
IRIX Admin: Selected Reference Pages

Document Number 007-2159-005

IRIX Admin: Selected Reference Pages
Document Number 007-2159-005

CONTRIBUTORS

Edited by Susan Ellis
Production by Lorrie Williams
Cover design and illustration by Rob Aguilar, Rikk Carey, Dean Hodgkinson,

Erik Lindholm, and Kay Maitz

© 1996, Silicon Graphics, Inc.— All Rights Reserved
This document contains proprietary and confidential information of Silicon
Graphics, Inc. The contents of this document may not be disclosed to third parties,
copied, or duplicated in any form, in whole or in part, without the prior written
permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

Silicon Graphics, Silicon Graphics logo, and Indigo are registered trademarks of
Silicon Graphics, Inc. IRIX, XFS, Extent File System, Indy, Indigo

2
, CHALLENGE,

and Onyx are trademarks of Silicon Graphics, Inc. UNIX is a registered trademark in
the United States and other countries, licensed exclusively through X/Open
Company, Ltd. NFS is a registered trademark of Sun Microsystems.

iii

About This Guide

This volume contains selected reference pages on IRIX system administration topics. The
reference pages included are those that may be useful when a system is down and online
reference pages are unavailable.

The reference pages are organized by section and appear alphabetically within each
section. Pages that discuss more than one topic are sorted by the first topic on the page.
The tables below list each reference page:

• Table i lists section 1 and 1M reference pages for commands and system
maintenance utilities.

• Table ii lists section 4 reference pages for file formats.

• Table iii lists one section 5 reference page for a special facility, availmon.

• Table iv lists section 7 and 7M reference pages for protocols and special files.

Table i Commands and System Maintenance

Reference Page Function Page

Add_disk(1) add an optional disk to the system 1

amreport(1M) produce statistical and availability reports from
availmon log file

2

autoconfig(1M) configure kernel 4

Backup(1) backup the specified file or directory 6

bcheckrc(1M) system initialization procedures 12

bootp(1M) server for Internet Bootstrap Protocol 7

brc(1M) system initialization procedures 12

chkconfig(1M) configuration state checker 13

chroot(1M) change root directory for a command 17

iv

About This Guide

csh(1) shell command interpreter with a C-like syntax 18

devnm(1M) device name 44

dvhtool(1M) modify and obtain disk volume header information 45

ecc(1) dump memory ECC log 47

ed(1) text editor 48

find(1) find files 59

fsck(1M) check and repair filesystems for EFS 62

fsdb(1M) filesystem debugger for EFS 66

fsstat(1M) report filesystem status 75

ftp(1C) Internet file transfer program 76

fx(1M) disk utility 87

growfs(1M) expand a filesystem 102

hinv(1M) hardware inventory command 104

icrash(1M) IRIX system crash analysis utility 105

ifconfig(1M) configure network interface parameters 113

init(1M) process control initialization 115

inst(1M) software installation tool 120

jsh(1) shell, the standard/job control/restricted command
programming language

243

killall(1M) kill named processes 155

lboot(1M) configure bootable kernel 157

login(1) sign on 160

lvck (1M) check and restore consistency of logical volumes 167

lvinfo(1M) print information about active logical volumes 171

Table i (continued) Commands and System Maintenance

Reference Page Function Page

About This Guide

v

lvinit(1M) initialize logical volume devices 173

MAKEDEV(1M) create device special files 174

mkfs(1M) construct a filesystem 177

mkfs_efs(1M) construct an EFS filesystem 178

mkfs_xfs(1M) construct an XFS filesystem 182

mklv(1M) construct or extend a logical volume 187

ml(1M) load dynamic kernel modules 190

mount(1M) mount and unmount filesystems 193

network(1M) network initialization and shutdown script 198

nvram(1M) get or set non-volatile RAM variables 202

prom(1M) PROM monitor 204

prtvtoc(1M) print disk volume header information 214

ps(1) report process status 217

pwck(1M) password file checker 223

pwconv(1M) install and update /etc/shadow with information from
/etc/passwd

225

rcp(1C) remote file copy 227

red(1) text editor 48

Restore(1) restore the specified file or directory from tape 229

restore(1M) incremental filesystem restore 230

rlogin(1C) remote login 236

rsh(1) shell, the standard/job control/restricted command
programming language

243

rsh(1C) remote shell 238

rrestore(1M) incremental filesystem restore 230

Table i (continued) Commands and System Maintenance

Reference Page Function Page

vi

About This Guide

savecore(1M) save a crash vmcore dump of the operating system 240

setmnt(1M) establish mount table 242

sgikopt(1M) get or set non-volatile RAM variables 202

sh(1) shell, the standard/job control/restricted command
programming language

243

statd(1M) network status monitor daemon 260

su(1M) become superuser or another user 261

symmon(1M) kernel symbolic debugger 264

systune(1M) display and set tunable parameters 269

telinit(1M) process control initialization 115

telnet(1C) user interface to the TELNET protocol 272

tftpd(1M) internet Trivial File Transfer Protocol server 281

umount(1M) mount and unmount filesystems 193

versions(1M) software versions tool 283

xfsrestore(1M) XFS filesystem incremental restore utility 289

xfs_check(1M) check XFS filesystem consistency 296

xfs_growfs(1M) expand an XFS filesystem 299

xlv_make(1M) create logical volume objects 301

xlv_mgr(1M) 312

Table ii File Formats

Reference Page Function Page

core(4) format of core image file

efs(4) layout of the Extent File System

fstab(4) static information about filesystems

Table i (continued) Commands and System Maintenance

Reference Page Function Page

About This Guide

vii

gettydefs(4) speed and terminal settings used by getty

hosts(4) hostname-address database

inittab(4) script for the init process

inode(4) format of an Extent File System inode

lvtab(4) information about logical volumes

master(4) master configuration database

mload(4) dynamically loadable kernel modules

mtune(4) default system tunable parameters

passwd(4) password file

profile(4) setting up an environment at login time

shadow(4) shadow password file

stune(4) local settings for system tunable parameters

system(4) system configuration information directory

sys_id(4) system identification (hostname) file

ttytype(4) data base of terminal types by port

xfs(4) layout of the XFS filesystem

Table iii Miscellaneous Facilities

Reference Page Function Page

availmon(5) overview of system availability monitoring facilities

Table iv Protocols and Special Files

Reference Page Function Page

dks(7M) dksc (SCSI) disk driver

intro(7) introduction to special files

Table ii (continued) File Formats

Reference Page Function Page

viii

About This Guide

jag(7M) dksc (SCSI) disk driver

jagtape(7M) SCSI tape interface

keyboard(7) keyboard specifications

mouse(7) mouse specifications

mtio(7) magnetic tape interface

pcmouse(7) mouse specifications

root(7) partition names

rroot(7) partition names

rswap(7) partition names

rusr(7) partition names

serial(7) serial communication ports

swap(7) partition names

tps(7M) SCSI tape interface

tpsc(7M) SCSI tape interface

usr(7) partition names

Table iv (continued) Protocols and Special Files

Reference Page Function Page

Add_disk(1)hh

NAME
Add_disk − add an optional disk to the system

SYNOPSIS
Add_disk [controller_number] [disk_number] [lun_number]

DESCRIPTION
Add_disk enables you to add an extra SCSI disk to a system if the disk is on an integral SCSI controller (i.e.,
it can not be used for disks attached to VME SCSI controllers).

The disk_number option must be specified if you are not adding the default ID of 2; similarly the controller
and lun must be specified if other than 0.

The Add_disk command creates the required directory, makes the appropriate device file links, makes a
new filesystem, does the required mount operation, and adds the appropriate entry to /etc/fstab .

Appropriate checks are made for filesystems already existing on the common partitions (0, 6, and 7). If
they are present, you are asked if you want to proceed before a filesystem is made. If the answer is no,
Add_disk exits.

NOTE
Older versions of this command worked only with controller 0, and used a default mount point of /disk#,
where # was the SCSI ID. This version uses /disk##, where the first # is the controller and the second is the
SCSI ID.

Add_disk is a shell script and can be used as a template to determine what is necessary. The volume header
on the disk must already have been initialized with the fx(1M) program.

SEE ALSO
fx(1M), mkfs(1M), fstab(4).

IRIX Release 6.2 1

amreport(1M)hh

NAME
amreport − produce statistical and availability reports from availmon logfile

SYNOPSIS
/var/adm/avail/amreport [{ −−1 | −−l local_logfile | −−s site_logfile }]

[−−c] [−−p]

DESCRIPTION
amreport produces reports from the information gathered by the availmon(5) facility. The source of the
information can be either a local logfile, specified by −−l, or a site aggregate logfile, specified by −−s. Without
any argument, the command is equivalent to amreport -l /var/adm/avail/availlog. The options are:

−−l locallogfile
Specify local logfile.

−−s sitelogfile
Specify site logfile.

−−1 Take one availability report as input from stdin and print it out in a more readable format.

−−c Exclude current epoch in the reports.

−−p Print the reports without using curses (for piping output or redirecting to a file).

amreport uses curses for screen control (unless −−p is specified). It displays availability statistics and
individual reports hierarchically from overall statistics for all systems, a table of statistics for all systems (if
the input is a local log file, the above information is not provided), system-wise statistics for each system, a
table of all reboot instances for each system, to availability reports (epochs) for each system. The control
commands are shown at the bottom of each screen. In all types of records and tables, time instants are
displayed in the format given by ctime(3C), and time durations are displayed in minutes, with equivalent
days/hours/minutes in parentheses.

An epoch record contains the time at which the system was previously booted (which starts the epoch), the
time it was stopped (ending the epoch), the reason for the stop, and the time it was rebooted. If the system
stopped as a result of a hang, the exact instant at which it stopped is not easily known. In case of a system
hang, the displayed uptime is estimated by a ticker daemon normally accurate to within 5 minutes on the
lesser side of the actual uptime. If the ticker daemon is not enabled (see amconfig(1M)), the down time is
assumed to be 1 minute.

System statistics contain the aggregation of epochs for the given system. The summary contains the total
number of shutdowns of each kind; the average, minimum and maximum uptimes; the computed
availability (see below); and the time at which system logging started (this is the beginning of the epoch
during which installation of availmon was first performed).

2 IRIX Release 6.2

amreport(1M)hh

In addition to epochs that were actually logged, it is assumed that the system is in the middle of a "current"
epoch. Availability is computed based on logged epochs and the current epoch. If −−c is specified, the
current epoch is not considered in computing statistics.

The overall statistics (for an aggregate site log file) are similar to system statistics, except that the overall
summary is the aggregation of all reports. The minimum and maximum uptime values include the names
of the systems at which the corresponding times were recorded.

FILES
/var/adm/avail/availlog

local log file of availmon

SEE ALSO
amnotify(1M), amparse(1M), amreceive(1M), amregister(1M), amreport(1M), amsend(1M), amtickerd(1M),
availmon(5).

IRIX Release 6.2 3

autoconfig(1M)hh

NAME
autoconfig − configure kernel

SYNOPSIS
/etc/autoconfig [−−vnf] [−−p toolroot] [−−d /var/sysgen]

[−−o lbootopts] [start|stop]

DESCRIPTION
The autoconfig command is used invoke lboot and other commands to generate a UNIX kernel. The
autoconfig command is also a startup script in /etc/init.d.

The options are as:

−−v Requests verbose output from lboot and other commands.

−−f Generates a new kernel even if it appears that no hardware or software changes have been made.

−−p toolroot
Specifies the directory tree containing the compiler and other tools needed to generate the kernel.

−−d /var/sysgen
Specifies the directory tree containing the system configuration modules and binaries.

−−n Performs a dry run of lboot and reports whether a new kernel would be created or not. If −−f is
also given, it overrides this option.

start Used by rc2 when the system is starting.

stop Used by rc0 when the system is stopping.

The autoconfig command also uses the /var/config/autoconfig.options file to tell lboot to configure a new kernel
automatically or to prompt for permission before configuring a new kernel. The
/var/config/autoconfig.options file contains a −−T by default, which indicates to lboot to configure the kernel
automatically if necessary. This option can be changed to a −−t to force lboot to prompt for permission
before configuring a new kernel.

ENVIRONMENT VARIABLES
In addition to the environment variables used by lboot , autoconfig itself uses some environment variables. If
you have these variables set for some other purpose, you may need to unset them before running
autoconfig .

NOTE: This means that they should not be set in the global shell startup files in /etc.

4 IRIX Release 6.2

autoconfig(1M)hh

UNIX The file to check to see if it is out of date (defaults to /unix) and also what the basename of the
newly built kernel will be, if necessary.

SYSGEN Passed as the base directory for the kernel files (see also WORKDIR below) and as the base
directory name for the arguments below, if they are not set in the environment.

BOOTAREA Passed as the −−b argument to lboot .

SYSTEM Passed as the −−s argument to lboot .

MASTERD Passed as the −−m argument to lboot .

STUNEFILE Passed as the −−c argument to lboot .

MTUNEDIR Passed as the −−n argument to lboot .

WORKDIR Passed as the −−w argument to lboot .

SEE ALSO
lboot(1M), rc0(1M), rc2(1M), setsym(1M).

IRIX Release 6.2 5

Backup(1)hh

NAME
Backup − backup the specified file or directory

SYNOPSIS
Backup [−−h hostname] [−−i] [−−t tapedevice]

[directory_name | file_name]

DESCRIPTION
The Backup command archives the named file or directory (the current directory if none is specified) to the
local or remote tape device. It can be used to make a full system backup by specifying the directory name
as /.

In case of a full backup, this command makes a list of the files in the disk volume header and saves this
information in a file which is then stored on tape. This file is used during crash recovery to restore a
damaged volume header. The current date is saved in the file /etc/lastbackup.

The options and arguments to Backup are:

−−h hostname If a tape drive attached to a remote host is used for backup, specify the name of the
remote host with the −−h hostname option. For remote backup to successfully work, you
should have a TCP/IP network connection to the remote host and guest login privileges
on that host.

−−i If a backup of all files modified since the date specified in the /etc/lastbackup file is
desired, specify the −−i option. This option is valid only when doing a complete backup.

−−t tapedevice If the local or remote tape device is pointed to by a device file other than /dev/tape, specify
the device with the −−t tapedevice option.

directory_name Create a backup of the directory directory_name.

file_name Create a backup of the file file_name.

The Backup command uses bru(1) to perform the backup function.

FILES
/tmp/volhdrlist contains the list of the root volume header files
/etc/lastbackup contains the date of last full backup

SEE ALSO
List_tape(1), Restore(1), bru(1).

6 IRIX Release 6.2

bootp(1M)hh

NAME
bootp − server for Internet Bootstrap Protocol

SYNOPSIS
/usr/etc/bootp [−−d] [−−f]

DESCRIPTION
bootp is a server that supports the Internet Bootstrap Protocol (BOOTP). This protocol is designed to allow
a (possibly diskless) client machine to determine its own Internet address, the address of a boot server, and
the name of an appropriate boot file to be loaded and executed. BOOTP does not provide the actual
transfer of the boot file, which is typically done with a simple file transfer protocol such as TFTP. A
detailed protocol specification for BOOTP is contained in RFC 951, which is available from the Network
Information Center.

The BOOTP protocol uses UDP/IP as its transport mechanism. The BOOTP server receives service
requests at the UDP port indicated in the ‘‘bootp’’ service description contained in the file /etc/services (see
services(4)). The BOOTP server is started by inetd(1M), as configured in the inetd.conf file.

The basic operation of the BOOTP protocol is a single packet exchange as follows:

1. The booting client machine broadcasts a BOOTP request packet to the BOOTP server UDP port, using
a UDP broadcast or the equivalent thereof. The request packet includes the following information:

requester’s network hardware address
requester’s Internet address (optional)
desired server’s name (optional)
boot filename (optional)

2. All the BOOTP servers on the same network as the client machine receive the client’s request. If the
client has specified a particular server, then only that server responds.

3. The server looks up the requester in its configuration file by Internet address or network hardware
address, in that order of preference. (The BOOTP configuration file is described below.) If the Internet
address was not specified by the requester and a configuration record is not found, the server looks in
the /etc/ethers file (see ethers(4)) for an entry with the client’s network hardware address. If an entry is
found, the server checks the hostname of that entry against the /etc/hosts file (see hosts(4)) in order to
complete the network hardware address to Internet address mapping. If the BOOTP request does not
include the client’s Internet address and the server is unable to translate the client’s network hardware
address into an Internet address by either of the two methods described, the server does not respond
to the request.

IRIX Release 6.2 7

bootp(1M)hh

4. The server performs name translation on the boot filename requested and then checks for the presence
of that file. If the file is present, then the server sends a response packet to the requester that includes
the following information:

requester’s Internet address
server’s Internet address
Internet address of a gateway to the server
server’s name
vendor-specific information (not defined by the protocol)

If the boot file is missing, the server returns a response packet with a null filename but only if the
request was specifically directed to that server. The pathname translation is: if the boot filename is
rooted, use it as is; else concatenate the root of the boot subtree, as specified by the BOOTP
configuration file, followed by the filename supplied by the requester, followed by a period and the
requester’s hostname. If that file is not present, remove the trailing period and hostname and try
again. If no boot filename is requested, use the default boot file for that host from the configuration
table. If there is no default specified for that host, use the general default boot filename, first with
.hostname as a suffix and then without. Note that tftpd(1M) must be configured to allow access to the
boot file (see the tftpd(1M) reference page for details).

Options
The −−d option causes bootp to generate debugging messages. All messages from bootp go through
syslogd(1M), the system logging daemon.

The −−f option enables the forwarding function of bootp . Refer to the following section, ‘‘Booting through
Gateways,’’ for an explanation.

Bootp Configuration File
In order to perform its name translation and address resolution functions, bootp requires configuration
information that it gets from an ASCII file called /usr/etc/bootptab and from other system configuration files
like /etc/ethers and /etc/hosts . Here is a sample bootptab file:

/usr/etc/bootptab: database for bootp server
#
Blank lines and lines beginning with ’#’ are ignored.
#
Root of boot subtree:
/usr/local/boot

Default bootfile:
unix

%%

8 IRIX Release 6.2

bootp(1M)hh

The remainder of this file contains one line per client
interface with the information shown by the table headings
below. The ’host’ name is also tried as a suffix for the
’bootfile’ when searching the boot directory.
(e.g., bootfile.host)
#
host htype haddr iaddr bootfile

IRIS 1 01:02:03:8a:8b:8c 192.0.2.1 unix

The fields of each line can be separated by variable amounts of white space (blanks and tabs). The first
section, up to the line beginning %%, defines the place where bootp looks for boot files when the client
requests a boot file using a nonrooted pathname. The second section of the file is used for mapping client
network hardware addresses into Internet addresses. Up to 512 hosts can be specified. The htype field
should always have a value of 1 for now; this indicates that the hardware address is a 48-bit Ethernet
address. The haddr field is the Ethernet address of the system in question expressed as six hexadecimal
bytes separated by colons. The iaddr field is the 32-bit Internet address of the system expressed in standard
Internet dot notation (see inetd(3N)). Each line in the second section can also specify a default boot file for
each specific host. In the example above, if the host called unixbox makes a BOOTP request with no boot
file specified, the server selects the first of the following that it finds:

/usr/local/boot/unix.unixbox
/usr/local/boot/unix

The length of the boot filename must not exceed 127 characters.

It is not necessary to create a record for every potential client in the bootptab file. The only constraint is that
bootp responds only to a request from a client if it can deduce the client’s Internet address. There are three
ways that this can happen:

g The client already knows its Internet address and includes it in the BOOTP request packet.
g There is an entry in /usr/etc/bootptab that matches the client’s network hardware address.
g There are entries in the /etc/ethers and /etc/hosts files (or their NIS equivalents) that allow the client’s

network hardware address to be translated into an Internet address.

Booting through Gateways
Since the BOOTP request is distributed using a UDP broadcast, it is only received by other hosts on the
same network as the client. In some cases the client may wish to boot from a host on another network.
This can be accomplished by using the forwarding function of BOOTP servers on the local network. To use
BOOTP forwarding, there must be a bootp process running in a gateway machine on the local network. A
gateway machine is simply a machine with more than one network interface board. The gateway bootp
must be invoked with the −−f option to activate forwarding. Such a forwarding bootp resends any BOOTP
request it receives that asks for a specific host by name, if that host is on a different network from the client
that sent the request. The BOOTP server forwards the packet using the full routing capabilities of the

IRIX Release 6.2 9

bootp(1M)hh

underlying IP layer in the kernel, so the forwarded packet is automatically routed to the requested BOOTP
server if the kernel routing tables contain a route to the destination network.

DIAGNOSTICS
The BOOTP server logs messages using the system logging daemon, syslogd(1M). The actual disposition of
these messages depends on the configuration of syslogd on the machine in question. Consult syslogd(1M)
for further information.

bootp can produce the following messages:

´get interface config´ ioctl failed (message)
´get interface netmask´ ioctl failed (message)
getsockname failed (message)
forwarding failed (message)
send failed (message)
set arp ioctl failed

Each of the above messages means that a system call has returned an error unexpectedly. Such
errors usually cause bootp to terminate. The message is the appropriate standard system error
message.

less than two interfaces, −f flag ignored
Warning only (debug mode). Means that the −−f option was specified on a machine that is not a
gateway. Forwarding only works on gateways.

request for unknown host xxx from yyy
Information only. A BOOTP request was received asking for host xxx, but that host is not in the
host database. The request was generated by yyy, which can be given as a hostname or an Internet
address.

request from xxx for ’fff’
Information only. bootp logs each request for a boot file. The host xxx has requested boot file fff.

can’t access boot file fff (message)
A request has been received for the boot file fff, but that file is not accessible.

reply boot filename fff too long
The filename length fff exceeds the BOOTP protocol limit of 127 characters.

reply boot file fff
Information only. bootp has selected the file fff as the boot file to satisfy a request.

can’t reply to dd.dd.dd.dd (unknown net)
This bootp has generated a response to a client and is trying to send the response directly to the client
(that is, the request did not get forwarded by another bootp), but none of the network interfaces on
this machine is on the same directly connected network as the client machine.

10 IRIX Release 6.2

bootp(1M)hh

reply: can’t find net for dd.dd.dd.dd
The server is acting as BOOTP forwarder and has received a datagram with a client address that is
not on a directly connected network.

can’t open /usr/etc/bootptab
The bootp configuration file is missing or has wrong permissions.

(re)reading /usr/etc/bootptab
Information only. bootp checks the modification date of the configuration file on the receipt of each
request and rereads it if it has been modified since the last time it was read.

bad hex address: xxx at line nnn of bootptab
bad internet address: sss at line nnn of bootptab
string truncated: sss, on line nnn of bootptab

These messages mean that the format of the BOOTP configuration file is not valid.

´hosts´ table length exceeded
There are too many lines in the second section of the BOOTP configuration file. The current limit is
512.

can’t allocate memory
A call to malloc(3C) failed.

gethostbyname(sss) failed (message)
A call to gethostbyname(3N) with the argument sss has failed.

gethostbyaddr(dd.dd.dd.dd) failed (message)
A call to gethostbyaddr(3N) with the argument dd.dd.dd.dd has failed.

SEE ALSO
inetd(1M), rarpd(1M), syslogd(1M), tftpd(1M), ethers(4), hosts(4), services(4).

IRIX Release 6.2 11

brc(1M)hh

NAME
brc, bcheckrc − system initialization procedures

SYNOPSIS
/etc/brc
/etc/bcheckrc

DESCRIPTION
These shell procedures are executed via entries in /etc/inittab by init(1M) whenever the system is booted (or
rebooted).

First, the bcheckrc procedure checks the status of the root filesystem. If the root filesystem is found to be
bad, bcheckrc repairs it.

Then, the brc procedure clears the mounted filesystem table, /etc/mtab , and puts the entry for the root
filesystem into the mount table.

After these two procedures have executed, init checks for the initdefault value in /etc/inittab . This tells init in
which run level to place the system. Since initdefault is initially set to 2, the system is placed in the
multiuser state via the /etc/rc2 procedure.

Note that bcheckrc should always be executed before brc. Also, these shell procedures can be used for
several run-level states.

SEE ALSO
fsck(1M), init(1M), rc2(1M), shutdown(1M).

12 IRIX Release 6.2

chkconfig(1M)hh

NAME
chkconfig − configuration state checker

SYNOPSIS
chkconfig [−−s]
chkconfig flag
chkconfig [−−f] flag [on | off]

DESCRIPTION
chkconfig with no arguments or with the −−s option prints the state (on or off) of every configuration flag
found in the directory /var/config . The flags normally are shown sorted by name; with the −−s option they
are shown sorted by state.

A flag is considered on if its file contains the string ‘‘on’’ and off otherwise.

If flag is specified as the sole argument, chkconfig exits with status 0 if flag is on and with status 1 if flag is off
or nonexistent. The exit status can be used by shell scripts to test the state of a flag. Here is an example
using sh(1) syntax:

if /sbin/chkconfig verbose; then
echo "Verbose is on"

else
echo "Verbose is off"

fi

The optional third argument allows the specified flag to be set. The flag file must exist in order to change
its state. Use the −−f (‘‘force’’) option to create the file if necessary.

These flags are used for determining the configuration status of the various available subsystems and
daemons during system startup and during system operation.

A daemon or subsystem is enabled if its configuration flag in the /var/config directory is in the on state. If
the flag file is missing, the flag is considered off. The following is a list of available flags and the associated
action if the flag is on. Depending upon your configuration, they may not all be available on your system.

4DDN Initialize 4DDN (DECnet connectivity) software.

acct Start process accounting.

automount Start the NFS automounter daemon.

desktop If off, fewer of the Indigo Magic user interface features are enabled, and typically a
different toolchest menu is used. It is identical to creating the file $HOME/.disableDesktop
except that it applies to all accounts. The specific effect is that the desktop version of
Xsession (/usr/lib/X11/xdm/Xsession.dt) is not run upon login, and therefore programs

IRIX Release 6.2 13

chkconfig(1M)hh

started from that file are not run or are run with different options.

directoryserver Start the Cadmin directory server daemon.

gated Start the Cornell routing daemon instead of the BSD routed.

hypernet Initialize HyperNET controller and routes.

ipfilterd Enable the Silicon Graphics IP Packet Filtering daemon.

jserver Start Japanese convert engine if the optional product Japanese Language Module is
installed.

lockd Start the NFS lock and status daemons.

mediad Start the removable media daemon.

mrouted Start the IP multicast routing daemon (useful only on gateways).

named Start Internet domain name server.

network Allow incoming and outgoing network traffic. This flag can be set off if you need to
isolate the machine from the network without removing cables.

nfs Start the NFS daemons nfsd and biod . Mount all NFS filesystems.

noiconlogin Do not show user icons on the login screen.

nsr Start up the IRIS NetWorker daemons. See nsr(1M) for more details.

nostickytmp Do not turn the sticky bit on for the directories /tmp and /var/tmp .

objectserver Start the Cadmin object server daemon.

pcnfsd Start the PC-NFS server daemon.

quotacheck Run quotacheck(1M) on the filesystems that have quotas enabled. See quotas(4) for more
details.

quotas Enable quotas for local configured filesystems.

rarpd Start the Reverse ARP daemon.

routed Start the 4.3BSD RIP routing daemon. See routed(1M) for more details.

14 IRIX Release 6.2

chkconfig(1M)hh

rsvpd Start the RSVP daemon. See rsvpd(1M) for more details.

rtnetd Initialize preemptable networking for real-time use.

rwhod Start the 4.3BSD rwho daemon.

sar Start the system activity reporter.

snmpd Start the Simple Network Management Protocol daemon.

soundscheme Start the Indigo Magic audio cue daemon.

timed Start the 4.3BSD time synchronization daemon.

timeslave Start the Silicon Graphics time synchronization daemon.

verbose Print the names of daemons as they are started.

vswap Add virtual swap. See swap(1M) for a discussion of virtual swap. By default 80000
blocks are added. You can increase or decrease this amount by modifying the
/var/config/vswap.options file.

visuallogin Enable the visual login screen.

windowsystem Start the X window system. If windowsystem is off, it is necessary to modify the
inittab(4) file to enable getty(1M) on the textport window if you wish to use graphics as a
dumb terminal.

The recommended means of enabling and disabling the window system are the
commands startgfx(1G) and stopgfx(1G).

xdm Start the X display manager.

yp Enable NIS, start the ypbind daemon.

ypmaster If yp is on, become the NIS master and start the passwd server. The ypserv flag should
be on too.

ypserv If yp is on, become a NIS server.

FILES
/var/config directory containing configuration flag files

IRIX Release 6.2 15

chkconfig(1M)hh

SEE ALSO
cron(1M), rc0(1M), rc2(1M).

16 IRIX Release 6.2

chroot(1M)hh

NAME
chroot − change root directory for a command

SYNOPSIS
chroot newroot command

DESCRIPTION
chroot causes the given command to be executed relative to the new root, newroot . The meaning of any
initial slashes (/) in the pathnames is changed for the command and any of its child processes to newroot .
Furthermore, upon execution, the initial working directory is newroot .

If you redirect the output of the command to a file:

chroot newroot command > x

chroot creates the file x relative to the original root of the command, not the new one.

The new root pathname is always relative to the current root; even if a chroot is currently in effect, the
newroot argument is relative to the current root of the running process.

This command can be run only by the superuser.

CAVEAT
In order to execute programs that use shared libraries, the following directories and their contents must be
present in the new root directory.

./lib This directory must contain the run-time loader (/lib/rld) and any shared object files needed by
your applications (usually including libc.so.1). That means it must normally be in /lib and a
symlink in /usr/lib to ../../lib/libc.so.1P.

./dev The run-time loader needs the zero device in order to work correctly. Copy /dev/zero into this
directory and make it readonly (mode 444).

SEE ALSO
cd(1), chroot(2), ftpd(1m) (for more comments on issues in setting up chroot’ed environments)

NOTES
Exercise extreme caution when referencing device files in the new root filesystem.

When using chroot , with commands that are dynmically linked, all of the libraries required must be in the
chroot’ed environment. The system will usually log a message in /var/adm/SYSLOG if some libraries or rld
are not found.

IRIX Release 6.2 17

csh(1)hh

NAME
csh − shell command interpreter with a C-like syntax

SYNOPSIS
csh [−bcefinstvVxX] [argument ...]

DESCRIPTION
csh, the C shell, is a command interpreter with a syntax reminiscent of the C language. It provides a
number of convenient features for interactive use that are not available with the standard (Bourne) shell,
including filename completion, command aliasing, history substitution, job control, and a number of built-
in commands. As with the standard shell, the C shell provides variable, command and filename
substitution.

Initialization and Termination
When first started, the C shell normally performs commands from the .cshrc file in your home
directory, provided that it is readable and you either own it or your real group ID matches its group ID. If
the shell is invoked with a name that starts with ‘−’, as when started by login(1), the shell runs as a
login shell. In this case, before executing the commands from the .cshrc file, the shell executes the
commands from the following files in the order specified: /etc/cshrc, /etc/.login and
/etc/csh.cshrc. These files can be used to provide system-wide settings for all csh users. After
executing commands from the .cshrc file, a login shell executes commands from the .login file in
your home directory; the same permission checks as those for .cshrc are applied to this file. Typically,
the .login file contains commands to specify the terminal type and environment. Please note that csh
can run as a login shell if it is invoked upon startup of a window shell such as xwsh(1G). This is so any
terminal type information that might be contained in the .login file(s) can be made known to the
window shell.

As a login shell terminates, it performs commands from the .logout file in your home directory; the
same permission checks as those for .cshrc are applied to this file.

Interactive Operation
After startup processing is complete, an interactive C shell begins reading commands from the terminal,
prompting with hostname% (or hostname# for the privileged user). The shell then repeatedly performs the
following actions: a line of command input is read and broken into words. This sequence of words is
placed on the history list and then parsed, as described under USAGE, below. Finally, the shell executes
each command in the current line.

Noninteractive Operation
When running noninteractively, the shell does not prompt for input from the terminal. A noninteractive C
shell can execute a command supplied as an argument on its command line, or interpret commands from a
script.

18 IRIX Release 6.2

csh(1)hh

The following options are available:

−b Force a “break” from option processing. Subsequent command-line arguments are not interpreted
as C shell options. This allows the passing of options to a script without confusion. The shell does
not run a set-user-ID script unless this option is present.

−c Read commands from the first filename argument (which must be present). Remaining arguments
are placed in argv, the argument-list variable.

−e Exit if a command terminates abnormally or yields a nonzero exit status.

−f Fast start. Read neither the .cshrc file, nor the .login file (if a login shell) upon startup.

−i Forced interactive. Prompt for command line input, even if the standard input does not appear to
be a terminal (character-special device).

−n Parse (interpret), but do not execute commands. This option can be used to check C shell scripts for
syntax errors.

−s Take commands from the standard input.

−t Read and execute a single command line. A ‘\’ (backslash) can be used to escape each newline for
continuation of the command line onto subsequent input lines.

−v Verbose. Set the verbose predefined variable; command input is echoed after history substitution
(but before other substitutions) and before execution.

−V Set verbose before reading .cshrc.

−x Echo. Set the echo variable; echo commands after all substitutions and just before execution.

−X Set echo before reading .cshrc.

Except with the options −c, −i, −s, or −t, the first nonoption argument is taken to be the name of a
command or script. It is passed as argument zero, and subsequent arguments are added to the argument
list for that command or script. csh scripts should always start with the line

#! /bin/csh −f

which causes the script to be executed by /bin/csh even if invoked by a user running a shell other than
csh and inhibits processing of the .cshrc file to prevent interference from aliases defined by the
invoking user.

IRIX Release 6.2 19

csh(1)hh

USAGE
Filename Completion

When enabled by setting the variable filec, an interactive C shell can complete a partially typed filename
or user name. When an unambiguous partial filename is followed by an ESC character on the terminal
input line, the shell fills in the remaining characters of a matching filename from the working directory.

If a partial filename is followed by the EOF character (usually typed as <Ctrl-d>), the shell lists all
filenames that match. It then prompts once again, supplying the incomplete command line typed in so far.

When the last (partial) word begins with a tilde (˜), the shell attempts completion with a user name, rather
than a file in the working directory.

The terminal bell signals errors or multiple matches; this can be inhibited by setting the variable nobeep.
You can exclude files with certain suffixes by listing those suffixes in the variable fignore. If, however,
the only possible completion includes a suffix in the list, it is not ignored. fignore does not affect the
listing of filenames by the EOF character.

Lexical Structure
The shell splits input lines into words at space and tab characters, except as noted below. The characters
&, |, ;, <, >, (, and) form separate words; if paired, the pairs form single words. These shell
metacharacters can be made part of other words, and their special meaning can be suppressed by
preceding them with a ‘\’ (backslash). A newline preceded by a \ is equivalent to a space character.

In addition, a string enclosed in matched pairs of single-quotes (´), double-quotes ("), or backquotes (`),
forms a partial word; metacharacters in such a string, including any space or tab characters, do not form
separate words. Within pairs of backquote (`) or double-quote (") characters, a newline preceded by a ‘\’
(backslash) gives a true newline character. Additional functions of each type of quote are described,
below, under Variable Substitution, Command Substitution, and Filename
Substitution.

When the shell’s input is not a terminal, the character # introduces a comment that continues to the end of
the input line. Its special meaning is suppressed when preceded by a \ or enclosed in matching quotes.

Command Line Parsing
A simple command is composed of a sequence of words. The first word (that is not part of an I/O
redirection) specifies the command to be executed. A simple command, or a set of simple commands
separated by | or |& characters, forms a pipeline. With |, the standard output of the preceding command is
redirected to the standard input of the command that follows. With |&, both the standard error and the
standard output are redirected through the pipeline.

Pipelines can be separated by semicolons (;), in which case they are executed sequentially. Pipelines that
are separated by && or || form conditional sequences in which the execution of pipelines on the right
depends upon the success or failure, respectively, of the pipeline on the left.

20 IRIX Release 6.2

csh(1)hh

A pipeline or sequence can be enclosed within parentheses ‘()’ to form a simple command that can be a
component in a pipeline or sequence.

A sequence of pipelines can be executed asynchronously, or “in the background” by appending an ‘&’;
rather than waiting for the sequence to finish before issuing a prompt, the shell displays the job number
(see Job Control, below) and associated process IDs, and prompts immediately.

History Substitution
History substitution allows you to use words from previous command lines in the command line you are
typing. This simplifies spelling corrections and the repetition of complicated commands or arguments.
Command lines are saved in the history list, the size of which is controlled by the history variable. The
most recent command is retained in any case. A history substitution begins with a ! (although you can
change this with the histchars variable) and can occur anywhere on the command line; history
substitutions do not nest. The ! can be escaped with \ to suppress its special meaning.

Input lines containing history substitutions are echoed on the terminal after being expanded, but before
any other substitutions take place or the command gets executed.

Event Designators
An event designator is a reference to a command-line entry in the history list.

! Start a history substitution, except when followed by a space character, tab, newline, = or (.

!! Refer to the previous command. By itself, this substitution repeats the previous command.

!n Refer to command line n .

!−n Refer to the current command line minus n.

!str Refer to the most recent command starting with str.

!?str[?] Refer to the most recent command containing str.

!{...} Insulate a history reference from adjacent characters (if necessary).

Word Designators
A ‘:’ (colon) separates the event specification from the word designator. It can be omitted if the word
designator begins with a ˆ, $, *, − or %. If the word is to be selected from the previous command, the
second ! character can be omitted from the event specification. For instance, !!:1 and !:1 both refer to
the first word of the previous command, while !!$ and !$ both refer to the last word in the previous
command. Word designators include:

The entire command line typed so far.

IRIX Release 6.2 21

csh(1)hh

0 The first input word (command).
n The n’th argument.
ˆ The first argument, that is, 1.
$ The last argument.
% The word matched by (the most recent) ?s search.
x−y A range of words; −y abbreviates 0−y.
* All the arguments, or a null value if there is just one word in the event.
x* Abbreviates x−$.
x− Like x* but omitting word $.

Modifiers
After the optional word designator, you can add a sequence of one or more of the following modifiers,
each preceded by a :.

h Remove a trailing pathname component, leaving the head.
r Remove a trailing suffix of the form ‘.xxx’, leaving the basename.
e Remove all but the suffix.
s/l/r[/]

Substitute r for l.
t Remove all leading pathname components, leaving the tail.
& Repeat the previous substitution.
g Apply the change to the first occurrence of a match in each word, by prefixing the above (for

example, g&).
p Print the new command but do not execute it.
q Quote the substituted words, escaping further substitutions.
x Like q, but break into words at each space character, tab or newline.

Unless preceded by a g, the modification is applied only to the first string that matches l; an error results if
no string matches.

The left-hand side of substitutions are not regular expressions, but character strings. Any character can be
used as the delimiter in place of /. A backslash quotes the delimiter character. The character &, in the
right hand side, is replaced by the text from the left-hand-side. The & can be quoted with a backslash. A
null l uses the previous string either from a l or from a contextual scan string s from !?s. You can omit the
rightmost delimiter if a newline immediately follows r; the rightmost ? in a context scan can similarly be
omitted.

Without an event specification, a history reference refers either to the previous command, or to a previous
history reference on the command line (if any).

Quick Substitution

22 IRIX Release 6.2

csh(1)hh

ˆlˆr[ˆ] This is equivalent to the history substitution: !:sˆlˆr[ˆ].

Aliases
The C shell maintains a list of aliases that you can create, display, and modify using the alias and
unalias commands. The shell checks the first word in each command to see if it matches the name of an
existing alias. If it does, the command is reprocessed with the alias definition replacing its name; the
history substitution mechanism is made available as though that command were the previous input line.
This allows history substitutions, escaped with a backslash in the definition, to be replaced with actual
command-line arguments when the alias is used. If no history substitution is called for, the arguments
remain unchanged.

Aliases can be nested. That is, an alias definition can contain the name of another alias. Nested aliases are
expanded before any history substitutions is applied. This is useful in pipelines such as

alias lm ´ls −l \!* | more´

which when called, pipes the output of ls(1) through more(1).

Except for the first word, the name of the alias cannot appear in its definition, nor in any alias referred to
by its definition. Such loops are detected, and cause an error message.

I/O Redirection
The following metacharacters indicate that the subsequent word is the name of a file to which the
command’s standard input, standard output, or standard error is redirected; this word is variable,
command, and filename expanded separately from the rest of the command.

< Redirect the standard input.

<<word Read the standard input, up to a line that is identical with word, and place the resulting lines in
a temporary file. Unless word is escaped or quoted, variable and command substitutions are
performed on these lines. Then, invoke the pipeline with the temporary file as its standard
input. word is not subjected to variable, filename, or command substitution, and each line is
compared to it before any substitutions are performed by the shell.

> >! >& >&!
Redirect the standard output to a file. If the file does not exist, it is created. If it does exist, it is
overwritten; its previous contents are lost.

When set, the variable noclobber prevents destruction of existing files. It also prevents
redirection to terminals and /dev/null, unless one of the ! forms is used. The & forms
redirect both standard output and the standard error (diagnostic output) to the file.

IRIX Release 6.2 23

csh(1)hh

>> >>& >>! >>&!
Append the standard output. Like >, but places output at the end of the file rather than
overwriting it. If noclobber is set, it is an error for the file not to exist, unless one of the !
forms is used. The & forms append both the standard error and standard output to the file.

Variable Substitution
The C shell maintains a set of variables, each of which is composed of a name and a value. A variable name
consists of up to 20 letters and digits, and starts with a letter (the underscore is considered a letter). A
variable’s value is a space-separated list of zero or more words.

To refer to a variable’s value, precede its name with a ‘$’. Certain references (described below) can be used
to select specific words from the value, or to display other information about the variable. Braces can be
used to insulate the reference from other characters in an input-line word.

Variable substitution takes place after the input line is analyzed, aliases are resolved, and I/O redirections
are applied. Exceptions to this are variable references in I/O redirections (substituted at the time the
redirection is made), and backquoted strings (see Command Substitution).

Variable substitution can be suppressed by preceding the $ with a \, except within double-quotes where
it always occurs. Variable substitution is suppressed inside of single-quotes. A $ is escaped if followed by
a space character, tab or newline.

Variables can be created, displayed, or destroyed using the set and unset commands. Some variables
are maintained or used by the shell. For instance, the argv variable contains an image of the shell’s
argument list. Of the variables used by the shell, a number are toggles; the shell does not care what their
value is, only whether they are set or not.

Numerical values can be operated on as numbers (as with the @ built-in). With numeric operations, an
empty value is considered to be zero; the second and subsequent words of multiword values are ignored.
For instance, when the verbose variable is set to any value (including an empty value), command input
is echoed on the terminal.

Command and filename substitution is subsequently applied to the words that result from the variable
substitution, except when suppressed by double-quotes, when noglob is set (suppressing filename
substitution), or when the reference is quoted with the :q modifier. Within double-quotes, a reference is
expanded to form (a portion of) a quoted string; multiword values are expanded to a string with
embedded space characters. When the :q modifier is applied to the reference, it is expanded to a list of
space-separated words, each of which is quoted to prevent subsequent command or filename substitutions.

Except as noted below, it is an error to refer to a variable that is not set.

$var

24 IRIX Release 6.2

csh(1)hh

${var} These are replaced by words from the value of var, each separated by a space character. If
var is an environment variable, its value is returned (but ‘:’ modifiers and the other forms
given below are not available).

$var[index]
${var[index]} These select only the indicated words from the value of var. Variable substitution is

applied to index, which can consist of (or result in) a either single number, two numbers
separated by a ‘−’, or an asterisk. Words are indexed starting from 1; a ‘*’ selects all
words. If the first number of a range is omitted (as with $argv[−2]), it defaults to 1. If
the last number of a range is omitted (as with $argv[1−]), it defaults to $#var (the
word count). It is not an error for a range to be empty if the second argument is omitted
(or within range).

$#name
${#name} These give the number of words in the variable.

$0 This substitutes the name of the file from which command input is being read. An error
occurs if the name is not known.

$n
${n} Equivalent to $argv[n].

$* Equivalent to $argv[*].

The modifiers :e, :h, :q, :r, :t and :x can be applied (see History Substitution), as can :gh,
:gt and :gr. If {} (braces) are used, then the modifiers must appear within the braces. The current
implementation allows only one such modifier per expansion.

The following references cannot be modified with : modifiers.

$?var
${?var} Substitutes the string 1 if var is set or 0 if it is not set.

$?0 Substitutes 1 if the current input filename is known, or 0 if it is not.

$$ Substitute the process number of the (parent) shell.

$< Substitutes a line from the standard input, with no further interpretation thereafter. It can be
used to read from the keyboard in a C shell script.

Command and Filename Substitutions
Command and filename substitutions are applied selectively to the arguments of built-in commands.
Portions of expressions that are not evaluated are not expanded. For non-built-in commands, filename
expansion of the command name is done separately from that of the argument list; expansion occurs in a
subshell, after I/O redirection is performed.

IRIX Release 6.2 25

csh(1)hh

Command Substitution
A command enclosed by backquotes (`...`) is performed by a subshell. Its standard output is broken into
separate words at each space character, tab and newline; null words are discarded. This text replaces the
backquoted string on the current command line. Within double-quotes, only newline characters force new
words; space and tab characters are preserved. However, a final newline is ignored. It is therefore possible
for a command substitution to yield a partial word.

Filename Substitution
Unquoted words containing any of the characters *, ?, [or {, or that begin with ˜, are expanded (also
known as globbing) to an alphabetically sorted list of filenames, as follows:

* Match any (zero or more) characters.

? Match any single character.

[...] Match any single character in the enclosed list(s) or range(s). A list is a string of
characters. A range is two characters separated by a minus-sign (−), and includes all the
characters in between in the ASCII collating sequence (see ascii(5)).

{ str, str, ... } Expand to each string (or filename-matching pattern) in the comma-separated list. Unlike
the pattern-matching expressions above, the expansion of this construct is not sorted. For
instance, {b,a} expands to ‘b’ ‘a’, (not ‘a’ ‘b’). As special cases, the characters { and },
along with the string {}, are passed undisturbed.

˜[user] Your home directory, as indicated by the value of the variable home, or that of user, as
indicated by the password entry for user.

Only the patterns *, ? and [...] imply pattern matching; an error results if no filename matches a
pattern that contains them. The ‘.’ (dot character), when it is the first character in a filename or pathname
component, must be matched explicitly. The / (slash) must also be matched explicitly.

Expressions and Operators
A number of C shell built-in commands accept expressions, in which the operators are similar to those of C
and have the same precedence. These expressions typically appear in the @, exit, if, set and while
commands, and are often used to regulate the flow of control for executing commands. Components of an
expression are separated by white space.

Null or missing values are considered 0. The result of all expressions are strings, which can represent
decimal numbers.

The following C shell operators are grouped in order of precedence:

26 IRIX Release 6.2

csh(1)hh

(...) grouping
˜ one’s complement
! logical negation
* / % multiplication, division, remainder (These are right associative, which can lead to

unexpected results. Group combinations explicitly with parentheses.)
+ − addition, subtraction (also right associative)
<< >> bitwise shift left, bitwise shift right
< > <= >= less than, greater than, less than or equal to, greater than or equal to
== != =˜ !˜

equal to, not equal to, filename-substitution pattern match (described below),
filename-substitution pattern mismatch

& bitwise AND
ˆ bitwise XOR (exclusive or)
| bitwise inclusive OR
&& logical AND
|| logical OR

The operators: ==, !=, =˜, and !˜ compare their arguments as strings; other operators use numbers.
The operators =˜ and !˜ each check whether or not a string to the left matches a filename substitution
pattern on the right. This reduces the need for switch statements when pattern-matching between
strings is all that is required.

Also available are file inquiries:

−r file Return true, or 1 if the user has read access. Otherwise it returns false, or 0.
−w file True if the user has write access.
−x file True if the user has execute permission (or search permission on a directory).
−e file True if file exists.
−o file True if the user owns file.
−z file True if file is of zero length (empty).
−f file True if file is a plain file.
−d file True if file is a directory.
−l file True if file is a symbolic link.
−c file True if file is a character special file.
−b file True if file is a block special file.
−p file True if file is a named pipe (fifo).
−u file True if file has the set-user-ID permission bit set (see chmod(1)).
−g file True if file has the set-group-ID permission bit set (see chmod(1)).
−k file True if file has the sticky bit set (see chmod(1)).
−s file True if file has size strictly greater than zero.

IRIX Release 6.2 27

csh(1)hh

−t file True if file is an open file descriptor for a terminal device.

If file does not exist or is inaccessible, then all inquiries return false.

An inquiry as to the success of a command is also available:

{ command } If command runs successfully, the expression evaluates to true, 1. Otherwise it evaluates to
false 0. (Note that, conversely, command itself typically returns 0 when it runs
successfully, or some other value if it encounters a problem. If you want to get at the
status directly, use the value of the status variable rather than this expression).

Control Flow
The shell contains a number of commands to regulate the flow of control in scripts, and within limits, from
the terminal. These commands operate by forcing the shell either to reread input (to loop), or to skip input
under certain conditions (to branch).

Each occurrence of a foreach, switch, while, if...then and else built-in must appear as the first
word on its own input line.

If the shell’s input is not seekable and a loop is being read, that input is buffered. The shell performs seeks
within the internal buffer to accomplish the rereading implied by the loop. (To the extent that this allows,
backward goto commands succeed on nonseekable inputs.)

Command Execution
If the command is a C shell built-in, the shell executes it directly. Otherwise, the shell searches for a file by
that name with execute access. If the command-name contains a /, the shell takes it as a pathname, and
searches for it. If the command-name does not contain a /, the shell attempts to resolve it to a pathname,
searching each directory in the path variable for the command. To speed the search, the shell uses its
hash table (see the rehash built-in) to eliminate directories that have no applicable files. This hashing can
be disabled with the −c or −t, options, or the unhash built-in.

As a special case, if there is no / in the name of the script and there is an alias for the word shell, the
expansion of the shell alias is prepended (without modification), to the command line. The system
attempts to execute the first word of this special (late-occurring) alias, which should be a full pathname.
Remaining words of the alias’s definition, along with the text of the input line, are treated as arguments.

When a pathname is found that has proper execute permissions, the shell forks a new process and passes it,
along with its arguments to the kernel (using the execve(2) system call). The kernel then attempts to
overlay the new process with the desired program. If the file is an executable binary (in a.out(4) format)
the kernel succeeds, and begins executing the new process. If the file is a text file, and the first line begins
with #!, the next word is taken to be the pathname of a shell (or command) to interpret that script.
Subsequent words on the first line are taken as options for that shell. The kernel invokes (overlays) the
indicated shell, using the name of the script as an argument.

28 IRIX Release 6.2

csh(1)hh

If neither of the above conditions holds, the kernel cannot overlay the file (the execve(2) call fails); the C
shell then attempts to execute the file by spawning a new shell, as follows:

g If the first character of the file is a #, a C shell is invoked.

g Otherwise, a standard (Bourne) shell is invoked.

Signal Handling
The shell normally ignores QUIT signals. Background jobs are immune to signals generated from the
keyboard, including hangups (HUP). Other signals have the values that the C shell inherited from its
environment. The shell’s handling of interrupt and terminate signals within scripts can be controlled by
the onintr built-in. Login shells catch the TERM signal; otherwise this signal is passed on to child
processes. In no case are interrupts allowed when a login shell is reading the .logout file.

Job Control
The shell associates a numbered job with each command sequence, to keep track of those commands that
are running in the background or have been stopped with TSTP signals (typically <Ctrl-z>). When a
command, or command sequence (semicolon separated list), is started in the background using the &
metacharacter, the shell displays a line with the job number in brackets, and a list of associated process
numbers:

[1] 1234

To see the current list of jobs, use the jobs built-in command. The job most recently stopped (or put into
the background if none are stopped) is referred to as the current job, and is indicated with a ‘+’. The
previous job is indicated with a ‘−’; when the current job is terminated or moved to the foreground, this job
takes its place (becomes the new current job).

To manipulate jobs, refer to the bg, fg, kill, stop and % built-ins.

A reference to a job begins with a ‘%’. By itself, the percent-sign refers to the current job.

% %+ %% The current job.

%− The previous job.

%j Refer to job j as in: ‘kill −9 %j’. j can be a job number, or a string that uniquely
specifies the command line by which it was started; ‘fg %vi’ might bring a stopped vi
job to the foreground, for instance.

%?string Specify the job for which the command line uniquely contains string.

A job running in the background stops when it attempts to read from the terminal. Background jobs can
normally produce output, but this can be suppressed using the ‘stty tostop’ command.

IRIX Release 6.2 29

csh(1)hh

Status Reporting
While running interactively, the shell tracks the status of each job and reports whenever a finishes or
becomes blocked. It normally displays a message to this effect as it issues a prompt, so as to avoid
disturbing the appearance of your input. When set, the notify variable indicates that the shell is to
report status changes immediately. By default, the notify command marks the current process; after
starting a background job, type notify to mark it.

Built-In Commands
Built-in commands are executed within the C shell. If a built-in command occurs as any component of a
pipeline except the last, it is executed in a subshell.

: Null command. This command is interpreted, but performs no action.

alias [name [def]]
Assign def to the alias name. def is a list of words that can contain escaped history-
substitution metasyntax. name is not allowed to be alias or unalias. If def is omitted,
the alias name is displayed along with its current definition. If both name and def are
omitted, all aliases are displayed.

bg [% Run the current or specified jobs in the background.

break Resume execution after the end of the nearest enclosing foreach or while loop. The
remaining commands on the current line are executed. This allows multilevel breaks to be
written as a list of break commands, all on one line.

breaksw Break from a switch, resuming after the endsw.

case label: A label in a switch statement.

cd [dir]
chdir [dir] Change the shell’s working directory to directory dir. If no argument is given, change to

the home directory of the user. If dir is a relative pathname not found in the current
directory, check for it in those directories listed in the cdpath variable. If dir is the name
of a shell variable whose value starts with a /, change to the directory named by that
value.

continue Continue execution of the nearest enclosing while or foreach.

default: Labels the default case in a switch statement. The default should come after all case
labels. Any remaining commands on the command line are first executed.

dirs [−l] Print the directory stack, most recent to the left; the first directory shown is the current
directory. With the −l argument, produce an unabbreviated printout; use of the ˜
notation is suppressed.

30 IRIX Release 6.2

csh(1)hh

echo [−n] list The words in list are written to the shell’s standard output, separated by space characters.
The output is terminated with a newline unless the −n option or the \c escape is
specified. The following C-like escape sequences are available:

\b backspace
\c print line without newline
\f formfeed
\n newline
\r carriage return
\t tab
\\ backslash
\0n the 8-bit character whose code is the 1-, 2- or 3-digit octal number n. Note that \n

(no leading zero) is accepted for backwards compatibility with older IRIX cshs.
This can cause unexpected results in older scripts if the character immediately
trailing three digits is also numeric.

eval argument ...
Reads the arguments as input to the shell, and executes the resulting command(s). This is
usually used to execute commands generated as the result of command or variable
substitution, since parsing occurs before these substitutions. See tset(1) for an example
of how to use eval.

exec command Execute command in place of the current shell, which terminates.

exit [(expr)] The shell exits, either with the value of the STATUS variable, or with the value of the
specified by the expression expr.

fg % [job] Bring the current or specified job into the foreground.

foreach var (wordlist)
...
end The variable var is successively set to each member of wordlist. The sequence of

commands between this command and the matching end is executed for each new value
of var. (Both foreach and end must appear alone on separate lines.)

The built-in command continue can be used to continue the loop prematurely and the
built-in command break to terminate it prematurely. When this command is read from
the terminal, the loop is read up once prompting with ? before any statements in the
loop are executed.

glob wordlist Perform filename expansion on wordlist. Like echo, but no \ escapes are recognized.
Words are delimited by NULL characters in the output.

IRIX Release 6.2 31

csh(1)hh

goto label The specified label is filename and command expanded to yield a label. The shell rewinds
its input as much as possible and searches for a line of the form label: possibly preceded
by space or tab characters. Execution continues after the indicated line. It is an error to
jump to a label that occurs between a while or for built-in, and its corresponding end.

hashstat Print a statistics line indicating how effective the internal hash table has been at locating
commands (and avoiding execs). An exec is attempted for each component of the path
where the hash function indicates a possible hit, and in each component that does not
begin with a ‘/’.

history [−hr] [n]
Display the history list; if n is given, display only the n most recent events.

−r Reverse the order of printout to be most recent first rather than oldest first.
−h Display the history list without leading numbers. This is used to produce files

suitable for sourcing using the −h option to source.

if (expr) command
If the specified expression evaluates to true, the single command with arguments is
executed. Variable substitution on command happens early, at the same time it does for
the rest of the if command. command must be a simple command, not a pipeline, a
command list, or a parenthesized command list. Note: I/O redirection occurs even if
expr is false, when command is not executed (this is a bug).

if (expr) then
...
else if (expr2) then
...
else
...
endif If expr"" is true, commands up to the first else are executed. Otherwise, if expr2 is

true, the commands between the else if and the second else are executed.
Otherwise, commands between the else and the endif are executed. Any number of
else if pairs are allowed, but only one else. Only one endif is needed, but it is
required. The words else and endif must be the first nonwhite characters on a line.
The if must appear alone on its input line or after an else.)

jobs [−l] List the active jobs under job control.

−l List process IDs, in addition to the normal information.

32 IRIX Release 6.2

csh(1)hh

kill [−sig] [pid] [%job] ...
kill −l Send the TERM (terminate) signal, by default, or the signal specified, to the specified

process ID, the job indicated, or the current job. Signals are either given by number or by
name. There is no default. Typing kill does not send a signal to the current job. If the
signal being sent is TERM (terminate) or HUP (hangup), then the job or process is sent a
CONT (continue) signal as well.

−l List the signal names that can be sent.

limit [−h] [resource [max-use]]
Limit the consumption by the current process or any process it spawns, each not to exceed
max-use on the specified resource. If max-use is omitted, print the current limit; if resource is
omitted, display all limits.

−h Use hard limits instead of the current limits. Hard limits impose a ceiling on the
values of the current limits. Only the privileged user can raise the hard limits.

resource is one of:

cputime Maximum CPU seconds per process.
filesize Largest single file allowed.
datasize Maximum data size (including stack) for the process.
stacksize Maximum stack size for the process. Note: If this is set too high,

sproc(2) may fail.
coredumpsize

Maximum size of a core dump (file).
memoryuse Maximum amount of physical memory per process (resident set size).
vmemoryuse Maximum amount of virtual memory per process, including text, data,

heap, shared memory, mapped files, stack, etc..
descriptors Maximum number of open file descriptors per process.

max-use is a number, with an optional scaling factor, as follows:

nh Hours (for cputime).
nk n kilobytes. This is the default for all file or memory size limits.
nm n megabytes or minutes (for cputime).
mm:ss Minutes and seconds (for cputime).

The resource argument can be abbreviated by using only enough characters to make the
name unambiguous. Refer to the setrlimit(2) manual entry for more information
about process resource limits.

IRIX Release 6.2 33

csh(1)hh

login [username |−p]
Terminate a login shell and invoke login(1). The .logout file is not processed. If
username is omitted, login prompts for the name of a user.

−p Preserve the current environment (variables).

logout Terminate a login shell.

nice [+n |−n] [command]
Increment the process priority value for the shell or for command by n. The higher the
priority value, the lower the priority of a process, and the slower it runs. When given,
command is always run in a subshell, and the restrictions placed on commands in simple
if commands apply. If command is omitted, nice increments the value for the current
shell. If no increment is specified, nice sets the process priority value to 4. The range of
process priority values is from −20 to 20. Values of n outside this range set the value to
the lower, or to the higher boundary, respectively.

+n Increment the process priority value by n.
−n Decrement by n. This argument can be used only by the privileged user.

nohup [command]
Run command with HUPs ignored. With no arguments, ignore HUPs throughout the
remainder of a script. When given, command is always run in a subshell, and the
restrictions placed on commands in simple if commands apply. All processes detached
with & are effectively nohup’d.

notify [%job] ...
Notify the user asynchronously when the status of the current, or of specified jobs,
changes.

onintr [− |label]
Control the action of the shell on interrupts. With no arguments, onintr restores the
default action of the shell on interrupts. (The shell terminates shell scripts and returns to
the terminal command input level). With the − argument, the shell ignores all interrupts.
With a label argument, the shell executes a goto label when an interrupt is received or a
child process terminates because it was interrupted.

popd [+n] Pop the directory stack, and cd to the new top directory. The elements of the directory
stack are numbered from 0 starting at the top.

+n Discard the n’th entry in the stack.

34 IRIX Release 6.2

csh(1)hh

pushd [+n |dir] Push a directory onto the directory stack. With no arguments, exchange the top two
elements.

+n Rotate the n’th entry to the top of the stack and cd to it.
dir Push the current working directory onto the stack and change to dir.

rehash Recompute the internal hash table of the contents of directories listed in the path variable
to account for new commands added.

repeat count command
Repeat command count times. command is subject to the same restrictions as with the one-
line if statement.

set [var [= value]]
set var[n] = word

With no arguments, set displays the values of all shell variables. Multiword values are
displayed as a parenthesized list. With the var argument alone, set assigns an empty
(null) value to the variable var. With arguments of the form var = value set assigns value
to var, where value is one of:

word A single word (or quoted string).
(wordlist) A space-separated list of words enclosed in parentheses.

Values are command and filename expanded before being assigned. The form set
var[n] = word replaces the n’th word in a multiword value with word.

Multiple assignments can be performed with a single set command:

set notify mail=(30 /usr/mail/nemo)

setenv [VAR [word]]
With no arguments, setenv displays all environment variables. With the VAR
argument sets the environment variable VAR to have an empty (null) value. (By
convention, environment variables are normally given upper-case names.) With both
VAR and word arguments setenv sets the environment variable NAME to the value word,
which must be either a single word or a quoted string. The most commonly used
environment variables, USER, TERM, and PATH, are automatically imported to and
exported from the csh variables user, term, and path; there is no need to use
setenv for these. In addition, the shell sets the PWD environment variable from the csh
variable cwd whenever the latter changes.

shift [variable]
The components of argv, or variable, if supplied, are shifted to the left, discarding the
first component. It is an error for the variable not to be set, or to have a null value.

IRIX Release 6.2 35

csh(1)hh

source [−h] name
Reads commands from name. source commands can be nested, but if they are nested
too deeply the shell may run out of file descriptors. An error in a sourced file at any level
terminates all nested source commands.

−h Place commands from the file name on the history list without executing them.

stop [%job] ... Stop the current or specified background job.

suspend Stop the shell in its tracks, much as if it had been sent a stop signal with ˆZ. This is most
often used to stop shells started by su.

switch (string)
case label:
...
breaksw
...
default:
...
breaksw
endsw Each label is successively matched, against the specified string, which is first command

and filename expanded. The file metacharacters *, ? and [...] can be used in the case
labels, which are variable expanded. If none of the labels match before a “default” label is
found, execution begins after the default label. Each case statement and the default
statement must appear at the beginning of a line. The command breaksw continues
execution after the endsw. Otherwise control falls through subsequent case and
default statements as with C. If no label matches and there is no default, execution
continues after the endsw.

time [command]
With no argument, print a summary of time used by this C shell and its children. With an
optional command, execute command and print a summary of the time it uses.

umask [value] Display the file creation mask. With value set the file creation mask. value is given in octal,
and is XORed with the permissions of 666 for files and 777 for directories to arrive at the
permissions for new files. Common values include 002, giving complete access to the
group, and read (and directory search) access to others, or 022, giving read (and directory
search) but not write permission to the group and others.

unalias pattern
Discard aliases that match (filename substitution) pattern. All aliases are removed by
unalias *.

36 IRIX Release 6.2

csh(1)hh

unhash Disable the internal hash table.

unlimit [−h] [resource]
Remove a limitation on resource. If no resource is specified, then all resource limitations are
removed. See the description of the limit command for the list of resource names.

−h Remove corresponding hard limits. Only the privileged user can do this.

unset pattern Remove variables whose names match (filename substitution) pattern. All variables are
removed by ‘unset *’; this has noticeably distasteful side-effects.

unsetenv variable
Remove variable from the environment. Pattern matching, as with unset is not
performed.

wait Wait for background jobs to finish (or for an interrupt) before prompting.

while (expr)
...
end While expr is true (evaluates to non-zero), repeat commands between the while and

the matching end statement. break and continue can be used to terminate or
continue the loop prematurely. The while and end must appear alone on their input
lines. If the shell’s input is a terminal, it prompts for commands with a question-mark
until the end command is entered and then performs the commands in the loop.

% [job] [&] Bring the current or indicated job to the foreground. With the ampersand, continue
running job in the background.

@ [var =expr]
@ [var [n] =expr]

With no arguments, display the values for all shell variables. With arguments, the
variable var, or the n’th word in the value of var , to the value that expr evaluates to. (If
[n] is supplied, both var and its n’th component must already exist.)

If the expression contains the characters >, <, & or |, then at least this part of expr
must be placed within parentheses.

The operators *=, +=, etc., are available as in C. The space separating the name from the
assignment operator is optional. Spaces are, however, mandatory in separating
components of expr that would otherwise be single words.

Special postfix operators, ++ and −− increment or decrement name, respectively.

IRIX Release 6.2 37

csh(1)hh

Environment Variables and Predefined Shell Variables
Unlike the standard shell, the C shell maintains a distinction between environment variables, which are
automatically exported to processes it invokes, and shell variables, which are not. Both types of variables
are treated similarly under variable substitution. The shell sets the variables argv, cwd, home, path,
prompt, shell, and status upon initialization. The shell copies the environment variable USER into
the shell variable user, TERM into term, and HOME into home, and copies each back into the respective
environment variable whenever the shell variables are reset. PATH and path are similarly handled. You
need only set path once in the .cshrc or .login file. The environment variable PWD is set from cwd
whenever the latter changes. The following shell variables have predefined meanings:

argv Argument list. Contains the list of command-line arguments supplied to the current invocation
of the shell. This variable determines the value of the positional parameters $1, $2, and so on.
Note: argv[0] does not contain the command name.

cdpath Contains a list of directories to be searched by the cd, chdir, and popd commands, if the
directory argument each accepts is not a subdirectory of the current directory.

child The process id of the most recently started background job.

cwd The full pathname of the current directory.

echo Echo commands (after substitutions), just before execution.

fignore A list of filename suffixes to ignore when attempting filename completion. Typically the single
word ‘.o’.

filec Enable filename completion, in which case the <Ctrl-d> character <Ctrl-d>) and the ESC
character have special significance when typed in at the end of a terminal input line:

EOT Print a list of all filenames that start with the preceding string.
ESC Replace the preceding string with the longest unambiguous extension.

hardpaths
If set, pathnames in the directory stack are resolved to contain no symbolic-link components.

histchars
A two-character string. The first character replaces ! as the history-substitution character. The
second replaces the carat (ˆ) for quick substitutions.

history The number of lines saved in the history list. A very large number may use up all of the C
shell’s memory. If not set, the C shell saves only the most recent command.

38 IRIX Release 6.2

csh(1)hh

home The user’s home directory. The filename expansion of ˜ refers to the value of this variable.

ignoreeof
If set, the shell ignores EOF from terminals. This protects against accidentally killing a C shell
by typing a <Ctrl-d>.

mail A list of files where the C shell checks for mail. If the first word of the value is a number, it
specifies a mail checking interval in seconds (default 5 minutes).

nobeep Suppress the bell during command completion when asking the C shell to extend an ambiguous
filename.

noclobber
Restrict output redirection so that existing files are not destroyed by accident. > redirections
can only be made to new files. >> redirections can only be made to existing files.

noglob Inhibit filename substitution. This is most useful in shell scripts once filenames (if any) are
obtained and no further expansion is desired.

nonomatch
Returns the filename substitution pattern, rather than an error, if the pattern is not matched.
Malformed patterns still result in errors.

notify If set, the shell notifies you immediately as jobs are completed, rather than waiting until just
before issuing a prompt.

path The list of directories in which to search for commands. path is initialized from the
environment variable PATH, which the C shell updates whenever path changes. A null word
specifies the current directory. The default search path for normal users is: (. /usr/sbin
/usr/bsd /bin /usr/bin /usr/bin/X11). For the privileged user, the default search
path is: (/usr/sbin /usr/bsd /bin /usr/bin /etc /usr/etc /usr/bin/X11).
If path becomes unset, only full pathnames execute. An interactive C shell normally hashes
the contents of the directories listed after reading .cshrc, and whenever path is reset. If
new commands are added, use the rehash command to update the table.

prompt The string an interactive C shell prompts with. Noninteractive shells leave the prompt
variable unset. Aliases and other commands in the .cshrc file that are only useful
interactively, can be placed after the following test: ‘if ($?prompt == 0) exit’, to reduce
startup time for noninteractive shells. A ! in the prompt string is replaced by the current
event number. The default prompt is hostname% for mere mortals, or hostname# for the
privileged user.

IRIX Release 6.2 39

csh(1)hh

If the prompt string includes the sequence \@x, where x is one of the characters listed below,
it is replaced by the current time and date in the indicated format.

R time as HH:MM AM/PM, for example, 8:40PM
r time as HH:MM:SS AM/PM, for example, 08:40:25 PM
m month of year − 01 to 12
d day of month − 01 to 31
y last 2 digits of year − 00 to 99
D date as mm/dd/yy
H hour − 00 to 23
M minute − 00 to 59
S second − 00 to 59
T time as HH:MM:SS
j day of year − 001 to 366
w day of week − Sunday = 0
a abbreviated weekday − Sun to Sat
h abbreviated month − Jan to Dec
n insert a newline character
t insert a tab character

savehist
The number of lines from the history list that are saved in ˜/.history when the user logs
out. Large values for savehist slow down the C shell during startup. To prevent su
sessions from overwriting the underlying user’s history file, the shell only writes in the
˜/.history file if its current effective user id is the same as the owner of the directory
specified by the home variable.

shell The file in which the C shell resides. This is used in forking shells to interpret files that have
execute bits set, but that are not executable by the system.

status The status returned by the most recent command. If that command terminated abnormally,
0200 is added to the status. Built-in commands that fail return exit status 1, all other built-in
commands set status to 0.

time Control automatic timing of commands. Can be supplied with one or two values. The first is
the reporting threshold in CPU seconds. The second is a string of tags and text indicating
which resources to report on. A tag is a percent sign (%) followed by a single upper-case letter
(unrecognized tags print as text):

%D Average amount of unshared data space used in Kilobytes.
%E Elapsed (wallclock) time for the command.

40 IRIX Release 6.2

csh(1)hh

%F Page faults.
%I Number of block input operations.
%K Average amount of unshared stack space used in Kilobytes.
%M Maximum real memory used during execution of the process in Kilobytes.
%O Number of block output operations.
%P Total CPU time −− U (user) plus S (system) −− as a percentage of E (elapsed) time.
%S Number of seconds of CPU time consumed by the kernel on behalf of the user’s process.
%U Number of seconds of CPU time devoted to the user’s process.
%W Number of swaps.
%X Average amount of shared memory used in Kilobytes.

The default summary display outputs from the %U, %S, %E, %P, %X, %D, %I, %O, %F and
%W tags, in that order.

Note that the values for %D, %K, and %X always print as zero since the IRIX kernel does not
maintain the getrusage(3) counters required to calculate them.

verbose Display each command after history substitution takes place.

FILES
˜/.cshrc Read at beginning of execution by each shell.
/etc/cshrc Read by login shells before .cshrc at login.
/etc/.login Read by login shells before .cshrc and after /etc/cshrc.
/etc/csh.cshrc

Read by login shells before .cshrc and after /etc/.login.
˜/.login Read by login shells after .cshrc at login.
˜/.logout Read by login shells at logout.
˜/.history Saved history for use at next login.
/usr/bin/sh Standard shell, for shell scripts not starting with a ‘#’.
/tmp/sh* Temporary file for ‘<<’.
/etc/passwd Source of home directories for ‘˜name’.

SEE ALSO
login(1), sh(1), xwsh(1G), access(2), exec(2), fork(2), pipe(2), a.out(4), ascii(5), environ(5), termio(7).

DIAGNOSTICS
You have stopped jobs.

You attempted to exit the C shell with stopped jobs under job control. An immediate second
attempt to exit will succeed, terminating the stopped jobs.

IRIX Release 6.2 41

csh(1)hh

NOTES
Words can be no longer than 1024 characters. The system limits argument lists to 1,048,576 characters.
However, the maximum number of arguments to a command for which filename expansion applies is
1706. Command substitutions can expand to no more characters than are allowed in the argument list. To
detect looping, the shell restricts the number of alias substitutions on a single line to 20.

When a command is restarted from a stop, the shell prints the directory it started in if this is different from
the current directory; this can be misleading (that is, wrong) as the job may have changed directories
internally.

Shell built-in functions are not stoppable/restartable. Command sequences of the form a ; b ; c are also
not handled gracefully when stopping is attempted. If you suspend b, the shell never executes c. This is
especially noticeable if the expansion results from an alias. It can be avoided by placing the sequence in
parentheses to force it into a subshell.

Control over terminal output after processes are started is primitive.

Multiline shell procedures should be provided, as they are with the standard (Bourne) shell.

Commands within loops, prompted for by ?, are not placed in the history list.

Control structures should be parsed rather than being recognized as built-in commands. This would allow
control commands to be placed anywhere, to be combined with |, and to be used with & and ;
metasyntax.

It should be possible to use the : modifiers on the output of command substitutions. There are two
problems with : modifier usage on variable substitutions: not all of the modifiers are available, and only
one modifier per substitution is allowed.

The g (global) flag in history substitutions applies only to the first match in each word, rather than all
matches in all words. The the standard text editors consistently do the latter when given the g flag in a
substitution command.

Quoting conventions are confusing. Overriding the escape character to force variable substitutions within
double quotes is counterintuitive and inconsistent with the Bourne shell.

Symbolic links can fool the shell. Setting the hardpaths variable alleviates this.

‘set path’ should remove duplicate pathnames from the pathname list. These often occur because a shell
script or a .cshrc file does something like ‘set path=(/usr/local /usr/hosts $path)’ to
ensure that the named directories are in the pathname list.

42 IRIX Release 6.2

csh(1)hh

The only way to direct the standard output and standard error separately is by invoking a subshell, as
follows:

example% (command > outfile) >& errorfile

Although robust enough for general use, adventures into the esoteric periphery of the C shell may reveal
unexpected quirks.

IRIX Release 6.2 43

devnm(1M)hh

NAME
devnm − device name

SYNOPSIS
/etc/devnm [name] ...

DESCRIPTION
devnm identifies the special file associated with the mounted filesystem where the argument name resides.

This command is most commonly used by /etc/brc (see brc(1M)) to construct a mount table entry for the
root device.

EXAMPLE
The command

/etc/devnm /usr

produces

/dev/dsk/ips0d0s2 usr

if /usr is mounted on /dev/dsk/ips0d0s2 .

FILES
/dev/dsk/∗
/etc/mtab

SEE ALSO
brc(1M).

44 IRIX Release 6.2

dvhtool(1M)hh

NAME
dvhtool − modify and obtain disk volume header information

SYNOPSIS
dvhtool [−−b [list] [bootfile [rootpart [swappart]]]]

[−−v [creat unix_file dvh_file]
[add unix_file dvh_file] [delete dvh_file]
[get dvh_file unix_file] [list]] [header_filename]

DESCRIPTION
dvhtool allows modification of the disk volume header information, a block located at the beginning of all
disk media. The disk volume header consists of three main parts: the device parameters, the partition
table, and the volume directory. The volume directory is used to locate files kept in the volume header
area of the disk for standalone use. The partition table describes the logical device partitions. The device
parameters describe the specifics of a particular disk drive.

You must be superuser to use dvhtool .

Invoked with no arguments (or just a volume header name, header_filename), dvhtool allows you to examine
and modify the disk volume header on the root drive interactively. The read command prompts for the
name of the device file for the volume header to be worked on. This can be /dev/rvh for the header of the
root disk or the header name of another disk in the /dev/rdsk directory. See vh(7M). It then reads the
volume header from the specified device.

The vd, pt, and dp commands first list their respective portions of the volume header and then prompt for
modifications. The write command writes the possibly modified volume header to the device.

Note: The use of dvhtool for changing partitions and parameters is not recommended. Parameters and
partitions should be manipulated with fx(1M).

Invoked with arguments, dvhtool reads the volume header, performs the specified operations, and then
writes the volume header. If no header_filename is specified on the command line, /dev/rvh is used.

The following describes dvhtool command-line arguments.

−−b Allows you to set the current bootfile, root, and swap partitions. The list option displays their
current settings.

−−v Provides five options for modifying and listing the contents of the volume directory information
in the disk volume header: create, add, delete, get, and list.

creat Allows creation of a volume directory entry with the name dvh_file and the contents of unix_file.
If an entry already exists with the name dvh_file, it is overwritten with the new contents.

IRIX Release 6.2 45

dvhtool(1M)hh

add Adds a volume directory entry with the name dvh_file and the contents of unix_file. Unlike the
creat option, the add options do not overwrite an existing entry.

delete Removes the entry named dvh_file, if it exists, from the volume directory.

get Copies the requested file from the volume header to the filesystem.

list Lists the current volume directory contents.

SEE ALSO
fx(1M), vh(7M).

NOTE
Several megabytes of disk space may be required in the /tmp directory when creating or adding files if the
free space in the volume header is fragmented. This also makes dvhtool run much slower, because all files
must be copied to /tmp, and then back to the volume header.

46 IRIX Release 6.2

ecc(1)hh

NAME
ecc − dump memory ECC log

SYNOPSIS
/usr/etc/ecc [−−c]

DESCRIPTION
ecc dumps the memory error correction code (ECC) log. This log is produced by the memory subsystem
each time a memory error occurs. The types of errors are single data or check bit errors (which are
automatically corrected) and double bit errors (which are uncorrectable). Some uncorrectable memory
errors cause programs to be killed or the system to crash. Correctable errors, while OK, should be
watched. Too many correctable errors in a given memory bank may be an early warning signal of future
more serious problems.

This command functions only on systems that have error correcting memory.

The −−c option causes the log to be cleared. Note that on system crash and subsequent reset the log contents
are not cleared and can be read using the prom monitor (see prom(1)). Upon system boot, the log is cleared.

The various memory configurations cannot be determined by software, so ecc prints out the SIM locations
for all possible configurations. It is up to service personnel to determine which is appropriate for a given
system.

NOTE
This command is only used on Crimson (system type IP17)

IRIX Release 6.2 47

ed(1)hh

NAME
ed, red − text editor

SYNOPSIS
ed [−s] [−p string] [−x] [−C] [file]
red [−s] [−p string] [−x] [−C] [file]

DESCRIPTION
ed is the standard text editor. red is a restricted version of ed. If the file argument is given, ed
simulates an e command (see below) on the named file; that is to say, the file is read into ed’s buffer so
that it can be edited. Both ed and red process supplementary code set characters in file, and recognize
supplementary code set characters in the prompt string given to the −p option (see below) according to the
locale specified in the LC_CTYPE environment variable (see LANG in environ(5)). In regular
expressions, pattern searches are performed on characters, not bytes, as described below.

−s Suppresses the printing of byte counts by e, r, and w commands, of diagnostics from e and q
commands, and of the ! prompt after a !shell command.

−p Allows the user to specify a prompt string. The string can contain supplementary code set
characters.

−x Encryption option; when used, ed simulates an X command and prompts the user for a key. This
key is used to encrypt and decrypt text using the algorithm of crypt(1). The X command makes
an educated guess to determine whether text read in is encrypted or not. The temporary buffer file
is encrypted also, using a transformed version of the key typed in for the −x option. See crypt(1).
Also, see the NOTES section at the end of this reference page.

−C Encryption option; the same as the −x option, except that ed simulates a C command. The C
command is like the X command, except that all text read in is assumed to have been encrypted.

ed operates on a copy of the file it is editing; changes made to the copy have no effect on the file until a w
(write) command is given. The copy of the text being edited resides in a temporary file called the buffer.
There is only one buffer.

red is a restricted version of ed. It allows only editing of files in the current directory. It prohibits
executing shell commands via !shell command. Attempts to bypass these restrictions result in an error
message (restricted shell).

Both ed and red support the fspec(4) formatting capability. After including a format specification as
the first line of file and invoking ed with your terminal in stty −tabs or stty tab3 mode (see
stty(1)), the specified tab stops are automatically used when scanning file. For example, if the first line of
a file contained:

48 IRIX Release 6.2

ed(1)hh

<:t5,10,15 s72:>

tab stops are set at columns 5, 10, and 15, and a maximum line length of 72 is imposed. When you are
entering text into the file, this format is not in effect; instead, because of being in stty −tabs or
stty tab3 mode, tabs are expanded to every eighth column.

Commands to ed have a simple and regular structure: zero, one, or two addresses followed by a single-
character command, possibly followed by parameters to that command. These addresses specify one or
more lines in the buffer. Every command that requires addresses has default addresses, so that the
addresses can very often be omitted.

In general, only one command can appear on a line. Certain commands allow the input of text. This text is
placed in the appropriate place in the buffer. While ed is accepting text, it is said to be in input mode . In
this mode, no commands are recognized; all input is merely collected. Leave input mode by typing a
period (.) at the beginning of a line, followed immediately by pressing RETURN.

ed supports a limited form of regular expression notation; regular expressions are used in addresses to
specify lines and in some commands (for example, s) to specify portions of a line that are to be
substituted. A regular expression specifies a set of character strings. A member of this set of strings is said
to be matched by the regular expression. The regular expressions allowed by ed are constructed as
follows:

The following one-character regular expressions match a single character:

1.1 An ordinary character (not one of those discussed in 1.2 below) is a one-character regular expression
that matches itself.

1.2 A backslash (\) followed by any special character is a one-character regular expression that matches
the special character itself. The special characters are:

a. ., ∗ , [, and \ (period, asterisk, left square bracket, and backslash, respectively), which are always
special, except when they appear within square brackets ([]; see 1.4 below).

b. ˆ (caret or circumflex), which is special at the beginning of a regular expression (see 4.1 and 4.3
below), or when it immediately follows the left of a pair of square brackets ([]) (see 1.4 below).

c. $ (dollar sign), which is special at the end of a regular expression (see 4.2 below).

d. The character that is special for that specific regular expression, that is used to bound (or delimit) a
regular expression. (For example, see how slash (/) is used in the g command, below.)

1.3 A period (.) is a one-character regular expression that matches any character, including
supplementary code set characters, except newline.

IRIX Release 6.2 49

ed(1)hh

1.4 A non-empty string of characters enclosed in square brackets ([]) is a one-character regular
expression that matches one character, including supplementary code set characters, in that string. If,
however, the first character of the string is a circumflex (ˆ), the one-character regular expression
matches any character, including supplementary code set characters, except newline and the
remaining characters in the string. The ˆ has this special meaning only if it occurs first in the string.
The minus (−) can be used to indicate a range of consecutive characters, including supplementary code
set characters; for example, [0−9] is equivalent to [0123456789]. Characters specifying the range
must be from the same code set; when the characters are from different code sets, one of the characters
specifying the range is matched. The − loses this special meaning if it occurs first (after an initial ˆ, if
any) or last in the string. The right square bracket (]) does not terminate such a string when it is the
first character within it (after an initial ˆ, if any); for example, []a−f] matches either a right square
bracket (]) or one of the ASCII letters a through f inclusive. The four characters listed in 1.2.a above
stand for themselves within such a string of characters.

