm -lXt -lX11

LCDEFS = -DFUNCPROTO -DDEBUG

targets: $(TARGETS)

include $(COMMONRULES)

#dpt: dpTest.o $(OBJECTS)
$(CC) -o $@ dpTest.o $(OBJECTS) $(LDFLAGS)

dpt: dpTest.o
 $(CC) -o $@ dpTest.o $(LDFLAGS)

#dpt2: dpTest2.o $(OBJECTS)
$(CC) -o $@ dpTest2.o $(OBJECTS) $(LDFLAGS)

dpt2: dpTest2.o
 $(CC) -o $@ dpTest2.o $(LDFLAGS)

#dpt3: dpTest3.o $(OBJECTS)
$(CC) -o $@ dpTest3.o $(OBJECTS) $(LDFLAGS)

dpt3: dpTest3.o
 $(CC) -o $@ dpTest3.o $(LDFLAGS)

#tdt: tdt.o $(OBJECTS)
$(CC) -o $@ tdt.o $(OBJECTS) $(LDFLAGS)

tdt: tdt.o
 $(CC) -o $@ tdt.o $(LDFLAGS)

depend:
 makedepend -- $(CFLAGS) -- $(HFILES) $(CFILES)

Example Program for Finder

255

Example Program for Finder

/*
 * Finder.c demonstrates the use of the SgFinder widget
 */
#include <stdlib.h>
#include <stdio.h>
#include <Xm/RowColumn.h>
#include <Xm/Label.h>
#include <Sgm/Finder.h>
#include <Sgm/DynaMenu.h>

static char * items[] = { "Archer’s favorite songs:",
 "Draft dodger rag",
 "Le Roi Renaud",
 "/usr/sbin",
 "/lib/libc.so.1",
 "Calvinist Headgear Expressway",
 };

static void valueChangeCB(Widget w, XtPointer clientData, XmAnyCallbackStruct * cbs) {
 printf("App value change callback\n");
}

static void activateCB(Widget w, XtPointer clientData, XmAnyCallbackStruct * cbs) {
 printf("App activate callback\n");
}
main(int argc, char * argv[]) {
 Widget toplevel, rc, label, finder, history;
 XtAppContext app;
 XmString * list;
 int listSize, i;

 XtSetLanguageProc(NULL, (XtLanguageProc)NULL, NULL);
 toplevel = XtVaAppInitialize(&app, "Finder", NULL, 0, &argc, argv, NULL, NULL);
 rc = XtVaCreateWidget("rc",
 xmRowColumnWidgetClass, toplevel,
 XmNresizeWidth, False,
 XmNresizeHeight, True,
 NULL);

 /* create the original list for the historyMenu */
 listSize = XtNumber(items);
 list = (XmString *)XtMalloc(sizeof(XmString) * listSize);
 for (i = 0; i < listSize; i++)

256

Appendix A: Example Programs for New and Enhanced Widgets

 list[i] = XmStringCreateLocalized(items[i]);

 label = XtVaCreateManagedWidget("Things:",
 xmLabelWidgetClass, rc,
 NULL);
 finder = XtVaCreateManagedWidget("finder", sgFinderWidgetClass, rc, NULL);
 history = SgFinderGetChild(finder, SgFINDER_HISTORY_MENUBAR);
 if (history && SgIsDynaMenu(history)) {
 XtVaSetValues(history,
 SgNhistoryListItems, list,
 SgNhistoryListItemCount, listSize,
 NULL);
 }

 for (i = 0; i < listSize; i++)
 if (list[i])
 XmStringFree(list[i]);
 if (list)
 XtFree((char *)list);

 XtAddCallback(finder, XmNvalueChangedCallback, (XtCallbackProc)valueChangeCB, finder);
 XtAddCallback(finder, XmNactivateCallback, (XtCallbackProc)activateCB, finder);

 XtManageChild(rc);
 XtRealizeWidget(toplevel);
 XtAppMainLoop(app);
}

Example Program for History Button (Dynamenu)

257

Example Program for History Button (Dynamenu)

#include <Sgm/DynaMenu.h>
#include <Xm/RowColumn.h>

static char * items[] = { "illegal smile", "/usr/people/stone",
 "Fish and whistle", "help I’m trapped in the
 machine", "9th & Hennepin" };

static void dynaPushCB(Widget w, XtPointer clientData, XtPointer cbd) {
 SgDynaMenuCallbackStruct * cbs = (SgDynaMenuCallbackStruct *) cbd;
 int num = cbs->button_number;
 printf("Selected item number %d\n", num);
}

main(int argc, char * argv[]) {
 XtAppContext app = NULL;
 Widget toplevel, rc, dynaMenu;
 XmString * list;
 int listSize, i;

 toplevel = XtVaAppInitialize(&app, "DynaMenu", NULL, 0, &argc,argv, NULL, NULL);
 rc = XtVaCreateManagedWidget("rc", xmRowColumnWidgetClass, toplevel, NULL);

 /* create the original list for the dynaMenu */
 listSize = XtNumber(items);
 list = (XmString *)XtMalloc(sizeof(XmString) * (unsigned int)listSize);
 for (i = 0; i < listSize; i++)
 list[i] = XmStringCreateLocalized(items[i]);

 dynaMenu = XtVaCreateManagedWidget("dynaMenu",
 sgDynaMenuWidgetClass, rc,
 SgNhistoryListItems, list,
 SgNhistoryListItemCount, listSize,
 NULL);
 XtAddCallback(dynaMenu, SgNdynaPushCallback, dynaPushCB, NULL);

 for (i = 0; i < listSize; i++)
 XmStringFree(list[i]);
 XtFree((char *)list);

 XtRealizeWidget(toplevel);
 XtAppMainLoop(app);
}

258

Appendix A: Example Programs for New and Enhanced Widgets

Example Program for Thumbwheel

/*
 * Thumbwheel.c --
 * create and manage a thumbwheel.
 */

#include <stdio.h>
#include <Xm/Xm.h>
#include <Xm/Form.h>
#include <Xm/DialogS.h>
#include <Xm/Label.h>
#include <Sgm/ThumbWheel.h>

/*
 * Test framework procedures and globals.
 */

#ifdef _NO_PROTO
static void DragCallback();
#else
static void DragCallback(Widget w, void *client_data, void *call_data);
#endif /* _NO_PROTO */

XtAppContext app;

main (argc, argv)
int argc;
char *argv[];
{
 Widget toplevel, form, thumbwheel, label;
 Arg args[25];
 int ac = 0;

 /*
 * Create and realize our top level window,
 * with all the menus and buttons for user input.
 */
 toplevel = XtVaAppInitialize(&app, "Thumbwheeltest", NULL, 0, &argc, argv, NULL, NULL);
 if (toplevel == (Widget)NULL) {
 printf("AppInitialize failed!\n");
 exit(1);
 }

 form = XmCreateForm(toplevel, "Form", NULL, 0);

Example Program for Thumbwheel

259

 /* Set up arguments for our widget. */
 ac = 0;
 XtSetArg(args[ac], XmNleftAttachment, XmATTACH_FORM); ac++;
 XtSetArg(args[ac], XmNrightAttachment, XmATTACH_FORM); ac++;
 XtSetArg(args[ac], XmNtopAttachment, XmATTACH_FORM); ac++;

 /*
 * We use all-default settings, with the exception of orientation.
 * Do not set any other thumbwheel-specific resources.
 */
 ac = 0;
 XtSetArg(args[ac], XmNorientation, XmHORIZONTAL); ac++;
 thumbwheel = SgCreateThumbWheel(form, "thumbwheel", args, ac);
 XtManageChild(thumbwheel);

 ac = 0;
 XtSetArg(args[ac], XmNleftAttachment, XmATTACH_FORM); ac++;
 XtSetArg(args[ac], XmNrightAttachment, XmATTACH_FORM); ac++;
 XtSetArg(args[ac], XmNtopAttachment, XmATTACH_WIDGET); ac++;
 XtSetArg(args[ac], XmNtopWidget, thumbwheel); ac++;
 XtSetArg(args[ac], XmNbottomAttachment, XmATTACH_FORM); ac++;
 XtSetArg(args[ac], XmNlabelString, XmStringCreateSimple("0")); ac++;
 label = XmCreateLabel(form, "valueLabel", args, ac);
 XtManageChild(label);

 /*
 * Set up callback for the thumbwheel.
 */
 XtAddCallback(thumbwheel, XmNdragCallback, DragCallback, label);

 XtManageChild(form);
 XtRealizeWidget(toplevel);
 XtAppMainLoop(app);
}

void DragCallback(w, client_data, call_data)
Widget w;
XtPointer client_data, call_data;
{
 SgThumbWheelCallbackStruct *cbs = (SgThumbWheelCallbackStruct *) call_data;
 Widget label = (Widget)client_data;
 static char new_label[256];
 Arg args[2];
 int ac = 0;

260

Appendix A: Example Programs for New and Enhanced Widgets

 if ((cbs != NULL) && (label != (Widget)NULL)) {
 sprintf(new_label, "%d", cbs->value);
 XtSetArg(args[ac], XmNlabelString, XmStringCreateSimple(new_label)); ac++;
 XtSetValues(label, args, ac);
 }
}

Example Program for File Selection Box

To run this program, add these lines to your .Xdefaults file:

fsb*sgiMode: true
fsb*useSchemes: all

then type:

xrdb -load

Here’s the sample program:

/*------- fsb.c -------*/
#include <Xm/RowColumn.h>
#include <Xm/Form.h>
#include <Xm/PushB.h>
#include <stdlib.h>
#include <stdio.h>
#include <Xm/FileSB.h>

void printDirF(Widget w, XtPointer clientData, XmFileSelectionBoxCallbackStruct * cbs) {

 char * filename = NULL, * dirname = NULL;

 XmStringGetLtoR(cbs->value, XmFONTLIST_DEFAULT_TAG, &filename);

 XmStringGetLtoR(cbs->dir, XmFONTLIST_DEFAULT_TAG, &dirname);

 printf(“Filename selected: %s\n”, filename);

 if (filename)
 XtFree(filename);
 if (dirname)
 XtFree(dirname);

