IRIS ViewKit
Programmer’s Guide

Document Number 007-2124-005

CONTRIBUTORS

Written by Ken Jones, Douglas B. O’'Morain, and Sandra Motroni

Illustrated by Martha Levine

Edited by Christina Cary

Production by Linda Rae Sande

Engineering contributions by Doug Young, Kim Rachmeler, Mike Yang, and
Robert Blean

St Peter’s Basilica image courtesy of ENEL SpA and InfoByte SpA. Disk Thrower
image courtesy of Xavier Berenguer, Animatica.

© 1997, Silicon Graphics, Inc.— All Rights Reserved
The contents of this document may not be copied or duplicated in any form, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

Silicon Graphics, the Silicon Graphics logo, and IRIS are registered trademarks and
IRIS Indigo Magic, IRIS InSight, IRIS ViewKit and IRIX are trademarks of Silicon
Graphics, Inc. PostScript is a registered trademark of Adobe Systems, Inc. X Window
System is a trademark of Massachusetts Institute of Technology. Motif and
OSF/Motif are trademarks of Open Software Foundation. ToolTalk is a trademark of
Sun Microsystems, Inc.

IRIS ViewKit™ Programmer’s Guide
Document Number 007-2124-005

Contents

Examples xv
Figures xix
Tables xxiii

Introduction xxv
What This Guide Contains xxv
What You Should Know Before Reading This Guide
Conventions Used in This Guide xxviii
Typographical Conventions xxviii
Class Inheritance Graph Conventions xxix

Overview of ViewKit 1

Major ViewKit Elements 2
Framework Classes 2
Interface Components 2
Convenience Utilities 3

XXVii

Mixing ViewKit and Standard X and IRIS IM Functions 3

Compiling and Linking ViewKit Programs 5
Required Packages 5
Required Header Files 6
Required Libraries 6
Getting Started 7
The Simplest ViewKit Program 7

Demonstration Programs 10

Contents

2. Components 11
Definition of a Component 11
VkComponent Class 12
Component Constructors 13
Component Destructors 16
VkComponent Access Functions 17
Displaying and Hiding Components 19
VkComponent Utility Functions 20
Using Xt Callbacks With Components 21
Handling Component Widget Destruction 24
Component Resource Support 25
Setting Resource Values by Class or Individual Component 27
Initializing Data Members Based on Resource Values 28
Setting Default Resource Values for a Component 30
Convenience Function for Retrieving Resource Values 32
ViewKit Callback Support 34
Registering ViewKit Callbacks 35
Removing ViewKit Callbacks 38
Defining and Triggering ViewKit Callbacks 39
Predefined ViewKit Callbacks 40
Deriving Subclasses to Create New Components 41
Subclassing Summary 41
Creating a New Component 43
Using and Subclassing a Component Class 46
VkNamelList Class 53
VkNameList Constructor and Destructor 53
VkNameList Member Functions 53
Using VkNameList 56

Contents

The ViewKit Application Class 59
Overview of the VkApp Class 59
VkApp Constructor 60
Running ViewKit Applications 62
ViewKit Event Handling 62
Customizing Event Handling 64
Quitting ViewKit Applications 65
Managing Top-Level Windows 66
Setting Application Cursors 67
Setting and Retrieving the Normal Cursor 67
Setting and Retrieving the Busy Cursor 68
Setting and Retrieving a Temporary Cursor 74
Supporting Busy States 75
Entering and Exiting Busy States Using ViewKit 75
Animating the Busy Cursor 78
Installing Different Busy Dialogs 79
Maintaining Product and Version Information 80
Application Data Access Functions 82
Deriving Classes From VkApp 83
VkApp Protected Functions and Data Members 83
Subclassing VkApp 84
Putting Applications in the Overlay Planes 86

ViewKit Windows 89

Overview of ViewKit Window Support 89
ViewKit’'s Multi-Window Model 89
ViewKit Window Classes 90

Window Class Constructors 92

Window Class Destructors 93

Contents

Creating the Window Interface 93
Creating the Window Interface in the Constructor 93
Creating the Window Interface in the setUpInterface() Function 100

Adding a Window Interface to a Direct Instantiation of a
ViewKit Window Class 102

Replacing a Window’s View 103
Manipulating Windows 103
Window Data Access Functions 104
Window Manager Interface 105
Window and Icon Titles 105
Window Properties and Shell Resources 107
Menu Bar Support 108
Deriving Window Subclasses 110
Additional Virtual Functions and Data Members 110
Window Creation Summary 113
Window Subclassing 115

5. Creating Menus With ViewKit 123
Overview of ViewKit Menu Support 124
ViewKit Menu Item Classes 126

Common Features of Menu Items 126
Menu Actions 130

Confirmable Menu Actions 131
Menu Toggles 131

Menu Labels 132

Menu Separators 132

Vi

Contents

ViewKit Menu Base Class 133
Constructing Menus 133
Manipulating Items in Menu 149
Menu Access Functions 155

Using ViewKit Menu Subclasses 156
Menu Bar 156
Submenus 157
Radio Submenus 159
Option Menus 162
Popup Menus 167

Putting Menus in the Overlay Planes 171

ViewKit Undo Management and Command Classes 173
Undo Management 173

Overview of ViewKit Undo Management 173

Using ViewKit’s Undo Manager 174

Using ViewKit’s Undo Manager 180
Command Classes 184

Overview of Command Classes 184

Using Command Classes in ViewKit 185

Using Dialogs in ViewKit 189
Overview of ViewKit Dialog Management 190
ViewKit Dialog Class Overview 190
ViewKit Dialog Base Class 192
Posting Dialogs 193
Manipulating Dialogs Prior to Posting 200
Unposting Dialogs 201
Setting the Title of the Dialog 201
Setting the Button Labels 203
Dialog Access and Utility Functions 204

vii

Contents

Using the ViewKit Dialog Subclasses 206

Information Dialogs 206

Warning Dialogs 208

Error Dialogs 209

Fatal Error Dialogs 209

Busy Dialog 210

Interruptible Busy Dialog 210

Progress Dialog 212

Question Dialog 215

Prompt Dialog 215

File Selection Dialog 217

Color Chooser Dialog 220

Deriving New Dialog Classes Using the Generic Dialog 223
Putting Dialogs in the Overlay Planes 225

8. Preference Dialogs 227
Overview of ViewKit Preference Dialogs 228
ViewKit Preference Dialog Class 228
ViewKit Preference Item Classes 229
Building a ViewKit Preference Dialog 231
ViewKit Preference Item Base Class 235
Preference Item Labels 235
Getting and Setting Preference Item Values 237
Preference Item Access Functions 238
ViewKit Preference Item Classes 239
Text Fields 239
Toggle Buttons 240
Option Menus 244
Labels 247
Separators 249
“Empty” Space Preference Items 249
Groups of Preference Items 249

viii

Contents

10.

ViewKit Preference Dialog Class 256
Creating a Preference Dialog 256
Setting the Preference Items for a Preference Dialog 257
Posting and Dismissing Preference Dialogs 257
Responding When the User Clicks a Preference Dialog Button 258
Using Values Set in a Preference Dialog 260
Creating Preference Dialog Subclasses 261

Handling Visuals With ViewKit 263
Overview of the VkVisual Class 263
Overview of X Visuals 264
X11 Visual Attributes 265
Xt Visual Handling 266
Visual Inheritance in ViewKit 267
Maintaining Consistency 267
Colormap Coordination 268
Useful Enums 269
VkVisual Constructors and Destructor 271
Member Functions 271
Setting the Class’s Visual Information 271
Data Access Functions 274
Debugging Functions 277
Static Functions 278
VkVisual Examples 278

ViewKit Cut and Paste 281

Overview of ViewKit Cut and Paste 281

Primary and Clipboard Transfer Models 282
VkCutPaste Constructor and Destructor 282

Copying Data 283

Pasting Data 285

Dragging Data 287

Accepting Drops 289

Accepting Drops From the Indigo Magic Desktop 293

Contents

Registering New Data Types 295
Using Data Type Converters 297
File and Data Ownership 300
Miscellaneous Functions 306

11. Using a Help System With ViewKit 309
ViewKit Programmatic Interface to a Help Library 309
Using ViewKit Help 310
Using the SGIHelp Library 311
Using an External Help Library 312
ViewKit Support for Building Help 312
ViewKit Help Menu 312

Implementation of the Help Menu 312
Other Types of Help 315

Context-Sensitive Help Procedures 315

Dialog Help Procedures 315

Application Help Button Procedures 316
QuickHelp 316

12. The ViewKit Graph Component 319
Overview of ViewKit Graphs 319
Graph Widget 320
Building a Graph 321
Interactive Viewing Features Provided by VkGraph 324
ViewKit Node Class 329
Basic Node Functionality 330
Creating Node Subclasses 333

Contents

13.

ViewKit Graph Class 334
VkGraph Constructor and Destructor 334
Adding Nodes and Specifying Node Connectivity 334
Removing Nodes 336
Indicating Which Nodes to Display 337
Laying Out the Graph 340
Butterfly Graphs 342
Displaying a Graph Overview 343
Graph Utility Functions 343
Graph Access Functions 344
Reusing a Graph Object 345
ViewKit Callbacks Associated With VkGraph 346
X Resources Associated With VkGraph 346
Subclassing VkGraph 347

Miscellaneous ViewKit Display Classes 349
ViewKit Support for Double-Buffered Graphics 349
Double Buffer Constructor and Destructor 350
Drawing in the Double Buffer Component 350
Switching Buffers in the Double Buffer Component 351
Handling Double Buffer Component Resize Requests 351
Tick Marks for Scales 351
Tick Marks Component Constructor 352
Configuring the Tick Marks 352
X Resources Associated With the Tick Marks Component 354

Management Classes for Controlling Component and
Widget Display Characteristics 355

ViewKit Support for Aligning Widgets 355
ViewKit Support for Resizing and Moving Widgets 358

Xi

Contents

14. Miscellaneous ViewKit Data Input Classes 363
Check Box Component 364
Creating a Check Box 364
Adding Toggles to the Check Box 364
Setting Check Box and Toggle Labels 365
Setting and Getting Check Box Toggle Values 367
Recognizing Changes in Check Box Toggle Values 368
Radio Check Box Component 371
Tab Panel Component 373
Tab Panel Constructor 375
Adding Tabs to a Tab Panel 376
Removing a Tab From a Tab Panel 377
Adding a Pixmap to a Tab 378
Responding to Tab Selection 379
Tab Panel Access Functions 380
X Resources Associated With the Tab Panel Component 383
Text Completion Field Component 386
Text Completion Field Constructor and Destructor 386
Setting and Clearing the Text Completion Field Expansion List 386
Retrieving the Text Completion Field Contents 387
Responding to Text Completion Field Activation 387
Deriving Text Completion Field Subclasses 387
Repeating Button Component 388
Repeating Button Constructor 388
Responding to Repeat Button Activation 389
Repeating Button Utility and Access Functions 389
X Resources Associated With the Repeating Button Component 390
Management Classes for Controlling Component and Widget Operation 390
Supporting “Ganged” Scrollbar Operation 390
Enforcing Radio-Style Behavior on Toggle Buttons 392
Modified Text Attachment 394

Xii

Contents

15.

ViewKit Process Control Classes 403
VkRunOnce and VKRunOnce2 403
VkRunOnce Constructor and Destructor 404
Access Functions 405
Using VkRunOnce 405
VkRunOnce2 Constructor and Destructor 407
Access Functions 408
Using VkRunOnce2 409
VkBackground 411
VkBackground Constructor and Destructor 412
Member Functions 412
VkPeriodic 413
VkPeriodic Constructor and Destructor 413
Member Functions 414
Callbacks 414

Contributed ViewKit Classes 415
ViewKit Meter Component 415
Meter Constructor and Destructor 415
Resetting the Meter 415
Adding Items to a Meter 416
Updating the Meter Display 417
Setting the Meter’s Resize Policy 417
Determining the Desired Dimensions of the Meter 418
X Resources Associated With the Meter Component 418
ViewKit Pie Chart Component 419
ViewKit Outline Component 419
Constructing an Outline Component 422
Adding Items to an Outline 422
Setting Display Attributes for Outline Items 425
Closing and Opening Outline Topics 426
Outline Utility and Access Functions 427
VkOutlineASB 428

xiii

Contents

B. ViewKit Class Graph 429

Glossary 433
Index 435

Xiv

Examples

Example 1-1 The Simplest ViewKit Program: hello.c++ 7

Example 2-1 Component Constructor 14

Example 2-2 Freeing Space in a Component Destructor 17

Example 2-3 Component Constructor With Xt Callbacks 23

Example 2-4 Initializing a Data Member From the Resource Database 28
Example 2-5 Setting a Component’s Default Resource Values 31

Example 2-6 Using the Predefined deleteCallback ViewKit Callback 40
Example 2-7 Simple User-Defined Component 43

Example 2-8 Using a Component Directly 47

Example 2-9 Subclassing a Component 50

Example 2-10 Manipulating a List of Strings Using the VkNameList Class 56
Example 3-1 Typical Use of the VKkApp Class in a ViewKit Program 62
Example 3-2 Creating an Animated Busy Cursor 69

Example 3-3 Using Busy States in a ViewKit Application 76

Example 3-4 Animating the Busy Cursor 78

Example 3-5 Temporarily Installing an Interruptible Busy Dialog 80
Example 3-6 Deriving a Subclass From VkApp 85

Example 4-1 Creating a Window Interface in the Class Constructor 95
Example 4-2 Using a Component as a Window’s View 98

Example 4-3 Creating a Window’s Interface in the setUplInterface() Function 101

Example 4-4 Adding a View to a Direct Instantiation of a ViewKit
Window Class 103

Example 4-5 Setting Window and Icon Titles Using Resource Values 106
Example 4-6 Creating a Window Subclass 116

Examples

XVi

Example 5-1

Example 5-2
Example 5-3
Example 5-4
Example 5-5
Example 5-6
Example 5-7
Example 6-1
Example 6-2
Example 7-1
Example 7-2
Example 7-3
Example 7-4
Example 7-5
Example 7-6
Example 8-1
Example 8-2
Example 8-3
Example 9-1
Example 9-2
Example 10-1
Example 10-2
Example 10-3
Example 10-4
Example 10-5
Example 10-6
Example 10-7
Example 10-8
Example 10-9

Example 10-10

Providing Default Client Data When Using Static
Menu Descriptions 138

Creating a Menu Bar Using a Static Description 139

Creating a Menu Bar Dynamically 147

Manipulating Menu Items 151

Using a VkRadioSubMenu Object 160

Using a VkOptionMenu Object 165

Using a VKPopupMenu Object 169

Adding a Non-Menu Item Directly to the Undo Stack 177

Using the Undo Manager 180

Posting a Dialog 198

Posting an Information Dialog 207

Using the Interruptible Busy Dialog 212

Using the Progress Dialog 214

Extracting the Text String From a Prompt Dialog 216

Extracting the Text String From a File Selection Dialog 219

Creating a ViewKit Preference Dialog 231

Setting Default Resource Values for Preference Items 236

Declaring Preference Items Publicly Accessible 260

Putting a Single Widget in a Non-default Visual Using VkVisual 278
Creating a GC of the Right Depth 279

Registering an XPM to GIF89 Converter 299

Data and File Ownership Changes While Copying Filenames 301
Data and File Ownership Changes While Pasting Filenames 302

Data and File Ownership Changes While Copying Normal Data 302
Data and File Ownership Changes While Pasting Normal Data 303
Data and File Ownership Changes While Dragging Filename Data 303
Data and File Ownership Changes While Accepting Filename Data 304
Data and File Ownership Changes While Dragging Normal Data 304
Data and File Ownership Changes While Accepting Normal Data 305

Data and File Ownership Changes While
Accepting _SGI_ICON Data 305

Examples

Example 12-1
Example 14-1
Example 14-2
Example 15-1
Example 15-2

Creating a Graph Using VkGraph 321
Code to Create Sample Check Box 366
Code to Create Sample Radio Box 372
Using VkRunOnce 405

Using VkRunOnce2 410

xvii

Figures

Figure i Class Inheritance Graph xxix

Figure 1-1 Result of Running hello 8

Figure 2-1 Inheritance Graph for VkCallbackObject and VkComponent 11

Figure 2-2 Default Appearance of a StartStopPanel Component 43

Figure 2-3 Resulting PanelWindow Window 50

Figure 3-1 Inheritance Graph for VkApp 59

Figure 3-2 Busy Dialog 77

Figure 3-3 Nested Busy Dialog 77

Figure 3-4 Product Information Dialog 81

Figure 4-1 Inheritance Graph for VkSimpleWindow and VkWindow 89

Figure 4-2 Widget Hierarchy of Top-Level Windows in ViewKit Applications 90

Figure 4-3 Simple Example of a VkSimpleWindow Subclass 97

Figure 4-4 Using a Component as a Window’s View 99

Figure 4-5 Widget Hierarchy of ColorWindow Subclass 115

Figure 4-6 ColorWindow Window Subclass 121

Figure 5-1 Inheritance Graph for the ViewKit Menu Classes 123

Figure 5-2 Main Window With Menu Bar Created by Static Description 141

Figure 5-3 Menu Pane Created by a Static Description 142

Figure 5-4 Menu Pane Containing a Label and a Submenu 142

Figure 6-1 Inheritance Graph for the ViewKit Classes Supporting Undo
Management and Command Classes 173

Figure 7-1 Inheritance Graph for the ViewKit Dialog Classes 189

Figure 7-2 Information Dialog 197

Figure 7-3 Question Dialog 198

Figure 7-4 Setting the Dialog Title 202

Figure 7-5 Another Example of Setting the Dialog Title 203

Figure 7-6 Information Dialog 208

Xix

Figures

XX

Figure 7-7
Figure 7-8
Figure 7-9
Figure 8-1
Figure 8-2
Figure 8-3
Figure 8-4
Figure 8-5
Figure 8-6
Figure 8-7
Figure 8-8
Figure 8-9
Figure 8-10
Figure 8-11
Figure 8-12
Figure 10-1
Figure 11-1
Figure 12-1
Figure 12-2
Figure 12-3
Figure 12-4
Figure 13-1
Figure 13-2
Figure 13-3
Figure 13-4
Figure 13-5
Figure 13-6
Figure 14-1
Figure 14-2
Figure 14-3
Figure 14-4
Figure 14-5
Figure 14-6

Progress Dialog 213

File Selection Dialog 218

Color Chooser Dialog 221

Inheritance Graph for the ViewKit Preference Dialog Classes 227
ViewKit Preference Dialog 231

Preference Dialog With a Text Field Preference Item 239
Preference Dialog With Toggle Button Preference Item 241
Toggle Preference Items in a Homogenous Vertical Group 242
Toggle Preference Items in a Non-Homogenous Vertical Group 243
Preference Dialog With Option Menu Preference Item 244
Preference Dialog With Label Preference Item 248

Vertical VkPrefGroup Item With Label 250

Horizontal VkPrefGroup Item With Label 251

VKkPrefList Item 252

VkPrefRadio Item With Label 253

Inheritance Graph for VkCutPaste 281

ViewKit Help Menu 313

Inheritance Graph for the ViewKit Graph Classes 319

Graph Created With VkGraph 320

Graph Command Panel 324

Interactively Changing the Graph Zoom Value 326

Inheritance Graph for the Miscellaneous ViewKit Display Classes 349
VkTickMarks Component 352

Setting Tick Mark Scale and Spacing 353

Widget With a VkResizer Attachment 358

Effect of Resizing a Widget With a VkResizer Attachment 359
Effect of Moving a Widget With a VkResizer Attachment 359
Inheritance Graph for the Miscellaneous ViewKit Input Classes 363
Sample Check Box 365

Sample Radio Box 371

Horizontal VkTabPanel Component 373

Vertical VkTabPanel Component 374

Collapsed Tabs in a VkTabPanel Component 374

Figures

Figure 14-7

Figure 14-8
Figure 14-9

Figure 15-1
Figure A-1
Figure A-2
Figure A-3
Figure B-1
Figure B-2

Using the Popup Menu to Select a Collapsed Tab in a
VkTabPanel Component 375

VkModified Attachment Dogear 394

“Flipping” to a Previous Text Widget Value Using a
VkModified Attachment Dogear 394

Inheritance Graph for the ViewKit Process Control Classes 403
VkOutline Component 420

VkOutline Component With the Scrollbar Visible 421

Closing a Heading in a VkOutline Component 422

ViewKit Class Graph, Part1 430

ViewKit Class Graph, Part2 431

XXi

Tables

Table 5-1 Required and Optional Parameters in a Static Menu Description 135

Xxiii

Introduction

This guide describes how to create programs using IRIS ViewKit ", a C++ toolkit that
provides commonly needed facilities for applications based on the IRIS Indigo Magic "
(IRIS IM) user interface toolkit (the Silicon Graphics® port of the industry-standard
OSF/Motif " user interface toolkit for use on Silicon Graphics workstations).

What This Guide Contains

The first two chapters of this guide provide an overview of ViewKit concepts:

Chapter 1, “Overview of ViewKit”
Describes the ViewKit toolkit and the advantages of using it compared
to programming directly in IRIS IM and X, discusses the major elements
of ViewKit, and provides instructions for compiling ViewKit programs.

Chapter 2, “Components”
Describes the ViewKit component class, gives instructions for using
ViewKit components, and lists guidelines for creating new components.

The next nine chapters describe the common ViewKit components that you use in
practically every ViewKit program:

Chapter 3, “The ViewKit Application Class”
Explains the services provided by the ViewKit application class and
gives instructions for controlling application-level services in your
program.

Chapter 4, “ViewKit Windows”
Explains the ViewKit model for supporting multiple windows in an
application, and describes how to create and manipulate application
windows.

Chapter 5, “Creating Menus With ViewKit”
Describes how to create and manipulate different types of menus in a
ViewKit application.

XXV

Introduction

XXVi

Chapter 6, “ViewKit Undo Management and Command Classes”
Explains how to implement support for “undoing” operations and
describes how to implement actions as command classes.

Chapter 7, “Using Dialogs in ViewKit”
Discusses the ViewKit dialog management support, describes how to

post and manipulate dialogs, and provides an overview of the different
types of dialogs supported by ViewKit.

Chapter 8, “Preference Dialogs”
Describes how to use preference dialogs to maintain user preferences.

Chapter 9, “Handling Visuals With ViewKit”
Describes how to work with X and Xt visuals.

Chapter 10, “ViewKit Cut and Paste”
Explains how to implement cut, paste, drag, and drop capabilities.

Chapter 11, “Using a Help System With ViewKit”
Explains how to use a help system with ViewKit applications. It also
describes the basic help system provided with ViewKit.

The rest of the book describes pre-built ViewKit components:

Chapter 12, “The ViewKit Graph Component”
Discusses the ViewKit component for creating and displaying
arc-and-node graphs.

Chapter 13, “Miscellaneous ViewKit Display Classes”
Describes a variety of components that you use primarily to display
information or to manage display items.

Chapter 14, “Miscellaneous ViewKit Data Input Classes”
Describes a variety of data input classes.

Appendix A, “Contributed ViewKit Classes”
Gives you an idea of how you can expand ViewKit by describing some
unsupported ViewKit classes that users have contributed.

Appendix B, “ViewKit Class Graph”
Allows you to see the ViewKit classes and how they relate to one
another.

Introduction

What You Should Know Before Reading This Guide

This guide assumes that you are already an experienced C++ programmer. It also
assumes that you are generally familiar with IRIS IM.

For a thorough discussion of the concepts on which the ViewKit toolkit is based, see this
book:

* Young, Douglas A. Object-Oriented Programming with C++ and OSF/Motif.
Englewood Cliffs, New Jersey: Prentice Hall, Inc., 1992.
For information on OSF/Motif, see these guides:

* Open Software Foundation. OSF/Motif Programmer’s Guide, Revision 1.2. Englewood
Cliffs, New Jersey: Prentice Hall, Inc., 1992.

* Open Software Foundation. OSF/Motif Programmer’s Reference, Revision 1.2.
Englewood Cliffs, New Jersey: Prentice Hall, Inc., 1992.

* Open Software Foundation. OSF/Motif Style Guide, Revision 1.2. Englewood Cliffs,
New Jersey: Prentice Hall, Inc., 1992.

e Heller, Dan. Motif Programming Manual (X Window System Series: Volume Six).
Sebastopol, California: O'Reilly & Associates, Inc., 1992.

For information on IRIS IM enhancements to OSF/Motif and general tips for
programming in IRIS IM on Silicon Graphics workstations, refer to the IRIS IM
Programming Notes.

For comprehensive information on the X Window SystemTM, Xlib, and Xt, see these
manuals:

* Nye, Adrian. XIib Programming Manual (X Window System Series: Volume One).
Sebastopol, California: O'Reilly & Associates, Inc., 1992.

e O'Reilly & Associates, Inc. XIib Reference Manual (X Window System Series: Volume
Two). Sebastopol, California: O'Reilly & Associates, Inc., 1992.

* Nye, Adrian, and Tim O'Reilly. X Toolkit Intrinsics Programming Manual (X Window
System Series: Volume Four). Sebastopol, California: O'Reilly & Associates, Inc.,
1992.

* O'Reilly & Associates, Inc. X Toolkit Intrinsics Reference Manual (X Window System
Series: Volume Five). Sebastopol, California: O'Reilly & Associates, Inc., 1992.

xXxvii

Introduction

Conventions Used in This Guide

This section describes the conventions used for presenting information in this book.

Typographical Conventions

These type conventions and symbols are used in this guide:

Bold C++ class names, C++ member functions, C++ data members, function
names, literal command-line arguments (options and flags)

Italics Filenames; onscreen button names; IRIX™ commands; executable files;
manual and book titles; glossary entries; new terms; variable
command-line arguments; program variables; and variables to be
supplied by the user in examples, code, and syntax statements

Screen type Onscreen text, prompts, error messages, examples, and code listings

Bold screen type
User input, including keyboard keys (printing and nonprinting); literals
supplied by the user in examples, code listings, and syntax statements

i

(Double quotation marks) Onscreen menu items and references in text
to document section titles

0 (Parentheses) Follow function names; also used to surround reference
page (man page) section in which a command, function, or class is
described

<> (Angle brackets) Surround header filenames

IRIX shell prompt for the superuser (root)

% IRIX shell prompt for users other than superuser

Reference pages (also known as man pages) are referred to by name and section number,
in this format: name(section), where “name” is the name of a command, system call,
library routine, or class; and “section” is the section number where the entry resides. For
example, XtSetValues(3Xt) refers to the XtSetValues() reference page in section 3Xt.

XXViii

Introduction

Class Inheritance Graph Conventions

Most of the chapters in this book begin with a graph depicting the inheritance hierarchy
of the classes described in that chapter. Figure i shows an example of a class inheritance
graph that might appear at the beginning of a chapter.

VkTickMarks
1 | 1
! VkComponent | | VkDoubleBuffer |
VkResizer
VkWidgetList VkAlignmentGroup
Figure i Class Inheritance Graph

In these inheritance graphs, classes are presented with the base classes to the left and the
derived classes to the right. Abstract classes have dashed borders and non-abstract
classes have solid borders. Classes described within the chapter appear in white boxes,
whereas classes described elsewhere appear in shaded boxes.

In the inheritance graph shown in Figure i, VkComponent is an abstract base class. As
indicated by its shaded box, it is not described within the chapter. The chapter describes
three subclasses of VkComponent: VkDoubleBuffer, an abstract class; and
VkTickMarks and VkResizer, non-abstract classes. The chapter also discusses the
non-abstract class VkAlignmentGroup, which is derived from the non-abstract base
class VkWidgetList.

XXix

Chapter 1

Overview of ViewKit

ViewKit is a C++ toolkit that makes it easier for you to develop applications. It provides
a collection of high-level user interface components and other support facilities that you
typically must implement in every application. For example, it provides high-level user
interface components, such as windows, menus, and dialogs.

ViewKit does not replace IRIS IM or any other user interface toolkit. In fact, it uses IRIS
IM widgets to implement all of its user interface components; also, you can directly call
IRIS IM functions to create and manipulate widgets in a ViewKit application. The

ViewKit architecture helps mask much of the complexity of programming with IRIS IM.

ViewKit offers you several benefits:

It provides support for common user interface components such as windows,
menus, and dialogs. It also provides specialty interface components for tasks such
as displaying and managing arc-and-node graphs, displaying and managing toggle
check boxes, and managing the layout of other widgets. Creating these elements
using ViewKit is much simpler and faster than using low-level widgets to build
them from scratch. Furthermore, by using the same basic components, applications
that use ViewKit components have greater visual and behavioral consistency.

It simplifies interaction with the X resource manager, allowing you to customize
your application using resources more easily. By designing your application to use
resource values rather than hard-coding the values in your program, you can easily
modify the appearance of your application. This approach is particularly useful for
preparing your application for internationalization.

All user interface components in ViewKit are C++ classes, which provides a
framework for using IRIS IM in a highly structured, object-oriented way. The
ViewKit architecture encourages you to develop self-contained objects that you can
re-use in multiple applications.

It provides support for other common application services such as interprocess
communication.

Chapter 1: Overview of ViewKit

Major ViewKit Elements

You can think of ViewKit as consisting of several sets of classes: framework classes,
interface components, interapplication communication, and convenience utilities. The
following sections discuss these groups.

Framework Classes

ViewKit provides a small set of classes that are either essential for all applications or
provide fundamental support for all other classes. The most basic of these classes is the
VkComponent class, which defines the basic structure of all user interface components.
All user interface classes are derived from VkComponent.

The framework classes also include support for features needed by nearly all
applications, including application management and X server setup, top-level windows,
menus, and dialog management. All classes are designed to implement as many typical
features as possible. For example: all top-level windows and dialogs handle the window
manager quit/close protocol; dialogs are cached to balance memory use and display
speed; the menu system goes beyond simply constructing menus to support dynamically
adding, removing, and replacing items, and more.

The classes that make up the framework of ViewKit are closely integrated and work
together to support essential features required by most applications as automatically as
possible. Among the basic services supported by the core ViewKit framework are single
and multi-level undo; interruptible tasks; and an application-level callback mechanism
that allows C++ classes to dynamically register member functions to be invoked by other
C++ classes.

Interface Components

In addition to the basic user interface support provided by the core framework classes,
ViewKit provides an assortment of ready-to-use interface components. Examples of
these components are a graph viewer/editor, an input field that supports name
expansion, and an outliner component for displaying and manipulating hierarchical
information.

Mixing ViewKit and Standard X and IRIS IM Functions

You are encouraged to use the architecture of ViewKit to create new components and
extend existing components. Creating reusable, high-level components promotes
consistency throughout a set of applications by providing elements that users can learn
once and then easily recognize in multiple applications.

Convenience Utilities

ViewKit provides various utility functions and classes for your convenience. These
utilities include simple functions that make it easier to load resources (including
automatic type conversion), classes that support the use of icons, and other
miscellaneous utilities.

Mixing ViewKit and Standard X and IRIS IM Functions

As stated earlier, ViewKit does not replace IRIS IM. It uses IRIS IM widgets to implement
all of its user interface components, and you are free to make X and IRIS IM calls directly
in a ViewKit application. ViewKit doesn’t do anything that you can’t do yourself using
IRIS IM directly, but the advantage of using ViewKit is that many commonly needed
services are already implemented for you.

Naturally, not all ViewKit services are appropriate for all applications at all times. If a
situation arises in which a ViewKit facility doesn’t meet your needs, you can use the
lower-level IRIS IM, Xt, or Xlib facilities to perform the desired operation yourself.

Most ViewKit classes are optional; however, you should be aware that certain ViewKit
classes depend on other classes. In particular, most classes depend on the existence of an
instance of the VkApp class for application management. If you plan to use any ViewKit
facilities, you should not attempt to bypass VkApp and open your own connection to the
Xserver, or directly call XtApplInitialize() or an equivalent function. For best results, you
should always allow VkApp to handle the Xt initialization and event dispatching.
VKkApp is described in detail in Chapter 3, “The ViewKit Application Class.”

Also, you should use VkSimpleWindow or VkWindow for all top-level windows. These
classes are described in detail in Chapter 4, “ViewKit Windows.”

Chapter 1: Overview of ViewKit

As an example of some optional classes, consider the ViewKit dialog management
facilities. These are intended to let you use dialogs easily and effectively. ViewKit
automatically recycles dialogs (reusing the same dialog over and over for multiple
purposes), which uses less memory and can lead to faster response times. It is also easy
to add additional buttons to any dialog, to provide context-sensitive help on individual
dialogs, and much more. The ViewKit dialog management facility is designed to be as
flexible as possible, while minimizing the amount of work required of you. You can even
write your own custom dialogs that take advantage of the dialog manager.

However, because the design of the ViewKit dialog management classes makes
assumptions about the way typical applications use dialogs, the ViewKit dialog manager
can’t offer the same control that you could obtain by directly constructing and
manipulating an IRIS IM dialog. Should you encounter a situation where the behavior of
the dialog manager doesn’t match your application’s needs, you can always take the
same approach you would have to take if the dialog manager didn’t exist: create and
manipulate your own IRIS IM dialog directly using IRIS IM and Xt functions. This
doesn’t interfere with ViewKit in any way.

Before implementing your own mechanisms, you should be sure you understand the
support offered by ViewKit. Situations in which it’s necessary to duplicate functionality
supported by ViewKit should be rare. On the other hand, extending the class library by
deriving new classes, or writing completely new classes to meet application-specific
needs, is a natural part of developing any application based on ViewKit or any C++ class
library.

Compiling and Linking ViewKit Programs

Compiling and Linking ViewKit Programs

This section describes the software needed to compile and link ViewKit programs.

Required Packages

To compile and link with the ViewKit libraries, you must install the IRIS Development
Option (IDO). This option includes the C compiler and the X Window System and

IRIS IM development systems. You must also install the C++ Development Option,
including the ViewKit development option subsystems. Consult the ViewKit Release Notes
for a complete list of subsystems that you must install on your system to compile and link
ViewKit programs.

The ViewKit development option contains the following subsystems:

ViewKit_dev.sw.base
You are required to install this subsystem, which contains the optimized,
unshared C++ ViewKit libraries and include files. (The shared ViewKit
libraries are included in the IRIX system software as the
ViewKit_eoe.sw.base subsystem.)

ViewKit_dev.sw.debug
This subsystem contains the debug version of the optimized ViewKit
libraries. You can optionally install this subsystem in addition to the
ViewKit_dev.sw.base subsystem. Use this library for program debugging
only.

ViewKit_dev.man.pages
The complete set of C++ reference pages (man pages) for ViewKit. This
subsystem is optional, but recommended.

ViewKit_dev.man.relnotes
The online version of the ViewKit Release Notes. This subsystem is
optional, but recommended.

ViewKit_dev.books.ViewKit_PG
The IRIS InSight" version of this guide. This subsystem is optional, but
recommended.

ViewKit_dev.sw.demo
Sample source code to various ViewKit programs. This subsystem is
optional, but recommended.

Chapter 1: Overview of ViewKit

The ViewKit_dev.sw.base subsystem installs the following libraries:

libvk.a The basic ViewKit class library.

libvkmsg.a Classes that support inter-process communication based on the
ToolTalk ™ library.

libXpm.a A library that supports X pixmap creation. Some ViewKit classes use
Xpm.

The ViewKit_dev.sw.debug subsystem installs the following libraries:
libvk_d.a The debug version of the basic ViewKit class library.

libvkmsg_d.a ~ The debug version of the classes that support inter-process
communication based on the ToolTalk library.

Required Header Files

All ViewKit header files appear in /usr/include/Vk. In most cases, the header file for a
given class is the class name followed by.h. For example, the header file for the
VkWindow class is <Vk/VkWindow.h>. Some minor classes are grouped together into
single header files. For example, the header file for the VkMenu class automatically
includes the header information for every type of menu supported by ViewKit. These
cases are noted in the text where appropriate.

You need to include IRIS IM header files for only those IRIS IM widgets that you
explicitly use in a ViewKit program. ViewKit automatically includes any X or IRIS IM
header files required by ViewKit components that you use in your program.

Required Libraries

You must link all ViewKit programs with the ViewKit library, libvk, and the IRIS IM and
X libraries. If you use an external help system with your application, you should link
with the appropriate help library. (See Chapter 11, “Using a Help System With ViewKit”
for more information.)

Getting Started

Getting Started

For example, to compile a file hello.c++ to produce the executable hello, enter

CC -o hello hello.c++ -1lvk -1Xm -1Xt -1X11

If you are debugging a program, you might find it useful to compile your program with
the debug libraries, which contain additional symbol table information.

This section gives you information on example programs that you might find helpful

when getting started with ViewKit programming. It first describes the simplest ViewKit
program, which displays a window containing a single label, and discusses the structure
of the program. Then, it discusses the demonstration programs provided with ViewKit.

The Simplest ViewKit Program

Applications based on ViewKit must obey certain organizational conventions. To see
how this organization works, consider Example 1-1, a simple ViewKit application that
displays the label “hello” in a window.

Example 1-1 The Simplest ViewKit Program: hello.c++

#include <Vk/VkApp.h>
#include <Vk/VkSimpleWindow.h>
#include <Xm/Label.h>

// Define a top-level window class
class HelloWindow: public VkSimpleWindow {

public:
HelloWindow (const char *name) ;
~HelloWindow () ;
virtual const char* className () ;

// Construct a single rooted widget tree, and designate the

// root of the tree as the window’s view. This example is very
// simple, just creating a single XmLabel widget to display the
// string "hello".

Chapter 1: Overview of ViewKit

HelloWindow: :HelloWindow (const char *name) : VkSimpleWindow (name)
{
Widget label = XmCreateLabel (mainWindowWidget (), "hello",
NULL, O0);

addview (label) ;

}

const char* HelloWindow: :className ()

{
}

HelloWindow: : ~HelloWindow ()

{
}

return "HelloWindow"; // Identify this class

// Empty

// Main driver. Just instantiate a VkApp and a top-level window,
// "show" the window and then "run" the application.

void main (int argc, char **argv)

{

new VKApp ("Hello", &argc, argv) ;
new HelloWindow ("hello") ;

VkApp *app
HelloWindow *win

win->show () ;
app->run() ;

}

To build this example, simply compile the file hello.c++ and link with the ViewKit library,
and the IRIS IM and X libraries:

CC -o hello hello.c++ -1lvk -1Xm -1Xt -1X11

Running the hello program displays a window that says “hello,” as shown in Figure 1-1.

Figure 1-1 Result of Running hello

Getting Started

This example uses two classes: the VkApp class and an application-defined class,
HelloWindow. The HelloWindow class is derived from the ViewKit VkSimpleWindow
class.

Firstlook at main(). All ViewKit applications start by creating an instance of VkApp. The
arguments to this constructor specify the Xt-style class of the application, a pointer to
argc, and the argu array. Instantiating a VkApp object opens a connection to the X server
and initializes many other services needed by typical applications. VkApp is described
in detail in Chapter 3, “The ViewKit Application Class.” Next, the hello.c++ program
instantiates a HelloWindow object that serves as the application’s top-level window. The
constructor for this class requires only a name for the window. Finally, the application
concludes by calling the HelloWindow object’s show() function and the VkApp object’s
run() function. The run() method never returns. The bodies of most ViewKit programs
are similar to this short example.

Now look at the HelloWindow class. ViewKit encourages you to create classes to
represent all major elements of the user interface. In this simple example, the only major
user interface component is a top-level window that contains a label widget. ViewKit
provides a class, VkSimpleWindow, that supports many features common to all
top-level windows and that works closely with the VkApp class to implement various
ViewKit features. To use the VkSimpleWindow class, you derive a new subclass and
create a single-rooted widget tree that the window displays as its view. ViewKit
applications do not have to create shell widgets directly.

The hello.c++ example is so simple that the HelloWindow class creates only a single
XmlLabel widget. The XmLabel widget is created in the constructor and then designated
as the window’s view. More complex classes might create a manager widget and create
other widgets as children, or might instantiate other objects, as well. Chapter 4, “ViewKit
Windows,” describes how to create windows using ViewKit.

The className() member function is supported, by convention, by all ViewKit classes.
This function is used by several ViewKit facilities and is discussed in “VkComponent
Access Functions” on page 17.

Chapter 1: Overview of ViewKit

10

Demonstration Programs

The ViewKit_dev.sw.demo subsystem installs in the /usr/share/src/ViewKit directory several
demonstration programs that illustrate different features of ViewKit. A few of the
highlights include:

fusr/share/src/ViewKit/ProgrammersGuide contains several of the example programs
from this guide.

Jusr/share/src/ViewKit/Components/CBrowser contains the source for a component
browser, which shows examples of many ViewKit components. You might find this
particularly useful to run when you read the later chapters in this guide that
describe the prebuilt components shipped with ViewKit.

Jusr/share/src/ViewKit/Applications/PhoneBook creates PhoneBook, a full-fledged
application that keeps track of names, phone numbers, and addresses. PhoneBook
uses a variety of ViewKit classes.

Jusr/share/src/ViewKit/Applications/GLX builds Rotate, a sample application that uses
GLX to do GL rendering in an X window.

Jusr/share/src/ViewKit/Applications/Inventor builds IvClock, a ViewKit
implementation of the Inventor clock sample program from Inventor 2.0.

Chapter 2

Components

This chapter introduces the concept of ViewKit components: C++ classes that encapsulate
sets of widgets along with convenient methods for their manipulation.

This chapter describes two ViewKit classes: VkCallbackObject and VkComponent.
Figure 2-1 shows the inheritance graph for these classes.

Figure 2-1 Inheritance Graph for VkCallbackObject and VkComponent

Definition of a Component

Widget sets such as IRIS IM provide simple, low-level building blocks, like buttons,
scrollbars, and text fields. However, to create interesting and useful applications, you
must build collections of widgets that work together to perform given tasks. For
example, many applications support a system of menus, which are constructed from
several individual widgets. Just as the user thinks of the menu bar as a single logical
component of the user interface, ViewKit builds abstractions that let applications deal
with a “menu” rather than the individual pieces of the menu.

C++ allows you to do exactly this: to encapsulate collections of widgets and other objects
as logical entities. By creating C++ classes and providing simple, convenient
manipulation functions, you can avoid the complexity of creating widgets, specifying
widget locations, setting resources, assigning callbacks, and other common tasks.
Furthermore, for commonly used objects like menus, you can design general-purpose
classes that you can easily use in many different applications.

11

Chapter 2: Components

VkComponent Class

12

In ViewKit, the general user interface classes are referred to as components. A component
not only encapsulates a collection of widgets, but also defines the behavior of the overall
component. ViewKit components are designed to implement as many commonly used
features as possible. Typically, all you need to do to use a ViewKit component is create a
subclass of the appropriate ViewKit class and define any application-specific behavior.
Furthermore, using the ViewKit classes as a base, you can create your own library of
reusable components.

All ViewKit components are derived from the abstract base class VkComponent, which
defines a basic structure and protocol for all components. When creating your own
components, you should also derive them from VkComponent or one of its subclasses.

The VkComponent class enforces certain characteristics on components and expects
certain behaviors of its subclasses. These characteristics and the features provided by
VkComponent are discussed in detail in throughout this chapter; the more important
characteristics are summarized below:

e Widgets encapsulated by a component must form a single-rooted subtree.
Components typically use a container widget as the root of the subtree; all other
widgets are descendents of this widget. The root of the widget subtree is referred to
as the base widget of the component.

* You can create instances of components and use them in other components’s widget
subtrees. As a convenience, VkComponent defines an operator that allows you to
pass a VkComponent object directly to functions that expect a widget. This
operator is described further in “VkComponent Access Functions” on page 17.

¢ Components take a string as an argument (typically, the first argument) in the class
constructor. This string is used as the name component’s base widget. You should
give each instance of a component a unique name so that you can identify each
widget in an application by a unique path through the application’s widget tree. If
each widget can be uniquely identified, X resource values can be used to customize
the behavior of each widget. ViewKit resource support is described in “Component
Resource Support” on page 25.

e Components take a widget as an argument (typically, the second argument) in the
class constructor. This widget is the parent of the component’s base widget.
Component constructors are discussed in “Component Constructors” on page 13.

VkComponent Class

* Most components should create the base widget and all other widgets in the class
constructor. The constructor should manage all widgets except the base widget,
which should be left unmanaged. You can then manage or unmanage a
component’s entire widget subtree using the member functions described in
“Displaying and Hiding Components” on page 19.

* VkComponent provides an access function that retrieves the component’s base
widget. You might need to access the base widget, for example, to set constraint
resources so that an XmForm widget can position the component. Normally, other
widgets inside a component aren’t exposed. Access functions are discussed in
“VkComponent Access Functions” on page 17.

e Components must handle the destruction of widgets within the component’s
widget tree. The widgets encapsulated by the component must be destroyed when
the component is destroyed. Component classes must also prevent dangling
references by handling destruction of the widget tree without destruction of the
component. VkComponent provides mechanisms for handling widget destruction,
which are described in “Handling Component Widget Destruction” on page 24.

e Components should define any Xt callbacks required by a class as private static
member functions. Using Xt callbacks in ViewKit is discussed in “Using Xt
Callbacks With Components” on page 21.

¢ All component classes must override the virtual className() member function so
that it returns a string identifying the component’s class. ViewKit uses this string for
resource handling and other support functions. The className() member function
is described in more detail in “VkComponent Access Functions” on page 17.
“Component Resource Support” on page 25 describes ViewKit resource support.

Component Constructors

The VkComponent constructor has the following form:

VkComponent (const char *name)
The VkComponent constructor is declared protected and so can be called only from

derived classes. Its primary purpose is to initialize component data members, in
particular _name and _baseWidget.

13

Chapter 2: Components

14

Each component should have a unique name, which is used as the name of the
component’s base widget. The VkComponent constructor accepts a name as an
argument, creates a copy of this string, and assigns the address of the copy to the
_name data member.

