NIS Administrator's Guide

Document Number 007-2161-006

CONTRIBUTORS Written by Pam Sogard and Susan Ellis Updated by Julie Boney Edited by Susan Wilkening Production by Diane Ciardelli Engineering contributions by Chris Duffy, Ron Short, Ron Susztar, Barry Kirkpatrick

COPYRIGHT

© 2000-2001 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner, in whole or in part, without the prior written permission of Silicon Graphics, Inc.

LIMITED RIGHTS LEGEND

The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA government or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable license agreement, as specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of the DoD FAR Supplement; or sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy 2E, Mountain View, CA 94043-1351.

TRADEMARKS AND ATTRIBUTIONS

Silicon Graphics and IRIX are registered trademarks and SGI and the SGI logo are trademarks of Silicon Graphics, Inc.

Sun is a trademark of Sun Microsystems, Inc. UNIX is a registered trademark of the Open Group in the U.S. and other countries, licensed exclusively through X/Open Company, Ltd.

Cover Design By Sarah Bolles, Sarah Bolles Design, and Dany Galgani, SGI Technical Publications.

New Features in This Guide

This update of the NIS Administrator's Guide supports the 6.5.12 release of IRIX. Changes include the following:

- Added yp and ypserv flags to list of flags under "Daemons" on page 10
- Added an alternative to the method of obtaining the IP address and port number for the NIS server process under "Binding" on page 11
- Added shadow and jlimits to the list of NIS maps under "NIS Database" on page 13
- Added the location for the nsswitch.conf file for clients under "Global Files" on page 18
- Added the ypmaster.options file to the example of files that support the NIS password file under "Selecting the NIS Master Server" on page 30
- Added an alternative method for specifying an NIS server under "Specify an NIS Server at Client Startup" on page 31
- Added two more steps to the procedure for setting up NIS slave servers under "Setting Up NIS Slave Servers" on page 37
- Added a method for updating the password more quickly under "Changing NIS Passwords" on page 46
- Added a note about size limits under "Using Netgroups" on page 47

Record of Revision

Version	Description
004	July 1999 Incorporates information for the IRIX 6.5.5 release
005	July 2000 Updates information for the IRIX 6.5.9 release
006	March 2001 Updates information for the IRIX 6.5.12 release

	New Features in Thi	s Gui	de.		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	. iii
	Record of Revision						•			•			•	•					•			. v
	List of Figures						•			•			•	•					•		•	. xi
	List of Tables					•	•	•	•				•						•		•	. xiii
	About This Guide.																					. xv
	Using This Guide .									•				•							•	. xv
	Summary of Contents	s								•				•							•	. xvi
	Audience for This Gu	iide .								•				•					•		•	xvii
	Related Publications									•				•							•	xvii
	Typographic Conven	tions								•				•					•		•	xviii
	Product Support .									•				•							•	xviii
	Reader Comments.												•		•						•	xviii
1.	Understanding NIS																					. 1
	About NIS																					. 2
	NIS Portability																					. 2
	Client-Server Model																					. 4
	Client-Server Model Server Hierarchy .						•	•	•	•								•	•			
		· ·	•		•	•	•	•	•				•		•				•		•	. 4
	Server Hierarchy .	· ·	•		•	•		•		•	•				•		•				•	. 4 . 4
	Server Hierarchy . NIS Maps	 																				. 4 . 4 . 5
	Server Hierarchy . NIS Maps NIS Domains	• • • • • • • • • • • •	ver l	Dire	ecto	ries					•	•										. 4 . 4 . 5 . 6
	Server Hierarchy . NIS Maps NIS Domains NIS Domains and	 d Serv Dom	ver l ains	Dire 5 .	ecto	ries																. 4 . 4 . 5 . 6 . 6
2.	Server Hierarchy . NIS Maps NIS Domains NIS Domains and NIS and Internet	 l Serv Dom mains	ver l ains	Dire	ecto	· · ries ·																. 4 . 4 . 5 . 6 . 6
2.	Server Hierarchy . NIS Maps NIS Domains NIS Domains and NIS and Internet Multiple NIS Dom	· · · · · · · · · · · · · · · · · · ·	· · ver l ains ·	Dire 5 .	ecto	ries			· · ·									· · ·	· · · ·			. 4 . 5 . 6 . 6 . 6

	NIS Database	10
	Standard and Nonstandard Maps	
	Map Propagation	
	NIS and Other Network Files	
	Local Files	
	Global Files	
	NIS Software Quick Reference Guide	18
	NIS Daemons	
	NIS Configuration Files	19
	NIS Tools	19
3.	Planning Your NIS Service	<u>2</u> 3
	Establishing Multiple NIS Domains	24
	Domain Boundaries	24
	Bridging Domain Boundaries	25
	Using the Domain Name System (DNS)	25
	Using /etc/nsswitch.conf	26
	Establishing a Customized Update Procedure	26
	Verifying ASCII File Contents	27
	Selecting a Domain Name.	<u>29</u>
	Selecting the NIS Master Server	30
	Selecting the NIS Slave Servers	30
	Specify an NIS Server at Client Startup	31
	General Recommendations	
4.	Setting Up and Testing NIS	33
	Setting Up the NIS Master Server	34
	Setting the Master Server's Domain Name	
	Building the Master Maps	
	Starting NIS on the Master Server	
	Testing the NIS Master Server	
		/0

007-2161-006

	Setting Up NIS Slave Servers									•				•		. 37
	Setting the Slave Server's Domain N	Nan	ne			•				•				•		. 37
	Binding to Another NIS Server .					•	•			•			•	•		. 37
	Building the Duplicate Maps .			•		•	•			•				•		. 38
	Starting NIS on the Slave Server					•	•			•			•	•	•	. 39
	Testing the NIS Slave Server			•		•	•			•		•	•		•	. 39
	Setting Up NIS Clients			•		•	•			•		•			•	. 40
	Setting the Domain Name			•		•	•			•		•	•		•	. 40
	Configuring NIS on the Client $$.			•		•	•			•		•	•		•	. 40
	Starting NIS on the Client					•	•			•			•	•	•	. 41
	Testing the NIS Client					•	•			•		•	•		•	. 41
5.	Maintaining NIS															. 43
	Adding a New User to a System															
	Changing NIS Passwords															. 46
	Using Netgroups															
	Creating a Nonstandard NIS Map Man															
	ASCII File Input		-													
	Standard Keyboard Input			•						•						. 49
	Adding the New NIS Map			•						•						. 50
	Creating a Nonstandard NIS Map Man	uall	ly:]	IRI)	6.5	5 an	d La	ater	• .							. 50
	Additional Tips for Creating Nonst	anc	lare	d M	aps	Un	der	IRI	X 6.	5.						. 53
	Modifying NIS Maps After NIS Installa	tior	ı				•			•						. 54
	Modifying a Standard NIS Map.						•			•						. 54
	Modifying a Nonstandard NIS Map	2								•						. 54
	Preparing to Propagate Nonstandard M	lap	s	•		•	•			•	•	•	•		•	. 55
	Propagating an NIS Map			•		•	•			•	•	•	•		•	. 57
	Periodic Propagation: crontab .			•		•	•			•	•	•	•		•	. 57
	Interactive Map Propagation .			•		•	•			•	•	•	•		•	. 58
	Using ypmake			•		•	•			•	•	•	•		•	. 59
	Using ypxfr			•		•	•			•	•	•	•		•	. 60
	Using yppush					•				•			•	•		. 60
	Adding an NIS Slave Server					•	•			•					•	. 61
	Changing the Master Server				•	•	•			•		•	•	•	•	. 62

	Using Secure ypset
6.	Troubleshooting NIS
	Debugging an NIS Server
	Different Map Versions
	Isolated, One-Time Map Propagation Failures
	Intermittent, Consistent Map Propagation Failures
	nsd Fails
	Debugging an NIS Client
	Command Hangs
	NIS Command Fails
	ypwhich Output Inconsistent
	Before You Call for Help
	Index

List of Figures

Figure 1-1	NIS Software Implementation	•	•	•	•		3
Figure 1-2	Basic NIS Domain						5
Figure 1-3	Multiple NIS Domains						7
Figure 2-1	NIS Binding Process					. 1	12
Figure 2-2	Map Propagation Between Servers					. 1	15
Figure 3-1	Boundary Problem With Multiple Domains.					. 2	24
Figure 3-2	Boundary Solutions for Multiple Domains .					. 2	25

List of Tables

Table i	Contents of Each Chapter
Table 2-1	NIS Daemons by System Type
Table 2-2	Default Nicknames for Maps
Table 2-3	Local Files Consulted by NIS
Table 2-4	Local File Entries to Control Access
Table 3-1	Maps, ASCII Files, and Descriptions
Table 5-1	Sample User Groups
Table 5-2	Sample Host Groups

About This Guide

The *NIS Administrator's Guide* documents the SGI implementation of the network information service (NIS).

NIS is a database service that provides location information about network entities to other network services, such as the Network File System (NFS). Systems with heterogeneous architectures and operating systems can participate in the same NIS. The service can also include systems connected to different types of networks.

This guide was formerly published under the title *NFS and NIS Administration Guide and Man Pages*, and documented NFS as well as NIS. You can now find information about NFS in a separate volume titled *ONC3/NFS Administrator's Guide*.

Using This Guide

This guide provides information you need to set up and maintain NIS. It explains the software fundamentals of the product and provides procedures to help you install, test, and troubleshoot NIS on your network. It also contains recommendations for planning and administering NIS.

Summary of Contents

Table i contains a summary of each chapter in this guide and suggests how to use the chapter.

Chapter	Summary	When to Read
Chapter 1, "Understanding NIS"	Introduces the vocabulary of NIS, describes the relationship of NIS to other network software, and explains how NIS domains are organized.	Read this chapter to learn NIS basics. If you are already experienced with NIS, you can skip Chapter 1.
Chapter 2, "Preparing to Manage NIS"	Describes the fundamental operation of NIS and its database.	Read this chapter for the background required to do the procedures in Chapter 4, "Setting Up and Testing NIS."
Chapter 3, "Planning Your NIS Service"	Presents the issues you need to consider before you implement NIS for your site and offers planning recommendations.	Review this chapter before setting up NIS on your network.
Chapter 4, "Setting Up and Testing NIS"	Contains procedures for implementing NIS on server and client systems and procedures for verifying their operation.	Use this chapter as a guide through NIS setup tasks.
Chapter 5, "Maintaining NIS"	Explains how to change NIS and its database when conditions in your network change. It also contains information on managing security with NIS.	Refer to this chapter when you need to update NIS maps, implement security, or add new users to NIS.
Chapter 6, "Troubleshooting NIS"	Describes problems that can arise when maps are propagated and when NIS server or client software is malfunctioning. Recommends corrective action for each type of problem.	Use this chapter to identify the source of NIS problems and take corrective action. Read the information in the final section before phoning the Silicon Graphics Technical Assistance Center.

Table iContents of Each Chapter

Audience for This Guide

To use NIS setup and maintenance information, you should have experience in these areas:

- Setting up network services
- Assessing the needs of network users
- Maintaining hosts databases
- Understanding the UNIX filesystem structure
- Using UNIX editors

To troubleshoot NIS, you should be familiar with these concepts:

- Theory of network services
- SGI network implementation

Related Publications

You can find supplementary information in these documents and books:

- *IRIX Admin: Networking and Mail* (SGI publication) explains the fundamentals of system and network administration for SGI systems on a local area network.
- *ONC3/NFS Administrator's Guide* (SGI publication) explains how to set up and maintain the SGI implementation of NFS.
- *IRIX Admin: System Configuration and Operation* (SGI publication) explains how to set up configuration files.
- *Personal System Administration Guide* explains how to add entries to the NIS password file.

To obtain SGI documentation, go to the SGI Technical Publications Library at http://techpubs.sgi.com.

• Stern, Hal, *Managing NFS and NIS*, O'Reilly & Associates, Inc. 1991. This book contains detailed, but not SGI-specific, information about NIS and how to administer and use it.

Typographic Conventions

This guide uses the following font conventions:

italics	Italic font is used for variables.
Courier	Courier font is used for commands, text that you are to type literally, examples of system output, and the contents of files.

Product Support

SGI offers a comprehensive product support and maintenance program for IRIX products. For information about using support services for this product, refer to the release notes that accompany it.

Reader Comments

If you have comments about the technical accuracy, content, or organization of this document, please tell us. Be sure to include the title and part number of the document with your comments. (Online, the document number is located in the front matter of the manual. In printed manuals, the document number can be found on the back cover.)

You can contact us in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Use the Feedback option on the Technical Publications Library World Wide Web page:

http://techpubs.sgi.com

- Contact your customer service representative and ask that an incident be filed in the SGI incident tracking system.
- Send mail to the following address:
 - Technical Publications SGI 1600 Amphitheatre Pkwy. Mountain View, California, 94043-1351

Send a fax to the attention of "Technical Publications" at: +1 650 932 0801

We value your comments and will respond promptly.

Understanding NIS

This chapter contains a general description of the SGI implementation of the Sun Microsystems network information service NIS. It provides an overview of NIS, an explanation of the NIS client-server model, and an introduction to NIS domains and NIS maps.

This chapter contains these sections:

- "About NIS" on page 2
- "NIS Portability" on page 2
- "Client-Server Model" on page 4
- "Server Hierarchy" on page 4
- "NIS Maps" on page 4
- "NIS Domains" on page 5

About NIS

NIS is a network lookup service that provides a centralized database of information about the network to systems participating in the service. The NIS database is fully replicated on selected systems and can be queried by participating systems on an as-needed basis. Maintenance of the database is performed on a central system.