The following rules can be used to construct regular expressions from one-character regular expressions:

2.1 A one-character regular expression is an regular expression that matches whatever the one-character
regular expression matches.

2.2 A one-character regular expression followed by an asterisk (∗) is a regular expression that matches
zero or more occurrences of the one-character regular expression, which can be a supplementary code
set character. If there is any choice, the longest leftmost string that permits a match is chosen.

2.3 A one-character regular expression followed by \{m\}, \{m,\}, or \{m,n\} is a regular expression
that matches a range of occurrences of the one-character regular expression. The values of m and n
must be non-negative integers less than 256; \{m\} matches exactly m occurrences; \{m,\} matches
at least m occurrences; \{m,n\} matches any number of occurrences between m and n inclusive.
Whenever a choice exists, the regular expression matches as many occurrences as possible.

2.4 The concatenation of regular expressions is an regular expression that matches the concatenation of
the strings matched by each component of the regular expression.

2.5 A regular expression enclosed between the character sequences \(and \) defines a sub-expression
that matches whatever the unadorned regular expression matches. Inside a sub-expression the anchor
characters ((ˆ) and ($)) have no special meaning and match their respective literal characters.

2.6 The expression \n matches the same string of characters as was matched by an expression enclosed
between \(and \) earlier in the same regular expression. Here n is a digit; the sub-expression
specified is that beginning with the n-th occurrence of \(counting from the left. For example, the
expression ˆ\(.∗ \)\1$ matches a line consisting of two repeated appearances of the same string.

50 IRIX Release 6.2

ed(1)hh

A regular expression can be constrained to match words.

3.1 \< constrains a regular expression to match the beginning of a string or to follow a character that is not
a digit, underscore, or letter. The first character matching the regular expression must be a digit,
underscore, or letter.

3.2 \> constrains a regular expression to match the end of a string or to precede a character that is not a
digit, underscore, or letter.

A regular expression can be constrained to match only an initial segment or final segment of a line (or
both).

4.1 A circumflex (ˆ) at the beginning of a regular expression constrains that regular expression to match
an initial segment of a line.

4.2 A dollar sign ($) at the end of an entire regular expression constrains that regular expression to match
a final segment of a line.

4.3 The construction ˆregular expression$ constrains the regular expression to match the entire line.

The null regular expression (for example, //) is equivalent to the last regular expression encountered. See
also the last paragraph of the DESCRIPTION section below.

To understand addressing in ed it is necessary to know that at any time there is a current line. Generally
speaking, the current line is the last line affected by a command; the exact effect on the current line is
discussed under the description of each command. addresses are constructed as follows:

1. The character . addresses the current line.

2. The character $ addresses the last line of the buffer.

3. A decimal number n addresses the n-th line of the buffer.

4. ′x addresses the line marked with the mark name character x, which must be a lower-case letter
(a−z). Lines are marked with the k command described below.

5. A regular expression enclosed by slashes (/) addresses the first line found by searching forward from
the line following the current line toward the end of the buffer and stopping at the first line
containing a string matching the regular expression. If necessary, the search wraps around to the
beginning of the buffer and continues up to and including the current line, so that the entire buffer is
searched. See also the last paragraph of the DESCRIPTION section below.

6. A regular expression enclosed in question marks (?) addresses the first line found by searching
backward from the line preceding the current line toward the beginning of the buffer and stopping at
the first line containing a string matching the regular expression. If necessary, the search wraps
around to the end of the buffer and continues up to and including the current line. See also the last

IRIX Release 6.2 51

ed(1)hh

paragraph of the DESCRIPTION section below.

7. An address followed by a plus sign (+) or a minus sign (−) followed by a decimal number specifies
that address plus (respectively minus) the indicated number of lines. A shorthand for .+5 is .5.

8. If an address begins with + or −, the addition or subtraction is taken with respect to the current line;
for example, −5 is understood to mean .−5.

9. If an address ends with + or −, 1 is added to or subtracted from the address, respectively. As a
consequence of this rule and of Rule 8, immediately above, the address − refers to the line preceding
the current line. (To maintain compatibility with earlier versions of the editor, the character ˆ in
addresses is entirely equivalent to −.) Moreover, trailing + and − characters have a cumulative
effect, so −− refers to the current line less 2.

10. For convenience, a comma (,) stands for the address pair 1,$, while a semicolon (;) stands for the
pair .,$.

Commands may require zero, one, or two addresses. Commands that require no addresses regard the
presence of an address as an error. Commands that accept one or two addresses assume default addresses
when an insufficient number of addresses is given; if more addresses are given than such a command
requires, the last one(s) are used.

Typically, addresses are separated from each other by a comma (,). They can also be separated by a
semicolon (;). In the latter case, the first address is calculated, the current line (.) is set to that value, and
then the second address is calculated. This feature can be used to determine the starting line for forward
and backward searches (see Rules 5 and 6, above). The second address of any two-address sequence must
correspond to a line in the buffer that follows the line corresponding to the first address.

In the following list of ed commands, the parentheses shown prior to the command are not part of the
address; rather they show the default address(es) for the command.

It is generally illegal for more than one command to appear on a line. However, any command (except e,
f, r, or w) can be suffixed by l, n, or p in which case the current line is either listed, numbered or
printed, respectively, as discussed below under the l, n, and p commands.

(.)a
text
.

The append command accepts zero or more lines of text and appends it after the addressed line in
the buffer. The current line (.) is left at the last inserted line, or, if there were none, at the addressed
line. Address 0 is legal for this command: it causes the ‘‘appended’’ text to be placed at the
beginning of the buffer. The maximum number of bytes that can be entered from a terminal is 256
per line (including the newline character).

52 IRIX Release 6.2

ed(1)hh

(.)c
text
.

The change command deletes the addressed lines from the buffer, then accepts zero or more lines
of text that replaces these lines in the buffer. The current line (.) is left at the last line input, or, if
there were none, at the first line that was not deleted.

C
Same as the X command, described later, except that ed assumes all text read in for the e and r
commands is encrypted unless a null key is typed in.

(.,.)d
The delete command deletes the addressed lines from the buffer. The line after the last line deleted
becomes the current line; if the lines deleted were originally at the end of the buffer, the new last line
becomes the current line.

e file
The edit command deletes the entire contents of the buffer and then reads the contents of file into
the buffer. The current line (.) is set to the last line of the buffer. If file is not given, the currently
remembered filename, if any, is used (see the f command). The number of characters read in is
printed; file is remembered for possible use as a default filename in subsequent e, r, and w
commands. If file is replaced by !, the rest of the line is taken to be a shell (sh(1)) command whose
output is to be read in. Such a shell command is not remembered as the current filename. See also
DIAGNOSTICS below. If file is replaced by %, and if additional file arguments were specified on the
command line, the next filename specified on the command line is used.

E file
The Edit command is like e, except that the editor does not check to see if any changes have been
made to the buffer since the last w command.

f file
If file is given, the file-name command changes the currently remembered filename to file;
otherwise, it prints the currently remembered filename.

(1,$)g/regular expression/command list
In the global command, the first step is to mark every line that matches the given regular
expression. Then, for every such line, the given command list is executed with the current line (.)
initially set to that line. A single command or the first of a list of commands appears on the same
line as the global command. All lines of a multi-line list except the last line must be ended with a \;
a, i, and c commands and associated input are permitted. The . terminating input mode can be
omitted if it would be the last line of the command list. An empty command list is equivalent to the p
command. The g, G, v, and V commands are not permitted in the command list. See also the
NOTES section and the last paragraph of the DESCRIPTION section below.

IRIX Release 6.2 53

ed(1)hh

(1,$)G/regular expression/
In the interactive Global command, the first step is to mark every line that matches the given regular
expression. Then, for every such line, that line is printed, the current line (.) is changed to that line,
and any one command (other than one of the a, c, i, g, G, v, and V commands) can be input
and is executed. After the execution of that command, the next marked line is printed, and so on; a
newline acts as a null command; an & causes the re-execution of the most recent command executed
within the current invocation of G. Note that the commands input as part of the execution of the G
command can address and affect any lines in the buffer. The G command can be terminated by an
interrupt signal (ASCII DEL or BREAK).

h
The help command gives a short error message that explains the reason for the most recent ?
diagnostic.

H
The Help command causes ed to enter a mode in which error messages are printed for all
subsequent ? diagnostics. It also explains the previous ? if there was one. The H command
alternately turns this mode on and off; it is initially off.

(.)i
text
.

The insert command accepts zero or more lines of text and inserts it before the addressed line in
the buffer. The current line (.) is left at the last inserted line, or, if there were none, at the addressed
line. This command differs from the a command only in the placement of the input text. Address 0
is not legal for this command. The maximum number of characters that can be entered from a
terminal is 256 per line (including the newline character).

(.,.+1)j
The join command joins contiguous lines by removing the appropriate newline characters. If
exactly one address is given, this command does nothing.

(.)kx
The mark command marks the addressed line with name x, which must be a lower-case letter (a−z).
The address ′x then addresses this line; the current line (.) is unchanged.

(.,.)l
The list command prints the addressed lines in an unambiguous way: a few non-printing
characters (for example, tab, backspace) are represented by visually mnemonic overstrikes. All
other non-printing characters are printed in octal, and long lines are folded. An l command can be
appended to any command other than e, f, r, or w.

54 IRIX Release 6.2

ed(1)hh

(.,.)ma
The move command repositions the addressed line(s) after the line addressed by a . Address 0 is
legal for a and causes the addressed line(s) to be moved to the beginning of the file. It is an error if
address a falls within the range of moved lines; the current line (.) is left at the last line moved.

(.,.)n
The number command prints the addressed lines, preceding each line by its line number and a tab
character; the current line (.) is left at the last line printed. The n command can be appended to
any command other than e, f, r, or w.

(.,.)p
The print command prints the addressed lines; the current line (.) is left at the last line printed.
The p command can be appended to any command other than e, f, r, or w. For example, dp
deletes the current line and prints the new current line.

P
The editor prompts with a ∗ for all subsequent commands. The P command alternately turns this
mode on and off; it is initially off.

q
The quit command causes ed to exit. No automatic write of a file is done; however, see
DIAGNOSTICS below.

Q
The editor exits without checking if changes have been made in the buffer since the last w
command.

($)r file
The read command reads the contents of file into the buffer. If file is not given, the currently
remembered filename, if any, is used (see the e and f commands). The currently remembered
filename is not changed unless file is the very first filename mentioned since ed was invoked.
Address 0 is legal for r and causes the file to be read in at the beginning of the buffer. If the read is
successful, the number of characters read in is printed; the current line (.) is set to the last line read
in. If file is replaced by !, the rest of the line is taken to be a shell (see sh(1)) command whose
output is to be read in. For example, $r !ls appends current directory to the end of the file being
edited. Such a shell command is not remembered as the current filename.

(.,.)s/regular expression/replacement/ or
(.,.)s/regular expression/replacement/g or
(.,.)s/regular expression/replacement/n n = 1-512

The substitute command searches each addressed line for an occurrence of the specified regular
expression. In each line in which a match is found, all (non-overlapped) matched strings are
replaced by the replacement if the global replacement indicator g appears after the command. If the
global indicator does not appear, only the first occurrence of the matched string is replaced. If a

IRIX Release 6.2 55

ed(1)hh

number n, appears after the command, only the n-th occurrence of the matched string on each
addressed line is replaced. It is an error if the substitution fails on all addressed lines. Any
character other than space or newline can be used instead of / to delimit the regular expression and
the replacement; the current line (.) is left at the last line on which a substitution occurred. See also
the last paragraph of the DESCRIPTION section below.

An ampersand (&) appearing in the replacement is replaced by the string matching the regular
expression on the current line. The special meaning of & in this context can be suppressed by
preceding it by \. As a more general feature, the characters \n, where n is a digit, are replaced by
the text matched by the n-th regular subexpression of the specified regular expression enclosed
between \(and \). When nested parenthesized subexpressions are present, n is determined by
counting occurrences of \(starting from the left. When the character % is the only character in the
replacement, the replacement used in the most recent substitute command is used as the replacement in
the current substitute command. The % loses its special meaning when it is in a replacement string
of more than one character or is preceded by a \.

A line can be split by substituting a newline character into it. The newline in the replacement must be
escaped by preceding it by \. Such substitution cannot be done as part of a g or v command list.

(.,.)ta
This command acts just like the m command, except that a copy of the addressed lines is placed
after address a (which can be 0); the current line (.) is left at the last line copied.

u
The undo command nullifies the effect of the most recent command that modified anything in the
buffer, namely the most recent a, c, d, g, i, j, m, r, s, t, v, G, or V command.

(1,$)v/regular expression/command list
This command is the same as the global command g, except that the lines marked during the first
step are those that do not match the regular expression.

(1,$)V/regular expression/
This command is the same as the interactive global command G, except that the lines that are
marked during the first step are those that do not match the regular expression.

(1,$)w file
The write command writes the addressed lines into file. If file does not exist, it is created with mode
666 (readable and writable by everyone), unless your file creation mask dictates otherwise; see the
description of the umask special command on sh(1). The currently remembered filename is not
changed unless file is the very first filename mentioned since ed was invoked. If no filename is
given, the currently remembered filename, if any, is used (see the e and f commands); the current
line (.) is unchanged. If the command is successful, the number of characters written is printed. If
file is replaced by !, the rest of the line is taken to be a shell (see sh(1)) command whose standard
input is the addressed lines. Such a shell command is not remembered as the current filename.

56 IRIX Release 6.2

ed(1)hh

(1,$)W file
This command is the same as the write command above, except that it appends the addressed lines
to the end of file if it exists. If file does not exist, it is created as described above for the w command.

X
A key is prompted for, and it is used in subsequent e, r, and w commands to decrypt and encrypt
text using the crypt(1) algorithm. An educated guess is made to determine whether text read in
for the e and r commands is encrypted. A null key turns off encryption. Subsequent e, r, and w
commands use this key to encrypt or decrypt the text (see crypt(1)). An explicitly empty key
turns off encryption. Also, see the −x option of ed.

($)=
The line number of the addressed line is typed; the current line (.) is unchanged by this command.

!shell command
The remainder of the line after the ! is sent to the UNIX system shell (see sh(1)) to be interpreted
as a command. Within the text of that command, the unescaped character % is replaced with the
remembered filename; if a ! appears as the first character of the shell command, it is replaced with
the text of the previous shell command. Thus, !! repeats the last shell command. If any expansion
is performed, the expanded line is echoed; the current line (.) is unchanged.

(.+1)<newline>
An address alone on a line causes the addressed line to be printed. A newline alone is equivalent to
.+1p; it is useful for stepping forward through the buffer.

If an interrupt signal (ASCII DEL or BREAK) is sent, ed prints a ? and returns to its command level.

Some size limitations: 512 bytes in a line, 256 bytes in a global command list, and 1024 bytes in the
pathname of a file (counting slashes). The limit on the number of lines depends on the amount of user
memory: each line takes 1 word.

When reading a file, ed discards ASCII NUL characters.

If a file is not terminated by a newline character, ed adds one and puts out a message explaining what it
did.

If the closing delimiter of a regular expression or of a replacement string (for example, /) would be the last
character before a newline, that delimiter can be omitted, in which case the addressed line is printed. The
following pairs of commands are equivalent:

s/s1/s2 s/s1/s2/p
g/s1 g/s1/p
?s1 ?s1?

IRIX Release 6.2 57

ed(1)hh

FILES
$TMPDIR if this environmental variable is not null, its value is used in place of /var/tmp as the

directory name for the temporary work file
/var/tmp if /var/tmp exists, it is used as the directory name for the temporary work file
/tmp if the environmental variable TMPDIR does not exist or is null, and if /var/tmp does not

exist, /tmp is used as the directory name for the temporary work file
ed.hup work is saved here if the terminal is hung up
/usr/lib/locale/locale/LC_MESSAGES/uxcore.abi

language-specific message file (see LANG in environ (5))

SEE ALSO
edit(1), ex(1), grep(1), sed(1), sh(1), stty(1), umask(1), vi(1), fspec(4), regexp(5).

DIAGNOSTICS
? Command errors. Type the h command for a short error message.

?file An inaccessible file. (Use the help and Help commands for detailed explanations.)

If changes have been made in the buffer since the last w command that wrote the entire buffer, ed warns
the user if an attempt is made to destroy ed’s buffer via the e or q commands. It prints ? and allows
one to continue editing. A second e or q command at this point takes effect. The −s command-line
option inhibits this feature.

NOTES
The − option, although it continues to be supported, has been replaced in the documentation by the −s
option that follows the Command Syntax Standard (see intro(1)).

A ! command cannot be subject to a g or a v command.

The ! command and the ! escape from the e, r, and w commands cannot be used if the editor is
invoked from a restricted shell (see sh(1)).

The sequence \n in a regular expression does not match a newline character.

If the editor input is coming from a command file (for example, ed file < ed_cmd_file), the editor exits at
the first failure.

58 IRIX Release 6.2

find(1)hh

NAME
find − find files

SYNOPSIS
find path-name-list [expression]

DESCRIPTION
find recursively descends the directory hierarchy for each pathname in the path-name-list (that is, one or
more pathnames) seeking files that match a boolean expression written in the primaries given below. If the
expression does not contain at least one of −−print, −−ok, or −−exec, including the case of a null expression, a
−−print is implicit. In the descriptions, the argument n is used as a decimal integer where +n means more
than n, −−n means less than n, and n means exactly n. Valid expressions are:

−−name file True if file matches the current filename. Normal shell argument syntax can be used if
escaped (watch out for [, ?, and ∗∗).

−−perm [−−]mode True if the file permission flags exactly match the file mode given by mode which can be
an octal number or a symbolic expression of the form used in chmod(1)). If mode is
prefixed by a minus sign, only the bits that are set in mode are compared with the file
permission flags, and the expression evaluates true if they match.

−−type c True if the type of the file is c, where c is b, c, d, l, p, f, or s for block special file,
character special file, directory, symbolic link, fifo (a.k.a named pipe), plain file, or
socket respectively.

−−links n True if the file has n links.

−−user uname True if the file belongs to the user uname. If uname is numeric and does not appear as a
login name in the /etc/passwd file, it is taken as a user ID.

−−nouser True if the file belongs to a user not in the /etc/passwd file.

−−group gname True if the file belongs to the group gname. If gname is numeric and does not appear in
the /etc/group file, it is taken as a group ID.

−−nogroup True if the file belongs to a group not in the /etc/group file.

−−size n[c] True if the file is n blocks long (512 bytes per block). If n is followed by a c, the size is in
characters.

−−inum n True if n is the inode number of the file.

−−atime [+−−]n True if the file was accessed n days ago. The definition of n days ago is any time within
the interval beginning exactly n*24 hours ago and ending exactly (n−1)*24 hours ago.
The + and −− prefixes signify more or less than n days ago, respectively, thus +n means
more than n*24 hours ago, and −−n means less than n*24 hours ago. (See stat(2) for a

IRIX Release 6.2 59

find(1)hh

description of which file operations change the access time of a file.) The access time of
directories in path-name-list is changed by find itself.

−−mtime [+−−]n True if the file was modified n days ago. See −−atime for definition of "n days ago". (See
stat(2) for a description of which file operations change the modification time of a file.)

−−ctime [+−−]n True if the file was changed n days ago. See −−atime for definition of "n days ago". (See
stat(2) for a description of which file operations change the change time of a file.)

−−exec cmd True if the executed cmd returns a zero value as exit status. The end of cmd must be
punctuated by an escaped semicolon. A command argument {} is replaced by the
current pathname.

−−ok cmd Like −−exec except that the generated command line is printed with a question mark
first, and is executed only if the user responds by typing y.

−−print Always true; causes the current pathname to be printed.

−−cpio device Always true; write the current file on device in cpio(1) format (5120-byte records). find
−−cpio issues a warning if it encounters a file larger than two gigabytes. cpio(1) must be
used to archive files of this size.

−−newer file True if the current file has been modified more recently than the argument file (see
stat(2) for a description of which file operations change the modification time of a file).

−−anewer file True if current file has been accessed more recently than the argument file (see stat(2) for
a description of which file operations change the access time of a file).

−−cnewer file True if current file has been changed more recently than the argument file (see stat(2) for
a description of which file operations change the change time of a file).

−−depth Always true; causes descent of the directory hierarchy to be done so that all entries in a
directory are acted on before the directory itself. This can be useful when find is used
with cpio(1) to transfer files that are contained in directories without write permission.

−−prune Always true; do not examine any directories or files in the directory structure below the
pattern just matched. If the current pathname is a directory, find does not descend into
that directory, provided −−depth is not also used.

−−mount Always true; restricts the search to the filesystem containing the current element of the
path-name-list .

−−fstype type True if the filesystem to which the file belongs is of type type.

60 IRIX Release 6.2

find(1)hh

−−local True if the file physically resides on the local system; causes the search not to descend
into remotely mounted filesystems.

−−follow Always true; causes the underlying file of a symbolic link to be checked rather than the
symbolic link itself.

\(expression \) True if the parenthesized expression is true (parentheses are special to the shell and
must be escaped).

The primaries can be combined using the following operators (in order of decreasing precedence):

g The negation of a primary (! is the unary not operator).

g Concatenation of primaries (the and operation is implied by the juxtaposition of two primaries).

g Alternation of primaries (−−o is the or operator).

EXAMPLES
To remove all files named a.out or *.o that have not been accessed for a week:

find / \(−name a.out −o −name ′∗ .o′ \) −atime +7 −exec rm {} \;

To display all character special devices on the root filesystem except those under any dev directory:

find / −mount \(−type d −name dev −prune \) −o −type c −print

FILES
/etc/passwd UID information supplier
/etc/group GID information supplier

SEE ALSO
chmod(1), cpio(1), sh(1), test(1), stat(2), umask(2), efs(4), xfs(4).

BUGS
find / −−depth always fails with the message:

find: stat failed: : No such file or directory

find relies on a completely correct directory hierarchy for its search. In particular, if a directory’s ’..’ is
missing or incorrect, find fails at that point and issue some number of these messages:

stat failed:

−−depth and −−prune do not work together well.

IRIX Release 6.2 61

fsck(1M)hh

NAME
fsck − check and repair filesystems for EFS

SYNOPSIS
/etc/fsck [−−c] [−−f] [−−g] [−−m] [−−n] [−−q] [−−y] [−−l dir] [filesystems]

DESCRIPTION
fsck is applicable only to EFS filesystems.

fsck audits and repairs inconsistent conditions for filesystems. You must have both read and write
permission for the device containing the filesystem unless you give the −−n flag, in which case only read
permission is required.

If the filesystem is inconsistent, you are normally prompted for concurrence before each correction is
attempted. Most corrective actions result in some loss of data. The amount and severity of data loss can be
determined from the diagnostic output. The default action for each correction is to wait for you to respond
yes or no. However, certain option flags cause fsck to run in a non-interactive mode.

On completion, the number of files, blocks used, and blocks free are reported.

Note: Checking the raw device is almost always faster.

The following options are accepted by fsck:

−−c Checks the filesystem only if the superblock indicates that it is dirty, otherwise a message is printed
saying that the filesystem is clean and no check is performed. The default in the absence of this
option is to always perform the check.

−−f Fast check. Check block and sizes and check the free list. The free list is reconstructed if it is
necessary. No directory or pathname checks are performed.

−−g A low risk "gentle" mode, similar to BSD preen. Problems that do not present any risk of data loss
are fixed: these include bad link counts, bad free list, and dirty superblock. If any serious damage is
encountered that cannot be repaired without risk of data loss, fsck terminates with a warning
message.

−−l Allows a directory on a mounted filesystem, located elsewhere on the system, to be specified as a
salvage directory. Unreferenced regular files, named after their inode numbers, are copied into this
salvage directory. This allows files to be salvaged from very badly corrupted filesystems that may
not be repairable in place -- if the root inode is lost, for example.

−−m Forks multiple instances of fsck to check filesystems in parallel for improved speed. This option is
effective only when fsck is working from the filesystems listed in /etc/fstab and is ignored if explicit
filesystem arguments are given. Also, when this option is specified, entries in /etc/fstab with the
noauto option are ignored.

62 IRIX Release 6.2

fsck(1M)hh

−−n Assumes a no response to all questions asked by fsck; does not open the filesystem for writing.

−−q Quiet fsck. This option is effectively a version of the −−y option with less verbose output.

−−y Assumes a yes response to all questions asked by fsck.

If no filesystems are specified, fsck reads a list of default filesystems from the file /etc/fstab . This does not
include the root filesystem; fsck runs on root only if this is explicitly specified.

Normally, a filesystem must be unmounted in order to run fsck on it, an error message is printed and no
action taken if invoked on a mounted filesystem. The one exception to this is the root filesystem, which
must be mounted to run fsck. If inconsistencies are detected when running on root, fsck causes a remount
of root.

PARALLEL OPERATION
When invoked with the −−m flag and without explicit filesystem parameters, fsck scans /etc/fstab and
attempts to fork a check process for each efs filesystem found. These checks proceed in parallel, for
improved speed.

The name of the device holding the filesystem is printed as each check begins. However, to avoid
confusion, the remaining output from these parallel checks is not printed; instead it is placed in log files in
the directory /etc/fscklogs. This directory is created if it does not currently exist.

The log files are named after the last component of the pathname of the device where the filesystem
resides. For example, if a filesystem was on /dev/dsk/ips0d1s7 the logfile is named /etc/fscklogs/ips0d1s7.

Because there is no interaction with the checks, the −−m option is accepted only in combination with another
option implying non interactive behavior: −−y or −−g.

As each check completes, the name of the device is printed along with a message indicating success or
failure. In the event of failure, the name of the logfile containing the output from the check of that
filesystem is also printed.

Some control over the parallelization is possible by placing passnumbers in /etc/fstab (see fstab(4)). If pass
numbers are given for filesystems, they are checked in the order of their pass numbers. All filesystems
with a given pass number are checked (in parallel, if more than one filesystem has the same pass number)
before the next highest pass number. A missing pass number defaults to zero. If no pass numbers are
present, all filesystems are checked simultaneously if possible.

Note: In fact, fsck takes note of the amount of memory available in the system, and limits the number of
simultaneous check processes to avoid swapping. If there is not enough memory to avoid swapping for a
particular filesystem, the message

IRIX Release 6.2 63

fsck(1M)hh

Warning - Low free memory, swapping likely

is printed. If this occurs when fsck’ing the root or usr filesystem after a crash, the crash dump is lost. In
this case the fsck takes longer, but the results are otherwise normal.

CHECKS PERFORMED
Inconsistencies checked are as follows:

1. Inode block addressing checks: Too many direct or indirect extents, extents out of order, bad magic
number in extents, blocks that are not in a legal data area of the filesystem, blocks that are claimed
by more than one inode.

2. Size checks: Number of blocks claimed by inode inconsistent with inode size, directory size not
block aligned.

3. Directory checks: Illegal number of entries in a directory block, bad freespace pointer in directory
block, entry pointing to unallocated or outrange inode, overlapping entries, missing or incorrect dot
and dotdot entries.

4. Pathname checks: Files or directories not referenced by a pathname starting from the filesystem
root.

5. Link count checks: Link counts that do not agree with the number of directory references to the
inode.

6. Freemap checks: Blocks claimed free by the freemap but also claimed by an inode, blocks
unclaimed by any inode but not appearing in the freemap.

7. Super Block checks: Total free block and/or free i-node count incorrect.

Orphaned files and directories (allocated but unreferenced) are, with the your concurrence, reconnected by
placing them in the lost+found directory, if the files are nonempty. You are notified if the file or directory is
empty or not. Empty files or directories are removed, as long as the −−n option is not specified. fsck forces
the reconnection of nonempty directories. The name assigned is the i-node number. The directory
lost+found must preexist in the root of the filesystem being checked and must have empty slots in which
entries can be made. This directory is always created by mkfs(1M) when a filesystem is first created.

SUPERBLOCKS AND FILESYSTEM ROBUSTNESS
In IRIX 3.3 and later, a replicated superblock exists in the EFS filesystem, situated at the end of the
filesystem space. If fsck cannot read the primary superblock it attempts to use the replicated superblock. It
prints a message to notify you of the situation. This is automatic; no user intervention is required. Further,
fsck attempts to determine if a replicated superblock exists, and if not, optionally creates one. Thus, older
filesystems benefit from this feature.

64 IRIX Release 6.2

fsck(1M)hh

Finally, if no superblock can be found on a damaged filesystem, it may be possible to regenerate one by
using the new −−r option of mkfs(1M), and then use fsck to salvage the filesystem.

Warning: This is not effective if the filesystem was created under a version of IRIX other than the currently
running version, since mkfs defaults have changed from release to release.

OBSOLETE OPTIONS
The options −−b, −−D, −−s, −−S, and -t, which were supported by earlier versions of fsck, are now obsolete.

The −−b option caused a reboot of the system when fsck was run on the root filesystem and errors were
detected. The behavior now is always to remount the root filesystem in this case.

The −−t option specified a scratch file for temporary storage; this is now never required.

The −−D option added extra directory checks; these are now always done by default.

The −−s and −−S options caused conditional or forced rebuild of the freelist. The freelist is now exhaustively
checked and is always rebuilt if necessary.

All of these options are now legal no-ops.

FILES
/etc/fstab default list of filesystems to check

SEE ALSO
findblk(1M), fpck(1M), mkfs(1M), ncheck(1M), uadmin(2), filesystems(4), fstab(4).

IRIX Release 6.2 65

fsdb(1M)hh

NAME
fsdb − filesystem debugger for EFS

SYNOPSIS
fsdb [−−?] [−−o] [−−p’string’] [−−w] special

DESCRIPTION
fsdb is applicable only to EFS filesystems.

fsdb can be used to patch up a damaged filesystem after a crash. It has conversions to translate block and
i-numbers into their corresponding disk addresses. Also included are mnemonic offsets to access different
parts of an inode. These greatly simplify the process of correcting control block entries or descending the
filesystem tree.

Because fsdb reads the disk raw, it is able to circumvent normal filesystem security. It also bypasses the
buffer cache mechanism. Hence, it is not advisable to use fsdb to write to a mounted filesystem.

The options available to fsdb are:

−−? Display usage.

−−o Override some error conditions.

−−p’string’ Set prompt to string.

−−w Open for write.

fsdb contains several error-checking routines to verify inode and block addresses. These can be disabled if
necessary by invoking fsdb with the −−o option or by the use of the o command.

special is the name of a character device file. fsdb searches /etc/fstab for the raw character device filename, if
given the name of a filesystem. A buffer management routine is used to retain commonly used blocks of
data in order to reduce the number of read system calls. All assignment operations result in an immediate
write-through of the corresponding block. Since fsdb opens the raw device file, any write-throughs bypass
the filesystem buffer cache, resulting in a potential mismatch between on-disk and buffer cache data
structures. Hence, it is recommended that fsdb not be used to write to a mounted filesystem. Note that in
order to modify any portion of the disk, fsdb must be invoked with the −−w option.

Wherever possible, adb−like syntax was adopted to promote the use of fsdb through familiarity.

Numbers are considered hexadecimal by default. However, the user has control over how data are to be
displayed or accepted. The base command displays or sets the input/output base. Once set, all input
defaults to this base and all output is shown in this base. The base can be overridden temporarily for input
by preceding hexadecimal numbers with 0x, decimal numbers with 0t, or octal numbers with 0.
Hexadecimal numbers beginning with a−−f or A−−F must be preceded with 0x to distinguish them from
commands.

66 IRIX Release 6.2

fsdb(1M)hh

Disk addressing by fsdb is at the byte level. However, fsdb offers many commands to convert a desired
inode, directory entry, block, superblock, and so forth to a byte address. Once the address has been
calculated, fsdb records the result in dot .

Several global values are maintained by fsdb: the current base (referred to as base), the current address
(referred to as dot), the current inode (referred to as inode), the current count (referred to as count), and the
current type (referred to as type). Most commands use the preset value of dot in their execution. For
example,

> 2:inode

first sets the value of dot to 2, : alerts the start of a command, and the inode command sets inode to 2. A
count is specified after a ,. Once set, count remains at this value until a new command is encountered,
which resets the value back to 1 (the default). So, if

> 2000,400/X

is typed, 400 hexadecimal longs are listed from 2000, and when completed the value of dot is 2000 + 400 *
sizeof (long). If a carriage return is then typed, the output routine uses the current values of dot , count, and
type and displays 400 more hexadecimal longs. An * causes the entire block to be displayed.

End of block and file are maintained by fsdb. When displaying data as blocks, an error message is
displayed when the end of the block is reached. When displaying data using the db, directory, or file
commands, an error message is displayed if the end of file is reached. This is needed primarily to avoid
passing the end of a directory or file and getting unknown and unwanted results.

Examples showing several commands and the use of carriage return are:

> 2:ino; 0:dir?d

or

> 2:ino; 0:db:block?d

The two examples are synonymous for getting to the first directory entry of the root of the filesystem.
Once there, subsequent carriage returns (or + or −) advance to subsequent entries.

Note that:

> 2:inode; :ls /

or

IRIX Release 6.2 67

fsdb(1M)hh

> 2:inode
> :ls /

is again synonymous.

EXPRESSIONS
fsdb recognizes the following symbols. There should be no white space between the symbols and the
arguments.

carriage return
Update the value of dot by the current value of type and display using the current value of count.

Numeric expressions can be composed of +, −, *, and % operators (evaluated left to right) and
can use parentheses. Once evaluated, the value of dot is updated.

,count Count indicator. The global value of count is updated to count. The value of count remains until
a new command is run. A count specifier of * attempts to show a block’s worth of information.
The default for count is 1.

?f Display in structured style with format specifier f (see FORMATTED OUTPUT section).

/f Display in unstructured style with format specifier f (see FORMATTED OUTPUT section).

. The value of dot .

+e Increment the value of dot by the expression e. The amount actually incremented is dependent
on the size of type :

dot = dot + e * sizeof (type)

The default for e is 1.

−−e Decrement the value of dot by the expression e (see +).

*e Multiply the value of dot by the expression e. Multiplication and division do not use type . In the
above calculation of dot , consider the sizeof (type) to be 1.

%e Divide the value of dot by the expression e (see *).

<name Restore an address saved in register name. name must be a single letter or digit.

>name Save an address in register name. name must be a single letter or digit.

68 IRIX Release 6.2

fsdb(1M)hh

=f Display indicator. If f is a legitimate format specifier (see FORMATTED OUTPUT section), then
the value of dot is displayed using format specifier f. Otherwise, assignment is assumed (see next
item).

=[e]

=[s] Assignment indicator. The address pointed to by dot has its contents changed to the value of the
expression e or to the ASCII representation of the quoted (") string s. This may be useful for
changing directory names or ASCII file information.

=+e Incremental assignment. The address pointed to by dot has its contents incremented by
expression e.

=-e Decremental assignment. The address pointed to by dot has its contents decremented by
expression e.

COMMANDS
A command must be prefixed by a : character. Only enough letters of the command to uniquely
distinguish it are needed. Multiple commands can be entered on one line by separating them by a space,
tab, or ;.

In order to view a potentially unmounted disk in a reasonable manner, fsdb offers the cd, pwd , ls, and find
commands. The functionality of these commands substantially matches those of its IRIX counterparts (see
individual commands for details). The *, ?, and [−−] wildcard characters are available.

base=b Display or set base. As stated above, all input and output is governed by the current base . If
the =b is left off, the current base is displayed. Otherwise, the current base is set to b. Note
that this is interpreted using the old value of base . To ensure correctness, use the 0, 0t, or 0x
prefix when changing the base . The default for base is hexadecimal.

block Convert the value of dot to a block address.

cd dir Change the current directory to directory dir. The current values of inode and dot are also
updated. If no dir is specified, then change directories to inode 2 (/).

cg Convert the value of dot to a cylinder group.

directory If the current inode is a directory, then the value of dot is converted to a directory slot offset in
that directory. dot now points to this entry.

file The value of dot is taken as a relative block count from the beginning of the file. The value of
dot is updated to the first byte of this block.

IRIX Release 6.2 69

fsdb(1M)hh

find dir [−−name n] [−−inum i]
Find files by name or i-number. find recursively searches directory dir and below for
filenames whose i-number matches i or whose name matches pattern n. Note that only one
of the two options (−−name or −−inum) can be used at one time. Also, the −−print is not needed
or accepted.

fill=p Fill an area of disk with pattern p. The area of disk is delimited by dot and count.

inode Convert the value of dot to an inode address. If successful, the current value of inode is
updated as well as the value of dot . As a convenient shorthand, if :inode appears at the
beginning of the line, the value of dot is set to the current inode and that inode is displayed in
inode format.

ls [−−R] [−−l] pat1 pat2 ...
List directories or files. If no file is specified, the current directory is assumed. Either or both
of the options can be used (but, if used, must be specified before the filename specifiers).
Also, as stated above, wildcard characters are available and multiple arguments can be given.
The long listing shows only the i-number and the name; use the inode command with ?i to get
more information. The output is sorted in alphabetical order. If either the −−R or the −−l
options is used, then the files can have a character following the filename, indicating the type
of the file. Directories have a /, symbolic links have a @, AF_UNIX address family sockets
have a = and fifos have an f. Regular files and block and character device files have an * if
they are executable. If the file type is unknown, then a ? is printed.

override Toggle the value of override. Some error conditions can be overridden if override is toggled
on.

prompt p Change the fsdb prompt to p. p must be surrounded by double quotes (").

pwd Display the current working directory.

quit Quit fsdb.

sb The value of dot is taken as the basic block number and then converted to the address of the
superblock in that cylinder group. As a shorthand, :sb at the beginning of a line sets the
value of dot to the superblock and displays it in superblock format.

! sh Escape to shell.

INODE COMMANDS
In addition to the above commands, there are several commands that deal with inode fields and operate
directly on the current inode (they still require the :). They can be used to display more easily or change the
particular fields. The value of dot is only used by the :db, :len, and :off commands. Upon completion of
the command, the value of dot is changed to point to that particular field. For example,

70 IRIX Release 6.2

fsdb(1M)hh

> :ln=+1

increments the link count of the current inode and set the value of dot to the address of the link count field.
It is important to know the format of the disk inode structure and the size and alignment of the respective
fields; otherwise the output of these commands is not coherent. The disk inode structure is available in
<sys/fs/efs_ino.h>.

at Access time.

ct Creation time.

db Use the current value of dot as an index into the list of extents stored in the disk inode to get the
starting disk block number associated with the corresponding extent. Extents number from 0 to 11.
In order to display the block itself, you need to pipe this result into the block command. For
example,

> 1:db:block,20/X

gets the contents of disk block number field of extent number 1 from the inode and converts it to a
block address. Twenty longs are then displayed in hexadecimal (see the FORMATTED OUTPUT
section).

gen Inode generation number.

gid Group ID.

ln Link count.

len Use the current value of dot as an index into the list of extents stored in the disk inode to get the
length associated with the corresponding extent. Extents number from 0 to 11. This field is one byte
long. For example,

> 1:len/b

displays the contents of the len field of extent number 1.

mt Modification time.

md Mode.

maj Major device number.

IRIX Release 6.2 71

fsdb(1M)hh

min Minor device number.

nex Number of extents.

nm Although listed here, this command actually operates on the directory name field. Once poised at
the desired directory entry (using the directory command), this command allows you to change or
display the directory name. For example,

> 7:dir:nm="foo"

gets the seventh directory entry of the current inode and changes its name to foo. Names have to be
the same size as the original name. If the new name is smaller, it is padded with #. If it is larger, the
string is truncated to fit and a warning message to this effect is displayed.

off Use the current value of dot as an index into the list of extents stored in the disk inode to get the
logical block offset associated with the corresponding extent. Extents number from 0 to 11. This
field is three bytes long. For example,

> 3:off,3/b

displays the contents of the off field of extent number 3.

sz File size.

uid User ID.

FORMATTED OUTPUT
There are two styles and many format types. The two styles are structured and unstructured. Structured
output is used to display inodes, directories, superblocks, and the like. Unstructured output only displays
raw data. The following table shows the different ways of displaying:

?
c Display as cylinder groups
i Display as inodes
I Display as inodes (all direct extents)
d Display as directories
s Display as superblocks
e Display as extents

/

72 IRIX Release 6.2

fsdb(1M)hh

b Display as bytes
c Display as characters
o O Display as octal shorts or longs
d D Display as decimal shorts or longs
x X Display as hexadecimal shorts or longs

The format specifier immediately follows the / or ? character. The values displayed by /b and all ? formats
are displayed in the current base . Also, type is appropriately updated upon completion.

EXAMPLES
> :base Display the current input/output base (hexadecimal by default).

> :base=0xa Change the current input/output base to decimal.

> 0t2000+(0t400%(0t20+0t20))=D
Display 2010 in decimal (use of fsdb as a calculator for complex arithmetic). The 0t
indicates that the numbers are to be interpreted as decimal numbers and are necessary
only if the current base is not decimal. Brackets should be used to force ordering since
fsdb does not force the normal ordering of operators. Note that % is the division symbol.

> 386:ino?i Display i-number 386 in an inode format. This now becomes the current inode.

> :ln=4 Change the link count for the current inode to 4.

> :ln/x Display the link count as a hexadecimal short.

> :ln=+1 Increment the link count by 1.

> :sz/D Display the size field as a decimal long.

> :sz/X Display the size field as a hexadecimal long.

> :ct=X Display the creation time as a hexadecimal long.

> :mt=t Display the modification time in time format.

> 0:db,3/b Display the block number of the first extent as 3 bytes. The block number has to be
printed out as bytes, because of alignment considerations.

> 0:file/c Display, in ASCII, block zero of the file associated with the current inode.

> 5:dir:inode; 0:file,*/c
Change the current inode to that associated with the fifth directory entry (numbered
from zero) of the current inode. The first logical block of the file is then displayed in
ASCII.

IRIX Release 6.2 73

fsdb(1M)hh

> :sb Display the superblock of this filesystem.

> 0:cg?c Display cylinder group information and summary for the first cylinder group (cg
number 0).

> 7:dir:nm="name"
Change the name field in the directory slot to name.

> 2:db:block,*?d Display the third block of the current inode as directory entries.

> 0:db=0x43b Change the disk block number associated with extent 0 of the inode to 0x43b.

> 0:len=0x4 Change the length of extent 0 to 4.

> 1:off=0xa Change the logical block offset of extent 1 to 4.

> 0x43b:block/X Display the first four bytes of the contents of block 0x43b.

> 0x43b:block=0xdeadbeef
Set the contents of disk block number 0x43b to 0xdeadbeef. 0xdeadbeef may be
truncated depending on the current type .

> 2050=0xffffffff Set the contents of address 2050 to 0xffffffff. 0xffffffff may be truncated depending on
the current type .

> 1c92434="this is some text"
Place the ASCII for the string at 1c92434.

> 2:inode:0:db:block,*?d
Change the current inode to 2. Take the first block associated with this (root) inode and
display its contents as directory entries. It stops prematurely if the EOF is reached.

SEE ALSO
fsck(1M), dir(4), efs(4), inode(4).

74 IRIX Release 6.2

fsstat(1M)hh

NAME
fsstat − report filesystem status

SYNOPSIS
fsstat special_file

DESCRIPTION
fsstat reports on the status of the filesystem on special_file. During startup, this command is used to
determine if the filesystem needs checking before it is mounted. fsstat succeeds if the filesystem is
unmounted and appears O.K. For the root filesystem, it succeeds if the filesystem is active and not marked
bad.

SEE ALSO
efs(4).

DIAGNOSTICS
The command has the following exit codes:

0 The filesystem is not mounted and appears O.K., except for root, where 0 means mounted and O.K.

1 The filesystem is not mounted and needs to be checked.

2 The filesystem is mounted.

3 The command failed.

IRIX Release 6.2 75

ftp(1C)hh

NAME
ftp − Internet file transfer program

SYNOPSIS
ftp [−−v] [−−d] [−−i] [−−n] [−−g] [host]

DESCRIPTION
ftp is the user interface to the Internet standard File Transfer Protocol (FTP). The program allows a user to
transfer files to and from a remote network site.

The client host with which ftp is to communicate can be specified on the command line. If this is done, ftp
immediately attempts to establish a connection to an FTP server on that host; otherwise, ftp enters its
command interpreter and awaits instructions from the user. When ftp is awaiting commands from the
user, the prompt ftp> is provided to the user. The following commands are recognized by ftp :

! [command [args]]
Invoke an interactive shell on the local machine. If there are arguments, the first is taken to be a
command to execute directly, with the rest of the arguments as its arguments.

$ macro-name [args]
Execute the macro macro-name that was defined with the macdef command. Arguments are
passed to the macro unglobbed.

account [passwd]
Supply a supplemental password required by a remote system for access to resources once a login
has been successfully completed. If no argument is included, the user is prompted for an account
password in a non-echoing input mode.

append local-file [remote-file]
Append a local file to a file on the remote machine. If remote-file is left unspecified, the local
filename is used in naming the remote file after being altered by any ntrans or nmap setting. File
transfer uses the current settings for type , format , mode , and structure.

ascii Set the file transfer type to network ASCII. This is the default type if ftp cannot determine the type
of operating system running on the remote machine or the remote operating system is not UNIX.

bell Arrange that a bell be sounded after each file transfer command is completed.

binary Set the file transfer type to support binary image transfer. This is the default type if ftp can
determine that the remote machine is running UNIX.

bye Terminate the FTP session with the remote server and exit ftp . An end of file also terminates the
session and exits.

76 IRIX Release 6.2

ftp(1C)hh

case Toggle remote computer filename case mapping during mget commands. When case is on
(default is off), remote computer filenames with all letters in upper case are written in the local
directory with the letters mapped to lower case.

cd remote-directory
Change the working directory on the remote machine to remote-directory .

cdup Change the remote machine working directory to the parent of the current remote machine
working directory.

chmod mode file-name
Change the permission modes for the file file-name on the remote system to mode.

close Terminate the FTP session with the remote server, and return to the command interpreter. Any
defined macros are erased.

cr Toggle carriage return stripping during ascii type file retrieval. Records are denoted by a carriage
return/linefeed sequence during ascii type file transfer. When cr is on (the default), carriage
returns are stripped from this sequence to conform with the UNIX single linefeed record
delimiter. Records on non-UNIX remote systems can contain single linefeeds; when an ascii type
transfer is made, these linefeeds can be distinguished from a record delimiter only when cr is off.

delete remote-file
Delete the file remote-file on the remote machine.

debug [debug-value]
Toggle debugging mode. If an optional debug-value is specified, it is used to set the debugging
level. When debugging is on, ftp prints each command sent to the remote machine, preceded by
the string -->.

dir [remote-directory] [local-file]
Print a listing of the directory contents in the directory, remote-directory , and, optionally, placing
the output in local-file. If interactive prompting is on, ftp prompts the user to verify that the last
argument is indeed the target local file for receiving dir output. If no directory is specified, the
current working directory on the remote machine is used. If no local file is specified, or local-file is
−−, output comes to the terminal.

disconnect
A synonym for close.

form format
Set the file transfer form to format . The default format is file.

IRIX Release 6.2 77

ftp(1C)hh

get remote-file [local-file]
Retrieve the remote-file and store it on the local machine. If the local filename is not specified, it is
given the same name it has on the remote machine, subject to alteration by the current case, ntrans,
and nmap settings. The current settings for type , form, mode , and structure are used while
transferring the file.

glob Toggle filename expansion for mdelete, mget and mput. If globbing is turned off with glob, the
filename arguments are taken literally and not expanded. Globbing for mput is done as in csh(1).
For mdelete and mget, each remote filename is expanded separately on the remote machine and
the lists are not merged. Expansion of a directory name is likely to be different from expansion of
the name of an ordinary file: the exact result depends on the foreign operating system and FTP
server, and can be previewed by doing:

mls remote-files -

Note: mget and mput are not meant to transfer entire directory subtrees of files. That can be
done by transferring a tar(1) archive of the subtree (in binary mode).

hash Toggle hash-sign (#) printing for each data block transferred. The size of a data block is 1024
bytes.

help [command]
Print an informative message about the meaning of command. If no argument is given, ftp prints a
list of the known commands.

idle [seconds]
Set the inactivity timer on the remote server to seconds seconds. If seconds is omitted, the current
inactivity timer is printed.

lcd [directory]
Change the working directory on the local machine. If no directory is specified, the user’s home
directory is used.

ls [remote-directory] [local-file]
Print a listing of the contents of a directory on the remote machine. The listing includes any
system-dependent information that the server chooses to include; for example, most UNIX
systems produce output from the command ls −−lA. (See also nlist.) If remote-directory is left
unspecified, the current working directory is used. If interactive prompting is on, ftp prompts the
user to verify that the last argument is indeed the target local file for receiving ls output. If no
local file is specified, or if local-file is −−, the output is sent to the terminal.

macdef macro-name
Define a macro. Subsequent lines are stored as the macro macro-name; a null line (consecutive
newline characters in a file or carriage returns from the terminal) terminates macro input mode.
There is a limit of 16 macros and 4096 total characters in all defined macros. Macros remain

78 IRIX Release 6.2

ftp(1C)hh

defined until a close command is executed. The macro processor interprets $ and \ as special
characters. A $ followed by a number (or numbers) is replaced by the corresponding argument
on the macro invocation command line. A $ followed by an i signals that macro processor that
the executing macro is to be looped. On the first pass $i is replaced by the first argument on the
macro invocation command line, on the second pass it is replaced by the second argument, and so
on. A \ followed by any character is replaced by that character. Use the \ to prevent special
treatment of the $.

mdelete [remote-files]
Delete the remote-files on the remote machine.

mdir remote-files local-file
Like dir, except multiple remote files can be specified. If interactive prompting is on, ftp prompts
the user to verify that the last argument is indeed the target local file for receiving mdir output.

mget remote-files
Expand the remote-files on the remote machine and do a get for each filename thus produced. See
glob for details on the filename expansion. Resulting filenames are then processed according to
case, ntrans, and nmap settings. Files are transferred into the local working directory, which can be
changed with lcd directory; new local directories can be created with ! mkdir directory.

mkdir directory-name
Make a directory on the remote machine.

mls remote-files local-file
Like nlist, except multiple remote files can be specified, and the local-file must be specified. If
interactive prompting is on, ftp prompts the user to verify that the last argument is indeed the
target local file for receiving mls output.

mode [mode-name]
Set the file transfer mode to mode-name . The default mode is stream mode.

modtime file-name
Show the last modification time of the file on the remote machine.

mput local-files
Expand wild cards in the list of local files given as arguments and do a put for each file in the
resulting list. See glob for details of filename expansion. Resulting filenames are then be
processed according to ntrans and nmap settings.

newer file-name
Get the file only if the modification time of the remote file is more recent that the file on the
current system. If the file does not exist on the current system, the remote file is considered newer.
Otherwise, this command is identical to get.

IRIX Release 6.2 79

ftp(1C)hh

nlist [remote-directory] [local-file]
Print a list of the files of a directory on the remote machine. If remote-directory is left unspecified,
the current working directory is used. If interactive prompting is on, ftp prompts the user to
verify that the last argument is indeed the target local file for receiving nlist output. If no local file
is specified, or if local-file is −−, the output is sent to the terminal.

nmap [inpattern outpattern]
Set or unset the filename mapping mechanism. If no arguments are specified, the filename
mapping mechanism is unset. If arguments are specified, remote filenames are mapped during
mput commands and put commands issued without a specified remote target filename. If
arguments are specified, local filenames are mapped during mget commands and get commands
issued without a specified local target filename. This command is useful when connecting to a
non-UNIX remote computer with different file naming conventions or practices. The mapping
follows the pattern set by inpattern and outpattern . inpattern is a template for incoming filenames
(which may have already been processed according to the ntrans and case settings). Variable
templating is accomplished by including the sequences $1, $2, ..., $9 in inpattern. Use \ to prevent
this special treatment of the $ character. All other characters are treated literally, and are used to
determine the nmap inpattern variable values. For example, given inpattern $1.$2 and the remote
filename mydata.data, $1 would have the value mydata, and $2 would have the value data. The
outpattern determines the resulting mapped filename. The sequences $1, $2,, $9 are replaced by
any value resulting from the inpattern template. The sequence $0 is replace by the original
filename. Additionally, the sequence [seq1,seq2] is replaced by seq1 if seq1 is not a null string;
otherwise it is replaced by seq2. For example, the command nmap $1.$2.$3 [$1,$2].[$2,file] would
yield the output filename myfile.data for input filenames myfile.data and myfile.data.old,
myfile.file for the input filename myfile, and myfile.myfile for the input filename .myfile. Spaces
can be included in outpattern , as in this example:

nmap $1 |sed "s/ *$//" > $1

Use the \ character to prevent special treatment of the $, [,], and , characters.

ntrans [inchars [outchars]]
Set or unset the filename character translation mechanism. If no arguments are specified, the
filename character translation mechanism is unset. If arguments are specified, characters in
remote filenames are translated during mput commands and put commands issued without a
specified remote target filename. If arguments are specified, characters in local filenames are
translated during mget commands and get commands issued without a specified local target
filename. This command is useful when connecting to a non-UNIX remote computer with
different file naming conventions or practices. Characters in a filename matching a character in
inchars are replaced with the corresponding character in outchars . If the character’s position in
inchars is longer than the length of outchars , the character is deleted from the filename.

80 IRIX Release 6.2

ftp(1C)hh

open host [port]
Establish a connection to the specified host FTP server. An optional port number can be supplied,
in which case, ftp attempts to contact an FTP server at that port. If the auto-login option is on
(default), ftp also attempts to automatically log the user in to the FTP server (see below).

prompt Toggle interactive prompting. Interactive prompting occurs during multiple file transfers to
allow the user to selectively retrieve or store files. If prompting is turned off (default is on), any
mget or mput transfers all files, and any mdelete deletes all files.

proxy ftp-command
Execute an ftp command on a secondary control connection. This command allows simultaneous
connection to two remote FTP servers for transferring files between the two servers. The first
proxy command should be an open, to establish the secondary control connection. Enter the
command proxy ? to see other ftp commands executable on the secondary connection. The
following commands behave differently when prefaced by proxy:

open Does not define new macros during the auto-login process.

close Does not erase existing macro definitions.

get and mget Transfer files from the host on the primary control connection to the host on the
secondary control connection.

put, mput, and append
Transfer files from the host on the secondary control connection to the host on
the primary control connection.

Third party file transfers depend upon support of the FTP protocol PASV command by the server
on the secondary control connection.

put local-file [remote-file]
Store a local file on the remote machine. If remote-file is left unspecified, the local filename is used
after processing according to any ntrans or nmap settings in naming the remote file. File transfer
uses the current settings for type , format , mode , and structure.

pwd Print the name of the current working directory on the remote machine.

quit A synonym for bye.

quote arg1 arg2 ...
The arguments specified are sent, verbatim, to the remote FTP server.

IRIX Release 6.2 81

ftp(1C)hh

recv remote-file [local-file]
A synonym for get.

reget remote-file [local-file]
Reget acts like get, except that if local-file exists and is smaller than remote-file, local-file is presumed
to be a partially transferred copy of remote-file and the transfer is continued from the apparent
point of failure. This command is useful when transferring very large files over networks that are
prone to dropping connections.

remotehelp [command-name]
Request help from the remote FTP server. If a command-name is specified it is supplied to the
server as well.

remotestatus [file-name]
With no arguments, show status of remote machine. If file-name is specified, show status of file-
name on remote machine.

rename [from] [to]
Rename the file from on the remote machine, to the file to .

reset Clear reply queue. This command re-synchronizes command/reply sequencing with the remote
FTP server. Resynchronization may be necessary following a violation of the FTP protocol by the
remote server.

restart marker
Restart the immediately following get or put at the indicated marker. On UNIX systems, marker is
usually a byte offset into the file.

rmdir directory-name
Delete a directory on the remote machine.

runique Toggle storing of files on the local system with unique filenames. If a file already exists with a
name equal to the target local filename for a get or mget command, a .1 is appended to the name.
If the resulting name matches another existing file, a .2 is appended to the original name. If this
process continues up to .99, an error message is printed, and the transfer does not take place. The
generated unique filename is reported. Note that runique does not affect local files generated
from a shell command (see below). The default value is off.

send local-file [remote-file]
A synonym for put.

sendport
Toggle the use of PORT commands. By default, ftp attempts to use a PORT command when
establishing a connection for each data transfer. The use of PORT commands can prevent delays
when performing multiple file transfers. If the PORT command fails, ftp uses the default data

82 IRIX Release 6.2

ftp(1C)hh

port. When the use of PORT commands is disabled, no attempt is made to use PORT commands
for each data transfer. This is useful for certain FTP implementations that do ignore PORT
commands but, incorrectly, indicate they’ve been accepted.

site arg1 arg2 ...
The arguments specified are sent, verbatim, to the remote FTP server as a SITE command.

size file-name
Return size of file-name on remote machine.

status Show the current status of ftp .

struct [struct-name]
Set the file transfer structure to struct-name. By default stream structure is used.

sunique
Toggle storing of files on remote machine under unique filenames. Remote FTP server must
support FTP protocol STOU command for successful completion. The remote server reports a
unique name. Default value is off.

system Show the type of operating system running on the remote machine.

tenex Set the file transfer type to that needed to talk to TENEX machines.

trace Toggle packet tracing.

type [type-name]
Set the file transfer type to type-name . If no type is specified, the current type is printed. The
default type is network ASCII.

umask [newmask]
Set the default umask on the remote server to newmask. If newmask is omitted, the current umask
is printed.

user user-name [password] [account]
Identify yourself to the remote FTP server. If the password is not specified and the server requires
it, ftp prompts the user for it (after disabling local echo). If an account field is not specified, and
the FTP server requires it, the user is prompted for it. If an account field is specified, an account
command is relayed to the remote server after the login sequence is completed if the remote
server did not require it for logging in. Unless ftp is invoked with auto-login disabled, this
process is done automatically on initial connection to the FTP server.

IRIX Release 6.2 83

ftp(1C)hh

verbose Toggle verbose mode. In verbose mode, all responses from the FTP server are displayed to the
user. In addition, if verbose is on, when a file transfer completes, statistics regarding the efficiency
of the transfer are reported. By default, verbose is on.

? [command]
A synonym for help.

Command arguments that have embedded spaces can be quoted with quote (") marks.

ABORTING A FILE TRANSFER
To abort a file transfer, use the terminal interrupt key (usually <Ctrl-c>). Sending transfers are
immediately halted. Receiving transfers are halted by sending a FTP protocol ABOR command to the
remote server and discarding any further data received. The speed at which this is accomplished depends
upon the remote server’s support for ABOR processing. If the remote server does not support the ABOR
command, an ftp> prompt does not appear until the remote server has completed sending the requested
file.

The terminal interrupt key sequence is ignored when ftp has completed any local processing and is
awaiting a reply from the remote server. A long delay in this mode can result from the ABOR processing
described above or from unexpected behavior by the remote server, including violations of the FTP
protocol. If the delay results from unexpected remote server behavior, the local ftp program must be killed
by hand.

FILE NAMING CONVENTIONS
Files specified as arguments to ftp commands are processed according to the following rules.

1. If the filename −− is specified, the stdin (for reading) or stdout (for writing) is used.

2. If the first character of the filename is ||, the remainder of the argument is interpreted as a shell
command. ftp then forks a shell, using popen(3S) with the argument supplied, and reads (writes) from
the stdout (stdin). If the shell command includes spaces, the argument must be quoted; for example, "||
ls −−lt". A particularly useful example of this mechanism is: dir ||more.

3. Failing the above checks, if globbing is enabled, local filenames are expanded according to the rules
used in the csh(1) glob command. If the ftp command expects a single local file (for example, put),
only the first filename generated by the globbing operation is used.

4. For mget commands and get commands with unspecified local filenames, the local filename is the
remote filename, which can be altered by a case, ntrans, or nmap setting. The resulting filename can
then be altered if runique is on.

5. For mput commands and put commands with unspecified remote filenames, the remote filename is
the local filename, which can be altered by a ntrans or nmap setting. The resulting filename can then
be altered by the remote server if sunique is on.

84 IRIX Release 6.2

ftp(1C)hh

FILE TRANSFER PARAMETERS
The FTP specification specifies many parameters that can affect a file transfer. The type can be one of ascii,
image (binary), ebcdic, and local byte size (for PDP-10’s and PDP-20’s mostly). ftp supports the ascii and
image types of file transfer, plus local byte size 8 for tenex mode transfers.

ftp supports only the default values for the remaining file transfer parameters: mode , form, and struct.

OPTIONS
Options can be specified at the shell command line. Several options can be enabled or disabled with ftp
commands.

−−v (verbose on) Forces ftp to show all responses from the remote server, as well as report on data
transfer statistics.

−−n Restrains ftp from attempting auto-login upon initial connection. If auto-login is enabled, ftp checks
the .netrc file (see below) in the user’s home directory for an entry describing an account on the
remote machine. If no entry exists, ftp prompts for the remote machine login name (default is the
user identity on the local machine), and, if necessary, prompt for a password and an account with
which to login.

−−i Turns off interactive prompting during multiple file transfers.

−−d Enables debugging.

−−g Disables filename globbing.

THE .NETRC FILE
The .netrc file contains login and initialization information used by the auto-login process. It resides in the
user’s home directory. The following tokens are recognized; they can be separated by spaces, tabs, or
newlines:

machine name Identify a remote machine name. The auto-login process searches the .netrc file for a
machine token that matches the remote machine specified on the ftp command line or
as an open command argument. Once a match is made, the subsequent .netrc tokens
are processed, stopping when the end of file is reached or another machine or a
default token is encountered.

default This is the same as machine name except that default matches any name. There can be
only one default token, and it must be after all machine tokens. This is normally used
as:

default login anonymous password user@site

IRIX Release 6.2 85

ftp(1C)hh

thereby giving the user automatic anonymous ftp login to machines not specified in
.netrc. This can be overridden by using the −−n flag to disable auto-login.

login name Identify a user on the remote machine. If this token is present, the auto-login process
initiates a login using the specified name.

password string Supply a password. If this token is present, the auto-login process supplies the
specified string if the remote server requires a password as part of the login process.
Note that if this token is present in the .netrc file for any user other than anonymous, ftp
aborts the auto-login process if the .netrc is accessible by anyone besides the user (see
below for the proper protection mode.)

account string Supply an additional account password. If this token is present, the auto-login process
supplies the specified string if the remote server requires an additional account
password, or the auto-login process initiates an ACCT command if it does not. Note
that if this token is present in the .netrc file, ftp aborts the auto-login process if the .netrc
is accessible by anyone besides the user (see below for the proper protection mode).

macdef name Define a macro. This token functions like the ftp macdef command functions. A
macro is defined with the specified name; its contents begin with the next .netrc line
and continue until a null line (consecutive newline characters) is encountered. If a
macro named init is defined, it is automatically executed as the last step in the auto-
login process.

The error message

Error: .netrc file is readable by others.

means the file is ignored by ftp because the file’s password and/or account information is unprotected. Use

chmod go-rwx .netrc

to protect the file.

SEE ALSO
ftpd(1M).

BUGS
Correct execution of many commands depends upon proper behavior by the remote server.

An error in the treatment of carriage returns in the 4.2BSD UNIX ascii-mode transfer code has been
corrected. This correction may result in incorrect transfers of binary files to and from 4.2BSD servers using
the ascii type. Avoid this problem by using the binary image type.

86 IRIX Release 6.2

fx(1M)hh

NAME
fx − disk utility

SYNOPSIS
fx [−−l logfile] [−−r maxretries] [−−x] [drivetype[(ctrlr,unit)]]

fx −−c −−x [−−l logfile] [−−r maxretries] drivetype(ctrlr,unit)
[VERIFY] [INITIALIZE] [FORMAT]

DESCRIPTION
fx is an interactive, menu-driven disk utility. It detects and maps out bad blocks on a disk. It also displays
information stored on the label of the disk, including partition sizes, disk drive parameters, and the volume
directory.

An expert mode, available by invoking with the −−x flag, provides additional functions normally used
during factory set-up or servicing of disks, such as formatting the disk and creating or modifying the disk
label or drive parameters.

Warning: Unless you are very familiar with the parameters and partitions of your disks, you are strongly
advised not to invoke the expert mode of fx. A mistake in expert mode can destroy all the data on the disk.
When this option is used, fx also warns of discrepancies between the disk label and the parameters that are
normally used for the drive and asks if you want to fix them. You should usually NOT change these unless
you have all the data on the drive backed up and are prepared to restore it, because the changes frequently
result in a different partition layout.

The −−r retries option allows you to specify how many retries fx attempts when exercising the disk. If you
have persistent soft errors, −−r 0 usually allows fx to find the bad sectors and spare them. For SCSI disks,
see also the discussion of parameters in the section LABEL MENU.

The −−l logfile option (in the IRIX command version only) causes fx to log disk errors, blocks that are
forwarded, and other severe errors in the given file.

The −−c option (in the IRIX command version only) is designed for the use of programs and scripts; the −−x
option must also be given. When used, the VERIFY, INITIALIZE, or FORMAT (or any combination)
options must be given at the end of the command line, and the full drive specification must be given on the
command line. In this mode, no keyboard input (except keyboard interrupts) is accepted, and any error
causes the program to exit with a non-zero value, following an error message. A warning message is
printed at startup that destructive operations will follow, with no subsequent confirmation required.
Additionally, it is considered a fatal error if the drive contains any mounted filesystems, or is part of a
mounted logical volume filesystem. The VERIFY option is the equivalent of /exercise/complete −−a, and
overwrites any existing data on the drive. The INITIALIZE option creates only the volume header and
partition table; this is the minimum that needs to be done for a disk drive to be usable. The FORMAT
option is the equivalent of format with the current parameters (all data on the drive is destroyed). All the
above options create a new partition table (suitable for an option disk) and volume header, if necessary.

IRIX Release 6.2 87

fx(1M)hh

USING FX
There are two versions of fx. One runs in the standalone environment and must be used when the system
disk is modified; it can be used for most other purposes as well, but may be less convenient. The jag (VME
SCSI), rad (SCSI-attached RAID), and fd (floppy) devices are not supported in the standalone version; the −−l
option is also not supported in standalone.

The other version runs as an IRIX command and is normally used by the superuser. While some features
can be used by an ordinary user if the disk device permissions permit, other features (typically formatting
and bad block management) have permission checks within the various drivers that can only be used by
the super user. A notable exception is that as shipped, all floppy-related fx features can be used by any
user. When used on a mounted disk, or a disk whose partitions are part of mounted logical volume, this
version warns you not to do anything destructive, but does not otherwise prohibit it.

A copy of the standalone version is normally kept in /stand/fx and can be invoked when the system is not
running by giving the following command at the PROM Command Monitor:

boot stand/fx

A standalone fx is provided in the /stand directory of CD-ROM discs containing software distributions with
install tools, and can be invoked by the Command Monitor command:

boot -f dksc(ctlr,unit,8)sashCPU dksc(ctlr,unit,7)stand/fx.CPU

(Use CPU, only for IP17.) Other systems use the ARCS PROM (R4K Indigo, Indigo2, Indy, Onyx,
Challenge):

boot -f dksc(ctlr,unit,8)sashARCS dksc(ctlr,unit,7)stand/fx.ARCS

For R8000 and other systems with 64-bit ARCS PROM (e.g., Power Challenge, Power Onyx, and Power
Indigo2):

boot -f dksc(ctlr,unit,8)sash64 dksc(ctlr,unit,7)stand/fx.64

where ctlr is the controller number (usually 0), unit is the SCSI id of the CD-ROM drive.

fx can also be booted from tape by giving this command at the PROM Command Monitor:

boot -f tpsc(ctlr,unit)fx.CPU

or

boot -f tpsc()fx.ARCS

When the standalone version is booted without the −−x option, it prompts to see if you wish to use the
expert mode, because it is not uncommon to forget to specify it.

88 IRIX Release 6.2

fx(1M)hh

The command version of fx is invoked by name like any IRIX command.

On invocation, fx prompts for a disk controller type, with a default of the root disk controller type.
Recognized controller types are dksc for SCSI drives, rad for SCSI attached RAID drives, jag for SCSI drives
connected to the Jaguar VME SCSI controller, and fd for floppy drives. Note that jag , fd, and rad are not
available in the standalone version and that not all types of systems support all of the above drive types.

Controller number is normally 0 unless your system has more than one controller and you wish to work on
disks attached to an additional controller (1, 2, and so on). Drive number depends on controller type.
Non-SCSI drives are numbered from 0 to 1 (or 0 to 3, if the controller can handle 4 drives), with drive 0 on
controller 0 normally used as the root disk. SCSI drives are numbered from 1 to 7 or from 1 to 15
depending on the type of system, with drive 1 on controller 0 normally used as the root disk. fx next
prompts for the drive type, with a default of the drive type stored in the disk label.

The controller type, controller number, and drive number as well as drive type can be given as command
line parameters, bypassing the interactive questions just described. The format is (drive_type is unused for
SCSI drives):

fx "controllertype(controller_number, drive_number)"

For example:

fx "dksc(0,1)"

The quotes are necessary in the first argument in the command version, because parentheses are shell
special characters, and in the second because the drive name contains a space. For floppy disk drives, you
are also prompted for the density to use.

Once controller type, controller number, drive number and drive type are selected, fx issues a diagnostic
command to the drive. For SCSI drives, the drive information from the inquiry command is displayed,
including the firmware revision; for other drive types, the previously assigned type from the volume
header is displayed. A controller or drive self test is performed, followed by sanity checks on the partition
layout. If any ’major’ differences are found, you are asked if you want to use the existing values. It is
almost always correct to keep the existing values, unless you are going to initialize the disk anyway.

If it appears that no valid volume header is present, fx asks if you want to use the defaults; you can answer
no if you plan to set up custom parameters or partitions.

fx then enters its main menu. Menu items can be selected by typing the least unambiguous prefix (the
portion included between [and]) or the full name. A menu item can be an action (for example, exit) or the
name of a submenu (for example, badblock). Submenus have a trailing / to indicated that they are
submenus.

IRIX Release 6.2 89

fx(1M)hh

Selecting a submenu name causes that submenu to be displayed, and items from it can be selected. To
return to a parent menu from a submenu, enter two dots (..). The menus are organized as a hierarchy, so
you can go up two levels by typing ../.., or use a command several levels down by separating each level by
a /. By typing a command pathname, such as

/label/show/partition

a command can be executed from any point in the menu hierarchy. Similarly, typing the full pathname of
any menu moves you to that menu (this includes typing / for the top level).

To obtain help for the items on the current menu, enter a question mark (?) at the prompt. Many of the
functions listed below have options to modify their actions; to obtain more information about them than
the summary, enter ? item where item can be either the least unambiguous prefix, or the full name. Most of
the (non-default) options are not listed in this document.

To exit from fx, select exit at the main menu; a shorthand for exiting from any level is /exit. Entering /..
from any menu allows you to select a different disk without having to exit and restart; the normal prompts
occur if modified parameters are not yet committed to disk.

Once the main menu is reached, fx catches interrupts: an interrupt stops any operation in progress but
does not terminate fx itself. The current operation executing in the disk driver (if any) completes first; this
is most notable when formatting a SCSI disk, because that is a single operation lasting many minutes.

FX PROMPTS
A general note about prompts: when a prompt with the word no or the word yes appears at the end,
simply pressing <Enter> accepts that value. For other prompts that ask a question, you must answer either
yes or no. For prompts requesting numeric values, you can usually reply with a decimal number, or a hex
number (a leading 0x). If a number is displayed at the end of the prompt, pressing <Enter> accepts that
value. It is usually the current value, although it is sometimes a reasonable default.

In many cases, if you are unsure of what your choices are, typing a ? gives you a short description of your
choices.

TOP LEVEL MENU
The top level fx menu contains the following choices:

exit Exits from fx. If changes have been made to the copy fx keeps of the disk label and this has not
been written to the disk, a prompt gives the option to write it to disk.

badblock Selects the menu of operations dealing with bad block handling.

debug Selects the menu of debug functions.

90 IRIX Release 6.2

fx(1M)hh

exercise Selects the menu of functions for analyzing the disk surface to find bad blocks.

label Selects the menu of functions for reading (and, in expert mode, modifying) the disk label.

repartition
Allows simple repartitioning of disks. A disk can be easily partitioned into a root (system) or
option (all of usable disk in one partition) disk. The size of a single partition can be easily
modified, with the adjacent partitions (if any) resized to match.

The remaining options appear only in expert mode.

auto Initializes a new disk. The disk is formatted, a label is created and written to it, and it is
exercised to detect and map out bad blocks.

format Formats the disk, erasing all information on the disk. With SCSI disks, the whole disk is
formatted in a single un-interruptible operation, lasting 5-25 minutes, depending size and type.
(It is very rare that a low level format like this is necessary on a SCSI disk.) The rad drives
should not be formatted using this command, see raid(1M) for more information.

BADBLOCK MENU
The list of bad blocks is maintained by the SCSI controller/formatter hardware on the disk drive; it can be
interrogated and altered but does not appear in the user-readable part of the disk. Note that rad drives do
not support badblock forwarding.

The badblock menu contains the following choices:

addbb Allows new bad blocks to be added to the badblock list. Blocks can be identified either by a
single blocknumber or as cylinder/head/sector. To terminate adding bad blocks, enter two
dots (..); this returns to the badblock menu. In the SCSI case, an entered bad block is
immediately inserted in the on-disk list maintained by the SCSI controller/formatter. There is
no way to remove an added bad block from a SCSI disk without reformatting the whole disk.

You are asked if you want to try and preserve the data. If the disk contains valuable data,
answer yes; if the disk is blank, answer no. There are two applications for this command: to
allow any mistake made during initial bad block entry to be corrected, and to move data back
off a replacement track that is also going bad.

In the second case, be certain to use dd(1M) to save the data onto another disk, delete the
badblock forwarding (deletebb orig), add the replacement track to the badblock list (addbb
replacement), update the forwarding (forward), mark the original block as bad (addbb orig),
update the forwarding again (forward), and use dd(1M) to replace the saved data. This
procedure is necessary to ensure data integrity, because data may be corrupted when moving it
back onto the original defective track.

IRIX Release 6.2 91

fx(1M)hh

showbb Displays the current badblock list. It is obtained by interrogating the SCSI drive. In this case,
usually the physical location of the bad sectors is displayed. Some SCSI drives can also display
the logical block number (showbb −−l) or the bytes from index format (showbb −−b). If new bad
blocks develop during the life of the system, it is necessary to add these new bad blocks to the
badblock list.

Typically, the disk driver prints error messages on the console when it encounters a bad block. These
messages are also normally logged to the system log file /var/adm/SYSLOG. The error messages gives the
location of the bad block, either as a single block number or as cylinder, head, and sector (in a form such as
chs: 123/4/5), depending on the controller type. The disk is identified by its special filename; see dks(7M),
jag(7M), or rad(7M)

The SCSI disk driver prints bad block numbers relative to the start of the partition it is accessing, as well as
the absolute block number. It is the absolute block number that must be used when adding a bad block.

Note: fx attempts to save data when mapping out bad blocks by re-reading the old data a number of times.
In all cases, it is strongly recommended to make a backup of the disk before proceeding with any bad block
operations. Bad block mapping is NOT supported for floppy disk drives.

To manually map out a bad block, follow the procedures below. Unless you are completely sure that a
particular block or track is bad, it is often a good idea to use the exercise function to locate and
automatically map out the bad blocks. In some cases, a bad block may be reported that was the first block
of a read or write request and not the block that is actually bad. For this reason, the exercising routines
attempts to read each block in a failed I/O individually to find the bad blocks.

Persistent soft errors may not be found by the exerciser and may require using the manual procedure. For
SCSI drives, you may wish to reduce the number of retries performed by the drive itself to 0, if the drive
supports it, so that fx is more likely to find and forward the bad block. See the section on parameters. The
default exerciser function is to do a read-only scan of the entire disk surface. The exercising method only
adds blocks that are unrecoverable. Using the badblock menu, you can add any block, whether it is bad or
not. For SCSI drives, there is no way to remove a block from the badblock list without re-formatting the
drive. Thus, the data in any block that is mistakenly entered may be permanently lost, if the original data
could not be read. A read-only exercise pass may not work if the block fails on writes only, and the disk
contains important data, so that a write-read-compare pass isn’t practical. In this case, you may need to
manually map the bad blocks. However, if the disk is backed up and can be restored after the exercise is
complete, a write-compare exercise pass finds and automatically maps bad blocks.

The procedure for forwarding bad blocks is divided into two parts: for SCSI disks (both dksc and jag , but
not rad) and for other types. SCSI disks are much simpler, because the badblock map is maintained by the
drive itself, rather than by the driver. rad devices do not support badblock forwarding.

92 IRIX Release 6.2

fx(1M)hh

To enter new bad blocks, select the addbb item. Then enter the location of the bad block (fx accepts either a
single blocknumber or a cylinder/head/sector specification). More than one bad block can be entered.
When you have finished entering, terminate the entries by entering two dots (..). The updated badblock list
must be saved to disk and the new bad blocks mapped out. Select the forward option on the badblock
menu to do this.

For SCSI disks, bad blocks are mapped out as soon as they are entered by the addbb function. Nothing
more needs to be done. All SCSI bad blocks are entered by logical block number relative to the start of the
disk, using the addbb function. (Driver messages about bad blocks typically give two numbers, where the
smaller one is relative to the start of a partition, and the larger is relative to the start of the disk.) Enter as
many bad blocks as you want, one per line, ending the list by typing .. on a line by itself. The showbb
function displays the complete list of bad blocks. The −−m option can be used to show only the
manufacturer’s bad block list in one of several formats, which vary from drive to drive. The default and
the most common format is to display by cyl/head/sec, even though blocks are entered by logical block
number.

All disk error messages are logged to the system log /var/adm/SYSLOG by default. You should examine the
log periodically. If the same blocks show up repeatedly, you should add them to the badblock list with the
exercise method. If necessary, use the badblock menu. It is best to replace a block that is going bad before it
becomes unreadable.

FX LABEL FUNCTIONS
fx can display the information in the various parts of the disk label. To do this, select the label option at the
main menu. Then select the readin function, and select the parts of the label you wish to display. This
reads in the information from the disk. This choice is not present for SCSI disks, because all of the drive
related label information is read from the embedded drive controller. Return to the label menu and select
show. The various parts of the label can be selected for display.

When expert mode is used, the label values can be changed. Some of the values that can be changed are
also sent directly to the drive or controller. Changing some parameters may require reformatting the drive
before it can be used.

LABEL MENU
This menu gives access to functions for displaying and, in expert mode, modifying information contained
in the disk label. It contains the following items:

readin Allows part or all of the label to be read in from the disk. Selecting this item brings up a menu
of the accessible parts of the label. (These are described in detail below.) Selecting a part causes
that part to be read in from disk; there is also an all option, to read in all parts at once. Note
that this is normally done automatically before the first menu is displayed.

IRIX Release 6.2 93

fx(1M)hh

show Allows display of parts of the label. As with readin, it brings up a menu of the label parts,
allowing selection of the part to be displayed.

The remaining items appear only in expert mode, because they offer the possibility of changing data on the
disk.

sync Writes the in-core copy of the disk label back to disk, as well as changing the parameters in the
disk driver.

set Allows parts of the label to be modified. As for readin, it brings up a menu of the label parts,
allowing selection of the part to be modified. The current values are given as the default in the
prompts, so simply pressing <Enter> for every prompt leaves the values unchanged. For SCSI
drives, the drive parameters are divided into geometry and parameters menus. Changes to the
geometry values require that the drive be reformatted, while other changes do not require
reformatting of the drive.

create Discards existing label information, and creates new label information. For SCSI drives, the
information used to create the label is obtained from the drive by modesense commands. For
other drive types, the information comes from tables compiled into fx, unless the other choice
was selected for the drive type, in which case the user-entered data is used. This is normally
used only for attempting to repair a damaged disk label (or to recover from major errors during
set). As with readin, it brings up a menu of the label parts, allowing selection of the part to be
worked on.

PARTS OF THE DISK LABEL
A disk label contains the following parts:

parameters
This is information used by the disk controller, such as disk geometry (for example, number of
cylinders), and format information (for example, interleave). The parameters actually used
depend on the type of controller. For SCSI disks, there is an additional menu called geometry,
and changes to values on the parameters menu do not require a reformat of the drive; changes
to those on the geometry menu do.

These values do not need to be changed in normal use. A full discussion of the disk controller
and disk drive is beyond the scope of this document. The reader should refer to the
manufacturer’s documentation. Some parameters affect only the label, others are passed on to
the controller or drive. For SCSI drives, the parameters are sent to the disk with the save-
parameters bit set, so that they remain in force even if the system is restarted.

When exercising SCSI drives, and attempting to find blocks with soft errors, it may be advisable
to set the number of retries performed by the drive to 0, so that intermittent errors can be found.
You may also want to disable ECC error correction on the drive. Not all drives allow you to
change the number of retries. If you do change it during the exercise pass, you probably want

94 IRIX Release 6.2

fx(1M)hh

to restore the old value before exiting.

geometry This menu exists only for SCSI disks. A change to any of the parameters on this menu requires
reformatting the drive before it can be used. Not all drives support changing all geometry
items. Some changes also affect drive capacity. For some drives this capacity change is
reflected immediately in values read from the drive, while for others the new values are not
returned until after the drive is formatted.

partitions The disk surface is divided for convenience into a number of different sections called partitions,
which are used for various purposes. (See intro(7) for more details). When the operating
system is accessing the disk, its drivers make the connection between the special filename and
the physical disk partition, using information from the partition table in the disk label.

Even if not started in expert mode, the drive partitions can be displayed and changed by using
the repartition menu; see the section CHANGING DISK PARTITIONS.

There can be up to 16 partitions on a disk, numbered 0 to 15 (though not all need be present).
Partitions of 0 length (0 or -1 for backwards compatibility) are not normally displayed, because
they are logically not present. Each partition is described by its starting block on the disk, its
size in blocks, and a type indicating its expected use (for example, filesystem, disk label, swap,
and so forth). The MAKEDEV(1M) program creates only the entries in /dev for the SGI standard
partitions (0, 1, 6, 7, vh (8), and vol (10)). If you create and use other partitions, you must create
entries for them in /dev with the mknod(1M) command. Older versions of IRIX removed these
non-standard entries in /dev on each software installation; this is no longer done.

For some drives with variable geometry, a partition layout is created that may result in either
fewer or more logical cylinders being used than the drive actually has. Whether the value is
larger or smaller depends on how the drive reports the number of sectors per track. It is
sometimes reported as an average (that may be rounded up or down) and sometimes as the
smallest number of sectors on any track.

sgiinfo This contains information kept for administrative purposes: the type of disk drive and its serial
number. For labels created under IRIX 4.0, it also includes the version of fx that was used to
create the label (and presumably to do the drive setup).

bootinfo This contains information used by the system PROMs during a normal system boot. It specifies
the root partition, the name of the file on the root partition to boot, and the swap partition.
Normal defaults for these are: unix for the bootfile, 0 for the root partition, and 1 for the swap
partition.

directory Some system files are normally kept in the label area (volume header) on the disk. These are
files used in standalone operations such as the standalone shell sash and sometimes the
diagnostic program ide, depending on system type. The directory is a table in the label that
enables these files to be located. The show submenu of the label menu allows the directory of

IRIX Release 6.2 95

fx(1M)hh

these files to be displayed.