The _baseWidget data member is the base widget of the component’s widget subtree. The
VkComponent constructor initializes _baseWidget to NULL.

Each derived class’s constructor should take at least two arguments—the component’s
name and a widget that serves as the parent of the component’s widget tree—and
perform at least these initialization steps:

1. Pass the name to the VkComponent constructor to initialize the basic component
data members.

2. Create the component’s widget subtree and assign the base widget to the
_baseWidget data member. The base widget should be a direct child of the parent
widget passed in the constructor, and should have the same name as the component
(as stored in _name) for the ViewKit resource support to work correctly. All other
widgets in the component must be children or descendents of the base widget.

3. Immediately after creating the base widget, call installDestroyHandler() to set up a
callback to handle widget destruction. This function is described further in
“Handling Component Widget Destruction” on page 24.

4. Manage all widgets except the base widget, which should be left unmanaged.

5. Perform any other needed class initialization.

As an example, consider a user-defined component called StartStopPanel that
implements a simple control panel containing Start and Stop buttons. The code fragment
in Example 2-1 shows a possible constructor for this class.

Example 2-1 Component Constructor

[1777777777777777777711111117
// StartStopPanel.h

I1777711777771117777111717717
// Declare StartStopPanel as a subclass of VkComponent

class StartStopPanel: public VkComponent {

public:
StartStopPanel (const char *, Widget);

VkComponent Class

}

~StartStopPanel () ;
/] ...

protected:
Widget _startButton;
Widget _stopButton;
/] ...

[17777777177177717777171777177
// StartStopPanel.c++

[11771777177717717711717717717

// Pass the name to the VkComponent constructor to initialize the
// basic component data members.

StartStopPanel: : StartStopPanel (const char *name, Widget parent) :VkComponent (name)

{

// Create an XmRowColumn widget as the component’s base widget
// to contain the buttons. Assign the widget to the baseWidget
// data member.

_baseWidget = XmCreateRowColumn (parent, name, NULL, O);

// Set up callback to handle widget destruction

installDestroyHandler () ;
XtVaSetValues (_baseWidget, XmNorientation, XmHORIZONTAL, NULL) ;

// Create all other widgets as children of the base widget.
// Manage all child widgets.

_startButton = XmCreatePushButton (baseWidget, "start", NULL, O0);
_stopButton = XtCreatePushButton (baseWidget, "stop", NULL, O0);

XtManageChild(startButton) ;
XtManageChild(stopButton) ;

// Perform any other initialization needed (omitted in this example)

15

Chapter 2: Components

16

In this example, the StartStopPanel constructor passes the name argument to the
VkComponent constructor to initialize the _name data member. The VkComponent
constructor also initializes the _baseWidget data member to NULL. It then creates a
RowColumn widget as the base widget to manage the other widgets in the component.
The constructor uses the _name data member as the name of the base widget, uses the
parent argument as the parent widget, and assigns the RowColumn widget to the
_baseWidget data member. Immediately after creating the base widget, the constructor
calls installDestroyHandler(). Then, it creates the two buttons as children of the base
widget and manages the two child widgets.

A real constructor would then perform all other initialization needed by the class, such
as setting up callbacks for the buttons and initializing any other data members that
belong to the class. “Using Xt Callbacks With Components” on page 21 describes how
you should set up Xt callbacks when working with ViewKit components.

Component Destructors

The virtual VkComponent destructor performs the following functions:

1. Triggers the VkComponent::deleteCallback ViewKit callback for that component.
ViewKit callbacks are described in “ViewKit Callback Support” on page 34, and the
VkComponent::deleteCallback is described in “Predefined ViewKit Callbacks” on
page 40.

2. Removes the widget destruction handler described in “Handling Component
Widget Destruction” on page 24.

3. Destroys the component’s base widget, which in turn destroys the component’s
entire widget subtree.

4. Frees all memory allocated by the VkComponent constructor.
5. Sets to NULL all the data members defined by the VkComponent constructor.

The destructor for a derived class need free only the space that was explicitly allocated
by the derived class, but of course it can perform any other cleanup your class requires.

For example, if your class allocates space for a string, you should free that space in your
destructor, as shown in Example 2-2.

VkComponent Class

Example 2-2 Freeing Space in a Component Destructor

MyComponent : public VkComponent {

public:
MyComponent (const char *, Widget) ;
~MyComponent () ;
/] ...

private:
char * label;
//. ..
}

MyComponent : :MyComponent (const char *name, Widget parent) : VkComponent (name)

{

_label = strdup(label);
/] ...
}

MyComponent : : ~MyComponent ()

{
}

free (_label);

Even if you don’t need to perform any actions in a class destructor, you should still
declare an empty one. If you don’t explicitly declare a destructor, the C++ compiler
creates an empty inline destructor for the class; however, because the destructor in the
base class, VkCallbackObject, declares the destructor as virtual, the C++ compiler
generates a warning because a virtual member function can’t be inlined. The compiler
then “un-inlines” the destructor and, to ensure that it’s available wherever needed, puts
a copy of it in every file that uses the class. Explicitly creating an empty destructor for
your classes avoids this unnecessary overhead.

VkComponent Access Functions
VkComponent provides access functions for accessing some of the class’s data members.
The name() function returns the name of a component as pointed to by the _name data

member. This is the same as the name that you provided in the component’s constructor.
The syntax of the name() function is

const char * name() const

17

Chapter 2: Components

18

The className() function returns a string identifying the name of the ViewKit class to
which the component belongs. The syntax of className() is

virtual const char *className ()

All component classes should override this virtual function to return a string that
identifies the name of the component’s class. ViewKit uses this string for resource
handling and other support functions. The class name for the VkComponent class is
“VkComponent.”

For example, if you create a StartStopPanel class, you should override the
StartStopPanel::className() function as follows:

class StartStopPanel: public VkComponent {
public:
//

virtual const char *className () ;
//
!

const char* StartStopPanel::className ()

{
}

return "StartStopPanel";

The baseWidget() function returns the base widget of a component as stored in the
_baseWidget data member:

Widget baseWidget () const

Normally, components are as encapsulated as possible, so you should avoid operating
directly on a component’s base widget outside the class. However, certain operations
might require access to a component’s base widget. For example, after instantiating a
component as a child of an XmForm widget, you might need to set various constraint
resources, as shown below:

Widget form = XmCreateForm(parent, "form", NULL, O0);
StartStopPanel *panel = new StartStopPanel ("panel", form);
XtVaSetValues (panel->baseWidget () , XmNtopAttachment, XmATTACH FORM, NULL) ;

VkComponent Class

As a convenience, VkComponent defines a Widget operator that allows you to pass a
VkComponent object directly to functions that expect a widget. By default, the operator
converts the component into its base widget. However, the operator is defined as a
virtual function so that derived classes can override it to return a different widget. Note
that you must use an object, not a pointer to an object, because of the way operators work
in C++. For example, the Widget operator makes the following code fragment equivalent
to the fragment presented above:

Widget form = XmCreateForm(parent, "form", NULL, 0);
StartStopPanel *panel = new StartStopPanel ("panel", form);
XtVaSetValues (*panel, XmNtopAttachment, XmATTACH FORM, NULL) ;

Displaying and Hiding Components

The virtual member function show() manages the base widget of the component,
displaying the entire component. The virtual member function hide() performs the
inverse operation. You can call show() after calling hide() to redisplay a component. The
syntax of these commands is as follows:

virtual void show ()

virtual void hide()

For example, the following lines display the component panel, an instance of the
StartStopPanel:

StartStopPanel *panel = new StartStopPanel ("panel", form);
panel->show () ;

You could hide this component with this line:

panel->hide() ;

19

Chapter 2: Components

20

If you're familiar with Xt, you can think of these functions as performing operations
analogous to managing and unmanaging the widget tree; however, you shouldn’t regard
these functions simply as “wrappers” for the XtManageChild() and
XtUnmanageChild() functions. First, these member functions show and hide an entire
component, which typically consists of more than one widget. Second, other actions
might be involved in showing a component. In general, the show() member function
does whatever is necessary to make a component visible on the screen. You shouldn’t
circumvent these member functions and manage and unmanage components’ base
widgets directly. For example, some components might use XtMap() and XtUnmap() as
well. Other components might not even create their widget subtrees until show() is
called for the first time.

The VkComponent class also provides the protected virtual function
afterRealizeHook(). This function is called after a component’s base widget is realized,
just before it’s mapped for the first time. The default action is empty. You can override
this function in a subclass if you want to perform actions after a component’s base widget
exists.

VkComponent Utility Functions

All ViewKit components provide the virtual member function okToQuit() to support
“safe quit” mechanisms:

virtual Boolean okToQuit ()

A component’s okToQuit() function returns TRUE if it is “safe” for the application to
quit. For example, you might want okToQuit() to return FALSE if a component is in the
process of updating a file. By default, okToQuit() always returns TRUE; you must
override okToQuit() for all components that you want to perform a check before
quitting.

Usually only VkSimpleWindow and its subclasses use okToQuit(). When you call
VkApp::quitYourself(), VkApp calls the okToQuit() function for all registered windows
before quitting. If the okToQuit() function for any window returns FALSE, the
application doesn’t exit. “Quitting ViewKit Applications” on page 65 provides more
information on how to quit a ViewKit application, and “Providing a “Safe Quit”
Mechanism” on page 110 describes how to override VkSimpleWindow::0kToQuit() to
provide a “safe quit” mechanism for a window.

VkComponent Class

In some cases you might want to check one or more components contained within a
window before quitting. To do so, override the okToQuit() function for that window to
call the okToQuit() functions for all the desired components. Override the okToQuit()
functions for the other components to perform whatever checks are necessary.

Another utility function provided by VkComponent is the static member function
isComponent():

static Boolean isComponent (VkComponent *component)

The isComponent() function applies heuristics to determine whether the pointer passed
as an argument represents a valid VkComponent object. If component points to a
VkComponent that has not been deleted, this function always returns TRUE; otherwise
the function returns FALSE. It is possible, though highly unlikely, that this function could
mistakenly identify a dangling pointer to a deleted object as a valid object. This could
happen if another component were to be allocated at exactly the same address as the
deleted object a pointer previously pointed to. The isComponent() function is used
primarily for ViewKit internal checking, often within assert() macros.

Using Xt Callbacks With Components

Callbacks pose a minor problem for C++ classes. C++ member functions have a hidden
argument, which is used to pass the this pointer to the member function. This hidden
argument makes ordinary member functions unusable as callbacks for Xt-based widgets.
If a member function were to be called from C (as a callback), the this pointer would not
be supplied and the order of the remaining arguments might be incorrect.

Fortunately, there is a simple way to handle the problem, although it requires the
overhead of one additional function call. The approach is to use a regular member
function to perform the desired task, and then use a static member function for the Xt
callback. A static member function does not expect a this pointer when it is called.
However, it is a member of a class, and as such has the same access privileges as any
other member function. It can also be encapsulated so it is not visible outside the class.

The only catch is that the static member function used as a callback needs a way to access

the appropriate instance of the class. This can be provided by specifying a pointer to the
component as the client data when registering the callback.

21

Chapter 2: Components

22

Generally, you should follow these guidelines for using Xt callbacks with ViewKit
components:

Define any Xt callbacks required by a component as static member functions of that
class. You normally declare these functions in the private section of the class,
because they are seldom useful to derived classes.

Pass the this pointer as client data to all Xt callback functions installed for widgets.
Callback functions should retrieve this pointer, cast it to the expected component
type, and call a corresponding member function.

Adopt a convention of giving static member functions used as callbacks the same
name as the member function they call, with the word “Callback” appended. For
example, the static member function activateCallback() should call the member
function activate(). This convention is simply meant to make the code easier to read
and understand. If you prefer, you can use your own convention for components
you create, but this convention is used by all predefined ViewKit components.

Member functions called by static member functions are often private, but they can
instead be part of the public or protected section of the class. Occasionally it’s useful
to declare one of these functions as virtual, thereby allowing derived classes to
change the function ultimately called as a result of a callback.

For example, the constructor presented in Example 2-1 for the simple control panel
component described in “Component Constructors” on page 13 omitted the setup of
callback routines to handle the activation of the buttons. To implement these callbacks,
you must follow these steps:

1.

Create regular member functions to perform the tasks desired in response to the
user clicking the buttons.

Create static member functions that retrieve the client data passed by the callback,
cast it to the expected component type, and call the corresponding member
function.

Register the static member functions as callback functions in the class constructor.

VkComponent Class

Suppose that for the control panel, you want to call the member function
StartStopPanel::start() when the user clicks the Start button, and to call
StartStopPanel::stop() when the user clicks the Stop button:

void StartStopPanel::start (Widget w, XtPointer callData)

{

// Perform "start" function

}

void StartStopPanel::stop(Widget w, XtPointer callData)

{

// Perform "stop" function

}

You should then define the StartStopPanel::startCallback() and
StartStopPanel::stopCallback() static member functions as follows:

void StartStopPanel::startCallback (Widget w, XtPointer clientData,
XtPointer callData)

StartStopPanel *obj = (StartStopPanel *) clientData;
obj->start (w, callData) ;

}

void StartStopPanel::stopCallback (Widget w, XtPointer clientData,
XtPointer callData)
{

StartStopPanel *obj = (StartStopPanel *) clientData;
obj->stop(w, callData);

}

Finally, you need to register the static member functions as callbacks in the constructor.
Remember that you must pass the this pointer as client data when registering the
callbacks. Example 2-3 shows the updated StartStopPanel constructor, which installs the
Xt callbacks for the buttons.

Example 2-3 Component Constructor With Xt Callbacks

StartStopPanel: : StartStopPanel (const char *name, Widget parent) :VkComponent (name)

{

// Create an XmRowColumn widget as the component’s base widget
// to contain the buttons. Assign the widget to the baseWidget
// data member.

_baseWidget = XmCreateRowColumn (parent, name, NULL, O);

23

Chapter 2: Components

24

// Set up callback to handle widget destruction
installDestroyHandler () ;
XtVaSetValues (baseWidget, XmNorientation, XmHORIZONTAL, NULL) ;

// Create all other widgets as children of the base widget.
// Manage all child widgets.

_startButton = XmCreatePushButton (baseWidget, "start", NULL, O0);
_stopButton = XtCreatePushButton (baseWidget, "stop", NULL, O0);

XtManageChild(startButton) ;
XtManageChild(stopButton) ;

// Install static member functions as callbacks for the pushbuttons

XtAddCallback (_startButton, XmNactivateCallback,
&StartStopPanel: :startCallback, (XtPointer) this);

XtAddCallback (_stopButton, XmNactivateCallback,
&StartStopPanel: :stopCallback, (XtPointer) this);

Handling Component Widget Destruction

When widgets are destroyed, it’s easy to leave dangling references—pointers to memory
that once represented widgets, but are no longer valid. For example, when a widget is
destroyed, its children are also destroyed. It’s often difficult to keep track of the
references to these children, so it’s fairly easy to write a program that accidentally
references the widgets in a class after the widgets have already been destroyed. In some
cases, applications might try to delete a widget twice, which usually causes the program
to crash. Calling XtSetValues() or other Xt functions with a widget that’s been deleted is
also an error that can occur easily in this situation.

To help protect the encapsulation of ViewKit classes, VkComponent provides a private
static member function, widgetDestroyedCallback(), to register as an
XmNdestroyCallback for the base widget so that the component can properly handle the
deletion of its base widget. This callback can’t be registered automatically within the
VkComponent constructor because derived classes have not yet created the base widget
when the VkComponent constructor is called.

Component Resource Support

As a convenience, rather than force every derived class to install the
widgetDestroyedCallback() function directly, VkComponent provides a protected
installDestroyHandler() function that performs this task:

void installDestroyHandler ()

Immediately after creating a component’s base widget in a derived class, you should call
installDestroyHandler(). For example:

StartStopPanel: :StartStopPanel (const char *name, Widget parent)
VkComponent (name)

_baseWidget = XmCreateRowColumn (parent, name, NULL, 0);
installDestroyHandler () ;
/] ...

When you link your program with the debugging version of the ViewKit library, a
warning is issued for any class that does not install the widgetDestroyedCallback()
function.

The widgetDestroyedCallback() function calls the virtual member function
widgetDestroyed():

virtual void widgetDestroyed ()

By default, widgetDestroyed() sets the component’s _baseWidget data member to NULL.
You can override this function in derived classes if you want to perform additional tasks
in the event of widget destruction; however, you should always call the base class’s
widgetDestroyed() function as well.

Occasionally, you might need to remove the destroy callback installed by
installDestroyHandler(). For example, the VkComponent class destructor removes the
callback before destroying the widget. To do so, you can call the
removeDestroyHandler() function:

void removeDestroyHandler ()

Component Resource Support

The X resource manager is a very powerful facility for customizing both applications and
individual widgets. The resource manager allows the user or programmer to modify
both the appearance and behavior of applications and widgets.

25

Chapter 2: Components

26

ViewKit provides a variety of utilities to simplify resource management. Using ViewKit,
you can easily

* set resource values for a single component or an entire class of components
* inijtialize data members using values retrieved from the resource database
¢ programmatically set default resource values for a component

e obtain resource values

For ViewKit resource support to work properly, you must follow these two guidelines:

* You must override each components’s virtual className() member functions,
returning a string that identifies the name of each component’s C++ class. For
example, if you create a StartStopPanel component class, you must override
StartStopPanel::className() as follows:

const char* StartStopPanel::className ()

{
}

* You must provide a unique component name when instantiating each component.
This string must be used as the name of the component’s base widget. Giving each
instance of a component a unique name ensures a unique path through the
application’s widget tree for each widget. Widgets within a component can have
hard-coded names because they can be qualified by the name of the root of the
component subtree.

return "StartStopPanel";

Component Resource Support

Setting Resource Values by Class or Individual Component

The structure of ViewKit allows you to specify resource values for either an individual
component or for all components of a given class.

To set a resource for an individual instance of a component, refer to the resource using
this syntax:

*name*resource

In this case, name refers to the ViewKit component’s name that you pass as an argument
to the component’s constructor, and resource is the name of the resource. A specification
of this form works for setting both widget resources and “synthetic” resources that you
use to initialize data member values. (“Initializing Data Members Based on Resource
Values” on page 28 describes a convenience function for initializing data members from
resource values.)

For example, you could set a “verbose” resource to TRUE for the instance named
“status” of a hypothetical ProcessMonitor class with a resource entry such as this:

*status*verbose: TRUE

To set a resource for an entire component class, refer to the resource using this syntax:

*className*resource

In this case, className is the name of the ViewKit class returned by that class’s
className() function, and resource is the name of the resource. A specification of this
form works for setting “synthetic” resources only, not widget resources.!

For example, you can set a “verbose” resource for all instances of the hypothetical
ProcessMonitor class to TRUE with a resource entry such as:

*ProcessMonitor*verbose: TRUE

1You can set resources for widgets within a component when you specify a component’s name because
the name of component’s base widget is the same as the name of the component; the X resource manager
can successfully determine a widget hierarchy based on widget names. On the other hand, a
component’s class name has no relation to its base widget’s class name. If you use a component class
name in a resource specification, the X resource manager cannot determine the widget hierarchy for
widgets in the component.

27

Chapter 2: Components

28

Initializing Data Members Based on Resource Values

If you want to initialize data members in a class using values in the resource database,
you can call the VkComponent member function getResources():

void getResources (const XtResourcelList resources,
const int numResources)

The resources argument is a standard resource specification in the form of an XtResource
list, and the numResources argument is the number of resources. You should define the
XtResource list as a static data member of the class to encapsulate the resource
specification with the class. You should call getResources() in the component constructor
after creating your component’s base widget.

getResources() retrieves the specified resources relative to the root of the component’s
widget subtree. For example, to set the value of a resource for a particular instance of a
component, you would need to set the resource with an entry in the resource database of
this form:

*name . resource: value

In this example, name is the component’s name, resource is the name of the resource, and
value is the resource value. To set the value of a resource for an entire component class,
you would need to set the resource with an entry in the resource database of this form:

*className . resource : value

In this example, className is the component class name, resource is the name of the
resource, and value is the resource value.

Example 2-4 demonstrates the initialization of a data member, _verbose, from the resource
database. A default value is specified in the XtResource structure, but the ultimate value
is determined by the value of the resource named “verbose” in the resource database.
Example 2-4 Initializing a Data Member From the Resource Database

// Header file: ProcessMonitor.h

#include <Vk/VkComponent.h>
#include <Xm/Frame.h>

class ProcessMonitor : public VkComponent

{

Component Resource Support

private:
static XtResource resourcesl|];

protected:
Boolean verbose;
public:
ProcessMonitor (const char *, Widget) ;
~ProcessMonitor () ;
virtual const char *className () ;

// Source file: ProcessMonitor.c++
#include "ProcessMonitor.h"

XtResource ProcessMonitor:: resources [] = {

{

"verbose",

"Verbose",

XmRBoolean,

sizeof (Boolean),

XtOffset (ProcessMonitor *, verbose),
XmRString,

(XtPointer) "FALSE",

b
}i

ProcessMonitor: : ProcessMonitor (Widget parent, const char *name) :VkComponent (name)

{

_baseWidget = XtVaCreateWidget (name, xmFrameWidgetClass,
parent, NULL) ;
installDestroyHandler () ;

// Initialize members from resource database

getResources (_resources, XtNumber (resources));

//

So, to initialize the _verbose data member to TRUE in all instances of the ProcessMonitor
class, you need only set the following resource in the resource database:

*ProcessMonitor.verbose: TRUE

29

Chapter 2: Components

30

To initialize _verbose to TRUE for an instance of ProcessMonitor named
conversionMonitor, you could set the following resource in the resource database:

*conversionMonitor.verbose: TRUE

Setting Default Resource Values for a Component

Often, you might want to specify default resource values for a component. A common
way to accomplish this is to put the resource values in an application resource file.
However, this makes the component dependent on that resource file; to use that
component in another application, you must remember to copy those resources into the
new application’s resource file. This is especially inconvenient for classes that you reuse
in multiple applications.

A better method of encapsulating default resources into a component is to use a ViewKit
facility that allows you to specify them programmatically and then merge them into the
resource database during execution. Although the resources are specified
programmatically, they can be overridden by applications that use the class, or by end
users in resource files. However, the default values are specified by the component class
and cannot be separated from the class accidentally. If you later want to change the
implementation of a component class, you can also change the resource defaults when
necessary, knowing that applications that use the class will receive both changes
simultaneously.

The VkComponent class provides the setDefaultResources() function for storing a
collection of default resources in the application’s resource database. The resources are
loaded with the lowest precedence, so that these resources are true defaults. They can be
overridden easily in any resource file. You should call this function in the component
constructor before creating the base widget in case any resources apply to the
component’s base widget.

The setDefaultResources() function has the following syntax:

void setDefaultResources (const Widget w,
const String *resourceSpec)

The first argument is a widget; you should always use the parent widget passed in the
component’s constructor.

Component Resource Support

The second argument is a NULL-terminated array of strings, written in the style of an
X resource database specification. Specify all resources in the list relative to the root of the
component’s base widget, but do not include the name of the base widget. If you want
to apply a resource to the base widget, simply use the name of the resource preceded by
an asterisk (*). When resources are loaded, the value of _name is prefixed to all entries,
unless that entry begins with a hyphen (-). As long as you use unique names for each
component that you create of a given class, this results in resource specifications unique
to each component. If you precede a resource value in this list with a hyphen (-),
setDefaultResources() does not qualify the resource with the value of _name. This is
useful in rare situations where you want to add global resources to the database.

You should declare the resource list as a static data member of the class. This
encapsulates the set of resources with the class.

Note: Generally, setting resources using setDefaultResources() is most appropriate for
components that you plan to reuse in multiple applications. In particular, it is a good
method for setting resources for widget labels and other strings that your component
displays. You should not use setDefaultResources() to set widget resources, such as
orientation, that you would normally set programmatically. Typically you don’t need to
change these resources when you use the component in different applications, and so
you save memory and execution time by not using setDefaultResources() to set these
resources.

Example 2-5 builds on the StartStopPanel constructor from Example 2-3 to specify the
default label strings “Start” and “Stop” for the button widgets.

Example 2-5 Setting a Component’s Default Resource Values

// StartStopPanel.h
class StartStopPanel: public VkComponent {

public:
StartStopPanel (const char *, Widget);
~StartStopPanel () ;
/] ...

private:
static String defaultResources(];

/] ...

31

Chapter 2: Components

32

// StatStopPanel.c++

String StartStopPanel:: defaultResources[] = {
"*start.labelString: Start",
"*stop.labelString: Stop",

NULL

}i

StartStopPanel: : StartStopPanel (const char *name, Widget parent) :VkComponent (name)
{ // Load class-default resources for this object before creating base widget
setDefaultResources (parent, defaultResources) ;
_baseWidget = XmCreateRowColumn (parent, name, NULL, 0);
installDestroyHandler () ;

XtVaSetValues (baseWidget, XmNorientation, XmHORIZONTAL, NULL) ;

_startButton = XmCreatePushButton (_baseWidget, "start", NULL, O0);
_stopButton = XtCreatePushButton (baseWidget, "stop", NULL, O0);

/] ...

Convenience Function for Retrieving Resource Values

ViewKit also provides VkGetResource(), a convenience function for retrieving resource
values from the resource database. VkGetResource() is 70t a member function of any
class. You must include the header file <Vk/VkResource.h> to use VkGetResource().

VkGetResource() has two forms. The first is as follows:

char * VkGetResource(const char * name,
const char * className)

This form returns a character string containing the value of the application resource you
specify by name and class name. This function is similar to XGetDefault(3X) except that
this form of VkGetResource() allows you to retrieve the resource by class name whereas
XGetDefault() does not.

Component Resource Support

Note: Do not attempt to change or delete the value returned by VkGetResource().

The second form of VkGetResource() is as follows:

XtPointer VkGetResource(Widget w,
const char *name,
const char *className,
const char *desiredType,
const char *defaultValue)

This second form is similar to XtGetSubresource(3Xt) in that it allows you to retrieve a
resource relative to a specific widget. You can specify the resource as a dot-separated list
of names and classes, allowing you to retrieve “virtual” sub-resources. You can also
specify a target type. VkGetResource() converts the retrieved value, or the default value
if no value is retrieved, to the specified type.

Note: Do not attempt to change or delete the value returned by VkGetResource().

For example, suppose that you want to design an application for drawing an image and
you want to allow the user to select various aspects of the style in which the image is
drawn, such as color and fill pattern (a pixmap). You could specify each aspect of each
style as a resource and retrieve the values as follows:

Widget canvas = XmCreateDrawingArea (parent, "canvas", NULL, 0);

Pixel fgOne = (Pixel) VkGetResource (canvas,
"styleOne. foreground", "Style.Foreground",
XmRString, "Black");

Pixel fgTwo = (Pixel) VkGetResource (canvas,
"styleTwo. foreground", "Style.Foreground",
XmRString, "Black");

Pixel bgOne = (Pixel) VkGetResource (canvas,
"styleOne.background", "Style.Background",
XmRString, "White");

Pixel bgTwo = (Pixel) VkGetResource (canvas,
"styleTwo.background", "Style.Background",
XmRString, "White");

Pixmap pixOne = (Pixmap) VkGetResource (canvas,
"styleOne.pixmap", "Style.Pixmap",
XmRString, "background") ;

Pixmap pixTwo = (Pixmap) VkGetResource (canvas,
"styleTwo.pixmap", "Style.Pixmap",
XmRString, "background") ;

33

Chapter 2: Components

Another common technique used in ViewKit programming is to use a string to search for
resource value and, if no resource exists, use the string as the value. You can do this easily
if you pass the string to VkGetResource() as the default value. For example, consider the
following code:

char *timeMsg = "Time";
/] ...
char *timeTitle = (char *) VkGetResource(baseWidget, timeMsg, "Time",

XmRString, timeMsg) ;

In this case, VkGetResource() searches for a resource (relative to the _baseWidget widget)
whose name is specified by the character string timeMsg. If no such resource exists,
VkGetResource() returns the value of timeMsg as the default value.

If you use this technique, you should not pass a string that contains embedded spaces or
newlines.

ViewKit Callback Support

34

All ViewKit components support ViewKit member function callbacks (also referred to
simply as ViewKit callbacks). ViewKit callbacks are analogous to Xt-style callbacks
supported by widget sets, but ViewKit callbacks are in no way related to Xt.

The ViewKit callback mechanism allows a component to define conditions or events, the
names of which are exported as public static string constants encapsulated by that
component. Any other component can register any of its member functions to be called
when the condition or event associated with that callback occurs.

Unlike the case when registering ViewKit functions for Xt-style callbacks, the functions
you register for ViewKit callbacks must be regular member functions, not static member
functions.

ViewKit callbacks are implemented by the VkCallbackObject class. VkComponent is
derived from VkCallbackObject, so all ViewKit components can use ViewKit callbacks.
If you create a class for use with a ViewKit application, that class must be derived from
VkCallbackObject or one of its subclasses (such as VkComponent) for you to be able to
use ViewKit callbacks with that class.

ViewKit Callback Support

Registering ViewKit Callbacks

The addCallback() function defined in VkCallbackObject registers a member function
to be called when the condition or event associated with a callback occurs.

Note: When registering a ViewKit callback, remember to call the addCallback() member
function of the object that triggers the callback, not the object that is registering the
callback.

The format of addCallback() for registering a member function is as follows:

void addCallback (const char *name,
VkCallbackObject *component,
VkCallbackMethod callbackFunction,
void *clientData = NULL)

The following are the arguments for this function:

name The name of the ViewKit callback. You should always use the name of
the public static string constant for the appropriate callback, not a literal
string constant. (For example, use VkComponent::deleteCallback, not
“deleteCallback”.) This allows the compiler to catch any misspellings of
callback names.

component A pointer to the object registering the callback function.

callbackFunction
The member function to invoke when the condition or event associated
with that callback occurs.

clientData A pointer to data to pass to the callback function when it is invoked.

35

Chapter 2: Components

36

For example, consider a member of a hypothetical Display class that instantiates another
hypothetical component class, Control. The code fragment below registers a function to
be invoked when the value set by the Control object changes and the Control object
triggers its valueChanged callback:

Display::createControl ()

{

_control = new Control (baseWidget, "control");
_control->addCallback (Control: :valueChanged, this,
(VkCallbackMethod) &Display::newValue) ;
}

In this example, the Display object requests that when the Control object triggers its
valueChanged callback, it should call the Display::newValue() function of the Display object
that created the Control object. The “(VkCallbackMethod)” cast for the callback function
is required.

All ViewKit callback functions must have this form:

void memberFunctionCallback (VkCallbackObject *obj,
void =*clientData,
void *callData)

The obj argument is the component that triggered the callback, which you must cast to
the correct type to allow access to members provided by that class. The clientData
argument is the optional client data specified when you registered the callback, and the
callData argument is optional data supplied by the component that triggered the
callback.

For example, you would define the Display::new Value() callback method used above as
follows:

class Display : VkComponent {
private:
void newValue (VkCallbackObject *, wvoid *, wvoid *);
//
bi

void Display: :newValue (VkCallbackObject* obj,
void *clientData,
void *callData) ;

{

Control *controlObj = (Control *) obj;

ViewKit Callback Support

// Perform whatever operation is needed to update

// the Display object. You can also access member

// functions from the Control object (controlObj).

// The clientData argument contains any information

// you provided as clientData when you registered

// this callback; cast it to the proper type to use it.
// If the Control object passed the new value as the

// callData argument, you can cast that to the proper
// type and use it.

}

There is also a version of addCallback() for registering non-member functions. Its syntax
is as follows:

void addCallback (const char *name,
VkCallbackFunction callbackFunction,
void *clientData = NULL)

The arguments for this version are as follows:

name The name of the ViewKit callback. You should always use the name of
the public static string constant for the appropriate callback, not a literal
string constant.

callbackFunction
The non-member function to invoke when the condition or event
associated with that callback occurs.

clientData A pointer to data to pass to the callback function when it is invoked.

The form of your non-member ViewKit callback functions must be as follows:

void functionCallback (VkCallbackObject *obj,
void =*clientData,
void *callData)

For example, suppose you have a non-member function errorCondition():

void errorCondition (VkCallbackObject *obj,
void =*clientData,
void *callData)

// Handle error condition

37

Chapter 2: Components

38

You could register it for a ViewKit callback with the line such as this:

sample->addCallback (SampleComponent: :errorCallback,
(VkCallbackFunction) &errorCondition) ;

The (vkCallbackFunction) cast for the callback function is required.

Removing ViewKit Callbacks

The removeCallback() function provided by the VkCallbackObject class removes
previously registered callbacks. The following version of removeCallback() removes a
member function registered as a callback:

void removeCallback (char *name,
VkCallbackObject *otherObject,
VkCallbackMethod memberFunction,
void *clientData = NULL)

The following version of removeCallback() removes a non-member function registered
as a callback:

void removeCallback (const char *name,
VkCallbackFunction callbackFunction,
void =*clientData = NULL)

To remove a callback, you must provide the same arguments specified when you
registered the callback. For example, the following line removes the Control callback
registered in the previous section:

_control->removeCallback (Control: :valueChanged, this,
(VkCallbackMethod) &Display::newValue) ;

The removeAllCallbacks() function removes multiple ViewKit callbacks:

void removeAllCallbacks ()
void removeAllCallbacks (VkCallbackObject *obj)

If you don’t provide an argument, this function removes all callbacks from an object,
regardless of which components registered the callbacks. If you provide a pointer to a
component, removeAllCallbacks() removes from an object all ViewKit callbacks that
were set by the specified component. For example, the following would remove from the
Control object _control all callbacks that the Display object had set:

_control->removeAllCallbacks (this) ;

ViewKit Callback Support

Defining and Triggering ViewKit Callbacks

To create a ViewKit callback for a component class, define a public static string constant
as the name of the callback. For clarity, you should use the string’s name as its value. For
example, the following defines a callback, StartStopPanel::actionCallback, for the
hypothetical StartStopPanel class discussed earlier in this chapter:

class StartStopPanel : public VkComponent {

public:
static const char *const actionCallback;
//
}
const char *const StartStopPanel::actionCallback = "actionCallback";

The callCallbacks() member function triggers a specified callback, invoking all member
functions registered for that callback:

callCallbacks (const char *callback, void *callData)

The first argument specifies the name of the callback. You should always use the name of
the public static string constant for the appropriate callback, not a literal string constant.
(For example, use StartStopPanel: :startCallback, not “startCallback”.) This
allows the compiler to catch any misspellings of callback names.

The second argument is used to supply any additional data that might be required.

For example, you could define the StartStopPanel::start() and StartStopPanel::stop()
functions to trigger the actionCallback and pass an enumerated value as call data to
indicate which button the user clicked:

enum PanelAction { START, STOP };
class StartStopPanel : public VkComponent {
public:

static const char *const actionCallback;

//

39

Chapter 2: Components

40

const char *const StartStopPanel::actionCallback = "actionCallback";

void StartStopPanel::start (Widget w, XtPointer callData)

{
}

callCallbacks (actionCallback, (void *) START) ;

void StartStopPanel::stop(Widget w, XtPointer callData)

{
bi

callCallbacks (actionCallback, (void *) STOP) ;

Predefined ViewKit Callbacks

The VkComponent class, and therefore all derived classes, includes the ViewKit callback
deleteCallback, which is invoked when the component’s destructor is called. You can use
this callback to prevent dangling pointers when maintaining pointers to other
components. The code fragment in Example 2-6 shows an example of this.

Example 2-6 Using the Predefined deleteCallback ViewKit Callback

class MainComponent : VkComponent {
//
AuxComponent *_ aux;
void createAux() ;
void auxDeleted (VkCallbackObject *, void *, wvoid *);
//
}i

//

void MainComponent: :createAux ()

{

_aux = new AuxComponent (baseWidget, "auxilliary");
_aux->addCallback (VkComponent: :deleteCallback, this,

(VkCallbackMethod) &MainComponent: :auxDeleted) ;
}

void MainComponent: :auxDeleted (VkCallbackObject*,
void *, void *)
{

}

_aux = NULL;

Deriving Subclasses to Create New Components

In the function MainComponent:createAux(), the MainComponent class creates an
instance of the AuxComponent and then immediately registers
MainComponent::auxDeleted() as a callback to be invoked when the AuxComponent
object is deleted.

The auxDeleted() callback definition simply assigns NULL to the AuxComponent object
pointer. All other MainComponent functions should test the value of _aux to ensure that
it is not NULL before attempting to use the AuxComponent object. This eliminates the
possibility that the MainComponent class would try to access the AuxComponent object
after deleting it, or attempting to delete it a second time.

In most cases you should not need to use this technique of registering deleteCallback
callbacks. It is necessary only if you need to create multiple pointers to a single object. In
general, you should avoid multiple pointers to the same object, but
VkComponent::deleteCallback provides a way to control situations in which you must
violate this guideline.

Deriving Subclasses to Create New Components

This section demonstrates how to use the VkComponent class to create new
components. It includes guidelines to follow when creating new components, an
example of creating a new component, and an example of subclassing that component to
create yet another component class.

Subclassing Summary

The following is a summary of guidelines for writing components based on the
VkComponent class:

¢ Encapsulate all of your component’s widgets in a single-rooted subtree. While some
extremely simple components might contain only a single widget, the majority of
components must create some type of container widget as the root of the
component’s widget subtree; all other widgets are descendents of this one.

* When you create your class’s base widget, assign it to the _baseWidget data member
inherited from the VkComponent class.

41

Chapter 2: Components

42

In most cases, create a component’s base widget and all other widgets in the class
constructor. The constructor should manage all widgets except the base widget,
which should be left unmanaged. You can then manage or unmanage a
component’s entire widget subtree using the show() and hide() member functions.

Accept at least two arguments in your component’s constructor: a string to be used
as the name of the base widget, and a widget to be used as the parent of the
component’s base widget. Pass the name argument to the VkComponent
constructor, which makes a copy of the string. Refer to a component’s name using
the _name member inherited from VkComponent or the name() access function.
Refer to a component’s base widget using the _baseWidget member inherited from
VkComponent or the baseWidget() access function.

Override the virtual className() member function for your component classes to
return a string consisting of the name of the component’s C++ class.

Define all Xt callbacks required by a component class as private static member
functions. In exceptional cases, you might want to declare them as protected so that
derived classes can access them.

Pass the this pointer as client data to all Xt callback functions. Callback functions
should retrieve this pointer, cast it to the expected component type and call a
corresponding member function. For clarity, use the convention of giving static
member functions used as callbacks the same name as the member function they
call, with the word “Callback” appended. For example, name a static member
function startCallback() if it calls the member function start().

Call installDestroyHandler() immediately after creating a component’s base
widget.

If you need to specify default resources for a component class, call the function
setDefaultResources() with an appropriate resource list before creating the
component’s base widget.

If you need to initialize data members from values in the resource database, define
an appropriate resource specification and call the function getResources()
immediately after creating the component’s base widget.

Deriving Subclasses to Create New Components

Creating a New Component

To illustrate many of the features of the VkComponent base class, this chapter has shown
how to build a simple class called StartStopPanel, which implements a control panel
containing two buttons. Figure 2-2 shows the default appearance of a StartStopPanel
object.

Figure 2-2 Default Appearance of a StartStopPanel Component
Example 2-7 lists the full implementation of this class.

Example 2-7 Simple User-Defined Component

[177/77777
// StartStopPanel.h

LIT11077717771777777

#ifndef STARTSTOPPANEL H
#define STARTSTOPPANEL H
#include <Vk/VkComponent.h>

enum PanelAction { START, STOP };

class StartStopPanel : public VkComponent {
public:
StartStopPanel (const char *, Widget) ;
~StartStopPanel () ;
virtual const char *className () ;

static const char *const actionCallback;
protected:
virtual void start (Widget, XtPointer) ;

virtual void stop(Widget, XtPointer) ;

Widget startButton;
Widget _stopButton;

43

Chapter 2: Components

private:
static void startCallback (Widget, XtPointer, XtPointer) ;
static void stopCallback (Widget, XtPointer, XtPointer) ;
static String defaultResources(];

bi

#endif
[1771777777
// StartStopPanel.c++
[1777

#include "StartStopPanel.h"
#include <Xm/RowColumn.hs>
#include <Xm/PushB.h>

// These are default resources for widgets in objects of this class.

// All resources will be prefixed by *<name> at instantiation,

// where <name> is the name of the specific instance, as well as the

// name of the baseWidget. These are only defaults, and may be

// overriden in a resource file by providing a more specific resource
// name.

String StartStopPanel:: defaultResources[] = {
"*start.labelString: Start",
"*stop.labelString: Stop",

NULL

}i
const char *const StartStopPanel::actionCallback = "actionCallback";
StartStopPanel: : StartStopPanel (const char *name, Widget parent) :VkComponent (name)
{ // Load class-default resources for this object before creating base widget
setDefaultResources (parent, defaultResources) ;
// Create an XmRowColumn widget as the component’s base widget
// to contain the buttons. Assign the widget to the baseWidget

// data member.

_baseWidget = XmCreateRowColumn (parent, name, NULL, 0);

44

Deriving Subclasses to Create New Components

// Set up callback to handle widget destruction
installDestroyHandler () ;
XtVaSetValues (_baseWidget, XmNorientation, XmHORIZONTAL, NULL) ;

// Create all other widgets as children of the base widget.
// Manage all child widgets.

_startButton = XmCreatePushButton (baseWidget, "start", NULL, O0);
_stopButton = XmCreatePushButton (baseWidget, "stop", NULL, O0);

XtManageChild(startButton) ;
XtManageChild(stopButton) ;

// Install static member functions as callbacks for the buttons

XtAddCallback (_startButton, XmNactivateCallback,
&StartStopPanel: :startCallback, (XtPointer) this);

XtAddCallback (_stopButton, XmNactivateCallback,
&StartStopPanel: :stopCallback, (XtPointer) this);

StartStopPanel: : ~StartStopPanel ()

{
}

// Empty

const char* StartStopPanel: :className ()

{
}

return "StartStopPanel";

void StartStopPanel::startCallback (Widget w, XtPointer clientData,

{

}

XtPointer callData)

StartStopPanel *obj = (StartStopPanel *) clientData;
obj->start (w, callData) ;

45

Chapter 2: Components

46

void StartStopPanel::stopCallback (Widget w, XtPointer clientData,
XtPointer callData)
{

StartStopPanel *obj = (StartStopPanel *) clientData;
obj->stop(w, callData);

}

void StartStopPanel::start (Widget, XtPointer)

{

callCallbacks (actionCallback, (void *) START) ;

}

void StartStopPanel::stop (Widget, XtPointer)

{

callCallbacks (actionCallback, (void *) STOP) ;

}

Using and Subclassing a Component Class

Example 2-7 slightly changes the StartStopPanel class from previous examples by
declaring the member functions StartStopPanel::start() and StartStopPanel::stop() as
virtual functions. This allows you to use the StartStopPanel in two different ways: using
the component directly and subclassing the component.

Using a Component Class Directly

The simplest way to use the StartStopPanel class is to register callbacks with
StartStopPanel::actionCallback. To do so, instantiate a StartStopPanel object in your
application and register as a callback a member function that tests the value of the call
data and performs some operation based on the value. This option avoids the additional
work required to create a subclass of StartStopPanel. This technique of using a
component class is most appropriate if the class already has all the functionality you
require.

Deriving Subclasses to Create New Components

Example 2-8 shows a simple example of using the StartStopPanel directly. The
PanelWindow class is a simple subclass of the VkSimpleWindow class, which is
discussed in Chapter 4, “ViewKit Windows.” It performs the following activities in its
constructor:

1. Itinstantiates a StartStopPanel object named “controlPanel” and assigns it to the
_controlPanel variable.

2. It specifies a vertical orientation for the StartStopPanel object.

3. Itinstalls PanelWindow::statusChanged() as a ViewKit callback function to be
called whenever StartStopPanel::actionCallback triggers. In this example,
PanelWindow::statusChanged() simply prints a status message to standard output
whenever it is called.

4. Itinstalls the _controlPanel object as the window’s “view.” Showing the
PanelWindow object will now display the _controlPanel object. (“Creating the
Window Interface” on page 93 describes how to create window interfaces.)

Example 2-8 Using a Component Directly
HITTTIITIT7 107107 777777777777777777771777717177711771117717

// PanelWindow.h
[177

#ifndef PANELWINDOW H
#define PANELWINDOW H

#include "StartStopPanel.h"
#include <Vk/VkSimpleWindow.h>

// Define a top-level window class
class PanelWindow: public VkSimpleWindow {
public:
PanelWindow (const char *name) ;

~PanelWindow () ;
virtual const char* className () ;

47

Chapter 2: Components

48

protected:
void statusChanged (VkCallbackObject *, void *, void *);

StartStopPanel * _controlPanel;

}i
#endif

[11777/77777
// PanelWindow.c++

LIT11771777777

#include "PanelWindow.h"
#include <iostream.h>

PanelWindow: : PanelWindow (const char *name) : VkSimpleWindow (name)

{

_controlPanel = new StartStopPanel ("controlPanel",
mainWindowWidget ()) ;

XtVaSetValues (_controlPanel ->baseWidget () ,
XmNorientation, XmVERTICAL, NULL) ;

_controlPanel->addCallback (StartStopPanel::actionCallback, this,
(VkCallbackMethod) &PanelWindow: :statusChanged) ;

addView (_controlPanel) ;

}

const char * PanelWindow: :className ()

{
}

PanelWindow: : ~PanelWindow ()

{
}

return "PanelWindow";

// Empty

Deriving Subclasses to Create New Components

void PanelWindow: : statusChanged (VkCallbackObject *obj,
void *, void *callData)
{

StartStopPanel * panel = (StartStopPanel *) obj;
PanelAction action = (PanelAction) callData;
switch (action) {
case START:
cout << "Process started\n" << flush;
break;
case STOP:
cout << "Process stopped\n" << flush;
break;
default:
cout << "Undefined state\n" << flush;

}

The following simple program displays the resulting PanelWindow object (Chapter 3,
“The ViewKit Application Class,” discusses the VkApp class):

[11777
// PanelTest.c++

LI777777777777777777177777177177777777777777717717717717771777

#include <Vk/VkApp.h>
#include "PanelWindow.h"

// Main driver. Just instantiate a VkApp and the PanelWindow,
// "show" the window and then "run" the application.

void main (int argc, char **argv)

{
VkApp *panelApp = new VKApp ("panelApp", &argc, argv) ;
PanelWindow *panelWin = new PanelWindow ("panelWin") ;

panelWin->show () ;
panelApp->run() ;

49

Chapter 2: Components

50

Figure 2-3 shows the resulting PanelWindow window displayed by this program.