Example Program for File Selection Box

261

}

static void showDialog(Widget w, XtPointer clientData, XtPointer callData) {

 Widget dialog = (Widget) clientData;
 XtManageChild(dialog);

}

main (int argc, char *argv[]) {
 Widget toplevel, fsb, b1, b2, rc;
 XtAppContext app;
 XmString textStr;

 XtSetLanguageProc(NULL, (XtLanguageProc)NULL, NULL);

 toplevel = XtVaAppInitialize(&app, “Fsb”, NULL, 0, &argc, argv, NULL, NULL);

 rc = XtVaCreateManagedWidget(“rc”, xmFormWidgetClass, toplevel, NULL);

 /* Set up a dialog */
 if (argc > 1) {

 b1 = XtVaCreateManagedWidget(“FSB”,
 xmPushButtonWidgetClass,
 rc,
 XmNtopAttachment,
 XmATTACH_FORM,
 XmNbottomAttachment,
 XmATTACH_FORM,
 XmNleftAttachment,
 XmATTACH_FORM,
 XmNrightAttachment,
 XmATTACH_FORM,
 NULL);

 fsb = XmCreateFileSelectionDialog(b1, “FSB Dialog”, NULL, 0);

 XtAddCallback(b1, XmNactivateCallback, showDialog, fsb);

 } else {
 fsb = XmCreateFileSelectionBox(rc, “Select A File”, NULL, 0);
 XtVaSetValues(fsb,
 XmNtopAttachment, XmATTACH_FORM,
 XmNbottomAttachment, XmATTACH_FORM,

262

Appendix A: Example Programs for New and Enhanced Widgets

 XmNleftAttachment, XmATTACH_FORM,
 XmNrightAttachment, XmATTACH_FORM,
 NULL);
 XtManageChild(fsb);

 }

 XtAddCallback(fsb, XmNokCallback, (XtCallbackProc)printDirF, fsb);
 XtAddCallback(fsb, XmNcancelCallback, (XtCallbackProc)exit, NULL);

 XtRealizeWidget(toplevel);
 XtAppMainLoop(app);

}

Makefile for File Selection Box Example Program

#!smake
#
include /usr/include/make/commondefs

CFILES = fsb.c

TARGETS = fsb

CVERSION = -xansi
OPTIMIZER = -g

LLDLIBS = -lSgm -lXm -lXt -lX11 -lPW

LCDEFS = -DFUNCPROTO -DDEBUG

LCINCS = -I. -I$(MOTIF_HEADERS)

targets: $(TARGETS)

include $(COMMONRULES)

fsb: $(OBJECTS)
$(CC) -o $@ $(OBJECTS) $(LDFLAGS)

Appendix B

This chapter lists the various
environment variables used by the
desktop.

Desktop Environment Variables

265

Appendix B

B. Desktop Environment Variables

Here is a list of environment variables used by the Desktop. You can use any
of these variables as part of the OPEN, ALTOPEN, or PRINT file typing
rules, or as part of the FILTER print conversion rule.

$LEADER
If one or more icons are currently selected from the Desktop,
LEADER is set to the icon whose text field is highlighted. If
no icons are selected, it is set to null.

$REST
If more than one icon is currently selected from the Desktop,
REST contains the list of names of all selected icons except
the highlighted icon (see LEADER above). Otherwise, it is
set to null.

$LEADERTYPE
If one or more icons are currently selected from the Desktop,
LEADERTYPE is set to the TYPE of the icon whose text field
is highlighted. If no icons are selected, it is set to null.

$RESTTYPE
When more than one icon is currently selected from the
Desktop, RESTTYPE contains the TYPE for all selected
icons except the highlighted icon, if the remainder of the
selected icons are all of the same TYPE. If they are not the
same TYPE, or only one icon is selected, RESTTYPE is set to
null.

$RESTTYPELIST
Contains the list of TYPEs corresponding to the arguments
in REST. If only one icon is selected, RESTTYPELIST is set to
null.

$ARGC
Contains the number of selected icons.

266

Appendix B: Desktop Environment Variables

$TARGET
Set only for the CMD DROP rule, TARGET contains the
name of the icon being dropped upon; otherwise it is set to
null.

$TARGETTYPE
Set only for the CMD DROP rule, TARGETTYPE contains
the TYPE of the icon being dropped upon; otherwise it is set
to null.

$SELECTED
Contains the names of the icons being dropped on TARGET,
or null, if none are being dropped.

$SELECTEDTYPE
If all of the icons named in SELECTED are of the same
TYPE, SELECTEDTYPE contains that TYPE; otherwise it is
set to null.

$SELECTEDTYPELIST
Contains a list of TYPEs corresponding to the TYPEs of the
selected icons named in SELECTED. If only one icon is
selected, it is set to null.

$WINEDITOR
Contains the name for the text editor invoked from the
Desktop. The default editor is jot. To use an editor that does
not generate its own window by default, you must set
WINEDITOR to the appropriate winterm command line
sequence. Thus, for vi, you would set WINEDITOR by
typing:

setenv WINEDITOR ’winterm -c vi’

$WINTERM
Contains the name of the window terminal invoked from
the Desktop using winterm(1). Currently supported
window terminals are wsh and xterm. The default window
terminal is wsh.

Appendix C

This appendix contains listings of
several online help document files. It
also lists the source of an example
program that implements many
online help features, along with its
accompanying help document and
helpmap file.

Online Help Examples

269

Appendix C

C. Online Help Examples

This appendix contains listings of several online help document files. It also
lists the source of an example program that implements many online help
features, along with its accompanying help document and helpmap file. All
of these files are available online. Their locations are given before each
listing.

Note: To view these examples on your system, you must install the
insight_dev product, which contains the SGIHelp library and include file,
help generation tools, examples, and templates.

A Simple Help Document

Example C-1 lists a simple help document. It’s intended as a primer for
writing online help documents. You can find this file online at
/usr/share/Insight/XHELP/samples/sampleDoc/sample.sgm.

Example C-1 An Example of a Help Source File

<dochelp>

<!--
==
This block denotes a SGML-style comment.

For those that are unfamiliar with SGML, this sample file
will try to cover the usage of a variety of the tags that
are used in the XHELP DTD. The examples shown in this sample
should be sufficient for a writer to produce a very high-quality,
functional help document for use with an application.

It is best to view this sample once it has been published,
and then compare what you see in the viewing software to
the actual tags displayed in this file.

270

Appendix C: Online Help Examples

Each HelpTopic block written below displays how to use the
DTD to implement specific elements/constructs. It should be
fairly self-explanatory.

A couple of things to look for when constructing/editing
your SGML file:

o Make sure a starting element tag has an associated
end tag! If not, then the file will not compile
properly. This is analagous to missing a bracket
or paranthesis in a C program!

o SGML is NOT case sensitive! "HELPTOPIC" is the same
as "helptopic", which is the same as "HelpTopic", etc.

==
-->

<HelpTopic HelpID="intro">
<Helplabel>SGI Sample SGML File</Helplabel>
<Description>
<para>This file contains examples using many of the constructs used
in the XHELP DTD.</para>
<para>Notice that the general outline used for putting together
a help "card" is defined by this particular SGML block. The preceding tag
defines the title that will be displayed for this card. The area you
are currently reading is a description for the feature or function you
are documenting. It is not necessary to use each of these tags, although
the "HelpTopic" tag is required.</para>

<para>A writer of help information may also wish to include a glossary
of terms. In that way, the documenter can tag terms within the text,
and have them display a specified definition from within the viewer.
A sample of this is: <glossterm>sgihelp</glossterm>.</para>
<para>The actual definition for the term is found at the end of this
SGML sample.</para>
</Description>
</HelpTopic>

<!--
==
It's important to point out that the "HelpID" is the glue that
binds the help text to the application, through the use of the
provided Help API (library, header file).

A Simple Help Document

271

==
-->

<HelpTopic HelpID="helpid_info">
<Helplabel>What is a HelpID?</Helplabel>
<Description>
<para>The HelpID attribute is used to by your application to
instruct the help server which help "card" to display. In this
case, sending the help server an ID of "helpid_info" would bring up
this particular block (or "card").</para>
<para>The other "ID" is often used as an anchor point
(and should be used within an "ANCHOR" tag) for hypertext
links within your text. If you wish to refer to a particular card
one simply uses the ID as the anchor point for the link syntax.</para>
</Description>
</HelpTopic>

<!--
==
This section illustrates the simple usage of specifying a note,
warning, tip, or caution within your help document.
==

-->

<HelpTopic HelpID="note_example">
<Helplabel><Anchor Id="AI003">Using Notes, Warnings or Tips Within a Paragraph</Helplabel>
<Description>
<para>Within the paragraph tag, there are a variety of text marking
mechanisms. Each of these delineations must appear as part of the
paragraph ("para") element.</para>
<para>This area shows the documentor how a warning, note or "tip"
can be used within a persons's help text.</para>

<para>
<warning><para>Be Careful. This is a warning.</para></warning>
<note><para>For your information, this is a note.</para></note>
<tip><para>When you prepare your help file, you may wish to include a tip.</para>
</tip>
<caution><para>Use a caution tag when you wish to have the user use caution!</para>
</caution>
</para>
</Description>
</HelpTopic>

272

Appendix C: Online Help Examples

<!--
==
This next section illustrates how to display computer output,
program listings, etc. within your help document.
==

-->

<HelpTopic HelpID="literal_example">
<Helplabel>Using Literals or Examples Within a Paragraph</Helplabel>
<Description>
<para>
This area shows the documentor how to implement specific examples within
their help text. It also describes how to the "literal" tag.</para>
<para>
When used within a paragraph, the LiteralLayout tag
tells the viewing software to take this next block "as is",
with all accompanying new-lines and spacing left intact.</para>
<Example>
<Title>Various Examples: ComputerOutput, LiteralLayout, ProgramListing</Title>

<para>
What follows is a computer output listing from when a
user typed <userInput>ls</userInput> :
<ComputerOutput>
% ls -l
total 6777
-rwxr-xr-x 1 guest guest 29452 Mar 8 19:12 menu*
-rw-r--r-- 1 guest guest 2375 Mar 8 19:11 menu.c++
%
</ComputerOutput>
</para>

<para>
Each of the subsequent three entries should be indented and on their
own line:
<LiteralLayout>

Here is line one.
This is line two.
This is line three.