The files in the disk label are manipulated by the use of dvhtool(1M). fx does not provide
facilities for adding or deleting files. It writes the sgilabel file when it has changed and the user
requests it. Also note that using create/directory clears the directory.

CHANGING DISK PARTITIONS
The top level menu repartition is provided in both the modes. In the expert mode, one additional function
is provided. The expert function is simply an alternate method of reaching the /label/set/partition
function, provided for ease of use. You need to use this function if you want to create or modify other
partitions that are not normally used.

When this menu is entered, the current partition layout is displayed, as well as the total drive capacity. For
all of the non-expert choices, you are asked if you really want to change the partition layout after choosing
the function. You are warned that any existing data on the drive could be lost if the partitions are changed.
Remember that you must normally use the mkfs(1M) command to create filesystems on partitions before
you can install software or restore files onto them.

The rootdrive function creates a drive with the standard partitioning for a system (or root) drive. This
function should be used if you are setting up a new drive or changing an option drive into a root drive.

The optiondrive function creates a drive with all of the usable area in a single partition (partition 7). Some
space is still allocated to the volume label.

For dksc only, after a partitioning scheme is selected, you are prompted for the filesystem type (xfs or efs)
that you wish to assign to the data partitions. For the rootdrive and optiondrive options, if xfs is selected,
you are asked if you wish to create an XFS log partition. If you answer yes, fx makes partition 15 into a 4
megabyte xfslog partition. This is used by xlv(7M) for the log subvolume.

The resize function allows you to resize any of the standard partitions (root, swap, usr, xfslog, and entire).
After you select this function, a message is shown, reminding you that after you finish resizing a partition,
the other partitions are resized to match (if necessary). You are shown the changes and given a chance to
reject them, before they are committed to the disk, unless no changes were made.

The default partition presented depends on whether the drive appears to be a system (root) drive, or an
option drive. For option drives, the default is entire. For system drives, the default is the swap partition.

After choosing the partition, you are shown the current values for the partition and asked to choose the
method of partitioning the drive. The choices are to resize by megabytes, blocks, cylinders, or as a
percentage of the entire disk. The default is megabytes. Next you are shown the maximum allowable size
and asked to enter the new size.

96 IRIX Release 6.2

fx(1M)hh

If you made a change, the new partition layout of the drive is shown. You are asked to confirm that you
want to use it (with a default of no). If you accept it, the new partition layout is immediately written to the
drive and driver.

EXERCISE MENU
This gives access to functions intended for surface analysis of the disk to find bad blocks. Only read-only
tests are possible in normal (non-expert) mode. Destructive read-write tests are allowed in expert mode.
For all choices except random, I/O is done one cylinder at a time, unless an error is found. If an error is
found, the I/O is repeated one sector at a time to find the actual block that is bad.

For each unrecoverable error that is found, the failing block is added to the badblock list. The number of
retries performed by fx itself defaults to 3. It may be set to any number, including 0, using the −−r option.
Most drivers, and some drives, do retries before reporting an error. For most SCSI drives, the number of
retries performed can be set by using the /label/set/parameters menu. By using the stoponerror menu
selection, you can have fx stop and ask you if you want to map the bad block. Whether you answer yes or
no, you are asked if you want to continue exercising. This can be useful when trying to determine how
many errors a disk has before you commit yourself to mapping the bad blocks.

butterfly Invokes a test pattern in which successive transfers cause seeks to widely separated areas of the
disk. This stresses the head positioning system of the drive and sometimes finds errors that do
not show up in a sequential test. It prompts for the range of disk blocks to exercise, number of
scans to do, and a test modifier. Each of the available test patterns can be executed in a number
of different modes (read-only, read-write, and so on) that are described below.

errlog Prints the total number of read and write errors that have been detected during a preceding
exercise, showing both soft and hard errors. If the −−l option is used, the blocks on which errors
occurred are also reported. Soft errors are those errors for which a driver reported an error, but
fx was able to successfully complete the I/O on a retry. Blocks with soft errors are not
forwarded.

random Invokes a test pattern in which the disk location of successive transfers is selected randomly. It
is intended to simulate a multiuser load. Like the butterfly test, it prompts for range of blocks
to exercise, number of scans, and modifier. This does random sized I/Os (from one block to the
cylinder size) as well as seeking to random locations on the disk. It is useful for finding
problems on drives with seek problems and with errors in the caching logic or hardware.

sequential
Invokes a test pattern in which the disk surface is scanned sequentially. As with the butterfly
test, it prompts for: range of blocks to exercise, number of scans, and modifier.

stop_on_error
Toggles whether fx proceeds automatically when errors are detected. The default is automatic.
If stop is set, you are asked on each error whether you want to continue or not. If you continue,
you are asked if you want to add the failing block to the badblock list. This can be useful if you

IRIX Release 6.2 97

fx(1M)hh

want to find all the failing bad blocks but not actually add them to the badblock list.

The following items appear only in expert mode, because they are concerned with destructive (write) tests.

settestpat Allows you to specify the pattern of data that to be used in tests that write to the disk to be
created. Up to 4K bytes of pattern can be set, byte by byte. Each byte can be entered as a
decimal or hex value (with a leading 0x). Enter .. when you are done entering the pattern. The
pattern is repeated as many times as necessary to fill the buffer. The default is a random
pattern 1023 bytes long ensuring that few, if any sectors have the same data. When used with
the write-compare test, this helps find drives that have hardware or firmware problems causing
them to write data to the wrong location on the drive.

showtestpat
Displays the pattern of data that is used in tests that write to the disk. This can be changed with
settestpat.

complete Causes a write-and-compare sequential test to be run on the entire disk area; all data on the
drive is lost.

The butterfly, random, and sequential tests prompt for a modifier that determines the type of transfer that
occurs during the test patterns. Possible modifiers are:

rd-only Performs reads only. The value of read data is ignored. The test detects only the success or
failure of the read operation.

rd-cmp Causes two reads at each location in the test pattern. The data obtained in the two reads is
compared. If there is a difference, the blocks that differ are considered bad.

seek Causes each block in the test pattern to be read (no writes) separately. It is used to verify
individual sector addressability. (This is a rather time-consuming operation!)

The following modifiers are presented and legal only in expert mode, because they cause writing to the
disk, thereby destroying existing data. Be absolutely sure you have backed up any data you care about
before using them. You are given one last chance to abort after you have specified all the parameters to
use.

wr-only Performs writes only. Written data is not re-examined. The test detects only the success or
failure of the write operation. Certain kinds of media errors cause write errors, but not read
errors.

wr-cmp Performs a write, read, compare operation. If any of the three operations fail, the block is
considered to be bad. Data miscompares are reported differently than I/O errors, but a data
miscompare still causes the block with the miscompare to be added to the badblock list. This is
the most thorough test and highly recommended after formatting a drive.

98 IRIX Release 6.2

fx(1M)hh

DEBUG FUNCTIONS
fx has a menu of disk debug functions. For safety reasons, most are not present in the normal (non-expert)
mode, where only nondestructive functions are available. In the expert mode, disk blocks can be written as
well as read. For SCSI disks, the drive parameters (modesense pages) can be displayed and individual
bytes altered and sent to the disk via modeselect commands.

A function that can be useful is the ability to directly read and display the contents of any block on the disk.
An internal memory buffer is provided as a source or destination for data; the contents of this buffer can be
displayed and edited.

For SCSI drives, there are also functions to display the drive capacity, to display the modesense page
values, and to allow setting of modeselect page values (as decimal, octal, or hex values, rather than
symbolicly, as is normally done with the label functions).

cmpbuf Allows blocks of data in different areas of the buffer to be compared; written and read-back
data, for example. It prompts for the starts of the two areas to be compared (relative to the
beginning of the internal buffer) and for the length of comparison.

dumpbuf Allows display of the contents of the buffer. It prompts for start address (relative to beginning
of buffer), length to display and display format: bytes, (2-byte) words, or (4-byte) longwords.
Data is displayed in the hex format selected and also in character format with non-printable
characters represented by dots.

editbuf Allows individual buffer locations to be modified in byte, 2-byte or 4-byte units.

fillbuf Allows sections of the buffer to be filled with a repeating pattern. It prompts for start location
and length to fill and for a string of data to use as the fill pattern. (Unfortunately, only a string
is accepted. It is not possible to enter hex data. The buffer can be cleared by entering a null
string.)

number Accepts a decimal number, and prints it in octal and hex.

readbuf Allows disk blocks to be read into the internal buffer. It prompts for buffer address (relative to
start of buffer), and number of blocks to read. Up to 100 blocks can be read in one operation.
The disk block address from which the read occurs is maintained as an internal variable by fx.
It can be set with the seek function.

seek Sets the internal fx variable that holds the source or destination blocknumber on disk for
transfers between disk and the internal buffer. A prompt of the current value is given. It does
not cause any I/O, just sets the block number for the next I/O.

The remaining functions appear only in expert mode, because they are either potentially destructive (for
example, writebuf) or of little interest to the normal user.

IRIX Release 6.2 99

fx(1M)hh

writebuf Writes blocks from the internal buffer to the disk. It prompts for source buffer address and
number of blocks to write. The disk address block for the write is taken from the internal fx
variable set by seek, as for readbuf.

showcapacity
Appears only for SCSI drives. It shows the output of the SCSI readcapacity command. This can
be used to verify that the partition layout chosen is valid (fx verifies this automatically, but it
can still be useful to see this). Drives with variable geometry can have a partition layout that
does not use all of the drive. The partitions should never extend past the value displayed by
showcapacity. Note that after geometry on SCSI drives is changed, the drive may not report
any capacity changes until after a format is done.

showpages
Appears only for SCSI drives. It shows which modesense pages (drive parameters) the drive
supports, their length, and, with the −−l option, their current values. The −−c and −−d options
display the changeable and default values, respectively. This is sometimes useful when
attempting to connect a drive that has features not already supported by fx.

setpage Appears only for SCSI drives. It allows you to set the values of a modeselect page (and
optionally the block descriptor) on a byte by byte basis. As with other fx input, numbers are
decimal by default, octal with a leading 0, or hex with a leading 0x. Trailing bytes not entered
are treated as 0. The values are masked with the changeable values; the masked values are
displayed before they are set. There are no sanity checks on the values entered (other than that
they must fit in a byte). Therefore it is possible to render a drive unusable by changing values
this way. This function is intended for those who understand the meanings of the values in the
modeselect pages, primarily when dealing with new types of drives. It is sometimes possible to
recover from mistakes by doing /label/creat/all, following by /format.

INITIALIZING NEW DISKS
fx can be used to initialize disk drives that have not been previously formatted. The new drive to be
initialized MUST be physically connected to the system.

Warning: Do not connect or disconnect non-RAID drives while the system is powered up, because this
could damage the drive or controller. On SCSI drives, it could also cause the termination power fuse to fail
(on having them; some have solid state replacements), resulting in apparently random SCSI errors.

The disk drives in a RAID brick can be removed and added while the system is up and accessing the RAID.
Initialization of a RAID should be done using the RAID administrative utility raid(1M).

Take care that termination of the new drive is correct. This varies with the drive type and system type. On
systems with SCSI drives and an external terminator pack, none of the drives should be terminated unless
they are external to the system; in that case, only the device at the end of the SCSI bus should have
terminators. Be sure that the drive ID does not conflict with that of any other drive connected to the same
controller. For all systems shipped by SGI, the controller (host adapter) SCSI ID is 0. Many other

100 IRIX Release 6.2

fx(1M)hh

manufacturers’ systems are shipped with the controller as ID 7, so be sure to check the ID when moving
drives from one type of system to another.

With the new drive connected, bring the system back up to normal multiuser mode, and invoke fx in expert
mode (the −−x option). Enter the controller type and number, and the drive number for the new drive. For
SCSI drives, the drive type is determined automatically by an inquiry operation on the drive.

SCSI drives determine all of the information about the drive by using the modesense command, after
determining which modesense pages the drive supports. If the drive supports the SCSI 2 pages, they are
used. Otherwise, the CCS extensions to SCSI 1 are assumed (as well as some defacto standard vendor-
specific pages). If none of the geometry pages are supported, fx chooses some reasonable set of defaults,
such that most disks should be able to be used to their full capacity. Use of drives not qualified by Silicon
Graphics Inc., is not recommended.

Once drive type is identified, select the auto item on the main menu. This formats the drive, scans it for
bad blocks, and places a label on it. On completion, exit from fx. The drive is now ready for use.

It is usually necessary to make filesystems on the drive and to mount these filesystems before the drive can
be used. See mkfs(1M), Add_disk(1) (for SCSI dksc drives only), and mount(1M).

Note: Use of auto on SCSI drives formats the drive with the current drive parameters. Older versions
used the manufacturer’s default parameters, which did not always match the parameters as shipped by
Silicon Graphics. The default parameters work, but may not give you the same drive capacity or
performance as those shipped by Silicon Graphics.

FILES
/dev/rdsk/jag*, /dev/rdsk/dks*, /dev/rdsk/fds*, /dev/rdsk/rad*

SEE ALSO
Add_disk(1), MAKEDEV(1M), dvhtool(1M), mknod(1M), mount(1M), dks(7M), jag(7M), rad(7M),
smfd(7M), vh(7M).

IRIX Release 6.2 101

growfs(1M)hh

NAME
growfs − expand a filesystem

SYNOPSIS
growfs [−−s size] special

DESCRIPTION
growfs expands an existing Extent Filesystem, see efs(4). The special argument is the pathname of the device
special file where the filesystem resides. The filesystem must be unmounted to be grown, see umount(1M).
The existing contents of the filesystem are undisturbed, and the added space becomes available for
additional file storage.

If a −−s size argument is given, the filesystem is grown to occupy size basic blocks of storage (if available).

If no size argument is given, the filesystem is grown to occupy all the space available on the device.

growfs is most often used in conjunction with logical volumes; see lv(7M) and xlv(7M). However, it can
also be used on a regular disk partition, for example, when a partition has been enlarged while retaining
the same starting block.

To grow XFS filesystems, use the xfs_growfs(1M) command.

PRACTICAL USE
Filesystems normally occupy all of the space on the device where they reside. In order to grow a
filesystem, it is necessary to provide added space for it to occupy. Therefore there must be at least one
spare new disk partition available.

Adding the space is done through the mechanism of logical volumes.

If the filesystem already resides on a logical volume, the volume is simply extended using mklv(1M).

If the filesystem is currently on a regular partition, it is necessary to create a new logical volume whose first
member is the existing partition, with subsequent members being the new partitions to be added. Again,
mklv is used for this.

In either case growfs is run on the logical volume device, and the expanded filesystem is available for use on
the logical volume device.

DIAGNOSTICS
growfs expands only clean filesystems. If any problem is detected with the existing filesystem, the
following error message is printed:

growfs: filesystem on <special> needs cleaning.

If a size argument is given, growfs checks that the specified amount of space is available on the device. If
not, it prints the error message:

102 IRIX Release 6.2

growfs(1M)hh

growfs: cannot access <size> blocks on <special>.

growfs works in units of the cylinder group size in the existing filesystem. To usefully expand the
filesystem there must be space for at least one new cylinder group. Failing this, it prints the error message:

growfs: not enough space to expand filesystem.

COMPATIBILITY NOTE
growfs can expand a filesystem from any IRIX release, and filesystems can be expanded repeatedly.
However, once a filesystem has been grown, it is NOT possible to mount it on an IRIX system earlier than
release 3.3, and a pre-3.3 fsck does not recognize it.

SEE ALSO
mkfs(1M), mklv(1M), xfs_growfs(1M), lv(7M), xlv(7M).

IRIX Release 6.2 103

hinv(1M)hh

NAME
hinv − hardware inventory command

SYNOPSIS
hinv [−−v] [−−s] [−−c class] [−−t type] [−−d dev] [−−u unit]

DESCRIPTION
hinv displays the contents of the system hardware inventory table. This table is created each time the
system is booted and contains entries describing various pieces of hardware in the system. The items in
the table include main memory size, cache sizes, floating point unit, and disk drives. Without arguments,
the hinv command displays a one line description of each entry in the table.

The hinv options are:

−−v Gives a more verbose description of some items in the table.

−−c class Displays items from class. classes are processor, disk, memory, serial, parallel, tape, graphics,
network, scsi, audio, iobd, video, bus, misc, compression, vscsi, and display.

−−t type Displays items from type . types are cpu, fpu, dcache, icache, memory, qic, a2, and dsp.

−−s When used with either the −−c or −−t options, −−s suppresses output.

−−d dev Restricts the output to a kind of device among those currently present in the system. The
devices that currently support this option are cdsio, aso, ec, et, ee, enp, fxp, ep, hy, ipg, xpi,
fv, gtr, mtr, and atm.

−−u unit Requests information for a single device unit number for a kind of device specified with −−d.

The hinv command, when used with the −−c or −−t options, exits with a value of 1 if no item of the specified
class or type is present in the hardware inventory table. Otherwise, hinv exits with a value of 0.

NOTE
For many devices, the device is displayed in the inventory if the corresponding driver is not configured
into IRIX.

SEE ALSO
lboot(1M), getinvent(3).

104 IRIX Release 6.2

icrash(1M)hh

NAME
icrash − IRIX system crash analysis utility

SYNOPSIS
icrash [−−f cmdfile] [−−r] [−−v] [−−w outfile] [−−F] namelist corefile

DESCRIPTION
icrash is a hands-on utility that generates detailed kernel information in an easy-to-read format. icrash also
provides the ability to generate reports about system crash dumps created by savecore(1M). Depending on
the type of system crash dump, icrash can create a unique report that contains information about what
happened when the system crashed. icrash can be run on both live systems or with any namelist and corefile
specified on the command line.

namelist contains symbol table information needed for symbolic access to the system memory image being
examined. The default namelist is /unix, which is used when analyzing a live system. If the memory image
being analyzed is from a system core dump (vmcore.N.comp), then namelist must be a copy of the unix file
that was executing at the time (unix.N).

corefile is a file containing the system memory image. The default corefile is /dev/mem, which provides
access to system memory when analyzing a live system. corefile can also be a pathname to a file
(vmcore.N.comp) produced by the savecore(1M) utility.

The icrash command has the options listed below. By default, all information is sent to the standard
output, unless the -w option is used:

−−f cmdfile Specifies a cmdfile that contains a set of commands that icrash runs automatically.

−−r Generates a standard report for the namelist and corefile specified. The reporting style differs
depending on the type of system dump specified on the command line.

−−v Prints the current version number.

−−w outfile Writes any generated output to outfile.

−−F Prints out field replacement unit information for any hardware problem that icrash can
detect in the namelist and corefile specified. This option applies to CHALLENGE and Onyx
systems only.

REPORT USAGE
In order to generate a crash report with icrash you must use the −−r flag. For example:

icrash -r namelist corefile

This creates an ICRASH CORE FILE REPORT that prints to standard output. This report can be analyzed
to determine what type of system failure has occurred and what exactly occurred for this crash dump.
Note that you cannot use the −−r flag against a live system.

IRIX Release 6.2 105

icrash(1M)hh

INTERACTIVE USAGE
Input during an icrash session is of the form:

function [argument ...]

where function is one of the icrash functions described in the FUNCTIONS section of this reference page
and argument is qualifying data that indicates which item or items of a particular kernel structure to print.

The following options are available to all icrash functions wherever they are semantically valid (see the
FUNCTIONS section below).

−−a Display all entries -- even those that are currently unallocated, on a free list, or have a
reference count of zero.

−−f Display additional (full) information for a structure.

−−n Follow the links of related kernel structures to their logical conclusion. For example, when
used with the stream command, information for the stdata structure for the stream is
displayed, followed by information on each of the queue pairs on the stream.

−−w outfile Redirect the output of a function to the named outfile.

All icrash functions can be piped with the command:

function [argument ...] || shell_command

Depending on the context of the function, numeric arguments are assumed to be in a specific radix. Counts
are assumed to be decimal. Addresses are always hexadecimal (with or without a leading 0x). Table
address arguments larger than the size of the function table are interpreted as hexadecimal addresses;
those smaller are assumed to be decimal slots in the table.

FUNCTIONS
Below is a list of functions that come with icrash. Please note that this list can change from one release to
the next. To get a list of all the functions available within icrash, use the help command.

base numeric_value ...
Display a number in binary, octal, decimal, and hexadecimal. A number in a radix other then
decimal should be preceded by a prefix that indicates its radix as follows: 0x, hexadecimal; 0, octal;
and 0b, binary.

curproc [−−f] [−−w outfile]
Display the proc table entry for the currently running process (or processes when there are multiple
CPUs).

106 IRIX Release 6.2

icrash(1M)hh

defproc [slot_number]
Set defproc (the default process) if process slot_number is indicated. Otherwise, display the current
value of defproc. When icrash is run on a system core dump, defproc gets set automatically to the
proc slot_number for dumpproc (the process running at the time of the PANIC). When icrash is run
on a live systems, no default process is set. Note that it is possible, with a system core dump, for no
default process to be set. If the PANIC occurs while a CPU is servicing an interrupt from an idle
state, there is no current process.

Defproc is used by icrash in a number of ways. The trace command displays a trace for the default
process if one is set. Also, the translation of certain kernel virtual addresses depend upon defproc
being set. Currently these include the virtual address for the user block and kernel stack for a given
process.

dis [−−w outfile] address [count]
Display the disassembled code from address for count instructions. The default count is 1.

dump [−−d] [−−o] [−−x] [−−B] [−−D] [−−H] [−−W] [−−w outfile] start_address [count]
Display count values starting at kernel virtual address start_address in one of the following formats:
decimal (−−d), octal (−−o), or hexadecimal (−−x). The default format is hexadecimal, and the default
count is 1.

eframe [−−w outfile] address
Display the exception frame (containing a register dump, EPC, cause register, and status register)
located at address.

etrace [−−f] [−−w outfile] eframe [spage]
Display a stack trace using the PC and SP found in the exception frame pointed to by eframe. If
spage is provided, use that as the stack page address. Otherwise determine the address of the stack
page using the stack pointer from the exception frame. Note that defproc must be set equal to the
proc slot of the process being analyzed when spage is the address of the kernel stack or when spage
is the CPU interrupt stack and there is a process running on that CPU.

eval [−−d] [−−o] [−−w outfile] equation
Converts a simple equation to a single numeric value.

file [−−f] [−−n] [−−a] [−−p proc_list] [−−w outfile] [file_list]
Display the file structure located at each virtual address included in file_list. If no addresses are
specified, display the entire kernel file table. If the −−p option is used, display all files opened by
proc. Proc can be specific as a proc slot number, process PID (preceded by a #), or virtual address.

findsym [−−f] [−−w outfile] address_list
Locate the kernel symbol closest to each virtual address contained in address_list.

IRIX Release 6.2 107

icrash(1M)hh

from2 cmdfile
Read in commands from cmdfile and run them as if typed from within icrash. Note that the −−w
option and ||option are not valid commands on the command line, but can be placed into the cmdfile
for execution.

fru [−−w outfile]
Print out the field replacement unit analysis information from any core dump. Percentages are
displayed based on the amount of confidence the fru module has in the particular board identified
as being a problem. Multiple boards are identified where applicable.

fstype [−−w outfile] [vfssw_list]
Display the vfssw structure for each virtual address included in vfssw_list. If no vfssw structures are
specified, display the entire vfssw table.

help [all | command_list]
Display a description of the named functions, including syntax. The all option displays help
information for every command.

history
Dump out the last 20 history commands. You can also use ! to access the old commands (including
!!, !−−N, and so on)

inode [−−f] [−−w outfile] inode_list
Display the inode structure located at each virtual address included in inode_list.

inpcb [−−f] [−−w outfile] inpcb_list
Display the inpcb structure located located at each virtual address included in inpcb_list.

lastproc [−−f] [−−w outfile]
Display the proc table entry for the last running process (or processes when there are multiple
CPUs).

mbstat
Dump out the mbuf statistics in the corefile.

mbuf [−−f] [−−n] [−−w outfile] mbuf_list
Display the mbuf structure located at each virtual address included in mbuf_list.

outfile [outfile]
Set outfile (the file where all command output is sent) if outfile is indicated. Otherwise, display the
current value of outfile.

108 IRIX Release 6.2

icrash(1M)hh

pde [−−w outfile] pde_list
Display the pde (page descriptor entry) structure located at each virtual address included in pde_list.

pfdat [−−f] [−−a] [−−w outfile] pfdat_list
Display the pfdat structure located at each virtual address included in pfdat_list.

pfdathash [−−f] [−−a] [−−w outfile] [bucket_list]
Display all pfdat structures in each of the page hash table buckets included in bucket_list. If no page
hash table buckets are specified, display the pfdat structures in all pfdat hash table buckets. Items
on bucket_list can consist of phash indexes (in decimal form) and/or hexadecimal virtual addresses
(in any order).

pfind [−−f] [−−w outfile] tag [pgno]
Display all pfdat structures currently in the page hash table with tag. If pgno is specified, display
only the pfdat structure that exactly matches tag and pgno.

pregion [−−f] [−−n] [−−a] [−−p proc_list] [−−w outfile] pregion_list
Display the pregion structure located at each virtual address included in pregion_list. If the −−p
option is used, display all pregions allocated to proc. Proc can be specific as a proc slot number,
process PID (following a #), or virtual address.

proc [−−f] [−−a] [−−n] [−−w outfile] [proc_list]
Display the proc structure for each entry in proc_list. If no entries are specified, display the entire
proc table. Entries in proc_list can take the form of a proc table entry (slot number), process PID
(following a #), or virtual address.

ptov [−−w outfile] address_list
Display all possible virtual address mappings (K0, K1, and K2) for each entry in address_list. Entries
in address_list can be a hexadecimal physical address or a PFN (following a #).

queue [−−f] [−−n] [−−w outfile] queue_list
Display the queue structure located at each virtual address included in queue_list. If the next option
(−−n) is specified, a linked list of queues, starting with each specified queue then following the q_next
field, is displayed.

quit Exit icrash. Note that q prompts for confirmation unless a ! is appended to the command line.

region [−−f] [−−n] [−−p proc_list] [−−w outfile] region_list
Display the region structure located at each virtual address included in region_list. If the −−p option
is used, display all regions allocated to proc. Proc can be specific as a proc slot number, process PID
(following a #), or virtual address.

IRIX Release 6.2 109

icrash(1M)hh

rnode [−−f] [−−a] [−−w outfile] rnode_list
Display the rnode structure for each virtual address included in rnode_list.

runq [−−f] [−−n] [−−w outfile]
Display a list of processes currently on the run queue.

search [−−B] [−−D] [−−H] [−−W] [−−w outfile] [−−m mask] pattern [address] [length]
Locate contiguous bytes of memory that match the values contained in pattern, beginning at address
for length bytes. Pattern consists of a string of from one to 256 hexadecimal digits (with no
embedded spaces). For full word searches (the default), the first word of mask is anded (&) with
each word of memory and the result compared against the first word in pattern (which is also anded
with the first word of mask). If there is a match, subsequent words in memory are compared with
their respective words in pattern (if there are any) to see if a match exists for the entire pattern. If the
−−h option is issued, the search is conducted on halfword boundaries. If the −−b option is issued, the
search is performed without regard to word or halfword boundaries. If a mask is not specified, mask
defaults to all ones for the size of pattern.

The address can be specified as either a virtual address (K0, K1, K2, or KPTESEG), a physical address,
or as a PFN (directly following a pound # sign). If no address is specified (or if the one specified does
not map to a valid physical memory address), address defaults to the K0 address mapped to the
start of physical memory (0x80000000 on most systems, 0x88000000 for IP17, IP22, and IP23
systems). An optional length parameter specifies the number of bytes to search. If length is not
specified, it is set equal to the size of physical memory minus the starting physical address. Note
that length can be specified ONLY when a address has been specified.

sema [−−f] [−−n] [−−w outfile] [sema_list]
Display the sema_s structure located at each virtual address included in sema_list.

sh [cmd]
Escape to the shell with no arguments or execute the command entered. Note that it uses your
SHELL environment variable to determine which shell to use.

sizeof structure_names
Dump out the size of a structure entered on the command line. The value returned is in bytes.

snode [−−f] [−−a] [−−w outfile] snode_list
Display the snode structure located at each virtual address included in snode_list.

socket [−−f] [−−n] [−−w outfile] [socket_list]
Display the socket structure for each virtual address included in socket_list. If no entries are
specified, display all sockets that are currently allocated. If the next option (−−n) is specified, a linked
list of protocol control block structures associated with each socket is also displayed.

110 IRIX Release 6.2

icrash(1M)hh

stat [−−w outfile]
Display system statistics and the putbuf array, which contains the latest messages printed via the
kernel printf/cmn_err routines.

stream [−−f] [−−a] [−−n] [−−w outfile] [stream_list]
Display the stdata structure for each virtual address included in stream_list. If no entries are
specified, display all streams that are currently allocated. If the next option (−−n) is specified, a
linked list of queues that are associated with the stream is also displayed.

string [−−w outfile] start_address | symbol [count]
Display count strings of ASCII characters starting at start_address (or address for symbol).

strstat [−−f] [−−w outfile]
Display information about streams related resources (streams, queues, message blocks, data blocks,
and zones).

strace [−−a] [−−l] [−−f] [−−w outfile] [pc] [sp] spage [level]
Display all complete and unique (and potentially valid) stack traces found in spage having level or
more frames (the default value of level is 5). Alternately, attempts to display a stack trace starting at
a particular PC and SP within spage. Or, when the −−l option is specified, displays a list of all valid
kernel code addresses contained in spage along with their location in the stack, source file and line
number. If the −−a option is specified, all traces of level or more frames are displayed. Note that
defproc must be set equal to the proc slot of the process being analyzed when spage is the CPU
interrupt stack and there is a process running on that CPU.

struct [−−f] [−−n] [−−w outfile] structure
Dump out the size of a structure, or if the −−f option is used, dump out the sizes and offsets of items
in the structure.

swap [−−f] [−−w outfile] swap_list
Dump out the list of swap devices, including the vnodes that are represented. The number of pages,
number of free pages, number of max pages, priority, and device are listed. The −−f flag dumps out
the name of the swapinfo entry as well.

symbol [−−f] [−−w outfile] symbol_list
Displays information about each kernel symbol included in symbol_list.

tcp [−−f] [−−w outfile] tcpcb_list
Display the tcpcb structure for each virtual address included in tcpcb_list.

tlb [−−w outfile] [cpu_list]
Display TLB information for each CPU indicated in cpu_list. If no CPUs are indicated, TLB
information for all CPUs is displayed.

IRIX Release 6.2 111

icrash(1M)hh

trace [−−f] [−−a] [−−w outfile] [proc_list]
Displays the kernel stack trace for each process included in proc_list.

uipcvn [−−f] [−−n] [−−w outfile] [socket_list]
Walk the uipc_vnlist and search for each socket on socket_list. When a match is found print the
vnode and socket structures. If no entries are specified, display all vnode/socket structures on
uipc_vnlist. If the next option (−−n) is specified, a linked list of protocol control block structures
associated with each socket is also displayed.

unpcb [−−f] [−−w outfile] [unpcb_list]
Display the unpcb structure for each virtual address included in unpcb_list.

user [−−f] [−−w outfile] [proc_list]
Display the user structure for each entry in proc_list. If no entries are specified, display the user area
for all active processes. Entries in proc_list can take the form of a proc table entry (slot number),
process PID (following a #), or virtual address.

vfs [−−f] [−−w outfile] vfs_list
Display the vfs structure for each virtual address included in vfs_list.

vnode [−−f] [−−a] [−−n] [−−w outfile] vnode_list
Display the vnode structure for each virtual address included in vnode_list.

vtop [−−w outfile] address_list
Display all possible virtual address mappings (K0, K1, and K2) for each virtual address in
address_list.

zone [−−f] [−−w outfile] [zone_list]
Display information about zone memory allocation resources.

? [−−w file]
Displays a list of available functions.

NOTES
Each version of icrash is specific to the OS release that it came from and does not necessarily work on any
other OS release. Do not copy icrash to any other IRIX system unless the OS versions are identical
(including patch levels).

Running icrash on a live system can sometimes generate random results, as the information being viewed is
volatile at the time it is displayed.

The GNU readline library is used by icrash in interactive mode. Please see the GNU General Public License
available from the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

112 IRIX Release 6.2

ifconfig(1M)hh

NAME
ifconfig − configure network interface parameters

SYNOPSIS
/usr/etc/ifconfig interface address_family [address [dest_address]]

[parameters]
/usr/etc/ifconfig interface [protocol_family]

DESCRIPTION
ifconfig is used to assign an address to a network interface and/or configure network interface parameters.
ifconfig is invoked at boot time from /etc/init.d/network to define the network address of each interface
present on a machine; you can also use it once the system is up to redefine an interface’s address or other
operating parameters. The interface parameter is a string of the form ‘‘name unit’’, for example, enp0. (The
−−i option to netstat(1) displays the interfaces on the machine.)

Since an interface can receive transmissions in differing protocols, each of which may require separate
naming schemes, it is necessary to specify the address_family, which can change the interpretation of the
remaining parameters. Currently, just the ‘‘inet’’ address family is supported.

For the Internet family, the address is either an Internet address expressed in the Internet standard ‘‘dot
notation’’ (see inet(3N)), or a hostname present in the hosts(4) file, /etc/hosts . (Other hosts databases, such as
named and NIS, are ignored.)

Only the superuser can modify the configuration of a network interface.

The following parameters can be set with ifconfig:

up Mark an interface up. This can be used to enable an interface after an ifconfig down. It
happens automatically when setting the first address on an interface. If the interface was
reset when previously marked down, the hardware is reinitialized.

down Mark an interface down. When an interface is marked down, the system does not attempt
to transmit messages through that interface. If possible, the interface is reset to disable
reception as well. This action does not automatically disable routes using the interface.

arp Enable the use of the Address Resolution Protocol in mapping between network level
addresses and link level addresses (default). This is currently implemented for mapping
between Internet addresses and 10Mb/s Ethernet addresses.

−−arp Disable the use of the Address Resolution Protocol.

alias addr Establish an additional network address for this interface. This can be useful in
permitting a single physical interface to accept packets addressed to several different
addresses such as when you are changing network numbers and you wish to accept
packets addressed to the old interface. Another case is when you’d like to have multiple

IRIX Release 6.2 113

ifconfig(1M)hh

addresses assigned to a single network interface. The broadcast and netmask options can
also be used in conjunction with the alias option. When using aliases you may have to
change the configuration of routed, especially if aliases are on different networks than the
primary address. Aliases are added as host entries in the routing tables for routed. See
routed(1M) for more information on this.

−−alias|delete addr
Deletes a previously added alias.

metric n Set the routing metric of the interface to n, default 0. The routing metric is used by the
routing protocol (routed). Higher metrics have the effect of making a route less favorable;
metrics are counted as addition hops to the destination network or host.

netmask mask Specify how much of the address to reserve for subdividing networks into subnetworks.
The mask includes the network part of the local address and the subnet part, which is
taken from the host field of the address. The mask can be specified as a single
hexadecimal number with a leading 0x, with a dot-notation Internet address, or with a
pseudo-network name listed in the network table networks(4). The mask contains 1’s for
the bit positions in the 32-bit address that are to be used for the network and subnet parts,
and 0’s for the host part. The mask should contain at least the standard network portion,
and the subnet field should be contiguous with the network portion.

broadcast addr Specify the address to use to represent broadcasts to the network. The default broadcast
address is the address with a host part of all 1’s.

dest_addr Specify the address of the correspondent on the other end of a point-to-point link.

debug Enable driver-dependent debugging code; usually, this turns on extra console error
logging.

−−debug Disable driver-dependent debugging code.

ifconfig displays the current configuration for a network interface when no optional parameters are
supplied. If a protocol family is specified, ifconfig reports only the details specific to that protocol family.

NOTE
Network interfaces on Silicon Graphics systems can only receive and not send packets that use ‘‘trailer’’
link-level encapsulation. Therefore, ifconfig does not accept the trailers parameter.

DIAGNOSTICS
Messages indicating the specified interface does not exist, the requested address is unknown, or the user is
not privileged and tried to alter an interface’s configuration.

114 IRIX Release 6.2

ifconfig(1M)hh

FILES
/etc/hosts host-address database
/etc/config/ifconfig-?.options site-specific options (1 file per interface)
/etc/config/ipaliases.options interface-specific ip alias addresses

SEE ALSO
netstat(1), network(1M).

IRIX Release 6.2 115

init(1M)hh

NAME
init, telinit − process control initialization

SYNOPSIS
/etc/init [0123456SsQqabc]
/etc/telinit [0123456SsQqabc]

DESCRIPTION
init

init is a general process spawner. Its primary role is to create processes from information stored in an
inittab file (see inittab(4)). The default inittab file used is /etc/inittab; other files can be
specified using the INITTAB keyword in the system file (see system(4)).

At any given time, the system is in one of eight possible run levels. A run level is a software configuration
of the system under which only a selected group of processes exist. The processes spawned by init for
each of these run levels is defined in inittab. init can be in one of eight run levels, 0−6 and S or s
(run levels S and s are identical). The run level changes when a privileged user runs /etc/init. This
user-level init sends appropriate signals to the original init (the one spawned by the operating system
when the system was booted) designating the run level to which the latter should change.

The following are the arguments to init.

0 Shut the machine down so it is safe to remove the power. Have the machine remove power if it
can.

1 Put the system into system administrator mode. All filesystems are mounted. Only a small set of
essential kernel processes run. This mode is for administrative tasks such as installing optional
utilities packages. All files are accessible and no users are logged in on the system.

2 Put the system into multi-user state. All multi-user environment terminal processes and daemons
are spawned.

3 Start the remote file sharing processes and daemons. Mount and advertise remote resources. Run
level 3 extends multi-user mode and is known as the remote-file-sharing state.

4 Define a configuration for an alternative multi-user environment. This state is not necessary for
normal system operations; it is usually not used.

5 Stop the IRIX system and enter firmware mode.

6 Stop the IRIX system and reboot to the state defined by the initdefault entry in inittab.

116 IRIX Release 6.2

init(1M)hh

a,b,c Process only those inittab entries for which the run level is set to a, b, or c. These are
pseudo-states that can be defined to run certain commands but do not cause the current run level
to change.

Q,q Re-examine inittab.

S,s Enter single-user mode. When the system changes to this state as the result of a command, the
terminal from which the command was executed becomes the system console.

This is the only run level that doesn’t require the existence of a properly formatted inittab file.
If this file does not exist, then by default the only legal run level that init can enter is the single-
user mode.

The set of filesystems mounted and the list of processes killed when a system enters system state s
are not always the same; which filesystems are mounted and which processes are killed depends
on the method used for putting the system into state s and the rules in force at your computer site.
The following paragraphs describe state s in three circumstances: when the system is brought up
to s with init; when the system is brought down (from another state) to s with init; and
when the system is brought down to s with shutdown.

When the system is brought up to s with init, the only filesystem mounted is / (root).
Filesystems for users’ files are not mounted. With the commands available on the mounted
filesystems, you can manipulate the filesystems or transition to other system states. Only essential
kernel processes are kept running.

When the system is brought down to s with init, all mounted filesystems remain mounted and
all processes started by init that should be running only in multi-user mode are killed. Because
all login related processes are killed, users cannot access the system while it’s in this state. In
addition, any process for which the utmp file has an entry is killed. Other processes not started
directly by init (such as cron) remain running.

When you change to s with shutdown, the system is restored to the state in which it was running
when you first booted the machine and came up in single-user state, as described above. (The
powerdown(1M) command takes the system through state s on the way to turning off the
machine; thus you can’t use this command to put the system in system state s.)

When an IRIX system is booted, init is invoked and the following occurs. First, init looks in
inittab for the initdefault entry (see inittab(4)). If there is one, init usually uses the run level
specified in that entry as the initial run level for the system. If there is no initdefault entry in
inittab, init requests that the user enter a run level from the virtual system console. If an S or s is
entered, init takes the system to single-user state. In the single-user state the virtual console terminal is
assigned to the user’s terminal and is opened for reading and writing. The command /sbin/sulogin is
invoked, which prompts the user for a root password (see sulogin(1M)), and a message is generated on
the physical console saying where the virtual console has been relocated. If /bin/sulogin cannot be

IRIX Release 6.2 117

init(1M)hh

found, then init attempts to launch a shell: looking first for /bin/csh, then for /sbin/sh, then
finally for /bin/ksh. Use either init or telinit to signal init to change the run level of the
system. Note that if the shell is terminated (via an end-of-file), init only re-initializes to the single-user
state if the inittab file does not exist.

If a 0 through 6 is entered, init enters the corresponding run level. Run levels 0, 5, and 6 are
reserved states for shutting the system down. Run levels 2, 3, and 4 are available as multi-user
operating states.

If this is the first time since power up that init has entered a run level other than single-user state, init
first scans inittab for boot and bootwait entries (see inittab(4)). These entries are performed
before any other processing of inittab takes place, providing that the run level entered matches that of
the entry. In this way any special initialization of the operating system, such as mounting filesystems, can
take place before users are allowed onto the system. init then scans inittab and executes all other
entries that are to be processed for that run level.

To spawn each process in inittab, init reads each entry and for each entry that should be respawned,
it forks a child process. After it has spawned all of the processes specified by inittab, init waits for
one of its descendant processes to die, a powerfail signal, or a signal from another init or telinit
process to change the system’s run level. When one of these conditions occurs, init re-examines
inittab. New entries can be added to inittab at any time; however, init still waits for one of the
above three conditions to occur before re-examining inittab. To get around this, the init Q (or init
q) command wakes init to re-examine inittab immediately. Note, however, that if the inittab has
been edited to change baud-rates, those changes only take effect when new getty processes are spawned
to oversee those ports. Use killall getty to terminate all current getty processes, then init Q to
re-examine the inittab and respawn them all again with the new baud-rates.

When init comes up at boot time and whenever the system changes from the single-user state to another
run state, init sets the ioctl(2) states of the virtual console to those modes saved in the file
/etc/ioctl.syscon. This file is written by init whenever the single-user state is entered.

When a run level change request is made init sends the warning signal (SIGTERM) to all processes that
are undefined in the target run level. init waits five seconds before forcibly terminating these processes
via the kill signal (SIGKILL).

When init receives a signal telling it that a process it spawned has died, it records the fact and the reason
it died in /var/adm/utmp and /var/adm/wtmp if it exists (see who(1)). A history of the processes
spawned is kept in /var/adm/wtmp.

If init receives a powerfail signal (SIGPWR) it scans inittab for special entries of the type
powerfail and powerwait. These entries are invoked (if the run levels permit) before any further
processing takes place. In this way init can perform various cleanup and recording functions during the
powerdown of the operating system.

118 IRIX Release 6.2

init(1M)hh

telinit
telinit, which is linked to /sbin/init, is used to direct the actions of init. It takes a one-character
argument and signals init to take the appropriate action.

FILES
/etc/inittab default inittab file
/var/adm/utmp
/var/adm/wtmp
/etc/TIMEZONE
/etc/ioctl.syscon
/dev/console

SEE ALSO
getty(1M), killall(1M), login(1), powerdown(1M), sh(1), shutdown(1M), stty(1), sulogin(1M), who(1),
kill(2), inittab(4), system(4), timezone(4), utmp(4), termio(7).

DIAGNOSTICS
If init finds that it is respawning an entry from the inittab file more than ten times in two minutes, it
assumes that there is an error in the command string in the entry, and generates an error message on the
system console. It then refuses to respawn this entry until either five minutes has elapsed or it receives a
signal from a user-spawned init or telinit. This prevents init from consuming system resources
when someone makes a typographical error in the inittab file or a program is removed that is
referenced in inittab.

When attempting to boot the system, failure of init to prompt for a new run level may be because the
virtual system console is linked to a device other than the physical system console.

NOTES
init and telinit can be run only by a privileged user.

The S or s state must not be used indiscriminately in the inittab file. A good rule to follow when
modifying this file is to avoid adding this state to any line other than the initdefault.

If a default state is not specified in the initdefault entry in inittab, state 6 is entered.
Consequently, the system loops; that is, it goes to firmware and reboots continuously.

If the utmp file cannot be created when booting the system, the system boots to state s regardless of the
state specified in the initdefault entry in the inittab file.

In the event of a file table overflow condition, init uses a file descriptor associated with the inittab
file that it retained from the last time it accessed that file. This prevents init from going into single user
mode when it cannot obtain a file descriptor to open the inittab file.

IRIX Release 6.2 119

init(1M)hh

The environment for init and all processes directly started by is set initially from a table that is builtin,
and then by parsing the file /etc/TIMEZONE. Lines in that file that are too long are ignored.

120 IRIX Release 6.2

inst(1M)hh

NAME
inst − software installation tool

SYNOPSIS
inst [−−anAMNQXY] [−−f source] [−−m hardware=value] [−−r target]

[−−u action] [−−F selections-file] [−−I selection]
[−−R selection] [−−K selection] [−−X file] [−−Y file]
[−−V resource:value]

DESCRIPTION
inst is the installation tool used to install, upgrade, or remove software distributed by Silicon Graphics.
There are two ways to run inst:

− Invoke inst as a command from the shell.

This is known as invoking inst using IRIX Installation and you must be superuser to do this. Some
software cannot be installed using IRIX Installation (Release Notes and inst itself warn you about this
software) and some commands within inst cannot be performed when using IRIX Installation. This is
due to system integrity problems that can arise from changing some software or performing certain
operations while that software is running.

− Invoke inst in a standalone mode.

To invoke inst in a standalone mode (known as Miniroot Installation), you shut down the system to the
PROM monitor level (see shutdown(1M)), and load a collection of files known as the miniroot into the
swap partition of your system disk. The miniroot contains a UNIX kernel, inst and several other
programs. inst is automatically invoked after you load the miniroot and the / and /usr filesystems are
automatically mounted as /root and /root/usr. New versions of IRIX and some software options must
be installed from the miniroot. Directions for loading the miniroot are in the IRIX Admin: Software
Installation and Licensing guide.

The software that you install using inst is known as a software distribution. Software distributions are
prepared by Silicon Graphics and are in a format that can be read only by inst.

Software distributions can be on 1/4" cartridge tapes, on CD-ROM discs (CDs), and on disk. inst can read
the distribution from a drive (tape, CD-ROM or disk) mounted on the same workstation that the software
will be installed on (known as the local workstation), or from a tape drive, CD-ROM drive or disk on
another workstation (known as the remote workstation) connected to the same network. If a distribution is
on disk, it is in a directory called a distribution directory.

In order to install software from a distribution on a remote workstation (tape, CD-ROM, or distribution
directory), the user ID that you use must have read permission for the device or distribution directory. By
default, inst uses the current user ID and if the connection can’t be established the user ID guest is used.
For any user ID this requires that either there is no password for the account on the remote workstation or
that the user ID has been added to the .rhosts file. See the example below. A different user ID can be

IRIX Release 6.2 121

inst(1M)hh

specified with the −−f option (see below) or the from command within inst. The user ID for any account that
does not have a password will work if it is able to read the distribution directory or device. If an account
with an assigned password must be used, the .rhosts file for that user ID on the remote workstation must
contain the name of the local workstation and the user ID. For example, the file /usr/people/joe/.rhosts on
‘bigserver’ would contain the line:

rock.csd.sgi.com joe

When joe wants to install C++ on ‘rock’ and the software distribution for C++ is located on bigserver in the
directory /d/newrelease, he would enter the command:

inst −f joe@bigserver:/d/newrelease/c++

The .rhosts file must have the correct ownership and permissions for access to be granted. See the
hosts.equiv(4) reference page for details.

When using a distribution on a remote workstation, the file /usr/etc/inetd.conf on the remote workstation
and on any gateway workstations between the local and remote workstation needs to be modified. See the
IRIX Admin: Software Installation and Licensing guide for details.

When inst first comes up, it displays the default location of the software distribution and possibly the user
ID it is using. When using IRIX Installation, the default location of the software distribution will be the
location of the software distribution that you last installed. The −−f option (see below) can be used to
specify the location of the the software distribution when IRIX Installation is used. This sets the default
location that will be reported when inst comes up. In the case of a Miniroot Installation, the default
location is wherever the miniroot came from. If the distribution is none, inst does not load one
automatically; this is useful for removing or browsing just the installed software. Within inst, the from
command can be used to change the distribution location.

The inst command line options are:

−−a Execute inst from IRIX with no interaction from the user (automatic mode). No menus appear and
the default location of the software distribution is used unless the −−f option is given. The software
that will be installed is selected by inst using an algorithm described in the IRIX Admin: Software
Installation and Licensing guide.

−−A A shorthand for −−a −−u all.

−−f source
Specify the location of the software distribution. The format of source depends on the location of the
distribution and other factors. The possibilities are:

122 IRIX Release 6.2

inst(1M)hh

tape local tape drive

/dev/nrtape local tape drive

/CDROM/dist local CD-ROM drive

distdir local distribution directory distdir

/CDROM/dist/product installing just product from a local CD-ROM drive

distdir/product installing just product from a local distribution directory

none for browsing or removing installed software only

server:/dev/tape tape drive on a remote workstation whose hostname is server

server:CDdir/dist CD-ROM drive with the CD mounted at CDdir on a remote
workstation whose hostname is server

server:distdir distribution directory distdir on a remote workstation whose
hostname is server

server:CDdir/dist/product installing just product from a CD mounted at CDdir on a remote
workstation whose hostname is server

server:distdir/product installing just product from a distribution directory distdir on a
remote workstation whose hostname is server

When using a remote distribution source, you can prepend user@ to specify a user ID other than
guest as discussed above. For example, to use a remote tape drive on bigserver as user instuser, the
−−f argument is instuser@bigserver:/dev/tape.

−−r target
Set the effective root directory in which the new software will be installed. By default, this is /. This
option is used to install software somewhere other than the default location and to specify the root
of a virtual IRIX tree for diskless prototype trees.

−−n Initialize the dryrun resource to true. See RESOURCES.

−−C Install software for all available architectures. This option is normally used only by share_inst(1M)
when constructing a share-tree for diskless clients. When this option is given inst installs the
sharable software from the specified distribution for as many different client architectures as
possible.

IRIX Release 6.2 123

inst(1M)hh

−−I selection
Specify products or subsystems to install, where selection is a product name, or other expression
accepted by the inst install command. Multiple expressions can be specified by using a comma
separated list or by using multiple −−I options.

−−R selection
Specify products or subsystems to remove, where selection is a product name, or other expression
accepted by the inst remove command. Multiple expressions can be specified by using a comma
separated list or by using multiple −−R options.

−−K selection
Specify products to keep (don’t install or remove), where selection is a product name, or other
expression accepted by the inst keep command. Multiple expressions can be specified by using a
comma separated list or by using multiple −−K options.

−−V resource:value
Initialize resource to value. See RESOURCES.

−−M Do not display inst output using its built-in pager, and do not show percent-done messages. This is
the default when running an automatic install.

−−E Invoke inst_terse_mode. Provides reduced output for scripting. Equivalent to setting
inst_terse_mode=true in the shell environment before invoking inst. If set true, it minimizes inst
output: most normal status and progress messages are suppressed unless explicitly asked for, but
any warnings, errors, and explicitly requested output still appear. See the description of the
preference inst_terse_mode within inst or swmgr for more information.

−−F selections-file
The selections-file is used to pre-select subsystems for installation or removal. See SELECTIONS
FILE.

−−P file Specify file to be precious. See RESOURCES.

−−N Disables space-checking by initializing the space_check resource to false. See RESOURCES.

−−u action
Specify the type of installation action to use. The list of different actions are:

new Select all new products for installation.

upgrade Select all upgrade products for installation.

124 IRIX Release 6.2

inst(1M)hh

upgrade_and_new Select all new and upgrade products for installation.

upgrade_or_new Select upgrade (or new, if no upgrades) products for installation.

upgrade_and_rnds_or_new
Select upgrade and related new default subsystems (or new defaults, if no
upgrades, no downgrades and no same) for installation. (This is the default
action.)

all Select all products for installation.

−−X file
Exclude file during installations and removals. If file is a directory, its descendents are also excluded.
Multiple -X options are permitted, however wildcards are not. To quickly rebuild a corrupted
installation history, re-install the same versions of your existing software using -X/ (no files will be
touched). See also the exclusions resource.

−−Y file
Install only file during installations and removals. If file is a directory, only it and its descendents are
installed or removed. Multiple -Y options are permitted, however wildcards are not. See the
restrictions resource.

−−U Run the tool in extract_mode, useful for recreating a source tree from a set of images produced by
gendist(1M). See RESOURCES.

−−T Run the tool in symlink_mode, useful for creating a tree of symbolic links, instead of regular files. See
RESOURCES.

−−Q Execute inst in a special mode in which only rqs information about each executable is updated into
the installation history.

−−m hardware=value
The software distribution for some software products contains several hardware-specific copies of
the same file. By default inst installs the copy that is appropriate for the type of workstation you are
installing on. The −−m option is useful when you are installing software on a disk that will be
transferred to a different type of workstation or when you are extracting files from a software
distribution for a different type of workstation. In both these cases you would probably also use the
−−r option. The inst command admin hardware can be used to view the current hardware variables
in effect.

Acceptable arguments are:

CPUBOARD=cpu
GFXBOARD=gfxboard
SUBGR=subgr

IRIX Release 6.2 125

inst(1M)hh

default

The default keyword substitutes all of the hardware values for the current system. Acceptable
values of cpu are: IP4, IP5, IP6, IP7, IP9, IP12, IP17, IP19, IP20, IP21, IP22, IP25, IP26, and IP28. The
output of hinv(1M) gives the value of cpu. The output of hinv also contains a line describing the type
of graphics on the workstation. Use this table to determine the values of gfxboard and subgr:

hinv Output cpu gfxboard subgr

Graphics board: GR1* IP6, IP12 ECLIPSE ECLIPSE
Graphics board: GR2-* IP12, IP20 EXPRESS EXPRESS
Graphics board: GR2-* IP17 EXPRESS IP17
Graphics board: GR3-* IP22 EXPRESS EXPRESS
Graphics board: GU1-* IP17 EXPRESS IP17
Graphics board: GU1-* IP22 EXPRESS EXPRESS
Graphics board: GU1-* and XLIP22 NEWPRESS NEWPRESS
Graphics board: LG1 IP12 LIGHT LIGHT
Graphics board: LG1 IP17 LIGHT IP17
Graphics board: LG1 IP20 LIGHT LG1MC
Graphics board: XL IP22 NEWPORT NG1
Graphics board: Indy *-bit IP22 NEWPORT NG1
Graphics board: VGR2 IP6, IP12 ECLIPSE ECLIPSE
Graphics option installed IP4 CLOVER1 IP4G
GT Graphics option installed IP4, IP5, IP7 CLOVER2 cpuGT
GT Graphics option installed IP9 CLOVER2 IP7GT
GT Graphics option installed IP17 CLOVER2 IP17
VGX Graphics option installed IP7, IP9 STAPUFT IP7GT
VGX Graphics option installed IP17 STAPUFT IP17
VGXT Graphics option installed IP7 STAPUFT SKYWR
VGXT Graphics option installed IP17 STAPUFT IP17SKY
RealityEngine Graphics option IP7 VENICE IP7
installed
RealityEngine Graphics option IP17 VENICE IP17
installed
RealityEngine Graphics option IP19 VENICE IP19
installed
* IP21 VENICE IP21
* IP25 VENICE IP25
Graphics board: RE3 IP19 KONA IP19
* IP25 KONA IP25
* IP22 MGRAS MGRAS

126 IRIX Release 6.2

inst(1M)hh

* IP26 MGRAS I2_64
* IP28 MGRAS I2_64
* IP19 EXPRESS IP19
* IP21 EXPRESS IP21
* IP25 EXPRESS IP25
* IP26 EXPRESS I2_64
* IP28 EXPRESS I2_64

No ‘‘Graphics’’ line any SERVER SERVER

* output contains additional text that is unimportant

When the software distribution is a CD in a remote CD-ROM drive, the program cdinstmgr(1) must be run
on the remote workstation. It does the mounting of the CD and guards against accidental ejection of the
CD by other users. When the software distribution is a CD in a local CD-ROM drive, the mounting of the
CD is done automatically by inst.

Unless the −−a option is given, a menu of commands will be displayed when inst is invoked. This menu, the
Inst Main Menu, contains all of the commands that most inst users ever need. The Admin Menu contains
less-commonly used administrative commands. The View Menu is used to control the order and
presentation of software packages, and disk space requirements displayed by the list and step commands.
The Interrupt/Error Menu, is displayed automatically when certain error conditions are encountered
during installation. These menus and their commands are described fully in the IRIX Admin: Software
Installation and Licensing guide.

inst has an extensive online help system. Enter the command help at the inst prompt to see the list of help
topics. To view the information on a particular topic, enter the command help topic. The topic overview
provides information about what inst does and how to use it. This is a good starting point for new users.

The IRIX Admin: Software Installation and Licensing guide is the reference manual for inst. Installation issues
for specific products are discussed in the Release Notes for the different products.

RESOURCES
A number of resources are available for customizing inst and swmgr. Resources are loaded from
/var/inst/.swmgrrc, /.swmgrrc, ˜/.swmgrrc, and from the command line, with command-line definitions
having the highest precedence.

The keywords in the following descriptions are:

inst-only used only by inst
swmgr-only used only by swmgr(1M)
permanent saved across sessions

IRIX Release 6.2 127

inst(1M)hh

transient not saved across sessions
beginner most commonly used
expert for experts only
hidden for internal use or for debugging only
readonly cannot be modified by the user

abort_on_error
Abort automatic installation on errors
Type: boolean (inst-only permanent expert)
Default: true
Controls how errors are handled during automatic installations. If "true" (the default) the
installation terminates immediately. If "false" the installation continues. In either case the errors are
reported in /var/inst/INSTLOG.

all_architectures
Install all architectures
Type: boolean (transient readonly hidden)
Default: false
Controls whether files for all architectures are installed. This preference applies during diskless
share-tree or client-tree installations, and can only be set with the -C command-line option. See
client_inst(1).

always_confirm_quit
Confirm quit action
Type: boolean (permanent)
Default: false
Controls whether the user is always asked for confirmation of a quit command.

always_page_inst
Controls whether not explicitly requested
Type: boolean (inst-only transient expert)
Default: false
inst output, such as progress messages during actual installation, are paged or display non-stop.

auto_inst_new
Select new products in automatic mode
Type: boolean (swmgr-only permanent expert)
Default: false
Controls whether new products are selected for installation in automatic mode (swmgr only.)

128 IRIX Release 6.2

inst(1M)hh

auto_inst_upgrades
Select upgrade products in automatic mode
Type: boolean (swmgr-only permanent expert)
Default: true
Controls whether upgrade products are selected for installation in automatic mode (swmgr only.)

autoconfig_overhead
Autoconfig overhead, in bytes
Type: int (transient expert)
Default: 179200
Controls the amount of disk space reserved during the installation for temporary disk space
required by autoconfig(1M) to build a new kernel. Under special circumstances when a debug
kernel is being built, this value should be doubled. See also "kernel_size_32" and "kernel_size_64".

automatic
Automatic installation
Type: boolean (transient hidden)
Default: false
Controls whether the installation proceeds without user intervention.

autoselect
Automatic installation selections
Type: boolean (permanent)
Default: true
Controls whether inst does an initial selection of subsystems to be installed when it is first started
and after every "from" command.

background
Background the application
Type: boolean (swmgr-only permanent expert)
Default: true
Controls whether swmgr is run in the foreground or in the background when invoked from a shell.

beep Beep when installation completes
Type: boolean (permanent)
Default: true
Controls the audible signaling at the end of the "go" command.

IRIX Release 6.2 129

inst(1M)hh

busy_check
Busy file space checking
Type: boolean (transient expert)
Default: true
Controls whether busy files (those which are currently accessed by executing processes) are
considered during the pre-installation space check. If busy files are removed or overwritten during
the installation, their disk blocks are not immediately reclaimed by the operating system. Closing
other applications before a live-install may be required in order for the disk space requirements to
be met. In the miniroot, the busy check is always skipped.

checkpoint_restart
Automatically restart install if true
Type: boolean (transient expert)
Default: false
Used for checkpoint restarting. Automatically restart installation if set true.

checkpoint_restart_mode
Override normal checkpoint restart mode
Type: string (transient hidden)
Default: NULL
Specifies the initial user interface mode used for checkpoint restarting. Brings up swmgr in a specific
mode overriding value set by user in custom_startup_mode.

checkpoint_selections
Checkpoint before go as well as during go
Type: boolean (permanent expert)
Default: false
Controls whether or not to checkpoint the selections during the selection process. This is useful
when making complex selections worth saving.

clearprompt
Clear the "more?" prompt
Type: boolean (inst-only permanent)
Default: true
Controls the way in which some prompts are displayed. Certain operations use "throw away"
prompts that are usually cleared by backspacing, then overwriten with spaces. For terminals that
can’t clear prompts in this way, it is more appropriate to just move to the next line. Set clearprompt
"off" to use the simple case. It is "on" by default and saved from session to session.

130 IRIX Release 6.2

inst(1M)hh

cmd_installs
Command-line install selections
Type: string (transient hidden readonly)
Default: NULL
List of products to install supplied on the command line.

cmd_keeps
Command-line keep selections
Type: string (transient hidden readonly)
Default: NULL
List of products to keep supplied on the command line.

cmd_patch_hist_removes
Command-line remove selections
Type: string (transient hidden readonly)
Default: NULL
List of patch products to remove history supplied on the command line.

cmd_removes
Command-line remove selections
Type: string (transient hidden readonly)
Default: NULL
List of products to remove supplied on the command line.

columns
Number of columns in tty display
Type: int (inst-only permanent)
Default: 0
The "columns" variable is not supported in this release, but will be supported in a future release. In
this release the number of columns is automatically detected by inst (if possible), but cannot be
overridden.

confirm_nfs_installs
Confirm installs onto nfs-mounted filesystems
Type: boolean (permanent)
Default: on
Controls installs onto nfs-mounted filesystems. If set to "on", the user is asked to confirm any
installations to nfs-mounted directories located on another host. When set to "off", inst or swmgr
will install on to nfs-mounted filesystems as long as the user has the necessary permissions.

IRIX Release 6.2 131

inst(1M)hh

confirm_quit
Confirm quit if pending actions
Type: boolean (permanent)
Default: true
Controls whether the user is notified that install/remove actions are pending when quitting.

custom_startup_mode
Swmgr initial selections mode
Type: choice (permanent expert)
Choices: off,distribution,always
Default: false
Controls how swmgr is initially presented. Possible values are: off - always start in automatic mode;
distribution - start in custom-selections mode if a distribution has been specified, otherwise in
automatic mode; always - start in custom-selections mode if a distribution has been specified,
otherwise in manage-installed-software mode.

debug_menu
Debug menu
Type: boolean (swmgr-only transient hidden)
Default: false
Controls whether the debug menu is available in the graphical tool.

default_config
Force default configuration files
Type: boolean (permanent expert)
Default: false
Controls whether to override the normal configuration file rules, and install ALL the configuration
files from the distribution. If the user has modified these files, they are first saved with a ".O" suffix.

default_sharedirs
Default share directories
Type: string (transient readonly expert)
Default: /usr
Contains the list of default share directories used in a diskless share-tree or client-tree installation.

delay_conflicts
Controls when certain conflicts are presented
Type: choice (transient)
Choices: ask,on,off

132 IRIX Release 6.2

inst(1M)hh

Default: ask
Controls when certain "delayable" conflicts are presented to the user. Currently, only particular
incompat conflicts may be delayed. The default behavior, "ask", will query the user when the first
delayable conflict is presented. At that time, the user will have the option of resolving the conflict
before the installation or prior to exiting. In some installation scenarios, the conflict will have to be
delayed since the subsystem(s) necessary to resolve the conflict are not on the current distribution.
After making a choice, this behavior will continue for the remainder of the installation session or
until the preference value is explicitly changed. An "on" value will always present the delayable
conflicts prior to exiting. An "off" selection will present all conflicts, including the delayable variety,
prior to installation. This preference is not saved from session to session. To make this preference
persistent, add "delay_conflicts :" and the desired value to the .swmgrrc file.

delay_exitops
Controls when exitops are executed
Type: boolean (permanent)
Default: false
Controls when exitops are executed. When this resource is false, the default case, exitops are
executed immediately after all files are installed and before control is returned to the user. When this
resource is true, the exitops will not be executed until the user quits. If the user interrupts an
installation and chooses to save the exitops for later execution, any unexecuted exitops will be
executed upon exiting the application.

delayspacecheck
Delay disk space checks until go
Type: boolean (permanent)
Default: false
Controls the timing of disk space calculations. If "delayspacecheck" is "off", disk space calculation is
done when a "list", "step", or "space" command is given if no disk space calculation has yet been
done for the current software distribution. If "delayspacecheck" is "on", disk space calculation is
deferred until the "go" or "space" commands are given. When "delayspacecheck" is "on", no disk
space information is displayed by the "list" or "step" commands.

detailspacecheck
Detailed space checking
Type: boolean (permanent)
Default: off
Controls the data used for disk space calculations. If "detailspacecheck" is "on", size and type of
every file installed on the system via inst is obtained by stat-ing the file on the disk. If
"detailspacecheck" is "off", the state of every file is assumed to be the same as that saved in the
history database and that information is used to make the disk space calculations.

IRIX Release 6.2 133

inst(1M)hh

"detailspacecheck" is slower, but more accurate.

disable_keepfile
Suppress keepfile processing
Type: boolean (transient)
Default: false
If set, the normal keepfile processing is skipped. Entries in $rbase/var/inst/.keepfile will be ignored
and the initial installation selections will be unaffected by the .keepfile entries. See the "keepfile"
help topic.

disk_avail Override available space on target filesystems
Type: string (transient hidden)
Default: NULL
This preference specifies the free space (in bytes) used in disk space calculations. If set to a single
value, like "50M" or "1000" then it will apply to all filesystems. To set the free space of specific
filesystems, use the form: "fs:size|fs:size|..." For example, a value of "/:4096|/usr:50M" will result in
4096 bytes available on the / filesystem, and 50M on /usr. This resource is for debugging only.
Also see the "disk_blocksize" and "disk_capacity" preferences.

disk_blocksize
Override blocksize of target filesystems
Type: string (transient hidden)
Default: NULL
This preference specifies an alternate blocksize (in bytes) used in disk space calculations. If set to a
single value, like "1024", or "4k", then it will apply to all filesystems. To set the blocksize for specific
filesystems, use the form: "fs:blocksize|fs:blocksize|..." For example, a value of "/:512|/usr:4k" will
result in a blocksize of 512 bytes on the / filesystem, and 4096 byes on the /usr filesystem.
Blocksizes should be a multiple of 512 bytes. This resource is for debugging only. Also see the
"disk_avail" and "disk_capacity" preferences.

disk_capacity
Override capacity of target filesystems
Type: string (transient hidden)
Default: NULL
This preference specifies an alternate filesystem size (in bytes) used in disk space calculations. If set
to a single value, like "50M" or "500k" then it will apply to all filesystems. To set the size of specific
filesystems, use the form: "fs:size|fs:size|..." For example, a value of "/:300k|/usr:100M|/d2:100000"
will result in a size of 300 kilobytes on the / filesystem, 100 megabytes on /usr, and 100000 bytes on
/d2. This resource is for debugging only. Also see the "disk_avail" and "disk_blocksize"
preferences.

134 IRIX Release 6.2

inst(1M)hh

diskless
Diskless mode
Type: choice (transient readonly hidden)
Choices: none,share,client
Default: none
Controls whether the tool is operating on a normal (non-diskless) tree, a diskless share tree, or a
diskless client tree.

display_size
Units for product sizes
Type: choice (inst-only transient)
Choices: bytes,blocks,kbytes
Default: kbytes
Controls the units (bytes, kilobytes, or 512-byte blocks) used to display product sizes.

dist Most recent distribution source
Type: string (permanent)
Default: NULL
Each time product descriptions are read, the current software distribution source (see help from)
becomes the value of "dist". (A product name, if included in the "from" argument, is not saved in
"dist".) You can use the value of "dist" in your "from" commands using the syntax "$dist", for
example "from $dist/eoe2". The command "from none" results in no distribution being read, and
sets the view to target for browsing or removing installed software. The value of dist is saved from
session to session.

distribution
The name of the distribution supplied by the user.
Type: string (transient hidden readonly)
Default: NULL
This is the name of the distribution supplied by the user on the command line. See also "dist".

dryrun
Dryrun mode
Type: boolean (transient hidden)
Default: false
Controls whether operating in dryrun mode. In this mode, no files are touched on the disk, and the
names of files which would have otherwise been installed or removed are displayed.

IRIX Release 6.2 135

inst(1M)hh

error_coredump
Force coredump on X errors
Type: boolean (swmgr-only transient hidden)
Default: false
Controls whether errors in the X-Window interface result in an immediate coredump.

exclusions
List of excluded files
Type: string (transient expert)
Default: NULL
This resource holds the list of excluded files, separated by whitespace or the ’|’ character. Excluded
files (and, for directories, their descendents) are not installed or removed during a "go". A value of
"none" indicates no exclusions are in affect. The -X command line option may also be used to
specify the exclusions. After modifying this preference with the "set" command, any previous disk
space calculations may become out of date. Use the "admin recalc" command to determine the new
space requirements. See also restrictions.

exitop_limit
Exitop output limit
Type: int (transient expert)
Default: 100000
This is the maximum output allowed from exitops (shell commands executed at the end of the
installation). Output over this limit is not displayed or logged. Also applies to preops and postops
(commands executed immediately before or after a file is installed) and removeops (executed after a
file is removed). Removeops are only executed when a subsystem is removed, for example with
"versions remove", but not when a subsystem is upgraded.

extract_mode
Extract images to original source tree
Type: boolean (transient readonly hidden)
Default: false
Controls whether inst or swmgr operates in extract mode. In this mode, files are installed under
their original source names (relative to the effective root) used to create the images. Only regular
files (not directories, symlinks, etc.) are installed. No conflict checking, rqs processing, or machtag
matching is performed. This preference must be set before reading the distribution, preferably on
the command-line using the -U option.

136 IRIX Release 6.2

inst(1M)hh

fullmenu
Display hidden commands
Type: boolean (inst-only permanent)
Default: false
Controls the list of commands shown in menus. If fullmenu is "off", (the default), the most
commonly used commands are displayed in the menus. If fullmenu is "on", all commands that are
available at the prompt are shown in the menu, and all the hidden commands are displayed, too.
This option changes only the display of commands, not their availability. It is "off" by default and
saved from session to session.

hide_image_products
Hides the image level products when set to true.
Type: boolean (permanent expert)
Default: true
Hides the image level products from view when set to true.

http_cache
Cache http files locally.
Type: boolean (permanent expert)
Default: false
When reading an http distribution over a slow network link, it may be safer to read each file as
quickly as possible and cache it on local disk rather than keeping the network connection open for
the entire course of the install. Setting http_cache ON turns on local caching.

http_cache_tmp_dir
The tmp dir where http cached files will be created.
Type: string (permanent expert)
Choices: /var/tmp
Default: /var/tmp
If http caching is on (see http_cache), this is the tmp directory where the cached files will be stored.
If http caching is off, this preference is ignored.

http_picky
Require special format distribution file in an http distribution.
Type: boolean (permanent expert)
Default: true
Require special format distribution file in an http distribution, rather than trying to adapt to any
directory format the http server may see fit to provide.

IRIX Release 6.2 137

inst(1M)hh

inst_initial_level
Inst product display level
Type: choice (permanent expert)
Choices: product,subsystem
Default: subsystem
Controls the initial level of products displayed in inst.

inst_terse_mode
Reduced output for scripting
Type: boolean (inst-only transient expert)
Default: false
If set true minimizes inst output: most normal status, and progress messages are suppressed unless
explicitly asked for, but any warnings, errors and explicitly requested output still appear. Also
forces page_output off, show_diskspace off, show_legend off, show_percent_done off, show_files
off and verbosity to the value 1. Useful for automated scripts driving inst. See also the inst
-F<selections-file> option, the inst "admin save" and "admin load" commands, and the verbose
preference.

inst_visible_resources
Set of options to display.
Type: multivalue (inst-only permanent beginner)
Choices: permanent,transient,beginner,expert,tty,gui
Default: permanent,transient,tty
Controls the set of preferences displayed with the set command.

install_identical_files
Install files even if contents are not new
Type: boolean (permanent expert)
Default: true
Controls whether to extract files from the distribution even if the version on disk has the same size
and checksum. If this resource is set to "false" installations are much faster when little has changed
from release to release. Caution: use this option only if you are comfortable with the accuracy of the
checksum -r test to determine whether two files of equal length indeed are identical. See sum(1m).

install_sites
List of former install sites
Type: string (permanent expert)
Default: NULL
Controls the list of former installation sites displayed.

138 IRIX Release 6.2

inst(1M)hh

install_sites_size
Number of items to keep in the install sites list.
Type: int (permanent)
Default: 10
Controls the number of items in the former installation sites list.

instmode
Type of installation
Type: choice (transient expert)
Choices: normal,prototype,client
Default: prototype
Controls certain details of how the installation is performed. The value is set automatically when the
installation target is initialized. The instmode preference is exported as the environment variable
$instmode for use by exitops. During installs into a bootable target (miniroot installs into /root, and
live installs into /) instmode has the value "normal". During other installs the value is "prototype". If
the value of "instmode" is changed, an "admin recalc" is also recommended to recalculate space
requirements (if any) for the new UNIX kernel. Also see the "diskless" preference.

interactive
User interaction control
Type: boolean (transient hidden)
Default: true
Controls whether the user will be prompted for responses to questions.

kernel_size_32
Size of 32-bit kernel, in bytes
Type: int (transient expert)
Default: 3932160
Controls the amount of disk space reserved on 32-bit systems for /unix, during installations which
will cause a new kernel to be built by autoconfig(1M). See also "kernel_size_64" and
"autoconfig_overhead".

kernel_size_64
Size of 64-bit kernel, in bytes
Type: int (transient expert)
Default: 5767168
Controls the amount of disk space reserved on 64-bit systems for /unix, during installations which
will cause a new kernel to be built by autoconfig(1M). See also "kernel_size_32" and
"autoconfig_overhead".

IRIX Release 6.2 139

inst(1M)hh

lines Number of lines in tty display
Type: int (inst-only permanent)
Default: 0
Sorry, the "lines" variable is not supported in this release, but will be supported in a future release.
In this release the number of lines is automatically detected by inst (if possible), but cannot be
overridden.

log_pane_height
Height of the log pane in swmgr
Type: int (swmgr-only transient hidden)
Default: 125
Specifies the height of the log pane in swmgr.

log_pane_log_size
Size of the log pane display
Type: int (swmgr-only permanent hidden)
Default: 100000
Specifies the maximum amount of text that is displayed in the log pane before truncation occurs.

logfile_size
Size of log file in bytes before recycle
Type: int (permanent hidden)
Default: 102400
Controls the maximum size of the log file (/var/inst/INSTLOG).

mach_classfile
Mach classes file
Type: string (transient hidden readonly)
Default: /var/boot/.dl_classes
Holds the name of the file containing the hardware chart used during diskless installations when the
-C argument is specified, requesting that all architectures be installed.

mach_info
Mach tag values
Type: string (transient hidden)
Default: NULL
Contains the mach tag values that determine which versions of hardware-specific files to install.
Multiple mach expressions separated by the ‘|’ character are permitted. If this preference is NULL
(the default) the mach values are automatically derived according to the current hardware

140 IRIX Release 6.2

inst(1M)hh

configuration on the system.

machfile
Name of the standard mach file.
Type: string (transient hidden)
Default: /var/inst/machfile
Controls the location of the standard machfile.

menus
Print menus
Type: boolean (inst-only permanent)
Default: on
Controls the automatic display of menus. Once you are familiar with the menus, you may wish to
disable the automatic display by setting this option "off". You can redisplay the current menu at any
time with a "?" command. It is "on" by default and saved from session to session.

miniroot
Miniroot install
Type: boolean (transient hidden readonly)
Default: false
This flag is on if in the miniroot.

mock_sproc
Disable sprocs
Type: boolean (transient hidden)
Default: false
When set, this disables sproc’ing, so that debugging is possible. The command is printed on stdout,
and execution terminates until something is read from stdin.

network_retry
Number of network retries
Type: int (permanent hidden)
Default: 2
Holds the number of successive network timeouts allowed before giving up on the connection. See
timeout.

IRIX Release 6.2 141

inst(1M)hh

network_seek_threshold
Controls behavior of remote seek
Type: int (transient hidden)
Default: 65536
If seeking forward more than network_seek_threshold bytes in a remote file, re-start the dd process
instead of reading and discarding the intervening bytes. This optimization of re-starting dd may be
disabled by setting network_seek_threshold to zero. If the remote dd does not support the iseek
option, network_seek_threshold is always treated as zero.

never_resize_pane
Do not resize panes when switching selections modes
Type: boolean (swmgr-only permanent expert)
Default: true
Controls whether to resize panes when switching between automatic installation and custom
selections or manage installed software modes in swmgr.

neweroverride
Allows installation of older products
Type: boolean (transient)
Default: false
Controls whether older subsystems can replace newer subsystems that are installed. The default
value, "off", prevents you from installing subsystems that are older than what is already installed
(i.e. are marked "O" in "list" and "step" output). If you want to replace a subsystem with an older
version, set "neweroverride" to "on". This option is not saved from inst session to inst session.

non_root
Not root user can perform installs/removals
Type: boolean (transient hidden readonly)
Default: false
Controls if a non-root user can perform installs/removals.

overprint
Use overprinting for verbose lists
Type: boolean (inst-only permanent)
Default: true
Controls the manner in which filenames are displayed during installations and removals if the
preference show_files is turned on. When this option is on, scrolling the display is significantly
reduced by overprinting the file names on the same line. If you prefer scrolling as the file names are
displayed, set this option "off". It is "on" by default and saved from session to session.

142 IRIX Release 6.2

inst(1M)hh

override_space_check
Override space checking
Type: boolean (transient expert)
Default: false
If set to true, allows "go" despite a disk overflow condition.

page_output
Page output
Type: boolean (inst-only transient)
Default: true
Controls whether tty output is managed by a paging mechanism similar to more(1m).

perm_check
Permissions check
Type: boolean (transient hidden)
Default: true
Controls whether permissions-checking is performed during the pre-installation check. When this
option is true, the inst or swmgr will inform you during the pre-installation check whether you have
permission to install or remove files in the affected directories.

post_install_dialog
Ask about quit after install
Type: boolean (permanent expert)
Default: true
Controls if a dialog is displayed after an install asking if the user wants to quit.

precious_files
List of precious files
Type: string (transient expert)
Default: NULL
Holds the list of precious file separated by whitespace, specified on the cmd-line or .swmgrrc. Inst or
swmgr will not overwrite or remove any files which the user has designated as precious.

promptforid
Interactive prompt for unknown uid
Type: boolean (permanent)
Default: false
Controls whether the user will be interactively queried for ids corresponding to unknown
uids/gids. Unknown uids or gids result when a passwd or group file does not contain an id for the

IRIX Release 6.2 143

inst(1M)hh

given name. If "off", inst or swmgr will automatically choose the uids/gids (and write them to
/usr/adm/SYSLOG) based on the startid variable.

remote_read_size
Controls the size of the buffer used for reading remote
Type: int (transient hidden)
Default: 10240
distributions. Controls the size of the buffer used for reading remote distributions.

report_exit_status
Set process exit status
Type: boolean (permanent hidden)
Default: false
Controls the exit status to be set to various non-zero values, depending on what caused the exit.

restricted
Restricted mod
Type: boolean (inst-only transient hidden)
Default: false
This resource controls restricted mode in inst.

restrictions
List of restricted files
Type: string (transient expert)
Default: none
Holds the list of restricted files, separated by whitespace or the ’|’ character. Restricted files (and, for
directories, their descendents) are the only files installed or removed during a "go". A value of
"none" indicates no restrictions are in affect. The -Y command line option may be used to specify
the restrictions. After modifying this preference with the "set" command, any previous disk space
calculations may become out of date. Use the "admin recalc" command to determine the new space
requirements. See also exclusions.

rqs_only
Requickstart mode
Type: boolean (transient hidden)
Default: false
Controls if the only operation performed is rqs Controls if the only operation performed is rqs

144 IRIX Release 6.2

inst(1M)hh

rules_disable_defaults
Rules debug
Type: boolean (transient hidden)
Default: false
Controls rules debugging

rules_disable_emptyTryAll
Rules debug
Type: boolean (transient hidden)
Default: false
Controls rules debugging

rules_disable_emptyTryDefaults
Rules debug
Type: boolean (transient hidden)
Default: false
Controls rules debugging

rules_disable_replaces
Rules debug
Type: boolean (transient hidden)
Default: false
Controls rules debugging

rules_enable_allkids
Rules debug
Type: boolean (transient hidden)
Default: false
Controls rules debugging

rules_include_rejected_defaults
Rules debug
Type: boolean (transient hidden)
Default: false
Controls rules debugging

IRIX Release 6.2 145

inst(1M)hh

rules_nonbootable_ok
Rules debug
Type: boolean (transient hidden)
Default: false
Controls rules debugging

rulesoverride
Override any conflict
Type: boolean (transient)
Default: false
Controls whether conflicts can be overridden. The default value, "off", prevents you from installing
subsystems that do not meet specified incompat or prereq rules. If you want to override these rules,
set "rulesoverride" to "on". This option should be used cautiously. "rulesoverride" is not saved from
session to session.

selections_pane_height
Height of the selections pane
Type: int (swmgr-only transient hidden)
Default: 350
Specifies the height of the selections pane.

set_path
Control $PATH variable for exitops
Type: choice (permanent expert)
Choices: default,environment,specific
Default: default
Can be set to default, environment, or specific. default: set path to a known path. environment:
pass $path in from the environment $PATH (or use the default path if $PATH is not set) specific: use
whatever is in the preference set_path_specific

set_path_specific
Path used for exitops
Type: string (permanent expert)
Default: NULL
Controls the path used for exitops.

146 IRIX Release 6.2

inst(1M)hh

shadow_files
List of files to shadow
Type: string (transient hidden)
Default: NULL
Holds the list of shadow files, separated by whitespace, specified on the command line or .swmgrrc

shadowing
File shadowing
Type: boolean (transient hidden readonly)
Default: NULL
Controls whether special files are shadowed during a live (non-miniroot) install.

sharebase
Root of sharetree in client mode
Type: string (transient hidden)
Default: NULL
Holds the name of the root of sharetree in client mode.

shell Program to use for "sh" and "shroot"
Type: string (permanent)
Default: /bin/csh
Controls what program to use for "sh" and "shroot". It may be any pathname, and is the name of the
IRIX command that is invoked for "sh" and "shroot" commands. It is normally /bin/sh or /bin/csh;
the default value comes from the SHELL environment variable. It is saved from session to session.

short_names
Display product name instead of description.
Type: boolean (permanent)
Default: false
Controls if the product name is displayed instead of the product description in swmgr.

show_absolute_sizes
Display absolute product sizes
Type: boolean (inst-only transient hidden)
Default: false
Controls the type of information shown in the size column in the output of the "list" and "step"
commands. If this variable is set to "on", the total product size is shown. Otherwise the net change in
product size (after the installation and removals) is shown.

