
NIS Administration Guide

Document Number 007-2161-001

NIS Administration Guide
Document Number 007-2161-001

CONTRIBUTORS

Written by Kim Simmons, Pam Sogard, and Susan Ellis
Edited by Nancy Schweiger
Production by Kay Maitz
Engineering contributions by Andrew Cherenson and Dana Treadwell
Other contributions by Joe Yetter

© Copyright 1993, Silicon Graphics, Inc.-- All Rights Reserved
This document contains proprietary and confidential information of Silicon
Graphics, Inc. The contents of this document may not be disclosed to third parties,
copied, or duplicated in any form, in whole or in part, without the prior written
permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and /
or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
Sates. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94039-7311.

Silicon Graphics and IRIS are registered trademarks and IRIX is a trademark of
Silicon Graphics, Inc. NFS is a trademark of Sun Microsystems, Inc. UNIX is a
registered trademark of UNIX System Laboratories.

iii

Contents

About This Guide xi
Using This Guide xi
Summary of Contents xii
Audience for This Guide xiii
Supplementary Documentation xiv
Conventions xiv
Product Support xiv

1. Understanding NIS 1
What Is NIS? 1
NIS Portability 2
The Client-Server Model 4
The Server Hierarchy 4
NIS Maps 5
NIS Domains 6

NIS Domains and Server Directories 7
NIS and Internet Domains 7
Multiple NIS Domains 7

2. Preparing to Manage NIS 9
Daemons 9
Binding 11
The NIS Database 12

Standard and Nonstandard Maps 13
Map Propagation 14

iv

Contents

NIS and Other Network Files 16
Local Files 16
Global Files 18

NIS Software Quick Reference Guide 19
NIS Daemons 19
NIS Configuration Files 19
NIS Tools 20

3. Planning Your NIS Service 23
Establishing Multiple NIS Domains 23

Domain Boundaries 24
Bridging Domain Boundaries 25
Using the Domain Name System (DNS) 25

Using ypserv –i 26
Using /etc/resolv.conf 26

Establishing a Customized Update Procedure 27
Verifying ASCII File Contents 28
Selecting a Domain Name 30
Selecting the NIS Master Server 30
Selecting the NIS Slave Servers 31
General Recommendations 32

4. Setting Up and Testing NIS 33
Setting Up the NIS Master Server 34

Setting the Master Server’s Domain Name 34
Building the Master Maps 35
Starting NIS on the Master Server 38
Testing the NIS Master Server 38

v

Setting Up NIS Slave Servers 39
Setting the Slave Server’s Domain Name 39
Binding to Another NIS Server 39
Building the Duplicate Maps 40
Starting NIS on the Slave Server 41
Testing the NIS Slave Server 42

Setting Up NIS Clients 42
Setting the Domain 42
Configuring NIS on the Client 43
Starting NIS on the Client 43
Testing the NIS Client 43

5. Maintaining NIS 45
Adding a New User to a System 46
Changing NIS Passwords 48
Using Netgroups 49
Creating a Nonstandard NIS Map Manually 51

ASCII File Input 51
Standard Keyboard Input 52

Modifying NIS Maps after NIS Installation 52
Modifying a Standard NIS Map 52
Modifying a Nonstandard NIS Map 53

Preparing to Propagate Nonstandard Maps 54
Propagating an NIS Map 56

Periodic Propagation: crontab 56
Interactive Map Propagation 58

Using ypmake 58
Using ypxfr 59
Using yppush 59

Adding an NIS Slave Server 60
Changing the Master Server 61
Using Secure ypset 62

vi

Contents

6. Troubleshooting NIS 63
Debugging an NIS Server 63

Different Map Versions 63
Isolated, One-time Map Propagation Failures 64
Intermittent, Consistent Map Propagation Failures 65

ypserv Fails 67
Debugging an NIS Client 68

Command Hangs 68
NIS Command Fails 72
ypbind Fails 73
ypwhich Output Inconsistent 73

Before You Call for Help 74

Index 75

vii

Figures

Figure 1-1 NIS Software Implementation 3
Figure 1-2 Basic NIS Domain 6
Figure 1-3 Multiple NIS Domains 8
Figure 2-1 NIS Binding Process 12
Figure 2-2 Map Propagation between Servers 15
Figure 3-1 Boundary Problem with Multiple Domains 24
Figure 3-2 Boundary Solutions for Multiple Domains 25

viii

Figures

ix

Tables

Table In-1 Contents of Each Chapter xii
Table 2-1 NIS Daemons by System Type 10
Table 2-2 Standard Set of NIS Maps 13
Table 2-3 Default Nicknames for Maps 14
Table 2-4 Local Files Consulted by NIS 16
Table 2-5 Local File Entries to Control Access 17
Table 2-6 Global Files Consulted by NIS 18
Table 3-1 Maps, ASCII Files, and Descriptions 28
Table 5-1 Sample User Groups 50
Table 5-2 Sample Host Groups 50

x

xi

About This Guide

The NIS Administration Guide documents the Silicon Graphics®
implementation of the network information service NIS. NIS is adapted
from Sun Microsystems, Inc.’s 4.0 release of NIS, with bug fixes from release
4.1. This guide was prepared in conjunction with the release of IRIX™
Release 5.1.

NIS is a database service that provides location information about network
entities to other network services, such as NFS. Systems with heterogeneous
architectures and operating systems can participate in the same NIS. The
service can also include systems connected to different types of networks.

This guide was formerly published under the title NFS and NIS
Administration Guide and Man Pages, and documented the Network File
System, NFS™, as well as NIS. Information about NFS is now published in
a separate volume called the NFS Administration Guide.

Using This Guide

The purpose of this guide is to provide the information needed to set up and
maintain NIS. It explains the software fundamentals of the product and
provides procedures to help you install, test, and troubleshoot NIS on your
network. It also contains recommendations for planning and administering
NIS.

xii

About This Guide

Summary of Contents

Table In-1 contains a summary of each chapter in this guide and suggests
how to use the chapter.

Table In-1 Contents of Each Chapter

Chapter Summary When to Read

Chapter 1,
“Understanding
NIS”

Introduces the vocabulary of
NIS, describes the
relationship of NIS to other
network software, and
explains how NIS domains
are organized.

Read this chapter to learn NIS
basics. If you are already
experienced with NIS, you
can skip Chapter 1.

Chapter 2,
“Preparing to
Manage NIS”

Describes the fundamental
operation of NIS and its
database.

Read this chapter for the
background required to do
the procedures in Chapter 4,
“Setting Up and Testing NIS.”

Chapter 3,
“Planning Your NIS
Service”

Presents the issues you need
to consider before you
implement NIS for your site
and offers planning
recommendations.

Review this chapter before
setting up NIS on your
network.

Chapter 4, “Setting
Up and Testing
NIS”

Contains procedures for
implementing NIS on server
and client systems and
procedures for verifying their
operation.

Use this chapter as a guide
through NIS setup tasks.

Audience for This Guide

xiii

Audience for This Guide

To use NIS setup and maintenance information, you should have experience
in these areas:

• Setting up network services

• Assessing the needs of network users

• Maintaining hosts databases

• Understanding the UNIX® filesystem structure

• Using UNIX editors

To troubleshoot NIS, you should be familiar with these concepts:

• Theory of network services

• Silicon Graphics network implementation

Chapter 5,
“Maintaining NIS”

Explains how to change NIS
and its database when
conditions in your network
change. It also contains
information on managing
security with NIS.

Refer to this chapter when
you need to update NIS
maps, implement security, or
add new users to NIS.

Chapter 6,
“Troubleshooting
NIS”

Describes problems that can
arise when maps are
propagated and when NIS
server or client software is
malfunctioning.
Recommends corrective
action for each type of
problem.

Use this chapter to identify
the source of NIS problems
and take corrective action.
Read the information in the
final section before phoning
Silicon Graphics’ Technical
Assistance Center.

Table In-1 (continued) Contents of Each Chapter

Chapter Summary When to Read

xiv

About This Guide

Supplementary Documentation

You can find supplementary information in these documents and books:

• IRIX Advanced Site and Server Administration Guide (Silicon Graphics
publication) explains the fundamentals of system and network
administration for Silicon Graphics systems on a local area network.

• NFS Administration Guide (Silicon Graphics publication) explains how
to set up and maintain Silicon Graphics’ implementation of the
Network File System.

• Stern, Hal, Managing NFS and NIS, O’Reilly & Associates, Inc. 1991. This
book contains detailed, but not Silicon Graphics-specific, information
about NIS and how to administer and use it.

Conventions

This guide uses several font conventions:

italics Italics are used for command and manual page names,
filenames, variables, host names, user IDs, map names, and
the first use of new terms.

Courier Courier is used for examples of system output and for the
contents of files.

Courier bold Courier bold is used for commands and other text that you
are to type literally.

Product Support

Silicon Graphics offers a comprehensive product support and maintenance
program for IRIS® products. For information about using support services
for this product, refer to the Release Notes that accompany it.

1

Chapter 1

1. Understanding NIS

This chapter contains a general description of the Silicon Graphics
implementation of the Sun Microsystems network information service NIS.
It provides an overview of NIS, an explanation of the NIS client-server
model, and an introduction to NIS domains and NIS maps.

This chapter contains these sections:

• “What Is NIS?” on page 1

• “NIS Portability” on page 2

• “The Client-Server Model” on page 4

• “The Server Hierarchy” on page 4

• “NIS Maps” on page 5

• “NIS Domains” on page 6

What Is NIS?

NIS is a network lookup service that provides a centralized database of
information about the network to systems participating in the service. The
NIS database is fully replicated on selected systems and can be queried by
participating systems on an as-needed basis. Maintenance of the database is
performed on a central system.

2

Chapter 1: Understanding NIS

The purpose of NIS is to make network administration more efficient by
reducing the risk of error and the time required to perform redundant file
management tasks. For example, maintaining the /etc/hosts database on a
large network might require creating a script to automatically copy the
/etc/hosts file from a central system to all systems on the network. It also
requires setting up the appropriate access permissions on each system to
enable this file transfer; this is a redundant and time-consuming process. By
contrast, on networks using NIS, maintaining the /etc/hosts database requires
modifying a single file, typically /etc/hosts, on a single system.

On many networks, a number of information sources are available to
provide information to network applications. For this reason, most
applications have a standard lookup rule for finding the information they
need. Typically, the default lookup order is NIS first, DNS (BIND) second,
then the appropriate local files.

NIS can service networks with approximately 1000 systems. Larger
networks can be organized into multiple NIS service areas, or domains.

NIS Portability

NIS is an application layer service that can be used on any network using the
Transmission Control Protocol or User Datagram Protocol for transport
layer services. NIS also relies on remote procedure call (RPC) for session layer
services and external data representation (XDR) for presentation layer services.
Because the NIS application adheres to these standard network protocols, it
is portable and works with a variety of vendors’ platforms.

The network protocols TCP and UDP provide the services required to
transport messages on the same system or between remote systems. TCP
provides reliable, connection-oriented transport. UDP provides unreliable,
connectionless transport. TCP and UDP are protocols that are widely
accepted and used in the network environment, making them the logical
choices for NIS and several other network applications.

NIS Portability

3

RPC and XDR are services that bridge the gap between the transport layer
services and the network application. They provide the functionality
required to build distributed applications and resolve operating system and
hardware architectural differences.

RPC provides a message passing scheme. It allows information to be passed
between procedure calls that do not reside in the same address space. The
address space can be located on the same system or it may reside on a remote
system. In the NIS application, RPC enables client and server processes on
local or remote systems to access the NIS database. NIS users are not aware
that the procedure calls are occurring between two different systems.

XDR translates differences that can occur between machine architectures. It
allows remote procedure calls and/or an application to interpret an RPC
message independent of machine architecture. In the NIS application, XDR
services allow systems from multiple vendors access to an NIS database
located on any vendor’s system. RPC and XDR are not exclusive to NIS. RPC
and XDR are industry standards and are used in a variety of distributed
network applications.

Figure 1-1 illustrates the NIS software implementation in the context of the
Open Systems Interconnect (OSI) model.

Figure 1-1 NIS Software Implementation

application

presentation

session

transport

network

data link

physical

NIS

XDR

RPC

UDP/TCP

IP

network interface

4

Chapter 1: Understanding NIS

The Client-Server Model

An NIS client is a process running on a system that requests data from an NIS
database. An NIS server is a process running on a system that provides data
from the NIS database. The terms client and server designate both processes
and systems: a system is considered a client when requesting NIS data, and
it is considered a server when providing NIS data. A system can function as
a client and a server simultaneously.

Sometimes client requests are handled by NIS servers running on the same
system, and sometimes they are serviced by NIS servers running on a
different system. If one NIS server system fails, client processes obtain NIS
services from another. In this way, the NIS service remains available even
when an NIS server system goes down.

The Server Hierarchy

NIS servers, each of which contains a copy of the NIS database, are divided
into two groups: master servers and slave servers. A master server is the
system on which NIS databases are originally created and maintained. A
slave server is a system that holds a duplicate copy of the database. A server
may be a master server with respect to one database and a slave server with
respect to another.