The purpose of NIS is to make network administration more efficient by reducing the risk of error and the time required to perform redundant file management tasks. For example, maintaining the /etc/hosts database on a large network might require creating a script to automatically copy the /etc/hosts file from a central system to all systems on the network. It also requires setting up the appropriate access permissions on each system to enable this file transfer; this is a redundant and time-consuming process. By contrast, on networks using NIS, maintaining the /etc/hosts database requires modifying a single file, typically /etc/hosts, on a single system.

On many networks, a number of information sources are available to provide information to network applications. For this reason, most applications have a standard lookup rule for finding the information they need. Starting with IRIX 6.5, the default lookup order is specified in the /etc/nsswitch.conf file.

NIS can service networks with approximately 1000 systems. Larger networks can be organized into multiple NIS service areas, or domains.

NIS Portability

NIS is an application layer service that can be used on any network using the Transmission Control Protocol (TCP) or User Datagram Protocol (UDP) for transport layer services. NIS also relies on remote procedure call (RPC) for session layer services and external data representation (XDR) for presentation layer services. Because the NIS application adheres to these standard network protocols, it is portable and works with a variety of vendors' platforms.

The network protocols TCP and UDP provide the services required to transport messages on the same system or between remote systems. TCP provides reliable, connection-oriented transport. UDP provides unreliable, connectionless transport. TCP and UDP are protocols that are widely accepted and used in the network environment, making them the logical choices for NIS and several other network applications. RPC and XDR are services that bridge the gap between the transport layer services and the network application. They provide the functionality required to build distributed applications and resolve operating system and hardware architectural differences.

RPC provides a message passing scheme. It allows information to be passed between procedure calls that do not reside in the same address space. The address space can be located on the same system or it may reside on a remote system. In the NIS application, RPC enables client and server processes on local or remote systems to access the NIS database. NIS users are not aware that the procedure calls are occurring between two different systems.

XDR translates differences that can occur between machine architectures. It allows remote procedure calls and/or an application to interpret an RPC message independent of machine architecture. In the NIS application, XDR services allow systems from multiple vendors access to an NIS database located on any vendor's system. RPC and XDR are not exclusive to NIS. RPC and XDR are industry standards and are used in a variety of distributed network applications.

application	NIS
presentation	XDR
session	RPC
transport	UDP/TCP
network	IP
data link	network interface
physical	

Figure 1-1 illustrates the NIS software implementation in the context of the Open Systems Interconnect (OSI) model.

Figure 1-1 NIS Software Implementation

Client-Server Model

An NIS client is a process running on a system that requests data from an NIS database. An NIS server is a process running on a system that provides data from the NIS database. The terms client and server designate both processes and systems: a system is considered a client when requesting NIS data, and it is considered a server when providing NIS data. A system can function as a client and a server simultaneously.

Sometimes client requests are handled by NIS servers running on the same system, and sometimes they are serviced by NIS servers running on a different system. If one NIS server system fails, client processes obtain NIS services from another. In this way, the NIS service remains available even when an NIS server system goes down.

Server Hierarchy

NIS servers, each of which contains a copy of the NIS database, are divided into two groups: master servers and slave servers. A master server is the system on which NIS databases are originally created and maintained. A slave server is a system that holds a duplicate copy of the database. A server may be a master server with respect to one database and a slave server with respect to another.

The master server makes updated database information available to slave servers by a process known as propagation. Propagation ensures the consistency of database information between the master server and its slave servers.

NIS Maps

The NIS database is composed of a group of files known as maps. Maps are created with NIS tools that convert input files (usually standard ASCII files) to files in database record format (see the mdbm(3B) man page). Since data in mdbm format is faster to find than ASCII data, using mdbm files increases NIS performance.

Each NIS map has a map name that programs use to access it. Any program using an NIS map must recognize the format of the data it contains.

Maps are composed of keys and values. A key is a particular field in the map that the client must specify whenever it queries the map; a value is an attribute of the key that is

returned from the query. For example, in the map called hosts.byname, the keys are the names in individual systems, and the values are the ip-address, hostname lines, similar to those in /etc/hosts.

At steady state, maps throughout the network contain consistent information. In this state, a client query receives the same answer to the query, regardless of which server responds to it. This consistency of information allows multiple servers to operate on a network, increasing the availability and reliability of the NIS service.

NIS Domains

An NIS domain is a collection of systems using the same NIS database. To participate in the NIS service, a system must belong to an NIS domain.

Figure 1-2 shows the basic layout for the systems in Building 1 and a domain called eng.

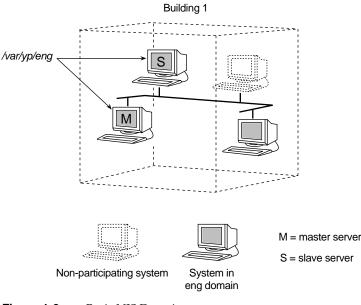


Figure 1-2 Basic NIS Domain

The domain eng consists of the master server, one slave server, and three clients. One system on the network does not participate in NIS at this time but may be included in the domain at a later date.

NIS Domains and Server Directories

The NIS databases are contained in subdirectories of the NIS home directory /var/ns/domains. These subdirectories are named for the domain whose database they contain. For example, in Figure 1-2, both servers contain the database for the eng domain in a subdirectory named /var/ns/domains/eng.

NIS and Internet Domains

The Internet is a registered organization of wide area networks originally funded by DARPA (U.S. Defense Advanced Research Projects Agency). It is organized into domains, machines grouped into networks that are given names to identify them clearly. In the Internet naming scheme, commercial businesses in the United States are given names that end in .com (sgi.com is one such), educational institutions use .edu, and governmental organizations use domain names ending in .gov.

Domains within an organization are organized on the same grouping principle. For example, in a business with the Internet domain name of dender.com, two separate NIS domains might be finance and engineering, which would use the domain names .finance and .eng, respectively. If you subdivided dender.com this way, the NIS domain name of engineering would be eng.dender.com, and the NIS domain name of finance would be finance.dender.com.

Often the Internet domain name is used as the basis for the NIS domain, a useful practice, but not required. You can use some other NIS domain name, but you should understand fully about domain names and their interaction with other aspects of name service before doing so. For further details on domains, refer to *IRIX Admin: Networking and Mail*.

Multiple NIS Domains

Complex networks that require large NIS databases, approximately 1000 systems or more, should be evaluated for multiple NIS domains. Factors that should be considered when determining whether to have multiple domains are network complexity and server availability. In addition, on networks where dynamic conditions make database synchronization difficult, multiple domains can make NIS more reliable and easier to maintain. NIS domains are not constrained by the topology of the network. Systems in the same NIS domain are not necessarily on the same local area network. For administrative or organizational reasons, it may make sense to configure large networks as separate NIS domains such as eng and finance.

Figure 1-3 illustrates the organization of Building 1 and Building 2 local area networks into two domains, eng and finance.

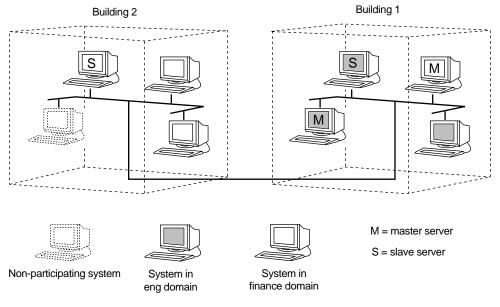


Figure 1-3 Multiple NIS Domains

The master and slave server for the eng domain both contain a database of information for the eng domain in /var/ns/domains/eng, and the master and slave server for the finance domain both contain a copy of the database for the finance domain in /var/ns/domains/finance. Notice that one system in the Building 1 local area network belongs to the finance domain and is the master server for the finance domain. (Chapter 2, "Preparing to Manage NIS," contains detailed information on multiple NIS domains.)

Preparing to Manage NIS

To be prepared for managing NIS, you should understand NIS software elements and the tools available for controlling its operation. This chapter contains the prerequisite information. It identifies NIS client and server daemons and their interactions, and describes a special daemon interaction called binding. It also explains how the NIS database is created and maintained, and how local client files and global files are used when NIS is in effect. Finally, this chapter provides a quick reference guide to NIS software and NIS management tools.

This chapter contains these sections:

- "Daemons" on page 10
- "Binding" on page 11
- "NIS Database" on page 13
- "NIS and Other Network Files" on page 16
- "NIS Software Quick Reference Guide" on page 18

Daemons

Which NIS daemons are running on a system depends on the system's function in the NIS environment: clients, master servers, and slave servers each run a particular set of daemons.

Table 2-1 lists the daemons required for each type of system for NIS to function correctly.

Table 2-1	NIS Daemons by System Type								
Daemon	Client	Slave	Master						
nsd	Х	Х	Х						
rpc.passwd			Х						

The binder daemon, nsd, runs on all NIS clients. In this instance, the daemon is responsible for remembering information necessary for communicating with the NIS server process. See the nsd(1M) man page for more information.

The nsd daemon also acts as the server daemon and runs on all NIS servers. It acts as the database server and is responsible for answering client inquiries and managing database updates. Most NIS servers are also NIS clients; they use the NIS database information.

On the NIS master server, the server process daemon, nsd, runs to answer client inquiries and to solicit information from the NIS database. The master server also runs a second daemon, /usr/etc/rpc.passwd, which allows NIS users to remotely modify their NIS password by using yppasswd and to modify some other password file fields by using ypchpass. For more information, see the yppasswd(1) and ypchpass(1) man pages.

On IRIX, NIS daemons are started by the master network script, /etc/init.d/network, if the NIS daemon flags are set on (flags can be set by using the chkconfig command). The chkconfig flags for NIS are nsd, yp, ypserv, and ypmaster (see Chapter 4, "Setting Up and Testing NIS," for more details).

Binding

In binding, a process remembers the address at which the NSD server process is listening for requests. In the NIS environment, when an application on a client needs information that is normally derived from certain local files, the application solicits the information from the NIS database on a selected NIS server. The relationship between the binder daemon, and the server daemon, determines whether or not an NIS connection is bound or unbound. A brief summary of the binding process is given below.

To obtain the IP address and port number for the NIS server process, NSD broadcasts for any NIS server within its domain. The first NIS server process to respond with its IP address and port number, whether local or remote, is the process that is used to service the request. The IP address for the physical NIS server and the port number for the NIS server process are remembered by the NSD process and used to obtain NIS database information. The alternative is to supply a list of host names or IP addresses for nsd to bind to. For more information, see the /etc/config/nsd.options and /etc/nsswitch.conf files.

Figure 2-1 illustrates the binding process initiated for an ls command. Before the ls command can list the contents of a directory, it needs to translate the file's user ID into a user's name. ls uses the library routine getpwuid, which accesses the local /etc/passwd file and the NIS password file as appropriate. In an NIS environment, this entails accessing the password map in the NIS database. Note that the general process is the same whether binding occurs on the local system or between remote systems. For more information, see the ls(1) and getpwuid(1) man pages.

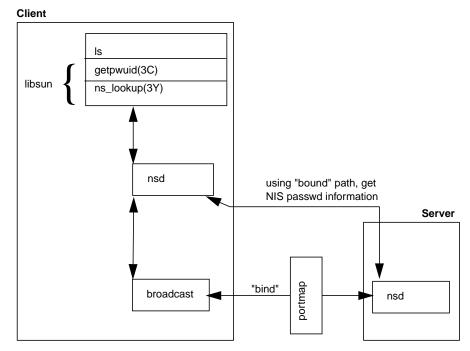


Figure 2-1 NIS Binding Process

When a client boots, NSD broadcasts or multicasts, by default, to the portmap port number for the NIS service. The portmapper forwards the packet to the NIS server, if there is one running on the machine, which then determines whether or not it services the domain requested. Similarly, NSD broadcasts, asking for a new NIS server if the old server fails to respond, or it selects the next one on the list, determined by the contents of the /etc/config/NSD.options or the /etc/nsswitch.conf files. An nsd daemon runs on both the client and the server. The ypwhich(1) command gives the name of the server to which NSD is currently bound.

NIS Database

The NIS database is a collection of files in mdbm format. To create the database, the NIS tool makemdbm converts input files (usually ASCII) to output files. The output files have .m extensions. Each is a map. For example, the aliases map is composed of the file aliases.m.

A typical listing of NIS database files looks like this:

bootparams.m	mad
capability.byname.m	mad
clearance.byname.m	ma
ethers.byaddr.m	ma
ethers.byname.m	net
group.bygid.m	net
group.byname.m	net
group.bymember.m	net
hosts.byaddr.m	net
hosts.byname.m	pa

mac.byname.m mac.byvalue.m mail.aliases.m mail.byaddr.m netgroup.byhost.m netgroup.byuser.m netid.byname.m networks.byaddr.m networks.byname.m passwd.byuid.m protocols.byname.m protocols.bynumber.m rpc.byname.m rpc.bynumber.m

Standard and Nonstandard Maps

The NIS application is capable of making and updating a particular set of maps automatically. These are known as standard maps and are derived from regular ASCII files. The maps included in a standard set vary with each NIS release. Nonstandard maps are maps that have no ASCII form or maps that are created for vendor- or site-specific applications; NIS does not automatically know how to make or update nonstandard maps. NIS can serve any number of standard (default) and nonstandard maps. Following is a list of standard MIS maps:

bootparams	hosts.byaddr	netgroup.byhost	protocols.bynumber
capability.byname	hosts.byname	netgroup.byuser	rpc.byname
clearance.byname	jlimits	netid.byname	rpc.bynumber
ethers.byaddr	mac.byname	networks.byaddr	services
ethers.byname	mac.byvalue	networks.byname	services.byname
group.bygid	mail.aliases	passwd.byname	shadow
group.byname	mail.byaddr	passwd.byuid	ypservers
group.bymember	netgroup	protocols.byname	

In most cases, the format of the data in NIS default maps is identical to the format within the ASCII files.