</LiteralLayout>
</para>

A Simple Help Document

273

<para>
The following is a listing from a "C" program:
<ProgramListing>

#include "X11/Xlib.h"
#include "helpapi/HelpBroker.h"

void main(int, char**)
{

/* default to the value of the DISPLAY env var */
Display *display = XOpenDisplay(NULL);

if(display) {
/* initialize the help server */
SGIHelpInit(display, "MyApp", ".");

}
...

}
</ProgramListing>
</para>
</Example>

</Description>
</HelpTopic>

<!--
==
This next section illustrates how to incorporate graphics within
your help text.
==

-->

<HelpTopic HelpID="graphic_example">
<Helplabel>Using Graphics or Figures Within Your Help Text</Helplabel>
<Description>
<para>
This area displays how a graphics or figure can be used within the flow of
your information. The following figure is in the "GIF" format:
</para>

<Figure ID="figure_01" Float="Yes">
<title>A GIF Raster Image</title>
<Graphic fileref="sample1.gif" format="GIF"></Graphic>

</Figure>

274

Appendix C: Online Help Examples

<para>
Currently, support is provided for <emphasis>raster</emphasis> graphics in
the GIF and TIF formats. Support is provided for <emphasis>vector</emphasis>
graphics utilizing the CGM format.
</para>
<para>
This next figure in the CGM (Computer Graphics Metafile) format:
</para>

<Figure ID="figure_02">
<title>A CGM Vector Image</title>
<Graphic fileref="sample2.cgm" format="CGM"></Graphic>

</Figure>

<para>
A special note that all equations are treated as inline images, as shown
here:
<equation>

<Graphic fileref="matrix.gif" format="GIF"></Graphic>
</equation>
</para>

</Description>
</HelpTopic>

<!--
==
Hyperlinks can be a very powerful navigation mechanism!
Liberal usage is encouraged.
==

-->

<HelpTopic HelpID="link_example">
<Helplabel>Using HyperLinks</Helplabel>
<Description>
<para>One of the most powerful capabilities of the sgihelp viewer
is the use of hyperlinks to associate like pieces of information.
Constructing these links in SGML is trivial.</para>
<para>Notice that the "Link" element requires an attribute called
"Linkend". This defines the area (anchor) to link to. The "Linkend"
attribute points to the ID of some SGML element. In composing
help text, it is probably best to assign an ID to each "HelpTopic"

A Simple Help Document

275

element, and use those same ID's when specifying a Link.</para>
<para>A link is defined below:</para>
<para>For more information about using Notes, refer to the area
entitled <Link Linkend="AI003">"Using Notes, Warnings or Tips
Within a Paragraph"</Link></para>
<para>Note that the "Anchor" tag can also be used within a
document to point to any level of granularity the author
wishes to link to.</para>
</Description>
</HelpTopic>

<!--
==
Note that there are *many* ways to specify lists. This example
shows some commonly-used permutations.
==

-->

<HelpTopic HelpID="list_example">
<Helplabel>Using Lists Within Your Help Text</Helplabel>
<Description>
<para>This area displays how a person can author
various types of lists within their help text.</para>

<para>Here is an itemized list that uses a dash to preface each item:</para>
<ItemizedList Mark="dash">
<ListItem><para>First Entry</para></ListItem>
<ListItem><para>Second Entry</para></ListItem>
<ListItem><para>Third Entry</para></ListItem>
</ItemizedList>

<para>Here is an itemized list that uses a bullet to preface each item:</para>
<ItemizedList Mark="bullet">
<ListItem><para>First Entry</para></ListItem>
<ListItem><para>Second Entry</para></ListItem>
</ItemizedList>

<para>Here is an ordered list, using standard enumeration:</para>
<OrderedList>
<ListItem><para>First Entry</para></ListItem>
<ListItem><para>Second Entry</para></ListItem>
<ListItem><para>Third Entry</para></ListItem>
</OrderedList>

276

Appendix C: Online Help Examples

<para>Here is another ordered list, using upper-case Roman enumeration,
showing nesting (sub-items) within the list (outline format):</para>
<OrderedList Numeration="Upperroman">
<ListItem><para>First Entry</para></ListItem>
<ListItem><para>Second Entry

<OrderedList Numeration="Upperalpha" InheritNum="Inherit">
<ListItem><para>First SubItem</para></ListItem>
<ListItem><para>Second SubItem</para></ListItem>
<ListItem><para>Third SubItem</para></ListItem>
<ListItem><para>Fourth SubItem</para></ListItem>

</OrderedList>
</para></ListItem>
<ListItem><para>Third Entry</para></ListItem>
</OrderedList>

<para>Here is a variable list of terms:</para>
<VariableList>
<VarListEntry>
<term>SGI</term>
<ListItem><para>Silicon Graphics, Inc.</para></ListItem>
</VarListEntry>
<VarListEntry>
<term>SGML</term>
<ListItem><para>A Meta-language for defining documents.</para></ListItem>
</VarListEntry>
</VariableList>

</Description>
</HelpTopic>

<!--
==
Some final examples...
==

-->

<HelpTopic HelpID="misc_example">
<Helplabel>Other Miscellaneous Textual Attributes</Helplabel>
<Description>
<para>This area displays some miscellaneous tags that can be used
within the context of your help document.</para>

A Simple Help Document

277

<para>
<Comment>This is a comment that is not to be confused
with the SGML-style comment! Instead, this comment will be
parsed and carried into the text of your document. Usually it's
used in production, for specifying to someone an area of concern,
an area that needs editing, etc.
</Comment>
</para>

<para>Within your text, you may wish to denote a footnote.
<Footnote id="foot1"><para>This block is a footnote!</para></Footnote>
The XHELP DTD will allow you to do that.
</para>

<para>
You may wish to add a copyright symbol to your text, such as:
Silicon Graphics, Inc.<trademark Class="Copyright"></trademark>
</para>
</Description>
</HelpTopic>

<!--
==
If you wish to use/have a glossary of terms within your help text,
it is advised to put it at the end of your help "book", as shown
here. NOTE: CR or other characters (#PCDATA) is NOT allowed
between the <Glossary> and <Title> tags! (mixed content model)
==

-->

<Glossary>
<Title>Glossary</Title>
<GlossEntry>
<GlossTerm>help</GlossTerm>
<GlossDef>
<para>To give assistance to; to get (oneself) out of a difficulty;
a source of aid.</para>
</GlossDef>
</GlossEntry>
<GlossEntry>
<GlossTerm>sgihelp</GlossTerm>
<GlossDef>
<para>This is Silicon Graphics, Inc. version of a "Xhelp" compatible

278

Appendix C: Online Help Examples

server. Through the use of an available API, and a help text
compiler, books can be constructed that can be used to render
help information for the given application.</para>
</GlossDef>
</GlossEntry></Glossary>

<!--
==
Don't forget the very last ending tag...!!!
==

-->

</dochelp>

Allowable Elements in a Help Document

Example C-2 lists a help document that describes the legal structures
defined by the help DTD. You can find this file online at
/usr/share/Insight/XHELP/samples/XHELP_elements/XHELP_elements.sgm.

Example C-2 A Description of the Elements Defined by the Help DTD

<DOCHELP>
<HELPTOPIC HelpID="">
<HELPLABEL>The Elements Alphabetized</HELPLABEL>
<DESCRIPTION>
<PARA>Emphasized entries indicate block-oriented elements.</PARA>
</DESCRIPTION></HELPTOPIC>

<HELPTOPIC HelpID="">
<HELPLABEL>Common Attributes </HELPLABEL>
<DESCRIPTION>
<PARA>Common attributes include ID.</PARA>

<PARA>ID is an identifier, which must be a
string that is unique at least within the document and
which must begin with a letter.</PARA>
</DESCRIPTION></HELPTOPIC>

<HELPTOPIC HelpID="">
<HELPLABEL>Other Attributes</HELPLABEL>
<DESCRIPTION>

Allowable Elements in a Help Document

279

<PARA>Certain other attributes occur regularly. PageNum is
the number of the page on which a given element begins
or occurs in a printed book. Label holds some text
associated with its element that is to be output when
the document is rendered.
Type is used with links,
as it is clear that different types of links may be
required; it duplicates the function of Role.</PARA>

<PARA>The Class attribute has been introduced in an attempt to
control the number of computer-specific in-line elements.
The elements that bear the Class attribute, such as
Interface, have general
meanings that can be made more specific
by providing a value for Class from the delimited list
for that element. For example, for the Interface element
one may specify Menu, or Button; for the MediaLabel
element one may specify CDRom or Tape. Each element
has its own list of permissible values for Class, and
no default is set, so you can ignore this attribute
if you wish.</PARA>

<PARA>An attribute that has the keyword IMPLIED bears no
processing expections if it is absent or its
value is null. Application designers might wish to
supply plausible defaults, but none is specified here.</PARA>
</DESCRIPTION></HELPTOPIC>

<HELPTOPIC HelpID="">
<HELPLABEL>cptrphrase.gp</HELPLABEL>
<DESCRIPTION>

<PARA>This parameter entity has been introduced to provide
some structure for in-line elements related to computers.
Its contents are: plain text,
Anchor, Comment, Link, ComputerOutput, and UserInput.</PARA>

<PARA>Many of these elements now have attributes
with delimited value lists; some former in-line elements now appear as
values for those attributes.</PARA>
</DESCRIPTION></HELPTOPIC>

<HELPTOPIC HelpID="">
<HELPLABEL>"In-line" vs. "In flow"</HELPLABEL>
<DESCRIPTION>

280

Appendix C: Online Help Examples

<PARA>In this document, "in-line" means "occuring within a line
of text, like a character or character string, not causing
a line break." This term is sometimes used to
refer to objects such as an illustration around which
something like a paragraph is wrapped; here that circumstance
will be called "in flow." There is no provision yet
for indicating that an object is in flow, but one could
make creative use of the Role attribute to do so.</PARA>