The master server makes updated database information available to slave
servers by a process known as propagation. Propagation ensures the
consistency of database information between the master server and its slave
servers.

NIS Maps

5

NIS Maps

The NIS database is comprised of a group of files known as maps. Maps are
created with NIS tools that convert input files (usually standard ASCII files)
to files in database record format (dbm(3B)). Since data in dbm format is faster
to find than ASCII data, using dbm files increases NIS performance.

Each NIS map has a map name that programs use to access it. Any program
using an NIS map must recognize the format of the data it contains.

Maps are composed of keys and values. A key is a particular field in the map
that the client must specify whenever it queries the map; values are attributes
of the key returned from the query. For example, in the map called
hosts.byname, the keys are the names of individual systems, and the values
are their Internet addresses. A query on the system triangle might return the
value 192.0.2.5.

At steady state, maps throughout the network contain consistent information.
In this state, a client query receives the same answer to the query, regardless
of which server responds to it. This consistency of information allows
multiple servers to operate on a network, increasing the availability and
reliability of the NIS service.

6

Chapter 1: Understanding NIS

NIS Domains

An NIS domain is a collection of systems using the same NIS database. To
participate in the NIS service, a system must belong to an NIS domain.

Figure 1-2 shows the basic layout for the systems in Building 1 and a domain
called eng.

Figure 1-2 Basic NIS Domain

The domain eng consists of the master server, one slave server, and three
clients. One system on the network does not participate in NIS at this time
but may be included in the domain at a later date.

 M

M = master server

S = slave server

Building 1

 S
/usr/etc/yp/eng

non−participating system system in
eng domain

NIS Domains

7

NIS Domains and Server Directories

The NIS databases are contained in subdirectories of the NIS home directory
/var/yp. These subdirectories are named for the domain whose database they
contain. For example, in Figure 1-2, both servers contain the database for the
eng domain in a subdirectory named /var/yp/eng.

NIS and Internet Domains

NIS domains can be organized to coincide with domains of the Internet, a
registered organization of wide area networks originally funded by DARPA
(U.S. Defense Advanced Research Projects Agency). In the Internet naming
hierarchy, a domain name is comprised of a stream of names separated by
dots. For example, eng.widgets.com is an Internet domain. This could also be
the name of the NIS domain.

Some administrators name their NIS domains with simple names and the
Internet domain names separated with dots, for example, eng for the NIS
domain name and eng.widgets.com for the Internet domain name. Using this
naming scheme, the two domains can be easily distinguished. Other
administrators prefer to have the NIS and Internet domain names coincide.
This is strictly a matter of choice; there is no explicit relationship between
NIS and Internet domains. However, to avoid confusion, choosing one of
these two naming schemes is recommended. (See the IRIX Advanced Site and
Server Administration Guide for details on Internet domains.)

Multiple NIS Domains

Complex networks that require large NIS databases, approximately 1000
systems or more, should be evaluated for multiple NIS domains. Factors that
should be considered when determining whether to have multiple domains
are network complexity and server availability. In addition, on networks
where dynamic conditions make database synchronization difficult,
multiple domains can make NIS more reliable and easier to maintain. NIS
domains are not constrained by the topology of the network. Systems in the
same NIS domain are not necessarily on the same local area network. For
administrative or organizational reasons, it may make sense to configure
large networks as separate NIS domains such as eng and finance.

8

Chapter 1: Understanding NIS

Figure 1-3 illustrates the organization of Building 1 and Building 2 local area
networks into two domains, eng and finance.

Figure 1-3 Multiple NIS Domains

The master and slave server for the eng domain both contain a database of
information for the eng domain in /var/yp/eng, and the master and slave
server for the finance domain both contain a copy of the database for the
finance domain in /var/yp/finance. Notice that one system n the Building 1
local area network belongs to the finance domain and is the master server for
the finance domain. (Chapter 2, “Preparing to Manage NIS,” contains
detailed information on multiple NIS domains.)

 M

 M

non−participating system

M = master server

S = slave server

 S

Building 2 Building 1

system in
eng domain

 S

system in
finance domain

9

Chapter 2

2. Preparing to Manage NIS

To be prepared for managing NIS, you should understand NIS software
elements and the tools available for controlling its operation. This chapter
contains the prerequisite information. It identifies NIS client and server
daemons and their interactions, and describes a special daemon interaction
called binding. It also explains how the NIS database is created and
maintained, and how local client files and global files are used when NIS is
in effect. Finally, this chapter provides a quick reference guide to NIS
software and NIS management tools.

This chapter contains these sections:

• “Daemons” on page 9

• “Binding” on page 11

• “The NIS Database” on page 12

• “NIS and Other Network Files” on page 16

• “NIS Software Quick Reference Guide” on page 19

Daemons

Which NIS daemons are running on a system depends on the system’s
function in the NIS environment: clients, master servers, and slave servers
each run a particular set of daemons.

10

Chapter 2: Preparing to Manage NIS

Table 2-1 lists the daemons required for each type of system for NIS to
function correctly.

The binder daemon, ypbind(1M), runs on all NIS clients. This daemon is
responsible for remembering information necessary for communicating
with the NIS server process, ypserv(1M).

The server daemon, ypserv, runs on all NIS servers. The ypserv daemon is the
database server and is responsible for answering client inquiries. It is also
responsible for managing database updates. Most NIS servers are also NIS
clients; they use the NIS database information. As NIS clients, NIS servers
also run the binder daemon, ypbind.

The NIS master server also runs the server process daemon, ypserv, to answer
client inquiries. The NIS master server typically runs the binder process
daemon, ypbind, to solicit information from the NIS database. The master
server also runs a third daemon, /usr/etc/rpc.passwd, which allows NIS users
to remotely modify their NIS password with yppasswd(1) and to modify
some other password file fields with ypchpass(1).

On IRIX, NIS daemons are started by the master network script,
/etc/init.d/network, if the NIS daemon flags are set on (flags can be set with the
chkconfig(1M) command). There are three chkconfig flags for NIS: yp, ypserv,
and ypmaster (see Chapter 4, “Setting Up and Testing NIS,” for more details).

Table 2-1 NIS Daemons by System Type

Client Slave Master

ypbind X X X

ypserv X X

rpc.passwd X

Binding

11

Binding

In binding, a process remembers the address at which the ypserv process is
listening for requests. In the NIS environment, when an application on a
client needs information that is normally derived from certain local files, the
application solicits the information from the NIS database on a selected NIS
server. The relationship between the binder daemon, ypbind, and the server
daemon, ypserv, determines whether or not an NIS connection is bound or
unbound. A brief summary of the binding process is given below.

An application, through library routines, contacts the local portmap(1M)
program to determine the appropriate port number for ypbind. The portmap
program returns the port number to use to contact ypbind. Port numbers are
defined in /etc/rpc. Once the local system has the port number for ypbind, it
requests an IP address and port number for an NIS server process, ypserv,
within its domain.

To obtain the IP address and port number for the NIS server process, ypbind
broadcasts for any NIS server within its domain. The first NIS server process
to respond with its IP address and port number, whether local or remote, is
the process that is used to service the request. The IP address for the physical
NIS server and the port number for the NIS server process, ypserv, are
remembered by the ypbind process and used to obtain NIS database
information. The association between the binder daemon, ypbind, and the
server daemon, ypserv, must be present for binding to occur.

Figure 2-1 illustrates the binding process initiated for an ls(1) command.
Before the ls command can list the contents of a directory, it needs to
translate the file’s user ID into a user’s name. ls uses the library routine
getpwuid(3C), which accesses the local /etc/passwd file and the NIS password
file as appropriate. In an NIS environment, this entails accessing the
password map in the NIS database. Note that the general process is the same
whether binding occurs on the local system or between remote systems.

12

Chapter 2: Preparing to Manage NIS

Figure 2-1 NIS Binding Process

When a client boots, ypbind broadcasts, by default, asking for an NIS server.
Similarly, ypbind broadcasts asking for a new NIS server if the old server fails
to respond. The ypwhich(1) command gives the name of the server to which
ypbind is currently bound.

The NIS Database

The NIS database is a collection of files in dbm format. To create the database,
the NIS tool makedbm(1M) converts input files (usually ASCII) to pairs of
output files. The output files have .dir and .pag extensions. Each pair is a
map. For example, the aliases map is composed of the files aliases.dir and
aliases.pag.

ls

getpwuid(3C)

yp_bind(3Y){libsun

portmap ypbind

broadcast ypserv

using "bound" path, get
NIS passwd information

Client

Server

"bind"

The NIS Database

13

A typical listing of NIS database files looks like this:

aliases.dir host.addr.dir netid.byname.dir pw.name.dir
aliases.pag host.addr.pag netid.byname.pag pw.name.pag
bootparams.dir host.name.dir nets.addr.dir pw.uid.dir
bootparams.pag host.name.pag nets.addr.pag pw.uid.pag
ether.addr.dir mail.byaddr.dir nets.name.dir rpc.nbr.dir
ether.addr.pag mail.byaddr.pag nets.name.pag rpc.nbr.pag
ether.name.dir netgrp.dir proto.name.dir svc.name.dir
ether.name.pag netgrp.pag proto.name.pag svc.name.pag
grp.gid.dir netgrp.hist.dir proto.nbr.dir ypservers.dir
grp.gid.pag netgrp.hist.pag proto.nbr.pag ypservers.pag
grp.name.dir netgrp.usr.dir pw.name.dir
grp.name.pag netgrp.usr.pag pw.name.pag

Standard and Nonstandard Maps

The NIS application is capable of making and updating a particular set of
maps automatically. These are known as standard maps and are derived from
regular ASCII files. The maps included in a standard set vary with each NIS
release. Nonstandard maps are maps that have no ASCII form or maps that are
created for vendor- or site-specific applications; NIS does not automatically
know how to make or update nonstandard maps. NIS can serve any number
of standard (default) and nonstandard maps.

Table 2-2 shows the standard NIS maps.

Table 2-2 Standard Set of NIS Maps

bootparams hosts.byname netid.byname protocols.bynumber

ethers.byaddr mail.aliases networks.byaddr rpc.bynumber

ethers.byname mail.byaddr networks.byname services.byname

group.bygid netgroup.byhost passwd.byname ypservers

group.byname netgroup.byuser passwd.byuid

hosts.byaddr netgroup protocols.byname

14

Chapter 2: Preparing to Manage NIS

In most cases, the format of the data in NIS default maps is identical to the
format within the ASCII files.

Some maps have default nicknames to make administration easier. The
ypcat(1) command, a general NIS database print program, with the –x option
prints a list of default map nicknames and their corresponding full names.
Table 2-3 shows the list of default nicknames and full names for maps
supplied in the NIS release.

For example, the command ypcat hosts is translated into
ypcat hosts.byaddr since there is no map called hosts.

Map Propagation

Propagating an updated database from master server to slave servers
ensures database consistency between all NIS clients. Databases can be
updated in two ways: periodically with crontab(1) and interactively from the
command line (see Chapter 5, “Maintaining NIS,” for details on map
propagation methods).

Table 2-3 Default Nicknames for Maps

Map Nickname Map Full Name

aliases mail.aliases

ethers ethers.byname

group group.byname

hosts hosts.byaddr

networks networks.byaddr

passwd passwd.byname

protocols protocols.bynumber

rpc rpc.bynumber

services services.byname

The NIS Database

15

The propagation process varies depending on the propagation method. For
example, when a map is updated and propagated using ypmake(1M), ypmake
looks at /var/yp/make.script and /var/yp/local.make.script (if it exists) to
determine which maps to make. /var/yp/make.script calls makedbm(1M),
which updates the maps and calls yppush(1M). yppush reads the ypservers
map to determine which slave servers to contact; yppush contacts ypserv on
the selected slave servers and requests ypxfr(1M) service. The slave server
can now transfer the maps with ypxfr.

Figure 2-2 illustrates the propagation process between a master server and a
slave server using ypmake.

Figure 2-2 Map Propagation between Servers

ypmake

make.script

makedbm

yppush

ypserv ypxfr

Master Server Slave Server

transfer request

transfer request

ypserv

start

map transferred

16

Chapter 2: Preparing to Manage NIS

NIS and Other Network Files

When a system becomes an NIS client, it completely relinquishes control
over some network-related files and maintains varying levels of control over
others. The amount of control relinquished on certain files depends upon the
NIS syntax used within the file.

These network-related files can be divided into two groups: local files and
global files. Local files are those files that NIS first checks on the local system
and may continue checking in the NIS database. Global files are those files
that reside in the NIS database and are always consulted by programs using
NIS. The next two sections discuss the local and global files consulted by
NIS. More information on these configuration files is included in the IRIX
Advanced Site and Server Administration Guide.

Local Files

Table 2-4 shows the local files that NIS consults. Local files allow levels of
control. For example, a program that calls getpwent(3C) to access /etc/passwd
(a local file) first looks in the password file on your system; the NIS password
file is consulted only if your system’s password file contains a plus sign (+)
entry (see passwd(4)).

If shadow passwords are used (/etc/shadow exists on the local system), the
NIS password file isn’t consulted at all.