Some maps have default nicknames to make administration easier. The ypcat(1) command, a general NIS database print program, with the -x option prints a list of default map nicknames and their corresponding full names. Table 2-2 shows the list of default nicknames and full names for maps supplied in the NIS release.

Table 2-2Default Nicknames for Maps

Map Nickname	Map Full Name	
aliases	mail.aliases	
ethers	ethers.byname	
group	group.byname	
hosts	hosts.byaddr	
networks	networks.byaddr	
passwd	passwd.byname	
protocols	protocols.bynumber	
rpc	rpc.bynumber	
services	services.byname	

For example, the command ypcat hosts is translated into ypcat hosts.byaddr because there is no map called hosts.

Map Propagation

Propagating an updated database from master server to slave servers ensures database consistency between all NIS clients. Databases can be updated in two ways: periodically using the crontab command and interactively from the command line (see Chapter 5, "Maintaining NIS," for details on map propagation methods).

The propagation process varies depending on the propagation method. For example, when a map is updated and propagated using the ypmake command, ypmake looks at mdbm_parse to determine which maps to make. The mdbm_parse command updates

the maps and calls yppush. The yppush command reads the ypservers map to determine which slave servers to contact; yppush contacts NSD on the selected slave servers and requests ypxfr service. The slave server can now transfer the maps using ypxfr. For more information on map propagation methods, see the cron(1), ypmake(1M), yppush(1M), and ypxfr(1M) man pages.

Figure 2-2 illustrates the propagation process between a master server and a slave server using ypmake.

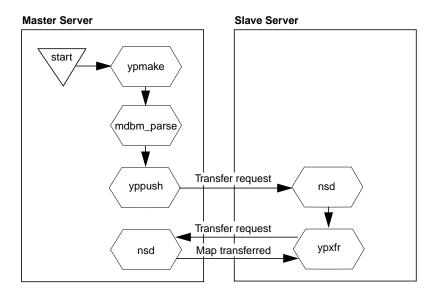


Figure 2-2Map Propagation Between Servers

NIS and Other Network Files

Network files under system control can be divided into two groups: local files and global files. Local files are those that NIS first checks on the local system and may continue checking in the NIS database. Global files reside in the NIS database and are always consulted by programs using NIS. The level of system control over some files depends on the NIS syntax used within those files.

The next two sections discuss the local and global files consulted by NIS. More information on these configuration files is included in *IRIX Admin: System Configuration and Operation*.

Local Files

Table 2-3 shows the local files that NIS consults, the use of which is determined by how they are ordered in /etc/nsswitch.conf. These files can be controlled at different levels. Two special cases, however, are /etc/aliases and /etc/passwd.

The /etc/aliases and /etc/passwd files may contain a special cookie starting with a plus sign (+). This directs the files parser to insert data from subsequent libraries at that point. This replacement is done in the files protocol library, but only if the NSD attribute compat is set in the nsswitch.conf file.

For example, a program that calls getpw ent to access /etc/passwd (a local file) first looks in the password file on your system (if there is a password entry in the nsswitch.conf file); the NIS password file is consulted only if your system's password file contains this plus sign (+) entry (see the passwd man page).

Local File			
/etc/hosts.equiv			
/etc/passwd			
/etc/aliases			
.rhosts			

Table 2-4 shows some examples of plus (+) and minus (-) entries for the local /etc/group and /etc/passwd files. Note that the position of + and – entries in the files affects processing. The first entry (+, -, or regular) is the one that is used.

Local File	Example Entry	Meaning of the Entry
/etc/passwd	+:	Get all password information from the NIS password database.
	+gw:	Get all user account information for gw from NIS.
	+@marketing:	Allow anyone in the marketing netgroup (see "Using Netgroups" in Chapter 5 for details) to log in using NIS account information.
	+nb::::Nancy Doe:/usr2/nb:/bin/csh (shown wrapped; entry is one line)	Get the user password, user ID, and group ID from NIS. Get the user's name, home directory, and default shell from the local entry.
	-fran:	Get all user account information from NIS and disallow any subsequent entries (local or NIS) for fran.
	-@engineering:	Disallow any subsequent entries (local or NIS) for all members in the netgroup engineering.

 Table 2-4
 Local File Entries to Control Access

In the /etc/hosts.equiv file, if there are + or - entries whose arguments are @ symbols and netgroups, the NIS netgroup map is consulted; otherwise NIS is not consulted. This rule also applies to the .rhosts file.

In /etc/aliases, if there is a +:+ entry, the NIS aliases map is consulted. Otherwise, NIS is not consulted.

Global Files

All global files are controlled by the /etc/nsswitch.conf file, which determines the maps, the methods, and the order in which they are looked up. The compatibility attribute to override local control of a file is set in the following manner in the nsswitch.conf file:

passwd: files(compat) [notfound=return] nis

This line compels files to be searched in the historical manner: the files are parsed and if a +/- entry is found, the next element is called. If the requested item is not found in the file, either as a regular entry or as one of the + or - entries, then control is returned immediately, without notification, to the next name service.

For example, previously ypserv had a flag -i pertaining to the hosts map, which meant if a requested item was not found in the dbm files (NIS maps), then the request was forwarded to DNS. An IRIX server has an nsswitch.conf file just like the client, which gives a resolve order for each map. Now the line for hosts in the /var/ns/domains/domainname/nsswitch.conf file for the server and the /var/ns/nsswitch.conf.sisserv file for clients shows an entry nisserv, referring to the library for serving NIS. If you put dns after that, the name server will use DNS if a requested key is not found in the maps:

hosts: nisserv dns

If the -i flag was previously used, the entry should exist as described. Note that ypserv no longer exists.

NIS Software Quick Reference Guide

This section provides a quick reference to NIS daemons, files, and tools and suggests the man pages you should consult for complete information. The man pages at the end of this guide contain detailed information on the structure of the NIS system and NIS commands.

NIS Daemons

NIS daemons are as follows:		
rpc.passwd	A server process that allows users with NIS accounts to change their NIS password and other NIS password-related fields. This process runs only on the master server.	
nsd	The daemon acts as both server and client depending on how it is configured.	

NIS Configuration Files

NIS configuration files are as follows:

/var/ns/domains

The default location of NIS database files. For more information, see the ypfiles man page.

/etc/config/rpc.passwd.options

Specifies an alternate NIS password filename. Default password file is /etc/passwd. Must be used in conjunction with the /etc/config/ypmaster.options PWFILE variable. For more information, see the rpc.passwd man page.

/etc/config/nsd.options

Specifies default options to use with nsd. Options that can be included in this file are a secure mode and a cache timeout specifier. For more information, see the nsd man page.

NIS Tools

NIS tools are as follows:

makemdbm A low-level tool for building an mdbm file that is a valid NIS map. You can use makemdbm to build or rebuild databases not built from /var/yp/mdbm_parse. You can also use mdbm_dump to disassemble a map so that you can see the key-value pairs that comprise it. In addition, you can modify the disassembled form with standard tools (such as editors, awk, grep, and cat). The disassembled form is in the form required for input back into makemdbm. See the makedbm(1M) man page for more information.

ypcat	Lists the contents of an NIS map. Use it when you do not care which server's map version you see. If you need to see a particular server's map, use the rlogin or rsh commands to gain access to that server, and use makemdbm. For details on ypcat, see the ypcat(1) man page.
ypchpass	Changes select NIS password fields. As the NIS user, you can change your full name, your home directory, and your default shell environment. Use yppasswd to change your NIS password. See the ypchpass(1) man page for details on the distinction between the two.
ypinit	Constructs many maps from files located in /etc, such as /etc/hosts, /etc/passwd, and others. The database initialization tool ypinit does all such construction automatically. Also, it constructs initial versions of maps required by the system but not built from files in /etc; an example is the map ypservers. Use this tool to set up the master NIS server and the slave NIS servers for the first time. Use ypinit to construct initial versions of maps rather than as an administrative tool for running systems. See the ypinit(1M) man page for details.
ypmake	Builds several commonly changed components of the NIS database from several ASCII files normally found in /etc: bootparams, passwd, hosts, group, netgroup, networks, protocols, rpc, and services, and the file /etc/aliases. The /var/yp/ypmake.log file is the log file for all ypmake activity. For more information, see the ypmake(1M) man page.
ypmatch	Prints the value for one or more specified keys in an NIS map. Again, you have no control over which server's version of the map you are seeing. See the ypmatch(1) man page for details on using ypmatch.
yppasswd	Allows NIS users to remotely change their NIS passwords. For details see the yppasswd(1M) man page.
yppoll	Asks nsd for the information it holds internally about a single map. See the yppoll(1M) man page for details on using yppoll.
yppush	Runs on the master NIS server. It requests each of the nsd processes within a domain to transfer a particular map, waits for a summary response from the transfer agent, and prints out the results for each server. For more information, see the yppush(1M) man page.
ypset	Tells an nsd process (the local one, by default) to get NIS services for a domain from a named NIS server. By default, nsd disallows the use of ypset. See the ypset(1M) man page for details on enabling ypset.

ypwhich	Tells you which NIS server a node is using at the moment for NIS services, or which NIS server is master of some named map. For more information, see the ypwhich(1M) man page.
ypxfr	Moves an NIS map from one NIS server to another, using NIS itself as the transport medium. You can run it interactively, or periodically from crontab. Also, nsd uses ypxfr as its transfer agent when it is asked to transfer a map. You can create the file /var/yp/ypxfr.log to log all ypxfr activity. See the ypxfr(1M) man page for details.

In addition to these NIS tools, the <code>rpcinfo</code> and <code>crontab</code> tools are also useful for administering NIS. For further information, please see the man page for each tool.

Planning Your NIS Service

This chapter presents information to consider before you set up the NIS service on your network. It explains how to set up multiple NIS domains (if you decide they are needed) and identifies the files that should be up-to-date before NIS setup begins. It suggests how to name a domain and how to select master and slave servers. Finally, this chapter provides general recommendations to help you make planning decisions.

This chapter contains these main sections:

- "Establishing Multiple NIS Domains" on page 24
- "Verifying ASCII File Contents" on page 27
- "Selecting a Domain Name" on page 29
- "Selecting the NIS Master Server" on page 30
- "Selecting the NIS Slave Servers" on page 30
- "General Recommendations" on page 31

Establishing Multiple NIS Domains

Before you set up NIS, determine the number of domains you need. Establishing more than one domain is advisable if your network is very complex or requires a very large database. You might also consider using multiple domains if your network contains a large number of systems (say, in excess of 1000 systems).

If you decide to establish multiple domains and require interdomain communication, your planning involves additional network considerations. Those considerations are addressed in the remainder of this section.

Note: If you plan to establish a single domain or multiple isolated domains, you can skip ahead to "Verifying ASCII File Contents" to proceed with your planning.

Domain Boundaries

NIS is not hierarchical in nature; it cannot resolve issues that extend beyond domain boundaries. For example, suppose you set up two domains as shown in Figure 3-1: shapes, which includes system client1; and colors, which includes system client2. Without NIS, communication between client1 and client2 relies on entries in their local /etc/hosts file that provide a host name-to-address mapping.

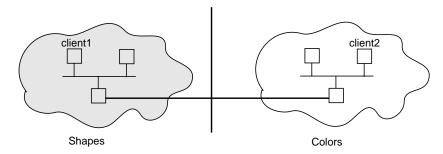


Figure 3-1 Boundary Problem With Multiple Domains

With NIS, host name and address information is in the hosts database on the NIS servers for a domain. However, this name and address information is limited to domain members. The colors database has no entry for client1 in the shapes domain, and the

shapes database has no entry for client2 in the colors domain. Consequently, when client1 tries to contact client2, host name resolution fails and a connection cannot be established. Although there may be a physical connection between client1 and client2, there is no logical connection to support the communication process.

Bridging Domain Boundaries

When multiple NIS domains are used, you must form a logical bridge between domains to allow systems in different domains to communicate as shown in Figure 3-2. The logical bridge must contain or be able to access system information for all systems on a given network, regardless of domain. There are two ways to achieve this logical bridge: using the Domain Name System (DNS) or using a customized update procedure.

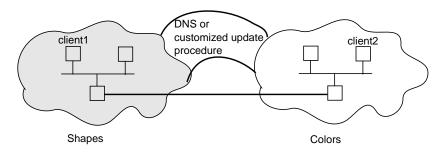


Figure 3-2 Boundary Solutions for Multiple Domains

Using the Domain Name System (DNS)

DNS, sometimes referred to as BIND (Berkeley Internet Name Daemon) or named, is a service that maps host names to IP addresses and vice-versa. DNS is concerned mainly with host name-address and address-host name resolution. It was developed to support very large scale environments and provides an accurate network depiction; it is hierarchical in nature. When correctly set up, DNS resolves host names and addresses throughout an entire network. For NIS to use DNS, DNS must be set up to know about all systems. The *IRIX Admin: Networking and Mail* book provides detailed information on setting up DNS.

By default, host name resolution is done by first checking NIS. If NIS is not running, then DNS is checked. If DNS is not running, then the local /etc/hosts file is checked. To

redefine the host resolution order, change the /etc/nsswitch.conf file as described in the next section.