<PARA>A related point: formal objects have titles; informal
objects do not. That an object is informal does not mean
that it is in-line: these are two different
characteristics.</PARA>
</DESCRIPTION></HELPTOPIC>

<HELPTOPIC HelpID="">
<HELPLABEL>List of Elements</HELPLABEL>
<DESCRIPTION>

<VARIABLELIST>

<VARLISTENTRY>
<TERM>
<EMPHASIS>Actions</EMPHASIS></TERM>
<LISTITEM>

<PARA>A set of entries, usually in a list form, that comprise
the appropriate set of functions or steps to perform a corrective
action for a situation that is described as part of a help card.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>Anchor</TERM>
<LISTITEM>

<PARA>Marks a target for a Link.
Anchor may appear almost anywhere, and has no content.
Anchor has ID, Pagenum, Remap, Role, and XRefLabel attributes;
the ID is required.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>
<EMPHASIS>Caution</EMPHASIS></TERM>

Allowable Elements in a Help Document

281

<LISTITEM>

<PARA>An admonition set off from the text;
Tip, Warning, Important, and Note all share its model.
Its contents may include paragraphs, lists, and so forth,
but not another admonition.
Caution and its sisters have common attributes.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>
<EMPHASIS>Comment</EMPHASIS></TERM>
<LISTITEM>

<PARA>A remark made within the document file that
is intended for use during interim stages of production.
A Comment should not be displayed to the reader of the
finished, published work. It may appear almost anywhere,
and may contain almost anything
below the Section level. Note that,
unlike an SGML comment, unless you take steps
to suppress it, the Comment element
will be output by an SGML parser
or application. You may wish to do this to display Comments
along with text during the editorial process.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>ComputerOutput</TERM>
<LISTITEM>

<PARA>Data presented to the user by
a computer.
It may contain elements from cptrphrase.gp,
and has common and
MoreInfo attributes For the MoreInfo attribute
see <EMPHASIS>Application.</EMPHASIS></PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>
<EMPHASIS>Copyright</EMPHASIS></TERM>
<LISTITEM>

<PARA>Copyright information about

282

Appendix C: Online Help Examples

a document. It consists of one or
more Years followed by any number of Holders.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>Date</TERM>
<LISTITEM>

<PARA>Date of publication or revision.
It contains plain text. (No provision
has been made for representing eras; you could include this
information along with the date data.)</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>
<EMPHASIS>Description</EMPHASIS></TERM>
<LISTITEM>

<PARA>A part of a HelpTopic element.
Description may contain in-line elements.
The body may be comprised of paragraphs.
It is used to contain the body of text that
is used as a help card.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>
<EMPHASIS>DocHelp</EMPHASIS></TERM>
<LISTITEM>

<PARA>A collection of help document components.
A DocHelp entry may have a series of HelpTopic(s).
All back matter is optional, and at this time includes
a Glossary.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>
<EMPHASIS>DocInfo</EMPHASIS></TERM>
<LISTITEM>

<PARA>Metainformation for a book
component, in which it may appear. Only Title and AuthorGroup
are required. DocInfo may contain, in order:

Allowable Elements in a Help Document

283

the required Title, optional TitleAbbrev and
Subtitle, followed by one or more
AuthorGroups, any number of
Abstracts, an optional RevHistory, and any number of
LegalNotices. DocInfo has common attributes.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>Emphasis</TERM>
<LISTITEM>

<PARA>Provided for use where you would
traditionally use italics
or bold type to emphasize a word or phrase.
It contains plain text and
has common attributes.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>
<EMPHASIS>Equation</EMPHASIS></TERM>
<LISTITEM>

<PARA>A titled mathematical equation displayed
on a line by itself, rather than in-line. It has an optional
Title and TitleAbbrev, followed by either
an InformalEquation or a Graphic (see
<EMPHASIS>Graphic</EMPHASIS>).
Equation has common and Label attributes.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>
<EMPHASIS>Example</EMPHASIS></TERM>
<LISTITEM>

<PARA>Intended for sections of program source code
that are provided as examples in the text.
It contains a required Title and an
optional TitleAbbrev, followed by one or more block-oriented
elements in any combination. It has common and Label
attributes. A simple Example might contain a Title
and a ProgramListing.</PARA>
</LISTITEM></VARLISTENTRY>

284

Appendix C: Online Help Examples

<VARLISTENTRY>
<TERM>
<EMPHASIS>Figure</EMPHASIS></TERM>
<LISTITEM>

<PARA>An illustration.
It must have a Title, and may have a
TitleAbbrev, followed by one or more of
BlockQuote,
InformalEquation, Graphic,
InformalTable, Link, LiteralLayout,
OLink, ProgramListing, Screen, Synopsis, and ULink,
in any order. Figure has common,
Label, and Float attributes; Float indicates
whether the Figure is supposed to be rendered
where convenient (yes) or at
the place it occurs in the text (no, the default). To
reference an external file containing graphical
content use the Graphic element within Figure.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>
<EMPHASIS>Footnote</EMPHASIS></TERM>
<LISTITEM>

<PARA>The contents of a footnote, when
the note occurs outside the block-oriented element in
which the FootnoteRef occurs.
(Compare <EMPHASIS>InlineNote.</EMPHASIS>)
The point in the text where the mark for a specific
footnote goes is indicated by FootnoteRef.
Footnote may contain Para, SimPara, BlockQuote, InformalEquation, InformalTable,
Graphic, Synopsis, LiteralLayout, ProgramListing,
Screen, and any kind of list.
It has ID, Label, Lang, Remap, Role, and XRefLabel
attributes; the ID attribute is required, as
a FootnoteRef must point to it.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>
<EMPHASIS>Glossary</EMPHASIS></TERM>
<LISTITEM>

Allowable Elements in a Help Document

285

<PARA>A glossary of terms. Glossary
may occur within a Chapter, Appendix, or Preface,
or may be a book component in its own right.
It contains in order an optional DocInfo, optional
Title, and optional TitleAbbrev, followed by
any number of block-oriented elements, followed by
one or more GlossEntries or one or more GlossDivs.
It has common attributes.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>
<EMPHASIS>GlossDef</EMPHASIS></TERM>
<LISTITEM>

<PARA>The definition attached to a GlossTerm
in a GlossEntry. It may contain Comments, GlossSeeAlsos,
paragraphs, and other block-oriented elements, in
any order; it has common and Subject attributes. The Subject
attribute may hold a list of subject areas (e.g., DCE RPC
General) as keywords.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>
<EMPHASIS>GlossEntry</EMPHASIS></TERM>
<LISTITEM>

<PARA>An entry in a Glossary.
It contains, in order, a required
GlossTerm, an optional Acronym,
an optional Abbrev, and either a
GlossSee or any number of GlossDefs.
It has common attributes.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>GlossTerm</TERM>
<LISTITEM>

<PARA>A term in the text of a Chapter (for example) that is
glossed in a Glossary; also used for those terms in GlossEntries, in the
Glossary itself. As you may not want to tag all occurrences
of these words outside of Glossaries, you might consider
GlossTerm, when used outside of Glossaries, to be similar

286

Appendix C: Online Help Examples

to FirstTerm, except that GlossTerm may contain other
in-line elements. GlossTerm contains in-line elements
and has common attributes.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>Graphic</TERM>
<LISTITEM>

<PARA>Encloses graphical data or
points via an attribute to an external file containing such data,
and is to be rendered as an object, not in-line.
It has Format,
Fileref, Entityref, and ID attributes.
The format attribute may have the value of
any of the formats defined at the head of the DTD,
including CGM-CHAR, CGM-CLEAR, DITROFF, DVI, EPS,
EQN, FAX, FAXTILE, GIF, IGES, PIC, PS, TBL, TEX,
TIFF.</PARA>

<PARA>The value of Fileref should be a filename, qualified by
a pathname if desired; the value of Entityref should be that of an
external data entity. If data is given as the
content of Graphic, both Entityref and Fileref,
if present at all, should
be ignored, but a Format value should be supplied.
if no data is given as the content of
Graphic and a value for Entityref
is given, Fileref, if present, should be ignored
but no Format value should be supplied.
Finally, if there is no content for Graphic and
Entityref is absent or null, Fileref must be
given the appropriate value, and again no
Format value should be supplied.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>
<EMPHASIS>HelpTopic</EMPHASIS></TERM>
<LISTITEM>

<PARA>A part of a DocHelp document.
HelpTopic contains a HelpLabel, followed in order by
a Description, and optionally an Actions area.
HelpTopic has common and HelpId attributes.</PARA>

Allowable Elements in a Help Document

287

</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>
<EMPHASIS>HelpLabel</EMPHASIS></TERM>
<LISTITEM>

<PARA>The text of a heading or the title of the HelpTopic
block-oriented element. HelpLabel may contain
in-line elements, and has common attributes.</PARA>
</LISTITEM></VARLISTENTRY>
<VARLISTENTRY>
<TERM>InlineEquation</TERM>
<LISTITEM>

<PARA>An untitled mathematical equation
occurring in-line or as the content of an Equation.
It contains a Graphic, and has common attributes.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>InlineGraphic</TERM>
<LISTITEM>

<PARA>Encloses graphical data or
points via an attribute to an external file containing such data,
and is to be rendered in-line.
InlineGraphic has Format, Fileref, Entityref, and ID attributes.
The format attribute may have the value of
any of the formats defined at the head of the DTD, under "Notations."
If it is desired to point to an external file, a filename may
be supplied as the value of the Fileref attribute, or an
external entity name may be supplied as the value of the
Entityref attribute.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>
<EMPHASIS>ItemizedList</EMPHASIS></TERM>
<LISTITEM>

<PARA>A list in which each item is marked with
a bullet, dash, or other dingbat (or no mark at all).
It consists of one or more ListItems. A ListItem in an
ItemizedList contains paragraphs and other