Table 2-4 Local Files Consulted by NIS

Local File

/etc/group

/etc/hosts.equiv

/etc/passwd

/etc/aliases

.rhosts

NIS and Other Network Files

17

The /etc/group and /etc/passwd files may have plus (+) or minus (–) entries to
designate levels of local control. Table 2-5 shows some examples of +/–
entries for the local /etc/group and /etc/passwd files. Note that the position of
+/– entries in the files does affect processing. The first entry, +/– or regular,
is the one that is used.

Table 2-5 Local File Entries to Control Access

Local File Example Entry Meaning of the Entry

/etc/group +: Get all group information from the
NIS group database.

+angels:::mark,john Assign the users mark and john to
the group angels. mark and john’s
group password (if any) and group
ID is taken from the NIS angels
group entry.

-spies Disallow subsequent entries, both
local and NIS, for the group spies.

/etc/passwd +: Get all password information from
the NIS password database.

+gw: Get all user account information
for gw from NIS.

+@marketing: Allow anyone in the marketing
netgroup (see “Using Netgroups”
in Chapter 5 for details) to log in
using NIS account information.

+nb::::Nancy
Doe:/usr2/nb:/bin/csh
(shown wrapped; entry is one line)

Get the user password, user ID,
and group ID from NIS. Get the
user’s name, home directory, and
default shell from the local entry.

-fran: Get all user account information
from NIS and disallow any
subsequent entries (local or NIS)
for fran.

-@engineering: Disallow any subsequent entries
(local or NIS) for all members in
the netgroup engineering.

18

Chapter 2: Preparing to Manage NIS

In /etc/hosts.equiv, if there are + or – entries whose arguments are @ symbols
and netgroups, the NIS netgroup map is consulted; otherwise NIS is not
consulted. This rule also applies to .rhosts.

In /etc/aliases, if there is a +:+ entry, the NIS aliases map is consulted.
Otherwise, NIS is not consulted.

Global Files

Table 2-6 shows the global files that NIS consults. Local copies of these files
are ignored when NIS is running, except in the cases noted below.

The information in global files is network-wide data, and only NIS accesses
it. However, you must make sure each client has an entry for itself in
/etc/hosts when booting. If NIS is running, NIS checks only global files; NIS
does not consult global files on your local system. For bootparams, services
and rpc, the files on the local system are consulted only if the answer is not
in the NIS database. By default, the local file /etc/hosts is not consulted if NIS
is running. To change the default, edit /etc/resolv.conf as specified in the
resolver(4) manual page.

Table 2-6 Global Files Consulted by NIS

Global Files

/etc/bootparams

/etc/ethers

/etc/hosts

/etc/netgroup

/etc/networks

/etc/protocols

/etc/rpc

/etc/services

NIS Software Quick Reference Guide

19

NIS Software Quick Reference Guide

This section provides a quick reference to NIS daemons, files, and tools and
suggests the manual pages you should consult for complete information.
The manual pages at the end of this guide contain detailed information on
the structure of the NIS system and NIS commands.

NIS Daemons

rpc.passwd(1M) A server process that allows users with NIS accounts to
change their NIS password and other NIS password-related
fields.

ypbind(1M) The binder process that runs on all systems that use NIS
services, both servers and clients. It remembers information
that lets client processes on a single node communicate with
some ypserv processes.

ypserv(1M) The NIS database server process that must run on each NIS
server system. It looks up information in its local database
of NIS maps.

NIS Configuration Files

/var/yp The default location of NIS database files. For more
information, see ypfiles(4).

/etc/config/rpc.passwd.options
Specifies an alternate NIS password filename. Default
password file is /etc/passwd. Must be used in conjunction
with the /etc/config/ypmaster.options PWFILE variable. For
more information, see rpc.passwd(1M).

/etc/config/ypbind.options
Specifies default options to use with ypbind. Options that
can be included in this file are a secure mode and the name
or IP address of the NIS server to bind to at system startup.
This eliminates the need for an NIS server on each network.
For more information, see ypbind(1M).

20

Chapter 2: Preparing to Manage NIS

/etc/config/ypmaster.options
Alters default NIS variables, including the NIS password
filename, the aliases filename, the source file directory,
additional domains, to push maps or not, and the directory
containing NIS programs. For more information, see
ypmake(1M).

/etc/config/ypserv.options
Specifies non-default options to use with ypserv. Options
that can be included in this file are forklimits, operation
with named(1M) and/or DNS, log information, and verbose
output. For more information, see ypserv(1M).

NIS Tools

makedbm(1M) A low-level tool for building a dbm file that is a valid NIS
map. You can use makedbm to build or rebuild databases not
built from /var/yp/make.script. You can also use makedbm to
disassemble a map so that you can see the key-value pairs
that comprise it. In addition, you can modify the
disassembled form with standard tools (such as editors,
awk, grep, and cat). The disassembled form is in the form
required for input back into makedbm. Create the local site
make script, /var/yp/local.make.script, to avoid using this
low-level tool except in rare circumstances.

ypcat(1) Lists the contents of an NIS map. Use it when you do not
care which server’s map version you see. If you need to see
a particular server’s map, rlogin(1C) or rsh(1C) to that server
and use makedbm.

ypchpass(1) Changes select NIS password fields. As the NIS user, you
can change your full name, your home directory and your
default shell environment. Use yppasswd(1) to change your
NIS password.

NIS Software Quick Reference Guide

21

ypinit(1M) Constructs many maps from files located in /etc, such as
/etc/hosts, /etc/passwd, and others. The database initialization
tool ypinit does all such construction automatically. Also, it
constructs initial versions of maps required by the system
but not built from files in /etc; an example is the map
ypservers. Use this tool to set up the master NIS server and
the slave NIS servers for the first time. Use ypinit to
construct initial versions of maps rather than as an
administrative tool for running systems.

ypmake(1M) Builds several commonly changed components of the NIS
database from several ASCII files normally found in /etc:
bootparams, passwd, hosts, group, netgroup, networks, protocols,
rpc, and services, and the file /etc/aliases. /var/yp/ypmake.log is
the log file for all ypmake activity.

ypmatch(1) Prints the value for one or more specified keys in an NIS
map. Again, you have no control over which server’s
version of the map you are seeing.

yppasswd(1) Allows NIS users to remotely change their NIS passwords.

yppoll(1M) Asks any ypserv for the information it holds internally about
a single map.

yppush(1M) Runs on the master NIS server. It requests each of the ypserv
processes within a domain to transfer a particular map,
waits for a summary response from the transfer agent, and
prints out the results for each server.

ypset(1M) Tells a ypbind process (the local one, by default) to get NIS
services for a domain from a named NIS server. By default,
ypbind disallows the use of ypset. See the ypset(1M) manual
page for details on enabling ypset.

ypwhich(1) Tells you which NIS server a node is using at the moment
for NIS services, or which NIS server is master of some
named map.

22

Chapter 2: Preparing to Manage NIS

ypxfr(1M) Moves an NIS map from one NIS server to another, using
NIS itself as the transport medium. You can run it
interactively, or periodically from crontab(1M). Also, ypserv
uses ypxfr as its transfer agent when it is asked to transfer a
map. You can create the file /var/yp/ypxfr.log to log all ypxfr
activity.

In addition to these NIS tools, the rpcinfo(1M) and crontab tools are also
useful for administering NIS.

23

Chapter 3

3. Planning Your NIS Service

This chapter presents information to consider before you set up the NIS
service on your network. It explains how to set up multiple NIS domains (if
you decide they are needed) and identifies the files that should be up-to-date
before NIS setup begins. It suggests how to name a domain and how to select
a master and slave servers. Finally, this chapter provides general
recommendations to help you make planning decisions.

This chapter contains these sections:

• “Establishing Multiple NIS Domains” on page 23

• “Verifying ASCII File Contents” on page 28

• “Selecting a Domain Name” on page 30

• “Selecting the NIS Master Server” on page 30

• “Selecting the NIS Slave Servers” on page 31

• “General Recommendations” on page 32

Establishing Multiple NIS Domains

Before you set up NIS, you need to determine the number of domains you
need. Establishing more than one domain is advisable if your network is
very complex or requires a very large database. You might also consider
using multiple domains if your network contains a large number of systems
(say, in excess of 1000 systems).

If you decide to establish multiple domains and require interdomain
communication, your planning involves additional network considerations.
Those considerations are addressed in the remainder of this section.

24

Chapter 3: Planning Your NIS Service

Note: If you plan to establish a single domain or multiple isolated domains,
you can skip ahead to “Verifying ASCII File Contents” to proceed with your
planning. ♦

Domain Boundaries

NIS is not hierarchical in nature; it cannot resolve issues that extend beyond
domain boundaries. For example, suppose you set up two domains as
shown in Figure 3-1: shapes, which includes system client1, and colors, which
includes system client2. Without NIS, communication between client1 and
client2 relies on entries in their local /etc/hosts that provide a host
name-to-address mapping.

Figure 3-1 Boundary Problem with Multiple Domains

With NIS, host name and address information is in the hosts database on the
NIS servers for a domain. However, this name and address information is
limited to domain members. The colors database has no entry for client1 in
the shapes domain, and the shapes database has no entry for client2 in the
colors domain. Consequently, when client1 tries to contact client2, host name
resolution fails and a connection cannot be established. While there may be
a physical connection between client1 and client2, there is not a logical
connection to support the communication process.

shapes colors

client1 client2

Establishing Multiple NIS Domains

25

Bridging Domain Boundaries

When multiple NIS domains are used, you must form a logical bridge
between domains to allow systems in different domains to communicate as
shown in Figure 3-2. The logical bridge must contain or be able to access
system information for all systems on a given network, regardless of
domain. There are two ways to achieve this logical bridge: using the Domain
Name System (DNS) or using a customized update procedure.

Figure 3-2 Boundary Solutions for Multiple Domains

Using the Domain Name System (DNS)

DNS, sometimes referred to as BIND (Berkeley Internet Name Daemon) or
named(1M), is a service that maps host names to IP addresses and vice-versa.
DNS is concerned mainly with host name-address and address-host name
resolution. It was developed to support very large scale environments and
provides an accurate network depiction; it is hierarchical in nature. When
correctly set up, DNS resolves host names and addresses throughout an
entire network. For NIS to use DNS, DNS must be set up to know about all
systems. The IRIX Advanced Site and Server Administration Guide provides
detailed information on setting up DNS.

shapes colors

DNS or
customized update
procedure

client2client1

26

Chapter 3: Planning Your NIS Service

By default, host name resolution is done by first checking NIS, If NIS isn’t
running, then DNS is checked. If DNS isn’t running, then the local
/etc/hosts file is checked. There are two methods for specifying a host
resolution order other than the default:

• Use ypserv(1M) with the –i option.

• Redefine the host resolution order in /etc/resolv.conf.

These methods are described in the next two sections.

Using ypserv –i

ypserv can be set up to access DNS systems databases as well as NIS
databases. To specify a DNS database lookup, the ypserv process on all NIS
servers must be running with the –i option and all NIS servers must also be
set up as DNS clients. The –i option allows ypserv to resolve nonlocal host
names and addresses (systems not in the same NIS domain) with DNS
servers. This option can be set automatically at ypserv startup if you specify
the –i option in the /etc/config/ypserv.options file.

A sample /etc/config/ypserv.options file that supports DNS looks like this:

-i

If the –i option is set in the /etc/config/ypserv.options file, it causes ypserv to
look at the NIS host database first, then the DNS hosts database to resolve a
system’s identity.

Using /etc/resolv.conf

The lookup order for resolving a system’s identity can be configured in a
variety of ways with /etc/resolv.conf. For example, a network application
could resolve host-name lookup by accessing files or databases in this order:
NIS, DNS, and finally the local file. It can be configured to check only the first
service running, or to check services until a match is found. Whatever order
is specified, it becomes the default lookup order used by routines in the
standard C library, such as gethostbyname(3N), for resolving host names.

Establishing Multiple NIS Domains

27

The /etc/resolv.conf file does not exist by default. To override the default
system lookup order, you must create this file with the specified lookup
order and nameserver list on all master servers, slave servers, and clients in
all domains, and set up DNS servers as well.

If you want applications to resolve host names via the DNS database only,
put this line in /etc/resolv.conf:

hostresorder bind

If applications are to search only DNS and /etc/hosts, put this line in
/etc/resolv.conf:

hostresorder bind local

To specify that NIS should be checked first, then if no match is found check
DNS, and if no match is found check /etc/hosts, put this line in /etc/resolv.conf:

hostresorder nis bind local

See the resolver(4) manual page for more detailed information.

Establishing a Customized Update Procedure

An alternative to using DNS is to establish a procedure for updating the
hosts file on all master servers. For example, designate one system at your
site to be the repository for new system addresses and limit administration
of this system to a few select people. Set up a script and crontab(1M) entry on
the designated system to copy its /etc/hosts file to the NIS master servers on
each domain at regular intervals. When each NIS master server performs a
ypmake(1M), the host database is updated with the names and addresses for
all systems on the network, regardless of the domain. This scheme
distributes an updated list of all network systems to NIS servers, allowing
clients in different domains to communicate successfully.