Using /etc/nsswitch.conf

The lookup order for resolving a system's identity can be configured in a variety of ways using /etc/nsswitch.conf. For example, a network application could resolve host name lookup by accessing files or databases in this order: NIS, DNS, and finally the local file. It can be configured to check only the first service running, or to check services until a match is found. Whatever order is specified, it becomes the default lookup order used by routines in the standard C library, such as gethostbyname(3N), for resolving host names.

If you want applications to resolve host names via the DNS database only, put this line in the /etc/nsswitch.conf file:

hosts: dns

If applications are to search only DNS and /etc/hosts, put this line in the /etc/nsswitch.conf file:

hosts: dns files

To specify that NIS should be checked first, then if no match is found check DNS, and if no match is found, check /etc/hosts and put this line in the /etc/nsswitch.conf file:

hosts: nis dns files

See the nsswitch.conf(1) man page for more detailed information.

Establishing a Customized Update Procedure

An alternative to using DNS is to establish a procedure for updating the hosts file on all master servers. For example, designate one system at your site to be the repository for new system addresses and limit administration of this system to a few select people. Set up a script and crontab entry on the designated system to copy its /etc/hosts file to the NIS master servers on each domain at regular intervals. When each NIS master server performs a ypmake, the host database is updated with the names and addresses for all systems on the network, regardless of the domain. This scheme distributes an updated list of all network systems to NIS servers, allowing clients in different domains to communicate successfully.

While DNS is mainly for host name resolution, NIS supports multiple database maps in addition to the hosts map. This method of setting up your own customized update procedure is also useful if you need the same information for other maps distributed between domains (for example, /etc/aliases).

Verifying ASCII File Contents

NIS databases are built on the NIS master server from a set of ASCII files the master server contains. A key preparation step is to ensure that the information contained in the ASCII files is correct and up-to-date.

Table 3-1 lists the maps that make up the NIS database, the input files that create these maps, and the purpose of each map in the NIS environment.

Map Name	ASCII File	Description
bootparams	/etc/bootparams	Contains pathnames of files diskless clients need during booting: root, swap, share, possibly others.
capability.byname	/etc/capability	Contains information about the capability each user may have when logging onto the system.
clearance.byname	/etc/clearance	Contains mandatory access control labels to allow user access to the system.
ethers.byaddr	/etc/ethers	Contains host names and Ethernet addresses. The Ethernet address is the key in the map.
ethers.byname	/etc/ethers	Same as ethers . byaddr, except the key is the host name instead of Ethernet address.
group.bygid	/etc/group	Contains group security information with the group ID as key.
group.byname	/etc/group	Contains group security information with the group name as key.
group.bymember	/etc/group	Contains all groups of which a login is a member.

 Table 3-1
 Maps, ASCII Files, and Descriptions

Table 3-1 (continued)	Maps, ASCII Files, and Descriptions		
Map Name	ASCII File	Description	
hosts.byaddr	/etc/hosts	Contains host names and IP addresses, with the IP address as key.	
hosts.byname	/etc/hosts	Contains host names and IP addresses, with the host name as key.	
mac.byname	/etc/mac	Contains mandatory access control information, with the name as key.	
mac.byvalue	/etc/mac	Same as mac.byname, except that the key is numeric value.	
mail.aliases	/etc/aliases	Contains aliases and mail addresses, with aliases as key.	
mail.byaddr	/etc/aliases	Contains mail addresses and aliases, with the mail address as key.	
netgroup.byhost	/etc/netgroup	Contains group names, user names, and host names, with the host name as key.	
netgroup.byuser	/etc/netgroup	Same as netgroup.byhost, except that the key is the user name.	
netgroup	/etc/netgroup	Same as netgroup.byhost, except that the key is the group name.	
netid.byname	/etc/group, /etc/hosts, /etc/netid	Contains user, group, and host information, with the user name as the key.	
networks.byaddr	/etc/networks	Contains names of networks known to your system and their IP addresses, with the address as the key.	
networks.byname	/etc/networks	Same as networks.byaddr, except the key is the name of network.	
passwd.byname	/etc/passwd	Contains password information with the user name as the key.	
passwd.byuid	/etc/passwd	Same as passwd.byname, except that the key is the user ID.	

Table 3-1 (continued)	Maps, ASCII Files, and Descriptions	
Map Name	ASCII File	Description
protocols.byname	/etc/protocols	Contains network protocols known to your network, with the protocol name as the key.
protocols.bynumber	/etc/protocols	Same as protocols . byname, except that the key is the protocol number.
rpc.byname	/etc/rpc	Contains the program number and name of RPCs known to your system. The key is the RPC program name.
rpc.bynumber	/etc/rpc	Same as rpc.byname except that the key is the RPC program number.
services	/etc/services	Same as services.byname, but key is the service name and protocol.
services.byname	/etc/services	Lists Internet services known to your network. Key is the port or protocol.
shadow	/etc/shadow	An access-restricted shadow password file.
ypservers	/var/yp/ypservers	Lists NIS servers known to your network. Initially created by ypinit when the master server was built.

Selecting a Domain Name

The name you choose for your NIS domain is at your discretion; however, it should reflect some characteristics of the network it is serving, such as its location, function, or types of systems it contains. You can use a simple domain name, such as marketing; or, if you are a member of the Internet and you choose to do so, you can use your Internet domain name (such as finance.company.com) as your NIS domain name.

The domainname command sets a domain name on an NIS system. The NIS domain name is assigned at system startup. Enter it in the domain file, /var/yp/ypdomain. Be aware that domain names are case sensitive: marketing and Marketing are different domains. See Chapter 4, "Setting Up and Testing NIS," for complete instructions on setting domain names, and the domainname (1) man page for details of the domainname command.

Selecting the NIS Master Server

Determine the system to be the NIS master server for the domain; there is only one NIS master server per domain. The NIS master server houses the original NIS database maps for the domain and is the only server on which changes are made to the NIS database. For this reason, the master server should be a very reliable and stable system. It must be accessible via the network to both NIS clients and NIS slave servers. The master server need not be a dedicated system; it can be responsible for other functions as well.

This is also a good time to determine the name of the NIS password file to be used. By default, NIS derives the database file from the ASCII version of /etc/passwd. This can be a security hole as all system password files require a root account.

To ensure security, create a separate NIS password file that contains no root or superuser-equivalent accounts (no UID=0). A good generic NIS password filename is /etc/passwd.nis. If you plan to use a password file other than the default /etc/passwd, you must tell NIS about the new filename. To do so, you must create the /etc/config/rpc.passwd.options and /etc/config/ypmaster.options files to support /etc/passwd.nis, the NIS password file. The contents of these files should look like the following examples:

cat /etc/config/rpc.passwd.options
PWFILE=/etc/passwd.nis

cat /etc/config/ypmaster.options
PWFILE=/etc/passwd.nis

Selecting the NIS Slave Servers

Slave servers contain copies of the NIS database. The number of NIS slave servers you assign per domain depends upon the size of the domain and the number of networks over which your domain extends. NIS slave servers must be accessible to both NIS clients and the NIS master server by means of the network. NIS slave servers should be reliable systems; the degree of reliability of these systems depends on the availability of backup slave servers.

By default, NIS clients broadcast an NIS bind request when they boot. Since broadcast requests cannot go through gateways, you must have at least one NIS slave server on

any network where there are NIS clients. For reliability, there should be more than one NIS slave server on any network where there are NIS clients.

Broadcasting bind requests is the default setting, but clients can specify the server they wish to bind to at boot time. For instance, say you have a domain that encompasses many subnets, one of which contains only one client. To avoid making that client a server, you can specify a list of servers the client can bind to at boot time.

Specify an NIS Server at Client Startup

To specify an NIS server at client startup, modify the /etc/config/NSD.options file or the /etc/nsswitch.conf file. These files contain the resolve order and identify the address of any NIS server. Add the following line to the /etc/config/NSD.options file:

nis_servers=nnn.nnn

As an alternative, add the following line to the /etc/nsswitch.conf file:

ypservers: xx.xx.xx.yy.yy.yy

where *nnn.nn.nnn* and *xx.xx.xx. yy.yy.yy.yy* are the IP addresses or host names of specified servers, but IP addresses are preferred.

General Recommendations

Below are some general recommendations for setting up NIS. Because these are only general recommendations, you may need to tailor them to fit your specific site requirements.

- 1. During the planning phase, sketch the NIS implementation for your network. Identify the master server, slave servers, and client systems. If you have multiple domains, include them in your drawing.
- 2. If your domain spreads over several networks, ensure that there are at least two slave servers per network in case of system or network failures.
- 3. Create an alternate password file to be used by NIS only, that does not have any root user IDs. For example, specify /etc/passwd.nis as the NIS password file.

- 4. To simplify administration and troubleshooting, maintain only one master server for all maps within a single domain.
- 5. Plan to do all database creation and modification on the master server.

Setting Up and Testing NIS

Setting up NIS consists of three general procedures: setting up the master server, setting up the slave servers, and setting up the clients. The instructions in this chapter explain how to set up NIS by guiding you through procedures on sample NIS systems in a sample NIS domain.

This chapter contains these sections:

- "Setting Up the NIS Master Server" on page 34
- "Setting Up NIS Slave Servers" on page 37
- "Setting Up NIS Clients" on page 40

This sample setup in this chapter is representative of what must be done to set up NIS on any network, regardless of its specific characteristics. It assumes that NSD is running on all machines involved. When you use these instructions, substitute your own values for the ones shown in our examples. In our examples, NIS entities have these names:

- The domain name is shapes.
- The master server name is circles.
- Slave server names are slave1 and slave2.

Note: Host names used in the NIS environment must be the official host names, not nicknames. The official host name is the name returned by the hostname command. See the hostname(1) man page for usage details.

Setting Up the NIS Master Server

There are four parts to the procedure for setting up the NIS master server.

- 1. Setting the master server's domain name.
- 2. Building the master maps.
- 3. Starting NIS on the master server.
- 4. Testing the NIS master server.

Setting the Master Server's Domain Name

Set the system's domain name based on your site's configuration. Recall that the domain name for this example is shapes. As you do this step, replace shapes with the domain name you chose for your site.

If your site configuration consists of only NIS domains and/or the NIS domain names are not the same as the Internet domain names, do the following:

1. Set the domain name as follows:

circles# echo shapes > /var/yp/ypdomain circles# domainname shapes

2. Verify the domain name setting with the domainname command, as follows:

circles# **domainname** shapes

If the domain name is correctly set, the domainname command returns the domain name you specified in step1 of this procedure. If your output is not correct, reissue the commands in step1.

If your site configuration consists of NIS domains and Internet domains with the same names, do the following (the example assumes that the NIS and Internet domains are both named widgets.com):

1. Set the official host name for the master server (the host name for our example is circles):

circles# echo circles.widgets.com > /etc/sys_id

- 2. Reboot the system:
 - circles# /etc/reboot

The /var/yp/ypdomain file is not required if the domain names for the NIS and Internet domains are the same. Also, the domain name must be part of the official host name set in the /etc/sys_id file. If a /var/yp/ypdomain file exists, the domain name set in the /var/yp/ypdomain file overrides the domain name specified in the /etc/sys_id file.

Building the Master Maps

The command ypinit builds NIS maps using the text files with /var/yp/mdbm_parse. (See Chapter 2, "Preparing to Manage NIS," for a list of the default files that are converted to maps in this step. See also the ypinit (1M) man page for details of the ypinit command.)

1. Start building the master NIS maps using the ypinit command on host circles:

circles# cd /var/yp circles# ./ypinit -m We now need to contruct a list of hosts which run NIS servers. Enter the names or addresses of these hosts one at a time, excluding this host, then simply hit <Enter> to end the list. Name (<Enter> to exit): squares Name (<Enter> to exit): triangles Name (<Enter> to exit): Parsing configuration files into databases.

The -m flag denotes that circles is an NIS master server.

If there is any doubt about the integrity of the database maps, always go and rebuild the maps from scratch.

If you are creating a new master server for an already existing domain with functioning slave servers, you must run yppush to propagate the new maps to the slave servers (see Chapter 5, "Maintaining NIS," for details on changing a master server).

Starting NIS on the Master Server

The NIS service is available to clients as soon as you start it on the master server. You can start NIS by any one of these methods:

- Reboot the NIS master server.
- Stop and restart the network using the /etc/init.d/network script.
- Start the daemons manually.

Give the following command to start the daemons manually:

circles# /usr/etc/rpc.passwd /etc/passwd.nis -m passwd

Note that the rpc.passwd process initiated in this command sequence assumes the existence of a specific NIS password file called /etc/passwd.nis. See "Selecting the NIS Master Server" in Chapter 3 for details on setting up a nonstandard NIS password file. See also the rpc.passwd(1M) man page for more information on the command.

NIS master machines must be configured with the chkconfig command set on for ypserv and ypmaster. NIS slave servers must be configured with the chkconfig command set on for ypserv. Finally, run nsadmin to restart the daemon.

To set the flags on and restart the nsd daemon, give these commands:

circles# /etc/chkconfig ypmaster on circles# /etc/chkconfig ypserv on circles# nsadmin restart

Testing the NIS Master Server

Finally, to ensure that NIS services are functioning properly on the NIS master server, enter the ypwhich command. Since the NIS master server is also a client, it should return with the name of the server to which it is bound. Remember, an NIS master server is bound to itself, and it returns its own name.

Example:

circles# **ypwhich** circles.widgets.com

The response localhost indicates that nsd is correctly bound to the NIS server on the local system. Instead of localhost, it may return its name as reported by hostname. For further details, refer to the ypwhich(1M), nsd(1M), and hostname(1) man pages.