288

Appendix C: Online Help Examples

block-oriented elements, which
may in turn contain other lists; an ItemizedList may be
nested within other lists, too. It has common attributes and
a Mark attribute. Your application might supply the mark to be used
for an ItemizedList, but you can use this attribute to
indicate the mark you desire to be used; there
is no fixed list of these.hfill\break <EMPHASIS>Usage Note:</EMPHASIS>
You might want to use one of the ISO text entities
that designates an appropriate dingbat.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>Link</TERM>
<LISTITEM>

<PARA>A hypertext link. At present, all
the link types represented in the DTD are
provisional. Link is less provisional than the
others, however. In HyTime parlance, Link is a
clink. It may contain in-line elements
and has Endterm, Linkend, and Type attributes. The required
Linkend attribute specifies the target of the link,
and the optional Endterm attribute specifies
text that is to be fetched from elsewhere in the document
to appear in the Link. You can also supply this text directly as
the content of the Link, <EMPHASIS>in which case the
Endterm attribute is to be ignored (new and tentative
rule for this version, comments invited)</EMPHASIS>.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>
<EMPHASIS>ListItem</EMPHASIS></TERM>
<LISTITEM>

<PARA>A wrapper for the elements of
items in an ItemizedList or OrderedList; it also
occurs within VarListEntry in VariableList.
It may contain just about anything except Sects and book components.
It has common attributes and an Override attribute, which
may have any of the values of ItemizedList's
Mark attribute; use Override to override the mark
set at the ItemizedList level, when you desire to create
ItemizedLists with varying marks.</PARA>
</LISTITEM></VARLISTENTRY>

Allowable Elements in a Help Document

289

<VARLISTENTRY>
<TERM>
<EMPHASIS>LiteralLayout</EMPHASIS></TERM>
<LISTITEM>

<PARA>The wrapper for lines set off from
the main text that are not tagged as Screens, Examples,
or ProgramListing, in which line breaks and leading
white space are to be regarded as significant.
It contains in-line elements, and has common
and Width attributes, for specifying a number representing
the maximum width of the contents.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>
<EMPHASIS>Note</EMPHASIS></TERM>
<LISTITEM>

<PARA>A message to the user, set off from the text.
See <EMPHASIS>Caution.</EMPHASIS></PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>
<EMPHASIS>OrderedList</EMPHASIS></TERM>
<LISTITEM>

<PARA>A numbered or lettered list, consisting of
ListItems. A ListItem in an
OrderedList contains paragraphs and other
block-oriented elements, which
may in turn contain other lists; an OrderedList may be
nested within other lists, too.
OrderedList has common attributes, along with
a Numeration attribute, which
may have the value Arabic, Upperalpha, Loweralpha,
Upperroman, or Lowerroman. The default is Arabic (1, 2, 3, . . .).
It has an InheritNum attribute, for which the value Inherit specifies for a
nested list that the numbering of ListItems should include the
number of the item within which they are nested (2a, 2b, etc.,
rather than a, b, etc.); the default value is Ignore.
It has a Continuation attribute, with values
Continues or Restarts (the default), which may be used to

290

Appendix C: Online Help Examples

indicate whether the numbering of a list begins afresh (default)
or continues that of the immediately preceding list (Continues).
You need supply the Continuation attribute only
if your list continues the numbering of the preceding list.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>
<EMPHASIS>Para</EMPHASIS></TERM>
<LISTITEM>

<PARA>A paragraph. A Para may not
have a Title: to attach a Title to a Para use FormalPara. Para
may contain any in-line element and almost
any block-oriented element. Abstract, AuthorBlurb, Caution,
Important, Note, and Warning are excluded, as are Sects and higher-level
elements. Para has common attributes.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>
<EMPHASIS>ProgramListing</EMPHASIS></TERM>
<LISTITEM>

<PARA>A listing of a program.
Line breaks and leading
white space are significant in a ProgramListing, which
may contain in-line elements, including LineAnnotations.
(LineAnnotations are a document author's
comments on the code, not the comments written
into the code itself by the code's author.)
ProgramListing has common and Width attributes, the
latter for specifying a number representing the maximum
width of the contents.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>Term</TERM>
<LISTITEM>

<PARA>The hanging term attached to a ListItem
within a VarListEntry in a
VariableList; visually, a VariableList
is a set of Terms with attached items such as paragraphs. Each
ListItem may be associated with a set of Terms. Term may contain

Allowable Elements in a Help Document

291

in-line elements. It has common attributes.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>
<EMPHASIS>Tip</EMPHASIS></TERM>
<LISTITEM>

<PARA>A suggestion to the user, set off from
the text. See <EMPHASIS>Caution.</EMPHASIS></PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>
<EMPHASIS>Title</EMPHASIS></TERM>
<LISTITEM>

<PARA>The text of a heading or the title of a
block-oriented element. Title may contain
in-line elements, and has common and PageNum attributes.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>Trademark</TERM>
<LISTITEM>

<PARA>A trademark. It may contain members of cptrphrase.gp,
and has common and Class attributes.
Class may have the values Service, Trade, Registered,
or Copyright; the default is Trade.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>UserInput</TERM>
<LISTITEM>

<PARA>Data entered by the user.
It may contain elements from cptrphrase.gp,
and has common and MoreInfo attributes. For the MoreInfo attribute
see <EMPHASIS>Application.</EMPHASIS></PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>
<EMPHASIS>VariableList</EMPHASIS></TERM>

292

Appendix C: Online Help Examples

<LISTITEM>

<PARA>An optionally
titled list of VarListEntries, which are
composed of sets of one or more Terms with associated
ListItems; ListItems contain paragraphs and other block-oriented
elements in any order. Inclusions
are as for OrderedList (see <EMPHASIS>OrderedList</EMPHASIS>).
VariableList has common attributes.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>
<EMPHASIS>VarListEntry</EMPHASIS></TERM>
<LISTITEM>

<PARA>A component of VariableList (see
<EMPHASIS>VariableList</EMPHASIS>). It has common attributes.</PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>
<EMPHASIS>Warning</EMPHASIS></TERM>
<LISTITEM>

<PARA>An admonition set off from the text.
See <EMPHASIS>Caution.</EMPHASIS></PARA>
</LISTITEM></VARLISTENTRY>

<VARLISTENTRY>
<TERM>XRef</TERM>
<LISTITEM>

<PARA>Cross reference link to another part of the document.
It has Linkend and Endterm attributes, just like Link,
but like Anchor, it may have no content.
XRef must have a Linkend, but the Endterm is optional.
If it is used, the content of the element it points
to is displayed as the text of the cross reference;
if it is absent, the XRefLabel of the cross-referenced
object is displayed. To include in the cross reference
generated text associated with the object referred to,
use your application's style sheet. See <EMPHASIS>Link.</EMPHASIS></PARA>
</LISTITEM></VARLISTENTRY>

An Example of Implementing Help in an Application

293

</VARIABLELIST>
</DESCRIPTION></HELPTOPIC>
</DOCHELP>

An Example of Implementing Help in an Application

This section provides a complete example of help integrated with an
application.

Example C-3 lists a C program that implements a Help menu, a Help button,
and context-sensitive help. You can find this file online at
/usr/share/Insight/XHELP/samples/exampleApp/exampleAppXm.c.

Example C-4 lists the help document for exampleAppXm. You can find it
online at /usr/share/Insight/XHELP/samples/exampleApp/exampleAppXm.sgm.

Example C-5 lists the helpmap file for exampleAppXm. You can find it online
at /usr/share/Insight/XHELP/samples/exampleApp/help/exampleAppXm.helpmap.

Example C-3 An Example of Integrating SGIHelp With an Application

/*___
*
* File: exampleAppXm.c
*
* Date: 3/25/94
*
* Compile with: cc -o exampleAppXm exampleAppXm.c -lhelpmsg -lXm -lXt -lX11
*
* Purpose: An simple example program that shows how to use the SGI
* Help system from a Motif application.
*
* This program displays a few buttons on a bulletin board
* alongwith a help menu. The use of context sensitive help
* is also demonstrated.
*___
*/

/*
* standard include files
*/

294

Appendix C: Online Help Examples

#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <X11/cursorfont.h>
#include <Xm/Xm.h>
#include <Xm/Label.h>
#include <Xm/PushB.h>
#include <Xm/Form.h>
#include <Xm/MessageB.h>
#include <Xm/MainW.h>
#include <Xm/RowColumn.h>
#include <Xm/CascadeB.h>
#include <Xm/Separator.h>

/*
* include for for calling/using SGIHelp
*/

#include <helpapi/HelpBroker.h>

/*
* forward declarations of functions
*/

Widget initMotif(int *argcP, /* Initializes motif and */
char *argv[], /* and returns the top level*/
XtAppContext *app_contextP, /* shell. */
Display **displayP);

void createInterface(Widget parent); /*creates the main window, */
/*menus, and the buttons */
/*on the main window */

void clickForHelpCB(); /*callbacks for each of */
void overviewCB(); /*the help menu's */
void taskCB();
void indexCB();
void keysAndShortcutsCB();
void productInfoCB();

void infoDialogCB();

Widget _mainWindow, _infoDialog=NULL;

An Example of Implementing Help in an Application

295

/*___
*
* main()
*___
*/

main(int argc, char *argv[])
{

Display *display;
XtAppContext app_context;
Widget toplevel;

toplevel = initMotif (&argc,argv,&app_context,&display);

createInterface(toplevel);

XtRealizeWidget(toplevel);

XtAppMainLoop(app_context);
}

/*___
*
* Function: initMotif()
*
* Purpose: Initializes Motif and creates a top level shell.
* Returns the toplevel shell.
*
* Makes the call to initialize variables for the SGIHelp
* interface...note that it does not *start* the sgihelp
* process. That is done when a request for help is made,
* if and only if the sgihelp process is not already
* running.
*
*___
*/
Widget initMotif(int *argcP,char *argv[],XtAppContext *app_contextP,

Display **displayP)
{

Widget toplevel;

XtToolkitInitialize();

296

Appendix C: Online Help Examples

*app_contextP = XtCreateApplicationContext();
*displayP = XtOpenDisplay(*app_contextP,NULL,"exampleAppXm",