While DNS is mainly for host name resolution, NIS supports multiple
database maps in addition to the hosts map. This method of setting up your
own customized update procedure is also useful if you need the same
information for other maps distributed between domains (for example,
/etc/aliases).

28

Chapter 3: Planning Your NIS Service

Verifying ASCII File Contents

NIS databases are built on the NIS master server from a set of ASCII files the
master server contains. A key preparation step is to ensure that the
information contained in the ASCII files is correct and up-to-date.

Table 3-1 lists the maps that make up the NIS database, the input files that
create these maps, and the purpose of each map in the NIS environment.

Table 3-1 Maps, ASCII Files, and Descriptions

Map Name ASCII File Description

bootparams /etc/bootparams Contains pathnames of files diskless clients
need during booting: root, swap, share,
possibly others.

ethers.byaddr /etc/ethers Contains host names and Ethernet
addresses. The Ethernet address is the key in
the map.

ethers.byname /etc/ethers Same as ethers.byaddr, except key is host name
instead of Ethernet address.

group.bygid /etc/group Contains group security information with
group ID as key.

group.byname /etc/group Contains group security information with
group name as key.

hosts.byaddr /etc/hosts Contains host names and IP addresses, with
IP address as key.

hosts.byname /etc/hosts Contains host names and IP addresses, with
host name as key.

mail.aliases /etc/aliases Contains aliases and mail addresses, with
aliases as key.

mail.byaddr /etc/aliases Contains mail addresses and aliases, with
mail address as key.

netgroup.byhost /etc/netgroup Contains group names, user names, and host
names, with host name as key.

Verifying ASCII File Contents

29

netgroup.byuser /etc/netgroup Same as netgroup.byhost, except that key is user
name.

netgroup /etc/netgroup Same as netgroup.byhost, except that key is
group name.

netid.byname /etc/group,

/etc/hosts,

/etc/netid

Contains user, group, and host information,
with user name as key.

networks.byaddr /etc/networks Contains names of networks known to your
system and their IP addresses, with the
address as the key.

networks.byname /etc/networks Same as networks.byaddr, except key is name of
network.

passwd.byname /etc/passwd Contains password information with user
name as key.

passwd.byuid /etc/passwd Same as passwd.byname, except that key is user
ID.

protocols.byname /etc/protocols Contains network protocols known to your
network, with protocol name as key.

protocols.bynumber /etc/protocols Same as protocols.byname, except that key is
protocol number.

rpc.bynumber /etc/rpc Contains program number and name of
RPCs known to your system. Key is RPC
program number.

services.byname /etc/services Lists Internet services known to your
network. Key is service name.

ypservers /var/yp/ypservers Lists NIS servers known to your network.
Initially created by ypinit when master server
was built.

Table 3-1 (continued) Maps, ASCII Files, and Descriptions

Map Name ASCII File Description

30

Chapter 3: Planning Your NIS Service

Selecting a Domain Name

The name you choose for your NIS domain is at your discretion; however, it
should reflect some characteristics of the network it is serving, such as its
location, function, or types of systems it contains. You can use a simple
domain name, such as marketing; or, if you are a member of the Internet and
you choose to do so, you can use your Internet domain name (such as
finance.company.com) as your NIS domain name.

The domainname(1) command sets a domain name on an NIS system. The
NIS domain name is assigned at system startup. Enter it in the domain file,
/var/yp/ypdomain. Be aware that domain names are case sensitive: marketing
and Marketing are different domains. See Chapter 4, “Setting Up and Testing
NIS,” for complete instructions on setting domain names.

Selecting the NIS Master Server

Determine the system to be the NIS master server for the domain; there is
only one NIS master server per domain. The NIS master server houses the
original NIS database maps for the domain and is the only server on which
changes are made to the NIS database. For this reason, the master server
should be a very reliable and stable system. It must be accessible via the
network to both NIS clients and NIS slave servers. The master server need
not be a dedicated system; it can be responsible for other functions as well.

This is also a good time to determine the name of the NIS password file to be
used. By default, NIS derives the database file from the ASCII version of
/etc/passwd. This can be a security hole as all system password files require a
root account.

Selecting the NIS Slave Servers

31

To ensure security, create a separate NIS password file that contains no root
or superuser-equivalent accounts (no UID=0). A good generic NIS password
filename is /etc/passwd.nis. If you plan to use a password file other than the
default /etc/passwd, you must tell NIS about the new filename. To do so, you
must create two files to support the NIS password file, /etc/passwd.nis:
/etc/config/rpc.passwd.options and /etc/config/ypmaster.options. The contents of
/etc/config/rpc.passwd.options and /etc/config/ypmaster.options should look like
these examples:

cat /etc/config/rpc.passwd.options
/etc/passwd.nis

cat /etc/config/ypmaster.options
PWFILE=/etc/passwd.nis

Selecting the NIS Slave Servers

Slave servers contain copies of the NIS database. The number of NIS slave
servers you assign per domain depends upon the size of the domain and the
number of networks over which your domain extends. NIS slave servers
must be accessible to both NIS clients and the NIS master server by means of
the network. NIS slave servers should be reliable systems; the degree of
reliability of these systems depends on the availability of backup slave
servers.

By default, NIS clients broadcast an NIS bind request when they boot. Since
broadcast requests cannot go through gateways, you must have at least one
NIS slave server on any network where there are NIS clients. For reliability,
there should be more than one NIS slave server on any network where there
are NIS clients.

Broadcasting bind requests is the default setting, but clients can specify the
server they wish to bind to at boot time. For instance, say you have a domain
that encompasses many subnets, one of which contains only one client. To
avoid making that client a server, you can specify the server the client should
bind to at boot time.

32

Chapter 3: Planning Your NIS Service

To specify an NIS server at client startup, modify /etc/config/ypbind.options.
By default, this file contains a parameter that enables ypset(1M) on the local
system (see the ypset(1M) and ypbind(1M) manual pages for more detailed
information). The default file, when viewed with cat(1), contains this entry:

cat /etc/config/ypbind.options
-ypsetme

To specify an NIS server at client startup, add the host name or IP address of
the NIS server to the /etc/config/ypbind.options file. The specified server’s
name must be in the client’s local /etc/hosts file for specific binding to work.
The /etc/config/ypbind.options file on a client binding to server squares at boot
time might look like this when viewed with cat:

cat /etc/config/ypbind.options
-ypsetme squares

The example above contains the option –ypsetme. If you want additional
security or do not need the ypset tool at this time, you can remove the
parameter.

General Recommendations

Below are some general recommendations for setting up NIS. As these are
only general recommendations, you may need to tailor them to fit your
specific site requirements.

1. During the planning phase, sketch the NIS implementation for your
network. Identify the master server, slave servers, and client systems. If
you have multiple domains, include them in your drawing.

2. If your domain spreads over several networks, ensure that there are at
least two slave servers per network in case of system or network
failures.

3. Create an alternate password file for NIS use only that does not have
any root UIDs. For example, specify /etc/passwd.nis as the NIS password
file.

4. To simplify administration and troubleshooting, maintain one and only
master server for all maps within a single domain.

5. Plan to do all database creation and modification on the master server.

33

Chapter 4

4. Setting Up and Testing NIS

Setting up NIS consists of three general procedures: setting up the master
server, setting up the slave servers, and setting up the clients. The
instructions in this chapter explain how to set up NIS by guiding you
through procedures on sample NIS systems in a sample NIS domain.

This chapter contains these sections:

• “Setting Up the NIS Master Server” on page 34

• “Setting Up NIS Slave Servers” on page 39

• “Setting Up NIS Clients” on page 42

This sample setup in this chapter is representative of what must be done to
set up NIS on any network, regardless of its specific characteristics. When
you use these instructions, substitute your own values for the ones shown in
our examples. In our examples, NIS entities have these names:

• The domain name is shapes.

• The master server name is circles.

• Slave server names are squares and triangles.

Note: Host names used in the NIS environment must be the official host
names, not nicknames. The official host name is the name returned by the
hostname(1) command. See the hostname(1) manual page for usage details. ♦

34

Chapter 4: Setting Up and Testing NIS

Setting Up the NIS Master Server

There are four parts to the procedure for setting up the NIS master server.

1. Setting the master server’s domain name

2. Building the master maps

3. Starting NIS on the master server

4. Testing the NIS master server

Setting the Master Server’s Domain Name

Set the system’s domain name based on your site’s configuration. Recall that
the domain name for this example is shapes. As you do this step, replace
shapes with the domain name you chose for your site.

If your site configuration consists of only NIS domains and/or the NIS
domain names are not the same as the Internet domain names, do the
following:

1. Set the domain name:

echo shapes > /var/yp/ypdomain
domainname shapes

2. Verify the domain name setting with domainname(1):

domainname
shapes

If the domain name is correctly set, the domainname command returns
the domain name you specified in instruction 1 of this step. If your
output is not correct, reissue the commands in instruction 1.

Setting Up the NIS Master Server

35

If your site configuration consists of NIS domains and Internet domains with
the same names, do the following (the example assumes that the NIS and
Internet domains are both named widgets.com):

1. Set the official host name for the master server (the host name for our
example is circles):

echo circles.widgets.com > /etc/sys_id

2. Reboot the system:

/etc/reboot

The /var/yp/ypdomain file is not required if the domain names for the NIS and
Internet domains are the same. Also, the domain name must be part of the
official host name set in the /etc/sys_id file. If a /var/yp/ypdomain file exists, the
domain name set in the /var/yp/ypdomain file overrides the domain name
specified in the /etc/sys_id file.

Building the Master Maps

The command ypinit(1M) builds NIS maps using the text files and the
/var/yp/make.script. (See Chapter 2, “Preparing to Manage NIS,” for a list of
the default files that are converted to maps in this step.)

1. Start building the master NIS maps with the ypinit command:

cd /var/yp
./ypinit -m
Installing the NIS data base will require that you answer
a few questions.Questions will all be asked at the
beginning of the procedure.

The –m flag denotes that this is an NIS master server.

2. You do not want this procedure to quit on nonfatal errors, so answer n
(no) to this prompt:

Do you want this procedure to quit on nonfatal errors?
[y/n: n] n
OK, please remember to go back and redo manually whatever
fails. If you don’t, some part of the system (perhaps the
NIS itself) won’t work.

36

Chapter 4: Setting Up and Testing NIS

3. Enter the names of all NIS slave servers for the domain shapes followed
by <Ctrl-D> in response to this prompt:

At this point, we have to construct a list of the hosts
which will run NIS servers. circles is in the list of NIS
server hosts. Please continue to add the names for the
other hosts, one per line. When you are done with the
list, type a <ctl D>.
next host to add: circles
next host to add: squares
next host to add: triangles
next host to add: <Ctrl-D>

The current list of NIS servers looks like this:

circles
squares
triangles

The NIS master server (circles for this example, shown in the prompt) is
automatically added to the list of NIS servers. The NIS slave server
names you specify must be the servers’ official names, not their
nicknames. The official names are the names returned by the
hostname(1) command.

The names supplied here are put in the ASCII file /var/yp/ypservers.

4. Confirm that list of NIS slave servers is correct:

Is this correct? [y/n: y] y

If the output in instruction 3 shows any errors, enter n (no) and repeat
that instruction.

After your response, ypinit reads /var/yp/make.script to determine which
maps to make. It takes a few minutes to build the maps. The amount of
time required depends on the size of your input files. When the maps
are complete, you see this output:

There will be no further questions. The remainder of the
procedure should take 5 to 10 minutes.
Building NIS databases:
> updated passwd (14:10:10 08/15/93)
> updated group (14:10:11 08/15/93)
> updated hosts (14:10:18 08/15/93)
> updated ethers (14:10:19 08/15/93)
> updated networks (14:10:21 08/15/93)

Setting Up the NIS Master Server

37

> updated rpc (14:10:21 08/15/93)
> updated services (14:10:22 08/15/93)
> updated protocols (14:10:23 08/15/93)
> updated netgroup (14:10:24 08/15/93)
3 aliases, longest 11 bytes, 44 bytes total
> updated aliases (14:10:26 08/15/93)
> updated bootparams (14:10:26 08/15/93)
> updated netid (14:10:29 08/15/93)
> updated ypservers (14:10:30 08/15/93)

When the NIS master server circles is set up without any errors, you see
a message like this one:

circles has been set up as the NIS master server without
any errors.

Any other message suggests that the master server’s maps may be
corrupt. If there is any doubt about the integrity of the database maps,
always go back to instruction 1 of this step to rebuild the maps from
scratch.

5. Answer y (yes) to this prompt so the NIS master server daemons start
when this master server is booted:

Start NIS master daemons during system startup? [y/n: y] y

This does a chkconfig(1M) on the appropriate NIS daemons. It does not
start the daemons unless the system is rebooted.

6. Run yppush(1M) and ypinit, if needed:

If there are running slave NIS servers, run yppush now
for any data bases which have been changed. If there are
no running slaves, run ypinit on those hosts which are to
be slave servers.

If you are creating a new master server for an already existing domain
with functioning slave servers, you must run yppush to propagate the
new maps to the slave servers (see Chapter 5, “Maintaining NIS,” for
details on changing a master server). If this setup is new, you must run
ypinit on the selected systems to build the slave server databases.