Setting Up NIS Slave Servers

Use the following procedure to set up the NIS slave server. If you have more than one NIS slave server, repeat each part of the procedure for each slave server.

- 1. Set the slave server's domain name (see "Setting the Slave Server's Domain Name" on page 37).
- 2. Enter the following command: chkconfig yp on
- 3. Enter the following command: chkconfig ypserv on
- 4. Bind to an NIS server (see "Binding to Another NIS Server" on page 37).
- 5. Build the duplicate maps (see "Building the Duplicate Maps" on page 38).
- 6. Start NIS on the slave server (see "Starting NIS on the Slave Server" on page 39).
- 7. Test the NIS slave server (see "Testing the NIS Slave Server" on page 39).

Setting the Slave Server's Domain Name

Follow the instructions in "Setting the Master Server's Domain Name" in this chapter to complete this step.

Binding to Another NIS Server

To propagate NIS database maps from the NIS master server to a NIS slave server, the slave server must be bound to a valid NIS server in its domain.

In the following examples, since circles is a valid NIS server, this slave server binds to circles. Binding need not be to a master server, however.

1. If the slave is not on the same network as circles, verify that the master server has an entry in the /etc/hosts file on the slave server:

```
slave1# grep circles /etc/hosts
192.0.2.4 circles.rad.sgx.com circles
```

2. Whether or not the slave is on the same network as circles, you should halt any existing nsd command, and start the binding process with the specified attribute of nsd, as follows:

slave1# killall -TERM nsd
slave1# /usr/etc/nsd -a nis_security=local

3. Give the ypset command to point NSD at the server circles.

slave1# ypset circles

4. Verify that the server is bound by giving the ypwhich command:

slave1# ypwhich
circles

The output of ypwhich returns the name of the NIS server to which this server is currently bound. The example shows that this slave server is successfully bound to circles.

Building the Duplicate Maps

The command ypinit builds the duplicate database maps by transferring a copy of the original maps from the NIS master server.

1. Determine which system is the master server by using the ypwhich command:

slave1# ypwhich -m

2. Start building NIS slave server maps with the ypinit command. In this example the -s flag specifies that this system is to be an NIS slave server, and circles is the master server:

slave1# cd /var/yp
slave1# ./ypinit -s circles

Each line of the ypinit output contains the name of a map and the name of the master server where the map was created.

Transferring map networks.byname from server circles.shapes.

```
Transferring map services.byname from server circles.shapes.
Transferring map passwd.byname from server circles.shapes.
Transferring map hosts.byaddr from server circles.shapes.
Transferring map ktools from server circles.shapes.
Transferring map ypservers from server circles.shapes.
Transferring map hosts.byname from server circles.shapes.
Transferring map networks.byaddr from server circles.shapes.
Transferring map protocols.byname from server circles.shapes.
Transferring map group.byname from server circles.shapes.
Transferring map netgroup from server circles.shapes.
Transferring map mail.aliases from server circles.shapes.
Transferring map ethers.byname from server circles.shapes.
Transferring map protocols.bynumber from server circles.shapes.
Transferring map netgroup.byhost from server circles.shapes.
Transferring map group.bygid from server circles.shapes.
Transferring map passwd.byuid from server circles.shapes.
Transferring map ethers.byaddr from server circles.shapes.
Transferring map netgroup.byuser from server circles.shapes.
```

Starting NIS on the Slave Server

The NIS service is available to clients as soon as you start it on this slave server. You can start NIS by any one of these methods:

- Reboot the NIS slave server.
- Stop and restart the network by using the /etc/init.d/network script.
- Start the daemons manually.

Give the following command to start the daemons manually:

slave1# ./ypinit -s circles

The NIS maps are now available from the server slave1 in the domain shapes.

Testing the NIS Slave Server

Finally, to ensure that NIS services are functioning properly on the NIS slave server, enter the ypwhich command. Since the NIS slave server is also a client, it should return with the name of the server to which it is bound. This server can be bound to either itself or to the NIS master server you set up in the previous section: either result is acceptable. Example:

slave1# **ypwhich** localhost

The response, localhost, indicates that nsd is correctly bound to the NIS server on the local system. The response could have also been the name of another NIS server within the same domain on the same local area network.

Setting Up NIS Clients

Use the following procedure for setting up the NIS client. Repeat these steps for each NIS client you need to set up. Each step is described in the sections that follow.

- 1. Set the domain.
- 2. Configure NIS on the client.
- 3. Start NIS on the client.
- 4. Test the NIS client.

Setting the Domain Name

Follow the instructions in "Setting the Master Server's Domain Name" on page 34 to complete this step.

Configuring NIS on the Client

If the NIS service is to start automatically when this client (triangles) is booted, the NIS environment must be configured using the chkconfig command. The yp flag allows this system to access NIS database information from an NIS server. To set the flag on, enter this command:

triangles# /etc/chkconfig yp on

Edit the /etc/nsswitch.conf file, using any standard editor, by adding NIS to the hosts line:

hosts: files nis dns

Starting NIS on the Client

The NIS service operates on this client as soon as you start it. You can start NIS by any one of these methods: rebooting this client, stopping and restarting the network with the /etc/init.d/network script, or starting the NSD daemon manually by performing one of the following commands:

triangles# **nsadmin restart**

triangles# **ypinit** -c

Testing the NIS Client

To ensure that the NIS services are functioning properly on the NIS client, give the ypwhich command. It should return with the name of the server to which it is bound, for example:

ypwhich
squares

The client can be bound to any NIS server on the same network as the request is broadcast. This client is currently bound to the server squares, which means that squares must be on the same network as the client. If more than one NIS server is on the same network, the client binds to the server that responds first.

Maintaining NIS

This chapter describes, and provides procedures for, NIS maintenance as indicated in the titles of the following sections:

- "Adding a New User to a System" on page 44
- "Changing NIS Passwords" on page 46
- "Using Netgroups" on page 47
- "Creating a Nonstandard NIS Map Manually: Pre-IRIX 6.5" on page 49
- "Creating a Nonstandard NIS Map Manually: IRIX 6.5 and Later" on page 50
- "Modifying NIS Maps After NIS Installation" on page 54
- "Preparing to Propagate Nonstandard Maps" on page 55
- "Propagating an NIS Map" on page 57
- "Adding an NIS Slave Server" on page 61
- "Changing the Master Server" on page 62
- "Using Secure ypset" on page 63

Adding a New User to a System

To add a new user to a system that is an NIS client, perform these steps:

- 1. On the NIS master server, add an entry for the new user to the NIS password file (/etc/passwd by default). (For more information, see the passwd(4) man page, the *Personal System Administration Guide*, or the book *IRIX Admin: System Configuration and Operation*.)
- 2. On the NIS master server, update the NIS passwd map on that system by entering:

```
# cd /var/yp
# ./ypmake passwd
```

- 3. If this user is to be a member of any netgroups, modify /etc/netgroups on the NIS master server (see "Using Netgroups" in this chapter).
- 4. On the new user's system, modify /etc/passwd in one of these ways:
 - Add the same entry as you added in step 1 in this section. Duplicating the entry enables the user to log in when the network is down.
 - Add this entry:

+userid

Where *userid* is the login name of the new user. When this type of entry is used, all /etc/passwd information for this user is supplied by NIS.

- Use the Users tool of System Manager to add the new user. Choose NIS rather than Local for each item. All /etc/passwd information for this user is supplied by NIS.
- Add this entry:

+

When this type of entry is used, all /etc/passwd information for all users is supplied by NIS. Every user in the NIS password database can log in to this system, assuming that the home directory exists. For alternative NIS entries, see the passwd(4) man page.

- 5. Make a home directory for the new user on the user's system:
 - # cd parentdir
 - # mkdir userid
 - # chown uid userid
 - # chgrp group userid

The variables are:

parentdir	The parent directory of the home directory you are creating.
userid	The login name of the user (the first field in the password entry).
uid	The unique user ID number for this user (the third field in the password entry). <i>userid</i> can be used instead of <i>uid</i> if the local /etc/passwd entry duplicates the NIS password entry or if NIS maps have been propagated to this system (it takes about 15 minutes after step 2 for updates to propagate).
group	The group number for this user (the fourth field in the password entry).

- 6. Finish adding the new user by setting up the user's login environment (create .login and .cshrc files, for example), adding him or her to groups in /etc/group, and doing other setup tasks that are usually done at your site.
- 7. Have the user add a password to his or her account using yppasswd:

% yppasswd

yppasswd prompts the user to enter the new password twice.

 If you added a complete password entry to /etc/passwd on the user's system (the first option in step 4), have the user add his or her password to the local /etc/passwd file, using passwd:

% passwd

passwd prompts for the password twice.

Changing NIS Passwords

In general, all NIS accounts should be password protected. This reduces the risk of malicious or accidental data corruption. When you change your password with the passwd command, you change the entry explicitly given in your own local /etc/passwd file. To change your NIS password, use the yppasswd command.

1. To change the NIS password for the user tim, enter

```
% yppasswd tim
Changing NIS password for tim on master_name
Old password: <response not echoed>
```

 Enter your old NIS password (if the account is not password protected, press Enter.)

New password: <response not echoed>

3. Enter your new NIS password:

Retype new password: <response not echoed>

4. Reenter the new password:

NIS passwd changed on master_name

Your NIS password change has been logged on the master server and will be updated soon. Note that it takes a little while for the change to propagate throughout the domain. You can update the information more quickly by using the ypmake command on the NIS master to push the data back to all slave servers after updating its own databases. For more information, see the crontab entries on the NIS master server and see "Propagating an NIS Map" on page 57.

If your local password is not given explicitly but rather is pulled in from NIS with a plus (+) entry, then the passwd command prints this error message:

Not in passwd file

In this case, you must use yppasswd to change your password.

To enable the yppasswd service, the system administrator must start up the daemon rpc.passwd server on the system serving as the master server for the NIS password file in your domain.

Using Netgroups

The /etc/netgroup file on the NIS master server contains a list of network-wide groups of systems and users. These groups are used for administrative purposes. For example, to define a set of users that should be given access to a specific system, you can create a netgroup for those users.

The daemons login, mountd, rlogind, and rshd use netgroups for permission checking. login consults them for user classifications if it encounters netgroup names in /etc/passwd. mountd consults them for system classifications if it encounters netgroup names in /etc/exports. rlogind and rshd consult the netgroup map for both system and user classifications if they encounter netgroup names in hosts.equiv or .rhosts.

The NIS master server uses /etc/netgroup to generate three NIS maps: netgroup, netgroup.byuser, and netgroup.byhost. The NIS map netgroup contains the basic information in /etc/netgroup. The two other NIS maps contain a more specific form of the information to speed the lookup of netgroups given the system or user.

Below is a sample /etc/netgroup file. (See the netgroup(4) man page for a description of file format and definition of lines and fields.)

```
# Engineering: Everyone but eric has a machine;
# he has no machine.
# The machine 'testing' is used by all of hardware.
#
engineering hardware software
hardware (mercury, alan, sgi) (venus, beth, sgi) (testing, -, sgi)
software (earth,chris,sgi) (mars,deborah,sgi) (-,eric,sgi)
#
# Marketing: Time-sharing on jupiter
#
marketing (jupiter,fran,sgi) (jupiter,greg,sgi)
#
# Others
#
allusers (-,,sgi)
allhosts (,-,sgi)
```

Note: IRIX (as well as most other UNIX operating systems) supports only 1,024 bytes per line/entry in the netgroup file.

Table 5-1 shows the users in each group.

Table 5-1 Sample User Groups		
Group	Users	
hardware	alan, beth	
software	chris, deborah, eric	
engineering	alan, beth, chris, deborah, eric	
marketing	fran, greg	
allusers	(every user in the NIS map passwd)	
allhosts	(no users)	

Table 5-2 shows how the systems are classified.

Table 5-2Sample Host Groups

Group	Hosts
hardware	mercury, venus, testing
software	earth,mars
engineering	mercury, venus, earth, mars, testing
marketing	jupiter
allusers	(no systems)
allhosts	(all systems in the NIS map hosts)

For more details, see these man pages: yppasswd(1), hosts.equiv(4), export(4), passwd(4), group(4), netgroup(4), and rpc.passwd(1M).

Creating a Nonstandard NIS Map Manually: Pre-IRIX 6.5

You can use ypinit and /var/yp/local.make.script (see the ypmake(1M) man page) to do almost everything necessary to create and modify a map, unless you add nonstandard maps to the database or change the set of NIS slave servers after the system is already running. Whether you use /var/yp/local.make.script or some other procedure, the goal is the same: a new well-formed mdbm file in the domain directory on the NIS master server.

You can create new maps in two ways: using an existing ASCII file as input or using standard keyboard input. The next two sections demonstrate how to create a simple, nonstandard NIS map called yourmap using each method. yourmap consists of the keys al, bl, cl, and so on (l for left); and one set of values, ar, br, cr, and so on (r for right).

ASCII File Input

Assume the ASCII file /etc/yourmap has been created with an editor or shell script, and that the map from /etc/yourmap is part of the database for the shapes domain. To create the NIS map for this file, enter these commands:

cd /var/yp
makemdbm /etc/yourmap /var/ns/domains/shapes/yourmap.m

This command sequence creates a map called yourmap in the directory /var/ns/domains/shapes.

Standard Keyboard Input

When no original ASCII file exists, you can create the NIS map described in the previous example from the keyboard with these commands:

cd /var/ns/domains
makemdbm - /var/ns/domains/shapes/yourmap.m

Enter these lines:

al ar bl br cl cr Ctrl-D The makemdbm switch is used to indicate that input is coming directly from the keyboard. The result of your entries is the same as the previous example: a map called yourmap in the directory /var/ns/domains/shapes.