Figure 2-3 Resulting PanelWindow Window

Using a Component Class by Subclassing

Another way to use the StartStopPanel class is to derive a subclass and override the
StartStopPanel::start() and StartStopPanel::stop() functions. This technique of using a
component class is most appropriate if you need to expand or modify a component’s
action in some way.

Example 2-9 creates ControlPanel, a subclass of StartStopPanel that incorporates the
features implemented in the PanelWindow class shown in Example 2-8.

Example 2-9 Subclassing a Component

[I1777
// ControlPanel.h

[I711077717777777777

#ifndef CONTROLPANEL, H
#define CONTROLPANEL, H
#include "StartStopPanel.h"

class ControlPanel : public StartStopPanel {

public:
ControlPanel (const char *, Widget) ;
~ControlPanel () ;
virtual const char *className() ;
protected:
virtual void start (Widget, XtPointer) ;
virtual void stop(Widget, XtPointer) ;
}i

#endif

Deriving Subclasses to Create New Components

[I77777777777777777717777777717777777777777771771771771771777

// ControlPanel.c++

[I7110777177777177777

#include "ControlPanel.h"

#include <iostream.h>

ControlPanel: :ControlPanel (const char *name , Widget parent)
StartStopPanel (name, parent)

{

}

XtVaSetValues (_baseWidget, XmNorientation, XmVERTICAL, NULL);

ControlPanel : : ~ControlPanel ()

{
}

// Empty

const char* ControlPanel::className ()

{
}

void ControlPanel::start (Widget w, XtPointer callData)

{

return "ControlPanel";

cout << "Process started\n" << flush;
StartStopPanel: :start (w, callData) ;

}

void ControlPanel::stop(Widget w, XtPointer callData)

{

cout << "Process stopped\n" << flush;
StartStopPanel: :stop(w, callData) ;

}

The ControlPanel constructor uses the StartStopPanel constructor to initialize the
component, creating the widgets and initializing the component’s data members. Then,
the ControlPanel constructor sets the orientation resource of the RowColumn widget,
which is the component’s base widget, to VERTICAL.

51

Chapter 2: Components

52

The ControlPanel class also overrides the virtual functions start() and stop() to perform
the actions handled previously by the PanelWindow class. After performing these
actions, the ControlPanel::start() and ControlPanel::stop() functions call
StartStopPanel::start() and StartStopPanel::stop(), respectively. While this may seem
unnecessary for an example this simple, it helps preserve the encapsulation of the
classes. You could now change the implementation of the StartStopPanel class, perhaps
adding a status indicator to the component that the StartStopPanel::start() and
StartStopPanel::stop() functions would update, and you would not have to change the
start() and stop() function definitions in derived classes such as ControlPanel.

The following simple example creates a VkSimpleWindow object, adds a ControlPanel
as the window’s view, and then displays the window:

LI77777777777777777717777777777777777777777771771771771771777

// PanelTest2.c++
[11777/77777

#include <Vk/VKkApp.h>
#include <Vk/VkSimpleWindow.h>
#include "ControlPanel.h"

// Main driver. Instantiate a VkApp, a VkSimpleWindow, and a
// ControlPanel, add the ControlPanel as the SimpleWindow's view,
// "show" the window and then "run" the application.

void main (int argc, char **argv)
{
VkApp *panellpp = new VKApp ("panel2App", &argc, argv) ;
VkSimpleWindow *panelWin = new VkSimpleWindow ("panelWin") ;
ControlPanel *control = new ControlPanel ("control",
panelWin-s>mainWindowWidget ()) ;
panelWin->addView (control) ;
panelWin->show () ;
panelApp->run() ;

VkNamelList Class

VkNamelList Class

The VkNamelList class provides a convenient way to maintain a list of character strings.
Member functions allow you to add and delete items, and sort, reverse, and otherwise
manipulate the list. See the VkNameList(3x) reference page for more details.

VkNamelList Constructor and Destructor

The VkNameList constructor has three overloaded versions:
® VkNameList (void)
Initializes an empty list.
® VkNameList (char * name)
Creates a list with name as the initial member.
® VkNameList (const VkNameListé& givenList)
Creates a clone of an existing VkNameList object.

The following is the VkNameList destructor, which frees all memory allocated by a
VkNamelList object:

void ~VkNameList (void)

VkNameList Member Functions

These functions add and delete items from the list:

e VkNamelList::add() adds an item or a VkINamelList to the list:

void add (char *item)
void add (const VkNameListé& [ist)

e VkNamelList::getIndex() returns the index of the first occurrence of the given item:
int getIndex (const char *item) const

If the item is not on the list, getIndex() returns -1.

53

Chapter 2: Components

54

VkNamelList::remove() deletes from the list the first occurrence, if any, of the given
item:

void remove (char *item)
A second version of remove() deletes items index through index + count -1:
void remove (int index, int count = 1)

To remove a number of items, beginning with a specified item, use
remove (getIndex (item), count).

VkNamelList::operator=() assigns the members of one list to another:
VkNameList& operator=(const VkNameListé& givenList)

Note: This function frees any strings that were in the object on the left side of the
equation. For instance in the following code fragment, any strings that were
previously in A are freed, and any references to the strings in A now point to freed
memory:

VkNameList *A = new VkNameList () ;
VkNameList *B = new VkNameList () ;

A = B;

These functions manipulate the list:

VkNamelList::sort() sorts the list alphanumerically:

void sort (void)

VkNamelList::reverse() reverses the order of the items on the list:

void reverse (void)

VkNamelList:removeDuplicates() deletes from the list all exact duplicates:

void removeDuplicates (void)

These functions access the list:

VkNamelist::size() returns the number of items in the list:

int size (void)

VkNamelList Class

VkNamelList:exists() checks to see if a specified string is in the list:

int exists (char *item)

If the string is not in the list, exists() returns 0.

VkNamelList::operator==() tests two VkNameList objects for equivalence:
int operator==(const VkNameListé& givenList)

operator==() returns success only if the lists have identical contents, in the same
order.

VkNamelList::mostCommonString() returns a copy of the most common string in
the list:

char* mostCommonString ((void)
The returned string must be freed by the caller.

VkNamelList::completeName() returns a VkNameList object containing all strings
in the original object that could be completions of the specified string:

VkNameList* completeName (char *name, char &*completed name,
int& numMatching)

When the function returns, the completedName argument contains the longest
matched substring common to all members of the returned list. numMatching
contains the number of matching elements found.

VkNamelList::getString() retrieves a copy of the item at position index in the list:
char* getString (int index)
The returned string must be freed by the caller.

VkNamelList::getSubStrings() returns a pointer to a list of items from the original
list that match the given substring:

VkNameList* getSubStrings (char *substring)
The VkNamelList returned by getSubStrings() must be deleted by the caller.

VkNamelList::getStringTable() returns a pointer to the members of the VkNameList
object in the form of an array of strings:

char** getStringTable (void)

Note: You must free the returned array itself, not the individual strings in the array.

55

Chapter 2: Components

56

* VkNamelList::getXmStringTable() returns a pointer to the members of the
VkNamelList object in the form of an array of compound strings:

XmStringTable getXmStringTable (void)
The returned XmStringTable must be freed by the caller using freeXmStringTable().

* VkNamelList:freeXmStringTable() frees the memory returned by
getXmStringTable():

static void freeXmStringTable (XmStringTable)

Using VkNameList

Example 2-10 demonstrates the use of the VkNameList class to construct a list
incrementally and display the results in reverse-sorted order in a Motif XmList widget.

Example 2-10 Manipulating a List of Strings Using the VkNameList Class
#include <Vk/VkApp.h>
#include <Vk/VkSimpleWindow.h>
#include <Xm/List.h>
#include <Vk/VkNameList.h>
// Define a top-level window class
class MyWindow: public VkSimpleWindow {
protected:
Widget list; // Hang on to widget as a data member
public:
MyWindow (const char *name) ;

~MyWindow () ;
virtual const char* className(); // Identify this class

bi

VkNamelList Class

// The MyWindow constructor provides a place in which
// to create a widget tree to be installed as a

//

“view” in the window.

MyWindow: :MyWindow (const char *name) : VkSimpleWindow (name)

{

_list = XmCreatelList (mainWindowWidget (), “list”, NULL, 0);
// Create a name list object

VkNameList *items = new VkNameList () ;
// Add some items

items->add (“One”) ;

items->add (“Two”) ;

items->add (“Three”) ;

items->add (“Four”) ;
(

items->add (“One”) ;

items->removeDuplicates(); // Get rid of duplications
items->sort () ; // Sort the list
items->reverse () ; // Now reverse it

// Display the items in the list widget

XtVaSetValues(list, XmNitems, (XmStringTable) (*items),
XmNitemCount, items->size(), NULL);

addview(list);

const char * MyWindow::className ()

{
}

return “MyWindow”;

MyWindow: : ~MyWindow ()

{
}

// Empty

57

Chapter 2: Components

58

// Main driver. Just
// top-level window,

instantiate a VkApp and a
“show” the window and then

// “run” the application.

void main (int argc,
{
VkApp *app =
MyWindow *win

win->show () ;
app->run() ;

char **argv)

new VkApp (“Hello”, &argc,
new MyWindow (“hello”) ;

argv) ;

Chapter 3

The ViewKit Application Class

This chapter describes the VkApp class, which handles application-level tasks such as
Xt initialization, event handling, window management, cursor control, and application
busy states. Figure 3-1 shows the inheritance graph for VkApp and an auxiliary class,
VkCursorList.

i VkComponent i— VKApp

Figure 3-1 Inheritance Graph for VKkApp

Overview of the VkApp Class

The VkApp class, derived from the VkComponent class, provides facilities required by
all ViewKit applications. In all of your ViewKit applications you must create a single
instance of VkApp or a class derived from VkApp.

The primary responsibility of VkApp is to handle the initialization and event-handling
operations common to all Xt-based applications. When you write a ViewKit application,
instead of calling Xt functions such as XtApplInitialize(3Xt) and XtAppMainLoop(3Xt),
you simply instantiate and use a VkApp object.

The VkApp class also provides support for other application-level tasks. For example,
VkApp provides functions for quitting your application; showing, hiding, iconifying,
and opening all of the application’s windows; handling application busy states;
maintaining product version information; and setting the application’s cursor shape.

The VkApp class also stores some essential information that can be accessed throughout
an application. This information includes a pointer to the X Display structure associated
with the application’s connection to the server; the XtAppContext structure required by
many Xt functions; the application’s name; and the application’s class name. This
information is maintained in the private portion of the class and is available through
public access functions.

59

Chapter 3: The ViewKit Application Class

VkApp Constructor

60

In all ViewKit applications you must create a single instance of the VkApp class (or a
derived class) before instantiating any other ViewKit objects.The VkApp constructor
initializes the Xt Intrinsics and creates a shell, which is never visible, to serve as the
parent for all of the application’s main windows. ViewKit supports a commonly used
multi-shell architecture as described in the book X Window System Toolkit (Asente and
Swick, 1990). ViewKit creates all windows (using the VkSimpleWindow and
VkWindow classes described in Chapter 4, “ViewKit Windows”) as popup children of
the shell created by VkApp.

When you create an instance of the VkApp class, the constructor assigns a pointer to the
VKApp object to the global variable theApplication. The <Vk/VkApp.h> header file
declares this global variable as follows:

extern VkApp *theApplication;

As a result, the theApplication pointer is available in any file that includes the
<Vk/VkApp.h> header file. This provides easy use of VkApp’s facilities and data
throughout your program.

The following is the syntax of the most frequently used VkApp constructor:

VkApp (char *appClassName, int *argc, char **argu,
XrmOptionDescRec *options = NULL,
int numOptions = 0)

The appClassName argument designates the application class name, which is used when
loading application resources. Note that VkApp differs from other ViewKit components
in that you provide the application class name as an argument to the constructor rather
than overriding the className() function. This allows you to set the application class
name without creating a subclass of VkApp.VkApp also differs from other ViewKit
components in that you do not provide a component name in the constructor; instead,
ViewKit uses the command that you used to invoke your application (argv[0]) as the
component name.

The second and third arguments to the VkApp constructor must be pointers to argc and
the application’s argv array. The VkApp constructor passes these arguments to
XtOpenDisplay(3Xt), which parses the command line according to the standard Xt
command-line options, loads recognized options into the application’s resource
database, and modifies argc and argov to remove all recognized options.

VkApp Constructor

You can specify additional command-line options to parse by passing an
XrmOptionDescRec(3Xt) table as the options argument and specifying the number of
entries in the table with the numOptions argument. This is sufficient for setting simple
resource values from the command line; however, if you want to set application-level
variables using either the command line or resource values, you should follow these
steps:

1. Derive a subclass of VkApp.

2. Use the protected member function VkApp::parseCommandLine() to parse
command-line options.

3. Use getResources() to set the variables based on resource values.
This process is illustrated in Example 3-6 in “Deriving Classes From VkApp” on page 83.

If your application has more elaborate needs than the normal constructor addresses, you
may wish to use the following constructor:

VkApp (char *appClassName,
int *arg_c,
char **arg v,
ArgList arglist,
Cardinal argCount,
void (*preRealizeFunction) (Widget w),
XrmOptionDescRec *optionList,
int sizeOfOptionList)

You should use this constructor when your application must set creation-time resources
on the invisible top-level shell widget that VKApp creates. For instance, the only way to
ensure that your application has all of its shells in a single, non-default visual is to use
this constructor to set the visual attributes. See the VkApp(3x) reference page for more
details.

61

Chapter 3: The ViewKit Application Class

Running ViewKit Applications

Once you have instantiated a VkApp object and set up your program’s interface, call
VKkApp::run():

virtual void run /()

The run() function enters a custom main loop that supports dispatching raw events in
addition to the normal Xt event handling. See “ViewKit Event Handling” on page 62 for
more information on event handling.

Note: Do not call XtMainLoop(3Xt) or XtAppMainLoop(3Xt) in a ViewKit application.
Example 3-1 illustrates the typical use of VkApp in the main body of a ViewKit program.

Example 3-1 Typical Use of the VkApp Class in a ViewKit Program
#include <Vk/VkApp.h>

// Application-specific setup

void main (int argc, char **argv)

{

VkApp *myApp = new VKApp ("MyApp", &argc, argv) ;
// RApplication-specific code

myApp->run(); // Run the application

ViewKit Event Handling

62

The VkApp::run() function is ViewKit’s main event loop. run() implements the event
handling normally supported by XtAppMainLoop() or XtMainLoop(). run() calls
run_first() to do some internal initialization, and then enters a main loop that dispatches
application events, raw X events, and normal Xt events. run() also allows for customized
event handling. See “Customizing Event Handling” for more information.

Additionally, run() supports events not normally handled by the Xt dispatch mechanism.
For example, run() can handle events registered for non-widgets (such as a
PropertyNotify event on the root window).

ViewKit Event Handling

When run() receives an event not handled by the Xt dispatch mechanism, it calls the
virtual function VkApp::handleRawEvent():

virtual void handleRawEvent (XEvent *event)

The default action of VkApp::handleRawEvent() is to pass the event to the
handleRawEvent() function of each instance of VkSimpleWindow (or subclass) in the
application. By default, these member function are empty.

If you want to handle events through this mechanism, call XSelectInput(3X) to select the
events that you want to receive, and override handleRawEvent() in a VkApp or
VkSimpleWindow subclass to implement your event processing. Generally, in keeping
with object-oriented practice, you should override handleRawEvent() in a
VkSimpleWindow subclass rather than a VkApp subclass, unless your event processing
has an application-wide effect. If you override VkApp::handleRawEvent() in a derived
class, call the base class’s handleRawEvent() function after performing your event
processing.

Note: If you explicitly call XtNextEvent(3Xt) and XtDispatchEvent(3Xt) in your
application, you should pass any undispatched events to handleRawEvent().

In addition to the automatic event dispatching provided by run(), you can force ViewKit
to handle all pending events immediately by calling VkApp::handlePendingEvents():

virtual void handlePendingEvents ()

This function retrieves and dispatches all X events as long as there are events pending.
Unlike XmUpdateDisplay(3Xm), which handles only Expose events,
handlePendingEvents() handles all events. In other words, handlePendingEvents()
does not just refresh windows, it also handles all pending events including user input.
You might want to call this function periodically to process events during a
time-consuming task.

handlePendingEvents(), like run() can also be customized. See “Customizing Event
Handling” for more information.

63

Chapter 3: The ViewKit Application Class

Customizing Event Handling

64

If you want to customize your application’s event handling, you do not need to override
run(). In fact, overriding run() is strongly discouraged. If you really must override, see
the VkApp(3x) reference page for more information.

You can customize event handling in any of the following ways:
® Use standard X mechanisms to add event handlers.
* Use one or more workprocs.

* Maintain your own queue of all that you need to do, and then dispatch that work in
a single workproc.

e Use run(Boolean(*appEventHandler) (XEvent &)) to provide custom event handling.

run(Boolean(*appEventHandler) (XEvent &)) is the only safe way to customize ViewKit’s
event loop. It allows you to customize the event loop without taking responsibility for
the entire process.

Each time through the event loop, before doing any event processing of its own, run()
calls appEventHandler() with the event. appEventHandler() can then handle the event
completely, handle it partially, or not handle it at all. If appEventHandler() has
completely handled the event, it returns TRUE and no further handling of that event
occurs. If the application decides not to handle the event, or if more handling is needed,
then appEventHandler() returns FALSE and run() finishes the job.

Much like run(), handlePendingEvents() can be customized by calling
handlePendingEvents(Boolean(*appEventHandler)(XEvent &)).

For a better understanding of how to customize event handling, see the demo program
Jusr/share/src/ViewKit/Basic/run.c++.

Quitting ViewKit Applications

Quitting ViewKit Applications

If you want to exit a ViewKit application, but also want to give other parts of the
application the option to abort the shutdown if necessary, call VkApp::quitYourself():

virtual void quitYourself ()

VKkApp::quitYourself() calls the okToQuit() function for each top-level
VkSimpleWindow (or subclass). All windows that return TRUE are deleted; however, if
the okToQuit() function of any window returns FALSE, the shutdown is terminated and
the windows returning FALSE are not deleted. quitYourself() queries the windows in the
reverse order in which they were created, except that it checks the window designated as
the main window last. (See “Managing Top-Level Windows” on page 66 for information
on designating the main window.)

The default, as provided by VkComponent, is for the okToQuit() function to return
TRUE in all cases. You must override okToQuit() for all components that you want to
perform a check before quitting. For example, you could override the okToQuit()
function for a window to post a dialog asking the user whether he or she really wants to
exit the application and then abort the shutdown if the user says to do so. Another
possibility would be to return FALSE if a component is in the process of updating a file.

Usually, only VkSimpleWindow and its subclasses use okToQuit(). In some cases, you
might want to check one or more components contained within a window before
quitting. To do so, override the okToQuit() function for that window to call the
okToQuit() functions for all the desired components. Override the okToQuit() functions
for the other components to perform whatever checks are necessary.

A ViewKit application automatically exits once all of its windows are deleted. This can
occur as a result of any of the following circumstances:

e The application calls quitYourself().

e The application deletes all of its windows individually.

® The user deletes all application windows through window manager interaction (for
example, choosing the Close option in the window menu provided by the window
manager).

Once all windows are deleted, the application exits by calling VkApp::terminate():

virtual void terminate (int status = 0)

65

Chapter 3: The ViewKit Application Class

terminate() is a virtual function that calls exit(2). terminate() is also called from within
ViewKit when any fatal error is detected.

You can call terminate() explicitly to exit a ViewKit application immediately. Usually you
would use this if you encounter a fatal error. If you provide a status argument, your
application uses it as the exit value that the application returns.

You can override terminate() in a VkApp subclass to perform any cleanup operations
that your application requires before aborting (for example, closing a database). If you
override terminate() in a derived class, call the base class’s terminate() function after
performing your cleanup operations.

Note: Even though you can override quitYourself() in a VkApp subclass, in most cases
you should override terminate() instead. This ensures that any cleanup operations you
add are performed no matter how the application exits (for example, by error condition
or by user interaction with the window manager). If you decide to override
quitYourself(), you must perform your cleanup operations before calling the base class’s
quitYourself(): if quitYourself() succeeds in deleting all windows, your application calls
terminate() and exits before ever returning from quitYourself().

Managing Top-Level Windows

66

The VkApp object maintains a list of all windows created in an application. The VkApp
object uses this list to manage the application’s top-level windows. So that VkApp can
properly manage windows, you should always use the VkSimpleWindow and
VkWindow classes to create top-level windows in your application. The classes are
discussed in Chapter 4, “ViewKit Windows.”

Every application has a main window. By default, the first window you create is treated as
the main window. You can use the VkApp::setMainWindow() function to specify a
different window to treat as the main window:

void setMainWindow (VkSimpleWindow *window)

The access function VkApp::mainWindow() returns a pointer to the VkSimpleWindow
(or subclass) object installed as the application’s main window:

VkSimpleWindow *mainWindow () const

Setting Application Cursors

Additionally, the VkApp class supports several operations that can be performed on all
top-level windows in a multi-window application. All of the following functions take no
arguments, have a void return value, and are declared virtual:

show() Displays all of the application’s hidden, non-iconified windows.
hide() Removes all of the application’s windows from the screen.

iconify() Iconifies all visible windows in the application.

open() Opens all iconified windows in the application.

raise() Raises all visible windows in the application to the top of the window

manager’s window stack.
lower() Lowers all visible windows in the application to the bottom of the
window manager’s window stack.
You can also specify whether or not your application’s windows start in an iconified state
using VkApp::startupIconified():

void startupIconified(const Boolean flag)
If flag is TRUE, then the application starts all windows in the iconified state.

Note: You must call startuplconified() before calling run(), otherwise it will not have any
effect.

Setting Application Cursors

By default, VkApp installs two cursors for ViewKit applications: an arrow for normal
use, and a watch for display during busy states. (See “Supporting Busy States” on
page 75 for information on busy states in ViewKit applications.) The VkApp class also
provides several functions for installing your own cursors and retrieving the currently
installed cursors.

Setting and Retrieving the Normal Cursor

VkApp::setNormalCursor() sets the normal cursor for use in all of your application’s
windows while the application is not busy:

void setNormalCursor (Cursor c)

67

Chapter 3: The ViewKit Application Class

68

You must provide setNormalCursor() with a Cursor argument. See the
XCreateFontCursor(3X) reference page for more information on creating an X cursor.

You can retrieve the current normal cursor with VkApp::normalCursor():

virtual Cursor normalCursor ()

Setting and Retrieving the Busy Cursor

The VkApp class supports both fixed and animated busy cursors. A fixed busy cursor
retains the same appearance throughout a busy state. An animated busy cursor is actually
a sequence of pixmaps that you can cycle through while in a busy state, giving the
appearance of animation. “Animating the Busy Cursor” on page 78 describes the
procedure to follow to cycle through an animated busy cursor’s pixmaps. If you install
an animated busy cursor but do not cycle it, VkApp simply uses the animated cursor’s
current pixmap as a fixed busy cursor.

The default busy cursor that VkApp installs, a watch, is actually an animated cursor.

Setting and Retrieving a Fixed Busy Cursor

VkApp::setBusyCursor() sets a fixed busy cursor for use in all of your application’s
windows while the application is busy:

void setBusyCursor (Cursor c)
You must provide setBusyCursor() with a Cursor argument.

You can retrieve the current busy cursor with VkApp::busyCursor():

virtual Cursor busyCursor ()

Creating, Setting, and Retrieving an Animated Busy Cursor

To create an animated busy cursor, you must create a subclass of the abstract base class
VkCursorList. The following is the syntax of the VkCursorList constructor:

VkCursorList (int numCursors)

Setting Application Cursors

numCursors is the number of cursor pixmaps in your animated cursor.The VkCursorList
constructor uses this value to allocate space for an array of Cursor pointers. In your
subclass constructor, you should perform any other initialization required by your
cursor.

In your subclass, you must also override the pure virtual function
VkCursorList::createCursor():

virtual void createCursor (int index)

createCursor() creates the cursor for the given index in the animated cursor array.
Cursors are numbered sequentially beginning with zero. When your application
animates the cursor, it step through the cursor array sequentially. createCursor() must
assign the cursor it creates to the index entry in the protected _cursorList array:

Pixmap *_cursorList

For example, Example 3-2 shows the code needed to create an animated hourglass busy
cursor.

Example 3-2 Creating an Animated Busy Cursor

#include <Vk/VkApp.h>
#include <Vk/VkResource.hs>
#include <Vk/VkCursorList.h>

// Define an array of bit patterns that represent each frame of the cursor
// animation.

#define NUMCURSORS 8

static char time bits[NUMCURSORS] [32*32] = {

{
0x00, 0x00, 0x00, 0x00, Oxfe, Oxff, Oxff, 0x7f, Oxfe, Oxff, Oxff, Ox7f,
0x8c, 0x00, 0x00, 0x31, Ox4c, 0x00, 0x00, 0x32, Ox4c, Oxff, Ooxff, 0x32,
Ox4c, Oxff, Oxff, 0x32, Ox4c, Oxff, Oxff, 0x32, Ox4c, Oxff, Oxff, 0x32,
0x8c, O0xfe, 0x7f, 0x31, 0x0c, O0xfd, Oxbf, 0x30, 0x0c, Oxfa, 0x5f, 0x30,
0x0c, Oxe4, 0x27, 0x30, 0x0c, 0x98, 0x19, 0x30, 0x0c, 0x60, 0x06, 0x30,
0x0c, 0x80, 0x01, 0x30, 0xOc, 0x80, 0x01, 0x30, 0x0Oc, 0x60, 0x06, 0x30,
0x0c, 0x18, 0x18, 0x30, 0x0c, 0x04, 0x20, 0x30, 0x0c, 0x02, 0x40, 0x30,
0x0c, 0x01, 0x80, 0x30, 0x8c, 0x00, 0x00, 0x31, 0Ox4c, 0x00, 0x00, 0x32,
Ox4c, 0x00, 0x00, 0x32, 0x4c, 0x00, 0x00, 0x32, Ox4c, 0x00, 0x00, 0x32,
Ox4c, 0x00, 0x00, 0x32, 0x8c, 0x00, 0x00, 0x31, Oxfe, Oxff, Oxff, Ox7f,
oxfe, Oxff, Oxff, 0x7f£, 0x00, 0x00, 0x00, 0x00},

{

69

Chapter 3: The ViewKit Application Class

70

0x00,
0x8c,
Ox4c,
0x8c,
0x0c,
0x0c,
0x0c,
0x0c,
Ox4c,
Ox4c,
oxfe,

0x00,
0x8c,
Ox4c,
0x8c,
0x0c,
0x0c,
0x0c,
0x0c,
Ox4c,
Ox4c,
oxfe,

0x00,
0x8c,
Ox4c,
0x8c,
0x0c,
0x0c,
0x0c,
0x0c,
Ox4c,
Ox4c,
oxfe,

0x00,
0x8c,
Ox4c,
0x8c,
0x0c,
0x0c,
0x0c,
0x0c,
Ox4c,

0x00,
0x00,
0x3f,
oxfe,
0xe4,
0x80,
0x18,
0x81,
0x00,
0x00,
oxff,

0x00,
0x00,
0x03,
oxfe,
Oxe4,
0x80,
0x18,
0x81,
oxfc,
0x00,
oxff,

0x00,
0x00,
0x00,
0x3e,
0xe4,
0x80,
0x18,
0x81,
oxfe,
0x00,
oxff,

0x00,
0x00,
0x00,
0x06,
Oxe4,
0x80,
0x18,
0xf1,
oxff,

0x00,
0x00,
oxfc,
o0x7f,
0x27,
0x01,
0x19,
0x80,
0x01,
0x00,
oxff,

0x00,
0x00,
0xcO,
ox7f,
0x27,
0x01,
0x19,
0x80,
0x3f,
0x00,
oxff,

0x00,
0x00,
0x00,
0x7¢c,
0x27,
0x01,
0x19,
0x80,
0x7f,
0x00,
oxff,

0x00,
0x00,
0x00,
0x60,
0x27,
0x01,
0x19,
0x8f,
oxff,

0x00,
0x31,
0x32,
0x31,
0x30,
0x30,
0x30,
0x30,
0x32,
0x32,
ox7f,

0x00,
0x31,
0x32,
0x31,
0x30,
0x30,
0x30,
0x30,
0x32,
0x32,
ox7f,

0x00,
0x31,
0x32,
0x31,
0x30,
0x30,
0x30,
0x30,
0x32,
0x32,
ox7f,

0x00,
0x31,
0x32,
0x31,
0x30,
0x30,
0x30,
0x30,
0x32,

oxfe,
0x4c,
0x4c,
0x0c,
0x0c,
0x0c,
0x0c,
0x8c,
Ox4c,
0x8c,
0x00,

oxfe,
Ox4c,
Ox4c,
0x0c,
0x0c,
0x0c,
0x0c,
0x8c,
0x4c,
0x8c,
0x00,

oxfe,
Ox4c,
Ox4c,
0x0c,
0x0c,
0x0c,
0x0c,
0x8c,
0x4c,
0x8c,
0x00,

oxfe,
Ox4c,
Ox4c,
0x0c,
0x0c,
0x0c,
0x0c,
0x8c,
Ox4c,

oxff,
0x00,
oxff,
oxfd,
0x98,
0x80,
0x84,
0x00,
oxfc,
0x00,
0x00,

oxff,
0x00,
ox1f,
oxfd,
0x98,
0x80,
0x84,
0x00,
0xfe,
0x00,
0x00,

oxff,
0x00,
0x03,
oxfd,
0x98,
0x80,
0x84,
0xeO0,
oxff,
0x00,
0x00,

oxff,
0x00,
0x00,
0x1d,
0x98,
0x80,
0x84,
oxfc,
oxff,

oxff,
0x00,
oxff,
Oxbf,
0x19,
0x01,
0x20,
0x01,
0x3f,
0x00,
0x00,

oxff,
0x00,
0xfs8,
0xbf,
0x19,
0x01,
0x20,
0x01,
0x7f,
0x00,
0x00,

oxff,
0x00,
0xcO,
0xbf,
0x19,
0x01,
0x20,
0x07,
oxff,
0x00,
0x00,

oxff,
0x00,
0x00,
0xb8,
0x19,
0x01,
0x20,
0x3f,
oxff,

o0x7f,
0x32,
0x32,
0x30,
0x30,
0x30,
0x30,
0x31,
0x32,
0x31,
0x00},

o0x7f,
0x32,
0x32,
0x30,
0x30,
0x30,
0x30,
0x31,
0x32,
0x31,
0x00},

o0x7f,
0x32,
0x32,
0x30,
0x30,
0x30,
0x30,
0x31,
0x32,
0x31,
0x00},

o0x7f,
0x32,
0x32,
0x30,
0x30,
0x30,
0x30,
0x31,
0x32,

oxfe,
Ox4c,
0x4c,
0x0c,
0x0c,
0x0c,
0x0c,
Ox4c,
Ox4c,
oxfe,

oxfe,
Ox4c,
Ox4c,
0x0c,
0x0c,
0x0c,
0x0c,
0x4c,
Ox4c,
oxfe,

oxfe,
Ox4c,
Ox4c,
0x0c,
0x0c,
0x0c,
0x0c,
0x4c,
Ox4c,
oxfe,

oxfe,
Ox4c,
Ox4c,
0x0c,
0x0c,
0x0c,
0x0c,
0x4c,
Ox4c,

oxff,
0x03,
oxff,
oxfa,
0x60,
0x60,
0x02,
0x80,
oxff,
oxff,

oxff,
0x00,
0x7f,
oxfa,
0x60,
0x60,
0x02,
0xcO,
oxff,
oxff,

oxff,
0x00,
0x0f,
oxfa,
0x60,
0x60,
0x02,
oxfc,
oxff,
oxff,

oxff,
0x00,
0x03,
0x7a,
0x60,
0x60,
0x82,
oxfe,
oxff,

oxff,
0xcO,
oxff,
0x5f,
0x06,
0x06,
0x41,
0x00,
oxff,
oxff,

oxff,
0x00,
oxfe,
0x5f,
0x06,
0x06,
0x41,
0x07,
oxff,
oxff,

oxff,
0x00,
0xfo,
0x5f,
0x06,
0x06,
0x41,
0x3f,
oxff,
oxff,

oxff,
0x00,
0xcO,
0x5e,
0x06,
0x06,
0x41,
ox7f,
oxff,

o0x7f,
0x32,
0x32,
0x30,
0x30,
0x30,
0x30,
0x32,
0x32,
ox7f,

o0x7f,
0x32,
0x32,
0x30,
0x30,
0x30,
0x30,
0x32,
0x32,
ox7f,

o0x7f,
0x32,
0x32,
0x30,
0x30,
0x30,
0x30,
0x32,
0x32,
ox7f,

o0x7f,
0x32,
0x32,
0x30,
0x30,
0x30,
0x30,
0x32,
0x32,

Setting Application Cursors

0Ox4c, 0x00, 0x00, 0x32, 0x8c, 0x00, 0x00, 0x31, Ooxfe, Ooxff, Oxff, Ox7f,
oxfe, Oxff, Oxff, 0x7f£, 0x00, 0x00, 0x00, 0x00},

{
0x00, 0x00, 0x00, 0x00, Oxfe, Oxff, Oxff, 0x7f, Oxfe, Oxff, Oxff, Ox7f,
0x8c, 0x00, 0x00, 0x31, Ox4c, 0x00, 0x00, 0x32, 0Ox4c, 0x00, 0x00, 0x32,
Ox4c, 0x00, 0x00, 0x32, 0x4c, 0x00, 0x00, 0x32, 0Ox4c, 0x00, 0x00, 0x32,
0x8c, 0x02, 0x40, 0x31, 0x0c, 0x05, Oxa0O, 0x30, 0Ox0Oc, Oxla, 0x58, 0x30,
0x0c, 0x64, 0x26, 0x30, 0x0c, 0x98, 0x19, 0x30, 0x0c, 0x60, 0x06, 0x30,
0x0c, 0x80, 0x01, 0x30, 0x0Oc, 0x80, 0x01, 0x30, O0x0c, 0x60, 0x06, 0x30,
0x0c, 0x18, 0x19, 0x30, 0xO0c, 0x84, 0x20, 0x30, 0x0c, Oxe2, 0x47, 0x30,
0x0c, 0xf9, 0x9f, 0x30, 0x8c, Oxfe, 0x7f, 0x31, Ox4c, Oxff, Oxff, 0x32,
0x4c, Oxff, Oxff, 0x32, Ox4c, Oxff, Oxff, 0x32, Ox4c, Oxff, Oxff, 0x32,
0Ox4c, 0x00, 0x00, 0x32, 0x8c, 0x00, 0x00, 0x31, Ooxfe, Ooxff, Oxff, Ox7f,
oxfe, Oxff, Oxff, 0x7f£, 0x00, 0x00, 0x00, 0x00},

{
0x00, 0x00, 0x00, 0x00, Oxfe, Oxff, Oxff, 0x7f, Oxfe, Oxff, Oxff, Ox7f,
0x8c, Oxff, Oxff, 0x31, Oxcc, Oxff, Oxff, 0x33, Ox4c, 0x00, 0x00, 0x32,
Ox4c, 0x00, 0x00, 0x32, O0x4c, 0x00, 0x00, 0x32, 0Ox4c, 0x00, 0x00, 0x32,
0x8c, 0x00, 0x00, 0x31, 0x0c, 0x0l1, 0x80, 0x30, 0Ox0Oc, 0x02, 0x40, 0x30,
0x0c, 0x04, 0x20, 0x30, 0xOc, 0x18, 0x18, 0x30, 0x0c, 0x60, 0x06, 0x30,
0x0c, 0x80, 0x01, 0x30, 0x0Oc, 0x80, 0x01, 0x30, O0x0c, 0x60, 0x06, 0x30,
0x0c, 0x98, 0x19, 0x30, 0x0c, Oxe4, 0x27, 0x30, O0x0c, Oxfa, 0x5f, 0x30,
0x0c, Oxfd, Oxbf, 0x30, 0x8c, Oxfe, 0x7f, 0x31, Ox4c, Oxff, Oxff, 0x32,
0x4c, Oxff, Oxff, 0x32, Ox4c, Oxff, Oxff, 0x32, Ox4c, Oxff, Oxff, 0x32,
0x4c, 0x00, 0x00, 0x32, 0x8c, 0x00, 0x00, 0x31, Ooxfe, Ooxff, Oxff, Ox7f,
oxfe, Oxff, Oxff, 0x7f£, 0x00, 0x00, 0x00, 0x00},

{
0x00, 0x00, 0x00, 0x00, 0x06, 0x00, 0x00, 0x60, Oxfe, Oxff, Oxff, Ox7f,
oxfe, Ooxff, oxff, 0x7f, 0x06, 0x00, 0x00, 0x60, 0x06, 0x00, 0x00, 0x60,
0xf6, 0x01, 0x80, Ox6f, 0x0e, 0x02, 0x40, 0x78, 0Oxe6, 0x05, 0x20, 0x78,
0xe6, 0x0b, 0x10, 0x78, Oxe6, 0x17, 0x08, 0x78, Oxe6, 0x2f, 0x04, 0x78,
Oxe6, 0x2f, 0x04, 0x78, O0xe6, 0x5f, 0x02, 0x78, O0xe6, 0x5f, 0x02, 0x78,
0xe6, O0xbf, 0x01, 0x78, O0xe6, O0xbf, 0x01, 0x78, Oxe6, 0x5f, 0x02, 0x78,
0xe6, 0x5f, 0x02, 0x78, 0xe6, 0x2f, 0x04, 0x78, Oxe6, 0x2f, 0x04, 0x78,
0xe6, 0x17, 0x08, 0x78, 0Oxe6, 0xOb, 0x10, 0x78, Oxe6, 0x05, 0x20, 0x78,
0x0e, 0x02, 0x40, 0x78, O0xf6, 0x01, 0x80, Ox6f, 0x06, 0x00, 0x00, 0x60,
0x06, 0x00, 0x00, 0x60, Oxfe, Oxff, Oxff, Ox7f, Oxfe, Oxff, Oxff, Ox7f,
0x06, 0x00, 0x00, 0x60, 0x00, 0x00, 0x00, 0x00}

}i

// Masks used for this cursor. The last frame requires a different
// mask, but all other frames can use the same mask.

71

Chapter 3: The ViewKit Application Class

static char time mask bits[] = {

oxff, Ooxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff,
0x8e, Oxff, Oxff, 0x71, Oxce, Oxff, Oxff, 0x73, Oxce, O0xff, Oxff, 0x73,
Ooxce, Oxff, Oxff, 0x73, Oxce, Oxff, Oxff, 0x73, Oxce, Oxff, Oxff, 0x73,
0x8e, Oxff, Oxff, 0x71, O0x0e, Oxff, Oxff, 0x70, 0xOe, Oxfe, 0x7f, 0x70,
0x0e, Oxfc, 0x3f, 0x70, O0x0e, 0xf8, 0x1f, 0x70, 0x0Oe, 0xe0, 0x07, 0x70,
0x0e, 0x80, 0x01, 0x70, 0x0e, 0x80, 0x0l1l, 0x70, 0Ox0Oe, 0xe0, 0x07, 0x70,
0x0e, 0xf8, O0xl1f, 0x70, 0x0Oe, Oxfc, 0x3f, 0x70, 0x0Oe, Oxfe, 0x7f, 0x70,
0x0e, Oxff, Oxff, 0x70, 0x8e, Oxff, Oxff, 0x71, Oxce, Oxff, Oxff, 0x73,
Ooxce, Oxff, Oxff, 0x73, Oxce, Oxff, Oxff, 0x73, Oxce, Oxff, Oxff, 0x73,
oxce, Oxff, Oxff, 0x73, 0x8e, Oxff, Oxff, Oxfl, Oxff, Oxff, Oxff, Oxff,
oxff, oxff, oxff, Ooxff, Oxff, Oxff, Oxff, Oxff};

#define time7 mask width 32

#define time7_mask height 32

#define time7 mask x hot 15

#define time7 mask y hot 15

static char time7 mask bits[] = {
0x0f, 0x00, 0x00, Oxfo, Ooxff, Ooxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff,
oxff, Oxff, oxff, oxff, 0x07, 0x00, 0x00, 0xe0, 0x07, 0x00, 0x00, 0xe0,
0xf7, 0x01, 0x80, Oxef, Oxff, 0x03, OxcO, Oxff, Oxff, 0x07, O0xel0, Oxff,
oxff, 0x0f, 0xf0o, Oxff, Oxff, Ox1f, Oxf8, Oxff, Oxff, 0x3f, Oxfc, Oxff,
oxff, 0x3f, Oxfc, Oxff, Oxff, 0x7f, Oxfe, Oxff, Oxff, 0x7f, Oxfe, Oxff,
oxff, oxff, Ooxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff, 0x7f, Oxfe, Oxff,
oxff, 0x7f, Oxfe, Oxff, Oxff, 0x3f, Oxfc, Oxff, Oxff, 0x3f, Oxfc, Oxff,
oxff, O0x1f, 0xf8, Oxff, Oxff, 0x0f, 0xfo, Oxff, Oxff, 0x07, 0xe0, Oxff,
oxff, 0x03, OxcO, Oxff, 0xf7, 0x01, 0x80, Oxef, 0x07, 0x00, 0x00, 0OxeO0,
0x07, 0x00, 0x00, OxeO, Oxff, oxff, Oxff, Oxff, Oxff, Oxff, Oxff, Oxff,
oxff, oxff, oxff, Oxff, 0x0f, 0x00, 0x00, OxfO};

[I717077077777777777777717777177777777177717771177
// Class declaration. Subclass VkCursorList
II77777077777117777711777771177777777177777117777717
class HourGlassCursors : public VkCursorList {

public:
HourGlassCursors() ;

protected:
void createCursor (int index) ; // Overrides base class' pure virtual

private:
XColor xcolors|[2];

72

Setting Application Cursors

// The constructor gets two colors to use for the cursor.

HourGlassCursors: :HourGlassCursors () : VkCursorList (NUMCURSORS)

{

xcolors [0] .pixel= (Pixel) VkGetResource (theApplication->baseWidget (),
"busyCursorForeground",

XmCForeground,
XmRPixel,
(char *) "Black");

xcolors [1] .pixel= (Pixel) VkGetResource (theApplication->baseWidget (),
"busyCursorBackground",

XmCBackground,
XmRPixel,
char *) "White");
XQueryColors (theApplication->display(),
DefaultColormapOfScreen (DefaultScreenOfDisplay (dpy)) ,

xcolors, 2);

}

// This function is called as needed, to create a new cursor frame.
// Just create the cursor corresponding to the requested index and

// install it in cursorList.

void HourGlassCursors: :createCursor (int index)
{
Pixmap pixmap = 0, maskPixmap = 0;
Display *dpy = theApplication->display() ;
pixmap = XCreateBitmapFromData (dpy,
DefaultRootWindow (dpy) ,
time bits[index],
32, 32);

if (index == 7)
maskPixmap = XCreateBitmapFromData (dpy,
DefaultRootWindow (dpy) ,

time7 mask bits,
32, 32);
else

maskPixmap = XCreateBitmapFromData (dpy,
DefaultRootWindow (dpy) ,

time mask bits,
32, 32);

73

Chapter 3: The ViewKit Application Class

74

_cursorList [index] = XCreatePixmapCursor (dpy, pixmap, maskPixmap,
& (xcolors[0]), &(xcolors[l]),
0, 0);

if (pixmap)

XFreePixmap (dpy, pixmap);
if (maskPixmap)
XFreePixmap (dpy, maskPixmap) ;

}

Once you have created an animated busy cursor, you can install it as your application’s
busy cursor using an overloaded version of the VkApp::setBusyCursor() function:

void setBusyCursor (VkCursorList *animatedCursor)

You should provide as the argument to setBusyCursor() a pointer to your animated busy
cursor object.

When you use an animated busy cursor, the busyCursor() function returns the currently
displayed pixmap of your busy cursor.

Setting and Retrieving a Temporary Cursor

You can set a temporary cursor for use in all of your application’s windows using
VkApp::showCursor():

void showCursor (Cursor c)
Calling showCursor() immediately displays the temporary cursor. The cursor stays in

effect until the application enters or exits a busy state, or you reset the cursor back to the
normal cursor by calling showCursor() with a NULL cursor argument.

Use this function to display a cursor only briefly. If you want to change the cursor for an
extended period, use setNormalCursor() or setBusyCursor().

Supporting Busy States

Supporting Busy States

This section describes ViewKit’s support for busy states, when you lock out user input
during an operation.

Entering and Exiting Busy States Using ViewKit

Whenever you expect a procedure to take considerable time to complete, you can call the
VkApp::busy() function before entering the relevant region of code to lock out user input
in all application windows:

virtual void busy(char *msg = NULL,
VkSimpleWindow window = NULL)

If you call busy() with no arguments, the application simply displays a busy cursor. If
you provide a string as the first argument, the application posts a dialog to display the
string. The string is treated first as a resource name that busy() looks up relative to the
dialog widget. If the resource exists, its value is used as the message. If the resource does
not exist, or if the string contains spaces or newline characters, busy() uses the string
itself as the message.