38

Chapter 4: Setting Up and Testing NIS

Starting NIS on the Master Server

The NIS service is available to clients as soon as you start it on the master
server. You can start NIS by any one of these methods: rebooting the NIS
master server, stopping and restarting the network with the
/etc/init.d/network script, or starting the daemons manually by giving these
commands:

/usr/etc/ypserv
/usr/etc/ypbind
/usr/etc/rpc.passwd /etc/passwd.nis -m passwd

To specify a DNS database lookup for host name resolution, add the –i
option to the ypserv(1M) command (see “Using ypserv –i” in Chapter 3 for
more information). Note that the rpc.passwd(1M) process initiated in this
command sequence assumes the existence of a specific NIS password file
called /etc/passwd.nis. See “Selecting the NIS Master Server” in Chapter 3 for
details on setting up a nonstandard NIS password file.

Testing the NIS Master Server

Finally, to ensure that NIS services are functioning properly on the NIS
master server, give the ypwhich(1) command. Since the NIS master server is
also a client, it should return with the name of the server to which it is bound.
Remember, an NIS master server is bound to itself, and it returns its own
name.

ypwhich
localhost

The response localhost indicates that ypbind(1M) is correctly bound to the
NIS server on the local system. Instead of localhost, it may return its name
as reported by hostname(1).

Setting Up NIS Slave Servers

39

Setting Up NIS Slave Servers

There are five parts to the procedure for setting up the NIS slave server. If
you have more than one NIS slave server, repeat each part of the procedure
for each slave server.

1. Setting the slave server’s domain name

2. Binding to an NIS server

3. Building the duplicate maps

4. Starting NIS on the slave server

5. Testing the NIS slave server

Setting the Slave Server’s Domain Name

Follow the instructions in “Setting the Master Server’s Domain Name” in
this chapter to complete this step.

Binding to Another NIS Server

To propagate NIS database maps from the NIS master server to a NIS slave
server, the slave server must be bound to a valid NIS server in its domain.

Since circles is a valid NIS server, this slave server binds to circles. Binding
need not be to a master server, however.

1. If the slave is on the same network as circles, start the binding process:

/usr/etc/ypbind

2. If the slave is not on the same network as circles, verify that the master
server has an entry in /etc/hosts on the slave server, and give the
ypset(1M) command:

grep circles /etc/hosts
192.0.2.4 circles circles.rad.sgx.com
ypset circles

40

Chapter 4: Setting Up and Testing NIS

3. Verify that the server is bound by giving the ypwhich command:

ypwhich
circles

The output of ypwhich returns the name of the NIS server to which this
server is currently bound. The example shows that this slave server is
successfully bound to circles.

Building the Duplicate Maps

The command ypinit builds the duplicate database maps by transferring a
copy of the original maps from the NIS master server.

1. Determine which system is the master server with the ypwhich
command:

ypwhich -m

Each line of output contains the name of a map and the name of the
master server where the map was created.

2. Start building NIS slave server maps with the ypinit command:

cd /var/yp
./ypinit -s circles

The –s flag specifies that this system is to be an NIS slave server and
circles is the master server.

Installing the NIS data base will require that you answer
a few questions. Questions will all be asked at the
beginning of the procedure.

3. You do not want this procedure to quit on non-fatal errors, so answer n
(no) to this prompt:

Do you want this procedure to quit on non-fatal errors?
[y/n: n] n
OK, please remember to go back and redo manually whatever
fails. If you don’t, some part of the system (perhaps the
NIS itself) won’t work.

There will be no further questions. The remainder of the
procedure should take a few minutes, to copy the data
bases from circles.

Setting Up NIS Slave Servers

41

Transferring ypservers...
Transferred map ypservers from master (4 entries).
.
.
.
Transferring passwd.byuid...
Transferring map passwd.byuid from master (17 entries).
Transferring passwd.byname...
Transferred map passwd.byname from master (24 entries).

When the NIS slave server squares is set up without any errors, you see
a message like this one:

squares’s NIS database has been set up without any errors.

Any other message suggests that the slave server’s maps may be
corrupt. If there is any doubt about the integrity of the database maps,
always go back to instruction 1 of this step to rebuild the maps from
scratch.

4. Answer y (yes) to the prompt so that the NIS slave server daemons start
when this slave server is booted:

Start NIS slave daemons during system startup? [y/n: y] y

At this point, make sure that /etc/passwd, /etc/hosts,
/etc/networks, /etc/group, /etc/protocols, /etc/services,
/etc/rpc and /etc/netgroup have been edited so that when
the NIS is activated, the data bases you have just
created will be used.

Answering yes does a chkconfig on the appropriate NIS daemons. It
does not start the daemons unless the system is rebooted.

Starting NIS on the Slave Server

The NIS service is available to clients as soon as you start it on this slave
server. You can start NIS by any one of these methods: rebooting the NIS
master server, stopping and restarting the network with the
/etc/init.d/network script, or start the daemons manually by giving these
commands:

/etc/killall ypbind
/usr/etc/ypserv
/usr/etc/ypbind

42

Chapter 4: Setting Up and Testing NIS

Testing the NIS Slave Server

Finally, to ensure that NIS services are functioning properly on the NIS slave
server, give the ypwhich command. Since the NIS slave server is also a client,
it should return with the name of the server to which it is bound. This server
can be bound to either itself or to the NIS master server you set up in the
previous section: either result is acceptable.

ypwhich
localhost

The response, localhost, indicates that ypbind is correctly bound to the NIS
server on the local system. The response could have also been the name of
another NIS server within the same domain on the same local area network.

Setting Up NIS Clients

There are four parts to the procedure for setting up the NIS client. Repeat
these steps for each NIS client you need to set up:

1. Setting the domain

2. Configuring NIS on the client

3. Starting NIS on the client

4. Testing the NIS client

Setting the Domain

Follow the instructions in “Setting the Master Server’s Domain Name” in
this chapter to complete this step.

Setting Up NIS Clients

43

Configuring NIS on the Client

If the NIS service is to start automatically when this client is booted, the NIS
environment must be configured with the chkconfig command. The yp flag
allows this system to access NIS database information from an NIS server.
This flag starts up the ypbind daemon, which must be running to access NIS
database information. Give this command to set the flag on:

/etc/chkconfig yp on

Starting NIS on the Client

The NIS service operates on this client as soon as you start it. You can start
NIS by any one of these methods: rebooting this client, stopping and
restarting the network with the /etc/init.d/network script, or start the NIS
daemon manually by giving this command:

/usr/etc/ypbind

Testing the NIS Client

Finally, to ensure that the NIS services are functioning properly on the NIS
client, give the ypwhich command. It should return with the name of the
server to which it is bound, for example:

ypwhich
squares

The client can be bound to any NIS server on the same network as the ypbind
request is broadcast. This client is currently bound to the server squares,
which means that squares must be on the same network as the client. If more
than one NIS server is on the same network, the client binds to the server that
responds first.

44

Chapter 4: Setting Up and Testing NIS

45

Chapter 5

5. Maintaining NIS

This chapter explains how to maintain NIS after it is in service. It contains
procedures for adding new users to NIS, changing passwords, using
netgroups, creating a nonstandard NIS map, modifying existing maps, new
maps, adding an NIS slave server, changing the NIS master server, and
increasing the security of ypset(1M).

This chapter contains these sections:

• “Adding a New User to a System” on page 46

• “Changing NIS Passwords” on page 48

• “Using Netgroups” on page 49

• “Creating a Nonstandard NIS Map Manually” on page 51

• “Modifying NIS Maps after NIS Installation” on page 52

• “Preparing to Propagate Nonstandard Maps” on page 54

• “Propagating an NIS Map” on page 56

• “Adding an NIS Slave Server” on page 60

• “Changing the Master Server” on page 61

• “Using Secure ypset” on page 62

46

Chapter 5: Maintaining NIS

Adding a New User to a System

To add a new user to a system that is an NIS client, perform these steps:

1. On the NIS master server, add a password entry for the new user to the
NIS password file (/etc/passwd by default). (See passwd(4), the Personal
System Administration Guide, or the IRIX Advanced Site and Server
Administration Guide for more information.)

2. On the NIS master server, update the NIS passwd map on that system by
entering:

cd /var/yp
./ypmake passwd

3. If this user is to be a member of any netgroups, modify /etc/netgroups on
the NIS master server (see “Using Netgroups” in this chapter).

4. On the new user’s system, modify /etc/passwd in one of these ways:

• Add the same password entry as you added in instruction 1 in this
section. Duplicating the entry enables the user to log in when the
network is down.

• Add this password entry:

+userid

userid is the login name of the new user. When this type of entry is
used, all /etc/password information for this user is supplied by NIS.

• Use the Users tool of System Manager to add the new user. Choose
NIS rather than Local for each item. All /etc/password information
for this user is supplied by NIS.

• Add this password entry:

+

When this type of entry is used, all /etc/password information for all
users is supplied by NIS. Every user in the NIS password database
can log in to this system, assuming that the home directory exists.

Adding a New User to a System

47

5. Make a home directory for the new user on the user’s system:

cd parentdir
mkdir userid
chown uid userid
chgrp group userid

The variables are:

parentdir The parent directory of the home directory you are
creating.

userid The login name of the user (the first field in the
password entry).

uid The unique user ID number for this user (the third field
in the password entry). userid can be used instead of uid
if the local /etc/password entry duplicates the NIS
password entry or if NIS maps have been propagated to
this system (it takes about 15 minutes after instruction 2
for updates to propagate).

group The group number for this user (the fourth field in the
password entry).

6. Finish adding the new user by setting up the user’s login environment
(create .login and .cshrc files, for example), adding him or her to groups
in /etc/group, and doing other setup tasks that are usually done at your
site.

7. Have the user add a password to his or her account using yppasswd(1):

% yppasswd

yppasswd prompts the user to enter the new password twice.

8. If you added a complete password entry to /etc/passwd on the user’s
system (the first option in instruction 4), have the user add his or her
password to the local /etc/passwd using passwd(1):

% passwd

passwd prompts for the password twice.

48

Chapter 5: Maintaining NIS

Changing NIS Passwords

In general, all NIS accounts should be password protected. This reduces the
risk of malicious or accidental data corruption. When you change your
password with the passwd command, you change the entry explicitly given
in your own local /etc/passwd file. To change your NIS password, use the
yppasswd command.

To change the NIS password for the user tim, enter:

% yppasswd tim
Changing NIS password for tim on master_name
Old password: <response not echoed>

Enter your old NIS password (if the account is not password protected, press
the enter key, <Enter>):

New password: <response not echoed>

Enter your new NIS password:

Retype new password: <response not echoed>

Reenter the new password:

NIS passwd changed on master_name

Your NIS password change has been logged on the master server and will be
updated soon. Note that it takes a little while for the change to propagate
throughout the domain.

If your local password is not given explicitly but rather is pulled in from NIS
with a plus (+) entry, then the passwd command prints the error message:

Not in passwd file

In this case, you must use yppasswd to change your password.

To enable the yppasswd service, the system administrator must start up the
daemon rpc.passwd(1M) server on the system serving as the master server for
the NIS password file in your domain.

Using Netgroups

49

Using Netgroups

The /etc/netgroup file on the NIS master server contains a list of network-wide
groups of systems and users. These groups are used for administrative
purposes. For example, to define a set of users that should be given access to
a specific system, you can create a netgroup for those users.

The daemons login(1), mountd(1M), rlogind(1M), and rshd(1M) use netgroups
for permission checking. login consults them for user classifications if it
encounters netgroup names in /etc/passwd. mountd consults them for system
classifications if it encounters netgroup names in /etc/exports. rlogind and rshd
consult the netgroup map for both system and user classifications if they
encounter netgroup names in hosts.equiv(4) or .rhosts(4).

The NIS master server uses /etc/netgroup to generate three NIS maps:
netgroup, netgroup.byuser, and netgroup.byhost. The NIS map netgroup
contains the basic information in /etc/netgroup. The two other NIS maps
contain a more specific form of the information to speed the lookup of
netgroups given the system or user.

Here is a sample /etc/netgroup file. See netgroup(4) for a description of file
format and definition of lines and fields.

Engineering: Everyone but eric has a machine;
he has no machine.
The machine ’testing’ is used by all of hardware.
#
engineering hardware software
hardware (mercury,alan,sgi) (venus,beth,sgi) (testing,-,sgi)
software (earth,chris,sgi) (mars,deborah,sgi) (-,eric,sgi)
#
Marketing: Time-sharing on jupiter
#
marketing (jupiter,fran,sgi) (jupiter,greg,sgi)
#
Others
#
allusers (-,,sgi)
allhosts (,-,sgi)

50

Chapter 5: Maintaining NIS

Table 5-1 shows the users in each group.

Table 5-2 shows how the systems are classified.

For more details, see these manual pages: yppasswd(1), hosts.equiv(4),
export(4), passwd(4), group(4), netgroup(4), and rpc.passwd(1M).