Adding the New NIS Map

Add an entry for the new NIS map in the /var/ns/domains/<domainname>/nsswitch.conf file with these commands:

cd /var/ns/domains
cat >> shapes/nsswitch.conf
yourmap: nisserv
Ctrl-D

The nsswitch.conf file now contains the name of the map followed by the protocol to be used. For more information, see the nsswitch.conf(4) man page.

Finally, you must send the nsd daemon a SIGHUP signal for the change to take effect. Enter this command:

killall -HUP nsd

Creating a Nonstandard NIS Map Manually: IRIX 6.5 and Later

The IRIX operating system is shipped without default NIS server settings for some common NIS maps, such as auto.master and auto.home. This remains true for IRIX 6.5 and subsequent releases. However, because of the advent of Unified Name Services, NSD, and the demise of the ypserv process, a new procedure is required to serve these maps under IRIX 6.5.

The following steps describe how to serve these maps under IRIX 6.5 and later. Use this procedure if your system has been upgraded to IRIX 6.5 or a subsequent release and was formerly an NIS master server:

1. Rename your current (that is, earlier than IRIX 6.5) /var/yp/local.make file.

Caution: If you do not rename this file, make.script will try to run the old local.make.script file (see step 6) and will fail.

When you create a new script to make and push the maps, you can edit your pre-IRIX 6.5 /var/yp/local.make.script file to conform to the changes that are made to the local.make.script file (see step 6).

- 2. Make sure that check configuration is on for yp, ypmaster, and ypserv, and that NIS services are running on the system.
- 3. Execute the ypwhich -m command. This command should produce the following output:

bootparams *master* capability.byname master ethers.byname *master* group.byname master group.bygid master group.bymember master hosts.byaddr master hosts.byname master mail.aliases master mail.byaddr master netgroup *master* netgroup.byuser master netgroup.byhost master netid.byname *master* networks.myaddr *master* networks.byname *master* passwd.byname master passwd.byuid master protocols.bynumber *master* protocols.byname master rpc.bynumber *master* rpc.byname *master* services *master* services.byname master ypservers *master*

- 4. Make sure that the NIS server is fully functional and that the default maps are updated and pushed properly.
- 5. Add the following line to the /var/ns/domains/<yourdomain>/nsswitch.conf and /var/ns/nsswitch.conf.nisserv files to add a new map, called auto.foo.

This file is based on a file named /etc/auto.foo:

auto.foo: nisserv

Note: You must edit both files. This is because /var/ns/nsswitch.conf.nisserv is a prototype file copied to the /var/ns/domain/yourdomain/nsswitch.conf file when the ypinit -m command executes. This enables a single host to serve more than one NIS domain.

- 6. Make a copy of the old local.make.script file that you renamed in step 1. Then, edit this file to conform to the syntax and to account for the following major differences between the NIS server for IRIX 6.5 and previous versions:
 - The IRIX 6.5 NIS server uses mdbm instead of dbm.
 - The location and names of most files, including the database file, are different.
 - There may be differences in the behavior of the make command.
 - The ypmake command is an sh script that runs mdbm_parse, local.mdbm_parse, and make make.script, in that order.

The mdbm_parse program is a Perl program that is used to maintain the default maps. A local mdbm_parse program can be used by any type of program, although Perl is preferred. make.script is still provided, but it is a null script that has no effect on the default yp maps. It is only used in the event that it contains an sinclude call to call a legacy local.make.script.

The following script is an example of a local.make.script file for the auto.foo map modified to work under IRIX 6.5.

Note: Do not substitute spaces for tabs in this script.

AUTO_MASTER=auto_master

#Makedbm distributed with IRIX that builds maps for #audofsd/automount correctly

O_MAKEMDBM = /usr/sbin/makemdbm

localall: all \$(AUTO_MASTER)

#master map for autofsd: \$(AUTO_MASTER): \$(DIR)/\$(AUTO_MASTER) date ``+\$(UPDATEFMT) \$(AUTO_MASTER) \$(DATEFMT)" \$(O_MAKEMDBM) \$(DIR)/\$(AUTO_MASTER) \$(YPDBDIR)/\$(AUTO_MASTER).m

```
if [ ! $(NOPUSH) ]; then \
   $(YPPUSH) $(AUTO_MASTER); \
   date ``+$(PUSHFMT) $(AUTO_MASTER) $(DATEFMT)";\
fi
```

- 7. Execute the ypmake command.
- 8. Once the local.make.script creates the mdbm file, and the local script is working, execute nsadmin restart to restart NSD with the new database.
- 9. Execute the ypwhich -m command to ensure that the new map is being served by the NIS server.
- 10. Edit the /etc/nsswitch.conf file to add the map to all IRIX 6.5 clients, including the NFS servers.

Additional Tips for Creating Nonstandard Maps Under IRIX 6.5

Observe the following when you create nonstandard maps under IRIX 6.5 and later:

- Each time you execute the ypinit -m command, you must repeat the previous procedure as shown. This is because the ypinit -m command removes the /var/ns/domain/yourdomain directory.
- For NIS clients running versions of IRIX prior to 6.5.1, you should assume that host and domain names are case-sensitive.
- When a problem occurs, the following commands can be helpful: nsadmin restart, nsadmin cat, killall -USR2 nsd, and so forth. See also the nsadmin(1M) man page for related information.
- The makemdbm command treats the first word or symbol of a line, up to the first white space, as the key. This includes comments. Because comments in the input file are all likely to begin with a # (pound sign), makemdbm puts the first comment line that it encounters into the database with a key of "#", and ignores subsequent comments.

To ensure that NIS clients do not misinterpret comments as valid records, you should pass the input file through a regular expression that removes the comment lines.

Modifying NIS Maps After NIS Installation

To change any NIS map, you must change the databases on the master server for the domain. The method you use to modify the map depends on whether you are changing a standard or nonstandard map.

Modifying a Standard NIS Map

A standard NIS map is any map that has an ASCII file and is included in the /var/yp/mdbm_parse file. The procedure for modifying a standard NIS map consists of editing the ASCII file for the map and updating the map with ypmake on the master server. For example, to modify the password database map, edit the ASCII file for the map and run ypmake on the master server. To add the user tom to the password database, perform these steps:

- 1. Edit the ASCII file:
 - # vi /etc/passwd.nis
- 2. Add this line to the password file:

tom::2349:20:Tom Cat:/usr/people/tom:/bin/csh

- 3. Update the password map:
 - # /var/yp/ypmake passwd

By default, the ypmake program updates the map on the master server based on information contained in the make script (/var/yp/mdbm_parse and /var/yp/local.make.script). It also propagates the updated map to all slave servers listed in the ypservers database map.

Modifying a Nonstandard NIS Map

Nonstandard or custom NIS maps are databases that are specific to the application of a particular vendor site but are not part of the NFS release. You can manually modify custom maps. You can also manually change maps that are not expected to change and maps for which no ASCII form exists.

The general procedure is to use makemdbm with a switch to disassemble the map. The disassembled map is in a form you can modify with standard tools such as awk, sed, or vi. You then build a new map from the changed version using makemdbm.

Use this procedure to modify a nonstandard NIS map:

1. Disassemble the map, as shown in this sample command:

```
# makemdbm -u /var/ns/domains/shapes/mymap.m > /var/tmp/mymap.txt
```

- 2. Edit the text file (/var/tmp/mymap.txt, in this example) with any text editor.
- 3. Build the new map, as shown in this sample command:

makemdbm /var/tmp/mymap.txt /var/ns/domains/shapes/mymap.m

4. Remove the temporary ASCII file, as shown in this sample:

rm /var/tmp/mymap.txt

cd /var/yp

This procedure modifies and updates custom maps but does not propagate the map to slave servers.

Preparing to Propagate Nonstandard Maps

Preparing to propagate a nonstandard NIS map consists of setting up its mdbm files in the domain directory on each NIS server (the transfer mechanism is described in the next section). The files must be set up correctly on the master and each slave server in the domain.

On the NIS master server, create a new file called /var/yp/local.make.script so you can conveniently rebuild the map. This example shows a copy of /var/yp/local.make.script to create and push the maps auto.test, auto.direct, auto_master, and auto.home from the files /etc/auto.test, /etc/auto.direct, /etc/auto_master (used by the autofsd daemon), and /etc/auto.home.

AUTO_MASTER=auto_master DIRECT=auto.direct INDIRECT=auto.test HOME=auto.home

O_MAKEMDBM = /usr/sbin/makemdbm

```
localall: all $(AUTO_MASTER) $(DIRECT) $(INDIRECT) $(HOME)
```

master map for autofsd:

007-2161-006

```
$(AUTO_MASTER): $(DIR)/$(AUTO_MASTER)
        date "+$(UPDATEFMT) $(AUTO_MASTER) $(DATEFMT)"
        $(O_MAKEMDBM) $(DIR)/$(AUTO_MASTER) $(YPDBDIR)/$(AUTO_MASTER).m
        if [ ! (NOPUSH) ]; then \setminus
                $(YPPUSH) -v $(AUTO_MASTER); ∖
                date "+$(PUSHFMT) $(AUTO_MASTER) $(DATEFMT)";\
        fi
# DIRECT map:
$(DIRECT): $(DIR)/$(DIRECT)
        date ``+$(UPDATEFMT) $(DIRECT) $(DATEFMT)"
        $(O_MAKEMDBM) $(DIR)/$(DIRECT) $(YPDBDIR)/$(DIRECT).m
        if [ ! $(NOPUSH) ]; then \
                $(YPPUSH) -v $(DIRECT); \
                date ``+$(PUSHFMT) $(DIRECT) $(DATEFMT)";\
        fi
# INDIRECT map:
$(INDIRECT):
                $(DIR)/$(INDIRECT)
        date "+$(UPDATEFMT) $(INDIRECT) $(DATEFMT)"
        $(O_MAKEMDBM) $(DIR)/$(INDIRECT) $(YPDBDIR)/$(INDIRECT).m
        if [ !  $(NOPUSH) ]; then \setminus
                (YPPUSH)  (INDIRECT); \
                date "+$(PUSHFMT) $(INDIRECT) $(DATEFMT)";\
        fi
# HOME map:
$(HOME):
                (DIR)/(HOME)
        date ``+$(UPDATEFMT) $(HOME) $(DATEFMT)"
        $(O_MAKEMDBM) $(DIR)/$(HOME) $(YPDBDIR)/$(HOME).m
        if [ !  $(NOPUSH) ]; then \setminus
                $(YPPUSH) $(HOME); \
                date "+$(PUSHFMT) $(HOME) $(DATEFMT)";\
        fi
```

Also, add the following lines in the server's /var/ns/nsswitch.conf.nisserv file (or /var/ns/domains/domainname/nsswitch.conf) so client systems can query the maps:

auto_master:	nisserv
auto.direct:	nisserv
auto.home:	nisserv
auto.test:	nisserv

Send the NSD daemon a SIGHUP signal for the change to take effect and restart nsadmin:

killall -HUP nsd
nsadmin restart

Typically, /var/yp/local.make.script filters each readable ASCII file for which a map is to be built (such as /etc/auto.master) through awk, sed, and/or grep to make two databases suitable for input to makemdbm. For example, the database might be stored as /var/ns/domains/circles/auto.master.m.

To create a customized make script, /var/yp/local.make.script, use the existing /var/yp/local make.script.demo as a source of programming examples. Make use of mechanisms already in place in /var/yp/localmake.script.demo when deciding how to create dependencies that the make command recognizes; specifically, using .time files allows you to see when the script was last run for the map.

If new maps are to propagate properly on slave servers, ypxfr shell scripts must contain the appropriate entries. To get an initial copy of the map, run ypxfr manually on each slave server. A map must be available on all servers before clients begin to access it. If a map is unavailable on some NIS servers, client programs may behave unpredictably. For details on the use of these commands, refer to the make(1) and ypxfr(1M) man pages.

Propagating an NIS Map

During slave server setup, ypinit calls ypxfr to transfer maps from the master to the new slave server. Once the slave server is operating, maps can be transferred in two ways: by running ypxfr periodically from crontab or by executing ypmake, ypxfr, or yppush from a command line.

Periodic Propagation: crontab

The standard root crontab, /var/spool/cron/crontabs/root, has entries to run ypxfr periodically from shell scripts at a suggested rate for the standard maps in your NIS database. The crontab entries test whether the system is configured as a slave server; if the test succeeds, the ypxfr scripts are executed. If your NIS database has only standard maps, the default entries in root's crontab ensures that the maps are kept reasonably up to date. The shell scripts, by default, are run on each NIS slave server in the domain to ensure database consistency throughout the domain. The cron shell script entries for ypxfr look similar to the following example. Note that each entry in the

crontab file must be seen as one line. (For documentation purposes, line wraps are indicated with a backslash [\].)

If this machine is running NIS and it's a slave server, the following # commands keep the NIS databases up-to-date. # * if /etc/chkconfig yp; then find \ 13 9 * * /var/yp -type f -name 'xfr.*' -mtime +1 -exec rm -f '{}' ';' ; fi * * * * if test -x /var/yp/ypxfr_lph;\ 15 then /var/yp/ypxfr_lph; fi 9,15 * * * 17 if test -x /var/yp/ypxfr_2pd;\ then /var/yp/ypxfr_2pd; fi * 19 9 * * if test -x /var/yp/ypxfr_1pd;\ then /var/yp/ypxfr_1pd; fi

The ypxfr shell scripts reside in /var/yp. Three standard scripts are included with the NFS release: ypxfr_lphr, ypxfr_lpd, and ypxfr_2pd. These scripts transfer specified maps once per hour, once per day, and twice per day, respectively. If the rates of change are inappropriate for your environment, you can modify the root crontab to suit your needs.