IRIX Release 6.2 147

inst(1M)hh

show_command_pane
Display the command pane on startup
Type: boolean (swmgr-only transient hidden)
Default: false
Controls whether the command pane is shown on startup.

show_diskspace
Display diskspace summary
Type: boolean (inst-only permanent)
Default: true
Controls whether the diskspace is displayed by the list, step and recalculate commands. Use the
"admin space" command to display this summary even when this preference is set to false. See also
the preference inst_terse_mode.

show_distribution_pane
Display the distribution pane on startup
Type: boolean (swmgr-only transient hidden)
Default: true
Controls whether the distribution pane is shown on startup.

show_existing_conflicts
Display pre-existing conflicts
Type: boolean (transient hidden)
Default: false
Controls whether pre-existing conflicts are displayed or not.

show_files
Display filenames during install
Type: boolean (permanent expert)
Default: false
Controls whether the name of each file is displayed as it is installed or removed. See also the
preference overprint to control whether these listed filenames are displayed on the same line or not.
See also the preference verbose.

show_hidden_resources
Hide or present all preferences
Type: boolean (permanent expert)
Default: false
Controls whether the user is presented with the expert preferences, in addition to the basic

148 IRIX Release 6.2

inst(1M)hh

preferences.

show_legend
Display list legend
Type: boolean (inst-only permanent)
Default: true
Controls whether the legend is displayed at the beginning of the output of the list command. See
also the preference inst_terse_mode.

show_lint
Show distribution consistency errors
Type: boolean (permanent expert)
Default: false
Controls whether to display any inconsistencies found while reading the distribution.

show_log_pane
Display the log pane on startup
Type: boolean (swmgr-only transient hidden)
Default: false
Controls whether the log pane is displayed in swmgr on startup.

show_percent_done
Display task percentages
Type: boolean (inst-only transient expert)
Default: true
Controls whether percent-done messages are displayed in inst. See also the preference verbose.

show_selections_pane
Display the selections pane on startup
Type: boolean (swmgr-only transient hidden)
Default: true
Controls whether the selections pane is shown on startup.

show_stat_pane
Display the status pane on startup
Type: boolean (swmgr-only transient hidden)
Default: true
Controls whether the status pane is shown on startup.

IRIX Release 6.2 149

inst(1M)hh

show_subtasks
Print tasking information
Type: boolean (transient hidden)
Default: false
Controls whether detailed information about tasks and sub-tasks is displayed.

skip_rqs
Skip the requickstart process entirely
Type: boolean (transient hidden)
Default: false
Controls whether to skip the requickstart process. Use this cautiously, because non-requickstarted
executables will run much slower.

space_check
Controls space checking
Type: boolean (transient)
Default: true
Controls whether disk space checking is performed Use cautiously, or you can run out of diskspace.

space_indicator
Type of space indicator
Type: choice (swmgr-only permanent)
Choices: pie,bar,text
Default: pie
Controls the display of the space area, whether bar, pie or text.

space_update_interval
Seconds between disk space updates
Type: int (swmgr-only permanent)
Default: 10
Specifies how often the Disk Space area is automatically updated, (in addition to updates that occur
when the product selections change.) If zero is specified, automatic updates are disabled.

startid
Initial id to assign for an unknown uid/gid
Type: int (permanent)
Default: 60000
This variable is only relevant if promptforid = "off". Inst or swmgr will automatically assign
unknown uid/gid values based on the value of startid. After a given unknown uid or gid is

150 IRIX Release 6.2

inst(1M)hh

assigned the value startid, the next unknown uid/gid will be assigned startid-1, and the next
startid-2, etc. It is recommended that startid be assigned a value that no current uids/gids possess.
If inst or swmgr automatically assigns a uid or gid to a file, it will write the mapping to
/usr/adm/SYSLOG.

startup_script
Controls how an optional installation startup script is handled
Type: choice (transient, expert,)
Choices: prompt,ignore,execute
Default: prompt
This resource is used to control how inst and SoftwareManager treat the inst.init startup script (if
any) that accompanies the software distribution. If set to "prompt", the user is prompted before the
script is executed. If set to "ignore", the startup script is ignored. If set to "execute" the startup script
is run without confirmation from the user. Non-interactive installations (inst -a or swmgr -a) will fail
if a startup script is present, unless this resource is explicitly set on the command-line with either "-
Vstartup_script:ignore" or "-Vstartup_script:execute". This resource is not saved across sessions,
unless a line such as "startup_script : ignore" is manually added to the /var/inst/.swmgrrc file. For
security reasons you are strongly advised against adding the line "startup_script : execute" to the
.swmgrrc file.

swmgr_initial_level
Swmgr product display level
Type: choice (swmgr-only permanent expert)
Choices: product,subsystem
Default: product
Controls the initial level of products displayed in swmgr.

swmgr_visible_resources
Set of optional preferences to display.
Type: multivalue (swmgr-only permanent beginner)
Choices: none,transient,expert
Default: none
Controls the set of optional preferences displayed in the preferences dialog.

swmgrrc_path
Search path for .swmgrrc preference files
Type: string (transient expert)
Default: /var/inst:$rbase/var/inst:$rbase$HOME:$HOME
Contains a colon-separated list of directories to search for preference files, such as ˜/.swmgrrc, that
contain preferences to be saved between sessions. The directories are searched in the order specified.

IRIX Release 6.2 151

inst(1M)hh

Preference settings in the last .swmgrrc found have the highest precedence.

Whenever you use the "set" command to change the value of a "permanent" preference, its value will
be saved in .swmgrrc (the one most recently loaded) and will remain set in future inst or swmgr
sessions.

The swmgrrc_path can also be modified by setting the environment variable SWMGRRC_PATH. If
the value is "none", then no .swmgrrc files will be read, or saved.

symlink_mode
Create a symlink tree
Type: boolean (transient readonly hidden)
Default: false
Controls whether inst or swmgr operates in symlink mode. In this mode, all files (but not
directories, config files, or noshare files) are installed as absolute symbolic links pointing to the
corresponding file in the real tree. This preference can only be set on the command line, using
-T<symlink_root>. See symlink_root.

symlink_root
Root of real tree in symlink_mode
Type: string (transient readonly hidden)
Default: NULL
Holds the root of the real tree that symlinks point to, This preference can only be set on the
command line, using -T<symlink_root>. See symlink_mode.

target Location of target tree
Type: string (transient hidden readonly)
Default: /
Holds the name of the root directory on the local filesystem where files are installed or removed.
Swmgr and inst do not install or remove files outside of the target. Normally during a live
installation, the target is /, and in the miniroot it is /root. The -r command line option may be used
to specify an alternate target.

timeout
Network timeout in seconds
Type: int (permanent)
Default: 120
Holds the amount of time to wait for a reply from a remote host. If the remote machine does not
respond after this time, the request is attempted again. See network_retry. The default is two
minutes; if your network is particularly slow, this may not be enough. If you receive errors

152 IRIX Release 6.2

inst(1M)hh

regarding the network timeout, and you believe the access will succeed if given more time, increase
the value of this option. The value of timeout is saved from session to session.

toolname
Name of invoked installation program.
Type: string (transient hidden)
Default: NULL
Holds the name of the installation program (inst or swmgr).

trace Trace debugging
Type: multivalue (transient hidden)
Choices:
none,category,checkpoint,config,conflict,constructor,destructor,diskless,dispatcher,errno,file,general,gui,hist,ht
Default: NULL
Controls which type of debugging information is displayed. Can be "all" or any combination of
categories. Set to "none" to disable debugging.

use_last_dist
Use last distribution
Type: boolean (swmgr-only permanent expert)
Default: false
Use the last distribution specified if none is specified this session. If no distribution was specified
for this session, automatically load the last distribution seen (swmgr only.)

verbose
Display more detailed output
Type: boolean (permanent expert)
Default: false
When set true, causes more status messages to be displayed. For finer control of the same facility,
see the verbosity setting. See also the preferences show_files, show_percent_done and
inst_terse_mode.

verbosity
Message verbosity display threshold
Type: int (permanent)
Choices: 0 to 6
Default: 2
Controls the level of error and related info messages displayed. 0 for silent, 2 for verbose off
(default), 4 for verbose on, 6 for all messages. For another way to control this setting, see the

IRIX Release 6.2 153

inst(1M)hh

verbose preference.

verify_checksum
Verify checksum of file during install
Type: boolean (permanent expert)
Default: on
During the installation, verify the checksum of each file as it is uncompressed or read from the
archive.

wrapmode
Wrap/truncate long lines in display
Type: choice (inst-only permanent)
Choices: wrap,truncate
Default: wrap
Controls the display of long subsystem descriptions by the "list" command. In wrap mode, the part
of the description that overflows the right margin of the screen is shown indented on the next line.
In truncate mode, the line is truncated near the right margin. The "step" command always uses
truncate mode, regardless of the setting of this option. It is "wrap" by default and saved from session
to session.

SELECTIONS FILE
A selections-file can be used to specify the distribution and the selections for a single installation session.
Blank lines and comment lines that begin with a pound-sign (#) are ignored. All other lines must be
selections file directives.

The software distribution is specified using the from directive. This directive can be omitted from the
selections file if the distribution has already been read and the user uses the admin load command. A
selections file can contain only one distribution directive and it can appear anywhere in the selections file.

from distribution
from /CDROM/dist
from host:distribution

inst resource values can be specified for the installation session by using the set directive. These directives
can appear anywhere in the file and all resource directives are interpreted together in the order that they
appear.

set resource value

The product/subsystem selections for the installation session are specified using the selections directives.
The selections directives can appear anywhere in the file and all selections directives are interpreted

154 IRIX Release 6.2

inst(1M)hh

together in the order that they appear. The directives are specified using their abbreviated forms, and
include install (i), remove (r), keep (k), don’t install (di), don’t remove (dr). The directives k, di, and dr
are semantically equivalent, and they all unmark the product(s) for either installation or removal. In the
examples below, prod_spec, can be a product (prod), image (prod.image), or subsystem (prod.image.subsys).

i prod_spec prod_spec ...
r prod_spec prod_spec ...
k prod_spec prod_spec ...
di prod_spec prod_spec ...
dr prod_spec prod_spec ...

The prod_spec can also be a product status specifier when used with the install or keep directive. The
product status specifier new causes the install or keep command to only select products that are not
already installed. The product status specifier upgrade causes the install or keep command to only select
products that are upgrades of installed products.

KEEP FILE
A keepfile can be used to prevent unwanted products from being marked for default installation. If the
file /var/inst/.keepfile exists, its contents are processed each time a new distribution is loaded. The keepfile
lists new (N) products, images, or subsystems that are not to be marked for default installation. Upgrade
(U) subsystems are not affected by the keepfile. The keepfile only affects the initial selections made by inst
or swmgr when a distribution is loaded.

The inst command admin updatekeepfile updates the keepfile with respect to the current selections. New
default subsystems that are not selected for installation are appended to the keepfile.

The keepfile contains one pattern per line. Only the first whitespace-separated pattern on each line is
considered. A wildcard character, *, can be used in the pattern. For example eoe.books.* turns off default
installation of all new subsystems in the eoe.books image. Comments beginning with # and ending with a
newline are ignored.

FILES
/var/inst/.swmgrrc most recent values of set options
/var/inst/.keepfile new subsystems not selected for default install
/var/inst/help1 source for online help
/var/inst/hist binary file that contains the installation history of your workstation
/var/inst/product binary files, one per product available in any distribution (or since last time

filesystems were remade)

SEE ALSO
distcp(1M), showfiles(1M), showprods(1M), swmgr(1M), versions(1M).

IRIX Release 6.2 155

inst(1M)hh

IRIX Admin: Software Installation and Licensing

156 IRIX Release 6.2

killall(1M)hh

NAME
killall − kill named processes

SYNOPSIS
killall [[−−]signal]
killall [−−gv] [−−k secs] [[−−]signal] [pname ...]
killall [−−gv] [−−k secs] [−−signame] [pname ...]
killall −−l

DESCRIPTION
killall sends a signal to a set of processes specified by name, process group, or process ID. It is similar to
kill(1), except that it allows processes to be specified by name and has special options used by
shutdown(1M).

When no processes are specified, killall terminates all processes that are not in the same process group as
the caller. This form is for use in shutting down the system and is only available to the superuser.

The options to killall are:

signal, −−signal
Specifies the signal number. The minus (−−) is required if pname looks like a signal number. If
no signal value is specified, a default of 9 (KILL) is used.

pname When a process is specified with pname, killall sends signal to all processes matching that name.
This form is available to all users provided that their user ID matches the real, saved, or
effective user ID of the receiving process. The signal number must be preceded by a minus (−−)
if pname looks like a signal number.

signame A mnemonic name for the signal can be used; see the −−l option.

−−g Causes the signal to be sent to the named processes’ entire process group. In this form, the
signal number should be preceded by −− in order to disambiguate it from a process name.

−−k secs Allows the user to specify a maximum time to die for a process. With this option, an argument
specifying the maximum number of seconds to wait for a process to die is given. If after
delivery of the specified signal (which defaults to SIGTERM when using the −−k option), killall
waits for either the process to die or for the time specified by secs to elapse. If the process does
not die in the allotted time, the process is sent SIGKILL.

−−l Lists the signal names (see kill(1) for more information about signal naming). For example,

killall 16 myproc
killall -16 myproc
killall -USR1 myproc

IRIX Release 6.2 157

killall(1M)hh

are equivalent.

−−v Reports if the signal was successfully sent.

killall can be quite useful for killing a process without knowing its process ID. It can be used to stop a run-
away user program without having to wait for ps(1) to find its process ID. It can be particularly useful in
scripts, because it makes it unnecessary to run the output of ps(1) through grep(1) and then through sed(1)
or awk(1).

FILES
/etc/shutdown

SEE ALSO
fuser(1M), kill(1), ps(1), shutdown(1M), signal(2).

158 IRIX Release 6.2

lboot(1M)hh

NAME
lboot − configure bootable kernel

SYNOPSIS
lboot options

DESCRIPTION
The lboot command is used to configure a bootable UNIX kernel. Master files in the directory master
contain configuration information used by lboot when creating a kernel. System files in the directory system
are used by lboot to determine which modules are to be configured into the kernel.

If a module in master is specified in the system file via "INCLUDE:", that module is included in the bootable
kernel. For all included modules, lboot searches the boot directory for an object file with the same name as
the file in master, but with a .o or .a appended. If found, this object is included when building the bootable
kernel.

For every module in the system file specified via "VECTOR:", lboot takes actions to determine if a hardware
device corresponding to the specified module exists. Generally, the action is a memory read at a specified
base, of the specified size. If the read succeeds, the device is assumed to exist, and its module is also
included in the bootable kernel.

Master files that are specified in the system file via "EXCLUDE:" are also examined; stubs are created for
routines specified in the excluded master files that are not found in the included objects.

Master files that are specified in the system file via "USE:" are treated as though the file were specified via
the "INCLUDE:" directive, if an object file corresponding to the master file is found in the boot directory. If
no such object file is found, "USE:" is treated as "EXCLUDE:".

To create the new bootable object file, the applicable master files are read and the configuration
information is extracted and compiled. The output of this compilation is then linked with all included
object files. Unless directed otherwise in the system file, the information is compiled with
$TOOLROOT/usr/bin/cc and combined with the modules in the boot directory using
$TOOLROOT/usr/bin/ld.

The options are:

−−m master Specifies the directory containing the master files to be used for the bootable kernel. The
default master directory is $ROOT/var/sysgen/master.d.

−−s system Specifies the directory containing the system files. The default system directory is
$ROOT/var/sysgen/system.

IRIX Release 6.2 159

lboot(1M)hh

−−b boot Specifies the directory where object files are to be found. The default boot directory is
$ROOT/var/sysgen/boot .

−−n mtune Specifies the directory where tunable parameters are to be found. The default mtune
directory is $ROOT/var/sysgen/mtune.

−−c stune Specifies the name of the file defining customized tunable parameter values. The default
stune file is $ROOT/var/sysgen/stune.

−−r ROOT ROOT becomes the starting pathname when finding files of interest to lboot. Note that this
option sets ROOT as the search path for include files used to generate the target kernel. If
this option is not specified, the ROOT environment variable (if any) is used instead.

−−v Makes lboot slightly more verbose.

−−u unix Specifies the name of the target kernel. By default, it is unix.new, unless the −−t option is
used, in which case the default is unix.install.

−−d Displays debugging information about the devices and modules put in the kernel.

−−a Used to auto-register all dynamically loadable loadable kernel modules that contain a d and
an R in their master files. Only the auto-register is performed, a kernel is not configured.

−−A Disables auto-registering of all dynamically loadable modules. A kernel is produced, but no
auto-registration is performed.

−−l Used to ignore the d in all master files and link all necessary modules into the kernel.

−−e Causes the result of whether an auto-config would have been performed to be printed, but no
actual configuration is built.

−−w Used to specify a work directory into which the master.c and edt.list files are written. By
default these files are written into the boot directory.

−−t Tests if the existing kernel is up-to-date. If the kernel is not up-to-date, it prompts you to
proceed. It compares the modification dates of the system files, the object files in the boot
directory, the modification time of the boot directory, the configuration files in the master.d
directory and the modification time of the stune file with that of the existing kernel. It also
probes for the devices specified with "VECTOR:" lines in the system file. If the devices have
been added or removed, or if the kernel is out-of-date, it builds a new kernel, adding

−−T Performs the same function as the −−t option, but does not prompt you to proceed.

160 IRIX Release 6.2

lboot(1M)hh

−−O tags Specifies tags to be used to select which tunable parameters to use as part of the the kernel
build. Multiple −−O options may be given.

−−L master Specifies the name of the dynamically loadable kernel module to load into the running kernel.
master is the name of a master file in the $ROOT/var/sysgen/master.d directory.

−−R master Specifies the name of the dynamically loadable kernel module to register. master is the name
of a master file in the $ROOT/var/sysgen/master.d directory.

−−U id Used to unload a dynamically loadable kernel module. id is found by using the lboot −V
command.

−−W id Used to unregister a dynamically loadable kernel module. id is found by using the lboot −V
command.

−−V Used to list all of the currently registered and loaded dynamically loadable kernel modules.

It is best to reconfigure the kernel on a system with the autoconfig command.

EXAMPLE
lboot -s newsystem

Reads the file named newsystem to determine which objects should be configured into the bootable object.

FILES
/var/sysgen/system
/var/sysgen/master.d/*
/var/sysgen/boot/*
/var/sysgen/mtune/*
/var/sysgen/stune

SEE ALSO
autoconfig(1M), setsym(1M), systune(1M), master(4), mload(4), mtune(4), stune(4), system(4).

IRIX Release 6.2 161

login(1)hh

NAME
login − sign on

SYNOPSIS
login [-d device] [name [environ ...]]

DESCRIPTION
The login command is used at the beginning of each terminal session and allows you to identify yourself
to the system. It is invoked by the system when a connection is first established. It is invoked by the
system when a previous user has terminated the initial shell by typing a <Ctrl-d> to indicate an end-of-file.

If login is invoked as a command, it must replace the initial command interpreter. This is accomplished
by typing

exec login

from the initial shell.

login asks for your user name (if it is not supplied as an argument) and, if appropriate, your password.
Echoing is turned off (where possible) during the typing of your password, so it does not appear on the
written record of the session.

login reads /etc/default/login to determine default behavior. To change the defaults, the system
administrator should edit this file. The examples shown below are login defaults. Recognized values are:

CONSOLE=device If defined, only allows root logins on the device specified, typically /dev/console.
This MUST NOT be defined as either /dev/syscon or /dev/systty. If undefined,
root can log in on any device.

PASSREQ=NO Determines whether all accounts must have passwords. If YES, and user has no
password, they are prompted for one at login time.

MANDPASS=NO Like PASSREQ, but doesn’t allow users with no password to log in.

ALTSHELL=YES If YES, the environment variable SHELL is initialized.

UMASK=022 Default umask, in octal.

TIMEOUT=60 Exit login after this many seconds of inactivity (maximum 900, or 15 minutes)

SLEEPTIME=1 Sleep for this many seconds before issuing "login incorrect" message (maximum 60
seconds).

162 IRIX Release 6.2

login(1)hh

DISABLETIME=20
After LOGFAILURES or MAXTRYS unsuccessful attempts, sleep for DISABLETIME
seconds before exiting (no maximum).

MAXTRYS=3 Exit login after MAXTRYS unsuccessful attempts (0 = unlimited attempts).

LOGFAILURES=3 If there are LOGFAILURES consecutive unsuccessful login attempts, each of them is
logged in /var/adm/loginlog, if it exists. LOGFAILURES has a maximum value of
20.

Note: Users get at most the minimum of (MAXTRYS, LOGFAILURES) unsuccessful
attempts.

IDLEWEEKS=-1 If nonnegative, specify a grace period during which users with expired passwords are
allowed to enter a new password. In other words, accounts with expired passwords
can stay idle up to this long before being "locked out." If IDLEWEEKS is 0, there is no
grace period, and expired passwords are the same as invalidated passwords.

PATH= Path for normal users (from /usr/include/paths.h).

SUPATH= Path for superuser (from /usr/include/paths.h).

SYSLOG=FAIL Log to syslog all login failures (SYSLOG=FAIL) or all successes and failures
(SYSLOG=ALL). Log entries are written to the LOG_AUTH facility (see syslog(3C)
and syslogd(1M) for details). No messages are sent to syslog if not set. Note that this
is separate from the login log, /var/adm/loginlog.

INITGROUPS=YES
If YES, make the user session be a member of all of the user’s supplementary groups
(see multgrps(1) or initgroups(3C)).

SVR4_SIGNALS=YES
Use the SVR4 semantics for the SIGXCPU and SIGXFSZ signals. If
SVR4_SIGNALS=YES, the SVR4 semantics are preserved and all processes ignore
SIGXCPU and SIGXFSZ by default. If SVR4_SIGNALS=NO, these two signals retain
their default action, which is to cause the receiving process to core dump. If users
intend to make use of the CPU and filesize resource limits, SVR4_SIGNALS should be
set to NO. Note that using these signals while SVR4_SIGNALS is set to YES causes
behavior that varies depending on the login shell. This setting has no affect on
processes that explicitly alter the behavior of these signals using the signal(2) system
call.

IRIX Release 6.2 163

login(1)hh

SITECHECK= Use an external program to authenticate users instead of using the encrypted password
field. This allows sites to implement other means of authentication, such as card keys,
biometrics, etc. The program is invoked with user name as the first argument, and
remote hostname and username, if applicable. The action taken depend on exit status,
as follows:

0 Success; user was authenticated, log in.

1 Failure; exit login.

2 Failure; try again (don’t exit login).

other Use normal UNIX authentication.

If authentication fails, the program can chose to indicate either exit code 1 or 2, as
appropriate. If the program is not owned by root, is writable by others, or cannot be
executed, normal password authentication is performed. It is recommended that the
program be given a mode of 500.

Warning: Because this option has the potential to defeat normal IRIX security, any
program used in this way must be designed and tested very carefully.

LOCKOUT= If nonzero, after this number of consecutive unsuccessful login attempts by the same
user, by all instances of xdm and login, lock the account by invoking passwd -l
username. Note that this feature allows a denial of service attack that may require
booting from the miniroot to fix, as even the root accounts can be locked out.

At some installations, you may be required to enter a dialup password for dialup connections as well as a
login password. In this case, the prompt for the dialup password is:

Dialup Password:

Both passwords are required for a successful login.

For remote logins over the network, login prints the contents of /etc/issue before prompting for a
username or password. The file /etc/nologin disables remote logins if it exists; login prints the
contents of this file before disconnecting the session.

The system can be configured to automate the login process after a system restart. When the file
/etc/autologin exists and contains a valid user name, the system logs in as the specified user without
prompting for a user name or password. The automatic login takes place only after a system restart; once
the user logs out, the normal interactive login session is used until the next restart. This is intended to be
used at sites where the normal security mechanisms provided by login are not needed or desired. If you
make five incorrect login attempts, all five are logged in /var/adm/loginlog (if it exists) and the TTY
line is dropped.

164 IRIX Release 6.2

login(1)hh

If you do not complete the login successfully within a certain period of time (by default, 20 seconds), you
are likely to be silently disconnected.

After a successful login, accounting files are updated, the /etc/profile script is executed, the time you
last logged in is printed (unless a file .hushlogin is present in the user’s home directory), /etc/motd
is printed, the user ID, group ID, supplementary group list, working directory, and command interpreter
(usually sh) are initialized, and the file .profile in the working directory is executed, if it exists. The
name of the command interpreter is − followed by the last component of the interpreter’s pathname (for
example, −sh). If this field in the password file is empty, the default command interpreter,
/usr/bin/sh is used. If this field is *, the named directory becomes the root directory, the starting point
for path searches for pathnames beginning with a /. At that point login is re-executed at the new level
which must have its own root structure. At the very least, this root structure must include /dev/zero,
/etc/group, /etc/passwd, /lib/rld, /lib/libc.so.1, /usr/bin/login,
/usr/lib/libcrypt.so, and /usr/lib/libgen.so. These files allow login to execute correctly,
but you also need to include additional files, like shells or applications, that the user is allowed to execute.
Since these applications can in turn rely on additional shared libraries, it may also be necessary to place
additional shared objects in /usr/lib. See the ftpd(1M) reference page for more information about
setting up a root environment.

The basic environment is initialized to:

HOME=your-login-directory
LOGNAME=your-login-name
PATH=/usr/bin
SHELL=last-field-of-passwd-entry
MAIL=/var/mail/your-login-name
TZ=timezone-specification

The environment can be expanded or modified by supplying additional arguments when login prints the
prompt requesting the user’s login name. The arguments can take either of two forms: xxx or xxx=yyy.
Arguments without an equal sign are placed in the environment as

Ln=xxx

where n is a number that starts at 0 and is incremented each time a new variable name is required.
Variables containing = are placed in the environment without modification. If such a variable is already
defined, the new value replaces the old value. To prevent users who log in to restricted shell environments
from spawning secondary shells that are not restricted, the following environment variables cannot be
changed:

HOME
IFS
LOGNAME
PATH

IRIX Release 6.2 165

login(1)hh

SHELL

Attempts to set environment variables beginning with the following strings (see the rld(1) reference
page) are ignored, and such attempts are logged via syslogd:

_RLD
LD_LIBRARY

login understands simple, single-character quoting conventions. Typing a backslash in front of a
character quotes it and allows the inclusion of such characters as spaces and tabs.

To enable dial-in line password protection, two files are required. The file /etc/dialups must contain
of the name of any dialup ports (for example, /dev/ttyd2) that require password protection. These are
specified one per line. The second file, /etc/d_passwd consists of lines with the following format:

shell:password:

This file is scanned when the user logs in, and if the shell portion of any line matches the command
interpreter that the user gets, the user is prompted for an additional dialin password, which is encoded and
compared to that specified in the password portion of the line. If the command interpreter cannot be found,
the entry for the default shell, /sbin/sh, (or, for compatibility with existing configurations, /bin/sh) is
used. (If both are present, the last one in file is used.) If there is no such entry, no dialup password is
required. In other words, the /etc/d_passwd entry for /sbin/sh is the default.

SHARE II ACTIONS
If the Share II system is installed and enabled, login prints the message:

Share login on ttyname.

The following privilege and resource checks are made after you have successfully entered your password,
but before the initial shell is started:

1. If your nologin flag is set, or you are already logged on and your onelogin flag is set, you are
denied login.

2. If a disk usage exceeds its soft disk limit in any of your domains, a message is printed and you are
given a warning. If you accumulate too many warnings, further login attempts are denied and you
must see your subadministrator to rectify the situation. Whenever you log in or connect by remote
shell with no disk usages in excess of any soft limits, all your accumulated warnings are cleared.

3. If you do not have permission to use the terminal, as determined by the respective terminal permission
flag, you are denied login.

166 IRIX Release 6.2

login(1)hh

4. Some installations place limits on terminal connect time, both through logins and remote shell
connections. If you have already reached your connect time limit, you are denied login. Otherwise, if
the terminal costs more or less to use than normal terminals, its cost is printed. Your remaining
connect time is also printed.

If all these checks are passed, login proceeds normally.

NOTES
Autologin is controlled by the existence of the /etc/autologin.on file. The file is normally created at
boot time to automate the login process and then removed by login to disable the autologin process for
succeeding terminal sessions.

In the default configuration, encrypted passwords for users are kept in the system password file,
/etc/passwd, which is a text file and is readable by any system user. The program pwconv(1M) can be
used by the system administrator to activate the shadow password mechanism. When shadow passwords
are enabled, the encrypted passwords are kept only in /etc/shadow, a file that is only readable by the
superuser. Refer to the pwconv(1M) reference page for more information about shadow passwords.

FILES
/etc/dialups
/etc/d_passwd
/etc/motd message of the day
/etc/passwd password file
/etc/shadow shadow password file
/etc/profile system profile
$HOME/.profile user’s login profile
/usr/lib/iaf/login/scheme

login authentication scheme
/var/adm/lastlog time of last login
/var/adm/loginlog

record of failed login attempts
/var/adm/utmp accounting
/var/adm/wtmp accounting
/etc/default/login

to determine default behavior
/var/mail/login_name

mailbox for user login_name
/usr/lib/locale/locale/LC_MESSAGES/uxcore

language-specific message file (see LANG in environ(5))
/etc/limconf the compiled Share II configuration file (machine readable)

IRIX Release 6.2 167

login(1)hh

SEE ALSO
mail(1), newgrp(1), pwconv(1M), rexecd(1M), rshd(1M), sh(1), su(1M), loginlog(4), passwd(4), profile(4),
shadow(4), environ(5), share(5).

DIAGNOSTICS
The message

UX:login: ERROR: Login incorrect

is printed if the user name or the password cannot be matched or if the user’s login account has expired or
remained inactive for a period greater than the system threshold.

The Share II-specific diagnostic messages are:

Warning X of Y: soft disk limit exceeded.
One of your domains has a disk usage in excess of its soft limit.

Connection denied. Too many warnings.
You have reached your warning limit. See your system administrator.

Connection denied. Already logged in − only one login allowed.
You are already logged in at another terminal or connected to the system by remote shell and your
onelogin flag is set.

Connection denied. Currently barred from logging in.
Your nologin flag is set.

Connection denied. No permission to use this terminal.
You are not allowed to log in at this terminal because of a clear terminal permission flag.

Share login on ttyname − terminal cost is X times normal.
You are charged for use of this terminal at X times the rate of a normal terminal.

You have a remaining terminal connect time of Y.
You may use this terminal until you have used up your remaining connect time, at which point you
are forced to log out.

Connection denied. Terminal connect time limit exceeded.
You have already reached your terminal connect time limit.

Share not configured − no limit checks.
The configuration file is unreadable for some reason, so terminal privileges, connect time limits, and
disk space limits could not be checked.

168 IRIX Release 6.2

lvck(1M)hh

NAME
lvck − check and restore consistency of logical volumes

SYNOPSIS
/sbin/lvck [−−l lvtabname] [lvx]
/sbin/lvck −−d
/sbin/lvck block_special_filename

DESCRIPTION
lvck checks the consistency of logical volumes by examining the logical volume labels of devices constituting
the volumes. Depending on the invocation, the volumes can also be checked against lvtab entries, see
lvtab(4). The default system file /etc/lvtab is normally assumed in this case; an alternate lvtab file can be
specified with the −−l option.

Invoked without parameters, lvck checks every logical volume for which there is an entry in /etc/lvtab .

Invoked with the name of a logical volume device, for example lv0, lvck checks only that entry in /etc/lvtab .

Invoked with the −−d flag, lvck ignores /etc/lvtab and searches through all disks connected to the system to
locate all logical volumes that are present. lvck prints a description of each logical volume found in a form
resembling an lvtab entry; this facilitates recreation of an lvtab for the system should this be necessary.

Invoked with the device block special filename of a disk device (for example, /dev/dsk/ips0d1s4), lvck prints
any logical volume label that exists for that device, again in a form resembling an lvtab entry. This mode of
lvck is purely informational; no checks are made of any other devices mentioned in the label.

lvck has some repair capabilities. If it determines that the only inconsistency in a logical volume is that a
minority of devices have missing or corrupt labels, it is able to restore a consistent logical volume by
rewriting good labels. lvck interactively queries the user before attempting any repairs on a volume.

DIAGNOSTICS
lvck detects four general types of errors:

1) Disks connected in the wrong place.

2) Inconsistencies between the on-disk labels of a volume.

3) Internal inconsistencies in an lvtab entry.

4) Inconsistencies between a volume defined by its on-disk labels and the lvtab entry for that volume.

(The two latter are relevant only for modes of lvck that examine the lvtab .) Details of these errors are given
below.

IRIX Release 6.2 169

lvck(1M)hh

1) If a disk device that is a member of a logical volume is connected with the wrong id, the volume
cannot be used since the device is not correctly located from the labels. lvck prints a message
describing the problem. For example:

lvck: device currently connected as /dev/dsk/ips1d2s7
was initialized when connected as /dev/dsk/ips0s2s7.

lvck: Incorrect device connections must be rectified
before logical volumes can be used.

The offending disks must be physically reconnected with the appropriate ID. See intro(7) for details
of the SGI disk device ID conventions.

2) If lvck detects inconsistencies between the on-disk labels for a logical volume, it prints a description
of the volume in a form resembling an lvtab entry, with the device pathname for each member on a
separate line. A short message describing the problem with the member appears on the line with
the pathname. For example:

lv6:test 6:stripes=3:step=31:devs= \
/dev/dsk/ips0d1s2, \
/dev/dsk/ips0d1s3, <CAN’T ACCESS> \
/dev/dsk/ips0d1s4, \
/dev/dsk/ips0d1s11, <NO LABEL PRESENT> \
/dev/dsk/ips0d1s12, \
/dev/dsk/ips0d1s13

Possible messages and their meanings are:

<NOT A MEMBER OF THIS VOLUME>
The label for this device identifies it as a member of a different volume from the other
devices. Probably the wrong disk has been connected.

<CAN’T ACCESS>
The named special file is missing or cannot be opened. The disk may be missing, or there
may be a hardware problem.

<CAN’T READ DISK HEADER>
lvck could not read the disk header partition for this device to search for the logical volume
label.

<ILLEGAL PARTITION TYPE>
The pathname refers to a type of partition (such as track replacement) that is not legal as part
of a logical volume. Probably logical volume labels or disk headers have been corrupted.

170 IRIX Release 6.2

lvck(1M)hh

<INCORRECT PARTITION SIZE>
The partition size does not agree with the logical volume label. Possibly the disk has been
incorrectly repartitioned since creation of the logical volume.

<SPECIAL FILE DEV IS WRONG>
The major and minor numbers of the special file disagree with the SGI naming conventions.
There has probably been an incorrect use of mknod(1M) in the /dev/dsk directory.

<FILE NOT BLOCK SPECIAL>
The pathname does not refer to a block special file, even though it has the conventional
format. The /dev/dsk directory needs repair.

<INCORRECT PARTITION TYPE>
The partition type stored in the disk header does not indicate that this partition is a logical
volume member. Probably the wrong disk has been connected.

<LABEL UNREADABLE>
The disk header directory indicates that a logical volume label exists for this device, but it
cannot be read. Possibly there is a bad block on the disk.

<NO LABEL PRESENT>
There is no logical volume label for this device. It may have been inadvertently deleted, or
the wrong disk may have been connected.

<LABEL CORRUPTED>
Label is present but damaged.

3) Internal inconsistencies in lvtab entries. In this case lvck prints error messages that are intended to be
self-explanatory. Possible messages are listed below (the items in brackets <xxx> represent places
where the actual erring values appear):

Lvtab entry with no device name: ignored

Lvtab entry with illegal device name <xxx>: ignored

Illegal number of pathnames <n> in lvtab entry <lvx>: ignored

Number of pathnames in lvtab entry <lvx> is not multiple of
striping: entry ignored.

Illegal striping step in lvtab entry <lvx>: ignored

Duplicate lvtab entry <lvx>: ignored

Bad pathname <xxx> in lvtab entry <lvx>: entry ignored.

IRIX Release 6.2 171

lvck(1M)hh

Duplicate pathname <xxx> in lvtab entry <lvx>: entry ignored

Illegal entry <lvx> in logical volume table: ignored

See lvtab(4) for details of the expected form of lvtab entries, and constraints upon the entries. Limits
on the number of devices in a volume, striping step size, volume name length, and so forth, are
given in the include file <sys/lvtab.h>.

4) Inconsistencies between on-disk labels and the lvtab entry. This can occur if the lvtab entry has been
incorrectly modified or if the disks connected to the system do not contain the logical volume
expected in the lvtab entry. lvck prints error messages that are intended to be self-explanatory.
Possible messages are listed below (the items in brackets <xxx> represent places where the actual
erring values appear):

Volume name <xxx> in lvtab entry disagrees with name <yyy>
in on-disk labels.

Number of devs in lvtab entry <lvx> is greater than number <d>
in on-disk labels.

Number of devs in lvtab entry <lvx> is less than number <d> in
on-disk labels.

Stripes specified in lvtab entry for <lvx> don’t agree with
on-disk labels.

Step specified in lvtab entry for <lvx> doesn’t agree with
on-disk labels.

SEE ALSO
lvinit(1M), mklv(1M), lvtab(4), intro(7), lv(7M).

CAVEAT
The repair capabilities of lvck are limited to recreating damaged or missing logical volume labels for disk
devices so that the system is again able to use an ensemble of disk devices as a logical volume. However, if
data on the devices themselves has been corrupted or if an incorrect disk device has been connected, the
contents of the logical volume is corrupt. It is strongly advisable to check that no incorrect disks have been
connected before proceeding with any repair attempt.

172 IRIX Release 6.2

lvinfo(1M)hh

NAME
lvinfo − print information about active logical volumes

SYNOPSIS
lvinfo [pathname | volume_device_name]

DESCRIPTION
lvinfo prints descriptions of logical volumes that are currently active in a system. See lv(7M).

Invoked without arguments, lvinfo prints descriptions of all volumes that are currently active. These may
be only a subset of those described in the lvtab(4) configuration file, because volumes may have failed to
initialize. Failure to initialize could be due to missing physical disks, for example.

The information printed can be limited to specified logical volume devices by using options. These can be
either the full pathname of a logical volume device, such as /dev/rdsk/lv1 , or a logical volume device name
of the form lvn where n is a small integer. For example, lv2.

The information printed by lvinfo consists of a line giving the total size of the volume in 512-byte basic
blocks, followed by a description of the volume in a form, which resembles an entry in lvtab(4).

EXAMPLE
prompt> /sbin/lvinfo
lv5 size is 4680648 blocks
lv5: :stripes=3:step=148:devs= /dev/dsk/ipi0d1s6, \

/dev/dsk/ipi0d8s6, \
/dev/dsk/ipi1d0s6

Note that the values of all options are printed, even though some may have been omitted in the lvtab entry,
causing defaults to be used.

Also note that the human-readable name of the volume is not printed: lvinfo works from information held
by the lv(7M) device driver, which does not use this information.

DIAGNOSTICS
Invoked with no arguments, lvinfo simply prints the active volumes and is silent about any volumes that
are not initialized.

To obtain a printout of all logical volume devices whether initialized or not, invoke as:

lvinfo /dev/rdsk/lv*

Invoked with arguments, it prints for each argument either a logical volume description as above or an
error message. Possible error messages are:

IRIX Release 6.2 173

lvinfo(1M)hh

XXXX is not a logical volume device name.
lvxx is not initialized.

These messages means that there is a special device file for a logical volume of that name, but it is
not currently active. This might be because there is no entry in /etc/lvtab for that volume or because
initialization of that volume failed, owing to faulty or missing disks, for example.

Can’t open /dev/rdsk/lvx
This message means that the given logical volume name is legal and plausible, but no special device
file exists for it. Probably a volume of that name has never been created on the system.

SEE ALSO
lvck(1M), lvinit(1M), mklv(1M), lvtab(4), lv(7M).

174 IRIX Release 6.2

lvinit(1M)hh

NAME
lvinit − initialize logical volume devices

SYNOPSIS
/sbin/lvinit [−−l lvtabname] [volume_device_name ...]

DESCRIPTION
lvinit initializes the logical volume device driver which allows access to disk storage as logical volumes (see
lv(7M)). It is run automatically on system startup, and will not normally need to be invoked explicitly. It
works from entries in /etc/lvtab (see lvtab(4)).

No data access to a logical volume device is possible until it has been initialized with lvinit, because the
initialization process provides the driver with the information needed to map requests on the logical
volume device into requests on the underlying physical disk devices. This implies that the root filesystem
of a machine must reside on a regular partition rather than a logical volume, because lvinit must be
accessible before logical volumes can be initialized.

Invoked without arguments, lvinit initializes every logical volume device for which there is an entry in
/etc/lvtab . The −−l option allows an alternate lvtab file to be specified. If volume_device_name arguments are
present, it initializes only those volumes in the lvtab identified by the arguments. These arguments must be
of the form lvn, where n is a small integer. For example, lv2.

The necessary information about the devices (disk partitions) constituting the logical volume, and the
volume geometry, is obtained from the logical volume labels for the devices specified in the lvtab entry as
constituting the volume.

The constituent devices must have been labeled as members of the volume with mklv before the volume
can be initialized.

DIAGNOSTICS
lvinit does checks of the lvtab entry and the on-disk labels of a volume before attempting initialization.

See the DIAGNOSTICS section of the lvck reference page for possible error messages.

SEE ALSO
lvck(1M), mklv(1M), lvtab(4), lv(7M).

IRIX Release 6.2 175

MAKEDEV(1M)hh

NAME
MAKEDEV − create device special files

SYNOPSIS
/dev/MAKEDEV [target] [parameter=val]

DESCRIPTION
MAKEDEV creates specified device files in the current directory; it is primarily used for constructing the
/dev directory. It is a "makefile" processed by the make(1) command. Its arguments can be either targets in
the file or assignments overriding parameters defined in the file. The targets alldevs and owners are
assumed if no other targets are present (see below).

All devices are created relative to the current directory, so this command is normally executed from /dev.
In order to create the devices successfully, you must be the superuser.

The following are some of the target arguments that are recognized by MAKEDEV . For a complete list you
may need to examine the script.

ttys Creates tty (controlling terminal interface) files for CPU serial ports. In addition, creates
special files for console, syscon, systty , keybd , mouse, dials, and tablet . See duart(7), console(7),
keyboard(7), mouse(7), pckeyboard(7), and pcmouse(7) for details.

cdsio Creates additional tty files enabled by using the Central Data serial board.

pty Creates special files to support "pseudo terminals." This target makes a small number of files,
with more created as needed by programs using them. Additional pty files can be made for
older programs not using library functions to allocate ptys by using the parameter override
MAXPTY=100, or any other number between 1 and 199. See pty(7M) for details.

dks Creates special files for SCSI disks. See dks(7M) for details.

rad Creates special files for SCSI attached RAID disks. See raid(1M) and usraid(7M) for details.

fds Creates special files for SCSI floppy drives. See smfd(7M) for details.

usrvme Creates special files for user level VME bus adapter interfaces. See usrvme(7M) for details.

usrdma Creates special files for user level access to DMA engines. See usrdma(7M) for details.

tps Creates special files for SCSI tape drives. See tps(7M) for details.

hl Creates special files for the hardware spinlock driver to use in process synchronization (IRIS-
4D/GTX models only).

176 IRIX Release 6.2

MAKEDEV(1M)hh

t3270 Creates the special files for the IBM 3270 interface controller.

gse Creates the special files for the IBM 5080 interface controller.

dn_ll Creates the special file for the 4DDN logical link driver.

dn_netman Creates the special file for the 4DDN network management driver.

audio Creates the special file for the bi-directional audio channel interface for the IRIS-4D/20 series.
See audio(1) for details.

plp Creates the special file for the parallel printer interface for the IRIS-4D/20 series. See plp(7) for
details.

ei Creates the special file for the Challenge/Onyx external interrupt interface. See ei(7) for
details.

generic Creates miscellaneous, commonly used devices: tty , the controlling terminal device; mem,
kmem, mmem, and null, the memory devices; prf, the kernel profiling interface; tport , the
texport interface; shmiq, the event queue interface; gfx, graphics, the graphics device interfaces;
and zero , a source of zeroed unnamed memory. See tty(7), mem(7), prf(7), and zero(7) for
details concerning some of these respective devices.

links This option does both disk and tape

disk This option creates all the disk device special files for the dks drives, and then creates links by
which you can conveniently reference them without knowing the configuration of the
particular machine. The links root , rroot , swap , rswap , usr, rusr, vh, and rvh are created to
reference the current root, swap, usr and volume header partitions.

tape This option creates all the tps tape devices, then makes links to tape , nrtape , tapens , and nrtapens
for the first tape drive found, if one exists. It checks for SCSI in descending target ID order,
and ascending SCSI bus number.

mindevs This option is shorthand for creating the generic, links, pty , ttys , device files.

alldevs This option creates all of the device special files listed above.

owners This option changes the owner and group of the files in the current directory to the desired
default state.

onlylinks This option does only the link portion of disk and tape above, in case a different disk is used as
root, or a different tape drive is used.

IRIX Release 6.2 177

MAKEDEV(1M)hh

BUGS
The links made for /dev/usr and /dev/rusr always point to partition 6 of the root drive. While this is the most
common convention, it is not invariable.

If a system has been reconfigured with the /usr filesystem in some place other than this default, by
specifying the device in /etc/fstab (see fstab(4)), the /dev/usr and /dev/rusr devices will NOT point to the
device holding the real /usr filesystem.

SEE ALSO
install(1), make(1), mknod(1M).

178 IRIX Release 6.2

mkfs(1M)hh

NAME
mkfs − construct a filesystem

SYNOPSIS
mkfs [−−t efs] efs_mkfs_options
mkfs [−−t xfs] xfs_mkfs_options

DESCRIPTION
mkfs constructs a filesystem by writing on the special file given as one of the command line arguments. The
filesystem constructed is either an EFS filesystem or an XFS filesystem depending on the arguments given.
mkfs constructs EFS filesystems by executing mkfs_efs(1M); XFS filesystems are constructed by executing
mkfs_xfs(1M).

The filesystem type chosen can be forced with the −−t option (also spelled −−F). If one of those options is not
given, mkfs determines which filesystem type to construct by examining its arguments. If mkfs special is
given, then the choice is EFS unless the special device is an XLV volume with a log subvolume.

SEE ALSO
mkfs_efs(1M), mkfs_xfs(1M).

IRIX Release 6.2 179

mkfs_efs(1M)hh

NAME
mkfs_efs − construct an EFS filesystem

SYNOPSIS
mkfs_efs [−−q] [−−a] [−−i] [−−r] [−−n inodes] special [proto]
mkfs_efs [−−q] [−−i] [−−r] special blocks inodes heads sectors cgsize cgalign ialign [proto]

DESCRIPTION
mkfs_efs constructs a filesystem by writing on the special file using the values found in the remaining
arguments of the command line. Normally mkfs_efs prints the parameters of the filesystem to be
constructed; the −−q flag suppresses this.

If the −−i flag is given, mkfs_efs asks for confirmation after displaying the parameters of the filesystem to be
constructed.

In it’s simplest (and most commonly used form), the size of the filesystem is determined from the disk
driver. As an example, to make a filesystem on partition 7 (all of the useable portion of an option drive,
normally) on drive 7 on SCSI bus 0, use:

mkfs_efs /dev/rdsk/dks0d7s7

The −−r flag causes mkfs_efs to write only the superblock, without touching other areas of the filesystem. See
the section below on the recovery option.

The −−a flag causes mkfs_efs to align inodes and data on cylinder boundaries (equivalent to setting cgalign
and ialign to a cylinder size). This option can result in a loss of 10MB or more in a filesystem, since the
resulting cylinder groups are not very flexible in size, and runt cylinder groups are not allowed. Aligning
data and inodes with this option can result in an increase in performance (about two percent) on drives
that have a fixed number of sectors per track. Many SCSI disk drives do not have a fixed number of sectors
per track, and thus, will not see a benefit from this option.

When the first form of mkfs_efs is used, mkfs_efs obtains information about the device size and geometry by
means of appropriate IOCTLs, and assigns values to the filesystem parameters on the basis of this
information.

If the −−n option is present, however, the given number of inodes is used rather than the default. This
allows a nonstandard number of inodes to be assigned without needing to resort to the long form
invocation.

If the second form of mkfs_efs is used, then all the filesystem parameters must be specified from the
command line. Each argument other than special and proto is interpreted as a decimal number.

180 IRIX Release 6.2

mkfs_efs(1M)hh

The filesystem parameters are:

blocks The number of physical (512-byte) disk blocks the filesystem will occupy. The current maximum
limit on the size of an EFS filesystem is 16777214 blocks (two to the 24th power). This can also
be expressed as 8 gigabytes. mkfs_efs does not attempt to make a filesystem larger than this
limit.

inodes The number of inodes the filesystem should have as a minimum.

heads An unused parameter, retained only for backward compatibility.

sectors The number of sectors per track of the physical medium.

cgsize The size of each cylinder group, in disk blocks, approximately.

cgalign The boundary, in disk blocks, that a cylinder group should be aligned to.

ialign The boundary, in disk blocks, that each cylinder group’s inode list should be aligned to.

Once mkfs_efs has the filesystem parameters it needs, it then builds a filesystem containing two directories.
The filesystem’s root directory is created with one entry, the lost+found directory. The lost+found directory
is filled with zeros out to approximately 10 disk blocks, so as to allow space for fsck(1M) to reconnect
disconnected files. The boot program block, block zero, is left uninitialized.

If the optional proto argument is given, mkfs_efs uses it as a prototype file and takes its directions from that
file. The blocks and inodes specifiers in the proto file are provided for backwards compatibility, but are
otherwise unused. The prototype file contains tokens separated by spaces or new-lines. A sample
prototype specification follows (line numbers have been added to aid in the explanation):

1. /stand/diskboot
2. 4872 110
3. d−−777 3 1
4. usr d−−777 3 1
5. sh −−−755 3 1 /bin/sh
6. ken d−−755 6 1
7. $
8. b0 b−−644 3 1 0 0
9. c0 c−−644 3 1 0 0
10 fifo p−−644 3 1
11 slink l−−644 3 1 /a/symbolic/link
12 : This is a comment line
13 $
14. $

Line 1 is a dummy string. (It was formerly the bootfilename.) It is present for backward compatibility;

IRIX Release 6.2 181

mkfs_efs(1M)hh

boot blocks are not used on SGI systems, and mkfs_efs merely clears block zero.

Note that some string of characters must be present as the first line of the proto file to cause it to be parsed
correctly; the value of this string is immaterial since it is ignored.

Line 2 contains two numeric values (formerly the numbers of blocks and inodes). These are also merely for
backward compatibility: two numeric values must appear at this point for the proto file to be correctly
parsed, but their values are immaterial since they are ignored.

Lines 3-11 tell mkfs_efs about files and directories to be included in this filesystem.

Line 3 specifies the root directory.

lines 4-6 and 8-10 specifies other directories and files. Note the special symbolic link syntax on line 11.

The $ on line 7 tells mkfs_efs to end the branch of the filesystem it is on, and continue from the next higher
directory. It must be the last character on a line. The : on line 12 introduces a comment; all characters up
until the following newline are ignored. Note that this means you cannot have files in a prototype file
whose name contains a :. The $ on lines 13 and 14 end the process, since no additional specifications
follow.

File specifications give the mode, the user ID, the group ID, and the initial contents of the file. Valid syntax
for the contents field depends on the first character of the mode.

The mode for a file is specified by a six-character string. The first character specifies the type of the file.
The character range is −−bcdpl to specify regular, block special, character special, directory files, named
pipes (fifos) and symbolic links, respectively. The second character of the mode is either u or −− to specify
set-user-ID mode or not. The third is g or −− for the set-group-ID mode. The rest of the mode is a six digit
octal number giving the owner, group, and other read, write, execute permissions (see chmod(1)).

Two decimal number tokens come after the mode; they specify the user and group IDs of the owner of the
file.

If the file is a regular file, the next token of the specification can be a pathname whence the contents and
size are copied. If the file is a block or character special file, two decimal numbers follow that give the
major and minor device numbers. If the file is a symbolic link, the next token of the specification is used as
the contents of the link. If the file is a directory, mkfs_efs makes the entries . and .. and then reads a list of
names and (recursively) file specifications for the entries in the directory. As noted above, the scan is
terminated with the token $.

RECOVERY OPTION
The −−r flag causes mkfs_efs to write only the superblock, without touching the remainder of the filesystem
space. This allows a last-ditch recovery attempt on a filesystem whose superblocks have been destroyed:
by running mkfs_efs on the device with the −−r option, a superblock is created from which fsck(1M) can
obtain the geometry information it needs to analyze the filesystem.

182 IRIX Release 6.2

mkfs_efs(1M)hh

Note that this procedure is only of use if the regenerated superblock matches the parameters of the original
filesystem. If the filesystem was created using the long form invocation, parameters identical to the
original invocation must be given with the −−r option. Note also that filesystem defaults may change from
release to release to allow more efficient use of newer disk technologies; thus, the −−r option may not be
useful for filesystems created under IRIX versions other than the version being run.

It should be clear that this is a limited recovery facility; it does not help if, for example, the root directory of
the filesystem has been destroyed.

SEE ALSO
chmod(1), mkfp(1M), mkfs(1M), mkfs_xfs(1M), dir(4), efs(4).

BUGS
With a prototype file, it is not possible to specify hard links.

IRIX Release 6.2 183

mkfs_xfs(1M)hh

NAME
mkfs_xfs − construct an XFS filesystem

SYNOPSIS
mkfs_xfs [−−b subopt=value] [−−d subopt[=value]] [−−i subopt=value]

[−−l subopt[=value]] [−−p protofile] [−−q] [−−r subopt[=value]]
device

DESCRIPTION
mkfs_xfs constructs an XFS filesystem by writing on a special file using the values found in the arguments
of the command line. It is invoked automatically by mkfs(1M) when mkfs is given the −−t xfs option or
options that are specific to XFS.

In it’s simplest (and most commonly used form), the size of the filesystem is determined from the disk
driver. As an example, to make a filesystem on partition 7 (all of the useable portion of an option drive,
normally) on drive 7 on SCSI bus 0, with an internal log, use:

mkfs_xfs /dev/rdsk/dks0d7s7

XFS filesystems are composed of a data section, a log section, and optionally a real-time section. This
separation can be accomplished using the XLV volume manager to create a multi-subvolume volume, or
by embedding an internal log section in the data section. In the former case, the device name is supplied as
the final argument. In the latter case a disk partition, lv(7M) logical volume, or XLV logical volume
without a log subvolume can contain the XFS filesystem, which is named by the −−d name=special option or
by the final argument.

Each of the subopt=value elements in the argument list above can be given as multiple comma-separated
subopt=value suboptions if multiple suboptions apply to the same option. Equivalently, each main option
can be given multiple times with different suboptions. For example, −−l internal,size=1000b and −−l internal
−−l size=1000b are equivalent.

In the descriptions below, sizes are given in bytes, blocks, kilobytes, or megabytes. Sizes are treated as
hexadecimal if prefixed by 0x or 0X, octal if prefixed by 0, or decimal otherwise. If suffixed with b then the
size is converted by multiplying it by the filesystem’s block size. If suffixed with k then the size is
converted by multiplying it by 1024. If suffixed with m then the size is converted by multiplying it by
1048576 (1024 * 1024).

−−b Block size options.

This option specifies the fundamental block size of the filesystem. The valid suboptions are:
log=value and size=value; only one can be supplied. The block size is specified either as a base two
logarithm value with log=, or in bytes with size=. The default value is 4096 bytes (4 KB). The
minimum value for block size is 512; the maximum is 65536 (64 KB).

184 IRIX Release 6.2

mkfs_xfs(1M)hh

−−d Data section options.

These options specify the location, size, and other parameters of the data section of the filesystem.
The valid suboptions are: agcount=value, file[=value], name=value, and size=value.

The agcount suboption is used to specify the number of allocation groups. The data section of the
filesystem is divided into allocation groups to improve the performance of XFS. More allocation
groups imply that more parallelism can be achieved when allocating blocks and inodes. The
minimum allocation group size is 16 MB; the maximum size is just under 4 GB. The data section of
the filesystem is divided into agcount allocation groups (default value 8, unless the filesystem is
smaller than 128 MB or larger than 32 GB).

The name suboption can be used to specify the name of the special file containing the filesystem. In
this case, the log section must be specified as internal (with a size, see the −−l option below) and there
can be no real-time section. Either the block or character special device can be supplied. An XLV
logical volume with a log subvolume cannot be supplied here. Note that the default log in this case
is a 1000 block internal log.

The file suboption is used to specify that the file given by the name suboption is a regular file. The
suboption value is either 0 or 1, with 1 signifying that the file is regular. This suboption is used only
to make a filesystem image (for instance, a miniroot image). If the value is omitted then 1 is
assumed.

The size suboption is used to specify the size of the data section. This suboption is required if −−d
file[=1] is given. Otherwise, it is only needed if the filesystem should occupy less space than the size
of the special file.

−−i Inode options.

This option specifies the inode size of the filesystem, and other inode allocation parameters. The
XFS inode contains a fixed-size part and a variable-size part. The variable-size part, whose size is
affected by this option, can contain: directory data, for small directories; symbolic link data, for
small symbolic links; the extent list for the file, for files with a small number of extents; and the root
of a tree describing the location of extents for the file, for files with a large number of extents.

The valid suboptions for specifying inode size are: log=value, perblock=value, and size=value; only
one can be supplied. The inode size is specified either as a base two logarithm value with log=, in
bytes with size=, or as the number fitting in a filesystem block with perblock=. The default value is
256 bytes. The minimum value for inode size is 128, and the maximum value is 2048 (2 KB) subject
to the restriction that the inode size cannot exceed one half of the filesystem block size.

The option maxpct=value specifies the maximum percentage of space in the filesystem that can be
allocated to inodes. The default value is 25%. Setting the value to 0 means that essentially all of the
filesystem can become inode blocks.

IRIX Release 6.2 185

mkfs_xfs(1M)hh

−−l Log section options.

These options specify the location, size, and other parameters of the log section of the filesystem.
The valid suboptions are: internal[=value] and size=value.

The internal suboption is used to specify that the log section is a piece of the data section instead of
being a separate part of an XLV logical volume. The suboption value is either 0 or 1, with 1
signifying that the log is internal. If the value omitted, 1 is assumed.

The size suboption is used to specify the size of the log section. This suboption is required if −−l
internal[=1] is given. Otherwise, it is only needed if the log section of the filesystem should occupy
less space than the size of the special file.

For a filesystem which is not contained in an XLV logical volume with a log subvolume, the default
is to make an internal log 1000 blocks long.

−−p protofile
If the optional −−p protofile argument is given, mkfs_xfs uses protofile as a prototype file and takes its
directions from that file. The blocks and inodes specifiers in the protofile are provided for backwards
compatibility, but are otherwise unused. The prototype file contains tokens separated by spaces or
newlines. A sample prototype specification follows (line numbers have been added to aid in the
explanation):

1 /stand/diskboot
2 4872 110
3 d--777 3 1
4 usr d--777 3 1
5 sh ---755 3 1 /bin/sh
6 ken d--755 6 1
7 $
8 b0 b--644 3 1 0 0
9 c0 c--644 3 1 0 0
10 fifo p--644 3 1
11 slink l--644 3 1 /a/symbolic/link
12 : This is a comment line
13 $
14 $

Line 1 is a dummy string. (It was formerly the bootfilename.) It is present for backward
compatibility; boot blocks are not used on SGI systems.

186 IRIX Release 6.2

mkfs_xfs(1M)hh

Note that some string of characters must be present as the first line of the proto file to cause it to be
parsed correctly; the value of this string is immaterial since it is ignored.

Line 2 contains two numeric values (formerly the numbers of blocks and inodes). These are also
merely for backward compatibility: two numeric values must appear at this point for the proto file
to be correctly parsed, but their values are immaterial since they are ignored.

Lines 3-11 tell mkfs_xfs about files and directories to be included in this filesystem. Line 3 specifies
the root directory. Lines 4-6 and 8-10 specifies other directories and files. Note the special symbolic
link syntax on line 11.

The $ on line 7 tells mkfs_xfs to end the branch of the filesystem it is on, and continue from the next
higher directory. It must be the last character on a line. The colon on line 12 introduces a comment;
all characters up until the following newline are ignored. Note that this means you cannot have a
file in a prototype file whose name contains a colon. The $ on lines 13 and 14 end the process, since
no additional specifications follow.

File specifications give the mode, the user ID, the group ID, and the initial contents of the file. Valid
syntax for the contents field depends on the first character of the mode.

The mode for a file is specified by a 6-character string. The first character specifies the type of the
file. The character range is −−bcdpl to specify regular, block special, character special, directory files,
named pipes (fifos), and symbolic links, respectively. The second character of the mode is either u
or −− to specify setuserID mode or not. The third is g or −− for the setgroupID mode. The rest of the
mode is a three digit octal number giving the owner, group, and other read, write, execute
permissions (see chmod(1)).

Two decimal number tokens come after the mode; they specify the user and group IDs of the owner
of the file.

If the file is a regular file, the next token of the specification can be a pathname from which the
contents and size are copied. If the file is a block or character special file, two decimal numbers
follow that give the major and minor device numbers. If the file is a symbolic link, the next token of
the specification is used as the contents of the link. If the file is a directory, mkfs_xfs makes the
entries . and .. and then reads a list of names and (recursively) file specifications for the entries in
the directory. As noted above, the scan is terminated with the token $.

−−q Quiet option.

Normally mkfs_xfs prints the parameters of the filesystem to be constructed; the −−q flag suppresses
this.

IRIX Release 6.2 187

mkfs_xfs(1M)hh

−−r Real-time section options.

These options specify the location, size, and other parameters of the real-time section of the
filesystem. The valid suboptions are: extsize=value and size=value.

The extsize suboption is used to specify the size of the blocks in the real-time section of the
filesystem. This size must be a multiple of the filesystem block size. The minimum allowed value is
the filesystem block size or 4 KB (whichever is larger); the default value is 64 KB; the maximum
allowed value is 1 GB. The real-time extent size should be carefully chosen to match the parameters
of the physical media used.

The size suboption is used to specify the size of the real-time section. This suboption is only needed
if the real-time section of the filesystem should occupy less space than the size of the XLV real-time
subvolume.

SEE ALSO
mkfs(1M), mkfs_efs(1M).

BUGS
With a prototype file, it is not possible to specify hard links.

188 IRIX Release 6.2

mklv(1M)hh

NAME
mklv − construct or extend a logical volume

SYNOPSIS
/sbin/mklv [−−l lvtabname] [−−f] volume_device_name

DESCRIPTION
mklv constructs a logical volume by writing logical volume labels for the devices that are to constitute the
volume. It works from an entry in /etc/lvtab (see lvtab(4)) and constructs the logical volume identified in
/etc/lvtab by the volume_device_name argument. This argument must be of the form lvn where n is a small
integer, for example lv2.

mklv obtains the necessary information about the devices (disk partitions) constituting the logical volume
and the volume geometry, from the lvtab entry.

mklv also creates the necessary device files for the logical volume in the /dev/dsk and /dev/rdsk directories, if
these files do not already exist.

An existing logical volume can be extended by adding further device pathnames to the end of the existing
/etc/lvtab entry, and then rerunning mklv on that entry.

After writing the labels, mklv initializes the logical volume device with the appropriate information.
Effectively this invokes the functionality of lvinit(1M).

The following options are accepted by mklv.

−−f Normally, for safety, mklv checks whether any of the specified constituent devices are already part
of a logical volume, or appear to contain a filesystem. These checks are skipped if the −−f flag is
given; this is useful for recycling disks that contain obsolete logical volumes or filesystems.

Note that this flag does not override a check for mounted filesystems on any of the specified
devices. mklv unconditionally refuses to incorporate any device containing a mounted filesystem as
part of a logical volume.

−−l mklv normally works from the default system file /etc/lvtab . This option allows an alternate lvtab file
to be specified.

DIAGNOSTICS
1) If the volume_device_name argument is not found in the lvtab file, mklv prints the error message:

mklv: <arg> not found in lvtab.

2) The lvtab entry is checked before use. mklv prints error messages if problems are found. See the
DIAGNOSTICS section of lvck(1M) for possible error messages concerned with lvtab entries.

IRIX Release 6.2 189

mklv(1M)hh

3) mklv checks the specified devices for accessibility and legality before proceeding. If errors are
detected mklv prints the lvtab entry, with each device pathname on a separate line. A short message
describing the problem with the device appears on the line with the pathname. For example:

lv6:test 6:stripes=3:step=31:devs= \
/dev/dsk/ips0d1s2, \
/dev/dsk/ips0d2s3, <CAN’T ACCESS> \
/dev/dsk/ips0d3s4, <WRONG PARTITION SIZE> \
/dev/dsk/ips1d1s11, <CAN’T READ DISK HEADER> \
/dev/dsk/ips0d1s8, <ILLEGAL PARTITION TYPE> \
/dev/dsk/ips0d1s13

Possible messages and their meanings are listed in the DIAGNOSTICS section of lvck(1M).

4) mklv checks for the existence of a mounted filesystem on any of the specified devices. If so, it exits
with the error message:

<pathname> contains a mounted filesystem.

5) If the −−f flag is not given, mklv checks whether there appears to be an unmounted filesystem on any
of the specified devices. If so, it prints the warning:

<pathname> appears to contain a filesystem.
This will be wiped out if we proceed. OK? (y/n)

and waits for user response before proceeding.

As the message implies, any previous filesystem on the disks is erased. This avoids errors resulting
from erroneous attempts to mount individual disks that are now part of a logical volume.

There are cases where an existing filesystem should be retained: when a volume is being extended,
or when a disk partition containing a filesystem is being made into a volume for extension. These
cases are detected by mklv. No message or filesystem modification occurs on the relevant disk.

6) If the −−f flag is not given, mklv checks whether any of the specified devices are already part of a
logical volume that is inconsistent with the volume specified in the lvtab entry. (It is legal when
extending a volume for the on-disk volume to be a consistent subset of the newly specified volume.)
If an inconsistency exists, mklv prints the error message:

devices specified for <lvx> already contain a logical volume
which is inconsistent with the volume specified.

190 IRIX Release 6.2

mklv(1M)hh

NOTES
1) Execution of mklv does not cause a filesystem to be placed on the volume: it simply creates the

volume, which can be regarded as effectively a large disk. If you want to use the volume for
filesystem storage, a filesystem must be placed on it (see mkfs(1M)).

2) The logical volume labels do not occupy space on the constituent partitions themselves, but are files
in the Disk Volume Header partitions of the disks containing the partitions, located via the header
directory (see vh(7M)). They are named for the partitions to which they refer, having names of the
form lvlabn where n is the partition number. Thus, if partition 6 on a disk is part of a logical
volume, there is a logical volume label file with the name lvlab6 in the header partition of that disk.

DEVICE NAME LINKS
Administrators sometimes make links in the /dev directory to allow disk devices to be referenced by shorter
names.

Some caution is needed, however, since the script MAKEDEV(1M), which is run on every system
installation, removes certain links and replaces them with system defaults. In particular, the link /dev/usr
should never be changed to refer to a logical volume. If the /usr filesystem is moved to a logical volume,
the fstab(4) entry for /usr should be changed to refer explicitly to the appropriate logical volume device.

SEE ALSO
growfs(1M), lvck(1M), lvinit(1M), lvtab(4), lv(7M).

IRIX Release 6.2 191

ml(1M)hh

NAME
ml − load dynamic kernel modules

SYNOPSIS
ml list [−−rlb]
ml [ld|reg] [-d] [-v] −−[cbBfmljir] module.o −−p prefix

[−−s major major ...] [−−a modname] [−−t autounload_delay]
ml [unld|unreg] [-v] id ...
ml debug [-vsn]

DESCRIPTION
The ml command provides a means of loading and unloading dynamic kernel modules. The first argument
to ml specifies its action from one of the following: list, load, unload, register, unregister. With no options,
ml acts as if it were invoked as ml list −−b. The ld, unld, reg, and unreg options are available only to the
superuser. If successful, the ml command executes silently, unless the −−v option is specified.

ml list provides a list of modules that are currently known by the kernel. The following options to ml list
are recognized:

−−r Print registered modules only.

−−l Print loaded modules only.

−−b Print both loaded and registered modules.

ml ld causes a kernel module to be loaded into memory and prepared to be executed as part of the kernel.
ml reg is similar to ml ld, except that the module is not loaded until the first time the module is opened. If
the −−v option is specified, ml ld and ml reg list a module ID number on standard output that can be used
for subsequent unloading. The −−d option allows the module’s static symbols to be added to its symbol
table. This allows symmon to have access to all of the module’s symbols and is useful for debugging. The
module type must be specified by one of the following options to ml ld and ml reg:

−−c Module is a character device driver.

−−b Module is a block and character device driver.

−−B Module is a block device driver only.

−−f Module is a streams device driver.

−−m Module is a pushable streams module.

−−l Module is a library module.

192 IRIX Release 6.2

ml(1M)hh

−−j Module is a filesystem.

−−i Module is the kernel debug module.

−−r Module is a symbol table module.

The argument following the module type must be the name of the object file for the module.

With the exception of the kernel debug module, a module prefix must be specified with the -p option. The
module prefix is the string used to find the various entrypoints within a module.

Modules of type c, b, B, or f can specify an external device major number with the −−s option. If a specific
major number is not requested, one is provided from the unused major numbers in the system. If the
major number is already in use, the module is not loaded.

Modules of type m can provide a streams module name with the -a option that is entered into the fmodsw
structure in the kernel. If a streams module name is not provided, the module is given the same name as
the object file, with any trailing .o removed. If the module name is already in use, the module is not
loaded.

Modules of type i are special kernel debugging modules to be used in conjunction with the idbg(1M)
command.

Modules of type r are symbol table modules. A symbol table is created from the ELF symbol information
in the file specified. This symbol table can be used by other modules to link against when loaded. A kernel
runtime symbol table can be created manually using this command. For more information, see mload(4).

Modules that are registered are automatically auto-unloaded after last close by using a default auto-unload
delay that is systuneable. A specific delay can be specified, in minutes, using the -t option. Modules can
also be configured to not be auto-unloaded by using -t −−2.

ml unld unloads the loaded kernel modules specified by id. Likewise, ml unreg unregisters the registered
kernel modules specified by id. Both commands accept a list of module identifiers as arguments. If a
registered module has been loaded into memory after its first open, it must be unloaded before it can be
unregistered.

ml debug can be used to turn verbose debugging messages on or off or to disable the loading and
registering of modules:

−−v Turn verbose debugging on.

−−n Disable loading and registering of modules.

IRIX Release 6.2 193

ml(1M)hh

−−s Silence verbose debugging and allow loading and registering of modules.

WARNINGS
A loaded module has all of the system privileges of kernel mode execution.

EXAMPLES
List all loaded and registered modules:

ml

Load a streams driver with prefix sdrv and major number 13:

ml ld -v -f strdrv.o -p sdrv -s 13

Register a streams module with prefix tmod and module name testmod:

ml reg -m tmod.o -p tmod -a testmod

Register a streams module with prefix tmod and default module name tmod:

ml reg -m tmod.o -p tmod

Unload the module with id 1015:

ml unld 1015

Load the kernel debug module:

ml ld -i /var/sysgen/boot/idbg.o

FAILURES
ml failure codes and descriptions are listed in the header file /usr/include/sys/mload.h.

SEE ALSO
mload(4).

BUGS
The ml command does not provide a way to create edt structures for drivers. Driver initialization can only
be done from the driver’s init and start functions. See the lboot(1M) reference page for loading drivers with
edt functions.

194 IRIX Release 6.2

mount(1M)hh

NAME
mount, umount − mount and unmount filesystems

SYNOPSIS
mount
mount [−−M altmtab] [−−P prefix] −−p
mount [−−h host] [−−fnrv]
mount −−a[cfnv] [−−t type] [−−T list]
mount [−−cfnv] [−−t type] [−−T list] [−−b list]
mount [−−cfnrv] [−−t type] [−−T list] [−−o options] fsname dir
mount [−−cfnrv] [−−o options] fsname | dir

umount −−a[kv] [−−t type] [−−T list]
umount −−h host [−−kv] [−−b list]
umount [−−kv] fsname | dir [fsname | dir] ...

DESCRIPTION
mount attaches a named filesystem fsname to the filesystem hierarchy at the pathname location dir. The
directory dir must already exist. It becomes the name of the newly mounted root. The contents of dir are
hidden until the filesystem is unmounted. If fsname is of the form host:path, the filesystem type is assumed
to be nfs.

umount unmounts a currently mounted filesystem, which can be specified either as a mounted-on directory
or a filesystem.

mount and umount maintain a table of mounted filesystems in /etc/mtab , described in mtab(4). If invoked
without an argument, mount displays the table. If invoked with only one of fsname or dir, mount searches
the file /etc/fstab (see fstab(4)) for an entry whose dir or fsname field matches the given argument. For
example, if this line is in /etc/fstab:

/dev/usr /usr efs rw 0 0

then the commands mount /usr and mount /dev/usr are shorthand for mount /dev/usr /usr.

MOUNT OPTIONS
−−a Attempt to mount all the filesystems described in /etc/fstab . (In this case, fsname and dir are

taken from /etc/fstab .) If a type is specified with −−t, all of the filesystems in /etc/fstab with that
type are mounted. Multiple types may be specified with the −−T option. Filesystems are not
necessarily mounted in the order listed in /etc/fstab .

−−b list (all-but) Attempt to mount all of the filesystems listed in /etc/fstab except for those associated
with the directories contained in list. list consists of one or more directory names separated by
commas.

IRIX Release 6.2 195

mount(1M)hh

−−c Invoke fsstat(1M) on each filesystem being mounted, and if it indicates that the filesystem is
dirty, call fsck(1M) to clean the filesystem. fsck is passed the −−y option.

−−f Fake a new /etc/mtab entry, but do not actually mount any filesystems.

−−h host Mount all filesystems listed in /etc/fstab that are remote-mounted from host .

−−n Mount the filesystem without making an entry in /etc/mtab .

−−o options Specify options, a list of comma-separated words, described in fstab(4).

−−p Print the list of mounted filesystems in a format suitable for use in /etc/fstab.

−−r Mount the specified filesystem read-only. This is a shorthand for:

mount −−o ro fsname dir

Physically write-protected and magnetic tape filesystems must be mounted read-only, or errors
occur when access times are updated, whether or not any explicit write is attempted.

−−t type The next argument is the filesystem type. The accepted types are proc, efs, xfs, nfs, fd, cachefs,
dos, hfs and iso9660; see fstab(4) for a description of these filesystem types. When this option is
used, mount calls another program of the form mount_typename, where typename is one of
the above types. This program must be on the default path.

−−T list The next argument is a comma-separated list of filesystem types. This option is usually used in
combination with −−a or −−b.

−−v (verbose) mount displays a message indicating the filesystem being mounted and any problems
encountered.

−−M altmtab
Instead of /etc/mtab , use the mtab or fstab altmtab .

−−P prefix Used with the −−p option, prepends prefix to the emitted filesystem and directory paths. Doesn’t
alter pathnames embedded in the options, such as the filesystem’s raw=path raw device
pathname.

UMOUNT OPTIONS
−−a Attempt to unmount all the filesystems currently mounted (listed in /etc/mtab). In this case,

fsname is taken from /etc/mtab .

−−b list (all-but) Attempt to unmount all of the filesystems currently mounted except for those
associated with the directories contained in list. list consists of one or more directory names
separated by commas. Using

196 IRIX Release 6.2

mount(1M)hh

umount -a

itself is not usually a good idea, because it can not be reversed by the command

mount -a

since a number of filesystems are often not in the /etc/fstab file. Among these are the proc and fd
filesystems. Instead, use a command similar to

umount -T xfs,efs

−−h host Unmount all filesystems listed in /etc/mtab that are remote-mounted from host .

−−k Attempt to kill processes that have open files or current directories in the appropriate
filesystems and then unmount them.

−−t type Unmount all filesystems of a given filesystem type. The accepted types are proc, efs, xfs, nfs,
fd, dos, hfs, and iso9660.

−−T list Unmount all filesystems whose type is in the comma-separated list given.

−−v (verbose) umount displays a message indicating the filesystem being unmounted and any
problems encountered.

EXAMPLES
mount /dev/usr /usr mount a local disk
mount −avt efs mount all efs filesystems; be verbose
mount −t nfs server:/d /net/d mount remote filesystem
mount server:/d /net/d same as above
mount −o soft server:/d /net/d same as above but soft mount
mount −p > /etc/fstab save current mount state
mount −t dos /dev/rdsk/fds0d2.3.5 /floppy

mount a MS-DOS floppy
mount −t hfs /dev/rdsk/fds0d3.3.5hi /floppy

mount a Macintosh HFS floppy
mount −t iso9660 /dev/scsi/sc0d7l0 /cdrom

mount an ISO 9660 CD-ROM
mount server:/cdrom /net/cdrommount remote iso9660 filesystem
mount −M /root/etc/fstab −P /root −p |

sed ’s;raw=/;raw=/root/’ >> /etc/fstab
append /root/etc/fstab with /root
prefix to currently active fstab.

umount −t nfs −b /foo unmount all nfs filesystems except /foo

IRIX Release 6.2 197

mount(1M)hh

ERROR MESSAGES
From mount:

mount: device on mountdir: Invalid argument

This message appears for a wide variety of problems. It doesn’t usually indicate that you have
specified the command line incorrectly; rather that there is something wrong with the disk partition,
the filesystem in the disk partition, or the mount directory. For example, this error message occurs
if you try to mount a device that doesn’t contain a valid filesystem.

From umount:

mountdir: Resource busy

Possible causes of a this message are: open files in the filesystem, programs being executed from the
filesystems, and users whose current directory is in the filesystem.

Usually it is not possible to unmount the /usr filesystem because many daemons, such as
/usr/lib/lpsched, /usr/etc/ypbind, and /usr/etc/syslogd, execute from the /usr filesystem. The simplest
way to make sure the /usr filesystem is not busy is to bring the system down to single-user mode
with the single(1M) command.

You can force all filesystems except the root filesystem to be unmounted with the umount −−k option
(note that this kills processes). To unmount the root filesystem, you must be running the miniroot.

FILES
/etc/fstab filesystem table
/etc/mtab mount table

SEE ALSO
fsck(1M), mountd(1M), nfsd(1M), mount(2), umount(2), fstab(4), mtab(4).

BUGS
umount can mismanage the /etc/mtab mount table if another mount or umount call is in progress at the same
time.

Mount calls another "helper" program of the form mount_typename, where typename is one of the
accepted mount types. If this program is not on the default path, then mount returns with an error
message about unknown filesystem. The user must make sure that the helper mount program is in the
path. For example, /usr/etc must be in the path to mount an iso9660 CD.

198 IRIX Release 6.2

mount(1M)hh

NOTE
If the directory on which a filesystem is to be mounted is a symbolic link, the filesystem is mounted on the
directory to which the symbolic link refers, rather than being mounted on top of the symbolic link itself.

The helper program mount_iso9660 is in the optional package eoe.sw.cdrom. This package must be
installed in order to mount iso9660 filesystems.

IRIX Release 6.2 199

network(1M)hh

NAME
network − network initialization and shutdown script

SYNOPSIS
/etc/init.d/network [start | stop]

DESCRIPTION
The network shell script is called during system startup from /etc/rc2 to initialize the standard and optional
network devices and daemons. The script is called during system shutdown from /etc/rc0 to gracefully kill
the daemons and inactivate the devices.

When called with the start argument, the network script does the following, using the various configuration
flags described below:

g Defines the hostname and hostid based on the name in /etc/sys_id and its corresponding Internet
address in /etc/hosts .

g Checks that the host’s Internet address is not the default 192.0.2.1 Internet test address. If the address is
the default address, the software is configured for standalone mode. An Internet address other than the
default must be chosen in order to configure the network properly. See the guide IRIX Admin:
Networking and Mail for information on selecting an address.

g Initializes the network interfaces. The HyperNet interface is initialized if the hypernet configuration
flag is on. If multiple ethernet or FDDI interfaces are present, the script computes typical primary and
gateway interface names and addresses for most systems. /etc/config/netif.options provides a place for
site-dependent network interface definitions. You need to modify this file only if:

− the computed primary and/or gateway interface names are incorrect

− you don’t like convention used to define addresses for interfaces

− the host has more than 2 ethernet or FDDI interfaces

Each interface must have a unique Internet address and hostname in /etc/hosts. The script derives the
names from /etc/sys_id. The prefix gate−− is prepended to the hostname to generate the second
interface’s name. The suffix −−hy is appended to generate the HyperNet interface’s name. For example:

191.50.1.7 yosemite.parks.us yosemite
137.254.2.49 gate-yosemite.parks.us gate-yosemite
191.51.0.88 yosemite-hy.parks.us yosemite-hy

See the comments in /etc/config/netif.options for details.

200 IRIX Release 6.2

network(1M)hh

g Deletes existing routes.

g Starts the standard networking daemons such as the routing, portmap and DNS nameserver daemons.
Initializes the default multicast route.

g (If NFS option is installed). Defines the NIS domain name using /var/yp/ypdomain if it exists. If the NIS
domain is the same as the Internet domain name in /etc/sys_id, then ypdomain is not needed. Starts NIS
daemons, mounts and exports NFS filesystems, starts NFS automount, lock and status daemons.

g Starts the inetd, timed, timeslave, rarpd, and rwhod daemons.

g Starts the 4DDN software (if installed).

When called with the stop argument, the network script gracefully terminates daemons in the correct order,
unmounts NFS filesystems and inactivates the network interfaces.

CONFIGURATION FLAGS
A daemon or subsystem is enabled if its configuration flag in the /etc/config directory in the on state. If a
flag file is missing, the flag is considered off. Use the chkconfig(1M) command to turn a flag on or off. For
example,

chkconfig timed on

enables the timed flag. When invoked without arguments, chkconfig prints the state of all known flags.

There are two special flags: verbose and network. The verbose flag controls the printing of the names of
daemons as they are started and the printing of NFS-mounted filesystem names as they are mounted and
unmounted. The network flag allows incoming and outgoing traffic. This flag can be set off if you need to
isolate the machine from network without removing cables.

The following table lists the configuration flags used to initialize standard and optional software.