If you provide a VkSimpleWindow (or subclass) as the second argument, the
application posts the dialog over this specified window. If you do not specify a window,
the application posts the dialog over the main window. (See “Managing Top-Level
Windows” on page 66 for instructions on setting the main window. See Chapter 7,
“Using Dialogs in ViewKit,” for more details on dialog behavior.)

The VkApp::notBusy() function undoes the previous call to busy():

virtual void notBusy ()

You can nest calls to busy(), but you must always have matching busy() and notBusy()
pairs. An application exits the busy state only when the number of notBusy() calls
matches the number of busy() calls.

Note: ViewKit does not “stack” nested busy dialogs, it simply displays the most recently

posted busy dialog. Once you post a busy dialog, it remains displayed until the busy
state is over or you replace it with another busy dialog.

75

Chapter 3: The ViewKit Application Class

76

Example 3-3 shows an example of setting busy dialog messages using resource values
and using nested busy() and notBusy() calls. Note that this is not a complete example: it
lists only the code relating to the busy states.

Example 3-3 Using Busy States in a ViewKit Application

class ReportWindow: public VkSimpleWindow {

public:
ReportWindow (const char *name);
~ReportWindow () ;
virtual const char* className() ;
void report () ;
void sort () ;

private:
static String defaultResources|];
Vi
String defaultResources[] = {
"*sortDialogMsg: Sorting records...",
"*reportDialogMsg: Generating report...",
NULL

}i

ReportWindow: :ReportWindow (const char *name) : VkSimpleWindow (name)
setDefaultResources (theApplication->baseWidget (), _defaultResources) ;
// Create window. ..

}

void ReportWindow: :sort ()

{
theApplication->busy ("sortDialogMsg") ;
// Sort records...
theApplication-s>notBusy () ;

}

void ReportWindow: :report ()

{
theApplication->busy ("reportDialogMsg") ;
// Report generation...
sort () ;
// Report generation continued...
theApplication->notBusy () ;

Supporting Busy States

The ReportWindow class defines the busy dialog messages as resource values and loads
these values using setDefaultResources() in the ReportWindow constructor.' The calls
to busy() pass these resource names instead of passing the actual dialog text. This allows
you to override these resource values in an app-defaults file should you need to.

When the application calls ReportWindow::report(), it posts the busy dialog shown in
Figure 3-2.

|Generating report...|

Figure 3-2 Busy Dialog

When the application calls ReportWindow::sort(), it posts the busy dialog shown in
Figure 3-3.

|Sorting records...|

Figure 3-3 Nested Busy Dialog

Note that the application continues to display the second busy dialog until reaching the
theApplication->notBusy() statement in ReportWindow::report().

1 Unlike most ViewKit components, the VkSimpleWindow class constructor is not passed a parent
widget. All ViewKit windows are children of the application’s VkApp base widget. So, to access a
window’s parent widget, you must use the VkApp::baseWidget() access function as shown in this
example.

77

Chapter 3: The ViewKit Application Class

78

Animating the Busy Cursor

To animate the busy cursor during a busy state, periodically call VkApp::progressing():

virtual void progressing(const char *msg = NULL)

If you have an animated busy cursor installed, progressing() cycles to the next pixmap
in the cursor list. If you have a fixed cursor installed, progressing() has no effect on the
busy cursor.

If you provide a character string argument, your application posts a dialog to display the
message. The string is treated first as a resource name that progressing() looks up relative
to the dialog widget. If the resource exists, its value is used as the message. If the resource
does not exist, or if the string contains spaces or newline characters, progressing() uses
the string itself as the message.

The code fragment in Example 3-4 performs a simulated lengthy task and periodically
cycles the busy cursor.

Example 3-4 Animating the Busy Cursor

int i;
// Start being "busy"
theApplication->busy ("Busy", (BusyWindow *) clientData) ;

for (i=0; 1<100; 1i++)

{
// Every so often, update the busy cursor
theApplication-s>progressing() ;
sleep (1) ;

}

// Task done, so we’re not busy anymore
theApplication-s>notBusy () ;

Supporting Busy States

Installing Different Busy Dialogs

By default, busy() displays the dialog using theBusyDialog, a global pointer to an
instantiation of the VkBusyDialog class' (described in “Busy Dialog” on page 210). If
you prefer to use a different dialog object, you can pass a pointer to the object to the
setBusyDialog() function:

void setBusyDialog(VkBusyDialog *dialog)

This alternate busy dialog must be implemented as a subclass of VkBusyDialog. Calling
setBusyDialog() with a NULL argument restores the default VkBusyDialog object.

Most frequently, you will use setBusyDialog() to install thelnterruptDialog, a global
pointer to an instantiation of the VkInterruptDialog class, which implements an
interruptible busy dialog?. (“Interruptible Busy Dialog” on page 210 describes the
VkInterruptDialog class.) Example 3-5 shows a typical example of temporarily
installing an interruptible busy dialog for a task.

Alternatively, you might wish use theProgressDialog, a global pointer to an instantiation
of the VkProgressDialog class. VkProgressDialog implements an interruptible busy
dialog displaying a bar graph that indicates the percentage of the task that has been
completed (see “Progress Dialog” on page 212 for more details).

! theBusyDialog is actually implemented as a compiler macro that invokes a VkBusyDialog access
function to return a pointer to the unique instantiation of the VkBusyDialog class. Although you should
never need to use this access function directly, you might encounter it while debugging a ViewKit
application that uses the busy dialog.

2 thelnterruptDialog is actually implemented as a compiler macro that invokes a VkInterruptDialog
access function to return a pointer to the unique instantiation of the VkInterruptDialog class. Although
you should never need to use this access function directly, you might encounter it while debugging a
ViewKit application that uses the interruptible busy dialog.

79

Chapter 3: The ViewKit Application Class

Example 3-5 Temporarily Installing an Interruptible Busy Dialog

#inlcude <Vk/VkApp.h>
#include <Vk/VkInterruptDialog.h>

/...
// Install theInterruptDialog as the busy dialog

theApplication->setBusyDialog (theInterruptDialog) ;
theApplication->busy ("Generating report"); // Enter busy state

// Perform task...

theApplication->notBusy () ; // Exit busy state
theApplication->setBusyDialog (NULL) ; // Install default busy dialog

Maintaining Product and Version Information

80

The VkApp class provides several access functions and constant data members that you
can use to identify your application and the current ViewKit release.

VkApp::ViewKitMajorRelease is a static integer constant that identifies the major release of
ViewKit; VkApp::ViewKitMinorRelease is a static integer constant that identifies the minor
release of ViewKit, and VkApp::ViewKitReleaseString is a static character array constant
that contains the complete major and minor release information. For example, in a 1.2
release, the value of VkApp::ViewKitMajorRelease would be 1, the value of
VkApp::ViewKitMinorRelease would be 2, and the value of VkApp::ViewKitReleaseString
would be “ViewKit Release: 1.2”. These values can be useful if you need to provide
conditional statements in your code to handle different versions of the ViewKit library.

You can use VkApp::setVersionString() to set version information for an application
based on ViewKit:

void setVersionString(const char *versionlnfo)

You can retrieve the version string using VkApp::versionString():

const char *versionString/()

Maintaining Product and Version Information

ViewKit displays this version string in the Product Information dialog that is posted
when a user chooses Product Information from the default Help menu. (See “ViewKit
Help Menu” on page 312 for more information on the default Help menu.) For example,
consider an application that you invoke with the command MapMaker that includes the
following line of code:

theApplication->setVersionString ("MapMaker 2.1") ;

If you choose Product Information from the default Help menu, your application posts
the dialog shown in Figure 3-4.

Application Mame: Maphlaker

Mapbdaker 2.1

e

Figure 3-4 Product Information Dialog

You can use VkApp::setAboutDialog() to replace the standard Product Information
dialog with your own custom dialog;:

void setAboutDialog(VkDialogManager *dialog)

You must provide setAboutDialog() with a pointer to an object that is a subclass of
VkDialogManager. Most frequently, you will actually create a subclass of
VkGenericDialog, an abstract subclass of VkDialogManager that simplifies the process
of creating custom dialogs. “Deriving New Dialog Classes Using the Generic Dialog” on
page 223 describes creating a custom dialog.

The VkApp::aboutDialog() function returns a pointer to the custom Product
Information dialog you have installed:

VkDialogManager* aboutDialog/()

81

Chapter 3: The ViewKit Application Class

Application Data Access Functions

82

VkApp provides several access functions for retrieving data useful for your application:

char *name() const
Returns the command name you used to invoke the application

(argol[0]).

char *applicationClassName() const
Returns the application class name set in the VkApp constructor. This
application class name is used when loading application resources.

virtual const char *className() const
Returns the class name of the VkApp (or subclass) instance being used.
By default, this is “VkApp.” Note that unlike all other ViewKit
components, the VkApp class does not use the value returned by
className() when loading resources; instead, it uses the application
class name that you provide as an argument to the VkApp constructor.
This allows you to set the application class name without creating a
subclass of VKApp.

static void setFallbacks(char **fallbacks)
Sets fallbacks as the specification list needed to call
XtAppSetFallBackResources(3X). setFallbacks() must be called before
the application constructs its VkApp object, since the VkApp
constructor calls XtAppSetFallbackResources() and passes it the
specification list.

XtAppContext appContext() const
Returns the application’s XtAppContext structure, which is required by
many IRIS IM and Xt functions.

Display *display() const
Returns a pointer to the X Display structure associated with the
application’s connection to the X server.

char *shellGeometry() const
Returns a string containing the geometry of the application’s base shell.
You may want to use this information to size other windows in your
application.

int argc() const
Returns the number of items remaining in the argv array after all
arguments recognized by Xt have been removed.

Deriving Classes From VkApp

char **argv() const
Called without arguments, this function returns a pointer to the argv
array after all arguments recognized by Xt have been removed.

char *argv(int index) const
Called with an integer argument, this function returns a single argv
array item (after all arguments recognized by Xt have been removed)
specified by the index argument.

Boolean startupIconified() const
Called with no arguments, this function returns the value TRUE if the
application starts with all windows iconified and FALSE if it starts with
all windows displayed normally.

Widget baseWidget()
For the VkApp class, baseWidget() returns the hidden shell widget.

Deriving Classes From VKApp

This section describes VkApp protected functions and data members that you can use in
a VkApp subclass. Following that is an example of subclassing VkApp to parse
command-line options.

VkApp Protected Functions and Data Members

You can use VkApp::parseCommandLine() to parse command line options:

int parseCommandLine (XrmOptionDescRec *options,
Cardinal numOptions)

You should call parseCommandLine() from within the constructor of your VkApp
subclass. Provide an XrmOptionDescRec(3Xt) table as the options argument and specify
the number of entries in the table with the numOptions argument. parseCommandLine()
passes these arguments to XtOpenDisplay(3Xt), which parses the command line and
loads recognized options into the application’s resource database. parseCommandLine()
modifies argv to remove all recognized options and returns an updated value of argc.
Example 3-6 shows an example of using parseCommandLine().

83

Chapter 3: The ViewKit Application Class

84

You can override VkApp::afterRealizeHook() to perform certain actions after all
application windows have been realized:

virtual void afterRealizeHook ()

For example, you could override afterRealizeHook() to install a colormap or set
properties on the application’s windows. By default, this function is empty.

When subclassing VkApp, you also have access to the protected data member
VkApp::_winList:

VkComponentList _winList

This data member maintains the list of the application’s top-level windows. Consult the
VkComponentList(3x) reference page for more information on the VkComponentList
class.

Subclassing VKApp

The most common reason for creating a subclass of VkApp is to parse the command line
and set global resources based on command-line options. Also, rather than use global
variables, you can store data that is needed throughout your application in data
members of your VkApp subclass.

The program in Example 3-6 creates MyApp, a VkApp subclass that recognizes a
-verbose command-line argument and initializes a protected data member depending
on whether or not the flag is present.

Note that this example uses the protected VkApp function parseCommandLine() to
extract the flag if it exists. This function returns an updated value that the calling
application must use to update its value of argc.

Deriving Classes From VkApp

Example 3-6 Deriving a Subclass From VkApp

#include <Vk/VkApp.h>
#include <Vk/VkResource.h>

class MyApp : public VkApp {

public:
MyApp (char *appClassName,
int *arg c,
char **arg v,
XrmOptionDescRec *optionList = NULL,
int sizeOfOptionlist = 0);
Boolean verbose() { return verbose; } // Access function
protected:
Boolean _verbose; // Data member to initialize
private:
static XrmOptionDescRec _cmdLineOptions[]; // Command-line options
static XtResource _resources|]; // Resource descriptions

}i
// Describe the command line options

XrmOptionDescRec MyApp:: cmdLineOptions[] =
"-verbose", "*verbose", XrmoptionNoArg, "TRUE",

¥
bi

// Describe the resources to retrieve and use to initialize the class

XtResource MyRApp:: resources [] = {
{

"verbose",

"Verbose",

XmRBoolean,

sizeof (Boolean),

XtOffset (MyApp *, verbose),

XmRString,

(XtPointer) "FALSE",

|

}i

85

Chapter 3: The ViewKit Application Class

MyApp: :MyApp (char *appClassName,

int *arg c,

char **arg v,

XrmOptionDescRec *optionList,

int sizeOfOptionList) : VkApp (appClassName, arg c,
arg v, optionList,
sizeOfOptionList)

// Parse the command line, loading options into the resource database

*arg ¢ = parseCommandLine (_cmdLineOptions,
XtNumber (_cmdLineOptions)) ;

// Initialize this class from the resource data base

getResources (resources, XtNumber (resources)) ;

Putting Applications in the Overlay Planes

86

By default, the unrealized VkApp shell appears in the normal planes. That sets the
normal planes as the default for all of its descendents as well. ViewKit, however, allows
you to explicitly place your application shell, and therefore all of its descendents, in the
overlay planes. Doing so prevents your application from causing expose events that
disturb such things as complex GL rendering in other applications that are using the
normal planes.

There are three ways to enable applications in the overlay planes:

Call VkApp::useOverlayApps(TRUE). This forces applications into the overlay
planes, with no way to put them back in the normal planes without recompiling.

Put the resource string “*useOverlayApps: True” in your application’s default file.
This will put applications in the overlay planes by default, but allow users to use
the normal planes by changing their . Xdefaults file.

Have users add the -useOverlayApps command-line switch when they run your
application if they wish to use the overlay planes for applications.

Putting Applications in the Overlay Planes

If you do decide to place applications in the overlay planes, here are some factors to
consider:

Applications are placed in the deepest available overlay planes: generally 4- or 8-bit
planes, occasionally 2-bit planes.

If the deepest available overlay is 2 bits, any applications placed in that visual may
not look right. Because the colormap in the 2-bit overlay planes only has three color
entries (the fourth being a transparent pixel), any items in the application other than
labels (for example cascade or toggle buttons) may look odd.

Other applications using the overlay planes may display in the wrong colors when
your application gets colormap focus. The colors in the other applications may flash
because your application’s colormap is installed and replaces any previous overlay
colormap.

87

Chapter 4

ViewKit Windows

This chapter introduces the basic ViewKit classes needed to create and manipulate the
top-level windows in a ViewKit application: VkSimpleWindow and VkWindow.
Figure 4-1 shows the inheritance graph for these classes.

e

i VkComponent i—VkSimpIeWindow VkWindow

Figure 4-1 Inheritance Graph for VkSimpleWindow and VkWindow

Overview of ViewKit Window Support

This section describes how ViewKit supports multiple top-level windows in an
application, and then describes the ViewKit classes that implement these windows.

ViewKit’s Multi-Window Model

There are several possible models for multi-window applications in Xt. One approach is
to create a single top-level window used as the main window of the application. All other
windows are then popup shells whose parent is the main window. Another approach is
to create a single shell that never appears on the screen. All other windows are then
popup children of the main shell. In this model, all top-level windows are treated equally,
as siblings. One window may logically be the top-level window of the application, but as
far as Xt is concerned, all windows are equal.

ViewKit follows the second model. The VkApp class, described in Chapter 3, “The
ViewKit Application Class,” creates a single widget that serves as the parent of all
top-level windows created by the program. The VkApp base widget does not appear on
the screen.

89

Chapter 4: ViewKit Windows

90

ViewKit Window Classes

All top-level windows in a ViewKit application must be instances of VkSimpleWindow,
VkWindow, or a subclass of one of these classes. The VkSimpleWindow class supports
a top-level window that does not include a menu bar. The VkWindow class, derived
from VkSimpleWindow, adds support for a menu bar along the top of the window. You
must create a separate instance of VkSimpleWindow, VkWindow, or a subclass of one
of these classes for each top-level window in your application.

Instantiating a VkSimpleWindow or VkWindow object creates a popup shell as a child
of the invisible shell created by your application’s instance of VkApp.
VkSimpleWindow and VkWindow also create a XmMainWindow widget as a child of
the popup shell. You define the contents of a window by creating a widget or ViewKit
component to use as the work area (or view) for the XmMainWindow widget. In most
cases, you will create several widgets and/or ViewKit components as children of a
container widget and then assign that container widget as the view of the
XmMainWindow widget. “Creating the Window Interface” on page 93 describes how to
assign a view to a window. Figure 4-2 shows an example of a widget hierarchy for the
top-level windows of a simple ViewKit application with two top-level windows.

Application shell Created by VKApP (never visible)

1
[1 -
Popup shell Popup shell
| | Created by VkSimpleWindow
XmMainWindow widget [| XmMainWindow widget

Work area (view) widget

Work area (view) widget

-
// \\\
- ~
- ~
- ~
// \\
- ~

~

Optional widget subtree
Window 1

-
// \\\
- ~o
- ~
- ~

Optional widget subtree —
Window 2

Created by application code

Figure 4-2 Widget Hierarchy of Top-Level Windows in ViewKit Applications

Overview of ViewKit Window Support

In most cases, directly instantiating a VkSimpleWindow or VkWindow object is not
appropriate.! In addition to the widgets and components composing the window’s
interface, most windows require other data and support functions. In accordance with
good object-oriented programming style, the functions and data associated with a
window should be contained within that window’s class. Therefore, the best practice to
follow when creating a ViewKit application is to create a separate subclass for each
window in your application. You can derive these subclasses from VkWindow for those
windows that require menu bars, and from VkSimpleWindow for those windows that
do not. “Deriving Window Subclasses” on page 110 describes in detail the process of
deriving window subclasses.

In addition to creating shell and XmMainWindow widgets, the VkSimpleWindow and
VkWindow classes set up various properties on the shell window and provide simple
hooks for window manager interactions. “Window Manager Interface” on page 105
discusses the built-in window manager support.

The VkSimpleWindow and VkWindow classes provide simple functions to raise, lower,
iconify, and open windows, as described in “Manipulating Windows” on page 103. The
classes also provide several convenience functions for determining a window’s state (for
example, whether it is visible, iconified, and so on) and for retrieving other window
information. These access functions are described in “Window Data Access Functions”
on page 104.

The VkSimpleWindow and VkWindow classes also register their windows with the
application’s VkApp instance to support application-wide services such as setting the
cursor for all of an application’s windows, entering busy states, and manipulating all
windows in an application. Chapter 3, “The ViewKit Application Class,” describes how
to use these application-wide services.

! There are exceptional cases for which you might choose to directly instantiate a VkSimpleWindow or
VkWindow object and then associate a view with the window. For example, if you have a complex,
self-contained component and need a window simply to display the component, you might find this
method acceptable. “Adding a Window Interface to a Direct Instantiation of a ViewKit Window Class”
on page 102 describes how to do this.

91

Chapter 4: ViewKit Windows

Window Class Constructors

92

The VkSimpleWindow and VkWindow constructors both have the same form:

VkSimpleWindow (const char *name,
ArgList args = NULL,
Cardinal argCount = 0)

VkWindow (const char *name,
ArgList args = NULL,
Cardinal argCount = 0)

Unlike most other ViewKit components, the VkSimpleWindow and VkWindow
constructors do not require a parent widget as an argument: all ViewKit windows are
automatically created as children of the invisible shell created by your application’s
instance of VkApp. You must specify a name for your window. Optionally, you can also
provide a standard Xt argument list that the constructor will use when creating the
window’s popup shell.

Every application has a main window. By default, the first window you create is treated as
the main window. To specify a different window to use as the main window, use the
VkApp::setMainWindow() function described in “Managing Top-Level Windows” on
page 66.

Because the first window you create is by default the main window, the window class
constructors also set some shell resources on the popup shell widget of that window. The
constructors obtain the geometry of the invisible application shell created by VkApp and
assign that geometry to the window’s popup shell widget. The constructors also set the
XmNargc and XmNargv resources on the popup shell to the values of VkApp::arge() and
VkApp::argv() respectively. (“Application Data Access Functions” on page 82 describes
VkApp::arge() and VkApp::argv().)

Finally, for all windows, the window class constructors register a callback function to
handle messages from the window manager. The default action upon receiving a
WM_DELETE_WINDOW message is to delete the window object. To change this
behavior, override the handleWmDeleteMessage() member function as described in
“Window Properties and Shell Resources” on page 107. The default action upon
receiving a WM_QUIT_APP message is to quit the application. To change this behavior,
override the handleWmQuitMessage() member function as described in “Window
Properties and Shell Resources” on page 107.

Window Class Destructors

Window Class Destructors

The VkSimpleWindow and VkWindow destructors delete all privately allocated data
and destroy the views associated with the windows. The VkWindow destructor also
destroys any menu bar associated with the window, no matter how you added it (see
“Menu Bar Support” on page 108). If you created a subclass, you should provide a
destructor to free any space that you explicitly allocated in the derived class.

The VkSimpleWindow and VkWindow destructors also remove the window from the
application’s list of windows. If this window is the only window still associated with the
application (for example, if it is the only window created or all other windows have also
been deleted), then your application automatically calls VkApp::terminate() to quit
itself. “Quitting ViewKit Applications” on page 65 describes VkApp::terminate().

Creating the Window Interface

There are three methods that you can use to create the contents of a window:

* Create a subclass of VkSimpleWindow or VkWindow and define the interface in
the class constructor.

* Create a subclass of VkSimpleWindow or VkWindow and define the interface by
overriding the virtual function setUpInterface().

® C(Create an instance of VkSimpleWindow or VkWindow, define the interface
separately, and then add the interface as the window’s view.

These methods, and the advantages and disadvantages of each approach, are discussed
in the following sections.

Creating the Window Interface in the Constructor

The preferred method of defining the contents of a window is to create the interface in
the constructor of a VkSimpleWindow or VkWindow subclass. In this case, you simply
create the widgets and components that you want to appear in your window in your
subclass constructor. Remember that each window can have only one direct child widget
as a view, so in most cases you must create a container widget and then create all other
widgets and components as descendents of this direct child. Manage all widgets except
the container widget, which you should leave unmanaged.

93

Chapter 4: ViewKit Windows

94

The parent widget of your view’s top-level widget or component must be the window’s
XmMainWindow widget. You can retrieve this widget by calling the
mainWindowWidget() function inherited from VkSimpleWindow. “Window Data
Access Functions” on page 104 discusses the mainWindowWidget() function.

Note: The _baseWidget data member for VkSimpleWindow and derived classes is the
window’s popup shell widget. Do not assign any other widget to this data member in a
derived class.

After creating your interface, call add View():

void addView (Widget w)
void addvView (VkComponent *component)

addView() accepts as an argument either a widget or a pointer to a component, which
addView() installs as the view for the window.

Note: Some IRIS IM functions such as XmCreateScrolled Text(3Xm) create a
ScrolledWindow widget and a child widget, and then return the ID of the child widget.
As a convenience for using these functions, addView() can automatically determine the
correct parent widget if you provide the child widget ID instead of the Scrolled Window
ID.

Example 4-1 shows a simple example that defines ScaleWindow, which creates a
window with a RowColumn widget containing three Scale widgets. Because
ScaleWindow is derived from VkSimpleWindow, it does not support a menu bar. If you
required a menu bar, you would instead derive this class from VkWindow.

Note that ScaleWindow includes default resources for the Scale widget labels. This
encapsulation technique is a good object-oriented practice to follow when creating
reusable components in ViewKit. For example, if you were to extend this class by adding
callback functions to the Scale widgets, you should make the callback functions members
of the ScaleWindow class.

Creating the Window Interface

Example 4-1 Creating a Window Interface in the Class Constructor

[117777171177717717777777717
// ScaleWindow.h

I17777117777711177771111777
#include <Vk/VkSimpleWindow.h>
class ScaleWindow: public VkSimpleWindow {

public:
ScaleWindow (const char *);
~ScaleWindow () ;
virtual const char* className () ;

private:
static String defaultResourcesl|];

[117777777717711771771717177

// ScaleWindow.c++

I177117771777177771771177717

#include "ScaleWindow.h"
#include <Xm/RowColumn.h>
#include <Xm/Scale.h>

String ScaleWindow:: defaultResources[] = {
"*dayScale.titleString: Days",
"*weekScale.titleString: Weeks",
"*monthScale.titleString: Months",
NULL };

ScaleWindow: : ScaleWindow (const char *name) : VkSimpleWindow (name)

{

setDefaultResources (mainWindowWidget (), _defaultResources) ;

Widget scales = XtCreateWidget ("scales", xmRowColumnWidgetClass,
mainWindowWidget (), NULL, 0);

Widget dayScale = XtCreateManagedWidget ("dayScale", xmScaleWidgetClass,
scales, NULL, O0);
XtVaSetValues (dayScale,
XmNorientation, XmHORIZONTAL,
XmNminimum, 1,

95

Chapter 4: ViewKit Windows

96

XorNmaximum, 7,
XnrNvalue, 1,
XmNshowValue, TRUE,
NULL) ;

Widget weekScale = XtCreateManagedWidget ("weekScale", xmScaleWidgetClass,
scales, NULL, 0);
XtVaSetValues (weekScale,
XmNorientation, XmHORIZONTAL,
XmNminimum, 1,
XmNmaximum, 52,

XnrNvalue, 1,
XmNshowValue, TRUE,
NULL) ;

Widget monthScale = XtCreateManagedWidget ("monthScale", xmScaleWidgetClass,
scales, NULL, 0);
XtVaSetValues (monthScale,
XmNorientation, XmHORIZONTAL,
XorNminimum, 1,
XmNmaximum, 12,
XnNvalue, 1,
XmNshowValue, TRUE,
NULL) ;

addView (scales) ;

ScaleWindow: : ~ScaleWindow ()

{
}

// Enmpty

const char* ScaleWindow: :className ()

{
}

return "ScaleWindow";

Creating the Window Interface

[17177177717771771711777171777
// scalelpp.c++
[11717777717777717777777717

#include "ScaleWindow.h"
#include <Vk/VkApp.h>

void main (int argc, char **argv)

{
VkApp *scalePpp = new VKApp ("ScaleRpp", &argc, argv) ;
ScaleWindow *scaleWin = new ScaleWindow ("scaleWin") ;

scaleWin->show () ;
scaleBpp->run() ;

}

Running the scaleApp program shown above displays a ScaleWindow, as shown in
Figure 4-3.

hMonths

Figure 4-3 Simple Example of a VkSimpleWindow Subclass
You can also create components and add them just as you would widgets. The

constructor shown in Example 4-2 creates a VkRadioBox(3x) component and installs
several items.

97

Chapter 4: ViewKit Windows

98

Example 4-2 Using a Component as a Window’s View

[11717777117777717777777717
// RadioWindow.h

I117771117777711177771111777
#include <Vk/VkSimpleWindow.h>
class RadioWindow: public VkSimpleWindow {

public:
RadioWindow (const char *);
~RadioWindow () ;
virtual const char* className () ;
private:
static String _defaultResources(];
}i

[17117771777177771177171777

// RadioWindow.c++

[117777777717711777777177177

#include "RadioWindow.h"
#include <Vk/VkRadioBox.h>

String RadioWindow:: defaultResources([] = {
"*color*label*labelString: Color",
"*red.labelString: Red",

"*green.labelString: Green",
"*plue.labelString: Blue",
NULL };

RadioWindow: :RadioWindow (const char *name)

{

: VkSimpleWindow (name)

setDefaul tResources (mainWindowWidget () , _defaultResources) ;

VkRadioBox *rb = new VkRadioBox("color", mainWindowWidget ());

rb->addItem("red") ;
rb->addItem("green") ;
rb->addItem("blue") ;

addview (rb) ;

Creating the Window Interface

RadioWindow: : ~RadioWindow ()

{
}

const char* RadioWindow: :className ()

{
}

// Empty

return "RadioWindow";

[17717117777171177777117177
// radioRpp.c++

L11777777771771771771177777

#include <Vk/VkApp.h>
#include "RadioWindow.h"

void main (int argc, char **argv)

{

VkApp *radiolApp = new VKApp ("RadioApp", &argc, argv) ;
RadioWindow *radioWin = new RadioWindow ("radioWin") ;

radioWin->show () ;
radioRpp->run () ;

}

Running the radioApp program shown above displays a RadioWindow, as shown in

Figure 4-4.

Figure 4-4 Using a Component as a Window’s View

99

Chapter 4: ViewKit Windows

100

Creating the Window Interface in the setUpinterface() Function

When you create your window interface in your window constructor using addView(),
all setup overhead occurs when the window is instantiated. Additionally, your program
allocates memory for all of the widgets created. Occasionally, you might need to
instantiate a window so that your application can access some of its public functions, but
not display it. If the window interface is large or complex, the time and memory
consumed to create the interface is unnecessary if the user might not display it.

The ViewKit window classes provide a mechanism for delaying the creation of a
window’s interface until the window needs to be displayed. Rather than including the
interface code in the window constructor, you can include the code in the definition of
the protected virtual member function setUpInterface().

When you call show() to display a window, show() checks to see whether you have
already added a view to the window (for example, in the window’s constructor). If not,
show() calls setUpInterface() to create the window’s interface.

Using this approach, you do not allocate memory for the window interface until your
application actually displays the window for the first time—and you never allocate the
memory if your application never displays the window. Additionally, this approach
reduces your application’s startup time. The trade-off is that the first time you display
this window, the response time might be slow because your application must create the
interface before displaying the window.

The syntax of setUpInterface() is as follows:

virtual Widget setUpInterface (Widget parent)

show() passes the main window widget to setUpInterface() for you to use as the parent
of the window’s widget hierarchy. You must return a widget to be added as a view. Do
not call addView() from within setUpInterface().

Note: Some IRIS IM functions such as XmCreateScrolledText(3Xm) create a
ScrolledWindow widget and a child widget, and then return the ID of the child widget.
As a convenience for using these functions, setUpInterface() can automatically
determine the correct parent widget if you provide the child widget ID instead of the
ScrolledWindow ID.

Example 4-3 shows the RadioWindow example from Example 4-2 rewritten to use
setUpInterface() instead of addView() in the constructor.

Creating the Window Interface

Example 4-3 Creating a Window’s Interface in the setUplInterface() Function

[117777771177777117777777717
// RadioWindow2.h

I177771177777111777711711777
#include <Vk/VkSimpleWindow.h>
class RadioWindow: public VkSimpleWindow {

public:
RadioWindow (const char *);
~RadioWindow () ;
virtual const char* className () ;

protected:
Widget setUpInterface (Widget) ;

private:
static String defaultResourcesl|];

[177717771177717711777177717
// RadioWindow2.c++

[117777777717711771777177177

#include "RadioWindow2.h"
#include <Vk/VkRadioBox.h>

String RadioWindow:: defaultResources([] = {
"*color*label*labelString: Color",
"*red.labelString: Red",

"*green.labelString: Green",
"*plue.labelString: Blue",
NULL };

RadioWindow: :RadioWindow (const char *name) : VkSimpleWindow (name)

{
}

// Empty

101

Chapter 4: ViewKit Windows

102

RadioWindow: : ~RadioWindow ()

{
}

const char* RadioWindow: :className ()

{
}

Widget RadioWindow: :setUpInterface (Widget parent)

{

// Empty

return "RadioWindow";

setDefaultResources (mainWindowWidget (), defaultResources) ;
VkRadioBox *rb = new VkRadioBox("color", parent);

rb->addItem("red") ;
rb->addItem("green") ;
rb->addItem("blue") ;

return (*rb) ;

}

Note that this example uses the Widget operator defined by VkComponent to return the
VkRadioBox’s base widget in setUpInterface(). (See “VkComponent Access Functions”
on page 17 for information on the Widget operator.) If you prefer, you could explicitly
call baseWidget():

return(rb->baseWidget ());

Adding a Window Interface to a Direct Instantiation of a ViewKit
Window Class

There are exceptional cases for which you may choose to directly instantiate a
VkSimpleWindow or VkWindow object and use add View() to associate a view with the
window. For example, if you have a complex, self-contained component and need a
window simply to display the component, you might find this method acceptable.
Example 4-4 shows a simple example of adding a component to a direct instantation of
the VkSimpleWindow class.

Manipulating Windows

Example 4-4 Adding a View to a Direct Instantiation of a ViewKit Window Class

VkSimpleWindow *roloWindow = VkSimpleWindow ("roloWindow") ;
Rolodex *rolodex = Rolodex("rolodex", roloWindow-s>mainWindowWidget ()) ;
roloWindow->addView (rolodex) ;

In most cases, you should not use this technique because most windows require data and
support functions that should be encapsulated by the window class to follow proper
object-oriented programming style.

Replacing a Window’s View

Occasionally, you might want to replace the view of an existing window. To do so, you
must first remove the current view using the removeView() function:

void removeView ()

You should not call this function unless you have previously added a view to this

window. removeView() does not destroy the view; if you no longer need the view, you
should destroy it.

After removing a view, you can add another view using add View().

Manipulating Windows

The VkSimpleWindow and VkWindow classes provide simple functions to show, hide,
raise, lower, iconify, and open windows. All of the following functions take no arguments
and have a void return value:

show() Displays the window. show() has no effect if the window is currently
iconified.

hide() Removes the window from the screen.

iconify() Iconifies the window.

open() Opens the window if it is iconified.

103

Chapter 4: ViewKit Windows

raise() Raises the window to the top of the application’s window stack.

lower() Lowers the window to the bottom of the application’s window stack.

All of these functions are declared virtual. If you override them in a subclass, you should
call the corresponding base class function after performing whatever operations your
subclass requires.

Window Data Access Functions

104

The VkSimpleWindow and VkWindow classes support several data access functions:

mainWindowWidget() returns the XmMainWindow widget created by the window
constructor. Most frequently, you use mainWindowWidget() to obtain a parent
widget for creating a view widget or component. You can also use this function to
access and configure the window’s XmMainWindow widget. For example, by
default, the ViewKit window classes configure the window’s XmMainWindow
widget not to display scrollbars. You can use mainWindowWidget() to obtain the
XmMainWindow widget and then use XtSetValues(3Xt) to enable the scrollbars:

virtual Widget mainWindowWidget () const
viewWidget() returns the widget currently installed as the window’s view:
virtual Widget viewWidget () const

visible() returns TRUE if the window is currently displayed and FALSE if it is
hidden:

Boolean visible () const
iconic() returns TRUE if the window is currently iconified and FALSE if it is not:
Boolean iconic() const

getMenu() returns the VkMenuBar object or subclass used by the window that
contains the given VkComponent. This allows components to add items to the
menu bars of the window in which they are placed, without a hard-coded
connection between the window and the component:

static VkMenuBar *getMenu (VkComponent *object)

Window Manager Interface

¢ getWindow() returns the VkWindow object or subclass that contains the given
VkComponent. This allows components to operate on the window that contains
them, without a hard-coded connection between the window and the component:

static VkSimpleWindow *getWindow (VkComponent *component)
static VkWindow *getWindow (VkComponent *component)

¢ getVisualState() returns the X11 window state (as specified by the Inter-Client
Communication Conventions Manual, sections 4.1.2.4 and 4.1.4, with one extension):

int getVisualState()

The ICCCM specifies WithdrawnState, NormalState, and IconicState. In actuality,
when an unmapped window is mapped, it may come back as either Normal or
Iconic. Therefore, Viewkit adds the following states:

— WithdrawnNormalState—Means that the window will be in NormalState when
it is mapped (same as WithdrawnState).

— WithdrawnlconicState—Means that the window will be in IconicState when it is
mapped.

Window Manager Interface

The VkSimpleWindow and VkWindow classes set up various properties on the shell
window and provide simple hooks for window manager interactions.

Window and Icon Titles

The VkSimpleWindow and VkWindow classes provide easy-to-use functions to set
your application’s window and icon titles.

The setTitle() function sets the title of a window:

void setTitle (const char *newTitle)

The string is treated first as a resource name that setTitle() looks up relative to the
window. If the resource exists, its value is used as the window title. If the resource does
not exist, or if the string contains spaces or newline characters, setTitle() uses the string
itself as the window title. This allows applications to change a window title dynamically
without hard-coding the exact title names in the application code. Example 4-5 shows an
example of setting a window title using a resource value.

105

Chapter 4: ViewKit Windows

106

You can retrieve the current window title using getTitle():

const char *getTitle()

The setlconName() function sets the title of a window’s icon:

void setIconName (const char *newTitle)

The string is treated first as a resource name that setlconName() looks up relative to the
window. If the resource exists, its value is used as the window’s icon title. If the resource
does not exist, or if the string contains spaces or newline characters, seticonName() uses
the string itself as the icon title. This allows applications to dynamically change a
window’s icon title without hard-coding the exact title names in the application code.
Example 4-5 shows an example of setting a window’s icon title using a resource value.

Example 4-5 Setting Window and Icon Titles Using Resource Values

class MainWindow : public VkSimpleWindow {

public:
MainWindow (const char *);
// ...
private:
static String defaultResourcesl|];
Y7
}i
String defaultResources[] = {
"xwinTitle: Foobar Main Window",
"xjconTitle: Foobar",
NULL

}i

MainWindow: :MainWindow (const char *name) : VkSimpleWindow (name)

{

setDefaultResources (mainWindowWidget (), _defaultResources) ;

setTitle ("winTitle") ;
setIconName ("iconTitle") ;

/] ...

Window Manager Interface

Window Properties and Shell Resources

The window class constructors automatically set up various window properties and
shell resources when you create a window. The window classes also provide some hooks
to allow you to set your own properties or change the window manager message
handling in a derived class.

Because the first window you create is by default the main window, the window class
constructors also set some shell resources on the popup shell widget of that window. The
constructors obtain the geometry of the invisible application shell created by VkApp and
assign that geometry to the window’s popup shell widget. The constructors also set the
XmNargc and XmNargv resources on the popup shell to the values of VkApp::arge() and
VkApp::argv(), respectively. (“Application Data Access Functions” on page 82 describes
VkApp::arge() and VkApp::argv().)

For all windows, the window class constructors register a callback function to handle
WM_DELETE_WINDOW messages from the window manager. This callback function
calls handleWmDeleteMessage():

virtual void handleWmDeleteMessage ()

By default, handleWmDeleteMessage() calls the window’s okToQuit() function. If
0kToQuit() returns TRUE, then handleWmDeleteMessage() deletes the window. You
can override handleWmDeleteMessage() to change how your window handles a
WM_DELETE_WINDOW message. In most cases, you should simply perform any
additional actions that you desire and then call the base class’s
handleWmDeleteMessage() function.

The window class constructors also register a callback function to handle
WM_QUIT_APP messages from the window manager. This callback function calls
handleWmQuitMessage():

virtual void handleWmQuitMessage ()

By default, handleWmQuitMessage() calls the application’s quitYourself() function to
quit the application. You can override handleWmQuitMessage() to change how your
windows handles a WM_QUIT_APP message. In most cases, you should simply
perform any additional actions that you desire and then call the base class’s
handleWmQuitMessage() function to exit your application.

107

Chapter 4: ViewKit Windows

Menu Bar Support

108

If you want to set any additional properties on a window, you can override
setUpWindowProperties():

virtual void setUpWindowProperties ()

setUpWindowProperties() is called after realizing a window’s popup shell widget but
before mapping it. Subclasses that wish to store other properties on windows can
override this function and perform additional actions. If you override this function, you
should set all desired properties and then call the base class’s setUpWindowProperties()
function.

Note that you should use setUpWindowProperties() to set window properties instead of
VkComponent::afterRealizeHook() as described in “Displaying and Hiding
Components” on page 19. The difference between the two is that
setUpWindowProperties() is guaranteed to be called before the window manager is
notified of the window’s existence. Because of race conditions, this might not be true of
afterRealizeHook().

You can also change the value of the window manager class hint stored on a window
using setClassHint():

void setClassHint (const char *className)

setClassHint() sets the class resource element of the XA_WM_CLASS property stored on
this window to the string you pass as an argument.

The VkSimpleWindow class is useful for windows that require only a work area;
however, windows frequently require menus. The VkWindow class extends the
VkSimpleWindow class by providing support for a menu bar along the top of the
window.

In ViewKit, the VkMenuBar(3x) class provides support for menu bars. Chapter 5,
“Creating Menus With ViewKit,” describes in depth the process of creating and
manipulating menus; “Menu Bar” on page 156 describes additional functions specific to
the VkMenuBar class and provides an example of constructing a menu bar for an
application. This section describes only those functions provided by VkWindow for
installing and manipulating a menu bar.

Menu Bar Support

You install a menu bar using setMenuBar():

void setMenuBar (VkMenuBar *menuObj)
void setMenuBar (VkMenuDesc *menudesc)
void setMenuBar (VkMenuDesc *menudesc, XtPointer clientData)

If you provide a pointer to an existing VkMenuBar object, setMenuBar() installs that
menu bar. If you provide a VkMenuDesc static menu description, setMenuBar() creates
a menu bar from that description and then installs the menu bar.

The third version listed above allows you to control the default client data. Using this
version, you can pass in zero as the client data. However, there is no way to distinguish
between an explicit zero that you pass in and the zero value resulting from not
initializing the client data in the VkMenuDesc structure.

Once you have installed a menu bar, menu() will return a pointer to the menu bar object:

virtual VkMenuBar *menu () const

You can add a menu pane to the menu bar using addMenuPane():

VkSubMenu *addMenuPane (const char *name)
VkSubMenu *addMenuPane (const char *name, VkMenuDesc *menudesc)

addMenuPane() creates a VkSubMenu(3x) object and adds it to the window’s menu bar.
If you provide a VkMenuDesc static menu description, addMenuPane() uses it to create
the menu pane. Additionally, addMenuPane() automatically creates and installs a menu
bar if the window does not currently have one.

You can add a menu pane that enforces radio behavior on the toggle items it contains by
using addRadioMenuPane():

VkRadioSubMenu *addRadioMenuPane (const char *name)
VkRadioSubMenu *addRadioMenuPane (const char *name,
VkMenuDesc *menudesc)

addRadioMenuPane() creates a VkRadioSubMenu(3x) object and adds it to the
window’s menu bar. If you provide a VkMenuDesc static menu description,
addRadioMenuPane() uses it to create the menu pane. Additionally,
addRadioMenuPane() automatically creates and installs a menu bar if the window does
not currently have one.

109

Chapter 4: ViewKit Windows

Deriving Window Subclasses

110

This section summarizes how to create subclasses from the ViewKit window classes. It
describes additional virtual functions and data members not covered in previous
sections, provides a window creation checklist, and shows an example of deriving a
window subclass.

Additional Virtual Functions and Data Members

In addition to those functions described in previous sections, the ViewKit window
classes provide a number of virtual functions and data members that you can access from
window subclasses. These functions and data allow you to

¢ provide a “safe quit” mechanism for your window
* determine your window’s state and perform actions on state changes
¢ perform actions after realizing a window

¢ handle raw events not normally handled by the Xt dispatch mechanism

Providing a “Safe Quit” Mechanism

The VkComponent class provides the virtual function okToQuit() to support “safe quit”
mechanisms:

virtual Boolean okToQuit ()

A component’s okToQuit() function returns TRUE if it is “safe” for the application to
quit. For example, you might want okToQuit() to return FALSE if a component is in the
process of updating a file. By default, okToQuit() always returns TRUE; you must
override okToQuit() for all components that you want to perform a check before
quitting. Usually, only VkSimpleWindow and its subclasses use okToQuit().

When you call VkApp::quitYourself(), VkApp calls the okToQuit() function for all
registered windows before quitting. If the okToQuit() function for any window returns
FALSE, the application does not exit. (“Quitting ViewKit Applications” on page 65
describes VkApp::quitYourself().)

Deriving Window Subclasses

Also, the window’s handleWmDeleteMessage() function calls okToQuit() when the
window receives a WM_DELETE_WINDOW message from the window manager. This
determines whether it is safe to delete the window. (“Window Properties and Shell
Resources” on page 107 describes handleWmDeleteMessage().)

If you want to perform a test to see whether it is safe to delete a window, override the
window’s okToQuit() function. If you want to check one or more components contained
within a window, you can override the window’s okToQuit() function so that it calls the
okToQuit() functions for all the desired components. You can then override the
okToQuit() functions for the other components so you can perform whatever checks or
shutdown actions are necessary. For example, you could post a blocking dialog asking
whether the user wants to save data before quitting. (Chapter 7, “Using Dialogs in
ViewKit,” describes how to use ViewKit dialogs.)

Determining Window States

The ViewKit window classes provide the following protected data members for
determining the current states of a window:

IconState _iconState
Contains an enumerated constant of type IconState that describes the
current iconification state of the window. This variable contains OPEN
if the window is not iconified, CLOSED if it is iconified, and
ICON_UNKNOWN if it is in an unknown state. (Typically, the
unknown state is used only internally to the VkSimpleWindow class.)

VisibleState _visibleState
Contains an enumerated constant of type VisibleState that describes the
current visibility state of the window. This variable contains VISIBLE if
the window is visible, HIDDEN if it is not visible, and
VISIBLE_UNKNOWN if it is in an unknown state. (Typically, the
unknown state occurs only before you add a view to your window.)

StackingState _stackingState
Contains an enumerated constant of type StackingState that describes
the current stacking state of the window relative to the application. This
variable contains RAISED if the window is at the top of the application’s
window stack, LOWERED if it is at the bottom of the window stack, and
STACKING_UNKNOWN if it is in an unknown state (the state before
you make any calls to raise() or lower() on this window).