"exampleAppXmClass",NULL,
0,argcP, argv);

if (*displayP == NULL) {
fprintf (stderr,"Could not open display.\n");
fprintf (stderr,"Check your DISPLAY environment variable.\n");
fprintf (stderr,"Exiting...\n");
exit(-1);

}

toplevel = XtAppCreateShell("exampleAppXm", NULL,
applicationShellWidgetClass,
*displayP, NULL,0);

/*
* initialize variables for SGIHelp
*/

SGIHelpInit(*displayP, "exampleAppXm", ".");

return (toplevel);
}

/*___
*
* Function: createInterface()
*___
*/
void createInterface(Widget parent)
{

Arg args[10];
int i;
Widget baseForm;
Widget menuBar;
Widget demoLabel, demoButton;
Widget pulldown1,pulldown2, cascade1, cascade2;
Widget menuButtons[6]; /*we will create at max 6 buttons on a menu*/
XmString xmStr;

/*
* mainWindow is an XmMainWindow
* on which the whole interface is built
*/

An Example of Implementing Help in an Application

297

i=0;
_mainWindow = XmCreateMainWindow(parent,"mainWindow",args,i);
XtManageChild(_mainWindow);

/*
* baseForm is the workArea for the
* mainWindow above.
*/

i=0;
XtSetArg (args[i],XmNwidth,400);i++;
XtSetArg (args[i],XmNheight,300);i++;
XtSetArg (args[i],XmNverticalSpacing,40);i++;
baseForm = XmCreateForm(_mainWindow,"baseForm",args,i);
XtManageChild(baseForm);

/*
* On this bulletin board, put a label and a button
* for demonstrating callbacks and context sensitive
* help.
*/

i=0;
xmStr = XmStringCreateSimple("SGI Help!");
XtSetArg (args[i],XmNlabelString,xmStr);i++;
XtSetArg (args[i],XmNtopAttachment,XmATTACH_FORM);i++;
XtSetArg (args[i],XmNrightAttachment,XmATTACH_FORM);i++;
XtSetArg (args[i],XmNleftAttachment,XmATTACH_FORM);i++;
XtSetArg (args[i],XmNalignment,XmALIGNMENT_CENTER);i++;
demoLabel = XmCreateLabel(baseForm,"sgiHelpLabel",args,i);
XtManageChild(demoLabel);
XmStringFree(xmStr);

i=0;
xmStr = XmStringCreateSimple("Click Here For Help");
XtSetArg (args[i],XmNlabelString,xmStr);i++;
XtSetArg (args[i],XmNrightAttachment,XmATTACH_FORM);i++;
XtSetArg (args[i],XmNbottomAttachment,XmATTACH_FORM);i++;
demoButton = XmCreatePushButton(baseForm,"sgiHelpPushButton",args,i);
XtManageChild(demoButton);
XmStringFree(xmStr);
XtAddCallback(demoButton,XmNactivateCallback,taskCB,NULL);

/*
* build a pulldown menu system, including the "help" menu
*/

menuBar = XmCreateMenuBar(_mainWindow,"menuBar",NULL,0);

298

Appendix C: Online Help Examples

XtManageChild(menuBar);

pulldown1 = XmCreatePulldownMenu(menuBar,"pulldown1",NULL,0);
pulldown2 = XmCreatePulldownMenu(menuBar,"pulldown2",NULL,0);

i=0;
XtSetArg (args[i],XmNsubMenuId,pulldown1);i++;
cascade1 = XmCreateCascadeButton(menuBar,"File",args,i);
XtManageChild(cascade1);

i=0;
XtSetArg (args[i],XmNsubMenuId,pulldown2);i++;
cascade2 = XmCreateCascadeButton(menuBar,"Help",args,i);
XtManageChild(cascade2);

/*
* Declare this to be the Help menu
*/

i=0;
XtSetArg (args[i],XmNmenuHelpWidget,cascade2);i++;
XtSetValues(menuBar,args,i);

menuButtons[0] = XmCreatePushButton(pulldown1,"Exit",NULL,0);
XtManageChildren(menuButtons,1);
XtAddCallback(menuButtons[0],XmNactivateCallback,(XtCallbackProc)exit,0);

menuButtons[0] = XmCreatePushButton(pulldown2,"Click for Help",NULL,0);
menuButtons[1] = XmCreatePushButton(pulldown2,"Overview",NULL,0);
XtManageChild(XmCreateSeparator(pulldown2, "separator1",NULL,0));
menuButtons[2] = XmCreatePushButton(pulldown2,"Sample Help Task",NULL,0);
XtManageChild(XmCreateSeparator(pulldown2, "separator2",NULL,0));
menuButtons[3] = XmCreatePushButton(pulldown2,"Index",NULL,0);
menuButtons[4] = XmCreatePushButton(pulldown2,"Keys and Shortcuts",NULL,0);
XtManageChild(XmCreateSeparator(pulldown2, "separator3",NULL,0));
menuButtons[5] = XmCreatePushButton(pulldown2,"Product Information",NULL,0);

XtManageChildren(menuButtons,6);

/*
* add callbacks to each of the help menu buttons
*/

XtAddCallback(menuButtons[0],XmNactivateCallback,clickForHelpCB,NULL);
XtAddCallback(menuButtons[1],XmNactivateCallback,overviewCB,NULL);
XtAddCallback(menuButtons[2],XmNactivateCallback,taskCB,NULL);
XtAddCallback(menuButtons[3],XmNactivateCallback,indexCB,NULL);

An Example of Implementing Help in an Application

299

XtAddCallback(menuButtons[4],XmNactivateCallback,keysAndShortcutsCB,NULL);
XtAddCallback(menuButtons[5],XmNactivateCallback,productInfoCB,NULL);

/*
* set the bulletin board and menubar into
* the main Window.
*/

XmMainWindowSetAreas(_mainWindow,menuBar,NULL,NULL,NULL,baseForm);
}

/*___
*
* void clickForHelpCB()
*
* Purpose: Provides context-sensitivity within an application;
* makes a request to the sgihelp process.
*
*___
*/

void clickForHelpCB(Widget wid, XtPointer clientData, XtPointer callData)
{

static Cursor cursor = NULL;
static char path[512], tmp[512];
Widget shell, result, w;

strcpy(path, "");
strcpy(tmp, "");

/*
* create a question-mark cursor
*/

if(!cursor)
cursor = XCreateFontCursor(XtDisplay(wid), XC_question_arrow);

XmUpdateDisplay(_mainWindow);

/*
* get the top-level shell for the window
*/

shell = _mainWindow;
while (shell && !XtIsShell(shell)) {

shell = XtParent(shell);
}

300

Appendix C: Online Help Examples

/*
* modal interface for selection of a component;
* returns the widget or gadget that contains the pointer
*/

result = XmTrackingLocate(shell, cursor, FALSE);

if(result) {
w = result;

/*
* get the widget hierarchy; separate with a '.';
* this also puts them in top-down vs. bottom-up order.
*/

do {
if(XtName(w)) {

strcpy(path, XtName(w));

if(strlen(tmp) > 0) {
strcat(path, ".");
strcat(path, tmp);

}

strcpy(tmp, path);
}

w = XtParent(w);
} while (w != NULL && w != shell);

/*
* send msg to the help server-widget hierarchy;
* OR
* provide a mapping to produce the key to be used
*
* In this case, we'll let the sgihelp process do
* the mapping for us, with the use of a helpmap file
*
* Note that parameter 2, the book name, can be found
* from the helpmap file as well. The developer need
* not hard-code it, if a helpmap file is present for
* the application.
*
*/
if(strlen(path) > 0) {

SGIHelpMsg(path, NULL, NULL);

An Example of Implementing Help in an Application

301

}
}

}

/*___
*
* void overviewCB()
*___
*/
void overviewCB()
{

/*
* Using the mapping file allows us to specify
* a "Overview" help card for each window in
* our application. In this case, we will point
* to a specific one. Note that the book name is
* specified, but not necessary if a helpmap file
* exists for this application.
*/

SGIHelpMsg("overview", "exampleAppXmHelp", NULL);
}

/*___
*
* void indexCB()
*___
*/
void indexCB()
{

/*
* For the index window to work for this application,
* a helpmap file MUST be present!
*/

SGIHelpIndexMsg("index", NULL);
}

/*___
*
* void taskCB()
*___

302

Appendix C: Online Help Examples

*/
void taskCB()
{

/*
* For the task found in the help menu or a pushbutton, we
* use a specific key/book combination.
*/

SGIHelpMsg("help_task", "exampleAppXmHelp", NULL);
}

/*___
*
* void keysAndShortcutsCB()
*___
*/
void keysAndShortcutsCB()
{

/*
* This would point to the help card that contains
* information about the use of keys/accelerators, etc.
* for your application.
*/

SGIHelpMsg("keys", "exampleAppXmHelp", NULL);
}

/*___
*
* void productInfoCB()
*___
*/
void productInfoCB()
{

/*
* Pops up a dialog showing product version information.
*
* This area has nothing to do with SGIHelp, but is included
* for completeness.
*/

void buildInfoDialog();

An Example of Implementing Help in an Application

303

XmString xmStr;
Arg args[10];
int i;

if(_infoDialog == NULL) {
buildInfoDialog();
XtRealizeWidget(_infoDialog);

}

xmStr=XmStringCreateSimple("Example Motif App Using SGIHelp version 1.0");
i=0;
XtSetArg (args[i],XmNmessageString,xmStr);i++;
XtSetValues(_infoDialog, args, i);
XmStringFree(xmStr);

XtManageChild(_infoDialog);
}

void buildInfoDialog()
{
Arg args[10];
int i;

/*
* Build the informational dialog to display the version info
*/

i=0;
XtSetArg (args[i],XmNautoUnmanage,True);i++;
XtSetArg (args[i],XmNdialogType,XmDIALOG_WORKING);i++;
XtSetArg (args[i],XmNdialogStyle,XmDIALOG_APPLICATION_MODAL);i++;
_infoDialog = XmCreateInformationDialog(_mainWindow,"infoDialog",args,i);