Table 5-1 Sample User Groups

Group Users

hardware alan, beth

software chris, deborah, eric

engineering alan, beth, chris, deborah, eric

marketing fran, greg

allusers (every user in the NIS map passwd)

allhosts (no users)

Table 5-2 Sample Host Groups

Group Hosts

hardware mercury, venus, testing

software earth, mars

engineering mercury, venus, earth, mars, testing

marketing jupiter

allusers (no systems)

allhosts (all systems in the NIS map hosts)

Creating a Nonstandard NIS Map Manually

51

Creating a Nonstandard NIS Map Manually

You can use ypinit(1M) and /var/yp/local.make.script (see ypmake(1M)) to do
almost everything necessary to create and modify a map, unless you add
nonstandard maps to the database or change the set of NIS slave servers
after the system is already running. Whether you use /var/yp/local.make.script
or some other procedure, the goal is the same: a new pair of well-formed dbm
files in the domain directory on the NIS master server.

You can create new maps in two ways: using an existing ASCII file as input
or using standard keyboard input. The next two sections demonstrate how
to create a simple, nonstandard NIS map called yourmap using each method.
yourmap consists of the keys al, bl, cl, and so on (l for left); and one set of
values, ar, br, cr, and so on (r for right).

ASCII File Input

Assume the ASCII file /etc/yourmap has been created with an editor or shell
script, and that the map from /etc/yourmap is part of the database for the
shapes domain. To create the NIS map for this file, enter these commands:

cd /var/yp
makedbm /etc/yourmap shapes/yourmap

This command sequence creates a map called yourmap in the directory
/var/yp/shapes.

52

Chapter 5: Maintaining NIS

Standard Keyboard Input

When no original ASCII file exists, you can create the NIS map described in
the previous example from the keyboard with these commands:

cd /var/yp
makedbm - shapes/yourmap

Enter these lines:

al ar
bl br
cl cr
<Ctrl-D>

The makedbm(1M) – switch is used to indicate that input is coming directly
from the keyboard. The result of your entries is the same as the previous
example: a map called yourmap in the directory /var/yp/shapes.

Modifying NIS Maps after NIS Installation

To change any NIS map, you must change the databases on the master server
for the domain. The method you use to modify the map depends on whether
you are changing a standard or nonstandard map.

Modifying a Standard NIS Map

A standard NIS map is any map that has an ASCII file and is included in the
/var/yp/make.script file. The procedure for modifying a standard NIS map
consists of editing the ASCII file for the map and updating the map with
ypmake on the master server. For example, to modify the password database
map, edit the ASCII file for the map and run ypmake on the master server. To
add the user tom to the password database, perform these steps:

1. Edit the ASCII file:

vi /etc/passwd.nis

2. Add this line to the password file:

tom::2349:20:Tom Cat:/usr/people/tom:/bin/csh

Modifying NIS Maps after NIS Installation

53

3. Update the password map:

/var/yp/ypmake passwd

By default, the ypmake program updates the map on the master server based
on information contained in the make script (/var/yp/make.script and
/var/yp/local.make.script). It also propagates the updated map to all slave
servers listed in the ypservers database map.

Modifying a Nonstandard NIS Map

Nonstandard NIS maps are databases that are specific to the application of a
particular vendor site but are not part of the NFS release. You can manually
modify nonstandard databases. You can also manually change databases
that are rarely expected to change and databases for which no ASCII form
exists.

The general procedure is to use makedbm with a switch to disassemble the
map. The disassembled map is in a form you can modify with standard tools
such as awk(1), sed(1), or vi(1). You then build a new map from the changed
version using makedbm.

Use this procedure to modify a nonstandard database:

1. Disassemble the map, as shown in this sample command:

cd /var/yp
makedbm -u shapes/mymap > /var/tmp/mymap.txt

2. Edit the text file (/var/tmp/mymap.txt, in this example) with any text
editor.

3. Build the new map, as shown in this sample command:

makedbm /var/tmp/mymap.txt shapes/mymap

4. Remove the temporary ASCII file, as shown in this sample:

rm /var/tmp/mymap.txt

This procedure modifies and updates nonstandard maps but does not
propagate the map to slave servers.

54

Chapter 5: Maintaining NIS

Preparing to Propagate Nonstandard Maps

Preparing for propagating a nonstandard NIS map consists of setting up its
dbm files in the domain directory on each NIS server (the transfer mechanism
is described in the next section). The files must be set up correctly on the
master and each slave server in the domain.

On the NIS master server, create a new file called /var/yp/local.make.script so
you can conveniently rebuild the map. This example shows a copy of
/var/yp/local.make.script to create and push the maps auto.indirect, auto.direct,
auto.master, and auto.home from the files /etc/auto.indirect, /etc/auto.direct,
/etc/auto.master, and /etc/auto.home.

#
auto.indirect indirect automount YP map.
auto.direct direct automount YP map.
auto.master main auto.master automount map
auto.home homedir map for automounter

INDIRECT=auto.indirect
DIRECT=auto.direct
HOME=auto.home

localall: all $(INDIRECT) $(DIRECT) $(HOME) auto.master

auto.master: auto.master.time
$(DIRECT): direct.time
$(HOME): home.time
$(INDIRECT): indirect.time

indirect.time: $(DIR)/$(INDIRECT)
 -@if [-f $(DIR)/$(INDIRECT)]; then \
 sed -e '/^#/d' $(DIR)/$(INDIRECT) | \
 $(MAKEDBM) - $(YPDBDIR)/$(INDIRECT); \
 touch indirect.time; \
 echo "Updated $(INDIRECT)"; \
 if [! $(NOPUSH)]; then \
 $(YPPUSH) $(INDIRECT); \
 echo "pushed $(INDIRECT)"; \
 else \
 : ; \
 fi \
 else \
 echo "couldn't find $(DIR)/$(INDIRECT)";\

Preparing to Propagate Nonstandard Maps

55

 fi

direct.time: $(DIR)/$(DIRECT)
 -@if [-f $(DIR)/$(DIRECT)]; then \
 sed -e '/^#/d' $(DIR)/$(DIRECT) | \
 $(MAKEDBM) - $(YPDBDIR)/$(DIRECT); \
 touch indirect.time; \
 echo "Updated $(DIRECT)"; \
 if [! $(NOPUSH)]; then \
 $(YPPUSH) $(DIRECT); \
 echo "pushed $(DIRECT)"; \
 else \
 : ; \
 fi \
 else \
 echo "couldn't find $(DIR)/$(DIRECT)";\
 fi

auto.master.time: $(DIR)/auto.master
 -@if [-f $(DIR)/auto.master]; then \
 sed -e '/^#/d' $(DIR)/auto.master | \
 $(MAKEDBM) - $(YPDBDIR)/auto.master; \
 touch auto.master.time; \
 echo "Updated auto.master"; \
 if [! $(NOPUSH)]; then \
 $(YPPUSH) auto.master; \
 echo "pushed auto.master"; \
 else \
 : ; \
 fi \
 else \
 echo "couldn't find $(DIR)/auto.master";\
 fi

home.time: $(DIR)/$(HOME)
 -@if [-f $(DIR)/$(HOME)]; then \
 sed -e '/^#/d' $(DIR)/$(HOME) | \
 $(MAKEDBM) - $(YPDBDIR)/$(HOME); \
 touch home.time; \
 echo "Updated $(HOME)"; \
 if [! $(NOPUSH)]; then \
 $(YPPUSH) $(HOME); \
 echo "pushed $(HOME)"; \
 else \
 : ; \

56

Chapter 5: Maintaining NIS

 fi \
 else \
 echo "couldn't find $(DIR)/$(HOME)";\
 fi

Typically, /var/yp/local.make.script filters each readable ASCII file for which a
map is to be built (such as /etc/auto.master) through awk, sed, and/or grep(1)
to make two databases suitable for input to makedbm. For example, the
databases might be stored as /var/yp/circles/auto.master.pag and
/var/yp/circles/auto.master.dir.

To create a customized make script, /var/yp/local.make.script, use the existing
/var/yp/make.script as a source of programming examples. Make use of
mechanisms already in place in /var/yp/make.script when deciding how to
create dependencies that make(1) recognizes; specifically, using .time files
allows you to see when the script was last run for the map.

If new maps are to propagate properly on slave servers, ypxfr(1M) shell
scripts must contain the appropriate entries. To get an initial copy of the
map, run ypxfr manually on each slave server. A map must be available on
all servers before clients begin to access it. If a map is unavailable on some
NIS servers, client programs may behave unpredictably.

Propagating an NIS Map

During slave server setup, ypinit calls ypxfr to transfer maps from the master
to the new slave server. Once the slave server is operating, maps can be
transferred in two ways: by running ypxfr periodically from crontab(1M) or
by executing ypmake, ypxfr, or yppush(1M) from a command line.

Periodic Propagation: crontab

The standard root crontab, /var/spool/cron/crontabs/root, has entries to run
ypxfr periodically from shell scripts at a suggested rate for the standard maps
in your NIS database. The crontab entries test whether the system is
configured as a slave server; if the test succeeds, the ypxfr scripts are
executed. If your NIS database has only standard maps, the default entries
in root’s crontab ensures that the maps are kept reasonably up-to-date. The
shell scripts, by default, are run on each NIS slave server in the domain to

Propagating an NIS Map

57

ensure database consistency throughout the domain. The cron(1M) shell
script entries for ypxfr look similar to the following example. Note that each
entry in the crontab file must be seen as one line. For documentation
purposes, line wraps are indicated with a backslash (\).

If this machine is running NIS and it’s a slave server, the following
commands keep the NIS databases up-to-date.
#
13 9 * * * if /etc/chkconfig yp; then find \
/var/yp -type f -name ’xfr.*’ -mtime +1 -exec rm -f ’{}’ ’;’ ; fi
15 * * * * if test -x /var/yp/ypxfr_1ph;\
then /var/yp/ypxfr_1ph; fi
17 9,15 * * * if test -x /var/yp/ypxfr_2pd;\
then /var/yp/ypxfr_2pd; fi
19 9 * * * if test -x /var/yp/ypxfr_1pd;\
then /var/yp/ypxfr_1pd; fi

The ypxfr shell scripts reside in /var/yp. Three standard scripts are included
with the NFS release: ypxfr_1phr, ypxfr_1pd, and ypxfr_2pd. These scripts
transfer specified maps once per hour, once per day, and twice per day,
respectively. If the rates of change are inappropriate for your environment,
you can modify the root crontab to suit your needs.

Also, you should alter the crontab entries so that the exact time of the ypxfr
shell executions varies from one server to another to prevent the transfers
from slowing down the master server, the network, or both.

Typically, changes to the ypxfr shell scripts are required in these cases:

• To reflect required map update schedules for your site

• To add nonstandard maps

• If you want to transfer a map from a server other than the master (use
ypxfr’s –h option)

For more information on how to use crontab, see crontab(1).

58

Chapter 5: Maintaining NIS

Interactive Map Propagation

The next three sections describe three methods of manually propagating NIS
maps.

Using ypmake

NIS maps on the master server can be manually propagated using the
ypmake command. This command looks at the /var/yp/make.script and/or
/var/yp/local.make.script to determine which maps to make. The make script
calls makedbm, which updates the maps and calls yppush. yppush reads the
ypservers map to determine which slave servers to contact; then, it proceeds
to contact ypserv on the selected slave servers and requests ypxfr service. The
slave server can now transfer the maps with ypxfr.

Use ypmake to update and propagate maps throughout your domain when
you want the change to take place immediately and don’t want to wait for
cron. These are some usage examples for ypmake:

• To update all out-of-date maps, enter:

/var/yp/ypmake

• To update and propagate an out-of-date hosts.byname and hosts.byaddr
map, enter:

/var/yp/ypmake hosts

• To force the creation and propagation of a new passwd.byname and
passwd.byuid map, out-of-date or not, enter:

/var/yp/ypmake -u passwd

• To rebuild all of the maps, but not push them to other servers, enter:

/var/yp/ypmake -u NOPUSH=1

The ypmake program is also automatically called for in root’s crontab,
/var/spool/cron/crontabs/root. The entry in crontab tests whether the system is
configured to run NIS and whether it is configured as the master. If the test
succeeds, cron periodically executes the ypmake command to update and
propagate maps to the appropriate slave servers. The crontab entry looks
similar to the following. Note that each entry in the crontab file must be seen
as one line. For documentation purposes, line wraps are indicated with a
backslash (\).

Propagating an NIS Map

59

If this machine is a NIS master, ypmake will rotate the
log file and ensure that the databases are pushed out with
some regularity.
#
1,16,31,46 * * * * if /etc/chkconfig \
ypmaster && /etc/chkconfig yp && \
test -x /var/yp/ypmake; then \
/var/yp/ypmake; fi

Using ypxfr

You can run ypxfr as a command on slave servers to transfer a specified map
from the master or other stable server to the requesting slave server.
Typically, you run ypxfr only in exceptional situations. For example, ypxfr is
used when setting up a temporary NIS server to create a test environment,
or when an NIS slave server has been out of service and must quickly be
made consistent with the other servers.

ypxfr, as a command, has options that force map transfer and specify
alternate domains and servers from which to obtain the map. Some
examples of ypxfr command usage are:

• To transfer the hosts.byaddr map from the master server for the map,
enter:

/var/yp/ypxfr hosts

• To force the transfer of the passwd.byname map from the slave server
purple within the domain colors, enter:

/var/yp/ypxfr -f -h purple -d colors

Using yppush

While yppush is usually called by ypmake, it can also be run manually. You
must run yppush on the NIS master server. The syntax for using yppush is:

• To force a copy of the map myworld with verbose messages, enter:

yppush -v myworld

• To force a copy of the map yourmap in the domain yourworld, enter:

yppush -d yourworld yourmap

60

Chapter 5: Maintaining NIS

Use yppush to force a copy of an updated version of a specified map from the
master server to the slave servers. It can be used to move an infrequently
changed, nonstandard map from the master server to slave servers.