111

Chapter 4: ViewKit Windows

112

If you need to perform any operations when your window changes its iconification state,
you can override stateChanged():

virtual void stateChanged (IconState newState)

stateChanged() is called whenever the window’s iconification state changes, whether
programmatically (by calls to iconify() and open()) or through window manager
interaction. Because this function is responsible for maintaining the window’s state
information, if you override this function in a subclass you should call the base class’s
stateChanged() function before performing any additional operations.

Performing Actions After Realizing a Window

If you want to perform certain actions only after a window exists, you can override the
afterRealizeHook() function inherited from VkComponent:

virtual void afterRealizeHook ()

Note that you should use setUpWindowProperties() to set window properties instead of
afterRealizeHook(). The difference between afterRealizeHook() and
setUpWindowProperties() is that setUpWindowProperties() is guaranteed to be called
before the window manager is notified of the window’s existence. Because of race
conditions, this might not be true of afterRealizeHook(). afterRealizeHook() is
appropriate for performing actions that do not affect the window’s interaction with the
window manager.

Handling Raw Events

You can handle events not normally handled by the Xt dispatch mechanism by
overriding the window’s handleRawEvent() function:

virtual void handleRawEvent (XEvent *event)

As described in “ViewKit Event Handling” on page 62, VkApp::run() supports events
not normally handled by the Xt dispatch mechanism. For example, VkApp::run() can
handle client messages and events registered for non-widgets (such as a PropertyNotify
event on the root window).

When run() receives an event not handled by the Xt dispatch mechanism, it calls the
virtual function VkApp::handleRawEvent(), which passes the event to the
handleRawEvent() function of each instance of VkSimpleWindow (or subclass) in the
application. By default, these member functions are empty.

Deriving Window Subclasses

If you want a window to handle events through this mechanism, call
XSelectInput(3X) to select the events that you want to receive, and override
handleRawEvent() in the VkSimpleWindow subclass to implement your event
processing.

Additional Data Members

The ViewKit window classes also provide the protected data member
_mainWindowWidget:

Widget mainWindowWidget

_mainWindowWidget contains the XmMainWindow widget created by the window
constructor. In a subclass, you can use this data member instead of calling
mainWindowWidget(), although this is not recommended.

Window Creation Summary

The following is a summary of guidelines for creating subclasses of the ViewKit window
classes:

* Decide whether this window requires a menu bar. If it does, derive your subclass
from VkWindow; otherwise, derive it from VkSimpleWindow.

* In most cases where you provide a menu bar for your window, you should create it
in the window class when you create the rest of your window’s interface.

¢ Determine whether users will often use your application without displaying this
window even after the object is instantiated. If so, and the window interface is large
or complex, you might consider creating the window interface using
setUpInterface() to reduce the time it takes to start your application; otherwise,
create the interface in the window’s constructor.

¢ Implement the window interface as a single-rooted widget subtree whose parent is
the window’s XmMainWindow widget (obtained by the mainWindowWidget()
function). While some windows might contain only a single complex component,
the majority of windows must create some type of container widget as the root of
the window’s interface; all other widgets and components are descendents of this
widget.

¢ Do not assign any widget to the _baseWidget data member. The ViewKit window
classes assign the window’s popup shell widget to _baseWidget.

113

Chapter 4: ViewKit Windows

114

Wherever appropriate, use resource values to set labels, other interface
characteristics, and user-configurable component behavior. Define a default
resource list as a static member variable of your window class, and call
setDefaultResources() to set your window’s default resources before creating the
window interface.

Override the className() function to return the name of your window’s class.

In addition to the widgets and components composing the window’s interface,
encapsulate any other required data and support functions as members of your
window class.

If you explicitly allocate any memory in your derived window class, remember to
free it in the window’s destructor.

To explicitly set your window’s title or its icon’s title, call setTitle() or
setlconName() respectively. You can also set these characteristics using the normal
resource mechanisms.

To provide a “safe quit” mechanism for your window, override okToQuit() to
perform any checking you want to perform before deleting the window.

To change how your window handles a WM_DELETE_MESSAGE from the
window manager, override handleWmDeleteMessage().

To change how your window handles a WM_QUIT_APP from the window
manager, override handleWmQuitMessage().

To set any additional properties on your window, override
setUpWindowProperties().

To change the value of the window manager class hint stored on a window;, call
setClassHint().

To perform certain actions only after the window exists, override
afterRealizeHook().

To handle events not normally handled by the Xt dispatch mechanism, call
XSelectInput(3X) to select the events that you want to receive, and override
handleRawEvent() in your window subclass to implement your event processing.

Deriving Window Subclasses

Window Subclassing

The program in Example 4-6 creates ColorWindow, a VkSimpleWindow subclass that
implements a simple utility for determining the results of mixing primary ink colors
when printing. The user can use toggles to select any of the three primary colors—cyan,
magenta, and yellow—and the window reports the resulting color.

Figure 4-5 shows the widget hierarchy of the ColorWindow subclass. The
VkSimpleWindow constructor creates the window’s popup shell and XmMainWindow
widget. The ColorWindow constructor creates a Form widget to serve as the window’s
view. The constructor adds a VkCheckBox component as a child of the Form to provide
the toggle buttons. The constructor then adds a Frame widget as a child of the Form
widget, and creates two Label gadgets as children of the Frame: one to serve as a title,
and one to report the resulting color. The constructor manages all of these widgets except
for the top-level Form widget. (The constructor manages the VkCheckBox component
by calling its show() member function.)

Popup shell
| Created by VkSimpleWindow
XmMainWindow widget
Form widget (windows view)]
[1
VkCheckBox component Frame widget Created by ColorWindow
I
I |
Label gadget (Form title) Label gadget

Figure 4-5 Widget Hierarchy of ColorWindow Subclass

This example illustrates a number of object-oriented techniques that you should follow
when programming in ViewKit. Note that all data and utility functions used by the
window are declared as members of the ColorWindow class. Also note that
ColorWindow uses resources to set all the text that it displays. It includes a set of default
values, but you can override these values in a resource file (for example, to provide
German-language equivalents for all the strings).

115

Chapter 4: ViewKit Windows

116

Example 4-6 Creating a Window Subclass

[1177777711777177177777777177
// ColorWindow.h

[17117771777171711771177777

#include <Vk/VkSimpleWindow.h>
#include <Vk/VkCheckBox.h>

class ColorWindow: public VkSimpleWindow {

public:
ColorWindow (const char *);
~ColoxrWindow () ;
virtual const char* className() ;

private:
void displayColor (char *);
void colorChanged (VkCallbackObject *, void *, void *);
static String defaultResources[]; // Default resource values

static String colorsl]; // Array of possible resulting colors
Widget _resultColor; // Label to display resulting color
VkCheckBox * primaries; // Checkbox for setting colors
int colorStatus; // Bit-wise color status variable

// Bit 0: Cyan

// Bit 1: Magenta

// Bit 2: Yellow

// Also used as index into _colorsl]

}i

[117777777717711771777117177

// ColorWindow.c++

[171717771777177711777177777

#include "ColorWindow.h"
#include <Xm/RowColumn.h>
#include <Xm/Form.h>
#include <Xm/Frame.h>
#include <Xm/LabelG.h>
#include <Vk/VkCheckBox.h>
#include <Vk/VkResource.h>

Deriving Window Subclasses

// Default ColorWindow class resource values.

String ColorWindow:: defaultResources[] = {

"*windowTitle: Color Mixer",
"xjiconTitle: Color Mixer",
"*primaries*label*labelString: Primary Colors",
"*cyan.labelString: Cyan",
"*magenta.labelString: Magenta",
"*yellow. labelString: Yellow",
"*resultLabel.labelString: Resulting Color",
"*cyan: Cyan",
"*magenta: Magenta",
"*yellow: Yellow",

"*pblue: Blue",

"*red: Red",

"*green: Green",

"*white: White",

"xplack: Black",

NULL };

// Set _colors array to correspond to color values indicated by the
// bits in the colorStatus variable.

String ColorWindow:: colors([] = {
"white",
n Cyall" ,
"magenta",
"blue" ,
"vellow",
ugreenn ,
"red" ,
"black" };

ColorWindow: :ColorWindow (const char *name) : VkSimpleWindow (name)
{

Arg args[5];

int n;

// Set default resources for the window.

setDefaultResources (mainWindowWidget (), _defaultResources) ;

117

Chapter 4: ViewKit Windows

118

// Create a Form widget to use as the window's view.
Widget form = XmCreateForm(mainWindowWidget (), "form", NULL, 0);

// Create a VkCheckBox object to allow users to select primary colors.
// Add toggle buttons and set their intial values to FALSE (unselected) .
// The labels for the checkbox frame and the toggle buttons are set

// by the resouce database.

_primaries = new VkCheckBox("primaries", form);

_primaries->addItem("cyan", FALSE);

_primaries->addItem("magenta", FALSE);

_primaries->addItem("yellow", FALSE);

_primaries->addCallback (VkCheckBox: : itemChangedCallback, this,
(VkCallbackMethod) &ColorWindow: :colorChanged) ;

_primaries->show() ;

// Set constraint resources on checkbox's base widget.

n=20;

XtSetArg(args [n], XmNtopAttachment, XmATTACH FORM); n++;
XtSetArg(args[n] , XmNbottomAttachment, XmATTACH FORM); n++;
XtSetArg(args [n], XmNleftAttachment, XmATTACH FORM); n++;
XtSetValues (_primaries->baseWidget (), args, n);

// Create a frame to display the name of the resulting blended color.

n=20;

XtSetArg(args [n], XmNtopAttachment, XmATTACH FORM) ; n++;
XtSetArg(args [n], XmNbottomAttachment, XmATTACH FORM); n++;
XtSetArg(args [n], XmNrightAttachment, XmATTACH FORM); n++;
XtSetArg(args [n], XmNleftAttachment, XmATTACH WIDGET); n++;
XtSetArg(args[n], XmNleftWidget, primaries->baseWidget()); n++;
Widget result = XmCreateFrame(form, "result", args, n);
XtManageChild(result) ;

// Create a frame title label. The label text is set by the resource
// database.

n=20;
XtSetArg(args [n], XmNchildType, XmFRAME TITLE CHILD); n++;
Widget resultlLabel = XmCreateLabelGadget(result, "resultlabel", args,

Deriving Window Subclasses

}

// Create the label to display the blended color name.
_resultColor = XmCreateLabelGadget (_result, "resultColor", NULL, O0);
// Set intial value of colorStatus and label string to white (all off).

_colorStatus = 0;
displayColor(_colors[colorStatus]) ;

XtManageChild(resultLabel) ;
XtManageChild (_resultColor) ;

// Add the top-level Form widget as the window's view.
addview (_form) ;
// Set the window title and the icon title.

setTitle ("windowTitle") ;
setIconName ("iconTitle") ;

ColorWindow: : ~ColorWindow ()

{
}

// Enmpty

const char* ColorWindow: :className ()

{
}

return "ColorWindow";

// Given a color name, update the label to display the color

void ColorWindow: :displayColor (char *newColor)

{

Arg args[2];
int n;

// Common resource trick in ViewKit applications.
// Given a string, check the resource database for a corresponding

// value. If none exists, use the string as the value.

char * colorName = (char *) VkGetResource (baseWidget, newColor, "Color",
XmRString, newColor) ;

119

Chapter 4: ViewKit Windows

120

}

// Update the label

XmString label = XmStringCreateSimple (_colorName) ;
n=20;

XtSetArg(args [n], XmNlabelString, label); n++;
XtSetValues (_resultColor, args, n);
XmStringFree (_ label) ;

// When the user changes the value of one of the toggles, update the
// display to show the new blended color.

/* BRGSUSED */
void ColorWindow: :colorChanged (VkCallbackObject *obj, void *, void *callData)

{

}

int index = (int) (prtdiff t)callData;

// Update color status based on toggle value. Set or rest the
// status bit corresponding to the respective toggle.

if (_primaries->getValue (index))
_colorStatus |= l<<index;

else
_colorStatus &= ~(l<<index) ;

// Update the display to show the new blended color, using
// _colorStatus as an index.

displayColor(_colors[colorStatus]) ;

[17771777177717771177711777117

// colors.c++

[17117777777171711771177777

#include <Vk/VkApp.h>
#include "ColorWindow.h"

void main (int argc, char **argv)

{

VkApp *colorApp = new VKApp ("ColorApp", &argc, argv);
ColorWindow *colorWin = new ColorWindow ("colorWin") ;
colorWin->show () ;
colorApp->run() ;

Deriving Window Subclasses

Figure 4-6 shows the ColorWindow window displayed by the colors program.

Primary Colors Resulting Color—

Cyan
hMagenta White
Yellow

Figure 4-6 ColorWindow Window Subclass

121

Chapter 5

Creating Menus With ViewKit

This chapter introduces the basic ViewKit classes needed to create and manipulate the
menus in a ViewKit application. Figure 5-1 shows the inheritance graph for these classes.

— VkMenuBar

_____________ = VkPopupMenu

— VkOptionMenu

L VkSubMenu

{ VkRadioSubMenu

——————————————————————————

VkHelpPane

— VkMenuAction

{ VkMenuConfirmFirstAction

VkMenuToggle

— VkMenuLabel [— VkMenuSeparator

Figure 5-1 Inheritance Graph for the ViewKit Menu Classes

123

Chapter 5: Creating Menus With ViewKit

Overview of ViewKit Menu Support

124

IRIS IM provides the components for building menus (buttons, menu shells, and so on)
but does little to make menu construction easy. ViewKit provides a set of classes that
facilitate common operations on menus, including creating menu bars, menu panes,
popup menus, option menus, and cascading menu panes. The ViewKit menu package
also provides an object-oriented interface for activating and deactivating menu items;
dynamically adding, removing, or replacing menus items or menu panes; and
performing other operations.

The basis for all ViewKit menu classes is the abstract class VkMenultem, which is
derived from VkComponent. There are two types of classes derived from VkMenultem.
The first serve as containers and correspond to the menu types supported by IRIS IM:
popup menus, pulldown menu panes, menu bars, and option menus. The second type of
derived classes are individual menu items: actions, toggles, labels, and separators.

The classes derived from VkMenultem correspond closely with IRIS IM widgets and
gadgets. For example, an action implemented as a VkMenuAction object represents a
XmPushButton gadget along with an associated callback. However, the ViewKit menus
offer several advantages over directly using IRIS IM widgets and gadgets. You can
manipulate the menu objects more easily than widgets. You can display, activate, and
deactivate items with a single function call. You can also easily move or replace items.

Caution: ViewKit implements menu items as gadgets rather than widgets. This causes
a problem in callbacks and other situations if you try to use certain Xt functions (such as
XtDisplay(3Xt), XtScreen(3Xt), and XtWindow(3Xt)), which expect widgets as
arguments. Therefore, use the more general functions (such as XtDisplayofObject(3Xt),
XtScreenofObject(3Xt), and XtWindowofObject(3Xt)) when you need this information
for ViewKit menu items.

VkMenu, derived from VkMenultem, is the abstract base class that implements the
functionality needed to create and manipulate menus. It provides support for creating
menus and adding, removing, replacing, finding, activating, and deactivating menu
items.

Overview of ViewKit Menu Support

Separate subclasses of VkMenu implement the various types of menus supported by
ViewKit:

VkMenuBar Menu bars designed to work with the VkWindow class.

VkPopupMenu
Popup menus that automatically pop up when the user clicks the right
mouse button over a widget.

VkOptionMenu
Option menus.

VkSubMenu Pulldown menu panes that can be used either as pulldown panes in a
menu bar or pull-right panes in a popup or other pulldown menu.

VkRadioSubMenu
A subclass of VkSubMenu used to enforce radio behavior on toggle
items that it contains.

VkHelpPane A ready-made menu pane that provides an interface to the standard
help protocol supported by all ViewKit applications.

Individual menu items are implemented as subclasses derived from VkMenultem:

VkMenuAction
A selectable menu item that performs an action, implemented as a
PushButtonGadget.

VkMenuConfirmFirstAction
A selectable menu item that performs an action that the user must
confirm before it is executed. When the user chooses this type of menu
item, the application posts a question dialog asking the user for
confirmation. The application performs the action only if the user
confirms it.

VkMenuToggle
A two-state toggle button gadget. To enforce radio behavior on a group
of toggles, you must add them to a VkRadioSubMenu object.

VkMenuLabel A non-selectable label.

VkMenuSeparator
A non-selectable separator.

125

Chapter 5: Creating Menus With ViewKit

ViewKit Menu Iltem Classes

126

This section describes the features of the ViewKit menu item classes. First it describes the
features implemented by VkMenultem, which are common to all the menu item classes.
Then it describes the unique features of each individual menu item class.

Submenus are described in “Submenus” on page 157 and “Radio Submenus” on
page 159.

Note: The header file <Vk/VkMenultem.h> contains the declarations for all menu item
classes.

Common Features of Menu ltems

Individual menu items are implemented as subclasses derived from VkMenultem,
which provides a standard set of functions for accessing and manipulating menu items.

Unlike with many other ViewKit classes, you should never need to directly instantiate a
menu item class. ViewKit automatically instantiates menu item objects as needed when
you create menus, as described in “Constructing Menus” on page 133. Therefore, this
guide does not describe the menu item constructors and destructors.

Keep in mind that ViewKit implements menu items as gadgets rather than widgets. If
you need to directly access menu item gadgets, remember to use Xt functions that accept
gadgets as well as widgets as arguments.

Displaying and Hiding Menu Items

The VkMenultem::show() function makes a menu item visible when you display the
menu to which it belongs:

void show ()

By default, all menu items are visible when they are created (that is, they appear when
you display the menu to which they belong). You do not have to explicitly call a menu
item’s show() function to display it. You can call show() to display a menu item after you
have hidden it with hide().

ViewKit Menu Item Classes

The VkMenultem::hide() function makes a menu item invisible when you display the
menu to which it belongs:

void hide ()

hide() does not remove the menu item from the menu, it simply unmanages the widget
or gadget associated with a menu item. You can display a hidden menu item by calling
its show() function.

If you want to remove a menu item from a menu, you can call VkMenultem::remove():
void remove ()

remove() does not destroy a menu item, it simply removes the item from the menu
hierarchy.

Note that instead of retaining pointers to all of your menu items and using
VkMenultem::remove() to remove menu items, you can instead use
VkMenu::removeltem(). The effect is the same no matter which function you use,
though typically you will find it easier to use the VkMenu function. “Removing Items
From a Menu” on page 150 describes VkMenu::removeltem().

Activating and Deactivating Menu Iltems

The VkMenultem::activate() function makes a menu item sensitive so that it accepts user
input (that is, a user can choose the item):

void activate()
By default, all menu items are activated (sensitive) when they are created.

The VkMenultem::deactivate() function makes a menu item insensitive so that it does
not accept user input (that is, a user cannot choose the item):

void deactivate ()

When it is insensitive, the menu item appears “grayed out” when you display the menu
to which it belongs. You can reactivate a menu item by calling its activate() function.

127

Chapter 5: Creating Menus With ViewKit

128

Note that instead of retaining pointers to all of your menu items and using
VkMenultem:activate() and VkMenultem::deactivate() to activate and deactivate
menu items, you can use VkMenu::activateItem() and VkMenu::deactivateItem(),
respectively. The effect is the same no matter which functions you use, though typically
it is easier to use the VkMenu functions. “Activating and Deactivating Items in a Menu”
on page 150 describes VkMenultem::activate() and VkMenultem::deactivate().

Setting Menu Item Labels

Generally, you set the label for a menu item by setting a value in the resource database
for that item’s XmNIlabelString resource. For example, if you have a menu item named
“addPage,” you can set the label for that item by including a resource specification such
as this:

*addPage.labelString: Add Page

If you do not set the menu item’s XmNIlabelString resource, ViewKit uses the item’s
name.

In some cases, you might need to set the label of an item programmatically. For example,
in a page layout system, you might want to change the labels for the items in an Edit
menu to reflect the type of object the user has currently chosen. You can change a menu
item’s label programmatically with the setLabel() function:

virtual void setLabel (const char * str)

The string is treated first as a resource name that setLabel() looks up relative to the menu
item’s widget. If the resource exists, its value is used as the item’s label. If the resource
does not exist, or if the string contains spaces or newline characters, setLabel() uses the
string itself as the item’s label. This allows applications to set and change menu item
labels dynamically without hard-coding the exact label strings in the application code.

You can also obtain the current label string by using getLabel():

char *getLabel ()

Setting the Position of Menu ltems

By default, ViewKit inserts items into a menu in the order you specify them. Therefore,
the easiest way to set the positions of menu items is to add them to the menu in the order
that you want them to appear.

ViewKit Menu Item Classes

Occasionally you might need to explicitly set the position of a menu item. To do so, use
VkMenultem::setPosition():

void setPosition (int position)

setPosition() sets the item’s position in the menu. You can specify any integer value from
zero to the number of items in the menu; a value of zero specifies the first position in the
menu. setPosition() ignores invalid values.

Note: setPosition() is effective only before ViewKit realizes the menu to which the menu
item belongs. If you call setPosition() after realizing a menu, it has no effect. For example,
if you create a menu bar in a window’s constructor, you can safely use setPosition() to
position menu items; however, after calling the window’s show() function, setPosition()
has no effect.

Menu Items Utility Functions

You can use Menultem::menuType() to determine the specific menu item type when
given a pointer to a VkMenultem object:

virtual VkMenultemType menuType ()

menuType() returns one of the following enumerated values of type
VkMenultem::VkMenultemType:

ACTION A VkMenuAction object.
CONFIRMFIRSTACTION

A VkMenuConfirmFirstAction object.
TOGGLE A VkMenuToggle object.
LABEL A VkMenuLabel object.

SEPARATOR A VkMenuSeparator object.
SUBMENU A VkSubMenu object.

RADIOSUBMENU
A VkRadioSubMenu object.
BAR A VkMenuBar object.

129

Chapter 5: Creating Menus With ViewKit

130

OPTION A VkOptionMenu object.
POPUP A VkPopupMenu object.
OBJECT A user-defined subclass of VkMenuActionObject (described in

“Command Classes” on page 184).

You can also determine when an object pointed to by a VkMenultem pointer is a menu
by calling Menultem::isContainer():

virtual Boolean isContainer ()

isContainer() returns TRUE if the VkMenultem object is an item that can “contain”
other menu items (in other words, a menu).

Menu Actions

The VkMenuAction class provides a selectable menu item that performs an action. A
VkMenuAction object is implemented as a PushButtonGadget.

A VkMenuAction object has associated with it a callback function that performs an
operation and, optionally, a callback function that “undoes” the operation. You specify
these callback functions when you add the item to a menu using one of the methods
described in “Constructing Menus” on page 133. Consult that section for information on
using VkMenuAction objects in a menu.

VkMenuAction provides a couple of public functions in addition to those implemented
by VkMenultem:

* You can determine whether an action has an undo callback associated with it by
calling VkMenuAction::hasUndo():

Boolean hasUndo ()

hasUndo() returns TRUE if the object has an associated undo callback
function.

¢ If an object has an undo callback function, you can call it programmatically using
VkMenuAction::undo():

virtual void undo ()

ViewKit Menu Item Classes

Typically, you won’t have any need to call undo() explicitly. ViewKit provides automatic
undo handling for your application using the VkUndoManager class, as described in
Chapter 6, “ViewKit Undo Management and Command Classes.” All you have to do is
provide undo callback functions for your VkMenuAction objects and create an instance
of VkUndoManager as described in Chapter 6.

Confirmable Menu Actions

The VkMenuConfirmFirstAction class, which is derived from VkMenuAction,
provides a selectable menu item that performs an action. When the user chooses this type
of menu item, the application posts a question dialog asking the user for confirmation.
The application performs the action only if the user confirms it.

Because the VkMenuConfirmFirstAction class is intended for irrecoverable actions (for
example, deleting a file), VkMenuConfirmFirstAction objects do not support undo
callback functions.

The VkMenuConfirmFirstAction class uses a XmPushButtonGadget to implement the
menu choice and the VkQuestionDialog class to implement the question dialog. (See
“Question Dialog” on page 215 for more information on the VkQuestionDialog class.)

The question displayed in the confirmation dialog is determined by the value of the
resource noUndoQuestion, which ViewKit looks up relative to the menu item’s widget.
For example, if you have a menu item named “quit,” set the question text for that item
by including a resource specification such as this:

*quit.noUndoQuestion: Do you really want to quit?

If you do not provide a value for this resource, ViewKit uses the default question: “This
action cannot be undone. Do you want to proceed anyway?”

Menu Toggles

The VkMenuToggle class, which is derived from VkMenuAction, provides a two-state
toggle as a menu item. To enforce radio behavior on a group of toggles, you must add
them to a VkRadioSubMenu object; otherwise, VkMenuToggle objects exhibit simple
checkbox-style behavior. A VkMenuToggle object is implemented as a
ToggleButtonGadget.

131

Chapter 5: Creating Menus With ViewKit

132

In addition to the public functions provided by VkMenultem, VkMenuToggle provides
functions for setting and retrieving the toggle state:

* You can set the visual state of a VkMenuToggle object, without activating its
associated callback, using VkMenuToggle::setVisualState():

void setVisualState (Boolean state)

setVisualState() selects the toggle if state is TRUE, and deselects the toggle if state is
FALSE.

* You can set the visual state of a VkMenuToggle object and activate its associated
callback with VkMenuToggle::setStateAndNotify():

void setStateAndNotify (Boolean state)

* You can retrieve the current value of a VkMenuToggle object using
VkMenuToggle::getState():

Boolean getState()

getState() returns TRUE if the toggle is currently selected, and FALSE if it is
currently deselected.
Menu Labels

The VkMenulLabel class provides a non-selectable label as a menu item. A
VkMenuLabel object is implemented as a LabelGadget.

The VkMenuLabel class does not provide any public functions other than those
implemented by VkMenultem.
Menu Separators

The VkMenuSeparator class provides a non-selectable separator as a menu item. A
VkMenuSeparator object is implemented as a SeparatorGadget.

You can give a menu separator a name if you choose. This allows you to manipulate it
like any other menu item.

The VkMenuSeparator class does not provide any public functions other than those
implemented by VkMenultem.

ViewKit Menu Base Class

ViewKit Menu Base Class

This section describes the abstract VkMenu class, which provides the basic features of
the ViewKit menu classes. It describes how to construct menus, manipulate items
contained in the menus, and use the menu access functions. Because all ViewKit menu
classes are derived from VkMenu, the functions and techniques described in this section
apply to all menu classes.

Constructing Menus

The methods of constructing menus are the same for all types of menus (menu bars,
options menus, and so on). The examples in this section use the VkMenuBar class, but
the principles are similar for any of the ViewKit menu classes.

You can build menus either by passing a static menu description to the class constructor
for a menu, or by adding items dynamically through function calls. You can mix the two
approaches, initially defining a static menu structure and then dynamically adding items
as needed.

By default, ViewKit menus, are built using work procedures since this shortens
application startup times. You should turn this off if there is a conflict with your
application’s own workproc usage. To do so, use VkMenu::useWorkProcs():

static void useWorkProcs (Boolean flag = TRUE)

Constructing Menus From a Static Description

To construct a menu from a static description, you must create a VkMenuDesc array that
describes the contents of the menu and then pass that array as an argument to an
appropriate menu constructor. This section describes the format of the VkMenuDesc
structure and provides examples of its use.

133

Chapter 5: Creating Menus With ViewKit

134

The VkMenuDesc Structure

The definition for the VkMenuDesc structure is:

struct VkMenuDesc {
VkMenuItemType menuType ;

char *name ;
XtCallbackProc callback ;
VkMenuDesc *submenu ;
XtPointer clientData ;

XtCallbackProc undoCallback ;

Vi

The purposes of the VkMenuDesc fields are as follows:

menuType

name

callback

submenu

clientData

undoCallback

The type of menu item. The value of this field must be one of the
enumerated constants listed below.

The menu item’s name, which is also used as the menu item’s default
label.

An Xt-style callback procedure that is executed when this menu item is
activated.

A pointer to an array of a VkMenuDesc structures that describes the
contents of a submenu.

Data that is passed to the callback procedure when it is executed.

A callback procedure that can be executed to undo the effects of the
actions of the activation callback. Implementation of support for
undoing actions is described in Chapter 6, “ViewKit Undo Management
and Command Classes.”

The menuType parameter is an enumerated value of type VkMenultemType. Possible
values are as follows:

ACTION A selectable menu item, implemented as a VkMenuAction object.

CONFIRMFIRSTACTION
A selectable menu item, implemented as a VkMenuConfirmFirstAction
object, which performs an action that the user must confirm before it is
executed.

TOGGLE A two-state toggle button gadget, implemented as a VkMenuToggle

object.

ViewKit Menu Base Class

LABEL A label, implemented as a VkMenuLabel object.
SEPARATOR A separator, implemented as a VkMenuSeparator object.
SUBMENU A cascading submenu, implemented as a VkSubMenu object.

RADIOSUBMENU
A cascading submenu that acts as a radio-style pane, implemented as a
VkRadioSubMenu object.

END A constant that must terminate all menu descriptions.

Not all fields are used for each menu item type. Table 5-1 summarizes the optional and
required fields for each menu item type.

Table 5-1 Required and Optional Parameters in a Static Menu Description®

menuType name callback submenu clientData® undoCallback
ACTION R o¢ I (@) (@)
CONFIRMFIRSTACTION R ob 1 O 1

TOGGLE R oP I 0 I

LABEL R 1 1 1 1
SEPARATOR O 1 1 1 1

SUBMENU R I R od I
RADIOSUBMENU R 1 R (o 1

END R 1 1 1 1

a. R = required parameter; O = optional parameter; I = ignored parameter.

b. If you provide a default client data argument to the menu constructor, that value is used for all menu items
for which you do not explicitly provide a client data parameter.

c. While this parameter is optional, the menu item is useless unless you provide a callback function.

d. If you provide a client data parameter, that value is used as default client data for all menu items in the
submenu.

135

Chapter 5: Creating Menus With ViewKit

136

For example, consider the following array definition:

class EditWindow: public VkWindow {

private:
static VkMenuDesc editMenul(] ;
// ...
}i
VkMenuDesc EditWindow::editMenul[] = {
{ acTION, "Ccut", &EditWindow: : cutCallback,
NULL, NULL, &EditWindow::undoCutCallback },
{ acrIOoN, "Copy", &EditWindow: :copyCallback,
NULL, NULL, &EditWindow: :undoCopyCallback },
{ acTION, "Paste", &EditWindow: :pasteCallback,
NULL, NULL, &EditWindow: :undoPasteCallback },
{ ACTION, "Search" &EditWindow::searchCallback }

{ SEPARATOR },
{ CONFIRMFIRSTACTION, "Revert", &EditWindow::revertCallback 1},
{ = }

bi

The editMenu array describes a simple menu for editing in an application. The menu
consists of five actions and a separator. The menu’s Cut item calls the cutCallback()
function when it is activated with no client data passed to it. Cut also supports an undo
action through the undoCutCallback() function. The Copy and Paste items work
similarly.

The Search action does not support an undo action. Presumably, the action performed by
this item is either too complex to undo or is meaningless to undo.

The Revert item is implemented as a CONFIRMFIRSTACTION. When the user activates
this item, the application posts a confirmation dialog to warn the user that the action
cannot be undone.

ViewKit Menu Base Class

As a more complex example, consider a menu that contains two submenus, each of
which contains two selectable items. You could describe this menu with definitions such
as:

class TextWindow: public VkWindow {

private:
static VkMenuDesc menul] ;
static VkMenuDesc applicationPanel[];
static VkMenuDesc editPanel];
//
}i

VkMenuDesc TextWindow: :applicationPane[] = {
{ ACTION, "Open", &TextWindow::openCallback },
{ ACTION, "Save", &TextWindow::saveCallback },

{ END }
}i
VkMenuDesc TextWindow: :editPanel[] = {
, ut", &TextWindow: :cutCa ac ,
ACTION, "Cut" TextWind tCallback
, aste", &TextWindow: :pasteCa ac ,
ACTION, "Paste" TextWind teCallback
{ END }
Vi
VkMenuDesc TextWindow: :menul[] = {
{ SUBMENU, "Application", NULL, applicationPane },
, it", , editPane },
SUBMENU, "Edit™" NULL ditPp
{ END }

Vi

After constructing a static menu description, you create it by passing it as an argument
to a menu constructor. For example, to implement the menus defined above as a menu
bar, you can execute:

VkMenuBar *menubar = new VkMenuBar (menu) ;

You can implement the same menu as a popup menu simply by passing the definition to
a popup menu constructor:

VkPopupMenu *popup = new VkPopupMenu (menu) ;

137

Chapter 5: Creating Menus With ViewKit

138

Special Considerations for Xt Callback Client Data When Using Static Menu
Descriptions

As described in “Using Xt Callbacks With Components” on page 21, when using Xt-style
callbacks in ViewKit, pass the this pointer as client data to all Xt callback functions.
Callback functions then retrieve this pointer, cast it to the expected component type, and
call a corresponding member function.

However, you cannot use the this pointer when you define a static data member. To get
around this limitation, menu constructors accept a defaultClientData argument. If you
provide a value for this argument, any menu item that does not provide a client data
argument uses this argument instead. This allows you to specify menus statically while
still allowing you to use an instance pointer with Xt callbacks. The code fragment
Example 5-1 illustrates this technique.

Example 5-1 Providing Default Client Data When Using Static Menu Descriptions

class SampleWindow: public VkWindow {

private:
static void oneCallback (Widget, XtPointer, XtPointer) ;
static void twoCallback (Widget, XtPointer, XtPointer) ;
static void cutCallback (Widget, XtPointer, XtPointer) ;
static void pasteCallback (Widget, XtPointer, XtPointer) ;

static VkMenuDesc applicationPanel[];
static VkMenuDesc editPanel];
static VkMenuDesc menul] ;

public:
SampleWindow (const char *name) ;

// Other members

Vi

SampleWindow: : SampleWindow (char *name) : VkWindow (name)

{

setMenuBar (new VkMenuBar (menu, (XtPointer) this));

// Other actions

ViewKit Menu Base Class

Note: VkWindow::addMenuPane(), VkWindow::addRadioMenuPane(), and the form
of the VkWindow::setMenuBar() function that accepts a VkMenuDesc array as an
argument all automatically use the this pointer as default client data for the menu bars
and menu panes that they create.

Creating a Menu Bar Using a Static Description

Example 5-2 illustrates using a static description of a menu tree to create a menu bar. The
program creates its main window using MyWindow, a subclass of VkWindow. The
menu description and all menu callbacks are contained within the MyWindow subclass
definition.

Example 5-2 Creating a Menu Bar Using a Static Description

#include <Vk/VkApp.h>
#include <Vk/VkWindow.hs>
#include <Vk/VkMenu.h>
#include <iostream.h>
#include <Xm/Label.h>

class MyWindow: public VkWindow {
private:
static void sampleCallback(Widget, XtPointer , XtPointer);
static void quitCallback(Widget, ZXtPointer , XtPointer) ;

void quit () ;
void sample() ;

static VkMenuDesc subMenul] ;

static VkMenuDesc sampleMenuPane][] ;
static VkMenuDesc appMenuPane[];
static VkMenuDesc mainMenuPane[] ;

public:
MyWindow (const char *name) ;

~MyWindow () ;

virtual const char* className () ;

}i

139

Chapter 5: Creating Menus With ViewKit

MyWindow: :MyWindow (const char *name) : VkWindow(name)
{
Widget label = XmCreatelabel (mainWindowWidget (), "a menu",
NULL, O0);

setMenuBar (mainMenuPane) ;
addview (label) ;

MyWindow: : ~MyWindow ()

{
}

// Empty

const char* MyWindow::className ()

{
}

return "MyWindow";

// The menu bar is essentially a set of cascading menu panes, so the
// top level of the menu tree is always defined as a list of submenus

VkMenuDesc MyWindow: :mainMenuPane [] = {
{ SUBMENU, "Application", NULL, MyWindow::appMenuPane },
, ample", , MyWindow: :sampleMenuPane },
SUBMENU, "S le" NULL, MyWind leM P
{ END }
Vi
VkMenuDesc MyWindow: :appMenuPane[] = {
, ne", &MyWindow: : sampleCa ac ,
ACTION "One" MyWind leCallback
, wo", &MyWindow: : sampleCa ac ,
ACTION "Two" MyWind leCallback
, ree", &MyWindow: : sampleCa ac ,
ACTION "Th " MyWind leCallback
{ SEPARATOR, “Menu Separator”},
{ acTION, "Quit™", &MyWindow: :quitCallback },
{ END },
}i
VkMenuDesc MyWindow: :sampleMenuPane[] = {
{ LABEL, "Test Label" },
{ SEPARATOR, “Sample Menu Separator”},
{ acTION, "An Action", &MyWindow: : sampleCallback },
{ acTION, "Another Action", &MyWindow::sampleCallback },
{ SUBMENU, "A Submenu", NULL, MyWindow::subMenu },
{ END },

140

ViewKit Menu Base Class

VkMenuDesc MyWindow: :subMenul[] = {
{ acTION, "fooO", &MyWindow: : sampleCallback },
{ acTION, ‘'bar", &MyWindow: : sampleCallback },
{ AcTION, ‘"baz", &MyWindow: : sampleCallback },
{ END },

}i

void MyWindow: :sample ()

{
}

void MyWindow: :sampleCallback (Widget, XtPointer clientData, XtPointer)

{

cout << "sample callback" << "\n" << flush;

MyWindow *obj = (MyWindow *) clientData;
obj->sample () ;

}

void MyWindow: :quitCallback (Widget, XtPointer, XtPointer)

{
}

void main(int argc, char **argv)

{

VkApp *myApp new VKApp ("Menudemo", &argc, argv);
MyWindow *menuWin = new MyWindow ("MenuWindow") ;

theApplication->quitYourself () ;

menuWin->show () ;
myApp->run() ;

}

When you run this program, you see the window shown in Figure 5-2.

Application Sample Help

d menu

Figure 5-2 Main Window With Menu Bar Created by Static Description

14

Chapter 5: Creating Menus With ViewKit

The first pane, shown in Figure 5-3, contains three selectable entries (actions), followed
by a separator, followed by a fourth action. The first three menu items simply invoke a
stub function when chosen. The fourth item calls quitCallback(), which exits the
application.

_ =.1 MenuWindow ; a ;D ‘
Application I Sample Help

One a ment

fwo
fhree
it

Figure 5-3 Menu Pane Created by a Static Description

The second menu pane, shown in Figure 5-4, demonstrates a non-selectable label, a
separator, and a cascading submenu.

1 1

u =.§ MenuWindow ! a ID ‘

Appiication Samp.-‘el Help

a fest Label
An Action
Anaother Action
A Submenit " e
bar
haz
Figure 5-4 Menu Pane Containing a Label and a Submenu

142

ViewKit Menu Base Class

In addition to implementing these application-defined menu panes, ViewKit can
automatically add a Help menu to a menu bar, which provides a user interface to a help
system. “ViewKit Help Menu” on page 312 describes the Help menu. “Using an External
Help Library” on page 312 describes how to add an interface to an external help system
to a ViewKit application.

Constructing Menus Dynamically

In addition to the static description approach demonstrated in the previous section,
ViewKit allows applications to construct menus and menu items dynamically using
functions defined in VkMenu. This section describes the menu-creation functions and
provides examples of their use.

Functions for Dynamically Creating Menus

The VkMenu class provides a number of member functions for creating menus. Each
function adds a single menu item to a given menu. You can use these functions at any
time in your program. Even if you created a menu using a static definition, you can use
these functions to add items to the menu.

VkMenu::addAction() adds to a menu a selectable menu action, implemented as a
VkMenuAction object:

VkMenuAction *addAction (const char *name,
XtCallbackProc actionCallback = NULL,
XtPointer clientData = NULL,
int position = -1)

VkMenuAction *addAction(const char *name,
XtCallbackProc actionCallback,
XtCallbackProc undoCallback,
XtPointer clientData,
int position = -1)

143

Chapter 5: Creating Menus With ViewKit

144

addAction() creates a VkMenuAction object named name and adds it to the menu. By
default, addAction() adds the item to the end of the menu; if you specify a value for
position, addAction() adds the item at that position. actionCallback is the callback function
that performs the item’s action, and undoCallback is the callback function that undoes the
action. If you do not provide an undo callback, the action cannot be undone and does not
participate in the ViewKit undo mechanism as described in Chapter 6. clientData is client
data passed to the callback functions. Following ViewKit conventions as described in
“Using Xt Callbacks With Components” on page 21, pass the this pointer as client data so
that the callback functions can retrieve the pointer, cast it to the expected component
type, and call a corresponding member function.

VkMenu::addConfirmFirstAction() adds to a menu a selectable menu action,
implemented as a VkMenuConfirmFirstAction object:

VkMenuConfirmFirstAction *
addConfirmFirstAction (const char *name,
XtCallbackProc actionCallback = NULL,
XtPointer clientData = NULL,
int position = -1)

addConfirmFirstAction() creates a VkMenuConfirmFirstAction object named name and
adds it to the menu. By default, addConfirmFirstAction() adds the item to the end of the
menu; if you specify a value for position, addConfirmFirstAction() adds the item at that
position. actionCallback is the callback function that performs the item’s action, and
clientData is client data passed to the callback function. As described above, pass the this
pointer as client data.

VkMenu::addToggle() adds to a menu a selectable menu toggle, implemented as a
VkMenuToggle object:

VkMenuToggle *addToggle (const char *name,
XtCallbackProc actionCallback = NULL,
XtPointer clientData = NULL,
int state = -1)
int position = -1)

addToggle() creates a VkMenuToggle object named name and adds it to the menu. By
default, addToggle() adds the item to the end of the menu; if you specify a value for
position, addToggle() adds the item at that position. If you provide a state argument,
addToggle() sets the initial state of the toggle to that value. actionCallback is the callback
function that performs the item’s action, and clientData is client data passed to the
callback function. As described above, pass the this pointer as client data.

ViewKit Menu Base Class

VkMenu::addLabel() adds to a menu a non-selectable menu label, implemented as a
VkMenuLabel object:

VkMenuLabel *addLabel (const char *mname,
int position = -1)

addLabel() creates a VkMenuLabel object named name and adds it to the menu. By
default, addLabel() adds the item to the end of the menu; if you specify a value for
position, addLabel() adds the item at that position.

VkMenu::addSeparator() adds to a menu a non-selectable menu separator,
implemented as a VkMenuSeparator object:

VkMenuSeparator *addSeparator (const char *name,
int position = -1)

addSeparator() creates a VkMenuSeparator object named name and adds it to the menu.
By default, addSeparator() adds the item to the end of the menu; if you specify a value
for position, addSeparator() adds the item at that position.

VkMenu::addSubmenu() adds to a menu a submenu, implemented as a VkSubMenu
object:

VkSubMenu *addSubmenu (VkSubMenu *submenu,
int position = -1)

VkSubMenu *addSubmenu (const char *name,
int position = -1)

VkSubMenu *addSubmenu (const char *name,
VkMenuDesc *menuDesc)
XtPointer *defaultClientData = NULL)
int position = -1)

addSubmenu() is overloaded so that you can: 1) add an existing VkSubMenu object;
2) create and add a VkSubMenu object containing no items; or 3) create and add a
VkSubMenu object from the static menu description, menuDesc. If you create and add
the submenu using the static menu description, you can also provide a defaultClientData
value that is used as the default client data for all items contained by the submenu. By
default, addSubmenu() adds the item to the end of the menu; if you specify a value for
position, addSubmenu() adds the item at that position.

Note: The m in addSubmenu() is lowercase, whereas the M in VkSubMenu is
uppercase.

145

Chapter 5: Creating Menus With ViewKit

146

VkMenu::addRadioSubmenu() adds to a menu a submenu that enforces radio-style
behavior on the toggle items it contains:

VkRadioSubMenu *addRadioSubmenu (VkRadioSubMenu *submenu,
int position = -1)

VkRadioSubMenu *addRadioSubmenu(const char *name,
int position = -1)

VkRadioSubMenu *addRadioSubmenu (const char *name,
VkMenuDesc *menuDesc)
XtPointer *defaultClientData = NULL)
int position = -1)

addRadioSubmenu() is overloaded so that you can do one of the following:
* Add an existing VkRadioSubMenu object.
® Create and add a VkRadioSubMenu object containing no items.

® Create and add a VkRadioSubMenu object from the static menu description,
menuDesc.

If you create and add the submenu using the static menu description, you can also
provide a defaultClientData value that is used as the default client data for all items
contained by the submenu. By default, addSubmenu() adds the item to the end of the
menu; if you specify a value for position, addSubmenu() adds the item at that position.

Note: The m in addRadioSubmenu() is lowercase, whereas the M in VkRadioSubMenu
is uppercase.

VkMenu::add() adds an existing menu item to a menu:

void add(VkMenuItem *item, int position = -1)

By default, add() adds the item to the end of the menu; if you specify a value for position,
add() adds the item at that position. Though you can use add() to add any type of menu
item to a menu, you typically need it to add only the ViewKit undo manager and
VkMenuActionObject objects. “Undo Management” on page 173 describes the ViewKit
undo manager, and “Command Classes” on page 184 describes the
VkMenuActionObject class.

ViewKit Menu Base Class

Creating a Menu Bar Dynamically

Example 5-3 is functionally equivalent to Example 5-2. It constructs a menu by adding
items one at a time to the window’s menu bar and to individual menu panes.