XtAddCallback(_infoDialog, XmNokCallback, infoDialogCB, NULL);

XtUnmanageChild(XmMessageBoxGetChild(_infoDialog, XmDIALOG_CANCEL_BUTTON));
XtUnmanageChild(XmMessageBoxGetChild(_infoDialog, XmDIALOG_HELP_BUTTON));

}

void infoDialogCB()
{

if (_infoDialog) {
XtUnmanageChild(_infoDialog);

304

Appendix C: Online Help Examples

/* Explicitly set the input focus */
XSetInputFocus(XtDisplay(_mainWindow), PointerRoot,

RevertToParent, CurrentTime);
}

}

Example C-4 Help Source File for Example Program

<dochelp>

<HelpTopic HelpID="overview">
<Helplabel>Example Motif Application Using SGIHelp</Helplabel>
<Description>
<para>
This application is intended to show the developer how
the <glossterm>SGIHelp</glossterm> system can work for you.
It displays (in the included
sample code, exampleAppXm.c) usage of various widgets, a sample
help menu, full-context-sensitivity, and calls to
the <glossterm>SGIHelp</glossterm> server process via the API.
</para>

<Figure ID="figure_01">
<title>exampleAppXm Main Window</title>
<Graphic fileref="mainwnd.gif" format="GIF"></Graphic>

</Figure>

<para>
The application itself is very simple, composed of
a <Link Linkend="ID002">File menu,</Link>
a <Link Linkend="ID003">Help menu,</Link>
a <Link Linkend="ID005">Pushbutton,</Link>
and a <Link Linkend="ID004">Label</Link>.
The user can choose items from the
<Link Linkend="ID003">Help menu</Link> to
contact the <glossterm>SGIHelp</glossterm> server process to
cause different help cards to be rendered.
</para>
<para>To quit the application, use the "Exit" command
found under the <Link Linkend="ID002">File menu</Link>.
</para>
</Description>
</HelpTopic>

An Example of Implementing Help in an Application

305

<HelpTopic HelpID="file_menu">
<Helplabel><Anchor Id="ID002">The File Menu</Helplabel>
<Description>
<para>The following items (and their functions) are part of
the File menu:</para>
<VariableList>
<VarListEntry>
<term>Exit</term>
<ListItem><para>Used to quit the exampleAppXm application.</para></listitem>
</VarListEntry>
</VariableList>
</Description>
</HelpTopic>

<HelpTopic HelpID="help_menu">
<Helplabel><Anchor Id="ID003">The Help Menu</Helplabel>
<Description>
<para>The following items (and their functions) are part of
the Help menu:</para>
<VariableList>
<VarListEntry>
<term>Click for Help</term>
<ListItem><para>Used to put the application in context sensitive mode.
Will cause the cursor to turn into a "?" at which point the user can
click on any entry in the application's window to obtain help.</para></listitem>
</VarListEntry>
<VarListEntry>
<term>Overview</term>
<ListItem><para>Used to display a help overview card for the current
window.</para></listitem>
</VarListEntry>
<VarListEntry>
<term>Index</term>
<ListItem><para>Used to display from SGIHelp an Index of help topics for
the given application.</para></listitem>
</VarListEntry>
<VarListEntry>
<term>Keys & Shortcuts</term>
<ListItem><para>Used to display a help card that describes any special
key combinations this application uses.</para></listitem>
</VarListEntry>
<VarListEntry>
<term>Product Info</term>

306

Appendix C: Online Help Examples

<ListItem><para>Pops up a dialog that displays to the user any version or
copyright information for this application.</para></listitem>
</VarListEntry>
</VariableList>
<para>To access any menu items, click on the menu item
that is a part of the menubar. When the menu pops-up,
highlight the desired item, and release the mouse button.
</para>
</Description>
</HelpTopic>

<HelpTopic HelpID="help_label">
<Helplabel><Anchor Id="ID004">A Label</Helplabel>
<Description>
<para>You have clicked on a Label. It simply displays information
to the user and serves no other useful pourpose.</para>
<tip><para>Basically, a label is useless. For information only.</para></tip>
</Description>
</HelpTopic>

<HelpTopic HelpID="help_button">
<Helplabel><Anchor Id="ID005">A Pushbutton</Helplabel>
<Description>
<para>You have clicked on a Pushbutton. A pushbutton, when
clicked, will activate some type of command within the application.</para>
</Description>
</HelpTopic>

<HelpTopic HelpID="keys">
<Helplabel><Anchor Id="ID006">Keys and Shortcuts</Helplabel>
<Description>
<para>This card displays all known keys and shortcuts for this
application.</para>
<warning><para>This application has no shortcuts.</para></warning>
</Description>
</HelpTopic>

<HelpTopic HelpID="help_task">
<Helplabel><Anchor Id="ID007">A Sample Help Task</Helplabel>
<Description>
<para>

An Example of Implementing Help in an Application

307

When creating your application and help text, you may wish
to highlight certain common tasks. This help card was
displayed from either a menu item or a pushbutton.
</para>
<para>
To perform such an operation within your code, the
associated callback that contacts the <glossterm>SGIHelp</glossterm> server
can be constructed as shown below.</para>
<Example>
<Title>Sample Help Task Callback</Title>

<para>
The following is a listing derived from a "C" program:
<ProgramListing>

/* create menu items, pushbuttons, etc. */

void taskCB()
{

/*
* For the task found in the help menu,
* we'll use a specific key/book
* combination.
*/

SGIHelpMsg("key", "myBook", NULL);
}

</ProgramListing>
</para>
</Example>
<para>It's relatively simple process to integrate help
into your application. In fact, the <glossterm>SGIHelp</glossterm>
process only requires <emphasis>two</emphasis> function calls.
</para>
</Description>
</HelpTopic>

<Glossary>
<Title>Glossary</Title>

<GlossEntry>
<GlossTerm>SGIHelp</GlossTerm>
<GlossDef>
<para>This is Silicon Graphics, Inc. version of a "Xhelp" compatible
server. Through the use of an available API, and a help text

308

Appendix C: Online Help Examples

compiler, books can be constructed that can be used to render
help information for the given application.</para>
</GlossDef>
</GlossEntry>

</Glossary>

</dochelp>

Example C-5 Helpmap for Example Program

1;exampleAppXmHelp;Example Motif App
Overview;0;overview;exampleAppXm.overview;exampleAppXm.mainWindow.baseForm;exampleAppXm.mainW
indow.menuBar;exampleAppXm.mainWindow
2;exampleAppXmHelp;File Menu;1;file_menu;exampleAppXm.mainWindow.menuBar.File
2;exampleAppXmHelp;Help Menu;1;help_menu;exampleAppXm.mainWindow.menuBar.Help
2;exampleAppXmHelp;A Label Entry;1;help_label;exampleAppXm.mainWindow.baseForm.sgiHelpLabel
2;exampleAppXmHelp;A Pushbutton
Entry;1;help_button;exampleAppXm.mainWindow.baseForm.sgiHelpPushButton
2;exampleAppXmHelp;Keys and Shortcuts;0;keys;exampleAppXm.keys
2;exampleAppXmHelp;A Sample Help Task;0;help_task;exampleAppXm.exampleAppXm

Appendix D

This appendix describes the icon
description language that IconSmith
uses to write the ICON rule. This
information is provided for
completeness. Don’t try to write the
ICON rule directly in the icon
description language.

The Icon Description Language

311

Appendix D

D. The Icon Description Language

Use IconSmith to draw your icons. To learn how to use IconSmith, see
Chapter 12, “Using IconSmith.” After you draw your icon, include it in the
FTR file using the ICON rule described in Chapter 13, “File Typing Rules.”
IconSmith writes the ICON rule for you using the icon description language.
This appendix describes the icon description language that IconSmith uses
to write the ICON rule. This information is provided for completeness. Do
not try to write the ICON rule directly in the icon description language.

The icon description language is a restricted subset of the C programming
language. It includes line and polygon drawing routines from the IRIS
Graphics Library™ (GL), as well as some additional routines that are not in
the GL. The description routine for a given icon is similar in structure to a C
subroutine without the subroutine and variable declarations. The valid
symbols and functions in the icon description language are described below.

Operators

You can use these C language operators in an icon description routine:

+
-
*
/
&
|
^
!
%
=
()
{ }

312

Appendix D: The Icon Description Language

You can use these C language conditional operators in an icon description
routine:

&&
||
==
!=
<
>
<=
>=

Constants

You can use these logical constants in an icon description routine:

true false

Variables

The following icon status variables are set by the Desktop. You can use them
in an icon description routine:

opened located selected current disabled

These variables have values of either true or false. You can use them in a
conditional statement to alter the appearance of an icon when it has been
manipulated in various ways from the Desktop.

You can use other legal C variables in an icon description routine, without a
declaration; all variables are represented as type float. Any variable name is
acceptable, provided it does not collide with any of the predefined constants,
variables, or function names in the icon description language.

313

Functions

The icon description functions comprise, for the most part, a very restricted
subset of the C language version of the IRIS Graphics Library, modified for
2-D drawing. See Table D-1 for a list of all the icon description functions.

Table D-1 Icon Description Functions

Function Definition

arc(x, y, r, startang, endang) Draw an arc starting at icon coordinates x, y; with
radius r; starting at angle startang; ending at angle
endang. Angle measures are in tenths of degrees.

arcf(x, y, r, startang, endang) Like arc, but filled with the current pen color.

bclos(color) Like pclos, but uses color for the border (outline) color
of the polygon.

bgnclosedline() Begin drawing a closed, unfilled figure drawn in the
current pen color. Used in conjunction with vertex
and endclosedline.

bgnline() Like bgnclosedline, except the figure is not closed.
Used in conjunction with vertex and endline.

bgnoutlinepolygon Begin drawing a polygon filled with the current pen
color. The polygon is outlined with a color specified
by endoutlinepolygon. Also used in conjunction with
vertex.

bgnpoint() Begin drawing a series of unconnected points defined
using calls to vertex. Used in conjunction with vertex
and endpoint.

bgnpolygon() Like bgnoutlinepolygon except the polygon is not
outlined. Used in conjunction with vertex and
endpolygon.

color(n) Set current pen color to color index n.

draw(x, y) Draw a line in the current color from the current pen
location to x, y.

endclosedline() Finish a closed, unfilled figure started with
bgnclosedline.