Flag Action if on
gated Start Cornell Internet super-routing daemon
mrouted Start Stanford IP multicast routing daemon
named Start 4.3BSD Internet domain name server
rtnetd Initialize preemptable networking for real-time use
rwhod Start 4.3BSD rwho daemon
timed Start 4.3BSD time synchronization daemon
timeslave Start SGI time synchronization daemon
hypernet Initialize HyperNet controller and routes
nfs Start NFS daemons, mount NFS filesystems
automount Start NFS automounter daemon
lockd Start NFS lock and status daemons
rarpd Start the Reverse ARP daemon

IRIX Release 6.2 201

network(1M)hh

yp Enable NIS, start ypbind daemon
ypserv If yp is on, become a NIS server
ypmaster If yp is on, become the NIS master; start password

server; ypserv should be on, too
4DDN Initialize 4DDN (DECnet connectivity) software

Site-dependent options for daemons belong in ‘‘options’’ files in /etc/config. Certain daemons require
options so their options file must contain valid information. See the guide IRIX Admin: Networking and Mail
and the daemon’s manual page in section 1M for details on valid options.

File Status
automount.options optional
biod.options optional
gated.options optional
ifconfig−1.options optional (for primary network interface)
ifconfig−2.options optional (for gateway network interface)
ifconfig−3.options optional (for 2nd gateway network interface)
ifconfig−4.options optional (for 3rd gateway network interface)
ifconfig−hy.options optional (for HyperNet interface)
inetd.options optional
mrouted.options optional
named.options optional
netif.options optional (to select different primary &

gateway interfaces, etc.)
nfsd.options optional
portmap.options optional
rarpd.options optional
routed.options optional
rpc.passwd.options optional
rwhod.options optional
timed.options optional
timeslave.options required
ypbind.options optional
ypserv.options optional

Site-dependent configuration commands to start and stop local daemons, add static routes and publish arp
entries should be put in a separate shell script called /etc/init.d/network.local . Make symbolic links in
/etc/rc0.d and /etc/rc2.d to this file to have it called during system startup and shutdown:

ln −s /etc/init.d/network.local /etc/rc0.d/K39network
ln −s /etc/init.d/network.local /etc/rc2.d/S31network

See /etc/init.d/network for the general format of the script.

202 IRIX Release 6.2

network(1M)hh

FILES
/etc/init.d/network
/etc/rc0.d/K40network linked to network
/etc/rc2.d/S30network linked to network
/etc/config configuration flags and options files
/etc/sys_id hostname
/etc/hosts Internet address-name database
/var/yp/ypdomain NIS domain name

SEE ALSO
chkconfig(1M), rc0(1M), rc2(1M).

IRIX Admin: Networking and Mail

IRIX Release 6.2 203

nvram(1M)hh

NAME
nvram, sgikopt − get or set non-volatile RAM variables

SYNOPSIS
nvram [−−v] [name [value]]
sgikopt [name...]

DESCRIPTION
nvram can be used to set or print the values of non-volatile RAM variables.

When invoked with no arguments, nvram displays all known variables in the name=value form. The nvram
arguments are:

name Print the value of name.

value If name is defined in non-volatile RAM, replace name’s definition string with value.

−−v Print a line of the form name=value after getting or setting the named variable.

If invoked as sgikopt , more than one name can be given. names that do not match known variables are
ignored.

The exit status is 1 if any arguments do not match and 0 otherwise.

NOTES
Non-volatile RAM contains a small set of well-known strings at fixed offsets. nvram can not be used to
define new variables.

Only the superuser can set variables.

The term "non-volatile RAM" is somewhat misleading, because some variables are placed only in volatile
RAM and are reset on power-up. Different systems have different mixes of volatile and non-volatile
variables.

DIAGNOSTICS
If an attempt to get or set a variable fails for any reason, nvram prints an appropriate message on standard
error and exits with non-zero status.

Not all systems support the ability to change the contents of non-volatile memory with the nvram
command. To change the contents of non-volatile memory on systems that do not support nvram, you
must use the PROM monitor setenv command.

204 IRIX Release 6.2

nvram(1M)hh

SEE ALSO
prom(1M), sgikopt(2), syssgi(2).

IRIX Release 6.2 205

prom(1M)hh

NAME
prom − PROM monitor

DESCRIPTION
The PROM monitor is a program that resides in permanently programmed read-only memory, which
controls the startup of the system. The PROM is started whenever the system is first powered on, reset
with the reset button, or shutdown by the administrator.

The PROM contains features that vary from system to system. Description of various commands, options,
and interfaces below may not apply to the PROM in your system and may vary between systems.
Furthermore, because PROMs are not normally changed after the manufacture of the system, newly added
features are not present in older systems.

Some systems, such as the Indigo R4000, Indigo2, Indy, Onyx, and CHALLENGE contain an ARCS PROM.
Machines that contain an MIPS R8000 such as the POWER CHALLENGE, POWER Onyx and the POWER
Indigo2 use a 64-bit version of the ARCS PROM. The ARCS PROM offers the same functionality as
previous PROMs, but in some cases with a different interface. Refer to the ARCS PROM section below for
details.

When the system is first powered on, the PROM runs a series of tests on the core components of the
system. It then performs certain hardware initialization functions such as starting up SCSI hard disks,
initializing graphics hardware and clearing memory. Upon successful completion of these tasks, the
PROM indirectly starts the operating system by invoking a bootstrap loader program called sash, which in
turn reads the IRIX kernel from disk and transfers control to it.

Menu Commands
By default, the PROM attempts to boot the operating system kernel when the system is powered on or
reset. Before doing so, however, the opportunity to press the <Escape> key is given. If the <Escape> key is
pressed within approximately ten seconds, the PROM displays a menu of alternate boot up options. These
other choices allow various types of system maintenance to be performed:

1. Start System
This option causes the system to boot in the default way. It is the same as if the system had been
allowed to boot on its own.

2. Install System Software
This option is used when system software needs to be installed or upgraded. The PROM first
attempts to find a tape drive on the system and if one is found, it prompts the user to insert the
installation tape in it. If a tape device is not found, then installation is expected to take place by
Ethernet. In this case, the PROM prompts the user for the name of the system that will be used as
the server.

206 IRIX Release 6.2

prom(1M)hh

Systems with an ARCS PROM uses a menu to select the installation device. See ARCS PROM
section below for details.

3. Run Diagnostics
This option invokes the extended hardware diagnostic program, which performs a thorough test of
the CPU board and any graphics boards present. It reports a summary.

4. Recover System
This option can be used to perform special system administration tasks such as restoring a system
disk from backup tapes. It follows a sequence similar to installing system software, but instead of
starting the installation program, it invokes an interactive restoration tool.

5. Enter Command Monitor
Additional functions can be performed from an interactive command monitor. This option puts the
PROM into a manual mode of operation.

6. Select Keyboard Layout
Some systems display a sixth option when the console is on the graphics display which allows the
keyboard map to be interactively selected for SGI supported international keyboards.

Manual Mode
The PROM command monitor allows the user to customize certain features of the boot process for one-
time only needs or longer term changes. The command monitor has some features that are similar to an
IRIX shell such as command line options and environment variables. Some of the environment variables
used in the PROM are stored in nonvolatile RAM, which means that their values are preserved even after
the power to the system is turned off.

The command monitor has a different method of specifying disks and files than is used under IRIX. A
pathname is formed by prefixing the filename with a device name as shown:

devicename(controller,unit,partition)filename

Valid device names include:

tpsc SCSI tape drive
dksc SCSI disk drive
bootp network by BOOTP and TFTP protocols (ethernet only)

The controller designates which hardware controller to use if multiple controllers for the same type of
device exist. Controllers are numbered starting at zero. The unit designates which drive to use when a
single controller is used with multiple drives. When used with a SCSI device, the unit number is the same
as the SCSI target number for the drive. The partition designates which disk partition is to be used.
Partitions are numbered 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f. The controller, unit, and partion all default to
zero.

IRIX Release 6.2 207

prom(1M)hh

The devices supported by the PROM varies from system to system.

Manual Mode Commands
auto Attempts to boot the system into normal operation. This is the equivalent of the Start System

menu command.

boot [−−f] [−−n] pathname
Starts an arbitrary standalone program or kernel as specified by its arguments. The −−f option
suppresses the invocation of the bootstrap loader program. The −−n option causes the named
program to be loaded, but not started.

eaddr Prints the Ethernet address of the built-in Ethernet controller. This address is set at the factory
and cannot be changed.

date [mmddhhmm[ccyy|yy][.ss]]
Prints the date or sets the date when given an argument. The PROM does not understand time
zones, so times should be given relative to GMT.

exit Exits manual mode and returns to the PROM menu.

help Displays a short summary of the commands available in manual mode.

init Causes a partial restart of the PROM. This command can be used to change the default console
immediately. See the console environment variable.

hinv Lists the hardware present in the system. This list includes any disk or tape drives, memory,
and graphics options. It lists only those devices known to the PROM and may not include all
optional boards.

ls device List files contained on the device specified. This can be used to examine devices whose layout is
known by the PROM such as the disk volume header. It cannot be used to list directories on
disk partitions containing IRIX filesystems.

off Turns off the power. Supported only on a subset of systems with software power control.

passwd Set the PROM password. The PROM password can be set to restrict operation of certain PROM
modes. With a password set, any attempt to do anything other than a standard system boot
requires that the password be reentered. The password is remembered after the system is
powered off.

If the password is forgotten, some systems allow the superuser to reset it while running IRIX.
Use the nvram command to set the passwd_key variable to a null string (nvram passwd_key
""). Other systems also have a jumper on the system board that can be removed to disable the
PROM password. In addition some systems force the console environment variable to g while
the jumper is removed. This jumper should only be removed temporarily in order to reset the

208 IRIX Release 6.2

prom(1M)hh

password or fix the console environment variable. Indy and Indigo2 have this feature.

printenv List the current state of the PROM environment variables. Some of the variables listed retain
their value after the system is powered off.

resetenv Set all of the PROM nonvolatile environment variables to their factory defaults. This does not
affect the PROM password.

resetpw Remove the PROM password. With no PROM password set, all commands and menu options
function without restriction.

setenv [−−p] variable value
Set the specified environment variable to a particular value. Environment variables that are
stored in nonvolatile RAM are changed there as well. The −−p option specifies that this variable
should be saved as a persistent variable by means of adding the variable to nonvolatile RAM.
This is particularly useful for setting frequently used options when starting up the system.
Note that a fixed nonvolatile RAM variable is not superseded by this option, but the command
behaves as if the −−p flag is not present. Currently this option is available only on the Indy.

single Start the system in single user mode. The system is booted as in the auto command described
above, except that it enters initstate s instead of initstate 2. See init(1M) for more information
on initialization states.

unsetenv variable
Disassociates any value with the named environment variable.

version Prints a message containing information about the PROM.

In addition to the commands above, a pathname can be entered directly, which the PROM attempts to load
and execute.

PROM Environment Variables
netaddr Used when booting or installing software from a remote system by Ethernet. This variable

should be set to contain the Internet address of the system. It is stored in nonvolatile RAM.

dbaud Diagnostic baud rate. It can be used to specify a baud rate other than the default when a
terminal connected to serial port #1 is to be used as the console. This variable is stored in
nonvolatile RAM.

bootfile This variable controls two aspects of the automatic boot up process. First, it names the
standalone loader that is used as an intermediary when booting from disk. Second, the device
portion of the filename is used to determine the default boot disk. The PROM assumes that the
disk specified as part of the standalone loader pathname is the disk where the IRIX root
filesystem exists. Furthermore, during software installation, the PROM uses that disk’s swap
partition for the miniroot. The actual partitions assumed by the PROM to contain the root

IRIX Release 6.2 209

prom(1M)hh

filesystem and swap area are determined by reading the volume header. See vh(7M) for more
information. This variable is stored in nonvolatile RAM.

bootmode The default mode of operation after you turn on power to the system is determined by the
bootmode variable. If the bootmode is set to c, then the system is automatically booted
whenever it is reset or power is turned on to the system. If the bootmode is set to m, the PROM
displays the menu and waits for a command instead. Setting bootmode to d has the same affect
as m, with the addition of more verbose power-on diagnostics. This variable is stored in
nonvolatile RAM.

boottune Selects among the available boot tunes It is specified as a small integer such as 1, which is the
default tune. A setting of 0 selects a random tune. Currently only the POWER Indigo2

supports this variable. This variable is stored in nonvolatile RAM.

autopower
On systems with software power control, a setting of y allows the system to automatically
power back on after an AC power failure. The default setting of n requires the power switch to
be pressed to restart the system. This variable is stored in nonvolatile RAM.

console The system console can be set with the console variable. If console is set to g or G, the console
is assumed to be the graphics display. On some systems with multiple graphics adapters,
setting console to g0 (identical to g), g1, or g2 can be used to select alternate graphics displays.
If console is set to d, the console is assumed to be a terminal connected to the first serial port.
In addition, some systems also accept d2 for a terminal connected to second serial port. Lastly,
this can be overridden on some systems by removing the password jumper and forcing the
console to g, which is useful for for recovering from setting console to d when a terminal is not
available. This variable is stored in nonvolatile RAM.

diskless If set to 1, the kernel assumes that the system is to be started up as a diskless node. This
variable is stored in nonvolatile RAM.

monitor Overrides the default monitor setting when an unrecognized monitor is attached to an Indy
system. Specifying h or H indicates the attached monitor supports high resolution mode
(1280x1024 @ 60Hz). Otherwise the default resolution is low resolution (1024x768 @ 60Hz).
This variable is usable only on an Indy system and is stored in nonvolatile RAM.

nogfxkbd If set to 1, the system does not require the keyboard to be plugged in. By default, if the console
is the graphics display and the keyboard is not plugged in or is otherwise unresponsive to
commands, it is assumed to be broken. The system switches to the serial terminal console and
waits for a command. This variable is stored in nonvolatile RAM.

210 IRIX Release 6.2

prom(1M)hh

notape If set to 1, the PROM assumes that the Ethernet is to be used for software installation or system
recovery even if a tape drive is present on the system. By default, if the PROM sees a tape drive
in the hardware inventory, it assumes that it will be used for software installation; setting
notape allows that assumption to be overruled.

volume Sets the speaker volume during boot up. This controls the volume of the startup, shutdown,
and bad graphics tunes generated on systems with integral audio hardware. This variable is
stored in nonvolatile RAM.

pagecolor Sets the background color of the textport set with a six character string of hex RGB values. This
variable is stored in nonvolatile RAM.

path The path variable is used with some commands to provide a default device name. It is derived
from the bootfile variable.

prompoweroff
If set to y, the IRIX operating system returns to the PROM to do the actual powering off of the
system. Powering off the system by the PROM is preceded by the playing of the "shutdown"
tune that is normally played when returning to the PROM monitor via the shutdown or halt
commands. This variable is available only on Indy systems and must be set with the command
setenv −−p prompoweroff y command to retain the setting after power is turned off.

rebound If set to y, the system attempts to automatically reboot in the event of a kernel panic overriding
the value of the reboot_on_panic systune parameter. This variable is stored in nonvolatile
RAM.

sgilogo If set to y, the SGI logo and other product information is shown on systems that support the
standalone GUI. This variable is stored in nonvolatile RAM.

ARCS PROM
Machines with the ARCS PROM behave similar to what is described above. Changes were made to
support the Advanced Computing Environment’s (ACE) Advanced Risc Computing Standard (ARCS),
provide a graphical user interface, and clean up various loopholes in older PROMs. In many cases efforts
were made to maintain old syntax and conventions.

The ARCS document describes system requirements, which includes minimum system function, procedure
entry points, environment variables, hardware inventory, and other system conventions. Programmatic
interfaces and other hardware requirements are outside the scope of this reference page.

ARCS pathnames are tied directly to the hardware inventory, which is stored in a tree that represents the
system’s device architecture. It is rooted with a system entry and grows to peripheral devices such as a
disk drive. ARCS pathnames are written as a series of type(unit) components that parallel the inventory
tree.

IRIX Release 6.2 211

prom(1M)hh

Old-style pathnames are automatically converted to new-style pathnames, so the old names can still be
used. The PROM matches the first device described by the pathname, so full pathnames are not always
required. The −−p option to hinv prints the pathnames to all user accessible devices. Some examples of
common pathnames are:

scsi(0)disk(1)partition(1) dksc(0,1,1)
disk(1)part(1) same as above
scsi(0)cdrom(5)partition(7) dksc(0,5,7)
network(0)bootp()host:file bootp()host:file
serial(0) first serial port
keyboard() graphics keyboard
video() graphics display

ARCS defines environment variables that provide the same function as in older PROMs, but with different
names and values:

ConsoleIn/ConsoleOut
These two variables are set at system startup automatically from the console variable. They are
maintained only for ARCS compatibility only.

OSLoadPartition
The device partition where the core operating system is found. For IRIX, this variable is used as
the root partition when the root variable is unused and the device configured in the kernel
variable rootdev is not available. This variable is stored in nonvolatile RAM, but is normally
left unset, which allows the PROM to automatically configure it at system power-on.

OSLoader The operating system loader. For IRIX, this is sash. This variable is stored in nonvolatile RAM,
but is normally left unset, which allows the PROM to automatically configure it at system
power-on.

SystemPartition
The device where the operating system loader is found. This variable is stored in nonvolatile
RAM, but is normally left unset, which allows the PROM to automatically configure it at system
power-on.

OSLoadFilename
The filename of the operating system kernel. For IRIX this is /unix. This variable is stored in
nonvolatile RAM, but is normally left unset, which allows the PROM to automatically configure
it at system power-on.

OSLoadOptions
The contents of this variable are appended to the boot command constructed when autobooting
the system. This variable is stored in nonvolatile RAM.

212 IRIX Release 6.2

prom(1M)hh

AutoLoad Controls if the system boots automatically on reset/power cycle. Can be set to Yes or No.
Previously this function was controlled by setting bootmode to c or m. This variable is stored
in nonvolatile RAM.

To try and improve the looks and usability of the PROM, the ARCS PROM uses a graphical interface when
console=g. In all cases the keyboard can be used instead of the mouse, and in most cases the familiar
keystrokes from previous PROMs work.

For example, the traditional five item menu consists of a list of buttons containing one icon each. To make
a selection, either click any mouse button with the button, or press the corresponding 1 through 5 key.

The only major user interface changes are for Install Software and Recover System (menu items 2 and 4).
The interface allows interactive selection of a device type and then selection among devices of that type.
This makes it easier than previous PROMS to install from local drives or remote directories without hacks
like notape and tapedevice.

The set of commands available from the command monitor is relatively unchanged:

hinv By default hinv prints a formatted abbreviated list similar to the old-style PROM. A −−t option
has been added to print the ARCS configuration tree directly. A secondary option −−p, valid
only with −−t, prints the corresponding ARCS pathnames for peripheral devices.

There has also been some changes/additions to the SGI-defined environment variables:

diskless This controls if the system is run as a diskless system. Since some of the other environment
variables are changed for ARCS compliance, diskless setup is slightly different. The
environment should be set as follows.

diskless=1
SystemPartition=bootp()host:/path
OSLoader=kernelname

keybd Normally this variable is left unset and the system automatically configures the keyboard to use
its native key map. To override the default, keybd should be set to a three to five character
string. The following strings are recognized, depending on the PROM revision: USA, DEU,
FRA, ITA, DNK, ESP, CHE-D, SWE, FIN, GBR, BEL, NOR, PRT, CHE-F or US, DE, FR, IT, DK,
ES, de_CH, SE, FI, GB, BE, NO, PT, fr_CH on systems with the keyboard layout selector. On
newer systems, JP is also acceptable.

Alternatively you can select between swiss french and swiss german by setting keybd to d or D
for the german map. On systems with PC keyboards, a string not matching one of the above is
passed to the X server and used as the name of the keyboard map to load. This variable is
stored in nonvolatile RAM.

IRIX Release 6.2 213

prom(1M)hh

diagmode If set to v, power-on diagnostics are verbose. In addition, more diagnostics are run. This is
similar to bootmode=d, however it does not affect the behavior of AutoLoad. This variable is
stored in nonvolatile RAM.

The ARCS standard specifies different error numbers than IRIX:

ESUCCESS 0
E2BIG 1
EACCES 2
EAGAIN 3
EBADF 4
EBUSY 5
EFAULT 6
EINVAL 7
EIO 8
EISDIR 9
EMFILE 10
EMLINK 11
ENAMETOOLONG 12
ENODEV 13
ENOENT 14
ENOEXEC 15
ENOMEM 16
ENOSPC 17
ENOTDIR 18
ENOTTY 19
ENXIO 20
EROFS 21
EADDRNOTAVAIL 31
ETIMEDOUT 32
ECONNABORTED 33
ENOCONNECT 34

Examples
To boot the disk formatter, fx(1M), from a local tape containing the installation tools:

1. Get into the command monitor by choosing option 5 from the menu.

2. Determine the type of CPU board in your system with the hinv command. The board type is listed as
the letters IP followed by a number. Also, look for the item that lists the tape drive to determine the
format of the device name. For instance, a SCSI tape addressed as device 7 might be listed as SCSI
tape: tpsc(0,7) in which case the device is tpsc(0,7).

214 IRIX Release 6.2

prom(1M)hh

3. With the installation tools tape in the drive, boot fx as follows:

boot -f tpsc(0,7)fx.IP6

where tpsc(0,7) is the device name and IP6 is the CPU board type.

To change the system console from the graphics display to a terminal connected to serial port #1:

1. Get into the command monitor by choosing option 5 from the menu.

2. Change the console variable to d as follows:

setenv console d

3. Reinitialize the PROM with the init command:

init

SEE ALSO
bootp(1M), fx(1M), inst(1M), nvram(1M), tftpd(1M).

IRIX Release 6.2 215

prtvtoc(1M)hh

NAME
prtvtoc − print disk volume header information

SYNOPSIS
/etc/prtvtoc [[−−aefhms] [−−t fstab]] [rawdiskname]

DESCRIPTION
prtvtoc prints a summary of the information in the volume header for a single disk or all of the local disks
attached to a system (see vh(7M)). The command is usually used only by the superuser.

The rawdiskname name should be the raw device filename of a disk volume header in the form
/dev/rdsk/xxs?d?vh.

Note: prtvtoc knows about the special file directory naming conventions, so the /dev/rdsk prefix can be
omitted.

If no name is given, the information for the root disk is printed.

In single disk mode, prtvtoc prints information about the disk geometry (number of cylinders, heads, and
so on), followed by information about the partitions. For each partition, the type is indicated (for example,
filesystem, raw data, and so on). Cylinders can be non-integral values, as they may not correspond to
actual physical values, for some drive types. For filesystem partitions, prtvtoc shows if there is actually a
filesystem on the partition, and if it is mounted, the mount point is shown. Mount points shown in square
brackets indicate the mount point of the logical volume the partition belongs to.

The following options to prtvtoc can be used:

−−s Print only the partition table, with headings but without the comments.

−−h Print only the partition table, without headings and comments. Use this option when the
output of the prtvtoc command is piped into another command.

−−t fstab Use the file fstab instead of /etc/fstab.

The following options create summaries from all disk volume headers:

−−a Show abbreviated partition listings for all disks attached to the system.

−−m List all partitions in use by local filesystems. The listing includes partitions that belong to
logical volumes.

−−e Extended listing. This combines the -a and -m options as well as reporting unallocated (free)
partitions, and overlapping mounted partitions.

216 IRIX Release 6.2

prtvtoc(1M)hh

EXAMPLE
The output below is for a SCSI system (root) disk obtained by invoking prtvtoc without parameters.

Printing label for root disk

* /dev/rdsk/dks0d1vh (bootfile "/unix")
* 512 bytes/sector
* 74 sectors/track
* 15 tracks/cylinder
* 3 spare blocks/cylinder
* 1876 cylinders
* 3 cylinders occupied by header
* 1873 accessible cylinders
*
* No space unallocated to partitions

Partition Type Fs Start: sec (cyl) Size: sec (cyl) Mount
Directory
0 xfs yes 3321 (3) 32103 (29) /
1 raw 35424 (32) 81918 (74)
6 xlv 117342 (106) 1959390 (1770) [/usr]
7 efs 3321 (3) 2073411 (1873)
8 volhdr 0 (0) 3321 (3)
10 volume 0 (0) 2076732 (1876)

This next output is for a SCSI option disk obtained by invoking prtvtoc with drive dks0d2vh as the
parameter.

* /dev/rdsk/dks0d2vh (bootfile "/unix")
* 512 bytes/sector
* 85 sectors/track
* 9 tracks/cylinder
* 3 spare blocks/cylinder
* 2726 cylinders
* 4 cylinders occupied by header
* 2722 accessible cylinders
*
* No space unallocated to partitions

Partition Type Fs Start: sec (cyl) Size: sec (cyl) Mount
Directory
7 xfs yes 3048 (4) 2065782 (2711) /work
8 volhdr 0 (0) 3048 (4)

IRIX Release 6.2 217

prtvtoc(1M)hh

10 volume 0 (0) 2077212 (2726)
15 xfslog 2068830 (2715) 8382 (11)

SEE ALSO
dvhtool(1M), fx(1M), dks(7M), usraid(7M), vh(7M).

218 IRIX Release 6.2

ps(1)hh

NAME
ps − report process status

SYNOPSIS
ps [options]

DESCRIPTION
ps prints information about active processes. Without options, information is printed about processes
associated with the controlling terminal. The output consists of a short listing containing only the process
ID, terminal identifier, cumulative execution time, and the command name. Otherwise, the information
that is displayed is controlled by the selection of options.

options accept names or lists as arguments. Arguments can be either separated from one another by
commas or enclosed in double quotes and separated from one another by commas or spaces. Values for
proclist and grplist must be numeric.

The options are:

−−a Print information about all processes most frequently requested: all those except process
group leaders and processes not associated with a terminal.

−−A Print information about every process now running.

−−c Print information about the scheduler properties. (See below.)

−−d Print information about all processes except process group leaders.

−−e Print information about every process now running (equivalent to −−A).

−−f Generate a full listing. (See below for significance of columns in a full listing.)

−−g grplist List only process data whose process group leader’s ID numbers appear in grplist. (A group
leader is a process whose process ID number is identical to its process group ID number. A
login shell is a common example of a process group leader.)

−−G grplist List only process data whose real group leader’s ID numbers appears in grplist.

−−j Print session ID and process group ID.

−−l Generate a long listing. (See below.)

−−M If the system supports Mandatory Access Control, print the security label for each process.
The −−M option can be automatically be turned on by using an environmental variable
LABELFLAG. Set variable to on (not case sensitive) for automatic security label
information. To turn off feature set to off or NULL.

IRIX Release 6.2 219

ps(1)hh

−−n name This argument is obsolete and is no longer used.

−−o format Print information according to the format specification given in format. (See below.)

−−p proclist List only process data whose process ID numbers are given in proclist.

−−s sesslist List information on all session leaders whose IDs appear in sesslist.

−−t termlist List only process data associated with the terminal given in termlist. Terminal identifiers
consist of the device’s name (for example, ttyd1, ttyq1).

−−u uidlist List only process data whose user ID number or login name is given in uidlist. In the listing,
the numerical user ID is printed unless you give the −−f option, which prints the login name.

−−U uidlist List only process data whose read user ID number or login name is given in uidlist.

Under the −−f option, ps tries to determine the command name and arguments given when the process was
created by examining the user block. Failing this, the command name is printed, as it would have
appeared without the −−f option, in square brackets.

The column headings and the meaning of the columns in a ps listing are given below. The letters f and l
indicate the option (full or long, respectively) that causes the corresponding heading to appear (assuming
the −−o option is not specified); all means that the heading always appears. Note that these options
determine only what information is provided for a process; they do not determine which processes are
listed.

If the environment variable _XPG is defined and has a numeric value greater than 0, ps operates in
conformance with the X/Open XPG4 specifications. The format of the output of the −−l option differs in
some details from the XPG format and backward compatibility mode. The differences are explained in the
table below.

F (l) Flags (hexadecimal and additive) associated with the process:

001 Process is a system (resident) process.
002 Process is being traced.
004 Stopped process has been given to parent via wait(2).
008 Process is sleeping at a non-interruptible priority.
010 Process is in core.
020 Process user area is in core.
040 Process has enabled atomic operator emulation.
080 Process in stream poll or select.
100 Process is a kernel thread.

220 IRIX Release 6.2

ps(1)hh

S (l) The state of the process:

0 Process is running on a processor.
S Process is sleeping, waiting for a resource.
R Process is running.
Z Process is terminated and parent not waiting (wait(2)).
T Process is stopped.
I Process is in intermediate state of creation.
X Process is waiting for memory.

UID (f,l) The user ID number of the process owner (the login name is printed under the −−f option).

PID (all) The process ID of the process (this datum is necessary in order to kill a process).

PPID (f,l) The process ID of the parent process.

PGID (j) Process group leader ID. This can be used with the −−g option.

SID (j) Session ID. This can be used with the −−s option.

CLS (c) Scheduling class. The values printed for CLS are the two character mnemonics for the
scheduler queues displayed by the −−q option of pset(1M).

C (f,l) Processor utilization for scheduling. Not printed when the −−c option is used.

PRI (l) The priority of the process (higher numbers mean lower priority).

NI (l) Nice value, used in priority computation. Not printed when the −−c option is used (see
nice(1) and csh(1)). Only processes in the time-sharing class have a nice value. Processes
in other scheduling classes have their two letter class mnemonic printed in this field (refer
to schedctl(2) and pset(1M) for information about other scheduling classes).

P (l) If the process is running, gives the number of processor on which the process is executing.
Contains an asterisk otherwise. This is not displayed in X/OPEN XPG4 conformance
mode.

ADDR (l) The physical address of the process. This is only displayed in X/OPEN XPG4
conformance mode.

SZ (l) Total size (in pages) of the process, including code, data, shared memory, mapped files,
shared libraries and stack. Pages associated with mapped devices are not counted. (Refer
to sysconf(1) or sysconf(3C) for information on determining the page size.)

IRIX Release 6.2 221

ps(1)hh

RSS (l) Total resident size (in pages) of process. This includes only those pages of the process that
are physically resident in memory. Mapped devices (such as graphics) are not included.
Shared memory (shmget(2)) and the shared parts of a forked child (code, shared objects,
and files mapped MAP_SHARED) have the number of pages prorated by the number of
processes sharing the page. Two independent processes that use the same shared objects
and/or the same code each count all valid resident pages as part of their own resident
size. The page size can either be 4096 or 16384 bytes as determined by the return value of
the getpagesize(2) system call. In general the larger page size is used on systems where
uname(1) returns "IRIX64". This is not displayed in X/OPEN XPG4 conformance mode.

WCHAN (l) The address of an event for which the process is sleeping, or in SXBRK state, (if blank, the
process is running).

STIME (f) The starting time of the process, given in hours, minutes, and seconds. (A process begun
more than twenty-four hours before the ps inquiry is executed is given in months and
days.)

TTY (all) The controlling terminal for the process (the message, ?, is printed when there is no
controlling terminal).

TIME (all) The cumulative execution time for the process.

COMMAND(all)
The command name (the full command name and its arguments are printed under the −−f
option). A process that has exited and has a parent, but has not yet been waited for by the
parent, is marked <defunct>.

The −−o option allows the output format to be specified under user control.

The format specification must be a list of names presented as a single argument, blank- or comma-
separated. Each variable has a default header. The default header can be overridden by appending an
equals sign and the new text of the header. The rest of the characters in the argument are used as the
header text. The fields specified are written in the order specified on the command line and should be
arranged in columns in the output. The field widths are selected by the system to be at least as wide as the
header text (default or overridden value). If the header text is null such as −−o user=, the field width is at
least as wide as the default header text. If all header text fields are null, no header line is written.

The following names are recognized:

ruser The real user ID of the process.
user The effective user ID of the process.
rgroup The real group UD of the process.

222 IRIX Release 6.2

ps(1)hh

group The effective group ID of the process.
pid The decimal value of the process ID.
ppid The decimal value of the parent process ID.
pgid The decimal value of the process group ID.
pcpu The ratio of CPU time used recently to the CPU time available in the same period, expressed as a

percentage.
vsz The size of the process in (virtual) memory.
nice The decimal value of the system scheduling priority of the process.
time The cumulative CPU time of the process.
etime The elapsed time since the process was started.
stime The starting time of the process.
flag Flags associated with the process.
state The state of the process.
wchan The event for which the process is waiting or sleeping.
util Processor utilization for scheduling.
uid The user ID number of the process owner.
cpu The processor process is currently executing on.
class The scheduling class of the process.
tty The name of the controlling terminal of the process (if any) in the same format used by the who

utility.
comm The name of the command being executed (argv[0] value) as a string.
args The command with all its arguments as a string.

The file /tmp/.ps_data/.ps_data is used to improve the performance of ps by caching uid to username
translations, kernel info, and some device information. It is recreated when it is older (either the mtime or
ctime) than any of /unix, /dev , or /etc/passwd , or when a read error occurs on the file. ps runs noticeably
slower when this file isn’t used, or needs to be recreated. Note that new NIS users may have jobs reported
as numeric values, since the ps_data file won’t be recreated automatically; removing this file and rerunning
ps fixes the problem.

SHARE II ACTIONS
When the Share II package is installed and enabled, every process acquires a new property: its attached
lnode. The lnode is the kernel structure that is used to store per-user resource and administration data
under Share II. Many processes can be attached to the same lnode.

An lnode contains a user’s resource limits, including limits on memory usage and ‘number of processes’.
All the processes attached to an lnode are collectively subject to the lnode’s memory and process limits.

Each lnode is addressed by a unique key which is a UID number. When given the −−y option, ps reports
each process’s lnode attachment under the ‘UID’ column as a UID or login name.

IRIX Release 6.2 223

ps(1)hh

FILES
/dev
/dev/tty*
/etc/passwd UID information supplier
/tmp/.ps_data/.ps_data

internal data structure

SEE ALSO
getty(1M), gr_osview(1), gr_top(1), kill(1), nice(1), pset(1M), sysconf(1), top(1), sysconf(3C).

WARNING
Things can change while ps is running; the snapshot it gives is only true for a splitsecond, and it may not be
accurate by the time you see it. Some data printed for defunct processes is irrelevant.

If no termlist, proclist, uidlist, or grplist is specified, ps checks stdin, stdout, and stderr in that order, looking
for the controlling terminal and attempts to report on processes associated with the controlling terminal.
In this situation, if stdin, stdout, and stderr are all redirected, ps does not find a controlling terminal, so there
is no report.

ps −−ef may not report the actual start of a tty login session, but rather an earlier time, when a getty was last
respawned on the tty line.

224 IRIX Release 6.2

pwck(1M)hh

NAME
pwck − password file checker

SYNOPSIS
pwck [file]

DESCRIPTION
pwck scans the password file and notes any inconsistencies. The checks include validation of: the number
of fields, login name, user ID, group ID, and whether the login directory and the program-to-use-as-Shell
exist. The default password file is /etc/passwd .

pwck has the ability to parse YP entries in the password file.

FILES
/etc/passwd

SEE ALSO
passwd(4).

DIAGNOSTICS
Too many/few fields

An entry in the password file does not have the proper number of fields.

No login name
The login name field of an entry is empty.

Bad character(s) in login name
The login name in an entry contains one or more non-alphanumeric characters.

Login name too long
The login name in an entry has more than 8 characters.

Invalid UID
The user ID field in an entry is not numeric or is greater than 65535.

Invalid GID
The group ID field in an entry is not numeric or is greater than 65535.

No login directory
The login directory field in an entry is empty.

Login directory not found
The login directory field in an entry refers to a directory that does not exist.

IRIX Release 6.2 225

pwck(1M)hh

Optional shell file not found.
The login shell field in an entry refers to a program or shell script that does not exist.

No netgroup name
The entry is a Yellow Pages entry referring to a netgroup, but no netgroup is present.

Bad character(s) in netgroup name
The netgroup name in a Yellow Pages entry contains characters other than lower-case letters and
digits.

First char in netgroup name not lower case alpha
The netgroup name in a Yellow pages entry does not begin with a lowercase letter.

226 IRIX Release 6.2

pwconv(1M)hh

NAME
pwconv − install and update /etc/shadow with information from /etc/passwd

SYNOPSIS
pwconv

DESCRIPTION
The pwconv command creates and updates /etc/shadow with information from /etc/passwd.

If the /etc/shadow file does not exist, pwconv creates /etc/shadow with information from
/etc/passwd. The command populates /etc/shadow with the user’s login name, password, and
password aging information. If password aging information does not exist in /etc/passwd for a given
user, none is added to /etc/shadow. However, the last changed information is always updated.

If the /etc/shadow file does exist, the following tasks are performed:

g Entries that are in the /etc/passwd file and not in the /etc/shadow file are added to the
/etc/shadow file.

g Entries that are in the /etc/shadow file and not in the /etc/passwd file are removed from
/etc/shadow.

g Password attributes (for example, password and aging information) in an /etc/passwd entry are
moved to the corresponding entry in /etc/shadow.

The pwconv program is a privileged system command that cannot be executed by ordinary users.

The contents of the /etc/passwd and /etc/shadow files are saved in /etc/opasswd and
/etc/oshadow, respectively. The system can be restored to its preconversion state by replacing the
content of the /etc/passwd file with the content of /etc/opasswd and removal of /etc/shadow (if
it did not exist prior to the run of pwconv) or its replacement by /etc/oshadow. These files are
overwritten each time the pwconv program is run. The use of some of the system administration tools
causes pwconv to be run, and therefore the backup files to be overwritten, each time an entry is added,
deleted, or modified.

NOTES
There is no NIS equivalent to /etc/shadow. Therefore, if a user does not have an entry in
/etc/shadow, they can not log in. This is because the password field must come from /etc/shadow.
Other NIS information such as user name, home directory, and so on is still available, just not passwords.

pwconv does not copy NIS entries from /etc/passwd. In order for such users to be able to log in, entries
in /etc/shadow must be created by hand on a user by user basis.

IRIX Release 6.2 227

pwconv(1M)hh

FILES
/etc/passwd
/etc/shadow
/etc/opasswd
/etc/oshadow

SEE ALSO
passwd(1).

DIAGNOSTICS
The pwconv command exits with one of the following values:

0 Success.
1 Permission denied.
2 Invalid command syntax.
3 Unexpected failure. Conversion not done.
4 Unexpected failure. Password file(s) missing.
5 Password file(s) busy. Try again later.

228 IRIX Release 6.2

rcp(1C)hh

NAME
rcp − remote file copy

SYNOPSIS
rcp [−−p] [−−v] file1 file2
rcp [−−p] [−−r] [−−v] file ... directory

DESCRIPTION
rcp copies files between machines. Each file or directory argument has one of these forms:

g A local filename, path , containing no : characters, or a \ before any :’s.

g A remote filename of the form remhost:path.

g A remote filename of the the form remuser@remhost:path, which uses the user name remuser rather than
the current user name on the remote host.

If path is not a full pathname, it is interpreted relative to your login directory on remhost . A path on a
remote host can be quoted (using \, ", or ´) so that the metacharacters are interpreted remotely.

By default, the mode and owner of file2 are preserved if it already existed; otherwise the mode of the
source file modified by the umask(2) on the destination host is used.

The options to rcp are:

−−p Causes rcp to attempt to preserve (duplicate) in its copies the modification times and modes of the
source files, ignoring the umask .

−−r If any of the source files are directories, rcp copies each subtree rooted at that name; in this case the
destination must be a directory.

−−v Causes the filename to be printed as it is copied to or from a remote host.

rcp does not prompt for passwords; your current local user name must exist on remhost and allow remote
command execution via rsh(1C).

rcp handles third party copies, where neither source nor target files are on the current machine.
Hostname-to-address translation of the target host is performed on the source host.

SEE ALSO
cp(1), ftp(1C), rlogin(1C), rsh(1C), hosts(4), rhosts(4).

IRIX Release 6.2 229

rcp(1C)hh

BUGS
rcp doesn’t detect all cases where the target of a copy might be a file in cases where only a directory should
be legal.

If you use csh(1), rcp does not work if your .cshrc file on the remote host unconditionally executes
interactive or output-generating commands. The message

protocol screwup

is displayed when this happens. Put the offending commands inside the following conditional block:

if ($?prompt) then

endif

so they won’t interfere with rcp, rsh, and other non-interactive, rcmd(3N)-based programs.

rcp cannot handle filenames that have embedded newline characters. A newline character is a rcp protocol
delimiter. The error message when this happens is:

protocol screwup: unexpected <newline>

230 IRIX Release 6.2

Restore(1)hh

NAME
Restore − restore the specified file or directory from tape

SYNOPSIS
Restore [−h hostname] [−t tapedevice] [directory_name | file_name]

DESCRIPTION
The Restore command copies the named file or directory from a local or remote backup tapes to disk. If no
file or directory is specified, Restore copies all the files found on the tape to disk.

Files are restored into the current directory if the backup tape contains pathnames beginning with ".".

Files on disk are overwritten even if they are more recent than the respective files on tape.

The options and arguments to Restore are:

−−h hostname If a tape drive attached to a remote host is used for restoring, specify the name of the
remote host with the −−h hostname option. For remote restore to successfully work, you
should have a TCP/IP network connection to the remote host and guest login privileges
on that host.

−−t tapedevice If the local or remote tape device is pointed to by a device file other than /dev/tape , the
device should be specified by the −−t tapedevice option.

directory_name Restore just the files in the directory directory_name.

file_name Restore just the file file_name.

The Restore command expects the backup tape to be in the special bru(1) format written by Backup(1) and
by the System Manager Backup & Restore tool when doing full (not partial) backups. This is the same
format used for system recovery.

SEE ALSO
Backup(1), List_tape(1), bru(1).

IRIX Release 6.2 231

restore(1M)hh

NAME
restore, rrestore − incremental filesystem restore

SYNOPSIS
restore key [name ...]
rrestore key [name ...]

DESCRIPTION
restore, and rrestore are applicable only to dumps made by dump(1m) from EFS filesystems, but they can
restore files into any type of filesystem, not just an EFS filesystem.

restore reads tapes dumped with the dump(1M) command and restores them relative to the current directory.
Its actions are controlled by the key argument. The key is a string of characters containing at most one
function letter and possibly one or more function modifiers. Any arguments supplied for specific options
are given as subsequent words on the command line, in the same order as that of the options listed. Other
arguments to the command are file or directory names specifying the files that are to be restored. Unless
the h key is specified (see below), the appearance of a directory name refers to the files and (recursively)
subdirectories of that directory.

The function portion of the key is specified by one of the following letters:

r Restore the entire tape. The tape is read and its full contents loaded into the current directory. This
should not be done lightly; the r key should only be used to restore a complete level 0 dump tape
onto a clear filesystem or to restore an incremental dump tape after a full level 0 restore. Thus

/etc/mkfs /dev/dsk/dks0d2s0
/etc/mount /dev/dsk0d2s0 /mnt
cd /mnt
restore r

is a typical sequence to restore a complete dump. Another restore can be done to get an incremental
dump in on top of this. Note that restore leaves a file restoresymtable in the root directory to pass
information between incremental restore passes. This file should be removed when the last
incremental tape has been restored. Also, see the note in the BUGS section below.

R Resume restoring. restore requests a particular tape of a multi volume set on which to restart a full
restore (see the r key above). This allows restore to be interrupted and then restarted.

x The named files are extracted from the tape. If the named file matches a directory whose contents
had been written onto the tape, and the h key is not specified, the directory is recursively extracted.
The owner, modification time, and mode are restored (if possible). If no file argument is given, the
root directory is extracted, which results in the entire content of the tape being extracted unless the h
key has been specified.

232 IRIX Release 6.2

restore(1M)hh

t The names of the specified files are listed if they occur on the tape. If no file argument is given, the
root directory is listed, which results in the entire content of the tape being listed unless the h key has
been specified. Note that the t key replaces the function of the old dumpdir program.

i This mode allows interactive restoration of files from a dump tape. After reading in the directory
information from the tape, restore provides a shell like interface that allows the user to move around
the directory tree selecting files to be extracted. The available commands are given below; for those
commands that require an argument, the default is the current directory.

ls [arg] List the current or specified directory. Entries that are directories are appended with a /.
Entries that have been marked for extraction are prepended with a *. If the verbose key
is set the inode number of each entry is also listed.

cd arg Change the current working directory to the specified argument.

pwd Print the full pathname of the current working directory.

add [arg] The current directory or specified argument is added to the list of files to be extracted. If
a directory is specified, it and all its descendents are added to the extraction list (unless
the h key is specified on the command line). Files that are on the extraction list are
prepended with a * when they are listed by ls.

delete [arg] The current directory or specified argument is deleted from the list of files to be
extracted. If a directory is specified, it and all its descendents are deleted from the
extraction list (unless the h key is specified on the command line). The most expedient
way to extract most of the files from a directory is to add the directory to the extraction
list and then delete those files that are not needed.

extract All the files that are on the extraction list are extracted from the dump tape. restore asks
which volume the user wishes to mount. The fastest way to extract a few files is to start
with the last volume and work towards the first volume.

setmodes All the directories that have been added to the extraction list have their owner, modes,
and times set; nothing is extracted from the tape. This is useful for cleaning up after a
restore has been prematurely aborted.

verbose The sense of the v key is toggled. When set, the verbose key causes the ls command to
list the inode numbers of all entries. It also causes restore to print out information about
each file as it is extracted.

help List a summary of the available commands.

IRIX Release 6.2 233

restore(1M)hh

quit restore immediately exits, even if the extraction list is not empty.

The following characters can be used in addition to the letter that selects the function desired.

b The next argument to restore is used as the block size of the tape (in kilobytes). If the b option is not
specified, restore tries to determine the tape block size dynamically, but is only able to do so if the
block size is 32 or less. For larger sizes, the b option must be used with restore .

f The next argument to restore is used as the name of the archive instead of /dev/tape . If the name of the
file is −−, restore reads from standard input. Thus, dump(1M) and restore can be used in a pipeline to
dump and restore a filesystem with the command

dump 0f - /usr | (cd /mnt; restore xf -)

If the name of the file is of the format machine:device, the filesystem dump is restored from the
specified machine over the network. restore creates a remote server /etc/rmt , on the client machine to
access the tape device. Since restore is normally run by root, the name of the local machine must
appear in the .rhosts file of the remote machine. If the filename argument is of the form
user@machine:device, restore attempts to execute as the specified use on the remote machine. The
specified user must have a .rhosts file on the remote machine that allows root from the local machine.

v Normally restore does its work silently. The v (verbose) key causes it to type the name of each file it
treats preceded by its file type.

y restore does not ask whether it should abort the restore if gets a tape error. It always tries to skip over
the bad tape block(s) and continue as best it can.

m restore extracts by inode numbers rather than by filename. This is useful if only a few files are being
extracted, and one wants to avoid regenerating the complete pathname to the file.

h restore extracts the actual directory, rather than the files that it references. This prevents hierarchical
restoration of complete subtrees from the tape.

s The next argument to restore is a number that selects the dump file when there are multiple dump files
on the same tape. File numbering starts at 1.

n Only those files that are newer than the file specified by the next argument are considered for
restoration. restore looks at the modification time of the specified file using the stat(2) system call.

e No existing files are overwritten.

E Restores only non-existent files or newer versions (as determined by the file status change time stored
in the dump file) of existing files. Note that the ls(1) command shows the modification time and not
the file status change time. See stat(2) for more details.

234 IRIX Release 6.2

restore(1M)hh

d Turn on debugging output.

o Normally restore does not use chown(2) to restore files to the original user and group id unless it is
being run by the superuser (or with the effective user id of zero). This is to provide Berkeley-style
semantics. This can be overridden with the o option which results in restore attempting to restore the
original ownership to the files.

N Do not write anything to the disk. This option can be used to validate the tapes after a dump. If
invoked with the r option, restore goes through the motion of reading all the dump tapes without
actually writing anything to the disk.

DIAGNOSTICS
restore complains about bad key characters.

On getting a read error, restore prints out diagnostics. If y has been specified, or the user responds y, restore
attempts to continue the restore.

If the dump extends over more than one tape, restore asks the user to change tapes. If the x or i key has
been specified, restore also asks which volume the user wishes to mount. The fastest way to extract a few
files is to start with the last volume and work towards the first volume.

There are numerous consistency checks that can be listed by restore . Most checks are self-explanatory or
can never happen. Common errors are given below.

Converting to new filesystem format.
A dump tape created from the old filesystem has been loaded. It is automatically converted to the
new filesystem format.

<filename>: not found on tape
The specified filename was listed in the tape directory, but was not found on the tape. This is
caused by tape read errors while looking for the file, and from using a dump tape created on an
active filesystem.

expected next file <inumber>, got <inumber>
A file that was not listed in the directory showed up. This can occur when using a dump tape
created on an active filesystem.

Incremental tape too low
When doing incremental restore, a tape that was written before the previous incremental tape, or
that has too low an incremental level has been loaded.

Incremental tape too high
When doing incremental restore, a tape that does not begin its coverage where the previous
incremental tape left off, or that has too high an incremental level has been loaded.

IRIX Release 6.2 235

restore(1M)hh

Tape read error while restoring <filename>
Tape read error while skipping over inode <inumber>
Tape read error while trying to resynchronize

A tape read error has occurred. If a filename is specified, its contents are probably partially wrong.
If an inode is being skipped or the tape is trying to resynchronize, no extracted files have been
corrupted, though files may not be found on the tape.

resync restore, skipped <num> blocks
After a tape read error, restore may have to resynchronize itself. This message lists the number of
blocks that were skipped over.

Error while writing to file /tmp/rstdir*
An error was encountered while writing to the temporary file containing information about the
directories on tape. Use the TMPDIR environment variable to relocate this file in a directory that
has more space available.

Error while writing to file /tmp/rstdir*
An error was encountered while writing to the temporary file containing information about the
owner, mode and timestamp information of directories. Use the TMPDIR environment variable to
relocate this file in a directory that has more space available.

EXAMPLES
restore r

Restores the entire tape into the current directory, reading from the default tape device /dev/tape .

restore rf guest@kestrel.sgi.com:/dev/tape

Restores the entire tape into the current directory, reading from the remote tape device /dev/tape on host
kestrel.sgi.com using the guest account.

restore x /etc/hosts /etc/fstab /etc/myfile

Restores the three specified files into the current directory, reading from the default tape device /dev/tape .

restore x /dev/dsk

Restores the entire /dev/dsk directory and subdirectories recursively into the current directory, reading from
the default tape device /dev/tape .

restore rN

Reads the entire tape and go through all the motions of restoring the entire dump, without writing to the
disk. This can be used to validate the dump tape.

236 IRIX Release 6.2

restore(1M)hh

restore xe /usr/dir/foo

Restores (recursively) all files in the given directory /usr/dir/foo . However, no existing files are overwritten.

restore xn /usr/dir/bar

Restores (recursively) all files that are newer than the given file /usr/dir/bar .

FILES
/dev/tape This is the default tape device used unless the environment variable TAPE is set.
/tmp/rstdir* This temporary file contains the directories on the tape. If the environment variable

TMPDIR is set, the file is created in that directory.
/tmp/rstmode* This temporary file contains the owner, mode, and time stamps for directories. If the

environment variable TMPDIR is set, the file is created in that directory.
./restoresymtable

Information is passed between incremental restores in this file.

SEE ALSO
dump(1M), mkfs(1M), mount(1M), rmt(1M), rhosts(4), mtio(7).

NOTES
rrestore is a link to restore .

BUGS
restore can get confused when doing incremental restores from dump tapes that were made on active
filesystems.

A level 0 dump must be done after a full restore. Because restore runs in user code, it has no control over
inode allocation. This results in the files being restored having an inode numbering different from the
filesystem that was originally dumped. Thus a full dump must be done to get a new set of directories
reflecting the new inode numbering, even though the contents of the files is unchanged, so that later
incremental dumps will be correct.

Existing dangling symlinks are modified even if the e option is supplied, if the dump tape contains a hard
link by the same name.

IRIX Release 6.2 237

rlogin(1C)hh

NAME
rlogin − remote login

SYNOPSIS
rlogin rhost [−−l username] [−−ec] [−−L] [−−8]
rlogin username@rhost [−−ec] [−−L] [−−8]

DESCRIPTION
rlogin connects your terminal on the current local host system to the remote host system rhost . The remote
username used is the same as your local username, unless you specify a different remote name with the −−l
option or use the username@rhost format.

The rlogin arguments and options are:

rhost The hostname of the remote system.

username The user ID to be used on the remote system.

−−l username Specifies the user ID to be used on the remote system.

−−ec Specifies a different escape character. There is no space separating this option flag and the
argument character, c.

−−L Allows the rlogin session to be run in litout mode. A line of the form ˜. disconnects from
the remote host, where ˜ is the escape character. A line starting with ˜! starts a shell on the
IRIS. Similarly, the line ˜ˆZ (where ˆZ, <Ctrl-z>, is the suspend character) suspends the
rlogin session if you are using csh(1).

−−8 Allows an 8-bit input data path at all times; otherwise parity bits are stripped except when
the remote side’s stop and start characters are other than ˆS/ˆQ.

Each host has a file /etc/hosts.equiv that contains a list of remote hosts (equivalent hosts) with which it
shares account names. The hostnames must be the standard names as described in rsh(1C). When you
rlogin as the same user on an equivalent host, you do not need to give a password.

Each user can also have a private equivalence list in a file .rhosts in his home directory. Each line in this file
should contain an rhost and a username separated by a space, which gives an additional remote host where
logins without passwords are permitted. If the originating user is not equivalent to the remote user, the
remote host prompts for a login and password as in login(1). To avoid some security problems, the .rhosts
file must be owned by either the remote user or root.

The remote terminal type is the same as your local terminal type (as given in your TERM environment
variable). The TERM value iris-ansi is converted to iris-ansi-net when sent to the host. The terminal or
window size is also copied to the remote system if the server supports the option, and changes in size are
reflected as well. All echoing takes place at the remote site, so that (except for delays) the rlogin is

238 IRIX Release 6.2

rlogin(1C)hh

transparent. Flow control via ˆS and ˆQ and flushing of input and output on interrupts are handled
properly.

SEE ALSO
rsh(1C), hosts(4), rhosts(4).

BUGS
Only the TERM environment variable is propagated. The rlogin protocol should be extended to propagate
useful variables, such as DISPLAY. (Note that telnet(1C) is able to propagate environment variables.)

IRIX Release 6.2 239

rsh(1C)hh

NAME
rsh − remote shell

SYNOPSIS
/usr/bsd/rsh host [−−l username] [−−n] command
/usr/bsd/rsh username@host [−−n] command

DESCRIPTION
rsh connects to the specified host, and executes the specified command. rsh copies its standard input to the
remote command, the standard output of the remote command to its standard output, and the standard
error of the remote command to its standard error. Interrupt, quit, and terminate signals are propagated to
the remote command; rsh normally terminates when the remote command does.

The remote username used is the same as your local username, unless you specify a different remote name
with the −−l option or the username@host format. This remote name must be equivalent (in the sense of
rlogin(1C)) to the originating account; no provision is made for specifying a password with a command.

If you omit command, instead of executing a single command, you are logged in on the remote host using
rlogin(1C). In this case, rsh understands the additional arguments to rlogin.

Shell metacharacters that are not quoted are interpreted on local machine, while quoted metacharacters are
interpreted on the remote machine. Thus the command

rsh otherhost cat remotefile >> localfile

appends the remote file remotefile to the localfile localfile, while

rsh otherhost cat remotefile ">>" otherremotefile

appends remotefile to otherremotefile .

SEE ALSO
rlogin(1C), hosts(4), rhosts(4).

BUGS
If you use csh(1), rsh does not work if your .cshrc file on the remote host unconditionally executes
interactive or output-generating commands. Put these commands inside the following conditional block:

if ($?prompt) then

endif

so they won’t interfere with rcp, rsh, and other non-interactive, rcmd(3N)-based programs.

240 IRIX Release 6.2

rsh(1C)hh

If you are using csh(1) and put a rsh(1C) in the background without redirecting its input away from the
terminal, it blocks even if no reads are posted by the remote command. If no input is desired, you should
use the −−n option, which redirects the input of rsh to /dev/null.

You cannot run an interactive command (like vi(1)); use rlogin(1C).

Job control signals stop the local rsh process only; this is arguably wrong, but currently hard to fix.

IRIX Release 6.2 241

savecore(1M)hh

NAME
savecore − save a crash vmcore dump of the operating system

SYNOPSIS
/etc/savecore [−−f] [−−v] dirname [system]

DESCRIPTION
savecore is meant to be called by /etc/rc2.d/S48savecore. Its functions are to save the core dump of the system
(assuming one was made) and to write a reboot message in the shutdown log. The S48savecore script
specifies dirname as /var/adm/crash by default, unless overridden by site-specific command-line options in
the file /etc/config/savecore.options .

When the system crashes, one of the last steps that the kernel performs is to write the contents of system
memory to the dump device. The dump device is /dev/swap , When the system crashes, the process of
creating the dump image will overwrite any data on the dump device. Thus, the dump device must be a
raw partition that does not contain any data that needs to be preserved across a system crash (which is
why /dev/swap is the obvious candidate for the dump device).

savecore reads the core image saved on the dump device and saves that core image in the file
dirname/vmcore.n.

IRIX savecore can also write compressed core image files which are named dirname/vmcore.n.comp. These
compressed files also contain a header which gives certain information about the dump. When copying
out a compressed dump, savecore also logs the last few messages printed to the console before the system
went down. A compressed dump can be expanded with the uncompvm(1M) command.

Making sense of any saved core image requires the symbol table of the operating system that was running
at the time of the crash. For this reason savecore also saves the current default kernel boot file /unix as
dirname/unix.n. The trailing ".n" in the pathnames is replaced by a number that grows every time savecore
is run in that directory.

Before savecore writes out a core image, it reads a number from the file dirname/minfree. If the number of
free bytes on the filesystem that contains dirname is less than the number obtained from the minfree file, the
core dump is not saved. If the minfree file does not exist, savecore always writes out the core file (assuming
that a core dump was taken).

savecore also logs a reboot message using facility LOG_AUTH (see syslog(3C)). If the system crashed as a
result of a panic, savecore logs the panic string also.

savecore assumes that /unix corresponds to the running system at the time of the crash. If the core dump
was from a system other than /unix, the name of that system must be supplied as system.

242 IRIX Release 6.2

savecore(1M)hh

The following options apply to savecore:

−−f Ordinarily, savecore checks a magic number on the dump device (usually /dev/swap) to determine if a
core dump was made. This flag forces savecore to attempt to save the core image regardless of the
state of this magic number. This may be necessary since savecore always clears the magic number
after reading it. If a previous attempt to save the image failed in some manner, it is still possible to
restart the save with this option.

−−v Give more verbose output.

DIAGNOSTICS
warning: /unix may not have created core file

Printed if savecore believes that the system core file does not correspond with the /unix operating
system binary.

savecore: /unix is not the running system
Printed for the obvious reason. If the system that crashed was /unix, use mv(1) to change its name
before running savecore. Use mv(1) or ln(1) to rename or produce a link to the name of the file of the
currently running operating system binary. This enables savecore to find name list information about
the current state of the running system from the file /unix.

FILES
/unix current IRIX
/var/adm/crash default place to create dump files
/var/adm/crash/bounds number for next dump file
/var/adm/crash/minfree minimum filesystem free space
/etc/config/savecore.options site-specific command-line options

SEE ALSO
uncompvm(1M), nlist(3X).

IRIX Release 6.2 243

setmnt(1M)hh

NAME
setmnt − establish mount table

SYNOPSIS
setmnt [−−f mtab]

DESCRIPTION
setmnt creates the /etc/mtab table, which is used by the mount(1M) and umount commands, among others. If
given the −−f option, it creates an alternate mtab . setmnt reads standard input and writes an entry in mtab(4)
format for each line read. Input lines have the format:

fsname dir

where fsname is the name of the filesystem’s special file (for example, /dev/dsk/dks?d?s?) and dir is the
mountpoint of that filesystem. Thus, fsname and dir become the first two strings in the mount table entry.

FILES
/etc/mtab

SEE ALSO
devnm(1M), mount(1M).

BUGS
Problems may occur if fsname or dir is longer than 127 characters.

244 IRIX Release 6.2

sh(1)hh

NAME
sh, jsh, rsh − shell, the standard/job control/restricted command programming language

SYNOPSIS
sh [−−acefhiknprstuvx] [args]
jsh [−−acefhiknprstuvx] [args]
/usr/lib/rsh [−−acefhiknprstuvx] [args]

DESCRIPTION
sh is a command programming language that executes commands read from a terminal or a file.

jsh is an interface to the shell that provides all the functionality of sh and enables Job Control (see Job
Control below).

/usr/lib/rsh is a restricted version of the standard command interpreter sh; it is used to set up login names
and execution environments whose capabilities are more controlled than those of the standard shell. See
Invocation below for the meaning of arguments to the shell.

Definitions
A blank is a tab or a space. A name is a sequence of letters, digits, or underscores beginning with a letter or
underscore. A parameter is a name, a digit, or any of the characters *, @, #, ?, −−, $, and ! .

Commands
A simple-command is a sequence of non-blank words separated by blanks . The first word specifies the name
of the command to be executed. Except as specified below, the remaining words are passed as arguments
to the invoked command. The command name is passed as argument 0 (see exec(2)). The value of a simple-
command is its exit status if it terminates normally, or (octal) 200+status if it terminates abnormally (see
signal(2) for a list of status values).

A pipeline is a sequence of one or more commands separated by J. The standard output of each command
but the last is connected by a pipe(2) to the standard input of the next command. Each command is run as a
separate process; the shell waits for the last command to terminate. The exit status of a pipeline is the exit
status of the last command.

A list is a sequence of one or more pipelines separated by ;, &, &&, or JJ, and optionally terminated by ; or
&. Of these four symbols, ; and & have equal precedence, which is lower than that of && and JJ. The
symbols && and JJ also have equal precedence. A semicolon (;) causes sequential execution of the
preceding pipeline; an ampersand (&) causes asynchronous execution of the preceding pipeline (that is, the
shell does not wait for that pipeline to finish). The symbol && (JJ) causes the list following it to be executed
only if the preceding pipeline returns a zero (nonzero) exit status. An arbitrary number of newlines can
appear in a list, instead of semicolons, to delimit commands.

IRIX Release 6.2 245

sh(1)hh

A command is either a simple-command or one of the following. Unless otherwise stated, the value returned
by a command is that of the last simple-command executed in the command.

for name [in word ...] do list done
Each time a for command is executed, name is set to the next word taken from the in word list. If
in word ... is omitted, the for command executes the do list once for each positional parameter
that is set (see Parameter Substitution below). Execution ends when there are no more words
in the list.

case word in [pattern [J pattern] ...) list ;;] ... esac
A case command executes the list associated with the first pattern that matches word . The form
of the patterns is the same as that used for filename generation (see Filename Generation)
except that a slash, a leading dot, or a dot immediately following a slash need not be matched
explicitly.

if list then list [elif list then list] ... [else list] fi
The list following if is executed and, if it returns a zero exit status, the list following the first
then is executed. Otherwise, the list following elif is executed and, if its value is zero, the list
following the next then is executed. Failing that, the else list is executed. If no else list or then
list is executed, the if command returns a zero exit status.

while list do list done
A while command repeatedly executes the while list and, if the exit status of the last command
in the list is zero, executes the do list; otherwise the loop terminates. If no commands in the do
list are executed, the while command returns a zero exit status; until can be used in place of
while to negate the loop termination test.

(list) Execute list in a subshell.

{list;} list is executed in the current (that is, parent) shell. The { must be followed by a space.

name () {list;}
Define a function that is referenced by name. The body of the function is the list of commands
between { and }. The list can appear on the same line as the {. If it does, the { and list must be
separated by a space. The } cannot be on the same line as list; it must be on a newline.
Execution of functions is described below (see Execution). The { and } are unnecessary if the
body of the function is a command as defined above, under Commands.

The following words are only recognized as the first word of a command and when not quoted:

if then else elif fi case esac for while until do done { }

246 IRIX Release 6.2

sh(1)hh

Comments
A word beginning with # causes that word and all the following characters up to a newline to be ignored.

Command Substitution
The shell reads commands from the string between two grave accents (‘‘) and the standard output from
these commands can be used as all or part of a word. Trailing newlines from the standard output are
removed.

No interpretation is done on the string before the string is read, except to remove backslashes (\) used to
escape other characters. Backslashes can be used to escape a grave accent (‘) or another backslash (\) and
are removed before the command string is read. Escaping grave accents allows nested command
substitution. If the command substitution lies within a pair of double quotes (" ... ‘...‘ ... "), a backslash used
to escape a double quote (\") is removed; otherwise, it is left intact.

If a backslash is used to escape a newline character (\newline), both the backslash and the newline are
removed (see the later section on "Quoting"). In addition, backslashes used to escape dollar signs (\$) are
removed. Since no interpretation is done on the command string before it is read, inserting a backslash to
escape a dollar sign has no effect. Backslashes that precede characters other than \, ‘, ", newline, and $ are
left intact when the command string is read.

Parameter Substitution
The character $ is used to introduce substitutable parameters . There are two types of parameters, positional
and keyword. If parameter is a digit, it is a positional parameter. Positional parameters can be assigned
values by set. Keyword parameters (also known as variables) can be assigned values by writing:

name = value [name = value] ...

Pattern-matching is not performed on value. There cannot be a function and a variable with the same name.

${parameter} The value, if any, of the parameter is substituted. The braces are required only when
parameter is followed by a letter, digit, or underscore that is not to be interpreted as
part of its name. If parameter is * or @, all the positional parameters, starting with $1,
are substituted (separated by spaces). Parameter $0 is set from argument zero when
the shell is invoked.

${parameter:−−word} If parameter is set and is non-null, substitute its value; otherwise substitute word .

${parameter:=word} If parameter is not set or is null set it to word ; the value of the parameter is
substituted. Positional parameters cannot be assigned to in this way.

${parameter:?word} If parameter is set and is non-null, substitute its value; otherwise, print word and exit
from the shell. If word is omitted, the message "parameter null or not set" is printed.

IRIX Release 6.2 247

sh(1)hh

${parameter:+word} If parameter is set and is non-null, substitute word ; otherwise substitute nothing.

In the above, word is not evaluated unless it is to be used as the substituted string, so that, in the following
example, pwd is executed only if d is not set or is null:

echo ${d:−‘pwd‘}

If the colon (:) is omitted from the above expressions, the shell only checks whether parameter is set or not.

The following parameters are automatically set by the shell:

* Expands to the positional parameters, beginning with 1.

@ Expands to the positional parameters beginning with 1, except when expanded within double
quotes, in which case each positional parameter expands as a separate field.

The number of positional parameters in decimal.

−− Flags supplied to the shell on invocation or by the set command.

? The decimal value returned by the last synchronously executed command.

$ The process number of this shell. $ reports the process ID of the parent shell in all shell constructs,
including pipelines, and in parenthesized subshells.

! The process number of the last background command invoked.

The following parameters are used by the shell:

HOME The default argument (home directory) for the cd command, set to the user’s login directory
by login(1) from the password file (see passwd(4)).

PATH The search path for commands (see Execution below). The user cannot change PATH if
executing under rsh.

CDPATH The search path for the cd command.

MAIL If this parameter is set to the name of a mail file and the MAILPATH parameter is not set, the
shell informs the user of the arrival of mail in the specified file.

MAILCHECK
This parameter specifies how often (in seconds) the shell checks for the arrival of mail in the
files specified by the MAILPATH or MAIL parameters. The default value is 600 seconds (10
minutes). If set to 0, the shell checks before each prompt.

248 IRIX Release 6.2

sh(1)hh

MAILPATH
A colon (:) separated list of filenames. If this parameter is set, the shell informs the user of the
arrival of mail in any of the specified files. Each filename can be followed by % and a message
to be printed when the modification time changes. The default message is "you have mail".

PS1 Primary prompt string, by default ‘‘$ ’’.

PS2 Secondary prompt string, by default ‘‘> ’’.

IFS Internal field separators, normally space, tab, and newline.

SHACCT If this parameter is set to the name of a file writable by the user, the shell writes an accounting
record in the file for each shell procedure executed.

SHELL When the shell is invoked, it scans the environment (see Environment below) for this name. If
it is found and ’rsh’ is the filename part of its value, the shell becomes a restricted shell.

The shell gives default values to PATH, PS1, PS2, MAILCHECK, and IFS. HOME and MAIL are set by
login(1).

Blank Interpretation
After parameter and command substitution, the results of substitution are scanned for internal field
separator characters (those found in IFS) and split into distinct arguments where such characters are
found. Explicit null arguments ("" or ’’) are retained. Implicit null arguments (those resulting from
parameters that have no values) are removed. The original whitespace characters (space, tab, and newline)
are always considered internal field separators.

Input/Output
A command’s input and output can be redirected using a special notation interpreted by the shell. The
following can appear anywhere in a simple-command or can precede or follow a command and are not passed
on as arguments to the invoked command. Note that parameter and command substitution occurs before
word or digit is used.

<word Use file word as standard input (file descriptor 0).

>word Use file word as standard output (file descriptor 1). If the file does not exist it is created;
otherwise, it is truncated to zero length.

>>word Use file word as standard output. If the file exists output is appended to it (by first seeking to
the end-of-file); otherwise, the file is created.

<<[−−]word
After parameter and command substitution is done on word , the shell input is read up to the
first line that literally matches the resulting word , or to an end-of-file. If, however, −− is
appended to <<:

IRIX Release 6.2 249

sh(1)hh

1. Leading tabs are stripped from word before the shell input is read (but after parameter and
command substitution is done on word).

2. Leading tabs are stripped from the shell input as it is read and before each line is compared
with word .

3. Shell input is read up to the first line that literally matches the resulting word , or to an end-
of-file.

If any character of word is quoted (see Quoting, later), no additional processing is done to the
shell input. If no characters of word are quoted:

1. Parameter and command substitution occurs.

2. (Escaped) \newline is ignored.

3. \ must be used to quote the characters \, $, and ‘.

The resulting document becomes the standard input.

<&digit Use the file associated with file descriptor digit as standard input. Similarly for the standard
output using >&digit.

<&−− The standard input is closed. Similarly for the standard output using >&−−.

If any of the above is preceded by a digit, the file descriptor that will be associated with the file is that
specified by the digit (instead of the default 0 or 1). For example:

... 2>&1

associates file descriptor 2 with the file currently associated with file descriptor 1.

The order in which redirections are specified is significant. The shell evaluates redirections left-to-right.
For example:

... 1>xxx 2>&1

first associates file descriptor 1 with file xxx. It associates file descriptor 2 with the file associated with file
descriptor 1 (that is, xxx). If the order of redirections were reversed, file descriptor 2 would be associated
with the terminal (assuming file descriptor 1 had been) and file descriptor 1 would be associated with file
xxx.

Using the terminology introduced on the first page, under Commands, if a command is composed of several
simple commands, redirection is evaluated for the entire command before it is evaluated for each simple
command. That is, the shell evaluates redirection for the entire list, then each pipeline within the list, then
each command within each pipeline, then each list within each command.

250 IRIX Release 6.2

sh(1)hh

If a command is followed by & the default standard input for the command is the empty file /dev/null.
Otherwise, the environment for the execution of a command contains the file descriptors of the invoking
shell as modified by input/output specifications.

Redirection of output is not allowed in the restricted shell.

Filename Generation
Before a command is executed, each command word is scanned for the characters *, ?, and [. If one of these
characters appears the word is regarded as a pattern . The word is replaced with alphabetically sorted
filenames that match the pattern. If no filename is found that matches the pattern, the word is left
unchanged. The character . at the start of a filename or immediately following a /, as well as the character /
itself, must be matched explicitly.

* Matches any string, including the null string.

? Matches any single character.

[...] Matches any one of the enclosed characters. A pair of characters separated by −− matches any
character lexically between the pair, inclusive. If the first character following the opening [is a !, any
character not enclosed is matched.

Quoting
The following characters have a special meaning to the shell and cause termination of a word unless
quoted:

; & () J ˆ < > newline space tab

A character can be quoted that is, made to stand for itself) by preceding it with a backslash (\) or inserting it
between a pair of quote marks (’’ or ""). During processing, the shell can quote certain characters to
prevent them from taking on a special meaning. Backslashes used to quote a single character are removed
from the word before the command is executed. The pair \newline is removed from a word before
command and parameter substitution.

All characters enclosed between a pair of single quote marks (’’), except a single quote, are quoted by the
shell. Backslash has no special meaning inside a pair of single quotes. A single quote can be quoted inside
a pair of double quote marks (for example, "’").

Inside a pair of double quote marks (""), parameter and command substitution occurs and the shell quotes
the results to avoid blank interpretation and filename generation. If $* is within a pair of double quotes,
the positional parameters are substituted and quoted, separated by quoted spaces ("$1 $2 ..."); however, if
$@ is within a pair of double quotes, the positional parameters are substituted and quoted, separated by
unquoted spaces ("$1" "$2" ...). \ quotes the characters \, ‘, ", and $. The pair \newline is removed before
parameter and command substitution. If a backslash precedes characters other than \, ‘, ", $, and newline,
then the backslash itself is quoted by the shell.

IRIX Release 6.2 251

sh(1)hh

Prompting
When used interactively, the shell prompts with the value of PS1 before reading a command. If at any time
a newline is typed and further input is needed to complete a command, the secondary prompt that is, the
value of PS2) is issued.

Environment
The environment (see environ(5)) is a list of name-value pairs that is passed to an executed program in the
same way as a normal argument list. The shell interacts with the environment in several ways. On
invocation, the shell scans the environment and creates a parameter for each name found, giving it the
corresponding value. If the user modifies the value of any of these parameters or creates new parameters,
none of these affects the environment unless the export command is used to bind the shell’s parameter to
the environment (see also set −−a). A parameter can be removed from the environment with the unset
command. The environment seen by any executed command is thus composed of any unmodified name-
value pairs originally inherited by the shell, minus any pairs removed by unset, plus any modifications or
additions, all of which must be noted in export commands.

The environment for any simple-command can be augmented by prefixing it with one or more assignments
to parameters. Thus these two commands are equivalent (as far as the execution of cmd is concerned if cmd
is not a Special Command):

TERM=450 cmd
(export TERM; TERM=450; cmd)

If cmd is a Special Command, then

TERM=45 cmd

modifies the TERM variable in the current shell.

If the −−k flag is set, all keyword arguments are placed in the environment, even if they occur after the
command name. The following first prints a=b c and c:

echo a=b c
set -k
echo a=b c

Signals
When a command is run in the background (cmd &) under sh, it can receive INTERRUPT and QUIT
signals but ignores them by default. (A background process can override this default behavior via trap or
signal. For details, see the description of trap, below, or signal(2).) When a command is run in the
background under jsh, however, it does not receive INTERRUPT or QUIT signals.

252 IRIX Release 6.2

sh(1)hh

Otherwise signals have the values inherited by the shell from its parent, with the exception of signal 11
(SIGSEGV). See also the trap command below.

Execution
Each time a command is executed, the command substitution, parameter substitution, blank interpretation,
input/output redirection, and filename generation listed above are carried out. If the command name
matches the name of a defined function, the function is executed in the shell process (note how this differs
from the execution of shell procedures). If the command name does not match the name of a defined
function, but matches one of the Special Commands listed below, it is executed in the shell process. The
positional parameters $1, $2, and so on are set to the arguments of the function. If the command name
matches neither a Special Command nor the name of a defined function, a new process is created and an
attempt is made to execute the command via exec(2).

The shell parameter PATH defines the search path for the directory containing the command. Alternative
directory names are separated by a colon (:). The default path is:

:/usr/sbin:/usr/bsd:/bin:/usr/bin:/usr/bin/X11

specifying the current directory, /usr/sbin, /usr/bsd, /bin, /usr/bin, and /usr/bin/X11, in that order. Note that
the current directory is specified by a null pathname. It can appear immediately after the equal sign,
between two colon delimiters anywhere in the path list, or at the end of the path list. If the command name
contains a / the search path is not used; such commands are not executed by the restricted shell.
Otherwise, each directory in the path is searched for an executable file. If the file has execute permission
but is not an a.out file, it is assumed to be a file containing shell commands. A subshell is spawned to read
it. A parenthesized command is also executed in a subshell.

The location in the search path where a command was found is remembered by the shell (to help avoid
unnecessary execs later). If the command was found in a relative directory, its location must be re-
determined whenever the current directory changes. The shell forgets all remembered locations whenever
the PATH variable is changed or the hash −−r command is executed (see below).

Special Commands
Input/output redirection is now permitted for these commands. File descriptor 1 is the default output
location. When Job Control is enabled, additional Special Commands are added to the shell’s environment
(see Job Control).

: No effect; the command does nothing. A zero exit code is returned.

. file Read and execute commands from file and return. The search path specified by
PATH is used to find the directory containing file.

break [n] Exit from the enclosing for or while loop, if any. If n is specified break n levels.

IRIX Release 6.2 253

sh(1)hh

continue [n] Resume the next iteration of the enclosing for or while loop. If n is specified resume
at the n-th enclosing loop.

cd [arg] Change the current directory to arg . The shell parameter HOME is the default arg .
The shell parameter CDPATH defines the search path for the directory containing
arg . Alternative directory names are separated by a colon (:). The default path is
<null> (specifying the current directory). Note that the current directory is specified
by a null pathname. It can appear immediately after the equal sign or between the
colon delimiters anywhere else in the path list. If arg begins with a / the search path
is not used. Otherwise, each directory in the path is searched for arg . The cd
command cannot be executed by rsh.

echo [arg ...] Echo arguments. See echo(1) for usage and description.

eval [arg ...] The arguments are read as input to the shell and the resulting command(s) executed.

exec [arg ...] The command specified by the arguments is executed in place of this shell without
creating a new process. Input/output arguments can appear and, if no other
arguments are given, cause the shell input/output to be modified.

exit [n] Causes a shell to exit with the exit status specified by n. If n is omitted, the exit
status is that of the last command executed (an end-of-file also causes the shell to
exit.)

export [name ...] The given names are marked for automatic export to the environment of
subsequently-executed commands. If no arguments are given, variable names that
have been marked for export during the current shell’s execution are listed.
(Variable names exported from a parent shell are listed only if they have been
exported again during the current shell’s execution.) Function names are not
exported.

getopts Use in shell scripts to support command syntax standards (see intro(1)); it parses
positional parameters and checks for legal options. See getopts(1) for usage and
description.

hash [−−r] [name ...] For each name, the location in the search path of the command specified by name is
determined and remembered by the shell. The −−r option causes the shell to forget all
remembered locations. If no arguments are given, information about remembered
commands is presented. hits is the number of times a command has been invoked
by the shell process. cost is a measure of the work required to locate a command in
the search path. If a command is found in a "relative" directory in the search path,
after changing to that directory, the stored location of that command is recalculated.
Commands for which this is done are indicated by an asterisk (*) adjacent to the hits
information. cost is incremented when the recalculation is done.

254 IRIX Release 6.2

sh(1)hh

limit [−−h] [resource [maximum-use]]
Limits the consumption by the current process and each process it creates to not
individually exceed maximum-use on the specified resource. If no maximum-use is
given, then the current limit is printed; if no resource is given, then all limitations are
given. If the −−h flag is given, the hard limits are used instead of the current limits.
The hard limits impose a ceiling on the values of the current limits. Only the
superuser can raise the hard limits, but a user can lower or raise the current limits
within the legal range.

Resources controllable currently include cputime, the maximum number of cpu-
seconds to be used by each process, filesize, the largest single file that can be created,
datasize, the maximum growth of the data region via sbrk(2) beyond the end of the
program text, stacksize, the maximum size of the automatically-extended stack
region, coredumpsize, the size of the largest core dump created, memoryuse, the
maximum amount of physical memory a process can have allocated to it at a given
time, descriptors, the maximum number of open files, and vmemory, the maximum
total virtual size of the process, including text, data, heap, shared memory, mapped
files, stack, and so on.

The maximum-use can be given as a (floating point or integer) number followed by a
scale factor. For all limits other than cputime the default scale is k or kilobytes (1024
bytes); a scale factor of m or megabytes can also be used. For cputime the default
scaling is seconds, while m for minutes or h for hours, or a time of the form mm:ss
giving minutes and seconds can be used.

For both resource names and scale factors, unambiguous prefixes of the names
suffice.

newgrp [arg ...] Equivalent to exec newgrp arg See newgrp(1) for usage and description.

pwd Print the current working directory. See pwd(1) for usage and description.

read [name ...] One line is read from the standard input and, using the internal field separator, IFS
(normally space or tab), to delimit word boundaries, the first word is assigned to the
first name, the second word to the second name, and so on, with leftover words
assigned to the last name. Lines can be continued using \newline. Characters other
than newline can be quoted by preceding them with a backslash. These backslashes
are removed before words are assigned to names, and no interpretation is done on
the character that follows the backslash. The return code is 0 unless an end-of-file is
encountered.

IRIX Release 6.2 255

sh(1)hh

readonly [name ...] The given names are marked readonly and the values of the these names cannot be
changed by subsequent assignment. If no arguments are given, a list of all readonly
names is printed.

return [n] Causes a function to exit with the return value specified by n. If n is omitted, the
return status is that of the last command executed.

set [−−−−aefhkntuvx [arg ...]]

−−a Mark variables that are modified or created for export.

−−e Exit immediately if a command exits with a nonzero exit status.

−−f Disable filename generation.

−−h Locate and remember function commands as functions are defined (function
commands are normally located when the function is executed).

−−k All keyword arguments are placed in the environment for a command, not
just those that precede the command name.

−−n Read commands but do not execute them.

−−t Exit after reading and executing one command.

−−u Treat unset variables as an error when substituting.

−−v Print shell input lines as they are read.

−−x Print commands and their arguments as they are executed.

−−−− Do not change any of the flags; useful in setting $1 to −−.

Using + rather than −− causes these flags to be turned off. These flags can also be
used upon invocation of the shell. The current set of flags can be found in $−−. The
remaining arguments are positional parameters and are assigned, in order, to $1, $2,
.... If no arguments are given the values of all names are printed.

shift [n] The positional parameters from $n+1 ... are renamed $1 If n is not given, it is
assumed to be 1.

test Evaluate conditional expressions. See test(1) for usage and description.

256 IRIX Release 6.2

sh(1)hh

times Print the accumulated user and system times for processes run from the shell.

trap [arg] [n] ... The command arg is to be read and executed when the shell receives signal(s) n.
(Note that arg is scanned once when the trap is set and once when the trap is taken.)
Trap commands are executed in order of signal number. Any attempt to set a trap
on a signal that was ignored on entry to the current shell is ineffective. An error
results when an attempt is made to trap signal 11 (SIGSEGV−−segmentation fault).
If arg is absent all trap(s) n are reset to their original values. If arg is the null string
this signal is ignored by the shell and by the commands it invokes. If n is 0 the
command arg is executed on exit from the shell. The trap command with no
arguments prints a list of commands associated with each signal number.

type [name ...] For each name, indicate how it would be interpreted if used as a command name.

ulimit [n] Impose a size limit of n blocks on files written by the shell and its child processes
(files of any size can be read). If n is omitted, the current limit is printed. You can
lower your own ulimit, but only a superuser (see su(1M)) can raise a ulimit.

umask [nnn] The user file creation mask is set to nnn (see umask(1)). If nnn is omitted, the current
value of the mask is printed.

unlimit [−−h] [resource]
Removes the limitation on resource. If no resource is specified, then all resource
limitations are removed. If −−h is given, the corresponding hard limits are removed.
Only the superuser can do this.

unset [name ...] For each name, remove the corresponding variable or function. The variables
PATH, PS1, PS2, MAILCHECK and IFS cannot be unset.

wait [n] Wait for your background process whose process id is n and report its termination
status. If n is omitted, all your shell’s currently active background processes are
waited for and the return code is zero.