Example 5-3 Creating a Menu Bar Dynamically

#include <Vk/VkApp.h>

#include <Vk/VkWindow.h>

#include <Vk/VkSubMenu.h>

#include <Vk/VkMenu.h>

#include <Xm/Label.h>

#include <iostream.h>

class MyWindow: public VkWindow {

private:

static void sampleCallback(Widget, XtPointer, XtPointer) ;
static void quitCallback(Widget, XtPointer, XtPointer);

protected:
void sample() ;

public:
MyWindow (const char *name) ;
~MyWindow () ;

virtual const char* className () ;
}i
MyWindow: :MyWindow (const char *name) : VkWindow(name)
{
Widget label = XmCreateLabel (mainWindowWidget (), "a menu", NULL, 0);

// Add a menu pane

VkSubMenu *appMenuPane = addMenuPane ("Application") ;

appMenuPane->addAction ("One", &MyWindow: : sampleCallback,
(XtPointer) this) ;
appMenuPane->addAction ("Two", &MyWindow: : sampleCallback,

(XtPointer) this);
appMenuPane->addAction ("Three", &MyWindow: :sampleCallback,
(XtPointer) this);
appMenuPane->addSeparator () ;
appMenuPane->addAction ("Quit", &MyWindow::quitCallback,
(XtPointer) this);

147

Chapter 5: Creating Menus With ViewKit

148

// BAdd a menu second pane
VkSubMenu *sampleMenuPane = addMenuPane ("Sample") ;

sampleMenuPane->addlabel ("Test Label") ;
sampleMenuPane->addSeparator () ;
sampleMenuPane->addAction ("An Action",
&MyWindow: : sampleCallback,
(XtPointer) this);
sampleMenuPane->addAction ("Another Action",
&MyWindow: : sampleCallback,
(XtPointer) this);

// Create a cascading submenu

VkSubMenu *subMenu = sampleMenuPane->addSubmenu ("A Submenu") ;

subMenu->addAction ("foo", &MyWindow: :sampleCallback,
subMenu->addAction ("bar", &MyWindow: :sampleCallback,
subMenu->addAction ("baz", &MyWindow: :sampleCallback,

addview (label) ;

}

MyWindow: : ~MyWindow ()

{
}

const char* MyWindow::className() { return "MyWindow";}

// Empty

(XtPointer) this);
(XtPointer) this);
(XtPointer) this);

void MyWindow: :sampleCallback (Widget, XtPointer clientData, XtPointer)

{
MyWindow *obj = (MyWindow *) clientData;
obj->sample () ;

}

void MyWindow: :sample ()

{

cout << "sample callback" << "\n" << flush;

ViewKit Menu Base Class

void MyWindow: :quitCallback (Widget, XtPointer, XtPointer)

{
}

void main(int argc, char **argv)

{

theApplication->quitYourself () ;

VkApp *myApp = new VKApp ("Menu", &argc, argv) ;
MyWindow *wl = new MyWindow ("menuWindow") ;

wl->show() ;
myApp->run () ;

Manipulating Items in Menu

One of the advantages of the ViewKit menu system is the ability to manipulate the items
in a menu after the menu has been created. The ViewKit menu system allows menu items
to be manipulated by sending messages to any menu item. Menu items can also be found
and manipulated by name.

Finding Items in a Menu

The VkMenu::findNamedItem() function allows you to find an item in a menu given its
component name:

VkMenuItem *findNamedItem (const char *name,
Boolean caseless = FALSE)

findNamedItem() finds and returns a pointer to a menu item of the specified name
belonging to the menu object or any submenus of the menu object. You can also pass an
optional Boolean argument specifying whether or not the search is case-sensitive. If
findNamedItem() finds no menu item with the given name, it returns NULL. If multiple
instances of the same name exist, findNamedItem() returns the first name found in a
depth-first search.

Note: Remember that you need to cast the return value if you need to access a member
function provided by a VkMenultem subclass. For example, if you search for a toggle
item, remember to cast the return value to VkMenuToggle before calling a member
function such as VkMenuToggle::setVisualState().

149

Chapter 5: Creating Menus With ViewKit

150

Activating and Deactivating ltems in a Menu

The VkMenu::activateItem() function makes a menu item sensitive so that it accepts user
input (that is, a user can choose the item):

VkMenultem *activateItem(const char *name)

You provide as an argument to activateltem() the name of the menu item to activate. This
is the same name that you gave the menu item when you created it. activateItem()
returns a VkMenultem pointer to the item activated (or NULL if you did not provide a
valid menu item name). By default, all menu items are activated (sensitive) when they
are created.

The VkMenu::deactivateltem() function makes a menu item insensitive so that it does
not accept user input (that is, a user cannot choose the item):

VkMenulItem *deactivateItem(const char *name)

You provide as an argument to deactivateItem() the name of the menu item to deactivate.
This is the same name that you gave the menu item when you created it. deactivateltem()
returns a VkMenultem pointer to the item deactivated (or NULL if you did not provide
a valid menu item name). When it is insensitive, the menu item appears “grayed out”
when you display the menu. You can reactivate a menu item by calling deactivateltem()
on that item.

Note that instead of using VkMenu::activateltem() and VkMenu::deactivateItem() to
activate and deactivate menu items, you could retain pointers to all of your menu items
and use VkMenultem::activate() and VkMenultem::deactivate(), respectively. The
effect is the same no matter which functions you use, though typically it is easier to use
the VkMenu functions. “Activating and Deactivating Menu Items” on page 127
describes VkMenultem::activate() and VkMenultem::deactivate().

Removing Items From a Menu

If you want to remove a menu item from a menu, you can call VkMenu::removeltem():

VkMenulItem *removeltem(const char *name)

You provide as an argument to removeltem() the name of the menu item to remove from
the menu. This is the same name that you gave the menu item when you created it.
removeltem() returns a VkMenultem pointer to the item removed. removeltem() does
not destroy a menu item; it simply removes the item from the menu hierarchy.

ViewKit Menu Base Class

Note that instead of using VkMenu::removeltem(), you can retain pointers to all of your
menu items and use VkMenultem::remove(). The effect is the same no matter which
functions you use, though typically you it is easier to use the VkMenu functions.
“Displaying and Hiding Menu Items” on page 126 describes VkMenultem::remove().

Replacing Items in a Menu

You can replace an item in a menu with another menu item using VkMenu::replace():

VkMenultem *replace (const char *name, VkMenultem *newltem)

replace() first uses VkMenu::findNamedItem to find the item specified by name. Then it
removes that item from the menu and adds the menu item specified by newltem in its
place. replace() returns a pointer to the menu item that you replaced.

Manipulating Menu ltems

The program in Example 5-4 allows users to dynamically add and remove items from a
menu, and also to activate and deactivate items.

Example 5-4 Manipulating Menu Items

#include <Vk/VkApp.h>
#include <Vk/VkWindow.h>
#include <Vk/VkMenu.h>
#include <Vk/VkSubMenu.hs>
#include <Xm/Label.h>
#include <stream.h>
#include <stdlib.h>

class MyWindow: public VkWindow {

private:
static void addOneCallback (Widget, XtPointer, XtPointer);
static void removeOneCallback (Widget, XtPointer, XtPointer);

)
)
static void activateOneCallback (Widget, XtPointer, XtPointer);
static void deactivateOneCallback (Widget, XtPointer, XtPointer) ;
)
)

7

static void sampleCallback (Widget, XtPointer, XtPointer
static void quitCallback (Widget, XtPointer, XtPointer

7

151

Chapter 5: Creating Menus With ViewKit

protected:
VkSubMenu *_ appMenuPane;
VkSubMenu *_ menuPaneTwo;

void addoOne () ;

void removeOne () ;
void activateOne () ;
void deactivateOne () ;
void sample () ;

public:
MyWindow (const char *name) ;
~MyWindow () ;
virtual const char* className () ;
}i
MyWindow: : ~MyWindow ()

{
}

// Empty

const char* MyWindow::className () { return "MyWindow";}

void MyWindow: :sampleCallback (Widget, XtPointer clientData, XtPointer)

{
MyWindow *obj = (MyWindow *) clientData;
obj->sample () ;

}

void MyWindow: :sample ()

{
}

void MyWindow: :addOneCallback (Widget, XtPointer clientData, XtPointer)

{

cout << "sample callback" << "\n" << flush;

MyWindow *obj = (MyWindow *) clientData;
obj->addOne () ;

}

void MyWindow: :addOne ()

{

_menuPaneTwo->addAction ("A New Action", &MyWindow: :sampleCallback,
(XtPointer) this);

152

ViewKit Menu Base Class

void MyWindow: : removeOneCallback (Widget, XtPointer clientData,
XtPointer)

MyWindow *obj = (MyWindow *) clientData;
obj->removeOne () ;

void MyWindow: :removeOne ()

{
}

void MyWindow: :activateOneCallback (Widget, XtPointer clientData,
XtPointer)

_menuPaneTwo->removeltem("A New Action") ;

MyWindow *obj = (MyWindow *) clientData;
obj->activateOne () ;

void MyWindow: :activateOne ()

{
}

void MyWindow: :deactivateOneCallback (Widget, XtPointer clientData,
XtPointer)
{

_menuPaneTwo->activateItem("A New Action");

MyWindow *obj = (MyWindow *) clientData;
obj->deactivateOne () ;

void MyWindow: :deactivateOne ()

{
}

void MyWindow: :quitCallback (Widget, XtPointer, XtPointer)

{
}

_menuPaneTwo->deactivateItem("A New Action");

theApplication->quitYourself () ;

MyWindow: :MyWindow (const char *name) : VkWindow(name)
{
Widget label = XmCreateLabel (mainWindowWidget (), "a menu",
NULL, O0);

153

Chapter 5: Creating Menus With ViewKit

154

// Add a menu pane
_appMenuPane = addMenuPane ("Application") ;

_appMenuPane->addAction ("Add One",
&MyWindow: : addOneCallback,
(XtPointer) this);
_appMenuPane->addAction ("Remove One",
&MyWindow: : removeOneCallback,
(XtPointer) this);
_appMenuPane->addAction ("Activate One",
&MyWindow: :activateOneCallback,
(XtPointer) this);
_appMenuPane->addAction ("Deactivate One",
&MyWindow: :deactivateOneCallback,
(XtPointer) this);
_appMenuPane->addSeparator () ;
_appMenuPane->addAction ("Quit",
&MyWindow: :quitCallback,
(XtPointer) this);

// Add a menu second pane
_menuPaneTwo = addMenuPane ("PaneTwo") ;

addview (label) ;

void main(int argc, char **argv)

{

VkApp *myApp = new VKApp ("MenuDemo3", &argc, argv);
MyWindow *menuWin = new MyWindow ("menuWindow") ;

menuWin->show () ;
myApp->run() ;

ViewKit Menu Base Class

Menu Access Functions
The VkMenu class also provides access functions to help manipulate menu items.

You can determine the number of items currently associated with a menu by using
VkMenu::numlItems():

int numItems () const

You can determine the position of an item in a menu with VkMenu::getItemPosition():

int getItemPosition (VkMenultem * item)
int getItemPosition (char *name)
int getItemPosition (Widget w)

You can specify the menu item by pointer, name, or widget. getItemPosition() returns
the position of the item within the menu, with zero representing the first position in the
menu.

As a convenience, you can also access items in a menu using standard array subscript
notation:

VkMenultem * operator[] (int index) const

For example, you can use VkMenu::numlItems() with the array subscript notation to
loop through an entire menu and perform an operation on all of the items it contains. For
example, if menubar is a menu, the following code prints the name and class of each item
in the menubar menu:

for (i=0; 1 < menubar-snumlItems(); i++)
cout << "Name: " << (*menubar) [i]->name () << "\t"
<< "Class: " << (*menubar) [i] ->className () << "\n";

155

Chapter 5: Creating Menus With ViewKit

Using ViewKit Menu Subclasses

156

This section describes the features of each ViewKit menu subclass. In addition to specific
member functions listed, each class also supports all functions provided by the VkMenu
class.

Menu Bar

The VkMenuBar class provides a menu bar designed to work with the VkWindow class.
In addition to the functions described in this section, the VkWindow class provides some
member functions for installing a VkMenuBar object as a menu bar. “Menu Bar
Support” on page 108 describes the functions provided by VkWindow.

Examples of menu bar construction were given in “Creating a Menu Bar Using a Static
Description” on page 139 (Example 5-2) and “Creating a Menu Bar Dynamically” on
page 147 (Example 5-3).

Menu Bar Constructors

There are four different versions of the VkMenuBar constructor:

VkMenuBar (Boolean showHelpPane = TRUE)

VkMenuBar (const char *name,
Boolean showHelpPane

TRUE) ;

VkMenuBar (VkMenuDesc *menuDesc,
XtPointer defaultCientData= NULL,
Boolean showHelpPane = TRUE)

VkMenuBar (const char *name,
VkMenuDesc *menuDesc,
XtPointer defaultCientData = NULL,
Boolean showHelpPane = TRUE)

To work with Silicon Graphics’ color schemes, give the menu bar the name “menuBar.”
(For information on schemes, consult Chapter 3, “Using Schemes,” in the Indigo Magic
Desktop Integration Guide.) The forms of the constructor that do not take a name argument
automatically use the name “menuBar.” You can specify another name, but schemes does
not work correctly if you do.

Using ViewKit Menu Subclasses

If you use a form of the VkMenuBar constructor that accepts a menuDesc argument, the
constructor creates a menu from the VkMenuDesc structure you provide.

Some forms of the constructor also accept an optional defaultClientData argument. If this
argument is provided, any menu item that does not provide a client data argument uses
this argument instead. This allows menus to be specified statically, while still allowing
an instance pointer to be used with callbacks, as described in “Special Considerations for
Xt Callback Client Data When Using Static Menu Descriptions” on page 138.

The last argument to each version of the constructor is a Boolean value that specifies
whether the constructor should create a help pane that interfaces to the Silicon Graphics
help system. The default is to automatically provide the help pane. The help pane is
implemented by the VkHelpPane class (see “ViewKit Help Menu” on page 312 for more
information).

Menu Bar Access Functions

The VkMenuBar class also provides two functions for accessing the menu bar’s help
pane. The helpPane() member function returns a pointer to the menu bar’s help pane:

VkHelpPane *helpPane() const
If the menu bar does not have a help pane, helpPane() returns NULL.

The showHelpPane() member function controls whether or not the menu bar’s help
pane is visible:

void showHelpPane (Boolean showit)

Submenus

The VkSubMenu class supports pulldown menu panes. You can use these menu panes
within a menu bar (a VkMenuBar object), or as a cascading, pull-right menu in a popup
or pulldown menu.

Submenu Constructor

You should seldom need to instantiate a VkSubMenu object directly. You can add a
submenu to any type of menu by calling that menu’s addSubmenu() member function.
You can also add menu panes to the menu bar of a VkWindow object by calling
VkWindow::addMenuPane().

157

Chapter 5: Creating Menus With ViewKit

158

For those cases where you need to instantiate a VkSubMenu object directly, the form of
the constructor to use is as follows:

VkSubMenu (const char *name,
VkMenuDesc *menuDesc = NULL,
XtPointer defaultClientData = NULL)

name specifies the name of the submenu. If you provide the optional menuDesc argument,
the constructor creates a menu from the VkMenuDesc structure you provide. If you
provide the optional defaultClientData argument, any menu item that does not provide a
client data argument uses this argument instead. This allows menus to be specified
statically, while still allowing an instance pointer to be used with callbacks, as described
in “Special Considerations for Xt Callback Client Data When Using Static Menu
Descriptions” on page 138.

Submenu Utility and Access Functions

The VkSubMenu class provides a couple of additional public member functions:

¢ IRIS IM supports tear-off menus, which enable the user to retain a menu pane on
the screen. If tear-off behavior is enabled for a menu pane, a tear-off button, which
has the appearance of a dashed line, appears at the top of the menu pane. The user
can tear off the pane by clicking the tear-off button.

By default, tear-off behavior is disabled for all menu panes. You can change the
tear-off behavior of a submenu using VkSubMenu::showTearOff():

void showTearOff (Boolean showlt)

If you pass the Boolean value TRUE to showTearOff(), the submenu displays the
tear-off button; if you pass the value FALSE, it hides the tear-off button.

You can also enable tear-off behavior for a menu by setting its XmNtearOffModel
resource to XmTEAR_OFF_ENABLED (for example, in a resource file).

* You can access the RowColumn widget used to implement the submenu’s
pulldown pane by calling VkSubMenu::pulldown():

Widget pulldown ()

Note: The baseWidget() function of a VkSubMenu object returns the
CascadeButton widget required by IRIS IM pulldown menus.

Using ViewKit Menu Subclasses

Radio Submenus

The VkRadioSubMenu class, derived from VkSubMenu, supports pulldown menu
panes. Its function is similar to that of VkSubMenu, but the RowColumn widget used as
a menu pane is set to exhibit radio behavior. This class is intended to support
one-of-many collections of VkToggleltem objects. You can use VkRadioSubMenu
objects as menu panes within a menu bar (a VkMenuBar object), or as a cascading,
pull-right menu in a popup or pulldown menu.

It is seldom necessary to directly create a VkRadioSubMenu object. You can add radio
submenus to any VkMenuBar, VkPopupMenu, or VkSubMenu by calling those
classes’ addRadioSubmenu() member function. You can also add menu panes to a
VkWindow by calling VkWindow::addRadioMenuPane().

Radio Submenu Constructor

You seldom need to instantiate a VkRadioSubMenu object directly. You can add a radio
submenu to any type of menu by calling that menu’s addRadioSubmenu() member
function. You can also add radio menu panes to the menu bar of a VkWindow object by
calling VkWindow::addRadioMenuPane().

For those cases where you need to instantiate a VkRadioSubMenu object directly, the
form of the constructor to use is as follows:

VkRadioSubMenu (const char *name,
VkMenuDesc *menuDesc = NULL,
XtPointer defaultClientData = NULL)

name specifies the name of the radio submenu. If you provide the optional menuDesc
argument, the constructor creates a menu from the VkMenuDesc structure you provide.
If you provide the optional defaultClientData argument, any menu item that does not
provide a client data argument uses this argument instead. This allows menus to be
specified statically, while still allowing an instance pointer to be used with callbacks, as
described in “Special Considerations for Xt Callback Client Data When Using Static
Menu Descriptions” on page 138.

159

Chapter 5: Creating Menus With ViewKit

Radio Submenu Utility and Access Functions

The VkRadioSubMenu class does not provide any public member functions in addition
to those provided by the VkSubMenu class. For information on the utility and access
functions provided by VkSubMenu, see “Submenu Utility and Access Functions” on

page 158.

Using a Radio Submenu Object

Example 5-5 demonstrates the use of the VkRadioSubMenu class.

Example 5-5

#include <Vk/VKkApp.h>

#include <Vk/VkWindow.h>
#include <Vk/VkSubMenu.hs>
#include <Vk/VkRadioSubMenu.h>
#include <Vk/VkMenu.h>
#include <Xm/Label.h>

#include <stream.h>

#include <stdlib.h>

class MyWindow: public VkWindow {

160

private:

static void sampleCallback(Widget,

static void quitCallback (Widget,
protected:

void sample() ;
public:

MyWindow(const char *name) ;
~MyWindow () ;

virtual const char* className () ;

Using a VkRadioSubMenu Object

XtPointer , XtPointer) ;
XtPointer , XtPointer) ;

Using ViewKit Menu Subclasses

MyWindow: : ~MyWindow ()

{
}

void MyWindow: :sampleCallback (Widget, XtPointer clientData , XtPointer)

{

// Empty

MyWindow *obj = (MyWindow *) clientData;
obj->sample () ;

}

const char* MyWindow::className () { return "MyWindow";}

void MyWindow: :sample ()

{
}

cout << "In Sample Callback" << "\n" << flush;

void MyWindow: :quitCallback (Widget, XtPointer, XtPointer)

{

exit (0) ;
}
MyWindow: :MyWindow(const char *name) : VkWindow(name)
{
Widget label = XmCreatelLabel (mainWindowWidget (), "a menu", NULL, O);

// Add a menu pane

VkSubMenu *appMenuPane = addMenuPane ("Application") ;
appMenuPane->addAction ("One", &MyWindow::sampleCallback, (XtPointer) this);
appMenuPane->addAction ("Two", &MyWindow::sampleCallback, (XtPointer) this);
appMenuPane->addSeparator () ;

appMenuPane->addAction ("Quit", &MyWindow::quitCallback, (XtPointer) this);
// BAdd a menu second pane

VkSubMenu *sampleMenuPane = addMenuPane ("Sample") ;
sampleMenuPane->addlabel ("Test Label") ;

sampleMenuPane->addSeparator () ;

sampleMenuPane->addAction ("An Action", &MyWindow: :sampleCallback,
(XtPointer) this);

161

Chapter 5: Creating Menus With ViewKit

162

// Create a cascading submenu
VkRadioSubMenu *subMenu = sampleMenuPane->addRadioSubmenu ("A Submenu") ;

subMenu->addToggle ("foo", &MyWindow::sampleCallback, (XtPointer) this);
subMenu->addToggle ("bar", &MyWindow::sampleCallback, (XtPointer) this);
subMenu->addToggle ("baz", &MyWindow: :sampleCallback, (XtPointer) this);

addview (label) ;

}

void main(int argc, char **argv)

{
VkApp *myApp = new VkApp ("Menu", &argc, argv);
MyWindow *wl = new MyWindow ("menuwindow") ;

wl->show() ;

myApp->run () ;

Option Menus

The VkOptionMenu class supports option menus. You can use this component
anywhere in your interface.

Note: Unlike many other ViewKit components, VkOptionMenu objects are
automatically visible when you create them; you do not need to call show() initially to
display a VkOptionMenu object.

Option Menu Constructors

There are two different versions of the VkOptionMenu constructor that you can use:

VkOptionMenu (Widget parent,
VkMenuDesc *menuDesc,
XtPointer defaultClientData = NULL)

VkOptionMenu (Widget parent,
const char *name = "optionMenu",
VkMenuDesc *menuDesc = NULL,
XtPointer defaultClientData = NULL)

Using ViewKit Menu Subclasses

You must provide a parent argument specifying the parent widget of the option menu.

To work with Silicon Graphics’ color schemes, give the option menu the name
“optionMenu.” (For information on schemes, consult Chapter 3, “Using Schemes,” in the
Indigo Magic Desktop Integration Guide.) The forms of the constructor that do not take a
name argument automatically use the name “optionMenu.” You can specify another
name, but schemes does work correctly if you do.

If you provide the optional menuDesc argument, the constructor creates a menu from the
VkMenuDesc structure you provide.

If you provide the optional defaultClientData argument, any menu item that does not
provide a client data argument uses this argument instead. This allows menus to be
specified statically, while still allowing an instance pointer to be used with callbacks. This
is described in “Special Considerations for Xt Callback Client Data When Using Static
Menu Descriptions” on page 138.

Setting the Option Menu Label

To specify the string that is displayed as the option menu’s label, you must set the
XmNlabelString resource for the menu’s label widget. To do so you can do one of the
following:

¢ Use the VkComponent::setDefaultResources() function to provide default resource
values.

® Setresource values in an external app-defaults resource file. Any values you
provide in an external file override values that you set using the
VkComponent::setDefaultResources() function. This is useful when your
application must support multiple languages; you can provide a separate resource
file for each language supported.

¢ Set the resource value directly using the XtSetValues() function. Values you set
using this method override any values set using either of the above two methods.
You should generally avoid using this method as it “hard codes” the resource
values into the code, making them more difficult to change.

163

Chapter 5: Creating Menus With ViewKit

164

All option menus must be named “optionMenu” to work with Silicon Graphics’ color
schemes, so if you set the label through a resource value, qualify the resource
specifications with the name of a parent widget or component so that the X resource
database can distinguish between instances of VkOptionMenu. For example, you can
use resource specifications such as *mainWindow*optionMenu*labelString and
*eraphWindow*optionMenu*labelString to distinguish between an option menu that is
a descendant of an XmMainWindow component and one that is a descendant of an
SgGraph widget, respectively.

Selecting Items in an Option Menu

You can programmatically set the selected item in an option menu using
VkOptionMenu::set():

void set (char* name)
void set (int index)
void set (VkMenultem *item)

You can specify the selected item either by a pointer to the item, the item’s component
name, or the item’s index (position) in the option menu, where the top item in the menu
has an index of zero.

Determining Selected Items in an Option Menu
There are two functions that you can use to determine which item is selected in an option
menu:

* You can retrieve the index (position) of the currently selected menu item using
VkOptionMenu::getIndex():

int getIndex()

getIndex() returns the index (position) of the selected item, where the top item in
the menu has an index of zero.

* You can retrieve a pointer to the currently selected menu item using
VkOptionMenu::getItem():

VkMenuItem *getItem()

Using ViewKit Menu Subclasses

Option Menu Utility Functions

Normally, the width of the option menu is set to be that of the largest item it contains.
You can force the option menu to a different width using VkOptionMenu::forceWidth():

void forceWidth (int width)
forceWidth() sets all of the items in the option menu to be width pixels wide.
Example 5-6 illustrates the use of a VkOptionMenu class.

Example 5-6 Using a VkOptionMenu Object
[I711077077777777777717777777777777777777777777777717777177717771777

// Demonstrate viewkit interface to option menus

[177777177777717777771177777777777771777777777777771177777111777777

#include <Vk/VkApp.h>

#include <Vk/VkSimpleWindow.h>

#include <Vk/VkOptionMenu.h>

#include <stream.h>

#include <Xm/RowColumn.h>

class MyWindow: public VkSimpleWindow {

private:

static void sampleCallback(Widget, XtPointer , XtPointer);
static VkMenuDesc MyWindow: :optionPaneDesc[] ;

protected:

void sample (Widget, XtPointer) ;
VkOptionMenu * optionMenu;

public:

MyWindow(const char *name) ;
~MyWindow() ;

virtual const char* className() ;

}i

165

Chapter 5: Creating Menus With ViewKit

VkMenuDesc MyWindow: :optionPaneDesc[] = {
{ ACTION, "Red", &MyWindow::sampleCallback},
{ acTION, "Green", &MyWindow::sampleCallback},
{ acrION, "Blue", &MyWindow::sampleCallback},
{ =},
bi
MyWindow: :MyWindow (const char *name) : VkSimpleWindow(name)
{
Widget rc = XmCreateRowColumn (mainWindowWidget (), "rc", NULL, O0);

_optionMenu = new VkOptionMenu(rc, optionPaneDesc, (XtPointer) this);
_optionMenu->set ("Green") ;

addview (rc) ;

}

MyWindow: : ~MyWindow ()

{
}

const char* MyWindow: :className () { return "MyWindow";}

void MyWindow: :sampleCallback (Widget w, XtPointer clientData, XtPointer callData)

{
MyWindow *obj = (MyWindow *) clientData;
obj->sample (w, callData) ;

void MyWindow: :sample (Widget, XtPointer)

{

cout << "Selected item's index = "
<< _optionMenu->getIndex()

<< ", name ="

<< _optionMenu->getItem() ->name ()
<< "\I'l"

<< flush;

166

Using ViewKit Menu Subclasses

void main(int argc, char **argv)

{
VkApp *app = new VKkApp ("Option", &argc, argv);
MyWindow *win = new MyWindow ("OptionMenu") ;

win->show () ;

app->run() ;

Popup Menus

The VkPopupMenu class supports popup menus. You can attach a ViewKit popup
menu to one or more widgets in your application so that it pops up automatically
whenever the user clicks any of those widgets with the right mouse button. You can also
pop up the menu programmatically.

Popup Menu Constructors

There are four versions of the VkPopupMenu constructor:

VkPopupMenu (VkMenuDesc *menuDesc,
XtPointer defaultClientData = NULL)

VkPopupMenu (const char *name = "popupMenu",
VkMenuDesc *menuDesc = NULL,
XtPointer defaultClientData = NULL)

VkPopupMenu (Widget parent,
VkMenuDesc *menuDesc = NULL,
XtPointer defaultClientData = NULL)

VkPopupMenu (Widget parent,
const char *name = "popupMenu",
VkMenuDesc *menuDesc = NULL,
XtPointer defaultClientData = NULL)

The forms of the constructor that do not take a name argument automatically use the

name “popupMenu.” You can specify another name, but schemes does not work
correctly if you do.

167

Chapter 5: Creating Menus With ViewKit

168

If you provide the optional menuDesc argument, the constructor creates a menu from the
VkMenuDesc structure you provide.

If you provide the optional defaultClientData argument, any menu item that does not
provide a client data argument uses this argument instead. This allows menus to be
specified statically, while still allowing an instance pointer to be used with callbacks. This
is described in “Special Considerations for Xt Callback Client Data When Using Static
Menu Descriptions” on page 138.

If you use a form of the VkPopupMenu constructor that accepts a parent argument, the
constructor automatically attaches the menu to the widget. This builds the menu as a
child of the widget and installs an event handler to pop up the menu whenever the user
clicks the widget with the right mouse button. For more information on attaching a
popup menu to a widget, see the description of VkPopupMenu::attach() in “Attaching
Popup Menus to Widgets” on page 168.

Attaching Popup Menus to Widgets

The VkPopupMenu::attach() function attaches a popup menu to a widget:

virtual void attach (Widget w)

The first call to attach() creates all widgets in the popup menu, using the given widget as
the parent of the menu. attach() then adds an event handler to post the menu
automatically whenever the user clicks the widget with the right mouse button.
Subsequent calls to attach() add the ability to post the menu over additional widgets.

Popping Up Popup Menus

Once you have attached a popup menu to one or more widgets in your application,
ViewKit automatically posts the menu whenever the user clicks any of those widgets
with the right mouse button.

You can also post the menu programmatically even if you have not attached the popup
menu to a widget, by first building the menu using VkPopupMenu::build():

virtual void build(Widget parent)

build() builds the menu as a child of the parent widget, but does not install an event
handler to post the menu.

Using ViewKit Menu Subclasses

Once you have built the menu, you can post it with VkPopupMenu::show():
virtual void show (XEvent +buttonPressEvent)
show() requires an X ButtonPress event as an argument to position the menu on the

screen. This requires you to register your own event handler to handle the ButtonPress
events.

build() and show() support applications that wish to control the posting of menus
directly. Normally, attach() provides an easier way to use popup menus.

Using a Popup Menu
Example 5-7 illustrates the use of the VkPopupMenu class.

Example 5-7 Using a VKPopupMenu Object
[I771777777777177777717771777177777777177177777777777777717717717717

// Sample program that demonstrates how to create a popup menu

[177777777777771777
#include <Vk/VkApp.h>
#include <Vk/VkWindow.h>
#include <Vk/VkPopupMenu.h>
#include <stream.h>
#include <Xm/Label.h>
class MyWindow: public VkWindow {
private:

VkPopupMenu * popup;

static void sampleCallback(Widget, XtPointer , XtPointer) ;
void sample() ;

static VkMenuDesc subMenul] ;
static VkMenuDesc sampleMenuPane[] ;

protected:

169

Chapter 5: Creating Menus With ViewKit

public:

MyWindow(const char *name) ;
~MyWindow () ;

virtual const char* className () ;
}i
MyWindow: :MyWindow(const char *name) : VkWindow(name)
Widget label = XmCreateLabel (mainWindowWidget (), "a menu", NULL, O);

_popup = new VkPopupMenu (label, sampleMenuPane, (XtPointer) this);

addview (label) ;

}

MyWindow: : ~MyWindow ()

{
}

const char* MyWindow: :className () { return "MyWindow";}

// The menu bar is essentially a set of cascading menu panes, so the
// top level of the menu tree is always defined as a list of submenus

VkMenuDesc MyWindow: : sampleMenuPane [] = {
LABEL, "Test Label";,
abel
{ SEPARATOR 1},
{ acTION, "An Action", &MyWindow: : sampleCallback},
{ acTION, "Another Action", &MyWindow::sampleCallback},
{ suBMENU, "A Submenu", NULL, MyWindow: :subMenu},
{ END},
}i
VkMenuDesc MyWindow: :subMenu[] = {
{ ACTION, "foo", &MyWindow::sampleCallback},
{ acTION, ‘'bar", &MyWindow: : sampleCallback},
{ ACTION, ‘'baz", &MyWindow: : sampleCallback},

{ END},

bi

170

Putting Menus in the Overlay Planes

void MyWindow: : sample ()

{
}

void MyWindow: :sampleCallback (Widget, XtPointer clientData , XtPointer)

{

cout << "sample callback" << "\n" << flush;

MyWindow *obj = (MyWindow *) clientData;
obj->sample () ;

}

void main(int argc, char **argv)

{
VkApp *myApp new VKApp ("Menudemo", &argc, argv);
MyWindow *menuWin = new MyWindow ("MenuWindow") ;

menuWin->show () ;

myApp->run () ;

}

Putting Menus in the Overlay Planes

By default, menus appear in the normal planes. ViewKit menus, however, may be
explicitly placed in the overlay planes. Doing so prevents the menus from causing expose
events that disturb such things as complex GL rendering in the normal planes.

There are three ways to enable menus in the overlay planes:

¢ Call VkMenu::useOverlayMenus(TRUE). This forces menus into the overlay
planes, with no way to put them back in the normal planes without recompiling.

¢ Put the resource string “*useOverlayMenus: True” in your application’s default file.
This will put menus in the overlay planes by default, but allow users to use the
normal planes by changing their . Xdefaults file.

¢ Have users add the -useOverlayMenus command-line switch when they run your
application if they wish to use the overlay planes for menus.

171

Chapter 5: Creating Menus With ViewKit

172

If you do decide to place menus in the overlay planes, here are some factors to consider:

Menus are placed in the deepest available overlay planes: generally 4- or 8-bit
planes, occasionally 2-bit planes.

If the deepest available overlay is 2 bits, any menus placed in that visual may not
look right. Because the colormap in the 2-bit overlay planes only has three color
entries (the fourth being a transparent pixel), any items in the menus other than
labels (for example cascade or toggle buttons) may look odd.

Other applications using the overlay planes may display in the wrong colors when
the application posting the menu gets colormap focus. The colors in the other
applications may flash because the menu’s colormap is installed and replaces any
previous overlay colormap.

Tear-off menus may display in the wrong colors. Since tear-off menus are no longer
transient, they may be susceptible to color distortions as in previous examples.

Chapter 6

————

Undo Management

______________________________________ VkMenuUndoManager
|
inComponent :—i VkMenultem i—i VkMenuAction {

ViewKit Undo Management and Command Classes

Many applications offer users the ability to reverse or “undo” various actions. This
chapter describes how ViewKit provides undo support. It also describes how ViewKit
supports command classes, commands implemented as classes.

Figure 6-1 shows the inheritance graph for ViewKit classes that support undo
management and command classes.

Figure 6-1 Inheritance Graph for the ViewKit Classes Supporting Undo Management and
Command Classes

This section describes the ViewKit undo manager, which supports reversing or
“undoing” actions.

Overview of ViewKit Undo Management
The VkMenuUndoManager class is the basis of ViewKit’s undo manager. The ViewKit

undo manager provides an easy-to-use method for users to undo commands that they
issue to your application.

173

Chapter 6: ViewKit Undo Management and Command Classes

174

The user interface to the ViewKit undo manager is a single menu item that you add to
one of your application’s menus. By default, the label of that menu item is “Undo:
last_command”, where last_command is the name of the last command the user issued.
Whenever the user issues a command, the undo manager automatically updates the
menu item to reflect the latest command. To undo the command, the user simply chooses
the undo manager’s menu item.

By default, ViewKit’s undo manager provides multi-level undo support. The undo
manager keeps commands on a stack. When the user undoes a command, the undo
manager pops it from the stack, revealing the previously executed command. Once a
user has undone at least one command, executing any new command clears the undo
stack. Also, executing any non-undoable command clears the undo stack. If you choose,
you can also force the undo manager to provide only single-level undo support, where it
remembers only the last command the user issued.

You can use the undo manager to support undoing any command, regardless of whether
the user issues the command through a menu or through other interface methods (for
example, pushbuttons). The undo manager also supports undoing command classes as
implemented by the VkAction(3x) and VkMenuActionObject(3x) classes described in
“Command Classes” on page 184. In most cases, all you need to provide for each
command is a callback function that reverses the effects of that command.

Using ViewKit’s Undo Manager

The programmatic interface to the undo manager is simple to use. Because the
VkMenuUndoManager class is a subclass of VkMenultem, you can add it to a menu
and manipulate it as you would any other menu item.

To add undo support for an undoable menu item (VkMenuAction(3x) and
VkMenuToggle(3x) items), simply provide an undo callback function (a function that
reverses the effects of the item’s action) when you either statically or dynamically define
the menu item. Similarly, to add undo support for a command class (VkAction and
VkMenuA ctionObject objects), you provide a member function to undo the effects of
the command. For those action that are not implemented in your application as menu
items or action classes, you can add undo callbacks directly to the undo stack.

Undo Management

Instantiating the ViewKit Undo Manager

Do not directly instantiate a VkMenuUndoManager object in your program. If you
provide an undo callback to any menu item or if you use a subclass of VkAction or
VkMenuActionObject in your program, ViewKit automatically creates an instance of
VkMenuUndoManager named “Undo”. (“Command Classes” on page 184 describes
the VkAction and VkMenuActionObject classes.) The <Vk/VkMenultem.h> header file
provides thellndoManager, a global pointer to this instance. To access the ViewKit undo
manager, simply use this global pointer.!

Adding the Undo Manager to a Menu

You add the undo manager to a menu just as you would any other menu item: using the
VkMenu::add() function of the menu object to which you want to add the undo manager.
For example, the following line adds the undo manager to a menu pane specified by the
variable edit:

edit->add (theUndoManager) ;

You cannot include the undo manager in a static menu description; however, you can
add the undo manager to a statically-defined menu after creating the menu. To specify
the position of the undo manager within the menu, include a position parameter when
you add the undo manager. For example, the following line adds the undo manager to
the top of a menu pane specified by the variable edit:

edit->add (theUndoManager, 0);

Providing Undo Support for Actions That Are Menu ltems

To add undo support for an undoable menu item (VkMenuAction and VkMenuToggle
items), simply provide an undo callback function when you define the menu item. The
undo callback function should reverse the effects of the item’s action.

! thelndoManager is actually implemented as a compiler macro that invokes a VkUndoManager access
function to return a pointer to the unique instantiation of the VkUndoManager class. Although you
should never need to use this access function directly, you might encounter it while debugging a
ViewKit application that uses the undo manager.

175

Chapter 6: ViewKit Undo Management and Command Classes

176

For example, the following static description describes a Cut menu item that executes the
callback function cutCallback() when the user chooses the item and undoCutCallback()
when the user undoes the command:

class EditWindow: public VkWindow {
private:
static VkMenuDesc editPanel(] ;
static void cutCallback (Widget, XtPointer, XtPointer);
static void undoCutCallback (Widget, XtPointer, XtPointer) ;

/]
}i
VkMenuDesc EditWindow::editPane[] = {
{ ACTION, "Cut", &EditWindow: :cutCallback,
NULL, NULL, &EditWindow: :undoCutCallback },

{ e }

bi

You could do the same thing by adding the menu item dynamically:

class EditWindow: public VkWindow {
private:
static VkSubMenu *editMenu;
static void cutCallback (Widget, XtPointer, XtPointer);
static void undoCutCallback (Widget, XtPointer, XtPointer) ;
// ...
}i

EditWindow: :EditWindow (char *name) : VkWindow (name)

{
// ...
editMenu->addAction ("Cut", &EditWindow: :cutCallback,
&EditWindow: :undoCutCallback, this) ;

Providing Undo Support for Actions That Are Not Menu Items

Sometimes you might want to provide undo support for an action not implemented as a
menu item (for example, an action invoked by a pushbutton). ViewKit allows you to do
this by adding the action directly to the undo stack using VkMenuUndoManager::add():

void add(const char *name,
XtCallbackProc undoCallback,
XtPointer clientData)

Undo Management

The name argument provides a name for the action to appear in the undo manager’s
menu item. The undoCallback argument must be an Xt-style callback function that the
undo manager can call to undo the action. The undo manager passes the clientData
argument to the undo callback function as client data when it invokes the callback.
Following ViewKit conventions as described in “Using Xt Callbacks With Components”
on page 21, you should pass the this pointer as client data so that the callback function
can retrieve the pointer, cast it to the expected component type, and call a corresponding
member function.

Note: add() simply adds an action to the undo stack; it does not “register” a permanent
undo callback for an action. Once the undo stack is cleared, the undo information for that
action is deleted. If you later perform the action again and you want to provide undo
support for that action, you must use add() again to add the action to the undo stack.

Example 6-1 shows a simple example of adding an action to the undo stack. The
MyComponent constructor creates a pushbutton as part of its widget hierarchy and
registers actionCallback() as the button’s activation callback function. actionCallback(),
in addition to performing an action, adds undoActionCallback() to the undo stack.

Example 6-1 Adding a Non-Menu Item Directly to the Undo Stack

MyComponent : public VkComponent {

public:
MyComponent (const char *, Widget) ;
void actionCallback (Widget, XtPointer, XtPointer) ;
void undoActionCallback (Widget, XtPointer, XtPointer) ;
/] ...
}i

MyComponent : :MyComponent (const char *, Widget parent)

{
// ...
Widget button = XmCreatePushButton (viewWidget, "button", NULL, O);
XtAddCallback (button, XmNactivateCallback,
&MyWindow: :actionCallback, (XtPointer) this);

/] ...

177

Chapter 6: ViewKit Undo Management and Command Classes

178

void MyComponent : :actionCallback (Widget w, XtPointer clientData,
XtPointer callData)

// Perform action...

theUndoManager->add ("Action", &MyComponent: :undoActionCallback, this);

}

Providing Undo Support for Command Class Objects

The ViewKit classes that support command classes, VkAction and
VkMenuActionObject, both require you to override the pure virtual function undoit(),
which the undo manager calls to undo an action implemented as a command class.
“Command Classes” on page 184 describes how to use VkAction and
VkMenuActionObject to implement command classes.

Enabling and Disabling Multi-Level Undo Support

By default, VkMenuUndoManager provides multi-level undo support. The undo
manager keeps commands on a stack. When the user undoes a command, the undo
manager pops it from the stack, revealing the previously executed command. Once a
user has undone at least one command, executing any new command clears the undo
stack. Also, executing any undoable command clears the undo stack.

Supporting multi-level undo in your application can be difficult. If you prefer to support
undoing only the last command executed, you can change the behavior of the undo
manager with the VkMenuUndoManager::multiLevel() function:

void multiLevel (Boolean flag)

If flag is FALSE, the undo manager remembers only the last command executed.

Clearing the Undo Stack

You can force the undo manager to clear its command stack with the
VkMenuUndoManager::reset() function:

void reset ()

Undo Management

Examining the Undo Stack

You can examine the contents of the undo manager’s command stack using
VkMenuUndoManager::historyList():

VkComponentList *historyList ()

historyList() returns a list of objects representing commands that have been executed
and are available to be undone. Commands are listed in order of execution; the last
command executed is the last item in the list. All of the objects in the list are subclasses
of VkMenultem. Commands added directly to the undo stack (as described in
“Providing Undo Support for Actions That Are Not Menu Items” on page 176) or
commands implemented as VkAction objects (as described in “Command Classes” on
page 184) appear as VkMenuA ctionStub objects. VkMenuActionStub is an empty
subclass of VkMenuAction.

Setting the Label of the Undo Manager Menu ltem

The label that the undo manager menu item displays is of the form
Undo_label:Command_label. Undo_label is the value of the labelXmNlabelString resource of
the undo manager. By default, this value is “Undo”. You can change this string (for
example, for a German-language app-defaults file) by providing a different value for the
XmNlabelString resource. For example, you could set the resource as follows:

*Undo.labelString: Annul

Command_label is the label for the last executed command registered with the undo
manager, determined as follows:

* For commands executed by menu items—VkMenuAction, VkMenuToggle, or
VkMenuActionObject (described in “Command Classes” on page 184) objects—
the label is the item’s XmNIlabelString resource.

* For VkAction objects (described in “Command Classes” on page 184), the undo
manager uses the object’s “labelString” resource if one is defined, otherwise it uses
the VkAction object’s name as the label.

e For actions that you add directly to the undo stack (described in “Providing Undo
Support for Actions That Are Not Menu Items” on page 176), the undo manager
uses the action name that you provided when you added the action.

179

Chapter 6: ViewKit Undo Management and Command Classes

180

Using ViewKit’s Undo Manager

Example 6-2 demonstrates the use of the undo manager.