Also, you should alter the crontab entries so that the exact time of the ypxfr shell executions varies from one server to another to prevent the transfers from slowing down the master server, the network, or both.

Typically, changes to the ypxfr shell scripts are required in these cases:

- To reflect required map update schedules for your site
- To add nonstandard maps
- If you want to transfer a map from a server other than the master (use the -h option on the ypxfr command)

For more information on how to use crontab, see the crontab(1) man page.

Interactive Map Propagation

The next three sections describe three methods of manually propagating NIS maps.

Using ypmake

NIS maps on the master server can be manually propagated using the ypmake command. This command looks at the /var/yp/mdbm_parse and/or /var/yp/local.make.script to determine which maps to make. The make script calls makemdbm, which updates the maps and calls yppush. The yppush command reads the ypservers map to determine which slave servers to contact, then it proceeds to contact ypserv on the selected slave servers and requests ypxfr service. The slave server can now transfer the maps by using ypxfr.

Use ypmake to update and propagate maps throughout your domain when you want the change to take place immediately and do not want to wait for cron. These are some usage examples for ypmake:

- To update all out-of-date maps, enter
 - # /var/yp/ypmake
- To update and propagate an out-of-date hosts.byname and hosts.byaddr map, enter:
 - # /var/yp/ypmake hosts
- To force the creation and propagation of a new passwd.byname and passwd.byuid map, out-of-date or not, enter:
 - # /var/yp/ypmake -f passwd
- To rebuild all of the maps, but not push them to other servers, enter:
 - # /var/yp/ypmake UPDATE=1 NOPUSH=1

The ypmake program is also automatically called for in root's crontab, /var/spool/cron/crontabs/root. The entry in crontab tests whether the system is configured to run NIS and whether it is configured as the master. If the test succeeds, cron periodically executes the ypmake command to update and propagate maps to the appropriate slave servers. The crontab entry looks similar to the following. Note that each entry in the crontab file must be seen as one line. For documentation purposes, line wraps are indicated with a backslash (\).

```
# If this machine is a NIS master, ypmake will rotate the
# log file and ensure that the databases are pushed out with
# some regularity.
#
1,16,31,46 * * * * if /etc/chkconfig \
ypmaster && /etc/chkconfig yp && \
test -x /var/yp/ypmake; then \
/var/yp/ypmake; fi
```

Using ypxfr

You can run ypxfr as a command on slave servers to transfer a specified map from the master or other stable server to the requesting slave server. Typically, you run ypxfr only in exceptional situations. For example, ypxfr is used when setting up a temporary NIS server to create a test environment, or when an NIS slave server has been out of service and must quickly be made consistent with the other servers.

The ypxfr command has options that force map transfer and specify alternate domains and servers from which to obtain the map. Below are examples of ypxfr command usage:

- To transfer the hosts.byaddr map from the master server for the map, enter:
 - # /var/yp/ypxfr hosts
- To force the transfer of the passwd.byname map from the slave server purple within the domain colors, enter:

```
# /var/yp/ypxfr -f -h purple -d colors
```

Using yppush

Although yppush is usually called by ypmake, it can also be run manually. You must run yppush on the NIS master server. The syntax for using yppush is explained below:

• To force a copy of the map myworld with verbose messages, enter:

```
# yppush -v myworld
```

• To force a copy of the map yourmap in the domain yourworld, enter:

```
# yppush -d yourworld yourmap
```

Use yppush to force a copy of an updated version of a specified map from the master server to the slave servers. It can be used to move an infrequently changed, nonstandard map from the master server to slave servers.

In any of the cases mentioned above, you can capture the transfer attempts of ypxfr and the results in a log file. If /var/yp/ypxfr.log exists, ypxfr appends results to it. No attempt is made to limit the log file; you are in charge of that. To turn off logging, remove the log file. In addition, the file /var/yp/ypmake.log records ypmake transactions. This file can also be useful for troubleshooting propagation problems.

Adding an NIS Slave Server

To add a new NIS slave server, you must first modify an NIS server map on the NIS master server. If the new server has not been an NIS slave server before, you must add the new server's name to the map ypservers in the default domain.

This procedure explains how to add a new server to an NIS configuration:

1. On the master server, change to the /var/yp directory:

cd /var/yp

2. Create a new hosts map, if needed.

The new server's host name and address must be in the hosts map. If the NIS slave server you are adding is not included in the hosts map, edit /etc/hosts and save your changes. Then, create a new hosts map:

vi /etc/hosts

Enter and save your changes:

./ypmake hosts

3. Edit the /var/ns/domains/domainname/ypservers file and add the new server's host name:

vi ypservers

4. Propagate the map with ypmake:

./ypmake ypservers

5. Transfer the database from the master server.

Remotely log in to the new NIS slave server. Use ypinit to transfer the database from the NIS master server to the new slave server:

/var/yp/ypinit -s mastername

6. Perform the steps described in "Building the Duplicate Maps" on page 38. The new slave server is ready for service after you build the duplicate maps.

Changing the Master Server

To switch the master server to a different system, you must rebuild all maps to reflect the name of the new master server and distribute the new maps to all slave servers.

To change the master server, perform these steps:

- Set up the system that is to be the new master server as if it is to be a slave server. See "Setting Up NIS Slave Servers" on page 37 and follow the directions in the sections "Setting the Slave Server's Domain Name," "Binding to Another NIS Server," and "Building the Duplicate Maps."
- 2. Copy the map source files from the old master server to the new master server. The source files are listed in Table 3-1.
- 3. Rebuild all of the maps on the new master server, but do not push them to other servers:

newmaster# /var/yp/ypmake UPDATE=1 NOPUSH=1

4. Use ypxfr on the old master server to transfer each of the new maps from the new master server to the old master server. Give this command for each of the maps listed in "Standard and Nonstandard Maps" on page 13:

oldmaster# ypxfr -h newmaster -f mapname

newmaster is the host name of the new master server and *mapname* is a map name from "Standard and Nonstandard Maps" on page 13. ypxfr is used for this step rather than yppush because of a security feature of yppush. When a map is pushed to a server, that server consults its own copy of the map to verify that the map is coming from the master server. Since the old master server still believes that it is the master server, it will not accept maps from the new master server.

5. On the old master server, transfer copies of the new maps to all slave servers by giving this command for each of the maps listed in "Standard and Nonstandard Maps" on page 13:

oldmaster# yppush mapname

Maps are pushed from the old master server to the slave servers because the slave servers' maps still contain the old master server. The new maps contain the name of the new master server.

Using Secure ypset

The ypset tool allows the root user on NIS clients to change the binding association for the client. By default, ypset is now an attribute, and to obtain the functionality equivalent to the previous ypserv command the function is set in this manner:

```
(nis_security=true)
```

To enable changing the binding association in the domain shapes, first verify the domain name, then set ypset with these commands:

```
# domainname
shapes
# nsd -a (nis_security)
```

To enable changing the binding association at the server level, edit the server password file so that it reads:

```
passwd (nis_security)
```

To enable changing the binding association at the local level, edit the /etc/nsswitch.conf to include this line:

```
(nis_security=true)
```

If you desire to mimic the previous behavior of ypsetme, replace

(nis_security=true)

in the previous examples with either of the following:

```
(nis_security=false)
```

```
(nis_security=local)
```

The result is equivalent to the previous ypsetme.

Previously the file /etc/config/ypbind.options contained the -ypsetme option that enabled ypset. Normally, the -ypsetme option should be present when creating an NIS master because, if it is not present, ypmake displays error messages when building an NIS master. In secure installation sites, however, the -ypsetme option should be removed.

The ypset tool was designed for debugging and not for casual use. As with any network tool that bases security on IP address checking, ypset can compromise security on networks where packets may be introduced to the network by nontrusted individuals.

Chapter 6

Troubleshooting NIS

This chapter provides information to be used in troubleshooting the NIS environment. The chapter is divided into two parts: problems seen on an NIS server and problems seen on an NIS client. Each section describes general trouble symptoms followed by a discussion of probable causes.

This chapter contains these sections:

- "Debugging an NIS Server" on page 66
- "Debugging an NIS Client" on page 70
- "Before You Call for Help" on page 74

Debugging an NIS Server

Before trying to debug an NIS server, be sure you understand the concepts in Chapter 1, "Understanding NIS," and Chapter 2, "Preparing to Manage NIS," in this guide.

Different Map Versions

Since NIS works by propagating maps from the NIS master server to NIS slave servers within the same domain, you may find different versions of a map on different servers. Each time a map is updated, a new order number (map version) is attached to the map. This information can be obtained with the yppoll command.

Version skew, or out-of-sync maps, between servers is normal when maps are being propagated from the NIS master server to the slave servers. However, when the maps on different servers remain unsynchronized even after the NIS environment has stabilized, it usually indicates a problem.

The normal update of NIS maps is prevented when an NIS server or some gateway system between the NIS master server and NIS slave servers is down during a map transfer attempt. This condition is the most frequent cause of out-of-sync maps on servers. Normal update procedures are described in Chapter 5, "Maintaining NIS." When all the NIS servers and all the gateways between the NIS master and NIS slave servers are up and running, <code>ypxfr</code> should successfully transfer maps and all NIS servers' maps should be in sync.

The next section describes how to use ypxfr manually to update NIS maps. If ypxfr transfers maps successfully when it is initiated manually but still fails intermittently, it requires additional investigation on your part, which is described in the section, "Intermittent, Consistent Map Propagation Failures" on page 67.

Isolated, One-Time Map Propagation Failures

If a particular slave server has an isolated, one-time problem updating a particular map or its entire map set, follow these steps to resolve the problem by running ypxfr manually:

1. ypxfr requires a complete map name rather than a nickname, so get a list of complete map names for maps in your domain, by giving this command:

ypwhich -m

The system returns a list of complete map names and the name of the NIS master server for each map. Output should be similar to this output for an NIS master server named circles:

ypservers circles netid.byname circles bootparams circles mail.aliases circles netgroup.byhost circles netgroup.byuser circles netgroup circles protocols.byname circles protocols.bynumber circles services.byname circles rpc.bynumber circles networks.byaddr circles networks.byname circles ethers.byname circles ethers.byaddr circles hosts.byaddr circles hosts.byname circles group.bygid circles group.byname circles passwd.byuid circles passwd.byname circles mail.byaddr circles

- 2. For each map that is not being updated, transfer the map manually using ypxfr:
 - # ypxfr -f map.name

map.name is the complete name of the map, for example, hosts.byname.

If ypxfr fails, it supplies an error message that points you to the problem. If it succeeds, you should see output similar to this:

Transferred map hosts.byname from NIS_master (1091 entries).

Intermittent, Consistent Map Propagation Failures

This section describes several procedures you can use to help isolate intermittent map propagation problems.

If the error message Transfer not done: master's version isn't newer appears, check the dates on the master and slave servers.

On the NIS master server, check to ensure that the NIS slave server is included in the ypservers map within the domain. If the slave server is not in the ypservers map, the master server does not know to propagate any changed and updated maps automatically to the server. If the server has the correct entry in its crontab file to have ypxfr request updated maps from the master server, the slave server gets the updated maps, but this action is not initiated by the NIS master server. These steps illustrate how to verify the ypservers map:

- 1. Review the contents of the ASCII file used to create the ypservers map:
 - # cat /var/yp/ypservers

If the server is not listed, add the server's name using any standard editor.

2. Once the /var/yp/ypservers file has been edited, if necessary, ensure that the actual map is updated on the master server. This is a special map and no attempt is made to push it to the other servers. Give this command:

/var/yp/ypmake -f ypservers

Another possible reason for out-of-sync maps is a bad ypxfr script. Inspect root's crontab (/var/spool/cron/crontabs/root) and the ypxfr shell scripts it invokes (/var/yp/ypxfr_1ph, /var/yp/ypxfr_1pd, and /var/yp/ypxfr_2pd). Typographical errors in these files can cause propagation problems, as do failures to refer to a shell script within crontab, or failures to refer to a map within any shell script. Also ensure that the configuration flags are on for yp and nsd with the chkconfig command. For details see the chkconfig(1M) man page.

Finally, if the above suggestions do not solve the intermittent map propagation problem, you need to monitor the ypxfr process over a period of time. These steps show how to set up and use the ypxfr log file:

- 1. Create a log file to enable message logging. Enter these commands:
 - # cd /var/yp
 - # touch ypxfr.log

This saves all output from ypxfr. The output looks much like the output from ypxfr when run interactively, but each line in the log file is timestamped. You may see unusual ordering in the timestamps. This is normal; the timestamp tells you when ypxfr began its work. If copies of ypxfr ran simultaneously, but their work took differing amounts of time, they may actually write their summary status line to the log files in an order different from the order of invocation.

Any pattern of intermittent failure shows up in the log. Look at the messages to determine what is needed to fix the failure. You know that you have fixed it when you no longer receive failure messages.

2. When you have fixed the problem, turn off message logging by removing the log file. Give this command:

rm ypxfr.log

Note: If you forget to remove the log file, the log file grows without limit.

As a last resort and while you continue to debug, you can transfer the map using the remote file copy command, rcp, to copy a recent version from any healthy NIS server. You may not be able to do this as *root*, but you probably can do it by using the guest account on the master server. For instance, to copy the map hosts in the domain shapes.com from the master server circles to the slave server squares, enter this command:

```
# rcp guest@circles:/var/ns/domains/shapes.com/hosts.\* \
/var/ns/domains/shapes.com
```

The escaped asterisk $(\)$ allows the remote copy of all mdbm record files for the hosts map.

nsd Fails

If nsd fails almost immediately each time it is started, look for a more general networking problem. Because NIS uses Remote Procedure Calls (RPC), the portmapper must be functioning correctly for NIS to work.