In any of the cases mentioned above, you can capture ypxfr’s transfer
attempts and the results in a log file. If /var/yp/ypxfr.log exists, ypxfr appends
results to it. No attempt is made to limit the log file; you are in charge of that.
To turn off logging, remove the log file. In addition, the file /var/yp/ypmake.log
records ypmake transactions. This file can also be useful for troubleshooting
propagation problems.

Adding an NIS Slave Server

To add a new NIS slave server, you must first modify an NIS server map on
the NIS master server. If the new server has not been an NIS slave server
before, you must add the new server’s name to the map ypservers in the
default domain.

This procedure explains how to add a new server to an NIS configuration:

1. On the master server, change to the /var/yp directory:

cd /var/yp

2. Create a new hosts map, if needed.

The new server’s host name and address must be in the hosts map. If
the NIS slave server you are adding is not included in the hosts map,
edit /etc/hosts and save your changes. Then, create a new hosts map:

vi /etc/hosts

Enter and save your changes.

./ypmake hosts

3. Edit the /usr/etc/yp/ypservers file and add the new server’s host name:

vi ypservers

Changing the Master Server

61

4. Propagate the map with ypmake:

./ypmake ypservers

5. Transfer the database from the master server.

Remotely log in to the new NIS slave server. Use ypinit to transfer the
database from the NIS master server to the new slave server:

/var/yp/ypinit -s mastername

6. Perform the steps described in “Building the Duplicate Maps” in
Chapter 4. The new slave server is ready for service after you build the
duplicate maps.

Changing the Master Server

To switch the master server to a different system, you must rebuild all maps
to reflect the name of the new master server and distribute the new maps to
all slave servers.

To change the master server, perform these steps:

1. Set up the system that is to be the new master server as if it is to be a
slave server. See “Setting Up NIS Slave Servers” in Chapter 4 and
follow the directions in the sections “Setting the Slave Server’s Domain
Name,” “Binding to Another NIS Server,” and “Building the Duplicate
Maps.”

2. Copy the map source files from the old master server to the new master
server. The source files are listed in Table 3-1.

3. Rebuild all of the maps on the new master server, but don’t push them
to other servers:

newmaster# /var/yp/ypmake -u NOPUSH=1

62

Chapter 5: Maintaining NIS

4. Use ypxfr on the old master server to transfer each of the new maps
from the new master server to the old master server. Give this
command for each of the maps listed in Table 2-2:

oldmaster# ypxfr -h newmaster -f mapname

newmaster is the host name of the new master server and mapname is a
map name from Table 2-2. ypxfr is used for this step rather than yppush
because of a security feature of yppush. When a map is pushed to a
server, that server consults its own copy of the map to verify that the
map is coming from the master server. Since the old master server still
believes that it is the master server, it won’t accept maps from the new
master server.

5. On the old master server, transfer copies of the new maps to all slave
servers by giving this command for each of the maps listed in Table 2-2:

oldmaster# yppush mapname

Maps are pushed from the old master server to the slave servers
because the slave servers’ maps still contain the old master server. The
new maps contain the name of the new master server.

Using Secure ypset

The ypset tool allows the root user on NIS clients to change the binding
association for the client. By default, the file /etc/config/ypbind.options
contains the –ypsetme option that enables ypset. Normally, the –ypsetme
option should be present when creating an NIS master since, if is not present,
ypmake displays error messages when building an NIS master. In secure
installation sites, however, the –ypsetme option should be removed.

The ypset tool was designed for debugging and not for casual use. As with
any network tool that bases security on IP address checking, ypset can
compromise security on networks where packets may be introduced to the
network by nontrusted individuals.

63

Chapter 6

6. Troubleshooting NIS

This chapter provides information to be used in troubleshooting the NIS
environment. The chapter is divided into two parts: problems seen on an
NIS server and problems seen on an NIS client. Each section describes
general trouble symptoms followed by a discussion of probable causes.

This chapter contains these sections:

• “Debugging an NIS Server” on page 63

• “Debugging an NIS Client” on page 68

• “Before You Call for Help” on page 74

Debugging an NIS Server

Before trying to debug an NIS server, be sure you understand the concepts
in Chapter 1, “Understanding NIS,” and Chapter 2, “Preparing to Manage
NIS,” in this guide.

Different Map Versions

Since NIS works by propagating maps from the NIS master server to NIS
slave servers within the same domain, you may find different versions of a
map on different servers. Each time a map is updated, a new order number
(map version) is attached to the map. This information can be obtained with
the yppoll(1M) command.

Version skew, or out-of-sync maps, between servers is normal when maps
are being propagated from the NIS master server to the slave servers.
However, when the maps on different servers remain unsynchronized even
after the NIS environment has stabilized, it usually indicates a problem.

64

Chapter 6: Troubleshooting NIS

The normal update of NIS maps is prevented when an NIS server or some
gateway system between the NIS master server and NIS slave servers is
down during a map transfer attempt. This condition is the most frequent
cause of out-of-sync maps on servers. Normal update procedures are
described in Chapter 5, “Maintaining NIS.” When all the NIS servers and all
the gateways between the NIS master and NIS slave servers are up and
running, ypxfr(1M) should successfully transfer maps and all NIS servers’
maps should be in sync.

The next section describes how to use ypxfr manually to update NIS maps. If
ypxfr transfers maps successfully when it is initiated manually but still fails
intermittently, it requires additional investigation on your part, which is
described in the following section, “Intermittent, Consistent Map
Propagation Failures.”

Isolated, One-time Map Propagation Failures

If a particular slave server has an isolated, one-time problem updating a
particular map or its entire map set, follow these steps to resolve the problem
by running ypxfr manually:

1. ypxfr requires a complete map name rather than a nickname, so get a
list of complete map names for maps in your domain, by giving this
command:

ypmatch -x

The system returns a list of complete map names and the name of the
NIS master server for each map. Output should be similar to this
output for an NIS master server named circles:

ypservers circles
netid.byname circles
bootparams circles
mail.aliases circles
netgroup.byhost circles
netgroup.byuser circles
netgroup circles
protocols.byname circles
protocols.bynumber circles
services.byname circles
rpc.bynumber circles
networks.byaddr circles
networks.byname circles

Debugging an NIS Server

65

ethers.byname circles
ethers.byaddr circles
hosts.byaddr circles
hosts.byname circles
group.bygid circles
group.byname circles
passwd.byuid circles
passwd.byname circles
mail.byaddr circles

2. For each map that is not being updated, transfer the map manually
using ypxfr:

ypxfr -f map.name

map.name is the complete name of the map, for example, hosts.byname.

If ypxfr fails, it supplies an error message that points you to the
problem. If it succeeds, you should see output similar to this:

Transferred map hosts.byname from NIS_master (1091
entries).

Intermittent, Consistent Map Propagation Failures

This section describes several procedures you can use to help isolate
intermittent map propagation problems.

If the error message Transfer not done: master’s version isn’t newer
appears, check the dates on the master and slave servers.

On the NIS master server, check to ensure that the NIS slave server is
included in the ypservers map within the domain. If the slave server is not in
the ypservers map, the master server does not know to propagate any
changed and updated maps automatically to the server. If the server has the
correct entry in its crontab file to have ypxfr request updated maps from the
master server, the slave server gets the updated maps, but this action is not
initiated by the NIS master server. These steps illustrate how to verify the
ypservers map:

1. Review the contents of the ASCII file used to create the ypservers map:

cat /var/yp/ypservers

If the server is not listed, add the server’s name using any standard
editor.

66

Chapter 6: Troubleshooting NIS

2. Once the /var/yp/ypservers file has been edited, if necessary, ensure that
the actual map is updated on the master server. This is a special map
and no attempt is made to push it to the other servers. Give this
command:

/var/yp/ypmake -u ypservers

Another possible reason for out-of-sync maps is a bad ypxfr script. Inspect
root’s crontab (/var/spool/cron/crontabs/root) and the ypxfr shell scripts it
invokes (/var/yp/ypxfr_1ph, /var/yp/ypxfr_1pd, and /var/yp/ypxfr_2pd).
Typographical errors in these files can cause propagation problems, as do
failures to refer to a shell script within crontab, or failures to refer to a map
within any shell script. Also ensure that the configuration flags are on for yp
and ypserv with the chkconfig(1M) command.

Finally, if the above suggestions don’t solve the intermittent map
propagation problem, you need to monitor the ypxfr process over a period of
time. These steps show how to set up and use the ypxfr log file:

1. Create a log file to enable message logging. Give these commands:

cd /var/yp
touch ypxfr.log

This saves all output from ypxfr. The output looks much like the output
from ypxfr when run interactively, but each line in the log file is
timestamped. You may see unusual ordering in the timestamps. This is
normal; the timestamp tells you when ypxfr began its work. If copies of
ypxfr ran simultaneously, but their work took differing amounts of time,
they may actually write their summary status line to the log files in an
order different from the order of invocation.

Any pattern of intermittent failure shows up in the log. Look at the
messages to determine what is needed to fix the failure. You know that
you have fixed it when you no longer receive failure messages.

2. When you have fixed the problem, turn off message logging by
removing the log file. Give this command:

rm ypxfr.log

Note: If you forget to remove the log file, the log file grows without
limit. ♦

Debugging an NIS Server

67

As a last resort and while you continue to debug, you can transfer the map
using the remote file copy command, rcp(1), to copy a recent version from
any healthy NIS server. You may not be able to do this as root, but you
probably can do it by using the guest account on the master server. For
instance, to copy the map hosts in the domain shapes.com from the master
server circles to the slave server squares, give this command:

rcp guest@circles:/var/yp/shapes.com/hosts.* \
/var/yp/shapes.com

The escaped asterisk (*) allows the remote copy of all dbm record files for
the hosts map.

ypserv Fails

If ypserv(1M) fails almost immediately each time it is started, look for a more
general networking problem. Since NIS uses RPC, the portmapper must be
functioning correctly for NIS to work.

To verify that the portmapper is functioning and that the ypserv process is
registered with the portmapper, on the server give this command:

/usr/etc/rpcinfo -p | grep ypserv

If your portmap(1M) daemon is functional, the output looks something like
this:

100004 2 udp 1051 ypserv
100004 2 tcp 1027 ypserv
100004 1 udp 1051 ypserv
100004 1 tcp 1027 ypserv

If these entries are not in your output, ypserv has been unable to register its
services with the portmap daemon. If the portmap daemon has failed or is not
running, you get this error message:

rpcinfo: can’t contact portmapper: Remote system error -
connection refused

If the information returned by rpcinfo(1M) does not match the information
shown above or if the error message is returned, reboot the server. Rebooting
the server ensures that the network daemons, specifically portmap,
ypbind(1M), and ypserv, are started in the correct order.

68

Chapter 6: Troubleshooting NIS

Debugging an NIS Client

Before trying to debug an NIS server, be sure you understand the concepts
in Chapter 1, “Understanding NIS,” and Chapter 2, “Preparing to Manage
NIS,” in this guide.

Command Hangs

The most common problem on an NIS client is for a command to hang and
generate console messages such as:

NIS v.1 server not responding for domain domain_name; still
trying

NIS v.2 server not responding for domain domain_name; still
trying

Sometimes many commands begin to hang, even though the system as a
whole seems to be working and you can run new commands.

The messages above indicates that ypbind on the local system is unable to
communicate with ypserv in the domain domain_name. This can happen as a
result of any of these situations:

• The network has been disconnected on the NIS client, for example, the
Ethernet cable is unplugged.

• An incorrect domain name has been specified.

• The network or the NIS server is so overloaded that ypserv cannot get a
response back to the ypbind daemon within the time-out period.

• ypserv on the NIS server has crashed.

• The NIS server has crashed or is unreachable via the network.

• There is a physical impairment on the local area network. Under these
circumstances, all the other NIS clients on the same local area network
should show the same or similar problems.

Debugging an NIS Client

69

A heavily loaded network and/or NIS server may be a temporary situation
that might resolve itself without any intervention. However, in some
circumstances, the situation does not improve without intervention. If
intervention becomes necessary, the following questions help to isolate and
correct the situation.

Is the client attached to the network?

Typically, if there is a problem with the physical connection from the client
to the network, a message similar to this appears in the console window on
the system:

ec0: no carrier: check Ethernet cable

If NIS commands hang and you have the message shown above, verify that
the physical connection from the client to the local area network is secure
and functioning. If you do not know how to check your physical connection,
see the Owner’s Guide for your system more details. Also check to ensure that
the client is attached to the correct physical network.