Example 6-2

Using the Undo Manager

[177
// Simple example to exercise Vk undo facilities
[177177
#include <Vk/VkApp.h>

#include <Vk/VkWindow.h>

#include <Vk/VkMenu.h>

#include <Vk/VkMenulItem.h>

#include <Vk/VkSubMenu.hs>

#include <stream.h>

#include <Xm/Label.h>

#include <Xm/RowColumn.h>

#include <Xm/PushB.h>

class MyWindow: public VkWindow {

private:

static
static

static
static
static

static
static

static

static

void quit();

void
void

void
void
void

void
void

void

void

void one() ;
void two() ;
void three() ;

void undoOne () ;

pushCallback (Widget, XtPointer, XtPointer) ;
undoPushCallback (Widget, XtPointer, XtPointer) ;

oneCallback (Widget, XtPointer , XtPointer) ;
twoCallback (Widget, XtPointer , XtPointer) ;
threeCallback (Widget, XtPointer , XtPointer) ;

undoOneCallback (Widget, XtPointer , XtPointer) ;
undoTwoCallback (Widget, XtPointer , XtPointer) ;
undoThreeCallback (Widget, XtPointer , XtPointer) ;

quitCallback(Widget, XtPointer , XtPointer) ;

void undoTwo () ;
void undoThree () ;

Undo Management

}i

static VkMenuDesc appMenuPane[] ;
static VkMenuDesc mainMenuPane[] ;

public:

MyWindow(const char *name) ;
~MyWindow () ;
virtual const char* className() ;

MyWindow: :MyWindow (const char *name) : VkWindow(name)

{

}

Widget rc = XmCreateRowColumn (mainWindowWidget (), "rc", NULL, O);

Widget label = XmCreateLabel (rc, "an undo test", NULL, O0);

Widget pb = XmCreatePushButton(rc, "push", NULL, O0);

XtAddCallback (pb, XmNactivateCallback, &MyWindow::pushCallback,
(XtPointer) this);

XtManageChild (label) ;

XtManageChild (pb) ;

setMenuBar (mainMenuPane) ;

VkSubMenu *editMenuPane = addMenuPane ("Edit") ;

editMenuPane->add (theUndoManager) ;

addview (rc) ;

MyWindow: : ~MyWindow ()

{
}

const char* MyWindow: :className ()

{
}

return "MyWindow";

181

Chapter 6: ViewKit Undo Management and Command Classes

182

// The menu bar is essentially a set of cascading menu panes, so the
// top level of the menu tree is always defined as a list of submenus

VkMenuDesc MyWindow: :mainMenuPane[] = {
{ SUBMENU, "Application", NULL, MyWindow: :appMenuPane},
{ =D}
}i
VkMenuDesc MyWindow: :appMenuPane[] = {
{ ACTION, "Command One", &MyWindow: :oneCallback, NULL, NULL,
&MyWindow: :undoOneCallback },
{ ACTION, "Command Two", &MyWindow: : twoCallback, NULL, NULL,
&MyWindow: :undoTwoCallback },
{ ACTION, "Command Three", &MyWindow: :threeCallback, NULL, NULL,
&MyWindow: :undoThreeCallback },
{ SEPARATOR },
{ CONFIRMFIRSTACTION, "Quit", &MyWindow: :quitCallback},
{ EnD},

}i

void MyWindow: :one ()

{
}

cout << "Command One executed" << "\n" << flush;

void MyWindow: :two ()

{
}

cout << "Command Two executed" << "\n" << flush;

void MyWindow: :three ()

{
}

void MyWindow: :undoOne ()

{
}

void MyWindow: :undoTwo ()

{
}

cout << "Command Three executed" << "\n" << flush;

cout << "Undoing Command One" << "\n" << flush;

cout << "UNdoing Command Two" << "\n" << flush;

Undo Management

void MyWindow: :undoThree ()

{
}

void MyWindow: :oneCallback (Widget, XtPointer clientData, XtPointer)

{

cout << "Undoing Command Three" << "\n" << flush;

MyWindow *obj = (MyWindow *) clientData;
obj->one() ;

}

void MyWindow: :twoCallback (Widget, XtPointer clientData, XtPointer)

{
MyWindow *obj = (MyWindow *) clientData;
obj->two () ;

}

void MyWindow: :threeCallback(Widget, XtPointer clientData, XtPointer)

{
MyWindow *obj = (MyWindow *) clientData;
obj->three () ;

}

void MyWindow: :undoOneCallback (Widget, XtPointer clientData, XtPointer)

{
MyWindow *obj = (MyWindow *) clientData;
obj ->undoOne () ;

}

void MyWindow: :undoTwoCallback (Widget, XtPointer clientData, XtPointer)

{
MyWindow *obj = (MyWindow *) clientData;
obj ->undoTwo () ;

}

void MyWindow: :undoThreeCallback (Widget, XtPointer clientData, XtPointer)

{
MyWindow *obj = (MyWindow *) clientData;
obj->undoThree () ;

void MyWindow: :quitCallback (Widget, XtPointer clientData, XtPointer)

{
MyWindow *obj = (MyWindow*) clientData;
delete obj;

183

Chapter 6: ViewKit Undo Management and Command Classes

Command Classes

184

void MyWindow: :pushCallback (Widget, XtPointer clientData, XtPointer)

{

cout << "doing a push command\n" << flush;

theUndoManager->add ("Push", &MyWindow: :undoPushCallback, (XtPointer) clientDa
ta);

}

void MyWindow: :undoPushCallback (Widget, XtPointer clientData, XtPointer)

{
}

cout << "undoing the push command\n" << flush;

main (int argc, char **argv)

{
VkApp *app = new VKApp ("Menudemo", &argc, argv);
MyWindow *win = new MyWindow ("MenuWindow") ;

win->show () ;
app->run() ;

This section describes the VkAction class, which supports ViewKit command classes.
Command classes allow you to implement actions as objects.

Overview of Command Classes

Nearly every user action in an interactive application can be thought of as a “command.”
Programmers typically implement commands as functions (callback functions, for
example) that are invoked as a result of some user action. This section explores an
approach in which each command in a system is modelled as an object.

Command Classes

Representing commands as objects has many advantages. Many commands have some
state or data associated with the command, while others may involve a set of related
functions. In both cases, a class allows the data and functions associated with a single
logical operation to be encapsulated in one place. Because command objects are complete
and self-contained, you can queue them for later execution, store them in “history” lists,
re-execute them, and so on. Representing commands as objects can also facilitate
undoing the command. For example, to prepare to undo a command, you might need to
save some state data before executing the command. When you model commands as
objects, you can store this information in data members.

The VkMenuAction class (described in “Menu Actions” on page 130) implements the
command class model to a certain extent in that it allows you to specify callback
functions both for performing an action and undoing that action. But the
VkMenuAction class does not provide a true command class in that it does not allow
you to encapsulate any data or support functions the action might need within a discrete
object. Furthermore, you must use the VkMenuAction class within a menu; it does not
allow you to implement command classes activated by pushbuttons, text fields, or other
input mechanisms.

ViewKit provides two abstract classes to implement command classes in an application:
VkAction and VkMenuActionObject. VkAction supports commands that do not
appear in menus and VkMenuA ctionObject supports commands that appear in menus.
VkAction does not inherit from any other classes, whereas VkMenuActionObject is a
subclass of VkMenuAction, which allows you to add instances of it to a menu and
manipulate them as you would any other menu item.

You can encapsulate with a subclass of VkAction or VkMenuActionObject any data or
support functions required to perform an action. Additionally, commands implemented
as subclasses of VkAction and VkMenuA ctionObject automatically register themselves
with the ViewKit undo manager whenever you execute them.

Using Command Classes in ViewKit

To use command classes in ViewKit, you must create a separate subclass for each
command in your application.

185

Chapter 6: ViewKit Undo Management and Command Classes

186

Command Class Constructors

The syntax of the VkAction constructor is as follows:

VKkAction (const char *name)

Each class derived from VkAction should provide a constructor that takes at least one
argument: the object’s name. All derived class constructors should pass the name to the
VkAction constructor to initialize the basic class data members, and then initialize any
subclass-specific data members.

The syntax of the VkMenuActionObject constructor is as follows:

VkMenuActionObject (const char *name, XtPointer clientData = NULL)

Each class derived from VkMenuActionObject should provide a constructor that takes
two arguments: the object’s name and optional client data. All derived class constructors
should pass the name and the client data to the VkMenuA ctionObject constructor to
initialize the basic class data members, and then initialize any subclass-specific data
members.

The VkMenuA ctionObject constructor stores the client data in the protected data
member _clientData:

void * clientData

VkMenuActionObject objects do not use the _clientData data member for callback
functions. Instead it is simply an untyped pointer that you can use to pass any
information your command object might need. For example, you could pass a pointer to
another object, a value, a string, or any other value. You can access and manipulate
_clientData from member functions of your command subclass.

Overriding Virtual Functions

Both VkAction and VkMenuActionObject have two protected pure virtual functions
that you must override—doit() and undoit():

virtual void doit ()
virtual void undoit ()

doit() performs the command class’s action; undoit() undoes the action.

Command Classes

Using Command Classes as Menu ltems

You can use command classes derived only from VkMenuActionObject in a ViewKit
menu. Because VkAction is not derived from VkMenultem, it does not provide the
services required of a menu item.

You cannot specify VkMenuA ctionObject objects in a static menu description; you must
add them dynamically using VkMenu::add(), which is described in “Functions for
Dynamically Creating Menus” on page 143.

Activating Command Classes

When a user chooses a VkMenuActionObject command object from a menu, ViewKit
executes the command by calling the object’s doit() function. ViewKit also automatically
registers the command with the undo manager.

To activate a command object that is a subclass of VkAction, call that action’s execute()
member function:

void execute ()

execute() calls the object’s doit() function. execute() also registers the command with the
undo manager.

Note: Do not call a command object’s doit() function directly. If you do, ViewKit cannot
register the command with the undo manager.

Setting the Label Used by Command Classes

You can set the label of a VkMenuA ctionObject command object as you would any
other VkMenultem item: by setting the object’s XmNlabelString resource or by calling
the object’s setLabel() function. “Setting Menu Item Labels” on page 128 describes how
to set the label for a menu item.

Because VkAction objects are command classes and not interface classes, they
technically do not have labels; however, the undo manager requires a label that it can
display after you have executed a VkAction command. Therefore, ViewKit allows you
to set the value of a labelString resource for VkAction objects, qualified by the object’s
name. For example, if you have an instance of a VkAction named “formatPara,” you can
set the label for this object by providing a value for the formatPara.labelString resource:

*formatPara: Format Paragraph

187

Chapter 6: ViewKit Undo Management and Command Classes

188

If you do not provide a value for a VkAction object’s labelString resource, the undo
manager uses the object’s name as the label.

Note: The VkAction labelString resource is a “synthetic” resource, not a widget
resource. The only way that you can set the value of this resource is through a resource
file. You can’t use XtSetValues() because the object contains no widgets, and you can’t
use setDefaultResources() because VkAction is not a subclass of VkComponent.

Chapter 7

Using Dialogs in ViewKit

This chapter introduces the basic ViewKit classes needed to create and manipulate the
dialogs in a ViewKit application. Figure 7-1 shows the inheritance graph for these
classes.

— VkInfoDialog

— VkWarningDialog

- VKErrorDialog — VkFatalErrorDialog

— VkBusyDialog — VKinterruptDialog — VkProgressDialog

1 1
i VkComponent :—inDiangManager —— VkQuestionDialog

— VkPromptDialog

— VkFileSelectionDialog

— VkGenericDialog |

“—VkColorChooserDialog

Figure 7-1 Inheritance Graph for the ViewKit Dialog Classes

189

Chapter 7: Using Dialogs in ViewKit

Overview of ViewKit Dialog Management

Creating all of the dialogs your application uses when you start the application is
inefficient: the dialogs, which might or might not be displayed, take time to create,
consume memory, and tie up server resources. If an application does not create a dialog
until it is needed, the application is smaller and has faster initial startup time; however,
depending on the performance of the system, there may be an unacceptable delay in
posting each dialog because the application must create a new dialog for each message.

The compromise used by ViewKit is to cache dialogs when they are created. When a
particular dialog is no longer needed, the application unmanages that dialog but retains
it in the cache. Then, if the cache contains an unused dialog widget when the application
needs to post a dialog, the application reuses the cached dialog widget; otherwise it
creates a new dialog widget. ViewKit caches up to one dialog of each class for each
window in the application (for example, information dialogs and question dialogs are
cached separately).

The ViewKit dialog classes also offer the following features:

* Single function mechanisms for posting dialogs.

¢ Ability to post any dialog in non-blocking, non-modal mode; modal mode; and two
blocking modes.

¢ Positioning in multiwindow applications.
* Posting of dialogs even when windows are iconified, if desired.

¢ Correct handling of dialog references when widgets are destroyed.

ViewKit Dialog Class Overview

190

ViewKit encapsulates dialog management, including caching, in the abstract
VkDialogManager class that serves as a base class for other, specific dialog classes. Each
type of dialog in ViewKit has a separate class derived from VkDialogManager. Each
class is responsible for managing its own type of dialog (for example, each class
maintains its own dialog cache).

The dialog classes provided by ViewKit fall into three categories: information and error
dialogs; busy dialogs; and data input dialogs.

ViewKit Dialog Class Overview

The information and error dialogs provide feedback to the user about actions or
conditions in the application. The dialog classes in this category are as follows:

VkInfoDialog Displays information.

VkWarningDialog
Warns the user about the consequences of an action (for example, that an
action will irretrievably delete items).

VkErrorDialog
Informs the user of an invalid action (such as entering out-of-range data)
or a potentially dangerous condition (for example, the inability to create
a backup file).

VkFatalErrorDialog
Informs the user of a fatal error; the application terminates when the
user acknowledges the dialog.

The busy dialogs inform the user that an action is underway which might take
considerable time. While a busy dialog is displayed, the user cannot interact with the
application. The dialog classes in this category are as follows:

VkBusyDialog
Dialog displayed while the application is busy.

VkInterruptDialog
Dialog that allows the user to interrupt the action.

VkProgressDialog
Dialog that displays a bar graph indicating the percentage of the task
that has been completed.

The data input dialogs allow the application to request input from the user. The dialog
classes in this category are as follows:

VkQuestionDialog
Allows the user to choose among simple choices by clicking
pushbuttons.

VkPromptDialog
Prompts the user to enter a text string.

VkColorChooserDialog
Displays an SgColorChooser dialog, using the caching facilities of the
VkDialogManager class.

191

Chapter 7: Using Dialogs in ViewKit

VKkFileSelectionDialog
Allows the user to interactively browse and select a file or directory.

VkPrefDialog Supports preference dialogs capable of displaying a wide variety of
program-configurable controls that allow the user to observe and set
values used by the program. Chapter 8, “Preference Dialogs,” discusses
preference dialogs.

Additionally, ViewKit provides the VkGenericDialog class, an abstract class providing
a convenient interface for creating custom dialogs that use the ViewKit interface.

Do not directly instantiate dialog manager objects in your program for the predefined
dialog types. ViewKit automatically creates an instance of an appropriate dialog
manager if you attempt to use a predefined dialog type in your program.

The header file for each dialog class provides a global pointer to the instance of that
class’s dialog manager. The name of the pointer consists of “the” followed by the dialog
type. For example, the global pointer to the information dialog manager declared in
<Vk/VkInfoDialog.h> is thelnfoDialog, the global pointer to the error dialog manager
declared in <Vk/VkErrorDialog.h> is theErrorDialog, and so forth. To access the dialog
managers in your application, simply use these global pointers.

Note: VkGenericDialog, being an abstract class designed for creating customized
dialogs, does not automatically create a dialog manager or provide a global
pointer.

ViewKit Dialog Base Class

192

This section describes the dialog management features provided by the abstract
VkDialogManager base class. It describes how to post dialogs, unpost dialogs, set dialog
titles, and set dialog button labels. Because all ViewKit dialog management classes are
derived from VkDialogManager, the functions and techniques described in this section
apply to all dialog management classes.

! These global pointers are actually implemented as compiler macros that invoke access functions to
return pointers to the unique instantiation of the dialog managers. Although you should never need to
use these access functions directly, you might encounter them while debugging a ViewKit application
that uses dialogs.

ViewKit Dialog Base Class

Posting Dialogs

This section describes the various methods of posting dialogs and provides some simple

examples.

Methods of Posting Dialogs

ViewKit offers four different functions for posting dialogs:

post()

postModal()

postBlocked()

postAndWait()

Posts a non-blocking, non-modal dialog. The function immediately
returns, and the application continues to process user input in all
windows.

Posts a non-blocking, full-application-modal dialog. The function
immediately returns, but the user cannot interact with any application
windows until after dismissing the dialog.

Posts a blocking, full-application-modal dialog. The user cannot interact
with any application windows until after dismissing the dialog.
Furthermore, the function does not return until the user dismisses the
dialog.

Posts a blocking, full-application-modal dialog. The user cannot interact
with any application windows until after dismissing the dialog.
Furthermore, the function does not return until the user dismisses the
dialog. postAndWait() is simpler to use than postBlocked(), but it does
not allow as much programming flexibility.

post(), postModal(), and postBlocked() accept the same arguments. They are also
overloaded identically to allow for almost any combination of arguments without
resorting to using NULLSs as placeholders. Consult the VkDialogManager(3x) reference
page for a complete listing of the overloaded versions of the post(), postModal(), and
postBlocked() functions. The following is the most general form of the post() function:

virtual Widget post (const char *msg = NULL,

XtCallbackProc 0kCB = NULL,
XtCallbackProc cancelCB = NULL,
XtCallbackProc applyCB = NULL,

XtPointer clientData = NULL,
const char *helpString = NULL,
Widget *parent = NULL)

193

Chapter 7: Using Dialogs in ViewKit

The following are the arguments for these methods:

msg

okCB

cancelCB

applyCB

clientData

helpString

parent

194

The message to display in the dialog. This string is first treated as a
resource name, which is looked up relative to the dialog widget. If it
exists, the resource value is used as the message. If the resource does not
exist, or if the string contains spaces or newline characters, the string
itself is used as the message.

Most dialogs are not useful if you do not provide a message argument:
they display no text. VkFileDialog and VkPreferenceDialog are
exceptions in that they provide their own complex interfaces.

An Xt-style callback function executed when the user clicks the OK
button. (All dialogs except for the VkBusyDialog and
VkInterruptDialog dialogs display an OK button by default.)

An Xt-style callback function executed when the user clicks the Cancel
button. For many of the dialog classes, ViewKit does not display a Cancel
button unless you provide this callback.

An Xt-style callback function executed when the user clicks the Apply
button. For many of the dialog classes, ViewKit does not display an
Apply button unless you provide this callback.

Client data to pass to the button callback functions. Following ViewKit
conventions as described in “Using Xt Callbacks With Components” on
page 21, you should normally pass the this pointer as client data so that
the callback functions can retrieve the pointer, cast it to the expected
component type, and call a corresponding member function.

A help string to pass to the help system. See , “Using a Help System With
ViewKit,” for information on the help system. If you provide a string,
the dialog displays a Help button.

The widget over which ViewKit should display the dialog. If you do not
provide a widget, or if the given widget is hidden or iconified, ViewKit
posts the dialog over the main window if it is managed and not
iconified. (“Managing Top-Level Windows” on page 66 describes how
the main window is determined.) If both the widget you specify and the
main window are hidden or iconified, ViewKit posts the dialog as a
child of the hidden application shell created by the VkApp class. Also
see the description of VkDialogManager::centerOnScreen() in “Dialog
Access and Utility Functions” on page 204.

ViewKit Dialog Base Class

All versions of the post(), postModal(), and postBlocked() functions return the widget
ID of the posted dialog. You should rarely need to use this value.

Note: The arguments that you provide apply only to the dialog posted by the current call
to post(), postModal(), and postBlocked(); they have no effect on subsequent dialogs.
For example, if you provide an apply callback function to a call to post(), it is used only
for the dialog posted by that call. If you want to use that callback for subsequent dialogs,
you must provide it as an argument every time you post a dialog.

postAndWait() provides a simpler method for posting blocking, application-modal
dialogs than postBlocked(). The most general form of the postAndWait() function is as
follows:

virtual VkDialogReason postAndWait (const char *msg = NULL,
Boolean ok = TRUE,
Boolean cancel = TRUE,
Boolean apply = FALSE,
const char *helpString = NULL,
Widget *parent = NULL)

msg is the message to display in the dialog. As with the other posting functions,
postAndWait() first treats the string as a resource name, which it looks up relative to the
dialog widget. If the resource exists, postAndWait() uses the resource value as the
message. If postAndWait() finds no resource, or if the string contains spaces or newline
characters, it uses the string itself as the message. The next three arguments determine
which buttons the dialog should display. A TRUE value displays the button and a FALSE
value hides the button. helpString and parent specify a help string and a parent window,
just as with the other posting functions.

Note: The arguments that you provide apply only to the dialog posted by the current call
to postAndWait(); they have no effect on subsequent dialogs.

When you call postAndWait(), ViewKit posts the dialog, enters a secondary event loop,
and does not return until the user dismisses the dialog. Unlike postBlocked(),
postAndWait() handles all callbacks internally and simply returns an enumerated value
of type VkDialogReason, indicating which button the user chose. The possible return
values are VkDialogManager::OK, VkDialogManager:CANCEL, or
VkDialogManager::APPLY. postAndWait() is useful for cases in which it is necessary or
convenient not to go on to the next line of code until the user dismisses the dialog. For
example:

if (theFileSectionDialog->postAndWait () == VkDialogManager::0K)
int fd = open(theFileSelectionDialog->fileName (), O RDONLY) ;

195

Chapter 7: Using Dialogs in ViewKit

196

Note: postAndWait() posts dialogs as full-application modal dialogs to minimize
potential problems that can be caused by the secondary event loop, but you should be
aware that the second event loop is used and be sure that no non-re-entrant code can be
called.

As with the other functions for posting a dialog, postAndWait() is overloaded to allow
for almost any combination of arguments without resorting to using NULLs as
placeholders. Consult the VkDialogManager reference page for a complete listing of the
overloaded versions of postAndWait().

Note: Under certain circumstances, using postAndWait() can cause some unexpected
consequences. If you have your own custom dialog, and you delete a widget within it
from an event handler such as prePost(), the widget will not be destroyed until the event
handler returns. Therefore, widgets that you destroyed will still appear in the dialog.
This is because the phase 2 destroy does not happen until the return from the XtDispatch.
There are several workarounds you can try if this proves to be a problem:

* Do not use postAndWait(). Simply post the dialog, return from your event handler,
then do whatever you need to do. This may result in flashing, since widgets may be
momentarily posted before they are destroyed.

* Unmanage any widget that should not appear. The object will still be there, but will
not be visible.

* Keep the dialog cleaned up as you go along. Set up the dialog initially with only
permanent items. Then, whenever the dialog is posted, add whatever objects you
need. Finally, whenever that dialog is taken down, return it to the original state. You
can handle this by catching both OK and Cancel callbacks.

Posting Dialogs
The following line posts a simple non-modal, non-blocking information dialog over the

application’s main window:

theInfoDialog->post ("You have new mail in your system mailbox") ;
Figure 7-2 shows the appearance of this dialog when posted. Because the call did not

provide any callback for the OK button, when the user clicks the button, ViewKit simply
dismisses the dialog.

ViewKit Dialog Base Class

Figure 7-2 Information Dialog

You could also specify the message as an X resource. In the above example, you could
name the resource something such as newMailMessage and set it in a resource file with
the following line:

*newMailMessage: You have new mail in your system mailbox

Then you could use this line to post the information dialog:

theInfoDialog->post ("newMailMessage") ;

The following code displays a non-modal, non-blocking question dialog over the
application’s main window:

void MailWindow: :newMail ()

{
// .
theQuestionDialog->post ("Read new mail?",
&MailWindow: : readMailCallback,
(XtPointer) this);
//
}

Figure 7-3 shows the appearance of this dialog when posted. If the user clicks the OK
button, the program dismisses the dialog and executes the
MailWindow::readMailCallback() function. Following ViewKit conventions as
described in “Using Xt Callbacks With Components” on page 21, the client data
argument is set to the value of the this pointer so that MailWindow::readMailCallback()
can retrieve the pointer, cast it to the expected component type, and call a corresponding
member function.

197

Chapter 7: Using Dialogs in ViewKit

. |Head new mail? |

Figure 7-3 Question Dialog

Because the call to post() did not provide any callback for the Cancel button, when the
user clicks the button, ViewKit simply dismisses the dialog. If instead you needed to
perform some type of cleanup operation when the user clicks the Cancel button, you
would need to provide a callback for the Cancel button:

void MailWindow: :newMail ()

{
// .
theQuestionDialog->post ("Read new mail?",
&MailWindow: : readMailCallback,
&MailWindow: :cleanupMailCallback,
(XtPointer) this) ;
//
}

In general, you should try to encapsulate all dialog callbacks and related information in
the subclass of the object with which they are associated. For example, for dialogs that
are associated with a specific window, you include all the code related to those dialogs
in the subclass definition for that window.

This technique is illustrated in Example 7-1, a simple program which uses the
VkWarningDialog class to post a warning dialog.

Example 7-1 Posting a Dialog

#include <Vk/VkApp.h>

#include <Vk/VkSimpleWindow.h>
#include <Vk/VkWarningDialog.h>
#include <Xm/PushB.h>

198

ViewKit Dialog Base Class

class MyWindow: public VkSimpleWindow {

protected:
static void postCallback (Widget, XtPointer, XtPointer) ;

public:
MyWindow (const char *name) ;
~MyWindow ();
virtual const char* className() ;

}i

MyWindow: :MyWindow (const char *name) : VkSimpleWindow (name)
{
Widget button = XmCreatePushButton (mainWindowWidget (), "Push Me",
NULL, O);
XtAddCallback (button, XmNactivateCallback,
&MyWindow: :postCallback,
(XtPointer) this);
addview (button) ;

}

const char* MyWindow: :className() { return "MyWindow"; }

MyWindow: : ~MyWindow ()

{
}

// Empty

void MyWindow: :postCallback (Widget, XtPointer clientData, XtPointer)

{
theWarningDialog->post ("Watch Out!!!", NULL,
(MyWindow *) clientData) ;

}

void main (int argc, char **argv)

{

VkApp *app = new VkApp("Dialog", &argc, argv);
MyWindow *win = new MyWindow("Dialog");

win->show() ;
app->run() ;

199

Chapter 7: Using Dialogs in ViewKit

Manipulating Dialogs Prior to Posting

Using a prepostCallback

If you wish to make changes to a dialog before it is posted, but you do not wish to use
subclasses, you can use VkDialogManager::prepostCallback. This callback is invoked just
before a dialog is displayed. The callData parameter indicates the dialog widget about to
be displayed.

Using prepost()

VkDialogManager provides an overloaded, protected function, prepost(), which allows
a subclass to manipulate dialogs before they are posted. Called from
VkDialogManager::post(), prepost() is responsible for finding or creating a dialog to be
displayed by the post() functions. The two versions of prepost() are as follows:

Widget prepost (const char *message,
const char *helpString,
VkSimpleWindow *parent)

virtual Widget prepost (const char *message,
XtCallbackProc okCB = NULL,
XtCallbackProc cancelCB = NULL,
XtCallbackProc applyCB = NULL,
XtPointer clientData = NULL,
const char *helpString = NULL,
VkSimpleWindow *parent = NULL)

If you use derived classes that need to perform some operations on a dialog widget
before displaying it, you should do the following;:

1. Override prepost().

2. Call VkDialogManager::prepost() directly to obtain a widget.
3. Do any additional operations you need to do.
4

Return the Widget returned by VkDialogManager::prepost().

200

ViewKit Dialog Base Class

Unposting Dialogs

After posting a dialog, you might encounter situations in which you want to unpost it
even though the user has not acknowledged and dismissed it. For example, your
application might post an information dialog that the user doesn’t bother to
acknowledge. At some later point, the information presented in the dialog might no
longer be valid, in which case the application should unpost the dialog. In situations such
as these, you can use the VkDialogManager::unpost() function to remove the dialog:

void unpost ()

void unpost (Widget w)

If you provide the widget ID of a specific dialog, unpost() dismisses that dialog.
Otherwise, unpost() dismisses the most recent dialog of that class posted.

If you want to dismiss all dialogs of a given class, you can call the
VkDialogManager::unpostAll() function:

void unpostAll ()

For example, the following dismisses all information dialogs currently posted:

theInformationDialog->unpostAll () ;

Setting the Title of the Dialog

By default, ViewKit sets the title of a dialog (displayed in the window manager title bar
for the dialog) to the name of the application; however, you have the ability to set dialog
titles on both a per-class and per-dialog basis.

If you want all dialogs of a certain class to have a title other than the default, you can
specify the title with an X resource. For example, you could set the title of all warning
dialogs in an application to “Warning” by including the following line in a resource file:

*warningDialog.dialogTitle: Warning

You can use the VkDialogManager::setTitle() function to set the title for the next dialog
of that class that you post:

void setTitle(const char *nextTitle = NULL)

201

Chapter 7: Using Dialogs in ViewKit

202

setTitle() accepts as an argument a character string. setTitle() first treats the string as a
resource name which it looks up relative to the dialog widget. If the resource exists,
setTitle() uses the resource value as the dialog title. If setTitle() finds no resource, or if
the string contains spaces or newline characters, it uses the string itself as the dialog title.

setTitle() affects only the next dialog posted; subsequent dialogs revert to the default title
for that class.

For example, imagine an editor that uses the question dialog to post two dialogs, one that
asks “Do you really want to replace the current buffer?” and one that asks “Do you really
want to exit?” If you want different titles for each dialog, you could define resources for
each:

*replaceTitle: Dangerous Replacement Dialog
*exitTitle: Last Chance Before Exit Dialog
Then to post the question dialog for replacing the buffer, call the following:

theQuestionDialog->setTitle ("replaceTitle") ;

theQuestionDialog->post ("Do you really want to replace the current buffer?",
&EditWindow: : replaceBufferCallback,
XtPointer) this);

Figure 7-4 shows the resulting dialog.

. |Do vou really want to replace the current buffer?|

Figure 7-4 Setting the Dialog Title

ViewKit Dialog Base Class

To post the exit question dialog as a modal dialog, call the following:

theQuestionDialog->setTitle ("exitTitle") ;

theQuestionDialog->postModal ("Do you really want to exit?",
&EditWindow: :replaceBufferCallback,
(XtPointer) this);

Figure 7-5 shows the resulting dialog.

. |Do you really want to exit?|

Figure 7-5 Another Example of Setting the Dialog Title

Setting the Button Labels

The button labels (the text that appears on the buttons) used for a dialog are controlled
by the XmNokLabelString, XmNcancelLabelString, and XmNapplyLabelString
resources. The default values of these resources are respectively “OK”, “Cancel”, and

I/Applyll‘
You can use the VkDialogManager::setButtonLabels() function to set the button labels
for the next dialog that you post:

void setButtonLabels (const char *ok = NULL,
const char *cancel = NULL,
const char *apply = NULL)

203

Chapter 7: Using Dialogs in ViewKit

204

setButtonLabels() accepts as arguments up to three character strings: the first string
controls the label for the OK button, the second the label for the Cancel button, and the
third the label for the Apply button. If you pass NULL as an argument for any of these
strings, the corresponding button uses the default label. setTitle() first treats each string
as a resource name, which it looks up relative to the dialog widget. If the resource exists,
setTitle() uses the resource value as the button label. If setTitle() finds no resource, or if
the string contains spaces or newline characters, it uses the string itself as the button
label.

setButtonLabels() affects only the next dialog posted; subsequent dialogs revert to the
default button labels.

Dialog Access and Utility Functions

The VkDialogManager class also provides some access and utility functions to help
manipulate dialogs.

VkDialogManager::centerOnScreen() controls the algorithm that ViewKit uses to
determine where on the screen to post a dialog:

void centerOnScreen (Boolean flag)

If flag is TRUE, ViewKit uses the following algorithm:

1. If you provide a parent window argument when you call one of the posting
functions, and that window is visible and not iconified, ViewKit posts the dialog
over that window.

2. Ifa) you provide a parent window argument but the window is hidden or iconified,
or b) you do not provide a parent window argument, ViewKit creates the dialog as a
child of the hidden application shell created by the VkApp class and posts the
dialog over that shell. Unless you or the user explicitly sets the geometry for the
application, ViewKit centers the application shell on the screen, so the dialog
appears centered on the screen.

ViewKit Dialog Base Class

If flag is FALSE, ViewKit uses the following algorithm, which is the default algorithm:

1. If you provide a parent window argument when you call one of the posting
functions, and that window is visible and not iconified, ViewKit posts the dialog
over that window.

2. Ifa) you provide a parent window argument but the window is hidden or iconified,
or b) you do not provide a parent window argument, ViewKit attempts to create the
dialog as a child of the application’s main window and post the dialog over that
window. (“Managing Top-Level Windows” on page 66 describes how the main
window is determined.)

3. If the main window is hidden or iconified, ViewKit creates the dialog as a child of
the hidden application shell created by the VkApp class and posts the dialog over
that shell. Unless you or the user explicitly sets the geometry for the application,
ViewKit centers the application shell on the screen, so the dialog appears centered
on the screen.

VkDialogManager::enableCancelButton() sets whether or not the default will be to
provide a Cancel button in future dialogs, and allows the application to determine when
a dialog was closed without using the cancel button, such as by a window manager
action:

VkDialogManager: :enableCancelButton (Boolean flag)

VkDialogManager:lastPosted() returns the widget ID of the last dialog posted of that
class:

Widget lastPosted()

VkDialogManager::setVisual() sets visual resources:

void setVisual (VkVisual *v)

setVisual() overrides any visual arguments that may have been passed in using
setArgs().

VkDialogManager::setArgs() allows you to pass in resources to be used when creating
the first dialog;:

void setArgs (ArgList list, Cardinal argCnt)

205

Chapter 7: Using Dialogs in ViewKit

Whichever way you set them, dialog arguments should be set just once, before any
dialog is created. Due to the way ViewKit caches dialogs, resetting the dialog creation
arguments after the first dialog is created results in an undefined action.

Using the ViewKit Dialog Subclasses

206

This section describes the features of each ViewKit dialog subclass. In addition to specific
member functions listed, each class also supports all functions provided by the
VkDialogManager class.

Information Dialogs

The VkInfoDialog class supports standard IRIS IM information dialogs. The global
pointer to the information dialog manager, declared in <Vk/VkInfoDialog.h>, is
thelnfoDialog.

Use information dialogs to display useful information. Do not use information dialogs to
display error messages, which should be handled by the VkErrorDialog,
VkWarningDialog, or VkFatalErrorDialog class.

Because the message contained in an information dialog should not require any decision
to be made by the user, information dialogs display only the OK button by default. If you
need the user to make a selection, you should use another dialog class such as
VkQuestionDialog.

VkInfoDialog does not provide any additional functions beyond those offered by the
VkDialogManager.

Example 7-2 shows a simple example of posting an information dialog. Note that the
window subclass that posts the dialog defines the dialog title and message as resource
values.

Using the ViewKit Dialog Subclasses

Example 7-2 Posting an Information Dialog

#include <Vk/VkWindow.h>
#include <Vk/VkInfoDialog.h>

class MailWindow: public VkWindow {
public:
MailWindow (const char*) ;
void newMail () ;

//
private:
static String defaultResources|];
//
}i
String MailWindow:: defaultResources[] = {
"-*newMailMsg: You have new mail in your system mailbox.",
"_*newMailTitle: New Mail",
NULL
Vi
MailWindow: :MailWindow (const char *name) : VkSimpleWindow (name)
{
setDefaultResources (mainWindowWidget (), _defaultResources);
//

}

void MailWindow: :newMail ()

{
//
theInfoDialog->setTitle ("newMailTitle") ;
theInfoDialog->post ("newMailMsg") ;

//

207

Chapter 7: Using Dialogs in ViewKit

208

Figure 7-6 shows the appearance of the resulting dialog.

Figure 7-6 Information Dialog

Warning Dialogs

The VkWarningDialog class supports standard IRIS IM warning dialogs. The global
pointer to the warning dialog manager, declared in <Vk/VkWarningDialog.h>, is
theWarningDialog.

Use VkWarningDialog to warn the user of the consequences of an action. For example,
VkWarningDialog is appropriate for warning the user that an action will irretrievably
delete information.

By default, the dialogs posted by VkWarningDialog contain only an OK button;
however, according to Open Software Foundation style guidelines, if you have posted a
warning dialog to warn the user about an unrecoverable action, you must allow the user
to cancel the destructive action. To add a Cancel button to your warning dialog, simply
provide a cancel callback function when you post the dialog.

Tip: If you perform the action in the warning dialog’s OK callback, you can simply define
an empty function as a cancel callback. If the user clicks the warning dialog’s OK, button,
the ok callback performs the action; if the user clicks the Cancel button, ViewKit dismisses
the dialog without performing any action.

VkWarningDialog does not provide any additional functions beyond those offered by
the VkDialogManager.

Using the ViewKit Dialog Subclasses

Error Dialogs

The VkErrorDialog class supports standard IRIS IM error dialogs. The global pointer to
the error dialog manager, declared in <Vk/VkErrorDialog.h>, is theErrorDialog.

Use VkErrorDialog to inform the user of an invalid action (such as entering out-of-range

data) or potentially dangerous condition (for example, the inability to create a backup
file).

The messages contained in the error dialogs should not require any decision to be made
by the user. Therefore, the error dialogs display only the OK button by default. If you
need the user to make a selection, you should use another dialog class such as
VkQuestionDialog.

VkErrorDialog does not provide any additional functions beyond those offered by the
VkDialogManager.

Fatal Error Dialogs

The VkFatalErrorDialog class supports an error dialog that terminates the application
when the user dismisses it. The global pointer to the fatal error dialog manager, declared
in <Vk/VkFatalErrorDialog.h>, is theFatalErrorDialog.

Use VkFatalErrorDialog only for those errors from which your program cannot recover.
For example, VkFatalErrorDialog is appropriate if an application terminates because it
cannot open a necessary data file. When the user acknowledges the dialog posted by
VkFatalErrorDialog, the application terminates by calling VkApp::terminate() with an
error value of 1. “Quitting ViewKit Applications” on page 65 describes the terminate()
function.

The messages contained in a fatal error dialog should not require any decision to be made
by the user. Therefore, the fatal error dialog displays only the OK button by default.

VKkFatalErrorDialog does not provide any additional functions beyond those offered by
the VkDialogManager.

209

Chapter 7: Using Dialogs in ViewKit

210

Busy Dialog

The VkBusyDialog class supports a busy dialog (also called a working dialog in IRIS IM)
that is displayed when the application is busy. The global pointer to the busy dialog
manager, declared in <Vk/VkBusyDialog.h>, is theBusyDialog.

Unlike most other dialog classes, you should not directly post and unpost the busy
dialog. VkBusyDialog is used by the VkApp object to display a busy dialog when you
place the application in a busy state. The busy dialog is displayed automatically when
you call VkApp::busy(), and dismissed automatically when you make a corresponding
call to VkApp::notBusy(). VkApp also allows you to use the VkApp::setBusyDialog()
function to use a busy dialog other than that provided by VkBusyDialog. Consult
“Supporting Busy States” on page 75 for more information about how VkApp handles
busy states.

Because the busy dialog is intended to lock out user input during a busy state, by default
the busy dialog does not display any buttons. If you want to allow the user to interrupt
the busy state, you should use the VkApp::setBusyDialog() function to substitute the
VkInterruptDialog class object for the normal busy dialog.

VkBusyDialog does not provide any additional functions beyond those offered by the
VkDialogManager.

Interruptible Busy Dialog

The VklInterruptDialog class supports an interruptible busy dialog that you can
substitute for the normal busy dialog. The dialog posted by the VkInterruptDialog class
includes a Cancel button that the user can click to cancel the current action. The global
pointer to the interruptible busy dialog manager, declared in <Vk/VkInterruptDialog.h>,
is thelnterruptDialog.

In addition to those functions offered by the VkDialogManager class,
VkInterruptDialog provides the wasInterrupted() member function:

Boolean wasInterrupted()

Applications that use VkInterruptDialog must periodically call wasInterrupted() to
determine whether the user has clicked the dialog’s Cancel button since the last time the
function was called. The period of time between checks is up to the application, which
must weigh responsiveness against time spent checking.

Using the ViewKit Dialog Subclasses

Note that wasInterrupted() also calls VkApp::handlePendingEvents() to process any
events that have occurred while the application was busy. Because checking for
interrupts involves entering a secondary event loop for a short time, you should beware
of any problems with re-entrant code in any callbacks that could be invoked.

Also note that you are responsible for performing any cleanup operations required by
your application if the user interrupts a process before it is finished (that is, before you
would normally call VkApp::notBusy() to end the busy state).

VkInterruptDialog also provides the ViewKit callback
VkInterruptDialog::interruptedCallback. This callback allows objects to register a member
function to be called when the user clicks the Cancel button of a VkInterruptDialog
dialog. This callback can be called only if the application calls
VkInterruptDialog::wasInterrupted().

Unlike most other dialog classes, you should not directly post and unpost the
interruptible busy dialog. You can use the VkApp::setBusyDialog() function to instruct
the VkApp object to use the interruptible busy dialog rather than the normal busy dialog
provided by the VkBusyDialog class. The following line shows how you could do this
in a program:

theApplication->setBusyDialog (theInterruptDialog) ;

The following line instructs the VkApp object to revert to the normal busy dialog:

theApplication->setBusyDialog (NULL) ;

If you instruct the VkApp object to use the interruptible busy dialog, it is displayed
automatically when you call VkApp::busy(), and dismissed automatically when you
make a corresponding call to VkApp::notBusy(). Consult “Supporting Busy States” on
page 75 for more information about how VkApp handles busy states.

The code fragment in Example 7-3 installs the interruptible busy dialog and performs a

simulated lengthy task, checking for interrupts periodically. After completing the task,
the code reinstalls the normal busy dialog.

211

Chapter 7: Using Dialogs in ViewKit

Example 7-3 Using the Interruptible Busy Dialog
int i;

// Install the interruptible dialog as the dialog
// to post when busy

theApplication->setBusyDialog (theInterruptDialog) ;
// Start being "busy"
theApplication-s>busy ("Very Busy", (BusyWindow *) clientData) ;
for(i=0; 1<10000; i++)
{
// Every so often, see if the task was interrupted
if (theInterruptDialog->wasInterupted())

{

break; // kick out of current task if user interrupts

}

sleep (1) ;

}

// Task done, so we’re not busy anymore
theApplication->notBusy () ;
// Restore the application’s busy dialog as the default

theApplication->setBusyDialog (NULL) ;

Progress Dialog

The VkProgressDialog class supports applications that perform lengthy, interruptible
tasks, and wish to display a progress report to the user. This class displays a bar graph
showing what percentage of the job has been completed, and how much remains to be
done. See Figure 7-7 for an example of a progress dialog.

The global pointer to the interruptible busy dialog manager, declared in
<Vk/VkProgressDialog.h>, is theProgressDialog.

212

Using the ViewKit Dialog Subclasses

VkProgressDialog is used in nearly the same way as VkInterruptDialog. The only
addition is the setPercentDone() method, which changes the dialog’s graphical progress
indicator.

The prototype for setPercentDone() is as follows:

void setPercentDone (int percentDone)
percentDone should be an integer between 0 and 100, where 100 represents completion.

By default, VkProgressDialog shows a Cancel button that permits the user to interrupt
the current task. If you do not wish to allow users to interrupt your task, you can prevent
the Cancel button from appearing by passing FALSE as the second parameter in the
VKProgressDialog constructor.

Figure 7-7 Progress Dialog
Example 7-4 shows a code segment that installs the progress dialog and performs a

simulated lengthy task, checking for interrupts periodically and updating the progress
indicator.

213

Chapter 7: Using Dialogs in ViewKit

Example 7-4 Using the Progress Dialog
int i;
// Install the progress dialog as the dialog to post when busy
theApplication->setBusyDialog (theProgressDialog) ;
// Start being “busy”
the application-sbusy(“Very Busy”, (BusyWindow *) clientData) ;
int percentDone = 0;
for (i = 0; 1 < 10000; 1i++)
{
// Every so often see if the task was interrupted
if (theProgressDialog->wasInterrupted())
break; // kick out of current task if user interrupts
// Update the percent done indicator. Do this only if we’ve made
// more than one percent increment in progress. This avoids
// updating the dialog more frequently than is really necessary.
if ((i/100) > percentDone)
percentDone = 1/100;

theProgressDialog->setPercentDone (percentDone) ;

sleep (1) ;
}
//Task done, so we’re not busy anymore
theApplication-s>notBusy () ;

// Restore the application’s busy dialog as the default

theApplication->setBusyDialog (NULL) ;

214

Using the ViewKit Dialog Subclasses

Question Dialog

The VkQuestionDialog class supports standard IRIS IM question dialogs. These allow
the user to select among simple choices by clicking pushbuttons. The global pointer to
the question dialog manager, declared in <Vk/VkQuestionDialog.h>, is theQuestionDialog.

As described in “Posting Dialogs” on page 193, the post(), postModal(), and
postBlocked() functions allow you to specify callback functions to be executed when the
user clicks the OK, Cancel, or Apply button. These callbacks apply only to the dialog
posted by the current function call; they do not affect any subsequent dialog postings.
You can also provide client data that is passed to all of the callbacks. Following ViewKit
conventions as described in “Using Xt Callbacks With Components” on page 21, you
should normally pass the this pointer as client data so that the callback functions can
retrieve the pointer, cast it to the expected component type, and call a corresponding
member function.

For the postAndWait() function, instead of providing callbacks, you simply pass a
Boolean value for each button specifying whether or not it is displayed. Unlike the other
posting functions, the value returned by postAndWait() is an enumerated constant of
type VkDialogReason (defined in VkDialogManager). This value is CANCEL, OK, or
APPLY, corresponding to the button the user clicked.

By default, VkQuestionDialog displays only the OK and Cancel buttons.
VkQuestionDialog displays the Apply button only if you provide a callback for that

button.

VkQuestionDialog does not provide any additional functions beyond those offered by
the VkDialogManager.

Prompt Dialog

The VkPromptDialog supports standard IRIS IM prompt dialogs that allow the user to

enter a text string. The global pointer to the prompt dialog manager, declared in
<Vk/VkPromptDialog.h>, is thePromptDialog.

215

Chapter 7: Using Dialogs in ViewKit

216

You can use VkPromptDialog any time you need to prompt the user to enter a single
piece of information. If you need the user to enter more than one value, you should
consider whether it is more appropriate to create a preference dialog as described in
Chapter 8, “Preference Dialogs.” Another option is to create your own custom dialog
using VkGenericDialog as described in “Deriving New Dialog Classes Using the
Generic Dialog” on page 223.

By default, VkPromptDialog displays only the OK and Cancel buttons.
VkPromptDialog displays the Apply button only if you provide a callback for that
button.

VkPromptDialog::setText() allows you to enter an initial text string in the prompt
dialog’s text field.

One method of obtaining the text string the user entered in the prompt dialog is to extract
it and use it in the OK callback function (and the apply callback function if you provide
one). Example 7-5 demonstrates this technique.