Invocation
If the shell is invoked through exec(2) and the first character of argument zero is −−, commands are initially
read from /etc/profile and from $HOME/.profile , if such files exist. Thereafter, commands are read as
described below, which is also the case when the shell is invoked as /bin/sh. The flags below are
interpreted by the shell on invocation only; Note that unless the −−c or −−s flag is specified, the first argument
is assumed to be the name of a file containing commands, and the remaining arguments are passed as
positional parameters to that command file:

−−c string
If the −−c flag is present, commands are read from string.

IRIX Release 6.2 257

sh(1)hh

−−s If the −−s flag is present or if no arguments remain, commands are read from the standard input.
Any remaining arguments specify the positional parameters. Shell output (except for Special
Commands) is written to file descriptor 2.

−−i If the −−i flag is present or if the shell input and output are attached to a terminal, this shell is
interactive. In this case TERMINATE is ignored (so that kill 0 does not kill an interactive shell) and
INTERRUPT is caught and ignored (so that wait is interruptible). In all cases, QUIT is ignored by
the shell.

−−p If the −−p flag is present, the shell skips the processing of the system profile (/etc/profile) and
the user profile (.profile) when it starts.

−−r If the −−r flag is present the shell is a restricted shell.

The remaining flags and arguments are described under the set command above.

Job Control (jsh)
When the shell is invoked as jsh, Job Control is enabled in addition to all of the functionality described
previously for sh. Typically Job Control is enabled for the interactive shell only. Noninteractive shells
typically do not benefit from the added functionality of Job Control.

With Job Control enabled every command or pipeline the user enters at the terminal is called a job. All jobs
exist in one of the following states: foreground, background, or stopped. These terms are defined as
follows: 1) a job in the foreground has read and write access to the controlling terminal; 2) a job in the
background is denied read access and has conditional write access to the controlling terminal (see
stty(1)); 3) a stopped job is a job that has been placed in a suspended state, usually as a result of a
SIGTSTP signal (see signal(2)). Jobs in the foreground can be stopped by INTERRUPT or QUIT signals
from the keyboard; background jobs cannot be stopped by these signals.

Every job the shell starts is assigned a positive integer, called a job number, which is tracked by the shell and
is used, later, as an identifier to indicate a specific job. Additionally the shell keeps track of the current and
previous jobs. The current job is the most recent job to be started or restarted. The previous job is the first
noncurrent job.

The acceptable syntax for a Job Identifier is of the form:

%jobid

where jobid can be specified in any of the following formats:

% or + For the current job.

258 IRIX Release 6.2

sh(1)hh

− For the previous job.

?string Specify the job for which the command line uniquely contains string.

n For job number n, where n is a job number.

pref Where pref is a unique prefix of the command name (for example, if the command ls −l foo
were running in the background, it could be referred to as %ls); pref cannot contain blanks
unless it is quoted.

When Job Control is enabled, the following commands are added to the user’s environment to manipulate
jobs:

bg [%jobid ...] Resumes the execution of a stopped job in the background. If %jobid is omitted the
current job is assumed.

fg [%jobid ...] Resumes the execution of a stopped job in the foreground, also moves an executing
background job into the foreground. If %jobid is omitted the current job is assumed.

jobs [−p|−l] [%jobid ...]

jobs −x command [arguments]
Reports all jobs that are stopped or executing in the background. If %jobid is
omitted, all jobs that are stopped or running in the background are reported. The
following options modify/enhance the output of jobs:

−l Report the process group ID and working directory of the jobs.

−p Report only the process group ID of the jobs.

−x Replace any jobid found in command or arguments with the corresponding
process group ID, and then execute command passing it arguments.

kill [−signal] %jobid
Builtin version of kill to provide the functionality of the kill command for
processes identified with a jobid.

stop %jobid . . . Stops the execution of a background job(s).

suspend Stops the execution of the current shell (but not if it is the login shell).

wait [%jobid ...] wait builtin accepts a job identifier. If %jobid is omitted, wait behaves as
described above under Special Commands.

IRIX Release 6.2 259

sh(1)hh

Restricted Shell (/usr/lib/rsh) Only
/usr/lib/rsh is used to set up login names and execution environments whose capabilities are more
controlled than those of the standard shell. The actions of /usr/lib/rsh are identical to those of sh,
except that the following are disallowed:

g changing directory (see cd(1))
g setting the value of $PATH
g specifying path or command names containing /
g redirecting output (> and >>)

The restrictions above are enforced after .profile is interpreted.

A restricted shell can be invoked in one of the following ways: (1) rsh is the filename part of the last entry
in the /etc/passwd file (see passwd(4)); (2) the environment variable SHELL exists and rsh is the filename part
of its value; (3) the shell is invoked and rsh is the filename part of argument 0; (4) the shell is invoke with
the −−r option.

When a command to be executed is found to be a shell procedure, /usr/lib/rsh invokes sh to execute it. Thus,
it is possible to provide to the end-user shell procedures that have access to the full power of the standard
shell, while imposing a limited menu of commands; this scheme assumes that the end-user does not have
write and execute permissions in the same directory.

The net effect of these rules is that the writer of the .profile (see profile(4)) has complete control over user
actions by performing guaranteed setup actions and leaving the user in an appropriate directory (probably
not the login directory).

The system administrator often sets up a directory of commands (that is, /usr/rbin) that can be safely
invoked by a restricted shell. IRIX provides a restricted editor, red(1).

EXIT STATUS
Errors detected by the shell, such as syntax errors, cause the shell to return a nonzero exit status. If the
shell is being used noninteractively execution of the shell file is abandoned. Otherwise, the shell returns
the exit status of the last command executed (see also the exit command above).

jsh Only
If the shell is invoked as jsh and an attempt is made to exit the shell while there are stopped jobs, the shell
issues one warning:

UX:jsh:WARNING:there are stopped jobs

This is the only message. If another exit attempt is made and there are still stopped jobs, they are sent a
SIGHUP signal from the kernel and the shell is exited.

260 IRIX Release 6.2

sh(1)hh

FILES
/etc/profile
$HOME/.profile
/tmp/sh*
/dev/null

SEE ALSO
cd(1), echo(1), env(1), getopts(1), intro(1), login(1), newgrp(1), pwd(1), test(1), umask(1), wait(1), dup(2),
exec(2), fork(2), getrlimit(2), pipe(2), signal(2), ulimit(2), profile(4).

CAVEATS
Positional parameters have a range of 0 to 9. Attempting to use the positional parameter $10 gives the
contents of $1 followed by a 0, which is probably not the desired result.

Words used for filenames in input/output redirection are not interpreted for filename generation (see
Filename Generation, above). For example, cat file1 >a* creates a file with the name a*.

Because commands in pipelines are run as separate processes, variables set in a pipeline have no effect on
the parent shell.

If you get the error message "cannot fork, too many processes", try using the wait(1) command to clean up
your background processes. If this doesn’t help, the system process table is probably full or you have too
many active foreground processes. (There is a limit to the number of process ids associated with your
login, and to the number the system can keep track of.)

BUGS
Only the last process in a pipeline can be waited for.

If a command is executed, and a command with the same name is installed in a directory in the search path
before the directory where the original command was found, the shell continues to exec the original
command. Use the hash command to correct this situation.

Prior to IRIX Release 5.0, the rsh command invoked the restricted shell. This restricted shell command is
/usr/lib/rsh and it can be executed by using the full pathname. Beginning with IRIX Release 5.0, the
rsh command is the remote shell. See rsh_bsd(1C).

IRIX Release 6.2 261

statd(1M)hh

NAME
statd − network status monitor daemon

SYNOPSIS
/usr/etc/rpc.statd

DESCRIPTION
statd is an intermediate version of the status monitor. It implements a simple protocol that allows
applications to monitor the status of other machines. lockd(1M) uses statd to detect both client and server
failures.

statd is started during system initialization if the chkconfig(1M) lockd flag is set on.

Applications use RPC to register machines they want monitored by statd . The status monitor maintains a
database of machines to track and the corresponding applications to notify of crashes. It also maintains a
database of machines to notify upon recovery of its own host machine and a counter of the number of
times it has "recovered."

FILES
/var/statmon/sm machines to monitor
/var/statmon/sm.bak machines to notify upon recovery
/var/statmon/state recovery counter (a.k.a. version number)

SEE ALSO
lockd(1M), network(1M), statmon(4).

BUGS
The crash of a site is detected only upon its recovery.

262 IRIX Release 6.2

su(1M)hh

NAME
su − become superuser or another user

SYNOPSIS
su [−−] [name [arg ...]]

DESCRIPTION
su allows you to become another user without logging off. The default user name is root (that is,
superuser).

To use su, you must supply the appropriate password (except as described below). If the password is
correct, su executes a new shell with the real and effective user ID set to that of the specified user. The new
shell is the program optionally named in the shell field of the specified user’s password file entry (see
passwd(4)), or /bin/sh if none is specified (see sh(1)). To restore normal user ID privileges, type an EOF
(<(Ctrl-d>) to the new shell.

su prompts for a password if the specified user’s account has one. However, su does not prompt you if
your user name is root or your name is listed in the specified user’s .rhosts file as:

localhost your_name

(The hostname of localhost is shorthand for the machine’s name.)

Any additional arguments given on the command line are passed to the program invoked as the shell.
When using programs like sh(1), an arg of the form −−c string executes string via the shell and an arg of −−r
gives the user a restricted shell.

su reads /etc/default/su to determine default behavior. To change the defaults, the system administrator
should edit this file. Recognized values are:

SULOG=file # Use file as the su log file.
CONSOLE=device # Log successful attempts to su root to device.
SUPATH=path # Use path as the PATH for root.
PATH=path # Use path as the PATH for normal users.
SYSLOG=FAIL # Log to syslog all failures (SYSLOG=FAIL)

or all successes and failures (SYSLOG=ALL).

The following statements are true only if the optional program named in the shell field of the specified
user’s password file entry is like sh(1). If the first argument to su is a −−, the environment is changed to what
would be expected if the user actually logged in as the specified user. This is done by invoking the
program used as the shell with an arg0 value whose first character is −−, thus causing the system’s profile
(/etc/profile) and then the specified user’s profile (.profile in the new HOME directory) to be executed.

IRIX Release 6.2 263

su(1M)hh

Otherwise, the environment is passed along with the possible exception of $PATH, which is set to

/usr/sbin:/usr/bsd:/sbin:/usr/bin:/bin:/etc:/usr/etc:/usr/bin/X11

for root. Additionally, environment variables of the form of those that are special to rld(1) are not passed
to the user’s program; that is, variable names beginning with either _RLD or LD_LIBRARY. Note that if
the optional program used as the shell is /bin/sh, the user’s .profile can check arg0 for −−sh or −−su to
determine if it was invoked by login(1) or su, respectively. If the user’s program is other than /bin/sh, then
.profile is invoked with an arg0 of −−program by both login and su.

All attempts to become another user using su are logged in the log file /var/adm/sulog by default.

SHARE II ACTIONS
If su is invoked with the −− option, and the Share II system is installed and enabled, then the new shell
executed by su is attached to the lnode of the specified user.

If the specified user is not root, the lnode attachment may fail due to a non-existent lnode or reaching a
memory or process limit, in which case an error message is printed and su fails.

EXAMPLES
To become user bin while retaining your previously exported environment, execute:

su bin

To become user bin but change the environment to what would be expected if bin had originally logged
in, execute:

su − bin

To execute command with the temporary environment and permissions of user bin, type:

su − bin −c "command args"

FILES
/etc/passwd system’s password file
/etc/profile system’s initialization script for /bin/sh users
/etc/cshrc system’s initialization script for /bin/csh users
$HOME/.profile /bin/sh user’s initialization script
$HOME/.cshrc /bin/csh user’s initialization script
$HOME/.rhosts user’s list of trusted users
/var/adm/sulog log file
/etc/default/su defaults file
/etc/limconf compiled Share II configuration file (machine readable)

264 IRIX Release 6.2

su(1M)hh

SEE ALSO
env(1), login(1), rld(1), sh(1), cshrc(4), passwd(4), profile(4), rhosts(4), environ(5), share(5).

DIAGNOSTICS
su: uid N: cannot attach to lnode − reason.

The lnode attachment failed, so the shell was not executed.

IRIX Release 6.2 265

symmon(1M)hh

NAME
symmon − kernel symbolic debugger

DESCRIPTION
symmon is a standalone program used to debug the kernel. It is intended to be used only by those involved
in writing and debugging device drivers or other parts of the kernel. The implementation of symmon is
machine dependent and the commands and functionality described here may not apply to all systems.

To use symmon, several steps must be taken to prepare the system:

1. symmon must be manually installed by the user, because it is not installed on the system as shipped
from the factory. This can be done by installing the ‘‘Debugging Kernels’’ subsystem in the IDO
software development option.

2. Alterations must be done to the file /var/sysgen/system/irix.sm to build a kernel capable of being
debugged; see the comments in that file for details.

3. The program setsym(1M) needs to be run on the newly generated kernel to allow symmon to recognize
symbols in it.

4. symmon needs to be installed in the volume header of the root drive with dvhtool(1M). This normally
happens as part of the software installation process.

symmon is typically used with a terminal as the system console (see prom(1M) for information on how to
enable a terminal as the console). When a debug kernel is booted, it automatically tries to load symmon
from the same source. symmon can be booted from an alternate device by setting the dbgname
environment variable in the prom. For example:

setenv dbgname scsi(1)disk(1)rdisk(0)partition(8)symmon

loads symmon from a disk 1, connected to SCSI controller 1.

Once symmon is loaded, the system operates normally until symmon is triggered by the keyboard or an
exceptional condition happens in the kernel that causes it to enter the debugger automatically. To enter
symmon from the keyboard, type a <Ctrl-a>. symmon prompts with DBG: and accepts commands
described below.

Built-in Commands
symmon has a set of basic commands for setting and clearing breakpoints and examining system state. Not
all of the commands listed below are supported on all systems. Some commands take memory addresses
as arguments. Addresses can be given directly in decimal, in hex if preceded by 0x, in binary if preceded
with 0b, as names of functions or data, as names of registers if preceded by $, or as a combination of those
with + and −−. Some commands take a range of addresses specified as either ADDR:ADDR for an inclusive
range or ADDR#COUNT for a count of COUNT starting at ADDR. Commands are listed below:

266 IRIX Release 6.2

symmon(1M)hh

brk [ADDR]
Set a breakpoint at the given address. If no arguments are given, the set of current breakpoints is
listed.

bt [MAX_FRM]
Print a stack back trace of up to MAX_FRM frames. See the discussion about ubt below for an
alternate form of stack back trace.

c Continue execution from a breakpoint.

cacheflush [RANGE]
Flush both the instruction and data caches over the range of address given.

calc
call ADDR [ARGLIST]

Set up a stack frame and call the procedure at the specified address.

clear Clear the screen.

dis [RANGE]
Disassemble instructions in memory over the range specified.

dump [−−b|−−h|−−w] [−−o|−−d|−−x|−−c] RANGE
Dump the contents of memory. The −−b, −−h, and −−w flags can be used to specify byte, halfword, or
full word data. The −−o, −−d, −−x, and −−c flags can be used to specify octal, decimal, hexadecimal, or
ASCII data formats.

The specified range of memory to dump can take these forms:

g base for a single location

g base#count for count locations starting at base

g base :limit for locations whose addresses are greater than or equal to base but less than limit

g [−−b|−−h|−−w] [ADDR|$regname]
Get and display the contents of memory at the address given. If a register name is given, its
contents are displayed at the time the kernel was stopped.

goto ADDR
Continue execution until the given address or a breakpoint is reached. This is a short hand way to
set a breakpoint at an address, continue, and then remove that breakpoint.

IRIX Release 6.2 267

symmon(1M)hh

help List a short summary of the built-in commands.

hx NAME
The symbol table is searched for entries matching NAME, and if one is found, its value is printed.

kp [KPNAME]
Kernel print command. If no arguments are given, a list of the available kernel print commands is
given. If a name is given, that print function is executed. See the discussion on kernel print
commands below for more information.

lkaddr ADDR
The given address is matched against the symbol table and the symbols near it are listed.

lkup STRING
The given string is matched against the symbol table and any symbol with an equal or longer name
is printed. This is convenient when you cannot remember the precise symbol name.

msyms ID
Print dynamically loaded kernel module’s symbols. The module id is found using either the lboot
−−V command or the ml list command. See the mload(4) manual page for more information.

nm ADDR
The address given is matched against the symbol table and if an exact match is found, the symbolic
name is printed. This is a more restrictive version of the lkaddr command described above.

p [−−b|−−h|−−w] ADDR VALUE
Put the value given into the address given. This causes a write to memory.

printregs
List the contents of the general purpose registers when the kernel was stopped.

quit Restart the PROM.

s [COUNT]
Single step the kernel for either one instruction or the given count. If the current instruction is a
branch, then both it and the following instruction are executed. The next unexecuted instruction is
disassembled when the command completes. After a step command is issued, symmon enters a
command repeat mode where a null command causes another step to be taken. This repeat mode is
indicated by a change to the prompt.

S [COUNT]
Same as the step command above, except that jump-and-link instructions are stepped over.

268 IRIX Release 6.2

symmon(1M)hh

tlbdump [RANGE]
List the contents of the translation lookaside buffer. If specified, the range of TLB entries given is
listed. The range should specify a subset of the 64 TLB slots.

tlbflush [RANGE]
Flush the TLB over the range of entries given or the entire TLB if no range is specified.

tlbmap [−−i INDEX] [−−n|−−d|−−g|−−v] VADDR PADDR
Inserts an entry in the TLB that maps the virtual address given by VADDR to the physical address
given by PADDR. If specified, the TLB slot given by INDEX is used. The −−n, −−d, −−g, and −−v flags
can be used to turn on the non-cached, dirty, global, and valid bits. The current TLB context number
is used.

tlbpid [PID]
Get or set the current TLB context number. If no argument is given, the current TLB context number
is returned; otherwise, the context number is set to the argument.

tlbptov PADDR
Display TLB entries that map a virtual address to the physical address given.

tlbvtop VADDR [PID]
Find the physical address mapped to the virtual address given by VADDR. If PID is given, then it is
used as the TLB context number in the match; otherwise, the current TLB context number is used.

unbrk [BPNUM]
Remove the breakpoint with the breakpoint number given. The breakpoint number can by
determined by listing the set breakpoints with the brk command.

wpt [r|w|rw] [0|PADDR]
Set a read, write or read/write watch point at on physical address using the R4000 watch point
registers. The address must be double word aligned, and the watch point trips on any access within
the next eight bytes. An argument of 0 clears the watch point. Note that the R4000 only supports
one watch point at a time.

[ADDR]/[COUNT][d|D|o|O|x|X|b|s|c|i]
Dump the contents of memory at the given address. This command functions in a similar manner
as the dbx(1) command of the same syntax.

Kernel Print Commands
The kernel extends the set of built-in symmon commands with kernel print commands. These commands
dump various kernel data structures.

IRIX Release 6.2 269

symmon(1M)hh

proc PROCINDEX
Dump the process structure associated with the given process table index. Note that the process
table index is not the same as the IRIX process ID.

user PROCINDEX
Dump the contents of the user structure for the process with the process table index given.

buf BUFNUM
Dump the contents of a buffer structure. The address of the buffer to be dumped is controlled by
the BUFNUM argument. If BUFNUM is a valid K0, K1, or K2 address, then the buffer at that
address is displayed. If BUFNUM is a small integer, it is used as an index into the buffer table. If
BUFNUM is equal to −1, summary information about the buffer pool is displayed.

qbuf DEVICE
Dump the contents of buffers queued for the device given. The device argument is given as the
major/minor device number of the desired device.

pda [CPUID]
Dump the contents of the processor private data area for the processor ID given.

runq Dump the run queue. A short summary of each process waiting for CPU time is listed.

eframe [ADDR]
The exception frame at the given address is displayed. If the address is a small integer, the
exception frame of the process with that process table index is used. The exception frame holds the
contents of the general purpose registers at the time the process last executed.

ubt [PROCINDEX]
User process stack back trace. A stack back trace is listed for the process whose process table index
is given.

plist Process table list. This gives an output similar to ps(1) and can be used to find the process table
index number for a process.

pb Dump console print buffer. The contents of the console print buffer are printed. This can be useful
when an important message has scrolled off the screen.

SEE ALSO
prom(1M).

270 IRIX Release 6.2

systune(1M)hh

NAME
systune − display and set tunable parameters

SYNOPSIS
systune [−−bfir] [−−n name] [−−p rootpath]

DESCRIPTION
systune is a tool that enables you to examine and configure your tunable kernel parameters. systune can
adjust some parameters in real time and informs you if you need to reboot your system after
reconfiguration. It saves the reconfigured kernel in /unix.install, unless the −−f option is used.

systune has two modes: interactive and noninteractive. Interactive mode allows you to query information
about various portions of tunable parameters or to set new values for tunable parameters. Some
parameters can be changed while the system is running, and some require a new copy of the kernel to be
booted. To enter interactive mode, use the −−i option. In noninteractive mode, systune displays the values
of all tunable parameters. Noninteractive mode is the default.

The options are:

−−b Both target kernel and the running system are updated with the new values that you specified, if
the new values are within the legal range for the parameter specified in /var/sysgen/mtune. The
new values with the corresponding tunable variables are also added into /var/sysgen/stune file.
This is the default behavior.

−−f This option forces systune to not save the reconfigured kernel in /unix.install. By default, systune
tests to see if /unix.install exists and whether it is identical to the running system. If it is identical,
systune makes any changes in /unix.install; otherwise, systune copies the current /unix kernel or the
kernel specified by the −−n option to /unix.install and makes all changes to the copied kernel. If the
copy fails for any reason, such as lack of disk space or the presence of the −−f option, the currently
running kernel is changed.

−−i Run systune in interactive mode. When systune is invoked in interactive mode, no parameter
values are immediately displayed. Instead, you see the systune prompt:

systune->

The commands available in interactive mode are described below.

−−n name This option specifies an alternate kernel name to tune in place of /unix.

−−p rootpath
If you specify this option, rootpath becomes the starting pathname for systune to check for
/var/sysgen/stune and /var/sysgen/mtune. The default rootpath directory is /.

IRIX Release 6.2 271

systune(1M)hh

−−r The new values change on the running system only. If the tunable parameter can not be changed
on the running system, nothing is affected. The default is −−b.

The systune commands available in interactive mode are:

quit Quit systune immediately. Any changes you have made up to that point are saved and cannot be
discarded. You must go through and change back any parameters that you do not wish to be
changed.

all Print information on all tunable parameters. This command displays the same information as
systune invoked in noninteractive mode.

help Show all the built-in commands and group names. systune lists two commands (help and all) and
the groups of kernel tunable parameters. Each group of tunable parameters is organized so that
related parameters are kept together. For example, the numproc parameter group contains
parameters related to the number of processes allowed to run on the system at any given time. Its
parameters are:

ncsize = 808 (0x328)
ncallout = 40 (0x28)
callout_himark = 332 (0x14c)
ndquot = 808 (0x328)
nproc = 300 (0x12c)

parameter_groupname
Display information for all the tunable parameters in this group along with their values in
decimal numerals and in hexadecimal notation.

parameter_name
Display information for this tunable parameter only.

parameter_name newvalue
Set the specified tunable parameter to the new value. For example, to raise the nproc parameter
in the numproc parameter group from 300 to 400, follow this example:

systune-> nproc 400
nproc = 300 (0x12c)

Do you really want to change nproc to 400 (0x190)? (y/n) y

In order for the change in parameter nproc to become
effective, /unix.install must be moved to /unix and the
system rebooted.

272 IRIX Release 6.2

systune(1M)hh

This message tells you that the change does not take effect until a new kernel with the new value
is running on your system. systune always prints a message to inform you if you need to reboot
your system for a kernel change to take effect.

systune makes all requested changes to the kernel in three places, if possible. (Nondynamically
adjustable parameters can be changed in only two out of three places.) The parameters are
changed in:

g the running kernel image on the workstation
g the /unix or /unix.install file
g the /var/sysgen/stune file

Some sanity checking is performed on the modified kernel parameters to help prevent the creation
of kernels that will not function correctly. This checking is performed both by systune and by the
lboot(1M) command. For example, some variables have preset minimum and maximum values.
Any attempt to change the variable beyond these threshold values results in an error message,
and the variable is not changed.

FILES
/var/sysgen/mtune/* system tunable parameters
/var/sysgen/stune local settings for system tunable parameters

SEE ALSO
autoconfig(1M), lboot(1M), mtune(4), stune(4).

IRIX Release 6.2 273

telnet(1C)hh

NAME
telnet − user interface to the TELNET protocol

SYNOPSIS
telnet [−−d] [−−n tracefile] [−−l user | −−a] [−−e escape-char] [host [port]]

DESCRIPTION
The telnet command is used to communicate with another host using the TELNET protocol. If telnet is
invoked without the host argument, it enters command mode, indicated by its prompt, telnet>. In this
mode, it accepts and executes the commands listed below. If it is invoked with arguments, it performs an
open command (see below) with those arguments.

Options:

−−d Sets the initial value of the debug toggle to TRUE.

−−n tracefile Opens tracefile for recording trace information. See the set tracefile command below.

−−l user When connecting to the remote system, if the remote system understands the ENVIRON
option, user is sent to the remote system as the value for the variable USER. This option can
also be used with the open command.

−−a Auto-login. Same as specifying −−l with your user name. This option can also be used with the
open command.

−−e escape-char
Sets the initial telnet escape character to escape-char. If escape-char is the null character (specified
by "" or ’’), there is no escape character.

host Indicates the official name, an alias, or the Internet address of a remote host.

port Indicates a port number (address of an application). If a number is not specified, the default
telnet port is used.

Once a connection has been opened, telnet attempts to enable the TELNET LINEMODE option. If this fails,
telnet reverts to one of two input modes: either "character at a time" or "old line by line" depending on
what the remote system supports.

When LINEMODE is enabled, character processing is done on the local system, under the control of the
remote system. When input editing or character echoing is to be disabled, the remote system relays that
information. The remote system relays changes to any special characters that happen on the remote
system, so that they can take effect on the local system.

274 IRIX Release 6.2

telnet(1C)hh

In "character at a time" mode, most text typed is immediately sent to the remote host for processing.

In "old line by line" mode, all text is echoed locally, and (normally) only completed lines are sent to the
remote host. The "local echo character" (initially ˆE) can be used to turn off and on the local echo (this
would mostly be used to enter passwords without the password being echoed).

If the LINEMODE option is enabled or if the localchars toggle is TRUE (the default for "old line by line",
see below), the user’s quit, intr, and flush characters are trapped locally and sent as TELNET protocol
sequences to the remote side. If LINEMODE has ever been enabled, the user’s susp and eof are also sent as
TELNET protocol sequences, and quit is sent as a TELNET ABORT instead of BREAK. There are options
(see toggle autoflush and toggle autosynch below) that cause this action to flush subsequent output to the
terminal (until the remote host acknowledges the TELNET sequence) and flush previous terminal input (in
the case of quit and intr).

While connected to a remote host, telnet command mode can be entered by typing the telnet "escape
character" (initially ˆ]). When in command mode, the normal terminal editing conventions are available.

The following telnet commands are available. Only enough of each command to uniquely identify it needs
to be typed (this is also true for arguments to the mode, set, toggle, unset, slc, environ, and display
commands).

close Close a TELNET session and return to command mode.

display [argument...]
Display all, or some, of the set and toggle values (see below).

mode type type is one of several options, depending on the state of the TELNET session. The remote host is
asked for permission to go into the requested mode. If the remote host is capable of entering
that mode, the requested mode is entered.

character Disable the TELNET LINEMODE option, or, if the remote side does not understand
the LINEMODE option, enter "character at a time" mode.

line Enable the TELNET LINEMODE option, or, if the remote side does not understand
the LINEMODE option, attempt to enter "old line by line" mode.

isig (−−isig)
Attempt to enable (disable) the TRAPSIG mode of the LINEMODE option. This
requires that the LINEMODE option be enabled.

edit (−−edit)
Attempt to enable (disable) the EDIT mode of the LINEMODE option. This requires
that the LINEMODE option be enabled.

IRIX Release 6.2 275

telnet(1C)hh

softtabs (−−softtabs)
Attempt to enable (disable) the SOFT_TAB mode of the LINEMODE option. This
requires that the LINEMODE option be enabled.

litecho (−−litecho)
Attempt to enable (disable) the LIT_ECHO mode of the LINEMODE option. This
requires that the LINEMODE option be enabled.

? Print out help information for the mode command.

open host [[−−l user | −−a] [−−]port]
Open a connection to the named host. If no port number is specified, telnet attempts to contact
a TELNET server at the default port. The host specification can be either a hostname (see
hosts(4)) or an Internet address specified in the "dot notation" (see inet(3N)). The −−l option can
be used to specify the user name to be passed to the remote system via the ENVIRON option.
The −−a option sends your user name to the remote system via the ENVIRON option. When
connecting to a non-standard port, telnet omits any automatic initiation of TELNET options.
When the port number is preceded by a minus sign, the initial option negotiation is done. After
establishing a connection, the .telnetrc file in the user’s home directory is opened. Lines
beginning with a # are comment lines. Blank lines are ignored. Lines that begin without
whitespace are the start of a machine entry. The first thing on the line is the name of the
machine that is being connected to. The rest of the line, and successive lines that begin with
whitespace, are assumed to be telnet commands and are processed as if they had been typed in
manually to the telnet command prompt.

quit Close any open TELNET session and exit telnet. An end of file (in command mode) also closes a
session and exits.

send arguments
Send one or more special character sequences to the remote host. The following are the
arguments that can be specified (more than one argument can be specified at a time):

abort Send the TELNET ABORT (ABORT processes) sequence.

ao Send the TELNET AO (Abort Output) sequence, which should cause the remote
system to flush all output from the remote system to the user’s terminal.

ayt Send the TELNET AYT (Are You There) sequence, to which the remote system may
or may not choose to respond.

brk Send the TELNET BRK (Break) sequence, which may have significance to the remote
system.

276 IRIX Release 6.2

telnet(1C)hh

ec Send the TELNET EC (Erase Character) sequence, which should cause the remote
system to erase the last character entered.

el Send the TELNET EL (Erase Line) sequence, which should cause the remote system
to erase the line currently being entered.

eof Send the TELNET EOF (End Of File) sequence.

eor Send the TELNET EOR (End of Record) sequence.

escape Send the current telnet escape character (initially ˆ]).

ga Send the TELNET GA (Go Ahead) sequence, which likely has no significance to the
remote system.

getstatus If the remote side supports the TELNET STATUS command, getstatus sends the
subnegotiation to request that the server send its current option status.

ip Send the TELNET IP (Interrupt Process) sequence, which should cause the remote
system to abort the currently running process.

nop Send the TELNET NOP (No OPeration) sequence.

susp Send the TELNET SUSP (SUSPend process) sequence.

synch Send the TELNET SYNCH sequence. This sequence causes the remote system to
discard all previously typed (but not yet read) input. This sequence is sent as TCP
urgent data (and may not work if the remote system is a 4.2 BSD system −− if it
doesn’t work, a lower case r may be echoed on the terminal).

? Print out help information for the send command.

set argument value

unset arguments...
The set command sets any one of a number of telnet variables to a specific value or to TRUE.
The special value off turns off the function associated with the variable, this is equivalent to
using the unset command. The unset command disables or sets to FALSE any of the specified
functions. The values of variables can be interrogated with the display command. The
variables that can be set or unset, but not toggled, are listed here. In addition, any of the
variables for the toggle command can be explicitly set or unset using the set and unset
commands.

IRIX Release 6.2 277

telnet(1C)hh

echo The value (initially ˆE) which, when in "line by line" mode, toggles between doing
local echoing of entered characters (for normal processing) and suppressing echoing
of entered characters (for entering, say, a password).

eof If telnet is operating in LINEMODE or "old line by line" mode, entering this
character as the first character on a line causes this character to be sent to the remote
system. The initial value of the eof character is taken to be the terminal’s eof
character.

erase If telnet is in localchars mode (see toggle localchars below), and if telnet is operating
in "character at a time" mode, when this character is typed, a TELNET EC sequence
(see send ec above) is sent to the remote system. The initial value for the erase
character is taken to be the terminal’s erase character.

escape The telnet escape character (initially ˆ[), which causes entry into telnet command
mode (when connected to a remote system).

flushoutput
If telnet is in localchars mode (see toggle localchars below) and the flushoutput
character is typed, a TELNET AO sequence (see send ao above) is sent to the remote
host. The initial value for the flush character is taken to be the terminal’s flush
character.

interrupt If telnet is in localchars mode (see toggle localchars below) and the interrupt
character is typed, a TELNET IP sequence (see send ip above) is sent to the remote
host. The initial value for the interrupt character is taken to be the terminal’s intr
character.

kill If telnet is in localchars mode (see toggle localchars below), and if telnet is operating
in "character at a time" mode, when this character is typed, a TELNET EL sequence
(see send el above) is sent to the remote system. The initial value for the kill
character is taken to be the terminal’s kill character.

lnext If telnet is operating in LINEMODE or "old line by line" mode, this character is taken
to be the terminal’s lnext character. The initial value for the lnext character is taken
to be the terminal’s lnext character.

quit If telnet is in localchars mode (see toggle localchars below) and the quit character is
typed, a TELNET BRK sequence (see send brk above) is sent to the remote host. The
initial value for the quit character is taken to be the terminal’s quit character.

reprint If telnet is operating in LINEMODE or "old line by line" mode, this character is taken
to be the terminal’s reprint character. The initial value for the reprint character is
taken to be the terminal’s reprint character.

278 IRIX Release 6.2

telnet(1C)hh

start If the TELNET TOGGLE-FLOW-CONTROL option has been enabled, this character
is taken to be the terminal’s start character. The initial value for the kill character is
taken to be the terminal’s start character.

stop If the TELNET TOGGLE-FLOW-CONTROL option has been enabled, this character
is taken to be the terminal’s stop character. The initial value for the kill character is
taken to be the terminal’s stop character.

susp If telnet is in localchars mode, or LINEMODE is enabled, and the suspend character
is typed, a TELNET SUSP sequence (see send susp above) is sent to the remote host.
The initial value for the suspend character is taken to be the terminal’s suspend
character.

tracefile The file to which the output, caused by netdata or option tracing being TRUE, is
written. If it is set to −−, tracing information is written to standard output (the
default).

worderase
If telnet is operating in LINEMODE or "old line by line" mode, this character is taken
to be the terminal’s worderase character. The initial value for the worderase character
is taken to be the terminal’s worderase character.

slc state The slc command (Set Local Characters) is used to set or change the state of the
special characters when the TELNET LINEMODE option has been enabled. Special
characters are characters that get mapped to TELNET commands sequences (like ip
or quit) or line editing characters (like erase and kill). By default, the local special
characters are exported.

export Switch to the local defaults for the special characters. The local default
characters are those of the local terminal at the time when telnet was
started.

import Switch to the remote defaults for the special characters. The remote
default characters are those of the remote system at the time when the
TELNET connection was established.

check Verify the current settings for the current special characters. The remote
side is requested to send all the current special character settings, and if
there are any discrepancies with the local side, the local side switches to
the remote value.

? Print out help information for the slc command.

IRIX Release 6.2 279

telnet(1C)hh

environ arguments...
The environ command is used to manipulate the variables that can be sent through
the ENVIRON option. The initial set of variables is taken from the user’s
environment with only the DISPLAY and PRINTER variables being exported by
default.

Valid arguments for the environ command are:

define variable value
Define the variable variable to have a value of value. Any variables
defined by this command are automatically exported. The value can be
enclosed in single or double quotes so that tabs and spaces can be
included.

undefine variable
Remove variable from the list of environment variables.

export variable
Mark the variable variable to be exported to the remote side.

unexport variable
Mark the variable variable to not be exported unless explicitly asked for
by the remote side.

send variable
Send the variable variable to the remote side.

list List the current set of environment variables. Those marked with a * are
sent automatically, other variables are sent only if explicitly requested.

? Print out help information for the environ command.

? Display the legal set (unset) commands.

toggle arguments...
Toggle (between TRUE and FALSE) various flags that control how telnet responds to events.
These flags can be set explicitly to TRUE or FALSE using the set and unset commands listed
above. More than one argument can be specified. The state of these flags can be interrogated
with the display command. Valid arguments are:

autoflush If autoflush and localchars are both TRUE, when the ao, intr, or quit characters are
recognized (and transformed into TELNET sequences; see set above for details),
telnet refuses to display any data on the user’s terminal until the remote system
acknowledges (via a TELNET TIMING MARK option) that it has processed those
TELNET sequences. The initial value for this toggle is TRUE if the terminal user

280 IRIX Release 6.2

telnet(1C)hh

had not done an stty noflsh, otherwise FALSE (see stty(1)).

autosynch If autosynch and localchars are both TRUE, when either the intr or quit characters
is typed (see set above for descriptions of the intr and quit characters), the resulting
TELNET sequence sent is followed by the TELNET SYNCH sequence. This
procedure should cause the remote system to begin throwing away all previously
typed input until both of the TELNET sequences have been read and acted upon.
The initial value of this toggle is FALSE.

binary Enable or disable the TELNET BINARY option on both input and output.

inbinary Enable or disable the TELNET BINARY option on input.

outbinary Enable or disable the TELNET BINARY option on output.

crlf If this is TRUE, carriage returns are sent as <CR><LF>. If this is FALSE, carriage
returns are sent as <CR><NUL>. The initial value for this toggle is FALSE.

crmod Toggle carriage return mode. When this mode is enabled, most carriage return
characters received from the remote host are mapped into a carriage return followed
by a linefeed. This mode does not affect those characters typed by the user, only
those received from the remote host. This mode is not very useful unless the remote
host only sends carriage return, but never linefeed. The initial value for this toggle
is FALSE.

debug Toggle socket level debugging (useful only to the superuser). The initial value for
this toggle is FALSE.

localchars If this is TRUE, the flush, interrupt, quit, erase, and kill characters (see set above)
are recognized locally, and transformed into (hopefully) appropriate TELNET
control sequences (respectively ao, ip, brk, ec, and el; see send above). The initial
value for this toggle is TRUE in "old line by line" mode, and FALSE in "character at
a time" mode. When the LINEMODE option is enabled, the value of localchars is
ignored and assumed to always be TRUE. If LINEMODE has ever been enabled,
quit is sent as abort, and eofand suspend are sent as eofand susp, see send above).

netdata Toggle the display of all network data (in hexadecimal format). The initial value for
this toggle is FALSE.

options Toggle the display of some internal telnet protocol processing (having to do with
TELNET options). The initial value for this toggle is FALSE.

IRIX Release 6.2 281

telnet(1C)hh

prettydump
When the netdata toggle is enabled, if prettydump is enabled, the output from the
netdata command is formatted in a more user readable format. Spaces are put
between each character in the output, and the beginning of any TELNET escape
sequence is preceded by a * to aid in locating them.

? Display the legal toggle commands.

z Suspend telnet. This command only works when the user is using the csh(1).

! [command]
Execute a single command in a subshell on the local system. If command is omitted, an
interactive subshell is invoked.

status Show the current status of telnet. This includes the peer one is connected to, as well as the
current mode.

? [command]
Get help. With no arguments, telnet prints a help summary. If a command is specified, telnet
prints the help information for just that command.

ENVIRONMENT
telnet uses at least the HOME, SHELL, USER, DISPLAY, and TERM environment variables. Other
environment variables can be propagated to the other side via the TELNET ENVIRON option.

FILES
˜/.telnetrc user customized telnet startup values

NOTES
On some remote systems, echo has to be turned off manually when in "old line by line" mode.

In "old line by line" mode or LINEMODE the terminal’s eof character is only recognized (and sent to the
remote system) when it is the first character on a line.

282 IRIX Release 6.2

tftpd(1M)hh

NAME
tftpd − internet Trivial File Transfer Protocol server

SYNOPSIS
/usr/etc/tftpd [−−h homedir] [−−l] [−−n] [−−s] [directory...]

DESCRIPTION
tftpd is a server that supports the Internet Trivial File Transfer Protocol (TFTP). The TFTP server operates
at the port indicated in the tftp service description; see services(4). The server is normally started by
inetd(1M).

The use of tftp(1C) does not require an account or password on the remote system. Due to the lack of
authentication information, tftpd allows only publicly readable files to be accessed. Files containing the
string ../ are not allowed. Files can be written only if they already exist and are publicly writable. Note
that this extends the concept of public to include all users on all hosts that can be reached through the
network; this may not be appropriate on all systems, and its implications should be considered before
enabling TFTP service. The server should be configured in /etc/inetd.conf to run as the user ID with the
lowest possible privilege.

Relative filenames are looked up in a home directory, /var/boot by default.

The tftpd options are:

−−h homedir
Changes the home directory to homedir, provided it is an absolute pathname.

−−l Logs all requests using syslog(3C).

−−n Suppresses negative acknowledgement of requests for nonexistent or inaccessible relative filenames.
Use −−n when operating on a network with Sun diskless clients that broadcast TFTP requests for
bootfiles named by relative pathnames, to avoid storms of negative acknowledgements.

−−s Rejects requests to read or write an absolute pathname that does not begin with the home directory
prefix and to write a relative pathname. (See below.)

Normally, tftpd allows unrestricted access to publicly-readable files in all directories. There are two ways
to enhance file security by restricting access to a smaller set of directories. With the −−s option, tftpd rejects
requests to read or write an absolute pathname that does not begin with the home directory prefix. It also
rejects requests to write a relative pathname. Another method is to restrict access to files in a limited
number of approved directories by specifying the directory names, directory, as arguments to tftpd after the
other options. For an absolute pathname request, tftpd allows the request if its name begins with one of
these directories or the home directory. For a relative pathname request, the home directory and the
directory list are searched in order. Up to ten directories can be listed if no other command-line options
are specified. (inetd limits the total number of command-line arguments to ten.)

IRIX Release 6.2 283

tftpd(1M)hh

SEE ALSO
inetd(1M), tftp(1C).

284 IRIX Release 6.2

versions(1M)hh

NAME
versions − software versions tool

SYNOPSIS
versions [−−abndpvIV] [−−r root] [display] [name ...]

versions [−−ckmpstuvxBSUV] [−−r root] [listtype] [user] [name ...]

versions [−−vFV] [−−r root] remove name ...

DESCRIPTION
versions calls the programs showprods, showfiles, and (in the case of removing software with versions
remove), inst. Users may wish to use these programs directly, instead of versions, since these programs
provide a more complete and consistent set of capabilities.

To find out what underlying command versions would execute with a given set of arguments, use the −−V
option ahead of other options, for example, versions -V remove ftn.sw pas.sw.

The versions command has three functions:

− (showprods): It displays information about the software that is currently installed on your system and
the software that has been available for installation, but is not presently installed. This information is
presented at the product, image, and subsystem levels (see the Definitions section).

− (showfiles): It displays lists of files on your system and information about those files.

− (inst): It removes installed software from your system.

The synopsis for each of these three uses of the versions command is shown above and the functions are
discussed in detail in the sections that follow. In addition, the Definitions section defines some terms that
are key to understanding and using versions. The section called Updating Configuration Files explains
how to use versions to identify and modify files that require site-specific modifications after new software is
installed.

Definitions
The name argument to versions is a product, image, or subsystem. A product is a collection of files that inst
installs on your system. This collection of files is typically a Silicon Graphics software option such as the
Network Filesystem (NFS). Products have short names that are used for installation purposes (for
example, nfs).

The files in a product are organized into a three-level hierarchy for ease of installation. The highest level is
the product level, the next level is the image level, and the third level is the subsystem level. Thus, the files
that make up a product such as NFS are grouped into subsystems. The names of these subsystems reflect
the hierarchy: product.image.subsystem. Some examples for NFS are nfs.sw.nis and nfs.man.relnotes.

IRIX Release 6.2 285

versions(1M)hh

When you enter a name argument to versions, you can enter a product name (for example, nfs), an image
name (for example, nfs.sw) or a subsystem name (for example, nfs.sw.nis), depending on what parts of a
product you are interested in. You can also use * as a shell-type wildcard in name, but it must be escaped
with double quotes (") if you are using versions from the shell. For example, if you are at the shell and you
want to list information about all of the installed subsystems that have an image name of man, you would
enter the command:

versions "*.man.*"

An example of using wildcards from within inst is this command to list the sw images in eoe:

versions eoe.sw.*

All of the files on a workstation can be divided into two categories: installed files and user files. The files in a
product are called installed files and are put on your system by inst. All other files on your system, no
matter how they got there, are called user files. There are two types of installed files, system files, and
configuration files. System files are modified by the user of the system only in unusual circumstances.
Configuration files, on the other hand, are very likely to need modification because they contain
information that is often machine-specific or site-specific. On diskless systems, installed files are also shared
or unshared as well as being system files or configuration files.

Because configuration files often contain modifications, inst treats them specially during the installation
process. If they have not been modified, inst removes the old file and installs the new version during
software updates. For configuration files that have been modified, one of three things occurs:

− The new version is not installed at all.

− The new version is installed and the old version is renamed by adding the suffix .O (for older) to the
name.

− The new version is put in a file whose name is created by adding .N (for newer) to the original name.

The section, Updating Configuration Files, discusses .O and .N files in more detail.

Using versions to List Products, Images, and Subsystems
With no command line options or arguments, versions displays one installed software product, image, or
subsystem per line for all products currently installed on the system.

− The first column contains an indication of the installation status of the product, image, or subsystem
listed on that line. When no command line options are given, the installation status is I (installed).

− The second column gives the name of the product, image, or subsystem.

286 IRIX Release 6.2

versions(1M)hh

− The third column gives the date of installation.

− The fourth column gives a description of the product, image or subsystem.

The options that follow allow you to change the output:

−−I (installed) List currently installed products, images, and subsystems only. (This is the default
behavior.)

−−a (all) List all the products, images, and subsystems that are installed, that have been installed and
then removed, or were available for installation, but not installed. This is also known as "all of the
subsystems inst has seen since the last time you made filesystems". Products and images that have at
least one subsystem installed are marked I, otherwise their first column is blank. Installed
subsystems are marked I. Subsystems that have been installed and later removed are marked R.
Subsystems that have never been installed are blank in the first column. Older versions of products
that have been replaced by a newer version of the product do not appear on any versions list.

−−n (number) Show the internal version number rather than the date it was installed.

−−d (date) Show the creation date rather than the date it was installed.

−−v (verbose) Include subsystems in the output. (This is the default.)

−−b (brief) Display only products.

−−p (pause) Use the built-in pausing mechanism (similar to more(1)) after each screenful of output. (This
is the default when versions is used within inst.)

The −−r option allows you to operate on an IRIX tree rooted at root. The default root directory while
running under IRIX is /, and while in the miniroot is, /root (see inst(1M)). You might have a different root
directory for diskless prototype trees or for test installations that have been done somewhere other than the
default of the system’s root.

The display argument explicitly requests one line per product, image, and subsystem type output from
versions. It is the default behavior in the absence of a listtype argument, the argument remove, or one of the
options ckmsuxSU.

The possible values for the name argument are discussed in the Definitions section above. If no name is
given, the default is to display all currently installed software.

Using versions to List Installed Files
The second form of the versions command displays lists of filenames. The combination of single character
options, listtype, the optional user argument, and optional names determines the list of files that is
displayed. For some values of listtype, additional information is also displayed. If you are not superuser,
you may not be able to access some files.

IRIX Release 6.2 287

versions(1M)hh

The single character options, listtype arguments, and other arguments for this form of versions are:

−−m (modified) List only modified installed files. There are three types of modified installed files:
configuration files that the user has changed to be system or site-specific, files that were modified
automatically as part of the installation process, and other installed files that the user has changed.

−−u (unmodified) List only unmodified installed files.

−−B (bad) List only deleted or unreadable installed files.

−−c (configuration) List only installed configuration files.

−−s List only installed system files.

−−t changed
Test for the presence of configuration files that need to be merged or updated. versions -t changed
invokes showfiles -c -t -H, and returns an exit status of zero if any configuration files with an
associated .N or .O version were found. Otherwise a non-zero status is returned. See the
showfiles(1M) reference page for a complete description of this option.

−−S (shared) List only diskless client shared files.

−−U (unshared) List only unshared files.

−−k (checksums) Calculate checksums of user files in the long listing.

−−p (pause) Use the built-in pausing mechanism (similar to more(1)) after each screenful of output.
(This is the default when standard output is a terminal.)

−−r root
(root) Use an IRIX tree rooted at root. The default root directory while running under IRIX is /, and
while in the miniroot is /root (see inst(1M)). You might have a different root directory for diskless
prototype trees or for test installations that have been done somewhere other than the default of the
system’s root.

list List installed files. This is the default listtype if no listtype is given, but one of options ckmusxSU is
given.

long List installed files and include the file type, the checksum (by sum −r), the size in blocks at time of
installation, the subsystem name, and flags. The file types are:

f Plain file
d Directory
b Block special
c Character special
l Symbolic link

288 IRIX Release 6.2

versions(1M)hh

p FIFO, also known as, named pipe

The flags are:

c Configuration file
t Orphaned configuration file (it was installed with a subsystem that has since been removed)
m File is machine-specific (see inst(1M) −−m)

user List user files. This argument can be used by itself, or with the list or long arguments.

config
List all installed configuration files and any corresponding .N and .O files.

changed
List installed configuration files that have a corresponding .O or .N file and their respective .O or .N
files.

name The possible values for the name argument are discussed in the Definitions section above. If no
name is given, the default is to display all currently installed files that meet the criteria of the options
and arguments.

Using versions to Remove Products, Images, and Subsystems
The versions command with the remove argument, and one or more name arguments, is used to remove
most of the files of one or more subsystems. The files that are not removed are modified configuration
files.

If removal of the indicated subsystems causes conflicts, versions refuses the action, unless the −−F option is
given, in which case no system integrity checking is done, so it is possible to remove subsystems that are
critical to the operation of IRIX, the window system or applications that you want to use.

You must be superuser to use remove.

Updating Configuration Files
As discussed in the Definitions section, some files in a product are called configuration files and are
handled specially during installation because they contain system or site-specific information. As a result
of this, .O (older) and .N (newer) versions of configuration files may be left on your system after an
installation.

When you reboot your system, a check for .O and .N files is done. If any are present, a message is
displayed suggesting that you merge configuration files in cases where there are two versions. To do this,
first enter the command:

IRIX Release 6.2 289

versions(1M)hh

versions changed

If the output contains any .O configuration files:

The .O version of the configuration file is your earlier version. The no-suffix version contains changes
that are required for compatibility with the rest of the newly installed software, that increase
functionality, or that fix bugs. You should use diff(1) or gdiff(1) to compare the two versions of the files
and transfer information that you recognize as machine or site-specific from the .O version to the no-
suffix version.

If you have any .N configuration files:

The .N version of the configuration file is the new version. It contains changes or new features that
can be added to the no-suffix version of the configuration file at your option. You should use diff(1) or
gdiff(1) to compare the two versions of the files and add changes that appeared in the new software
from the .N version to the no-suffix version if you want them.

After you have examined the .O and .N configuration files and made any changes you want, you can delete
the .O and .N versions of the configuration files. If you want to keep them, you should rename them
because they might be removed automatically during the next software installation. If you remove all of
the .O and .N configuration files, then no message about configuration files appears when you boot your
system. The message also stops appearing even if .O or .N files continue to exist after some number of
reboots.

NOTES
versions remove fails if there is no space in /usr to create temporary files.

FILES
/var/inst/hist binary file containing the file-level installation database of your machine
/var/inst/product binary files containing the product-level installation database of your machine
/var/inst/* various other files used by inst, swmgr, showprods, and showfiles

SEE ALSO
inst(1M), showfiles(1M), showprods(1M), swmgr(1M).

IRIX Admin: Software Installation and Licensing

290 IRIX Release 6.2

xfsrestore(1M)hh

NAME
xfsrestore − XFS filesystem incremental restore utility

SYNOPSIS
xfsrestore [−−a housekeeping] [-e] [−−f source ...]

[−−i] [−−n file] [−−o] [−−p report_interval] [−−r]
[−−s subtree ...] [−−t] [−−v verbosity] [−−A] [−−D]
[−−E] [−−I [subopt=value ...]] [−−J] [−−L session_label]
[−−O options_file] [−−Q] [−−R] [−−S session_id] [−−T]
[−−Y io_ring_length] [−−] destination

DESCRIPTION
xfsrestore restores filesystems from dumps produced by xfsdump(1M). Two modes of operation are
available: simple and cumulative.

The default is simple mode. xfsrestore populates the specified destination directory, destination, with the
files contained in the dump media.

The −−r option specifies the cumulative mode. Successive invocations of xfsrestore are used to apply a
chronologically ordered sequence of delta dumps to a base (level 0) dump. The contents of the filesystem
at the time each dump was produced is reproduced. This can involve adding, deleting, renaming, linking,
and unlinking files and directories.

A delta dump is defined as either an incremental dump (xfsdump −−l option with level > 0) or a resumed
dump (xfsdump −−R option). The deltas must be applied in the order they were produced. Each delta
applied must have been produced with the previously applied delta as its base.

−−a housekeeping
Each invocation of xfsrestore creates a directory called xfsrestorehousekeepingdir. This directory is
normally created directly under the destination directory. The −−a option allows the operator to
specify an alternate directory, housekeeping, in which xfsrestore creates the xfsrestorehousekeeping
directory. When performing a cumulative (−−r option) restore, each successive invocation of xfsrestore
must specify the same alternate directory.

−−e Prevents xfsrestore from overwriting existing files in the destination directory.

−−f source
Specifies a source of the dump to be restored. This can be the pathname of a device (such as a tape
drive), a regular file, or a remote tape drive (see rmt(1M)). Up to 20 sources can be specified. All
sources are simultaneously applied to the restore. For example, if the dump to be restored spanned
three tapes, three tape drives could be used to simultaneously restore the portions of the dump
contained on each tape. All other permutations are supported. This option must be omitted if the
standard input option (a lone −− preceding the destination specification) is specified.

IRIX Release 6.2 291

xfsrestore(1M)hh

−−i Selects interactive operation. Once the on-media directory hierarchy has been read, an interactive
dialogue is begun. The operator uses a small set of commands to peruse the directory hierarchy,
selecting files and subtrees for extraction. The available commands are given below. Initially nothing
is selected, except for those subtrees specified with −−s command line options.

ls [arg] List the entries in the current directory or the specified directory, or the specified
non-directory file entry. Both the entry’s original inode number and name are
displayed. Entries that are directories are appended with a ‘/’. Entries that have
been selected for extraction are prepended with a ‘*’.

cd [arg] Change the current working directory to the specified argument, or to the filesystem
root directory if no argument is specified.

pwd Print the pathname of the current directory, relative to the filesystem root.

add [arg] The current directory or specified file or directory within the current directory is
selected for extraction. If a directory is specified, then it and all its descendents are
selected. Entries that are selected for extraction are prepended with a ‘*’ when they
are listed by ls.

delete [arg] The current directory or specified file or directory within the current directory is
deselected for extraction. If a directory is specified, then it and all its descendents
are deselected. The most expedient way to extract most of the files from a directory
is to select the directory and then deselect those files that are not needed.

extract Ends the interactive dialogue, and causes all selected subtrees to be restored.

quit xfsrestore ends the interactive dialogue and immediately exits, even if there are files
or subtrees selected for extraction.

help List a summary of the available commands.

−−n file
Allows xfsrestore to restore only files newer than file. The modification time of file (i.e., as displayed
with the ls -l command) is compared to the inode modification time of each file on the source media
(i.e., as displayed with the ls -lc command). A file is restored from media only if its inode
modification time is greater than or equal to the modification time of file.

−−o Restore file and directory owner/group even if not root. When run with an effective user id of root,
xfsrestore restores owner and group of each file and directory. When run with any other effective user
id it does not, unless this option is specified.

292 IRIX Release 6.2

xfsrestore(1M)hh

−−r Selects the cumulative mode of operation.

−−s subtree
Specifies a subtree to restore. Any number of −−s options are allowed. The restore is constrained to
the union of all subtrees specified. Each subtree is specified as a pathname relative to the restore
destination. If a directory is specified, the directory and all files beneath that directory are restored.

−−t Displays the contents of the dump, but does not create or modify any files or directories. It may be
desirable to set the verbosity level to silent when using this option.

−−v verbosity_level
Specifies the level of detail of the messages displayed during the course of the restore. The argument
can be silent, verbose, or trace. The default is verbose.

−−A Do not restore extended file attributes. If this option is not specified, extended file attributes are
restored. Note that dumping of extended file attributes is also optional.

−−D Restore DMAPI (Data Management Application Programming Interface) event settings. xfsdump
backs backs up these settings, but it is usually not desirable to restore them.

−−E Prevents xfsrestore from overwriting newer versions of files. The inode modification time of the on-
media file is compared to the inode modification time of corresponding file in the destination
directory. The file is restored only if the on-media version is newer than the version in the destination
directory. The inode modification time of a file can be displayed with the ls -lc command.

−−I Causes the xfsdump inventory to be displayed (no restore is performed). Each time xfsdump is used,
an online inventory in /var/xfsdump/inventory is updated. This is used to determine the base for
incremental dumps. It is also useful for manually identifying a dump session to be restored (see the
−−L and −−S options).

−−J Inhibits inventory update when on-media session inventory encountered during restore. xfsrestore
opportunistically updates the online inventory when it encounters an on-media session inventory,
but only if run with an effective user id of root and only if this option is not given. Suboptions to
filter the inventory display are described later.

−−L session_label
Specifies the label of the dump session to be restored. The source media is searched for this label. It
is any arbitrary string up to 255 characters long. The label of the desired dump session can be copied
from the inventory display produced by the −−I option.

−−O options_file
Insert the options contained in options_file into the beginning of the command line. The options are
specified just as they would appear if typed into the command line. In addition, newline characters
(\n) can be used as whitespace. The options are placed before all options actually given on the
command line, just after the command name. Only one −−O option can be used. Recursive use is

IRIX Release 6.2 293

xfsrestore(1M)hh

ignored. The destination directory cannot be specified in options_file.

−−Q Force completion of an interrupted restore session. This option is required to work around one
specific pathological scenario. When restoring a dump session which was interrupted due to an
EOM condition and no online session inventory is available, xfsrestore cannot know when the restore
of that dump session is complete. The operator is forced to interrupt the restore session. In that case,
if the operator tries to subsequently apply a resumed dump (using the −−r option), xfsrestore refuses to
do so. The operator must tell xfsrestore to consider the base restore complete by using this option
when applying the resumed dump.

−−R Resume a previously interrupted restore. xfsrestore can be interrupted at any time by pressing the
terminal interrupt character (see stty(1)). Use this option to resume the restore. The −−a and
destination options must be the same.

−−S session_id
Specifies the session UUID of the dump session to be restored. The source media is searched for this
UUID. The UUID of the desired dump session can be copied from the inventory display produced
by the −−I option.

−−T Inhibits interactive dialogue timeouts. xfsrestore prompts the operator for media changes. This
dialogue normally times out if no response is supplied. This option prevents the timeout.

−−X subtree
Specifies a subtree to exclude. This is the converse of the −−s option. Any number of −−X options are
allowed. Each subtree is specified as a pathname relative to the restore destination. If a directory is
specified, the directory and all files beneath that directory are excluded.

−−Y io_ring_length
Specify I/O buffer ring length. xfsrestore uses a ring of input buffers to achieve maximum throughput
when restoring from tape drives. The default ring length is 3.

−− A lone −− causes the standard input to be read as the source of the dump to be restored. Standard
input can be a pipe from another utility (such as xfsdump(1M)) or a redirected file. This option cannot
be used with the −−f option. The −− must follow all other options, and precede the destination
specification.

The dumped filesystem is restored into the destination directory. There is no default; the destination must be
specified.

NOTES
Cumulative Restoration

A base (level 0) dump and an ordered set of delta dumps can be sequentially restored, each on top of the
previous, to reproduce the contents of the original filesystem at the time the last delta was produced. The
operator invokes xfsrestore once for each dump. The −−r option must be specified. The destination directory
must be the same for all invocations. Each invocation leaves a directory named xfsrestorehousekeeping in the

294 IRIX Release 6.2

xfsrestore(1M)hh

destination directory (however, see the −−a option above). This directory contains the state information that
must be communicated between invocations. The operator must remove this directory after the last delta
has been applied.

xfsrestore also generates a directory named orphanage in the destination directory. xfsrestore removes this
directory after completing a simple restore. However, if orphanage is not empty, it is not removed. This
can happen if files present on the dump media are not referenced by any of the restored directories. The
orphanage has an entry for each such file. The entry name is the file’s original inode number, a ".", and the
file’s generation count modulo 4096 (only the lower 12 bits of the generation count are used).

xfsrestore does not remove the orphanage after cumulative restores. Like the xfsrestorehousekeeping directory,
the operator must remove it after applying all delta dumps.

Media Management
A dump consists of one or more media files contained on one or more media objects. A media file contains
all or a portion of the filesystem dump. Large filesystems are broken up into multiple media files to
minimize the impact of media dropouts, and to accommodate media object boundaries (end-of-media).

A media object is any storage medium: a tape cartridge, a remote tape device (see rmt(1M)), a regular file,
or the standard input (currently other removable media drives are not supported). Tape cartridges can
contain multiple media files, which are typically separated by (in tape parlance) file marks. If a dump
spans multiple media objects, the restore must begin with the media object containing the first media file
dumped. The operator is prompted when the next media object is needed.

Media objects can contain more than one dump. The operator can select the desired dump by specifying
the dump label (−−L option), or by specifying the dump UUID (−−S option). If neither is specified, xfsrestore
scans the entire media object, prompting the operator as each dump session is encountered.

The inventory display (−−I option) is useful for identifying the media objects required. It is also useful for
identifying a dump session. The session UUID can be copied from the inventory display to the −−S option
argument to unambiguously identify a dump session to be restored.

Dumps placed in regular files or the standard output do not span multiple media objects, nor do they
contain multiple dumps.

Inventory
Each dump session updates an inventory database in /var/xfsdump/inventory. This database can be
displayed by invoking xfsrestore with the −−I option. The display uses tabbed indentation to present the
inventory hierarchically. The first level is filesystem. The second level is session. The third level is media
stream (currently only one stream is supported). The fourth level lists the media files sequentially
composing the stream.

IRIX Release 6.2 295

xfsrestore(1M)hh

Several suboptions are available to filter the display. Specifying −−I depth=n (where n is 1, 2, or 3) limits the
hierarchical depth of the display. Specifying −−I mobjid=value (where value is a media id) or −−I
mobjlabel=value (where value is a media label) limits the display to media files contained in the specified
media object. Similarly, the display can be restricted to a specific filesystem identified by mount point
using −−I mnt=host-qualified_mount_point_pathname, by filesystem id using −−I fsid=filesystem_id, or by device
using −−I dev=host-qualified_device_pathname.

At most three suboptions can be specified at once: one to constrain the depth, one to constrain the media
object, and one to constrain the filesystem. For example, −−I depth=1,mobjlabel="tape
1",mnt=host1:/test_mnt displays only the filesystem information (depth=1) for those filesystems which
were mounted on host1:/test_mnt at the time of the dump and only those filesystems dumped to the media
object labeled "tape 1".

There is currently no way to remove dumps from the inventory.

An additional media file is placed at the end of each dump stream. This media file contains the inventory
information for the current dump session. This is currently unused.

Media Errors
xfsdump is tolerant of media errors, but cannot do error correction. If a media error occurs in the body of a
media file, the filesystem file represented at that point is lost. The bad portion of the media is skipped, and
the restoration resumes at the next filesystem file after the bad portion of the media.

If a media error occurs in the beginning of the media file, the entire media file is lost. For this reason, large
dumps are broken into a number of reasonably sized media files. The restore resumes with the next media
file.

FILES
/var/xfsdump/inventory dump inventory database

SEE ALSO
rmt(1M), xfsdump(1M), attr_set(2).

DIAGNOSTICS
The exit code is 0 on normal completion, and non-zero if an error occurred or the restore was terminated
by the operator.

BUGS
Pathnames of restored non-directory files (relative to the destination directory) must be 1023 characters
(MAXPATHLEN) or less. Longer pathnames are discarded and a warning message displayed.

There is no verify option to xfsrestore. This would allow the operator to compare a filesystem dump to an
existing filesystem, without actually doing a restore.

296 IRIX Release 6.2

xfsrestore(1M)hh

The interactive commands (−−i option) do not understand regular expressions.

Cumulative mode (−−r option) requires that the operator invoke xfsrestore for the base and for each delta to
be applied in sequence to the base. It would be better to allow the operator to identify the last delta in the
sequence of interest, and let xfsrestore work backwards from that delta to identify and apply the preceding
deltas and base dump, all in one invocation.

IRIX Release 6.2 297

xfs_check(1M)hh

NAME
xfs_check − check XFS filesystem consistency

SYNOPSIS
xfs_check [−−i ino] ... [−−s] [−−v] xfs_special

xfs_check −−f [−−i ino] ... [−−s] [−−v] file

DESCRIPTION
xfs_check checks whether an XFS filesystem is consistent. It is normally run only when there is reason to
believe that the filesystem has a consistency problem. The filesystem to be checked is specified by the
xfs_special argument, which should be the disk or volume device for the filesystem. Filesystems stored in
files can also be checked, using the −−f flag. The filesystem should normally be unmounted or read-only
during the execution of xfs_check. Otherwise, spurious problems are reported.

The options to xfs_check are:

−−f Specifies that the special device is actually a file (see the mkfs_xfs −−d file option). This might
happen if an image copy of a filesystem has been made into an ordinary file.

−−s Specifies that only serious errors should be reported. Serious errors are those that make it
impossible to find major data structures in the filesystem. This option can be used to cut down
the amount of output when there is a serious problem, when the output might make it difficult to
see what the real problem is.

−−v Specifies verbose output; it is impossibly long for a reasonably-sized filesystem. This option is
intended for internal use only.

−−i ino Specifies verbose behavior for a specific inode. For instance, it can be used to locate all the blocks
associated with a given inode.

Any output from xfs_check means that the filesystem has an inconsistency. The only repair mechanism
available is to dump the filesystem with xfsdump(1M), use mkfs_xfs(1M) to make a new filesystem, then use
xfsrestore(1M) to restore the data.

DIAGNOSTICS
Under two circumstances, xfs_check unfortunately might dump core rather than produce useful output.
First, if the filesystem is completely corrupt, a core dump might be produced instead of the message

xxx is not a valid filesystem

Second, if the filesystem is very large (has many files) then xfs_check might run out of memory.

298 IRIX Release 6.2

xfs_check(1M)hh

The following is a description of the most likely problems and the associated messages. Most of the
diagnostics produced are only meaningful with an understanding of the structure of the filesystem.

xxx is not an XLV volume device name
The −−d option is needed for filesystems that reside in disk partitions instead of in XLV
volumes.

agf_freeblks n, counted m in ag a
The freeblocks count in the allocation group header for allocation group a doesn’t match
the number of blocks counted free.

agf_longest n, counted m in ag a
The longest free extent in the allocation group header for allocation group a doesn’t match
the longest free extent found in the allocation group.

agi_count n, counted m in ag a
The allocated inode count in the allocation group header for allocation group a doesn’t
match the number of inodes counted in the allocation group.

agi_freecount n, counted m in ag a
The free inode count in the allocation group header for allocation group a doesn’t match
the number of inodes counted free in the allocation group.

block a/b expected inum 0 got i
The block number is specified as a pair (allocation group number, block in the allocation
group). The block is used multiple times (shared), between multiple inodes. This
message usually follows a message of the next type.

block a/b expected type unknown got y
The block is used multiple times (shared).

block a/b type unknown not expected
The block is unaccounted for (not in the freelist and not in use).

link count mismatch for inode nnn (name xxx), nlink m, counted n
The inode has a bad link count (number of references in directories).

rtblock b expected inum 0 got i
The block is used multiple times (shared), between multiple inodes. This message usually
follows a message of the next type.

rtblock b expected type unknown got y
The real-time block is used multiple times (shared).

IRIX Release 6.2 299

xfs_check(1M)hh

rtblock b type unknown not expected
The real-time block is unaccounted for (not in the freelist and not in use).

sb_fdblocks n, counted m
The number of free data blocks recorded in the superblock doesn’t match the number
counted free in the filesystem.

sb_frextents n, counted m
The number of free real-time extents recorded in the superblock doesn’t match the
number counted free in the filesystem.

sb_icount n, counted m
The number of allocated inodes recorded in the superblock doesn’t match the number
allocated in the filesystem.

sb_ifree n, counted m
The number of free inodes recorded in the superblock doesn’t match the number free in
the filesystem.

SEE ALSO
mkfs_xfs(1M), xfsdump(1M), xfsrestore(1M), xfs(4).

300 IRIX Release 6.2

xfs_growfs(1M)hh

NAME
xfs_growfs − expand an XFS filesystem

SYNOPSIS
xfs_growfs [−−D size] [−−d] [−−e rtextsize] [−−i] [−−L size]

[−−l] [−−m maxpct] [−−n] [−−R size] [−−r] [−−x] mount-point

DESCRIPTION
xfs_growfs expands an existing XFS filesystem (see xfs(4)). The mount-point argument is the pathname of the
directory where the filesystem is mounted. The filesystem must be mounted to be grown (see mount(1M)).
The existing contents of the filesystem are undisturbed, and the added space becomes available for
additional file storage.

The options to xfs_growfs are:

−−d, −−D size
Specifies that the data section of the filesystem should be grown. If the −−D size option is given, the
data section is grown to that size, otherwise the data section is grown to the largest size possible.
The size is expressed in filesystem blocks.

−−e Allows the real-time extent size to be specified. In mkfs_xfs(1M) this is specified with −−r
extsize=nnnn.

−−i The new log is an internal log (inside the data section).

−−l, −−L size
Specifies that the log section of the filesystem should be grown, shrunk, or moved. If the −−L size
option is given, the log section is changed to be that size, if possible. The size is expressed in
filesystem blocks. The size of an internal log must be smaller than the size of an allocation group
(this value is printed at mkfs(1M) time). If neither −−i nor −−x is given with −−l, the log continues to be
internal or external as it was before.

−−m Specify a new value for the maximum percentage of space in the filesystem that can be allocated as
inodes. In mkfs_xfs this is specified with -i maxpct=nn.

−−n Specifies that no change to the filesystem is to be made. The filesystem geometry is printed, and
argument checking is performed, but no growth occurs.

−−r, −−R size
Specifies that the real-time section of the filesystem should be grown. If the −−R size option is given,
the real-time section is grown to that size, otherwise the real-time section is grown to the largest size
possible. The size is expressed in filesystem blocks. The filesystem does not need to have contained
a real-time section before the xfs_growfs operation.

IRIX Release 6.2 301

xfs_growfs(1M)hh

−−x The new log is an external log (in an XLV log subvolume).

xfs_growfs is most often used in conjunction with logical volumes (see xlv(7M) or lv(7M)). However, it can
also be used on a regular disk partition, for example if a partition has been enlarged while retaining the
same starting block.

PRACTICAL USE
Filesystems normally occupy all of the space on the device where they reside. In order to grow a
filesystem, it is necessary to provide added space for it to occupy. Therefore there must be at least one
spare new disk partition available. Adding the space is done through the mechanism of logical volumes. If
the filesystem already resides on a logical volume, the volume is simply extended using mklv(1M) or
xlv_mgr(1M). If the filesystem is currently on a regular partition, it is necessary to create a new logical
volume whose first member is the existing partition, with subsequent members being the new partition(s)
to be added. Again, mklv or xlv_mgr is used for this. In either case xfs_growfs is run on the mounted
filesystem, and the expanded filesystem is then available for use.

SEE ALSO
mkfs_xfs(1M), mklv(1M), mount(1M), xlv_make(1M), lv(7M), xlv(7M).

302 IRIX Release 6.2

xlv_make(1M)hh

NAME
xlv_make − create logical volume objects

SYNOPSIS
xlv_make [−−f] [−−v] [−−A] [input_file]

DESCRIPTION
xlv_make creates new logical volume objects by writing logical volume labels to the devices that are to
constitute the volume objects. A volume object can be an entire volume, a plex, or a volume element.
xlv_make allows you to create objects that are not full volumes so that you can maintain a set of spares.

xlv_make supports the following options:

−−f Force xlv_make to create a volume element even if the partition type for the partition specified does
not correspond with its intended usage. This is useful, for example, in converting lv(7M) volumes
to xlv(7M) volumes. It is also used to allow creation of objects involving currently mounted
partitions.

−−v Verbose option. Causes xlv_make to generate more detailed output. Also, it causes
xlv_assemble(1M) to generate output upon exit from xlv_make .

−−A Do not invoke xlv_assemble(1M) upon exit from xlv_make . The default is to invoke xlv_assemble
with the −−q option unless the −−v option is specified, in which case xlv_assemble is invoked with no
options. To invoke other xlv_assemble options, specify the −−A option and invoke xlv_assemble
manually.

xlv_make only allows you to create volume objects out of disk partitions that are not currently part of other
volume objects. Partitions must be of a type suitable for use by xlv_make. Suitable types are xfs, efs, xlv,
and xfslog. Partition types other than these are rejected unless the −−f command line option or the ve
−−force interactive command is specified. See fx(1M) for more information regarding partition types.
xlv_mgr(1M) must be used to modify or destroy volume objects.

xlv_make can be run either interactively or it can take its commands from an input file, input_file. xlv_make
is written using Tcl. Therefore, all the Tcl features such as variables, control structures, and so on can be
used in xlv_make commands.

xlv_make creates volume objects by writing the disk labels. To make the newly created logical volumes
active, xlv_assemble(1M) must be run. xlv_assemble is, by default, automatically invoked upon successful
exit from xlv_make; xlv_assemble scans all the disks attached to the system and automatically assembles all
the available logical volumes.

Objects are specified top-down and depth-first. You start by specifying the top-level object and continue to
specify the pieces that make it up. When you have completed specifying an object at one level, you can
back up and specify another object at the same level.

IRIX Release 6.2 303

xlv_make(1M)hh

The commands are:

vol volume_name
Specifies a volume. The volume_name is required. It can be up to 14 characters in length.

log Specifies a log subvolume.

data Specifies a data subvolume.

rt Specifies a real-time subvolume. Real-time subvolumes are used for guaranteed-rate I/O and also
for high performance applications that isolate user data on a separate subvolume.

plex [plex_name]
Specifies a plex. If this plex is specified outside of a volume, plex_name must be given. A plex that
exists outside of a volume is known as a standalone plex.

ve [volume_element_name] [−−stripe] [−−concat] [−−force]
[−−stripe_unit stripe_unit_size] [−−start blkno] device_pathnames

Specifies a volume element. If this volume element is specified outside of a plex,
volume_element_name must be given.

−−stripe Specifies that the data within this volume element is to be striped across all the
disks named by device_pathnames.

−−concat Specifies that all the devices named by device_pathnames are to be joined linearly
into a single logical range of blocks. This is the default if no flags are specified.

−−force Forces the specification of the volume element when the partition type does not
agree with the volume element’s intended usage. For example, a partition with
type xfslog could be assigned to a data subvolume. Also, −−force allows the
specification of an object that includes a partition that is currently mounted.

−−stripe_unit stripe_unit_size
specifies the number of blocks to write to one disk before writing to the next disk
in a stripe set. stripe_unit_size is expressed in 512-byte blocks. −−stripe_unit is
only meaningful when used in conjunction with −−stripe. The default stripe unit
size, if this flag is not set, is one track. Note: lv called this parameter the
granularity.

−−start blkno Specifies that this volume element should start at the given block number within
the plex.

304 IRIX Release 6.2

xlv_make(1M)hh

end Terminates the specification of the current object.

clear Removes the current, uncompleted object.

show Prints out all the volume objects on the system. This includes existing volume objects (created
during an earlier xlv_make session) and new objects specified during this session that have not
been created (written out to the disk labels) yet.

exit Create the objects specified during this session by writing the disk labels out to all the disks
affected, and exit xlv_make. In interactive mode, the user is prompted to confirm this action if any
new objects have been created.

quit Leave xlv_make without creating the specified objects (without writing the disk labels). All the
work done during this invocation of xlv_make is lost. In interactive mode, the user is prompted to
confirm this action if any objects have been specified.

help Displays a summary of xlv_make commands.

? Same as help.

sh Fork a shell.

EXAMPLES
Example 1

To make a volume from a description in an input file called volume_config.txt, give this command:

xlv_make volume_config.txt

Example 2
This example shows making some volume objects interactively.

xlv_make

Make a spare plex so we can plug it into another volume on demand.

xlv_make> plex spare_plex1
spare_plex1
xlv_make> ve /dev/dsk/dks0d2s1 /dev/dsk/dks0d2s2
spare_plex1.0
xlv_make> end
Object specification completed

Now make a small volume. (Note that xlv_make automatically adds a /dev/dsk to the disk partition name if
it is missing from the ve command.)

IRIX Release 6.2 305

xlv_make(1M)hh

xlv_make> vol small
small
xlv_make> log
small.log
xlv_make> plex
small.log.0
xlv_make> ve dks0d2s3
small.log.0.0
xlv_make> data
small.data
xlv_make> plex
small.data.0
xlv_make> ve dks0d2s14 dks0d2s12
small.data.0.0
xlv_make> end
Object specification completed
xlv_make> show
vol small
ve small.log.0.0 d710aa7d-b21d-1001-868d-080069077725
start=0, end=1523, (cat)grp_size=1
/dev/dsk/dks0d2s3 (1524 blks) d710aa7e-b21d-1001-868d-080069077725

ve small.data.0.0 d710aa81-b21d-1001-868d-080069077725
start=0, end=4571, (cat)grp_size=2
/dev/dsk/dks0d2s14 (1524 blks) d710aa82-b21d-1001-868d-080069077725
/dev/dsk/dks0d2s12 (3048 blks) d710aa83-b21d-1001-868d-080069077725

plex spare_plex1
ve spare_plex1.0 d710aa77-b21d-1001-868d-080069077725
start=0, end=3047, (cat)grp_size=2
/dev/dsk/dks0d2s1 (1524 blks) d710aa78-b21d-1001-868d-080069077725
/dev/dsk/dks0d2s2 (1524 blks) d710aa79-b21d-1001-868d-080069077725

xlv_make> help
vol volume_name - Create a volume.
data | log | rt - Create subvolume of this type.
plex [plex_name] - Create a plex.
ve [-start] [-stripe] [-stripe_unit N] [-force] [volume_element_name] partition(s)
end - Finished composing current object.
clear- Delete partially created object.
show - Show all objects.
exit - Write labels and terminate session.
quit - Terminate session without writing labels.
help or ? - Display this help message.
sh - Fork a shell.

306 IRIX Release 6.2

xlv_make(1M)hh

xlv_make> exit
#

Note that the strings like d710aa82-b21d-1001-868d-080069077725 shown above are the universally unique
identifiers (UUIDs) that identify each XLV object.

Example 3
This example shows a description file that makes the same volume objects as in Example 2.

A spare plex
plex spare_plex1
ve dks0d2s1 dks0d2s2
A small volume
vol small
log
plex
ve dks0d2s3
data
plex
ve dks0d2s14 dks0d2s12
end
Write labels before terminating session.
exit

Example 4
This example shows making a complex volume interactively. It makes a volume for an XFS filesystem that
has a single-partition log and a plexed (mirrored) data subvolume that is striped.

xlv_make
xlv_make> vol movies
movies
xlv_make> log
movies.log
xlv_make> plex
movies.log.0
xlv_make> ve /dev/dsk/dks0d2s1
movies.log.0.0

Let the data subvolume have two plexes, each of which consists of two sets of striped disks. The data
written to the data subvolume is copied to both movies.data.0 and movies.data.1.

IRIX Release 6.2 307

xlv_make(1M)hh

xlv_make> data
movies.data
xlv_make> plex
movies.data.0
xlv_make> ve -stripe dks0d1s6 dks0d2s6 dks0d3s6
movies.data.0.0
xlv_make> ve -stripe dks0d4s6 dks0d5s6
movies.data.0.1
xlv_make> plex
movies.data.1
xlv_make> ve -stripe dks1d1s6 dks1d2s6 dks1d3s6
movies.data.1.0
xlv_make> ve -stripe dks1d4s6 dks1d5s6
movies.data.1.1

Add a small real-time subvolume. Stripe the data across two disks, with the stripe unit set to 1024 512-byte
sectors.

xlv_make> rt
movies.rt
xlv_make> plex
movies.rt.0
xlv_make> ve -stripe -stripe_unit 1024 dks4d1s6 dks4d2s6
movies.rt.0.0
xlv_make> end
Object specification completed
xlv_make> exit
#

DIAGNOSTICS
Previous object not completed

You have tried to specify a new object before the previous object has been completely
specified. For example, the sequence plex plex is not valid because the volume elements
for the first plex have not been specified yet.

A volume has not been specified yet
This error results from giving rt, data, or log without first specifying a volume to which
these subvolumes belong.

An object with that name has already been specified
This error results from giving the vol volume_name, plex plex_name, or ve
volume_element_name command when an object with the same name already exists or has
been specified in this session.

308 IRIX Release 6.2

xlv_make(1M)hh

A log subvolume has already been specified for this volume

A data subvolume has already been specified for this volume

A real-time subvolume has already been specified for this volume
These errors results from giving the log, data, or rt command for a volume that already
has a subvolume of the given type.

A subvolume has not been specified yet
You have given a volume command and then given the plex command without first
specifying a subvolume to which the plex belongs.

Too many plexes have been specified for this subvolume
You have already specified the maximum allowable number of plexes for this subvolume.

A plex has not been specified yet
You have given a ve command without first giving the plex command.

Too many volume elements have been specified for this plex
You have reached the maximum number of volume elements that can be in a single plex.

An error occurred in creating the specified objects
An error occurred while writing the volume configuration out to the disk labels.

Unrecognized flag: flag
flag is not recognized.

Unexpected symbol: symbol
symbol is an unknown command.

A volume name must be specified
You have given a vol command without giving the name of the volume as an argument.

Too many disk partitions
You have specified too many devices for the volume element.

Cannot determine size of partition; please verify that the device exists
xlv_make is unable to figure out the size of the specified disk partition. Make sure that the
device exists.

Unequal partition sizes, truncating the larger partition
The partitions specified for a striped volume element are not of the same size. This leaves
some disk space unusable in the larger partition because data is striped across all the
partitions in a volume element.

IRIX Release 6.2 309

xlv_make(1M)hh

A disk partition must be specified
You have given the ve command without specifying the disk partitions that belong to the
volume element as arguments to the command.

Unknown device: %s
You have specified a disk partition that either has no device node in /dev/dsk or is missing
altogether.

Illegal value
The value is out of range for the given flag.

The volume element’s address range must be increasing
When you specify the starting offset of a volume element within a plex by using the ve
−−start command, you must specify them in increasing order.