To verify that the portmapper is functioning and that the nsd protocol is registered with the portmapper, enter this command on the server:

/usr/etc/rpcinfo -p | grep ypserv

If your portmap daemon is functional, the output looks something like this:

100004	2	udp	1051	ypserv
100004	2	tcp	1027	ypserv

If these entries are not in your output, nsd has been unable to register its services with the portmap daemon. If the portmap daemon has failed or is not running, you get this error message:

rpcinfo: can't contact portmapper: Remote system error - connection
refused

If the information returned by rpcinfo does not match the information shown above or if the error message is returned, reboot the server. Rebooting the server ensures that the network daemons, specifically portmap and nsd, are started in the correct order. See the nsd(1M), portmap(1M), and rpcinfo(1M) man pages for further details.

Debugging an NIS Client

Before trying to debug an NIS server, be sure you understand the concepts in Chapter 1, "Understanding NIS," and Chapter 2, "Preparing to Manage NIS," in this guide.

Command Hangs

The most common problem on an NIS client is for a command to hang and generate SYSLOG messages such as this:

NIS v.2 server not responding for domain *domain_name*; still trying

Sometimes many commands begin to hang, even though the system as a whole seems to be working and you can run new commands.

The messages above indicates that nsd on the local system is unable to communicate with nsd in the domain *domain_name*. This can happen as a result of any of these situations:

- The network has been disconnected on the NIS client; for example, the Ethernet cable is unplugged.
- An incorrect domain name has been specified.
- The network or the NIS server is so overloaded that nsd cannot get a response back to the nsd daemon within the time-out period.
- nsd on the NIS server has crashed.

- The NIS server has crashed or is unreachable via the network.
- There is a physical impairment on the local area network. Under these circumstances, all the other NIS clients on the same local area network should show the same or similar problems.

A heavily loaded network and/or NIS server may be a temporary situation that might resolve itself without any intervention. However, in some circumstances, the situation does not improve without intervention. If intervention becomes necessary, the following four questions help to isolate and correct the situation.

Question 1: Is the client attached to the network?

Typically, if there is a problem with the physical connection from the client to the network, a message similar to this appears in the console window on the system:

ec0: no carrier: check Ethernet cable

If NIS commands hang and you have the message shown above, verify that the physical connection from the client to the local area network is secure and functioning. If you do not know how to check your physical connection, see the *Owner's Guide* for your system for more details. Also check to ensure that the client is attached to the correct physical network.

Question 2: Does the client have the correct domain set?

Clients and servers must use the same domain name if they want to belong to the same domain. Servers supply information only to clients within their domain. The domain names must match exactly. The domain shapes.com is not the same as the domain SHAPES.com. Clients must use a domain name that the NIS servers for their domain recognize.

Verify the client's current domain name by giving the domainname command and by looking at the contents of the file /var/yp/ypdomain, which is read at system startup. Perform these steps to determine the client's current domain:

1. Determine the current domain name:

domainname
current_domain_name

2. Look at /var/yp/ypdomain to determine the domain name set at system startup:

cat /var/yp/ypdomain
current_domain_name

Compare these values to those found on the servers. If the domain name on the client differs from the domain name on the server, change the domain on the client:

1. Edit, using any standard editor, /var/yp/ypdomain to reflect the correct domain name. This file assures that the domain name is correctly set every time the client boots. There should be only one entry in this file:

correct_domain_name

- 2. Set *domainname* by hand so it is fixed immediately. Give this command:
 - # domainname correct_domain_name
- 3. Restart nsd so that the client is bound within the correct domain. Give these commands:

/etc/killall -HUP nsd

Question 3: Do you have enough NIS servers?

NIS servers do not have to be dedicated systems; and as multipurpose systems, they are susceptible to load escalations. If an NIS server is overloaded, the client's nsd process automatically switches to another less heavily loaded server. Check to ensure that designated servers are functioning and accessible via the network.

By default, when an NIS client boots it can only bind to a server that resides on the same local network. It cannot bind to a server that resides on a remote network. There must be at least one NIS server running on the local network in order for a client in the same domain to bind. Two or more NIS servers per local network improve availability and response characteristics for NIS services.

Question 4: Are the NIS servers up and running?

Check other clients on your local network. If several client systems have NIS-related problems simultaneously, suspect the NIS server. It may be that the NIS server system is down or inaccessible or that the nsd process has crashed on the NIS server.

If an NIS server crashes or becomes unavailable, it should not affect NIS performance if there are multiple NIS servers on a network. The clients automatically switch to another server. If there is only one server on the network, check to ensure that the server is up by remotely logging in to the server. If the server is up, the problem may be that the nsd process has crashed on the server. Enter these commands to find out if nsd is running and restart it if it is not:

1. Log into the NIS server system. Look for nsd processes. Give this command:

ps -ef | grep nsd

You should see output similar to this:

root 128 1 0 Sep 13 ? 1:35 /usr/etc/nsd

2. If the server's nsd daemon is not running, start it up by typing:

nsadmin restart

3. Give the command ypwhich on the NIS server system:

ypwhich

If ypwhich returns no answer, nsd is probably not working.

- 4. If nsd is not working, give this command to kill the existing nsd process and start a new one:
 - # nsadmin restart

NIS Command Fails

Another problem that can occur on an NIS client is for a command to fail due to a problem with the NIS daemon, nsd. These examples illustrate typical error messages you might see when you give an NIS command and nsd has failed:

```
# ypcat hosts
ypcat: can't bind to NIS server for domain domain_name.
Reason: can't communicate with nsd.
# yppoll aliases
Sorry, I can't make use of the NIS. I give up.
```

In addition to the preceding error messages, these general symptoms may also indicate that the nsd process has crashed:

- Some commands appear to operate correctly while others terminate, printing an error message about the unavailability of NIS.
- Some commands work slowly in a backup-strategy mode peculiar to the program involved.
- Some commands do not work and/or daemons crash with obscure messages or no message at all.

To correct this situation, stop and restart the nsd process on the client with the following command:

nsadmin restart

Give this command to verify that the nsd process is running:

ps -ef | grep nsd

You should see output similar to this:

root 26995 1 0 17:35:31 ? 0:00 /usr/etc/nsd

ypwhich Output Inconsistent

When you enter the ypwhich command several times on the same client, the answer you receive may vary because the NIS server has changed. This response is normal. The binding of an NIS client to an NIS server changes over time on a busy network and when the NIS servers are busy. Whenever possible, the system stabilizes at a point where all clients get acceptable response time from the NIS servers. As long as the client gets NIS service, it does not matter where the service comes from. An NIS server may get its own NIS services from another NIS server on the network.

Before You Call for Help

Before you call your support provider, please use the recommendations in this chapter for solving your problems independently. If your problems persist and you find it necessary to call, please have this information ready:

- System serial number.
- Operating system and NFS version numbers (from versions). Include eoe and nfs.
- A specific description of the problem. Write down and be prepared to provide any error messages that might help in isolating the problem.
- Are there other vendors' systems involved?
- What does the physical layout look like? Are there gateways?
- How many slave servers do you have per network?

- What are the names of the master server, slave server(s), and domain?
- How many systems are in your domain?
- Do you have multiple domains?

A

adding new users, 44 automount auto.home map, 55 auto.master map, 55

В

Berkeley Internet Name Daemon (BIND). See DNS. binding, 11, 37

С

chkconfig utility, 10, 40, 68 client configuring, 40 debugging, 70-74 defined, 4 file control on, 16 local files for, 17 setting up, 40-41 starting daemons on, 41 testing, 41 command failures, 70, 73 configuration flags. See chkconfig utility. crontab tool for database updates, 14, 26 for map propagation, 57-58

D

daemons required for NIS, 10 starting, 36, 39, 41 database (NIS), 13, 27 dbm files, 13, 55 debugging and portmapper functions, 69 clients, 70-74 command errors, 70, 73 domain name errors, 71 inconsistent ypwhich output, 74 map propagation failures, 66-69 network connection errors, 71 out-of-sync maps, 66 server failures, 72 server overload errors, 72 servers, 66-70 telephone help with, 74 DNS, 25 domain name errors in, 71 selecting, 29 setting, 34, 37, 40 Domain Name System. See DNS. domainname command, 29 domains and Internet domains, 6, 35 defined, 5 multiple and DNS, 25

discussion of, 6 limitations of, 24 setting up, 24 update procedure for, 26 size limitations of, 6

Е

error logging, 68 /etc/config/rpc.passwd.options file, 19, 30 /etc/config/ypbind.options file, 19, 64 /etc/hosts file, 24 /etc/hosts.equiv file, 16 /etc/init.d/network file, 10, 36, 39 /etc/netgroup file, 47 /etc/nsswitch.conf file, 26 /etc/passwd file, 16 /etc/passwd.nis file, 30 /etc/sys_id file, 35 external data representation (XDR), 2

F

files local, 16 files. See individual filenames. font conventions, xviii

Н

home directory structure, 6 host name resolution, 25-??, 25-26 host names (NIS), 33 hostname command, 33 hosts database, 24 hosts file, 24

L

local.make.script file, 14, 49, 55 logging map transfers, 61 ypmake functions, 61 ypxfr functions, 68 login daemon, 47

Μ

makedbm tool and map propagation, 14, 59 and nonstandard maps, 49 purpose of, 13 makemdbm tool and nonstandard maps, 54 make.script file, 54 map propagation debugging, 66-69 defined, 4 methods, 14 procedures for, 57-61 maps creating, 49-50 defined, 4 directory structure of, 6 keys and values in, 4 modifying, 54-55 nicknames for, 14 nonstandard creating, 49-50 creating under IRIX 6.5, ??-50 defined. 13 modifying, 54-55 propagating. See map propagation.

007-2161-006

See also individual map names. standard defined, 13 modifying, 54 steady state of, 5 version errors in, 66 master server building maps on, 35-37 changing, 62 defined, 4 selecting, 30 setting the domain on, 34 setting up, 34 starting daemons on, 36 testing, 36 mountd daemon, 47 multiple domains. See domains.

Ν

named daemon. See DNS. netgroup file, 47 network connection errors, 71 NIS server specify at client startup, 31 NIS, defined, 2 nonstandard maps. See maps, nonstandard. nsd daemon and communication errors, 70 and portmapper registration, 70 and server loading, 72 restarting, 72 nsswitch.conf file, 31

0

Open Systems Interconnect (OSI) model, 3

Ρ

passwd.nis file, 30 passwords in /etc/passwd file, 17 on NIS accounts, 64 securing for NIS, 30 planning recommendations, 31 portability features, 2 portmapper portmap daemon, 69 verifying on servers, 69 propagation. See map propagation. protocols (NIS), 2

R

rcp command, 69 remote procedure call (RPC), 2 rlogind daemon, 47 rpcinfo tool, 69 rpc.passwd daemon purpose of, 10 quick reference to, 19 rpc.passwd daemon, 46 rpc.passwd.options file, 19, 30 rshd daemon, 47

S

Selecting an NIS Slave Server, 30 server debugging, 66-70 defined, 4 failure of, 72 hierarchy, 4 overloading, 72

See also master server and slave server. slave server adding, 61 binding for setup, 37 building maps on, 38-?? defined, 4 selecting, 30 setting the domain on, 37 setting up, 37 specify an NIS server at client startup, 31 starting daemons on, 39 specify an NIS server at client startup, 31 standard maps. See maps, standard. sys_id file, 35

Т

tools. See individual tool names. transfer scripts, 58 Transmission Control Protocol (TCP), 2

U

User Datagram Protocol, 2 user groups, 47 users, adding, 44 /usr/lib/aliases file, 16

V

/var/spool/cron/crontabs/root file, 57, 59 /var/yp/local.make.script file, 49, 55 /var/yp/make.script file, 54 /var/yp/ypdomain file, 29, 71 /var/yp/ypmake.log log file, 61 /var/yp/ypxfr.log log file, 61

Y

ypbind daemon and NIS command errors, 73 primary purpose of, 10 quick reference to, 19 ypbind tool and server testing, 40 ypbind.options file, 19, 31, 63 ypcat tool printing map nicknames with, 14 quick reference to, 20 vpchpass tool and NIS daemons, 10 quick reference to, 20 ypdomain file, 29, 71 ypinit tool for duplicating maps, 38 for master maps, 35 quick reference to, 20 ypmake tool and map propagation, 14, 59 quick reference to, 20 usage examples, 59 using, 54 ypmake.log log file, 61 ypmatch tool and debugging, 66 quick reference to, 20 yppasswd tool and rpc.passwd daemon, 10 changing NIS passwords, 46 quick reference to, 20 yppoll tool for map versions, 66 quick reference to, 20 yppush tool and map propagation, 15, 59, 60 and new maps, 36

007-2161-006

quick reference to, 20 usage examples, 60 ypserv daemon and the make script, 59 ypservers map, 15, 59, 61, 68 ypset tool quick reference to, 20 secure mode, 63 ypsetme option, 64 ypwhich tool and binding, 12 and client testing, 41 and server testing, 36, 39 output from, 74 quick reference to, 21 ypxfr tool and debugging, 66 and map propagation, 15, 57, 59, 60 log file for, 68 monitoring, 68 quick reference to, 21 script errors, 68 shell scripts, 58 usage examples, 60 ypxfr.log log file, 61