Example 7-5 Extracting the Text String From a Prompt Dialog

void MailWindow: :okCallback (Widget w, XtPointer, clientData, XtPointer callData)

{

MailWindow *obj = (MailWindow *) clientData;
obj->ok (w, callData) ;

}

void MailWindow: :o0k (Widget dialog, XtPointer callData) ;

{

char * text;
XmSelectionBoxCallbackStruct *cbs = (XmSelectionBoxCallbackStruct *)callData;

XmStringGetLtoR (cbs->value,
XmFONTLIST DEFAULT TAG,
& text);
// ...
}

Another method of obtaining the text string is to call VkPromptDialog::text() after the
user has dismissed the dialog:

const char *text ()

Using the ViewKit Dialog Subclasses

If the user clicks the OK button, the dialog accepts the currently displayed text as input
and uses that string as the return value of text(). If the user clicks the Cancel button, the
dialog discards the currently displayed value and any previously-displayed string the
dialog might have contain is returned as the value of text(). Do not attempt to free the
string returned by text(). Typically, you should call text() only if you post the dialog using
postAndWait() and postAndWait() returns a value of VkDialogManager::OK.

Caution: The following are two points that you should keep in mind when using
VkPromptDialog:

* Do not use text() from within one of the VkPromptDialog callback functions.
VkPromptDialog sets the value returned by text() using its own OK callback
function. Because IRIS IM does not guarantee the calling order of callback functions,
you cannot be certain that text() will return the correct value from within another
callback function.

* Be aware that subsequent posting of thePromptDialog can alter the text value. In rare
conditions, if you post non-modal, non-blocking dialogs, this could occur even
before you retrieved the value using text(). To prevent this, either retrieve the text
string in the OK callback function as shown in Example 7-5, or call text() only after
posting the dialog using postAndWait() and verifying that postAndWait() returned
the value VkDialogManager::OK).

File Selection Dialog
The VkFileSelectionDialog class supports standard IRIS IM file selection dialogs (an
example of which is shown in Figure 7-8). These allow the user to interactively browse

and select a file or directory. The global pointer to the file selection dialog manager,
declared in <Vk/VkFileSelectionDialog.h>, is theFileSelectionDialog.

217

Chapter 7: Using Dialogs in ViewKit

Figure 7-8 File Selection Dialog

You can set the initial directory displayed by the dialog using
VKkFileSelectionDialog::setDirectory():

void setDirectory (const char *directory)
If you do not explicitly set a directory, the dialog defaults to the current directory.

You can set the initial filter pattern used by the dialog, which determines the files
displayed in the list box by using VkFileSelectionDialog::setFilterPattern():

void setFilterPattern(const char *pattern)

218

Using the ViewKit Dialog Subclasses

If you do not explicitly set a selection, the dialog displays all files in a directory.

You can set the initial selection used of the dialog using
VkFileSelectionDialog::setSelection():

void setSelection(const char *selection)

One method of obtaining the selection string of the file selection dialog is to extract it and
use it in the OK callback function. Example 7-6 demonstrates this technique.

Example 7-6 Extracting the Text String From a File Selection Dialog

void MailWindow: :okCallback (Widget w, XtPointer, clientData, XtPointer callData)

{

MailWindow *obj = (MailWindow *) clientData;
obj->ok (w, callData) ;

}

void MailWindow: :ok (Widget dialog, XtPointer callData) ;

{

char * text;
XmFileSelectionBoxCallbackStruct *cbs =
(XmFileSelectionBoxCallbackStruct *) callData;

XmStringGetLtoR (cbs->value,
XmFONTLIST DEFAULT TAG,
& text);
// ...
}

Another method of obtaining the selection string is to call
VKkFileSelectionDialog::fileName() after the user has dismissed the dialog:

const char* fileName ()

If the user clicks the OK button, the dialog accepts the currently displayed text as input
and uses that string as the return value of fileName(). If the user clicks the Cancel button,
the dialog discards the currently displayed value, and any previously-displayed string
the dialog might have contained is returned as the value of fileName(). Do not attempt
to free the string returned by fileName(). Typically, you should call fileName() only if
you post the dialog using postAndWait(), and postAndWait() returns a value of
VkDialogManager::OK.

219

Chapter 7: Using Dialogs in ViewKit

220

Caution: The following are two points that you should keep in mind when using
VKkFileSelectionDialog:

¢ Do not use fileName() from within one of the VkFileSelectionDialog callback
functions. VkFileSelectionDialog sets the value returned by fileName() using its
own OK callback function. Because IRIS IM does not guarantee the calling order of
callback functions, you cannot be certain that fileName() will return the correct
value from within another callback function.

* Be aware that subsequent posting of theFileSelectionDialog can alter the selection
value. In rare conditions, if you post non-modal, non-blocking dialogs, this could
occur even before you retrieve the value using fileName(). To prevent this, either
retrieve the selection string in the OK callback function, or call fileName() only after
posting the dialog using postAndWait(), and verifying that postAndWait()
returned the value VkDialogManager::OK).

The following code fragment shows a simple example of using the
VkFileSelectionDialog class:

#include <iostream.h>
#include <Vk/VkFileSelectionDialog.h>

/] ...
theFileSelectionDialog->setDirectory (“/usr/tmp”) ;

if (theFileSelectionDialog->postAndWait () == VkDialogManager: :0K)
cout << "File name: " << theFileSelectionDialog->fileName ()
<< '"\n’ << flush;

Color Chooser Dialog

The VkColorChooserDialog class displays an SgColorChooser dialog widget that
provides a powerful user-friendly interface for selecting colors (see Figure 7-9). The color
chooser provides a color hexagon, color sliders, and editable text fields. The color
hexagon allows the user to pick a color by sight. The sliders and text fields let the user
choose a color by hue, saturation, and value (HSV), or by the levels of red, green, and
blue (RGB). The user has the option of displaying and manipulating different
combinations of sliders: value only, value and RGB, and HSV and RGB. The color chooser
dialog also allows the user to store one color for reference (the “stored color”) while
selecting another one (the “current color”).

Using the ViewKit Dialog Subclasses

For more information about color chooser dialogs, see the VkColorChooserDialog(3x)
and SgColorChooser(3X) reference pages. For a demonstration of the
VkColorChooserDialog class, see the example program in /usr/share/src/ViewKit/Dialogs.

The global pointer to the color chooser dialog manager, declared in
<Vk/VkColorChooserDialog.h>, is theColorChooserDialog.

Options Sliders

Palette Colors

Current
Color:

Stored
Color:

Hue A.513

Saturation| 8.553

Value 1.686

Red ex7z ||| A 1
Blue Bxff I 4

‘ 014 | ‘ Applyl ‘Cancell ‘ Help |

Figure 7-9 Color Chooser Dialog

221

Chapter 7: Using Dialogs in ViewKit

VkColorChooserDialog Access Functions

The VkColorChooserDialog class provides access functions to set and obtain the current
and stored color selections. Each of these functions has two variations. One set uses true
XColors, with color component values in the range of 0 to 64K. The other set uses colors
suitable for non-X graphics, with component values in the range of 0 to 255.

You can obtain the current color by using one of the following functions:

getColor()
XColor* getColor (Void)
Returns a pointer to the current color, whose values range from 0 to 255.

getXColor()
XColor* getXColor (void)

Returns a pointer to the current color, which is a true XColor.

You can set colors by using the following functions:

222

setColor()

void setColor (short r, short g, short b)

Sets both the current and stored colors; requires color values from 0 to 255.
setXColor()

void setXColor (unsigned short 7, unsigned short g,
unsigned short b)

Sets both the current and stored colors; requires standard XColor colors.
setCurrentColor()

void setCurrentColor (short r, short g, short b)

Sets the current color; requires color values from 0 to 255.

setCurrentXColor()

void setCurrentXColor (unsigned short r, unsigned short g,
unsigned short b)

Sets the current color; requires standard XColor colors.

Using the ViewKit Dialog Subclasses

e setStoredColor()

void setStoredColor (short r, short g, short b)
Sets the stored color; requires color values from 0 to 255.

e setStoredXColor()

void setStoredXColor (unsigned short r, unsigned short g,
unsigned short b)

Sets the stored color; requires standard XColor colors.

Deriving New Dialog Classes Using the Generic Dialog

The VkGenericDialog class is an abstract subclass of VkDialogManager. It provides a
convenient interface for creating custom dialogs that use the ViewKit interface. Custom
dialogs that you derive from this class automatically support caching and all the other
features supported by VkDialogManager. You can post and manipulate your custom
dialogs using the functions provided by VkDialogManager.

Minimally, when you derive a new dialog class, you must override the
VkGenericDialog::createDialog() function to create the dialog used by your class:

virtual Widget createDialog(Widget parent)

ViewKit passes to createDialog() the parent widget for the dialog, and createDialog()
must return the dialog you create. Your overriding function must first call
VkGenericDialog::createDialog(), which creates a MessageBox dialog template. By
default, the dialog displays OK and Cancel buttons. Then, you simply add the interface
to the MessageBox widget.

You can change the buttons displayed by default and other characteristics for your
custom dialog by setting certain protected data members:

Boolean _showOK
Set this value to TRUE (the default) to force the OK button to always
appear in your custom dialog. If you set _showOK to FALSE, the OK
button appears only if you provide an OK callback function when
posting the dialog.

223

Chapter 7: Using Dialogs in ViewKit

224

Boolean _showCancel
Set this value to TRUE (the default) to force the Cancel button to always
appear in your custom dialog. If you set _showCancel to FALSE, the
Cancel button appears only if you provide a cancel callback function
when posting the dialog.

Boolean _showApply
Set this value to TRUE to force the Apply button to always appear in your
custom dialog. If you set _showApply to FALSE (the default), the Apply
button appears only if you provide an apply callback function when
posting the dialog.

Boolean _allowMultipleDialogs
The default behavior of the VkDialogManager class is to allow multiple
dialogs of any given type to be posted at once. The VkDialogManager
class calls derived classes’s createDialog() member function as needed
to create additional widgets. For some types of dialogs, it makes more
sense to allow only one instance of a particular dialog type to exist at any
one time. For example, multiple nested calls to VkApp::busy() should
not normally produce multiple dialogs. If you set _allowMultipleDialogs
to FALSE, the VkDialogManager class does not create additional
dialogs, but reuses an existing dialog in all cases.

Boolean _minimizeMultipleDialogs
Normally, VkDialogManager caches dialogs on a per-top-level window
basis. If there are many top-level windows, this could result in having
many dialogs of the same type, which may be undesirable for some
types of dialogs, particularly if they are expensive to create. If you set
_minimizeMultipleDialogs TRUE, VkDialogManager reuses any existing
dialog that is not currently displayed. VkDialogManager creates a new
dialog only if all existing instances of the dialog type are currently
displayed.

Also, by default ViewKit dismisses your dialog whenever the user clicks either the OK or
Cancel button, and keeps the dialog posted whenever the user clicks the Apply button.
You can change this behavior by overriding the functions VkDialogManager::ok(),
VkDialogManager::cancel(), and VkDialogManager::apply(), respectively:

virtual void ok (Widget dialog, XtPointer callData)
virtual void cancel (Widget dialog, XtPointer callData)
virtual void apply(Widget dialog, XtPointer callData)

Putting Dialogs in the Overlay Planes

ViewKit calls these functions whenever the user clicks one of the buttons in the dialog.
By default, ok() and cancel() unpost the dialog and apply() is empty. You can override
these functions to change the unposting behavior or to perform any other actions you
want.

Putting Dialogs in the Overlay Planes

By default, dialogs appear in the normal planes. ViewKit dialogs, however, may be
explicitly placed in the overlay planes. Doing so prevents the dialogs from causing
expose events that disturb such things as complex GL rendering in the normal planes.

There are three ways to enable dialogs in the overlay planes:

Call VkDialogManager::useOverlayDialogs(TRUE). This forces dialogs into the
overlay planes, with no way to put them back in the normal planes without
recompiling.

Put the resource string “*useOverlayDialogs: True” in your application’s default
file. This will put dialogs in the overlay planes by default, but allow users to use the
normal planes by changing their . Xdefaults file.

Have users add the -useOverlayDialogs command-line switch when they run your
application if they wish to use the overlay planes for dialogs.

If you do decide to place dialogs in the overlay planes, here are some factors to consider:

Dialogs are placed in the deepest available overlay planes: generally 4- or 8-bit
planes, occasionally 2-bit planes.

If the deepest available overlay is 2 bits, any dialogs placed in that visual may not
look right. Because the colormap in the 2-bit overlay planes only has three color
entries (the fourth being a transparent pixel), any items in the dialog other than
labels (for example cascade or toggle buttons) may look odd.

Other applications using the overlay planes may display in the wrong colors when
the application posting the dialog gets colormap focus. The colors in the other
applications may flash because the dialog’s colormap is installed and replaces any
previous overlay colormap.

225

Chapter 8

Preference Dialogs

This chapter introduces the basic ViewKit classes needed to create and manipulate

preference dialogs in a ViewKit application. Figure 8-1 shows the inheritance graph for

these clas

Ses.

Figure 8-1

——— e,

| ViGenericDialog | VkPrefDialog
VkPrefText
VkPrefToggle
VkPrefOption
VkPrefLabel
VkPrefSeparator
| VeprtCusom | VicretEmpty
VkPrefRadio
VkPrefGroup {
VkPrefList

Inheritance Graph for the ViewKit Preference Dialog Classes

227

Chapter 8: Preference Dialogs

Overview of ViewKit Preference Dialogs

228

Preference dialogs allow users to customize the behavior of an application. Without
high-level support, preference dialogs can take considerable time and effort to write
because they can involve large numbers of text input fields, labels, toggle buttons, and
other controls. A user expects preference dialogs to work in a specific way, as well.
Usually, a user sets a number of preferences and then clicks an Apply button or an OK
button to apply all changes at once. A user also expects to be able to click Cancel and
return all preferences to their previous state, regardless of how many changes the user
might have made.

ViewKit supports an easy-to-use collection of classes for building preference dialogs.
Rather than dealing directly with widgets, their placement, callbacks, and so on,
programmers who use ViewKit can simply create groups of preference items. These items
maintain their own states, which allows an application to simply query each item to see
if it has been changed. Layout is handled automatically, and ViewKit provides the ability
to apply or revert all preferences to their previous state.

ViewKit Preference Dialog Class

In ViewKit, preference dialogs are implemented as a specialized class of dialog.
Specifically, the base preference dialog class, VkPrefDialog, is a subclass of
VkGenericDialog, which is in turn a subclass of VkDialogManager. Thus, the
VkPrefDialog class inherits all of the functions and data members provided by these
base classes.

However, there are some significant differences in the way you use preference dialogs in
your programs compared to the other dialog classes. For the other dialog classes, a single,
reusable instance of each type of dialog is sufficient. Details such the message, the button
labels, or the dialog title change from posting to posting, but the general dialog behavior
remains the same.

Overview of ViewKit Preference Dialogs

On the other hand, individual postings of preference dialogs often vary significantly;
they usually have greatly different preference items and data structures associated with
each preference item. Therefore, unlike the other dialog classes, VkPrefDialog does not
create a global instance of a preference dialog. Instead, you must create a separate
instance of VkPrefDialog for each preference dialog that you want to display in your
program. For very simple preference dialogs (for example, just a few toggle buttons), you
might be able to directly instantiate a VkPrefDialog object; however, in most cases you
should create a separate subclass of VkPrefDialog for each preference dialog in your
application.

For each preference dialog, you create a collection of preference items and associate them
with the dialog. Each preference item maintains its own state or value, and your program
can query the value of preference items as needed. Users can change the values
associated with any number of preference items, then click the Apply button to apply all
changes and keep the dialog up, or the OK button to apply all changes and dismiss the
dialog. Users can also click the Cancel button to return all preferences to their last applied
values and dismiss the dialog.

The VkPrefDialog class also supplies a ViewKit callback named prefCallback. The
preference dialog activates this callback whenever the user clicks the dialog’s Apply, OK,
or Cancel button.

ViewKit Preference Item Classes

The basis for all ViewKit preference item classes is the abstract class VkPrefltem, which
is derived from VkComponent. All preference items are derived from the base class
VkPrefItem, which provides a common set of manipulation functions.

Preference items can be divided into three groups: those that implement various controls

such as text fields, toggles, and option menus; those that are “ornamental”; and those
that arrange other preference items and manage them as a group.

229

Chapter 8: Preference Dialogs

230

The following preference items implement controls:
VkPrefText A text field.

VkPrefToggle A single toggle button (you can group multiple toggle buttons into a
VkPrefRadio item, described below, to enforce radio-style behavior of
the buttons).

VkPrefOption An option menu.

The following preference items are ornamental:
VkPrefLabel A text label.

VkPrefSeparator
A separator.

VkPrefEmpty A “null” item that you can use to add extra space between other items.

The following preference items create groups of items:

VkPrefGroup Defines a group of related items. You can specify either vertical or
horizontal layout; the default is vertical. With a vertical layout,
VkPrefGroup pads items so that they take equal space. You have the
option of displaying a label for the group.

VkPrefRadio A subclass of VkPrefGroup for managing a group of toggle items in a
radio box style. You can specify either vertical or horizontal layout; the
default is vertical. Items are always padded so that they take equal
space. You have the option of displaying a label for the group.

VkPrefList Defines a group of related items. The VkPrefList class arranges its items
vertically. Unlike VkPrefGroup, items are not padded so that they take
equal space; instead, each item takes only as much space as it needs.
Also in contrast to VkPrefGroup, VkPrefList does not display any label
for the group.

Each preference item maintains its own state or value, and your program can query the
value of preference items as needed. Preference items automatically handle updating
their stored values when the user clicks the preference dialog’s Apply or OK button, and
reverting to their previous values when the user clicks the dialog’s Cancel button.

Overview of ViewKit Preference Dialogs

Building a ViewKit Preference Dialog

Figure 8-2 shows an example of a preference dialog created using the ViewKit classes.

Document Properties

Mumbering:

Pagination:
<> Single-sided < Double-sided

Teut:
Smart Gluotes Smart Spaces

ﬁ_

Figure 8-2 ViewKit Preference Dialog

Example 8-1 lists the code used to create this preference dialog.

Example 8-1 Creating a ViewKit Preference Dialog

[11771777177717711777
// DocPrefDiag.c++

[117717771771771771177

#include <Vk/VkApp.h>
#include <Vk/VkPrefDialog.h>
#include <Vk/VkPrefItem.h>

231

Chapter 8: Preference Dialogs

class DocPrefDialog: public VkPrefDialog {
protected:

VkPreflLabel *dialogName;
VkPrefSeparator *sepl;
VkPrefText *firstPageNumber;
VkPrefOption *firstPageSide;
VkPrefGroup *numberGroup;
VkPrefSeparator *sep2;
VkPrefToggle *paginSingleSide;
VkPrefToggle *paginDoubleSide;
VkPrefRadio *paginationGroup;
VkPrefSeparator *sep3;
VkPrefToggle *textQuotes;
VkPrefToggle *textSpaces;
VkPrefGroup *textGroup;
VkPrefList *docList;

static String defaultResources(];
virtual Widget createDialog(Widget parent) ;

public:

DocPrefDialog (const char *name) ;
~DocPrefDialog() ;
virtual const char* className() ;

}i

String DocPrefDialog:: defaultResources[] = {
“*dialogNameBase. labelString:Document Properties”,
“*numberGroupLabel . labelString: Numbering:”,

v firstPageNumberLabel .labelString:1st Page #:”,
“*firstPageSidelabel.labelString:1st Page:”,
“*firstPageRight :Right”,

“*firstPageleft:Left”,

“*paginationGroupLabel .labelString:Pagination:”,
“*paginSingleSideBase.labelString:Single-sided”,
“*paginDoubleSideBase. labelString:Double-sided”,
“*textGroupLabel . labelString:Text:”,
“*textQuotesBase. labelString:Smart Quotes”,
“*textSpacesBase. labelString:Smart Spaces”,
NULL

}i

232

Overview of ViewKit Preference Dialogs

DocPrefDialog: :DocPrefDialog (const char *name) : VkPrefDialog (name)

{
// Empty
}

Widget DocPrefDialog::createDialog(Widget parent) {
setDefaultResources (parent, _defaultResources) ;

VkPreflabel *dialogName = new VkPreflabel (“dialogName”) ;
VkPrefSeparator *sepl = new VkPrefSeparator (“sepl”) ;

VkPrefText *firstPageNumber = new VkPrefText (“firstPageNumber”) ;
VkPrefOption *firstPageSide = new VkPrefOption (“firstPageSide”, 2);
firstPageSide->setlLabel (0, “firstPageRight”) ;
firstPageSide->setlabel (1, “firstPageleft”);

VkPrefGroup *numberGroup = new VkPrefGroup (“numberGroup”) ;
numberGroup->addItem (firstPageNumber) ;

numberGroup->addItem (firstPageSide) ;

VkPrefSeparator *sep2 = new VkPrefSeparator (“sep2”) ;

VkPrefToggle *paginSingleSide = new VkPrefToggle (“paginSingleSide”) ;
VkPrefToggle *paginDoubleSide = new VkPrefToggle (“paginDoubleSide”) ;

VkPrefRadio *paginationGroup = new VkPrefRadio (“paginationGroup”, TRUE) ;
paginationGroup->addItem(paginSingleSide) ;
paginationGroup->addItem(paginDoubleSide) ;

VkPrefSeparator *sep3 = new VkPrefSeparator (“sep3”) ;

VkPrefToggle *textQuotes = new VkPrefToggle (“textQuotes”) ;
VkPrefToggle *textSpaces = new VkPrefToggle (“textSpaces”) ;

VkPrefGroup *textGroup = new VkPrefGroup (“textGroup”, TRUE) ;
textGroup->addItem (textQuotes) ;
textGroup->addItem (textSpaces) ;

VkPrefList *docList = new VkPrefList (“docList”) ;
docList->addItem(dialogName) ;
docList->addItem(sepl) ;

docList->addItem (numberGroup) ;

233

Chapter 8: Preference Dialogs

234

docList->addItem
docList->addItem
docList->addItem
docList->addItem

sep2) ;
paginationGroup) ;
sep3) ;
textGroup) ;

setItem(docList) ;
Widget base = VkPrefDialog::createDialog (parent) ;

return (base) ;

}

DocPrefDialog: : ~NDocPrefDialog ()

{
// Empty
}

const char* DocPrefDialog: :className ()

{

return “DocPrefDialog” ;

}

void main (int argc, char **argv)

{
VkApp *app = new VKApp (“PrefDialogDemoRpp”, &argc, argv) ;
DocPrefDialog *docPrefs = new DocPrefDialog (“docPrefs”) ;

docPrefs->show () ;
app->run() ;

}

To post this dialog, you simply create an instance of the DocPrefDialog class and use one
of the post() functions described in “Posting Dialogs” on page 193. For example:

DocPrefDialog *docPref = new DocPrefDialog("docPref") ;

//

docPref->post () ;

You can retrieve the value of a preference item with the getValue() function as described
in “Getting and Setting Preference Item Values” on page 237. For example:

Boolean smartSpaces;

//

smartSpaces = docPref->textSpaces->getValue() ;

ViewKit Preference Item Base Class

ViewKit Preference Item Base Class

All preference items are derived from an abstract base class, VkPrefItem, which defines
the structure of ViewKit preference items and provides a common set of manipulation
functions.

Preference ltem Labels

Most preference items contain two top-level widgets: a base widget and a label widget.
The base widget implements the preference items “control” mechanism (for example, a
text field, an option menu, or a toggle button). The label widget (actually implemented
as a gadget) displays a text label for the item.

The name of the base widget is the string “Base” appended to the name of the preference
item as given in its constructor. The name of the label widget is the string “Label”
appended to the name of the preference item as given in its constructor. So, if you create
a VkPrefText object named “firstName,” the name of the base widget is “firstNameBase”
and the name of the label widget is “firstNameLabel.”

To specify the string that is displayed as the label, you must set the XmNlabelString
resource for the label widget. There are various ways to do this:

* Use the VkComponent::setDefaultResources() function to provide default resource
values. See “Creating Preference Dialog Subclasses” on page 261 for information on
using the setDefaultResources() function when you create a subclass of
VkPrefDialog.

® Set resource values in an external app-defaults resource file. Any values you
provide in an external file will override values that you set using the
VkComponent::setDefaultResources() function. This is useful when your
application must support multiple languages; you can provide a separate resource
file for each language supported.

* Set the resource value directly using the XtSetValues() function. Values you set
using this method override any values set using either of the above two methods.
You should avoid using this method, because it “hard codes” the resource values
into the code, making them more difficult to change.

235

Chapter 8: Preference Dialogs

236

The code fragment in Example 8-2 sets the labels for two VkPrefText items using the first
method.

Example 8-2 Setting Default Resource Values for Preference Items

#include <Vk/VkPrefDialog.h>
#include <Vk/VkPrefItem.h>

class NameDialog: public VkPrefDialog {
public:
VkPrefText *firstName;
VkPrefText *lastName;

//

protected:
Widget createDialog(Widget)

private:
static String defaultResources|];
//
i
String NameDialog:: defaultResources[] = {
"*firstNameLabel.labelString: First Name:",
"*]astNameLabel.labelString: Last Name:",

Vi

Widget NameDialog::createDialog(Widget parent)

{

setDefaultResources (mainWindowWidget (), defaultResources) ;

firstName = new VkPrefText ("firstName") ;
lastName = new VkPrefText ("lastName") ;
VkPrefList *nameList = new VkPrefList ("nameList") ;

//
}

Not all items display a label. VkPrefSeparator is an example of this type of preference
item. Some preference items, such as VkPrefGroup, allow you to specify in the
constructor whether or not you want to display a label for the item. The sections
appearing later in this chapter that describe individual preference items discuss how
each item uses its label widget.

ViewKit Preference Item Base Class

Getting and Setting Preference Item Values

Preference items that allow the user to input information—VkPrefText, VkPrefToggle,
and VkPrefOption—have values associated with them. Each such item stores its own
value internally. This value might or might not match the value currently displayed in
the preference dialog. Because users can click the Cancel button to return all preferences
to their last applied values, a preference item must not immediately store a new value
that a user enters. Only when the user clicks the dialog’s Apply or OK button do
preference items update their internally stored values to match the values displayed on
the screen.

Preference items provide a getValue() function that updates the internally-stored value
with the currently displayed value and returns the updated value. The getValue()
function is not actually declared in the VkPrefItem base class because different types of
preference items use different types of values (for example, VkPrefToggle uses a Boolean
value whereas VkPrefText uses a character string). Each preference item with an
associated value provides its own definition of getValue().

The setValue() function allows you to programmatically set the internally stored value
of a preference item. The setValue() function automatically updates the displayed value
to reflect the new internal value. As with the getValue() function, setValue() is not
actually declared in the VkPrefItem base class; each preference item with an associated
value provides its own definition of setValue().

The VkPreflItem::changed() function checks to see whether or not the user has changed
the value displayed on the screen so that it no longer matches the item’s internally stored
value:

virtual Boolean changed ()
If the value has changed, changed() returns the Boolean value TRUE; otherwise, it

returns FALSE. You should use changed() as a test to determine whether or not you need
to call getValue() for a preference item.

237

Chapter 8: Preference Dialogs

238

Preference Iltem Access Functions

The activate() and deactivate() functions control whether or not a preference item is
activated:

void activate ()
void deactivate ()

If the item is deactivated, the item is “grayed out” on the screen and the user cannot
change the item’s value. Call activate() to activate an item and deactivate() to deactivate
an item.

Occasionally you might want to achieve certain effects by manually setting the height of
a preference item’s label or base widget. The setLabelHeight() and setBaseHeight()
functions each accept as an argument an Xt Dimension value and respectively set the
item’s label and base widget to the given height:

void setLabelHeight (Dimension h)
void setBaseHeight (Dimension h)

The labelHeight() function returns the current height of the item’s label widget, and the
baseHeight() function returns the current height of the item’s base widget, each
expressed as an Xt Dimension value:

Dimension labelHeight ()

Dimension baseHeight ()

The labelWidget() function returns the item’s label widget:
Widget labelWidget ()

labelWidget() returns NULL if an item does not have a label widget.

The type() function returns an enumerated value of type VkPrefltemType that identifies
an item’s type:

virtual VkPrefItemType type ()

Valid return values are: PI_group, PI_list, PI_radio, PI_text, PI_toggle, PI_option,
PI_empty, PI_label, P1_separator, PI_custom, and PI_none.

ViewKit Preference Item Classes

The isContainer() function returns TRUE if the preference item is one used to group (or
contain) other items:

virtual Boolean isContainer ()

Currently, isContainer() returns true for VkPrefGroup, VkPrefRadio, and VkPrefList
items.

ViewKit Preference Item Classes

The following sections describe the preference item classes provided by ViewKit. In
addition to specific member functions listed, each class also supports all functions
provided by the VkPrefItem class.

Text Fields

The VkPrefText class supports text field preference items, allowing users to enter text
strings. Figure 8-3 shows a simple preference dialog containing a text field preference
item.

Enter you name:

Figure 8-3 Preference Dialog With a Text Field Preference Item

The VkPrefText constructor has the following form:

VkPrefText (const char *name, int columns = 5)

239

Chapter 8: Preference Dialogs

240

The VkPrefText constructor expects as its first argument the name of the preference item.
You can optionally provide as a second argument an integer value specifying the default
number of columns for the text field.

For example, creating the text field shown in Figure 8-3 requires only this line:

VkPrefText *name = new VkPrefText ("name") ;

To set the label for the text field you must set the XmNlabelString resource of the
preference item’s label widget. Therefore, to set the label as shown in Figure 8-3, you
must set the resource:

*namelLabel.labelString: Enter your name:

Refer to “Preference Item Labels” on page 235 for more information on setting the label
of a preference item.

Use the getValue() function to retrieve the internally-stored value of the text field:

char *getValue ()

getValue() duplicates the internal value and then returns a pointer to the duplicate
string. (You should free this string when you no longer need it.) For example, the
following line retrieves the value of the name text field shown above:

userName = name->getValue() ;

Use the setValue() function to programmatically set the value of the text field:

void setValue (const char *str)

setValue() copies the string that you pass as an argument, sets the internally-stored value
to that string, and updates the value displayed by the text field. For example, the
following line sets the value of the name text field shown above to “John Doe”:

name->setValue ("John Doe") ;

Toggle Buttons

The VkPrefToggle class supports a single toggle button preference item. You can group
multiple toggle buttons using a VkPrefGroup or VkPrefList item, and you can enforce
radio-style behavior on a group of toggles by grouping them in a VkPrefRadio item.
These classes are discussed later in this chapter.

ViewKit Preference Item Classes

Figure 8-4 shows a simple preference dialog containing a single toggle button preference
item.

History Erase

o (g o |

Figure 8-4 Preference Dialog With Toggle Button Preference Item

The VkPrefToggle constructor has the following form:

VkPrefToggle (const char *name, Boolean forceLabelFormat = FALSE)

The first argument the VkPrefToggle constructor expects is the name of the preference
item. For example, creating the toggle button shown in Figure 8-4 requires only the line:

VkPrefToggle *erase = new VkPrefToggle ("erase");

You can provide an optional Boolean value as a second argument to the VkPrefToggle
constructor. A TRUE value forces the VkPrefToggle object to create and use a label
widget as described in “Preference Item Labels” on page 235. Otherwise, if the value is
FALSE, the behavior of the label is determined as described below in “Setting Toggle
Preference Item Labels.” The default value is FALSE.

Setting Toggle Preference Item Labels

Setting the label for a toggle preference item is more complex than with other preference
items. Unlike many of the other preference items, the ToggleButton widget that is the
base widget of the VkPrefToggle item includes a text label. Therefore, to set that label,
you must set the XmNlabelString resource of the preference item’s base widget instead
of its label widget. For example, to set the label as shown in Figure 8-4, you must set the
resource:

*eraseBase.labelString: History Erase

241

Chapter 8: Preference Dialogs

242

This works for all cases except for when a toggle is an item in a vertical VkPrefGroup or
VkPrefRadio item that contains items other than toggles. (A group that contains more
than one type of preference item is a non-homogenous group; a group that contains only
one type of preference item is a homogenous group.) To understand why this is done,
consider first a simple vertical VkPrefGroup containing only two toggle buttons, as
shown in Figure 8-5. In this case, the labels appear to the right side of the buttons as they
normally do.

Homogenous Group
Toggle One

Toggle Two

ﬁ__

Figure 8-5 Toggle Preference Items in a Homogenous Vertical Group

When toggle items appear in a homogenous group like the one shown in Figure 8-5, you
should set the XmNlabelString resources for the base widgets of the toggle items. For
example:

*firstToggleBase.labelString: Toggle One
*secondToggleBase.labelString: Toggle Two

However, the labels for most other preference items appear to the left of the items. Left
uncorrected, if a vertical, non-homogenous VkPrefGroup or VkPrefRadio contained a
toggle item, the label for the toggle would not align with the other labels.

Therefore, in the case of a non-homogenous vertical VkPrefGroup or VkPrefRadio,
ViewKit sets the XmNlabelString resource of all toggle items’ base widgets to NULL and
instead displays their label widgets. The result is that all of the preference items’ labels
correctly align, as shown in Figure 8-6.

ViewKit Preference Item Classes

Mon-homogenous Group

Toggle One

Toggle Two

Figure 8-6 Toggle Preference Items in a Non-Homogenous Vertical Group

When toggle items appear in a non-homogenous, vertical group like the one shown in
Figure 8-6, you should set the XmNlabelString resources for the label widgets of the
toggle items rather than the base widgets. For example:

*firstToggleLabel.labelString: Toggle One
*secondToggleLabel.labelString: Toggle Two

Note that if you provide the Boolean value TRUE as a second argument to the
VkPrefToggle constructor, the VkPrefToggle object always creates and uses a label

widget instead of using the base widget’s text label.

Refer to “Preference Item Labels” on page 235 for more information on setting the label
of a preference item.

Getting and Setting Toggle Preference ltem Values

Use the getValue() function to retrieve the Boolean value of the toggle:

Boolean getValue ()

243

Chapter 8: Preference Dialogs

244

For example, the following line retrieves the value of the firstToggle toggle shown above:

toggleSet = firstToggle->getValue() ;

Use the setValue() function to programmatically set the value of the toggle:

void setValue (Boolean wvalue)

setValue() sets the internally-stored value to the Boolean value you pass as an argument,
and updates the value displayed by the toggle. For example, the following line sets the
value of the secondToggle toggle shown above to TRUE:

secondToggle->setValue (TRUE) ;

Option Menus

The VkPrefOption class supports option menu preference items, allowing users to
choose an option from a menu. Figure 8-7 shows a simple preference dialog containing
an option menu preference item.

;) ;)

=| optionPref

Alignment
Side: | Afign Left =
Afign Center

Align Right
| Dk T |g“r.f: T Cancel

Figure 8-7 Preference Dialog With Option Menu Preference Item

The VkPrefOption constructor has the following form:

VkPrefOption (const char *name, int numEntries)

The VkPrefOption constructor expects as its first argument the name of the preference
item. The second argument is an integer value specifying the number of entries in the
option menu.

ViewKit Preference Item Classes

For example, you can create the option menu shown in Figure 8-7 with this line:

VkPrefOption *align = new VkPrefOption("align", 3);

Setting Option Menu Preference Item Labels

To set the label for the option menu, you must set the XmNlabelString resource of the
preference item’s label widget. Therefore, to set the label as shown in Figure 8-7, you
must set the resource as follows:

*alignLabel.labelString: Alignment

Refer to “Preference Item Labels” on page 235 for more information on setting the label
of a preference item.

To set the labels for the individual items in the option menu, use the setLabel() function:

void setLabel (int index, const char *label)

setLabel() expects two arguments. The first is an integer value specifying the index of the
of the menu item. Menu items are numbered starting with 0.

The second setLabel() argument is a character string. This string is first treated as a
resource name which is looked up relative to the menu item’s widget. If the resource
value exists, it is used as the label. If no resource is found, or if the string contains spaces
or newline characters, the string itself is used as the label.

For example, the following lines directly set the labels for the option menu items shown
in Figure 8-7:

align->setLabel (0, "Align Left");
align->setLabel (1, "Align Center") ;
align->setLabel (2, "Align Right");

On the other hand, the following lines set the labels using resource values:

align->setLabel (0, "alignLeft");
align->setLabel (1, "alignCenter");
align->setLabel (2, "alignRight") ;

245

Chapter 8: Preference Dialogs

246

In the second case, you would also have to set the appropriate resource values. You could
do so using the setDefaultResources() function, or you could include the following lines
in a resource file:

*align*alignLeft: Align Left
*align*alignCenter: Align Center
*align*alignRight: Align Right

You can retrieve the label for a given item using the getLabel() function:

char *getLabel (int index)
index is the index of the menu item.

Note: getLabel() returns the same string that you passed to setLabel() when setting the
item’s label. Therefore, if you set the item’s label by specifying a resource name,
getLabel() returns the resource name, not the value of the resource.

Dynamically Changing the Number of Option Menu Items

In the VkPrefOption constructor, you must provide an argument specifying the number
of elements in the option menu. However, after creating an option menu preference item,
you can resize it as needed using the setSize() function:

void setSize (int numkEntries)

setSize() accepts an integer argument specifying the new size of the option menu. If the
new size is smaller than the old size, setSize() automatically deletes all unneeded
widgets. If the new size is larger, setSize() automatically creates and manages any
additional widgets needed.

You can determine the current size of an option menu preference item using the size()
function:

int size()

You can access any of the button widgets contained in the option menu with the
getButton() function:

Widget getButton (int index)

Simply specify the index of the button you want and getButton() returns the appropriate
widget.

ViewKit Preference Item Classes

Getting and Setting Option Menu Preference Item Values

Use the getValue() function to retrieve the internally stored value of the option menu:
int getvValue()

getValue() returns an integer value specifying the index of the chosen menu entry. For
example, the following line retrieves the value of the align text field shown above:

alignment = align->getValue() ;

Use the setValue() function to programmatically set the value of the option menu:

void setValue (int index)

setValue() sets the internally stored value to the index value you pass as an argument,
and updates the value displayed by the option menu. For example, the following line sets
the value of the alignment text field shown above to 1, corresponding to the “Align
Center” option:

align->setValue (1) ;

Labels

The VkPrefLabel class supports text labels for preference dialogs.

Note: VkPrefLabel is useful only in conjunction with VkPrefList. You should not use
VkPrefLabel with either VkPrefGroup or VkPrefRadio; VkPrefLabel does not create a

label widget and therefore it does not align properly with other items contained in a
VkPrefGroup or VkPrefRadio item.

247

Chapter 8: Preference Dialogs

248

Figure 8-8 shows a simple preference dialog containing a label preference item.

Document Properties

[o | [oon | caree |

Figure 8-8 Preference Dialog With Label Preference Item

The only argument the VkPrefLabel constructor expects is the name of the preference
item:

VkPrefLabel (const char *name)

For example, creating the label shown in Figure 8-8 requires only this line:

VkPreflLabel *dialogName = new
VkPrefLabel ("dialogName") ;

Many other ViewKit preference items include label widgets in addition to their base
widget; however, in the case of the VkPrefLabel item, the label is the base widget.
Therefore, in preference item groups, a VkPrefLabel item aligns with other base widgets,
not with other label widgets.

Because the label that is displayed for a VkPrefLabel item is the base widget, you set the
label’s text by setting the XmNlabelString resource of the item’s base widget. Therefore,
to set the label as shown in Figure 8-8, you must set the resource as follows:

*dialogNameBase.labelString: Document Properties

Refer to “Preference Item Labels” on page 235 for more information on setting the label
of a preference item.

ViewKit Preference Item Classes

Separators
The VkPrefSeparator class supports a simple separator for use in preference dialogs.

Note: VkPrefSeparator is useful only in conjunction with VkPrefList. You should not
use VkPrefSeparator with either VkPrefGroup or VkPrefRadio; VkPrefSeparator does
not create a label widget and therefore it does not align properly with other items
contained in a VkPrefGroup or VkPrefRadio item.

The only argument the VkPrefSeparator constructor expects is the name of the
preference item:

VkPrefSeparator (const char *name)

For example:

VkPrefSeparator *sep = new VkPrefSeparator ("sep") ;

“Empty” Space Preference ltems
The VkPrefEmpty class provides a “null” item that you can use to add extra space
between other items. This preference item is useful only in conjunction with one of the

grouping preference items: VkPrefGroup, VkPrefRadio, or VkPrefList.

The VkPrefEmpty constructor accepts no arguments:

VkPrefEmpty ()

For example:

VkPrefEmpty *space = new VkPrefEmpty () ;

Groups of Preference Items
ViewKit provides three classes for creating groups of items: VkPrefGroup,

VkPrefRadio, and VkPrefList. Both VkPrefRadio and VkPrefList are implemented as
subclasses of VkPrefGroup.

249

Chapter 8: Preference Dialogs

Comparison of Group Preference ltems

VkPrefGroup defines a group of related items. You can specify either vertical or
horizontal layout; the default is vertical. With a vertical layout, VkPrefGroup pads items
so that they take equal space. You have the option of displaying a label for the group.

Figure 8-9 shows an example of a vertical VkPrefGroup item with a label. The label is
the group item’s label widget, not a VkPrefLabel item. The VkPrefGroup item
right-aligns the labels for all of the items it contains. (Because the VkPrefToggle items are
part of a non-homogenous VkPrefGroup item, you must set the XmNlabelString
resources of their label widgets instead of their base widgets, as described in “Setting
Toggle Preference Item Labels” on page 241.) Also, all items are allocated the same
amount of vertical space. If you were to add a larger item to this group, the group item
would allocate for each item the same amount of vertical space.

Document Properties

Smart Quotes

Smart Spaces

ok | o | [cone

P |
Figure 8-9 Vertical VkPrefGroup Item With Label

Figure 8-10 shows the same preference items grouped by a horizontal VkPrefGroup
item with a label.

250

ViewKit Preference Item Classes

Document Properties

1st Page #: - 1st Page: -I Smart Quotes Smart Spaces

Figure 8-10 Horizontal VkPrefGroup Item With Label

VkPrefList is similar to VkPrefGroup; however, it supports only a vertical orientation
and it does not support displaying a group label. Unlike VkPrefGroup, VkPrefList does
not pad its items so that they take equal space; instead, each item takes only as much
space as it needs. Typically, you use a VkPrefList item to group other group items. For
example, in Example 8-1, the top-level VkPrefList item contained a VkPrefLabel item
and two VkPrefGroup items—one vertical and one horizontal—separated by two
VkPrefSeparator items.

VkPrefList is also the only grouping item to which you should add VkPrefLabel or
VkPrefSeparator items. You should not use VkPrefLabel or VkPrefSeparator with
either VkPrefGroup or VkPrefRadio; they do not create label widgets and therefore do
not align properly with other items contained in a VkPrefGroup or VkPrefRadio item.

Figure 8-11 shows an example of a VkPrefList. Note that the VkPrefList item does not
contain a group label; if you want to provide a label for a VkPrefList item, you can
include a VkPrefLabel item in it. Also note that the VkPrefList item does not align the
labels of the items it contains. (Because the VkPrefToggle items are part of a VkPrefList
item, you must set the XmNlabelString resources of their base widgets instead of their
label widgets, as described in “Setting Toggle Preference Item Labels” on page 241.) Each
item is allocated only as much vertical space as it needs. If you were to add a larger item
to this group, it would not affect the vertical spacing of the other items.

251

Chapter 8: Preference Dialogs

252

1st Page #:

1st Page:

[t = |

Smart Gluotes
Smart Spaces

E__

VkPrefRadio is almost identical to VkPrefGroup except that you use it only for
enforcing radio-style behavior on the VkPrefToggle items that it contains. You should
add only VkPrefToggle items to a VkPrefRadio item. Otherwise, VkPrefRadio supports
the same functionality as VkPrefGroup.

Figure 8-11 VkPrefList Item

Figure 8-12 shows an example of a vertical VkPrefRadio item with a label. The label is
the group item’s label widget, not a VkPrefLabel item. Because the VkPrefToggle items
are part of a homogenous VkPrefRadio item, you must set the XmNlabelString resources
of their base widgets instead of their label widgets, as described in “Setting Toggle
Preference Item Labels” on page 241.

ViewKit Preference Item Classes

Background color:

<> Red
<> Green

< Blue

Figure 8-12 VkPrefRadio Item With Label

Creating Group Preference Items

The VkPrefGroup constructor has the following form:

VkPrefGroup (const char *name,
Boolean horizOrientation = FALSE,
Boolean noLabel = FALSE)

The VkPrefGroup constructor expects as its first argument the name of the preference
item. The second argument is an optional Boolean value that determines the orientation
of the group; FALSE, the default value, specifies a vertical orientation and TRUE specifies
a horizontal orientation. The third argument is an optional Boolean value that
determines whether or not to display a label for the group; FALSE, the default value,
specifies that the group should display the label and TRUE specifies that the group should
not display the label.

For instance, Example 8-1 contained the following constructor:

VkPrefGroup *numberGroup = new VkPrefGroup ("numberGroup") ;

253

Chapter 8: Preference Dialogs

254

This created a new VkPrefGroup item named “numberGroup” with a vertical
orientation and a visible label. Example 8-1 also contained the following constructor:

VkPrefGroup *horizGroup = new VkPrefGroup ("horizGroup",
TRUE, TRUE) ;

This created a new VkPrefGroup item named “horizGroup” with a horizontal
orientation and no visible label.

The VkPrefRadio constructor accepts the same arguments as the VkPrefGroup
constructor:

VkPrefRadio (const char *name,
Boolean horizOrientation = FALSE,
Boolean noLabel = FALSE)

For instance, Example 8-1 contained the following constructor:

VkPrefRadio *paginationGroup = new VkPrefRadio ("paginationGroup") ;

This created a new VkPrefRadio item named “paginationGroup” with a vertical
orientation and a visible label.

VkPrefList accepts only one argument, a character string specifying the name of the
item:

VkPrefList (const char *name)

As noted earlier, all VkPrefList items have a vertical orientation and do not display a
label. Example 8-1 created a VkPrefList item as the top-level preference item to contain
all other preference items:

VkPrefList *docList = new VkPrefList ("docList");

Adding and Deleting Preference Items from a Group ltem

After creating a group item, you can add other items to it with