314

Appendix D: The Icon Description Language

endline() Finish an open, unfilled figure started with bgnline.

endoutlinepolygon(color) Finish a filled polygon started with
bgnoutlinepolygon and outline it with color.

endpoint() Finish a series of points started with bgnpoint.

endpolygon() Finish a filled, unoutlined polygon started with
bgnpolygon.

for (expr; expr; expr) expr Note that shorthand operators such as ++ and -- are
not part of the icon description language, so longer
hand expressions must be used.

if (expr) expr [else expr] Standard C language if-statement.

include("path") Tell the Desktop to find the icon geometry in the file
with pathname path.

move(x, y) Move current pen location to x, y.

pclos() Draw a line in the current pen color that closes the
current polygon, and fill the polygon with the current
color.

pdr(x, y) Draw the side of a filled polygon in the current pen
color, from the current pen location to x, y.

pmv(x, y) Begin a filled polygon at location x, y.

print(expr or "string") Print the value of the expression expr or string to
stdout; used for debugging.

vertex(x,y) Specify a coordinate used for drawing points, lines
and polygons by bgnpoint, bgnline, bgnpolygon, and
so forth.

Table D-1 (continued) Icon Description Functions

Function Definition

Appendix E

This appendix lists the predefined
file types and their associated tag
numbers that are available for your
use. You can use these predefined file
type for utilities that do not need a
unique, personalized look.

Predefined File Types

317

Appendix E

E. Predefined File Types

This appendix lists the predefined file types and their associated tag
numbers that are available for your use. You can use these predefined file
types for utilities that do not need a unique, personalized look. You might
also want to use these file types as SUPERTYPEs for your own custom file
types.

Naming Conventions for Predefined File Types

The file types listed in this appendix are named according to the conventions
listed in Table E-1.

In all cases, if the expected number of arguments is not received, launch is
run so that users can type in the desired options. For more information on
the launch command, see the launch(1) reference page.

The Predefined File Types and What They Do

In this section, file types that are essentially the same, except for the number
of arguments they require, are grouped together by the “base” file type

Table E-1 Predefined File Type Naming Conventions

If the file type name includes: Then

1-Narg it requires at least one argument

1arg it requires exactly one argument

2arg it requires exactly two arguments

3arg it requires exactly three arguments

318

Appendix E: Predefined File Types

name, meaning the file type name without the argument codes described in
“Naming Conventions for Predefined File Types” on page 317.

For example, to find the file type named “ttyLaunchOut1argExecutable,”
look under “ttyLaunchOutExecutable.” These two file types are identical,
except that “ttyLaunchOut1argExecutable” requires exactly one argument.

SpecialFile

“SpecialFile” is a predefined SUPERTYPE, not an actual file type. When you
include the SPECIALFILE rule in your file type, you should also declare the
“SpecialFile” SUPERTYPE. This allows applications to use isSuper(1) to test
whether your file type is a SPECIALFILE.

Directory

TYPE Directory
MATCH (mode & 0170000) == 040000;

The “Directory” type. Any custom file types you define for directories
should include “Directory” as a SUPERTYPE. “Directory” is defined in
/usr/lib/filetype/default/sgidefault.ftr.

Ascii

TYPE Ascii

“Ascii” is a psuedotype defined to support routeprint conversions. Actual
ASCII text files have the type “AsciiTestFile”:

TYPE AsciiTextFile
MATCH ascii;

“Ascii” is defined in /usr/lib/filetype/system/sgisystem.converts.ftr and
“AsciiTextFile” is defined in /usr/lib/filetype/default/sgidefault.ftr.

Source Files

TYPE SourceFile

The Predefined File Types and What They Do

319

“SourceFile” is a psuedotype defined to support routeprint conversions.
Actual source files have more specific types such as:

TYPE Makefile
MATCH (glob("[mM]akefile") || glob("*.mk")) && ascii;

TYPE HeaderFile
MATCH glob("*.h") && ascii;

TYPE CPlusPlusProgram
MATCH glob("*.c++") && ascii;

TYPE CProgram
MATCH glob("*.c") && ascii;

TYPE Program
MATCH (glob("*.[pfrasly]") || glob("*.pl[i1]")) && ascii;

“SourceFile” is defined in /usr/lib/filetype/system/sgisystem.converts.ftr and the
specific types shown above are defined in /usr/lib/filetype/system/sgisystem.ftr.

Binary

“Binary” is a predefined SUPERTYPE, not an actual file type. You can create
custom file types using “Binary” as a SUPERTYPE.

ImageFile

TYPE ImageFile

“ImageFile” is a top-level image psuedotype. You can create custom file
types using ImageFile as a SUPERTYPE, or you can use a more specific file
type such as:

TYPE SGIImage
MATCH short(0) == 000732 ||
normal SGI image
short(0) == 0155001;
#byte-swapped SGI image

TYPE TIFFImage
MATCH long(0) == 0x49492a00 || long(0) == 0x4d4d002a;
TIFF image

320

Appendix E: Predefined File Types

TYPE FITImage
MATCH string(0,2) == "IT";
FIT image

TYPE PCDimage
MATCH string(2048,7) == "PCD_IPI";
Kodak Photo CD image pack

TYPE PCDOimage
MATCH string(0,7) == "PCD_OPA";
Kodak Photo CD overview pack

TYPE GIF87Image
MATCH string(0,6) == "GIF87a";
GIF image (GIF87a format)

TYPE GIF89Image
MATCH string(0,6) == "GIF89a";
GIF image (GIF89a format)

These file types are defined in /usr/lib/filetype/system/sgiimage.ftr.

Executable

“Exectuable” is a predefined SUPERTYPE, not an actual file type. You can
create custom file types using “Executable” as a SUPERTYPE.

Scripts

TYPE Script
MATCH (mode & 0111) && ascii;

This is the file type for shell scripts, defined in
/usr/lib/filetype/default/sgidefault.ftr.

GenericWindowedExecutable

TYPE GenericWindowedExecutable
MATCH tag == 0x00000000;

TYPE Generic1-NargExecutable
MATCH tag == 0x00000020;

The Predefined File Types and What They Do

321

TYPE Generic1argExecutable
MATCH tag == 0x00000001;

TYPE Generic2argExecutable
MATCH tag == 0x00000002;

TYPE Generic3argExecutable
MATCH tag == 0x00000003;

Simply runs the command. No output or terminal emulation windows are
used. These file types are defined in /usr/lib/filetype/system/sgicmds.ftr.

LaunchExecutable

TYPE LaunchExecutable
MATCH tag == 0x00000100;

TYPE Launch1-NargExecutable
MATCH tag == 0x00000120;

TYPE Launch1argExecutable
MATCH tag == 0x00000101;

TYPE Launch2argExecutable
MATCH tag == 0x00000102;

Same as “GenericWindowedExecutable,” except that it runs launch to allow
user to enter options prior to running the command. These file types are
defined in /usr/lib/filetype/system/sgicmds.ftr.

ttyExecutable

TYPE ttyExecutable
MATCH (tag == 0x00000400) || (tag == 0x00000410);

TYPE tty1-NargExecutable
MATCH tag == 0x00000420;

TYPE tty2argExecutable
MATCH tag == 0x00000402;

Runs the command in a window that allows terminal I/O. The output
window (which is where the terminal emulation is being done) exits
immediately upon termination of the command. These file types are defined
in /usr/lib/filetype/system/sgicmds.ftr.

322

Appendix E: Predefined File Types

ttyLaunchExecutable

TYPE ttyLaunchExecutable
MATCH tag == 0x00000500;

TYPE ttyLaunch1-NargExecutable
MATCH tag == 0x00000520;

TYPE ttyLaunch1argExecutable
MATCH tag == 0x00000501;

Same as “ttyExecutable,” except that it runs launch to allow user to enter
options before running the command. These file types are defined in
/usr/lib/filetype/system/sgicmds.ftr.

ttyOutExecutable

TYPE ttyOutExecutable
MATCH (tag == 0x00000600) || (tag == 0x00000610);

TYPE ttyOut1-NargExecutable
MATCH tag == 0x00000620;

TYPE ttyOut1argExecutable
MATCH tag == 0x00000601;

TYPE ttyOut2argExecutable
MATCH tag == 0x00000602;

Same as “ttyExecutable,” except that the output window persists until the
user explicitly dismisses it. These file types are defined in
/usr/lib/filetype/system/sgicmds.ftr.

ttyLaunchOutExecutable

TYPE ttyLaunchOutExecutable
MATCH (tag == 0x00000700) || (tag == 0x00000710);

TYPE ttyLaunchOut1-NargExecutable
MATCH tag == 0x00000720;

TYPE ttyLaunchOut1argExecutable
MATCH tag == 0x00000701;

TYPE ttyLaunchOut2argExecutable
MATCH tag == 0x00000702;

The Predefined File Types and What They Do

323

TYPE ttyLaunchOut3argExecutable
MATCH tag == 0x00000703

Same as “ttyOutExecutable,” except that it runs launch to allow user to enter
options before running the command. These file types are defined in
/usr/lib/filetype/system/sgicmds.ftr.

Appendix F

This appendix describes where FTR
files are stored on your system.

FTR File Directories

327

Appendix F

F. FTR File Directories

There are four possible files in which Desktop file types are defined. They are
listed here in the order the Desktop scans them:

1. /usr/lib/filetype/local

2. /usr/lib/filetype/install

3. /usr/lib/filetype/system

4. /usr/lib/filetype/default

These files are listed in order of precedence. For example, a file type defined
in the /usr/lib/filetype/install directory overrides a file type of the same name
in the /usr/lib/filetype/system and /usr/lib/filetype/default directories.

In particular, Silicon Graphics uses the /usr/lib/filetype/system and
/usr/lib/filetype/default directories to define and maintain system standards.
Be especially careful not to override important defaults set in these
directories.

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-2006-080.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 415-965-0964

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