Does the client have the correct domain set?

Clients and servers must use the same domain name if they want to belong
to the same domain. Servers supply information only to clients within their
domain. The domain names must match exactly. The domain shapes.com is
not the same as the domain SHAPES.com. Clients must use a domain name
that the NIS servers for their domain recognize.

Verify the client’s current domain name by giving the domainname(1)
command and by looking at the contents of the file /var/yp/ypdomain, which
is read at system startup. Perform these steps to determine the client’s
current domain:

1. Determine the current domain name:

domainname
current_domain_name

2. Look at /var/yp/ypdomain to determine the domain name set at system
startup.

cat /var/yp/ypdomain
current_domain_name

70

Chapter 6: Troubleshooting NIS

Compare these values to those found on the servers. If the domain name on
the client differs from the domain name on the server, change the domain on
the client:

1. Edit, using any standard editor, /var/yp/ypdomain to reflect the correct
domain name. This file assures that the domain name is correctly set
every time the client boots. There should be only one entry in this file:

correct_domain_name

2. Set domainname by hand so it is fixed immediately. Give this command:

domainname correct_domain_name

3. Restart ypbind so that the client is bound within the correct domain.
Give these commands:

/etc/killall ypbind
/usr/etc/ypbind

Do you have enough NIS servers?

NIS servers do not have to be dedicated systems; and as multipurpose
systems, they are susceptible to load escalations. If an NIS server is
overloaded, the client’s ypbind process automatically switches to another
less-heavily loaded server. Check to ensure that designated servers are
functioning and accessible via the network.

By default, when an NIS client boots it can only bind to a server that resides
on the same local network. It cannot bind to a server that resides on a remote
network. There must be at least one NIS server running on the local network
in order for a client in the same domain to bind. Two or more NIS servers per
local network improve availability and response characteristics for NIS
services.

Are the NIS servers up and running?

Check other clients on your local network. If several client systems have
NIS-related problems simultaneously, suspect the NIS server. It may be that
the NIS server system is down or inaccessible or that the ypserv process has
crashed on the NIS server.

Debugging an NIS Client

71

If an NIS server crashes or becomes unavailable, it should not impact NIS
performance if there are multiple NIS servers on a network. The clients
automatically switch to another server. If there is only one server on the
network, check to ensure that the server is up by remotely logging in to the
server.

If the server is up, the problem may be that the ypserv process has crashed on
the server. Give these commands to find out if ypserv is running and restart
it if it is not:

1. Log into the NIS server system. Look for ypserv and ypbind processes.
Give this command:

ps -ef | grep yp

You should see output similar to this:

root 128 1 0 Sep 13 ? 1:35 /usr/etc/ypbind
root 127 1 7 Sep 13 ? 61:16 /usr/etc/ypserv

2. If the server’s ypbind daemon is not running, start it up by typing:

/usr/etc/ypbind

3. Give the command ypwhich(1) on the NIS server system:

ypwhich

If ypwhich returns no answer, ypserv is probably not working.

4. If ypserv is not working, give these commands to kill the existing ypserv
process and start a new one:

/etc/killall -v ypserv
/usr/etc/ypserv

72

Chapter 6: Troubleshooting NIS

NIS Command Fails

Another problem that can occur on an NIS client is for a command to fail due
to a problem with the NIS daemon, ypbind. These examples illustrate typical
error messages you might see when you give an NIS command and ypbind
has failed:

ypcat hosts
ypcat: can’t bind to NIS server for domain domain_name.
Reason: can’t communicate with ypbind.
yppoll aliases
Sorry, I can’t make use of the NIS. I give up.

In addition to the error messages listed above, these general symptoms may
also indicate that the ypbind process has crashed:

• Some commands appear to operate correctly while others terminate,
printing an error message about the unavailability of NIS.

• Some commands work slowly in a backup-strategy mode peculiar to
the program involved.

• Some commands do not work and/or daemons crash with obscure
messages or no message at all.

To correct this situation, the ypbind process on the client must be stopped and
restarted. Use this command sequence to stop and start ypbind:

/etc/killall ypbind
/usr/etc/ypbind

Give this command to verify that the ypbind process is running:

ps -ef | grep ypbind

You should see output similar to this:

root 26995 1 0 17:35:31 ? 0:00 /usr/etc/ypbind -ypsetme
root 27007 26952 0 17:45:45 ttyq3 0:00 grep ypbind

Debugging an NIS Client

73

ypbind Fails

If ypbind fails almost immediately each time it is started, look for a more
general networking problem. Because NIS uses RPC, the portmapper must
be functioning correctly for NIS to work.

To verify that the portmapper is functioning and that the ypbind process is
registered with the portmapper, on the client give this command:

/usr/etc/rpcinfo -p | grep ypbind

If your portmap is functional, the output looks something like this:

100007 2 tcp 1026 ypbind
100007 2 udp 1046 ypbind
100007 1 tcp 1026 ypbind
100007 1 udp 046 ypbind

If these entries are not there, ypbind has been unable to register its services
with the portmap daemon. If the portmap daemon has crashed or it is not
running, you get this error message:

rpcinfo: can’t contact portmapper: Remote system error -
connection refused

If the information returned by rpcinfo does not match the information shown
above or if the error message is returned, reboot the client. Rebooting the
client ensures that the network daemons, specifically portmap and ypbind, are
started in the correct order.

For more information about ypbind, see “Using Secure ypset” in Chapter 5.

ypwhich Output Inconsistent

When you give the ypwhich command several times on the same client, the
answer you receive may vary because the NIS server has changed. This
response is normal. The binding of an NIS client to an NIS server changes
over time on a busy network and when the NIS servers are busy. Whenever
possible, the system stabilizes at a point where all clients get acceptable
response time from the NIS servers. As long as the client gets NIS service, it
does not matter where the service comes from. An NIS server may get its
own NIS services from another NIS server on the network.

74

Chapter 6: Troubleshooting NIS

Before You Call for Help

Before you call your support provider, please use the recommendations in
this chapter for solving your problems independently. If your problems
persist and you find it necessary to call, please have this information ready:

• System serial number.

• Operating system and NFS version numbers (from
versions eoe1 nfs).

• A specific description of the problem. Write down and be prepared to
provide any error messages that might help in isolating the problem.

• Are there other vendors’ systems involved?

• What does the physical layout look like? Are there gateways?

• How many slave servers do you have per network?

• What are the names of the master server, slave server(s), and domain?

• How many systems are in your domain?

• Do you have multiple domains?

75

Index

A

adding new users, 46
automount

auto.home map, 54
auto.master map, 54

B

Berkeley Internet Name Daemon (BIND). See DNS.
binding, 11, 39

C

chkconfig utility, 10, 37, 43, 66
client

configuring, 43
debugging, 68 through 73
defined, 4
file control on, 16
local files for, 17
setting up, 42 through 43
specifying the server for, 32
starting daemons on, 43
testing, 43

command failures, 68, 72
configuration flags. See chkconfig utility.
crontab tool

for database updates, 14, 27
for map propagation, 56 through 57

D

daemons
required for NIS, 9
starting, 38, 41, 43

database (NIS), 12, 28
dbm files, 12, 54
debugging

and portmapper functions, 67, 73
clients, 68 through 73
command errors, 68, 72
domain name errors, 69
inconsistent ypwhich output, 73
map propagation failures, 63 through 67
network connection errors, 69
out-of-sync maps, 64
server failures, 70
server overload errors, 70
servers, 63 through 67
telephone help with, 74

DNS, 25, 26
domain name

errors in, 69
selecting, 30
setting, 34, 39, 42

Domain Name System. See DNS.
domainname command, 30
domains

and Internet domains, 7, 35
defined, 6
multiple

and DNS, 25

76

Index

discussion of, 7
host resolution order in, 26
limitations of, 23
setting up, 23
update procedure for, 27

size limitations of, 7

E

error logging, 66
/etc/config/rpc.passwd.options file, 19, 31
/etc/config/ypbind.options file, 19, 32, 62
/etc/config/ypmaster.options file, 20, 31
/etc/config/ypserv.options file, 20, 26
/etc/hosts file, 24, 32
/etc/init.d/network file, 10, 38, 41
/etc/netgroup file, 49
/etc/passwd.nis file, 31
/etc/resolv.conf file, 26
/etc/sys_id file, 35
external data representation (XDR), 2

F

files
global, 18
local, 16

files. See individual filenames.
font conventions, xiv

H

home directory structure, 7
host name resolution, 18, 25 through 27
host names (NIS), 33

hostname command, 33, 36
hosts database, 24
hosts file, 24, 32

L

local.make.script file, 15, 51, 54
logging

map transfers, 60
ypmake functions, 60
ypxfr functions, 66

login daemon, 49

M

makedbm tool
and map propagation, 15, 58
and nonstandard maps, 51, 53
purpose of, 12
quick reference to, 20

make.script file, 15, 36, 52
map propagation

debugging, 63 through 67
defined, 4
methods, 14
procedures for, 56 through 60

maps
creating, 51 through 52
defined, 5
directory structure of, 7
keys and values in, 5
modifying, 52 through 53
nicknames for, 14
nonstandard

creating, 51 through 52
defined, 13
modifying, 53

propagating. See map propagation.

77

See also individual map names.
standard

defined, 13
list of, 13
modifying, 52

steady state of, 5
version errors in, 63

master server
building maps on, 35 through 37
changing, 61
defined, 4
selecting, 30
setting the domain on, 34
setting up, 34
starting daemons on, 38
testing, 38

mountd daemon, 49
multiple domains. See domains.

N

named daemon. See DNS.
netgroup file, 49
network connection errors, 69
NIS, defined, 1
nonstandard maps. See maps, nonstandard.

O

Open Systems Interconnect (OSI) model, 3

P

passwd.nis file, 31
passwords

in /etc/passwd file, 17
on NIS accounts, 62
securing for NIS, 30

planning recommendations, 32
portability features, 2
portmapper

portmap daemon, 11, 67
verifying on clients, 73
verifying on servers, 67

propagation. See map propagation.
protocols (NIS), 2

R

rcp command, 67
remote procedure call (RPC), 2
resolution order. See host name resolution.
resolv.conf file, 26
rlogind daemon, 49
rpcinfo tool, 67, 73
rpc.passwd daemon, 48

purpose of, 10
quick reference to, 19

rpc.passwd.options file, 19, 31
rshd daemon, 49

78

Index

S

server
debugging, 63 through 67
defined, 4
failure of, 70
hierarchy, 4
overloading, 70
See also master server and slave server.

shadow passwords, 16
slave server

adding, 60
binding for setup, 39
building maps on, 40 through 41
defined, 4
selecting, 31
setting the domain on, 39
setting up, 39
starting daemons on, 41

standard maps. See maps, standard.
sys_id file, 35

T

tools. See individual tool names.
transfer scripts, 57
Transmission Control Protocol (TCP), 2

U

User Datagram Protocol, 2
user groups, 49
users, adding, 46

V

/var/spool/cron/crontabs/root file, 56, 58
/var/yp directory, 19
/var/yp/local.make.script file, 15, 51, 54
/var/yp/make.script file, 36, 52
/var/yp/ypdomain file, 30, 69
/var/yp/ypmake.log log file, 60
/var/yp/ypservers file, 36
/var/yp/ypxfr.log log file, 60

Y

ypbind daemon
and client configuration, 43
and communication errors, 68
and NIS command errors, 72
and server loading, 70
failure of, 73
primary purpose of, 10
quick reference to, 19
restarting, 70

ypbind tool
and client testing, 43
and server testing, 42

ypbind.options file, 19, 32, 62
ypcat tool

printing map nicknames with, 14
quick reference to, 20

ypchpass tool
and NIS daemons, 10
quick reference to, 20

ypdomain file, 30, 69

79

ypinit tool
and new servers, 37
for duplicating maps, 40
for master maps, 35
quick reference to, 21

ypmake tool
and map propagation, 15, 58
quick reference to, 21
usage examples, 58
using, 52

ypmake.log log file, 60
ypmaster.options file, 20, 31
ypmatch tool

and debugging, 64
quick reference to, 21

yppasswd tool
and rpc.passwd daemon, 10
changing NIS passwords, 48
quick reference to, 21

yppoll tool
for map versions, 63
quick reference to, 21

yppush tool
and map propagation, 15, 58, 59
and new maps, 37
quick reference to, 21
usage examples, 59

ypserv daemon
and DNS, 26
and portmapper registration, 67
and the make script, 58
primary functions of, 10
quick reference to, 19

ypservers file, 36
ypservers map, 15, 58, 60, 65
ypserv.options file, 20, 26

ypset tool
enabling in ypbind.options, 32
quick reference to, 21
secure mode, 62

ypsetme option, 32, 62
ypwhich tool

and binding, 12
and client testing, 43
and server testing, 38, 42
output from, 73
quick reference to, 21

ypxfr tool
and debugging, 64
and map propagation, 15, 56, 58, 59
log file for, 66
monitoring, 66
quick reference to, 22
script errors, 66
shell scripts, 57
usage examples, 59

ypxfr.log log file, 60

80

Index

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-2161-001.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 650-932-0801

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