Disk partition partition is already being used
The disk partition named in the ve command is already in use by some other volume
object.

Disk partition partition is mounted; use ‘‘−force’’ to override
The disk partition named in the ve command is currently mounted. Use of the −−force
argument is required to perform the operation.

Address range doesn’t match corresponding volume element in other plexes
A volume element within a plex must have the same address range in all plexes for the
subvolume that includes those plexes.

There are partially specified objects, use ‘‘quit’’ to exit without
creating them You have entered the quit command while there are specified, but not
created objects. You should enter quit again to really quit at this point and discard
specified objects.

Missing flag value for: %s
A command was given that requires an additional argument that was not given.

Malloc failed
There is insufficient memory available for xlv_make to operate successfully.

An error occurred in updating the volume header
An attempt to modify a disk’s volume header was unsuccessful.

A striped volume element must have at least two partitions
The ve −−stripe command was given and only one partition was specified.

310 IRIX Release 6.2

xlv_make(1M)hh

Log ve should have partition type xfslog

Data ve should have partition type xlv

Rt ve should have partition type xlv

Standalone object should have partition type xlv or xfslog

Mixing partition type xfslog with data types not allowed
All the partitions that make up a volume element must have the same partition type,
either xlv or xfslog.

Partition type must be consistent with other ve’s in plex
Partition type does not correspond with intended usage.

Partition could already belong to lv.
Check /etc/lvtab A warning that this partition may already belong to an lv volume.

Illegal partition type
An attempt was made to specify a partition that cannot, under any circumstance, be used
in an xlv(7M) volume. An example of such a partition would be the volume header.

Subvolume type does not match any known
The subvolume being operated on is of no known type.

Size mismatch
The partition size information in the volume header does not match that contained in the
xlv label.

Device number mismatch
A warning that the device number in the xlv label does not match that of the volume
header.

The same partition cannot be listed twice
The ve command was given with the same partition listed twice.

SEE ALSO
xlv_assemble(1M), xlv_labd(1M), xlv_mgr(1M), xlv_plexd(1M), xlv_shutdown(1M), xlvd(1M), xlv(7M).

Tcl and the Tk Toolkit by John K. Ousterhout, Addison-Wesley, 1994.

NOTES
The disk labels created by xlv_make are stored only in the volume header of the disks. They do not destroy
user data. Therefore, you can make an lv(7M) volume into an XLV volume and still preserve all the data
on the logical volume.

IRIX Release 6.2 311

xlv_make(1M)hh

xlv_make changes the partition type of partitions used in newly created objects to either xlv or xfslog
depending upon their usage.

You must pick a different name for each volume, standalone plex, and standalone volume element. You
cannot have, for example, both a volume and a plex named yy.

You must be root to run xlv_make .

312 IRIX Release 6.2

xlv_mgr(1M)hh

NAME
xlv_mgr − administers XLV logical volume objects and their disk labels

SYNOPSIS
xlv_mgr [−−r root] [−−v] [−−x]

DESCRIPTION
xlv_mgr displays and modifies existing XLV objects (volumes, plexes, volume elements, and XLV disk
labels). xlv_mgr can operate on XLV volumes even while they are mounted and in use.

xlv_mgr supports the following command line options:

−−r root Use root as the root directory. This is used in the miniroot when / is mounted as /root.

−−v Verbose option. Causes xlv_mgr to generate more detailed output.

−−x Expert mode. Provides additional functions.

Commands that pertain to plexes are displayed only when the system has been licensed for the plexing
portion of XLV.

xlv_mgr provides several types of operations: attach, detach, delete, change, script, and show:

attach Add an XLV object to another XLV object. You can add a volume element to a plex or plex to a
volume. The volume element or plex to be added must first be created using xlv_make(1M).

detach Separate a part of an XLV object and make it an independent (standalone) XLV object. For
example, if you detach a plex from a plexed volume, that plex is separated from the volume and
made into a standalone plex. The original volume then has one less plex.

delete Delete an entire XLV object.

script Generate the xlv_make commands required to create some or all XLV objects.

show Display the list of XLV objects on the system and their structure.

change Change an attribute associated with can XLV object.

The commands are:

show [−−long][−−verbose] all
Displays all known XLV objects by name and type. The −−long option causes more information
about each XLV object to be displayed. The −−verbose displays more detailed information, such as
the uuid. The following is an example of the output of this command:

xlv_mgr> show all

IRIX Release 6.2 313

xlv_mgr(1M)hh

Volume: root_vol (complete)
Volume: db1 (complete)
Volume Element: ve12
Plex: plex2

show [−−verbose] kernel
Displays the XLV objects configured into the running kernel. The only XLV objects in the kernel are
volumes. Standalone plexes and volume elements are not viable objects in the kernel because they
cannot be used. The −−verbose displays more detailed information on each volume.

show [−−long] [−−verbose] labels [device_volume_header]
Displays XLV disk labels on all disks or the specifed device_volume_header. The −−long option display
the secondary label.

show config
Displays XLV software configuration information about the running kernel. For example:

xlv_mgr> show config

Allocated subvol locks: 30 locks in use: 8
Plexing license: present
Plexing support: present
Maximum subvol block number: 0x7fffffff

show [−−verbose] object object_name
Displays detailed information on an XLV object object_name. The information includes all the XLV
parameters and the disk partitions that make up the object.

In the example below, the volume named db1 has one subvolume of type data that contains two
plexes. The first plex has two volume elements, while the second plex only has one volume element.
The first volume element in each plex covers the same range of disk blocks. For each volume
element, xlv_mgr displays the partitions that make up the volume element, the size of the partition,
and the range of this volume’s disk blocks that map to the volume element. For example:

xlv_mgr> show object db1
VOL db1 (complete)
VE db1.data.0.0 [active]

start=0, end=1100799, (cat)grp_size=1
/dev/dsk/dks1d4s0 (1100800 blks)

VE db1.data.0.1 [active]
start=1100800, end=2201599, (cat)grp_size=1
/dev/dsk/dks1d4s1 (1100800 blks)

VE db1.data.1.0 [active]

314 IRIX Release 6.2

xlv_mgr(1M)hh

start=0, end=1100799, (cat)grp_size=1
/dev/dsk/dks1d4s2 (1100800 blks)

attach ve source dest-plex
attach ve source volume.{data|log|rt}.N

The command appends standalone volume element object source to the end of destination plex. This
enables you to grow a plex or volume by adding a volume element to the end of a plex. You can use
this in conjunction with xfs_growfs(1M) to grow an XFS filesystem without unmounting it.

Suppose that you have a volume element, spareve, that contains a single disk partition
/dev/dsk/dks1d4s2 . The following command appends it to plex 0 of the data subvolume of volume
db1:

xlv_mgr> attach ve spareve db1.data.0
xlv_mgr> show object db1
VOL db1 (complete)
VE db1.data.0.0 [active]

start=0, end=1100799, (cat)grp_size=1
/dev/dsk/dks1d4s0 (1100800 blks)

VE db1.data.0.1 [active]
start=1100800, end=2201599, (cat)grp_size=1
/dev/dsk/dks1d4s1 (1100800 blks)

VE db1.data.0.2 [active]
start=2201600, end=3302399, (cat)grp_size=1
/dev/dsk/dks1d4s2 (1100800 blks)

attach plex source volume.{data|log|rt}
Appends standalone plex object source to existing volume volume. This command creates duplicate
copies of the data on the volume for greater reliability. This operation is sometimes called mirroring.
After the plex has been added, xlv_mgr automatically initiates a plex revive operation; this copies the
data from the original XLV plexes to the newly added plex so that the plex holds the same data as
the original plexes in the volume. The following appends a plex named plex2 to the data subvolume
of volume db1:

xlv_mgr> attach plex plex2 db1.data

Use the show object command to display volume db1 and see that the disk partitions that were part
of plex2 are now a component of db2. plex2 no longer exists as a standalone plex since it was merged
into volume db1.

insert ve source vol.{data|log|rt}.N

IRIX Release 6.2 315

xlv_mgr(1M)hh

insert ve source plex.N
Insert standalone volume element object source into the destination plex object. This enables you to
add a volume element into a gap in a plex.

xlv_mgr requires that the destination be a fully qualified XLV pathname (for example,
movies.data.0). The pathname must specify the relative position within the plex to insert the
volume element. (The first volume element in a plex is at position 0.) The plex to be operated on
can be a standalone plex or a part of a volume. If the plex is part of a volume, the volume,
subvolume, and plex must be specified. In the example below it is volume test . The following
example inserts a volume element ve5 into a gap in the volume test . There is a gap because the first
volume element starts at block number 76200. First display the configuration of test and ve5 before
inserting ve5 into test .

xlv_mgr> show object test

VOL test (has holes)
VE test.data.0.0 [active]

start=76200, end=152399, (cat)grp_size=1
/dev/dsk/dks0d2s1 (76200 blks)

VE test.data.0.1 [active]
start=152400, end=228599, (cat)grp_size=1
/dev/dsk/dks0d2s2 (76200 blks)

xlv_mgr> show object ve5

VE ve5 [empty]
start=0, end=76199, (cat)grp_size=1
/dev/dsk/dks0d2s5 (76200 blks)

xlv_mgr> insert ve ve5 test.data.0

xlv_mgr> show object test

VOL test (complete)
VE test.data.0.0 [stale]

start=0, end=76199, (cat)grp_size=1
/dev/dsk/dks0d2s5 (76200 blks)

VE test.data.0.1 [active]
start=76200, end=152399, (cat)grp_size=1
/dev/dsk/dks0d2s1 (76200 blks)

VE test.data.0.2 [active]
start=152400, end=228599, (cat)grp_size=1
/dev/dsk/dks0d2s2 (76200 blks)

316 IRIX Release 6.2

xlv_mgr(1M)hh

detach ve plex.N ve-object
detach ve volume.{data|log|rt}.N ve-object

Remove specified volume element from its parent object and save it as ve-object. This command
separates a volume element from its parent plex. This volume element can later be added to some
other XLV object. The plex from which the volume element is removed can be a standalone plex or
part of a volume. The detached volume element becomes a standalone XLV volume element object.
You must specify the fully qualified pathname of the volume element to be detached and the name
to be given to the detached volume element. The detach operation leaves the volume element intact

detach plex volname.{data|log|rt}.plexno plexobject
This command removes the specified plex from its parent object and save it as plexobject. This new
standalone plex can later be added back to a volume via the attach plex command.

The following example shows how to detach the first plex from a volume:

xlv_mgr> detach plex db1.data.0 savedplex

delete object name
Delete the object name. This command enables you to delete a volume, a standalone plex, or a
standalone volume element. The XLV configuration is removed from the disks that make up the
XLV object. Because the XLV configuration information is stored in the volume header (see vh(7M)),
this command does not affect any user data that may have been written to the user disk partitions.

delete all[_labels]
An expert command, this command deletes the XLV labels from all disks on the local system. You
might want to do this to initialize all the disks on a new system and ensure that there is no leftover
XLV configuration information on the disks. Note that this is a very dangerous operation. Deleting
the disk labels destroys all of the XLV objects on the system.

delete label device_volume_header
An expert command, this command deletes the XLV disk label from the named
device_volume_header.

change nodename name object ...
This command changes the nodename associated with the named objects.

The following example shows how to set the node name for the volume db1 to homestead .

xlv_mgr> change nodename homestead db1

change online vol.{data|log|rt}.N.N
change offline vol.{data|log|rt}.N.N

This command transitions the specified volume element online or offline.

IRIX Release 6.2 317

xlv_mgr(1M)hh

reset Reinitializes xlv_mgr data structures by rereading all the XLV configuration information from all the
disks.

script [−−write filename] object name
script [−−write filename] all

Generates the required xlv_make commands to create the named object or all objects. When the
−−write option is specified, the xlv_make commands are saved into f2filename.

help Displays a summary of xlv_mgr commands.

? Same as help.

sh Fork a shell.

quit Terminate this session.

SEE ALSO
xlv_assemble(1M), xlv_make(1M), xlv_plexd(1M), xlv_shutdown(1M), xlv(7M).

Tcl and the Tk Toolkit by John K. Ousterhout, Addison-Wesley, 1994.

NOTES
xlv_mgr operations modify both the XLV disk labels and the kernel data structures as appropriate. This
means that you do not need to run xlv_assemble(1M) for your changes to take effect. The only exceptions
are the XLV label deleting commands delete all_labels and delete label, which effect only the disk labels.

xlv_mgr automatically initiates plex revive operations (see xlv_plexd(1M)) as required after adding a new
plex to a volume or a volume element to a plexed volume.

You must be root to run xlv_mgr.

318 IRIX Release 6.2

core(4)hh

NAME
core − format of core image file

SYNOPSIS
#include <core.out.h>

DESCRIPTION
The IRIX system writes out a core image of a terminated process when any of various errors occur. See
signal(2) for the list of reasons; the most common are memory violations, illegal instructions, bus errors,
and user-generated quit signals. The core image is called core and is written in the process’s working
directory (provided it can be; normal access controls apply). A process with an effective user ID different
from the real user ID does not produce a core image.

The format of the core image is defined by <core.out.h>. It consists of a header, maps, descriptors, and
section data.

The header data includes the process name (as in ps(1)), the signal that caused the core dump, the
descriptor array, and the corefile location of the map array.

Each descriptor defines the length of useful process data. One descriptor defines the general-purpose
registers at the time of the core dump for example. The data is present in the core image at the file location
given in the descriptor only if the IVALID flag is set in the descriptor.

Each map defines the virtual address and length of a section of the process at the time of the core dump.
The data is present in the core image at the file location given in the descriptor only if the VDUMPED flag
is set in the map. The process’s stack and data sections are normally written in the core image. The
process’s text is not normally written in the core image.

NOTE
Core image format designed by Silicon Graphics, Inc.

SEE ALSO
dbx(1), ps(1), setuid(2), signal(2).

IRIX Release 6.2 319

efs(4)hh

NAME
efs − layout of the Extent File System

SYNOPSIS
#include <sys/param.h>
#include <sys/fs/efs.h>

DESCRIPTION
An Extent File System can reside on a regular disk partition or on a logical volume; see lv(1M). The disk
partition or volume is divided into a certain number of 512-byte sectors, also called basic blocks. The
current maximum size limit of an Extent File System is 16777214 blocks, equivalent to 8 gigabytes.

The Extent File System imposes a common format for certain vital information on its underlying storage
medium. Basic block 0 is unused and is available to contain a bootstrap program or other information.
Basic block 1 is the superblock. The format of an Extent File System superblock is:

/*
* Structure of the superblock for the Extent File System
*/
struct efs {

/*
* This portion is read off the volume
*/
long fs_size; /* size of filesystem, in sectors */
long fs_firstcg; /* bb offset to first cg */
long fs_cgfsize; /* size of cylinder group in bb’s */
short fs_cgisize; /* bb’s in inodes per cylinder group */
short fs_sectors; /* sectors per track */
short fs_heads; /* heads per cylinder */
short fs_ncg; /* # of groups in filesystem */
short fs_dirty; /* fs needs to be fsck’d */
time_t fs_time; /* last superblock update */
long fs_magic; /* magic number */
char fs_fname[6]; /* filesystem name */
char fs_fpack[6]; /* filesystem pack name */
long fs_bmsize; /* size of bitmap in bytes */
long fs_tfree; /* total free data blocks */
long fs_tinode; /* total free inodes */
long fs_bmblock; /* bitmap location */
long fs_replsb; /* location of replicated superblock. */
char fs_spare[24]; /* space for expansion */
long fs_checksum; /* checksum of volume portion of fs */
/*
* The remainder of this structure, defined fully in

320 IRIX Release 6.2

efs(4)hh

* <sys/fs/efs_sb.h> is used by the operating system only.
*/

};

The struct efs that is defined in <sys/fs/efs_sb.h> contains more fields. The extra fields are used internally by
the operating system and are not discussed here. If in doubt, consult the include file for any recent changes
to both the section discussed here and changes to relevant definitions.

fs_size holds the size in basic blocks of the filesystem. This variable is filled in when the filesystem is first
created with mkfs(1M).

fs_firstcg contains the basic block offset to the first cylinder group. There are fs_ncg cylinder groups contained
in the filesystem. Each cylinder group is composed of fs_cgfsize basic blocks, of which fs_cgisize basic blocks
are used for inodes.

fs_sectors and fs_heads are used to specify the geometry of the underlying disk containing the filesystem.
fs_heads is in fact currently unused and should not be relied upon.

fs_dirty is a flag that indicates if the filesystem needs to be checked by the fsck(1M) program.

The fs_time field contains the time stamp of when the filesystem was last modified.

fs_name holds the name of the filesystem (where it is mounted, more or less) and fs_fpack contains which
volume this filesystem is. The fs_fpack field is singularly useless, but is provided for utility compatibility.

fs_magic is used to tag the superblock of the filesystem as an Extent File System. There are two values that
are currently used and a macro used to test for either one.

#define EFS_MAGIC 0x072959
#define EFS_NEWMAGIC 0x07295A
#define IS_EFS_MAGIC(x) ((x == EFS_MAGIC) || (x == EFS_NEWMAGIC))

The NEWMAGIC version was added in IRIX 3.3 when the superblock format changed slightly.
Filesystems created with that version of mkfs or later (or modified with mkfs −−r or extended with growfs) get
the new magic number; otherwise the older magic number is retained, if present.

The fs_bmsize field contains, in bytes, the size of the data block bitmap. The data block bitmap is used for
data block allocation. Each one in the bitmap indicates a free block.

The fs_bmblock field contains the location of the bitmap if it has been moved from its default location (basic
block 2) because the filesystem has been constructed on a logical volume that has been extended (see
growfs(1M)).

IRIX Release 6.2 321

efs(4)hh

fs_tfree and fs_tinode contain the total free blocks and inodes, respectively.

The fs_replsb field contains the location of a replicated superblock, if one exists.

The fs_spare field is reserved for future use.

Lastly, the fs_checksum variable holds a checksum of the above fields (not including itself).

During the mount(1M) of the filesystem, the fs_dirty and fs_checksum fields are examined. If fs_dirty is non-
zero, or the fs_checksum variable does not match the systems computed checksum, the filesystem must be
cleaned with fsck before it can be mounted. If the filesystem is the root partition, this check is ignored, as it
is necessary to be able to run fsck on a dirty root from a dirty root . For the format of an inode and its flags,
see inode(4).

FILES
/usr/include/sys/fs/efs*.h
/usr/include/sys/stat.h

SEE ALSO
fsck(1M), growfs(1M), mkfs(1M), inode(4).

322 IRIX Release 6.2

fstab(4)hh

NAME
fstab − static information about filesystems

DESCRIPTION
The file /etc/fstab describes the filesystems and swapping partitions used by the local machine. The system
administrator can modify it with a text editor. It is read by commands that mount, unmount, and check
the consistency of filesystems. The file consists of a number of lines of the form:

filesystem directory type options frequency pass

For example:

/dev/root / efs rw 0 0

Fields are separated by white space; a ‘#’ as the first non-white space character indicates a comment.

The entries from this file are accessed using the routines in getmntent(3), which return a structure of the
following form:

struct mntent {
char *mnt_fsname; /* filesystem name */
char *mnt_dir; /* filesystem path prefix */
char *mnt_type; /* e.g. efs, nfs, proc, or ignore */
char *mnt_opts; /* rw, ro, hard, soft, etc. */
int mnt_freq; /* dump frequency, in days */
int mnt_passno; /* parallel fsck pass number */

};

This structure is defined in the <mntent.h> include file. To compile and link a program that calls
getmntent(3), follow the procedures for section (3Y) routines as described in intro(3).

The mnt_dir field is the full pathname of the directory to be mounted on. The mnt_type field determines
how the mnt_fsname and mnt_opts fields are interpreted. Here is a list of the filesystem types currently
supported, and the way each of them interprets these fields:

xfs mnt_fsname must be a block special device (for example, /dev/root) or a logical volume.

efs mnt_fsname must be a block special device (for example, /dev/root) or a logical volume.

proc mnt_fsname should be the /proc directory. See proc(4).

fd mnt_fsname should be the /dev/fd directory. See fd(4).

IRIX Release 6.2 323

fstab(4)hh

nfs mnt_fsname is the path on the server of the directory to be served. (NFS option only).

cdfs A synonym for type iso9660 (see below). This type is required for MIPS ABI compliance.

iso9660 mnt_fsname must be a generic SCSI device. These are located in the directory /dev/scsi (for
example, /dev/scsi/sc0d7l0). See ds(7M). This filesystem type is used to mount CD-ROM discs in
ISO 9660 (with or without Rock Ridge extensions) and High Sierra formats. eoe2.sw.cdrom must
be installed in order to use the iso9660 filesystem type.

dos mnt_fsname must be a floppy device. These are located in the directory /dev/rdsk (for example,
/dev/rdsk/fds0d2.3.5). See smfd(7M).

hfs mnt_fsname must be either a floppy device or a generic SCSI device. Floppy devices are located
in the directory /dev/rdsk (for example, /dev/rdsk/fds0d2.3.5hi). See smfd(7M). SCSI devices are
located in the directory /dev/scsi (for example, /dev/scsi/sc0d4l0). See ds(7M).

swap mnt_fsname should be the full pathname to the file or block device to be used as a swap
resource.

cachefs mnt_fsname should be the filesystem name for the backing filesystem to be mounted as a cache
filesystem. This will either be the special filename (for example, /dev/scsi/sc0d7l0) or host :path .

rawdata mnt_fsname may be the block/char special device of the partition or logical volume to reserve
(mnt_dir is ignored). This entry enables the system utilities (for example, mkfs, mount, and so
on) to treat the raw partition or logical volume as ’mounted’, preventing the partition from
inadvertently being overwritten. Any packages that require dedicated raw partitions
(databases and so on) should consider placing a rawdata entry in fstab(4).

If the mnt_type is specified as ignore, then the entry is ignored. This is useful to show disk partitions not
currently used. mnt_freq is not used in current IRIX systems.

mnt_passno can be used to control the behavior of parallel filesystem checking on bootup, see fsck(1M).

The mnt_opts field contains a list of comma-separated option words. Some mnt_opts are valid for all
filesystem types, while others apply to a specific type only.

Options valid on all filesystems (the default is rw) are:

rw Read/write.

ro Read-only.

noauto Ignore this entry during a mount −−a command, to allow the definition of fstab entries for
commonly-used filesystems that should not be automatically mounted.

324 IRIX Release 6.2

fstab(4)hh

grpid Causes a file created within the filesystem to have the group ID of its parent directory, not the
creating process’s group ID.

nosuid Setuid execution not allowed for non-superusers. This option has no effect for the superuser.

nodev Access to character and block special files is disallowed.

Options specific to xfs filesystems are:

dmi Enable the Data Management Interface event callouts.

Options specific to efs filesystems (the default is fsck, noquota) are:

raw=path The filesystem’s raw device pathname (for example, /dev/rroot).

fsck fsck(1M) invoked with no filesystem arguments should check this filesystem.

nofsck fsck(1M) should not check this filesystem by default.

quota Disk quotas enforced.

noquota Disk quotas not enforced.

lbsize=n The number of bytes transferred in each read or synchronous write operation.

The value assigned to the lbsize option must be a power of two at least as large as the system
page size. This value is returned by the getpagesize(2) system call and is normally either 4096 or
16384 depending on the system type. The current default for lbsize is the largest power of two
less than or equal to the size of one disk track. An invalid size will cause the mount to fail with
the error EINVAL. Note that less than lbsize bytes will be transferred if there are not lbsize
contiguous bytes of the addressed portion of the file on disk.

Options specific to iso9660 filesystems (the default is rw, which has no effect since CD-ROM discs are
always read-only) are:

setx Set execute permission on every file on the mounted filesystem. The default is to make an
intelligent guess based on the first few bytes of the file.

notranslate
Don’t translate ISO 9660 filenames to UNIX filenames. The default is to convert upper case to
lower case and to truncate the part including and after the semicolon.

cache=blocks
Set the number of 2048 byte blocks to be used for caching directory contents. The default is to
cache 128 blocks.

IRIX Release 6.2 325

fstab(4)hh

noext Ignore Rock Ridge extensions. The default when the noext option is not specified is to use Rock
Ridge extensions if present.

susp Enable processing of System Use Sharing Protocol extensions to the ISO 9660 specification. This
is the default.

nosusp Disable processing of System Use Sharing Protocol extensions. This has the same effect as the
noext option.

rrip Enable processing of the Rock Ridge extensions. This is the default.

norrip Disable processing of the Rock Ridge extensions. This is equivalent to the noext option.

nmconv=[clm]
This option is supplied for MIPS ABI compliance; some non-IRIX systems may implement it
only for type cdfs, IRIX allows it with type iso9660 also. Only one of the three letters c, l, or m
can be specified. This option controls filename translation. c has the same meaning as
notranslate above. l requests translation to lower case (the IRIX default), and m suppresses the
version number (also the IRIX default).

NFS clients can mount iso9660, dos, and hfs filesystems remotely by specifying hostname:mountpoint for
filesystem and nfs for type, where an iso9660, dos, or hfs filesystem is mounted at mountpoint on the host
hostname. In this case, the same options apply as with nfs (see below).

If the NFS option is installed, the following options are valid for nfs filesystems:

vers=n Use NFS protocol version n. (The default is to try version 3, falling back to version 2 if the
version 3 mount fails.)

bg If the first attempt fails, retry in the background.

fg Retry in foreground. (Default)

retry=n Set number of mount failure retries to n. (Default = 10000)

rsize=n Set read buffer size to n bytes. (Default = 8K)

wsize=n Set write buffer size to n bytes. (Default = 8K)

timeo=n Set NFS timeout to n tenths of a second. (Default = 11)

retrans=n Set number of NFS retransmissions to n. (Default = 5)

326 IRIX Release 6.2

fstab(4)hh

port=n Set server UDP port number to n. (Default = 2049)

hard Retry request until server responds. (Default)

soft Return error if server doesn’t respond.

intr Allow accesses to be interrupted by the following signals: SIGHUP, SIGINT, SIGQUIT,
SIGKILL, SIGTERM, and SIGTSTP. (This is ‘‘off’’ by default.)

acregmin=t
Set the regular file minimum attribute cache timeout to t seconds. (Default = 3)

acregmax=t
Set the regular file maximum attribute cache timeout to t seconds. (Default = 60)

acdirmin=t
Set the directory minimum attribute cache timeout to t seconds. (Default = 30)

acdirmax=t
Set the directory maximum attribute cache timeout to t seconds. (Default = 60)

actimeo=t Set regular and directory minimum and maximum attribute cache timeouts to t seconds.

noac No attribute caching.

private Do not flush delayed writes on last close of an open file, and use local file and record locking
instead of a remote lock manager.

shortuid Do not let users with userids or groupids larger than 65535 (see id(1M)) create or own files.
Some versions of UNIX do not support large userids; trying to create a file with a large userid
on such an NFS server can produce undefined and surprising results.

symttl=t Set the time-to-live for symbolic links cached by NFS to t seconds. symttl=0 turns off NFS
symlink caching. The maximum value for t is 3600. (Default = 3600)

asyncnlm Use asynchronous NLM RPC calls. The default is to use synchronous NLM. Using this option
requires that lockd(1M) be running.

The bg option causes mount to run in the background if the server’s mountd(1M) does not respond. mount
attempts each request retry=n times before giving up.

Once the filesystem is mounted, each NFS request waits timeo=n tenths of a second for a response. If no
response arrives, the time-out is multiplied by 2, up to a maximum of MAXTIMO (900), and the request is
retransmitted. When retrans=n retransmissions have been sent with no reply a soft mounted filesystem
returns an error on the request and a hard mounted filesystem retries the request. Filesystems that are
mounted rw (read-write) should use the hard option. The number of bytes in a read or write request can

IRIX Release 6.2 327

fstab(4)hh

be set with the rsize and wsize options.

In the absence of client activity that would invalidate recently acquired file attributes, NFS holds attributes
cached for an interval between acregmin and acregmax for regular files, and between acdirmin and
acdirmax for directories. The actimeo option sets all attribute timeout constraints to a given number of
seconds. The noac option disables attribute caching altogether.

The private option greatly improves write performance by caching data and delaying writes on the
assumption that only this client modifies files in the remote filesystem. It should be used only if the greater
risk of lost delayed-write data in the event of a crash is acceptable given better performance. EFS uses
caching strategies similar to private NFS The system reduces the risk of data loss for all filesystems by
automatically executing a partial sync(2) at regular intervals.

Options specific to swap resources are:

pri=t Set the priority of the swap device to t. The legal values are from 0 to 7 inclusive.

swplo=t Set the first 512 byte block to use to t (default is 0).

length=t Set the number of 512 byte blocks to use to t (default is entire file/partition).

maxlength=t
Set the maximum number of 512 byte blocks to grow the swap area to t (default is to use
length).

vlength=t Set the number of virtual 512 byte blocks to claim this swap file has to t (default is to use
length).

All other options except for noauto are ignored for swap files.

If the CacheFS option is installed, the following options are valid for cachefs filesystems:

backfstype=file_system_type
The filesystem type of the back filesystem (for example, nfs). Any of the following filesystem
types may be used as the back filesystem: nfs, nfs3, iso9660 , dos , cdfs, kfs , or hfs. If this option is
not specified, the back filesystem type is determined from the filesystem name. Filesystem
names of the form hostname:path will be assumed to be type nfs.

backpath=path
Specifies where the back filesystem is already mounted. If this argument is not supplied,
CacheFS determines a mount point for the back filesystem.

cachedir=directory
The name of the cache directory.

328 IRIX Release 6.2

fstab(4)hh

cacheid=ID
ID is a string specifying a particular instance of a cache. If you do not specify a cache ID,
CacheFS will construct one.

write-around | non-shared
Write modes for CacheFS. In the write-around mode, writes are made to the back filesystem,
and the affected file is purged from the cache. Also in this mode, file and record locking is
performed through the back filesystem. You can use the non-shared mode (the default) when
you are sure that no one else will be writing to the cached filesystem. In this mode, all writes
are made to both the front and the back filesystem, and the file remains in the cache.

noconst By default, consistency checking is performed. Disable consistency checking by specifying
noconst only if you mount the filesystem read-only.

private Causes file and record locking to be performed locally. In addition, files remain cached when
file and record locking is performed. By default, files are not cached when file and record
locking is performed and all file and record locking is handled by the back filesystem.

local-access
Causes the front filesystem to interpret the mode bits used for access checking instead or having
the back filesystem verify access permissions.

purge Purge any cached information for the specified filesystem.

suid | nosuid
Allow (default) or disallow set-uid execution.

acregmin=n
Specifies that cached attributes are held for at least n seconds after file modification. After n
seconds, CacheFS checks to see if the file modification time on the back filesystem has changed.
If it has, all information about the file is purged from the cache and new data is retrieved from
the back filesystem. The default value is 30 seconds.

acregmax=n
Specifies that cached attributes are held for no more than n seconds after file modification.
After n seconds, all file information is purged from the cache. The default value is 30 seconds.

acdirmin=n
Specifies that cached attributes are held for at least n seconds after directory update. After n
seconds, CacheFS checks to see if the directory modification time on the back filesystem has
changed. If it has, all information about the directory is purged from the cache and new data is
retrieved from the back filesystem. The default value is 30 seconds.

IRIX Release 6.2 329

fstab(4)hh

acdirmax=n
Specifies that cached attributes are held for no more than n seconds after directory update.
After n seconds, all directory information is purged from the cache. The default value is 30
seconds.

actimeo=n
Sets acregmin, acregmax, acdirmin, and acdirmax to n.

bg This option causes mount to run in the background if the back filesystem mount times out.

disconnect
Causes the cache filesystem to operate in disconnected mode when the back filesystem fails to
respond. This causes read accesses to files already cached to be fulfilled from the front
filesystem even when the back filesystem does not respond.

NOTES
The default fstab contains the following entry for the /usr filesystem:

/dev/usr /usr efs rw,noquota,raw=/dev/rusr 0 0

The setup program MAKEDEV (see MAKEDEV(1M)) creates /dev/usr and /dev/rusr as links to partition 6 on
the root disk. This is the normal disk usage; however, if you wish to set up a machine with the /usr
filesystem residing elsewhere (for example, on a second disk or on a logical volume, described in lv(7M)),
the mnt_fsname field must be changed to the full pathname of the device where the /usr filesystem actually
resides. If present, the path specified by the raw option should also be changed to the corresponding full
pathname. For example:

/dev/dsk/ips0d1s7 /usr efs rw,raw=/dev/rdsk/ips0d1s7 0 0

Note that if this is done, the /dev/usr and /dev/rusr devices created by MAKEDEV do not point to the device
containing the /usr filesystem, and they should not be referenced.

Caution: Do not attempt to reconfigure a system with /usr in a non-default volume by manually recreating
these /dev/usr and /dev/rusr links and leaving the fstab entry unchanged. While this works in normal
operation, it leads to incorrect behavior when installing new software.

The filesystem types nfs2, nfs3, and nfs3pref are accepted for compatibility with earlier releases. nfs2 is
equivalent to vers=2. nfs3 is equivalent to vers=3. nfs3pref is equivalent to nfs with no vers= option.

FILES
/etc/fstab

330 IRIX Release 6.2

fstab(4)hh

SEE ALSO
cfsadmin(1M), fsck(1M), fsck_cachefs(1M), mount(1M), quotacheck(1M), quotaon(1M), swap(1M),
getmntent(3), fd(4), mtab(4), proc(4).

IRIX Release 6.2 331

gettydefs(4)hh

NAME
gettydefs − speed and terminal settings used by getty

DESCRIPTION
The /etc/gettydefs file contains information used by getty(1M) to set up the speed and terminal settings for a
line. It supplies information on what the login(1) prompt should look like. It also supplies the speed to try
next if the user indicates the current speed is not correct by typing a <break> character.

Note: Customers who need to support terminals that pass 8 bits to the system (as is typical outside the
U.S.) must modify the entries in /etc/gettydefs as described in the WARNINGS section.

Each entry in /etc/gettydefs has the following format:

label# initial-flags # final-flags # login-prompt #next-label

Each entry is followed by a blank line. The various fields can contain quoted characters of the form \b, \n,
\c, and so on as well as \nnn, where nnn is the octal value of the desired character. The various fields are:

label This is the string against which getty tries to match its second argument. It is often the
speed, such as 1200, at which the terminal is supposed to run, but it need not be (see below).

initial-flags These flags are the initial ioctl(2) settings to which the terminal is to be set if a terminal type
is not specified to getty . The flags that getty understands are the same as the ones listed in
/usr/include/sys/termio.h (see termio(7)). Normally only the speed flag is required in the
initial-flags . getty automatically sets the terminal to raw input mode and takes care of most
of the other flags. The initial-flag settings remain in effect until getty executes login.

final-flags These flags take the same values as the initial-flags and are set just before getty executes
login. The speed flag is again required. The composite flag SANE takes care of most of the
other flags that need to be set so that the processor and terminal are communicating in a
rational fashion. The other two commonly specified final-flags are TAB3, so that tabs are
sent to the terminal as spaces, and HUPCL, so that the line is hung up on the final close.

login-prompt This entire field is printed as the login-prompt. Unlike the above fields where white space is
ignored (a space, tab, or newline), they are included in the login-prompt field. As a special
feature, this field can contain the string $HOSTNAME, which is replaced by the current
hostname of the machine. See hostname(1) for more information.

next-label If this entry does not specify the desired speed, indicated by the user typing a <break>
character, then getty searches for the entry with next-label as its label field and sets up the
terminal for those settings. Usually, a series of speeds are linked together in this fashion,
into a closed set; for instance, 2400 linked to 1200, which is linked to 300, which finally is
linked to 2400.

332 IRIX Release 6.2

gettydefs(4)hh

If getty is called without a second argument, then the first entry of /etc/gettydefs is used, thus making the
first entry of /etc/gettydefs the default entry. It is also used if getty can not find the specified label. If
/etc/gettydefs itself is missing, there is one entry built into getty that brings up a terminal at 300 baud.

It is strongly recommended that after making or modifying /etc/gettydefs , it be run through getty with the
check option to be sure there are no errors.

FILES
/etc/gettydefs

SEE ALSO
getty(1M), login(1), stty(1), ioctl(2), termio(7).

WARNINGS
To support terminals that pass 8 bits to the system (see the BUGS section), modify the entries in the
/etc/gettydefs file for those terminals as follows: add CS8 to initial-flags and replace all occurrences of SANE
with the values: BRKINT IGNPAR ICRNL IXON OPOST ONLCR CS8 ISIG ICANON ECHO ECHOK.

An example of changing an entry in /etc/gettydefs is illustrated below. All the information for an entry must
be on one line in the file.

Original entry:

CONSOLE # B9600 HUPCL OPOST ONLCR # B9600 SANE IXANY TAB3
HUPCL # $HOSTNAME console Login: # console

Modified entry:

CONSOLE # B9600 CS8 HUPCL OPOST ONLCR # B9600 BRKINT IGNPAR
ICRNL IXON OPOST ONLCR CS8 ISIG ICANON ECHO ECHOK IXANY
TAB3 HUPCL # $HOSTNAME console Login: # console

This change permits terminals to pass 8 bits to the system so long as the system is in MULTI-USER state.
When the system changes to SINGLE-USER state, the getty is killed and the terminal attributes are lost. So
to permit a terminal to pass 8 bits to the system in SINGLE-USER state, after you are in SINGLE-USER
state, type (see stty(1)):

stty -istrip cs8

BUGS
8-bit with parity mode is not supported.

IRIX Release 6.2 333

hosts(4)hh

NAME
hosts − hostname-address database

DESCRIPTION
The /etc/hosts file contains information regarding the known hosts on the network. For each host a single
line should be present with the following information:

g Internet address

g official hostname

g aliases (optional)

Items are separated by any number of blanks and/or tab characters. A # indicates the beginning of a
comment; characters up to the end of the line are not interpreted by routines that search the file. For
example,

192.0.2.2 iris.widgets.com iris

This file must include entries for all of the machine’s network interfaces, the localhost address and a few
important machines on the local network. ifconfig(1M) uses this file when assigning addresses to the
network interfaces during system initialization.

By default, this file is used by gethostbyname(3N) and gethostbyaddr(3N) only when the NIS or the Berkeley
Internet name server (named(1M)) are not enabled. The system can be configured to use NIS, named,
and/or this file, as described in resolver(4).

If the host is not connected to any network, the file should contain an entry defining the hostname as an
alias for the localhost entry. For example, if the hostname is IRIS, the /etc/hosts file should contain this line:

127.1 localhost IRIS

Sites connected to the Internet should configure the system to use the name server. This file can be created
from the official host database maintained at the Network Information Center (NIC), though local changes
may be required to bring it up to date regarding unofficial aliases and/or unknown hosts. The host
database maintained at NIC is incomplete.

Network addresses are specified in the conventional dot (.) notation using the inet_addr() routine from the
Internet address manipulation library, inet(3N). Legal hostnames can contain any alphanumeric character,
the minus sign (−) and period (.). Periods are not part of the name but serve to separate components of a
domain-style name.

334 IRIX Release 6.2

hosts(4)hh

FILES
/etc/hosts

SEE ALSO
ifconfig(1M), named(1M), gethostbyname(3N), resolver(4), sys_id(4), hostname(5).

IRIX Release 6.2 335

inittab(4)hh

NAME
inittab − script for the init process

DESCRIPTION
The /etc/inittab file supplies the script to init’s role as a general process dispatcher. The process that
constitutes the majority of init’s process dispatching activities is the line process /etc/getty that initiates
individual terminal lines. Other processes typically dispatched by init are daemons and the shell.

The inittab file is composed of entries that are position dependent and have the following format:

id:rstate:action:process

Each entry is started with a character other than # and ended by a newline. Lines starting with # are
ignored. A backslash (\) preceding a newline indicates a continuation of the entry. Up to 512 characters
per entry are permitted. Comments can be inserted in the process field using the sh(1) convention for
comments. Comments in the process field of lines that spawn gettys are displayed by the who(1) command.
Such process field comments can contain information about the line such as its location. There are no limits
(other than maximum entry size) imposed on the number of entries within the inittab file. The entry fields
are:

id This field, of up to four characters, is used to uniquely identify an entry.

rstate This defines the run-level in which this entry is to be processed. Run-levels effectively correspond
to a configuration of processes in the system. That is, each process spawned by init is assigned a
run-level or run-levels in which it is allowed to exist.

The run-levels are represented by the letter s (or S), or a number ranging from 0 through 6. As an
example, if the system is in run-level 1, only those entries having a 1 in the rstate field are
processed.

When init is requested to change run-levels, all processes that do not have an entry in the rstate
field for the target run-level are sent the warning signal (SIGTERM) and allowed a grace period
(see init(1M) for the length of this grace period), before being forcibly terminated by a kill signal
(SIGKILL).

The rstate field can define multiple run-levels for a process by selecting more than one run-level in
any combination from 0−−6, s, and S. If no run-level is specified, the process is assumed to be
valid at all run-levels.

There are three other values, a, b, and c, that can appear in the rstate field, even though they are
not true run-levels. Entries that have these characters in the rstate field are processed only when
the telinit (see init(1M)) process requests them to be run (regardless of the current run-level of the
system). They differ from run-levels in that init can never enter run-level a, b, or c. Also, a
request for the execution of any of these processes does not change the current run-level.
Furthermore, a process started by an a, b, or c command is not killed when init changes levels.

336 IRIX Release 6.2

inittab(4)hh

They are only killed if their line in /etc/inittab is marked off in the action field, their line is deleted
entirely from /etc/inittab , or init goes into the SINGLE USER state.

action Key words in this field tell init how to treat the process specified in the process field. The actions
recognized by init are as follows:

respawn If the process does not exist then start the process. Do not wait for its termination
(continue scanning the inittab file) and when it dies restart the process. If the
process currently exists then do nothing and continue scanning the inittab file.

wait Upon init’s entering the run-level that matches the entry’s rstate , start the process
and wait for its termination. All subsequent reads of the inittab file while init is in
the same run-level causes init to ignore this entry.

once Upon init’s entering a run-level that matches the entry’s rstate , start the process, do
not wait for its termination. When it dies, do not restart the process. If upon
entering a new run-level, the process is still running from a previous run-level
change, the program is not restarted.

boot The entry is to be processed only at init’s boot-time read of the inittab file. init is to
start the process and not wait for its termination. When it dies, init does not restart
the process. In order for this instruction to be meaningful, the rstate should be the
default or it must match init’s run-level at boot time. This action is useful for an
initialization function following a hardware reboot of the system.

bootwait The entry is to be processed the first time init goes from single-user to multi-user
state after the system is booted. (If initdefault is set to 2, the process runs right
after the boot.) init starts the process, waits for its termination and, when it dies,
does not restart the process.

powerfail Execute the process associated with this entry only when init receives a power fail
signal (SIGPWR, see signal(2)).

powerwait Execute the process associated with this entry only when init receives a power fail
signal (SIGPWR) and wait until it terminates before continuing any processing of
inittab .

off If the process associated with this entry is currently running, send the warning
signal (SIGTERM) and wait 20 seconds before forcibly terminating the process via
the kill signal (SIGKILL). If the process is nonexistent, ignore the entry.

ondemand This instruction is really a synonym for the respawn action. It is functionally
identical to respawn but is given a different keyword in order to divorce its
association with run-levels. This is used only with the a, b or c values described in
the rstate field.

IRIX Release 6.2 337

inittab(4)hh

initdefault An entry with this action is only scanned when init initially invoked. init uses this
entry, if it exists, to determine which run-level to enter initially. It does this by
taking the highest run-level specified in the rstate field and using that as its initial
state. If the rstate field is empty, this is interpreted as 0123456 and so init enters
run-level 6. Additionally, if init does not find an initdefault entry in /etc/inittab , it
requests an initial run-level from the user at reboot time.

sysinit Entries of this type are executed before init tries to access the console (before the
Console Login: prompt). It is expected that this entry will be used only to initialize
devices on which init might try to ask the run-level question. These entries are
executed and waited for before continuing.

process This is a sh command to be executed. The entire process field is prefixed with exec and passed to a
forked sh as sh −−c ′′exec command ′′ . For this reason, any legal sh syntax can appear in the process
field. Comments can be inserted with the ; #comment syntax.

FILES
/etc/inittab

SEE ALSO
getty(1M), init(1M), sh(1), who(1), exec(2), open(2), signal(2).

338 IRIX Release 6.2

inode(4)hh

NAME
inode − format of an Extent File System inode

SYNOPSIS
#include <sys/param.h>
#include <sys/fs/efs_ino.h>

DESCRIPTION
An inode is the volume data structure used by the Extent File System (EFS) to implement the abstraction of
a file. (This is not to be confused with the in-core inode used by the operating system to manage memory-
resident EFS files.)

An inode contains the type (for example, plain file, directory, symbolic link, or device file) of the file; its
owner, group, and public access permissions; the owner and group ID numbers; its size in bytes; the
number of links (directory references) to the file; and the times of last access and last modification to the
file. In addition, there is a list of data blocks claimed by the file.

An inode under the Extent File System has the following structure.

#define EFS_DIRECTEXTENTS 12

/*
* Extent based filesystem inode as it appears on disk.
* The efs inode is 128 bytes long.
*/
struct efs_dinode {

ushort di_mode; /* type and access permissions */
short di_nlink; /* number of links */
ushort di_uid; /* owner’s user ID number */
ushort di_gid; /* group’s group ID number */
off_t di_size; /* number of bytes in file */
time_t di_atime; /* time of last access (to contents) */
time_t di_mtime; /* of last modification (of contents) */
time_t di_ctime; /* of last modification to inode */
long di_gen; /* generation number */
short di_numextents; /* # of extents */
u_char di_version; /* version of inode */
u_char di_spare; /* UNUSED */
union {

extent di_extents[EFS_DIRECTEXTENTS];
dev_t di_dev; /* device for IFCHR/IFBLK */

} di_u;
};

IRIX Release 6.2 339

inode(4)hh

The types ushort , off_t , time_t , and dev_t are defined in types(5). The extent type is defined as follows:

typedef struct extent {
unsigned int

ex_magic:8, /* magic #, must be 0 */
ex_bn:24, /* bb # on volume */
ex_length:8, /* length of this extent in bb’s */
ex_offset:24; /* logical file offset in bb’s */

} extent;

di_mode contains the type of the file (plain file, directory, and so on), and its read, write, and execute
permissions for the file’s owner, group, and public. di_nlink contains the number of links to the inode.
Correctly formed directories have a minimum of two links: a link in the directory’s parent and the ‘.’ link
in the directory itself. Additional links may be caused by ‘..’ links from subdirectories.

di_uid and di_gid contain the user ID and group ID of the file (used to determine which set of access
permissions apply: owner, group, or public). di_size contains the length of the file in bytes.

di_atime is the time of last access to the file’s contents. di_mtime is the time of last modification of the file’s
contents. di_ctime is the time of last modification of the inode, as opposed to the contents of the file it
represents. These times are given in seconds since the beginning of 1970 GMT.

di_gen is the inode generation number used to sequence instantiations of the inode.

An extent descriptor maps a logical segment of a file to a physical segment (extent) on the volume. The
physical segment is characterized by a starting address and a length, both in basic blocks (of 512 bytes) and
a logical file offset, also in basic blocks.

di_numextents is the number of extents claimed by the file. If it is less than or equal to
EFS_DIRECTEXTENTS then the extent descriptors appear directly in the inode as di_u.di_extents[0 ..
di_numextents-1]. When the number of extents exceeds this range, then di_u.di_extents[0 ..
di_u.di_extents[0].ex_offset-1] are indirect extents that map blocks holding extent information. There are at
most EFS_DIRECTEXTENTS indirect extents.

If the inode is a block or character special inode, di_u.di_numexents is 0, and di_u.di_dev contains a number
identifying the device.

If the inode is a symbolic link and di_u.di_numexents is 0, the symbolic link path string is stored in the
extent descriptor area of the inode. A symbolic link is created with in-line data only when the data string
fits within the extent descriptor area, and the tuneable parameter efs_line is non-zero (see systune(1M)).

340 IRIX Release 6.2

inode(4)hh

FILES
/usr/include/sys/param.h
/usr/include/sys/types.h
/usr/include/sys/inode.h
/usr/include/sys/stat.h

SEE ALSO
stat(2), efs(4), types(5).

IRIX Release 6.2 341

lvtab(4)hh

NAME
lvtab − information about logical volumes

DESCRIPTION
The file /etc/lvtab describes the logical volumes used by the local machine. There is an entry in this file for
every logical volume which is used by the system. It is read by commands that create, install and check the
consistency of logical volumes. The system administrator can modify it with a text editor to add new
logical volumes or to extend existing ones.

The file consists of entries which have the form:

volume_device_name:[volume_name]:[options:]device_pathnames

For example:

lv0:logical volume test:stripes=3:devs=/dev/dsk/ips0d1s7, \
/dev/dsk/ips0d2s7, /dev/dsk/ips0d3s7

Fields are separated by colons, and lines can be continued by the usual backslash convention as illustrated
above. A ‘#’ as the first non-white character indicates a comment; blank lines can be present in the file and
are ignored.

The fields in each entry have the following significance:

volume_device_name
This indicates the names of the special files through which the system accesses the logical volume.
In the above example, the entry lv0 implies that the logical volume is accessed via the device special
files /dev/dsk/lv0 and /dev/rdsk/lv0. Note that volume device names are expected to be of the
form ’lv’ followed by one or 2 digits; this is enforced by the logical volume utilities.

volume name
This is a human-readable identifying name for the logical volume. The logical volume labels on the
disks constituting a volume also carry a copy of the volume name, so utilities are able to check that
the logical volume on the disks physically present is actually the volume expected by /etc/lvtab .

This field can be null (indicated by a second colon immediately following the one terminating the
volume_device_name field). This is legal but deprecated, since in this case, no identity check of the
logical volume can be done by the utilities.

options
Some numerical options concerning the volume can appear. These are specified in the format
"option_name=number:". There must be no space between the option_name, the ’=’ sign, the
numerical value given, and the terminating colon. Note that since the number of options is variable,
the terminating colon is considered part of the option entry: it is not necessary to indicate omitted
options.

342 IRIX Release 6.2

lvtab(4)hh

Currently recognized options are:

stripes=
step=

The stripes option allows a striped logical volume to be created; the value of the parameter specifies
the number of ways the volume storage is striped across its constituent devices. If this option is
omitted, the logical volume is unstriped.

The step option is meaningful only for striped volumes (and is ignored otherwise); it specifies the
granularity with which the storage is to be round-robin distributed over the constituent devices. If
this option is omitted, the default step value is the device tracksize; this is generally a good value so
the step option is not normally needed. step is in units of 512-byte blocks.

device_pathnames
Following any numerical options, there must be a list of the block special file pathnames of the
devices constituting the logical volume. This is introduced by the keyword

devs=

The pathnames must be comma-separated.

Each pathname should be the name of the special file for a disk device partition in the /dev/dsk
directory. The partition must be one which is legal for use as normal data storage--it must not be
one of the dedicated partitions such as the disk volume label, track replacement area, and so on.

If the volume is striped, some restrictions apply: the number of pathnames must be a multiple of
stripes. Further, considering the pathnames as successive groups, each of stripes pathnames, the
devices in each group must be all of the same size.

To obtain best performance from striping, each disk (within every group of stripes disks) should be
on a separate controller.

The entries from this file are accessed using the routines in getlvent(3C), which returns a structure of the
following form:

struct lvtabent {
char *devname; /* volume device name */
char *volname; /* volume name (human-readable) */
unsigned stripe; /* number of ways striped */
unsigned gran; /* granularity of striping(step value)*/
unsigned ndevs; /* number of constituent devices */
int mindex; /* not currently used */
char *pathnames[1]; /* pathnames of constituent devices */

};

IRIX Release 6.2 343

lvtab(4)hh

This structure is defined in the <lvtab.h> include file.

FILES
/etc/lvtab

SEE ALSO
lvck(1M), lvinit(1M), mklv(1M), getlvent(3C), lv(7M).

344 IRIX Release 6.2

master(4)hh

NAME
master − master configuration database

DESCRIPTION
The master configuration database is a collection of files. Each file contains configuration information for a
device or module that can be included in the system. A file is named with the module name to which it
applies. This collection of files is maintained in a directory called /var/sysgen/master.d . Each individual file
has an identical format. For convenience, this collection of files is referred to as the master file, as though it
was a single file. This allows a reference to the master file to be understood to mean the individual file in the
master.d directory that corresponds to the name of a device or module.

The master file is used by the lboot(1M) program to obtain device information to generate the device driver
and configurable module files. master consists of two parts; they are separated by a line with a dollar sign
($) in column 1. Part 1 contains device information for both hardware and software devices and loadable
modules. Part 2 contains parameter declarations. Any line with an asterisk (*) in column 1 is treated as a
comment.

Part 1, Description
Hardware devices, software drivers, and loadable modules are defined with a line containing the following
information. Field 1 must begin in the leftmost position on the line. Fields are separated by white space
(tab or blank).

Field 1: Element characteristics:
o specify only once
r required device
b block device
c character device
t initialize cdevsw[].d_ttys
j filesystem
s software driver
f STREAMS driver
m STREAMS module
x not a driver; a loadable module
k kernel module
u a stubs module that is loaded after all other normal modules
n driver is fully semaphored for multi-processor operation; the n and p directives are

ignored on single-processor systems
p driver is not semaphored and should run on only one processor
w driver is prepared to perform any cache write back operation required on write data

passed via the strategy routine
d dynamically loadable kernel module

IRIX Release 6.2 345

master(4)hh

R auto-registrable dynamically loadable kernel module
N don’t allow auto-unload of dynamically loadable kernel module
D load, then unload a dynamically loadable kernel module
e ethernet driver

Field 2: Handler prefix (14 characters maximum).

Field 3: Software driver external major number; a dash (−) if not a software driver or to be assigned
during execution of lboot(1M). Multiple major numbers can be specified, separated by
commas.

Field 4: Number of sub-devices per device; a dash (−) if none.

Field 5: Dependency list (optional); this is a comma-separated list of other drivers or modules that
must be present in the configuration if this module is to be included

For each module, two classes of information are required by lboot(1M): external routine references and
variable definitions. Routine lines begin with white space and immediately follow the initial module
specification line. These lines are free form, thus they can be continued arbitrarily between non-blank
tokens as long as the first character of a line is white space. Variable definition lines begin after a line that
contains a $ in column one. Variable definitions follow C language conventions, with slight modifications.

Part 1, Routine Reference Lines
If the IRIX system kernel or other dependent module contains external references to a module, but the
module is not configured, these external references are undefined. Therefore, the routine reference lines
are used to provide the information necessary to generate appropriate dummy functions at boot time when
the driver is not loaded.

Routine references are defined as follows:

Field 1: Routine name ()

Field 2: The routine type; one of
{} routine_name(){}
{nulldev} routine_name(){nulldev();}
{nosys} routine_name(){return nosys();}
{nodev} routine_name(){return nodev();}
{false} routine_name(){return 0;}
{true} routine_name(){return 1;}
{fsnull} routine_name(){return fsnull();}
{fsstray} routine_name(){return fsstray();}
{nopkg} routine_name(){nopkg();}

346 IRIX Release 6.2

master(4)hh

{noreach} routine_name(){noreach();}

Part 2, Variables
Variables can be declared and (optionally) statically initialized on lines after a line whose first character is a
dollar sign ($). Variable definitions follow standard C syntax for global declarations, with the following
inline substitutions:

##M The internal major number assigned to the current module if it is a device driver; zero if this module
is not a device driver.

##E The external major number assigned to the current module; either explicitly defined by the current
master file entry, or assigned by lboot(1M).

##C The number of controllers present; this number is determined dynamically by lboot(1M) for
hardware devices, or by the number provided in the system file for non-hardware drivers or
modules.

##D The number of devices per controller taken directly from the current master file entry.

EXAMPLES
A sample master file for a shared memory module is named shm. The module is an optional loadable
software module that can only be specified once. The module prefix is shm, and it has no major number
associated with it. In addition, another module named ipc is necessary for the correct operation of this
module.

*FLAG PREFIX SOFT #DEV DEPENDENCIES
ox shm − − ipc

shmsys(){nosys}
shmexec(){}
shmexit(){}
shmfork(){}
shmslp(){true}
shmtext(){}

$
#define SHMMAX 131072
#define SHMMIN 1
#define SHMMNI 100
#define SHMSEG 6
#define SHMALL 512

struct shmid_ds shmem[SHMMNI];
struct shminfo shminfo = {

SHMMAX,
SHMMIN,

IRIX Release 6.2 347

master(4)hh

SHMMNI,
SHMSEG,
SHMALL,

};

This master file causes routines named shmsys, shmexec, and so on to be generated by the boot program if
the shm driver is not loaded and there is a reference to this routine from any other module loaded. When
the driver is loaded, the structure array shmem is allocated, and the structure shminfo is allocated and
initialized as specified.

A sample master file for a VME disk driver is named dkip. The driver is a block and a character device, the
driver prefix is dkip , and the external major number is 4. The VME interrupt priority level and vector
numbers are declared in the system file /var/sysgen/system (see lboot(1M)).

*FLAG PREFIX SOFT #DEV DEPENDENCIES
bc dkip 4 − io

$$$
/* disk driver variable tables */
#include "sys/dvh.h"
#include "sys/dkipreg.h"
#include "sys/elog.h"

struct iotime dkipiotime[##C][DKIPUPC]; /* io statistics */
struct iobuf dkipctab[##C]; /* controller queues */
struct iobuf dkiputab[##C][DKIPUPC]; /* drive queues */
int dkipmajor = ##E; /* external major # */

This master file causes entries in the block and character device switch tables to be generated if this module
is loaded. Since this is a hardware device (implied by the block and character flags), VME interrupt
structures are also generated by the boot program. The declared arrays are all sized to the number of
controllers present, which is determined by the boot program based on information in the system file
/var/sysgen/system .

FILES
/var/sysgen/master.d/*
/var/sysgen/system

SEE ALSO
lboot(1M), mload(4), system(4).

348 IRIX Release 6.2

mload(4)hh

NAME
mload − dynamically loadable kernel modules

DESCRIPTION
IRIX supports dynamic loading and unloading of modules into a running kernel. Kernel modules can be
registered and then loaded automatically by the kernel when the corresponding device is opened, or they
can be loaded manually. Similarly, dynamically loaded modules can be unloaded automatically or
manually if the module includes an unload entry point. A loadable kernel module can be a character,
block or streams device driver, a streams module, a library module or the idbg.o module.

Module Configuration
Each loadable module should contain the string:

char *prefixmversion = M_VERSION;

M_VERSION is defined in the mload.h header file, which should be included by the loadable module.

A loadable module must be compiled with the following cc options (use uname −−s to determine which set
of options to use; if IRIX64 is printed, use the 64-bit set, otherwise use the 32-bit set):

For 32-bit modules: −−non_shared −−elf −−G0 −−Wc,−−pic0 −−r −−d −−c −−jalr

For 64-bit modules: −−c −−non_shared −−elf −−G0 −−jalr −−64 −−mips3

−−non_shared
Produce a static executable. The output object created will not use any shared objects during
execution.

−−elf Produce an ELF object.

−−G0 Disable global pointer since it is not supported for loadable modules. For more information
about the global pointer, refer to gp_overflow(5).

−−Wc,−−pic0 Do not allocate extra stack space which is not necessary for non_shared objects.

−−r Retain relocation entries in the output file.

−−d Force definition of common storage and define loader defined symbols. Without this option,
space is not allocated in bss for common variables.

−−c Suppress the loading phase of the compilation and force an object file to be produced even if
only one program is compiled.

IRIX Release 6.2 349

mload(4)hh

−−jalr Force the compiler to produce jalr instructions rather than jal instructions. A jal instruction
has a 26 bit target, so if a module is loaded into K2SEG, for example, it could not call a kernel
routine in K0SEG.

−−64 Produce a 64-bit object.

−−mips3 Produce code using the full MIPS III (R4000) instruction set.

A loadable module must not be dependent on any loadable module, other than a library module. In order
to load a module comprised of multiple object files, the object files should be linked together into a single
object file, using the following ld options:

For 32-bit modules: −−non_shared −−elf −−G0 −−r −−d

For 64-bit modules: −−non_shared −−elf −−G 0 −−r −−d

Loading a Dynamically Loadable Kernel Module
Either lboot or the ml command can be used to load, register, unload, unregister, and list loadable kernel
modules. The lboot command parses module type, prefix and major number information from the
module’s master file found in the /var/sysgen/master.d directory. The loadable object file is expected to be
found in the /var/sysgen/boot directory. The ml command also provides a means of loading, registering and
unloading loadable modules, without the need for creating a master file or reconfiguring the kernel.

Load
When a module is loaded, the object file’s header is read; memory is allocated for the module’s text,
data and bss; the module’s text and data are read; the module’s text and data are relocated and
unresolved references into the kernel are resolved; a symbol table is created for the module; the
module is added to the appropriate kernel switch table; and the module’s init routine is called.

A module is loaded using the following ml command:

ml ld [-v] -[cbBfmi] module.o -p prefix [-s major major ...]
[-a modname]

If a module is loaded successfully, an id number is returned which can be used to unload the
module.

A module can also be loaded using lboot:

lboot -L master

350 IRIX Release 6.2

mload(4)hh

Register
The register command is used to register a module for loading when its corresponding device is
opened. When a module is registered, a stub routine is entered into the appropriate kernel switch
table. When the corresponding device is opened, the module is actually loaded.

A module is registered using the following ml command:

ml reg [-v] -[cbBfmi] module.o -p prefix [-s major major ...]
[-a modname] [-t autounload_delay]

If a module is registered successfully, an id number is returned which can be used to unregister the
module.

A module can also be registered using lboot:

lboot -R master

Unload
A module can be unloaded only if it provides an unload entry point. A module is unloaded using:

ml unld id [id id ...]

or

lboot -U id [id id ...]

Unregister
A module can be unregistered using:

ml unreg id [id id ...]

or

lboot -W id [id id ...]

List All loaded and/or registered modules can be listed using:

IRIX Release 6.2 351

mload(4)hh

ml list [-rlb]

or

lboot -V

Master File Configuration
If a dynamically loadable module has an associated master file, the master file should include a d in Field 1.
The d flag indicates to lboot that the module is a dynamically loadable kernel module. If the d flag is
present lboot will parse the module’s master file, but will not fill in the entry in the corresponding kernel
switch table for the module. All global data defined in the master file will be included in the generated
master.c file. The kernel should be configured with master files that contain the d option for each module
that will be a dynamically loadable module, if lboot will be used to load, register, unload, unregister or
autoregister the module. If the ml(1M) command will be used, then it is not necessary to create a master
file for the module.

Auto Registration
Loadable modules can be registered by lboot automatically at system startup when autoconfig is run. In
order for a module to be auto-registered, its master file should contain an R in Field 1, in addition to d,
which indicates that the module is loadable. When lboot runs at system startup, it registers each module
that contains an R in its master file. Modules which specify a particular major number are registered
before modules which pick a major number dynamically. If an rc2 script is added, which registers or loads
dynamically loadable modules, it should be run after the autoconfig rc2 script is run.

For more detailed information, see the lboot(1M), ml(1M), and master(4) reference pages.

Auto Unload
All registered modules that include an unload routine are automatically unloaded after last close, unless
they have been configured not to. Modules are unloaded five minutes after last close by default. The
default auto-unload delay can be changed by using systune to change the module_unld_delay variable. For
more information about systune, see the systune(1M) reference page. A particular module can be
configured with a specific auto-unload delay by using the ml command. A module can be configured to
not be auto-unloaded by either placing an N in the flags field of its master.d file, if it is registered using lboot,
or by using ml to register the module and using the −−t option.

Kernel Configuration
A kernel which supports loadable modules, should be configured so that the kernel switch tables generated
by lboot(1M) contain "extra" entries for the loadable modules. Extra entries are generated by lboot based on
the values of the following kernel tuneable parameters:

352 IRIX Release 6.2

mload(4)hh

* name default minimum maximum
bdevsw_extra 21 1 254
cdevsw_extra 23 3 254
fmodsw_extra 20 0
vfssw_extra 5 0

These tuneable parameters are found in the kernel /var/sysgen/mtune/kernel file and are set to the defaults
listed above. For more information about changing tuneable parameters, see the mtune(4) and systune(1M)
reference pages.

Module Entry Points
Loadable device drivers should conform to the SVR4 DDI/DKI standard. In addition to the entry points
specified by the DDI/DKI standard, if a loadable module is to be unloaded, the module needs to contain an
unload entry point:

int prefixunload (void)

An unload routine should be treated as an interrupt routine and should not call any routines that would
cause it to sleep, such as: biowait(), sleep(), psema() or delay().

An unload routine should free any resources allocated by the driver, including freeing interrupt vectors
and allocated memory and return 0.

Module Initialization
After a module is loaded, linked into the kernel and sanity checking is done, the modules’ initialization
routines, prefixinit(), prefixedtinit() and prefixstart() are called, if they exist. For more information on these
routines, refer to the SVR4 DDI/DKI Reference Manual and the IRIX Device Driver Programmer’s Guide.

Edt Type Drivers
For drivers that have an edtinit entry point, which get passed a pointer to an edt structure, lboot must be
used to load the driver. A vector line should be added to the system file for the driver, as it would for any
driver. When the module is loaded, using lboot, lboot parses the vector line from the system file to create an
edt structure which is passed through the kernel and to the driver’s edtinit routine. For more information,
see the system(4) reference page.

Library Modules
A library module is a loadable module which contains a collection of functions and data that other loaded
modules can link against. A library module can be loaded using the following ml command:

ml ld [-v] -l library.o

A library module must be loaded before other modules that link against it are loaded. Library modules
can not be unloaded, registered or unregistered. Only regular object files are supported as loadable library
modules.

IRIX Release 6.2 353

mload(4)hh

The idbg.o Module
The idbg.o module can be dynamically loaded into a running kernel, so that the kernel print utility,
idbg(1M), can be used without reconfiguring and rebooting a new kernel. The idbg.o module can be
dynamically loaded using the ml command:

ml ld -i /var/sysgen/boot/idbg.o

The idbg.o module can also be unloaded.

Other idbg modules, such as xfsidbg.o, xlvidbg.o, mloadidbg.o, and so on, can be loaded after idbg.o is loaded.
For example:

ml ld -i /var/sysgen/boot/xfsidbg.o -p xfsidbg.o

For more information, see the idbg(1M) reference page.

Loadable Modules and Hardware Inventory
Many device drivers add to the hardware inventory in their init or edtinit routines. If a driver is a
dynamically loadable driver and is auto-registered, it will not show up in the hardware inventory until the
driver has been loaded on the first open of the corresponding device. If a clean install or a diskless install is
done, a /dev entry will not get created by MAKEDEV for such a driver since it doesn’t appear in the
hardware inventory. If such a situation arises, the D master.d flag can be used to indicate that the driver
should be loaded, then unloaded by autoconfig. If the R master.d flag, which indicates that the driver should
be auto-registered, is also used, then the driver will be auto-registered as usual. A startup script can then
be added that will run MAKEDEV after autoconfig, if necessary. For an example, see the /etc/init.d/chkdev
startup script.

Kernel Runtime Symbol Table
A runtime symbol table which contains kernel routines and global data that modules can link against is
created from the ELF symbol information in the kernel that was booted. The runtime symbol table is
created automatically by the kernel from the file indicated by the kernname environment variable, which is
set by sash to the name of the file that was booted.

The symbol table is loaded with a default auto-unload timeout of five minutes, after which the symbol
table is automatically unloaded. The symbol table is automatically reloaded when needed to resolve
symbols (for example when a new or registered module is loaded).

The kernel runtime symbol table can also be loaded manually, using the ml command:

ml ld -r /unix

Or unloaded manually:

354 IRIX Release 6.2

mload(4)hh

ml unld id

Note that only one kernel runtime symbol table can exist at one time.

Auto-loading and unloading of the kernel runtime symbol table can be disabled using the
mload_auto_rtsyms systune variable. For more information about tuneable variables, see the systune(1M)
reference page.

Debugging Loadable Modules
symmon(1M) supports debugging of loadable modules. symmon commands that do a symbol table lookup,
such as: brk, lkup, lkaddr, hx and nm, also search the symbol tables created for loadable modules. The
msyms command can also be used to list the symbols for a particular loaded module:

msyms id

The mlist command can be used to list all of the modules that are currently loaded and/or registered.

For more information, see the symmon(1M) reference page.

Load/Register Failures
If a registered module fails to load, it is suggested that the module be unregistered and then loaded using
ml ld or lboot −−L, in order to get a more detailed error message about the failure. All of the error codes,
including a description of each, are listed in the mload.h header file, found in the /usr/include/sys directory.

The kernel will fail to load or register a module for any of the following reasons:

1. If autoconfig is not run at system startup, none of the dynamically loadable modules will be
registered or loaded.

2. If autoconfig fails for some reason, before it has processed the dynamically loadable module master.d
files, the modules will not be registered or loaded.

3. The major number specified either in the master file, or by the ml command, is already in use.

4. The object file is not compiled with the correct options, such as −−G0 and −−jalr.

5. The module is an "old style" driver, with either xxxdevflag set to D_OLD, or no xxxdevflag exists in
the driver.

6. A corrupted object file could cause "invalid JMPADDR" errors.

7. Not all of the module’s symbols were resolved by the kernel.

IRIX Release 6.2 355

mload(4)hh

8. The device switch table is full and has no more room to add a loadable driver.

9. Required entry points for the particular type of module are not found in the object file, such as
xxxopen for a character device driver.

10. All major numbers are in use.

11. An old sash is used to boot the kernel, which does not set the kernname environment variable,
which indicates the on-disk kernel image to load the runtime symbol table from (for example, /unix).
This will cause all loadable modules to fail to load or be registered. To find out what the kernname
environment variable is set to, use the nvram(1M) command:

nvram kernname

12. The runtime symbol table can not be loaded from the file indicated by the kernname environment
variable, because the file does not exist, the file is not the same as the running kernel or the kernel
was bootp’ed from another machine.

EXAMPLE 1
The following example lists the steps necessary to build a kernel and load a character device driver, called
dlkm, using the lboot command:

1. Add d to the dlkm master file:

*FLAG PREFIX SOFT #DEV DEPENDENCIES
cd dlkm 38 2

2. Make sure that the cdevsw_extra kernel tuneable parameter allows for extra entries in the cdevsw
table, the default setting in /var/sysgen/mtune/kernel is:

cdevsw_extra 23 3 254

The systune(1M) command also lists the current values of all of the tuneable parameters. If the
kernel is not configured to allow extra entries in the cdevsw table, use the systune command to
change the cdevsw_extra parameter:

> systune -i
systune-> cdevsw_extra 3
systune-> quit
>

356 IRIX Release 6.2

mload(4)hh

3. Build a new kernel and boot the target system with the new kernel.

4. Compile the dlkm.c driver:

For 32-bit modules:

cc -non_shared -elf -G0 -r -d -jalr -c dlkm.c

For 64-bit modules:

cc -non_shared -elf -G 0 -jalr -c dlkm.c

5. Copy dlkm.o to /var/sysgen/boot.

6. Load the driver into the kernel:

lboot -L dlkm

7. List the currently loaded modules to verify that the module was loaded:

lboot -V

EXAMPLE 2
The following example lists the steps necessary to load a character device driver, called dlkm, using the ml
command:

1. Follow step 2 from example 1.

2. Follow step 4 from example 1.

3. Load the driver into the kernel:

ml ld -c dlkm.o -p dlkm -s 38

If a major number is not specified, the first free major number in the MAJOR table is used. If the
load was successful, an id number is returned, which can be used to unload the driver.

4. List the currently loaded modules to verify that the module was loaded:

IRIX Release 6.2 357

mload(4)hh

ml list

CAVEATS
1. Loadable modules must not have any dependencies on loadable modules, other than library

modules. When a module is loaded, it is linked against the kernel symbol table and any loaded
library modules’ symbol tables, but it is not linked against other modules’ symbol tables.

2. Only character, block and streams device drivers, streams modules and library modules are
supported as loadable modules at this time.

3. Old style drivers (devflag set to D_OLD) are not loadable.

4. Kernel profiling does not support loadable modules.

5. Memory allocated may be in either K0SEG or in K2SEG. If the module is loaded into K2SEG static
buffers are not necessarily in physically contiguous memory.

SEE ALSO
cc(1), lboot(1M), ld(1), ml(1M), symmon(1M), systune(1M), master(4), mtune(4).

IRIX Device Driver Programmer’s Guide

358 IRIX Release 6.2

mtune(4)hh

NAME
mtune − default system tunable parameters

DESCRIPTION
The directory /var/sysgen/mtune contains information about all the system tunable parameters,
including default values. The files in this directory should never be changed. Instead, use the
systune(1M) utility to change parameters in the /var/sysgen/stune file.

Each loadable module can have its own mtune file, which is placed in the mtune directory and has the
same name as the module. Parameters in an mtune file may be grouped together in groups, according to
the nature of the parameters. For example, all parameters dealing with the number of processes that can
run on the system at any given time are grouped together in the numproc group in the kernel module.
The syntax of an mtune module file is given below:

[<group name>: [<flag>]]
<parameter clauses>

Names that end with a colon character, :, are group names. Parameters can be grouped together in
groups so that one sanity checking function can be used to verify the values and the dependencies between
these variables. The group name is optional if there is only one group in the module. For this case, the
configuration tools use the module name as the group name.

The group name is followed by a flag. The flag can be either run or static. If the flag is run, this
group of tunable variables can be changed with the command systune on a running system. Otherwise,
the variables are set at initialization time and can be changed only by creating a new kernel and booting
that kernel. Modules with no group specifier or a group specifier without a flag default to static.

Each tunable parameter is specified by a single line, a parameter clause, in the file. Blank lines and lines
beginning with # or * are considered comments and are ignored. The syntax for each line is:

<name>[,<tag>] <default value> [[<min value> [<max value> [ll|LL]]

<name> The name of the tunable parameter. It is used to pass the value to the system when a
kernel is built or changed by systune command. Since this name is made into a
global variable name, using a long descriptive name is useful to avoid any name
collisions.

<tag> This optional field is separated from <name> by a comma. It is used to qualify whether
the tunable parameter should be used in the configuration being built. This allows a
single tune file to be used in multiple different configurations. Parameters without
any <tag> are always used, those with a <tag> are only used if the tag matches one of
the <tag>s specified in the system file (see system(4)). Only one <tag> is permitted
on a given line.

IRIX Release 6.2 359

mtune(4)hh

<default value> The default value of the tunable parameter. If the value is not specified in the stune
file, this value is used when the system is built. This value is mandatory.

<min value> The minimum allowable value for the tunable parameter. If the parameter is set in the
stune file, the lboot command checks that the new value is equal to or greater than
this value. The command systune also verifies the new value against this value
before changing the system. This field is optional; a value of 0 is equivalent to not
specifying a value.

<max value> The maximum allowable value for the tunable parameter. If the parameter is set in the
stune file, the lboot command checks that the new value is equal to or less than this
value. The command systune also verifies the new value against this value before
changing the system. This field is optional; a value of 0 is equivalent to not specifying a
value.

ll|LL By default, each tunable parameter is represented by an global variable in the kernel of
type int (32 bits). Some tunable parameters may need to be specified as 64 bit
quantities. Adding an ll or LL to the end of the parameter specification causes
lboot to represent the parameter as a long long.

FILES
/var/sysgen/mtune/* default system tunable parameters
/var/sysgen/stune local settings for system tunable parameters
/var/sysgen/system/* master system configuration files

SEE ALSO
lboot(1M), systune(1M), stune(4), system(4).

360 IRIX Release 6.2

passwd(4)hh

NAME
passwd − password file

DESCRIPTION
/etc/passwd is an ASCII file containing entries for each user. Each field within each user’s entry is separated
from the next by a colon. Each user is separated from the next by a newline. An entry beginning with # is
ignored.

The passwd file contains the following information for each user:

name User’s login name −− consists of alphanumeric characters and must not be greater than eight
characters long. It is recommended that the login name consist of a leading lower case letter
followed by a combination of digits and lower case letters for greatest portability across
multiple versions of the UNIX operating system. This recommendation can be safely ignored
for users local to IRIX systems. The pwck(1M) command checks for the greatest possible
portability on names, and complains about user names that do not cause problems on IRIX.

password Encrypted password and optional password aging information. If the password field is null
(empty), no password is demanded when the user logs in. If the system is configured to use
shadow passwords, this field of /etc/passwd is ignored by all programs that do password
checking. See pwconv(1M) for information about shadow passwords.

numerical user ID
This is the user’s ID in the system and it must be unique.

numerical group ID
This is the number of the group that the user belongs to.

user’s real name
In some versions of UNIX, this field also contains the user’s office, extension, home phone, and
so on. For historical reasons this field is called the GECOS field. The finger(1) program can
interpret the GECOS field if it contains comma (‘‘,’’) separated subfields as follows:

name user’s full name
office user’s office number
wphone user’s work phone number
hphone user’s home phone number

An & in the user’s full name field stands for the login name (in cases where the login name
appears in a user’s real name).

initial working directory
The directory that the user is positioned in when they log in; this is known as the home
directory.

IRIX Release 6.2 361

passwd(4)hh

shell The program to use as the command interpreter (shell) when the user logs in. If the shell field is
empty, the Bourne shell (/bin/sh) is assumed. If the first character of this field is an *, then the
login(1) program treats the home directory field as the directory to be used as the argument to
the chroot(2) system call, and then loops back to reading the /etc/passwd file under the new root,
reprompting for the login. This can be used to implement secure or restricted logins, in a
manner similar to ftp(1C).

Password aging is used for a particular user if his encrypted password is followed by a comma and a non-
null string of characters from a 64-character alphabet (.,/,0-9, A-Z, a-z). The first character of the age, M
say, denotes the maximum number of weeks for which a password is valid. A user who attempts to login
after his password has expired is forced to change his password. The next character, m say, denotes the
minimum period in weeks that must expire before the password can be changed. If the second character is
omitted, zero weeks is the default minimum. M and m have numerical values in the range 0−63 that
correspond to the 64-character alphabet shown above (/ = 1 week, z = 63 weeks). If m = M = 0 (derived
from the string . or ..) the user is forced to change his password the next time he logs in (and the age
disappears from his entry in the password file). If m > M (signified, for example, by the string ./), only the
superuser is able to change the password.

The password file resides in the /etc directory. Because of the encrypted passwords, it has general read
permission and can be used, for example, to map numerical user ID’s to names.

NIS ENTRIES
If the NFS option is installed, the passwd file can also have lines beginning with a ‘+’ (plus sign) which
means to incorporate entries from the NIS. There are three styles of + entries in this file:

+ Means to insert the entire contents of the NIS password file at that point.

+name Means to insert the entry (if any) for name from the NIS at that point.

+@netgroup Means to insert the entries for all members of the network group netgroup at that point.

If a + entry has a non-empty password, directory, GECOS, or shell field, the value of that field overrides
what is contained in the NIS. The uid and gid fields cannot be overridden.

The passwd file can also have lines beginning with a ‘−−’ (minus sign) which means to disallow entries from
the NIS. There are two styles of ‘−−’ entries in this file:

−name Means to disallow any subsequent entries (if any) for name (in this file or in the NIS).

−@netgroup Means to disallow any subsequent entries for all members of the network group netgroup.

Password aging is not supported for NIS entries.

362 IRIX Release 6.2

passwd(4)hh

UID CONVENTIONS
User ID number restrictions and conventions in the UNIX community are few and simple.

Reserved:

UID 0 The superuser (aka root).

UID −1 Invalid UID. Used to pass your ID on a ’wire’ to remote systems. See system calls
like chmod(2).

UID −2 NFS ’nobody’. Note that because uid_t is unsigned, -2 is mapped to the special
value 60001 by NFS.

UID 60001 and 60002
For historical reasons, these values correspond to the users ‘‘nobody’’ and
‘‘noaccess’’, respectively. It is recommended that you not allocate these values to
real users.

Conventions:

UID 1 to 10 Commonly used for system pseudo users and daemons.

UID 11 to 99 Commonly used for uucp logins and ’famous users’.

UID 100 to 2147483647 (except for 60001 and 60002)
Normal users (start at 100). For historical reasons certain operations are restricted
for uids larger than 65535. Most significantly, these users cannot own files on an
efs(4) filesystem. This also means that they cannot run a program that allocates a
pty(7M) (for example, vi(1) and xwsh(1G)) if /dev resides on an efs(4) filesystem.

For these reasons, we recommend that large uids only be used on xfs(4) based
systems.

EXAMPLE
Here is a sample /etc/passwd file:

root:q.mJzTnu8icF.:0:10:superuser:/:/bin/csh
bill:6k/7KCFRPNVXg,z/:508:10:& The Cat:/usr2/bill:/bin/csh
+john:
+@documentation:no-login:
+::::Guest
nobody:*:-2:-2::/dev/null:/dev/null

In this example, there are specific entries for users root and bill, to assure that they can log in even when the
system is running stand-alone or when the NIS is not running. The user bill has 63 weeks of maximum
password aging and 1 week of minimum password aging. Programs that use the GECOS field replace the

IRIX Release 6.2 363

passwd(4)hh

& with ‘Bill’. The user john has his password entry in the NIS incorporated without change; anyone in the
netgroup documentation has their password field disabled, and anyone else is able to log in with their usual
password, shell, and home directory, but with a GECOS field of Guest. The user nobody cannot log in and is
used by the exportfs(1M) command.

FILES
/etc/passwd

SEE ALSO
login(1), passwd(1), pwck(1M), pwconv(1M), ypchpass(1), yppasswd(1), a64l(3C), crypt(3C),
getpwent(3C), exports(4), group(4), netgroup(4), shadow(4).

364 IRIX Release 6.2

profile(4)hh

NAME
profile − setting up an environment at login time

SYNOPSIS
/etc/profile
$HOME/.profile

DESCRIPTION
All users who have the shell, sh(1), as their login command have the commands in these files executed as
part of their login sequence.

/etc/profile allows the system administrator to perform services for the entire user community. Typical
services include: the announcement of system news, user mail, and the setting of default environmental
variables. It is not unusual for /etc/profile to execute special actions for the root login or the su(1M)
command.

The file $HOME/.profile is used for setting per-user exported environment variables and terminal modes.
The following example is typical (except for the comments):

Set the file creation mask to prohibit
others from reading my files.
umask 027
Add my own /bin directory to the shell search sequence.
PATH=$PATH:$HOME/bin
Set terminal type
eval ‘tset -S -Q‘
Set the interrupt character to control-c.
stty intr ˆc
List directories in columns if standard out is a terminal.
ls() { if [-t]; then /bin/ls -C $*; else /bin/ls $*; fi }

FILES
/etc/TIMEZONE timezone environment
$HOME/.profile user-specific environment
/etc/profile system-wide environment

SEE ALSO
env(1), login(1), mail(1), sh(1), stty(1), su(1M), tput(1), tset(1), terminfo(4), timezone(4), environ(5), term(5).

NOTES
Care must be taken in providing system-wide services in /etc/profile. Personal .profile files are better for
serving all but the most global needs.

IRIX Release 6.2 365

shadow(4)hh

NAME
shadow − shadow password file

DESCRIPTION
/etc/shadow is an access-restricted ASCII system file. The fields for each user entry are separated by
colons. Each user is separated from the next by a newline. Unlike the /etc/passwd file, /etc/shadow
does not have general read permission. To create /etc/shadow from /etc/passwd use the pwconv
command (see pwconv(1M)).

Here are the fields in /etc/shadow:

username The user’s login name (ID).

password A 13-character encrypted password for the user, a lock string to indicate that the login is not
accessible, or no string to show that there is no password for the login.

lastchanged The number of days between January 1, 1970 and the date that the password was last
modified.

minimum The minimum number of days required between password changes.

maximum The maximum number of days the password is valid.

warn The number of days before that password expires that the user is warned.

inactive The number of days of inactivity allowed for that user.

expire An absolute date specifying when the login can no longer be used.

flag Reserved for future use; set to zero. Currently not used.

The encrypted password consists of 13 characters chosen from a 64-character alphabet (., /, 0−9, A−Z,
a−z).

To update this file, use the passwd command.

FILES
/etc/shadow

SEE ALSO
login(1), passmgmt(1M), passwd(1), pwconv(1M), getspent(3C), putspent(3C), passwd(4).

366 IRIX Release 6.2

shadow(4)hh

NOTES
Shadow passwords can be used with NIS entries. If the shadow password file is present, each NIS entry
must have a distinct shadow password entry, and the NIS-supplied encrypted password is not used. This
effectively precludes the use of the NIS wildcard entry, +::-1:-1::: or netgroup (+@) expansions.

IRIX Release 6.2 367

stune(4)hh

NAME
stune − local settings for system tunable parameters

DESCRIPTION
The file /var/sysgen/stune contains local system settings for tunable parameters. The parameter
settings in this file replace the default values specified in /var/sysgen/mtune/*, if the new values are
within the legal range for the specified parameter. Blank lines and lines beginning with the # or *
characters are considered comments and are ignored. The file contains one line for each parameter to be
reset. The syntax for each line is:

parameter name[,tag] = value [ll|LL]

parameter name The name of the tunable parameter.

tag Optional field that if specified controls whether the parameter is used in the current
configuration. Use of this field can permit multiple configurations to be present in a
single stune file. See mtune(4) and system(4) for more details.

value The new value for the tunable parameter.

ll|LL This optional field specifies whether the parameter should be interpreted as a 32 or 64
bit quantity.

The file stune normally resides in /var/sysgen. You can edit this file, as root, as you find necessary.
However, it is suggested that you use the system tuning tool, systune(1M), instead of making changes
directly to the stune file. systune makes specified changes in the stune file for you. You should
never directly edit the default configuration files in the mtune directory.

FILES
/var/sysgen/mtune/* default system parameters
/var/sysgen/stune local settings for system tunable parameters

SEE ALSO
lboot(1M), systune(1M), mtune(4), system(4).

368 IRIX Release 6.2

system(4)hh

NAME
system − system configuration information directory

DESCRIPTION
This directory contains files (with the .sm suffix) that are used by the lboot program to obtain
configuration information. These files generally contain information used to determine if specified
hardware exists, a list of software drivers to include in the load, and the assignment of system devices such
as rootdev, as well as instructions for manually overriding the drivers selected by the self-configuring boot
process.

Each major subsystem can have its own configuration file, for example: irix.sm (base operating system
configuration file), gfx.sm (graphics subsystem configuration file), and so forth. lboot logically
concatenates all files in the system directory with the .sm suffix and processes the results.

The syntax of the system files is given below. The parser for the /var/sysgen/system/*.sm file is case
sensitive. All uppercase strings in the syntax below should be uppercase in the
/var/sysgen/system/*.sm file as well. Nonterminal symbols are enclosed in angle brackets, <>, while
optional arguments are enclosed in square brackets, []. Ellipses, ..., indicate optional repetition of the
argument for that line.

<fname> ::= master filename from /master.d directory
<func> ::= interrupt function name
<device> ::= special device name | DEV(<major>,<minor>)
<major> ::= <number>
<minor> ::= <number>
<proc> ::= processor # as interpreted by runon(1)
<number> ::= decimal, octal or hex literal

lboot can determine if hardware exists for a given module by use of probe commands. The syntax for
probe commands is:

<probe_cmd> ::= probe=<number>
[probe_size=<number>] | <extended_probe>

<extended_probe> ::= exprobe=<probe_sequence>
| exprobe=(<probe_sequence>,<probe_sequence>,...)

<probe_sequence> ::= (<seq>,<address>,<size>,<value>,<mask>)
<seq> ::= a sequence of 1 or more r’s, rn’s, or w’s, indicating a

read from <address> or a write to <address>
<address> ::= <number>
<size> ::= <number>
<value> ::= <number>

IRIX Release 6.2 369

system(4)hh

<mask> ::= <number>

In order to deal with the high degree of configurability of the newer systems, a new complementary set of
probe routines has been added which are used in conjunction with a new style of VECTOR line, described
later in this reference page. The new probe commands are the only means to detect peripherals on the
CHALLENGE and Onyx systems, but the new commands are supported on all Silicon Graphics platforms.

<probe_cmd> ::= probe_space=(<bus_space>,<number>
[probe_size=<number>] | <extended_probe>)

<extended_probe> ::= exprobe_space=<probe_sequence>
| exprobe_space=(<probe_sequence>,<probe_sequence>, ...)

<probe_sequence> ::= (<seq>,<bus_space>,<address>,<size>,
<value>,<mask>)

<seq> ::= a sequence of 1 or more r’s, rn’s, or w’s, indicating a
read from <address>, or a write to <address>.

<bus_space> ::= A16NP | A16S | A24NP | A24S | A32NP | A32S
<address> ::= <number>
<size> ::= <number>
<value> ::= <number>
<mask> ::= <number>

As shown from the grammar, there are two forms of probe commands. The first allows the specification of
an address to read, and optionally, a number of bytes to read. If a probe address is specified, the boot
program attempts to read probe_size bytes (default 4) to determine if the hardware exists for the module. If
the read succeeds, the hardware is assumed to exist, and the module is included.

The extended form specifies a sequence of one or more five-tuples used to determine if the hardware exists.
Each five-tuple specifies a read/write sequence, an address to read or write, a size of up to four bytes, a value,
and a mask. Then, for each five-tuple, the following is performed:

for each element in command do
if element == ’w’ then

if write(address, value & mask, size) != size then
failure

if element == ’r’ then
if read(address, temp, size) != size then

failure
if suffix == ’n’ then

if temp & mask == value & mask then
failure

else
if temp & mask != value & mask then

failure

370 IRIX Release 6.2

system(4)hh

The lines listed below can appear in any order. Blank lines can be inserted at any point. Comment lines
must begin with an asterisk. Entries for VECTOR, EXCLUDE, and INCLUDE are cumulative. For all other
entries, the last line to appear in the file is used -- any earlier entries are ignored.

There are two styles of VECTOR line. The first version is the historical version and does not work on
newer platforms such as the CHALLENGE and Onyx series. The second VECTOR command is the new
version that supports the CHALLENGE and Onyx series along with newer bus types such as EISA. The
second version is the preferred method since it works across all Silicon Graphics hardware platforms.

VECTOR: module=<fname> [intr=<func>]
[vector=<number> ipl=<number> unit=<number>] [base=<number>]
[base2=<number>] [base3=<number>]
[<probe_cmd>]
[intrcpu=<number>] [syscallcpu=<number>]

Specifies hardware to conditionally load. (Note that this must be a single line.) If a probe command
is specified, the boot program performs the probe sequence, as discussed above. If the sequence
succeeds, the module is included.

If a probe sequence is not specified, the hardware is assumed to exist. The intr function specifies
the name of the module’s interrupt handler. If it is not specified, the prefix defined in the module’s
master file (see master(4)) is concatenated with the string intr, and, if a routine with that name
is found in the module’s object (which resides in the directory /var/sysgen/boot), it is used as
the interrupt routine.

If the triplet (vector, ipl, unit, base) is specified, a VME interrupt structure is assigned, using the
corresponding VME address vector, priority level ipl, unit unit.

If the modules’ object contains a routine whose name is the concatenation of the master file prefix
and edtinit, that routine is involved once at startup and passed a pointer to an edt structure that
contains the values for base, base2, base3, and a pointer to the VME interrupt structure.

If intrcpu is specified, it hints to the driver the desired CPU to take interrupts on. This is only a hint
and may not be honored in all cases.

If syscallcpu is specified, it indicates the CPU to run non-MP driver syscalls on. This directive is
always honored for non-MP drivers, and is silently ignored by MP drivers. This option should be
used with caution because non-MP drivers may expect their syscalls and interrupts to run on the
same CPU.

VECTOR: bustype=<bustype> module=<fname> adapter=<number> ipl=<number>
[intr=<func>] [vector=<number>] [ctlr=<number>]
[iospace=(<address-space>,<address>,<size>)]
[iospace2=(<address-space>,<address>,<size>)]
[iospace3=(<address-space>,<address>,<size>)]

IRIX Release 6.2 371

system(4)hh

[<probe_cmd>]

Specifies hardware to conditionally load. (Note that this must be a single line.) If a probe command
is specified, the boot program performs the probe sequence, as discussed above. If the sequence
succeeds, the module is included.

If a probe sequence is not specified, the hardware is assumed to exist. The bustype specifies the type
of bus on which the device is connected. This is VME for a VME bus.

The adapter specifies to which bus of type bustype the device is connected. If adapter is set to *,
the system looks at each bus of type bustype to find the device.

The intr function specifies the name of the module’s interrupt handler. If it is not specified, the
prefix defined in the module’s master file (see master(4)) is concatenated with the string intr
and if a routine with that name is found in the module’s object (which resides in the directory
/var/sysgen/boot), it is used as the interrupt routine.

If the vector is not specified, it is assumed to be programmable. The ctlr field is used to pass a value
into the driver that is specific to the device. This can be used to identify which device is present
when there are multiple VECTOR lines for a particular device.

If the modules’ object contains a routine whose name is the concatenation of the master file prefix
and edtinit, that routine is involved once at startup and passed a pointer to an edt structure that
contains the values for iospace, iospace2, iospace3, and a pointer to the bus info structure.

EXCLUDE: [<string>] ...

Specifies drivers to exclude from the load even if the device is found via VECTOR information.

INCLUDE: [<string>[(<number>)]] ...

Specifies software drivers or loadable modules to be included in the load. This is necessary to
include the drivers for software devices. The optional <number> (parenthesis required) specifies
the number of devices to be controlled by the driver (defaults to 1). This number corresponds to the
builtin variable ##c which can be referred to by expressions in part two of the
/var/sysgen/master file.

ROOTDEV: <device>

Identifies the device containing the root filesystem.

SWAPDEV: <device> <number> <number>

372 IRIX Release 6.2

system(4)hh

Identifies the device to be used as swap space, the block number the swap space starts at, and the
number of swap blocks available.

DUMPDEV: <device>

Identifies the device to be used for kernel dumps.

IPL: <IRQ level> <proc>

Send VME interrupt at <IRQ level> to <proc>. If <proc> does not exist at run time, the kernel
defaults to use processor 0.

USE: [<string>[(<number>)] [<extended_probe>]] ...

If the driver is present, it is the same as INCLUDE. Behaves like EXCLUDE if the module or driver
is not present in /var/sysgen/boot.

KERNEL: [<string>] ...

Specifies the module containing the heart of the operating system. It must be present in the system
file.

NOINTR: <proc> ...

In CHALLENGE and Onyx systems, it provides a way to prevent processor(s) from receiving any
interrupt other than the VME IRQ levels defined using IPL directive. This can be used for marking a
processor for real time purpose. CPU 0 although should not be restricted from receiving interrupts.
This directive is ignored on all other platforms.

LINKMODULES: <1|0>

If set to 1, this option causes lboot to ignore the d option in all master files and link all necessary
modules into the kernel.

CC
LD

The names of the compiler and linker used to build the kernel. If absent, they default to cc and
ld, respectively.

CCOPTS
LDOPTS

IRIX Release 6.2 373

system(4)hh

Option strings given to cc(1) and ld(1) respectively, to compile the master.c file and link the
operating system.

TUNE-TAG: <string> ...

Sets a set of tags to be used to qualify the various tunable parameters for inclusion. If a tunable
parameter has no tag (see mtune(4)), it is always included. If a tunable parameter has a tag, it is
included only if the tag matches one of the tags specified by this parameter or via the −O option to
lboot. Tags can be used to permit a single set of mtune and stune files to represent many
different configurations.

FILES
/var/sysgen/system/*.sm
/usr/include/sys/edt.h

SEE ALSO
lboot(1M), master(4), mtune(4), stune(4).

374 IRIX Release 6.2

sys_id(4)hh

NAME
sys_id − system identification (hostname) file

DESCRIPTION
The file /etc/sys_id contains the name by which the system is known on communications networks such as
the Internet and UUCP. The name can be up to 64 alphanumeric characters long and can include periods
and hyphens. Periods are not part of the name but serve to separate components of a domain-style name.
For example:

iris.widgets.com

During system startup this file is read by the script /etc/rc2.d/S20sysetup and the contents are passed as a
parameter to hostname(1) to initialize the system name. Once this has been done, this name is returned by
the commands hostname(1) and uname(1) and by the system calls gethostname(2) and uname(2). uname(1)
returns only the first eight characters up to the first period.

FILES
/etc/sys_id

SEE ALSO
hostname(1), uname(1), gethostname(2), uname(2), hostname(5).

IRIX Release 6.2 375

ttytype(4)hh

NAME
ttytype − data base of terminal types by port

DESCRIPTION
ttytype is a database containing, for each tty port on the system, the kind of terminal that is attached to it.
There is one line per port, containing the terminal kind (as a name described in terminfo(4)), a space, and
the name of the tty, minus /dev/.

This information is read by tset(1) to initialize the TERM environment variable at login time.

EXAMPLE

iris-ansi console
vt100 ttyd1
?h19 ttyd2
?h19 ttyd3
?v50am ttyd4
?v50am ttyd5
?v50am ttyd6
?v50am ttyd7
?v50am ttyd8
?v50am ttyd9
?v50am ttyd10
?v50am ttyd11
?v50am ttyd12

FILES
/etc/ttytype

SEE ALSO
tset(1), terminfo(4).

376 IRIX Release 6.2

xfs(4)hh

NAME
xfs − layout of the XFS filesystem

DESCRIPTION
An XFS filesystem can reside on a regular disk partition or on a logical volume (see lv(7M) and xlv(7M)).
An XFS filesystem has up to three parts: a data section, a log section, and a real-time section. For disk
partition and lv logical volume filesystems, the real-time section is absent, and the log area is contained
within the data section. For XLV logical volume filesystems, the real-time section is optional, and the log
section can be separate from the data section or contained within it. The filesystem sections are divided
into a certain number of blocks, whose size is specified at mkfs(1M) time with the −−b option.

The data section contains all the filesystem metadata (inodes, directories, indirect blocks) as well as the
user file data for ordinary (non-real-time) files and the log area if the log is internal to the data section. The
data section is divided into a number of allocation groups. The number and size of the allocation groups are
chosen by mkfs so that there is normally a small number of equal-sized groups. The number of allocation
groups controls the amount of parallelism available in file and block allocation. It should be increased
from the default if there is sufficient memory and a lot of allocation activity. More allocation groups are
added (of the original size) when xfs_growfs(1M) is run.

The log section (or area, if it is internal to the data section) is used to store changes to filesystem metadata
while the filesystem is running until those changes are made to the data section. It is written sequentially
during normal operation and read only during mount. When mounting a filesystem after a crash, the log is
read to complete operations that were in progress at the time of the crash.

The real-time section is used to store the data of real-time files. These files had an attribute bit set through
fcntl(2) after file creation, before any data was written to the file. The real-time section is divided into a
number of extents of fixed size (specified at mkfs time). Each file in the real-time section has an extent size
that is a multiple of the real-time section extent size.

Each allocation group contains several data structures. The first sector contains the superblock. For
allocation groups after the first, the superblock is just a copy and is not updated after mkfs. The next three
sectors contain information for block and inode allocation within the allocation group. Also contained
within each allocation group are data structures to locate free blocks and inodes; these are located through
the header structures.

Each XFS filesystem is labeled with a unique universal identifier (UUID). (See uuid(3C) for more details.)
The UUID is stored in every allocation group header and is used to help distinguish one XFS filesystem
from another, therefore you should avoid using dd or other block-by-block copying programs to copy XFS
filesystems. If two XFS filesystems on the same machine have the UUID, xfsdump may become confused
when doing incremental and resumed dumps. (See xfsdump(1M) for more details.) xfs_copy or
xfsdump/xfsrestore are recommended for making copies of XFS filesystems.

IRIX Release 6.2 377

xfs(4)hh

All these data structures are subject to change, and the headers that specify their layout on disk are not
provided.

SEE ALSO
attr(1), grio(1M), mkfs(1M), mkfs_xfs(1M), xfs_bmap(1M), xfs_check(1M), xfs_copy(1M), xfs_estimate(1M),
xfs_growfs(1M), xfs_logprint(1M), xfsdump(1M), xfsrestore(1M), fcntl(2), syssgi(2), uuid(3C),
filesystems(4), lv(7M), xlv(7M).

378 IRIX Release 6.2

availmon(5)hh

NAME
availmon − overview of system availability monitoring facilities

DESCRIPTION
The availability monitor (availmon) is a set of programs that collectively monitor and report the availability
of a system and the diagnosis of system crashes. Using the monitor, it is possible to collect information
such as the time a system became available (start-time), the duration for which it was available (up-time),
the time it became unavailable (stop-time), the reason it became unavailable (stop-reason), the time it
became available again (restart-time), and the duration for which it was unavailable (down-time).

The monitor differentiates controlled shutdowns (initiated by operators through shutdown(1M), halt(1M),
and init(1M)), system panics (due to hardware errors or known fault points in kernel, for example, failed
assertions), power failures, power cycles, and system resets (usually due to system hangs). If a memory
dump is created and icrash(1M) is installed, the icrash report (including FRU analyzer report for high-end
machines) is collected. Important syslog messages are also collected to help debugging. If FRU analyzer
reports a problem related to hardware failure, the panic is determined to be due to hardware faults;
otherwise, the panic is assumed to be due to software faults.

Controlled shutdowns can be initiated by an operator for a variety of reasons. From the point of view of
classifying faults, these reasons can be grouped into two broad categories−−planned and abnormal. For
example, a shutdown to accommodate a pre-planned power outage is considered routine, as it does not
reflect a fault in the system. On the other hand, a shutdown to replace faulty hardware is abnormal. At the
time of shutdown (through shutdown(1M), halt(1M), and init(1M)), the operator is prompted to choose from
one of the predefined set of reasons, so that availmon can classify the shutdown.

Information collected at a given system can be mailed (through internet) to concentrator accounts (that is,
at Silicon Graphics) automatically, which can then maintain logs or databases of all systems being
monitored. The default configuration, once enabled, sends information to Silicon Graphics Technical
Support for entry into the Silicon Graphics availability database. Mailing of information does not
compromise security; mail messages can be encoded. This encoding is safe to use in an international
environment (it does not use DES, which is available only in the United States).

If a user chooses not to use internet mail to disseminate information, a concentrator account local to the
user’s network (possibly a special account at a server machine) can be chosen. Periodically, a system
administrator can print the reports, and the reports can be security-cleared before being sent to Silicon
Graphics.

CONFIGURATION
Once availmon is installed, the following configuration parameters can be used to control its operation.

autoemail The flag autoemail (see amconfig(1M)) controls the automatic emailing of the availmon
reports. If the autoemail flag is off, only logging operations are performed; no email is
sent to concentrator accounts. Default is off; autoemail is turned on by amregister(1M).

IRIX Release 6.2 379

availmon(5)hh

shutdownreason The flag shutdownreason (see amconfig(1M)) controls the shutdown reason query for
controlled shutdowns. If the shutdown flag is off, no question is asked, and the
shutdown reason is unknown. Default is on for high-end systems, off otherwise.

tickerd The flag tickerd (see amconfig(1M)) controls the ticker daemon that estimates system up
time for system hangs. If the tickerd flag is off, the down time for system hangs is
assumed to be one minute. Default is on for high-end systems, off otherwise.

autoemail.list The config file autoemail.list is used to specify lists of internet mail addresses of
concentrator accounts for availmon reports and email formats. At least one white space
character (blank, tab) should be used to separate two addresses in each list. The default
autoemail.list specifies sending a diagnosis report to availmon@csd.sgi.com
(compressed and encrypted).

REPORT VIEWING
The command amreport(1M) is provided to review availmon reports and to provide statistical availability
information. This program can process local availability log files or received aggregate availability reports
(site log file) from different systems.

amreport shows the statistical reports and availability reports hierarchically from overall statistics for all
systems, a table of statistics for all systems (if the input is a local log file, the above information is not
provided), statistics for each system, a table of all reboot instances for each system, to availability reports
for each system. Please refer to amreport(1M) for details.

ADMINISTRATION EXAMPLES
Three examples are provided to illustrate the administration of availmon. The first (standard) example is
for general customers that can send availmon reports to Silicon Graphics Technical Support and local
Silicon Graphics support automatically. The second example is for secure sites that do not send out
availmon reports automatically, but the system administrators would like to receive notice about system
reboots and decide whether to send reports to Silicon Graphics. The reports can be filtered before sending.
The third example is also for secure sites, except that no report is sent. System administrators need to
check the system and process the reports themselves.

Standard Example
If availmon is installed on only one system, reboot the system after installation. Run amregister without any
argument to register (turning on auto-email sends registration reports automatically) and configure the
email lists. If the system is not IP19, IP21, IP22, or IP25, amregister asks to input system’s serial number
(from the back of the machine). shutdownreason and tickerd can be turned on or off anytime. The
default autoemail.list is:

availability(compressed,encrypted):
availability(compressed):
availability(text):
diagnosis(compressed,encrypted): availmon@csd.sgi.com

380 IRIX Release 6.2

availmon(5)hh

diagnosis(compressed):
diagnosis(text):

In addition, the following may be desired:

availability(text): local_sysadmin
diagnosis(compressed,encrypted): local_SGI_support

If encrypted data in email is prohibited by law, move addresses in "(compressed,encrypted)" lists to
"(compressed)" lists.

If availmon is installed on several systems, a site log file and automatic registration may be desired. After
installing availmon and rebooting all systems, create an email alias in the system’s aliases on the mail server
or one system, pipeline availability reports to amreceive, and then append the output to a file. For example,
if the site logfile is /disk/amrlog, add one line to mail server’s /etc/aliases:

amrlog: "| /var/adm/avail/amreceive >> /disk/amrlog"

and run newaliases(1M) to set up this email alias. Then, run amconfig on one system to configure email lists.
For example,

availability(compressed,encrypted):
availability(compressed):
availability(text): local_sysadmin amrlog
diagnosis(compressed,encrypted): availmon@csd.sgi.com local_SGI_support
diagnosis(compressed):
diagnosis(text):

Copy /var/adm/avail/config/autoemail.list on this system to the rest of systems. Then, run amregister −−r on all
IP19, IP21, IP22, and IP25 systems. Writing a script and using rsh can automate this process. If
shutdownreason or tickerd need to be turned off on some high-end systems (or on for some low-end
systems), run amconfig shutdownreason off (on) or amconfig tickerd off (on) on those systems. For other
platforms, run amregister −−r −−s serial_number to specify serial numbers, or run amregister without any
option to input serial numbers. The serial numbers are important for Silicon Graphics Technical Support,
so please provide this information. After everything is set up, amreport −−s /disk/amrlog shows the overall
statistics, system statistics, and individual availability reports.

Example for Secure Sites with Internal Report Mailing
The setup procedure is similar to Standard Example (excluding availmon@csd.sgi.com and
local_SGI_support from autoemail.list. After system administrators receive availmon reports, they can check
the latest diagnosis report, /var/adm/crash/diagreport, on the system just rebooted, delete any sensitive data,
and use amsend to mail the filtered report to availmon@csd.sgi.com and local Silicon Graphics support
people. If the diagnosis report contains any ICRASH, SYSLOG, HINV, VERSIONS, or GFXINFO data,
amsend −−i −−z −−x availmon@csd.sgi.com local_SGI_support should be used to mail the report; if there is no
such data in the report, use amsend −−d −−z −−x availmon@csd.sgi.com local_SGI_support. If encrypted data

IRIX Release 6.2 381

availmon(5)hh

in email is prohibited by law, remove −−x from the command.

Example for Secure Sites without Internal Report Mailing
Nothing special needs to be set up for this case. However, for those platforms not IP19, IP21, IP22, and
IP25, amregister should still be run without any argument to input serial numbers and then to turn off
autoemail so that reports generated by these systems are not automatically sent. shutdownreason and
tickerd can also be turned on or off.

Since there is no report mailed after a system reboots, system administrators need to check if the system
has been down and then evaluate the reports. If the system crashes more than once before checking, old
reports are overwritten by the new one (core dumps and icrash reports are kept until being removed
explicitly). Therefore, internal report mailing is recommended for secure sites.

Diagnosis reports can be sent to Silicon Graphics using amsend (check previous example for details).
Another method is to run amconfig to configure standard email lists so that when reports need to be sent,
amnotify can be used to send reports according to those lists.

FILES
/var/adm/avail/config/{autoemail,shutdownreason,tickerd}

configuration flag files
/var/adm/avail/config/autoemail.list

autoemail list configuration file
/var/adm/avail/availlog primary log of availability monitor
/var/adm/avail/uptime uptime in minutes (resolution of five minutes)
/etc/init.d/availmon init script that logs start/stop and initiates notification

SEE ALSO
Mail(1), amconfig(1M), amnotify(1M), amparse(1M), amreceive(1M), amregister(1M), amreport(1M),
amsend(1M), amtickerd(1M), chkconfig(1M), halt(1M), init(1M), shutdown(1M).

382 IRIX Release 6.2

dks(7M)hh

NAME
dks, jag − dksc (SCSI) disk driver

SYNOPSIS
/dev/dsk/dks*
/dev/dsk/jag*
/dev/rdsk/dks*
/dev/rdsk/jag*

DESCRIPTION
There can be up to seven SCSI drives attached per SCSI bus (15 for controllers that support wide SCSI),
each of which can support a number of logical units (luns). The current limit is eight luns. Each unit (or
lun) can have up to 16 partitions in use, three of which (8, 9, and 10) are special (see below).

Disk devices are named according to the following formats:

/dev/rdsk/dkscontroller-#ddrive-#{spartition-#|vh|vol}
/dev/rdsk/dkscontroller-#ddrive-#llun-#{spartition-#|vh|vol}
/dev/dsk/dkscontroller-#ddrive-#spartition-#
/dev/dsk/dkscontroller-#ddrive-#llun-#spartition-#
/dev/rdsk/jagcontroller-#ddrive-#{spartition-#|vh|vol}
/dev/dsk/jagcontroller-#ddrive-#spartition-#

The rdsk devices use a raw interface to communicate with the disk, while the dsk devices use a block
interface. The controller-#, drive-#, and lun-# are used to indicate SCSI controller number, target ID, and
logical unit number, respectively. spartition-#, vh, and vol indicate a partition of the disk. The vh and vol
devices are only in the rdsk directory, since they are normally used only for ioctl and raw access.

The standard partition allocation by Silicon Graphics has root on partition 0, swap on partition 1, and
(optionally) /usr on partition 6. Some systems, such as the Indy, are shipped from the factory with a single
filesystem on the system disk for ease of administration. In this case, partition 6 is not used. Partition 7
(when present), normally maps the entire usable portion of the disk (excluding the volume header).
Partition 8 (vh) maps the volume header (see prtvtoc(1M), dvhtool(1M)). Partition 10 (vol) maps the entire
drive. Partition 9 is reserved, but is not used for disks with the dksc driver. Devices are not created
automatically by MAKEDEV for the other partitions, and if used, must be created manually, or by
modifying MAKEDEV.

The standard configuration has /dev/root linked to partition 0 of the system disk, with /dev/swap linked to
partition 1 of the system disk, and /dev/usr linked to partition 6 of the system disk. Systems that do not use
partition 6 as shipped, instead using just the s0 and s1 partitions, still have a link made. There is no
attempt to make the link to the device used for the /usr filesystem in the fstab(4) file, if present, even if it
uses a different device. Option disks normally use the s7 partition as a single filesystem, containing the
whole usable portion of the disk.

IRIX Release 6.2 383

dks(7M)hh

IOCTL FUNCTIONS
As well as normal read and write operations, the driver supports a number of special ioctl(2) operations
when opened via the character special file in /dev/rdsk . Command values for these are defined in the
system include file <sys/dkio.h>, with data structures in <sys/dksc.h>.
These ioctl operations are intended for the use of special-purpose disk utilities. Many of them can have
drastic or even fatal effects on disk operation if misused; they should be invoked only by the
knowledgeable and with extreme caution!

A list of the ioctl commands supported by the dks driver is given below.

DIOCADDBB
Adds a block to the badblock list. The argument is the logical block number (not a pointer) on the
drive. For some makes of drives, the spared block must be written before the sparing takes effect.
Only programs running with superuser permissions can use this ioctl.

DIOCDRIVETYPE
The first SCSI_DEVICE_NAME_SIZE bytes (currently 28) of the SCSI inquiry data for the drive is
returned to the caller. The argument is a pointer to a char array of at least this size. This contains
vendor and drive specific information such as the drive name and model number. See a SCSI
command specification for details on the structure of this buffer.

DIOCFORMAT
Formats the entire drive. Any information on the drive is lost. The grown defect list (blocks spared
with DIOCADDBB) is empty after formatting is complete, blocks previously in the grown defect list
are no longer spared.

DIOCGETVH
Reads the disk volume header from the driver into a buffer in the calling program. The argument in
the ioctl call must point to a buffer of size at least 512 bytes. The structure of the volume header is
defined in the include file <sys/dvh.h>. The corresponding call DIOCSETVH sets the drivers idea of
the volume header; in particular, the drivers idea of the partition sizes and offsets is changed.

DIOCPREVREM
Issues a PREVENT ALLOW MEDIA REMOVAL command to the opened device. The first bit of the
arg is or’d into byte 4 of the SCSI command. See a SCSI command specification for details on this
command.

DIOCRDEFECTS
The argument is a pointer to a struct dk_ioctl_data. The i_addr field points to a structure like:

structure defect_list {
struct defect_header defhdr;
struct defect_entry defentry[NENTS];

384 IRIX Release 6.2

dks(7M)hh

};

The i_len field is set to the total length of the structure, which must be less than NBPP from
<sys/param.h>; at most NENTS defects are returned. The actual number of defects can be
determined by examining the defhdr.defect_listlen value, which is the number of bytes returned.
This must be divided by the size of the applicable data structure for the type requested. The i_page
field should be set to the bits identifying the badblock reporting type. These bits request the
combination of manufacturer’s and grown defects; and one of bytes from index, physical
cyl/head/sec, vendor unique. The only combination that works with all currently supported SCSI
disks is type cyl/head/sec; and either combined manufacturer’s and grown defects, or just
manufacturer’s defects.

DIOCREADCAPACITY
The arg is a pointer to an unsigned integer. The value returned is the number of usable sectors on
the drive (as read from the drive).

DIOCSCSIINQ
The arg is a pointer to a char array at least SCSI_INQUIRY_LEN bytes long. The SCSI inquiry data
from the device is copied to this buffer. See a SCSI command specification for details on the
structure of this buffer.

DIOCSENSE / DIOCSELECT
The argument is a pointer to a struct dk_ioctl_data. This allows sending SELECT and SENSE
commands to the drive. See the ANSI SCSI specification and individual manufacturer’s manuals for
allowed page numbers and valid values. Only programs running with superuser permissions can
use the DIOCSELECT ioctl.

DIOCSTARTSTOP
This command issues a SCSI STARTSTOP command to the opened device. The first two bits of the
arg are or’d into byte 4 of the SCSI command. See a SCSI command specification for details on this
command.

DIOCTEST
issues the SCSI "Send Diagnostic" command to the drive. The exact tests done are manufacturer
specific. The ioctl call returns 0 upon success, or sets errno to EIO and returns −1 upon failure.

FILES
/dev/dsk/dks*
/dev/rdsk/dks*
/dev/dsk/jag*
/dev/rdsk/jag*
/dev/root
/dev/usr
/dev/swap

IRIX Release 6.2 385

dks(7M)hh

SEE ALSO
dvhtool(1M), fx(1M), prtvtoc(1M).

NOTE
The driver attempts to negotiate synchronous SCSI mode with the drive when it is opened. When
supported by the drive, this results in greater disk throughput, and better SCSI bus utilization when
multiple devices are attached to the SCSI bus. If problems occur because of this (due to use of
unsupported drives that don’t properly handle this negotiation), you can disable this negotiation by
changing the wd93_syncenable and wd93_syncperiod variables in the file /var/sysgen/master.d/wd93 as
described by the comments in that file, and linking a new kernel with lboot(1M).

Another variable of possible interest in /var/sysgen/master.d/wd93 is wd93_enable_disconnect. If this variable
is set to 0, the SCSI host adapter is programmed to NOT support device disconnects. This can be useful
with devices that don’t support disconnect, which might otherwise cause SCSI bus timeouts. It is also
useful with devices that purport to support disconnect, but which don’t work correctly when it is enabled.
The capability to configure these features is not currently supported for the jag controllers. See the
wd95_bus_flags array in /var/sysgen/master.d/wd95 for similar capabilities on the wd95 scsi bus.

The kernel automatically disables the synchronous SCSI mode for systems that do not support this feature
regardless of what is set in wd93_syncenable.

386 IRIX Release 6.2

intro(7)hh

NAME
intro − introduction to special files

DESCRIPTION
This section describes various special files that refer to specific hardware peripherals, and IRIX system
device drivers. STREAMS (see intro(2)) software drivers, modules, and the STREAMS-generic set of ioctl(2)
system calls are also described.

For hardware-related files, the names of the entries are generally derived from names for the hardware, as
opposed to the names of the special files themselves. Characteristics of both the hardware device and the
corresponding IRIX system device driver are discussed where applicable.

Disk device filenames are described in dks(7M).

Tape device filenames are in the following format:

/dev/rmt/typecontrollerdunit{nr}{ns|s}{v}{stat}{.density}

Where:

type Identifies the controller type.

controller Indicates the controller number.

unit Indicates the device attached to the controller.

nr Indicates a non rewinding interface.

ns Indicates bytes are not swapped. This should be used for all tape types other than QIC, in
almost all cases. It should also be used for QIC tapes imported from or exported to systems
other than IRIX.

s Indicates bytes are swapped by the driver, primarily for backwards compatibility with older
Silicon Graphics systems.

v Indicates that the variable blocksize device should be used. This device writes a single
logical block per read or write system call. The fixed block device transfers 1 or more logical
blocks per read or write system call. Variable mode is preferred on 9-track, DAT, and often
when importing or exporting 8mm media from non-IRIX systems.

stat A special device that can be used only for the MTIOCGET ioctl. All other I/O requests and
ioctls fail with the EINVAL errno.

IRIX Release 6.2 387

intro(7)hh

.density Optionally specifies the media density, where appropriate. For devices with only one
density setting, density can be omitted. The . is used to keep the unit from visually merging
with the density.

The /dev/mt directory exists as a link to /dev/rmt as a portability aid; IRIX does not support block mode tape
access. Not all tape types support all of these options. For backwards compatibility, a tape device with
neither ns, nor s is created. It is normally the same device as the s device for QIC tapes and ns for all other
tape types.

SEE ALSO
MAKEDEV(1M), fx(1M), hinv(1M), mt(1), prtvtoc(1M).

NOTE
The other devices in section 7 can be listed with:

man -w 7 ’*’

or all of them can be read with:

man 7 ’*’

388 IRIX Release 6.2

keyboard(7)hh

NAME
keyboard − keyboard specifications

DESCRIPTION
The keyboard is an up-down encoded 101-key keyboard.

The keyboard connects to the main electronics cabinet through a shielded partially coiled cord and is
detachable at the system cabinet only. The mouse plugs into either side of the keyboard. Ports are
provided on both sides of the enclosure to allow access to left-handed and right-handed mouse connectors.
The keyboard cord contains low voltage direct current power feeds and two serial links; one for the mouse
and one for the keyboard. The keyboard serial link is bidirectional, allowing for control of indicator lights
and other keyboard functions. Each time a key is pressed or released, a code is sent via the keyboard serial
link. Every key has a different upcode and downcode. All keys function the same way, allowing the
system software to use keys in any manner. Auto-repeat is the only function that treats keys differently.
When auto-repeat is enabled, a subset of the keys repeat when held down. Multiple key presses/releases
result in all key transitions being reported.

Electrical Interface
The keyboard serial I/O interface uses RS423 levels and communicates asynchronously to the system at
600 baud. The format used is one start bit followed by eight data bits, an odd parity bit and one stop bit,
with one byte sent per key up or down transition. The idle state and true data bits for the interface are
Mark level or -5V, whereas false data bits and the start bit are spaces or +5V.

The pin assignments for the keyboard connector on machines with DB-15 connectors are shown in the
following table:

KEYBOARD CONNECTOR PINOUTiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Pin Signal Descriptioniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
1 GND Ground
2 GND Ground
3 GND Ground
4 KTXD Keyboard Transmit
5 KRCD Keyboard Receive
7 +12Vdc Power
8 +12Vdc Power
9 +12Vdc Power
10 MTXD Mouse Transmit
11 NC Reserved
12 NC Reserved
15 -12Vdc Powerc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

The pin assignments for the DB-9 keyboard connector on the Personal IRIS 4D/20 and 4D/25 machines are
shown in the following table for both the CPU connector and the connectors on the keyboard itself. The
connectors on each side of the keyboard are identical, so the mouse can be attached on either side.

IRIX Release 6.2 389

keyboard(7)hh

KEYBOARD CABLE PINOUTiii
Pin CPU Signal Keyboard Signal Descriptioniii
1 NC +5Vdc Power
2 KRCD KTXD Keyboard to CPU
3 NC -5Vdc Power
4 -12Vdc -12Vdc Power
5 MRCD MTXD Mouse to CPU
6 GND GND Ground
7 +12Vdc +12Vdc Power
8 KTXD KRCD CPU to Keyboard
9 GND GND Groundcc

c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c

The pin assignments for the DIN-6 keyboard connector on the CPU board of some of the newer systems are
shown in the following table:

KEYBOARD CABLE PINOUTiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Pin Signal Descriptioniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
1 KRCD Keyboard Receive
2 MRCD Mouse Receive
3 GND Ground
4 +8Vdc Power
5 KTXD Keyboard Transmit
6 -8Vdc Powerc

c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

The pin assignments for the mouse port connector (on the keyboard, not on the CPU) for keyboards with
DB9 connector are shown in the following table; either connector on the keyboard can be used for the
mouse or for the keyboard cable.

MOUSE PORTiiiiiiiiiiiiiiiiiiiiiiiiiiii
Pin Signal Descriptioniiiiiiiiiiiiiiiiiiiiiiiiiiii
1 +5V Power
3 -5V Power
5 MTXD Transmit Data
9 GND Groundcc

c
c
c
c
c

cc
c
c
c
c
c

For machines whose keyboards have the DIN-6 connector on the keyboard, as well as on the CPU, the
pinout is shown in the following table. The connectors on both sides of the keyboard have identical pinout,
either can be used for the mouse and the cable to the CPU.

KEYBOARD CONNECTOR PINOUTiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Pin Signal Description

cc
c

cc
c

390 IRIX Release 6.2

keyboard(7)hh

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
1 KTXD Keyboard Transmit
2 MTXD Mouse Transmit
3 GND Ground
4 +8Vdc Power
5 KRCD Keyboard Receive
6 NC Not Connectedcc

c
c
c
c
c
c

cc
c
c
c
c
c
c

Software Interface
The interface between the keyboard and the system is 600 baud asynchronous. The format used is one start
bit followed by eight data bits, an odd parity bit and one stop bit, with one byte sent per key up or down
transition. The MSB of the byte is a 0 for a downstroke and a 1 for an upstroke. Control bytes are sent to
the keyboard with the same speed and format. The system software does all the processing needed to
support functions such as capitalization, control characters, and numeric lock. Auto-repeat for a specified
set of characters can be turned on or off by the system software by sending a control byte to the keyboard.
When auto-repeat is enabled, a pressed key begins auto-repeating after 0.65 seconds and repeats 28 times
per second. The keyboard initializes upon power-up. The configuration request control byte causes the
keyboard to send a two-byte sequence to the system. The second byte contains the eight-bit value set on a
DIP switch in the keyboard. All keyboard lights (if any; some newer systems have keyboards without user
controllable lights) are controlled by the system software by sending control bytes to the keyboard to turn
them on or off. Control bytes are also used for long and short beep control and key click disable. When
key click is enabled, the keys click when they are pressed. The long beep duration is 1 second and the short
beep duration is 0.2 second. There are three lights labeled NUM LOCK, CAPS LOCK, and SCROLL LOCK
that are under software control. On older keyboards there are also four general-purpose keyboard lights
labeled L1 through L4. The required keycode mappings and control byte formats are shown in the
following tables. Note that the legend names prefixed by two asterisks are reserved and not implemented
on the keyboard. Legend names prefixed by two exclamation marks do NOT have the auto-repeat enable
capability. Legend names prefixed by two dollar signs do NOT have the key click enable capability.

LEGENDS VS KEYCODES IN DECIMALiii
Legend Codeiii
AKEY 10
BKEY 35
CKEY 27
DKEY 17
EKEY 16
FKEY 18
GKEY 25
HKEY 26
IKEY 39
JKEY 33
KKEY 34

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

IRIX Release 6.2 391

keyboard(7)hh

LKEY 41
MKEY 43
NKEY 36
OKEY 40
PKEY 47
QKEY 9
RKEY 23
SKEY 11
TKEY 24
UKEY 32
VKEY 28
WKEY 15
XKEY 20
YKEY 31
ZKEY 19

ZEROKEY 45
ONEKEY 7
TWOKEY 13

THREEKEY 14
FOURKEY 21
FIVEKEY 22
SIXKEY 29

SEVENKEY 30
EIGHTKEY 37
NINEKEY 38c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

LEGENDS VS KEYCODES IN DECIMALiii
Legend Codeiii

**!!BREAKKEY 0
**!!SETUPKEY 1
$$!!LEFTCTRL 2

$$!!CAPSLOCKKEY 3
$$!!RIGHTSHIFTKEY 4
$$!!LEFTSHIFTKEY 5

**!!NOSCRLKEY 12
!!ESCKEY 6
!!TABKEY 8

RETURN.ENTER 50
SPACEKEY 82

**LINEFEEDKEY 59
BACKSPACEKEY 60

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

392 IRIX Release 6.2

keyboard(7)hh

DELKEY 61
SEMICOLONKEY 42

PERIODKEY 51
COMMAKEY 44
QUOTEKEY" 49

ACCENTGRAVEKEY˜ 54
MINUSKEY 46

VIRGULEKEY? 52
BACKSLASHKEY 56

EQUALKEY 53
LEFTBRACKETKEY 48

RIGHTBRACKETKEY 55
LEFTARROWKEY 72

DOWNARROWKEY 73
RIGHTARROWKEY 79

UPARROWKEY 80
PAD0 58
PAD1 57
PAD2 63
PAD3 64
PAD4 62
PAD5 68
PAD6 69cc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

LEGENDS VS KEYCODES IN DECIMALii
Legend Codeii
PAD7 66
PAD8 67
PAD9 74

**PADPF1 71
**PADPF2 70
**PADPF3 78
**PADPF4 77

PADPERIOD 65
PADMINUS 75

**PADCOMMA 76
!!PADENTER 81
$$!!LEFTALT 83

$$!!RIGHTALT 84
$$!!RIGHTCTRL 85

F1 86
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

IRIX Release 6.2 393

keyboard(7)hh

F2 87
F3 88
F4 89
F5 90
F6 91
F7 92
F8 93
F9 94
F10 95
F11 96
F12 97

!!PRINT.SCREEN 98
$$!!SCROLL.LOCK 99

!!PAUSE 100
!!INSERT 101
!!HOME 102

!!PAGEUP 103
!!END 104

!!PAGEDOWN 105
$$!!NUM.LOCK 106
PAD.BKSLASH/ 107c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

LEGENDS VS KEYCODES IN DECIMALii
Legend Codeii

PAD.ASTER* 108
PAD.PLUS+ 109

config byte(1st of 2 bytes) 110
config byte(2nd of 2 bytes) DIP SW

GERlessThan 111
spare1 112
spare2 113
spare3 114
spare4 115
spare6 117
spare7 118
spare8 119
spare9 120
spare10 121cc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

KEYCODES IN DECIMAL VS LEGENDSii
Code Legend

cc
c

394 IRIX Release 6.2

keyboard(7)hh

ii
0 **BREAKKEY
1 **!!SETUPKEY
2 $$!!LEFTCTRL
3 $$!!CAPSLOCKKEY
4 $$!!RIGHTSHIFTKEY
5 $$!!LEFTSHIFTKEY
6 !!ESCKEY
7 ONEKEY
8 !!TABKEY
9 QKEY
10 AKEY
11 SKEY
12 **!!NOSCRLKEY
13 TWOKEY
14 THREEKEY
15 WKEY
16 EKEY
17 DKEY
18 FKEY
19 ZKEY
20 XKEY
21 FOURKEY
22 FIVEKEY
23 RKEY
24 TKEY
25 GKEY
26 HKEY
27 CKEY
28 VKEY
29 SIXKEY
30 SEVENKEY
31 YKEY
32 UKEY
33 JKEY
34 KKEY
35 BKEYcc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

KEYCODES IN DECIMAL VS LEGENDSii
Code Legendii

36 NKEY
37 EIGHTKEY

c
c
c
c
c

IRIX Release 6.2 395

keyboard(7)hh

38 NINEKEY
39 IKEY
40 OKEY
41 LKEY
42 SEMICOLONKEY
43 MKEY
44 COMMAKEY
45 ZEROKEY
46 MINUSKEY
47 PKEY
48 LEFTBRACKET
49 QUOTEKEY
50 RETURN.ENTER
51 PERIODKEY
52 VIRGULEKEY
53 EQUALKEY
54 ACCENTGRAVEKEY
55 RIGHTBRACKETKEY
56 BACKSLASHKEY
57 PADONEKEY
58 PADZEROKEY
59 **LINEFEEDKEY
60 BACKSPACEKEY
61 DELETEKEY
62 PADFOURKEY
63 PADTWOKEY
64 PADTHREEKEY
65 PADPERIODKEY
66 PADSEVENKEY
67 PADEIGHTKEY
68 PADFIVEKEY
69 PADSIXKEY
70 **PADPF2KEY
71 **PADPF1KEYc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

KEYCODES IN DECIMAL VS LEGENDSiii
Code Legendiii

72 LEFTARROWKEY
73 DOWNARROWKEY
74 PADNINEKEY
75 PADMINUSKEY

cc
c
c
c
c
c
c

396 IRIX Release 6.2

keyboard(7)hh

76 **PADCOMMAKEY
77 **PADPF4KEY
78 **PADPF3KEY
79 RIGHTARROWKEY
80 UPARROWKEY
81 !!PADENTERKEY
82 SPACEKEY
83 $$!!LEFTALT
84 $$!!RIGHTALT
85 $$!!RIGHTCTRL
86 F1
87 F2
88 F3
89 F4
90 F5
91 F6
92 F7
93 F8
94 F9
95 F10
96 F11
97 F12
98 !!PRINT.SCREEN
99 $$!!SCROLL.LOCK
100 !!PAUSE
101 !!INSERT
102 !!HOME
103 !!PAGEUP
104 !!END
105 !!PAGEDOWN
106 $$!!NUM.LOCK
107 PAD.BKSLASH/cc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

KEYCODES IN DECIMAL VS LEGENDSii
Code Legendii
108 PAD.ASTER*
109 PAD.PLUS+
110 config byte(1st of 2 bytes)

DIP SW config byte(2nd of 2 bytes)cc
c
c
c
c
c

CONTROL BYTES RECOGNIZED BY KEYBOARD

IRIX Release 6.2 397

keyboard(7)hh

ii
BIT DESCRIPTION

TRUE BIT 0 = 0 BIT 0 = 1ii
1 short beep complement ds1 and ds2
2 long beep ds3
3 click disable ds4
4 return configuration byte ds5
5 ds1 ds6
6 ds2 ds7
7 enable auto-repeat not usedc

c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c

DISPLAY LABELSiii
DISPLAY DESIGNATION LABELiii

ds1 NUM LOCK
ds2 CAPS LOCK
ds3 SCROLL LOCK
ds4 L1
ds5 L2
ds6 L3
ds7 L4c

c
c
c
c
c
c
c
c
c

NOTE
Indy and Indigo2 use a PS/2 style keyboard (detailed in pckeyboard(7)) that uses a different scan code set.
This difference may break compatibility for some programs that operate with raw scan codes.

SEE ALSO
keyboard(1), mouse(7), pckeyboard(7), pcmouse(7).

398 IRIX Release 6.2

mouse(7)hh

NAME
mouse − mouse specifications

DESCRIPTION
Signals

The serial data interface signal level is compatible with RS-423, which has roughly a 10V swing centered
about ground. The idle state and true data bits for the interface are Mark level or −5V whereas false data
bits and the start bit are spaces or +5V. The serial data is transmitted at 4800 baud with one start bit, eight
data bits, and no parity.

Protocol
The mouse provides a five-byte data block whenever there is a change of position or button state. The first
byte is a sync byte that has its upper five bits set to 10000 and its lower three bits indicating the button
states where a 0 indicates depression. The sync byte looks like this: 10000LMR. The next four bytes contain
two difference updates of the mouse’s change in position: X1, Y1, X2, and Y2. Positive values indicate
movement to the right or upward. System software ignores bytes beyond the first five until reception of
the next sync byte.

Pinout
The pinout of the mouse connector on the keyboard is on the keyboard(7) reference page.

NOTE
Indy and Indigo2 use a PS/2 style mouse, which is described in pcmouse(7).

SEE ALSO
keyboard(7), pckeyboard(7), pcmouse(7).

IRIX Release 6.2 399

mtio(7)hh

NAME
mtio − magnetic tape interface

DESCRIPTION
mtio describes the generic interface provided for dealing with the various types of magnetic tape drives
supported on Silicon Graphics systems. 1/4" (QIC) cartridge tapes, 1/2" nine-track tapes, 8 mm video
tapes, NTP, STK 9490, STK SD3, DAT (digital audio tapes), and DLT are currently supported. (Not all
systems support all tapedrives.)

Tape drives are accessed through special device files in the /dev/mt/* and /dev/rmt/* directories. The mt
directory is a link to the rmt directory for ease of porting; the block interface sometimes associated with the
devices in mt is not supported under IRIX. Refer to intro(7) for a general description of the naming
conventions for device files in theses subdirectories. Naming conventions for the specific devices are listed
under tps(7M).

Normally the device specific name is linked to a user friendly synonym for ease of use. Many commands
that manipulate magnetic tape refer to these synonyms rather than device specific names. There are up to
four user-friendly device synonyms:

/dev/tape This is the tape unit that is the default system tape drive. It is linked to one of the specific
device names in /dev/rmt . This device rewinds the tape when closed. For QIC tapes, the
devices linked to /dev/tape do software byte swapping to be compatible with the IRIS
2000 and 3000 series systems; the non-byte swapping device is also available, and should
almost always be used for all tape types other than QIC.

/dev/nrtape Same as /dev/tape, except the tape is not rewound when closed.

/dev/tapens Same as /dev/tape, except no byte swapping is done; normally created only for QIC
tapes.

/dev/nrtapens Same as /dev/nrtape, except no byte swapping is done; normally created only for
QIC tapes.

See the (unfortunately somewhat confusing) script /dev/MAKEDEV for details of which devices are linked
to /dev/tape for each tape type. In particular, look at the tapelinks target for the default links. Also be
aware that if a /dev/tape exists as a link to a valid tape device, it is left as is, in order to preserve local
changes.

Note that even the norewind tape devices can be rewound by the system, in some cases. In particular, all
tapes are rewound on first use after a system boot, and when detected by the driver, are rewound after the
tape has been changed. DAT drives are also rewound when the drive is switched between audio and data
modes. This means that if you wish to append a new dataset to a tape that already contains datasets, you
should always issue the mt feom command AFTER loading the tape, just prior to using the program that
will append to the tape. Do not count on a tape remaining at EOD, just because that is where it was before
it was removed.

400 IRIX Release 6.2

mtio(7)hh

The system makes it possible to treat the tape similar to any other file, with some restrictions on data
alignment and request sizes. Seeks do not have their usual meaning (that is, they are ignored) and it is not
possible to read or write other than a multiple of the fixed block size when using the fixed block device.
Writing in very small blocks (less than 4096 bytes) is inadvisable because this tends to consume more tape
(create large record gaps verses data for 9-track and may pad to a device specific boundary for others, such
as 8mm, if the drive isn’t kept streaming); it may also cause the tape to stop its streaming motion,
increasing wear on the drive and decreasing throughput.

The standard QIC tape consists of a series of 512-byte records terminated by an end-of-file. Other tape
devices (such as 9-track, 8 mm, and DAT) typically support both fixed size block format and variable size
blocks format.

When using the variable format, there is an upper limit to the size of a single read or write, typically the
size of the RAM buffer on the drive. At this time, the upper limit is 64K bytes on 9-track and 240K bytes on
the 8 mm drives. This information can be obtained by use of the MTIOCGETBLKINFO ioctl (for SCSI
tape drives only). The main use of this format is to allow small header blocks at the beginning of a tape
file, while the rest are typically the same (larger) size.

When the fixed block size device is used, the size of a single read or write request is limited only by
physical memory. Currently the default size is 1024 bytes on 8mm, and 512 bytes for all others. This size
can be reset with the MTSCSI_SETFIXED ioctl or the mt setblksz XXX command; the value remains set
until the next boot or reset via ioctl. If the variable blocksize device is used, the block size reverts to the
default on the next use of the fixed blocksize device. The default fixed blocksize for the tps driver is set
from the table in the /var/sysgen/master.d/scsi file, as are the drive types, based on the inquiry data returned
by the drive.

A tape is normally open for reading and/or writing, but a tape cannot be read and written simultaneously.
After a rewind, a space, an unload, or an MTAFILE ioctl, writes can follow reads and vice-versa, otherwise
only reads, or only writes can be done unless the tape is first closed; performing an MTWEOF ioctl is
considered to be a write operation in this sense; after reading, an MTWEOF is not allowed unless one of
the operations above is first executed, or the tapedrive is closed and reopened.

Whenever the tape is closed after being written to, a file-mark is written (2 on 9-track tapes) unless the tape
has been unloaded or rewound just prior to the close; if the last operation before the close is an MTWEOF,
no additional filemarks are written at close.

Some tape drives support more than one speed; for SCSI 9-track tape drives, the default is 100 ips
(streaming mode); this can be set to 50 ips by using the MTSCSI_SPEED ioctl. Some tape drives such as
the Kennedy 96XX models do auto density select when reading; this can be disabled only by using the
drive’s front panel setup mode.

IRIX Release 6.2 401

mtio(7)hh

The MTANSI ioctl allows writing of ANSI 3.27 style labels after the early warning point (naturally, drives
that don’t support variable sized blocks won’t support 80 byte labels). It is currently implemented only for
SCSI tape drives. It remains set until the next close, or reset with a 0 argument. If used, standard Silicon
Graphics EOT handling for tar, bru, and cpio won’t work correctly while set. An arg of 1 enables, 0
disables. NOTE: When the EOT marker is encountered, the current I/O operation returns either a short
count (if any I/O completed), or −1 (if no I/O completed); it is the programmers responsibility to
determine if EOT has been encountered by using MTIOCGET or logic internal to the program. This ioctl
should be issued AFTER encountering EOT, if ANSI 3.27 EOT handling is desired. Subsequent I/Os are
then allowed and return the count actually transferred or −1 if the drive was unable to transfer any data.
The standard calls for writing a FM before the label. If this is not done, the drive may return label info as
data.

IOCTL OPERATIONS
Different drivers and drives support different tape commands, in the form of ioctl’s. These operations and
their structures are defined in the file /usr/include/sys/mtio.h, which has fairly extensive comments. All
drivers support some common definitions of tape status via the MTIOCGET ioctl; in particular, the bits
defined for the mt_dposn field of the mtget structure are the same for all the IRIX devices. other fields are
driver specific, and the appropriate header files should be consulted for the meaning of these fields.

Those ioctls that are not supported for a particular drive or driver normally return EINVAL. For example,
the MTAFILE ioctl returns EINVAL if the tape drive is not a device that supports overwrite (currently only
9-track and DAT), since QIC and 8mm drives only allow appending at EOD and, for 8mm, from the BOT
side of a FM.

NOTES
When a tape device is opened, the tape is rewound if there has been a media change, or the drive has gone
offline, or there has been a bus reset (normally only after a reboot or powerup); otherwise the tape remains
at the same position as at the previous close. See the specific driver manual pages for more details.

EXAMPLE
The following code fragment opens the default no rewind tape device, positions it to the 2nd filemark, and
then rewinds it. This is typical of the use of most of the op codes for the MTIOCTOP and
ABI_MTIOCTOP ioctls; the latter is for use by programs compliant with the MIPS ABI and, other than the
name, functions identically to the former.

#include <sys/types.h>
#include <sys/mtio.h>
main()
{

struct mtop op;
int fd;

if((fd = open("/dev/nrtape", 0)) == -1)
perror("can’t open /dev/tape");

402 IRIX Release 6.2

mtio(7)hh

op.mt_op = MTFSF;
op.mt_count = 2; /* number of fmk’s to skip */
if(ioctl(fd, MTIOCTOP, &op) == -1)

perror("ioctl to skip 2 FMs fails");

op.mt_op = MTREW; /* mt_count field is ignored for MTREW */
if(ioctl(fd, MTIOCTOP, &op) == -1)

perror("ioctl to rewind fails");
}

FILES
/dev/tape
/dev/nrtape
/dev/tapens
/dev/nrtapens
/dev/rmt/*

SEE ALSO
MAKEDEV(1M), bru(1), cpio(1), mt(1), tar(1), dataudio(3), rmtops(3), datframe(4), tps(7M).

IRIX Release 6.2 403

pcmouse(7)hh

NAME
pcmouse − mouse specifications

DESCRIPTION
Indy and Indigo2 systems uses an industry standard PC (6-pin mini-DIN) mouse port. This is a departure
from other Silicon Graphics systems and allows easy attachment of third party mice, trackballs, or other
pointing devices.

Compatibility
Third-party mouse-port-compatible (also called "PS/2 compatible," "Pointing Device Port" or "PDP")
pointing devices commonly sold into the IBM PC-compatible market can be used. Note that the common
Microsoft-compatible serial mice do not work on the mouse port. Three-button devices are preferred, but
two-button devices operate as if the middle button does not exist.

The following mice have been tested (many only briefly):

SGI Indigo2 mouse
SGI Indy mouse
IBM PS/2 Model 6450350 (old style)
IBM PS/2 Model 33G5430 (new style)
IBM RS/6000 P/N 11F8895 (Logitech M-SB9-6MD)
Alps Glidepoint (PS/2 mouse port version)
Logitech MouseMan Serial & Mouseport Version
Logitech TrackMan Serial & Mouseport Version
Logitech M-SE9-6MD
Logitech M-SF15-6MD
Microsoft Mouse Serial & PS/2 Version (only two buttons)
MicroSpeed MicroTRAC trackball (only two buttons)
Mouse Systems White Mouse
Mouse Systems PC Mouse III (in two button mode only)

Protocol
The PS/2 mouse uses a three-byte data block. The first byte is a control byte with the format: YO XO YS XS
F M R L where [XY]O is an overflow indicator, [XY]S is the sign of the delta bytes, F is floats depending on
the particular mouse used, and M R L are middle, right, and left buttons (1 indicates pressed) respectively.
Byte two is the X delta and byte three is the Y delta.

Pinout
The mouse connector is a 6 pin mini-DIN connector with the shield connected to the system chassis:

404 IRIX Release 6.2

pcmouse(7)hh

/ 5 3 \
| --- 1 |
| --- 2 |
\ 6 4 /

PIN ASSIGNMENTSiiiiiiiiiiiiiiiiiiiii
Pin Descriptioniiiiiiiiiiiiiiiiiiiii
1 Data
2 Reserved
3 Signal Ground
4 Power +5V
5 Clock
6 Reservedc

c
c
c
c
c
c
c
c

NOTES
All Silicon Graphics systems except Indy and Indigo2 use the mouse described in mouse(7).

Some Silicon Graphics mice (particularly Silicon Graphics PN 9150800) look very similar to the Indigo2

mouse (Silicon Graphics PN 9150809) and even use the same 6-pin mini-DIN connector, but are not
compatible.

SEE ALSO
prom(1M), keyboard(7), mouse(7), pckeyboard(7).

IRIX Release 6.2 405

root(7M)hh

NAME
root, rroot, usr, rusr, swap, rswap − partition names

DESCRIPTION
root, rroot, usr, rusr, swap, and rswap are the device special files providing access to important partitions
on the root disk drive of a system. These links are made by the MAKEDEV(1m) script, and map to fixed
partitions, even if not used that way by local conventions. Therefore it is best not to change these links, if
you intend to use different partition layouts, but rather to use the full device name (/dev/dsk/dks*) instead,
particular in fstab(4). The names beginning with r are the raw (character) device access; the others are the
block device access, which uses the kernel buffer system.

The standard system drive partition allocation shipped by Silicon Graphics has root on partition 0 and
swap on partition 1. Partition 7 is the entire usable portion of the disk (excluding the volume header) and
is normally used for option drives, rather than the system drive. Partition 8 is the volume header (see
vh(7M), prtvtoc(1M), and dvhtool(1M)). Partition 10 (vol) is the entire drive.

The standard system with SCSI drives usually has /dev/root linked to /dev/dsk/dks0d1s0 , /dev/swap linked to
/dev/dsk/dks0d1s1 , and (if / and /usr are seperate filesystems, a usrroot partitioning), /dev/usr linked to
/dev/dsk/dks0d1s6 .

FILES
/dev/dsk/dks*
/dev/rdsk/dks*
/dev/root
/dev/usr
/dev/swap
/dev/rvh

SEE ALSO
MAKEDEV(1M), dvhtool(1M), fx(1M), prtvtoc(1M), fstab(4), dksc(7M), vh(7M).

406 IRIX Release 6.2

serial(7)hh

NAME
serial − serial communication ports

SYNOPSIS
/dev/tty[dmf][1-56]

DESCRIPTION
All Silicon Graphics systems have two or more general purpose serial ports. These ports can be used to
connect terminals, printers, modems, other systems, or graphical input devices such as a tablet or dial and
button box. Each line can be independently set to run at any of several speeds, as high as 19,200 or even
38,400 bps. Various character echoing and interpreting parameters can also be set. See stty(1) and
termio(7) for details on the various modes.

Details of the serial ports found on optional add-on boards are given elsewhere. The Audio/Serial Option
for CHALLENGE/Onyx provides six high-speed serial ports, see asoser(7) for more information. The
CDSIO VME board provides six serial ports; see cdsio(7) for more information.

Special files for the serial ports exist in the /dev directory. These files, tty[dfm][1-56], are created
automatically by MAKEDEV(1M) when system software is installed. Each port is referred to by three
different names, /dev/ttydnn, /dev/ttymnn, and /dev/ttyfnn, where nn represents the port number.
Opening the ttyd, ttym, or ttyf versions of a port enables different signals and modes on the
communication line. Typically, the ttyd version is used for directly connecting simple devices including
most terminals; ttym is used for devices that use modem control signals; and ttyf is used for devices that
understand hardware flow control signals.

There are four different types of connectors found on various 4D models. The DB-9 serial port connectors,
which are found on the CHALLENGE, Onyx, Personal IRIS, and POWER series systems, have the
following pin assignments.

\ 5 4 3 2 1 /
\ 9 8 7 6 /

Pin Name Descriptioniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
2 TD Transmit Data
3 RD Receive Data
4 RTS Request To Send
5 CTS Clear To Send
7 SG Signal Ground
8 DCD Data Carrier Detect
9 DTR Data Terminal Ready

c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c

IRIX Release 6.2 407

serial(7)hh

cc cc

The CHALLENGE and Onyx systems provide an RS-422 port. This RS-422 port uses a DB-9 serial
connector and has the following pin assignments.

Pin Name Descriptioniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
1 DTR Data Terminal Ready
2 TxD- Transmit Data -
3 RxD- Receive Data -
4 DCD Data Carrier Detect
5 CTS Clear To Send
6 SG Signal Ground
7 TxD+ Transmit Data +
8 RxD+ Receive Data +
9 RTS Request to sendcc

c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c

In order to support peripherals that draw power from the host system, the CHALLENGE and Onyx
systems provide two powered-peripheral serial ports. These ports have a DIN-8 connector. The powered
ports share the tty2 and tty3 signal lines with the standard DB-9 connectors; if the DB-9 connector for tty2
is already in use, you cannot use the powered peripheral connector for tty2. Similarly, if tty3’s DB-9
connector is connected to a peripheral, the powered peripheral port connected to the tty3 signal lines
cannot also be used. The powered peripheral ports have the following pin assignments.

__---__
/ 2 \

/4 5\
/ \

(1 8 3)
\ /
\ 6 7 /
---___---

Pin Name Descriptioniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
1 DTR Data Terminal Ready
2 CTS Clear To Send
3 STEREO Stereo field sync
4 RD Receive Data
5 TD Transmit Data
6 SG Signal Ground
7 GND Ground point
8 V10P 10V supplyc

c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c

408 IRIX Release 6.2

serial(7)hh

The DIN-8 serial port connectors on the Personal IRIS 4D/30, 4D/35, 4D/RPC (Indigo), 4D/RPC-50 (R4000
Indigo), Indy, and Indigo2 have the following pin assignments.

/ 8 7 6 \
(5 4 3)
\ 2 1 /

4D Compatible Pin Assignments (RS-232)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Pin Name Descriptioniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
1 DTR Data Terminal Ready
2 CTS Clear To Send
3 TD Transmit Data
4 SG Signal Ground
5 RD Receive Data
6 RTS Request To Send
7 DCD Data Carrier Detect
8 SG Signal Groundc

c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c

Macintosh SE Compatible Pin Assignments (RS-422)iii
Pin Name Descriptioniii
1 HSKo Output Handshake
2 HSKi Input Handshake Or External Clock
3 TxD- Transmit Data -
4 GND Signal Ground
5 RxD- Receive Data -
6 TxD+ Transmit Data +
7 GPi General Purpose Input
8 RxD+ Receive Data +c

c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c

The set of signals that are actually used depends upon which form of the device was opened. If the ttyd
name was used, only TD, RD, and SG signals are meaningful. These three signals are typically used with
"dumb" devices that either do not need any sort of data flow control or use software flow control (see the
description of the ixon, ixany, and ixoff options in stty(1) for more information on setting up software flow
control). If the ttym device is used, the DCD, and DTR signals are also used. These signals provide a two
way handshake for establishing and breaking a communication link with another device and are normally
used when connecting via a modem. When the port is initially opened, the host asserts the DTR line and
waits for the DCD line to become active. If the port is opened with the O_NDELAY flag, the open
succeeds even if the DCD line is not active. A hangup condition occurs if the DCD line transitions from
active to inactive. See open(2), and termio(7) for more information. If the ttyf device is used, all of the
signals are used. The additional signals provide for full hardware flow control between the host and the
remote device. The RTS line is asserted by the host whenever it is capable of receiving more data. The

IRIX Release 6.2 409

serial(7)hh

CTS line is sampled before data is transmitted and if it is not active, the host suspends output until it is.

The DIN-8 serial port connectors on the Personal IRIS 4D/30, 4D/35, 4D/RPC, 4D/RPC-50, Indy, and
Indigo2 can be used to communicate with serial devices using RS-422 protocol. User can use the stream
ioctl commands, SIOC_EXTCLK and SIOC_RS422, defined in /usr/include/sys/z8530.h to switch between
internal/external clock and RS-232/RS-422 protocols. Another command that can be useful is
SIOC_ITIMER; it informs the driver how long it should buffer up input data, in clock ticks, before sending
them upstream. Data can sometimes be sent upstream before, but never after, this time limit. This feature
reduces the cpu cost of receiving large amounts of data by sending data upstream in large chunks. This
duration can also be configured into the kernel by tuning the duart_rsrv_duration variable.

CHALLENGE AND ONYX L/XL PORT CONFIGURATION
By default, Onyx and CHALLENGE L/XL systems enable only the serial ports of the master IO4. To
enable the serial ports on other IO4 boards, a vector line must be added for the epcserial device to
/var/sysgen/system/irix.sm. The following vector line configures the serial ports on the IO4 in slot 13 as tty45,
tty46, and tty47:

VECTOR: bustype=EPC module=epcserial unit=1 slot=13

The first two options (bustype and module) are mandatory and tell lboot(1M) that you’re configuring serial
ports. The unit option specifies which set of tty names should be used for this set of ports: unit 1
corresponds to the logical devices tty45, tty46, and tty47; unit 2 represents devices tty49, tty50, and tty51;
unit 3 specifies devices tty53, tty54, and tty55. Finally, the slot option indicates which IO4 board contains
the ports that should be mapped. Each board must have its own vector line. Configuring one IO4 board’s
serial ports has no effect on any of the other boards. After irix.sm has been updated, the autoconfig(1M)
command should be issued to reconfigure the kernel. It may also be necessary to execute MAKEDEV(1M)
in order to build device files for the new ports.

If the system is unable to honor the VECTOR line for some reason (if, for example, the specified slot is
invalid), a warning message is written to /var/adm/SYSLOG. These warning messages contain the string
epcserial, in order to facilitate finding them with commands like grep(1). Because the console port has not
been initialized when these messages are issued, the kernel is unable to display the warning on the console.

Only the master IO4 provides an RS-422 port (tty4). Additional IO4 boards support three RS-232 serial
ports only. To allow for future expansion, however, space was left in the serial port namespace for the
additional RS-422 ports. For this reason, there is no actual device associated with tty48, tty52, and tty56.

FILES
/dev/tty[dmf][1-4,45-56]
/usr/include/sys/z8530.h
/dev/MAKEDEV
/var/sysgen/system

410 IRIX Release 6.2

serial(7)hh

SEE ALSO
system(4), asoser(7), cdsio(7), keyboard(7), streamio(7), termio(7).

IRIX Release 6.2 411

tps(7M)hh

NAME
tps, tpsc, jagtape − SCSI tape interface

SYNOPSIS
/dev/rmt/tps*
/dev/rmt/jag*

DESCRIPTION
Silicon Graphics systems support the Small Computer System Interface (SCSI) for various tape drives,
including QIC24 and QIC150 1/4" cartridges, 9-track, 8 mm video, DLT (digital linear tape), NTP, STK
9490, STK SD3, and DAT (digital audio tape) tape drives. Not all systems support all tape drives. Since so
many different types of devices are supported, and not all their features can be determined directly from
the drive, a configuration table defines their capabilities. This is usually found in the file
/var/sysgen/master.d/scsi.

The special files are named according to this convention:

/dev/{r}mt/tpscontrollerdID{nr}{ns}{s}{v}{.density}{c}
/dev/rmt/jagcontrollerdID{nr}{ns}{s}{v}{stat}{.density}

controller is the SCSI controller number and ID is variously known as the SCSI ID, the SCSI address, the
drive address, and the unit number. The device types are:

{nr} no-rewind on close device

{ns} non-byte swapping device

{s} byte swapping device

{v} variable block size device (supported only for 9-track, DAT, DLT and 8 mm devices as
shipped)

{stat} a special purpose device; it can be used even when one of the other names for the same
physical device is already opened (see below)

{.density} for 9-track tape it is one of 800, 1600, 3200, or 6250 and for the Exabyte 8500 it is one of 8200
and 8500

{c} data compression; it is only supported on DLT and should not be confused with density

These special devices are accessible by only one program at a time, except for the {stat} device. Opens on
the {stat} device can block for several seconds, if another name for the same devices is being opened or
closed at the same time. Similarly, the MTIOCGET ioctl on the {stat} device can block if long operations
are in progress via one of the other names for the same device.

412 IRIX Release 6.2

tps(7M)hh

The only operation the {stat} device supports is the MTIOCGET ioctl, open, and close; all other attempted
operations cause the EINVAL errno to be returned. It never causes any tape movement of any kind (in
particular, it never tries to load the tape, even if media is present).

Typically, if this tape drive is used as the system tape drive, the device-specific names described above are
linked to user-friendly names in the /dev directory. See NOTES below and mtio(7) for a description of the
user-friendly names.

SPECIAL FEATURES
The different devices support a multitude of capabilities. In particular, some support multiple densities,
some support fixed block size only, some support variable block sizes, some support multiple speeds,
some support direct transfer of audio data over the SCSI bus. Some of these features are selected by which
minor device is opened, and others must be set via ioctl commands. The list of capabilities that a particular
drive supports is set by the MTCAN_* bits set in the master.d/scsi file for that drive. When a capability
required for an operation is not set, the EINVAL error code is returned for the request.

In particular, in audio mode the variable block size device must always be used for I/O, and parameters
such as the recording frequency, program number, and so on are all part of the data stream. Additionally,
when in audio mode the rewind and seek commands return immediately. If the drive is closed in this
state, subsequent opens block until they are completed. If the drive remains open, certain commands, such
as MTIOCGET and MTIOCAUDPOSN, can be used to determine the current position of the tape during
the seek or rewind operation; the third argument is a pointer to a struct mtaudio. The MTAUD tape op is
used to enable and disable audio mode. The third argument is 0 to use data mode and 1 to use audio
mode.

Many of the features that require ioctls can be set or changed via the mt(1) command.

The data structures and values for these ioctls can be found in the include file /usr/include/sys/mtio.h, which
is shipped with all systems. There are extensive comments in this file, and at this time no attempt has been
made to document most of them here or in the mtio(7) reference page.

However, there are a few surprising return values that are mentioned here. In particular, when using
partitioned tapes (see mt setpart, or the MTSETPART ioctl), partition 0 is the ’main’ partition, which is the
final part of the tape, and partition 1 is the partition closest to BOT. Partitioned tapes are intended
primarily so that a tape directory can be written at the beginning of the tape, without any worry of
overwriting the data portion of the tape. In addition, partitioned tapes indicate BOT (EOT) when at
beginning (end) of partition, rather than the ’real’ BOT (EOT).

Some devices support overwrite at arbitrary tape positions, while others require that the tape be at BOT or
EOD (end of data). Others allow overwrite at any filemark (that is, 8mm from the BOT side of any
filemark). Some experimentation may be necessary to decide what your particular drive supports; all
drives support at a minimum writing at both BOT and EOD, assuming the media isn’t write protected.

IRIX Release 6.2 413

tps(7M)hh

TAPE MOVEMENT CRITERIA
The only time the driver ever moves a tape is when told to, with the exceptions listed below. A command
that causes tape movement is always issued, assuming that it is a valid command and the media is loaded.

A significant change from IRIX releases prior to 4.0 is that the driver does NOT automatically position to
the next filemark on the first command that does I/O to the tape. This means that mt bsr, and mt fsr now
have meaning since the tape is in fact left where it is positioned. It is now the programmer’s or user’s
responsibility to ensure that the tape is in a valid state for I/O. The drive or driver still detects and
prevents operations not valid for the current tape position, returning an appropriate error in errno.

1. If the first read after an open encounters a filemark before transferring any data and the tape was not
known to be at the top of a filemark or BOT, the filemark is skipped and the read retried. Any further
errors are reported exactly as they occur. In particular, if two sequential filemarks are found, the tape
is positioned between them.

2. If a read command encounters a filemark, that read returns a short count (if any data was read) or 0. If
a short count is returned, the next read returns 0, allowing detection of filemarks. An MTFSF ioctl
should not be done at this point, as the tape drive itself has already skipped over the filemark. If an
MTFSF is done at this point, the count should be decremented by one. The driver attempts to deal
with this case, but can not always do so, due to differences in drive firmware.

The read following the read that returns 0 returns the data in the next tape file, if any. Note that this is
a change from earlier IRIX releases, which required an explicit MTFSF or other tape ioctl to move the
tape before further reads could be done. The new behavior is consistent with most actual tape drives
and tape drivers in most BSD-derived UNIX systems. Similarly, if an MTFSR ioctl encounters a
filemark, it stops at the filemark and subsequent reads return data from the next tapefile, if any.

3. If early warning is encountered on a write or write filemark, the driver does not allow further writes
or write filemarks, unless the MTANSI ioctl is issued. Any data remaining is flushed to tape, if
possible. For the QIC tape drives and the 8mm drives, an error is returned on both read and write
unless all the data was transferred when early warning is encountered. This is so that older multi-
volume backups continue to work and new ones can be read on older releases. All newer drives (9
track, DAT, and future drive types) return a short count if not all the data could be transferred.
Requests other than read or write are sent to the tape drive as usual.

4. On close, if the last tape movement operation was a successful write (not a write filemark), the
following happens:

a) Half-inch tape drives write two filemarks and then backspace one file, so that the tape is
positioned between the two filemarks just written. If, however, the tape is not in ansi mode and
early warning has been encountered, no write filemark or backspace is done; filemarks are never
written in audio mode.

414 IRIX Release 6.2

tps(7M)hh

b) Other tape drives write one filemark. No backspace is done.

5. On the first status request or request that does tape motion after a system boot, a SCSI bus reset, or a
tape cartridge insertion, the tape is rewound and loaded; this occurs even for the norewind devices. In
addition, some drives rewind a tape when it is ejected. This means that if you wish to append a new
dataset to a tape that already contains datasets, you should always issue the mt feom command
AFTER loading the tape, just prior to using the program that will append to the tape. Do not count on
a tape remaining at EOD, just because that is where it was before it was removed.

For devices that support it, the prevent media removal command is sent to the drive on open and released
on close, so that eject buttons (when present) are disabled.

ERROR RETURNS
The following errors are returned by this driver; other errors can also be returned by higher levels of the
operating system.

EAGAIN The drive returned an error indicating it was not ready (tape ejected, drive taken offline, and so
on).

EBUSY Returned on opens when the drive has already been opened.

EFAULT A bad address was passed in a call that required a data transfer.

EINVAL This is returned for requests that are invalid for one reason or another including:

g Attempting to write or write file-mark after reading (except in audio mode, for devices that
support it) without an intervening close, or ioctl to re-position the tape.

g Attempting to read after writing (same exceptions as for writing).

g Using an invalid count on read, write, write file-mark, and so on.

g Attempting to do MTAFILE on a drive that doesn’t support it (the MTCAN_APPEND bit is
not set in the master.d/scsi file).

g Attempting to do an ioctl on a drive that doesn’t support it (such as MTBSR on Cipher 540S)
or attempting to do an unsupported MTOP operation or other unsupported ioctl’s.

g Attempting to write to a QIC24 cartridge from a QIC150 drive (an MTIOCGET should be
done, and the *QIC* bits should be checked for in mt_dposn to confirm this error).

g Attempting to do something when not at BOT that can only be done at BOT, such as writing
or reading a Kennedy tape drive at a different speed than was previously used or switching
from the variable block size device to the fixed block size device. (In IRIX 4.0, an attempt to
use a different density is allowed, but the drive continues to use the original density.)

IRIX Release 6.2 415

tps(7M)hh

g Attempting to perform reads, writes, or ioctls other than MTIOCGET on the {stat} device.

EIO A generic error occurred, such as a SCSI bus reset, unrecoverable media error, and so on. Also
occurs on close or read/write if the media has been unloaded while the device is open.

ENOMEM
An attempt was made to read data with a count less than that at which the block was written.
This can only happen with drives that support variable block sizes. It can also occur if the
kernel memory allocator is not able to allocate memory for the driver structures.

ENOSPC Occurs on read or space commands that encounter end of tape or end of data, on writes that are
attempted at end of tape, and also on some other commands that encounter EOT or EOD.

EROFS A write or write file-mark was attempted to a write-protected tape.

ENODEV An open was attempted on a device with an invalid SCSI controller or SCSI ID specified (that is,
a mknod with the wrong arguments was used to create the device special file) or an attempt to
open a tape in variable blocksize mode when the device doesn’t support it. Also occurs when
the SCSI inquiry command fails or returns indicating that the device is not a tape device (media
not removable, or not a sequential access device).

NOTES
High density tape cartridges such as the DC6150 (originally called 600 XTD) written on a system equipped
with QIC 150 tape drives can NOT be read on older systems. Even if a low density tape (such as DC 600A)
is used, it is still written at a higher density (QIC 120) than older tape drives can read. Tapes written on the
older systems can still be read on the new tape drives, however. Systems with QIC 150 cartridge tape
drives such as the Personal IRIS are able to read QIC24 tapes (310 oersted) such as the DC 300XL, but are
not able to write them.

All tape devices other than the QIC (quarter-inch) tape drives have /dev/tape linked to the {ns} device for
performance, since there is no compatibility issue, and byte swapping is done in software. Most newer
drives support variable block size devices, and the /dev/tape link uses those by default; when multiple
densities are supported, as with 9-track, the link is to the highest capacity device. For compatibility with
earlier IRIX releases, the 8mm device is linked to the fixed block device. See the (unfortunately somewhat
confusing) script /dev/MAKEDEV for details; in particular, look at the tapelinks target.

Each time the tape drive is closed and the drive has reported recovered error, the driver reports to the
console and (as normally configured) to /var/adm/SYSLOG the number of recovered errors, if any. A small
number is not indicative of problems, but a large number (somewhere above about 2-5% errors as a
percentage of I/Os, depending on media age and quality) probably indicates that the media is approaching
the end of its lifetime, that the drive read/write heads are dirty, or that the heads need to be realigned. A
typical recovered error message might look like:

416 IRIX Release 6.2

tps(7M)hh

NOTICE: SCSI tape #0,7 had 8 successfully retried commands (1% of r/w)

The first number is the controller number, the second is the SCSI ID on that controller.

It is important to realize that these are recovered errors (at the drive level) and therefore do not result in
errors being reported to the program doing the tape I/O.

FILES
/dev/rmt/tps*
/dev/rmt/jag*
/dev/mt exists as a symlink to /dev/rmt; the use of the /dev/mt pathname is deprecated and is

supported only for compatibility
/dev/tape, /dev/nrtape, /dev/tapens, /dev/nrtapens

convenience links to the "preferred" device in /dev/rmt (highest SCSI ID on lowest
numbered SCSI bus, for tps devices only)

/var/sysgen/master.d/scsi
contains a configuration table indicating what devices support what features and what
string should be matched against the string returned by the SCSI inquiry command and
the hinv(1M) command; this was formerly in master.d/tpsc

/dev/MAKEDEV
a makefile (normally invoked by the superuser in the /dev directory only) that creates
devices that match the installed tape drives if invoked as cd /dev; ./MAKEDEV tape

SEE ALSO
MAKEDEV(1M), bru(1), cpio(1), hinv(1M), mt(1), tar(1), ioctl(2), rmtops(3), datframe(4), mtio(7).

IRIX Release 6.2 417

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-2159-005.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 650-932-0801

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

